Assessment Report On

Drilling Program On:

SILVER CROWN 6 PROPERTY

Statement of exploration\# 4195646

Located
22 kilometres east of Stewart, British Columbia in Skeena Mining Divisions

NTS 104A/4W
LATITUDE 5608 ' N
LONGITUDE 129 55' W

On Behalf of
Decade Resources Ltd
Stewart, BC

Report by
E.R. Kruchkowski, B.Sc., P. Geo.

May 14, 2008

TABLE OF CONTENTS

PAGE
SUMMARY 1
INTRODUCTION 2
Location and Access 2
Physiography, Topography and Climate 2
Personnel and Operations 3
Property Ownership 3
Previous work 4
GEOLOGY 7
Regional geology 7
Local Geology 9
Alteration and Mineralization 9
2008 DRILLING PROGRAM 11
INTERPRETATION AND CONCLUSIONS 18
RECOMMENDATIONS 19
REFERENCES 20
CERTIFICATE OF AUTHOR'S QUALIFICATIONS 21
STATEMENT OF COSTS 22
APPENDICES AND ILLUSTRATIONS after page 22

LIST OF FIGURES

Figure 1 Location Map
After page 22
Figure $2 \quad$ Claim Map
Figure 3 Regional Geology Map
Figure $4 \quad$ Map Showing Area of Drlling
Figure 5 Location of Drill Holes
Figure 6 Geological Section Showing DDH2008-SCR-1 to 3
Figure 7 Geological Section Showing DDH2008-SCR-4 to 6

After page 22

Figure 8 Geological Section Showing DDH2008-SCR-7 to 9
Figure 9 Assay Section Showing DDH2008-SCR-1 to 3
Figure 10 Assay Section Showing DDH2008-SCR-4 to 6
Figure 11 Assay Section Showing DDH2008-SCR-7 to 9
LIST OF TABLES
$\begin{array}{lll}\text { Table 1 } & \text { Drill Hole Summary } & \text { Page 11 } \\ \text { Table 2 } & \text { Significant Drill Hole Intersections } & \text { Page 17 }\end{array}$
LIST OF APPENDICES
Appendix I Drill Hole Logs
Appendix II Assay Results
After page 22

SUMMARY

The Silver Crown 6 property is located approximately 22 kilometers north of Stewart, British Columbia in the Skeena Mining Division. The property has been optioned by Decade Resources Ltd who can earn a 100% interest in the property from Silver Grail Resources Ltd and Teuton Resources Corp. The property is comprised of 1 claim covering approximately 613 hectares. The claim extends from just west of American Creek with its confluence with Bear River for approximately 2 kilometers. The area is underlain by altered Lower Jurassic-age Hazelton pyroclastic volcanics that are unconformably overlain by Middle Jurassic Salmon River Formation sediments.

There are no known ore bodies on the property.
The claims lie within a belt of Jurassic volcanic rocks which extend from the Kitsault area, south of Stewart, north to the Stikine River area. This belt is host to numerous gold and gold-silver deposits in a variety of geological settings including past producers Snip, Granduc and Premier-Big Missouri mines as well as the presently producing Eskay Creek deposit. Reserves have been reported from a number of other properties including the Silver Coin, Red Mountain, Brucejack Lake - Suphurets area and Georgia River. In addition, numerous gold-silver showings have been reported by exploration companies along this belt of rocks. Previous past silver production has been well documented from the Kitsault area as well as Mount Rainey, near Stewart. At least four different porphyry type systems containing $\mathrm{Cu}-\mathrm{Mo}, \mathrm{Cu}-\mathrm{Mo}-\mathrm{Au}, \mathrm{Cu}-\mathrm{Au}$ and Au mineralization are also present within the region.
Two types of mineralization have been located on the property. It is also possible that the Montrose showing extends from the Red Cliff property on to the northwest portion of the Silver Crown 6 claim.

The first type of mineralization consists of weakly mineralized and sericite altered andesitic rocks with minor fine grained pyrite on the west side American Creek similar to that of gold bearing rocks on the adjoining Red Cliff property.

The second type of mineralization consists of numerous parallel to sub-parallel fissure filled argentiferous quartz-sulphide veins located east of American Creek. Mineralization consisting of galena, sphalerite, chalcopyrite and pyrite occurs as massive to semimassive lenses, pods and stringers in vuggy quartz. These veins are located in a zone at least 1.5 m wide and traced for at least 60 meters.

The Montrose mineralization consists of north-south trending gold bearing quartzsulphide veins that have been traced for over 200 meters of strike length just south of the northwest portion of the Silver Crown 6 claim. The veins are up to 4 meters wide and have been traced over 150 meters of height. Bonanza gold grades are associated with sphalerite, galena and chalcopyrite in the quartz veins.

In January to February 2008, a total of 1402.45 meters of drilling was completed in 9 holes. Drilling was conducted in an area where trenching in 2006 yielded an assay of $0.09 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 167.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.72 \% \mathrm{Cu}, 22.7 \% \mathrm{~Pb}$ and $8.44 \% \mathrm{Zn}$ over 1.5 meters of width
within a massive sulphide lense. The best drill results were in SCR-2008-2 which gave an intersection of 0.46 meters of $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.11 \% \mathrm{~Pb}$ and $20.1 \% \mathrm{Zn}$ and SCR-2008-8 which gave an intersection of 2.13 meters of $23.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.48 \% \mathrm{~Pb}$ and $4.05 \% \mathrm{Zn}$.

The following work is recommended as the next exploration phase: soil sampling on strike with the Montrose vein, geological mapping and possible diamond drilling is recommended. The cost of the program is estimated to be $\$ 200,000.00$.

INTRODUCTION

Property Location and Access

The claim extends from just west of American Creek with its confluence with Bear River for approximately 2 kilometers. The claim area is centered on 56 degrees 08 minutes latitude and 129 degrees 55 minutes longitude on NTS sheet $104 \mathrm{~A} / 4$. Claims location is shown on Figure 1.

Access to the property is via Highway 37A to the American Creek access road constructed by other exploration companies which bisects the middle of the property providing excellent access to the lower portions of the claims. Helicopters must be utilized for the higher areas of the claim and can be chartered from a year round Prism Helicopter base in Stewart 22 km to the south.

Except for a power transmission line and paved highway crossing the southern portion of the property and exploration access road, there are no other infrastructure facilities and equipment on the property.

Physiography, Topography and Climate

In general terms the property is typified by the precipitous slopes of the eastern Coast Mountains. Relief ranges from 150 m in the American Creek Valley to over 1000 m near the eastern edge of the claim with a good portion of the property passable on foot. The property is situated roughly in the centre of the American Creek Valley at its confluence with Bear River extending from Lydden Creek several kilometers to the east.

Water supply is plentiful as many glacial run-off streams drain into American Creek and Bear River.
Vegetation varies from mature stands of western hemlock blue spruce and douglas fir at the lower elevations to barren rock and ice higher up. Tree line ranges from 1050 m to 1300 m with subalpine spruce thickets heather and alpine meadows occurring between 800 m and 1300 m . On the steeper slopes where avalanches are a frequent occurrence only a combination of slide alder, mountain ash, huckleberry, stinging nettle and devil's club can exist.

The area receives heavy snowfall between the months of October and March with rainfall in the other months. Average precipitation is in the order of 250 centimeters of rain fall and 20 meters of snow.

In general, due to the large snowfall, the surface exploration in the Stewart area is restricted to summer and early fall with the maximum rock exposure occurring in late August to October. However, the area of the confluence of American Creek and Bear River receives much less snow than the general claim area and surface exposures are present much later in the fall as well as much earlier in the spring, possibly due to temperature inversions or a general higher geothermal temperature.

Personnel and Operations

Kasum Tractor Ltd provided a Cat 325 excavator and D8 caterpillar to clear snow off the roads and build drill pads. The caterpillar moved the drill between the various drill stations.

Mountain Boy Minerals Ltd of Stewart BC provided a modified JKS drill for the drilling.
Soucie Trucking of Stewart BC provided the lowboy for moving the drill equipment from Stewart to the claim area.

E Kruchkowski provided all geological supervision and logging of the drill core. Richard Lemieux split all the core, Randy Kasum provided labour services for bringing the core to Stewart, bringing fuel to the drill and maintaing the roads

All core was logged and mineralized sections split with a manual splitter and all core is presently stored in the Mountain Boy core storage areas in Stewart.

Assayers Canada performed all geochemical analysis.

Property Ownership

The property consists of approximately 613 hectares in 1 claim. Relevant claim information is summarized below:

List of Property Claims

Name	Tenure	NTS Map Area	Area in ha	
Expiry Date				
Silver Crown	6508269	NTS 104 A/4	613.42	Nov.

30, 2009
Claims location is shown in Figure 2 copied from MINFILE database. The claim is situated in the Skeena Mining Division in the Province of British Columbia.

The property is owned by Silver Grail Resources Ltd. and Teuton Resources Corp. who are the joint beneficial owners of an undivided 100% interest in the Tenure \#508269 mineral claim.

Decade Resources Ltd. Can earn an undivided 100% in the property, subject to a 2% Net Smelter Returns Royalty by agreeing to pay a total of $\$ 100,000$ cash consideration to Silver Grail and Teuton, issuing a total of 300,000 shares in the common stock of Decade to the owners, and incur exploration expenditures on the property aggregating $\$ 1,500,000$. All cash and share payments are to be split equally between Silver Grail and Teuton.

Decade will pay the cash consideration to the owners as follows:
a) $\$ 10,000$ to be paid on the execution of this letter agreement; and
b) a further $\$ 15,000$ to be paid on or before Nov. 17, 2007;
c) a further $\$ 20,000$ to be paid on or before Nov. 17, 2008;
d) a further $\$ 25,000$ to be paid on or before Nov. 17, 2009;
e) a further $\$ 30,000$ to be paid on or before Nov. 17, 2010.

Decade will pay the share consideration to the owners as follows:
a) 100,000 shares in the common stock of Decade at the earliest possible date subsequent to the execution of this letter agreement, that such issuance is permissible by the regulatory authorities having jurisdiction over this agreement; and
b) An additional 200,000 shares in the common stock of Decade on or before Nov. 17, 2010.

Decade will incur the $\$ 1,500,000$ in expenditures on the property as follows:
a) $\$ 100,000$ before December 31, 2007;
b) $\$ 300,000$ in aggregate before December 31, 2008;
c) $\$ 600,000$ in aggregate before December 31,2009 ;
d) $\$ 1,000,000$ in aggregate before December 31, 2010;
e) $\$ 1,500,000$ in aggregate before December 31, 2011 .

Any amounts spent in a given year in excess of those shown above will be credited toward subsequent years' expenditure requirements.

Previous Work

Exploration for metals began in the Stewart region around 1898 after the discovery of mineralized float by a party of placer miners in the Bitter Creek area. The area of the Silver Crown 6 claim is in close proximity to 4 properties that have had limited production in the past and/or underground workings completed in previous exploration. The property is tied on to the Terminus, Ruby Silver, and Argenta and Red Cliff properties and has likely been included in claim holdings encompassing the above properties. At present, the Silver Crown 6 claim includes areas tied on to the following properties; east and west of the Red Cliff holdings, west of the Argenta property, south of the Terminus and north of the Ruby silver property.

On the Red Cliff property during 1909 - 1912: underground development totaling 2386 meters was carried out on Red Cliff Cu - Au zone on five levels. This work included four
portals and a 430 meter long access tunnel driven below Lydden Creek. In 1910, 1.36 tonnes of ore was shipped to Tyee Smelter reporting $8.25 \% \mathrm{Cu}$ and 83.7 grams/tonne Au . During this period a plant was erected on the Red Cliff property and a railway was constructed to Stewart. In 1912, 1135 tonnes of ore was shopped to the Tacoma smelter and an additional 2,035 tonnes were placed on a stockpile. The results of the first shipment did not warrant further shipments and the mine closed in October of 1912.

In $1939-41$, there was 65 tons mined averaging 2.45 opt $\mathrm{Au}, 2.95$ opt $\mathrm{Ag}, .91 \% \mathrm{Cu}$, $3.5 \% \mathrm{~Pb}$ and $4.41 \% \mathrm{Zn}$ from the Montrose Zone.

The Terminus occurrence was probably discovered in 1910. During 1910-28, Northern Terminus Mines Ltd. (and later Terminus Mines Ltd.), conducted exploration work on the property. By 1911, a 13.8 metre shaft, an open cut and a short tunnel had been completed. That year a shipment of ore (10.8 tonnes) assayed about $\$ 200$ per tonne. Most of the underground work was apparently completed in 1924 and comprised a 200 metre long crosscut (adit), 90 meters of drifting, a raise, a winze and, about 50 meters south of these workings, a prospect shaft. The crosscut intersected the Terminus vein about 22 meters below the surface exposure. In 1925, Vancouver Mines Ltd. performed exploration on the immediately contiguous claims. This work included: two adits and several open cuts on the Hope 1 Fraction, about 240 meters north of the portal of the Terminus adit; and pits on the Hope veins on the Hope 2 Fraction (104A 017), about 700 meters east of the portal. From 1925-49, 24.5 tonnes were high graded from the property; 152,312 grams of silver, 3,944 kilograms of lead and 5,036 kilograms of zinc were recovered.

In 1910, the Portland Dreadnought Mining Company carried out tunneling and open cutting on a group of 3 claims which presumably covered the ruby Silver showing. In 1920, Le Sueur held the Ruby Silver group over the showing and conducted further work. In 1924, Ruby Silver Mines was formed and acquired the Ruby Silver claims (Ruby, Ruby 1, Star, Stirling, Pershing and Pershing 1) and Ruby Silver Extension claims (Ruby 2-5). That year the Ruby Silver adit, on the Ruby claim, had been driven at least 46 meters; several crosscuts were also driven. Further work was done the following year; this work probably included extension of the adit to about 62 meters. The company name was changed in 1929 to Ruby Silver Copper Mines.

The Rufus claim group was first mentioned in 1916. Minor work was reported during 1916-24. In 1924, Rufus Silver-Lead Mines Limited was incorporated and acquired the Rufus and Rufus 1-6 claims. That year prospecting, tunneling and geological work was reported. In 1928, Rufus Argenta Mines Limited (a consolidation of Rufus Silver-Lead Mines and Argenta Mines) was incorporated and the following year a 244 meters long tunnel was reported. It is not clear whether this tunnel was driven on the Rufus or the Argenta claims. A further 46 meters of tunneling was reported in 1937. New RufusArgenta Mines Limited was formed in 1955; further work was conducted during 1956-57 and 1964-65. Crest Copper Company Limited carried out geological mapping and trenching in 1966. Crest Metals Limited was incorporated the following year to acquire the Rufus group and adjacent ground.

The area of the mineralization explored on the Silver Crown 6 claim is within an area of deep overburden and is heavily timbered. As a result exploration was hampered by these conditions.

Reportedly in the 1930's, a prospector named Sam Deshaune sank a short shaft approximately 2.8 to 3 meters deep about 30 meters north of the area of the 2006-2007 exploration. It appears that the shaft was sunk in order to locate the source of mineralization found in overburden. Mineralized dump material was located in 2006 beside a collapsed shaft but depth and size of excavation could not be determined.

In the early 1970's, logging activities probably exposed the area of mineralization on then Silver Crown 6 claim. In the period 1972-1973, John Lehto, a local Stewart prospector mined approximately 10 tonnes of mineralization from the area of the 2006-2007 work, particularly the area of trench 1 . Lehto probably intended to direct ship this mineralization to a smelter. Grade of the mineralization removed by Lehto is unknown. This area is included trenches 1 and 2 excavated in 2006-2007.

In 1972: Citex Mines Ltd. acquired an option and with Adam Milling Ltd. processed some 3,376 tones of ore from the Red Cliff zone at the nearby Bitter Creek mill. In the 1980's, the area of the Silver Crown 6 claim was part of the Tel modified grid claim. During 2007, Mountain Boy minerals drilled 8825 meters in 42 holes testing 4 different targets on the property. Some of the best results for the Red Cliff copper-gold and copper zones include $5.34 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 20.36 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $1.45 \% \mathrm{Cu}$ over 6.8 meters in hole RC-10, $2.40 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 22.14 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $1.94 \% \mathrm{Cu}$ over 3.5 meters in hole RC-32, $0.30 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 22.1$ $\mathrm{g} / \mathrm{t} \mathrm{Ag}$ and $2.66 \% \mathrm{Cu}$ over 11.90 meters in hole RC-55 and $1.76 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 20.24 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $3.61 \% \mathrm{Cu}$ over 10.73 meters in hole RC-56.

Work in the area of the Montrose high grading during a 1979 surface sampling program yielded $19.31 \mathrm{~g} / \mathrm{t}$ Au over 2.43 m and 1987 surface sampling gave $7.93 \mathrm{~g} / \mathrm{t}$ Au over 3.81 m . Several holes drilled in 1988 to 1990 gave intercepts of $1.72 \mathrm{~g} / \mathrm{t}$ Au over 14.48 m including $9.31 \mathrm{~g} / \mathrm{t}$ Au over 1.70 m and $1.17 \mathrm{~g} / \mathrm{t}$ Au over 16.89 m including $4.82 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 2.29 m .

In 1988 the Waterpump Zone which represents the south fault extension of the Montrose Zone was discovered. It is located approximately 50 meters south of the 1939-1941 mining. A trench over the zone gave values consisting of $21.37 \mathrm{~g} / \mathrm{t}$ Au over 4.2 m and $6.89 \mathrm{~g} / \mathrm{t}$ Au over 3.3 m with 2.0 m of dyke between the values. Across the entire zone including the dyke, the sampling yielded an average of $12.07 \mathrm{~g} / \mathrm{t}$ Au over 8.5 m .

Drilling by Mountain Boy in 2007 north of the underground workings gave $16.61 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 1.61 meters in hole Mon 1 and $9.22 \mathrm{~g} / \mathrm{t}$ Au over 3,05 meters in hole CT-3

In 1981 Gatrow Resources Inc. conducted a prospecting and sampling program on the Terminus-Vancouver claim groups. Most of the previous workings were resampled. In 1988, D. Cremonese flew a heli-borne VLF-EM and magnetometer survey over the Ernst 1-2 and Pabicia claims, which included the area of the occurrences. In 1990, Hyder Gold

Inc. performed geological and geochemical work on the Terminus-Vancouver property. An in-situ mineral inventory of the Terminus vein was estimated in 1990 to be 5,182 tonnes grading 391.9 grams per tonne silver, 0.92 per cent zinc and 0.76 per cent lead. These historic estimates have not been verified by a Qualified Person as a National Instrument 43-101 defined resource. These reserves are non 43-101 compliant and are used for comparison purposes only.

In 1976, Tournigan Mining Explorations Ltd. carried out reconnaissance studies in the area and, in 1978, acquired the Rufus, Rufus 3 and Rufus 5 claims and conducted some geological work. Kingdom Resources Ltd. was formed in 1978 and carried out geological and geochemical (soil and rock) work in the area during 1980-84; some sampling was done on the Rufus showing.

On the Ruby Silver showing no further work was reported until 1984 when D. Brownlee acquired the Ruby Silver group and conducted an evaluation the following year. In 1986, Thios Resources Inc. acquired the property and subsequently entered into a joint venture with Adrian Resources Ltd. The joint venture conducted geological, geochemical and geophysical (VLF-EM and magnetometer) surveys on the property in 1990.

During the geochemical program by Decade in November 2006 to March 2007, a total of 75 float and 2 outcrop chip samples were collected. Float samples assayed from 0.01 to $0.15 \mathrm{~g} / \mathrm{t} \mathrm{Au},<0.1$ to $501.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.001$ to $6.68 \% \mathrm{Cu},<0.01$ to $33.1 \% \mathrm{~Pb}$ and 0.01 to $20.958 \% \mathrm{Zn}$. The best chip line assayed $0.09 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 167.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.72$ \% Cu, 22.7 \% Pb and $8.44 \% \mathrm{Zn}$ over 1.5 meters of width within a massive sulphide lense. A total of 29 soil samples were collected along access roads in the area. Anomalous silver, copper, lead and zinc values were indicated in the area of the quartz-sulphide mineralization with values up to $9.8 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 544 \mathrm{ppm} \mathrm{Cu}, 7367 \mathrm{ppm} \mathrm{Pb}$ and 3286 ppm Zn . A total of 15 ICP values were obtained for pyritic rocks in 3 trenches along the west side of American Creek. Low values were obtained for sampling in this area. The Beep Mat survey failed to outline any areas of obvious mineralization.

GEOLOGY

Regional Geology

The Silver Crown 6 property lies along the eastern edge of the Coast Crystalline Complex within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age. Portions of the Stewart area are underlain by Triassic age Stuhini Group (Greig, C.F, 1994). The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark gray, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse-grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and non-marine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and minor coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of trough filling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows. Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark gray to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark gray, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone. Alldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are located in the Mitchell Glacier and Knipple Glacier areas.

The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other is synvolcanic and Tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are
locally disrupted by small east-over thrusts on strikes parallel to the major fold axis, cross-axis steep angled faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. A portion of the Geological of Canada regional geology map by C. Greig et al 1994 which covers the property and adjacent areas is presented in Figure 3.

Local Geology

The property area appears to underlain by volcanic and volcaniclastic rocks belonging to the Unuk River Formation of Lower Jurassic age. On the east side of American Creek, black argillites and/or tuffs are highly sheared and locally silicified. Rocks are exposed along an old logging road and in the area of trench 1 . Strike of the rocks appears to be north south with a steep dip to the west. On the west side of American Creek, the rocks are weakly sericite altered, green andesite tuffs with up to 5% fine grained pyrite. Rocks are exposed along an exploration road extending up American Creek.

Although up to four periods of folding and five episodes of faulting have been identified in the Stewart Area, the overall structure of the property appears relatively simple.
Faulting has played the major role with a series of north - south trending normal faults in the American Creek Valley. Perpendicular to these is a series of east - west trending faults in the vicinity of the property. The major structural feature of the property area is a north south anticline along the American Creek Valley. In general the bedding strikes are northerly subparallel to the valley sides. American Creek is along a major north south fault zone with the shearing on the Silver Crown 6 showing being possible splays from the main structure. The shearing on the showing is 320 degrees, one of the main shearing and faulting directions in the Stewart area.

Alteration and Mineralization

As of 2008, no economic mineralization has been discovered on the property. Based on previous exploration in the property area, potential on the property is considered to be excellent for 3 different types of mineralized targets including Red Cliff type copper-gold-silver, vein type quartz - gold associated with sericite alteration present on the adjoining Red Cliff property and parallel fissure filled argentiferous quartz-sulphide veins. The first is the mineralization of the Red Cliff Zone which is composed of a coarse grained aggregate of pyrite and chalcopyrite along an east west structure and possibly striking on to the Silver Crown 6 claim. The second type of mineralization is similar to that of the Montrose and portions of the Waterloo Zones on the adjoining Red Cliff property, where sphalerite and galena are present with pyrite, quartz and sericite. The third type of mineralization is very similar to the deposits that occur at the Prosperity and Porter Idaho Mines located five kilometres southeast of Stewart, B.C. The veins are narrow sinuous quartz fissure veins in shear and breccia zones a few inches to several feet wide. The primary vein minerals include: quartz, galena, sphalerite, tetrahedrite, minor polybasite and native silver. Production was generally confined to the irregular swells along which sulphides were concentrated. Records show slightly less than 30,000 tons of ore milled contained 2,336,482 ounces of silver, (approximately 78 opt silver), 57,679 pounds of copper, $3,002,997$ pounds of lead, and 16,495 pounds of zinc (Grove, 1971). They appear to be of a Tertiary age and show a lack of gold values. The
argentiferous vein mineralization on the Silver Crown 6 claim shows a lack of gold values as well and is probably the same age as the Porter Idaho mineralizing event.

The following types of mineralization have been found on the property and/or the nearby Red Cliff claims:

1. vein copper-gold-silver
2. vein gold
3. fissure filled argentiferous quartz-sulphide veins

Vein type copper-gold-silver is present on the adjoining Red Cliff property which is the site of old mining operations that were carried out from 1908 to 1912 plus a limited amount of work in 1973 to 1990 . Over 2300 meters of underground workings have been established on 5 levels using 4 portals. The mineralization consists of irregular veins and pods of massive pyrite chalcopyrite which are hosted by a matrix of quartz. Surrounding the mineralization is a poorly developed zone of sericite alteration In past activities, a total seven mineralized zones have been mapped in the immediate vicinity of the Redcliff workings and these ranged in width between 02 and 3 m . Most are present along shears which are orientated in an east west fashion Generally these mineralized shears are steeply dipping and present in all rock types except post mineral diorite dykes. Based upon the somewhat extensive underground workings the ore bodies seem to be both irregular and lenticular. The largest lense occurs on the lowest level where according to BCDM Annual Report 1912, mineralization is exposed over a length of 76 meters and an average width of 6.1 meters. According to the report, mineralized bodies appear to be merging into one big body on the lowest level. Representative assays from the various mineralized zones generally range from 2 to $4 \% \mathrm{Cu}$ with values up to $18 \% \mathrm{Cu}$. Silver values generally range from 7.8 to 311 grams/tonne and the gold values less than 1 gram up to 5 grams/tonne. Estimated reserves for the Red Cliff deposit are reported to be 18,856 tonnes of sorted ore containing 3.19 per cent copper and 2.8 grams per tonne gold (Minfile report).

In addition cross sections, reproduced by the British Columbia Department of Mines (Grove E W and Dudas B M 1973) indicates the potential exists below the lowest level of the workings for additional ore.

Vein gold occurs on the Montrose and Waterloo occurrences located on the northeast side of Lydden Creek, about 1.9 kilometres northwest of the confluence of Lydden Creek with American Creek, within the Red cliff property. The Montrose zone, reflected by a conspicuous 25 by 35 metres gossan zone, comprises two lenses, the Nos. 1 and 2 lenses. These are separated by a series of faults and a 3 to 6 -metre wide diorite dike. The lenses contain 5 to 50 per cent fine-grained disseminated to massive pyrite, lesser sphalerite and galena, and minor chalcopyrite in a quartz-sericite-carbonate alteration zone. The Waterloo zone lies about 150 metres northwest of the Montrose zone. It comprises a series of mineralized occurrences, along an east-northeast trend for 250 metres, parallel to the local faulting. The individual occurrences mainly comprise 2 to 7 per cent (locally up to 40 per cent) coarse-grained pyrite as disseminations and locally, massive veins, in silicified and sericitized volcanics. The following shipments were made from the Montrose zone during 1939-41 (Assessment Report 17465):
a) 4.8 tonnes grading 102.5 grams per tonne gold, 349.7 grams per tonne silver and 0.2 per cent copper,
b) 35.4 tonnes grading 91.9 grams per tonne gold, 95.7 grams per tonne silver, 0.69 per cent copper, 4.98 per cent lead and 4.53 per cent zinc, and
c) 19.3 tonnes grading 65.5 grams per tonne gold, 49.4 grams per tonne silver, 1.50 per cent copper, 1.80 per cent lead and 5.30 per cent zinc.
A shipment of 31 tonnes in 1940 produced 2,537 grams of gold, 1,190 grams of silver and 248 kilograms of copper.

Fine grained pyrite within sericite altered andesite tuffs is found along trenches just west of an exploration road on the west side of American Creek. The Waterloo and Montrose zones on the adjoining Red Cliff property are associated with strong sericite alteration and pyrite mineralization.

The third type of mineralization which is encountered in the property area consists of northwest trending veins contains sparse to coarse crystalline galena, coarse sphalerite, chalcopyrite and pyrite in a vuggy quartz-calcite stockwork zone. Sulphides can be from 10 to 100% of the individual veins and/or veinlets. Generally, quartz-sulphides veins can form $10-40 \%$ of the overall vein system that has been found from over 1.5 up to 25 meters of width. Mineralization has been exposed over 60 meters in trench 1 but is likely at least an additional 100 meters if an old adit exists to the north along strike of the vein.

On the adjoining Terminus property, the mineralized shears are comprised of vuggy to brecciated quartz and quartz-carbonate veins with up to 5 per cent pyrite and small blebs of sphalerite, galena and tetrahedrite. A sample in a previous assessment report that was from the surface assayed trace gold, 7,753 grams per tonne silver, 2.24 per cent lead, 0.69 per cent zinc and 0.23 per cent copper across 0.15 meters. An in-situ mineral inventory of the Terminus vein was estimated in 1990 to be 5,182 tonnes grading 391.9 grams per tonne silver, 0.92 per cent zinc and 0.76 per cent lead (Assessment Report 20976).

2008 DRILLING PROGRAM

During the period January 5 to February 6, 2008, Decade Resources completed a total of 1402.45 meters of BTW size drilling in 9 holes on the Silver Crown 6 claim. Figure 4 shows the area of drilling on the Silver Coin 6 claim and Figure 5 shows the drilling in relation to a quartz-sulphide vein tested by trenching in 2006. . A summary of hole azimuths, dips and total depths are shown as follows:

Table 1 Drill Hole Summary

DRILL HOLE No.	AZIMUTH Degrees	DIP Degrees	TOTAL DEPTH Meters
SCR-1	050	-45	172.26
SCR-2	050	-55	194.21
SCR-3	050	-70	185.37
SCR-4	050	-45	145.12
SCR-5	050	-55	185.37

SCR-6	050	-70	155.18
SCR-7	050	-45	170.43
SCR-8	050	-55	164.33
SCR-9	050	-70	30.18

Drilling intersected black graphitic mudstones and mudstone breccias interbedded with andesite lapilli tuffs and dacite breccias. These rocks are intruded by granodiorite and andesite dykes. Quartz-sulphide veins, stringers and stockworks are located along shear zones in the mudstones and mudstone breccias. Appendix I describes the rocks intersected. A summary of the drill logs is as follows:

SCR-2008-1 was drilled at an azimuth of 50 degrees and a dip of -45 degrees.
At 1.52 to 7.16 m the hole intersected black to grey mudstone breccia bedded at 45 degrees to the core axis. Minor barren quartz-calcite veinlets, weak sericite alteration, graphite on rusty fractures, and a fine grained matrix with mudstone/andesite tuff fragments were also observed within the interval.

The hole came across predominantly grey, fine grained dacite breccia with 10\% mudstone clasts and wisps and traces of pyrite-quartz-calcite stockwork at 7.16 to 11.28 m .

Encountered by the hole at 11.28 to 14.33 m was mudstone breccia bedded at 45 degrees to the core axis with graphite in fractures and approximately 30 to 40% clasts up to 12 cm in size.

The hole met a quartz sulphide vein of quartz-carbonate with dark brown sphalerite and pale brown sphalerite at 14.33 to 14.79 m .

Mudstone breccia with weak sericite alteration and graphite in fractures was hit upon by the hole at 14.79 to 33.54 m .

From 33.54 to 43.60 m the hole intercepted tuffaceous mudstone interbedded with light grey tuff and bedding at 45 degrees to the core axis.

Pale grey mudstone bedded at 45 degrees to the core axis with $2-3 \%$ quartz, calcite, and less than 1% pyrite was met by the hole at 43.60 to 51.83 m .

The hole came to pale grey/brown tuff with minor mudstone wisps at 51.83 to 56.55 m . At 56.55 to 63.72 m the hole hit grey to black mudstone with graphitic bedding at 45 degrees to the core axis and 1% quartz-calcite.

Approximately 40% tuff fragments up to 5 cm and 1% quartz-calcite stockwork were observed in an interval of mudstone breccia bedded at 45 degrees to the core axis found by the hole at 63.72 to 108.54 m .

The hole encountered black graphitic mudstone with minor pyrite as fine-grained disseminations and approximately 2% quartz stockwork as 0.50 cm veinlets at 108.54 to 172.26 m .

The hole came to an end at 172.26 m .

SCR-2008-2 was drilled off the same set-up as SCR-1 at an azimuth of 50 degrees and a dip of -55 degrees.

From 1.52 to 7.62 m the hole came across black, highly broken and graphitic mudstone breccia.

Approximately 5\% grey tuff with black mudstone clasts and minor calcite stockwork were observed in an interval of dacite breccia hit upon by the hole at 7.62 to 13.11 m . The hole intercepted highly broken mudstone breccia with approximately 2-3\% quartzcalcite stockwork and 1-2\% fine grained pyrite as fine laminae along bedding at 13.11 to 35.06 m .

Grey tuffaceous mudstone with fine laminae at 55 degrees to the core axis and mudstone wisps was met by the hole at 35.06 to 58.84 m . Also observed within the interval were local fine-grained pyrite veinlets and minor local 15 cm quartz veins.

At 58.84 to 67.38 m the hole intersected grey, fine-grained tuff with faint bedding at 55 degrees to the core axis and 5\% barren quartz-calcite stockwork.

Black, highly graphitic mudstone with approximately $7-8 \%$ strong quartz-carbonate and $4-5 \%$ fine-grained pyrite along bedding was hit upon by the hole at 67.38 to 78.96 m . The hole ran across dense grey tuff with less than 1% quartz-carbonate at 78.96 to 80.18 m .

From 80.18 to 89.94 m the hole intercepted black and highly graphitic mudstone breccia with approximately $2-3 \%$ coarse pyrite along fractures.

Black, dense, and highly graphitic mudstone with 2-3\% pyrite along veinlets and fractures was encountered by the hole at 89.94 to 98.78 m .

The hole came to black and highly graphitic mudstone breccia with approximately 2-3\% coarse pyrite along fractures at 98.78 to 129.88 m .

Grey to black mudstone with dense quartz-calcite veinlets with minor pyrite and minor sections of mudstone breccias was met by the hole at 129.88 to 194.21 m .

The hold was concluded at 194.21 m .
SCR-2008-3 was drilled off the same set-up as SCR-1 and 2 at an azimuth of 50 degrees and a dip of -70 degrees.

From 1.52 to 11.89 m the hole intersected mudstone breccia with rusty fractures and approximately 5% minor quartz-carbonate stockwork sub-parallel to the core axis.

The hole came across grey tuff with fine-grained quartz-calcite stockwork, fine mudstone clasts, and narrow beds at 40 degrees to the core axis at 11.89 to 16.46 .

Mudstone breccia with rusty fractures and approximately 5\% minor quartz-carbonate stockwork sub-parallel to the core axis was hit upon by the hole at 16.46 to 20.12 m .

Graphitic bedding at 36 degrees to the core axis was observed in an interval of black mudstone intercepted by the hole at 20.12 to 137.80 m .

At 137.80 to 148.48 m the hole met pale grey, fine-grained tuff with minor mudstone and fractions of minor fine-grained pyrite.

The hole encountered black graphitic mudstone with 5\% quartz-calcite stockwork at 148.48 to 185.37 m .

The hole was terminated at 185.37 m .
Figure 6 shows the geological section for SCR-1 to 3 .
SCR-2008-4 was drilled approximately 50 meters south of holes SCR-1 to 3 at an azimuth of 50 degrees and a dip of -45 degrees.

From 3.35 to 30.49 m the hole met black mudstone with $5-7 \%$ quartz-calcite stockwork, bedding at 45 degrees to the core axis, and minor pyrite as small disseminations and lenses up to 1 mm .

Abundant calcite, traces of galena, and approximately 1-2\% sphalerite were observed in a graphitic interval containing a quartz vein hit by the hole at 30.49 to 34.15 m .

The hole intercepted thinly bedded, black mudstone with local strong pyrite along bedding at 34.15 to 77.13 m .

At 77.13 to 101.98 m the hole came across graphitic, grey, and dense mudstone breccia with coarse, sand-sized clasts with minor $2-4 \mathrm{~cm}$ fragments, strong pyrite, and approximately 7% quartz-calcite stockwork.

Grey to green, strongly altered granodiorite bedded at 45 degrees to the core axis with feldspar and sparse chalcopyrite was discovered by the hole at 101.98 to 110.06 m .

The hole encountered coarse-grained, highly pyritic mudstone breccia with minor graphite, fine disseminated pyrite, and less than 1% quartz-calcite stockwork at 110.06 to 117.56 m .

Fine-grained, weakly brecciated granodiorite was hit upon by the hole at 117.56 to 124.45 m .

Coarse-grained, highly pyritic mudstone breccia with minor graphite, fine disseminated pyrite, and less than 1% quartz-calcite stockwork was intersected by the hole at 124.24 to 145.12m.

The hole was finished at 145.12 m .

SCR-2008-5 was drilled off the same set-up as SCR-4 at an azimuth of 50 degrees and a dip of -55 degrees.

Graphitic black mudstone thinly bedded at 35 degrees to the core axis with tuffaceous sections, approximately 3% quartz-calcite stockwork, strong sericite alteration, and 5\% pyrite as disseminations and fine veinlets parallel to the core axis was encountered by the hole at 3.35 to 30.79 m .

The hole discovered a quartz vein within an interval of graphitic mudstone with sericite, minor sphalerite, approximately 30% quartz stockwork, local fine-grained galena, chalcopyrite, pyrite, and sphalerite in narrow veinlets at 30.79 to 33.54 m .

Graphitic black mudstone thinly bedded at 35 degrees to the core axis with tuffaceous sections, approximately 3% quartz-calcite stockwork, strong sericite alteration, and 5\% pyrite as disseminations and fine veinlets parallel to the core axis was hit upon by the hole at 33.54 to 77.90 m .

From 77.90 to 78.75 m the hole came across grey and fine-grained granodiorite. Abundant grey tuff bedded at 35 degrees to the core axis and 2-3\% quartz-calcite stockwork were observed in an interval of black, graphitic mudstone met by the hole at 78.75 to 89.02 m .

The hole intercepted mudstone breccia supported by black clasts and containing pyrite in bands along bedding at 89.02 to 113.41 m .

At 113.41 to 118.29 m the hole hit greenish-grey granodiorite with 1% quartz-calcite stockwork.

Black graphitic mudstone with 5-7\% quartz-calcite stockwork and 5\% pyrite as fine lenses along bedding was discovered by the hole at 118.29 to 121.49 m .

The hole intersected fine- to medium-grained granodiorite with strong epidote alteration at 121.49 to 128.51 m .

From 128.51 to 130.34 m the hole met black graphitic mudstone with 5-7\% quartz-calcite stockwork and 5\% pyrite as fine lenses along bedding.

Grey to green fine-grained granodiorite with approximately 1% quartz veinlets was encountered by the hole at 130.34 to 135.67 m .

Black, graphitic mudstone with 5-6\% quartz-calcite stockwork and 5\% pyrite was hit by the hole at 135.67 to 147.87 m .

The hole came across black, graphitic, tuffaceous mudstone breccia with 4-5\% quartzcalcite stockwork at 147.87 to 185.37 m .

The hole came to a conclusion at 185.37 m .
SCR-2008-6 was drilled off the same set-up as SCR-4 and 5 at an azimuth of 50 degrees and a dip of -70 degrees.

Local traces of chalcopyrite, minor quartz-calcite stockwork, and bedding at 25 degrees to the core axis were observed in an interval of tuffaceous, black, highly graphitic mudstone met by the hole at 3.96 to 54.27 m .

From 54.27 to 65.55 m the hole discovered fine-grained, green to grey granodiorite with $1-2 \%$ quartz-calcite stockwork.

The hole intercepted thinly bedded, black, graphitic mudstone with 5-6\% quartz-calcite and $4-5 \%$ pyrite at 65.55 to 75.76 m .

Brecciated mudstone fragments cemented with quartz vugs with fine clear quartz, sparse sphalerite, traces of chalcopyrite, and 3-4\% pyrite were observed within an interval of quartz breccia hit upon by the hole at 75.76 to 78.20 m .

At 78.20 to 155.18 m the hole encountered black, graphitic mudstone thinly bedded at 80 degrees to the core axis with $4-5 \%$ pyrite as fine laminae along bedding and approximately 5% quartz-calcite stockwork.

The hole came to an end at 155.18 m .
Figure 7 shows the geological section for SCR-4 to 6.
SCR-2008-7 was drilled approximately 50 meters north of SCR-1 to 3 at an azimuth of 50 degrees and a dip of -45 degrees.

Black, graphitic mudstone with bedding at 45 degrees to the core axis was intersected by the hole at 2.74 to 6.40 m . Also observed within the interval were local quartz-calcite with sulphide sections, and approximately $3-4 \%$ pyrite.

The hole discovered green, sericite altered andesite breccia with narrow sections of tuff, local graphite, traces of pyrite, local minor quartz-calcite stockwork, and quartz-calcite veinlets with sparse sphalerite at 6.40 to 113.41 m .

From 113.41 to 142.68 m the hole hit upon a change from tuff to mudstone breccia consisting of dark green to black graphite, abundant tuff fragments, bedding at 45 degrees to the core axis, less than 1% quartz-calcite stockwork, and approximately 4% pyrite as fine laminae.

Medium-grained green granodiorite was met by the hole at 142.68 to 146.34 m.

Mudstone breccia consisting of dark green to black graphite, abundant tuff fragments, bedding at 45 degrees to the core axis, less than 1% quartz-calcite stockwork, and approximately 4% pyrite as fine laminae was intersected by the hole at 146.34 to 170.43 m .

The hole was finished at 170.43 m .

SCR-2008-8 was drilled off the same set-up as SCR-7 at an azimuth of 50 degrees and a dip of -55 degrees.

From 6.40 to 18.60 m the hole came across black to grey graphitic mudstone with strong tuff content, and approximately 10% quartz-calcite stockwork.

The hole discovered brecciated tuff/mudstone clasts cemented by quartz in breccia with local coarse sphalerite, galena, and traces of pyrite at 18.60 to 22.56 m .

Grey to green, weakly sericite altered andesite lapilli tuff with quartz-calcite stockwork, bedding at 70 degrees to the core axis, narrow mudstone breccia sections, and approximately 4% pyrite was met by the hole at 22.56 to 80.49 m .

At 80.49 to 107.47 m the hole encountered black graphitic mudstone breccia with sparse calcite stockwork, minor local quartz veinlets, and sparse sphalerite.

A dark green, dense, and fine-grained andesite dyke was intersected by the hole at 107.47 to 108.54 m .

The hole hit upon dense, black mudstone with approximately 4% pyrite and strong microfracturing with calcite at 108.54 to 164.33 m .

The hole came to a close at 164.33 m .

SCR-2008-9 was drilled off the same set-up as SCR-6 and 7 at an azimuth of 50 degrees and a dip of -70 degrees.

The hole intercepted black, graphitic mudstone with 5% fine pyrite as laminae and approximately 3% quartz-calcite stockwork at 6.71 to 30.18 m .

The hole was lost at 30.18 m .
Figure 8 shows the geological section for SCR-7 to 9 .
Assays greater than $1 \% \mathrm{Zn}$ are shown in the table below:
Table 2 Significant Drill Hole Intersections

DRILL HOLE No.	FROM (m)	TO (\mathbf{m})	WIDTH (\mathbf{m})	Ag g / t	Pb $\%$	Zn $\%$

SCR-1	13.72	14.33	0.61	8.3	0.11	20.1
and	36.59	36.89	0.30	15.7	0.4	18.4
SCR-2	14.79	15.40	0.61	24.9	1.14	6.9
and	46.34	49.39	3.05	19.0	0.79	2.11
and	53.20	57.01	6.25	8.89	0.26	1.0
SCR-3	29.27	29.88	0.61	20.3	0.48	1.44
SCR-6	75.76	76.07	0.30	7.6	0.21	1.5
SCR-7	18.6	18.90	0.30	33.5	2.28	3.33
SCR-8	18.90	21.04	2.13	23.3	1.48	4.05

Figure 9 shows the assay section for SCR-1 to 3 , Figure 10 shows the assay section for SCR-4 to 6 and Figure 11 shows the assay section for SCR-7 to 9 . Appendix II gives the assay results for the sections sampled.

INTERPRETATION AND CONCLUSIONS

1. The Silver Crown 6 property is located approximately 22 kilometers north of Stewart, British Columbia in the Skeena Mining Division.
2. The property is comprised of 1 claim covering approximately 613 hectares.
3. The claims lie within a belt of Jurassic volcanic rocks which extend from the Kitsault area, south of Stewart, north to the Stikine River area.
4. Two types of mineralization have been located on the property. It is also possible that the Montrose showing extends from the Red Cliff property on to the northwest portion of the Silver Crown 6 claim.
5. The first type of mineralization consists of weakly mineralized and sericite altered andesitic rocks with minor fine grained pyrite on the west side American Creek similar to that of gold bearing rocks on the adjoining Red Cliff property.
6. The second type of mineralization consists of numerous parallel to sub-parallel fissure filled argentiferous quartz-sulphide veins located east of American Creek. Mineralization consisting of galena, sphalerite, chalcopyrite and pyrite occurs as massive to semi-massive lenses, pods and stringers in vuggy quartz. These veins are located in a zone at least 1.5 m wide and traced for at least 60 meters.
7. The Montrose mineralization consists of north-south trending gold bearing quartzsulphide veins that have been traced for over 200 meters of strike length just south of the northwest portion of the Silver Crown 6 claim.
8. In January to February 2008, a total of 1402.45 meters of drilling was completed in 9 holes. Drilling was conducted in an area where trenching in 2006 yielded an assay of $0.09 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 167.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 1.72 \% \mathrm{Cu}, 22.7 \% \mathrm{~Pb}$ and $8.44 \% \mathrm{Zn}$ over 1.5 meters of width within a massive sulphide lense. The best drill results were in SCR-2008-2 which gave an intersection of 0.46 meters of $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.11 \% \mathrm{~Pb}$ and $20.1 \% \mathrm{Zn}$ and SCR-2008-8 which gave an intersection of 2.13 meters of 23.3 $\mathrm{g} / \mathrm{t} \mathrm{Ag}, 1.48 \% \mathrm{~Pb}$ and $4.05 \% \mathrm{Zn}$.
9. The following work is recommended as the next exploration phase: soil sampling on strike with the Montrose vein, geological mapping and possible diamond drilling is recommended. The cost of the program is estimated to be $\$ 200,000.00$.

RECOMMENDATIONS

For the next exploration season soil sampling on strike with the Montrose vein, geological mapping and possible diamond drilling The work should focus on any extension to the Montrose vein.

Estimated Cost of the Program

Geologist, 30 days @ \$450.00/ day
\$13,500.00
Field assistant, 30 days @ \$250.00/day \$7,500.00
Drilling 1500 metres @ \$90.00/ metre (all inclusive) \$135,000.00
Accommodation and food (in Stewart) $\$ 10,000.00$
Vehicle rental
$\$ 5,000.00$
Core cutting
\$3,000.00
Assaying 200 samples @ $\$ 25.00 /$ sample
\$5,000.00
Freight
\$1,000.00
Report
Drafting
\$5,000.00
Contingency (10\%)

REFERENCES

1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
3. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
4. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
5. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
6. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, RiverSalmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
7. HALL, B.V. (1988); Report on Geological Mapping, Soil Geochemistry and Diamond Drilling on the Jou and Tel Claims.
8. KONKIN, K.J., (2007); Silver Crown 6 Report.
9. KRUCHKOWSKI, Edward, (2006); Sampling notes.
10. MINFILE
11. MOUNTAIN BOY PRESS RELEASES (2007-2008)
12. SMITHERINGALE, W. G., (1976); Report on 1976 Exploration Program and Exploration Potential of the Bear Pass property and Rufus Creek-Bear River Pass Area, B.C.E.M.P.R. Assessment Report 6382.

CERTIFICATE OF AUTHOR'S QUALIFICATIONS

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
2. I have been practicing my profession continuously since graduation.
3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
5. I am a consulting geologist working on behalf of Decade Resources Ltd
6. The main source of information has been from sampling programs conducted by the author in 2007 and the 2008 drill program.
7. I authorize Decade Resources Ltd to use information in this report or portions of it in its prospectus, any brochures, promotional material or company reports and consent to the placing of this report in the public file of the Canadian Venture Exchange.

Date: E.R. Kruchkowski, B.Sc. P. Geo

STATEMENT OF EXPENDITURES

E Kruchkowski December 2007 to February $7-2008$	$\$ 15,500.00$
31 days @ $\$ 500.00 /$ day including job set-up, filing assessment	
R. Kasum Invoice	$\$ 5,000.00$
Labour-Richard Lemieux 10 days @ $\$ 300.00 /$ day	$\$ 3,000.00$
Report Writing	$\$ 5,000.00$
Truck Rental	$\$ 2,000.00$
Freight	$\$ 500.00$
Drafting	$\$ 2,000.00$
Core Storage	$\$ 1000.00$
Assayers Canada	$\$ 1,452.43$
Fuel Charges - gasoline and diesel	$\$ 1,000.00$
Mountain Boy drill invoice	$\$ 161,000.00$
Kasum Tractor Invoice for road work and caterpillar	$\$ 22,000.00$
Hotel and Meal Expenses	$\$ 2,000.00$
	Total

To accompany report by E. Kruchkowski

DECADE RESOURCES LTD.	
SILVER CROWN 6 PROPERTY SKEENA MINING DIVIION, B.C.	
LOCATION MAP	
NTS: 104A/4	SCALE: As Shown
DATE: April, 2008	FIGURE: 1

To accompany report by E. Kruchkowski
DECADE RESOURCES LTD.
SILVER CROWN 6 PROPERTY SKEENA MINING DIVISION, b. C.
GEOLOGICAL SECTION SHOWING
DDH2008-SRC-7 TO 9

NTS:	104A	SCALE:	$1: 500$
DATE:	April, 2008	FIGURE:	8

\qquad

To accompany report by E. Kruchkowski
DECADE RESOURCES LTD.
SILVER CROWN 6 PROPERTY SKEENA MINING DIVIIION, b. C.
ASSAY SECTION
SHOWING
DDH2008-SRC-4 TO 6
\qquad

APPENDIX I

Drill Logs

DECADE RESOURCES TD.

DECADE RESOURCES TD.

			clasts approximately 30-40\%, up to 1-2 cm in size										
			at 13.72 m to 14.33 m - narrow quartz veinlets with pale										
			brown sphalerite < 1\%										
14.33	14.79	Quartz	quartz- carbonate with dark brown sphalerite plus pale										
		sulphide	brown sphalerite approximately 10%										
		vein											
			quartz vein is vuggy										
14.79	33.54	Mudstone	at 14.79 m to $16.46 \mathrm{~m}-15 \%$ quartz carbonate stockwork.										
		breccia	weakly seracite altered										
			graphitic on fractures										
33.54	43.60	Tuffaceous	interbedded light grey tuff and mudstone										
		mudstone											
			bedding @ 45 degrees to CA										
			at 36.58 m to 36.89 m - pale brown sphalerite parallel to										
			bedding										
			at 41.16 m to 43.60 m - silicified sericite altered with										
			traces of chalcopyrite, minor pyrite, quartz- calcite										
			approximately 15\%										
			Traces of sphalerite and galena										
43.60	51.83	Mudstone	pale grey, 2-3\% quartz, calcite, pyrite < 1\%										
			graphitic on slip										
			bedding @ 45 degrees to CA										
51.83	56.55	Tuff	pale grey/ brown, minor mudstone " wisps "										
			at 55.49 m to 56.40 m - minor pyrite veinlets, quartz is										
			approximately 10%, as 15 cm veins										
			at 55.49 m to 56.40 m - sericite altered										

DECADE RESOURCES TD.

DECADE RESOURCES TD.

			galena/ sphalerite and pyrite										
			at 55.03 m to 59.45 m - quartz- calcite stockwork,										
			approximately 15% with traces of galena/ sphalerite										
			at 55.95 m - narrow sphalerite stringers, approximately 1 cm										
58.84	67.38	Tuff	grey, fine grained with faint bedding @ 55 degrees to CA										
			5\% barren quartz- calcite stockwork, dense										
			at 64.33 m to 64.63 m - quartz- calcite with sparse galena										
			and sphalerite										
67.38	78.96	Mudstone	Black, highly graphitic										
			strong quartz- carbonate, approximately 7-8\%, fine grained										
			pyrite along bedding, approximately 4-5\%										
			at 72.26 m to $73.48 \mathrm{~m}-50 \%$ quartz- carbonate(barren)										
78.96	80.18	Tuff	grey, dense, < 1\% quartz- carbonate										
80.18	89.94	Mudstone	black and highly graphitic										
		breccia	coarse pyrite along fractures, approximately 2-3\%										
			Minor quartz - calcite stockwork										
89.94	98.78	Mudstone	Black, dense, highly graphitic										
			2-3\% pyrite along veinlets and fractures										
98.78	129.88	Mudstone	same as 80.18 m to 89.94 m										
		breccia											
			at $112.80 \mathrm{~m}-2 \mathrm{~cm}$ quartz- calcite vein with sphalerite										
129.88	194.21	Mudstone	grey to black, dense 1-2\% quartz- calcite with minor pyrite,										
			approximately 2% as fine veinlets										
			graphitic										

DECADE RESOURCES TD.

DECADE RESOURCES TD.

			strong tuff component										
			at 62.80 m to 65.55 m - quartz stringers with bedding+ minor										
			sphalerite										
			at 74.09 m - bedding @ 30 degrees to CA										
			at 75.15 m to 75.61 m - minor quartz stockwork with traces										
			of sphalerite										
			at 99.09 m to 99.70 m - Highly broken										
			quartz stockwork with 5% coarse pyrite										
			at 90.85 m - bedding @ 20 degrees to CA										
137.80	148.48	Tuff	Pale grey, fine grained, minor mudstone										
			fraction has minor fine grained pyrite										
			at 135.98 m to 136.59 m - fine grained pyrite along bedding										
			approximately 10%										
148.48	185.37	Mudstone	Black, graphitic with 5\% quartz- calcite stockwork										
			at 154.88 m to $156.71 \mathrm{~m}-40 \%$ barren quartz- calcite										
			stockwork										
			pyritic										
			EOH 185.37 m										

DECADE RESOURCES TD.

DECADE RESOURCES TD.

			stockwork, carrying sparse sphalerite and traces of	16039	81.10	82.62	1.52	0.01	3.9	0.007	<0.01	<0.01
			chalcopyrite, pyrite is approximately 3\%	16040	134.30	137.20	2.9	<0.01	8.7	0.013	0.01	0.03
			at 52.13 m to 54.57 m - approximately 10% pyrite along									
			bedding									
			at 62.80 m to 64.33 m - strong pyrite along bedding									
			at 66.16 m to 66.92 m - grey to green, fine grained tuff									
			at 67.68 m to 68.90 m - Tuff									
77.13	101.98	Mudstone	Coarse sand sized clasts with minor 2-4 cm fragments- at									
		breccia	78.05 m to 82.62 m - strong pyrite, approximately 7%									
			quartz- calcite stockwork, approximately 1-2\%									
			graphitic									
			grey and dense									
101.98	110.06	Granodi--	bedding @ 45 degrees to CA									
		orite										
			grey to green, feldspar, strongly altered to epidote									
			at $104.42 \mathrm{~m}-1 \mathrm{~cm}$ quartz vein with sparse chalcopyrite									
110.06	117.56	Mudstone	coarse grained, , highly pyritic with fine									
		breccia	disseminated pyrite									
			minor graphite									
			< 1\% quartz- calcite stockwork									
117.56	124.45	Granodi-	fine grained, grey, weakly brecciated									
		orite										
			at 119.21 m to 119.51 m - barren quartz- calcite vein									
124.24	145.12	Mudstone	same as above									

DECADE RESOURCES TD.

DECADE RESOURCES TD.

				16059	173.48	176.22	2.74	0.01	1.7	<0.001	0.01	<0.01
			at 72.26 m-10\% quartz- calcite stockwork with 7% fine	16060	176.22	179.27	3.05	<0.01	1.1	0.001	<0.01	<0.01
			grained pyrite along bedding	16061	179.27	182.32	3.05	0.02	2.1	0.001	<0.01	<0.01
				16062	182.32	184.45	2.13	0.02	2.1	0.005	<0.01	<0.01
77.90	78.75	Granodio	grey and fine grained									
		rite										
78.75	89.02	Mudstone	Black, graphitic, abundant grey tuff bedded @ 35 degrees to									
			CA									
			2-3\% quartz- calcite stockwork									
89.02	113.41	Mudstone	black clasts supported									
		breccia	at $103.96 \mathrm{~m}-15 \mathrm{~cm}$ fine grained granodiorite dyke									
			at $109.30 \mathrm{~m}-15 \mathrm{~cm}$ fine grained granodiorite dyke									
			at 99.39 m to 109.15 m - strong pyrite mineralization									
			approximately 7\% with 5 \% quartz- calcite stockwork									
			pyrite in bands along bedding									
113.41	118.29	Granodio	green/ grey with 1\% quartz- calcite stockwork									
		rite										
118.29	121.49	Mudstone	black, graphitic with 5-7\% quartz- calcite stockwork									
			5% pyrite as fine lenses along bedding									
121.49	128.51	Granodio	fine to medium grained, strong epidote alteration									
		rite										
			minor quartz vein < 1\%									
128.51	130.34	Mudston	Same as 118.29 m to 121.49 m									
130.34	135.67	Granodio	grey to green, fine grained, approximately 1%									
		rite	quartz veinlets, approximately $1-2 \mathrm{~mm}$									

DECADE RESOURCES TD.

DECADE RESOURCES TD.

				16079	110.98	112.50	1.52	0.01	2.4	0.002	0.01	0.52
75.76	78.20	Quartz	Brecciated mudstone fragments cemented with quartz- vugs	16080	112.50	114.02	1.52	0.01	3.2	0.003	0.04	0.72
		breccia	with fine clear quartz	16081	117.07	120.12	3.05	<0.01	4.1	0.016	0.05	0.16
				16082	151.83	153.66	1.83	0.01	0.5	0.001	0.03	0.03
			sparse sphalerite, traces of chalcopyrite	16083	153.66	154.27	0.61	0.01	2	0.002	0.03	0.06
			pyrite is approximately 3-4\%	16084	154.27	155.18	0.91	<0.01	3.8	0.005	0.04	0.12
			at 78.05 m - narrow 1 cm sphalerite stringers									
78.20	155.18	Mudstone	Black, graphitic, thinly bedded @ 80 degrees to CA									
			pyrite is approximately 4-5\% as fine laminae along bedding									
			quartz- calcite stockwork is approximately 5\%									
			CORE BOX 18 IS MISSING									
			at 109.76 m to 114.02 m - quartz- calcite stockwork is									
			approximately 20% with sparse sphalerite, traces of									
			chalcopyrite and galena									
			at 117.07 m to $120.12 \mathrm{~m}-15 \%$ quartz- calcite with sparse									
			sphalerite and traces of galena									
			at 153.66 m to 154.27 m - quartz- breccia- mudstone fragments									
			cemented by quartz- calcite									
			no obvious sulphides									
			EOH 155.18 m									

DECADE RESOURCES TD.

DECADE RESOURCES TD.

			local minor quartz- calcite stockwork	16101	155.18	158.23	3.05	0.02	2.1	0.005	0.01	<0.01
			approximately 3\%	16102	158.23	161.28	3.05	0.02	0.7	0.006	0.01	<0.01
			locally contains graphite									
			clasts approximately 70\% of rock, up to 2-4 cm									
			traces of pyrite									
			local 1 cm quartz- calcite veinlets with sparse									
			sphalerite									
113.41	142.68	Mudstone	change from tuff to mudstone breccia									
		breccia										
			unit is dark grey to black graphite									
			abundant tuff fragments									
			bedding @ 45 degrees to CA									
			< 1\% quartz- calcite stockwork									
			approximately 4\% pyrite as fine laminae									
			at 127.74 m to 142.68 m - strong pyrite, approximately									
			7\% - strong micro fractures filled with quartz-									
			calcite									
142.68	146.34	Granodio	medium grained and green									
		rite										
146.34	170.43	Mudstone	same as above									
		breccia										
			EOH 170.43 m									

DECADE RESOURCES TD.

DECADE RESOURCES TD.

DECADE RESOURCES TD.

DECADE RESOURCES TD.

										-		

APPENDIX II

Assay Results

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	$\mathrm{g} /$ tonne	\%	\%	\%
8V0292RA	16001	0.02	5.3	0.018	0.04	0.14
8V0292RA	16002	0.01	8.3	0.033	0.11	20.1
8V0292RA	16003	0.02	4.7	0.011	0.02	0.06
8V0292RA	16004	0.08	15.7	0.116	0.4	18.4
8V0292RA	16005	0.04	5.9	0.016	0.08	0.1
8V0292RA	16006	0.06	19.2	0.028	0.06	0.13
8V0292RA	16007	0.01	24.9	0.051	1.14	6.9
8V0292RA	16008	0.01	19	0.078	0.79	2.11
8V0292RA	16009	0.01	10.4	0.041	0.15	0.62
8V0292RA	16010	0.03	5.5	0.036	0.14	1.34
8V0292RA	16011	0.1	10.5	0.049	0.44	1
8V0292RA	16012	0.04	12.4	0.011	1.23	0.24
8V0292RA	16013	0.02	2.9	0.02	0.1	0.67
8V0292RA	16014	0.06	8.6	0.015	0.1	0.29
8V0292RA	16015	0.05	20.3	0.008	0.48	1.44
8V0292RA	16016	0.08	21.1	0.017	0.28	0.38
8V0292RA	16017	0.07	12.5	0.016	0.08	0.27
8V0292RA	16018	0.03	6.1	0.007	0.1	0.17
8V0292RA	16019	0.01	6.7	0.011	0.03	0.05
8V0292RA	16020	0.03	6.8	0.012	0.06	0.14
8V0292RA	16021	0.02	,	0.007	0.03	0.05
8V0292RA	16022	0.02	1.4	0.008	0.05	0.35
8V0292RA	16023	0.03	4.2	0.009	0.01	0.04
8V0292RA	16024	0.03	5.1	0.026	0.13	0.94
8V0292RA	*DUP 016001	0.01	4.5	0.017	0.04	0.14
8V0292RA	*DUP 016010	0.02	6.5	0.035	0.14	1.33
8V0292RA	*DUP 016020	0.02	7.4	0.012	0.06	0.14
8V0292RA	*OxG-46	1				
8V0292RA	*CCu-1c		128.2		0.33	3.97
8V0292RA	*CZN-3			0.687		
8V0292RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	\%	\%	\%
8V0292RA	16025	0.01	4.9	0.004	0.01	0.02
8V0292RA	16026	<0.01	5.7	0.014	0.14	0.05
8V0292RA	16027	0.02	5.6	0.007	0.04	0.03
8V0292RA	16028	0.03	6.2	0.008	0.04	0.07
8V0292RA	16029	0.06	13.2	0.015	0.32	0.74
8V0292RA	16030	0.02	7.7	0.011	0.05	0.21
8V0292RA	16031	0.01	2.2	0.015	0.01	0.01
8V0292RA	16032	0.01	0.1	0.01	0.01	<0.01
8V0292RA	16033	<0.01	5.5	0.012	0.01	0.02
8V0292RA	16034	0.02	7.3	0.01	0.04	0.03
8V0292RA	16035	0.04	3.1	0.011	<0.01	<0.01
8V0292RA	16036	<0.01	1.4	0.012	<0.01	<0.01
8V0292RA	16037	0.02	2.8	0.012	<0.01	<0.01
8V0292RA	16038	0.03	4.4	0.015	<0.01	<0.01
8V0292RA	16039	0.01	3.9	0.007	<0.01	<0.01
8V0292RA	16040	<0.01	8.7	0.013	0.01	0.03
8V0292RA	16041	0.02	1.8	0.012	0.02	0.07
8V0292RA	16042	0.01	2.6	0.006	<0.01	<0.01
8V0292RA	16043	0.03	3.8	0.006	0.05	0.16
8V0292RA	16044	0.01	2.3	0.009	0.01	0.01
8V0292RA	16045	0.01	3.5	0.007	0.02	0.02
8V0292RA	16046	<0.01	1.7	0.009	0.01	0.01
8V0292RA	16047	0.04	4.7	0.019	0.01	0.01
8V0292RA	16048	0.08	3.8	0.013	0.06	0.11
8V0292RA	*DUP 016025	0.02	4.6	0.005	0.01	0.02
8V0292RA	*DUP 016034	0.02	6.8	0.012	0.04	0.03
8V0292RA	*DUP 016044	<0.01	2.1	0.009	0.01	0.01
8V0292RA	*OxG-46	1.05				
8V0292RA	*CCu-1c		130.1		0.33	4.02
8V0292RA	*CZN-3			0.679		
8V0292RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	\%	\%	\%
8V0292RA	16049	0.06	2.4	0.006	0.05	0.09
8V0292RA	16050	0.02	4.1	0.003	0.01	<0.01
8V0292RA	16051	<0.01	3.8	0.001	0.01	<0.01
8V0292RA	16052	0.01	2.8	0.005	<0.01	<0.01
8V0292RA	16053	0.01	0.8	0.005	<0.01	<0.01
8V0292RA	16054	0.02	1.3	0.005	<0.01	<0.01
8V0292RA	16055	0.01	2.4	0.007	<0.01	0.02
8V0292RA	16056	0.01	1.1	0.005	<0.01	<0.01
8V0292RA	16057	<0.01	1.5	0.001	<0.01	<0.01
8V0292RA	16058	<0.01	0.6	0.001	<0.01	0.02
8V0292RA	16059	0.01	1.7	<0.001	0.01	<0.01
8V0292RA	16060	<0.01	1.1	0.001	<0.01	<0.01
8V0292RA	16061	0.02	2.1	0.001	<0.01	<0.01
8V0292RA	16062	0.02	2.1	0.005	<0.01	<0.01
8V0292RA	16063	0.02	0.7	0.004	0.01	<0.01
8V0292RA	16064	<0.01	1.4	<0.001	0.01	<0.01
8V0292RA	16065	<0.01	1.5	0.001	0.02	0.01
8V0292RA	16066	<0.01	1.1	0.001	<0.01	<0.01
8V0292RA	16067	<0.01	2.4	0.001	<0.01	<0.01
8V0292RA	16068	0.02	1.7	0.004	0.01	<0.01
8V0292RA	16069	0.02	6	0.001	0.04	0.04
8V0292RA	16070	0.01	2.6	<0.001	0.01	<0.01
8V0292RA	16071	0.02	1.7	0.001	0.01	<0.01
8V0292RA	16072	0.01	1.4	0.001	<0.01	<0.01
8V0292RA	*DUP 016049	0.06	2.9	0.006	0.05	0.08
8V0292RA	*DUP 016058	0.01	0.8	0.001	0.01	0.02
8V0292RA	*DUP 016068	0.03	2.3	0.003	0.01	<0.01
8V0292RA	*97-45	1.05				
8V0292RA	*CCu-10		131.6		0.35	3.95
8V0292RA	*CZN-3			0.687		
8V0292RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	$\mathrm{g} /$ tonne	$\mathrm{g} /$ tonne	\%	\%	\%
8V0292RA	16073	0.01	1.9	0.01	0.12	0.2
8V0292RA	16074	<0.01	7.6	0.041	0.21	1.5
8V0292RA	16075	0.01	4.4	0.006	0.12	0.62
8V0292RA	16076	0.02	3.7	0.001	0.06	0.09
8V0292RA	16077	0.01	1.8	0.004	<0.01	<0.01
8V0292RA	16078	<0.01	3.4	0.004	0.01	0.05
8V0292RA	16079	0.01	2.4	0.002	0.01	0.52
8V0292RA	16080	0.01	3.2	0.003	0.04	0.72
8V0292RA	16081	<0.01	4.1	0.016	0.05	0.16
8V0292RA	16082	0.01	0.5	0.001	0.03	0.03
8V0292RA	16083	0.01	2	0.002	0.03	0.06
8V0292RA	16084	<0.01	3.8	0.005	0.04	0.12
8V0292RA	16085	<0.01	3.2	0.002	0.01	0.04
8V0292RA	16086	0.01	1.9	0.003	0.01	<0.01
8V0292RA	16087	0.02	4.9	0.002	0.09	0.19
8V0292RA	16088	<0.01	5.9	0.015	0.15	0.54
8V0292RA	16089	<0.01	5.9	0.026	0.05	0.1
8V0292RA	16090	0.02	33.5	0.362	2.28	3.33
8V0292RA	16091	0.01	4.7	0.006	0.05	0.22
8V0292RA	16092	0.02	0.7	0.002	0.04	0.08
8V0292RA	16093	0.01	1.4	0.006	0.01	<0.01
8V0292RA	16094	0.02	1.5	0.006	<0.01	<0.01
8V0292RA	16095	0.03	1.2	0.004	<0.01	<0.01
8V0292RA	16096	0.03	0.7	0.005	<0.01	<0.01
8V0292RA	*DUP 016073	0.01	1.5	0.009	0.12	0.18
8V0292RA	*DUP 016082	0.01	0.8	0.002	0.02	0.03
8V0292RA	*DUP 016092	0.01	1.1	0.003	0.04	0.08
8V0292RA	*97-45	1.08				
8V0292RA	${ }^{*} \mathrm{CCu}-1 \mathrm{c}$		132.1		0.34	4.04
8V0292RA	*CZN-3			0.68		
8V0292RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

Certificate	Sample	Assay Au	Assay Ag	Assay Cu	Assay Pb	Assay Zn
Number	Name	g/tonne	g/tonne	\%	\%	\%
8V0292RA	16097	0.02	0.1	0.005	0.01	<0.01
8V0292RA	16098	0.06	0.4	0.009	0.01	<0.01
8V0292RA	16099	0.01	1.1	0.006	<0.01	<0.01
8V0292RA	16100	0.01	2.7	0.006	0.01	<0.01
8V0292RA	16101	0.02	2.1	0.005	0.01	<0.01
8V0292RA	16102	0.02	0.7	0.006	0.01	<0.01
8V0292RA	16103	0.01	1.8	0.003	0.01	0.01
8V0292RA	16104	0.01	2.6	0.001	0.06	0.02
8V0292RA	16105	0.01	4.5	0.015	0.12	0.24
8V0292RA	16106	0.01	1.2	0.009	0.02	0.01
8V0292RA	16107	0.02	23.3	0.136	1.48	4.05
8V0292RA	16108	0.01	5.1	0.034	0.13	0.44
8V0292RA	16109	0.02	4.3	0.01	0.11	0.52
8V0292RA	16110	0.01	2.3	0.005	0.16	0.23
8V0292RA	16111	0.01	0.5	0.001	0.03	0.04
8V0292RA	16112	0.02	3.8	0.005	0.02	0.56
8V0292RA	16113	0.02	8.2	0.049	0.29	1.02
8V0292RA	16114	0.01	3.9	0.018	0.05	0.32
8V0292RA	16115	0.01	3.6	0.01	0.02	0.03
8V0292RA	16116	0.08	0.3	0.015	0.01	<0.01
8V0292RA	16117	0.02	1.6	0.011	0.01	<0.01
8V0292RA	16118	0.07	5.5	0.071	0.01	0.01
8V0292RA	16119	0.05	19.6	0.011	0.11	0.22
8V0292RA	*DUP 016097	0.01	0.3	0.004	<0.01	<0.01
8V0292RA	*DUP 016106	0.01	0.6	0.008	0.02	0.02
8V0292RA	*DUP 016116	0.07	<0.1	0.015	0.01	<0.01
8V0292RA	*OxH-46	1.02				
8V0292RA	*CCu-1c		129.7		0.35	3.98
8V0292RA	*CZN-3			0.679		
8V0292RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

