#### ASSESSMENT REPORT

BC Geological Survey Assessment Report 29926

#### PROSPECTING AND ROCK, SILT & MOBILE METAL ION GEOCHEMICAL SAMPLING ON THE LAFORCE 1-29 CLAIMS



#### FREDRIKSON LAKE AREA NORTHERN BRITISH COLUMBIA

OMINECA MINING DIVISION LATITUDE 57° 02' N LONGITUDE 126° 24' W NTS MAP SHEETS 94E / 1W, 2E & 94D / 16W MINERAL CLAIM SHEETS 94E / 008, 009, 018 & 94D / 098, 099

MTO CLAIMS: (on which work was done)

LaForce 1, 4-8, 10-12, 19-22, 24, 27, 28 (550098, 550106, 550108, 550110, 550112, 550113, 550118, 550156, 550157, 550818, 550991, 550993, 550995, 550998, 557986, 557987)

**OWNER**:

**OPERATOR:** 

REPORT AUTHOR: Orestone Mining Corp., Surrey, B.C.

Orestone Mining Corp., Surrey, B.C.

B. K. (Barney) Bowen, P. Eng., Consulting Geologist 12470 99A Avenue, Surrey, B.C., Canada, V3V 2R5

REPORT DATE: May 6, 2008

## **TABLE OF CONTENTS**

\_

.

--

| 1.0  | SUM                             | MARY                                                                                                                   | 1                     |
|------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2.0  | CON                             | CLUSIONS                                                                                                               | 2                     |
| 3.0  | REC                             | OMMENDATIONS                                                                                                           | 2                     |
| 4.0  | INTF                            | RODUCTION                                                                                                              | 3                     |
|      | 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | Location and Access<br>Claims<br>Topography, Vegetation and Climate<br>History and Development<br>Summary of Work Done | 3<br>3<br>3<br>3<br>4 |
| 5.0  | REG                             | IONAL SETTING                                                                                                          | 4                     |
| 6.0  | 5.1<br>5.2<br>5.3               | Regional Geology<br>Regional Residual Total Magnetic Field<br>1996 RGS Silt Geochemistry<br>ULTS OF 2007 FIELD WORK    | 4<br>5<br>5<br>5      |
| 0.0  | 6.1<br>6.2                      | Introduction<br>Discussion of Results                                                                                  | 5<br>6                |
| 7.0  | PRO                             | POSED WORK                                                                                                             | 10                    |
| 8.0  | COST                            | Г STATEMENT                                                                                                            | 11                    |
| 9.0  | REFI                            | ERENCES                                                                                                                | 13                    |
| 10.0 | STAT                            | TEMENTS OF QUALIFICATIONS                                                                                              | 14                    |

PAGE

# FIGURES

-

.

,

|           | AF                                                                                            | TER PAGE |
|-----------|-----------------------------------------------------------------------------------------------|----------|
| FIGURE 1  | LAFORCE PROPERTY<br>INDEX MAP<br>Scale 1:10,000,000                                           | 3        |
| FIGURE 2  | LAFORCE PROPERTY<br>LOCATION MAP<br>Scale 1:250,000                                           | 3        |
| FIGURE 3a | LAFORCE 1-29 CLAIMS<br>CLAIM MAP (NORTH SHEET)<br>Scale 1:50,000                              | 3        |
| FIGURE 3b | LAFORCE 1-29 CLAIMS<br>CLAIM MAP (SOUTH SHEET)<br>Scale 1:50,000                              | 3        |
| FIGURE 4  | LAFORCE PROPERTY<br>REGIONAL GEOLOGY<br>Scale 1:125,000                                       | 4        |
| FIGURE 5  | LAFORCE PROPERTY<br>REGIONAL RESIDUAL TOTAL MAGNETIC FIELD<br>Scale 1:125,000                 | 5        |
| FIGURE 6  | LAFORCE PROPERTY<br>1996 RGS SILT GEOCHEMISTRY<br>Scale 1:125,000                             | 5        |
| FIGURE 7  | LAFORCE PROPERTY<br>2007 ROCK, SILT & MMI SAMPLE LOCATIONS<br>(NORTH SHEET)<br>Scale 1:50,000 | 6        |
| FIGURE 8  | LAFORCE PROPERTY<br>2007 ROCK & SILT SAMPLE LOCATIONS<br>(SOUTH SHEET)<br>Scale 1:50,000      | 6        |
| FIGURE 9  | LAFORCE PROPERTY<br>PROSPECTING STATION LOCATIONS<br>(NORTH SHEET)<br>Scale 1:50,000          | 8        |

AFTER PAGE

|            |                                                                                                    | AFTERFAUE     |
|------------|----------------------------------------------------------------------------------------------------|---------------|
| FIGURE 10  | LAFORCE PROPERTY<br>PROSPECTING STATION LOCATIONS<br>(SOUTH SHEET)<br>Scale 1:50,000               | 8             |
|            | TABLES                                                                                             |               |
|            |                                                                                                    | AFTER PAGE    |
| TABLE 1    | LAFORCE CLAIMS DATA                                                                                | 3             |
| TABLE 2    | LAFORCE PROPERTY<br>1996 RGS SILT GEOCHEMISTRY -<br>SELECTED ANALYTICAL RESULTS                    | 5             |
| TABLE 3    | LAFORCE PROPERTY<br>2007 SILT GEOCHEMISTRY -<br>SELECTED ANALYTICAL RESULTS                        | 6             |
| TABLE 4    | LAFORCE PROPERTY<br>2007 MOBILE METAL ION GEOCHEMISTRY -<br>SELECTED ANALYTICAL RESULTS            | 6             |
| TABLE 5    | LAFORCE PROPERTY<br>2007 ROCK SAMPLE DESCRIPTIONS &<br>SELECTED ANALYTICAL RESULTS                 | 7             |
| TABLE 6    | LAFORCE PROPERTY<br>BIG BILLY GOLD ZONE<br>COMPARISON BETWEEN ICP-MS &<br>FIRE ASSAY GOLD ANALYSES | on page 8     |
| TABLE 7    | LAFORCE PROPERTY<br>2007 PROSPECTING NOTES                                                         | in Appendix 3 |
|            | APPENDICES                                                                                         |               |
| APPENDIX 1 | ACME ANALYTICAL LABORATORIES LTD.<br>ANALYTICAL CERTIFICATES & CHEMICAL F                          | PROCEDURES    |
| APPENDIX 2 | SGS ANALYTICAL CERTIFICATE                                                                         |               |

- APPENDIX 3 LAFORCE PROPERTY 2007 PROSPECTING NOTES
- APPENDIX 4 STATEMENT OF WORK

• • • •

.

#### SUMMARY

The LaForce 1-29 claims are located in northern British Columbia about 400 km northwest of Prince George and 20 km east of the Kemess South mine. The claims cover an area of 9,791 hectares. All are 100%-owned by Orestone Mining Corp., a junior mining company based in Surrey, British Columbia.

There are no known minfile occurrences nor is there any record of past work having been carried out in the LaForce 1-29 claims area. The claims were staked in January through May 2007 to cover an area within Quesnel Terrane containing anomalous RGS copper and gold-in-silt values spatially associated with aeromagnetic anomalies. The property's regional setting appeared to have good potential for the discovery of porphyry-style copper-gold mineralization in an under-explored part of Quesnel Terrane.

The LaForce 1-29 claims area straddles the contact between an Early Jurassic batholith and Upper Triassic Takla Group basic volcanic and minor sedimentary rocks. In the northeast part of the property, Devonian to Permian mafic to felsic volcanic rocks and undivided sedimentary rocks are in thrust contact with Takla Group rocks. Collectively these lithologies comprise Quesnel Terrane which is in fault contact with Upper Proterozoic Ingenika Group sedimentary and metamorphic rocks to the east.

The writer, assisted by geologist Gordon Weary and field assistant Geoff McKay, carried out prospecting and rock, silt and mobile metal ion (MMI) geochemical sampling in the LaForce 1-29 claims area during the period August 11-19, 2007. Helicopter-supported field traverses were done out of two fly-camps located in the southeastern and northern parts of the claim block. A total of 45 rock, 7 silt and 11 MMI samples were submitted to Acme Analytical Laboratories Ltd. of Vancouver and SGS Mineral Services of Toronto for multi-element analyses. Cost of the work totaled \$39,657.12.

Highlight of the August 2007 field work was the discovery of the "Big Billy" gold prospect in the southern part of the claim block. The prospect consists of a moderately to locally well-developed quartz stockwork/vein zone hosted by strongly pyritized and silica-sericite altered clastic sediments. Quartz veins, up to 20 cm wide, carry variable amounts of pyrite and minor chalcopyrite and may in part be stratabound. Veining occurs across an apparent zone width of about 50 m and has been traced along strike for approximately 500 m. Five of eight surface grab samples collected within the quartz vein zone returned anomalous to strongly anomalous gold values of 6878, 6450, 423.4, 280.4 and 235.7 ppb, using ICP-MS analyses. These values were confirmed by gold fire assays which returned corresponding values of 6.80, 5.64, 0.51, 0.28 and 0.26 g/t Au. The 6.80 g/t Au assay came from a sample of quartz vein material which contained a fine-grained cluster of visible gold grains.

#### CONCLUSIONS

The Big Billy prospect is a new, quartz stockwork/vein-hosted gold occurrence from which limited sampling to date has yielded encouraging results. Follow-up work is required to more fully evaluate its economic potential. There remain several target areas on the claim block which have excellent potential for the discovery of more gold mineralization.

## 3.0 RECOMMENDATIONS

The following work is recommended for the LaForce 1-29 claim block:

- (1.) <u>at the Big Billy gold prospect</u>: Mobilize a two-man crew and fly-camp into the prospect area and carry out a 7-10 day program of detailed mapping and rock geochemical sampling. Objective of the work would be to better delineate the extent of gold mineralization within the sizeable zone of alteration and quartz veining in the prospect area. The economic potential of the occurrence would be determined and a decision could be made whether or not to diamond drill test it.
- (2.) <u>elsewhere on the LaForce 1-29 claim block</u>: in coordination with the detailed evaluation of the Big Billy gold prospect, mobilize a second two-man crew and fly-camp on to the property. The second crew's objective would be to locate more gold mineralization on the property, possibly in a setting similar to that at the Big Billy prospect.



2.0

## **INTRODUCTION**

## 4.1 **Location and Access**

The LaForce 1-29 claims are located in northern British Columbia about 400 km northwest of Prince George and 20 km east of the Kemess South mine (Figures 1 and 2). Specifically, the claims are located in the Omineca Mining Division, on map sheets 94E/1W & 2E and 94D/16W at coordinates 57°02' N & 126°24' W.

Access is via helicopter based in the summer months at the Kemess South mine. Road access to the mine is via an all-weather gravel road which connects the mine to supply centers at Mackenzie, Fort St. James and Prince George. There is regularly-scheduled air service from the mine to Prince George, Smithers and Vancouver from Monday to Thursday throughout the year.

## 4.2 Claims

The LaForce 1-29 claims cover a total area of 9,791 hectares (Figures 3a and 3b; Table 1). All claims are 100%-owned by Orestone Mining Corp., a junior mining company based in Surrey, B.C.

### 4.3 **Topography, Vegetation and Climate**

The LaForce 1-29 claims are located in moderately rugged terrain and occupy areas below and above tree-line. Overall, elevations range from about 1,100 m along Fredrikson Creek at the southern boundary of the LaForce 29 claim to 2,200 m along the property's western margin which is underlain by resistant intrusive rocks.

The climate is typical for northern British Columbia, with long cold winters, relatively short summers and moderate amounts of precipitation falling year round. The area is generally snow-free from late June to late September, compressing the exploration season into a somewhat short three-month period.

### 4.4 **History and Development**

There are no known minfile occurrences nor is there any record of past work having been carried out in the LaForce 1-29 claims area. The claims were staked by the writer in January through May 2007 in response to Serengeti Resources' significant porphyry copper-gold discovery on their Kwanika property within Quesnel Terrane 185 km to the southeast.

At LaForce, also within Quesnel Terrane, anomalous RGS copper and gold-in-silt values are spatially associated with a strong aeromagnetic high and other areas of moderate, positive aeromagnetic response. The property's regional setting appeared to have good potential for the discovery of porphyry-style copper-gold mineralization in an under-

4.0

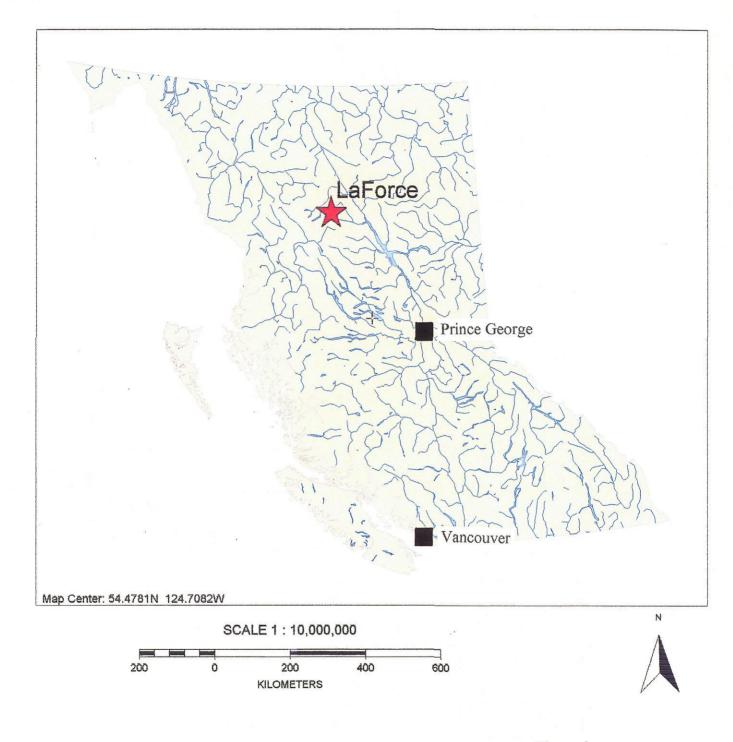
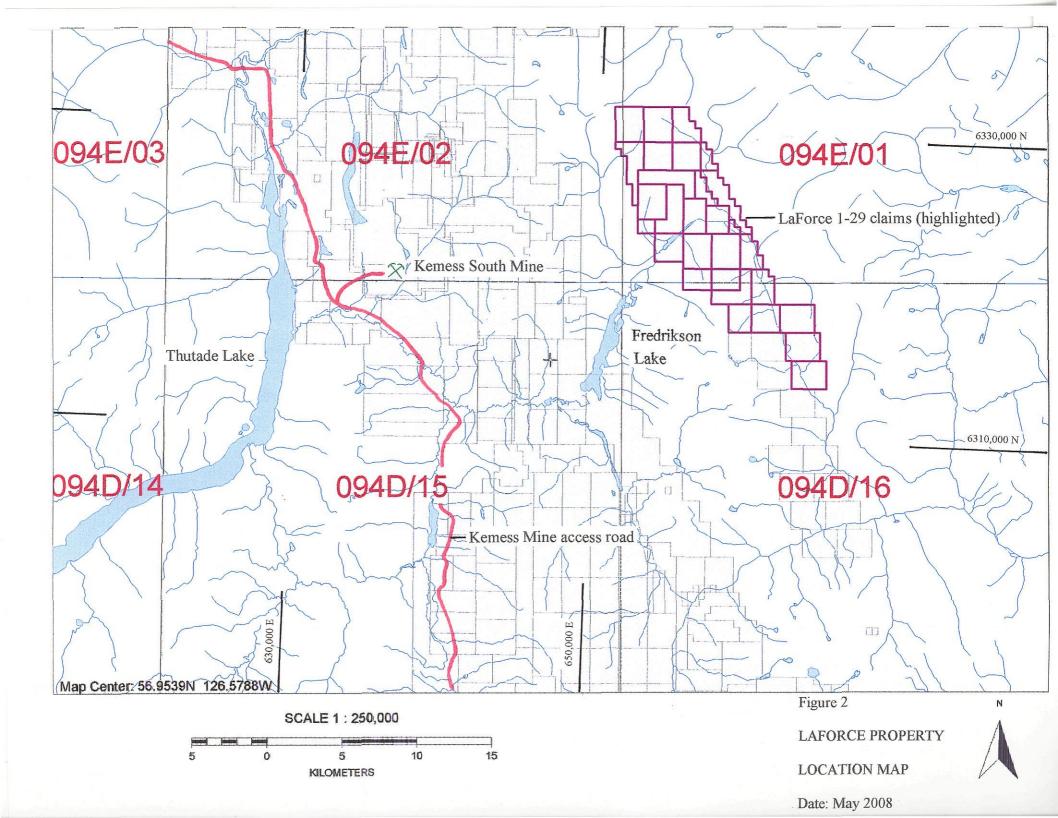




Figure 1

LAFORCE PROPERTY

# INDEX MAP

Date: May 2008



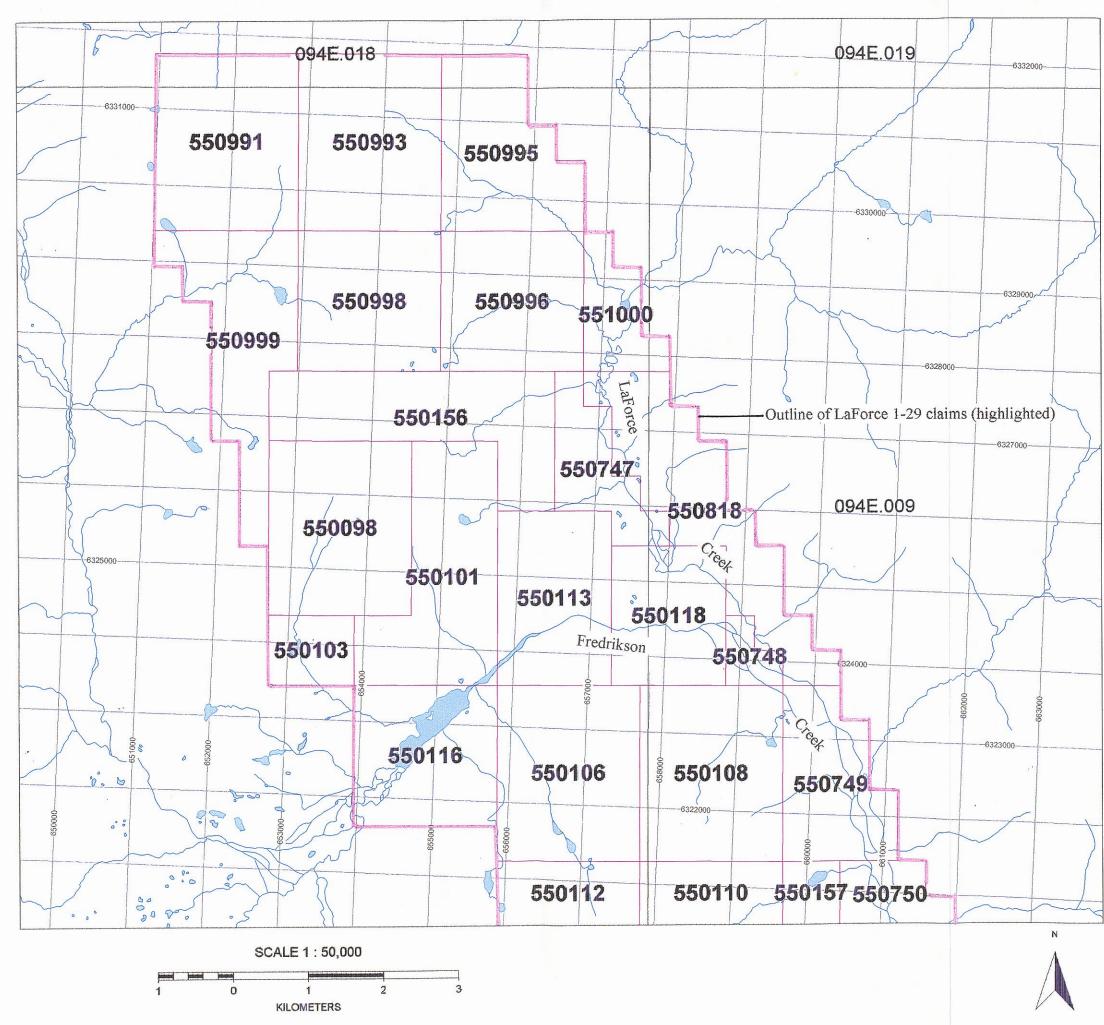



Figure 3a LAFORCE 1-29 CLAIMS CLAIM MAP (NORTH SHEET) Date: May 2008

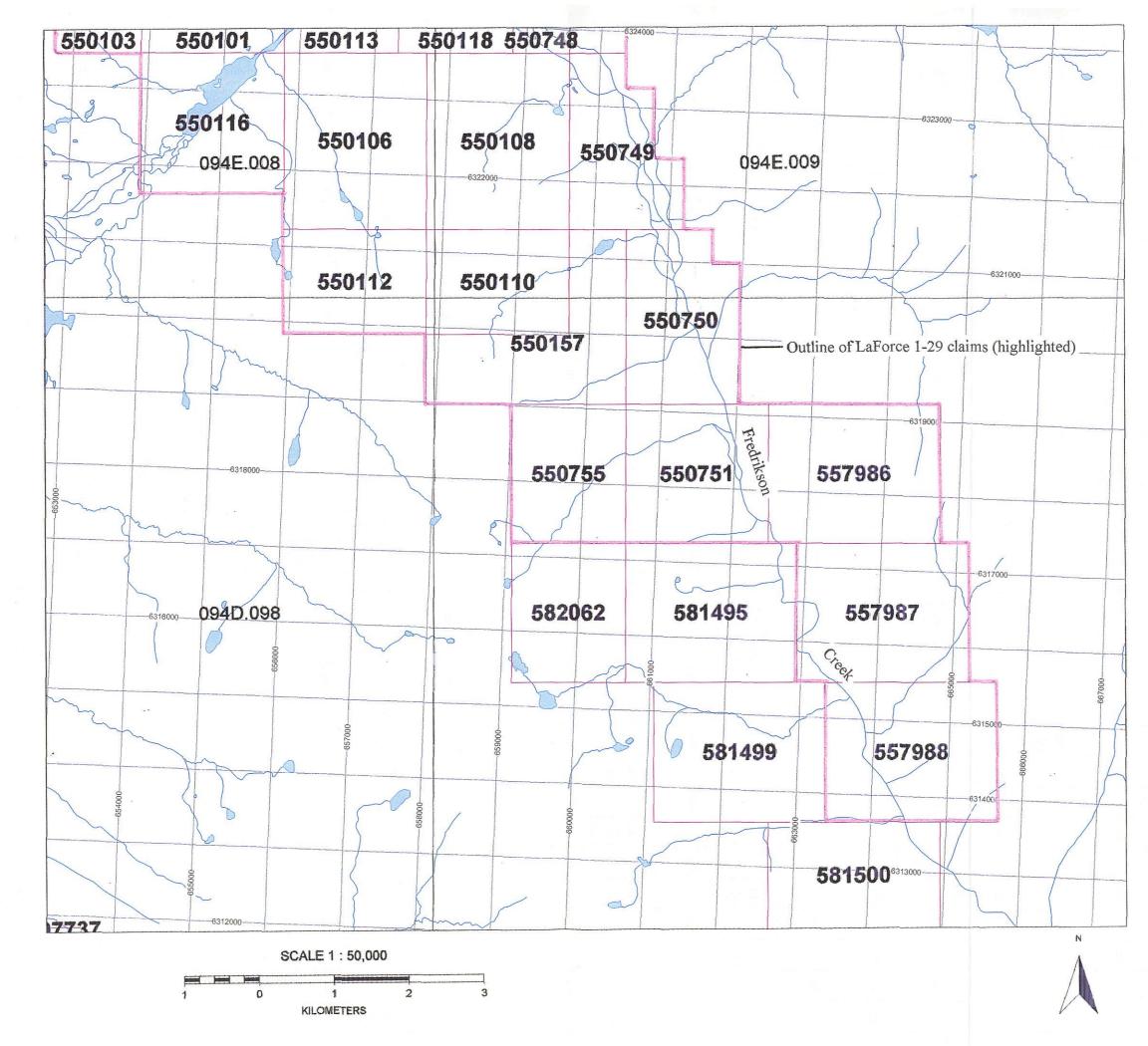



Figure 3b

LAFORCE 1-29 CLAIMS

## CLAIM MAP (SOUTH SHEET)

Date: May 2008

# Table 1

-

-

-

-

-

-

.

~

-

.

.

.

-

# LaForce Claims Data

(as of January 17, 2008)

| Claim Name        | Tenure #          | 100% Owner | Area       | Expiry Date      |
|-------------------|-------------------|------------|------------|------------------|
|                   |                   |            | (hectares) |                  |
|                   |                   |            |            |                  |
| LaForce 1         | 550098            | ORS*       | 440        | 31-Jan-09        |
| LaForce 2         | 550101            | ORS        | 440.1      | 31-Jan-09        |
| LaForce 3         | 550103            | ORS        | 105.7      | 31-Jan-09        |
| LaForce 4         | 550106            | ORS        | 440.4      | 31-Jan-09        |
| LaForce 5         | 550108            | ORS        | 440.4      | 31-Jan-09        |
| LaForce 6         | 550110            | ORS        | 264.3      | 31-Jan-09        |
| LaForce 7         | 550112            | ORS        | 264.3      | 31-Jan-09        |
| LaForce 8         | 550113            | ORS        | 352.1      | 31-Jan-09        |
| LaForce 9         | 550116            | ORS        | 352.3      | 31-Jan-09        |
| LaForce 10        | 550118            | ORS        | 281.7      | 31-Jan-09        |
| LaForce 11        | 550156            | ORS        | 422.3      | <u>31-Jan-09</u> |
| LaForce 12        | 550157            | ORS        | 352.5      | 31-Jan-09        |
| LaForce 13        | 550747            | ORS        | 176        | 31-Jan-09        |
| LaForce 14        | 550748            | ORS        | 52.8       | 31-Jan-09        |
| LaForce 15        | 550749            | ORS        | 281.9      | 31-Jan-09        |
| LaForce 16        | 550750            | ORS        | 334.9      | 31-Jan-09        |
| LaForce 17        | 550751            | ORS        | 352.7      | 31-Jan-09        |
| LaForce 18        | 550755            | ORS        | 282.1      | 31-Jan-09        |
| LaForce 19        | 550818            | ORS        | 422.4      | 31-Jan-09        |
| LaForce 20        | 550991            | ORS        | 439.5      | 31-Jan-09        |
| LaForce 21        | 550993            | ORS        | 439.5      | 31-Jan-09        |
| LaForce 22        | 550995            | ORS        | 351.6      | 31-Jan-09        |
| LaForce 23        | 550996            | ORS        | 351.8      | <u>31-Jan-09</u> |
| LaForce 24        | 550998            | ORS        | 351.8      | 31-Jan-09        |
| LaForce 25        | 550999            | ORS        | 387        | 31-Jan-09        |
| LaForce 26        | 551000            | ORS        | 140.7      | 31-Jan-09        |
| LaForce 27        | 557986            | ORS        | 423.2      | 31-Jan-09        |
| LaForce 28        | 557987            | ORS        | 423.4      | 31-Jan-09        |
| LaForce 29        | 557988            | ORS        | 423.6      | 31-Jan-09        |
|                   | <b></b>           |            |            |                  |
|                   |                   | Total:     | 9,791.00   |                  |
|                   | <u></u>           |            |            |                  |
|                   | lining Ocar (2004 |            |            |                  |
| *ORS = Orestone N | mming Corp. (209) | 940)       |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |
|                   |                   |            |            |                  |

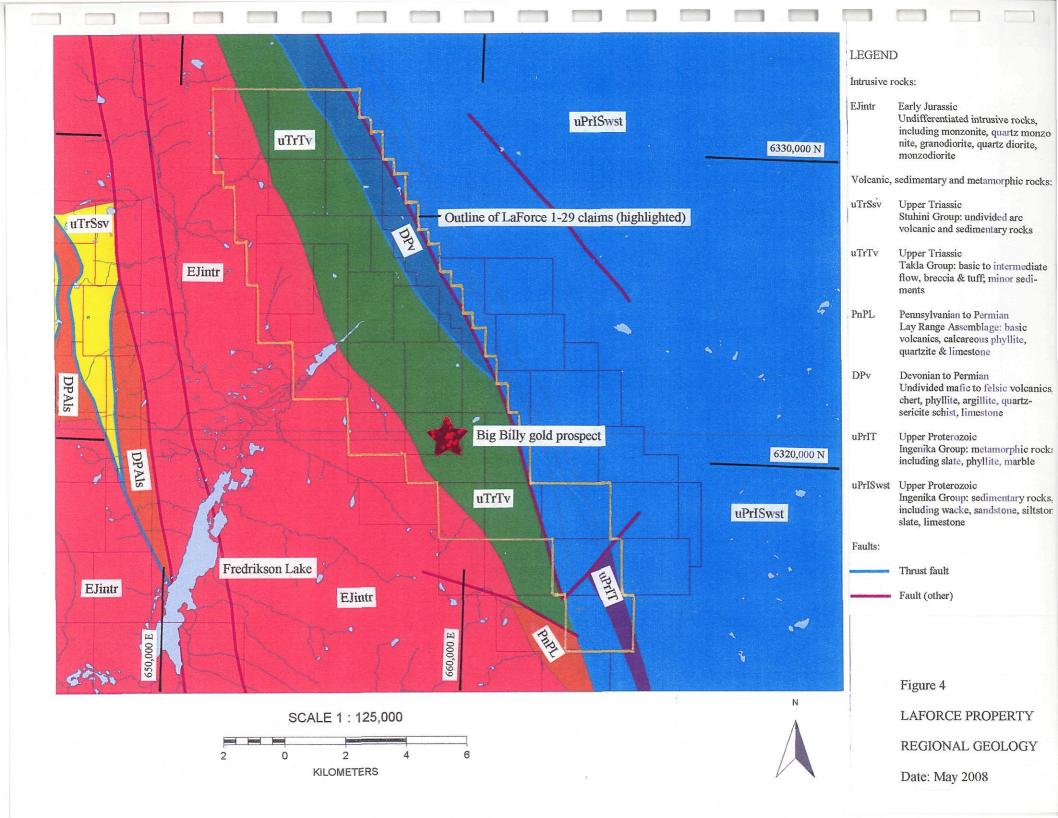
explored part of Quesnel Terrane. Its relative proximity to the Kemess South mine also provided impetus for staking the claims.

In April 2007, the writer, in partnership with Gordon Richards of Delta, B.C. vended the Laforce 1-29 claims and a large claim block in the Mt. Milligan area into a private company, Orestone Mining Corp., in return for a share position in the company. Orestone completed summer work programs in both claims areas and in March 2008 went public, listing on the TSX Venture exchange.

In April 2008, Orestone staked the LaForce 30-56 claims contiguous to the south and east of the LaForce 1-29 claims. The newly-staked claims cover an area of approximately 9,700 hectares, bringing the total area of the LaForce property to about 19,500 hectares.

#### 4.5 **Summary of Work Done**

The writer, assisted by geologist Gordon Weary and field assistant Geoff McKay, carried out prospecting and rock, silt and mobile metal ion (MMI) geochemical sampling in the LaForce 1-29 claims area during the period August 11-19, 2007. Canadian Helicopters based at the Kemess South mine provided the necessary air support to carry out the field work, which was entirely funded by Orestone Mining Corp.


Claims upon which work was done include LaForce 1, 4-8, 10-12, 19-22, 24, 27 and 28. A total of 45 rock, 7 silt and 11 MMI samples were submitted for multi-element analyses. Results of the work are summarized in Section 6.0. Cost of the work totaled \$39,657.12.

## 5.0 REGIONAL SETTING

### 5.1 **Regional Geology**

The regional geology of the LaForce 1-29 claims area is shown in Figure 4. The claims area straddles the contact between an Early Jurassic batholith of monzonitic to quartz dioritic composition and Upper Triassic Takla Group basic to intermediate flows, breccias and tuffs and minor sedimentary rocks. In the northeast part of the property, Devonian to Permian mafic to felsic volcanic rocks and undivided sedimentary rocks are in thrust contact with Takla Group rocks. Collectively these lithologies comprise Quesnel Terrane which is in fault contact with Upper Proterozoic Ingenika Group sedimentary and metamorphic rocks to the east. The latter lithologies underlie the LaForce 27-29 claims at the southeast end of the LaForce 1-29 claim block.

The principal mineral occurrences in the district lie outside the map area shown in Figure 4. Three of importance are the Kemess South and North porphyry copper-gold deposits located about 20 km west of the LaForce 1-29 claim block and the Gerle Gold prospect located about 10 km to the southwest. At the Kemess South open pit mine, Northgate Minerals Corporation recovered approximately 60.3 million grams (1.94 million ounces) gold and 221.9 million kilograms (489.2 million pounds) copper during the period 1998-2005. The mine continues to operate. Gerle Gold hosts a modest indicated reserve of



43,355 tonnes grading 7.5 g/t Au. In the period from 1931-41, placer gold production from nearby McConnell Creek totaled 37,708 grams (1,100 ounces). There is no record of the amount of placer gold recovered prior to 1931.

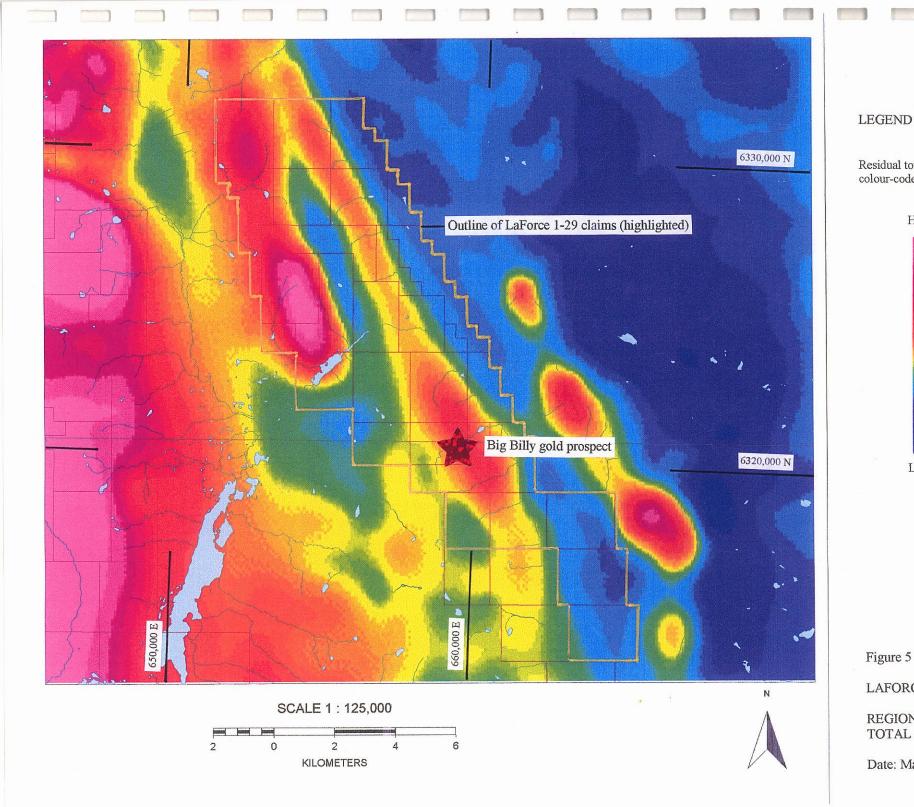
## 5.2 Regional Residual Total Magnetic Field

Figure 5 shows the regional residual total magnetic field in the LaForce 1-29 claims area.

Magnetic features of interest on the claims are:

- (a) a strong aeromagnetic high centered on the LaForce 1 and 2 claims in the westcentral part of the property. Higher magnetic relief extends from this anomaly a further 6 km to the northwest in areas underlain by Early Jurassic intrusive rocks; and
- (b) an area of moderate, positive aeromagnetic response centered on the LaForce 6 and 12 claims in the southern part of the property. This anomaly has associated with it a distinctly linear, moderate-amplitude aeromagnetic high extending about 12 km further to the northwest. It is shown (in "The Map Place" data base) to be underlain by Takla Group rocks

### 5.3 **1996 RGS Silt Geochemistry**


Figure 6 shows the location of 1996 RGS silt sample locations in the LaForce 1-29 claims area. Seven silt samples taken from streams draining the claim block returned elevated to anomalous copper and/or gold values in the range of 107-180 ppm and 8-59 ppb respectively (see Table 2). The elevated/anomalous samples are highlighted in yellow in Figure 6. Four of these (94E963459, 3482, 3499 and 5012) were taken from easterly-draining streams which cut across the 12 km-long aeromagnetic anomaly described in Section 5.2(b) above. One (94E965015) was taken from a stream draining the east flank of the strong aeromagnetic high centered on the LaForce 1 and 2 claims. One (94D963328) was taken from a stream draining Upper Proterozoic sedimentary and metamorphic rocks which underlie the LaForce 27-29 claims. The seventh (94D963314) was taken from a stream draining Early Jurassic intrusive rocks on the southwest flank of the claim block.

### 6.0 **RESULTS OF 2007 FIELD WORK**

#### 6.1 Introduction

The writer, assisted by geologist Gordon Weary and field assistant Geoff McKay, carried out prospecting and rock, silt and mobile metal ion (MMI) geochemical sampling in the LaForce 1-29 claims area during the period August 11-19, 2007. Helicopter-supported field traverses were done out of two fly-camps located in the southeastern and northern parts of the claim block.

A total of 45 rock, 7 silt and 11 MMI samples were collected. The rock and silt samples were submitted to Acme Analytical Laboratories Ltd. of Vancouver for multi-element,



Residual total magnetic field – colour-coded: High

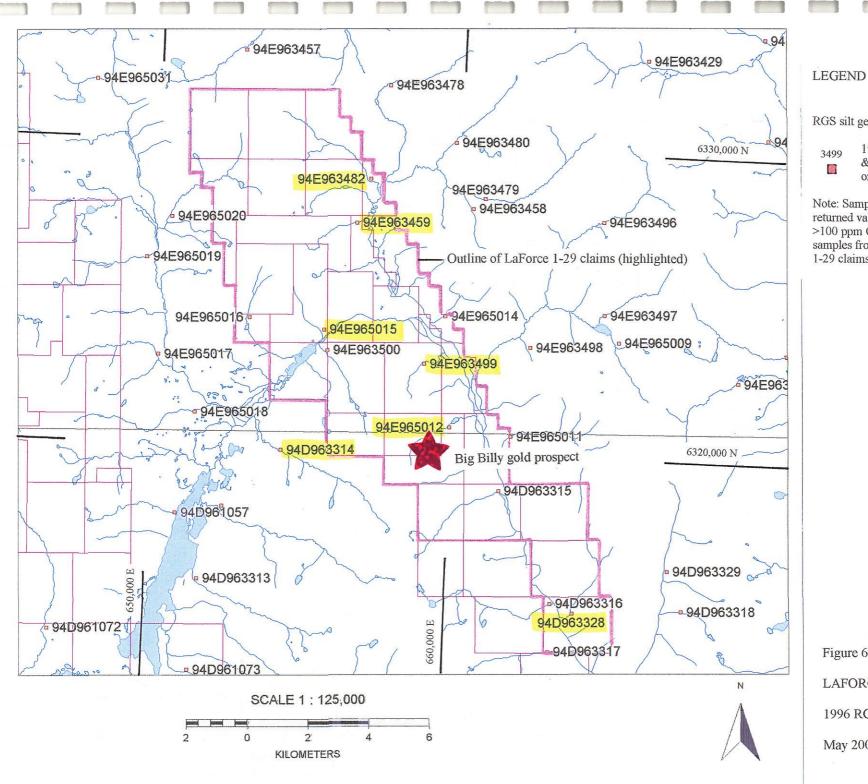

Low

Figure 5

LAFORCE PROPERTY

**REGIONAL RESIDUAL** TOTAL MAGNETIC FIELD

Date: May 2008



RGS silt geochemistry: 3499 1996 RGS silt sample location & number (prefixed by 94D96 or 94E96)

Note: Samples highlighted in yellow returned values of >10 ppb Au and/or >100 ppm Cu (see Table 2) – only samples from streams draining LaForce 1-29 claims are highlighted

Figure 6 LAFORCE PROPERTY 1996 RGS SILT GEOCHEMISTRY May 2008

# Table 2

.

# LaForce Property 1996 RGS Silt Geochemistry Selected Analytical Results

page 1 of 1

•

,

x

• •

| Sample No.     | UTM Co-ord | I. (NAD 83) |                    |                   | Selected                              | Analytical         | Results           | ·                 |                   | Remarks                       |
|----------------|------------|-------------|--------------------|-------------------|---------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------------------|
|                | East       | North       | Au (ppb)<br>(INNA) | Ag (ppm)<br>(AAS) | As (ppm)<br>(INNA)                    | Sb (ppm)<br>(INNA) | Cu (ppm)<br>(AAS) | Pb (ppm)<br>(AAS) | Zn (ppm)<br>(AAS) |                               |
| Map Sheet 94E: |            |             |                    |                   |                                       |                    |                   |                   |                   |                               |
|                | <b> </b>   |             |                    |                   | · · · · · · · · · · · · · · · · · · · | · · · · · · · · ·  |                   | [                 |                   |                               |
| 94E96-3457     | 652742     | 6333072     | 2                  | 0.2               | 23                                    | 1.4                | 85                | 4                 | 88                |                               |
| 94E96-3482     | 657022     | 6328985     | 8 (10)             | 0.2               | 15                                    | 1.2                | 51                | 6                 | 59                |                               |
| 94E96-3483     | 657022     | 6328985     | 26 (2)             | 0.2               | 23                                    | 1.2                | 55                | 6                 | 60                |                               |
| 94E96-5020     | 650505     | 6327489     |                    | 0.2               | 0.5                                   | 0.1                | 68                | 2                 | 41                |                               |
| 94E96-3459     | 656622     | 6327523     | 18                 | 0.2               | 4.9                                   | 0.4                | 133               | 2                 | 64                |                               |
| 94E96-5016     | 653184     | 6324262     | 2                  | 0.2               | 0.5                                   | 0.1                | 47                | 2                 | 38                |                               |
| 94E96-5015     | 655667     | 6323964     | 2                  | 0.2               | 2                                     | 0.4                | 118               | 2                 | 47                |                               |
| 94E96-3500     | 655806     | 6323288     |                    | 0.2               | 0.5                                   | 0.1                | 42                | 2                 | 56                |                               |
| 94E96-3499     | 659029     | 6322972     | 39                 | 0.2               | 9.2                                   | 0.4                | 180               | 4                 | 82                |                               |
| 94E96-5012     | 659951     | 6320921     | 17                 | 0.2               | 6.9                                   | 0.6                | 107               | 2                 | 53                | Drains Big Billy gold showing |
| Map Sheet 94D: |            |             |                    |                   |                                       |                    |                   |                   |                   |                               |
| 94D96-3314     | 654386     | 6319957     | 10                 | 0.2               | 1.2                                   | 0.2                | 11                | 2                 | 47                |                               |
| 94D96-3315     | 661682     | 6318893     | 2                  | 0.2               | 3.7                                   | 0.4                | 75                | 2                 | 36                |                               |
| 94D96-3316     | 663535     | 6315256     | 6                  | 0.2               | 3.6                                   | 0.6                | 49                |                   | 37                |                               |
| 94D96-3328     | 664287     | 6314954     | 59 (2)             | 0.2               | 20                                    | 0.9                | 28                | 15                | 38                |                               |
| 94D96-3317     | 663524     | 6313669     | 2                  | 0.2               | 3.5                                   | 0.3                | 35                | 4                 | 52                |                               |
|                |            |             |                    |                   |                                       |                    |                   |                   |                   |                               |
|                |            |             |                    |                   |                                       |                    |                   |                   |                   |                               |

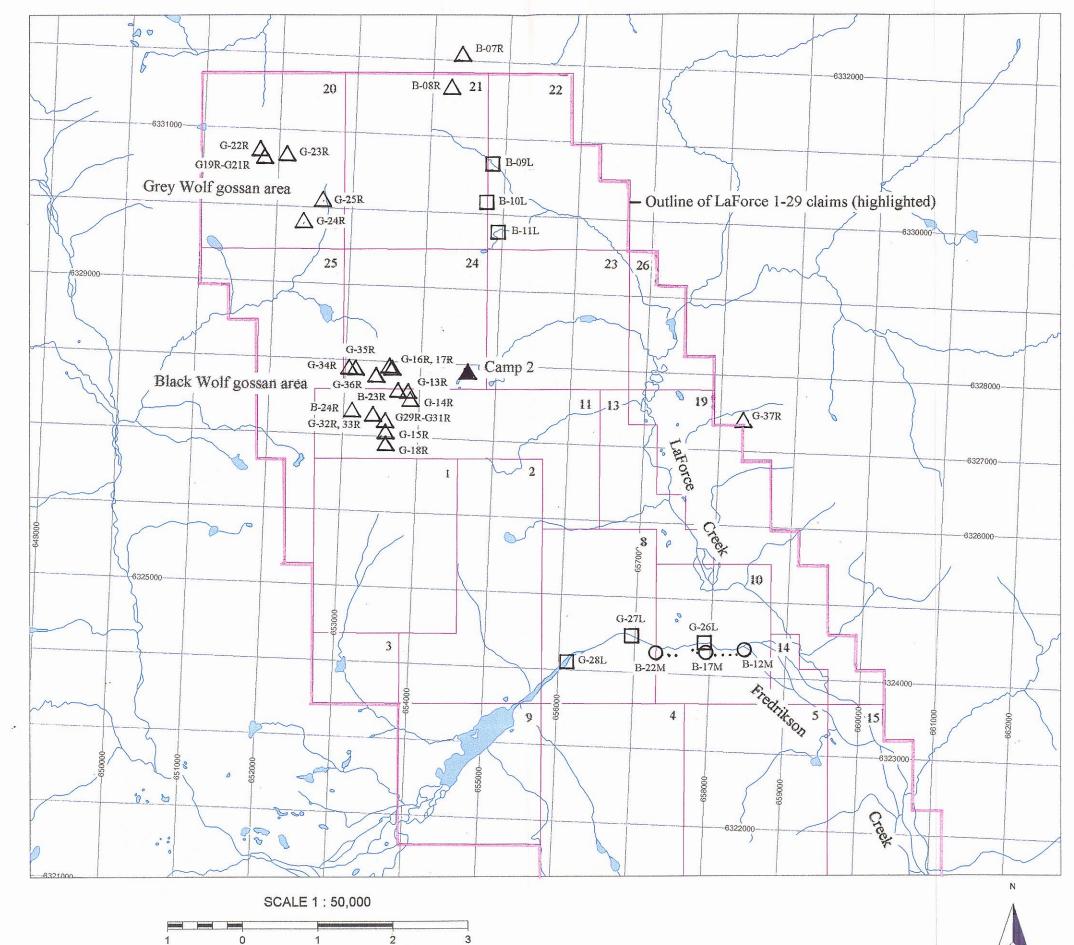
ICP-MS analyses. The MMI samples were submitted to SGS Mineral Services of Toronto for multi-element analyses using methods described in Section 6.2.2 below. Results of all work are summarized in Section 6.2.

Table 3 presents selected analytical results for the 7 silt samples collected on the claim block in 2007. Table 4 gives selected analytical results for the 2007 MMI samples. In Table 5, detailed hand specimen descriptions and selected analytical results have been compiled for all 2007 rock samples submitted for analyses. Table 6 gives a comparison between ICP-MS and fire assay gold analyses for the Big Billy gold prospect (described in Section 6.2.3).

The 2007 rock, silt and MMI sample locations are plotted on Figures 7 (North Sheet) and 8 (South Sheet). Prospecting station locations are shown on Figures 9 (North Sheet) and 10 (South Sheet).

The Acme Analytical Laboratories Ltd. analytical certificates and chemical procedures are collated in Appendix 1 and the analytical certificate for the SGS MMI results is given in Appendix 2. Appendix 3 presents a tabulation (Table 7) of 2007 prospecting notes.

#### 6.2 **Discussion of Results**


#### 6.2.1 2007 Silt Sampling (Figures 7 & 8; Table 3)

Seven silt samples were collected within the LaForce 1-29 claim block. All were comprised of fines material taken from the active part of streams. The samples were placed in standard kraft bags and numerically labeled with the prefix 07B/07G and suffix "L" for silt. An appropriately numbered survey ribbon was hung on nearby vegetation.

Two samples in the northern part of the claim block returned elevated values. 07B-09L returned values of 9.7 ppb Au, 13.8 ppm As, 0.6 ppm Sb and 84.6 ppm Cu and 07B-11L returned values of 14 ppb Au, 11.5 ppm As and 88.8 ppm Cu. The other samples returned low values for the selected elements shown in Table 3.

#### 6.2.2 2007 Mobile Metal Ion (MMI) Sampling (Figure 7 and Table 4)

Eleven mobile metal ion (MMI) samples were collected on the south side of Fredrikson Creek in the central part of the claim block. The MMI line was run by hip chain and compass with several GPS stations recorded along the line for control. Sample interval was 100 m. Watch and ring were removed prior to sampling. Pits were dug by shovel to a depth of 30 cm in order to expose the soil profile for sampling. The profile was scraped clean with a plastic scoop to remove any metal contamination from the shovel. A continuous channel of soil was collected by plastic scoop from 15 to 20 cm below the top of the true soil (regardless of soil type), placed in a pre-numbered (with the suffix "M" for MMI) ziplock baggie and then placed in an 11 inch by 20 inch 2 mil plastic bag. An appropriately numbered survey ribbon was hung on nearby vegetation. Samples were kept cool and shipped to SGS Mineral Services in Toronto for analyses.



.

**KILOMETERS** 

## LEGEND

2007 Silt Geochemistry:

| B-10L | Silt sample location & number   |
|-------|---------------------------------|
|       | (prefixed by 07) - see Table 3  |
|       | for selected analytical results |

2007 MMI Geochemistry:

B-12M 0..

MMI end-point sample location & number (prefixed by 07): inter-mediate sample locations shown as solid dots – see Table 4 for selected analytical results

2007 Rock Geochemistry:



B-07R Rock sample location & number (prefixed by 07) - see Table 5 for selected analytical results

### Claims



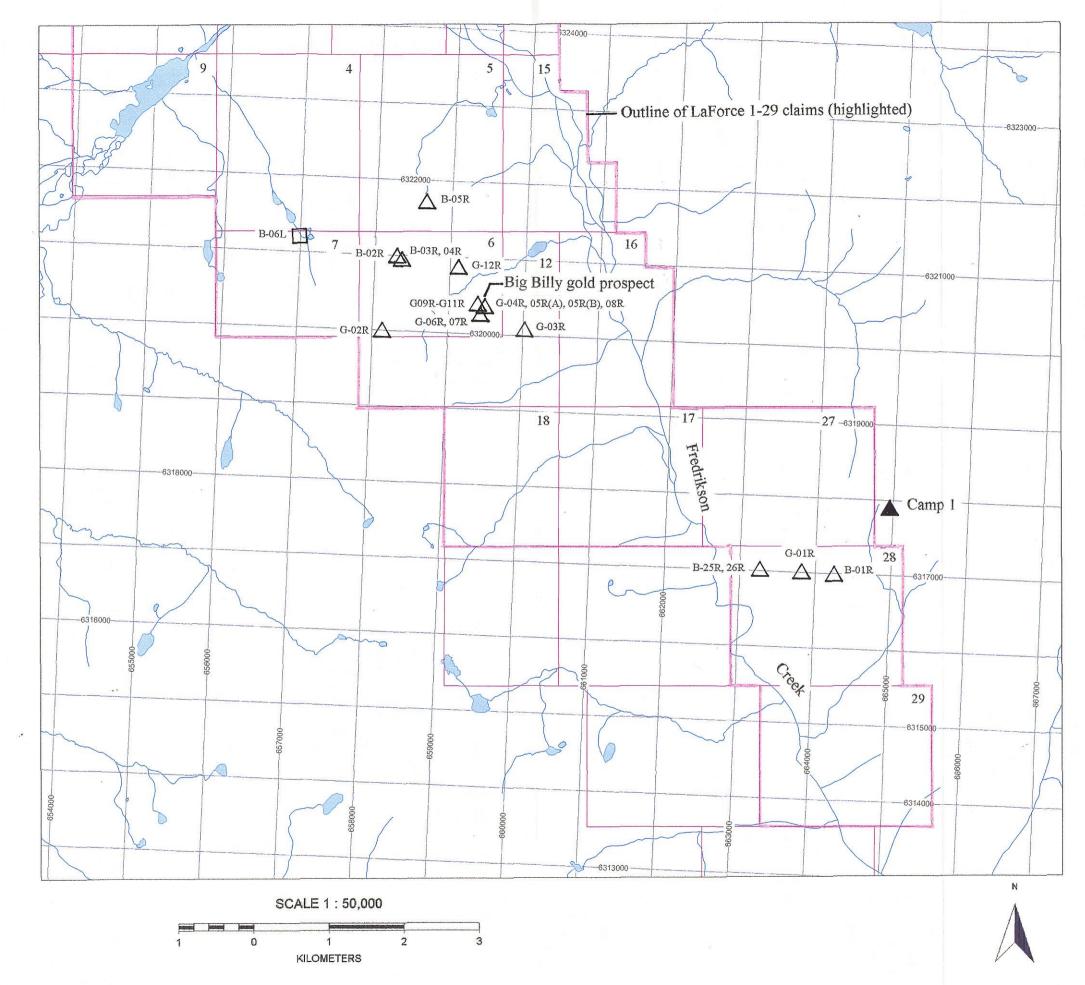

LaForce claim number

Figure 7

#### LAFORCE PROPERTY

2007 ROCK, SILT & MMI SAMPLE LOCATIONS (NORTH SHEET)

Date: May 2008



## LEGEND

.

#### 2007 Silt Geochemistry:

B-06L Silt sample location & number (prefixed by 07) – see Table 3 for selected analytical results

2007 Rock Geochemistry:



Rock sample location & number (prefixed by 07) – see Table 5 for selected analytical results

Claims

9

LaForce claim number

## Figure 8

LAFORCE PROPERTY

2007 ROCK & SILT SAMPLE LOCATIONS (SOUTH SHEET)

Date: May 2008

## Table 3

and the second second

# LaForce Property 2007 Silt Geochemistry Selected Analytical Results

page 1 of 1

1

| Sample No.         | UTM Co-ord       | . (NAD 83)                            |                      |                      | Selected             | Analytical           | Results              | · · · · · · · · · · · · · · · · · · · |                      | Remarks                         |
|--------------------|------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------|----------------------|---------------------------------|
|                    | East             | North                                 | Au (ppb)<br>(ICP-MS) | Ag (ppm)<br>(ICP-MS) | As (ppm)<br>(ICP-MS) | Sb (ppm)<br>(ICP-MS) | Cu (ppm)<br>(ICP-MS) | Pb (ppm)<br>(ICP-MS)                  | Zn (ppm)<br>(ICP-MS) |                                 |
| G. Weary sampl     | e series (07G    | ;):                                   |                      |                      |                      |                      |                      |                                       |                      |                                 |
| 07G-26L            | 657925           | 6324432                               |                      |                      | 4.7                  |                      |                      |                                       |                      |                                 |
| 07G-27L<br>07G-28L | 656954<br>656100 | 6324500<br>6324071                    |                      | <0.1<br><0.1         | 4.8<br>5.3           |                      | 40.3<br>78.7         |                                       |                      |                                 |
| B. Bowen sampl     | e series (07B    | ):                                    |                      |                      |                      |                      |                      |                                       |                      |                                 |
| 07B-06L            | 657021           | 63211 <b>8</b> 6                      |                      | <0.1                 | 0.7                  | <0.1                 | 31.9                 |                                       |                      |                                 |
| 07B-09L<br>07B-10L | 654830<br>654759 | 6330666<br>6330139                    |                      | 0.1<br><0.1          | 13.8<br>2.4          |                      |                      |                                       | <u> </u>             | Elevated Au, As, Sb & Cu values |
| 07B-11L            | 654895           | 6329783                               | 14                   | 0.1                  | 11.5                 | 0.1                  | 88.8                 |                                       |                      | Elevated Au, As & Cu values     |
|                    |                  | · · · · · · · · · · · · · · · · · · · |                      |                      |                      |                      |                      |                                       |                      |                                 |
|                    |                  |                                       |                      |                      |                      |                      |                      |                                       |                      |                                 |
|                    |                  |                                       |                      |                      |                      |                      |                      |                                       |                      |                                 |
|                    |                  |                                       |                      |                      |                      |                      |                      |                                       |                      |                                 |
|                    |                  |                                       |                      |                      |                      |                      |                      |                                       |                      |                                 |
|                    |                  |                                       |                      |                      |                      |                      |                      |                                       |                      |                                 |

## Table 4

# LaForce Property 2007 Mobile Metal Ion (MMI) Geochemistry Selected Analytical Results

page 1 of 1

1

1

1

• •

,

| Sample No.     | UTM Co-ord    | I. (NAD 83) |                      |                                               | Selected             | Analytical | Results |                                        |     | Remarks                               |
|----------------|---------------|-------------|----------------------|-----------------------------------------------|----------------------|------------|---------|----------------------------------------|-----|---------------------------------------|
|                | East          | North       | Au (ppb)<br>(MMI-M5) | Ag (ppb)<br>(MMI-M5)                          | As (ppb)<br>(MMI-M5) |            |         | Pb (ppb)<br>(MMI-M5)                   |     |                                       |
| B. Bowen sampl | e series (07B | l):         |                      |                                               |                      |            |         |                                        |     |                                       |
| 07B-12M        | 658442        | 6324339     | 0.3                  | 9                                             | <10                  | <1         | 350     | 70                                     | 70  |                                       |
| 07B-13M        | 658320        | 6324315     |                      | 12                                            | <10                  | <1         | 360     | the second second second second second |     | ,                                     |
| 07B-14M        | 658220        | 6324302     | 0.6                  | 5                                             | <10                  | <1         | 240     | 30                                     | 210 |                                       |
| 07B-14M (Dup)  | 658220        | 6324302     | 0.6                  | 5                                             | <10                  | <1         | 230     | 30                                     | 150 |                                       |
| 07B-15M        | 658115        | 6324295     | 0.3                  | 10                                            | <10                  | <1         | 1140    | 60                                     | 340 | Anomalous Cu value                    |
| 07B-16M        | 658015        | 6324290     | 0.1                  | 10                                            | <10                  | <1         | 200     | 30                                     | 60  |                                       |
| 07B-17M        | 657928        | 6324267     | 0.2                  | 17                                            | <10                  | <1         | 180     |                                        |     |                                       |
| 07B-18M        | 657805        | 6324302     | 0.1                  | 12                                            | <10                  | <1         | 220     |                                        |     |                                       |
| 07B-19M        | 657705        | 6324340     | 32.4                 | 12                                            | <10                  | <1         | 350     |                                        |     | Anomalous Au value                    |
| 07B-20M        | 657501        | 6324270     | 0.2                  | 14                                            | <10                  | <1         | 150     | <u> </u>                               |     |                                       |
| 07B-21M        | 657401        | 6324260     | 0.1                  | 12                                            | <10                  | <1         | 270     |                                        |     |                                       |
| 07B-22M        | 657265        | 6324255     | 0.3                  | 5                                             | <10                  | <1         | 160     | 20                                     | 30  | · · · · · · · · · · · · · · · · · · · |
|                |               |             |                      | · <u>· · · · · · · · · · · · · · · · · · </u> |                      |            |         |                                        |     |                                       |
|                |               |             |                      |                                               |                      |            |         |                                        |     |                                       |
|                |               |             |                      |                                               |                      |            |         |                                        |     |                                       |
|                | ·····         |             |                      |                                               |                      |            |         |                                        |     |                                       |
|                |               |             |                      |                                               |                      |            |         |                                        |     |                                       |
|                |               |             |                      |                                               |                      |            |         |                                        |     |                                       |

MMI analysis is used to "look through" deep overburden, including such problematic materials as clay and silt layers, and into bedrock over unspecified depths determined by the extent of fracturing and the presence of water. Transported anomalies are largely "ignored" by the method.

MMI analysis uses a weak partial extraction scheme to improve the conventional geochemical response over buried ore deposits. The process measures the mobile metal ions, from bedrock mineralization, which have moved toward the surface and are loosely attached to surface soil particles. Its effectiveness has been documented in over one thousand case histories on six continents and includes numerous commercial successes. The anomalies are sharply bounded and in most cases overlie and define the extent of the surface projection of buried primary mineralized zones. The MMI process is a proprietary method developed by Wamtech of Australia. SGS Mineral Services in Toronto provide analyses in Canada.

In the SGS lab, samples are not dried or prepared in any way. The MMI process includes analysis of a 50 gram sample. Multi-element extractants are used and metal concentrations are determined by ICP/MS in the parts per billion range. Several element packages are available. Method code MMI-M5, a 46 element package, was used on all samples.

Analytical results for Au, Ag, As, Sb, Cu, Pb and Zn were reviewed in detail to determine which of these elements might qualitatively show a more positive correlation with higher gold values. In Table 4, only one sample (07B-019M) returned an anomalous gold value of 32.4 ppb. It was not accompanied by any anomalous values for the other selected elements. 07B-15M returned an anomalous value of 1,140 ppb Cu and it too did not have any other anomalous values associated with it. The MMI line was run over esker material comprised of transported glacio-fluvial sediments. It is uncertain as to the significance of these two single station anomalies.

#### 6.2.3 2007 Rock Geochemical Sampling (Figures 7 & 8; Table 5)

Orestone's 2007 field work was preliminary in nature and was designed to cover as much of this large property as possible. During helicopter mobilization on to the property, a <sup>1</sup>/<sub>2</sub> hour "fly-over" was done in order to assess which areas may have greater potential, based on visual examination from the air of gossan (iron oxide) zones. Several were noted and these are described separately below.

Samples collected for analyses were random, composite or select grabs of rock chip material which was placed in 8 inch by 13 inch 2 mil plastic bags and numerically labeled with the prefix 07B/07G and suffix "R" for rock. An appropriately numbered survey ribbon was hung on nearby vegetation.

## Table 5

# LaForce Property 2007 Rock Sample Descriptions & Selected Analytical Results

page 1 of 7

| Sample No.   | Sample       | UTM Co-o | rd. (NAD 83) |        |         | nalytical |        |        |        | Description                                      |
|--------------|--------------|----------|--------------|--------|---------|-----------|--------|--------|--------|--------------------------------------------------|
|              | Туре         | East     | North        | ppb Au | ppm Ag  | ppm As    | ppm Cu | ppm Pb | ppm Zn |                                                  |
| G. Weary sar | nolo sorios  | (07C):   |              |        |         |           |        |        |        |                                                  |
| G. Weary Sai | 11010 301103 |          |              |        |         |           | · · ·  |        |        |                                                  |
| 07G-01R      | grab         | 663830   | 6317829      | 2.3    | <0.1    | 0.7       | 3      | 11.3   | 7      | Fine-grained, medium grey coloured shale or      |
|              |              |          |              |        |         |           |        |        |        | phyllite; contains up to 5% cubic Py             |
| 07G-02R      | grab         | 658140   | 6320013      | 3.1    | <0.1    | <0.5      | 156.8  | 0.6    | 14     | Dark green mafic volcanic or volcaniclastic      |
|              | <u>.</u>     |          |              |        |         |           |        |        |        | rock; finely laminated; <1% Py & trace Cp        |
|              |              |          |              |        |         |           |        |        |        | associated with rusty quartz vits./lamellae to   |
|              |              |          |              |        |         |           |        |        |        | 4 cm wide; locally bleached & sericitized        |
| 07G-03R      | grab         | 660047   | 6320081      | 3.4    | <0.1    | 1         | 83.5   | 5.3    | 219    | Andesitic volcaniclastic(?) or flow(?); medium   |
|              | X            |          |              | ·      | · · · · |           |        |        |        | grey-green in colour; minor mm-scale quartz      |
|              |              |          |              |        |         |           |        |        |        | veinlets with limonite & goethite; rock is       |
|              |              |          |              |        |         |           |        |        |        | heavily oxidized with goethite along fractures;  |
|              |              |          |              |        |         |           |        |        |        | possible sulphides weathered to oxides           |
| 07G-04R      | grab         | 659488   | 6320342      | 235.7  | 0.4     | 35.5      | 59.7   | 12.9   | 136    | Bedded or laminated sandstone(?); rock is        |
|              |              |          |              |        |         |           |        |        |        | pale tan coloured, bleached & pervasively        |
|              |              |          |              |        |         |           |        |        |        | sericitized and/or silicified; it contains up to |
|              |              |          |              |        |         |           |        |        |        | 5% diss. Py & possible trace diss. Cp;           |
|              |              |          |              |        |         |           |        |        |        | numerous vuggy quartz veins show evidence        |
|              |              |          |              |        |         |           |        |        |        | of weathered out sulphides                       |
| 07G-05R(A)   | grab         | 659490   | 6320317      | 17.9   | 0.1     | 3         | 189.3  | 4.3    | 112    | Grey-green, finely laminated volcaniclastic or   |
|              | <u>q</u>     |          |              |        |         |           |        |        |        | chloritized sandstone(?) with ~2-3% Py & very    |
|              |              |          |              |        |         |           |        |        |        | minor quartz veinlets; wallrock to 07G-05R(B)    |
|              |              |          |              |        |         |           |        |        |        |                                                  |

page 2 of 7

| Sample No. Sample |                                       | UTM Co-or | rd. (NAD 83) | Se     | lected A | nalytical | Results (                             | ICP-MS) | Description |                                                    |
|-------------------|---------------------------------------|-----------|--------------|--------|----------|-----------|---------------------------------------|---------|-------------|----------------------------------------------------|
|                   | Туре                                  | East      | North        | ppb Au | ppm Ag   | ppm As    | ppm Cu                                | ppm Pb  | ppm Zn      |                                                    |
|                   |                                       |           |              |        |          |           |                                       |         |             |                                                    |
| 07G-05R(B)        | select grab                           | 659490    | 6320317      | 6878   | 3.3      | 13.2      | 251.3                                 | 123.9   | 26          | Vuggy quartz vein piece with <1% Py & <0.5%        |
|                   |                                       |           |              |        |          |           |                                       |         |             | Cp diss; one cluster of very fine-grained, visible |
|                   |                                       |           |              |        |          |           |                                       |         |             | gold observed; vein material is mod. oxidized      |
| 07G-06R           | grab                                  | 659473    | 6320262      | 280.4  | 0.6      | 306.9     | 16.1                                  | 25      | 24          | 4 cm wide quartz vein with some silicified &       |
|                   |                                       |           |              |        |          |           |                                       |         |             | sericitized wallrock (altered & oxidized sand-     |
|                   |                                       |           |              |        |          |           |                                       |         |             | stone?); quartz vein contains 1-2% Py blebs &      |
|                   | ······                                |           |              |        |          |           |                                       |         |             | aggregates & minor oxides; no Cp noted             |
| 07G-07R           | grab                                  | 659474    | 6320323      | 6450   | 0.7      | 18        | 33.4                                  | 20.7    | 35          | mainly quartz vein material with very minor        |
| 010 0/10          | grab                                  |           | 0020020      | 0100   |          |           |                                       |         |             | altered, oxidized wallrock (finely bedded sand-    |
|                   |                                       |           |              |        |          |           |                                       |         |             | stone); 1-2% Py & possible trace diss. Cp in       |
|                   |                                       |           |              |        |          |           |                                       |         |             | quartz veins; minor diss. Py along bedding         |
|                   | · · · · · · · · · · · · · · · · · · · |           |              |        |          |           |                                       |         |             | planes in wallrock                                 |
|                   |                                       |           |              |        |          |           |                                       |         |             |                                                    |
| 07G-08R           | grab                                  | 659508    | 6320360      | 4.4    | <0.1     | 5         | 6.8                                   | 4.8     | 66          | Light tan-coloured, pervasively silicified & seri- |
|                   | Ť                                     |           |              |        |          |           |                                       |         |             | citized finely laminated rock cut by strong        |
|                   |                                       |           |              | ·      |          |           |                                       |         |             | quartz stockwork veins; up to 1% diss. Py &        |
|                   |                                       |           |              |        |          |           |                                       |         |             | possible trace diss. Cp in quartz veins; minor     |
| ···, · ··· · ··   |                                       |           |              |        |          |           |                                       |         |             | fine diss. Py in wallrocks                         |
|                   |                                       |           |              |        |          |           |                                       |         |             |                                                    |
| 07G-09R           | composite                             | 659432    | 6320372      | 46.3   | <0.1     | 32.3      | 42.7                                  | 3       | 70          | Similar to 07G-08R; one piece grey-green in        |
|                   | grab                                  |           |              |        |          |           |                                       |         |             | colour with minor quartz veinlets parallel to &    |
|                   |                                       |           |              |        |          |           |                                       |         |             | cutting laminations; minor Py & possible trace     |
|                   |                                       |           |              |        |          |           |                                       |         |             | diss. Cp in quartz veinlets                        |
|                   |                                       |           |              |        |          |           |                                       |         |             |                                                    |
| 07G-10R           | grab                                  | 659439    | 6320389      | 80.8   | 0.4      | 81.8      | 94.2                                  | 52.9    |             | Similar to 07G-08R; 2-3% diss. Py & possible       |
|                   |                                       |           |              |        |          |           |                                       |         |             | minor diss. Cp present                             |
| 07G-11R           | grab                                  | 659419    | 6320439      | 423.4  | 2.1      | 74.2      | 141.7                                 | 93.8    | 79          | Similar to 07G-08R; one piece is more strongly     |
| <u> </u>          | <u> </u>                              | 000410    |              | 720.7  | <u> </u> |           |                                       |         |             | silicified with ~10% diss. Py; another piece       |
|                   |                                       |           |              |        |          |           | · · · · · · · · · · · · · · · · · · · | 1       |             | shows definite Cp present with diss. Py            |

page 3 of 7

| Sample No. | Sample                                 | UTM Co-c | ord. (NAD 83) | Se     | elected A | nalytical | Results ( | ICP-MS)  |        | Description                                          |
|------------|----------------------------------------|----------|---------------|--------|-----------|-----------|-----------|----------|--------|------------------------------------------------------|
|            | Туре                                   | East     | North         | ppb Au | ppm Ag    | ppm As    | ppm Cu    | ppm Pb   | ppm Zn |                                                      |
|            |                                        |          |               |        |           |           |           |          |        |                                                      |
| 07G-13R    | grab                                   | 653794   | 6327595       | 9.1    | 0.3       | 1         | 110.7     | 1.3      | 7      | Strongly oxidized and quartz-veined volcanic         |
|            |                                        |          |               |        |           |           |           |          |        | rock with up to 5% diss. Py (2-3% average);          |
|            |                                        |          |               |        |           |           |           |          |        | somewhat bleached, possibly pervasively silici-      |
|            |                                        |          |               |        |           |           |           |          |        | fied                                                 |
|            |                                        |          |               |        |           |           |           |          |        |                                                      |
| 07G-14R    | composite                              | 635826   | 6327527       | 6.7    | <0.1      | 1.1       | 49.6      | 1.6      | 17     | Volcanic rock in contact with monzonite dikes        |
|            | grab                                   |          |               |        |           |           |           |          |        | containing 3% Py as diss. & blebs; strong            |
|            |                                        |          |               |        |           |           |           |          |        | oxides on weathered surfaces; sample includes        |
|            |                                        |          |               |        |           |           |           |          |        | both volcanic & (mainly) dike material over 25 m     |
|            |                                        |          |               |        |           |           |           |          |        | area                                                 |
|            |                                        |          |               |        |           |           |           |          |        |                                                      |
| 07G-15R    | composite                              | 653517   | 6327071       | 6.6    | 0.1       | 0.5       | 112.4     | 11       | 15     | Medium green-coloured, heavily oxidized & sili-      |
|            | grab                                   |          |               |        |           |           |           |          |        | fied, fine-medium grained andesite/diorite; con-     |
|            |                                        |          |               |        |           |           |           |          |        | tains >5% diss. Py & possibly some fine diss.        |
|            |                                        |          |               |        |           |           |           |          |        | Cp; sampled angular talus boulders of this           |
|            |                                        |          |               |        |           |           |           |          |        | material over a distance of about ~100 m             |
|            |                                        |          |               |        |           |           |           | L        |        |                                                      |
| 07G-16R    | grab                                   | 653626   | 6326914       | 3.5    | 0.1       | <0.5      | 100.4     | 1        |        | Heavily oxidized mafic volcanic with up to 10%       |
|            |                                        |          |               |        |           |           |           |          |        | diss. Py concentrated along rare quartz veins;       |
|            |                                        |          |               |        |           |           |           |          |        | trace diss. Cp                                       |
| 07G-17R    | arab                                   | 653575   | 6326928       | 4.5    | <0.1      | <0.5      | 65.3      | 0.6      | 24     | Similar to 07G-15R; silicified, fine-grained, mafic  |
| 0/0-1/K    | grab                                   | 000070   | 0320920       | 4.0    | <u> </u>  | ~0,5      | 05.5      | 0.0      | 24     | volcanic rock with up to 10% Py; minor diss. Cp      |
|            |                                        |          |               |        |           |           |           |          |        | on dry fracture & fine-grained Cp noted on one       |
|            |                                        |          |               |        |           |           |           |          |        |                                                      |
|            |                                        |          |               |        |           |           |           | <b> </b> |        | fresh surface; overall, sample is very strongly      |
|            |                                        |          |               |        |           |           |           |          |        | oxidized                                             |
| 07G-18R    | grab                                   | 653549   | 6326907       | 5.1    | <0.1      | <0.5      | 143.1     | 0.9      | 29     | Similar to 07G-15R; silicified with chlorite-epidote |
|            |                                        |          |               |        |           |           |           |          |        | alteration; minor quartz veining present; up to      |
|            |                                        |          |               |        |           |           |           |          |        | 15% Py mostly diss. & smeared along fracture         |
|            |                                        |          |               |        |           |           |           |          |        | surfaces; possible trace diss. Cp; sample taken      |
|            | ······································ |          |               |        |           |           |           |          |        | next to light grey coloured monzonite                |
|            |                                        | L        |               |        | L         |           |           | L        | L      | new to whit his? coloured monitoring                 |

page 4 of 7

| Sample No. | Sample    | UTM Co-o | rd. (NAD 83) | Se      | lected A          | nalytical | Results (         | CP-MS)    |        | Description                                        |
|------------|-----------|----------|--------------|---------|-------------------|-----------|-------------------|-----------|--------|----------------------------------------------------|
|            | Туре      | East     | North        | ppb Au  | ppm Ag            | ppm As    | ppm Cu            | ppm Pb    | ppm Zn |                                                    |
| 070 (07    | ••        | 054700   |              |         |                   |           |                   |           |        |                                                    |
| 07G-19R    | composite | 651798   | 6330581      | 1.5     | <0.1              | 0.9       | 102.5             | 0.7       | 21     | Mafic volcanics cut by feldspar porphyry dikes     |
|            | grab      |          |              |         |                   |           |                   |           |        | up to 10 m wide; up to 10% Py in both dikes &      |
|            |           |          |              |         |                   |           |                   |           |        | volcanic rocks; minor Cp present locally; sample   |
|            |           |          |              |         |                   |           |                   |           |        | taken over ~25 m distance                          |
| 07G-20R    | composite | 651731   | 6330616      | 1.8     | 0.2               | 1         | 54.4              |           | 30     | Similar to 07G-19R except volcanics appear         |
| 079-201    |           | 031731   | 0330010      | 1.0     | 0.2               | 1         | J <del>4</del> .4 | <b> '</b> |        | weakly laminated w/ sulphides mainly as dis-       |
|            | grab      |          | · ···        |         |                   |           |                   |           |        |                                                    |
|            |           |          |              |         |                   |           |                   |           |        | continuous bands; sulphides, mostly Py, oxidi-     |
|            |           |          |              |         |                   |           |                   |           |        | zed & possibly some Cp present; porphyry dike      |
| - <u></u>  |           |          |              |         |                   |           |                   |           |        | bleached w/ sericite-chlorite alteration; grab     |
|            |           |          |              |         |                   |           |                   |           |        | sample taken over 25 m distance                    |
| 07G-21R    | composite | 651765   | 6330597      | 1.6     | <0.1              | 0.6       | 53                | 0.5       | 18     | Dioritic feldspar porphyry w/ 5-10% Py & up to     |
| 0/0 2/10   | grab      |          | 0000001      | 1.0     |                   |           |                   |           |        | 0.5% Cp; grab sample taken over 10 m distance      |
|            | giab      |          |              |         |                   |           |                   |           |        |                                                    |
| 07G-22R    | composite | 651753   | 6330691      | 2.4     | 0.2               | <0.5      | 336.9             | 1.3       | 21     | Py coarsely & finely diss. in silicified porphyry; |
|            | grab      |          |              |         |                   |           |                   |           |        | up to 15% Py; definite diss. Cp noted; sample      |
|            |           |          |              |         |                   |           |                   |           |        | taken over 50 m along strike of dike               |
| 07G-23R    | arab      | 652086   | 6330643      | 3.3     | 0.2               | <0.5      | 197.2             | 0.9       | 16     | Coarse grained fairly mafic dioritic feldspar      |
| 07G-25K    | grab      | 052000   | 0330043      | 5.5     | 0.2               | ~0.5      | 191.2             | 0.9       |        | porphyry w/ 10-15% diss. sulphides (mainly Py)     |
|            |           |          |              |         |                   |           |                   |           |        |                                                    |
|            |           |          |              | <u></u> |                   |           |                   |           |        | & trace diss. Cp; weak epidote-chlorite-sericite   |
|            |           |          |              |         |                   |           |                   |           |        | alteration                                         |
| 07G-24R    | grab      | 652354   | 6329773      | 1       | 0.1               | 0.6       | 61.3              | 1         | 10     | Large (30 m high) stream cut bank through          |
|            | ¥         |          |              |         |                   |           |                   |           |        | overburden w/ distinct Fe-oxide colour zone;       |
|            |           |          |              |         |                   |           |                   |           |        | sampled chlorite-epidote-silica altered porphyry   |
|            |           |          |              |         | · · · · · · · · · |           |                   |           |        | w/ coarsely to finely diss. Py & trace diss. Cp    |
|            |           |          |              |         |                   |           |                   |           |        |                                                    |
| 07G-25R    | grab      | 652566   | 6330062      | 2.6     | <0.1              | <0.5      | 21.4              | 0.7       | 24     | Sericite-chlorite altered feldspar porphyry; up to |
|            |           |          |              |         |                   |           |                   |           |        | 5% diss. Py; no Cp noted                           |
|            |           |          |              |         |                   |           |                   |           |        |                                                    |

page 5 of 7

· · · · · · · · · · · ·

| Sample No. | Sample                                 | UTM Co-o     | rd. (NAD 83) |                                       |          |          | Results ( |        |        | Description                                      |
|------------|----------------------------------------|--------------|--------------|---------------------------------------|----------|----------|-----------|--------|--------|--------------------------------------------------|
|            | Туре                                   | East         | North        | ppb Au                                | ppm Ag   | ppm As   | ppm Cu    | ppm Pb | ppm Zn |                                                  |
| 07G-29R    | grab                                   | 653540       | 6327215      | 0.8                                   | <0.1     | 0.9      | 36.1      | 1.5    | 10     | Dioritic feldspar porphyry w/ fine pyroxene crys |
| 010 2010   | grub                                   | 000040       | 0027210      | 0.0                                   |          | 0.0      |           | 1.0    |        | tals in groundmass; 10-15% coarsely diss. Py;    |
|            |                                        | <del>}</del> |              |                                       | <u> </u> |          | <u> </u>  |        |        | no Cp noted; this sample taken between 07G-      |
|            | ··· ···                                |              |              | · · · · · · · · · · · · · · · · · · · | ·        | <u> </u> |           | ······ |        | 30R & 31R                                        |
|            |                                        |              |              |                                       |          | <u> </u> |           |        |        |                                                  |
| 07G-30R    | grab                                   | 653556       | 6327229      | 2.1                                   | 0.1      | <0.5     | 84.1      | 0.7    | 11     | Bleached (sericitized?) volcanic (?) rock w/     |
|            | <b>X</b>                               |              |              |                                       |          |          |           |        |        | sulphides mainly along discontinuous bands w     |
|            | ······································ |              |              |                                       |          |          |           |        |        | chlorite & epidote; up to 5% Py & tr. diss. Cp;  |
|            |                                        |              |              |                                       |          |          |           |        |        | strong Fe-oxides on weathered surfaces           |
| 07G-31R    | grab                                   | 653537       | 6327209      | 1.7                                   | <0.1     | < 0.5    | 36.6      | 1      | 25     | Similar to 07G-30R; sericite-chlorite-epidote    |
|            | X                                      |              |              |                                       |          |          |           |        |        | alteration obliterates original rock type; 1-3%  |
|            |                                        |              |              |                                       |          |          |           |        |        | diss. Py & trace diss. Cp                        |
|            | · · · · · ·                            | 050054       |              |                                       |          |          | 00.1      |        |        |                                                  |
| 07G-32R    | grab                                   | 653351       | 6327293      | 2                                     | <0.1     | <0.5     | 38.1      | 1.1    | 14     | Feldspar-augite porphyry intermixed with mati    |
|            |                                        |              |              |                                       |          |          |           |        |        | volcanic rock; 1-5% diss. sulphides (mainly Py   |
|            | <u></u>                                |              |              |                                       |          |          |           |        |        | including up to 0.1% Cp                          |
| 07G-33R    | grab                                   | 653349       | 6327295      | 3.2                                   | <0.1     | 0.7      | 59.7      | 1.5    | 10     | Sample taken from same outcrop as 07G-32R        |
|            |                                        |              |              |                                       |          |          |           |        |        | similar rock type - mixed porphyry & mafic       |
|            |                                        |              |              |                                       |          |          |           |        |        | volcanic rock; up to 5% diss. Py & trace Cp      |
| 07G-34R    | grab                                   | 653004       | 6327877      | 1.4                                   | 0.1      | <0.5     | 166.6     | 0.5    | 10     | Porphyry w/ flow banding & intermixed mafic      |
|            |                                        |              |              |                                       |          |          |           |        |        | volcanic rocks; ~1% diss. Py & trace Cp          |
| 07G-35R    | grab                                   | 653083       | 6327878      | 1.3                                   | <0.1     | <0.5     | 33.7      | 0.6    | 10     | Porphyry w/ fine-grained phenocrysts (~60%       |
|            | <u></u>                                |              |              |                                       |          |          |           |        |        | mafic and ~40% felsic); 3-4% diss. Py & poss.    |
|            | ·····                                  |              |              |                                       |          |          |           |        |        | trace diss. Cp                                   |
| 07G-36R    | grab                                   | 653395       | 6327821      | <0.5                                  | <0.1     | 1.2      | 17.1      | 1.4    | 20     | Chlorite-sericite attered porphyritic rock; 3-4% |
|            | 3.40                                   |              |              |                                       |          |          |           |        |        | diss. Py & possible trace diss. Cp               |

page 6 of 7

· · · · ·

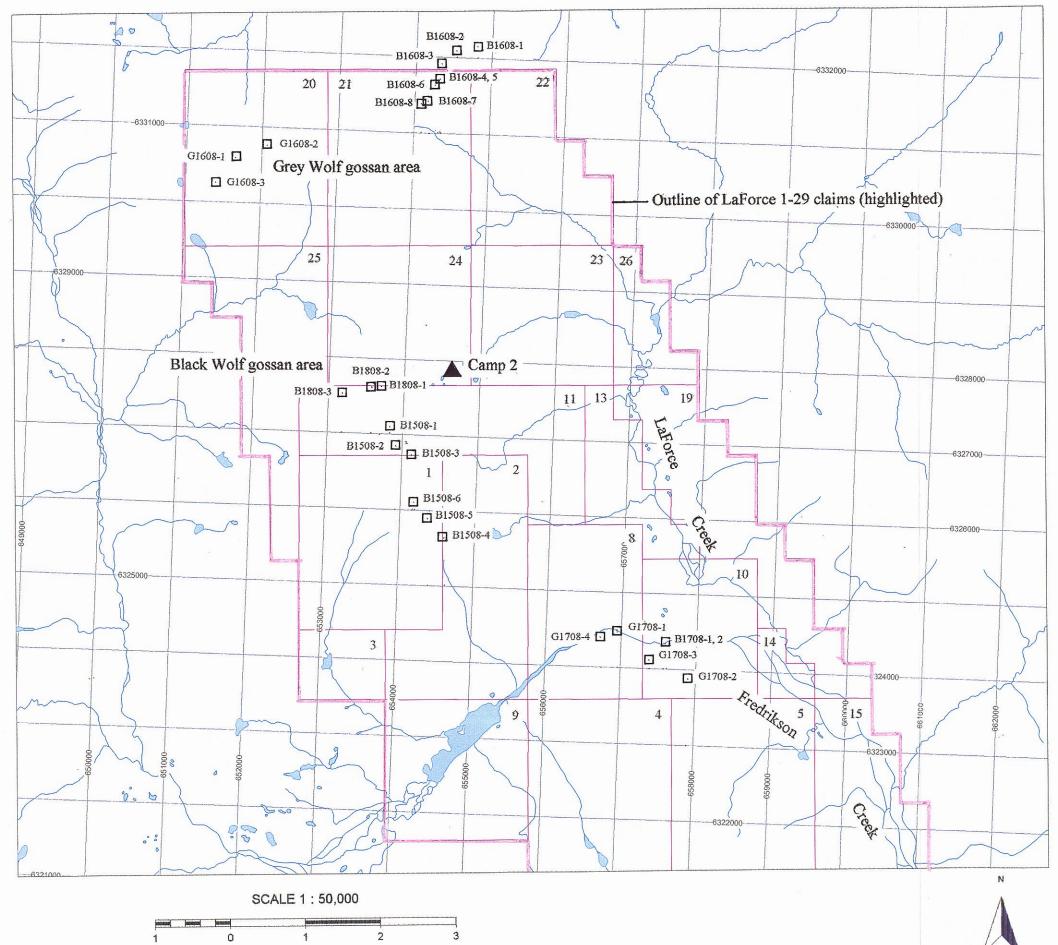
| Sample No.  | Sample                                | UTM Co-o | rd. (NAD 83) | Se     | lected A        | nalytical | Results ( | ICP-MS)  |        | Description                                       |
|-------------|---------------------------------------|----------|--------------|--------|-----------------|-----------|-----------|----------|--------|---------------------------------------------------|
|             | Туре                                  | East     | North        | ppb Au | ppm Ag          | ppm As    | ppm Cu    | ppm Pb   | ppm Zn |                                                   |
|             |                                       |          |              |        |                 |           |           |          |        |                                                   |
| 07G-37R     | grab                                  | 658614   | 6327375      | <0.5   | <0.1            | 2.4       | 0.5       | 4.1      | 7      | Intermixed (brecciated) shale & limestone;        |
|             |                                       |          |              |        |                 |           |           |          |        | heavy red staining - greater in limestone vs.     |
|             |                                       |          |              |        |                 |           |           |          |        | shale; no sulphides visible                       |
|             |                                       |          |              |        |                 |           |           |          |        |                                                   |
| B. Bowen sa | mple series                           | (07B):   |              |        |                 |           |           | L        |        |                                                   |
|             |                                       |          |              |        |                 |           |           |          |        |                                                   |
| 07B-01R     | grab                                  | 664260   | 6316992      | 1.8    | <0.1            | 4.5       | <0.1      | 1.1      | 4      | Sample taken at contact between phyllite (east)   |
|             |                                       |          |              |        |                 |           |           |          |        | & strongly oxidized limestone (west); modstr.     |
|             |                                       |          |              |        |                 |           |           |          |        | hematite & goethite on weathered surfaces but     |
|             |                                       |          |              |        |                 |           |           |          |        | no sulphide noted                                 |
|             | <b>-</b>                              | 050047   |              | 4      |                 | -0.5      |           |          |        |                                                   |
| 07B-02R     | grab                                  | 658317   | 6320844      | 1.7    | <0.1            | <0.5      | 22        | 0.4      |        | Felsenmeer blocks w/ moderate Fe-oxides on        |
|             |                                       |          |              |        |                 |           |           |          |        | weathered surfaces; on broken surfaces, rocks     |
|             |                                       |          |              |        |                 |           |           |          |        | look bleached, w/ ~2% fine diss. sulphides        |
|             |                                       |          |              |        |                 |           |           |          |        | (mainly Py w/ possible trace Cp); zone is ~20 m   |
|             |                                       |          |              |        |                 |           |           |          |        | wide                                              |
| 070 020     | arah                                  | 859206   | 6220074      | 2.4    | <0.1            | 0.9       | 29.1      | 2.1      | 7      | Quartz usin flast w/ passible enhalorite (black   |
| 07B-03R     | grab                                  | 658396   | 6320974      | 2.4    | <0.1            | 0.9       | 29.1      | <u> </u> | /      | Quartz vein float w/ possible sphalerite (black-  |
|             |                                       |          |              |        |                 |           |           |          |        | jack)                                             |
| 07B-04R     | select                                | 658386   | 6320992      | 1.8    | 0.2             | 0.9       | 411.7     | 1.6      | 8      | Medium-grained felsic sills(?) w/ fairly common   |
| 070-041     | grab                                  |          | 0020002      | 1.0    |                 | 0.0       |           | 1.0      |        | quartz veining which locally contains sphalerite? |
|             | grab                                  |          |              |        |                 |           |           |          |        | (possible black-jack) & trace Cp locally; between |
|             |                                       |          |              |        |                 |           |           |          |        | veined felsic rock are zones of strongly schis-   |
|             | · · · · · · · · · · · · · · · · · · · |          |              |        | · · · · · · · · |           | · · · ·   |          | h      |                                                   |
|             |                                       |          |              |        |                 |           |           |          |        | tose rock at 318/60 NE; schistosity may be due    |
|             |                                       |          |              |        |                 |           |           |          |        | to shearing; sample is select grab of mineralized |
|             |                                       |          |              |        |                 |           |           |          | [      | vein material, zone may be several 10's of meters |
|             |                                       |          |              |        |                 |           |           |          |        | wide                                              |
|             |                                       | 05005.4  | 0004704      |        |                 | 4.0       | <u> </u>  |          |        |                                                   |
| 07B-05R     | grab                                  | 658654   | 6321701      | 1.3    | 0.1             | 1.8       | 54.7      | 5.3      | /4     | 0.4 m talus boulder, mainly quartz vein material, |
|             |                                       |          |              |        |                 |           |           | ļ        |        | w/ very minor, white-coloured sulphide (AsPy?);   |
|             |                                       |          |              |        |                 |           |           |          |        | possible trace Cp diss.                           |

page 7 of 7

÷ • •

| Sample No. |             |        | ord. (NAD 83) |        |        |        |        | ICP-MS) |                                                                                                                | Description                                       |
|------------|-------------|--------|---------------|--------|--------|--------|--------|---------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|            | Туре        | East   | North         | ppb Au | ppm Ag | ppm As | ppm Cu | ppm Pb  | ppm Zn                                                                                                         |                                                   |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-07R    | select      | 654368 | 6332076       | 1.3    | <0.1   | 7.7    | 10.9   | 4.4     | 12                                                                                                             | Rusty schist over ~1.0 m true width enclosing     |
|            | grab        |        |               |        |        |        |        |         |                                                                                                                | two 0.1 m wide quartz veins parallel to schisto-  |
|            |             |        |               |        |        |        |        |         |                                                                                                                | sity at 350/50-60W; select grab of rusty quartz   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | vein material w/ minor tarnished Py & trace       |
|            |             |        |               |        |        |        |        |         |                                                                                                                | malachite?                                        |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-08R    | grab        | 654232 | 6331609       | 3.8    | <0.1   | 117.2  | 0.9    | 2.7     | 57                                                                                                             | Sample is of strong quartz stockwork zone, 1.0-   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | 1.5 m true width, located at hangingwall of buff- |
|            |             |        |               |        |        |        |        |         |                                                                                                                | orange weathering unit, 10-15 m wide, w/ strike   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | & dip of 330/85-90 NE; in quartz stockwork zone   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | minor limonite + MnO2 on fractures; no sulphide   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | noted                                             |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-23R    | select grab | 653671 | 6327651       | 17.5   | 0.7    | 0.8    | 1427   | 0.9     | 8                                                                                                              | 0.25 m diameter, sub-angular quartz vein float    |
|            |             |        |               |        |        |        |        |         |                                                                                                                | w/ locally moderate Cp & lesser malachite; also   |
|            |             |        |               |        |        |        |        |         |                                                                                                                | ~1% diss. Py                                      |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-24R    | grab        | 653079 | 6327365       | 1.9    | <0.1   | 2.8    | 71.2   | 0.9     | 15                                                                                                             | Fine-medium grained, equigranular, mafic-rich     |
|            |             |        |               |        |        |        |        |         |                                                                                                                | rock w/ up to ~30% diss. Py.                      |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-25R    | grab        | 663281 | 6316999       | <0.5   | <0.1   | 0.8    | 15     | 19.8    |                                                                                                                | Pale grey-tan coloured rock; laminated or         |
|            |             |        |               |        |        |        |        |         | the second s | banded; very light limonite coating on bedding    |
|            |             |        |               |        |        |        |        |         |                                                                                                                | surfaces; minor limonite after trace diss. Py;    |
|            |             |        |               |        |        |        |        |         |                                                                                                                | relatively soft, possibly clay-weathered (super-  |
|            |             |        |               |        |        |        |        |         |                                                                                                                | gene/surficial?)                                  |
|            |             |        |               |        |        |        |        |         |                                                                                                                |                                                   |
| 07B-26R    | grab        | 663281 | 6316999       | <0.5   | <0.1   | 1      | 0.8    | 1.2     | 7                                                                                                              | Light-tan coloured; little or no Fe-oxides on     |
|            |             |        |               |        |        |        |        |         |                                                                                                                | weathered surfaces; looks like fine-grained       |
|            |             |        |               |        |        |        |        |         |                                                                                                                | limestone; one cm wide irregular calcite vein     |
|            |             |        |               |        |        |        |        |         |                                                                                                                | w/ increase in Fe-oxides & <1% fine-grained       |
|            |             |        |               |        |        |        |        |         |                                                                                                                | diss. sulphides - likely Py, but one larger grain |
|            |             |        |               |        |        |        |        |         |                                                                                                                | appears yellowish - possible Cp or tarnished Py?  |

#### Big Billy Gold Prospect (Figures 8 & 10; Table 6)


The "Big Billy" gold prospect is a new discovery located on the LaForce 6 claim in the southern part of the claim block. It was named after a mountain goat which was observed inhabiting the showings area on the two days during which preliminary prospecting and sampling work was done.

The prospect occurs within a conspicuous gossan zone on the southeast flank of a drainage which flows northeasterly into Fredrikson Creek. It consists of a moderately to locally well-developed quartz stockwork/vein zone hosted by strongly pyritized and silica-sericite altered clastic sediments. Quartz veins, up to 20 cm wide, carry variable amounts of pyrite and minor chalcopyrite and may in part be stratabound. Veining occurs across an apparent zone width of about 50 m and has been traced along strike for approximately 500 m.

Five of eight surface grab samples collected within the quartz vein zone returned anomalous to strongly anomalous gold values of 6878, 6450, 423.4, 280.4 and 235.7 ppb, using ICP-MS analyses. These values were confirmed by gold fire assays which returned corresponding values of 6.80, 5.64, 0.51, 0.28 and 0.26 g/t Au (see Table 6 below). The 6.80 g/t Au assay came from a sample of quartz vein material which contained a fine-grained cluster of visible gold grains. The gold mineralization is locally accompanied by elevated to anomalous concentrations of arsenic (to 306.9 ppm), copper (to 251.3 ppm), lead (to 123.9 ppm), antimony (to 96.8 ppm) and bismuth (to 6.2 ppm).

| Rock Sample No.                             |        | Au<br>Analyses | Remarks  |                                                                    |
|---------------------------------------------|--------|----------------|----------|--------------------------------------------------------------------|
|                                             | ICP-MS | Fire Assay     | Variance | 1                                                                  |
| (Big Billy gold prospect)                   | (15g)  | (30g)          | *        |                                                                    |
|                                             | ppb Au | g/t Au         | %        |                                                                    |
|                                             |        |                |          |                                                                    |
| 07G-4R                                      | 235.7  | 0.26           | 10       |                                                                    |
| 07G-5R(A)                                   | 17.9   | <0.01          | n/a      |                                                                    |
| 07G-5R(B)                                   | 6878   | 6.8            | -1       | Sample contains fine-<br>grained cluster of visible<br>gold grains |
| 07G-6R                                      | 280.4  | 0.28           | nil      |                                                                    |
| 07G-7R                                      | 6450   | 5.64           | -13      |                                                                    |
| 07G-8R                                      | 4.4    | <0.01          | n/a      |                                                                    |
| 07G-9R                                      | 46.3   | 0.04           | -13      |                                                                    |
| 07G-10R                                     | 80.8   | 0.14           | 73       |                                                                    |
| 07G11R                                      | 423.4  | 0.51           | 20       |                                                                    |
| * Fire assay relative to ICP-MS<br>analyses |        |                |          |                                                                    |

#### Table 6



KILOMETERS

## LEGEND

2007 Prospecting Stations:

Prospecting station location & number
B1808-2 (dd/mm-1, 2, etc. prefixed by B =
B. Bowen or G = G. Weary) – see
Table 7 for detailed notes

Claims: 25

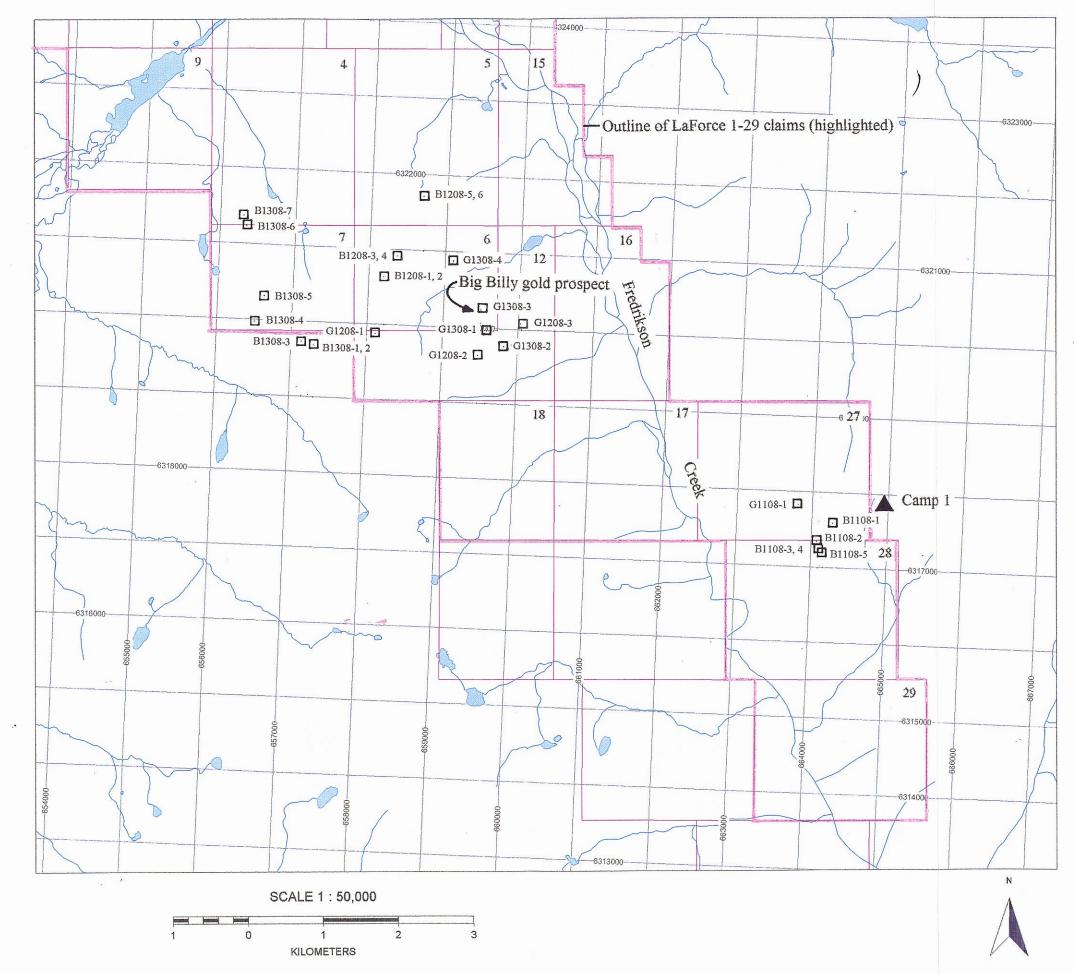

LaForce claim number

Figure 9

LAFORCE PROPERTY

PROSPECTING STATION LOCATIONS (NORTH SHEET)

May 2008



## LEGEND

2007 Prospecting Stations:

B1308-5 (dd/mm - 1, 2, etc. prefixed by B = B. Bowen or G = G. Weary) – see Table 7 for detailed notes

Claims: 18

LaForce claim number

Figure 10

LAFORCE PROPERTY

PROSPECTING STATION LOCATIONS (SOUTH SHEET)

Date: May 2008

### Black Wolf Gossan Area (Figures 7 & 9; Table 5)

The "Black Wolf" gossan area is located on the northern flank of the strong aeromagnetic anomaly described in Section 5.2(a) above. Here a large colour anomaly is present over an average zone width of 200 to 300 m and along a NNW-SSE strike length of about 2 km. Widest part of the zone is approximately 700 m. The zone is characterized by a complexity of rock types, including andesite, diorite (likely stocks and dikes), leucocratic intrusives and ultramafic pyroxene porphyry (again likely stocks and dikes). It lies at the eastern contact of an Early Jurassic batholith.

The zone is characterized by generally ubiquitous pyrite mineralization ranging from 1 to 5 % (locally up to 30% in the vicinity of a probable diorite stock) and minor chalcopyrite locally. The latter is more often associated with fine grained diorite(?) dikes but is also present in coarser grained diorite, andesite and at one locality, in a quartz vein. Alteration within the zone is mainly propylitic (chlorite-epidote) but locally quartz stockwork zones are developed.

Fifteen rock samples were collected from the various mineralized lithologies and alteration types. Sample 07B-23R returned the highest values of 1,427 ppm Cu and 17.5 ppb Au. It was a select grab of a 0.25 metre diameter, sub-angular quartz vein float boulder containing a moderate amount of chalcopyrite, lesser malachite and about 1% Py. The remaining samples returned generally low values to 166.6 ppm Cu and <10 ppb Au.

## Grey Wolf Gossan Area (Figures 7 & 9; Table 5)

About 3 km north-northwest of the Black Wolf gossan area is another similar colour anomaly ("Grey Wolf") derived from the oxidation of mainly pyrite and lesser chalcopyrite mineralization over a zone width of 200 to 300 m and a strike length of about 1 km. It too lies adjacent to an aeromagnetic high present within the same Jurassic batholith described above. Host rocks are variably pyritized and bleached mafic volcanics cut by several feldspar porphyry dikes. Alteration types include chlorite-sericite, chloriteepidote-sericite, chlorite-epidote-silica or silica.

Seven rock samples were taken of the two mineralized lithologies and various alteration types. The highest copper value of 336.9 ppm came from a silicified porphyry rock with up to 15% pyrite and minor chalcopyrite (07G-22R). All samples returned gold values of <10 ppb.

### Other Areas (Figures 7-10; Table 5)

Other rock geochemical results which warrant a brief comment are:

(a) on the LaForce 21 claim, near the northern boundary of the property, a grab sample (07B-08R) of a 1 to 1.5 metre wide zone of strong quartz stockwork veining located at the hangingwall of a 10-15 m wide buff-weathering sedimentary unit returned an anomalous value of 117.2 ppm As. The sample contained no anomalous values for the other elements shown in Table 5.

(b) on the LaForce 6 claim in the southern part of the claim block, a select grab sample (07B-04R) of chalcopyrite-bearing quartz veins hosted by medium grained felsic sills(?) returned a value of 411.7 ppm Cu. The reference in Table 5 to possible "black jack" or sphalerite mineralization is likely describing black-weathering or tarnished pyrite, as the zinc analysis was only 8 ppm.

#### **PROPOSED WORK**

The following work is recommended for the LaForce 1-29 claim block:

- (1.) at the Big Billy gold prospect: Mobilize a two-man crew and fly-camp on to the LaForce 6 claim and carry out a 7-10 day program of detailed mapping and rock geochemical sampling. Objective of the work would be to better delineate the extent of gold mineralization within the sizeable zone of alteration and quartz veining in the prospect area. The economic potential of the occurrence would be determined and a decision could be made whether or not to diamond drill test it. The detailed work would also serve to further the understanding of the geological setting of the prospect which could aid work to locate other gold prospects in the claims area.
- (2.) <u>elsewhere on the LaForce 1-29 claim block</u>: in coordination with the detailed evaluation of the Big Billy gold prospect, mobilize a second two-man crew and fly-camp on to the property. The second crew's objective would be to locate more gold mineralization on the property, possibly in a setting similar to that at the Big Billy prospect.

One area to key on would be the linear aeromagnetic anomaly which extends 12 km to the northwest of the Big Billy prospect. Limited 2007 prospecting traverses which crossed this feature in the central and northern parts of the property showed it to be underlain by sedimentary rocks possibly correlative with those hosting the Big Billy prospect. The majority of 1996 RGS and 2007 silt samples taken from streams draining this magnetic feature returned elevated to anomalous gold values.

7.0

#### COST STATEMENT

The cost for the work summarized in Section 4.5 is as follows:

|                                                      | <u>\$CDN</u>    | <u>\$CDN</u> |
|------------------------------------------------------|-----------------|--------------|
| 1) <u>Salaries:</u>                                  |                 |              |
| - B. Bowen, consulting geologist:                    |                 |              |
| - 3.5 days mob-demob @ \$600/d (Aug. 9, 10, 20-21)   | 2,100.00        |              |
| - 9.0 days fieldwork @ \$600/d (Aug. 11-19/07)       | 5,400.00        |              |
| - 1.0 day rock sample descrip. @ \$600/d (Aug. 25/07 | ,               |              |
| - G. Weary, consulting geologist:                    | ,               |              |
| - 3.0 days mob-demob @ \$583/d (Aug. 9, 10, 20-21)   | 1,749.00        |              |
| - 9.0 days fieldwork @ \$583/d (Aug. 11-19/07)       | 5,247.00        |              |
| - G. McKay, field assistant                          | 5,217.00        |              |
| - 3.0 days mob-demob @ \$300/d (Aug. 9, 10, 20-21)   | 900.00          |              |
| - 9.0 days fieldwork @ \$300/d (Aug. 11-19/07)       | <u>2,700.00</u> |              |
|                                                      |                 | 18 606 00    |
| - Sub-total salaries:                                | 18,696.00       | 18,696.00    |
| 2) <u>Helicopter (Canadian Helicopters):</u>         |                 |              |
| - Aug. 29/07 invoice:                                | 2,859.04        |              |
| - Aug. 31/07 invoice:                                | <u>5,740.63</u> |              |
| - Sub-total helicopter:                              | 8,599.67        | 8,599.67     |
|                                                      | - ,             | -,           |
| 3) <u>Airfares:</u>                                  |                 |              |
| - B. Bowen (Aug. 6 & 21/07)                          | 423.30          |              |
| - G. Weary (Aug. 9 & 21/07)                          | 414.03          |              |
| - G. McKay (Aug. 9 & 21/07)                          | <u>414.03</u>   |              |
| - Sub-total airfares:                                | 1,251.36        | 1,251.36     |
|                                                      |                 |              |
| 4) Motels & Accommodation (latter at Kemess Mine) :  |                 |              |
| - B. Bowen - motel @ Prince George (Aug. 6 & 21/07)  | 162.55          |              |
| - G. Weary – motel @ Smithers (Aug. 8/07)            | 91.37           |              |
| - G. McKay - motel @ Smithers (Aug. 8/07)            | 91.37           |              |
| - motel @ Mackenzie (3 people – Aug. 9/07)           | 159.60          |              |
| - Kemess mine: 3 men @ \$100/d (Aug. 10/07)          | 300.00          |              |
| - Kemess mine: 3 men @ \$100/d (Aug. 19/07)          | 300.00          |              |
| - Sub-total motel & accommodation:                   | 1,104.89        | 1,104.89     |
|                                                      | 1,101.05        | 1,101.02     |
| 5) <u>Truck Rental (Bowmac):</u>                     |                 |              |
| - one 4x4 crew cab (Aug. 6-21/07)                    | 1,341.77        |              |
| - diesel:                                            | 207.53          |              |
| - Sub-total truck rental                             | 1,549.30        | 1,549.30     |
|                                                      | ,               |              |

8.0

| Cost Statement - continued:                                                                                                                                                                                                                                                                                                                                             | <u>\$CDN</u>                                              | <u>\$CDN</u>    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|
| Sub-total carried forward from previous page:                                                                                                                                                                                                                                                                                                                           |                                                           | 31,201.22       |
| <ul> <li>6) <u>Equipment Rentals:</u> <ul> <li>Satellite phone:</li> <li>Truck two-way radio:</li> <li>Generator:</li> <li>3-man fly camp (Aug. 11-19/07)</li> <li>Sub-total equipment rental</li> </ul> </li> </ul>                                                                                                                                                    | 371.00<br>50.85<br>385.83<br><u>510.00</u><br>1,317.68    | 1,317.68        |
| <ul> <li>7) <u>Groceries &amp; Meals:</u></li> <li>- Groceries (for fly camp):</li> <li>- Meals:</li> <li>- Sub-total groceries &amp; meals:</li> </ul>                                                                                                                                                                                                                 | 897.71<br><u>204.36</u><br>1,102.07                       | 1,102.07        |
| 8) <u>Field Supplies:</u><br>- Total cost:                                                                                                                                                                                                                                                                                                                              | 775.10                                                    | 775.10          |
| <ul> <li>9) <u>Analytical (Acme Labs &amp; SGS Mineral Services):</u></li> <li>- ICP-MS analyses for 7 silt samples (includes prep.)</li> <li>- ICP-MS analyses for 45 rock samples (includes prep.)</li> <li>- Au fire assay for 9 rock samples (includes prep.)</li> <li>- 11 MMI samples @ \$38.59/s (includes shipping)</li> <li>- Sub-total analytical:</li> </ul> | 191.10<br>1,351.35<br>144.11<br><u>424.49</u><br>2,111.05 | 2,111.05        |
| <ul> <li>10) <u>Report Cost:</u></li> <li>B. Bowen, Consulting Geologist (5 days @ \$600/d)</li> <li>Drafting &amp; copies:</li> <li>Sub-total report cost:</li> </ul>                                                                                                                                                                                                  | 3,000.00<br><u>150.00</u><br>3,150.00                     | <u>3,150.00</u> |
| GRAND TOTAL:                                                                                                                                                                                                                                                                                                                                                            |                                                           | \$39,657.12     |



#### REFERENCES

 B.C. Ministry of Energy and Mines' website 'The Map Place': claims data, regional geology, RGS geochemical data, aeromagnetic data and minfile descriptions for portions of map sheets 94D and 94E

9.0

#### STATEMENTS OF QUALIFICATIONS

I, Brian K. Bowen, of Surrey, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geological Engineer with an office at 12470 99A Avenue, Surrey, British Columbia, Canada, V3V 2R5, Telephone (604) 930-0177.
- 2. I am a graduate of the University of British Columbia with a degree of Bachelor of Applied Science in Geological Engineering, obtained in 1970. I have been practicing my profession continuously in Canada and elsewhere since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. This report is based upon my review and compilation of all available data relating to the LaForce 1-29 claims and upon my personal knowledge of the claims area gained from on-site prospecting and geochemical sampling work carried out during the period August 11-19, 2007.
- 5. I have an indirect interest in the property through my share holdings in Orestone Mining Corp., the 100% owner of the LaForce 1-29 claims. I am also a Director of Orestone Mining Corp.

Dated at Surrey, British Columbia, this sixth day of May, 2008.

May 6, 2008 Surrey, B.C. BKB/bb

10.0

B. K. Bowen, P. Eng. Consulting Geologist



Statements of Qualifications – continued

I, Gordon Weary, of Terrace, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a College Professor and Consulting Geologist with an office at 4615 Loen Ave, Terrace, British Columbia, Canada, V8G 1Z4, Telephone (250) 798-9508.
- 2. I am a graduate of McGill University with a degree of Bachelor of Science in Geology and Environmental Studies, obtained in 1994, and I am a graduate of the University of New Brunswick with a degree of Master's of Science in Geology, obtained in 1996. I have been practicing my profession continuously in Canada since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. My input into this report is based upon fieldwork completed by me on the LaForce 1-29 claims during the period August 11-19, 2007.
- 5. I currently have 0% ownership in any mineral claims in the Province of British Colombia.

Dated at Terrace, British Columbia, this 1<sup>st</sup> day of May, 2008.

May 1<sup>st</sup>, 2008 Terrace, B.C.

Gordon Weary, P. Geo. Consulting Geologist

#### **APPENDIX** 1

.

\_

#### ACME ANALYTICAL LABORATORIES LTD. ANALYTICAL CERTIFICATES & CHEMICAL PROCEDURES

# Acme Laboratories Ltd. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Phone (604) 253-3158 Fax (604) 253-1716

**Client:** 

**Bowen, Barney** 

12470 - 99A Ave Surrey BC V3V 2R5 Canada

VAN08003789.2

Project:

Report Date:

Page:

LAFORCE April 25, 2008

www.acmelab.com

2 of 3 Part 1

# CERTIFICATE OF ANALYSIS

|                 | Method  | 1DX30 |
|-----------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                 | Analyte | Мо    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | U     | Au    | Th    | Sr    | Cd    | Sb    | Bi    | v     | Ca    | P     |
|                 | Unit    | ppm   | %     | ppm   | ppm   | ppb   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     |
|                 | MDL     | 0.1   | 0.1   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 1     | 0.01  | 0.5   | 0.1   | 0.5   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 2     | 0.01  | 0.001 |
| 07G001R Rock    |         | 0.1   | 3.0   | 11.3  | 7     | <0,1  | 5.5   | 2.6   | 397   | 1.05  | 0.7   | 0.3   | 2.3   | 2.1   | 2245  | <0.1  | <0.1  | 0.2   | <2    | 32.81 | 0.020 |
| 07G002R Rock    |         | 0.3   | 156.8 | 0.6   | 14    | <0.1  | 11.5  | 11.7  | 185   | 0.95  | <0.5  | 0.3   | 3.1   | 0.2   | 32    | 0.1   | <0.1  | <0.1  | 46    | 1.33  | 0.087 |
| 07G003R Rock    |         | 1.9   | 83.5  | 5.3   | 219   | <0.1  | 15.8  | 35.9  | 712   | 10.82 | 1.0   | 0.4   | 3.4   | 1.1   | 22    | 0.2   | <0.1  | <0.1  | 207   | 0.86  | 0.226 |
| 07G004R Rock    |         | 1.9   | 59.7  | 12.9  | 136   | 0.4   | 13.4  | 20.9  | 890   | 3.70  | 35.5  | 0.3   | 235.7 | 0.6   | 323   | 0.9   | 6.3   | <0.1  | 8     | 4.69  | 0.086 |
| 07G005R(A) Rock |         | 1.2   | 189.3 | 4.3   | 112   | 0.1   | 9.4   | 30.0  | 1095  | 5.02  | 3.0   | <0.1  | 17.9  | 0.5   | 70    | <0.1  | 0.2   | <0.1  | 136   | 1.73  | 0.111 |
| 07G005R(B) Rock |         | 1.1   | 251.3 | 123.9 | 26    | 3.3   | 5.1   | 6,9   | 727   | 2.61  | 13,2  | <0.1  | 6878  | <0.1  | 113   | 0.2   | 0.3   | 6.2   | <2    | 1.40  | 0.002 |
| 07G006R Rock    |         | 0.4   | 16,1  | 25.0  | 24    | 0.6   | 33.6  | 15.4  | 524   | 2.54  | 306.9 | <0.1  | 280.4 | <0.1  | 151   | 0.2   | 0.5   | 0.5   | 3     | 3.43  | 0.034 |
| 07G007R Rock    |         | 0.5   | 33.4  | 20.7  | 35    | 0.7   | 10.7  | 14.4  | 990   | 3.33  | 18.0  | 0.1   | 6450  | 0.3   | 201   | 0.3   | 0.2   | 0.1   | 8     | 3.93  | 0.059 |
| 07G008R Rock    |         | 1.0   | 6.8   | 4.8   | 66    | <0.1  | 10.4  | 3.0   | 390   | 1.70  | 5.0   | 1.5   | 4.4   | 1.6   | 474   | 0.3   | 3.7   | <0.1  | 26    | 11.70 | 0.007 |
| 07G009R Rock    |         | 1.1   | 42.7  | 3.0   | 70    | <0.1  | 11.3  | 16.2  | 683   | 3.69  | 32.3  | 0.2   | 46.3  | 1.6   | 170   | 0.2   | 2.1   | 0.1   | 37    | 1.98  | 0.088 |
| 07G010R Rock    |         | 28.6  | 94.2  | 52.9  | 108   | 0.4   | 22.2  | 18.5  | 1241  | 4.11  | 81.8  | 0.8   | 80.8  | 1.4   | 311   | 0.6   | 3.3   | 0.2   | 24    | 6.07  | 0.117 |
| 07G011R Rock    |         | 2.4   | 141.7 | 93.8  | 79    | 2.1   | 12.4  | 18.8  | 222   | 3.52  | 74.2  | 1.0   | 423.4 | 1.3   | 70    | 0.3   | 96.8  | 0.2   | 6     | 1.53  | 0.062 |
| 07G013R Rock    |         | 0.8   | 110.7 | 1.3   | 7     | 0.3   | 19.2  | 17.7  | 195   | 3.29  | 1.0   | 0.1   | 9,1   | 0,1   | 22    | <0.1  | 0.2   | 0.2   | 43    | 0.71  | 0.057 |
| 07G014R Rock    |         | 1.3   | 49.6  | 1.6   | 17    | <0.1  | 40.6  | 27.2  | 269   | 3.39  | 1.1   | 0.2   | 6.7   | 0.3   | 23    | <0.1  | 0.6   | <0.1  | 60    | 0,55  | 0.093 |
| 07G015R Rock    |         | 1.1   | 112.4 | 1.0   | 15    | 0.1   | 15.2  | 24.2  | 252   | 3.62  | 0.5   | 0.2   | 6.6   | 0.7   | 41    | <0.1  | <0.1  | 0.1   | 63    | 0.80  | 0.105 |
| 07G016R Rock    |         | 0.6   | 100.4 | 1.0   | 18    | 0.1   | 25.4  | 21.6  | 312   | 3.77  | <0.5  | 0.2   | 3.5   | 0.5   | 33    | <0.1  | <0.1  | <0.1  | 70    | 1.05  | 0.090 |
| 07G017R Rock    |         | 0.6   | 65.3  | 0.6   | 24    | <0.1  | 34.0  | 15.6  | 370   | 2.89  | <0.5  | 0.1   | 4.5   | 0.7   | 53    | <0.1  | <0.1  | <0.1  | 79    | 0.88  | 0.099 |
| 07G018R Rock    |         | 0.8   | 143.1 | 0.9   | 29    | <0.1  | 57.9  | 49.3  | 462   | 4.68  | <0.5  | 0.2   | 5.1   | 0,9   | 45    | <0.1  | <0.1  | <0.1  | 102   | 0.80  | 0.092 |
| 07G019R Rock    |         | 0.4   | 102.5 | 0.7   | 21    | <0.1  | 24.5  | 18.4  | 276   | 2.88  | 0.9   | 0.1   | 1.5   | 0.4   | 19    | <0.1  | <0.1  | <0.1  | 80    | 0.55  | 0.050 |
| 07G020R Rock    |         | 37.4  | 54.4  | 1.0   | 39    | 0,2   | 6.9   | 7.0   | 449   | 3.05  | 1.0   | 0.1   | 1.8   | 0.2   | 39    | <0.1  | <0,1  | <0.1  | 60    | 0.50  | 0,135 |
| 07G021R Rock    |         | 1.2   | 53.0  | 0,5   | 18    | <0.1  | 41.6  | 26.5  | 284   | 2.24  | 0.6   | 0.1   | 1.6   | 0.2   | 17    | <0,1  | <0,1  | <0,1  | 65    | 0.78  | 0.082 |
| 07G022R Rock    |         | 20.4  | 336.9 | 1.3   | 21    | 0.2   | 9.6   | 13.9  | 266   | 2.83  | <0.5  | 0.3   | 2.4   | 0.5   | 37    | <0.1  | <0.1  | <0,1  | 59    | 0.59  | 0.057 |
| 07G023R Rock    |         | 0.8   | 197.2 | 0.9   | 16    | 0.2   | 26.0  | 15.3  | 276   | 2.87  | <0.5  | 0.1   | 3.3   | 0.2   | 25    | <0.1  | <0.1  | <0.1  | 69    | 0,70  | 0.082 |
| 07G024R Rock    |         | 2.8   | 61.3  | 1.0   | 10    | 0.1   | 13.9  | 20.3  | 146   | 2.40  | 0.6   | 0.1   | 1.0   | 0.1   | 26    | <0.1  | <0.1  | <0.1  | 43    | 0.55  | 0.062 |
| 07G025R Rock    |         | 5.4   | 21.4  | 0.7   | 24    | <0.1  | 31.8  | 8.3   | 289   | 2.38  | <0.5  | 0.2   | 2.6   | 0.6   | 23    | <0.1  | <0.1  | <0.1  | 49    | 0.37  | 0.071 |
| 07G029R Rock    |         | 0.6   | 36.1  | 1.5   | 10    | <0.1  | 32.6  | 13.3  | 142   | 2.41  | 0.9   | 0.2   | 0,8   | 2.1   | 18    | <0.1  | <0.1  | <0.1  | 14    | 0.41  | 0.119 |
| 07G030R Rock    |         | 0.5   | 84.1  | 0.7   | 11    | 0.1   | 2.4   | 4.3   | 112   | 1.72  | <0.5  | 0.3   | 2.1   | 0.5   | 43    | <0.1  | <0.1  | <0.1  | 14    | 0.44  | 0.141 |
| 07G031R Rock    |         | 1.3   | 36.6  | 1.0   | 25    | <0.1  | 1.7   | 3.0   | 216   | 1.24  | <0.5  | 0.1   | 1.7   | 0.3   | 50    | <0.1  | <0.1  | <0.1  | 14    | 0.51  | 0.137 |
| 07G032R Rock    |         | 0.5   | 38.1  | 1.1   | 14    | <0.1  | 12.1  | 18.6  | 189   | 2.01  | <0.5  | 0.1   | 2.0   | 0.3   | 19    | <0.1  | <0.1  | <0.1  | 52    | 0.61  | 0.091 |
| 07G033R Rock    |         | 0.8   | 59.7  | 1.5   | 10    | <0.1  | 12.9  | 23.5  | 222   | 2.53  | 0.7   | 0.2   | 3.2   | 0.2   | 41    | <0.1  | <0.1  | <0.1  | 76    | 1,15  | 0.095 |

# AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

**Client:** 

#### Bowen, Barnev

12470 - 99A Ave Surrey BC V3V 2R5 Canada

Project: Report Date:

LAFORCE April 25, 2008

www.acmeiab.com

Page:

2 of 3 Part 2

### CERTIFICATE OF ANALYSIS

Phone (604) 253-3158 Fax (604) 253-1716

|                 | Method  | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30             | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30  | 1DX30 | 1DX30 | 1DX30 | G6    |
|-----------------|---------|-------|-------|-------|-------|-------------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
|                 | Analyte | La    | Cr    | Mg    | Ba    | Ti                | в     | AI    | Na    | к     | w     | Hg    | Sc    | TI     | S     | Ga    | Se    | Au    |
|                 | Unit    | ppm   | ppm   | %     | ppm   | %                 | ppm   | %     | %     | %     | ppm   | ppm   | ppm   | ppm    | %     | ppm   | ppm   | GM/T  |
|                 | MDL     | 1     | 1     | 0.01  | 1     | 0.001             | 1     | 0.01  | 0.001 | 0.01  | 0.1   | 0.01  | 0.1   | 0.1    | 0.05  | 1     | 0.5   | 0.01  |
| 07G001R Rock    |         | 17    | 3     | 0.43  | 6     | <0.001            | <1    | 0.22  | 0.005 | 0.07  | <0.1  | <0.01 | 2.7   | <0.1   | 0.13  | <1    | 1.1   | N.A.  |
| 07G002R Rock    |         | 1     | 23    | 0.43  | 63    | 0.197             | <1    | 0.61  | 0.058 | 0.10  | <0.1  | <0.01 | 3.0   | <0.1   | 0.12  | 2     | 0.9   | N.A.  |
| 07G003R Rock    |         | 9     | 6     | 1.95  | 53    | 0.009             | <1    | 4.83  | 0.055 | 0.06  | <0.1  | 0.01  | 20.2  | <0.1   | <0.05 | 14    | 0.9   | N.A.  |
| 07G004R Rock    |         | 2     | 5     | 1.58  | 87    | 0.002             | 3     | 0.30  | 0.019 | 0.20  | 0.3   | <0.01 | 4.1   | <0.1   | 1.76  | <1    | 4.1   | 0.26  |
| 07G005R(A) Rock |         | 2     | 8     | 2.33  | 43    | 0.228             | <1    | 2,94  | 0.046 | 0,12  | 0.2   | <0.01 | 5.6   | <0.1   | 0,42  | 8     | 1.0   | <0.01 |
| 07G005R(B) Rock |         | <1    | 11    | 0.28  | 15    | <0.001            | <1    | 0,06  | 0.005 | 0.03  | <0,1  | <0.01 | 1.4   | <0.1   | 0.85  | <1    | 0.9   | 6.80  |
| 07G006R Rock    |         | <1    | 13    | 0.59  | 16    | 0.003             | <1    | 0.11  | 0.054 | 0.02  | <0.1  | <0.01 | 4.5   | <0.1   | 1.27  | <1    | 2.7   | 0.28  |
| 07G007R Rock    |         | 1     | 6     | 0.99  | 47    | 0.002             | 1     | 0.21  | 0.021 | 0.15  | 0.1   | <0.01 | 3.8   | <0.1   | 0.86  | <1    | 1.2   | 5.64  |
| 07G008R Rock    |         | 2     | 11    | 6.69  | 86    | 0.006             | 6     | 0.51  | 0.008 | 0.39  | 0.3   | <0.01 | 4.2   | 0.1    | 0.81  | 1     | 1.0   | <0.01 |
| 07G009R Rock    |         | 7     | 11    | 1.58  | 125   | 0.004             | 3     | 0.66  | 0.040 | 0,18  | 0.1   | <0.01 | 6.5   | <0.1   | 1.36  | 2     | 1.0   | 0.04  |
| 07G010R Rock    |         | 3     | 10    | 2.49  | 79    | 0.005             | 3     | 0.68  | 0.027 | 0.26  | 0.2   | <0.01 | 6.1   | <0.1   | 1.80  | 2     | 2.8   | 0.14  |
| 07G011R Rock    |         | 3     | 6     | 0.48  | 29    | 0.002             | 2     | 0.20  | 0.058 | 0.10  | 0.4   | 0.11  | 1.4   | <0.1   | 3.25  | <1    | 10,9  | 0.51  |
| 07G013R Rock    |         | <1    | 28    | 0,28  | 16    | 0.232             | <1    | 0.58  | 0.013 | 0.06  | 0.2   | <0.01 | 2.4   | <0.1   | 1.10  | 2     | 2.7   | N.A.  |
| 07G014R Rock    |         | <1    | 42    | 1.76  | 13    | 0.154             | 1     | 1.55  | 0.036 | 0.02  | <0.1  | <0.01 | 3.2   | <0.1   | 1.59  | 3     | 2.5   | N.A.  |
| 07G015R Rock    |         | 2     | 9     | 0.84  | 22    | 0.107             | <1    | 1.27  | 0.081 | 0.08  | <0.1  | <0.01 | 3.6   | <0.1   | 2.49  | 3     | 2.7   | N.A.  |
| 07G016R Rock    |         | 2     | 33    | 1.06  | 24    | 0.130             | <1    | 1.25  | 0.138 | 0.06  | <0.1  | <0.01 | 5.8   | <0.1   | 1.44  | 3     | 3.8   | N.A.  |
| 07G017R Rock    | . •     | 3     | 47    | 1.55  | 22    | 0.051             | <1    | 1.72  | 0.132 | 0.06  | <0.1  | <0.01 | 7.4   | <0.1   | 0.92  | 4     | 1.3   | N.A.  |
| 07G018R Rock    |         | 3     | 88    | 1.89  | 24    | 0.060             | <1    | 1.84  | 0.104 | 0.11  | <0.1  | <0.01 | 8.8   | <0.1   | 3.01  | 5     | 2.7   | N.A.  |
| 07G019R Rock    |         | 1     | 36    | 1.52  | 67    | 0.087             | <1    | 1.65  | 0.102 | 0.22  | <0.1  | <0.01 | 4.8   | <0.1   | 0.61  | 4     | 1.5   | N.A.  |
| 07G020R Rock    |         | 1     | 13    | 1.16  | 157   | 0.136             | <1    | 1.55  | 0.040 | 0.75  | <0.1  | <0.01 | 0.9   | 0.2    | 0.16  | 4     | 0.6   | N.A.  |
| 07G021R Rock    |         | <1    | 59    | 1.12  | 52    | 0.148             | <1    | 1.15  | 0.058 | 0.31  | <0.1  | <0.01 | 3.0   | <0.1   | 0.84  | 2     | 0.5   | N.A.  |
| 07G022R Rock    |         | 2     | 10    | 0.53  | 34    | 0.143             | <1    | 0.81  | 0.088 | 0.20  | <0.1  | <0.01 | 2.1   | <0.1   | 1.63  | 3     | 2.2   | N.A.  |
| 07G023R Rock    |         | <1    | 27    | 0.67  | 15    | 0.17 <del>9</del> | <1    | 0.82  | 0.054 | 0.07  | <0.1  | <0.01 | 2.8   | <0.1   | 1.38  | 2     | 2,6   | N.A.  |
| 07G024R Rock    |         | <1    | 21    | 0.56  | 19    | 0.142             | <1    | 0.73  | 0.053 | 0.08  | <0.1  | <0.01 | 1.7   | <0.1   | 1.07  | 2     | 1.4   | N.A.  |
| 07G025R Rock    |         | 1     | 52    | 1.39  | 18    | 0.147             | <1    | 1.34  | 0.031 | 0.07  | <0.1  | <0.01 | 1.8   | <0.1   | 0.67  | 3     | 1.3   | N.A.  |
| 07G029R Rock    |         | 5     | 23    | 0.46  | 19    | 0.079             | <1    | 0.52  | 0.062 | 0.03  | <0.1  | <0.01 | 0.9   | <0.1   | 1.70  | 1     | 3.7   | N.A.  |
| 07G030R Rock    |         | 3     | 6     | 0.29  | 54    | 0.084             | <1    | 0.56  | 0.066 | 0.10  | <0.1  | <0.01 | 0.4   | <0.1   | 0.73  | 2     | 1.6   | N.A.  |
| 07G031R Rock    |         | 3     | 9     | 0.46  | 71    | 0.073             | <1    | 0,71  | 0.066 | 0.10  | <0.1  | <0.01 | 0.3   | <0.1   | 0.47  | 3     | 0.8   | N.A.  |
| 07G032R Rock    |         | <1    | 12    | 0.78  | 54    | 0.110             | <1    | 0.85  | 0.061 | 0.18  | <0.1  | <0.01 | 2,6   | · <0.1 | 0.71  | 2     | 0.8   | N.A.  |
| 07G033R Rock    |         | 1     | 11    | 0,74  | 15    | 0.132             | <1    | 0.98  | 0.108 | 0.07  | <0.1  | <0.01 | 4.1   | <0.1   | 0.89  | 3     | 0.9   | N.A.  |



# Acmelabs 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

ate<sup>.</sup>

Report Date:

Project:

Page:

LAFORCE April 25, 2008

www.acmelab.com

3 of 3 Part 1

VAN08003789.2

# CERTIFICATE OF ANALYSIS

Phone (604) 253-3158 Fax (604) 253-1716

|              | Method  | 1DX30 |
|--------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|              | Analyte | Mo    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | U     | Au    | Th    | Sr    | Cd    | Sb    | Bi    | v     | Ca    | Р     |
|              | Unit    | ppm   | %     | ppm   | ppm   | թթե   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     |
|              | MDL     | 0.1   | 0.1   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 1     | 0.01  | 0.5   | 0.1   | 0.5   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 2     | 0.01  | 0.001 |
| 07G034R Rock |         | 0.8   | 166.6 | 0.5   | 10    | 0.1   | 66.3  | 18.3  | 186   | 1.46  | <0.5  | 0.2   | 1.4   | 0.1   | 35    | <0.1  | <0.1  | <0.1  | 21    | 0.83  | 0.036 |
| 07G035R Rock |         | 0.2   | 33.7  | 0.6   | 10    | <0.1  | 15.9  | 20.7  | 185   | 2.10  | <0.5  | <0.1  | 1.3   | <0.1  | 17    | <0.1  | <0.1  | <0.1  | 85    | 1.05  | 0.040 |
| 07G036R Rock |         | 0.4   | 17.1  | 1.4   | 20    | <0.1  | 54.9  | 25.4  | 341   | 3.25  | 1.2   | 0.4   | <0.5  | 3.2   | 21    | <0.1  | <0.1  | <0.1  | 36    | 0.54  | 0.124 |
| 07G037R Rock |         | <0.1  | 0,5   | 4.1   | 7     | <0.1  | 5.6   | 1.5   | 822   | 2.18  | 2.4   | 0.6   | <0.5  | 1.2   | 397   | <0.1  | 0.4   | <0.1  | <2    | 25.98 | 0.030 |
| 07B001R Rock |         | <0.1  | <0.1  | 1.1   | 4     | <0.1  | 2.9   | 0.7   | 1431  | 3.10  | 4,5   | 0.1   | 1.8   | 0,1   | 96    | <0.1  | 0.3   | <0.1  | <2    | 22,10 | 0.015 |
| 07B002R Rock |         | 0.4   | 22.0  | 0.4   | 28    | <0.1  | 6.0   | 6,0   | 201   | 1.84  | <0.5  | 0.1   | 1.7   | 0,8   | 27    | <0.1  | <0.1  | <0,1  | 7     | 0,63  | 0.137 |
| 07B003R Rock |         | 1.0   | 29.1  | 2.1   | 7     | <0.1  | 8.7   | 6.2   | 273   | 1.17  | 0.9   | <0.1  | 2.4   | 0.1   | 23    | <0.1  | 0.2   | <0.1  | <2    | 1.48  | 0,004 |
| 07B004R Rock |         | 0.5   | 411.7 | 1.6   | 8     | 0.2   | 10.9  | 6,3   | 480   | 1.13  | 0.9   | 0.1   | 1.8   | 0.5   | 97    | 0,1   | 1.2   | <0.1  | <2    | 2.76  | 0.029 |
| 07B005R Rock |         | 1.0   | 54.7  | 5.3   | 74    | 0.1   | 6.4   | 8.2   | 836   | 2.74  | 1.8   | 0.8   | 1.3   | 2.4   | 239   | 0.5   | 0.3   | <0.1  | 16    | 3.42  | 0.095 |
| 07B007R Rock |         | 1.9   | 10.9  | 4.4   | 12    | <0.1  | 7.8   | 3.9   | 461   | 0.98  | 7.7   | 0.2   | 1.3   | 2.1   | 15    | <0.1  | 0.4   | <0.1  | <2    | 0.44  | 0.023 |
| 07B008R Rock |         | 0.2   | 0.9   | 2.7   | 57    | <0.1  | 1061  | 51.3  | 716   | 4.12  | 117.2 | <0.1  | 3.8   | 0.1   | 113   | 0.1   | 1.7   | <0.1  | 13    | 1.47  | 0.009 |
| 07B023R Rock |         | 0.6   | 1427  | 0.9   | 8     | 0.7   | 12.0  | 8.2   | 430   | 1.64  | 0.8   | <0.1  | 17.5  | 0.2   | 18    | 0.2   | <0.1  | <0.1  | 13    | 0.96  | 0.031 |
| 07B024R Rock |         | 1.0   | 71.2  | 0,9   | 15    | <0.1  | 46.2  | 35.5  | 151   | 3.31  | 2.8   | 0.1   | 1.9   | 0.4   | 6     | <0.1  | <0.1  | <0.1  | 31    | 0.55  | 0.094 |
| 07B025R Rock |         | 0.1   | 15.0  | 19.8  | 59    | <0.1  | 13.8  | 7.5   | 911   | 3.23  | 0.8   | 0.7   | <0.5  | 5.4   | 639   | <0.1  | <0.1  | 0.2   | <2    | 21.24 | 0.017 |
| 07B026R Rock |         | <0.1  | 0.8   | 1.2   | 7     | <0.1  | 2.1   | 0.6   | 378   | 0.64  | 1.3   | <0.1  | <0.5  | 2.8   | 110   | <0.1  | 1.6   | <0.1  | <2    | 24.64 | 0.009 |

# Acme Analytical Laboratories LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

)ate<sup>.</sup>

Report Date:

Project:

Page:

LAFORCE April 25, 2008

www.acmelab.com

3 of 3 Part 2

# CERTIFICATE OF ANALYSIS

|         | Method  | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30  | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | G6   |
|---------|---------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|         | Analyte | La    | Cr    | Mg    | Ba    | Ti     | в     | AI    | Na    | к     | w     | Hg    | Sc    | TI    | S     | Ga    | Se    | Au   |
|         | Unit    | : ppm | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | ppm   | ppm   | ppm   | %     | ppm   | ppm   | GM/T |
|         | MDL     | . 1   | 1     | 0.01  | 1     | 0.001  | 1     | 0.01  | 0.001 | 0.01  | 0.1   | 0.01  | 0.1   | 0.1   | 0.05  | 1     | 0.5   | 0.01 |
| 07G034R | Rock    | <1    | 62    | 0.77  | 37    | 0.052  | <1    | 1.05  | 0.078 | 0.08  | <0.1  | <0.01 | 2.6   | <0.1  | 0.65  | 2     | 0.8   | N.A. |
| 07G035R | Rock    | <1    | 30    | 0.95  | 35    | 0.125  | <1    | 0.96  | 0.101 | 0.15  | <0.1  | <0.01 | 4.9   | <0.1  | 0.52  | 2     | <0.5  | N.A. |
| 07G036R | Rock    | 10    | 82    | 1.57  | 18    | 0.097  | <1    | 1.36  | 0.060 | 0.04  | 0.1   | <0.01 | 1.4   | <0.1  | 1.73  | 3     | 2.6   | N.A. |
| 07G037R | Rock    | 3     | 2     | 6.89  | 15    | <0.001 | <1    | 0.05  | 0.007 | 0.03  | 0.1   | <0.01 | 0.7   | <0.1  | <0.05 | <1    | <0,5  | N.A. |
| 07B001R | Rock    | <1    | 5     | 9.53  | 2     | <0.001 | <1    | 0.02  | 0.005 | <0.01 | <0.1  | <0.01 | <0.1  | <0.1  | <0.05 | <1    | <0.5  | N.A. |
| 07B002R | Rock    | 2     | 10    | 0.69  | 55    | 0.041  | <1    | 0.72  | 0.026 | 0.16  | <0.1  | <0.01 | 0.4   | <0.1  | 1.17  | 2     | 0.8   | N.A. |
| 07B003R | Rock    | . <1  | 18    | 0.59  | 21    | 0.001  | <1    | 0.07  | 0.023 | 0.02  | <0.1  | <0.01 | 0.3   | <0.1  | 0.09  | <1    | <0.5  | N.A. |
| 07B004R | Rock    | 1     | 9     | 0,17  | 16    | <0.001 | <1    | 0.10  | 0.038 | 0.03  | <0.1  | <0.01 | 0.8   | <0.1  | 0.25  | <1    | <0.5  | N.A. |
| 07B005R | Rock    | 5     | 7     | 0.74  | 46    | 0.002  | <1    | 0.32  | 0.107 | 0.08  | <0.1  | <0.01 | 2.3   | <0.1  | 1.29  | 1     | 1.8   | N.A. |
| 07B007R | Rock    | 4     | 15    | 0.08  | 23    | 0.003  | <1    | 0.18  | 0.043 | 0.03  | 0.2   | <0.01 | 0.2   | <0.1  | 0.07  | <1    | <0.5  | N.A. |
| 07B008R | Rock    | 1     | 264   | 13.81 | 23    | <0.001 | 6     | 0.19  | 0.003 | <0.01 | <0.1  | <0.01 | 3.9   | <0.1  | <0.05 | <1    | <0.5  | N.A. |
| 07B023R | Rock    | <1    | 12    | 0.38  | 16    | 0.024  | <1    | 0.43  | 0.070 | 0.03  | 0.2   | <0.01 | 1.5   | <0.1  | 0.62  | 1     | 2.3   | N.A. |
| 07B024R | Rock    | 1     | 51    | 0,75  | 3     | 0.015  | <1    | 0.47  | 0.072 | 0.01  | <0.1  | <0.01 | 2,5   | <0.1  | 2.91  | 2     | 2.1   | N.A. |
| 07B025R | Rock    | 26    | 10    | 0.93  | 9     | <0.001 | <1    | 0.19  | 0.009 | 0.16  | <0.1  | 0.01  | 1.6   | <0.1  | <0.05 | <1    | <0.5  | N.A. |
| 07B026R | Rock    | <1    | 7     | 12.03 | 2     | <0.001 | <1    | 0.01  | 0.007 | <0.01 | <0.1  | <0.01 | 0.2   | <0.1  | <0.05 | <1    | <0.5  | N.A. |





Client:

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

VAN08003789.2

Project: Report Date:

Page:

: A

LAFORCE April 25, 2008

www.acmelab.com

1 of 1 Part 1

# QUALITY CONTROL REPORT

|                     | Method     | 1DX30  | 1DX30  |
|---------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
|                     | Analyte    | Мо    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | U     | Au    | Th    | Sr    | Cd    | Sb    | Bi    | v     | Ca     | Р      |
|                     | Unit       | ppm   | %     | ppm   | ppm   | ppb   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %      | %      |
|                     | MDL        | 0.1   | 0.1   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 1     | 0.01  | 0.5   | 0.1   | 0.5   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 2     | 0.01   | 0.001  |
| Pulp Duplicates     |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | ~····· |        |
| 07G013R             | Rock       | 0,8   | 110.7 | 1.3   | 7     | 0.3   | 19.2  | 17.7  | 195   | 3.29  | 1.0   | 0.1   | 9.1   | 0.1   | 22    | <0.1  | 0.2   | 0.2   | 43    | 0.71   | 0.057  |
| REP 07G013R         | QC         | 0.7   | 105,5 | 1.0   | 6     | 0.3   | 18.4  | 17.5  | 196   | 3.15  | 0,6   | <0.1  | 7.4   | 0.1   | 21    | <0.1  | 0.2   | 0.2   | 44    | 0.67   | 0.057  |
| 07G031R             | Rock       | 1.3   | 36.6  | 1.0   | 25    | <0.1  | 1.7   | 3.0   | 216   | 1.24  | <0.5  | 0.1   | 1.7   | 0.3   | 50    | <0.1  | <0.1  | <0.1  | 14    | 0.51   | 0.137  |
| REP 07G031R         | QC         | 1.4   | 36.5  | 1.0   | 27    | <0.1  | 1.3   | 3.1   | 210   | 1.26  | <0.5  | 0.1   | 0.9   | 0.3   | 54    | <0.1  | <0.1  | <0.1  | 15    | 0.53   | 0.138  |
| Reference Materials |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
| STD DS7             | Standard   | 21.6  | 117.8 | 77.5  | 419   | 0.9   | 59.6  | 9.9   | 627   | 2.50  | 55.0  | 5.7   | 73.0  | 5.1   | 74    | 6.4   | 7.0   | 5.7   | 87    | 1.02   | 0.092  |
| STD DS7             | Standard   | 20.8  | 119.4 | 83.3  | 430   | 0.9   | 59.2  | 10.0  | 647   | 2.56  | 54.2  | 5.4   | 73.8  | 5.2   | 80    | 6.1   | 7.0   | 6.0   | 93    | 1.06   | 0.089  |
| STD DS7             | Standard   | 19.7  | 100.0 | 70.0  | 399   | 0.9   | 54.2  | 8.6   | 624   | 2.32  | 48.9  | 5.1   | 66.5  | 4.7   | 77    | 6.7   | 6.5   | 4.9   | 80    | 0,97   | 0.085  |
| STD DS7             | Standard   | 20.3  | 97.9  | 70.0  | 407   | 0.8   | 49.4  | 8.7   | 617   | 2.41  | 46.0  | 4.9   | 60.0  | 4.4   | 78    | 6.6   | 5.9   | 4.7   | 85    | 0.97   | 0.073  |
| STD OXK48           | Standard   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
| STD OXK48           | Standard   |       |       |       |       |       |       |       |       |       |       |       | ·     |       |       |       |       |       |       |        |        |
| STD DS7 Expected    |            | 20.92 | 109   | 70.6  | 411   | 0.89  | 56    | 9.7   | 627   | 2.39  | 48.2  | 4.9   | 70    | 4.4   | 68.7  | 6.38  | 5.86  | 4.51  | 86    | 0.93   | 0.08   |
| STD OXK48 Expected  |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
| BLK                 | Blank      | <0.1  | 1.9   | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <1    | <0.01 | <0.5  | <0.1  | <0.5  | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <2    | <0.01  | <0.001 |
| BLK                 | Blank      | <0.1  | <0.1  | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <1    | <0.01 | <0.5  | <0.1  | <0.5  | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <2    | <0.01  | <0.001 |
| BLK                 | Blank      | -     | =     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
| BLK                 | Blank      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |
| Prep Wash           |            |       |       | •     |       |       |       |       |       |       |       |       |       |       |       | -     |       |       |       |        |        |
| G1                  | Prep Blank | 0.4   | 3.1   | 3.5   | 56    | <0.1  | 4.1   | 5.0   | 608   | 2.00  | 2.2   | 2.8   | 12.7  | 5.0   | 72    | <0.1  | <0.1  | <0.1  | 46    | 0.55   | 0.093  |
| G1                  | Prep Blank | 0.3   | 2.8   | 3.2   | 52    | <0.1  | 4.6   | 4.8   | 587   | 1.93  | <0.5  | 3.0   | 5.4   | 5.1   | 63    | <0.1  | <0.1  | <0.1  | 42    | 0.50   | 0.088  |

# AcmeLabs

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

Project:

April 25, 2008

### QUALITY CONTROL REPORT

|                     | Method     | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30  | 1DX30 | 1DX30 | 1DX30   | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | G6    |
|---------------------|------------|-------|-------|-------|-------|--------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     | Analyte    | La    | Cr    | Mg    | Ba    | Tì     | в     | AI    | Na      | κ     | w     | Hg    | Sc    | TI    | S     | Ga    | Se    | Au    |
|                     | Unit       | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %       | %     | ppm   | ppm   | ppm   | ppm   | %     | ppm   | ppm   | GM/T  |
|                     | MDL        | 1     | 1     | 0.01  | 1     | 0.001  | 1     | 0.01  | 0.001   | 0.01  | 0.1   | 0.01  | 0.1   | 0.1   | 0.05  | 1     | 0.5   | 0.01  |
| Pulp Duplicates     |            |       |       |       |       |        |       |       |         |       |       |       |       |       |       |       |       |       |
| 07G013R             | Rock       | <1    | 28    | 0.28  | 16    | 0.232  | <1    | 0.58  | 0,013   | 0.06  | 0.2   | <0.01 | 2.4   | <0.1  | 1.10  | 2     | 2.7   | N.A.  |
| REP 07G013R         | QC         | <1    | 28    | 0.27  | 16    | 0.230  | <1    | 0.57  | 0.015   | 0.06  | 0.2   | <0.01 | 2.5   | <0.1  | 1,06  | 2     | 2.4   |       |
| 07G031R             | Rock       | 3     | 9     | 0.46  | 71    | 0.073  | <1    | 0.71  | 0.066   | 0.10  | <0.1  | <0.01 | 0.3   | <0.1  | 0.47  | 3     | 0.8   | N.A.  |
| REP 07G031R         | QC         | 3     | 9     | 0.46  | 72    | 0.073  | <1    | 0.70  | 0.063   | 0.10  | <0.1  | <0.01 | 0.3   | <0.1  | 0.48  | 3     | 1.2   |       |
| Reference Materials |            |       |       |       |       |        |       |       |         |       |       |       | • •   |       |       |       |       |       |
| STD DS7             | Standard   | 15    | 187   | 1.11  | 384   | 0.145  | 49    | 1.07  | 0.104   | 0.45  | 3.8   | 0.23  | 2.8   | 4.7   | 0.19  | 5     | 4.3   |       |
| STD DS7             | Standard   | 16    | 195   | 1,11  | 385   | 0.162  | 44    | 1.10  | 0,101   | 0.45  | 4.2   | 0.23  | 3.2   | 4.3   | 0.20  | 5     | 3.7   |       |
| STD DS7             | Standard   | 13    | 194   | 1.01  | 407   | 0.114  | 46    | 0.98  | 0.094   | 0.46  | 4.3   | 0.22  | 2.0   | 4.7   | 0.18  | 5     | 4.2   |       |
| STD DS7             | Standard   | 13    | 187   | 1.04  | 392   | 0.113  | 46    | 0.96  | 0.096   | 0.48  | 4.1   | 0.21  | 2.2   | 4.4   | 0.19  | 4     | 2.8   |       |
| STD OXK48           | Standard   |       |       |       |       |        |       |       |         |       |       |       |       |       |       |       |       | 3.60  |
| STD OXK48           | Standard   |       |       |       |       |        |       |       | · · · · |       |       |       |       |       |       |       |       | 3.58  |
| STD DS7 Expected    |            | 12.7  | 163   | 1.05  | 370.3 | 0.124  | 38.6  | 0.959 | 0.073   | 0.44  | 3.8   | 0.2   | 2.5   | 4.19  | 0.21  | 4.6   | 3.5   |       |
| STD OXK48 Expected  |            |       |       |       |       |        |       |       |         |       |       |       |       |       |       |       |       | 3.557 |
| BLK                 | Blank      | <1    | <1    | <0.01 | <1    | <0.001 | <1    | <0.01 | <0.001  | <0.01 | <0.1  | <0.01 | <0.1  | <0.1  | <0.05 | <1    | <0.5  |       |
| BLK                 | Blank      | <1    | 7     | <0.01 | <1    | <0.001 | <1    | <0.01 | <0.001  | <0.01 | <0.1  | <0.01 | <0.1  | <0.1  | <0.05 | <1    | <0.5  |       |
| BLK                 | Blank      |       |       |       |       |        |       |       |         |       |       |       |       |       |       |       |       | <0.01 |
| BLK                 | Blank      |       |       |       |       |        |       |       |         | `     |       |       |       |       |       |       |       | <0.01 |
| Prep Wash           |            |       |       | ·     |       |        |       |       |         |       |       |       |       |       |       | ·     |       |       |
| G1                  | Prep Blank | 9     | 12    | 0.67  | 244   | 0.174  | 2     | 1.11  | 0.088   | 0.57  | <0.1  | <0.01 | 2.7   | 0.4   | <0.05 | 6     | 0.7   | N.A.  |
| G1                  | Prep Blank | 9     | 11    | 0.63  | 220   | 0.161  | 1     | 1.00  | 0.073   | 0.56  | <0.1  | <0.01 | 2.4   | 0.4   | <0.05 | 5     | <0.5  | N.A.  |

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.



Part 2

VAN08003789.2

LAFORCE

1 of 1

Report Date:

**Client:** 

Page:

# **Acme**Labs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Bowen, Barney **Client:** 

> 12470 - 99A Ave Surrey BC V3V 2R5 Canada

LAFORCE

Project: Report Date:

Page:

February 15, 2008

2 of 2

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 1

VAN08003791.1

### CERTIFICATE OF ANALYSIS

|          | Meth  | d 1DX  | 30 1DX3 | 1DX30 |
|----------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Analy | te N   | lo Cu   | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | U     | Au    | Th    | Sr    | Cd    | Sb    | Bi    | v     | Ca    | P     |
|          | U     | nit pp | m ppm   | %     | ppm   | ppm   | ppb   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     |
|          | M     | DL 0   | .1 0.1  | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 1     | 0.01  | 0.5   | 0.1   | 0.5   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 2     | 0.01  | 0.001 |
| 07B-006L | Silt  | 0      | .6 31.9 | 2.1   | 57    | <0.1  | 16.3  | 9.3   | 603   | 1.85  | 0.7   | 4.5   | 2.2   | 0.4   | 77    | 0.1   | <0.1  | <0.1  | 42    | 0.65  | 0.116 |
| 07B-009L | Silt  | 0      | .9 84.6 | 4.7   | 82    | 0.1   | 42.0  | 24.5  | 1119  | 4.48  | 13.8  | 0.2   | 9.7   | 0.4   | 24    | 0.3   | 0.6   | <0.1  | 97    | 0.62  | 0.096 |
| 07B-010L | Silt  | 0      | .9 70.3 | 3.4   | 71    | <0.1  | 25.4  | 19.5  | 688   | 3.57  | 2.4   | 0.5   | 4.4   | 0.4   | 30    | 0.1   | 0.2   | <0.1  | 84    | 0.68  | 0.115 |
| 07B-011L | Silt  | 1      | .5 88.8 | 4.6   | 71    | 0.1   | 40.7  | 23.6  | 1087  | 4.28  | 11.5  | 0.4   | 14.0  | 0.7   | 22    | 0.2   | 0.1   | <0.1  | 75    | 0.44  | 0.109 |
| 07G-026L | Silt  | 0      | .5 37.9 | 6.6   | 51    | <0.1  | 21.8  | 12.3  | 579   | 2.18  | 4.7   | 0.5   | 3.2   | 3.3   | 31    | 0.2   | 0.5   | 0.4   | 34    | 0.41  | 0.095 |
| 07G-027L | Silt  | 2      | .2 40.3 | 3.3   | 57    | <0.1  | 25.8  | 23.3  | 1216  | 2.34  | 4.8   | 1.0   | 2.1   | 0.8   | 46    | 0.3   | 0.2   | <0.1  | 54    | 0.53  | 0.090 |
| 07G-028L | Silt  | 2      | .6 78.7 | 4.8   | 81    | <0.1  | 28.6  | 21.0  | 1244  | 2.98  | 5.3   | 3.2   | 3.7   | 1.2   | 70    | 0.4   | 0.1   | <0.1  | 71    | 0.69  | 0.110 |

# AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

#### Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

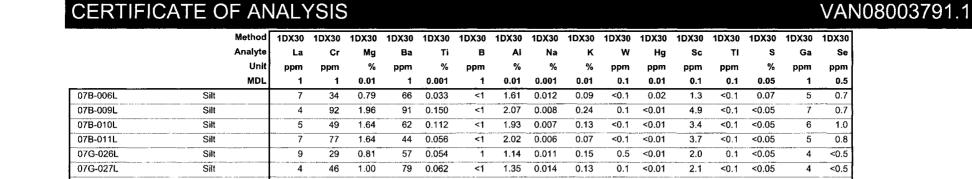
Project: Report Date:

Page:

February 15, 2008

LAFORCE

2 of 2


Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 2

# CERTIFICATE OF ANALYSIS

|          |      | Method  | 1DX30 |
|----------|------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          |      | Analyte | La    | Cr    | Mg    | Ba    | Tì    | в     | Ai    | Na    | κ     | w     | Hg    | Sc    | TI    | S     | Ga    | Se    |
|          |      | Unit    | ppm   | ppm   | %     | ppm   | %     | ppm   | %     | %     | %     | ppm   | ррт   | ppm   | ppm   | %     | ppm   | ppm   |
|          |      | MDL     | 1     | 1     | 0.01  | 1     | 0.001 | 1     | 0.01  | 0.001 | 0.01  | 0.1   | 0.01  | 0.1   | 0.1   | 0.05  | 1     | 0.5   |
| 07B-006L | Silt |         | 7     | 34    | 0.79  | 66    | 0.033 | <1    | 1.61  | 0.012 | 0.09  | <0.1  | 0.02  | 1.3   | <0.1  | 0.07  | 5     | 0.7   |
| 07B-009L | Silt |         | 4     | 92    | 1.96  | 91    | 0.150 | <1    | 2.07  | 0.008 | 0.24  | 0.1   | <0.01 | 4.9   | <0.1  | <0.05 | 7     | 0.7   |
| 07B-010L | Silt |         | 5     | 49    | 1.64  | 62    | 0.112 | <1    | 1.93  | 0.007 | 0.13  | <0.1  | <0.01 | 3.4   | <0.1  | <0.05 | 6     | 1.0   |
| 07B-011L | Silt |         | 7     | 77    | 1.64  | 44    | 0.056 | <1    | 2.02  | 0.006 | 0.07  | <0.1  | <0.01 | 3.7   | <0.1  | <0.05 | 5     | 0.8   |
| 07G-026L | Silt |         | 9     | 29    | 0.81  | 57    | 0.054 | 1     | 1.14  | 0.011 | 0.15  | 0.5   | <0.01 | 2.0   | 0.1   | <0.05 | 4     | <0.5  |
| 07G-027L | Silt |         | 4     | 46    | 1.00  | 79    | 0.062 | <1    | 1.35  | 0.014 | 0.13  | 0.1   | <0.01 | 2.1   | <0.1  | <0.05 | 4     | <0.5  |
| 07G-028L | Silt |         | 9     | 48    | 0.93  | 130   | 0.063 | <1    | 1.84  | 0.015 | 0.14  | 0.3   | 0.02  | 3.3   | <0.1  | <0.05 | 5     | 0.9   |





Client:

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

VAN08003791.1

Project:

Report Date:

Page:

LAFORCE February 15, 2008

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1 Part 1

### QUALITY CONTROL REPORT

|                     | Method   | 1DX30  | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30  | 1DX30   |
|---------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|
|                     | Analyte  | Mo    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe     | As    | υ     | Au    | Th    | Sr    | Cd    | Sb    | Bi    | v     | Ca     | Р       |
|                     | Unit     | ppm   | %      | ppm   | ppm   | ppb   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %      | %       |
|                     | MDL      | 0.1   | 0.1   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 1     | 0.01   | 0.5   | 0.1   | 0.5   | 0.1   | 1     | 0.1   | 0.1   | 0.1   | 2     | 0.01   | 0.001   |
| Reference Materials |          |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |       |        |         |
| STD DS7             | Standard | 18.2  | 102.3 | 71.0  | 385   | 0.8   | 53.0  | 8.6   | 607   | 2.34   | 51.3  | 4.9   | 63.0  | 4.5   | 74    | 6.2   | 6.8   | 4.8   | 80    | 0.89   | 0.075   |
| STD DS7 Expected    |          | 20.92 | 109   | 70.6  | 411   | 0.89  | 56    | 9.7   | 627   | 2.39   | 48.2  | 4.9   | 70    | 4.4   | 68.7  | 6.38  | 5.86  | 4.51  | 86    | 0.93   | 0.08    |
| BLK                 | Blank    | <0.1  | < 0.1 | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <1    | < 0.01 | <0.5  | <0.1  | <0.5  | <0.1  | <1    | <0.1  | <0.1  | <0.1  | <2    | < 0.01 | < 0.001 |

# Acme ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Bowen, Barney

12470 - 99A Ave Surrey BC V3V 2R5 Canada

Project: Report Date:

Page:

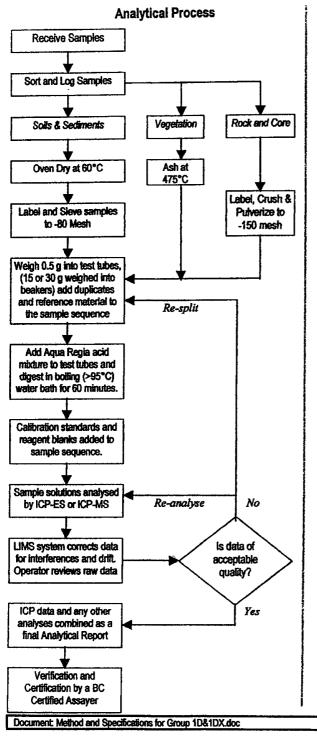
LAFORCE February 15, 2008

852 E. Hastings St. Vancouver BC V6A 1R6 Canad Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1

Part 2 VAN08003791.1


# QUALITY CONTROL REPORT

|                     | Method   | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30  | 1DX30 | 1DX30 | 1DX30  | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 | 1DX30 |
|---------------------|----------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     | Anaiyte  | La    | Cr    | Mg    | Ba    | Ti     | в     | AI    | Na     | к     | w     | Hg    | Sc    | TI    | S     | Ga    | Se    |
|                     | Unit     | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %      | %     | ppm   | ppm   | ppm   | ppm   | %     | ppm   | ppm   |
|                     | MDL      | 1     | 1     | 0.01  | 1     | 0.001  | 1     | 0.01  | 0.001  | 0.01  | 0.1   | 0.01  | 0.1   | 0.1   | 0.05  | 1     | 0.5   |
| Reference Materials |          |       |       |       | ·     |        |       |       |        |       |       |       |       |       | ·     |       |       |
| STD DS7             | Standard | 11    | 182   | 0.98  | 375   | 0.111  | 42    | 0.93  | 0.086  | 0.43  | 4.1   | 0.21  | 2.4   | 4.3   | 0.14  | 5     | 4.0   |
| STD DS7 Expected    |          | 12.7  | 163   | 1.05  | 370.3 | 0.124  | 38.6  | 0.959 | 0.073  | 0.44  | 3.8   | 0.2   | 2.5   | 4.19  | 0.21  | 4.6   | 3.5   |
| BLK                 | Blank    | <1    | <1    | <0.01 | <1    | <0.001 | <1    | <0.01 | <0.001 | <0.01 | <0.1  | <0.01 | <0.1  | <0.1  | <0.05 | <1    | <0.5  |

# ACME ANALYTICAL LABORATORIES LTD.



#### METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA



#### Comments

#### Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177  $\mu$ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100  $\mu$ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

#### Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO<sub>3</sub> and de-mineralised H<sub>2</sub>O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

#### Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP or Spectro Ciros Vision emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

**Group 1DX:** solutions aspirated into a Perkin Elmer Elan 6000/9000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga*, *Hg*, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se,  $\Pi$ , Sr, Th, Ti, U, V, W, Zn.

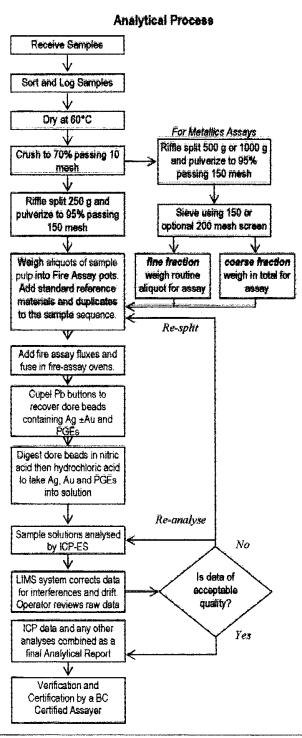
#### **Quality Control and Data Verification**

An Analytical Batch (1 page) comprises 33 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS6 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok and Jacky Wang.

Revised By: T. Ferguson

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6


Date: June 7, 2005

Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com





#### METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 6 – PRECIOUS METALS ASSAY



#### Comments

#### Sample Preparation

Rock and drift core are jaw crushed to 70% passing 10 mesh (2 mm), a 250 g niffle split is then pulverized to 95% passing 150 mesh (100  $\mu$ m) in a mild-steel ring-and-puck mill. One assay ton aliquots (29.2 g) are weighed into fire assay crucibles. Option for 2 assay-ton aliquots is available on request. Smaller aliquots of ¼ or ½ assay ton may be required with difficult ore matrices.

**Metallics Assay:** A 500 g reject split (or optional 1000 g) is pulverized to 95% passing 150 mesh. Screening the pulp gives a fine and coarse fraction (containing any coarse gold) for assaying.

#### **Sample Digestion**

The sample aliquot is custom blended with fire assay fluxes, PbO litharge and a Ag inquart. Firing the charge at 1050°C liberates Au, Ag  $\pm$  PGEs that report to the molten Pb-metal phase. After cooling the Pb button is recovered placed in a cupel and fired at 950°C to render a Ag  $\pm$  Au  $\pm$  PGEs dore bead. The bead is weighed and parted (i.e. leached in 1 mL of hot HNO<sub>3</sub>) to dissolve Ag leaving a Au sponge. Adding 10 mL of HCI dissolves the Au  $\pm$  PGE sponge.

#### Sample Analysis

Solutions are analysed for Ag, Au, Pt and Pd on a Jarrel-Ash Atomcomp model 975 ICP emission spectrometer. Au in excess of 30 g/t forms a large sponge that can be weighed (gravimetric finish). Ag in excess of 100 g/t is reported from the fire assay, otherwise a separate split is digested in aqua regia and analysed by ICP-ES (Group 7AR).

**Metallics Assay:** The coarse fraction is assayed in total. An aliquot of the fine fraction is assayed. Results report the total Au in the coarse fraction, the fine-fraction Au concentration and a weighted average Au concentration for the entire sample.

#### **Quality Control and Data Verification**

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (G-1) as the first sample carried through all stages of preparation to analysis, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of Rocklabs Certified Reference Materials like SL20 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client.

852 East Hastings Street, Vancouver, BC Canada V6A 1R6 Phone (604) 253 3158 Fax (604) 253 1716 e-mail: acmeinfo@acmelab.com

#### **APPENDIX 2**

#### SGS ANALYTICAL CERTIFICATE



#### **Certificate of Analysis**

Work Order: 098059

Date: Mar 05, 2008

To: Orestone Mining Corp. Attn: Gordon G Richards 6410 Holly Park Drive DELTA BC V4K 4W6

| P.O. No.         | ORS                        |
|------------------|----------------------------|
| Project No.      | DEFAULT                    |
| No. Of Samples   | 33                         |
| Date Submitted   | Jan 25, 2008               |
| Report Comprises | Pages 1 to 6               |
|                  | (Inclusive of Cover Sheet) |

#### Distribution of unused material:

Discard after 90 days: 33 Soils

Certified By :

Gavin McGill **Operations Manager** 

#### ISO 17025 Accredited for Specific Tests. SCC No. 456

Report Footer:

L.N.R. = Listed not received n.a.

= Not applicable

1.S. = Insufficient Sample = No result

\*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. \*NAA08V) were subcontracted

Subject to SGS General Terms and Conditions

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc.

Mineral Services 1885 Leslie Street Toronto ON M3B 2M3 t(416) 445-5755 f(416) 445-4152 www.sgs.com

#### Final: 008089 Order: ORS

SGS

| Element       | Ag     | AI     | As     | Au     | Ba     | Bi     | Ca        | Cd     | Ce       | Co     |
|---------------|--------|--------|--------|--------|--------|--------|-----------|--------|----------|--------|
| Method        | MMI-M5    | MMI-M5 | MMI-M5   | MMI-M5 |
| Det.Lim.      | 1      | 1      | 10     | 0.1    | 10     | 1      | 10<br>PPM | 1      | 5<br>PPB | 5      |
| Units         | . PPB  | PPM    | PPB    | PPB    | PPB    | PPB    |           | PPB    | aaaa     | PPB    |
| F251          |        | 180    | 80     | 0.5    | 2440   | 1      | 140       | 12     | 166      | 538    |
| F252          | 10     | 145    | 50     | 0.5    | 2190   | <1     | 160       | 9      | 139      | 211    |
| F253          | 18     | 175    | 50     | 0.3    | 2570   | <1     | 150       | 14     | 209      | 85     |
| F254          | 12     | 201    | 50     | 0.3    | 2800   | <1     | 110       | 11     | 311      | 133    |
| F255          | 8      | 119    | 50     | 0.2    | 2780   | <1     | 160       | 12     | 204      | 151    |
| F256          | 5      | 248    | 10     | 0.2    | 2270   | <1     | 60        | 5      | 150      | 44     |
| F257          | 16     | 96     | <10    | 0.1    | 1170   | <1     | 290       | 61     | 56       | 31     |
| F258          | 9      | 85     | 30     | 0.5    | 2910   | <1     | 240       | 6      | 259      | 59     |
| F259          | 12     | 291    | 40     | <0.1   | 1710   | <1     | 60        | 17     | 132      | 88     |
| F260          | 16     | 86     | <10    | 0.3    | 1320   | <1     | 270       | 38     | 45       | 123    |
| F261          | 19     | 152    | 10     | 0.1    | 1230   | <1     | 190       | 38     | 56       | 98     |
| F262          | 32     | 77     | <10    | 0.1    | 1480   | <1     | 530       | 97     | 71       | 63     |
| F263          | 28     | 72     | <10    | 0.2    | 2040   | <1     | 380       | 106    | 60       | 81     |
| F264          | 26     | 136    | <10    | 0.2    | 1640   | <1     | 340       | 69     | 138      | 38     |
| F265          | 10     | 118    | 10     | 0.3    | 1020   | <1     | 220       | 36     | 72       | 253    |
| F266          | 24     | >300   | 60     | 1.0    | 2770   | <1     | 150       | 22     | 78       | 414    |
| F267          | 18     | 117    | <10    | 0.1    | 1170   | <1     | 290       | 67     | 160      | 13     |
| F268          | 5      | 254    | <10    | <0.1   | 550    | <1     | 30        | 14     | 61       | 47     |
| F269          | 8      | 38     | <10    | 0.2    | 1340   | <1     | 550       | 21     | 33       | 75     |
| F270          | 22     | 215    | <10    | <0.1   | 1830   | <1     | 130       | 52     | 295      | 45     |
| F271          | 27     | 241    | 50     | 0.1    | 1310   | <1     | 70        | 14     | 179      | 210    |
| F272          | 21     | 264    | 20     | 0.1    | 910    | <1     | 20        | 25     | 54       | 75     |
| 07B-012M      | 9      | 169    | <10    | 0.3    | 360    | <1     | <10       | 3      | 181      | 31     |
| 07B-013M      | 12     | 228    | <10    | 0.4    | 170    | <1     | <10       | 12     | 99       | 23     |
| 07B-014M      | 5      | 163    | <10    | 0.6    | 190    | <1     | <10       | 4      | 117      | 20     |
| 07B-015M      | 10     | 275    | <10    | 0.3    | 780    | <1     | 10        | 16     | 77       | 62     |
| 07B-016M      | 10     | 161    | <10    | 0.1    | 230    | <1     | <10       | 3      | 125      | 16     |
| 07B-017M      | 17     | 64     | <10    | 0.2    | 50     | <1     | <10       | 5      | 30       | 9      |
| 07B-018M      | 12     | 268    | <10    | 0.1    | 280    | <1     | <10       | 6      | 74       | 40     |
| 07B-019M      | 12     | 120    | <10    | 32.4   | 1010   | <1     | 30        | 2      | 344      | 16     |
| 07B-020M      | 14     | 219    | <10    | 0.2    | 330    | <1     | 20        | 9      | 110      | 15     |
| 07B-021M      | 12     | 228    | <10    | 0.1    | 240    | <1     | <10       | 3      | 127      | 14     |
| 07B-022M      | 5      | 203    | <10    | 0.3    | 530    | <1     | 10        | 3      | 107      | 15     |
| *Dup F251     | 8      | 189    | 60     | 0.2    | 2170   | <1     | 150       | 14     | 183      | 447    |
| *Dup F263     | 29     | 80     | <10    | 0.2    | 1940   | <1     | 380       | 109    | 56       | 57     |
| *Dup 07B-014M | 5      | 187    | <10    | 0.6    | 180    | <1;    | <10       | 4      | 119      | 21     |
| *Std MMISRM14 | 18     | 50     | 10     | 32.1   | 60     | <1     | 230       | 4      | 22       | 68     |
| *BIK BLANK    | <1     | <1     | <10    | <0.1   | <10    | <1     | <10       | <1     | <5       | <5     |

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

Page 2 of 6

#### Park: 198866 Order (CPS

| Element       | Cr         | Cu        | Dy               | Er            | Eu            | Fe          | Gd          | La <sup>:</sup> | Li<br>MMI-M5 | Mg<br>MMI-M5 |
|---------------|------------|-----------|------------------|---------------|---------------|-------------|-------------|-----------------|--------------|--------------|
| Method        | MMI-M5     | MMI-M5    | MMI-M5<br>1      | MMI-M5<br>0.5 | MMI-M5<br>0.5 | MMI-M5<br>1 | MMI-M5<br>1 | MMI-M5<br>1     | MMI-M5       | MIMI-M5      |
| Det.Lim.      | 100<br>PPB | 10<br>PPB | PPB <sup>i</sup> | PPB           | PPB           | PPM         | PPB         | PPB             | PPB          | PPM          |
| Units<br>F251 | 100        | 1180      | 27               | 13.9          | 7.3           | 250         | 30          | 60              | 21           | 46           |
| F251          | 100        | 1230      | 21               | 13.8          | 7.4           | 201         | 32          | 59              | <5           | 44           |
| F252          | 100        | 850       | 44               | 22.0          | 12.3          | 136         | 53          | 90              | <5           | 46           |
| F254          | 200        | 1080      | 58               | 29.1          | 16.7          | 179         | 70          | 127             | 6            | 26           |
| F255          | 200        | 710       | 30               | 14.0          | 9.1           | 180         | 40          | 86              | <5           | <br>43       |
| F256          | 200        | 520       | 25               | 11.7          | 7.1           | 155         | 29          | 63              | 6            | 8            |
| F257          | <100       | 520       | 24               | 16.3          | 3.7           | 24          | 19          | 20              | <5           | 90           |
| F257          | <100       | 950       | <br>96           | 48.2          | 28.6          | 85          | 126         | 172             | <5           | 46           |
| F259          | 200        | 580       | 21               | 10.5          | 5.5           | 270         | 24          | 50              | -<br><5      | 12           |
| F260          | <100       | 1460      | 16               | 9.6           | 3.1           | 131         | 15          | 00<br>17        | <5           | 90           |
| F261          | <100       | 220       | 7                | 3.3           | 1.8           | 69:         | 8           | 13              | <5           | 24           |
| F262          | <100       | 640       | 41               | 24.8          | 9.3           | 19          | 43          | 35              | <5           | 74           |
| F263          | <100       | 740       | 19               | 13.7          | 3.0           | 5           | 15          | 23              | <5           | 79           |
| F264          | <100       | 1180      | 46               | 24.1          | 8.9           | 36          | 39          | 44              | <5           | 62           |
| F265          | <100       | 1170      | 14               | 7.1           | 3.6           | 154         | 15          | 26              | <5           | 31           |
| F266          | 300        | 1590      | 11               | 7.0           | 2.5           | 353         | 10          | 26              | 26           | 26           |
| F267          | <100       | 380       | 64               | 36.4          | 14.9          | 32          | 71          | 70              | <5           | 73           |
| F268          | <100       | 210       | 22               | 11.2          | 4.5           | 140         | 20          | 20              | <5           | 12           |
| F269          | <100       | 490       | 5                | 2.4           | 1.5           | 30          | 7           | 9               | <5           | 40           |
| F270          | <100       | 1530      | 125              | 59.3          | 22.2          | 40          | 106         | 74              | <5           | 60           |
| F271          | 100        | 540       | 26               | 11.8          | 7.1           | 173         | 30          | 62              | <5           | 21           |
| F272          | <100       | 250       | 13               | 7.1           | 3.0           | 116         | 13          | 23              | <5           | 7            |
| 07B-012M      | <100       | 350       | 18               | 8.9           | 5.8           | 65          | 25          | 75              | <5           | <1           |
| 07B-013M      | <100       | 360       | 11               | 5.0           | 3.7           | 29          | 13          | 39              | <5           | <1           |
| 07B-014M      | <100       | 240       | 14               | 6.2           | 4.4           | 30          | 18          | 44              | 6            | <1           |
| 07B-015M      | <100       | 1140      | 13               | 5.9           | 3.3           | 55          | 13          | 30              | <5           | 2            |
| 07B-016M      | <100       | 200       | 14               | 6.7           | 4.8           | 28          | 19          | 53              | <5           | <1           |
| 07B-017M      | <100       | 180       | 10               | 5.6           | 2.5           | 9           | 10          | 11              | <5           | <1           |
| 07B-018M      | <100       | 220       | 11               | 6.0           | 2.9           | 72          | 11          | 34              | <5           | <1           |
| 07B-019M      | <100       | 350       | 51               | 26.0          | 14.8          | 32          | 67          | 150             | <5           | 3            |
| 07B-020M      | <100       | 150       | 15               | 7.1           | 4.2           | 39          | 18          | 48              | <5           | <1           |
| 07B-021M      | <100       | 270       | 12               | 5.5           | 4.4           | 31          | 17          | 49              | <5           | <1           |
| 07B-022M      | <100       | 160       | 14               | 6.3           | 4.3           | 36          | 17          | 41              | <5           | <1           |
| *Dup F251     | 100        | 1030      | 36               | 18.3          | 9.5           | 176         | 41          | 71              | 7            | 45           |
| *Dup F263     | <100       | 700       | 21               | 15.6          | 3.5           | 6           | 18          | 23              | <5           | 87           |
| *Dup 07B-014M | <100       | 230       | 14               | 6.4           | 4.5           | 34          | 19          | 45              | <5           | <1           |
| *Std MMISRM14 | <100       | 680       | 3                | 1.2           | 1.2           | 2           | 5           | 5               | <5           | 44           |
| *BIK BLANK    | <100       | <10       | <1               | <0.5          | <0.5          | <1          | <1          | <1              | <5           | <1           |

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

Mineral Services 1885 Leslie Street Toronto ON M3B 2M3 t(416) 445-5755 f(416) 445-4152 www.sgs.com

Page 3 of 6

# SGS

#### Final: 053399 Great CRS

SGS

| Element              | Мо          | Nb                 | Nd          | Ni          | Pb           | Pd                                  | Рг                              | Pt          | Rb          | Sb       |
|----------------------|-------------|--------------------|-------------|-------------|--------------|-------------------------------------|---------------------------------|-------------|-------------|----------|
| Method               | MMI-M5<br>5 | MMI-M5<br>0.5      | MMI-M5<br>1 | MMI-M5<br>5 | MMI-M5<br>10 | MMI-M5<br>1                         | MMI-M5<br>1                     | MMI-M5<br>1 | MMI-M5<br>5 | MMI-M5   |
| Det.Lim.<br>Units    | PPB         | PPB                | PPB         | PPB         | PPB          | PPB                                 | PPB                             | PPB         | PPB         | PPB      |
| F251                 | 11          | 6.7                | 97          | 350         | 120          | <1                                  | 19                              | <1          | 77          | 5        |
| F252                 | 9           | 4.4                | 100         | 185         | 70           | <1                                  | 20                              | <1          | 89          | 3        |
| F253                 | 9           | 4.8                | 162         | 223         | 100          | <1                                  | 31                              | <1          | 103         | 3        |
| F254                 | 9           | 4.0<br>6.0         | 216         | 166         | 90           | <1                                  | 43                              | <1          | 97          | 3        |
| F255                 | 9           | 4.4                | 141         | 134         | 70           | <1                                  | 29                              | <1          | 76          | 3        |
| F256                 | 7           | 4.2                | 98          | 104         | 40           | <1                                  | 20                              | <1          | 70          | 1        |
| F257                 | <5          | <i>ב</i><br><0.5   | 41          | 282         | 60           | <1                                  | 8                               | <1          | 51          | -<br><1  |
| F258                 |             | 0.8                | 377         | 141         | 70           | <1                                  | 68                              | <1          | 65          | 2        |
| F259                 | 13          | 5.3                | 80          | 197         | 80           | <1                                  | 16                              | <1          | 92          | 2        |
| F260                 | 6           | <0.5               | 36          | 403         | 50           | <1                                  | 7                               | <1          | 27          | <1       |
| F261                 | <5          | 0.8                | 23          | 129         | 120          | <1                                  | 5                               | <1          | 55          | <1       |
| F262                 | <5          | <0.5               | 23<br>84    | 1330        | 50           | <1                                  | 15                              | <1          | 53          | <1       |
| F263                 | ~3<br><5    | <0.5<br><0.5       | 38          | 1020        | 60           | <1                                  | 8                               | <1          | 76          | <1       |
| F264                 | <5          | <0.5               | 92          | 966         | 140          | <1<br><1                            | 17                              | <1          | 80          | <1       |
| F265                 |             | 2.0                | 92<br>49    | 218         | 80           | <1<br><1                            | 9                               | <1          | 47          | <1<br><1 |
| F266                 | 13          | 2.0<br>6.9         | 45<br>35    | 218         | 140          | <1                                  | 8                               | <1          | 134         | 5        |
| F267                 | <5          | <0.5               | 179         | 200<br>609  | 90           | <1                                  | 31                              | <1          | 58          |          |
| F207                 |             | <u>_0.5</u><br>2.1 | 50          | 134         | 90<br>160    | <1<br><1                            | 9                               | <1<br><1    |             | <1<br><1 |
| F269                 | 8           | <0.5               | 21          | 201         | 30           | <1                                  | 9<br>4                          | <1          | 29          | <1<br><1 |
| F209                 | o<br><5     | <0.5               | 251         | 534         | 30<br>120    | <1                                  | 4                               | <1          | 29<br>82    | <1       |
| F271                 |             |                    | 102         |             |              | <1                                  |                                 |             | o∠<br>100   | 2        |
| F271                 | 10<br>5     | 4.1<br>2.3         | 102<br>37   | 182<br>157  | 130<br>140   | <1<br><1                            | 21<br>7                         | <1<br><1    | 145         | ∠<br>1>  |
| 07B-012M             | 7           | 2.3<br>13.6        | 37<br>99    | 25          | 70           | <1<br><1                            | 22                              | <1<br><1    | 145         | <1<br><1 |
| 078-012M             | 7           | 3.7                | 99<br>51    | 25<br>22    | 70<br>60     | ر ۲<br><1                           | 11                              | <1<br><1    | 85          | <1<br><1 |
| 07B-013M<br>07B-014M | an          |                    |             | ······      |              | <1<br><1                            | commencer of some name of a re- |             |             | <1<br><1 |
| 07B-014M             | 5           | 2.7                | 70          | 29          | 30           | e company water in the contribution | 15                              | <1          | 92          |          |
| 07B-015M             | 10          | 4.3                | 44          | 96          | 60           | <1                                  | 9                               | <1          | 159         | <1       |
|                      | 6           | 2.9                | 77          | 17          | 30           | <1                                  | 16                              | <1          | 82          | <1       |
| 07B-017M             | 26          | <0.5               | 27          | 26          | 40           | <1                                  | 5                               | <1          | 118         | <1       |
| 07B-018M             | 6           | 10.1               | 41          | 51          | 60           | <1                                  | 9                               | <1          | 112         | <1       |
| 07B-019M<br>07B-020M | <5          | 2.2                | 244         | 20          | 50           | <1                                  | 49                              | <1          | 116         | <1       |
|                      | <5          | 6.4                | 64          | 21          | 60           | <1                                  | 13                              | <1          | 139         | <1       |
| 07B-021M             | <5          | 5.5                | 68          | 21          | 40           | <1                                  | 14                              | <1          | 75          | <1       |
| 07B-022M             | <5          | 2.8                | 62          | 14          | 20           | <1                                  | 13                              | <1          | 88          | <1       |
| *Dup F251            | 8           | 5.1                | 124         | 271         | 120          | <1                                  | 24                              | <1          | 66          | 4        |
| *Dup F263            | <5          | <0.5               | 42          | 1090        | 60           | <1                                  | 8                               | <1          | 78          | <1       |
| *Dup 07B-014M        | 6           | 3.4                | 74          | 33          | 30           | <1                                  | 15                              | <1          | 94          | <1       |
| *Std MMISRM14        | 47          | <0.5               | 18          | 254         | 150          | 30                                  | 3                               | <1          | 306         | <1       |
| *Bik BLANK           | <5          | <0.5               | <1          | <5          | <10          | <1                                  | <1                              | <1          | <5          | <1       |

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

ŧ

Mineral Services 1885 Leslie Street Toronto ON M3B 2M3 t(416) 445-5755 f(416) 445-4152 www.sgs.com

#### Page 4 of 6

#### Final : 098938 Onder: ORS

SGS

| Page 5 of 6 |  | Page | 5 | of | 6 |
|-------------|--|------|---|----|---|
|-------------|--|------|---|----|---|

| Element                                  | Sc                                                              | Sm                                       | Sn                                              | Sr                                      | Ta                                    | Tb                               | Те                                   | Th                                                                                                              | Ti       | TI           |
|------------------------------------------|-----------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|--------------|
| Method                                   | MMI-M5                                                          | MMI-M5                                   | MMI-M5                                          | MMI-M5                                  | MMI-M5                                | MMI-M5                           | MMI-M5                               | MMI-M5                                                                                                          | MMI-M5   | MMI-M5       |
| Det.Lim.                                 | 5<br>PPB                                                        | 1<br>PPB                                 | 1<br>PPB                                        | 10<br>PP <b>B</b>                       | 1<br>PPB                              | 1<br>PPB                         | 10<br>PPB                            | 0.5<br>PPB                                                                                                      | 3<br>PPB | 0.5<br>PPB   |
| Units                                    |                                                                 | a seconda e a compañía a                 | . en ora a via namarado ra                      | na naanaananaa                          | · · · · · · · · · · · · · · · · · · · | - management                     | anaa ahaa ahaa ahaa                  | دىنى يېتىمىيەرمىيىن سى                                                                                          |          |              |
| F251                                     | 87                                                              | 24                                       | 2                                               | 810                                     | <1                                    | 5                                | <10                                  | 25.2                                                                                                            | 5230     | 0.6          |
| F252                                     | 61                                                              | 26                                       | 3                                               | 800                                     | <1                                    | 5                                | <10                                  | 18.0                                                                                                            | 3580     | <0.5         |
| F253                                     | 68                                                              | 42                                       | 3                                               | 780                                     | <1                                    | <b>.7</b>                        | <10                                  | 17.9                                                                                                            | 3910     | <0.5         |
| F254                                     |                                                                 | 57                                       | 3                                               | 570                                     | <1                                    | 10                               | <10                                  | 22.3                                                                                                            | 5300     | 0.6          |
| F255                                     | 53                                                              | 34                                       | 3                                               | 870                                     | <1                                    | 5                                | <10                                  | 15.2                                                                                                            | 3740     | <0.5         |
| F256                                     | 65                                                              | 25                                       | 3                                               | 250                                     | <1                                    | 4                                | <10                                  | 18.1                                                                                                            | 2850     | <0.5         |
| F257                                     | 26                                                              | 12                                       | <1                                              | 1440                                    | <1                                    | 3                                | <10                                  | 3.8                                                                                                             | 18       | <0.5         |
| F258                                     | 66                                                              | 98                                       | 1                                               | 1130                                    | <1                                    | 17                               | <10                                  | 13.2                                                                                                            | 761      | 0.6          |
| F259                                     | 46                                                              | 20                                       | 2                                               | 310                                     | <1                                    | 3                                | <10                                  | 16.0                                                                                                            | 3060     | <0.5         |
| F260                                     | 25                                                              | 10                                       | 1                                               | 1120                                    | <1                                    | 2                                | <10                                  | 4.4                                                                                                             | 129      | <0.5         |
| F261                                     | 13                                                              | 6                                        | 1                                               | 550                                     | <1                                    | 1                                | <10                                  | 5.4                                                                                                             | 503      | <0.5         |
| F262                                     | 17                                                              | 28                                       | 1                                               | 1610                                    | <1                                    | 6                                | <10                                  | 2.5                                                                                                             | <3       | <0.5         |
| F263                                     | 14                                                              | 10                                       | <1                                              | 1600                                    | <1                                    | 2                                | <10                                  | 0.7                                                                                                             | <3       | <0.5         |
| F264                                     | 46                                                              | 27                                       | <1                                              | 1280                                    | <1                                    | 7                                | <10                                  | 7.5                                                                                                             | 21       | <0.5         |
| F265                                     | 22                                                              | 12                                       | 1                                               | 680                                     | <1                                    | 2                                | <10                                  | 5.8                                                                                                             | 1740     | <0.5         |
| F266                                     | 94                                                              | 9                                        | 2                                               | 620                                     | <1                                    | 2                                | <10                                  | 24.2                                                                                                            | 5200     | 1.0          |
| F267                                     | 74                                                              | 50                                       | <1                                              | 1080                                    | <1                                    | 10                               | <10                                  | 8.1                                                                                                             | 59       | <0.5         |
| F268                                     | 39                                                              | 14                                       | 1                                               | 140                                     | <1                                    | 3                                | <10                                  | 7.8                                                                                                             | 1700     | <0.5         |
| F269                                     | <5                                                              | 6                                        | <1                                              | 1320                                    | <1                                    | <1                               | <10                                  | 1.1                                                                                                             | 7        | <0.5         |
| F270                                     | 95                                                              | 71                                       | <1                                              | 1220                                    | <1                                    | 19                               | <10                                  | 11.1                                                                                                            | 105      | <0.5         |
| F271                                     | 60                                                              | 26                                       | 1                                               | 290                                     | <1                                    | 5                                | <10                                  | 16.8                                                                                                            | 3180     | <0.5         |
| F272                                     | 38                                                              | 10                                       | 1                                               | 140                                     | <1                                    | 2                                | <10                                  | 7.0                                                                                                             | 1700     | <0.5         |
| 07B-012M                                 | 33                                                              | 22                                       | 2                                               | 50                                      | <1                                    | 3                                | <10                                  | 11.9                                                                                                            | 2500     | <0.5         |
| 07B-013M                                 | 23                                                              | 12                                       | <1                                              | 20                                      | <1                                    | 2                                | <10                                  | 16.3                                                                                                            | 775      | <0.5         |
| 07B-014M                                 | 22                                                              | 17                                       | <1                                              | 40                                      | <1                                    | 2                                | <10                                  | 11.1                                                                                                            | 803      | <0.5         |
| 07B-015M                                 | 30                                                              | 12                                       | 1                                               | 50                                      | <1                                    | 2                                | <10                                  | 11.0                                                                                                            | 1910     | 0.7          |
| 07B-016M                                 | 25                                                              | 17                                       | <1                                              | 40                                      | <1                                    | 3                                | <10                                  | 9.6                                                                                                             | 897      | <0.5         |
| 07B-017M                                 | 18                                                              | 8                                        | <1                                              | 10                                      | <1                                    | 2                                | <10                                  | 1.8                                                                                                             | 47       | <0.5         |
| 07B-018M                                 | 30                                                              | 10                                       | 1                                               | 40                                      | <1                                    | 2                                | <10                                  | 13.6                                                                                                            | 2440     | <0.5         |
| 07B-019M                                 |                                                                 | 55                                       | <1                                              | 220                                     | <1                                    | 9                                | <10                                  | 9.0                                                                                                             | 1740     | <0.5         |
| 07B-020M                                 | 24                                                              | 15                                       | 1                                               | 90                                      | <1                                    | 3                                | <10                                  | 11.4                                                                                                            | 2250     | <0.5         |
| 07B-021M                                 | 24                                                              | 16                                       | <1                                              | 40                                      | <1                                    | 2                                | <10                                  | 15.4                                                                                                            | 1310     | <0.5         |
| 07B-022M                                 | 29                                                              | 16                                       | <1                                              | 100                                     | <1                                    | 2                                | <10                                  | 13.8                                                                                                            | 797      | <0.5         |
| Dup F251                                 | 75                                                              | 32                                       | 1                                               | 740                                     | <1                                    | 6                                | <10                                  | 23.2                                                                                                            | 4150     | <0.5         |
| Dup F263                                 | 19                                                              | 11                                       | <1                                              | 1520                                    | <1                                    | 3                                | <10                                  | 1.0                                                                                                             | <3       | <0.5         |
| Dup 07B-014M                             | 24                                                              | 17                                       | <1                                              | 30                                      | <1                                    | 3                                | <10                                  | 12.3                                                                                                            | 988      | <0.5         |
| Std MMISRM14                             | 8                                                               | 5                                        | <1<br><1                                        | 560                                     | را ب<br>1                             |                                  | <10<br><10                           | 25.0                                                                                                            |          | <0.5<br><0.5 |
| an a | an an an an an an an air an | an a | man among ang ang ang ang ang ang ang ang ang a | วราว มาการ พระพระพระ พระการมากที่สุดภาพ |                                       | a an ann a succession an Andrews | แน่งการของเพราะหางของเหต่องหนึ่งการท | energen and the second processing and the second |          | <0.5         |
| *BIK BLANK                               | <5                                                              | <1                                       | <1                                              | <10                                     | <1                                    | <1                               | <10                                  | <0.5                                                                                                            | <3       | :0>          |

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

# SGS

#### Final: 098059 Order: ORS

| Element                                                                                                         | U                                                             | W        | Y        | Yb                                                      | Zn                                            | Zr                           |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|----------|---------------------------------------------------------|-----------------------------------------------|------------------------------|
| Method                                                                                                          | MMI-M5                                                        | MMI-M5   | MMI-M5   | MMI-M5                                                  | MMI-M5                                        | MMI-M5                       |
| Det.Lim.<br>Units                                                                                               | 1<br>PPB                                                      | 1<br>PPB | 5<br>PPB | 1<br>PPB                                                | 20<br>PPB                                     | 5<br>PPB                     |
| F251                                                                                                            | 12                                                            | 1        | 136      | 11                                                      | 670                                           | 132                          |
| F252                                                                                                            | 9                                                             | 1        | 130      | 11                                                      | 310                                           | 84                           |
| F253                                                                                                            | 8,                                                            | 1        | 236      | 16                                                      | 430                                           | 90                           |
| F254                                                                                                            | 11                                                            | 2        | 230      | 21                                                      | 430<br>200                                    | 123                          |
| F255                                                                                                            | 6                                                             | ے<br><1  | 157      | 10                                                      | 310                                           | 72                           |
| F256                                                                                                            | 9                                                             |          | 137      | 9<br>10                                                 | 270                                           | 114 / Z                      |
| F250                                                                                                            | 5                                                             | -<br><1  | 110      | 9<br>12                                                 | 610                                           | 6                            |
| F257                                                                                                            | 28                                                            | <1       |          | 12<br>33                                                | 90                                            |                              |
| F259                                                                                                            | en senera compresentador encorrecto e en el el el encorrector |          | 574      | a management and an | an san sa | 45<br>71                     |
| presidente de la companya de la comp | 8                                                             | 2        | 102      | 8                                                       | 660                                           | warmen and a strength of the |
| F260                                                                                                            | 9                                                             | <1       | 100      | 7                                                       | 350                                           | 13                           |
| F261                                                                                                            | 3                                                             | <1       | 31       | 2                                                       | 1360                                          | 20                           |
| F262                                                                                                            | 24                                                            | <1       | 264      | 17                                                      | 290                                           | 9                            |
| F263                                                                                                            | 3                                                             | <1       | 102      | 10                                                      | 260                                           | <5                           |
| F264                                                                                                            | 10                                                            | <1       | 258      | 15                                                      | 70                                            | 10                           |
| F265                                                                                                            | 5                                                             | <1       | 70       | 5                                                       | 450                                           | 19                           |
| F266                                                                                                            | 11                                                            | 2        | 57       | 6                                                       | 330                                           | 148                          |
| F267                                                                                                            | 23                                                            | <1       | 413      | 25                                                      | 370                                           | 18                           |
| F268                                                                                                            | <u> </u>                                                      | 1        | 114      | 8                                                       | 160                                           | 31                           |
| F269                                                                                                            | 17                                                            | <1       | 32       | 2                                                       | 40                                            | <5                           |
| F270                                                                                                            | 8                                                             | <1       | 727      | 38                                                      | 490                                           | 11                           |
| F271                                                                                                            | 8                                                             | 1        | 122      | 8                                                       | 300                                           | 86                           |
| F272                                                                                                            | 5                                                             | <1       | 72       | 5                                                       | 200                                           | 48                           |
| 07B-012M                                                                                                        | 7                                                             | 7        | 94       | 7                                                       | 70                                            | 87                           |
| 07B-013M                                                                                                        | 7                                                             | 4        | 50       | 4                                                       | 110                                           | 94                           |
| 07B-014M                                                                                                        | 5                                                             | <1       | 64       | 5                                                       | 210                                           | 71                           |
| 07B-015M                                                                                                        | 7                                                             | 1        | 52       | 5                                                       | 340                                           | 105                          |
| 07B-016M                                                                                                        | : 5                                                           | <1       | 69       | 5                                                       | 50                                            | 70                           |
| 07B-017M                                                                                                        | 9                                                             | <1       | 61       | 4                                                       | 80                                            | 46                           |
| 07B-018M                                                                                                        | 9                                                             | <1       | 56       | 5                                                       | 120                                           | 116                          |
| 07B-019M                                                                                                        | 10                                                            | <1       | 303      | 19                                                      | <20                                           | 47                           |
| 07B-020M                                                                                                        | 6                                                             | 2        | 71       | 5                                                       | 40                                            | 67                           |
| 07B-021M                                                                                                        | 6                                                             | <1       | 54       | 4                                                       | 80                                            | 140                          |
| 07B-022M                                                                                                        | 5                                                             | 2        | 58       | 5                                                       | 30                                            | 114                          |
| *Dup F251                                                                                                       | 10                                                            | <1       | 188      | 14                                                      | 500                                           | 115                          |
| *Dup F263                                                                                                       | 6                                                             | <1       | 121      | 12                                                      | 340                                           | <5                           |
| *Dup 07B-014M                                                                                                   | 6                                                             | <1       | 66       | 5                                                       | 150                                           | 71                           |
| *Std MMISRM14                                                                                                   | 52                                                            | <1       | 12       | <1                                                      | 320                                           | 17                           |
| *BIK BLANK                                                                                                      | <1                                                            | <1       | <5       | <1                                                      | <20                                           | <5                           |

Page 6 of 6

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

#### **APPENDIX 3**

#### LAFORCE PROPERTY 2007 PROSPECTING NOTES

#### Table 7

### LaForce Property 2007 Prospecting Notes

page 1 of 4

| Station No.   | UTM Co-o | rd. (NAD 83) | Remarks                                                            |
|---------------|----------|--------------|--------------------------------------------------------------------|
|               | East     | North        |                                                                    |
|               |          |              |                                                                    |
| G. Weary note | es:      |              |                                                                    |
|               |          |              |                                                                    |
| G1108-1       | 663830   | 6317829      | Shale or phyllite (07G-01R) in contact w/ limestone ~100 m to      |
|               |          |              | west; bedding in phyllite strikes NW-SE and dips near vertically   |
|               |          |              |                                                                    |
| G1208-1       | 658127   | 6319895      | Granite outcrops consisting of 30% mafics, 45% plagioclase &       |
|               |          |              | 25% quartz                                                         |
| G1208-2       | 659458   | 6319646      | Fine to coarse grained volcanic sediment (?) outcrops; trace to    |
| ŕ             |          |              | no mineralization                                                  |
| G1208-3       | 660047   | 6320081      | In SE part of Big Billy cirque; ~200 m wide zone of brecciated     |
|               |          |              | andesitic volcanic rocks in contact with 500 m of heavily Fe-oxide |
|               |          |              | stained & weathered talus (rock type = sandstone w/ abundant       |
|               |          |              | carbonate [siderite?] veining)                                     |
|               |          |              |                                                                    |
| G1308-1       | 659596   | 6319957      | "Heli-dropped" ~50m above Big Billy colour anomaly; rock type      |
|               |          |              | is shale & phyllite; no mineralization observed                    |
| G1308-2       | 659821   |              | Shale - no mineralization observed                                 |
| G1308-3       | 659473   | 6320262      | Same location as per 07G-06R; weak quartz stockwork veining        |
|               |          |              | in oxidized sandstone; veining is sub-parallel to bedding and      |
|               |          |              | includes some veins to 20 cm thick                                 |
| G1308-4       | 659121   | 6320886      | Hiked along strike to colour anomaly on the north side of the      |
|               |          |              | Big Billy cirque; continuation of Big Billy showing, w/ quartz     |
|               |          |              | stockwork veins containing up to 1% Py hosted w/in sedimentary     |
|               |          |              | rock; mineralized zone appears to be continuous over a strike      |
|               |          |              | length of ~1 km and over an apparent zone width of 50-100 m        |
|               |          |              |                                                                    |
| G1608-1       | 651798   | 6330581      | "Heli-dropped" on colour anomaly in the far NW comer of the        |
|               |          |              | LaForce property (same area as 07G-19R to 23R - see Table 5)       |
| G1608-2       | 652089   | 6330766      | Dropped in below cirque of traversed scree slope east of 07G-22R;  |
|               |          |              | lots of Fe-oxide stained talus; Py abundant in porphyry &          |
|               |          |              | volcanic rocks                                                     |
| G1608-3       | 651422   | 6330245      | Felsic intrusive; ~60% feldspar, ~30% pyroxene crystals to 1 cm;   |
|               |          |              | minor epidote haloing mafic minerals                               |
|               |          |              |                                                                    |
| G1708-1       | 656954   | 6324500      | silt sample site 07G-27L = river transported glaciofluvial sedi-   |
|               |          |              | ments; ~ 30 m high esker on south bank of river and 20 m high      |
|               |          |              | cliff of shale bedrock on north bank                               |
| G1708-2       | 657899   | 6323882      | Dark grey shale w/ Fe-oxides along bedding planes striking 160     |
|               |          |              | and dipping 70 degrees SW; this unit overlies a meta-volcanic or   |
|               |          |              | sedimentary unit w/ <0.5% diss. Py                                 |
| G1708-3       | 657374   | 6324103      | Similar to G1708-2, except foliation better developed; slightly    |
|               |          |              | coarser grained texture, w/ 0.5% Py blebs (oxidized)               |

| Station No.  | UTM Co-on     |            | <u>Remarks</u>                                                        |
|--------------|---------------|------------|-----------------------------------------------------------------------|
|              | East          | North      |                                                                       |
|              |               |            |                                                                       |
| G. Weary not | es - continue | d:         |                                                                       |
|              |               |            |                                                                       |
| G1708-4      | 656735        | 6324400    | Grey shale ~200 m from river; similar to shale at G1708-2 & -3;       |
|              |               |            | bedding at 140/75 SW                                                  |
|              |               |            |                                                                       |
| 3. Bowen not | es:           |            |                                                                       |
|              |               |            |                                                                       |
| B1108-1      | 664293        | 6317598    | Barren bull quartz float (talus) blocks 1.0-1.5 m in diameter         |
| B1108-2      | 664094        | 6317355    | Mild Fe-oxide coating weathered surfaces on fine-grained lime-        |
|              | ·             |            | stone unit; some talus blocks show brecciated tecture, w/ lime-       |
|              |               | <u></u>    | stone clasts to 3-4 mm                                                |
| B1108-3      | 664116        | 6317231    | S1 foliation in phyllite at 334/50 NE                                 |
| B1108-4      | 664124        |            | >1 m diameter angular blocks of quartz-carbonate-chlorite &           |
| Mint 1925-1. |               |            | locally botryoidal goethite; sourced from nearby veins cutting        |
|              |               |            | phyllite                                                              |
| B1108-5      | 664153        | 6317205    | S1 foliation in phyllite at 336/70 NE                                 |
|              |               | *          |                                                                       |
| B1208-1      | 658235        | 6320644    | Start of traverse; felsenmeer of andesitic volcanics w/ possible      |
|              |               |            | fragmental texture; no sulphides noted; relatively fresh              |
| B1208-2      | 658236        | 6320701    | Andesitic augite porphyry; some quartz-chlorite vein float; <1% of    |
|              |               |            | felsenmeer are small pieces of rusty float w/ trace fine diss. Py     |
|              |               | *          | (local shearing?)                                                     |
| B1208-3      | 658365        | 6320901    | Some felsenmeer is intrusive (monzonite to quartz monzonite) w/       |
|              |               |            | diss. Fe-oxides after Py(?); also Fe-oxides on fractures              |
| B1208-4      | 658385        | 6320924    | Andesitic fragmental & augite porphyry; some few mm quartz vlts.      |
|              |               |            | on fractures w/ Fe-oxides; locally epidote on different fracture set  |
| B1208-5      | 658700        | 6321718    | Large piece of quartz vein float in talus (long axis >1.0 m); poss. 1 |
|              |               |            | bleb of Cp noted; no sample taken                                     |
| B1208-6      | 658704        | 6321734    | 0.5 m diameter, strongly oxidized quartz vein float w/ possible       |
|              |               |            | trace AsPy; no sample taken                                           |
|              |               |            |                                                                       |
| B1308-1      | 657312        | 6319680    | "Heli-drop" start to traverse; rock type = coarse-grained quartz      |
|              |               |            | monzonite cut by siliceous felsite dikes to 1.0 m wide; dikes         |
|              | <b> </b> -    | <u>,</u> . | carry trace diss. Mt; quartz monzonite also cut by minor quartz       |
|              |               |            | veinlets which in turn are cut by minor epidote on fractures          |
| B1308-2      | 657249        | 6319697    | local shearing at 250/60SE; on hangingwall rocks to shearing,         |
|              |               |            | minor slickensides on oxidized carbonate fracture-filling; also epi-  |
|              |               |            | dote fracture filling common                                          |
| B1308-3      | 657155        | 6319728    | Bull quartz vein to 0.8 m wide cuts quartz monzonite at 028/75        |
|              |               |            | NW; vein is barren                                                    |
| B1308-4      | 656498        | 6319990    | Sheared & chloritized mafic dike(?) cuts quartz monzonite at          |
| 0,000-4      |               | 0010000    | 098 degrees; 3-4 m wide; minor carb. vits. along shear foliation;     |
|              |               |            | possible trace malachite; not sampled                                 |
| B1308-5      | 656612        | 6320303    | Very strong fracture set in quartz monzonite at 155/80-90 NE          |
| B1308-6      | 656347        |            | Minor Fe-oxides on fractures; minor shearing in quartz monzonite;     |
| 01000-0      | 000047        | 0021200    | trace diss. Py                                                        |

| Station No.  |              | rd. (NAD 83)                           | <u>Remarks</u>                                                                                                                                                                                                                      |
|--------------|--------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | East         | North                                  |                                                                                                                                                                                                                                     |
|              |              |                                        |                                                                                                                                                                                                                                     |
| 3. Bowen not | es - continu | əd:                                    |                                                                                                                                                                                                                                     |
|              |              |                                        |                                                                                                                                                                                                                                     |
| B1308-7      | 656333       | 6321359                                | Weak-mod. Ilmonite-goethite on fractures in quartz monzonite;                                                                                                                                                                       |
|              |              |                                        | goethite after minor diss. Py                                                                                                                                                                                                       |
|              |              |                                        |                                                                                                                                                                                                                                     |
| B1508-1      | 653815       | 6327099                                | In gossan zone in cirque above fly-camp # 2; minor Py & possible                                                                                                                                                                    |
|              |              |                                        | trace Cp in 0.5 m diameter, angular quartz vein float; not sampled                                                                                                                                                                  |
| B1508-2      | 653929       | 6326850                                | Very rusty sub-angular float of altered volcanic(?) rock w/ some                                                                                                                                                                    |
|              |              |                                        | quartz veinlets, one of which may have trace MoS2; nearby is 0.4                                                                                                                                                                    |
|              |              |                                        | m diameter rusty float, dioritic, w/ 1-2% diss. Py & possible trace                                                                                                                                                                 |
|              |              |                                        | Cp; no sample taken                                                                                                                                                                                                                 |
| B1508-3      | 654148       | 6326735                                | Pyritic shear, 10 cm wide, in bleached fine grained volcanic rock;                                                                                                                                                                  |
|              |              |                                        | shear at 166/~90; approx. eastern limit of large gossan zone                                                                                                                                                                        |
| B1508-4      | 654611       | 6325632                                | Furthest point out on traverse; andesitic volcanic rocks; chloriti-                                                                                                                                                                 |
|              |              | ·                                      | zed, no sulphides; outside of gossan zone                                                                                                                                                                                           |
| B1508-5      | 654396       |                                        | Approx. SE contact of gossan zone                                                                                                                                                                                                   |
| B1508-6      | 654194       | 6326107                                | Strongly magnetic pyroxene dike, 1.5 m wide and trending ~043                                                                                                                                                                       |
|              | 1            |                                        | degrees; cuts less mafic intrusive (?) rock                                                                                                                                                                                         |
|              |              |                                        |                                                                                                                                                                                                                                     |
| B1608-1      | 654803       | 6332151                                | "Heli-drop" to start traverse; 2 m wide quartz blow in schistose                                                                                                                                                                    |
|              |              |                                        | rock w/ S1 foliation at 307/70 NE; quartz blow follows                                                                                                                                                                              |
|              |              |                                        | schistosity and may have limited strike length extent; locally                                                                                                                                                                      |
|              |              |                                        | vein contains weak Fe-oxides, but no sulphides noted                                                                                                                                                                                |
| B1608-2      | 654508       | 6332097                                | 0.5 m wide bull quartz vein following schistose S1 foliation at 350/                                                                                                                                                                |
|              |              |                                        | 50-60 W; foliation opposite in dip to previous station; some                                                                                                                                                                        |
|              |              |                                        | quartz vein pieces w/ mod. Fe-oxides; possible trace grey sul-                                                                                                                                                                      |
|              |              |                                        | phide; not sampled                                                                                                                                                                                                                  |
| B1608-3      | 654355       | 6331916                                | Weak-mod. Fe-oxide zone over 200 m east-west width in schis-                                                                                                                                                                        |
|              |              |                                        | tose rocks; talus exhibits ~5% bull quartz vein material w/ some                                                                                                                                                                    |
|              |              |                                        | quartz pieces containing mod. Fe-oxides, but no sulphides noted                                                                                                                                                                     |
| B1608-4      | 654338       | 6331716                                | Rusty (geothitic) "black shale" w/ fine quartz vlts./lamellae w/                                                                                                                                                                    |
|              |              |                                        | Fe-oxides & minor Py; no sample taken                                                                                                                                                                                               |
| B1608-5      | 654307       | 6331664                                | Rusty, bleached, schistose rock over 10 m zone width; S1 folia-                                                                                                                                                                     |
|              |              |                                        | tion at 330/85-90 NE; <1% diss. Py; no sample taken                                                                                                                                                                                 |
| B1608-6      | 654276       | 6331633                                | Thinly bedded (few cm thick) limestone w/ likely same bedding                                                                                                                                                                       |
|              |              |                                        | attitude as S1 foliation at station B1608-5; unit is approx. 10-15 m                                                                                                                                                                |
|              |              |                                        | wide; small-scale isoclinal folds seen in felsenmeer blocks                                                                                                                                                                         |
| B1608-7      | 654190       | 6331426                                | Rock more andesitic; may be leaving sedimentary package as                                                                                                                                                                          |
|              |              | ······································ | traverse heads westerly                                                                                                                                                                                                             |
| B1608-8      | 654088       | 6331378                                | Sharp cleft in ridge marks shear/fault zone trending 153/~80 NE;                                                                                                                                                                    |
|              |              |                                        | appears to be sediments on both sides of fault zone; dip of sedi-                                                                                                                                                                   |
|              |              |                                        | ments on east side = 30-40 degrees; dip on west side of fault =                                                                                                                                                                     |
|              |              |                                        | 80 degrees; therefore, some rotation across fault                                                                                                                                                                                   |
|              |              |                                        | na na seconda de la companya de la c<br>Na companya de la comp |
| B1708-1      | 657608       | 6324342                                | Outcrop in river is sediment w/ bedding at 330/75 SW; locally,                                                                                                                                                                      |
|              |              |                                        | some S1 foliation quartz veins                                                                                                                                                                                                      |

| Station No.  | UTM Co-o                              | rd. (NAD 83)                          | Remarks                                                          |
|--------------|---------------------------------------|---------------------------------------|------------------------------------------------------------------|
|              | East                                  | North                                 |                                                                  |
|              |                                       |                                       |                                                                  |
| B. Bowen not | es - continui                         | ed:                                   |                                                                  |
| <i></i>      |                                       | 50.                                   |                                                                  |
| B1708-2      | 657265                                | 6324255                               | Phyllite or schist outcrop with bedding attitude same as that at |
| 01700-2      | 007200                                | 002-200                               | station B1708-1                                                  |
|              |                                       |                                       |                                                                  |
| B1808-1      | 653692                                | 6227646                               | ~3% Py & trace Cp in sheared volcanic (?) rock; shearing at N-S, |
| 01000-1      | 000092                                | 0027040                               | dipping 85 E                                                     |
| B1808-2      | 653557                                | 6207616                               | Outcrop of coarse grained pyroxene porphyry; gabbroic to ultra-  |
| B1000-2      | 000007                                | 0327010                               | mafic in composition; relatively fresh & unmineralized           |
| B1808-3      | 653194                                |                                       |                                                                  |
| D1000-3      | 053194                                | 0321322                               | Rusty-weathering outcrops = coarse grained, equigranular diorite |
|              |                                       |                                       | to gabbro w/ 5-10% diss. Py                                      |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | <u></u>                               |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | · · · · · · · · · · · · · · · · · · · |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | · · · · · · · · · · · · · · · · · · · |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | <u></u>                               |                                                                  |
|              | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | <u> </u>                              |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | :<br>                                 | an gana an ann an an ann an ann an ann an                        |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       |                                       |                                                                  |
|              |                                       | ····· · · · · · · · · · · · ·         | ••••••••••••••••••••••••••••••••••••••                           |