

DIAMOND DRILLING ASSESSMENT REPORT

ON THE

DORADO ZONE

Lat. 50[°] 38' N, Long. 120[°] 31' 30" W UTM Zone 10, 5612000 N, 674500 E

KAMLOOPS MINING DIVISION

For

Lakewood Mining Company Limited

And

Green Valley Mines Inc.

Operators

By

Joseph E.L. Lindinger, P.Geo.

April 18, 2008

BC Geological Survey Assessment Report 29880

TABLE OF CONTENTS

	Page
SUMMARY	
INTRODUCTION	4
LOCATION AND ACCESS	4
PHYSIOGRAPHY	4
MINERAL TENURE	
REGIONAL GEOLOGY	9
LOCAL GEOLOGY	9
2007 DRILL PROGRAM	
CORE RECOVERY, SAMPLING AND ANALYTICAL PROCEDURES	
RESULTS	
CONCLUSIONS	
DISCUSSION	
RECOMMENDATIONS	
REFERENCES	
CERTIFICATE OF INDEPENDENT QUALIFIED PERSON	

List of Figures

•

FIGURE 1 - LOCATION MAP	. 5
FIGURE 2 - DORADO-MONARCH PROJECT CLAIMS	. 6
FIGURE 2 - MINERAL CLAIM OUTLINE	. 6
FIGURE 3 - REGIONAL GEOLOGY	. 8
FIGURE 4 – LOCAL GEOLOGY AND CLAIMS	11
FIGURE 7 - SECTION 2750N GEOLOGY	13
FIGURE 5 – DORADO ZONE 2007 DRILLING PLAN	13
FIGURE 6 - RECOMMENDED DRILLING PLAN	18
List of Tables	

TABLE 1 MINERAL TENURE	7
TABLE 2 - Assessment Expenses	16
TABLE 3 - RECOMMENDED EXPENDITURES	17

Summary

From late October to early December 2007 Lakewood Mining Ltd. under the direction of Mr., Charles R. Boitard attempted 5 and completed 2 diamond drill holes on the Dorado Target area 15 kilometers southwest of Kamloops, British Columbia.

The claims upon which the 2007 work program has been completed has been held by Mr. Charles Boitard for more than the last decade are and are under option to Lakewood Mining Ltd. 50% and Green Valley Mines Inc. (50%). Lakewood Mining Co. Ltd. and Green Valley Mines Inc. have completed many different geophysical and geochemical surveys as well as drilling programs on various areas of the claims.

The claims lie within the eastern alkali volcanic and sedimentary assemblage of the Nicola Group subterrane of the Upper Triassic to lower Jurassic volcanic island arc Quesnel Terrane. This arc and isolated segments of the intervening oceanic rocks and associated sediments were obducted onto the western edge of the north American continent during the Mid Jurassic. The eastern Nicola Group volcanics were intruded by numerous coeval generally alkalic stocks plugs and small batholiths that often host copper+/-gold porphyry and related skarn and replacement deposits. These deposits also can host appreciable silver, magnetite, palladium and platinum. The nearest such intrusive body on the claims partially underlies the eastern portions of the claims is the Iron Mask Batholith. Smaller dioritic dykes and sills also occur on the claims. The Iron Mask Batholith hosts several economic and numerous subeconomic copper-gold porphyry deposits, prospects and showings. Such deposits are the primary exploration targets on the claims.

Overlying the Nicola group rocks are early Tertiary Kamloops Group lacustrine and fluvial sediments which in turn are intruded and partially overlain along with Nicola Group rock by subareal intermediate to felsic Kamloops Group Volcanics. Numerous leucocratic felsic plugs, dykes, sills and possibly flows occur on the claims. These appear to have generated small or large very low grade epithermal and shear zone associated gold-+/-copper+/-arsenic+/-antimony deposits. These zones have possibly generated the large gold in soil MMI anomalies on the property that are a current focus of exploration.

Hole D07-04 was collared to test a buried IP anomaly. A short zone of disseminated pyrite mineralization with more extensive shear associated very weak native copper was intersected at the target depth. The pyrite appears to be associated with Tertiary intrusive and associated alteration. Holes D07-05, 6, 7 and 8 were collared 1500 meters north of hole 4 and attempted to test a large MMI gold anomaly overlying and subparalleling the Cherry Creek fault. All but hole 8 were abandoned in clay altered rock. All holes intersected red and maroon basaltic and andesitic volcanic breccias and lesser lapilli tuffs, ash tuffs and flows. The Nicola volcanics and intrusives have been intruded by Eocene Kamloops Group quartz feldspar porphyry rhyolite dykes and sills. The Kamloops group rocks appear to have accompanying silicic, potassic, albitic ankeritic and argillic clay alteration often accompanied by up to 10% fine grained pyrite with arsenopyrite. The alteration and mineralization appear to have been deposited by weak to moderate epithermal and shear zone associated hydrothermal cells driven by the Tertiary intrusives. Samples taken of mineralized material returned locally moderately anomalous arsenic with sporadic very weakly anomalous gold values. No alteration or mineralization associated

with an alkalic porphyry copper deposit was observed, or if so was overprinted by the strong Tertiary alteration.

Some documented gold showings associated with Kamloops groups extrusive rocks occur near the 2007 exploration areas. It is likely that the MMI anomalies are generated from hydrothermal remobilization along deep seated structures related to the Cherry Creek fault resulting in weak concentrations of metals sourced from the mafic metal rich Nicola volcanics.

To test for additional Tertiary volcanic associated gold mineralization, a preliminary \$400,000 surface exploration program consisting of geological mapping and drilling is proposed. Further expenditures would be contingent on positive exploration results. Additional studies should continue to test for possible Afton style copper-gold mineralization.

Introduction

This report has been written at the request of Mr. Charles Boitard, President of Lakewood Mining Ltd and Green Valley Mines Inc. to discuss exploration findings from a diamond drill program completed in late 2007. The drill program was designed to test an area hosting an induced polarization anomaly and a second area hosting a strong and large gold-mobile metal ion (MMI) anomaly that could be a signature to one or more epithermal or shear hosted Tertiary aged gold bearing zones that is also associated with small erratically located IP anomalies.

Location and Access

The location of the Claims is centered on latitude Lat. 50^o 38' N, Long. 120^o 31' 30" W UTM 56 100 030 N, 678 000 E (Figures 1 and 2), in the Kamloops Mining Division, British Columbia, Canada. The claims making up the group are centered approximately 15 kilometers south southwest of Kamloops, B.C (map sheet 92-1/9 and 92-1/10), and south of the Afton Mine. Access to the northeast part of the claims is by range roads originating from the Lac Le Jeune Road near the Iron Mask industrial park. Access to the western parts of the claims is best via the Greenstone Mountain road and various range roads that transect various areas of the claims.

Physiography

The claims covers the north east slope with moderate to steep north sloping hills of forested and grassed open rangeland of Greenstone Mountain and parts of upper Cherry Creek and the adjoining lands towards the northeast towards the Coquihalla highway #5. The claims extend 11 to 20 kilometers southwest of Kamloops (Figure 2). The lower areas are underlain by deep and extensive glacial till, subsequently much of the claim area has very poor outcrop exposure. The northeast portions on the slopes of Greenstone Mtn. have sporadic outcrop totalling about 5% and much thinner till cover. The local elevations range from 750 metres to 1525 metres above sea level and the vegetation consists of previously logged dense forests of fir and (dying) pine interspersed with open grassland areas. There are many small creeks and drainage systems across the claims.

Diamond Drilling Assessment Report on the Dorado Zone

AFTON AREA MINERAL CLAIM OUTLINE 2007 DORADO ZONE DRILLING 50⁰ 38' N, 120⁰ 31' 30" W - UTM Zone 10, 5612000 N, 674500 E KAMLOOPS MINING DIVISION Figure 2 – Data overlain on Google Earth background

1 3 MILES

Mineral Tenure

The mineral claims are held 100% by Charles Roger Boitard of Vancouver under option to Lakewood Mining Company Limited (50%) and Green Valley Mine Incorporated (50%). The Claims for which work has been applied on for assessment purposes of the work that this report documents are in bold with the expiry date asterisked in Table 1 and were filed by Mr. Boitard with the Ministry of Energy and Mines on under Event Numbers 4191039, 4191041, 4191042 filed January 19, 2008.

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date*	Area	Tag Number
218587	Mineral	CAMP	102688 (100%)	0921068	2011/jun/13	500.0	39360
396557	Mineral	MONARCH	102688 (100%)	0921068	2011/sep/24	150.0	235034
515335	Mineral		102688 (100%)	0921	2011/mar/08	1416.58 ⁻	
515339	Mineral		102688 (100%)	0921	2011/jan/21	430.883	
516119	Mineral		102688 (100%)	0921	2012/aug/01	471.51	
570405	Mineral	VIC 2	102688 (100%)	0921	2012/nov/21	492.601	
570406	Mineral	VIC 3	102688 (100%)	0921	2012/nov/21	492.745	
570407	Mineral	VIC 4	102688 (100%)	0921	2012/nov/21	369.659	
571139	Mineral	VIC 5	102688 (100%)	0921	2012/dec/01	246.507	

TABLE 1 Mineral Tenure

* With application and acceptance for assessment credits of the exploration work this report documents.

LAKEWOOD MINING COMPANY LIMITED Lat. 50⁰ 38'N, Long. 120⁰ 31' 20"W UTM Zone 10, 5612000 N, 674500 E KAMLOOPS MINING DIVISION Figure 3 – REGIONAL GEOLOGY

Map from Moore and Meyers, 1990

Regional Geology

The most important lithology regionally is the Quesnel Terrane (Quesnellia), an extinct volcanic arc obducted onto the west coast of ancestral North America during the Jurassic. The Quesnel Terrane (Figure 4) extends from north of the Toodogone area to south of the United States border. The southern part of Quesnellia is called the Nicola belt.

Kwong, Page 3, Summarizes the regional geology of the area (Figure 3).

"The Nicola belt extends from south of Kamloops Lake 200 kilometres to the International Boundary. The most important pre- Tertiary rocks in this belt are Late Triassic volcanic and sedimentary rocks of the Nicola Group. The Nicola belt is divided into a series of narrow northerly trending blocks by several large, high-angle, northerly trending faults These faults are interpreted to be basement structures which controlled the distribution of volcanic centres and flanking sedimentary basins (Preto, 1977). Preto et at. (1979) identified four groups of major plutonic events in the belt. They are characterized by the ages of 200 million years (Ma), 160 Ma, 100 Ma, and 50-70 Ma respectively. The Iron Mask batholith is one of the larger alkaline plutons of the 200-Ma age group. It is situated along the southwest side of a regional northwest-trending fracture zone and is itself cut by numerous northwesterly faults. Northcote (1976) and Preto (1977) suggested that the batholith and other alkaline plutons in the same group are likely centres of Nicola volcanism."

Local Geology

Kwong, Page 3, discusses the general local geology (Figure 4).

"On the southwestern flank of the Iron Mask Pluton, well indurated, massive and bedded tuff, breccia, and interbedded flows and flow breccia are prominent. All of these rocks are weakly metamorphosed and most of them show a fairly uniform green-grey colour. ..."

Intruding the Nicola Volcanics north east of the Wood group is the coeval multiphased alkalic Iron Mask Pluton.

The period to the early Tertiary was primarily one of gradual erosion and several changes in regional tectonics including the docking of the Quesnel Terrane onto ancestral North America. Kwong, Page 5 describes the Eocene Kamloops Group.

"Early Tertiary sedimentary and volcanic rocks of the Kamloops Group unconformably overlie the Nicola rocks and the Iron Mask batholith. These include tuffaceous sandstone, siltstone, and shale with minor conglomerate, as well as basaltic to andesitic flows and agglomerates with minor dacite, latite, and trachyte. The Iron Mask pluton and the Cherry Creek pluton are separated by a thick sequence of Kamloops Group rocks occupying what appears to be a graben structure resulting from renewed fault movement around the margins of the plutons during Paleocene or Early Eocene time. The geology of these rocks has been described in detail by Ewing (1982)."

BEDROCK GEOLOGICAL LEGEND for Figure 4

Tertiary Miocene		
1011000110	Mivb	Vesicular Basalt
Eocene		
	Efp	Feldspar Porphyry
Mesozoi	с	
Late Tria	ssic-Jurassic	
	LTrJgd	Granodiorite (Iron Mask Batholith)
Upper Ti	riassic	
	uTrNE	Eastern Group Nicola Volcanics undivided
น่	TrNml	Nicola Volcanics metamorphic

FIGURE 4 - LOCAL GEOLOGY AND CLAIMS

The area of the late 2007 drilling straddles the subregional northwest trending Cherry Creek fault, a deep seated long lived structure that has controlled or influenced the emplacement of several post Mesozoic intrusive bodies. These include Eocene Kamloops group volcanics and possibly Miocene basalts. The Kamloops group intrusives (Unit Efp) in particular occur as several feldspar +/- quartz phyric felsic dykes, plugs and possibly extrusive flow domes along the south side of the structure northwest on and southeast of the Claims. In several areas these appear to be associated with weak epithermal style gold mineralization such as at Ned Roberts Hill several kilometers immediately northwest of the claims. There are also unsubstantiated gold occurrences in rhyolite flow domes? immediately south of the exploration area 1 kilometer south of the Inks Lake interchange (Lindinger 1995)

2007 Drill Program

All of the following drill holes were collared on claim 516119 at the north central part of the claims.

Hole D07-04 was collared at UTM location ZONE10, 5612500 N, 674200 E. The hole was collared about 1 kilometer along a range road bearing south from the 7.4 km point on the Greenstone Mountain Road. The hole targeted an IP anomaly at least 80 meters deep. The hole intersected massive and sheared Nicola volcanics and small erratically located Tertiary felsic dykes. Most core contacts were about 35 degree suggesting moderate dip to faults and assumedly northwest striking northeast dipping. At the IP target weak erratically disseminated and fracture associated pyrite was intersected. The mineralization was associated with Tertiary Kamloops Group felsic dykes. Trace native copper was intersected in many shears. No significant mineralization was noted and no samples were taken.

Drill hole D07-05 was collared 1.5 kilometers north of hole D07-04 into an large Mobile Metal Ion (MMI) gold anomaly and is at the northeast end of a shallow apparently southwest dipping IP anomaly near the north central portion of claim 516119. The hole was abandoned in strongly clay altered rock at a depth of 45 meters.

Hole D07-06 was collared about 5 meters east of hole 5 and was drilled to 50.6 meters and abandoned in similar rock as hole 5. 37.5 meters of casing were driven. The entire hole was sampled.

Hole D07-07 was collared 310 meters east northeast of Hole 6. The hole was targeted to intersect a strong IP anomaly beginning at about 75 meters depth. After 6 meters of overburden strongly propylitic and clay altered sheared Nicola volcanics were intersected. This hole was drilled to 34.1 meters and abandoned. The entire hole was very strongly ankerite-clay altered with two "felsic or siliceous vein-dykes intruding sheared Nicola Breccias. The entire hole was sampled.

Hole D07-08 was collared at the same location as D07-06 and was drilled vertically to 331.3 meters. The entire hole encountered very strongly propylitically altered and sheared Nicola volcanics and possibly intrusives that have been intruded by several coeval phases of felsic Tertiary Kamloops Group intrusives. There does not appear to be a noticeable zoning trend to alteration or mineralization related to the felsic intrusives from shallow to deep dykes encountered.

All core is stored at 680 Dairy Road, Kamloops, B.C. V2B-8N5

Core Recovery, Sampling and Analytical Procedures

The core from all holes except hole D07-05 were washed, and the footage blocks were converted to metric. The core was examined for lost or ground segments and misplaced pieces. Sections of ground core and lost segments were noted in a geotech log. Also measured and noted were overall block to block recovery and RQD. Then to core was imaged. The core was geologically logged and sections selected for analyses were chosen. The sections of core selected for sampling were done so by the writer in the case of Holes D07-04, 5, 6, and 7 and in the case of hole D07-08 by Michael Cathro, P.Geo. The selected samples were split by experienced Geotechs Ken Dillabough and Brandon Barker. A conventional manual core splitter was used. Field standards and blanks were inserted approximately every 25 samples. The core samples for hole 6 and 7 were delivered via Greyhound Courier to Acme Analytical Laboratories in Vancouver. The core samples for hole 8 was delivered directly to Ecotech Laboratories Ltd. in Kamloops. All core samples were dried, then crushed to -6 mm from which a 250 gram portion was pulverized to 80% minus 200 mesh. Sub samples were taken from the pulp, a 15 to 30 gram subsample for gold analyses with AA finish, and a 5 gram subsample for conventional 28 or 34 element ICP multielement analyses. Analytical results are detailed in Appendix 1

Results

Holes 4 and 5 were not sampled. Hole D07-06 did not return any anomalous economic elements.

Hole D07-07 returned a 1.53 meter interval of anomalous arsenic (538 ppm) associated with an ivory ankerite or intensely ankeritized cryptocrystalline dacite vein/dyke that was at about 30 deg. to C.A.. The interval had a strong ankerite and minor silica overprint. Silica also occurs as minute tensional veinlet swarm in fragments. The interval was not anomalous for any other economic elements. The IP anomaly at depth remains untested.

Hole C07-08 returned several individual intervals reporting anomalous arsenic from 97.6 to 188.1 meters and one 36.6 meter zone from 197.21 to 233.78 m that averaged 394 ppm arsenic. The 36.6 meter zone was also reported weakly to very weakly anomalous antimony, copper and

gold. Several other weakly anomalous gold intervals also occur near to but not directly, associated with the arsenic. The arsenic values are directly associated with ragged aggregates and disseminations of fine grained pyrite-arsenopyrite mineralization. The gold mineralization appears to be associated with weak silicification and shear associated tension quartz veining often with trace very fine grained pyrite mineralization. The mineralization encountered was below the IP anomaly.

Conclusions

The immediate area surrounding hole D07-04 is not considered prospective for hosting an Afton style copper-gold deposit. The rocks encountered in hole 05 to 08 were sheared and altered Nicola volcanics within or near to the subregional northwest striking apparently steeply northeast dipping Cherry Creek fault. Weak gold mineralization associated with silicification and quartz-veining with weak pyrite mineralization is spatially associated with moderately anomalous arsenic. The alteration appears to be associated with Tertiary Kamloops Group felsic intrusives. The intrusives, alteration and mineralization are at least partially coeval with shearing. To date the mineralization encountered in holes D07- 06 to 08 partially explains the strong gold MMI anomaly.

Discussion

The Cherry Creek Fault Zone is known to host gold bearing structures and veins especially in the Ned Roberts Lake area about 1 kilometer NW of hole D07-05, 6, and 8, although traces of gold mineralization occur over a much larger area along the fault zone. The mineralization is hosted by silicified zones and shears and small quartz veins within larger carbonate and clay alteration zones. Gold mineralized veins often host very fine grained pyrite. Stronger pyrite mineralization within intense ankerite? altered zones report moderately anomalous arsenic, and weakly anomalous copper and antimony. The alteration and related mineralization appear to be associated with Tertiary Kamloops Group feldspar phyric felsic dykes and small plugs. Hole D06-02 was collared 900 meters due west of Hole D07-05 intersected a narrow 4 meter drill width intersection grading 0.55% copper with accompanying anomalous gold and bismuth in a style similar shear and alteration zone. The higher copper and bismuth here may be due to hole intersecting a deeper part of a similar mineralized system than that intersected in further east in Holes 5 to 8 with reported lower copper and gold values but higher arsenic and antimony.

TABL	Æ	2
------	---	---

	2007 - 2008 DORADO EXF	PENSE SUMMARY			
DATES	EXPENSE ITEM	DAYS or HOURS		RATE	COST
Sep 14-Dec 28, 2007	Lindinger P.Geo. Geological	60.0	\$	100.00	\$ 6,000.00
r	supervision. core logging, drill site				
	supervision. Hours				
Jan 1 - Feb 6, 2008	Lindinger P.Geo. Geological	3.0	\$	100.00	\$ 300.00
-	supervision. core logging, drill site				
	supervision. Hours				
Sept 14-Oct 1, 07	Ken Dillabough - geoteching core	29.0	\$	30.00	\$ 870.00
	(hours)				
Jan 1 - Mar 31, 2008	B. Barker - geoteching core (hours)	96.0	\$	30.00	\$ 2,880.00
Sep 14-Dec 28, 2007	Core processing facility (days)	80.0	\$	10.00	\$ 800.00
Jan 1 - Mar 31, 2008	Core processing facility (heated)	70.0	\$	25.00	\$ 1,750.00
	(days)				
4X4 pickup	Usage days	14.8	\$	75.00	\$ 1,109.40
Mike Cathro, P. Geo	Core Logging (hours)	23.0	\$	100.00	\$ 2,300.00
Mike Cathro, P. Geo	Vehicle rental				\$ 36.75
Sept 14-Oct 1, 07	LNB Construction (bulldozer) (hours)	62.4	\$	150.00	\$ 9,360.50
Sept 14-Oct 1, 07	Full Force Drilling Ltd.	Mobilization			\$ 5,000.00
	Full Force Drilling Ltd.	341.2	1	meters	\$ 37,691.72
	Full Force Drilling Ltd.	hole stabilization			\$ 53,886.42
	Full Force Drilling Ltd.	consumables			\$ 32,124.51
Nov 27 - Dec 05, 2007	Frontier Diamond Drilling Ltd.	Mobilization			\$ 2,000.00
	Frontier Diamond Drilling Ltd.	329.5	I	meters	\$ 29,637.00
	Frontier Diamond Drilling Ltd.	hole stabilization			\$ 6,820.00
	Frontier Diamond Drilling Ltd.	consumables			\$ 6,775.00
	Frontier Diamond Drilling Ltd.	water truck			\$ 15,470.00
	Caribou Chilcotin helicopters. Mobe in	0.5	\$ [•]	1,882.56	\$ 941.28
13-Sep-07	water pump to Cherry Creek)				
	Caribou Chilcotin helicopters.	0.5	\$ [^]	1,882.56	\$ 941.28
	Demobe in water pump from Cherry				
16-Sep-07	Creek)				
	Acme labs analyses				\$ 639.10
April1-10, 2005	Report				\$ 3,500.00
TOTAL APPLIED FOR	ASSESSMENT				\$ 220,832.96

Recommendations

The target of Hole D07-07 should be re attempted to get to the target depth. The anomalous arsenic within strongly ankeritized and carbonate veined-flooded rock some 50 to 100 meters above a strong IP anomaly is an encouraging sign indicating possible upper reaches of a possible precious metal hydrothermal system.

The presence in Hole 8 of a pyrite-arsenopyrite mineralized zone from 197.2 to 233.8 M that returned anomalous arsenic with weaker anomalous antimony, copper and gold with associated silicification that overprints extensive carbonate alteration may suggest that the hole intersected the upper levels of a gold+/- copper mineralized system similar to and hopefully larger than that intersected in Hole 06-02, 900 meters to the west. Erratically anomalous gold and arsenic in the rock overlying the larger zone are also suggestive of the upper levels of a system.

The deep overburden and wide spaced IP and MMI surveys in the area makes structural interpretation difficult. The dominant structural trend is NW-SE with and inferred steep NE dip for the Cherry Creek fault zone. However Whittles 1990, 3 and 5 indicates that in the Ned Roberts Lake area 2 km NW of the 2007 drilling area the north trending faults may be also control alteration and possible mineralization.

The author recommends a north west trending fence of 5 or 6 drill holes collared at 150 meter intervals beginning 100 meters north east of hole D07-07 and 150 meters northeast of D07-08 to the north property boundary. Each hole would be 300 meters long drill and drilled to the southwest at 50 degrees cross cutting the inferred NW strike and NE dip of the target zone, as well as intersecting possible north trending zones at a more favourable angle. Another hole should be collared 75 meters NW of hole D07-08 to intersect the IP anomaly that may host auriferous sulphide mineralization. At least 2 holes should be collared north and northwest of hole D06-02 to undercut the strong MMI gold in soil anomaly that extends north and northwest of hole D06-02 and hopefully stronger gold-copper mineralization that that intersected in hole 2.

Additional exploration expenditures in the MMI gold anomalous zone would be contingent on the success of this program. If the holes near the northwest corner of the claims encounters mineralization optioning the adjoining claim covering Ned Roberts Lake should be considered.

TABLE 3				
RECOMMENDED EXPENDITURES				
EXPENSE ITEM	CC	DST	PER U	NIT
GEOTECH AND CORE SAMPLING				\$ 20,000
GEOLOGICAL MAPPING SUPERVISION AND CORE LOGGING				\$ 40,000
DIAMOND DRILLING 8 315 M HOLES 2500 M	2,500	\$	150	\$375,000
SAMPLING AVERAGE 2.5 M PER SAMPLE 1000 SAMPLES	1,000	\$	35	\$ 35,000
REPORT				\$ 15,000
CONTINGENCY 10%				\$ 55,000
TOTAL BUDGET				\$540,000

TADI	E 2
IADI	· Г . Э

FIGURE 6 - RECOMMENDED DRILLING PLAN

REFERENCES

- Kwong, Y.T.J. 1978; Evolution Of The Iron Mask Batholith And Its Associated Copper Mineralization. Ministry of Energy, Mines and Petroleum Resources Bulletin 77. 55 pages plus attachment.
- Mark, D. 2006: Geochemical Report on an MMI Soil Geochemistry Survey over the Northwest Part of the Wood Group Mineral Claims, Afton Mines Area. 47 pages. Ministry of Energy, Mines and Petroleum Resources Assessment Report 23,365.
- Reed, A.J., 1976: Geological, Geochemical and Geophysical Report on the Hughes 1-6 Mineral Claim. 9 pages plus attachments. DMPR Assessment Report 5852.
- Richards G. 2007: Progress Report on the Wood Group of Mineral Claims. 6 pages. Unpublished Company report.
- Wantech Pty. Ltd. 2004; MMI Manual for Mobile Metal Ion Geochemical Soil Surveys. Version 5.04. 30 pages.
- Whittles, A.B.L. 1990: Geological, Airphoto Interpretation, Geochemical, and Geophysical Report on the NED Claim. Ministry of Energy, Mines and Petroleum Resources Assessment Report 20679.
- Whittles, A.B.L. 1993: Geological, Airphoto Interpretation, and Geophysical Interpretation Report on the NED Claim. Ministry of Energy, Mines and Petroleum Resources Assessment Report 23111.
- Whittles, A.B.L. 1995: Drill Core Log, Assay and Geochemical Interpretation Report on the NED Claim. 64 pages plus attachments. Ministry of Energy, Mines and Petroleum Resources Assessment Report 24195.

Certificate of Independent Qualified Person:

I, Joseph Eugene Leopold Lindinger, P.Geo. am a consulting geoscientist residing at 680 dairy road, Kamloops, B.C. V2B-8N5

2. I am Registered member as a Professional Geoscientist of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1992), member #19155.

3. I am a graduate of the University of the University of Waterloo, Ontario with a Bachelor of Sciences (BSc) in Honours Earth Sciences, and have practiced my profession continuously since that time.

4. Since 1975, I have been involved in mineral exploration for gold, copper, zinc, lead and silver, and Uranium, in British Columbia, Ontario, Labrador, Nunavut, Northwest Territory, Yukon Territory, Nevada (USA) and Mexico.

5. As a result of my education, professional experience and professional qualifications, I am a qualified person as defined in National Instrument 43-101 for the mineral deposits being explored for on the mineral property that is the subject of this report.

6. Since 1992 I have been a Professional Geoscientist operating a geoscience consulting practice based in Kamloops, British Columbia.

7. I first visited the property on July 8, 2004, on behalf of Lakewood Mining Company Limited, and have revisited the property later several times to site drill holes, monitor drill progress, and retrieve or log and sample the drill core on site including the drilling that this report documents

8. I prepared this report based on historical and new exploration data generated by the 2007exploration programs.

9. In the disclosure of information relating to permitting, legal title, action, and related issues, I have relied on information from the Ministry of Energy Mines and Petroleum Resources, Mineral Titles Division and the I disclaim responsibility for the accuracy of such information.

10. I am not aware of any material fact or material change with respect to the subject matter of this report that is not reflected in this report, the omission to disclose which would make this report misleading.

11. I am independent of Lakewood Mining Company Limited and Green Valley Mines Incorporated and have no interest material or otherwise in the claims comprising the Wood Group.

12. I consent to the filing of this report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company

files on their websites accessible to the public, of the technical report so long as these publications do not provide conclusions different than this report documents.

Dated at Kamloops, British Columbia, this 18 day of April, 2008.

Signed "Joseph E. L. Lindinger. P. Geo"

Joseph E.L. Lindinger, P.Geo. Consulting Geoscientist Diamond Drilling Assessment Report on the Dorado Zone

-

APPENDIX 1 ANALYTICAL RESULTS

ACME ANALYTICAL LABORATORIES LTD. Final R Client: Lakewood Mining Co. Ltd. File Create 1-Feb-08 Job Numbe VAN07003127 Number of 18 Project: DORADA Shipment I 1-Jul P.O. Number: Received: 9-Oct-07

	Method Analyte	WGHT WT	3A 1D Au Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	
	Unit	KG	PPB PPN	И РРМ	PPM	PPM	PPM	PPM	PPM	PPN	A %	PPM	PPM	PPM	PPM	PPM	1
Consta	MDL	0.01	0.5	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1
Sample	Type	7.0	4 5 .4		70 -0		47		•	40	004	0.05	0 -0	-0		•	4 47
132001		7.8	1.5 <1		/3 <3		4/	0.4	3	10	991	2.85	8 < 8	<2	.0	3	14/
132002		1.5	1.3 <1		44 <3		39	0.3	3	12	1632	2.68	8 <8	<2	<2		165
132003		4.9	0.8 <1		44 < 3		50	0.4	3	13	1020	3.12	0 < 8	< <u>Z</u>	<2	•	102
132004		3.0	4.6 <1		40 <3	•	64 < 0.3	^	3	14	1355	3.30	6 < 8	<2		3	154
132005		1.2	2.5 <1		42	3	62	0.4	3	14	1093	3.78	5 < 8	<2	- 0	2	128
132000		0.5	3.5 <1		57 5		40 -0 0	0.4	4	14	1009	3.14	9 < 8	<2	<2		372
132007		5.5	2.0 <1		0/	4	49 <0.3		5	14	1370	3.03	10 <8	<2		4	190
132008		3.0	3.7 <1		110 <3		57	0.4	4	15	1015	3.8	0 < 0	<2		2	217
132009	Drill Core	7.1	1.3 <1		59 <3		53	0.5	3	17	1030	3.77	26 <8	<2	<2	~	217
132010		0.4	2.7 <1		00 < 3		(1	0.4	3	10	1103	4.41	9 < 8	<2		2	169
132011		4.5	1.8 <1		91<3		20	0.5	3	15	1128	3.42	10 <8	<2	.0	3	101
132012		4.3	1.0 < 1		13	4	4/	0.3	12	41	1900	4.41	00 <0	<2	<2		160
132013		4.9	1.9 <1		00 < 3 05 < 0		55	0.5		20	1420	3.3	00 <0	<2	<2		204
132014		4./	2.1 <1		05 < 3	40	53	0.4	4	19	1330	3.23	28 <8	<2	<2		1/9
132015		2.8	2.6 <1		03 69 ~2	10	40	0.3	3	14	1927	3.75	10 <8	<2	<2		198
132010		2.5	1.5 <1		00 <3		5/	0.4	4	19	1939	4.09	15 <8	<2	<2	•	203
13201/	Drill Core	4.6	2.9 <1	705	90 < 3		/9 70	0.5	5	19	1402	3.44	42 <8	<2	.0	2	198
132018	ROCK Pulp		843.5	/35	4392	00	78	30.9	20	40	034	2.1	1244 <8	<2	<2		127
Pulp Dupil		4.0	10.4		00 -0			0.5	-	00	4 400		00 -0	-0	-0		204
132013		4.9	1.9 <1		80 <3		55	0.5	/	20	1420	3.3	80 <8	<2	<2		204
132013	REP		2.9		05 -0		50	~ ~		40	4000		00 -0	.0	-0		470
132014		4.1	2.1 <1		65 <3		53	0.4	4	19	1338	3.23	28 <8	<2	<2		179
132014	REP		<1		60	24	51	0.3	4	10	1335	3.24	ZA <9	<2	<2		111
CTD OVD	Matenais		250 0														
STDOXD	COID		300.0														
STD DEZ	STD		309.9	10	105	62	200		50	0	690	0.00	40 -0	~		-	05
OTD DO/	STD			19	105	03	400	1.1	52	0	002 866	2.20	40 50	<2		5 E	70
310037			-0 F	23	101	13	422	1.1	30	Ŷ	000	2.55	00 10	~2		5	/0
			<0.0 ~1	-7	~	-1	-0.2	-1	-1	~2	-0.0	M - 2	~9	-7	-0	-1	
Dron Wee	DLN h		<1 <1	~2	~>	~1	-0.3	~1	~1	~2	~ 0.0	~2	~ 0	~2	~2	~1	
C1	Dron Diant	~0.04	<0.5 -1	~ 2	~		44 -03		5	2	642	1 96 -9	-19	-2			50
G1	Prop Blank	~0.01	1 0.0	~~	~ 3		44 ~0.3		5 4	3	04Z 525	1.00 ~2	>o 2 ∠8	~2		4 E	52
91	Lich Digur.	~V.VI	1.1 51	-4	~ 3				•	3	020	1.01	4 ~0	~4		9	40

Final Report

1D Cd	1D Sb	1D Bi	1D V	1D Ca	10 P) 1D La	1D Cr	1D Mg	1D Ba	1D Ti	1D B	1D Al	1D Na	1D K	1D W	1D Ti	1D Hg
РРМ	РРМ 0.5	ары 3	ары 3	% 1	% 0.01	0.001	РРМ 1	% 1	0.01	/ % 1	0.01	20	% 0.01	% 0.01	РРМ 0.01	РРМ 2	PPM 5
-0 E	-0	-2		92	2.04	0 499	10	0	4.00	28 -0 0	4		4 67	0.00	0.00 -0		
<0.5	< 3	<3		02 76	3.91	0.132	12	3	1.08	20 < 0.0	1 <20		1.57	0.23	0.09 <2	<5	<1
<0.5	<3	~2		/0	0.46	0.115	44	4	2.09	10 < 0.0	1 <20		0.95	0.07	0.06 <2	<5	<1
~0.5 ~0.5	~3	-3		93 04	4 02	0.115	14	2	2.13	270 <0.0	1 <20		4.24	0.07	0.1 <2	<5	~1
~0.5	<3	-3		06	4.03	0.155	14	2	1.10	279 -0.0	0.02 <20		124	0.1	0.11 ~2	~ 5	7 <1
<0.5	~3	-3		90 66	4.01	0.10	11 21	2	1.04	215 -0.0	0.02 \20		1.04	0.1	0.11 ~2	~5	7 < 1
<0.5	<3	-3		67	5.40	0.115	12	A	1.50	213 <0.0	1 <20		1.02	0.11	0.09 ~2	<5	<1
<0.5	<3	~3		111	4 58	0.14	12	2	1.72	112	0.03 <20		2 10	0.15	0.1 ~2	2 <5	<1
<0.5	<3	~3		88	7 85	0.137	12	2	2 22	62 <0.0	1 <20		1 17	0.19	0.15	2 < 5	<1
<0.5	<3	<3		102	4 64	0.120	13	2	1 21	117	0.01 <20		2.21	0.12	0.1 ~2	-0	5 < 1
<0.0	<3	<3		85	5 18	0 147	13	1	1 02	50 <0.0	1 <20		1 44	0.17	0.13 ~2	<5	<1
<0.5	<3	<3		64	10.57	0.095	11 <1	•	2 79	84 <0.0	1 <20		0.8	0.14	0.08 <2	<5	<1
<0.5	<3	<3		79	6 22	0 141	12	2	1 24	90 < 0.0	1 <20		1 66	0.18	01<2	<5	<1
<0.5	<3	<3		81	7 19	0 133	12	1	17	49 < 0.0	1 <20		12	0.10	0.1 <2	<5	<1
<0.5	<3	<3		77	10.45	0.102	11 <1	•	1.57	59 < 0.0	1 <20		11	0.12	0 12 <2	<5	<1
< 0.5	<3	<3		67	9.91	0.103	12	1	2.35	38 < 0.0	1 <20		1.11	0.14	0.09 <2	<5	<1
<0.5	<3	<3		80	7.02	0.136	13	3	1.44	35 < 0.0	1 <20		1.48	0.13	0.12 <2	<5	<1
	0.6	73	31	17	3.43	0.051	7	175	0.2	64	0.02	22	0.71	0.04	0.12	15 <5	<1
<0.5	<3	<3		79	6.22	0.141	12	2	1. 24	90 <0.0	1 <20		1.66	0.18	0.1 <2	<5	<1
<0.5	<3	<3		81	7.19	0.133	12	1	1.7	49 <0.0	1 <20		1.2	0.12	0.1 <2	<5	<1
<0.5	<3	<3		80	7.18	0.133	12	2	1.71	50 < 0.0	1 <20		1.2	0.12	0.1 <2	<5	<1
	5.5	5	3	78	0.9	0.071	11	180	0.99	382	0.1	41	0.94	0.08	0.42	3	13 <1
	6.3	3	4	93	1.01	0.076	14	216	1.12	409	0.12	48	1.07	0.1	0.46	4	14 <1
<0.5	<3	<3	<1	<0.()1 <0	.001 <1	<1	<0.0	1 <1	<0.0	1 <20	<0.0	1 <0.	01 <0	.01 <2	<5	<1
<0.5	<3	<3		34	0.46	0.07	6	8	0.6	219	0.12 <20		0.98	0.07	0.52	2	6 <1
<0.5	<3	<3		33	0.42	0.069	6	9	0.57	217	0.11 <20		0.95	0.07	0.51 <2		9 <1

ECO TECH LABORATORY LTD.

*

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2008-0139

Lakewood Mining 680 Dairy Road Kamloops, BC V2B 8N5

Attention: Brandon Barker

No. of samples received: 84 Sample Type: Core **Project: Dora**do **Shipment #: 08-01** Submitted by: Brandon Barker

t

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	<u>Y</u>	Zn
1	786051	10	<0.2 1.82	20	55	<5	2.95	<1	29	119	176	6.24	<10	3.11	929	<1	0.19	59	3210	6	<5	<20	175	0.10	<10	191	<10	10	60
2	786052	<5	<0.2 2.24	130	990	<5	3.58	<1	36	175	35	3.21	<10	4.30	511	<1	0.80	362	380	6	<5	<20	1911	0.02	<10	35	<10	16	33
3	786053	<5	<0.2 1.73	15	105	<5	4.49	<1	55	353	53	4.36	<10	8.60	589	<1	0.37	449	540	2	<5	<20	1277	0.02	<10	73	<10	3	30
4	786054	5	<0.2 1.51	15	105	<5	3.87	<1	54	321	50	4.08	<10	8.36	548	<1	0.39	452	520	4	<5	<20	385	0.02	<10	61	<10	3	31
5	786055	25	0.2 0.83	10	115	<5	4.82	<1	50	208	48	3.87	<10	6.66	638	<1	0.32	443	490	6	<5	<20	423	<0.01	<10	47	<10	4	22
6	786056	<5	<0.2 0.65	15	245	<5	4.24	<1	57	207	92	4.58	<10	4.92	909	<1	0.35	463	700	6	<5	<20	342	<0.01	<10	54	<10	5	19
7	786057	<5	<0.2 0.43	10	105	<5	5.25	<1	59	236	53	4.81	<10	7.07	992	<1	0.32	480	210	6	<5	<20	336	<0.01	<10	37	<10	3	19
8	786058	<5	<0.2 1.24	10	80	<5	4.86	<1	44	316	45	3.83	<10	8.91	812	<1	0.35	447	530	4	<5	<20	426	<0.01	<10	41	<10	4	29
9	786059	5	<0.2 0.74	10	150	<5	4.98	<1	34	218	88	4.52	<10	3.67	786	<1	0.16	267	920	10	<5	<20	724	<0.01	<10	63	<10	7	27
10	786060	5	<0.2 0.54	70	50	<5	7.69	<1	46	337	34	3.75	<10	4.99	810	<1	0.09	424	190	10	5	<20	744	<0.01	<10	53	<10	3	29
11	786061	5	<0.2 0.58	5	60	<5	>10	<1	40	421	9	3.83	<10	7.47	655	<1	0.04	442	20	10	<5	<20	1056	<0.01	<10	61	<10	2	27
12	786062	30	<0.2 0.34	10	105	<5	8.07	<1	55	271	39	4.09	<10	6.14	786	<1	0.08	449	80	10	<5	<20	897	<0.01	<10	62	<10	3	36
13	786063	10	<0.2 0.20	<5	80	<5	8.95	<1	28	125	27	3.34	<10	5.32	685	<1	0.06	317	50	8	<5	<20	657	<0.01	<10	45	<10	3	27
14	786064	5	<0.2 0.15	<5	60	<5	8.96	<1	22	69	31	3.50	<10	5.05	710	<1	0.06	158	100	8	<5	<20	614	<0.01	<10	48	<10	4	22
15	786065	5	<0.2 0.26	25	85	<5	7.63	<1	31	118	45	3.53	<10	4.16	744	<1	0.07	373	170	8	<5	<20	544	<0.01	<10	43	<10	4	32
16	786066	10	<0.2 0.31	110	60	<5	7.36	<1	42	255	49	3.96	<10	4.82	980	<1	0.08	440	300	10	10	<20	538	<0.01	<10	45	<10	3	31
17	786067	25	<0.2 0.21	15	60	<5	9.12	<1	33	162	25	3.74	<10	5.07	851	<1	0.06	368	130	10	<5	<20	588	<0.01	<10	47	<10	4	29
18	786068	30	<0.2 0.17	<5	55	<5	9.87	<1	32	123	15	3.98	<10	5.80	798	<1	0.05	317	50	12	<5	<20	636	<0.01	<10	54	<10	4	32
19	786069	10	<0.2 0.20	<5	110	<5	6.99	<1	19	77	24	3.10	<10	3.69	656	2	0.04	176	200	8	<5	<20	532	<0.01	<10	38	<10	3	18
20	7 86 070	10	<0.2 0.19	5	130	<5	4.74	<1	11	41	40	2.58	<10	2.07	519	5	0.04	63	510	6	<5	<20	469	<0.01	<10	27	<10	3	17
21	786071	10	<0.2 0.32	5	115	<5	7.31	<1	18	22	113	3.66	<10	3.21	904	<1	0.06	38	970	8	<5	<20	391	<0.01	<10	35	<10	5	31
22	786072	5	<0.2 0.54	10	180	<5	6.22	<1	20	44	96	4.37	<10	2.60	1131	<1	0.09	49	1600	8	<5	<20	253	<0.01	<10	30	<10	6	48
23	786073	25	<0.2 0.77	15	140	<5	4.87	<1	25	36	98	5.78	<10	1.95	888	<1	0.12	41	2260	10	<5	<20	177	<0.01	<10	53	<10	7	70
24	786074	25	<0.2 0.61	10	215	<5	4.83	<1	32	46	67	6.74	<10	1.71	975	<1	0.12	32	2700	10	<5	<20	152	< 0.01	<10	60	<10	7	86
25	786075	540	0.6 0.72	2675	20	30	5.30	<1	91	10	116	3.39	<10	0.16	469	23	0.10	25	1420	18	5	<20	105	0.03	<10	26	<10	6	76

ECO TECH LABC ORY LTD.

*

ICP CERTIFICATE OF ANALYSIS AK 2008-0139

Lakewood Minir

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	<u>Ni</u> P	Pb	Sb	Sn	Sr	Ti %	Ų	V	W	Y	Zn
26	786076	<5	<0.2 0.06	<5	5	<5	0.03	<1	<1	<1	<1	0.21	<10	0.01	23	<1	<0.01	2 110	2	<5	<20	3	<0.01	<10	2	<10	<1	3
27	786077	60	<0.2 0.69	20	150	<5	6.44	<1	25	27	132	4.91	<10	1.44	766	<1	0.10	24 2690	8	5	<20	173	<0.01	<10	41	<10	6	62
28	786078	20	<0.2 0.64	5	230	<5	5.98	<1	21	30	113	4.34	<10	2.37	1127	<1	0.07	20 2070	10	<5	<20	218	<0.01	<10	36	<10	6	53
29	786079	5	<0.2 1.08	15	75	<5	5.37	<1	23	36	179	4.03	<10	1.25	630	<1	0.09	35 1300	6	5	<20	138	<0.01	<10	41	<10	4	54
30	786080	10	<0.2 1.14	20	70	<5	5.65	<1	24	38	62	4.17	<10	1.50	660	<1	0.10	27 1310	6	<5	<20	159	<0.01	<10	49	<10	6	46
31	786081	20	<0.2 1.51	20	65	<5	6.14	<1	24	50	81	5.24	<10	2.06	739	<1	0.10	26 1390	6	<5	<20	169	<0.01	<10	63	<10	6	51
32	786082	15	<0.2 1.99	20	80	<5	5.71	<1	30	69	110	4.56	<10	2.69	1058	<1	0.10	33 1310	4	<5	<20	187	0.02	<10	7 9	<10	7	52
33	786083	5	<0.2 1.70	190	65	<5	4.11	<1	41	54	159	5.30	<10	1.99	1032	<1	0.13	43 1470	6	20	<20	145	<0.01	<10	72	<10	7	55
34	786084	20	<0.2 2.04	50	50	<5	4.78	<1	27	60	127	5.12	<10	2.27	926	<1	0.14	35 1560	4	<5	<20	190	<0.01	<10	93	<10	7	52
35	786085	40	<0.2 0.96	30	55	<5	4.51	<1	26	42	153	5.26	<10	0.89	807	<1	0.13	32 1530	8	10	<20	112	<0.01	<10	3 9	<10	8	46
36	786086	10	<0.2 1.65	95	50	<5	3.37	<1	31	65	130	5 29	<10	1.88	916	<1	0.15	38 1590	12	5	<20	170	<0.01	<10	85	<10	7	66
37	786087	10	<0.2 1.60	375	80	<5	3.39	-1	38	53	134	5.33	<10	1.97	850	<1	0.13	39 1480	6	20	<20	148	< 0.01	<10	79	<10	6	56
38	786088	5	<0.2 1.07	135	40	<5	5.21	<1	27	96	118	4.55	<10	2.32	714	<1	0.11	32 1210	4	5	<20	178	< 0.01	<10	104	<10	4	51
.39	786089	30	<0.2 1.54	60	50	<5	3.18	<1	32	61	131	5.51	<10	2.22	1106	<1	0.12	42 1520	6	<5	<20	147	< 0.01	<10	74	<10	7	56
40	786090	30	0.2 1.87	335	40	<5	1 40	<1	35	40	182	6.05	<10	1 71	908	<1	0.17	30 3010	8	15	<20	115	< 0.01	<10	123	<10	8	67
40	100000	00	0.2 1.0)	000	10		1.10	••	00			0.00							•								-	0,
41	786091	15	<0.2 2.47	235	45	<5	1.31	<1	36	40	197	6.32	<10	1.89	1065	<1	0.22	31 3670	6	15	<20	171	<0.01	<10	150	<10	9	77
42	786092	10	<0.2 1.86	970	45	<5	1.34	<1	33	59	161	5. 9 0	<10	1.81	846	<1	0.21	33 2280	6	75	<20	161	<0.01	<10	89	<10	5	56
43	786093	10	0.2 1.82	850	45	<5	1.31	<1	32	28	183	6.25	<10	1.54	699	<1	0.18	24 3430	8	55	<20	128	<0.01	<10	117	<10	5	64
44	786094	25	0.2 2.04	270	45	<5	1.50	<1	27	23	219	5.86	<10	1.51	825	<1	0.22	17 3880	6	15	<20	176	<0.01	<10	134	<10	7	71
45	786095	25	<0.2 1.65	330	45	<5	1.61	<1	29	18	199	6.27	<10	1.40	1043	<1	0.20	17 3860	6	15	<20	164	<0.01	<10	107	<10	10	72
46	786096	15	<0.2 1.79	510	40	<5	1.77	<1	28	30	179	5.63	<10	1.45	873	<1	0.22	19 3410	6	20	<20	189	<0.01	<10	100	<10	8	63
47	786097	5	<0.2 1.33	500	40	<5	1.30	<1	39	54	130	5.31	<10	1.32	925	<1	0.22	39 1520	6	20	<20	178	<0.01	<10	64	<10	6	51
48	786098	10	<0.2 0.88	155	45	<5	2.85	<1	46	49	100	5.46	<10	1.69	1571	<1	0.14	50 1290	8	5	<20	137	<0.01	<10	49	<10	9	48
49	786099	10	<0.2 0.86	45	40	<5	4.27	<1	29	30	110	4.52	<10	1.08	864	<1	0.15	31 1440	10	5	<20	139	<0.01	<10	50	<10	7	43
50	786100	565	0.6 0.71	2705	20	30	5.43	<1	93	10	117	3.45	<10	0.17	466	24	0.10	25 1430	16	5	<20	106	0.03	<10	25	<10	6	78
51	786101	5	<0.2 0.05	<5	10	<5	0.02	<1	<1	<1	<1	0.16	<10	0.01	24	<1	<0.01	2 80	2	<5	<20	4	<0.01	<10	2	<10	<1	1
52	786102	50	<0.2 0.88	90	50	<5	6.22	<1	23	46	85	4.94	<10	1.02	818	<1	0.12	27 1370	8	5	<20	138	< 0.01	<10	38	<10	8	45
53	786103	15	<0.2 1.08	20	45	<5	7.94	<1	21	49	189	5.28	<10	0.98	673	<1	0.12	22 2190	8	<5	<20	139	<0.01	<10	50	<10	9	51
54	786104	15	<0.2 1.15	15	45	<5	6.94	<1	20	47	110	5.38	<10	1.15	758	<1	0.15	16 1870	6	<5	<20	172	<0.01	<10	60	<10	8	48
55	786105	10	<0.2 1.15	15	45	<5	6.24	<1	12	48	121	4.26	<10	0.90	690	<1	0.17	11 1860	10	<5	<20	191	<0.01	<10	62	<10	7	34
				_		_														_			/					
56	786106	5	<0.2 0.47	25	30	<5	5.70	<1	41	26	133	2.46	<10	0.75	494	<1	0.10	38 830	14	<5	<20	115	<0.01	<10	21	<10	15	51
57	786107	15	0.2 1.14	20	75	<5	8.51	<1	18	72	64	5.86	<10	1.72	930	<1	0.11	18 1600	8	<5	<20	173	<0.01	<10	60	<10	12	45
58	786108	35	<0.2 0.78	30	30	<5	4.94	<1	17	36	85	3.68	<10	0.79	530	<1	0.09	18 1040	8	<5	<20	110	< 0.01	<10	33	<10	13	38
59	786109	5	<0.2 0.23	15	115	<5	0.18	<1	5	26	26	0.11	<10	0.09	23	<1	0.08	9 40	6	<5	<20	55	< 0.01	<10	<1	<10	18	12
60	786110	<5	<0.2 0.21	10	160	<5	1.02	<1	8	18	7	0.44	<10	0.36	166	<1	0.07	9 110	14	<5	<20	61	<0.01	<10	2	<10	16	10
61	786111	10	<0.2 0.28	15	80	<5	5.73	<1	16	28	89	3.53	<10	2.15	943	<1	0.06	8 860	12	<5	<20	238	<0.01	<10	13	<10	10	26
62	786112	10	<0.2 0.69	25	150	<5	5.54	<1	15	35	52	4.53	<10	1.81	806	<1	0.08	12 1310	12	<5	<20	157	<0.01	<10	28	<10	9	38
63	786113	15	<0.2 1.22	15	410	<5	4.90	<1	23	90	133	5.06	<10	2.49	1036	<1	0.13	15 1390	12	<5	<20	188	<0.01	<10	109	<10	9	58
64	786114	20	<0.2 1.92	20	290	<5	1.23	<1	27	75	135	5.80	<10	1.73	736	<1	0.14	18 2350	8	<5	<20	108	<0.01	<10	92	<10	5	67
65	786115	20	<0.2 0.77	20	130	<5	6.82	<1	27	49	138	5.50	<10	3.04	1267	<1	0.12	14 1440	8	<5	<20	193	<0.01	<10	49	<10	9	54

ECO TECH LABC ORY LTD.

Lakewood Minir

ABORATORY LTD.

Jutta Jealouse

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
66	786116	15	<0.2 0.54	15	55	<5	6.96	<1	18	60	37	5.10	<10	2.68	1070	<1	0.12	9	1450	8	<5	<20	221	<0.01	<10	64	<10	12	45
67	786117	10	<0.2 0.55	5 20	55	<5	5.79	<1	30	43	137	5.51	<10	2.20	991	<1	0.13	18	1640	10	<5	<20	187	<0.01	<10	44	<10	12	50
68	786118	25	<0.2 0.73	3 15	85	<5	4.01	<1	33	73	123	4.92	<10	1.80	1054	<1	0.11	21	1640	6	<5	<20	160	<0.01	<10	77	<10	7	58
69	786119	10	<0.2 0.53	3 30	170	<5	6.41	<1	17	28	99	5.13	<10	2.48	822	<1	0.11	9 .	1800	8	<5	<20	205	<0.01	<10	29	<10	7	40
70	786120	15	<0.2 0.48	3 35	525	<5	5.30	<1	19	47	103	5.21	<10	1.90	795	<1	0.10	11 2	2010	8	<5	<20	192	0.01	<10	42	<10	7	47
71	786121	20	<0.2 0.49	35	190	<5	3.92	<1	18	46	98	5.29	<10	1.42	689	<1	0.10	12 2	2000	14	<5	<20	140	0.02	<10	49	<10	7	55
72	786122	10	<0.2 0.47	7 35	150	<5	6.02	<1	18	36	109	4.44	<10	2.11	769	<1	0.10	12	1790	10	<5	<20	243	< 0.01	<10	46	<10	10	46
73	786123	10	<0.2 0.85	5 35	135	<5	5.67	<1	29	114	100	4.43	<10	1.27	803	<1	0.12	22	1680	8	<5	<20	224	0.01	<10	102	<10	9	53
74	786124	10	<0.2 0.95	5 20	735	<5	8.34	<1	27	95	/2	5.16	<10	1.32	1041	<1	0.11	21	1710	8	<5	<20	231	0.01	<10	108	<10	9	56
75	786125	550	0.7 0.72	2 2700	25	30	5.35	<1	94	10	120	3.43	<10	0.17	488	23	0.10	26	1450	10	10	<20	107	0.03	<10	20	<10	ь	78
76	786126	5	<0.2 0.05	5 <5	5	<5	0.02	<1	<1	<1	<1	0.15	<10	<0.01	18	<1	<0.01	2	70	2	<5	<20	2	<0.01	<10	2	<10	<1	2
77	786127	5	<0.2 2.01	20	120	<5	5.94	<1	30	81	71	5.43	<10	2.11	1140	<1	0.14	26	1420	6	<5	<20	227	0.01	<10	152	<10	9	67
78	786128	10	<0.2 2.06	5 25	205	<5	6.52	<1	30	75	78	5.58	<10	2.13	1364	2	0.18	22	1290	6	<5	<20	312	0.02	<10	149	<10	11	75
7 9	786129	30	<0.2 1.02	2 15	140	<5	2.70	<1	14	16	62	2.54	<10	1.08	731	1	0.10	10	940	16	<5	<20	128	0.02	<10	41	<10	18	42
80	786130	20	0.2 0.65	5 30	30	<5	5.45	<1	12	36	94	3.83	<10	0.59	506	<1	0.09	13	1360	14	<5	<20	133	<0.01	<10	52	<10	14	31
81	786131	10	<0.2 0.56	6 25	45	<5	6.39	<1	18	54	86	5.21	<10	0.82	611	<1	0.08	12	1700	12	<5	<20	160	0.01	<10	69	<10	9	46
82	786132	5	<0.2 0.88	3 15	120	<5	6.73	<1	24	71	67	5.48	<10	1.78	1036	<1	0.10	19	1540	10	<5	<20	247	0.01	<10	98	<10	9	58
83	786133	5	<0.2 0.82	2 10	80	<5	7.22	<1	30	63	219	4.91	<10	3.12	1651	1	0.08	19	1380	18	<5	<20	297	<0.01	<10	96	<10	9	49
84	786134	10	<0.2 0.59	9 10	80	<5	4.43	<1	20	50	88	3.30	<10	1.77	898	<1	0.10	23	1100	12	<5	<20	227	<0.01	<10	67	<10	12	46
QC DATA																													
Repeat:	700054	-	00.001		~~	~	0.45		01	104	101	6 00	.10	2 20	1000	.1	0.01	65 4	2200	e	۰E	-00	100	0 10	-10	200	-10	4.4	66
1	786051	5	0.2 2.01	7 70	50	<5 -E	3.15	<1	31	134	191	0.32	<10	5.09	010	<1	0.21	122	190	10	<0 ~5	<20	751	-0.01	<10	209	<10	2	30
10	780000	15	<0.2 0.57	/ /U	140	<0	0.01	<1	40	304	05	0.70	<10	0.02	664	~ 1	0.10	170	010	0	-5	~20	550	<0.01	~10	20	~10	3	10
19	780069	5	0.2 0.21	<>	115	<0	7.10	<1	20	00	20	3,10	<10	3.70	004	2	0.05	179	210	¢	<0	<20	550	<0.01	<10	30	< 10	3	19
27	786077	35				-			~~	00	400	F 00	40	4 00	000		0.45	07	4500	<u>^</u>	_		170	0.01	10	00	10	-	50
36	786086	10	<0.2 1.64	1 95	50	<5	3.35	<]	30	65	133	5.28	<10	1.89	899	<1	0.15	37	1580	0	<5	<20	172	<0.01	<10	08	<10	1	58
45	786095	20	<0.2 1.69	340	45	<5	1.72	<1	29	18	203	6.30	<10	1.40	1027	<]	0.21	173	3870	10	15	<20	164	<0.01	<10	108	<10	10	71
52	786102	20																			_							_	
54	786104	15	<0.2 1.14	1 15	50	<5	6.83	<1	20	48	106	5.44	<10	1.16	764	<1	0.15	16	1870	8	<5	<20	174	<0.01	<10	61	<10	8	4 9
71	786121	15	<0.2 0.51	35	195	<5	4.01	<1	18	47	103	5.41	<10	1.43	716	<1	0.10	12 :	2060	10	<5	<20	143	0.02	<10	50	<10	7	51
Resplit:																													
1	786051	15	0.2 2.10	20	70	<5	3.18	<1	32	133	188	6.52	<10	3.30	1071	<1	0.21	69 3	3360	6	<5	<20	203	0.10	<10	210	<10	12	70
36	786086	15	<0.2 1.76	3 105	50	<5	3.41	<1	32	74	129	5.52	<10	1.86	938	<1	0.16	40	1630	6	5	<20	184	<0.01	<10	93	<10	7	60
71	786121	15	<0.2 0.53	3 40	170	<5	3.86	<1	19	46	105	5.72	<10	1.43	729	<1	0.10	13 :	2110	8	<5	<20	142	0.02	<10	50	<10	7	53
Standard:	•																												
Pb129a			11.8 0.84	10	75	<5	0.51	55	5	3	1394	1.60	<10	0.65	364	5	0.04	5	440	6182	10	<20	37	0.05	<10	16	<10	19) 901
Pb129a			12.2 0.83	3 10	70	<5	0.48	55	5	3	1392	1.56	<10	0.65	366	5	0.04	4	440	6172	10	<20	41	0.05	<10	15	<10	19) 973
Pb129a			11.6 0.84	i 10	65	<5	0.50	56	6	3	1423	1.55	<10	0.63	373	5	0.04	5	450	6210	10	<20	41	0.05	<10	14	<10	19) 969
SE29		595																											
SE29		600																											
SE29		610																			\frown	\sim							
																					6	AL							

JJ/ap df/n139s

Page 3

Diamond Drilling Assessment Report on the Dorado Zone

APPENDIX II DIAMOND DRILL LOGS

			LAKEWOOD MINING	LTD. 2007 DRILLING PRO	GRAM DORADO 2	LONE					
HOLE	No.		D07-04	DORADO GRID	1500N 1145W						
FROM	то		Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	Ан рра	Cu ppm	As ppm
0.0	13.0		CASING boulders and till ~25% recovery 95% fragment	s Nicola volcanics, 5% Kamloops intr	usives.						
13.0	23.1	QTIL	heterolithic basal till.								
1			Melanocratic dark green Nicola augite porphyry basalt	Pervasive moderate to very strong to							
1			nows and aggiomerate. Locally vesicular with vugs lined	locally weak propylitic alteration							
1			wan carbonate. Local line grained all and epiciasuc to	utite colaite stockwork and sheer							
23.1	59.6	NFRA	arguitecous micraals.	winte calene stockwork and sirear							
	•		26-29.75 shear zone both competent and incompetent								
1			shears 40-70 deg to C.A. moderate chloritic alteration								
ł			throughout. Destruction of vesicles and preservation of								
ļ		FALZ	augite.								
			26.67 - 27.15 chloritic shear zone. Fabric 45 deg to C.A.								
			28.05 - 28.65 chloritic shear zone -rotational fabrics								
			with directiated white quartz, carbonate verning								
			comprising 8% of microal and syn-sical								
			ciyociystanniae rayonee compassing 576 or merval.	29 7- 30 7 moderate pervasive but	· · · · · · · · · · · · · · · · · · ·						
				mottled epidote alteration with weak							
				chloritic stockwork fractures.							
				30.7-32.2 brecciated quartz carbonate					1		
				veined shear and wrench zone. 3% of	ſ	1					
				interval is open vugs. zone.							
			22.2 mode fride between with some service to	22.2.40.5 modemte nomensive but	war wat antially						
			52.2 - rock latry neterogeneous with 2018's appearing to	52.2-40.5 inoderate pervasive but	occurring hematite in						
Į.			similar angular fragments locally common Eragments.	chloritic stockwork fractures	basaltic fragments						
			zones?? With vesicles aligned ~75 deg. To C.A.	Decreasing overall epidote alteration	ousano naganano,						
				down hole with increasingly selective						-	
				epidote alteration of matrix. Plages							
				sauscritized. Augite weakly							
				chloritized with possible gypsum							
				coatings. Weak to moderate planar							
				tan ankerite and ragged white calcite							
				veining.		1					
									ļ		
				37 - possible slight increase in clay							
				ancration but may also be decreasing							
			59.6 Flow laminated contact 43 deg. To C.A.	manicility durin hole.	····			· · · · ·	+	· · · · · ·	
			STO IN THILLING VUILLA TO UZ. IV C.A.	1	1	1			1	1	

`

HOLE	No.		D07-04	DORADO GRID	1500N 1145W						
FROM	TO		Azimuth NA, Dip -90.					AS	SAYS	·····	
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	Ан ррня	Cu ppan	As ppm
59.6	61.8	NEAF	Dark green fine grained feldspar porphyry flow.	Pervasive chlorite alteration with sausseritized plagioclase (6%)'. Random subparrallel banded quartz +/- carbonate vines ~70 deg. to C.A.	strong trace erratically occurring disseminated hematite.						
[L	Broken core at contact.								
61,8	91.2	NEBA	Melanocratic dark green Nicola augite porphyry basalt agglomerate. Breccia and lapilli tuff. Locally vesicular with vugs lined with carbonate. Local fine grained tuff and epiclastic to argillaceous intervals.	Pervasive moderate to very strong to locally weak propyllitic alteration overprinted by weak to locally strong white calcite stockwork and shear veins. Rock mass has a subtle but pervasive weak to locally moderate shear associated (~70 deg to C.A. "grey" clay alteration that overprints earlier green chlorite+/- epidote alteration.	very rae trace malachite						
				76.9 - 86.4 strong light green pervasive epidote or clinozoisite alteration that is overprinted by "invisible" clay alteration.	73.5 - 75 3% dark red bematite in later curviplanar slips. 60-75 deg. To C.A.				-		
			86.4 fault zone 25 deg. To C.A.	intense chlorite-clay alteration. 86.4-89.5 Strong light green pervasive epidote or clinozoisite alteration that is weakly overprinted by "invisible" clay alteration. Epidote alteration decreasing down hole.							
			faulted contact - 28 deg. To C.A.								
91.2	91.5	FALT	Fault Zone clay gouge with ankeritic vein or rhyolitic fragments. Locally strongly hematitic.	intense chlorite-clay alteration.	25% hematite in lower 10 cm of interval. ~35 deg. to C.A.						
		ŧ	gradational contact decreasing clay alteration.			}	1			1	1

HOLE	No.		D07-04	DORADO GRID	1500N 1145W						
FROM	то		Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	Au ppm	Си ррва	As ppm
91.5	109.1	NEBA	Melanocratic dark green Nicola augite porphyry basalt agglomerate. Breccia and lapilli tuff. Locally vesicular with vugs lined with carbonate. Local fine grained tuff and epiclastic to argillaceous intervals. The sequence is intruded by minute to 5 cm thick laminated "rhyolite" dykelets at all orientations with most displaying moderate deformation.	Pervasive moderate to very strong to locally weak propyllitic alteration overprinted by weak to locally strong white calcite +/- quartz stockwork and shear veins. Rock mass has pervasive moderate stockwork clay alteration that overprints earlier green chlorite+/- epidote alteration. This alteration style makes the rock very incompetent.							
				97 5 cm carbonate-quartz vein ragged							
				20 deg. 10 C.A.							
				And increased pale epidote- clinozoisite pervasive alteration.							-
109.1	109.5	FALZ	Fault Zone clay gouge with ankeritic vein or rhyolitic fragments. Locally strongly hematitic.	intense chlorite-clay alteration.	very weak hematite as clots in chloritic gouge.						
109.5	122.2	NEBA	Medium to pale green Nicola augite porphyry basalt agglomerate.	Continuation of unit above fault but with similar alteration as from 100 m.	Weak hematite in late epidoteized and veined curviplanar fractures.					•	
					116-118 translucent quartz veins (4% of rock) with (5% in vein) bright native copper. Finely disseminated native copper in waltrock at vein						
					margins. Trace overall.						
122.2	123.7	FALZ	Shear zone - Nicola basalt. Small ptygmatically folded rhyolite dykes with increasing shearing down hole. Dykes originally subparallel to C.A.	strong chloritic and clay alteration.							
			Fault contact 20 deg. To C.A.						ļ		
123.7	124.1	FALZ	Shear Zone - alaskite host rock. Identical alteration and intrusions as above.							-	

)

HOLE	No.		D07-04	DORADO GRID	1500N 1145W					ي زد در قار دارد و ارتقاط	
FROM	то		Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	Au ppm	Cu ppm	As ppm
124.1	138.4	КҒРА	Leucocratic grey fine grained feldspar porphyry alaskite dyke. Wide chilled margins with a combination of tectonic and flow sheared contacts. Composition may be variable but possibly due to grain size. Coarser grained center of dyke had distinct ~10% quartz phenocrysts.	Unit moderately to strongly clay altered. With sausseritized plagioclase. Kspr appears unaltered. Crosscut by white buil quartz followed by small 2 to 20 mm pegmatitic grain quartz feldspar porphyry rhyolite dykelets that also cross cut early buil quartz veins and are in turn cross cut and incorporated into shear and raged tensional fine grained calcite-dolomite veins.	Dark brown oxidized hematite with productive zones associated with late carbonate stockwork and veining. Unit hosts rare trace to locally 1% extremely fine to medium grained euhedral pyrite.						
			134.3 30 cm rubble from pulling rods.								
			138.1 - 138.4 sheared but annealed (flow laminated?) alaskite.								
138.4	139.0	FALZ	Shear zone - Nicola basalt. Small ptygmatically folded rhyolite dykes with increasing shearing down hole. Dykes originally subparrallel to C.A.	strong chloritic and clay alteration.							
139.0	148.4	NEBA	Medium to pale green Nicola augite porphyry basalt agglomerate. Continuation of sequence above alaskite dyke. No "rhyolite' dykelets below 141 m.	Continuation of unit above fault but with similar alteration as from 100 m.	Weak hematite in late epidotized and veined curviplanar fractures.						
					139-143.5 Fine grained disseminated native copper mostly associated with strongly chloritic shears and wallrock linings small quartz- calcite veinlets.						
			Sheared but annealed contact 35 deg. To C.A.								
148.4	150.8	KFPA	Alaskite dyke. Same sequence with identical alteration and veining as at 124.1 m.								
150.8	179.8	NEBA	ptanar contact 20 deg. To C.A. Medium to pale green Nicola augite porphyry basalt agglomerate. Continuation of sequence above alaskite dyke. No "rhyolite' dykelets below 141 m.	Continuation of unit above dyke but with similar alteration. Moderate white calcite veining and weak stockwork. Very strong chlorite alteration to	Weak hematite in late epidotized and calcite veined curviplanar fractures.						
		1		153.7							i

HOLE	No.		D07-04	DORADO GRID	1500N 1145W						<u>سن بر بالارد بالارد مان المتثار ال</u>
FROM	то		Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	Au ppm	Cu ppm	As ppm
				169.7 - 174.9 - wrenched and slightly sheared very strongly chlorite altered. Locally gougy, several quartz-tan to red garnet veins ~70 deg. to C.A.	very weak hematite.						
1			curviplanar Contact ~50 deg to C.A.				·		1		
179.8	183.1	KFHP	Grey fine grained Flow Laminated Dacite dyke. Similar in appearance to overlying "Alaskite" except for the presence of 6% fine grained flow aligned hornblende. Sequence has been tectonically brecciated with rotate fragments in gougy clay altered dacite gouge. brecciation appears to be a shallow angles to core axis. rock contains very fine grained interstitial sericite masses that do not affect rock strength.	locally strongly clay altered.							
	··		Clay altered broken core at contact.								
				185.1 - 185.4 intense chlorite-clay alteration.	weak hematite in late planar fractures.						
183.1	185.4	NEBA	Medium to pale green Nicola augite porphyry basalt agglomerate. Continuation of sequence above alaskite dyke. Laminations ~70 deg. To C.A.	Continuation of unit above dyke but with similar alteration. Moderate white calcite veining and weak stockwork.	Weak hematite in late epidotized and calcite veined curviplanar fractures and shears.						
185.4	186.1	KFHP	Grey fine grained Flow Laminated Dacite dyke.	Intensely clay altered.							•
			planar contact 20 deg. To C.A.								
186.1	213.7	NEBA	Medium to pale green Nicola augite porphyry basalt agglomerate. Continuation of sequence above alaskite dyke.	Continuation of unit above dyke but with stronger chlorite alteration. Moderate white calcite veining and weak stockwork. Chlorite may be partially sericitized.	Weak hematite in late epidotized and calcite veined curviplanar fractures and shears.						
			clay altered raggedly curviplanar contact 20 deg to C.A.		190 much weaker hematite.						
213.7	217.0	KFHP	Grey fine grained Flow Laminated Dacite dyke. Flow laminated or welded tuff texture 35 to 65 deg. To C.A.	5% fine grained interstitial sericite. Locally intensely clay altered, sericite preserved but plagioclase destructive.							
217.0		EOH	END OF HOLE.								

LAKEWOOD MINING COMPANY LIMITED. DDH MON04-01

HOLF	No.	D07-05	DORADO GRID	1800W	4000N					
FROM	TO	Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	Au ppm	Cu ppm	As ppm
		Not logged recovery so bad that cannot measure			1					í
	i	anything								1
	1	Hole abandoned @ ~45 meters and less than 4 meters of								
	t	core.								I
										1

LAKEWOOD MINING LTD. 2007 DRILLING PROGRAM - MONARCH CLAIM - IRON MASK PROJECT

			LAKEWOOD MINI	NG LTD. 2007 DORADO DR	LLING PROGRA	M					
HOLE	No.		D07-06	DORADO GRID	1795 W	4003 N					
FROM	то		Azimuth NA, Dip -90.	re drill of hole 05				AS	SAYS		<u></u>
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	Ан ррт	Си ррт	As ppm
0.0	35.7	America durante de la composición de	OVERBURDEN NO CORE RECOVERED -overburden is primarily a brown clay matrix cobble till.								
35.7	40.0	NEBB	Maroon heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	Local intense pervasive to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 3 to 7% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 0 deg. To C.A.		132001	35	38.41	1.5	73	8
40	40.5	FALZ	Tan-red ankeritic vein shear zone	intense carbonate and clay alteration.		132002	38.41	39.01	1.3	44	9
40.5	42	NEBB	Tan clay altered and ankeritic broken volcanic breccia.	strong ankerite and clay alteration		132003	39.01	41.45	0.8	44	6
42	46.75	NEBB	Green heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	strongly chlorite-clay altered rock is overprinted by intense cryptic to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 3 to 7% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 0 deg. To C.A.		132004	41.45	42.98	4.6	40	6
46.75	47.25	TANK	Ivory ankerite? Or intensely ankeritized cryptocrystalline dacite vein/dyke. Dominant orientation ~15 deg. to C.A. Matrix comprises about 30% or rock. Fragments are reddish stained NICOLA? Volcanic with strong ankerite and minor silica overprint. Silica also occurs as minute tensional veinlet swarm in fragments.			132005	42.98	46.03	2.5	42	5
47.25	50.6	NEBB	Green and dark red heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	Intense pervasive to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 10-15% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 70 deg. To C.A.		132006	46.03	47.85	3.5	57	9
50.6		EOH	Hole abandoned. EOH			132007	47.85	50.6	2.6	67	10

ł

			LAKEWOOD MINING	LTD. 2007 DRILLING PROG	RAM - DORADO	GRID				فلمغمليات والمتاولات	ومعدية التراقية
HOLE	No.		D07-07	DORADO GRID	1500 W	3950 N					فمسخيف البراكما التراس
FROM	ТО		Azimuth NA, Dip -90.					AS	SAYS	_	
meters	meters		GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	Au ppm	Cu ppm	As ppm
0.0	6.0		OVERBURDEN NO CORE RECOVERED -overburden is primarily a brown clay matrix cobble till.								
6.0	18.1	NEBB	Green and dark red heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	Intense pervasive to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 3 to 7% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 0 deg. To C.A.		132008	16.13	17.68	3.7	110	6
18.1	18.85	FALZ	GREEN AND WHITE clay altered shear zone with numerous rounded red milled wallrock fragments.	intense clay alteration.		132009	17.68	20.42	1.3	59	26
18.85	19.6	TANK	Ivory ankerite? Or intensely ankeritized cryptocrystalline dacite vein/dyke. Dominant orientation ~15 deg. to C.A. Matrix comprises about 30% or rock. Fragments are reddish stained NICOLA? Volcanic with strong ankerite and minor silica overprint. Silica also occurs as minute tensional veinlet swarm in fragments.			132010	20.42	23.17	2.7	65	9
19.6	20.3	FALZ	GREEN AND WHITE clay altered shear zone with numerous rounded red milled wallrock fragments.	intense clay alteration.	· · · · · · · · · · · · · · · · · · ·	132011	23.17	23.17	1.8	91	15
20.3	24.3	NEBB	Green and dark red heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	Intense pervasive to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 3 to 7% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 0 deg. To C.A.		132012	24.99	26.52	1.8	73	
24.3	24.95	FALZ	GREEN AND WHITE clay altered shear zone with numerous rounded red milled wallrock fragments.	intense clay alteration.		132013	26.52	28.35	1.9	80	86

1

HOLE	No.	D07-07	DORADO GRID	1500 W	3950 N					
FROM	то	Azimuth NA, Dip -90.					AS	SAYS		
meters	meters	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	Au ppm	Си ррт	As ppm
24.95	26 TANK	Ivory ankerite? Or intensely ankeritized cryptocrystalline dacite vein/dyke. Dominant orientation ~30 deg. to C.A. Matrix comprises about 30% or rock. Fragments are reddish stained NICOLA? Volcanic with strong ankerite and minor silica overprint. Silica also occurs as minute tensional veinlet swarm in fragments.	SEE GEOLOGICAL DESCRIPTION NOTE silicification and silica tension veinlets		132014	28.35	30.18	2.1	65	28
26	30.18 NEBB	Dark red heterolithic volcanic breccia. Fragments are subrounded invariably basaltic and quite variable in grain size.	Intense pervasive to white kaolinitic clay alteration overprinting white carbonate breccia veining. Carbonate occupies 3 to 7% of rock and occurs as fragments and often broken discreet planar and anastomozing stockwork zones with a preferred orientation of 0 deg. To C.A. also greenish clay alteration stain of various intensities alters rock. green rock is coherent but soft with 0 harness but harder than clay.		132015	30.18	31.39	2.6	63	10
30.18	32.4 TANK	Ivory ankerite breccia vein and beige-green felsic volcanic? shear zone. Dominant orientation ~0-30 deg. to C.A. Greenish sandy-clay matrix comprises about 30% or rock. Fragments are reddish stained NICOLA? Volcanic with strong ankerite and minor silica overprint. Silica also occurs as minute tensional veinlet swarm in fragments. Greenish clay may be altered pyrite.	SEE GEOLOGICAL DESCRIPTION NOTE silicification and silica tension veinlets		132016	31.39	32.61	1.5	68	15
32.4	34.14 FALZ	Grey clay alteration-shear zone. Rock appears to have ~20% rounded sand sized to 20 mm dia. wallrock fragments in it.			132017	32.61	34.14	2.9	90	42
34.1	EOH	Hole abandoned-EOH			132018	Cu130 std		843.5	4392	1244

£

			Hole # D-07-08, Dorado Grid Area Date Hole Started: Novbember 26, 2007 Date Completed: December 3, 2007 Driller: Frontier Drilling Drilling Supervised by J.E.L. Lindinger, P.4 Logged by M.S. Cathro, P.Geo, January 22	Grid Location 1800W, 3997 N Total Depth: 331.32 m Azimuth: NA Dio -90 Geo -24, 2008	(Re-drill of Holes	2007-05 a	nd 06)							
FROM	TO					SAMPLE	FROM	ТО	INTERVAL	ASS	AYS			
meters	meters	GROCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION		Metres	Metres	Metres	Au ppb	Ag ppm	As ppm	Си ррня	Sb ppm
0.0	45.7		OVERBURDEN - NO CORE RECOVERED											
45.7	58.6	NEBB	Broken rock and gouge. Fragments of andesitic tuff and breccia, Dark green and maroon.	1-3% carbonate veins and vein fragments										
58.6	61.0	NEBB	Heterolithic breccia. Dark green and maroon. Fragments are andesitic plagioclase crystal tuff.	59.8 to 60.2 - 50% qtz/carb veins		786051	96.7	97.6	0.90	10	<0.2	20	176	<5
61.0	67.2	FALZ	Broken rock and gouge. Andesitic tuff and breccia, Dark green and maroon.	1-2% carb veins and fragments		786052	97.6	98.62	1.02	<5	<0.2	130	35	<5
67.2	79.0	NEBB	Andesitic tuff and breccia. Dark green and marcon. Plagioclase phyric in places. Becomes weakly magnetic at about 76 m.	1-3% carb veins		786053	98.62	102.72	4.10	<5	<0.2	15	53	<5
79.0	91.5	FALZ	Gonge and broken rock. Fragmental volcanic with olasts to 2 cm. Pale pinkish-red. Soft, muddy, altered in places. Core appears lumpy and slightly washed out.	Weak to moderate hematite		786054	102.72	105.77	3.05	5	<0.2	15	50	<5
		NEBB	Andesitic breccia, lapilli tuff and medium grained tuff.	Weak propylitic (carb, epidote) and		786055	105.77	108.81	3.04	25	0.2	10	48	<5
91.5	97.6		Dark greenish grey with wispy red hematitic patches.	hematite alteration. 1-3% carb veins at		786056	108.81	111.86	3.05	<5	<0.2	15	92	<5
97.6	98.6	TANK	Rare dark ency-black grains (alternd augite?). Sheared intermediate tuff with orange stained carbonate	20-40 degrees to CA 20% carb vers at 20-50 degrees to		786057	111.86	114.91	3.05	<5	<0.2	10	53	<5
		NEDD	Venning.	CA. Moderate ankerite staming.		796059	114.01	117.06	2.05	-5	-0.2	10	45	-
:		NEDD	Imministed (hads to 5 cm wide at 10.40 degrees to CA)	Approx 20% carbonate vaine as a		786060	117.06	117.50	2.03	5	<0.2	10	40	
			Pale to medium green. Core becomes mite broken up	network ranging from 1-2 mm wide to		786060	121 01	121.01	3.05	5	<0.2	70	34	6
98.6	117.9		into 2-10 cm pieces: rarely 20 cm. Breccia fragments are	1 cm wide. Larger veins to 5 cm show		786061	174.06	127.10	3.04	5	<0.2	5	94	<5
-			pale, fine-medium grained tuff? Rare fragments (~5%)	banding. Veins have CA 10-40 and		786062	127 10	130.15	3.05	30	<0.2	10	30	<5
			with porphyritic mafic grains, possibly picrite(?). Overall	occasionally 70-90 degrees.		786063	130.15	133.20	3.05	10	<0.2	<5	27	<5
		FALZ	Fault course and broken rock. Soft, maddy, pale to	Cachonate veins and fragments to 1		786064	133.20	136.25	3.05	5	<0.2	<5	31	<5
117.9	122.4		medium green, Non magnetic. Core looks washed out in	cm (e.g. 120.8 m)		786065	136.25	139,30	3.05	5	<0.2	25	45	<5
		NEBB	Altered volcanic breccia. Clasts of medium grained tuff	Moderate propylitic (epidote, chlorite,		786066	139.30	142.34	3.04	10	<0.2	110	49	10
122.4	130.8		and rare grey argillite. Some clasts silicified. Pale	carbonate) and sericite alteration.		786067	142.34	145.39	3.05	25	<0.2	15	25	<5
			greenish-grey. Non magnetic. Lower contact gradational.	Patchy silica. Calcite-quartz veins to 1		786068	145.39	148.44	3.05	30	<0.2	<5	15	<5
		NESS	Intermixed greyish fine-grained siltstone/argillite and	Moderate to heavy (10-40%)	142.5 - trace pyrite	786069	148.44	151.49	3.05	10	<0.2	<5	24	<5
130.8	143.0		greenish andesitic fine-medium grained tuff.	carbonate veining and carbonate		786070	151.49	154.54	3.05	10	<0.2	5	40	<5
			Siltstone/argillite bands are generally less than 1 m thick.	alteration. Carb veins generally <2 cm		786071	154.54	157.58	3.04	10	<0.2	5	113	<5
142.0	150.0	KVBX	Breccia with fragments of intermediate tuff/siltstone and	Carbonate and sericite altered? 10-		786072	157.58	160.63	3.05	5	<0.2	10	96	<5
143.0	1.50.0		lapilli tuff. Pale groy. Becoming massive grey-buff	40% calcite-quartz veins. 1-3% bright		786073	160.63	163.68	3.05	25	<0.2	15	98	<5
		KVTF	Massive tuff(?). Pale grey-buff. Vague breccia textures	Moderate to intense carbonate-sericite		786074	163.68	166.73	3.05	25	<0.2	10	67	<5
150.0	159.9		locally. Non-magnetic,	(?) alteration. Wispy ankeritic shears,		786075	STD	1	<u> </u>	540	0.6	2675	116	5
				veins and patches.		786076	BLK			<5	<0.2	<5	<1	<5
159.9	161.4	KVTF	Tuff or siltstone. Buff-orange. Local breccia textures. Locally banded at 45 degrees to CA. Core vuggy and	Moderate ankerite/hematite staining.		786077	166.73	169.78	3.05		<0.2	20	132	5
		KUTTE	Washed out in places. 15 cm gouge at 101.25 to 101.4.	Weak to moderate askaritic alternation	<u> </u>	786079	160 70	177 07	3.04	20	102	-	112	~R
161.4	160 1	R 7 1 5	niane CRA 45.75 Acores Non manufic Louis	1.3 % carb using to 1 cm wide		786070	107.10	174.02	3.04	£V 8	202	45	170	R R
101.4	197.1	L	have one and an address won making row rows	1-J / COLU TONIS IU I GILL WHER.	1	/000/9	112.02	175.07	3.03	<u> </u>	1 -0.2	10	110	J

D07-08.xls

ļ

FROM	TO	1		r	[SAMPLE	FROM	TO	INTERVAL	ASS	AYS		· · · · · · · · · · · · · · · · · · ·	1 1
T ALCOINT	meters	GROCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	Sector Dab II	Metres	Metres	Metres	An mak	Ar ann	As nom	Спран	Sh nnm
			contact gradational CBA 45 degrees at 165 m and 75			796080	175 97	179.07	3.05	10	<0.2	20	62	-5
J		KUTT	Fina aminad tufficilations and loast lonilli tuff I coally	West monstitic alteration Local		786081	178.02	181.07	3.05	20	<0.2 c0.2	20	91	5
		RVL1	Finely invitated CRA 45 decrees at 160.6 m 45 decrees	weak ankaritic alteration 1-3% carh		796082	181 07	185.07	3.05	15	-0.2	20	110	
169.1	181.1		at 170 & 60 degrees at 176 3 m	veins to 1 cm wide		786083	185.02	189.02	2.00	5	-0.2	100	150	20
1			a 170.a, 00 degrees at 170.5 m.	Volins to 1 can white.		796093	199 A1	101.11	2.35	20	<0.2	50	108	<u>20</u>
		NEAT	An Antitia and Fine aminad Banks quaits aburis Corres	Wash manufitie (and shit) abaration 2		786095	100,01	191.11	2.05	40	<0.2	20	159	40
1911	100.5	INCAL	Andessine tail. Fine-granted. Karely aughe physic. Creek	Week propying (cal, ch) anexation. 2-		784084	171.11	107.10	3.05	40	-0.2		100	
101.1	190.5		No mouturn groen-groy. CA vagae 50-70 degrees.	degrees to (A)		700000	199,10	197.41	3.03	10	-0.2	90	130	2
ļ					ļ. <u></u>	/8008/	197.21	200.20	3.03	10	×0.2		1.34	20
1	(Fine-granied sinsible/ull. Orange, grey and green.	Weak to moderate ankerioc ancietton.										
190.5	195.6	KVLT	badding in planet CBA 40 desease at 101 4 m; 50	integrate carb version i can white an		786088	200.26	203.30	3.04	5	<0.2	135	118	5
ł			degraes at 192.6 m	appear to crossent the anterne.						1				
		NEAT	Massive to Isminated fine-omined and existic tuff Greenish	Weak carbonate-sericite alteration 1-	200 7-201 6 m- Onertz-	786089	203 30	206 35	3.05	30	<02	60	131	<5
			aney Locally plagioclase physic. Non magnetic Local	3% carb yns	calcite vein with trace	786090	206 35	209 40	3.05	30	02		182	15
Į			finely laminated availlite. Lower contact gradational		ny. 206 8-234 m -	786001	209.40	212 45	3.05	15	<0.2		197	15
I .			CBA 50@199.8: 80@203.3: 40@206.3: 45@212:		minor py (1-2%	786007	217 45	215 50	3.05	10	<0.2	970	161	
ł			60@223.		overall) in veins to 1	786093	215 50	718 54	3.04	10	0.2	850	183	
Ì	1				em thick and irregular	786004	219.50	2210.54	3.05	25	0.2	000	219	15
195.6	233.8	<u> </u>			patches.	796005	221 59	221.57	3.05	25	<0.2	····	100	15
122.0	4.55.0				-	786006	224 64	227.60	3.05	15	c0.2	510	170	20
1						786007	227.04	221.09	3.05	5	<0.2		130	20
ł						786009	227.03	230.14	3.05	10	-0.2	455	100	6
			4			796000	722 79	233.10	3.04	10	-0.2	45	110	5
ł		ļ		*		796100	\$TD	230.83	3.05	685	0.2	2705	117	5
1						796101	DIANK			505	-0.0	2100		
 		NEAT	I amineted to ff and amilling Come and buff Man	Banda of generating much to moderate		786107	226 92	120 88	2.05		-0.2		20	5
ł		NEAT	Lannanetic Crushed sonas towards bottom CRA	Daniels of pervisive weak to incortate		796102	230.03	237.00	3,05	16	-0.2	-20	190	- 5
233.8	245.5		135/2723.0. 60/2735 60/2 238 5	Tome Tomes of un to 10% cert usin		796104	237.00	242.93	3.05	45	-0.2	16	140	
1			55/04255.5, 66/04255, 66/04 258.5.	over 30 cm crossouting enterite		706104	242.93	243.70	3.03	10	-0.2	10	424	
					······	780103	243,98	249.02	3.04	+ 10	~0.2	10	121	
245.5	248.4	FALZ	magnetic. Lowe contact gradational.	Angeruic statning last 0.5 m.		786106	249.02	252.07	3.05	5	<0.2	25	133	<5
		NEAT	Massive fine-grained tuff. Buff and pale grey. Locally	Weak to moderate ankeritic alteration.		786107	252.07	255.12	3.05	15	0.2	20	64	<5
248.4	257.0		brecciated with augite phyric fragments. Non-magnetic,	Rare carb veins.		786108	255.12	258.17	3.05	35	<0.2	30	85	<5
]					786109	258.17	261.22	3.05	5	<0.2	15	26	<5
		KFPA	Massive, lencocratic (pale buff-grey) felsic dyke or	266.8-becomes ankeritic. Rare carb		786110	261.22	264.26	3.04	<5	<0.2	10	7	<5
257.0	266.7		crystal tuff(?). Vague flow(?) laminations at bottom.	veins last 3-4 m.		786111	264.26	267.31	3.05	10	<0.2	15	89	<5
Į			Irregular vague broccia textures at 265m.			786112	267.31	270.36	3.05	10	<0.2	25	52	<5
			Massive fine-grained tuff. Buff and pale grey. Locally			1								
266.7	269.6	NEAT	brecciated with augite phyric fragments. Non-magnetic			786113	270.36	273.41	3.05	15	<0.2	15	133	<5
		ļ				L			L	·				
			Fault gouge. Pale pinkish-red. Fragments of massive, fine	Hematitic.						00			405	
269.6	270.5	FALZ	grained felsic dyke or tuff present at 257 m. Non-			786114	273.41	276.46	3.05	20	<0.2	20	135	<2
}		<u> </u>	magnetic.							+	<u> </u>			
	000 5	10-10-	Lapili tuff. Mottled. Grey and buff. Massive to poorty			70(1)4	275.46	000 60	2.04	00	-0.0		400	
270.5	2/5.5	NELT	iaminated. Non magnetic. CBA 60 degrees at 273 m.			/80113	2/0.40	219.50	5,04	20	<u.z< td=""><td>20</td><td>130</td><td><0</td></u.z<>	20	130	<0
l		NEAT	Fine-argined tuff Massive to movely leminsted Ruff with	Wesk to moderate ankenite Rome carb		786116	279.50	282.55	3.05	15	<02	15	37	<5
l		- Tharts	local srev natches. Non-manetic	veins	1	786117	282 55	285.50	2.95	10	<0.2	20	137	<5
l			Learn Seal Kunnunse yaans vuillingenet			786112	284 50	288 65	315	25	<0.2	15	123	<5
[786110	289.50	200.00	3.05	10	<0.2	20	00	- C F
	i	L	1	4	l.	/00117	1 200.03	471.70	3.00	1 10	-0.4		00	

D07-08.xls

•

FROM	то				والمرابعة والمراجع و	SAMPLE #	FROM	TO	INTERVAL	ASS.	AYS			
meters	meters	GEOCODE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION		Metres	Metres	Metres	Au ppb	Ag ppm	Аз ррая	Си ррш	Sb ppm
						786120	291.70	294.75	3.05	15	<0.2	35	103	<5
273.5	306.0					786121	294.75	297.79	3.04	20	<0.2	35	98	<5
						786122	297.79	300.84	3.05	10	<0.2	35	109	<5
						786123	300,84	303.89	3,05	10	<0.2	35	100	<5
						786124	303,89	306.94	3.05	10	<0.2	20	72	<5
						786125	STD			550	0.7	2700	120	10
						786126	BLANK			5	<0.2	<5	<1	<5
206.0	212.0	NEAT	Fine-grained tuff or dyke(?) and lapilli tuff (at top).	1-2% carb veins.		786127	306,94	309.99	3.05	5	<0.2	20	71	<5
300.0	515.9		Medium to dark grey and greyish green. Lower contact			786128	309.99	313.03	3.04	10	<0.2	25	78	<5
212.0	710 7	TANK	Massive altered tuff. Pale grey to buff. Non-magnetic.	Ankeritic patches. Sericite?		786129	313.03	316.09	3.06	30	<0.2	15	62	<5
313.9	510.7		CBA 80 degrees @326.8m; 60@ 328.4 m.			786130	316.09	319.15	3.06	20	0.2	30	94	<5
210.7	194.0	TANK	Massive to poorly laminate tuff(?). Buff to orange. Non	Moderate ankerite alteration. 1-2%		786131	319,15	322.18	3.03	10	<0.2	25	86	<5
210.7	323.0		magnetic.	carb veins.		786132	322.18	325.23	3.05	5	<0.2	15	67	<5
225.0	221.2	NEAT	Massive to poorly laminated tuff. Non-magnetic, EOH.	Carbonate alteration? 1-3% carb veins.		786133	325.23	328.27	3.04	5	<0.2	10	219	<5
323.0	331.3		_			786134	328.27	331.32	3.05	10	<0.2	10	88	<5

APPENDIX III

GEOTECHNICAL LOGS

	Rei	naissan	ce Geoso	ience Se	rvices In	c- Geote	chnical	Logging	Template	
Hole:	D07-04		T	Logger:	DILLABOUG	SH				
Drill date:	10/1/2007				Core size:	NQ	Dip:	-90	Azimuth:	0
Log date:	10/1/2007		N:	2750	W	1145			Elev.	930
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Comments	Fracture
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			Condition
6.40	6.71	0.31	0.15	48%		0%				
6.71	9.75	3.04	1.00	33%		0%			······································	
9.75	10.06	0.31	0.34	110%		0%				
10.06	12.80	2.74	0.53	19%		0%				
12.80	14.30	1.50	0.54	36%		0%				
14.30	15.85	1.55	0.38	25%		0%			······································	
15.85	17.37	1.52	0.39	26%		0%	·····			
17.37	18.54	1.17	0.95	81%		0%			· · · · · · · · · · · · · · · · · · ·	
18.54	18.90	0.36	0.31	86%		0%				
18.90	19.35	0.45	0.50	111%		0%				
19.35	19.66	0.31	0.30	97%		0%				
19.66	20.42	0.76	0.90	118%		0%				
20.42	21.64	1.22	0.30	25%		0%				
21.64	22.56	0.92	0.75	82%		0%				
22.56	23.17	0.61	0.35	57%		0%				
23.17	24.69	1.52	1.54	101%	0.87	57%			lots of jumbled core	chlorite
24.69	26.21	1.52	1.50	99%	1.26	83%			lots of jumbled core	chlorite
26.21	27.74	1.53	1.37	90%	0.41	27%			lots of jumbled core	chlorite
27.74	29.26	1.52	1.30	86%	0.21	14%			lots of jumbled core	chlorite
29.26	30.79	1.53	1.24	81%	0.46	30%			lots of jumbled core	chlorite
30.79	32.31	1.52	1.50	99%	0.57	37%			lots of jumbled core	chlorite
32.31	33.83	1.52	1.54	101%	0.81	53%			lots of jumbled core	chlorite
33.83	35.36	1.53	1.35	88%	1.24	81%			lots of jumbled core	chlorite
35.36	36.88	1.52	1.53	101%	1.53	101%			lots of jumbled core	chlorite
36.88	38.41	1.53	1.55	101%	1.48	97%			lots of jumbled core	chlorite
38.41	39.93	1.52	1.47	97%	1.39	91%			lots of jumbled core	chlorite
39.93	41.45	1.52	1.57	103%	1.05	69%			lots of jumbled core	chlorite
41.45	42.98	1.53	1.59	104%	1.38	90%			lots of jumbled core	chlorite
42.98	44.50	1.52	1.31	86%	0.61	40%			0.19 crumbly gouge	chlorite
44.50	46.03	1.53	1.46	95%	1.37	90%			lots of jumbled core	chlorite
46.03	47.55	1.52	1.56	103%	1.32	87%			lots of jumbled core	chlorite
47.55	49.22	1.67	1.57	94%	0.67	40%			lots of jumbled core	
49.22	50.75	1.53	1.61	105%	0.80	52%			lots of jumbled core	
50.75	52.43	1.68	1.20	71%	0.95	57%			lots of jumbled core	
52.43	53.65	1.22	1.53	125%	1.10	90%			lots of jumbled core	
53.65	55.17	1.52	1,51	99%	1.40	92%		1	lots of jumbled core	

Hole:	D07-04			Logger:	DILLABOU	GH	
55.17	56.69	1.52	1.48	97%	1.36	89%	lots of jumbled core
56.69	58.22	1.53	1.52	99%	1.06	69%	lots of jumbled core
58.22	59.74	1.52	1.48	97%	1.18	78%	lots of jumbled core
59.74	61.27	1.53	1.50	98%	0.51	33%	lots of jumbled core
61.27	63.09	1.82	1.64	90%	0.57	31%	0.18 crumbly gouge
63.09	64.62	1.53	1.54	101%	0.70	46%	lots of jumbled core
64.62	66.14	1.52	1.54	101%	1.17	77%	lots of jumbled core
66.14	67.67	1.53	1.48	97%	0.89	58%	lots of jumbled core
67.67	69.19	1.52	1.53	101%	1.16	76%	lots of jumbled core
69.19	70.71	1.52	1.53	101%	1.27	84%	lots of jumbled core
70.71	72.24	1.53	1.48	97%	1.41	92%	core crumbled
72.24	73.76	1.52	1.52	100%	1.32	87%	core shattered
73.76	75.29	1.53	1.47	96%	1.12	73%	
75.29	76.81	1.52	1.53	101%	1.14	75%	
76.81	78.33	1.52	1.51	99%	1.19	78%	
78.33	79.86	1.53	1.51	99%	1.42	93%	
79.86	81.38	1.52	1.48	97%	1.42	93%	
81.38	82.91	1.53	1.50	98%	1.28	84%	
82.91	84.43	1.52	1.51	99%	0.94	62%	core soft crumbled
84.43	85.95	1.52	1.50	99%	1.32	87%	core shattered
85.95	87.48	1.53	1.50	98%	1.10	72%	core crumbled
87.48	89.00	1.52	1.55	102%	1.32	87%	core soft and crumbled
89.00	90.53	1.53	1.53	100%	1.19	78%	core soft And crumbled
90.53	92.05	1.52	1.50	99%	1.13	74%	core shattered
92.05	93.57	1.52	1.52	100%	0.68	45%	core shattered
93.57	95.10	1.53	1.47	96%	0.38	25%	core crumbled
95.10	96.63	1.53	1.42	93%	0.70	46%	core crumbled
96.63	98.15	1.52	1.50	99%	1.32	87%	
98.15	99.67	1.52	1.54	101%	0.96	63%	
99.67	101.19	1.52	1.50	99%	0.26	17%	
101.19	102.72	1.53	1.42	93%	1.07	70%	
102.72	104.24	1.52	1.53	101%	1.00	66%	
104.24	105.27	1.03	1.52	148%	1.40	136%	
105.27	107.29	2.02	1.52	75%	1.29	64%	
107.29	108.81	1.52	1.49	98%	1.07	70%	
108.81	110.34	1.53	1.53	100%	0.96	63%	
110.34	111.26	0.92	1.34	146%	0.94	102%	
111.26	113.39	2.13	1.50	70%	0.35	16%	
113.39	114.91	1.52	1.53	101%	1.34	88%	
114.91	115.67	0.76	0.77	101%	0.68	89%	
115.67	117.96	2.29	2.28	100%	1.81	79%	
117.96	119.48	1.52	1.50	99%	0.92	61%	

Hole:	D07-04			Logger	DILLABOU	GH				
119.48	121.01	1.53	1.51	99%	1.27	83%				
121.01	122.58	1.57	1.48	94%	1.09	69%				
122.58	124.06	1.48	1.51	102%	0.54	36%				
124.06	125.58	1.52	1.40	92%	0.41	27%		1		
125.58	128.47	2.89	1.50	52%	0.13	4%				
128.47	129.54	1.07	1.10	103%	0.11	10%				
129.54	131.07	1.53	1.50	98%	0.11	7%				
131.07	132.28	1.21	1.20	99%	0.14	12%				
132.28	133.20	0.92	1.03	112%	0.36	39%				
133.20	134.72	1.52	1.35	89%	0.00	0%				
134.72	137.77	3.05	2.80	92%	0.78	26%				
137.77	140.82	3.05	2.97	97%	1.40	46%				
140.82	143.87	3.05	3.05	100%	2.13	70%				
143.87	146.92	3.05	3.06	100%	1.63	53%				
146.92	149.96	3.04	3.03	100%	1.28	42%				
149.96	151.49	1.53	1.53	100%	0.58	38%			soft core	
151.49	154.54	3.05	3.12	102%	0.93	30%			soft core	
154.54	155.45	0.91	0.71	78%	0.64	70%				
155.45	156.06	0.61	0.83	136%	0.74	121%				
156.06	159.11	3.05	3.03	99%	2.86	94%				
159.11	162.16	3.05	3.06	100%	2.11	69%				
162.16	165.20	3.04	2.93	96%	2.56	84%				
165.20	168.25	3.05	3.04	100%	2.88	94%				
168.25	171.30	3.05	3.06	100%	2.12	70%				
171.30	174.35	3.05	3.07	101%	2.00	66%				
174.35	177.40	3.05	3.03	99%	2.27	74%			-	
177.40	180.44	3.04	2.99	98%	2.19	72%				
180.44	183.49	3.05	3.05	100%	0.52	17%			core shattered	
183.49	186.54	3.05	3.05	100%	1.38	45%	1	ļ	core shattered	
186.54	189.59	3.05	2.58	85%	1.32	43%			core shattered	
189.59	191.11	1.52	1.77	116%	1.32	87%				
191.11	194.16	3.05	2.76	90%	1.26	41%				
194.16	195.68	1.52	1.90	125%	0.83	55%			core shattered	
195.68	198.73	3.05	2.55	84%	1.14	37%		<u> </u>		
198.73	201.78	3.05	2.93	96%	0.79	26%		<u> </u>	core shattered	
201.78	204.83	3.05	3.02	99%	1.29	42%		ļ		
204.83	207.88	3.05	3.02	99%	1.86	61%	<u> </u> <u>-</u>	<u> </u>		
207.88	210.92	3.04	3.02	99%	2.26	74%	. <u> </u>	Ļ		
210.92	213.97	3.05	3.05	100%	1.34	44%		ļ	core shattered	
213.97	217.02	3.05	3.05	100%	0.14	5%			core shattered	

	Renaissance Geoscience Services Inc- Geotechnical Logging Template										
Hole:	D07-06	N:	4000	Logger:	DILLABO	JGH	Dip:	-90			
Drill date:	9/27/2007	W	1795	Core size:	NTK		Azimuth:	0	Page: 1 of 1		
Log date:	9/29/2007	Elev.									
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Comments	Fracture	
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			Condition	
12.50	15.54	3.04	0.00	0%	0.00	0%				Τ	
15.54	18.59	3.05	0.00	0%	0.00	0%					
18.59	21.64	3.05	0.25	8%	0.00	0%					
21.64	35.36	13.72	0.35	3%	0.20	1%			core shattered		
35.36	38.41	3.05	3.00	98%	1.91	63%			core crumbled		
38.41	39.01	0.60	0.51	85%	0.34	57%			core soft crumbled		
39.01	41.45	2.44	1.91	78%	1.01	41%			core crumbled		
41.45	42.98	1.53	1.47	96%	0.92	60%			core soft crumbled		
42.98	46.03	3.05	2.80	92%	1.48	49%			core soft crumbled		
46.03	47.85	1.82	2.21	121%	1.25	69%			core soft crumbled		
47.85	50.60	2.75	1.97	72%	1.56	57%			core crumbled		

	R	enaissa	ince Geo	science S	Services	Inc- Ge	eotechnic	cal Logg	ging Template	
Hole:	D07-07	N:	3950	Logger:	DILLABOL	JGH	Dip:	-90		
Drill date:	9/29/2007	E:	1500	Core size:	NTK		Azimuth:	0	Page: 1 of 1	
Log date:	10/1/2007	Elev.								
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Comments	Fracture
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			Condition
6.00	6.40	0.40	0.40	100%	0.11	28%				
6.40	9.45	3.05	3.00	98%	1.40	46%				
9.45	12.95	3.50	3.43	98%	1.02	29%				
12.95	15.54	2.59	2.54	98%	0.81	31%			core shattered	
15.54	15.85	0.31	0.50	161%	-	0%			core crumbled	
15.85	17.37	1.52	1.45	95%	-	0%			core soft crumbled	
17.37	17.68	0.31	0.30	97%	-	0%			core crumbled	
17.68	20.42	2.74	3.23	118%	0.40	15%			core soft crumbled	
20.42	23.17	2.75	2.63	96%	0.76	28%			core soft crumbled	
23.17	24.99	1.82	1.73	95%	0.67	37%			core soft crumbled	
24.99	26.52	1.53	1.80	118%	0.23	15%			core crumbled	
26.52	28.35	1.83	2.01	110%	0.29	16%			core shattered	
28.35	30.18	1.83	2.03	111%	0.32	17%			core crumbled	
30.18	31.39	1.21	1.13	93%	0.23	19%			core soft	
31.39	32.61	1.22	1.22	100%	-	0%			core crumbled	
32.61	34.14	1.53	1.55	101%	-	0%			sandy	

	R	enaissa	ince Geo:	science S	ervices	Inc- Ge	otechnic	al Logo	ing Template	
Hole:	D07-08	<u> </u>	T T	Logger:	Brandon E	Jarker			1	
Drill date:	Nov 28/2007	,,,,,,,,	11	Core size:	NTK	(Azimuth:	0	Dip:	-90
Log date:	Jan 20/2008	Elev.		N:	3950	W	1795			[]
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Comments	Fracture
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)		1	Condition
45.72	47.85	2.13	0.33	15%	0.00					
47.85	50.90	3.05	1.96	64%	0.00					
50.90	53.95	3.05	2.69	88%	0.00					
53.95	57.00	3.05	2.30	75%	0.00					
57.00	60.05	3.05	2.88	94%	0.41				gouge to 58.55	clay films
60.05	63.09	3.04	2.26	74%	0.16			1	60.95 gouge	
63.09	66.14	3.05	2.83	93%	0.46				63.93 fault	
66.14	69.19	3.05	1.46	48%	0.00			ļ	broken core	
69.19	72.14	2.95	2.44	83%	0.57	1			gouge at 69.29	
72.14	75.29	3.15	2.76	88%	1.30			1	broken core	
75.29	78.33	3.04	2.28	75%	0.19					
78.33	81.38	3.05	2.49	82%	0.59			1		
81.38	84.43	3.05	2.96	97%	0.28			2.0		
84.43	87.48	3.05	2.69	88%	0.77			1.0	86.38=grinding	
87.48	90.53	3.05	2.89	95%	0.14		ł	0.0	ground material from faulting	1
90.53	93.57	3.04	2.49	82%	0.69			2.0		
93.57	96.62	3.05	1.49	49%	0.41			2.0	missing core at 96.4m	
				i	· · · · · · · · · · · · · · · · · · ·			1	grinding at 93.8, 96.18 and 9/	6.46
96.62	99.67	3.05	1.87	61%	1.20		1	2.0	grinding at 96.82, 95.62 and '	99.53
		1			· · · · · · · · · · · · · · · · · · ·		1		broken core at 98.43	
99.67	102.72	3.05	1.95	64%	1.02		1	2.0	grinding at 101.69 and 101.5/	6
102.72	105.77	3.05	1.88	62%	0.14		1	2.0	grinding at 103.61, 103.67 ar	nd 105.60
		<u> </u>		1			1		various areas of broken core	
105.77	108.81	3.04	1.73	57%	0.72		1	1.0	very broken up core	
			1	1	· · · · · · · · · · · · · · · · · · ·		1		113.99 missong core	
4	1			1				1	grindng at 113.45 and 113.17	2
114.91	119.96	5.05	1.70	34%	0.00		1	2.0	broken core	
117.96	121.01	3.05	2.26	74%	0.11		f	1.0	clay rich and fractures	
121.01	124.06	3.05	2.19	72%	0.55			2.0	ground powder	
		1					1	1	121.01-122.02	
124.06	127.10	3.04	2.74	90%	2.46			2.0	pieces missing at 120.37	
127.10	130.15	3.05	3.01	99%	2.86			2.0	nice core	
130.15	133.20	3.05	2.76	90%	1.37		1	2.0	132.56-133.20 fractured	
133.20	136.25	3.05	2.94	96%	2.37		1	2.0	missing core at 139.92m	1
136.25	139.30	3.05	2.89	95%	2.19			2.0	140.44-142.06-142.82-139.5	1 pyrite

Hole:	D07-08			Logger	: Brandon Barker		
142.34	145.39	3.05	2.76	90%	0.91	2.0	fracture core with some broken
145.39	148.44	3.05	2.71	89%	0.93		
148.44	151.49	3.05	2.69	88%	1.51	2.0	151.26 grinding
151.49	154.54	3.05	2.10	69%	1.47	2.0	152.69 broken core
154.54	157.58	3.04	3.08	101%	2.20	2.0	fault at 156.36
157.58	160.63	3.05	2.99	98%	1.49	2.0	broken core at 160.52
160.63	163.68	3.05	2,86	94%	1.56	2.0	160.83 broken core
163.68	166.73	3.05	3.04	100%	1.49	1.0	nice core
166.73	169.78	3.05	2.94	96%	2.14	1.0	
169.78	172.82	3.04	2.96	97%	2.57	2.0	some fractures
172.82	175.87	3.05	3.00	98%	2.41	2.0	nice core
175.87	178.93	3.06	3.05	100%	2.25	2.0	
178.93	181.97	3.04	2.96	97%	2.40	2.0	
181.97	185.02	3.05	3.03	99%	2.27	3.0	
185.02	188.06	3.04	2.97	98%	2.00	2.0	broken at 185.02
188.06	191.11	3.05	2.92	96%	0.40	2.0	lots of cracking (fractures)
191.11	194.16	3.05	3.01	99%	1.23	3.0	silica at 192.6
194.16	197.21	3.05	3.01	99%	0.53	2.0	fracturd w/ some gouge
197.21	200.26	3.05	3.00	98%	2.01	2.0	197.31 broken
200.26	203.30	3.04	2.95	97%	1.90	3.0	200.79 quartz
203.30	206.35	3.05	3.00	98%	1.46	3.0	204.3 quartz
206.35	209.40	3.05	2.94	96%	1.18	2.0	gouge at 208.96
209.40	212.45	3.05	3.03	99%	1.21	2.0	
212.45	215.50	3.05	3.04	100%	0.58	2.0	
215.50	218.54	3.04	2.98	98%	1.73	2.0	
218.54	221.59	3.05	2.78	91%	1.84	2.0	grind at 240.78
221.59	224.64	3.05	3.01	99%	0.76	2.0	lots of fractures
224.64	227.69	3.05	2.93	96%	0.81	2.0	
227.69	230.74	3.05	2.90	95%	0.75	1.0	
230.74	233.78	3.04	2.98	98%	1.79	2.0	
233.78	236.83	3.05	2.94	96%	1.45	2.0	236.61 gouge
236.83	239.88	3.05	2.95	97%	2.32	2.0	
239.88	242.93	3.05	3.00	98%	2.79	2.0	nice
242.93	245.98	3.05	3.05	100%	1.10	2.0	gouge at 245.58
							fractured
245.98	249.02	3.04	3.03	100%	0.21	1.0	most gouge
249.02	252.07	3.05	2.74	90%	2.20		251.81 broken core
252.07	255.12	3.05	3.04	100%	1.29	1.0	
255.12	258.17	3.05	3.05	100%	1.55	2.0	highly altered at 256.97
258.17	261.22	3.05	3.02	99%	1.66	2.0	all highly altered core
261.22	264.26	3.04	2.96	97%	2.73	2.0	highly altered

1

Hole:	D07-08			Logger	: Brandon Bar	ker			
264.26	267.31	3.05	3.00	98%	2.85		2.0	highly altered w/ some areas	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				with little to no alteration	
267.31	270.36	3.05	3.03	99%	2.80		2.0	change of type at 268.13	
270.36	273.41	3.05	3.04	100%	1.98		2.0	270.51 fault	
								271.43 grinding	
273.41	276.46	3.05	2.97	97%	2.63		2.0	highly fractured w/ some brok	en core
276.46	279.50	3.04	3.04	100%	2.64		1.0	gouge at 277.69	
								broke core at 280.36	
								hydrothermal deposit at 282.2	5
279.50	282.55	3.05	2.97	97%	2.63		2.0		
282.55	285.60	3.05	3.00	98%	2.79		1.0	altered hydrothermic	
285.60	288.65	3.05	2.98	98%	2.08		2.0	altered hydrothermic	
288.65	291.70	3.05	2.99	98%	2.64		2.0	bleached	
291.70	294.75	3.05	3.05	100%	2.76		2.0	bleached	
294.75	297.79	3.04	3.03	100%	2.91		2.0	missing piece at 294.75	
297.79	300.84	3.05	3.05	100%	2.63		2.0	299.06 highly bleached white	
300.84	303.89	3.05	3.00	98%	2.91		2.0	301.95 grinding	
303.89	306.94	3.05	3.04	100%	2.66		2.0	grinding at 303.89	
306.94	309.99	3.05	3.01	99%	2.54		2.0	not as altered (hornblendite)	
309.99	313.03	3.04	3.02	99%	2.73		2.0	11 17	
313.03	316.08	3.05	3.05	100%	2.27		2.0	317.66 not as altered	
								317.66 fault	
316.08	322.18	6.10	2.90	48%	2.58		2.0	orange alteration	
322.18	325.23	3.05	3.02	99%	2.43		2.0	partially beached	
325.23	328.27	3.04	3.05	100%	2.60		2.0	change type at 328.27	
328.27	331.32	3.05	1.32	43%	0.97		2.0	hematite w/ magnetite	
								small viening a328.34t	
								oxidized pyrite	
						·		from 328.44 to 328.78	







750.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
700.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
650.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
				DRILL TRACE	

