BC Geological Survey Assessment Report 29982

IMPERIAL METALS CORPORATION

REPORT ON THE

2007 DRILLING and PROSPECTING PROGRAM

FALLS CREEK 1-4 and FALLS 1-4 Claims

FALLS CREEK PROPERTY

Nanitsch Lake Area, B.C.

Omineca Mining Division Latitude 56° 08' N Longitude 126° 20' W NTS: 94D-1/W

- Owner: Imperial Metals Corporation
- Operator: Imperial Metals Corporation, Suite 200 - 580 Hornby Street, Vancouver, B.C. V6C 3B6

Gary Roste, P. Geo. June 2, 2008

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	4
2.0 LOCATION AND ACCESS	4
3.0 PHYSIOGRAPHY	6
4.0 LAND TENURE AND OWNERSHIP	6
5.0 PROPERTY HISTORY	8
6.0 GEOLOGY6.1 Regional Geology6.2 Property Geology	9 9
7.0 PROSPECTING AND MAPPING	11
8.0 DRILLING	14
9.0 CONCLUSIONS AND RECOMMENDATIONS	S 17
10.0 REFERENCE LIST	18
11.0 LIST OF PERSONNEL	19
12.0 STATEMENT OF EXPENDITURES	20
13.0 STATEMENTS OF QUALIFICATION	21

FIGURES

	Page
Figure 2.1 Location Map	5
Figure 4.1 Claim Map	7
Figure 6.1 Regional Geology	10
Figure 7.1 Rock Sample Location Map	13
Figure 8.1 Drill Plan	16

TABLES

	гауе
Table 4.1 Claim Status	6
Table 8.1 List Of Drill Holes Completed	14

Daga

APPENDICIES

Appendix A Drill Logs

Appendix B Analytical Results – Acme Analytical Labs Ltd.

Appendix C Analytical Technique - Acme Analytical Labs Ltd.

Appendix D Prospecting Program Sample descriptions.

Appendix E Dr. Chris Rees – Field Observations

1.0 INTRODUCTION

During the summer of 2007 a program of diamond drilling and prospecting was carried out on the Falls Creek Claims by operator, Imperial Metals Corporation. The program began on the 25th of July and ended on the 19th of August. The program consisted of five diamond drill holes for a total of 1,278.63 metres of NQ2 core drilling. The drilling contractor was Atlas Drilling Ltd. A program of prospecting and rock sampling and limited geological mapping ran concurrently during the drilling. A total of 88 samples were collected from outcrop and sent for analysis.

The program required the use of a helicopter to access the property. A 206B was supplied by Yellowhead Helicopters Ltd.

2.0 LOCATION AND ACCESS

The Falls Creek claim group is centered at 56°08' N latitude, 126°20' W longitude (UTM coordinates 6225500N and 665970E, Zone 9). The property is located 30 kilometres east of Bear Lake and approximately 160 kilometres northeast of the town of Smithers. The northern edge of the claim block is bordered by the Omineca River and the southern edge of the property intersects the northern tip of Nanitsch Lake. The property lies within the Omineca Mining Division on NTS map sheet 94-D-1W (BCGS 94D019).

There is no road access to the Falls Creek property. The closest road access ends 15 kilometres to the south of the claim group at Kaza Lake. A camp was constructed at Kaza Lake by Northern Hemisphere around 2004. The camp consists of four Atco trailers framed together and roofed over, a large, framed core shack and two metal Seacans housing a shop and a diesel generator.

This camp was used in 2007 by Imperial Metals as base accommodation. Access to the claims from the camp was by helicopter.

Floatplane service is available to Kaza Lake and a large dock provided easy offloading and loading of supplies.

The road into Kaza Lake is from Takla Landing, roughly 100km to the south and is mostly good gravel logging road. There is no active logging in the area so roads are not being maintained at this time.

Takla Landing is located on the eastern side of Takla Lake and is accessible from the town of Fort St. James, approximately 175 kilometres to the southeast via good all-season gravel and paved roads.

The British Columbia Railway reaches as far as the Sustut River, north of Bear Lake, and is currently serviceable to that point however as of 2006 there is no scheduled freight or passenger service available. The shortest possible route to the railway from the claim group is roughly 40 kilometres.

3.0 PHYSIOGRAPHY

The property is situated at the northern edge of the Cariboo Heart Range in the Skeena Mountains. The claim block straddles Falls Creek, a small tributary of the Omineca River.

Relief is gentle with elevations ranging from about 1000 metres on the Omineca River to 1320 metres in the foothills of Cariboo Heart Range at the southeastern edge of the property. Several swamps occupy the low-lying areas to the north. The property drains northward, towards the Omineca River system. Forest cover is abundant throughout the property, composed mainly of northern boreal spruce. The region typically experiences long cold winters and short cool summers with precipitation well distributed throughout the year. Over half of the precipitation is in the form of snow, generally beginning in early September and ending in late April.

4.0 LAND TENURE AND OWNERSHIP

The Falls Creek property consists of eight contiguous mineral claims owned by Imperial Metals Corporation based in Vancouver, British Columbia. The property covers an area of 2,956.77 ha or approximately 29.5 square-kilometres (Table 4.1). The claims and their status are listed below.

			RECORD	EXPIRY	
TITLE NAME	TITLE #	LEASE SIZE ha	DATE	DATE	REQ'D EXP \$
FALLS CREEK 1	528442	450.64	Feb 16 2006	Feb 16 2018	3,605
FALLS CREEK 2	528445	450.79	Feb 16 2006	Feb 16 2018	3,606
FALLS CREEK 3	528449	324.31	Feb 16 2006	Feb 16 2018	2,595
FALLS CREEK 4	528451	180.33	Feb 16 2006	Feb 16 2018	1,443
FALLS1	559362	451.07	May 28 2007	Feb 16 2018	3,609
FALLS2	559363	432.91	May 28 2007	Feb 16 2018	3,463
FALLS3	559365	450.42	May 28 2007	Feb 16 2018	3,603
FALLS4	559366	216.30	May 28 2007	Feb 16 2018	1,730

Table 4.1 Claim Status

The Falls Creek property was acquired in early 2006 by optioning four claims, Falls Creek 1 to 4, totaling 1406.07 hectares, from Gerald Ryznar. Imperial can earn a 100% interest in the property, subject to a 1.5% NSR, by spending \$500,000 on exploration and making \$140,000 in cash payments over three years. The NSR can be purchased for \$1,500,000 (all values in \$Cdn).

In May of 2007, Imperial Metals staked an additional four claims, Falls 1 to 4, totaling 1550.70 hectares to bring the total size of the claim group up to 2956.77 hectares.

5.0 PROPERTY HISTORY

The property's ownership history dates back to 1989, when Windflower Mining Ltd. staked four mineral claims (OMINI 1 - 4), each consisting of 20 units. Later in the year, Windflower staked an additional 9 claims tied to the original claim block, totaling 163 units. One single fractional claim and four additional "two-post" claims were also staked during the summer of 1989 (Peatfield, 1989). The "Omini" property consisted of 17 mineral claims totaling 247 mineral claim units by September 1989 (Ryznar, 1990).

Mineralization was noted at the site of the "Forks" showing during a heavy mineral survey conducted throughout the region in the early 1980's (Peatfield, 1989). The "Falls" showing was located in early 1989 after the staking of the Omini 1 mineral claim (Peatfield, 1989). Both of these showings are located along Falls Creek, within 500 metres of each other. In September 1989, Windflower Mining Ltd. drilled eight holes, totaling 364 metres (Ryznar, 1990). All drilling was conducted on mineral claim Omini 1. Five holes totaling 138.7 metres were drilled at the "Forks" showing and 3 holes totaling 225.4 metres were drilled at the "Falls" showing (Rynzar, 1990). The 1989 drilling yielded low values in copper and gold. Windflower Mining Ltd. did not go further with any exploration work and subsequently dropped the property.

In early 2006, the open ground was staked by Gerald Ryznar of North Vancouver. Four mineral claims were staked, creating the Falls Creek Claim Group (Falls Creek 1 - 4). The area of the claim group totaled 1,404 hectares. In June 2006, Mr. Ryznar optioned the Falls Creek property to Imperial Metals Corporation.

In May of 2007 an additional four claims, Falls 1-4, totaling 1550.71 hectares were staked by Imperial Metals

During August 2006, an airborne geophysical survey was carried out by Aeroquest Limited on behalf on Imperial Metals Corporation. The program consisted of helicopter borne aeromagnetic and radiometric surveys. The survey identified approximately seven discreet magnetometer highs. These targets were all prospected and samples taken from outcrop if ant was present. Two of the strongest of these targets were drilled during the program.

The Radiometric survey data as presented was of a general nature and did not produce any targets of interest.

6.0 GEOLOGY

The information in the following sections is taken mainly from Peatfield, 1989 and Ryznar, 1990.

6.1 Regional Geology

The property is located west of the Pinchi and Takla Faults and lies within the Stikine Terrane as defined by Wheeler, et al. (1988) (Peatfield, 1989). Stikine Terrane rocks host several significant copper mineral occurrences or deposits within the region. All occurrences lie within the Takla and Hazelton Group rocks, mostly located west of the Pinchi – Ingenika fault system. The Falls Creek claim group is mostly underlain by Triassic Takla Group volcanics and associated sedimentary rocks (Peatfield, 1989, Ryznar, 1990). To the west of the property, Hazelton strata are cut by several large diabasic bodies designated by Richards (1976) as Jurassic or older (Peatfield, 1989). It has been noted that the same rocks host many of the porphyry copper-gold deposits such as Mount Milligan, Mount Polley and the QR deposit within the "Quesnel Trough" of north-central British Columbia (Ryznar, 2006).

6.2 **Property Geology**

The Falls Creek property has not been mapped in detail, thus few specifics are known about the geology of the property. Previous exploration work identified two significant mineral showings both located within 500 metres of each other (Falls and Forks showings). Richards (1975, 1976) interpreted two faults, one striking northerly and the other striking northwesterly, intersecting near the "Forks" showing (Peatfield, 1989). The area enclosed by these faults is a succession of lavas, breccias and pyroclastics of the Savage Mountain Formation of the Upper Triassic Takla Group (Peatfield, 1989). Ryznar (1990) describes the "Forks" showing consisting of a quartz-carbonate breccia zone in highly hematized and silicified basalts. Peatfield (1989) states that strong local concentrations of chalcopyrite, sphalerite, galena and pyrite are evident within silicified rocks at the "Forks" showing. It is thought that the "Falls" showing occurs along one of the same regional faults intersecting near the "Forks" showing. The "Falls" showing consists of copper and gold mineralization within altered hematized Takla volcanics and associated alkaline intrusives (Ryznar, 1990). Ryznar (2006) discusses that the occurrence of chalcocite, bornite and chalcopyrite at the "Falls" showing is associated with highly silicified zones within the volcanics. The 2007 program did not include a mapping component. Dr. Chris Rees of Imperial Metals Corporation visited the Falls Creek property during the 2007 program and his report is included as appendix F at the end of this report.

7.0 PROSPECTING

A property-wide program of prospecting, rock sampling and limited geological mapping ran concurrently during the drilling program. Personnel included Doug Cavey, Jen Macpherson Melissa Darney and Chris Rees The main purpose was to ground truth the mag anomalies identified by AGL but the work was not just limited to these areas. An attempt was made to cover the entire claim group with at least a "first pass" level of investigation. The Forks and Falls zones had already seen extensive work in the past, including trenching and drilling and therefore were not considered a high priority for field prospecting during this program.

A total of 88 samples were collected from outcrop and sent for analysis.

Results of the prospecting were only slightly encouraging. Only one new copper showing was discovered, the East Creek showing. Best results from field samples came from known showing, most notably the Forks showing which yielded the best copper and gold result of the program.

Forks showing

The Forks showing is situated at the confluence of Falls creek and a creek of roughly equal size that flows in from the southeast. The creek was given the name East creek during this program.

Sample 463148 was taken from quartz vein material of the actual Forks showing and yielded the highest gold result of the program. The sample returned values of 4.83 g/t gold and 1090 ppm copper. The same sample also contained >10,000ppm lead, >10,000ppm zinc and 23.7 grams silver making it unique as compared to other samples from the Falls claim group that contained no appreciable values of lead and zinc and only minor amounts of silver.

Falls Showing

The Falls showing is situated 360 southwest of the Forks showing. Three samples were taken in the area of the Falls showing. Samples 463152, 463153 and 463204 returned results of 373, 444 and 709 ppm copper and 0.14, <0.01 and 0.03 g/t gold.

Third Showing

Historical reports made reference to a "Third showing, roughly 2km southwest of the Forks showing". Prospecting during this program was successful in "re-locating" the showing. The Third showing is situated 2.7 kilometres southeast of the Forks showing on an easterly running tributary of Falls creek.

The mineralized outcrop is on the south side of the creek and is comprised of a 10metre by 10metre outcrop of malachite stained andesite porphyry. Samples 463149 and 463175 were taken from outcrop and returned values of 6,200 and 5689 ppm copper and 6.3 grams silver. The outcrop did not contain significant gold.

East Creek Showing

The East creek showing is situated on East creek, 3.3 kilometres southeast of the Forks Showing and was discovered during this program.

The showing consists of copper mineralization in highly altered rocks that are probably andesite. Alteration consists of silicification and pyritization. The rocks are highly oxidized on surface and are grey on fresh surfaces. Mineralization consists of abundant pyrite, small amounts of chalcopyrite and on oxidized surfaces, malachite and azurite. Two samples from the showing, 463195 and 463404 returned values of 2280 and 884ppm copper. The samples were barren of gold.

8.0 DRILLING

During the summer of 2007 a program of diamond drilling and prospecting was carried out on the Falls Creek Claims by operator, Imperial Metals Corporation. The program began on the 25th of July and ended on the 20th of August. The program consisted of five drill holes for a total of 1,278.63 metres of NQ2 core drilling.

Table 8.1

HOLE	TARGET	EASTING	NORTHING	ELEV	DIP	STRIKE	DEPTH (m)
FC-07-01	FC3 (mag)	665634	6225866	1116	-90	0	261.21
FC-07-02	FC2 (mag)	664492	6225356	1193	-90	0	154.53
FC-07-03	Third Showing	664366	6223962	1209	-60	320	264.26
FC-07-04	Falls Showing	666040	6225433	1105	-60	235	313.03
FC-07-05	Forks Showing	666303	6225811	1075	-60	323	285.60

FC-07-01

The hole was drilled to test target FC3, a magnetometer high, situated 675 metres west of the Forks showing.

The hole was vertical and was drilled to a depth of 261.21 metres. The hole encountered mostly porphyritic andesite and volcaniclastic breccia of andesitic composition. The porphyritic andesite contained large bladed plagioclase crystals averaging 1.5 centimetres long and were often intergrown with each other in rosettes. Alteration was typically calcite and albite veinlets with some hematite flooding. Mineralization consisted of traces of chalcopyrite and up to 0.25% disseminated pyrite. Six samples graded higher than 0.1g gold with the highest being 0.9g/t over 0.85 metres. The highest amount of copper was 1768ppm over 0.60 metres.

FC-07-02

The hole was drilled to test target FC2, another magnetometer high. The drill hole was situated 1.8 kilometres west of the Forks showing, was vertical and was drilled to a depth of 154.53 metres.

The encountered the same porphyritic andesite as was encountered in hole FC-07-01. The hole did not return any significant values in copper or gold.

FC-07-03

The hole was drilled to test the Third Showing mineralization. The hole was orientated at -60 dip towards an azimuth of 320 and was drilled to a depth of 264.26 metres.

The hole intersected andesite and andesite breccias similar to the first two holes. There was intense hematite alteration noted and a pseudo-breccia texture caused by pervasive hematite alteration along fractures. Some silicification was noted but mostly just calcite veining. Pyrite and traces of chalcopyrite was noted along with some specular hematite.

The hole did not intersect the kind of mineralization seen on surface although it did yield some interesting copper values with four samples grading better than 1000ppm copper,

the highest being 4601ppm copper. These samples were all from the upper 85 metres of the hole.

There were no significant gold values.

FC-07-04

The hole was drilled to test the Falls Showing. The hole was oriented -60 dip towards an azimuth of 235 and was drilled to a depth of 313.03 metres.

Some interesting gold results were obtained from two zones within this hole. From 32.81 to 52.50 results were 0.44 g/t gold over 19.69 metres including 0.79 g/t over 7.50 metres and 2.07 g/t over 0.60 metres.

From 217.50 to 257.50 results were 0.24 g/t gold over 40 metres including 1.24 g/t over 1.89 metres.

Falling outside of the above intervals were six samples grading higher than 0.10 g/t gold with a high being 0.76 g/t over 1.30 metres.

Results in copper were weaker with only three samples grading over 1000ppm, with a high being 2566ppm over 2.50 metres.

FC-07-05

The hole was drilled to test the Forks Showing. The hole was oriented -60 dip towards an azimuth of 323 and was drilled to a depth of 285.60 metres. The hole was designed to pass under the Forks showing where earlier shallow drilling had intersected high grade gold-silver mineralization.

The hole was interesting geologically, intersecting several units of volcanic and tectonic breccias as it passed through the Falls creek fault valley. Alteration was intense hematization, strong calcite veining and some weaker epidote flooding.

Some higher than background copper and silver was intersected from 157.04 to 230.35 metres. Unfortunately the hole did not intersect any significant gold mineralization and only one sample yielded significant copper at 4898ppm over 1.18 metres.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Prospecting

The prospecting program was successful in achieving the goal of covering the entire claim block with at least a "first pass" level inspection. Unfortunately results of the prospecting program were not encouraging. Only one new gold showing was found, the East Creek showing.

Mineralization at the Falls and Forks Showings consists of high values of gold, silver and copper. None of the prospecting samples returned significant values in all three elements. The Third showing contained copper and silver but no gold. The east creek showing contained weak gold and copper but no silver.

Very little intrusive rocks were encountered on the property therefore the likelihood of discovering porphyry style mineralization is very low.

Vein style high-grade gold-silver mineralization remains limited to the previously known Falls and Forks showings as no new occurrences of this style were found.

Drilling

Results of the drilling program were also discouraging. Drill testing of magnetite highs by the first two holes yielded only pyritic basic volcanics. Drilling at the Third Showing did not intersect mineralization as strong as what was on surface. Drilling of the Falls and Forks showings failed to intersect any high-grade gold-silver mineralization.

No further work is recommended on the Falls property.

10.0 REFERENCE LIST

- Butler, D. and J. Dawson. (2007): Interpretation of Airborne Magnetic Data, Bear Lake and Falls Creek, Northwest British Columbia. Associated Geosciences Ltd. Unpublished report for Imperial Metals Corporation.
- Darney, M and Robertson, S. 2007: Report on an Airborne Geophysical Survey, Falls Creek Property, Nanisch Lake Area, B.C. BC Assessment Report 4116269.
- Peatfield, G. R. (1989): Omini Mineral Property, Nanitsch Lake Area, BC. Unpublished report for Windflower Mining Ltd.
- Pozza, M. (2006): Report on a Helicopter-Borne Gamma Ray Spectrometer and Gradiometer Survey, Bear Lake and Falls Creek Properties. Aeroquest Limited. Unpublished report for Imperial Metals Corporation.
- Richards, T. (1975): Compiler McConnell Creek Map-Area (94D/E) Geology. Geological Survey of Canada, Open File 342. Map and notes, scale 1:250,000.
- Richards, T.A. (1976): Takla Project (Reports 10-16): McConnell Creek Map-Area (94D, East Half) British Columbia. Geological Survey of Canada, Report of Activities Part A. Paper 76-1A.
- Ryznar, G. (1990): Omini Drill Report on Mineral Claim Omini 1. BC Assessment Report 19860.
- Ryznar, G. (2006): Memo, private company records.
- Tipper, H.W. and T.A. Richards. (1976): Jurassic stratigraphy and history of north-central British Columbia. Geological Survey of Canada, Bulletin 270.
- Wheeler, J.O., A.J. Brookfield, H. Gabrielse, J.W.H. Monger, H.W. Tipper and G.J. Woodsworth. (1988): Terrane map of the Canadian Cordillera. Geological Survey of Canada, Open File 1894.

11.0 LIST OF PERSONNEL

Position	Name	Company	Days	Dates	Daily Rate	Total
Project				Jul 24 - Aua		
Manager	Gary Roste	Imperial	22	19 ^Ŭ	\$400	\$8,800
				Jul 24 - Aug		
Geologist	Jen Macpherson	Imperial	27	19	\$225	\$6,075
				Jul 24 - Aug	•	A
Geologist	Doug Cavey	Imperial	25	19	\$225	\$5,625
Coologiat	Maliana Darnav	Imporial	10	Aug 5 - Aug	ФОЕО	¢0.050
Geologist		Impenal	13	19	\$∠5U ¢250	\$3,25U
Geologist		Impenal	4	Aug 19 - 22	Φ 220	Φ 1,400
ROD	Machherson	Imperial	27	19 19	\$225	\$6.075
Core Cutter	Jordan Defer	Imperial	15	Aug 3 - 19	\$225	\$3 375
		Imperial	10	Jul 29 - Aug	ΨΖΖΟ	ψ0,070
Camp Cook	Nancy Furniss	Imperial	22	19	\$350	\$7,700
·	,	•			·	\$42,300
		Total	155	person-days		
Contractors						
Helicopter Pilot	Gord Detchkoff	Yellowhead	3	Jul 26 - 28		
				Jul 29 - Aug		
Helicopter Pilot	Ryan Archibald	Yellowhead	16	13		
			0	Aug 14 - Aug		
Helicopter Pilot	Charlie Robson	Yellownead	6	19 Jul 29 Aug		
Pad Builder	laque Pitan		23	Jul 26 - Aug 10		
	Jaque I Itali	OJL	20	.lul 28 - Aug		
Pad Builder	Duncan Luck	CJL	23	19		
Drilling						
Foreman	Mike Irwin	Atlas	23	Jul 29 - Aug20		
				Jul 29 - Aug		
Driller	Reggie Pare	Atlas	19	16		
		A /1	40	Jul 29 - Aug		
Helper		Atlas	19 -	16		
Helper	C. Mortensen	Atlas	/	Jul 29 - Aug 4		
Helper	Brian Firbank	Atlas	15	Aug 5 - 19		

Total 154 person-days

12.0 STATEMENT OF EXPENDITURES

Salaries	Staff Contract Labour		\$42,100 \$17,823
Food			\$4,965
Transportation		• · · · ·	
	Truck Rental	\$1,046	
	Shipping Fuel (Drill, Camp + Heli)	\$3,716	
	Helicopter	\$38,160	
	Fixed wing	\$15,711	
	Other	\$1,494	
	Transportation Total	\$60,127	\$60,127
Diamond Drilling	Atlas Drilling Ltd.		\$115,467
Assays	Acme Analytical		\$19,025
Field Supplies			\$12,484
Airphotos, Trim and Map			\$971
	Sat phone, Sat		
Communications Report Writing &	Internet		\$1,827
Drafting			\$7,000
Courier			\$443
Filing Fees		_	\$9,975
		Total Cost	\$292,207

13.0 STATEMENTS OF QUALIFICATION

STATEMENT OF QUALIFICATIONS for Gary Lyle Roste, P. Geo.

I, Gary Lyle Roste, of the city of Quesnel, in the province of British Columbia, do hereby certify:

- 1. I am a graduate of the University of British Columbia (1986) with a Bachelor of Science degree in Geology.
- 2. I have been practicing my profession for the past twenty years.
- I am a registered member of the Association of Professional Engineers and 3. Geoscientists of British Columbia.
- 4. I maintain an office at 1857 Alma Road, Quesnel, B.C. V2J 6J3.
- 5. I was on-site during the program and personally supervised the work described in this report.

Signed at:

LIKERY JUNE 2

un

Date:

Gary Lyle Roste, P. Geo.

ROVINC L. ROSTE G. #27829 BRITISH LUMBL SCIEN

APPENDIX A

DRILL LOGS

HOLE NUMBER: FC-07-01 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225880.000	CONTRACTOR:	Atlas
EAST:	665638.000	LOGGED BY:	GR/JM/DC
ELEVATION:	1116.000	DRILLING DATES:	2007/07/31 TO 2007/08/02
LENGTH (m):	261.21	LOG DATE	2007/08/01
CASING:	1.5	DIP / AZIMUTH:	-90.0 / 0.0
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	ION: Mag anomaly	y FC3	
COMMENTS: F	²C3		
DEPTH (m)	DIP	AZIMUTH	
2.13	-89.58	94.88	
11.28	-89.57	99.82	
20.42	-89.51	106.72	
29.57	-89.57	119.90	
38.71	-89.56	118.63	
47.85	-89.64	119.60	
57.00	-89.65	122.85	
66.14	-89.61	121.97	
75.29	-89.66	123.90	
84.43	-89.60	132.81	
93.57	-89.64	128.60	
102.72	-89.65	123.99	
111.86	-89.66	131.71	
121.01	-89.64	137.98	
130.15	-89.57	145.10	
139.29	-89.65	132.93	
148.44	-89.65	131.29	
157.58	-89.43	119.13	

HOLE NUMBER: FC-07-01 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225880.000	CONTRACTOR:	Atlas
EAST:	665638.000	LOGGED BY:	GR/JM/DC
ELEVATION:	1116.000	DRILLING DATES:	2007/07/31 TO 2007/08/02
LENGTH (m):	261.21	LOG DATE	2007/08/01
CASING:	1.5	DIP / AZIMUTH:	-90.0/ 0.0
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	TION: Mag anomaly	y FC3	
COMMENTS: I	FC3		
DEPTH (m)	DIP	AZIMUTH	
166.73	-89.60	121.12	
175.87	-89.59	134.36	
185.01	-89.67	115.57	
194.16	-89.54	118.43	
203.30	-89.70	110.53	
212.45	-89.67	117.42	
221.59	-89.69	110.00	
230.73	-89.74	88.43	
239.88	-89.81	59.42	
249.02	-89.82	67.00	
258.17	-89.73	62.62	

Hole Number: FC-07-01									
Falls Creek Project Diamond Drill		Logg	ed by: G	R/JM/DC	Da	ate: 2008/0)5/29		
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
0.00 1.52 Case	0								
1.52114.91AN		1.52	2.50	500001	0.98	195	0.01	<.3	
AN		2.50	5.00	500002	2.50	286	0.01	<.3	
Green andesite porphyry. White plag phenos average about 1 to 1.5cm long.		2.50	5.00	500003	2.50				
Moderately calcareous. Contains fine diss'd pyrite up to 0.25% and trace vfg	i de la companya de la	5.00	6.52	500004	1.52	252	0.01	<.3	
diss'd cp and a few blebs of cp up to 5mm.	S.	6.52	7.50	500005	0.98	317	0.01	<.3	
Very strong epidote alt'n as almost total replacement of plag phenos and as		7.50	8.07	500006	0.57	170	0.01	<.3	
rounded to subrounded amygdules that may be vesicle infilling? Weak to	10	8.07	10.00	500007	1.93	267	0.01	<.3	
moderately magnetic. Cut by numerous 3-5mm calcite veinlets at all angles to ca	S.	10.00	11.81	500008	1.81	247	0.01	<.3	
although the larger one tend to be at shallower angle to ca. A few are over 1cm	S.	11.81	12.50	500009	0.69	281	0.01	0.5	
in thickness.		12.50	12.98	500010	0.48	441	0.01	0.3	
	i k	12.98	15.07	500011	2.09	379	0.01	<.3	
Cut by numerous darker green porph dykes that contain round amygdules of	is.	15.07	15.07	500012	0.00				
chlorite up to 5mm. Dykes range from a few cms to over a metre and are usually		15.07	15.53	500013	0.46	204	0.01	<.3	
at 35 to 45 to ca. These appear to be the same protolith but just fresher. The	20	15.53	17.63	500014	2.10	221	0.01	<.3	
plag porph xtals are present but are very faint.		17.63	18.73	500015	1.10	228	0.01	<.3	
11.81-12.50 Quartz/calcite vein at 45 to ca.	is.	18.73	18.73	500016	0.00				
		18.73	20.00	500017	1.27	100	0.01	<.3	
59.28 - 60.36 Contains 15cm quartz calcite vn at 45 to ca. Some nice bx and		20.00	21.16	500018	1.16	182	0.01	<.3	
reheal textures. Barren. Host rock is very bleached out looking	i k	21.16	22.19	500019	1.03	168	0.01	<.3	
	i de la companya de la	22.19	22.50	500020	0.31	186	0.01	<.3	
	30	22.50	23.00	500021	0.50	380	0.01	0.3	
		23.00	24.80	500022	1.80	169	0.01	<.3	
	i k	24.80	24.80	500023	0.00				
	i de la companya de la	24.80	25.00	500024	0.20	555	0.01	0.5	
		25.00	26.77	500025	1.77	247	0.01	<.3	
		26.77	27.50	500026	0.73	385	0.01	<.3	
		27.50	30.00	500027	2.50	230	0.01	<.3	
	40	30.00	32.13	500028	2.13	256	0.01	<.3	
		32.13	32.61	500029	0.48	328	0.01	<.3	
	N.V.	32.61	35.00	500030	2.39	268	0.01	<.3	
	R.	35.00	37.50	500031	2.50	442	0.01	<.3	
		35.00	37.50	500032	2.50				
		37.50	39.91	500033	2.41	205	0.02	<.3	
		39.91	42.50	500034	2.59	133	0.01	0.3	
	r \.''								
2008/05/29						I		 Page	1 of 5

					Hol	e Numb	er:	FC-07	7-01			
Fal	lls Creek	Project	Diamond Dr	ill Log			Logg	ed by: G	R/JM/DC	Da	_{ate:} 2008/	05/29
From	То	Rocktype	& Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
				50	42.50	45.00	500035	2.50	313	0.01	<.3	
					45.00	45.00	500036	0.00				
				10	45.00	45.34	500037	0.34	325	0.01	<.3	
					45.34	47.50	500038	2.16	246	0.02	<.3	
				N.V.	47.50	50.00	500039	2.50	276	0.01	<.3	
					50.00	52.50	500040	2.50	291	0.01	<.3	
				N.	52.50	55.00	500041	2.50	206	0.01	<.3	
				60	52.50	55.00	500042	2.50				
					55.00	57.50	500043	2.50	348	0.01	<.3	
				S.	57.50	59.28	500044	1.78	360	0.01	<.3	
				1	59.28	60.00	500045	0.72	221	0.01	<.3	
				NS.	60.00	60.36	500046	0.36	231	0.01	<.3	
					60.36	62.50	500047	2.14	360	0.01	<.3	
					62.50	65.00	500048	2.50	312	0.01	_<.3	
				70	65.00	65.00	500049	0.00				
					65.00	67.50	500050	2.50	248	0.01	<.3	
					67.50	70.00	500051	2.50	156	0.01	<.3	
					70.00	72.50	500052	2.50	340	0.01	<.3	
					72.50	75.00	500053	2.50	281	0.01	<.3	
					75.00	75.00	500054	0.00				
				10 A	75.00	77.50	500055	2.50	485	0.01	<.3	
				80	77.50	80.00	500056	2.50	337	0.01	<.3	
				N.	80.00	82.50	500057	2.50	307	0.01	<.3	
					82.50	85.00	500058	2.50	493	0.01	<.3	
					85.00	87.50	500059	2.50	530	0.01	<.3	
					87.50	90.00	500060	2.50	334	0.01	<.3	
				N.V.	90.00	92.50	500061	2.50	364	0.01	<.3	
					92.50	95.00	500062	2.50	263	0.01	<.3	
				90	92.50	95.00	500063	2.50				
				le l	95.00	96.92	500064	1.92	239	0.01	<.3	
				N.	96.92	97.50	500065	0.58	57	0.01	<.3	
				i de la companya de la	97.50	98.21	500066	0.71	110	0.02	<.3	
				10 A	98.21	100.00	500067	1.79	231	0.07	<.3	
				E.	100.00	102.50	500068	2.50	393	0.02	<.3	
				100	102.50	105.00	500069	2.50	561	0.01	<.3	
					105.00	107.50	500070	2.50	198	0.02	<.3	
					107.50	108.10	500071	0.60	1768	0.01	0.3	
2008/05/2	29				•			I	•		Page	' 2 of 5

			Hol	e Numb	er:	FC-07	7-01		
Falls Creek Project Diamond Dril	l Log			Logg	ed by: G	GR/JM/DC	D	_{ate:} 2008/0	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
	×.	108.10	109.40	500072	1.30	376	0.01	1	
		109.40	109.40	500073	0.00				
		109.40	110.00	500074	0.60	46	0.01	<.3	
		110.00	110.00	500075	0.00				
		110.00	111.00	500076	1.00	200	0.01	<.3	
		111.00	111.86	500077	0.86	46	0.01	<.3	
	ŝ.	111.86	112.50	500078	0.64	47	0.01	<.3	
		112.50	114.91	500079	2.41	982	0.01	<.3	
<u>114.91</u> 127.80VCbx		114.91	117.50	500080	2.59	_47	0.01	<.3	
VCbx		117.50	120.00	500081	2.50	36	0.01	<.3	
Maroon grading down to green. Subrounded clasts are matrix supported and	* * * * *	120.00	122.50	500082	2.50	60	0.01	<.3	
average about 1cm. Upper contact is sharp at 45 to ca. Lower grades into a unit	120	122.50	122.50	500083	0.00				
with green, rouded larger clasts in a dark matrix. Lower contact seems		122.50	125.00	500084	2.50	175	0.01	_<.3	
gradational. Unit has about the same amount of intense albite/calcite		125.00	127.50	500085	2.50	172	0.01	<.3	
		127.50	128.89	500086	1.39	108	0.01	<.3	
veinlets.									
<u>127.80</u> 133.90MD		128.89	129.81	500087	0.92	42	0.01	0.3	
MDdk		129.81	132.15	500088	2.34	146	0.01	_<.3	
Dark grey/green fine to medium textured. Massive. Contacts are broken. Still		132.15	132.15	500089	0.00				
cut by veinlets of albite /calcite although not as many as in the other units.	130	132.15	132.50	500090	0.35	272	0.01	_<.3	
		132.50	133.90	500091	1.40	174	0.01	_<.3	
128.89 - 129.81 Contains two 10cm albite/calcite vein at 45 to ca sandwiching a									
section of bleached and chloritized host rock. Veins are bx'd.									
122.00 160.62 AN		122.00	125.00	500002	1 10	76	0.01	12	
AN	VS.	135.00	137 50	500092	2 50	218	0.01	<u> </u>	
An	15	137.50	140.00	500033	2.50	200	0.01	- 3	
after Weakly hematized on fracture faces. Secondary iron alteration		137.50	140.00	500034	2.50	200			
		140.00	142 50	500035	2.50	195	0.01	-3	
	140	142 50	145.00	500030	2.50	699	0.01	- 3	
		145.00	145.79	500098	0.79	201	0.01	<.3	
	NS.	145.79	147.51	500099	1.72	147	0.01	<.3	
		147.51	148.51	500100	1.00	213	0.01	<.3	
		148.51	149.52	500101	1.01	202	0.01	<.3	
2008/05/29								Page	3 of 5

	Hol	e Numb	er:	FC-07-01						
Falls Creek Project Diamond Drill Log						ed by: G	R/JM/DC	Da	ate: 2008/0)5/29
From To Rocktype & Description		Fro	m	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
	11.1	149	9.52	150.00	500102	0.48	228	0.01	<.3	
	Ni,	150	0.00	151.33	500103	1.33	243	0.01	<.3	
		151	.33	152.03	500104	0.70	179	0.01	0.3	
	N.	152	2.03	152.50	500105	0.47	202	0.11	1.8	
		152	2.50	152.50	500106	0.00				
		152	2.50	155.00	500107	2.50	172	0.04	0.7	
	Vi, Vi	155	5.00	157.50	500108	2.50	101	0.01	<0.3	
		157	.50	160.00	500109	2.50	_111	0.01	<0.3	
		160	0.00	162.50	500110	2.50	115	0.01	0.7	
<u>160.63</u> <u>171.67</u> FLT	160_/%	162	2.50	162.50	500111	0.00				
FLT		162	2.50	165.00	500112	2.50	192	0.02	1	
Bleached light green to bone colour. Rock has a smeared fabric at 35 to ca.		165	5.00	167.50	500113	2.50	125	0.10	0.7	
Often appears banded with alternating layers of maroon hematite or darker		167	.50	170.00	500114	2.50	230	0.01	0.6	
sulphide rich bands. Also albite/calcite lenses up to 2cm thick. Sulphide	· · · · ·	167	.50	170.00	500115	2.50				
lenses are whispy and are mostly all fine pyrite but trace amounts of cp noted										
as well.										
	170	170	0.00	172.50	500116	2.50	99	0.03	<0.3	
<u>171.67 196.23 AN</u>		172	2.50	175.00	500117	2.50	218	0.01	<0.3	
AN	ŶŶ,	175	5.00	177.50	500118	2.50	171	0.01	<0.3	
Dark green only weakly epidote alt'n. Much less porphyritic than the earlier	Vi, Vi	177	7.50	180.00	500119	2.50	205	0.01	<0.3	
unit that were megacrystic. Still AN porph though. Numerous rounded to	ry.	180	0.00	182.50	500120	2.50	248	0.01	<0.3	
irregular shaped amygdules of albite/calcite with some epidote. The usual	180	182	2.50	185.00	500121	2.50	231	0.01	<0.3	
abundance of albite/calcite veins up to 1cm thick.	N.	185	5.00	187.50	500122	2.50	164	0.01	<0.3	
	N.	187	7.50	187.50	500123	0.00				
	N.	187	.50	190.00	500124	2.50	202	0.01	<0.3	
	190	190	0.00	192.50	500125	2.50	167	0.01	<0.3	
		192	2.50	195.00	500126	2.50	79	0.01	<0.3	
	ίš,	195	5.00	196.23	500127	1.23	68	0.01	<0.3	
<u>196.23</u> 206.61FLT	ÝŇ,	196	6.23	197.50	500128	1.27	238	0.01	0.8	
FLT		197	7.50	200.00	500129	2.50	851	0.13	3.2	
Another zone of intense shearing and albite/calcite veining and infilling.		200	0.00	202.50	500130	2.50	_441	0.03	10.8	
Foliation appears to be from 35 to ca to nearly parallel to ca. Vein material	200	200	00.00	202.50	500131	2.50				
is bx'd and rehealed several times leading to some interesting textures. Dark		202	2.50	205.00	500132	2.50	250	0.05	2.1	
bands are probably chlorite. Occasional intense hematization (later stage) and		205	5.00	206.61	500133	1.61	310	0.08	1	
veining.										
Trace galena at 205m along with trace cp.										
	1									
2008/05/29		I			I		l	I	 Page	4 of 5

		Hole Number: FC-07-01							
Falls Creek Project Diamond Dril	l Log			Logg	ed by: G	R/JM/DC	I Di	ate: 2008/	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
206.61 242.83 AN	1.1	206.61	206.61	500134	0.00				
AN		206.61	207.50	500135	0.89	164	0.01	<0.3	
Medium dark green non-porphyritic andeste. Contains distinct rounded amygdule	es 210	207.50	208.65	500136	1.15	121	0.07	<0.3	
of dark chlorite and biotite or actinolte? They are numerous and average around	- K	208.65	209.50	500137	0.85	308	0.90	0.6	
5mm. Locally there is more than a trace of cp. Pyrite content ranges from trace	10 A	209.50	210.00	500138	0.50	102	0.03	<0.3	
to 0.25% fine diss'd. The unite becomes more bleached and is cut by more and		210.00	212.50	500139	2.50	274	0.13	<0.3	
more albite/calcite veins lower down as it aproaches another tectonic shear	10	212.50	215.00	500140	2.50	265	0.01	<0.3	
zone.	ik.	215.00	217.50	500141	2.50	186	0.01	<0.3	
	220	215.00	217.50	500142	2.50				
	13	217.50	220.00	500143	2.50	185	0.01	<0.3	
		220.00	222.50	500144	2.50	159	0.01	<0.3	
		222.50	225.00	500145	2.50	235	0.03	0.4	
	i de la companya de la	225.00	227.50	500146	2.50	175	0.07	<0.3	
	S.	227.50	230.00	500147	2.50	222	0.02	<0.3	
	230	230.00	232.50	500148	2.50	154	0.09	<0.3	
	230	232.50	232.50	500149	0.00				
	i k	232.50	235.00	500150	2.50	102	0.01	<0.3	
	×.	235.00	237.50	500151	2.50	265	0.03	0.6	
	N.	237.50	240.00	500152	2.50	113	0.02	<0.3	
		240.00	240.00	500153	0.00				
	240	240.00	242.50	500154	2.50	129	0.04	<0.3	
	240	242.50	242.83	500155	0.33	359	0.06	1.9	
242.83 248.80 AN	is.	242.83	245.00	500156	2.17	216	0.02	0.7	
AN Porphyry	Ϋ́ς,	245.00	247.50	500157	2.50	255	0.10	1.1	
Very bleached and sheared andesite porph. Plag phenos are light green and	ХŶ,								
opaque. Contacts are at about 20 to ca. Albite/calcite veinlets are very broken	XV V								
and disjointed. Pyrite as 0.10%	i.								
	1. Star	247.50	248.88	500158	1.38	375	0.08	1.1	
248.80 261.21 VCbx	15.	248.88	250.00	500159	1.12	99	0.01	<0.3	
VCbx	250	250.00	252.50	500160	2.50	158	0.01	0.8	
Protolith is dark grey and hard with sub-rounded to sub-angular clasts of fine	** ** ** * * ** ? * **	252.50	255.00	500161	2.50	192	0.01	<0.3	
plag porph mafic sub-volcanic. Clasts range from less than 1cm to 5cm. Upper		255.00	257.50	500162	2.50	95	0.03	<0.3	
part of the unit is bleached light green and the veins are albite/calcite. Once		257.50	260.00	500163	2.50	32	0.01	<0.3	
below the bleached section veins are mostly calcite. Unalt'd proto is		260.00	260.00	500164	0.00				
moderately magnetic. Unit is chloritized. Calcite veins locally contain		260.00	261.21	500165	1.21	105	0.01	<0.3	
pyrite.	240								
261.21 261.21 EOH	200								
2008/05/29		I	I	I		I	I	 Page	_{5 of 5}

HOLE NUMBER: FC-07-02 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225345.000	CONTRACTOR:	Atlas
EAST:	664492.000	LOGGED BY:	GR/JM/DC
ELEVATION:	1193.000	DRILLING DATES:	2007/08/03 TO 2007/08/06
LENGTH (m):	154.53	LOG DATE	2007/08/04
CASING:	0.6	DIP / AZIMUTH:	-90.0 / 0.0
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	ION: Mag anomal	y FC2	
COMMENTS: H	FC2		
DEPTH (m)	DIP	AZIMUTH	
14.33	-89.61	355.36	
23.47	-89.57	350.12	
32.61	-89.71	365.78	
41.76	-89.79	171.11	
50.90	-89.79	195.95	
60.05	-89.74	179.13	
69.19	-89.50	201.16	
78.33	-89.56	204.63	
87.48	-89.51	203.65	
96.62	-89.55	190.38	
105.77	-89.57	341.84	
114.91	-89.43	254.14	
124.05	-89.36	299.74	
133.20	-89.34	270.94	
142.34	-89.19	272.34	
151.49	-89.35	258.44	

				Hol	e Numb	er:	FC-07	7-02	
Falls Creek Project Diamond Dril	l Log			Logg	ed by: C	R/JM/DC	I Di	_{ate:} 2008/(05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
0.00 4.57 0.00									
<u> </u>	0							1	
4.57 11.08 FBX		4.57	5.00	500166	0.43	227	0.01	<0.3	
FBX/Andesite Porph	282	5.00	7.63	500167	2.63	342	0.01	0.8	
A mix of interesting bx and dykes of plag porphyry andesite. Host unit is a		7.63	8.61	500168	0.98	272	0.01	0.5	
dark limey sed units that is moderately calcareous. BX is large clasts in a fe	10	8.61	10.00	500169	1.39	285	0.01	0.4	
altered albite/calcite matrix. Fe is forming yellow Halos around clasts of	<u>Caya</u>								
mainly volcanics. Clasts host pyrite and minor chalcopyrite mineralization,								<u> </u>	
	290	10.00	11.28	500170	1.28	373	0.01	0.6	
	20	11.28	12.50	500171	1.22	343	0.00	<0.3	
Andesite porphyry	250	12.50	15.00	500172	2.50	247	0.00	0.4	
		12.50	15.00	<u>500173</u>	2.50				
Unit is dark green andesite with .5 to 2 cm's plag pheno's. Amphiboles present	250	15.00	17.50	500174	2.50	186	0.00	0.3	
in matirx, mostly augite. Plag pheno's generally green coloured. Augite pheno's		17.50	17.50	500175	0.00		<u> </u>	<u> </u>	
often have an association to calcite, and rim's react with hcl. occasional	30	17.50	20.00	500176	2.50	210	0.01	0.6	
calcite/mafic amygdule infills.		20.00	22.50	500177	2.50	372	0.00	0.4	
	BSS	22.50	25.00	500178	2.50	274	_0.00	_<0.3	
		25.00	27.50	500179	2.50	325	0.00	<0.3	
	BSS	27.50	30.00	500180	2.50	315	0.00	<0.3	
	40	30.00	32.50	500181	2.50	360	0.00	_<0.3	
	BASS	32.50	35.00	500182	2.50	147	0.00	<0.3	
		32.50	35.00	500183	2.50	470			
	BOD	35.00	37.50	500184	2.50	179	0.00	<0.3	
		40.00	40.00	500186	2.50	267	0.00		
	50	40.00	42.50	500187	2.50	323	0.00	0.4	
		45.00	45.00	500188	0.00	525			
		45.00	47.50	500189	2.50	169	0.00	<0.3	
		47.50	50.00	500190	2.50	251	0.00	<0.3	
		50.00	52.50	500191	2.50	431	0.00	0.3	
		52.50	55.00	500192	2.50	262	0.00	<0.3	
	PSA	55.00	57.50	500193	2.50	448	0.00	0.3	
		57.50	60.00	500194	2.50	411	0.01	<0.3	
		60.00	62.50	500195	2.50	194	0.00	0.4	
	70	62.50	65.00	500196	2.50	168	0.00	<0.3	
2008/05/29								Page	1 of 3

							Hol	e Numb	er:	FC-07	'-02	
Fal	lls Creek	Project	Diamond Dril	l Log			Logg	ed by: G	R/JM/DC	Da	ate: 2008/	05/29
From	То	Rocktype	& Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
					65.00	67.50	500197	2.50	184	0.00	<0.3	
				<u>BCC</u>	67.50	67.50	500198	0.00				
					67.50	70.00	500199	2.50	239	0.00	<0.3	
				BOSS	70.00	72.50	500200	2.50	217	0.00	<0.3	
					72.50	75.00	500201	2.50	247	0.00	<0.3	
				80	75.00	77.50	500202	2.50	436	0.00	<0.3	
					77.50	80.00	500203	2.50	340	0.00	<0.3	
				BAR	80.00	80.00	500204	0.00				
					80.00	82.50	500205	2.50	362	0.00	<0.3	
				BESS	82.50	85.00	500206	2.50	266	0.00	<0.3	
				90	85.00	87.50	500207	2.50	289	0.00	0.4	
				RSS	85.00	87.50	500208	2.50				
					87.50	90.00	500209	2.50	331	0.00	<0.3	
				RSS	90.00	92.50	500210	2.50	352	0.00	<0.3	
				<u>Caï</u> A	92.50	95.00	500211	2.50	332	0.00	<0.3	
				100	95.00	97.50	500212	2.50	224	0.00	<0.3	
					97.50	97.50	500213	0.00				
				250	97.50	100.00	500214	2.50	442	0.00	<0.3	
					100.00	102.50	500215	2.50	152	0.00	<0.3	
				250	102.50	105.00	500216	2.50	115	0.00	<0.3	
				110	105.00	107.50	500217	2.50	219	0.00	<0.3	
				250	107.50	110.00	500218	2.50	404	0.00	<0.3	
					110.00	112.50	500219	2.50	241	0.00	<0.3	
				282	112.50	115.00	500220	2.50	228	0.00	<0.3	
					115.00	117.50	500221	2.50	256	0.00	<0.3	
				120	117.50	120.00	500222	2.50	313	0.01	<0.3	
					120.00	122.50	500223	2.50	443	0.00	<0.3	
					122.50	122.50	500224	0.00				
				1201	122.50	125.00	500225	2.50	186	0.00	<0.3	
					125.00	127.50	500226	2.50	216	0.00	<0.3	
				130	127.50	130.00	500227	2.50	169	0.00	<0.3	
				222	130.00	132.50	500228	2.50	195	0.00	<0.3	
					132.50	135.00	500229	2.50	202	0.00	<0.3	
					135.00	137.50	500230	2.50	195	0.01	<0.3	
				Physic	137.50	140.00	500231	2.50	168	0.00	<0.3	
				140	140.00	142.50	500232	2.50	317	0.00	<0.3	
					140.00	142.50	500233	2.50				
2008/05/2	29				•		•	I	1	•	Page	' 2 of 3

_		_						Hol	e Numb	per:	FC-07	7-02	
Fa	IIs Creek	(Project	Diamond D	rill Log	g			Logg	ed by: C	GR/JM/DC	D	_{ate:} 2008/0	05/29
From	То	Rocktype	& Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
					250	142.50	145.00	500234	2.50	299	0.01	<0.3	
					Park	145.00	147.50	500235	2.50	323	0.00	<0.3	
						147.50	147.50	500236	0.00				
						147.50	150.00	500237	2.50	345	0.00	<0.3	
				150	M5X1	150.00	152.50	500238	2.50	359	0.01	<0.3	
						152.50	154.53	500239	2.03	295	0.00	0.3	
154.53	154.53	EOH											
2008/05/	29					I	I	I		1	I	Page	3 of 3

HOLE NUMBER: FC-07-03 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6223950.000	CONTRACTOR:	Atlas
EAST:	664370.000	LOGGED BY:	GR/DC/JM
ELEVATION:	1209.000	DRILLING DATES:	2007/08/09 TO 2007/08/10
LENGTH (m):	264.26	LOG DATE	2007/08/10
CASING:	6.1	DIP / AZIMUTH:	-60.0 / 320
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	ION: Third Showin	ng	
COMMENTS: 7	Third Showing		
DEPTH (m)	DIP	AZIMUTH	
5.18	-59.50	320.35	
14.33	-59.67	321.27	
23.47	-59.74	321.47	
32.61	-59.73	322.79	
41.76	-59.77	322.00	
50.90	-59.80	322.42	
60.05	-60.04	323.53	
69.19	-59.84	323.58	
78.33	-59.86	323.90	
87.48	-59.76	325.65	
96.62	-59.57	324.79	
105.77	-59.50	324.31	
114.91	-59.38	325.47	
124.05	-59.38	324.86	
133.20	-59.35	324.41	
142.34	-59.50	324.82	
151.49	-59.48	323.53	
160.63	-59.52	325.84	

HOLE NUMBER: FC-07-03 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6223950.000	CONTRACTOR:	Atlas						
EAST:	664370.000	LOGGED BY:	GR/DC/JM						
ELEVATION:	1209.000	DRILLING DATES:	2007/08/09 TO 2007/08/10						
LENGTH (m):	264.26	LOG DATE	2007/08/10						
CASING:	6.1	DIP / AZIMUTH:	-60.0/ 320						
CORE SIZE:	NQ2	MAP REF:							
AREA:		ASSAY LAB:	Acme						
FIELD LOCAT	ION: Third Showir	ıg							
COMMENTS: 7	Third Showing								
DEPTH (m)	DIP	AZIMUTH							
169.77	-59.53	328.16							
178.92	-59.37	323.55							
188.06	-59.41	324.29							
197.21	-59.42	323.29							
206.35	-59.42	322.06							
215.49	-59.37	323.84							
224.64	-59.36	327.17							
233.78	-59.35	327.43							
242.93	-59.29	325.47							
252.07	-59.28	326.76							
261.21	-59.21	327.62							
		Hole Number: FC-07-03							
---	--	-----------------------	----------------	--------	---------------------	-----------------	----------	----------------	--------
Falls Creek Project Diamond Drill	Log	_		Logg	_{ed by:} G	R/DC/JM	Da	ate: 2008/0	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
0.00 6.10 Coro									
6.10 65.16 AN	-	6.10	7.50	500240	1.40	62	0.00	<0.3	
Andesite porph psuedo bx	N.	7.50	10.00	500241	2.50	336	0.00	<0.3	
	10	10.00	12.50	500242	2.50	87	0.00	<0.3	
Looks like a bx but is really intense hematization along fractures and	K.	12.50	15.00	500243	2.50	518	0.00	<0.3	
replacement of plag lathes. Fractures often contain calcite veinlets as well.	S.	15.00	17.50	500244	2.50	556	0.00	<0.3	
Psuedo clasts are medium to light green and average 1-3cm across. Numerous		17.50	17.50	500245	0.00				
calcite veinlets mostly at shallow angles to ca. Some matrix material may be		17.50	20.00	500246	2.50	1820	0.00	0.9	
native copper. The material is copper coloured, soft and shiny but seems too	20	20.00	22.50	500247	2.50	342	0.00	<0.3	
clay like??? Ochre??		22.50	25.00	500248	2.50	659	0.00	<0.3	
Specular hematite is present in veinlets locally suggesting the copper-like	X.	25.00	27.50	500249	2.50	57	0.00	<0.3	
material is just hematite and clay.	S.	27.50	30.00	500250	2.50	281	0.00	0.4	
	20	30.00	32.50	500251	2.50	1241	0.00	0.7	
	30 - 10,	30.00	32.50	500252	2.50				
		32.50	35.00	500253	2.50	546	0.00	<0.3	
	S.	35.00	37.50	500254	2.50	231	0.00	<0.3	
		37.50	40.00	500255	2.50	964	0.00	0.4	
	40	40.00	42.50	500256	2.50	919	0.00	0.7	
	N.	42.50	45.00	500257	2.50	241	0.00	<0.3	
		45.00	45.00	500258	2.50	42	0.00	-0.2	
		43.00	47.30 50.00	500259	2.50	<u>43</u> 62	0.00	<u><0.3</u>	
		50.00	52 50	500260	2.50	57	0.00	0.3	
	50	52 50	55.00	500267	2.50	48	0.00	0.3	
		55.00	57 50	500262	2.50	40	0.00	0.4	
	i ka	55.00	57.50	500264	2.50				
	S.	57.50	60.00	500265	2.50	298	0.00	<0.3	
		60.00	62.50	500266	2.50	1576	0.00	<0.3	
	60 <u> </u>	62.50	65.00	500267	2.50	87	0.00	<0.3	
	K.	65.00	67.50	500268	2.50	351	0.00	<0.3	
<u>65.16 77.50 AN</u>		67.50	70.00	500269	2.50	199	0.00	<0.3	
Andesite porph		70.00	72.50	500270	2.50	613	0.00	0.4	
Still shows psuedo bx texture but not contiuously. More whispy disjointed	R.	72.50	75.00	500271	2.50	102	0.01	<0.3	
calcite veinlets and stronger chlorite as black matrix material. Silicified	70	75.00	77.50	500272	2.50	26	0.01	<0.3	
around 75-77m. 77 meteres the rock becomes quite faulted, evident by	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	I								
2008/05/29		I	I	I		I		 Page	1 of 4

	Hole Number: FC-07-03					7-03			
Falls Creek Project Diamond Dri	ll Log		_	Logg	ed by:	GR/DC/JM	Di	_{ate:} 2008/	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
blocky/broken rocks More specular hematite than above unit.	10 A								
83.76 - 86.08 Non-porphyritic dyke showing intense hematization. Sharp upper									
contact at 30 to ca.		77 50	00.00	500070	0.50		0.00		
<u>//.50 86.08 BX</u>			80.00	500273	2.50	639	0.00	0.4	
Mixed Andesite breccia.	S S S	80.00	80.00	500274	0.00	4004	0.00	47	
		80.00	82.50	500275	2.50	4601	0.00	1.7	
Clast supported BX	BOR	82.50	85.00	500276	2.50	693	0.00	0.4	
Clasts are made up of andesite, ranging from epidote to hematite altered.	80								
Breccia is most likely a fault breccia, as clasts are not fully lithified, and	BAA								
boundaries are eviendent. Very minor clacite infills, and weak chlorite									
alteration.									
rock is generally quite faulted, evident by clay gouge and broken rock of the	<u>Cač</u> A								
same unit.									
92.76 - 96.09 Non-nornhyritic dyla chowing intense hometization. Sharn unner	250								
contact at 30 to ca	Lača								
		85.00	87 50	500277	2 50	198	0.00	0.4	
86 08 118 32 BX		87 50	87 50	500277	0.00		0.00		
Andesite/Basalt BX	292	87.50	90.00	500279	2.50	197	0.00	<0.3	
	90	90.00	92.50	500280	2.50	121	0.00	<0.3	
Unit is very altered. Hematite alteration prevolant, and epidote alteration	292	92.50	95.00	500281	2.50	415	0.00	0.6	
also present. Clast supported matrix. For the most part the pheno's are		95.00	95.00	500282	0.00				
overprinted, but locally you can see weakly crowded plag laths within the	282	95.00	97.50	500283	2.50	38	0.01	<0.3	
breccia, indicating an earlier stage of brecciation, or possibly multiple	1201	97.50	100.00	500284	2.50	44	0.00	<0.3	
phases of brecciation. Often the pheno's have been completely replaced by	100_8	100.00	102.50	500285	2.50	113	0.00	<0.3	
hematite. Local vein controlled potassic alteration as well as local clav and		102.50	105.00	500286	2.50	234	0.00	0.4	
or calc silicate alteration. Intense calcite and albite veining cross cuts the	282	105.00	107.50	500287	2.50	143	0.00	0.4	
unit, and in some cases (top of unit) said veining carries chalcopyrite		107.50	110.00	500288	2.50	82	0.00	<0.3	
mineralization (in brecciation from ~87-96, weakly)	250	110.00	112.50	500289	2.50	533	0.00	0.6	
	110	112.50	115.00	500290	2.50	230	0.00	0.5	
	250	115.00	117.50	500291	2.50	308	0.00	0.4	
	6202	115.00	117.50	500292	2.50				
	RSR	117.50	120.00	500293	2.50	229	0.01	<0.3	
118.32 137.00 AN		120.00	122.50	500294	2.50	205	0.01	<0.3	
Andesite psuedo breccia.	120	122.50	122.50	500295	0.00				
2008/05/29		I	I	I	I	I	I	l Page	2 of 4

		Hole Number: FC-07-03							
Falls Creek Project Diamond Dri	ll Log			Logg	ed by:	SR/DC/JM	Da	_{ate:} 2008/	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
	Krt.	122 50	125.00	500206	2 50	121	0.00	-03	
Similar unit as seen at top of hole. More thorough hematite alteraton, giving	i de la companya de	125.00	127.50	500297	2.50	65	0.00	<0.3	
less of a breccia texture. Moderate calcite veining.	19 A.	127.50	130.00	500298	2.50	119	0.01	<0.3	
.	130	130.00	132.50	500299	2.50	121	0.01	<0.3	
Broken lower contact.	N.	132.50	135.00	500300	2.50	155	0.00	<0.3	
	No.	135.00	137.50	500301	2.50	99	0.02	<0.3	
<u>137.00 155.70 BX</u>		137.50	140.00	500302	2.50	125	0.01	<0.3	
вх	140	137.50	140.00	500303	2.50				
Hematized. Weakly brecciated. clasts range from 2 to 20 cm's in size. Matrix is		140.00	142.50	500304	2.50	221	0.01	0.3	
generally calcite/albite or epidotized calcite.Plag Pheno's visible in areas.	282	142.50	145.00	500305	2.50	92	0.01	<0.3	
Often intense calcite veining with internal brecciation. Diseeminated pyrite		145.00	147.50	500306	2.50	393	0.01	0.4	
associated to areas that lack intense hematite alteration (hematite	<u>5</u> 55	147.50	150.00	500307	2.50	513	0.01	0.4	
overprinting pyrite)	150	150.00	152.50	500308	2.50	86	0.01	0.3	
		152.50	155.00	500309	2.50	244	0.01	0.7	
		155.00	157.50	500310	2.50	190	0.01	0.3	
<u>155.70 264.26 AN</u>		157.50	160.00	500311	2.50	177	0.01	0.4	
Andesite Porphyry	i de la companya de la	160.00	160.00	500312	0.00				
	160	160.00	162.50	500313	2.50	159	0.01	0.4	
Typical andesite porphyry. Green Plag and and plag feldspar pheno's ranging	N.V.	162.50	165.00	500314	2.50	1/9		0.4	
from .5- 3 cm's in size. Minor calcite veining and minor chlorite alteration.		165.00	167.50	500315	2.50	183	0.00	<0.3	
Hematite alteration on fracture surfaces at top of unit, but generally un		167.50	170.00	500310	2.50	107	0.01	-0.2	
nematized. Bottom of unit displays brecclation associated to calcile verning.	170	170.00	172 50	500318	2.50	186	0.01	<0.3	
		172 50	175.00	500319	2.50	184	0.01	<0.3	
	S.	175.00	177.50	500320	2.50	175	0.01	<0.3	
		177.50	180.00	500321	2.50	173	0.01	<0.3	
		180.00	180.00	500322	0.00				
	180	180.00	182.50	500323	2.50	252	0.00	<0.3	
		182.50	185.00	500324	2.50	185	0.01	<0.3	
	N.	185.00	187.50	500325	2.50	205	0.00	<0.3	
		187.50	190.00	500326	2.50	199	0.00	<0.3	
	190	190.00	192.50	500327	2.50	200	0.00	<0.3	
	N.	190.00	192.50	500328	2.50				
		192.50	195.00	500329	2.50	181	0.00	<0.3	
		195.00	197.50	500330	2.50	172	0.00	<0.3	
	NY.	197.50	200.00	500331	2.50	171	0.00	<0.3	
	200/~								
2008/05/29								Page	 3 of 4

						Hole Number: FC-07-03							
Fa	lls Creek	Project	Diamond Dr	ill Log			-	Logg	_{ed by:} G	R/DC/JM	Da	_{ate:} 2008/0	05/29
From	То	Rocktype	& Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
				K		200.00	202.50	500332	2.50	189	0.00	<0.3	
				Ľ.	5) 41	202.50	205.00	500333	2.50	194	0.00	<0.3	
				ĺ.		205.00	205.00	500334	0.00				
				×.	Š,	205.00	207.50	500335	2.50	189	0.00	<0.3	
				Ý.	Š,	207.50	210.00	500336	2.50	189	0.00	<0.3	
				210		210.00	212.50	500337	2.50	199	0.00	<0.3	
				ý.	Š.	212.50	215.00	500338	2.50	174	0.00	<0.3	
				×.	Š,	215.00	217.50	500339	2.50	155	0.00	<0.3	
				Ľ.		217.50	220.00	500340	2.50	167	0.01	<0.3	
				220		220.00	222.50	500341	2.50	170	0.00	<0.3	
				- TX	Š.	222.50	225.00	500342	2.50	181	0.00	<0.3	
				Ý,	S.	225.00	227.50	500343	2.50	175	0.01	<0.3	
				Ľ		225.00	227.50	500344	2.50				
				, in the second s	Š.	227.50	230.00	500345	2.50	188	0.00	<0.3	
				230	Š.	230.00	232.50	500346	2.50	178	0.00	<0.3	
				Ľ.		232.50	235.00	500347	2.50	_191	0.00	<0.3	
				Ľ.	5) 61	235.00	237.50	500348	2.50	160	0.00	<0.3	
				ĺ.		237.50	240.00	500349	2.50	169	0.00	<0.3	
				, k	Š.	240.00	242.50	500350	2.50	180	0.00	<0.3	
				240	Š,	242.50	245.00	500351	2.50	178	0.00	<0.3	
				Č	9 6	245.00	247.50	500352	2.50	180	0.00	<0.3	
				ý.	Š.	247.50	250.00	500353	2.50	196	0.00	<0.3	
				×.	Š,	250.00	250.00	500354	0.00				
				250		250.00	252.50	500355	2.50	406	0.00	11.7	
				- T	N N	252.50	255.00	500356	2.50	17	0.00	<0.3	
				, k	Š.	255.00	257.50	500357	2.50	169	0.00	0.9	
				Ý	S,	257.50	260.00	500358	2.50	200	0.00	1.7	
				Ľ		260.00	260.00	500359	0.00				
				260		260.00	262.50	500360	2.50	148	0.00	<0.3	
				_	Š.	262.50	264.26	500361	1.76	184	0.00	1.1	
264.26	0.00	EOH		Ý.	Š.								
End of Hole	e			_									
0.00	0.00	_EOH		0									
2008/05/2	29											Page	4 of 4

HOLE NUMBER: FC-07-04 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225478.000	CONTRACTOR:	Atlas
EAST:	666095.000	LOGGED BY:	DC
ELEVATION:	1105.000	DRILLING DATES:	2007/08/11 TO 2007/08/14
LENGTH (m):	313.03	LOG DATE	2007/08/15
CASING:	4.5	DIP / AZIMUTH:	-60.0 / 235
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	ION: Falls Showin	g	
COMMENTS: I	Falls Showing		
DEPTH (m)	DIP	AZIMUTH	
17.37	-59.24	237.99	
26.52	-59.22	238.60	
35.66	-59.25	238.57	
44.81	-59.22	238.85	
53.95	-59.24	238.87	
63.09	-59.18	239.01	
72.24	-59.18	239.29	
81.38	-59.14	239.22	
90.53	-59.23	240.61	
99.67	-59.13	241.03	
108.81	-59.02	242.69	
117.96	-58.90	239.55	
127.10	-59.83	241.61	
136.25	-58.67	241.70	
145.39	-58.68	241.87	
154.53	-58.58	243.93	
163.68	-58.51	242.58	
172.82	-58.69	243.46	

HOLE NUMBER: FC-07-04 Falls Creek Project DIAMOND DRILL LOG

	NORTH:	6225478.000	CONTRACTOR:	Atlas
	EAST:	666095.000	LOGGED BY:	DC
	ELEVATION:	1105.000	DRILLING DATES:	2007/08/11 TO 2007/08/14
	LENGTH (m):	313.03	LOG DATE	2007/08/15
	CASING:	4.5	DIP / AZIMUTH:	-60.0/ 235
	CORE SIZE:	NQ2	MAP REF:	
	AREA:		ASSAY LAB:	Acme
	FIELD LOCAT	ION: Falls Showin	g	
	COMMENTS: H	Falls Showing		
	DEPTH (m)	DIP	AZIMUTH	
	181.97	-58.66	243.59	
	191.11	-58.68	243.93	
	200.25	-58.73	244.09	
	209.40	-58.67	244.24	
	218.54	-58.64	244.32	
	227.69	-58.62	245.05	
	236.83	-58.45	245.65	
	245.97	-58.56	242.94	
	255.12	-58.43	243.23	
	264.26	-58.44	245.14	
	273.41	-58.43	243.22	
	282.55	-58.39	244.22	
	291.69	-58.34	244.41	
	300.84	-58.26	244.47	
	309.98	-58.17	245.07	
- 6				

				Ho	le Numb	ber:	FC-07	7-04		
Falls Creek Project Diamond Dr	ill Log			Logg	jed by: C	DC	Date: 2008/05/29			
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)		
0.00 4.57 Case										
Casing - No return										
4.57 32.61 AN		4.57	5.00	500362	0.43	46	0.09	0.4		
Andesite Porphyry		5.00	7.50	500363	2.50	52	0.10	0.5		
	Vi,	7.50	10.00	500364	2.50	51	0.04	0.8		
Hematite altered, intense in locations, giving pseudo-breccia textures. Often	10	7.50	10.00	500365	2.50					
fracture controlled Fe staining. At 23.77 Unit begins to display stronger		10.00	12.50	500366	2.50	17	0.04	2.7		
epidote alteration, as well as a strong breccia texture, most likely a		12.50	15.00	500367	2.50	72	0.07	0.5		
pseudo-breccia . Unit has plag pheno's throughout, often being replaced by	14	15.00	17.50	500368	2.50	52	0.04	<0.3		
hematite or epidote (psuedo pheno's). Unit hosts minor calcite veining, often	i de la companya de la	17.50	20.00	500369	2.50	44	0.05	0.4		
associated witgh fractures, possibly controlling fractures.		20.00	22.50	500370	2.50	224	0.05	0.6		
-Unit contacts put in at 23.77 to 27.12 as a result of brecciation,, but not	20	22.50	23.77	500371	1.27	57	0.07	0.3		
separated into sub-unit as most of the breccia looks to just be hematite		23.77	23.77	500372	0.00					
alteration. as a pseudo brecccia.	S.	23.77	25.00	500373	1.23	56	0.02	1.1		
	V.S.	25.00	27.12	500374	2.12	101	0.07	2.8		
		27.12	27.50	500375	0.38	56	0.08	0.4		
		27.50	30.00	500376	2.50	617	0.06	0.8		
	30	30.00	32.81	500377	2.81	470	0.09	0.9		
32.61 42.56 AN BX		32.81	32.81	500378	0.00					
Andesite Porphyry BX	REE	32.81	35.00	500379	2.19	37	0.19	1.3		
		35.00	37.50	500380	2.50	24	0.31	1.6		
Unit is green plag andesite porph. Brecciated by hematite veins, which also	RSS	37.50	40.00	500381	2.50	23	0.56	1		
host red metallic mineral, possibly a hematite altered clay silicate, but looks		40.00	42.50	500382	2.50	17	0.83	0.7		
metallic, and is fracture controlled. at the top of the unit there are large	RSS									
clasts of a brown clay-calc silicate, altered porphyry (phenos, but possibly a										
subvolcanic) could prove to be the fracture controlled mineral altered by	255									
hematite mentioned earlier. Unit is also brecciated by calcite veins. Some of										
the breccia is most likely a psuedo-breccia, having breccia textures as a										
result of hematite alteration.	40									
	RSS	42.50	45.00	500383	2.50	2566	0.99	3.1		
		45.00	47.50	500384	2.50	264	0.04	0.6		
Andesite Porphyry	Recei	47.50	48.31	500385	0.81	266	0.01	1.5		
Intense Hematite alteration, most likely a result of local faulting, evident by	RESE						<u> </u>	<u> </u>		
a 20 cm clay-gouge rock, also hematite altered. The unit is almost completely	<u>Eala</u>						<u> </u>	<u> </u>		
overprinted by hematite, and late stage calcite veining is evident by							<u> </u>	<u> </u>		
	11		+	1			+	+		
2008/05/29			I	I				Page	 1 of 7	

Hole Number: FC-07-04							7-04		
Falls Creek Project Diamond Dril	l Log			Logg	ed by: C	C	Da	_{ate:} 2008/0	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
brecciated hematite altered andesite clasts.									
		48.31	50.00	500386	1.69	398	0.02	0.9	
Andesite Porphyry / Breccia		50.00	50.60	500387	0.60		2.07	3.6	
Unit is similar to other plag porphyry's, plag lathes and also crosscut by	50		-						
calcite veins, as well, subjected to facture controlled hematite alteration,									
hemztite alteration also occuring within said calcite veins. Unit also has	57555								
pyrite veins that crosscut the andesite, but when it trasitions into a									
clay/calc silicate altered extrusive, the pyrite occurs in disseminated									
clusters, and it looks to be a psuedomorph of the plag phenos, if not in veins.									
When in calc/clay silicate altered rock, the pyrite veins have a halo of									
disseminated pyrite surrounding them, possibly suggesting a hydrothermal									
alteration. Areas of the altered extrusive look to have potassic alteration, to									
a degree that looks monz-ish.	<u>B</u> CCB								
I< @ 50.60 sharp lct 55 degrees lct >									
	<u>BOS</u>	50.60	50.60	500388	0.00				
Andesite Porphyry		50.60	52.50	500389	1.90	244	0.11	0.8	
	60	52.50	55.00	500390	2.50	204	0.06	0.7	
Plag pheno's, altered by epidote (green mineral). Overall the unit has been		55.00	57.50	500391	2.50	274	0.06	0.9	
altered by hematite. Very patchy epidote alteration, when occuring, is quite	BASA	57.50	57.50	500392	0.00				
developed. When hematite alteration is fracture controlled, it is very strong,		57.50	60.00	500393	2.50	248	0.04	0.6	
but overall, the hematite is occuring as a dusting, overprinting the volcanics.	BAA	60.00	62.50	500394	2.50	116	0.03	<0.3	
The bottom of the unit displays pseudo-breccia textures as a result of	CAĽA	62.50	65.00	500395	2.50	43	0.07	0.6	
localized hematite. The lower section of the unit begins to display Subvolcanic	RESC.	65.00	67.04	500396	2.04	25	0.05	<0.3	
textures (subvolcanic monz-syenite????). Pyrite is seen dissemnated									
throughout.	RSS								
67.04 72.24 Subvolcanic AN		67.04	67.50	500397	0.46	753	0.25	2.6	
Subvolcanic Andesite.		67.50	67.50	500398	0.00				
	XX.	67.50	70.00	500399	2.50	82	0.08	0.3	
Unit looks to be overprinted Andesite, but has characteristics of an	1 and	70.00	72.24	500400	2.24	34	0.01	<0.3	
intrusive/sub-intrustive or sub volcanic. Potasically altered. Original									
andesite texture remains, but is hydrothermally altered, leaving disseminated	70								
pyrite throughout (pyrite is possibly vesicle filling). At 68.2 the subvolcanic									
texture begins to look extrusive, similar to the maroon volcanics,									
72.24 82.46 AN		72.24	72.50	500401	0.26	70	0.01	<0.3	
Porphyritic (subvolcanic)		72.50	75.00	500402	2.50	87	0.02	<0.3	
	N.U	75.00	77.50	500403	2.50	24	0.02	<0.3	
2008/05/29		I	I	I	l	I	I	 Page	2 of 7

					Hol	e Numb	er:	FC-07	/-04	
Falls Creek Project Diamond Dril	l Log				Logg	ed by: C	C	Di	ate: 2008/	05/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
Highly altered igneous rock. Highly silicified rock (chalcedony/jasper????)	Ķ		75.00	77.50	500404	2.50				
Difficult to distinguish the altered rock. Rock is brittle, and has undergone	l S	N	77.50	80.00	500405	2.50	430	0.08	0.9	
calcite alteration as well. Plag/ feldspar pheno's throughout. Unit displays	l i i i i i i i i i i i i i i i i i i i		80.00	82.46	500406	2.46	216	0.04	0.7	
very intrusive-like textures most likely as a result of alteration. Potassic										
alteration is abundant, most likely altering the plag-spar to potassic		N.								
plag-spar. Later stage calcite veins crosscut unit and are often mineralized	l i i i i i i i i i i i i i i i i i i i								<u> </u>	
with pyrite. Pyrite occurs throughout the unit, both as vein controlled and		2								
disseminated, and is fairly consistant, looking later stage, most likely due to	80	2.X								
a hydrothermal event. Near the end of the unit, a minor chlorite alteration		N.							<u> </u>	
event looks to have occured		N.							<u> </u>	
<u>82.46</u> 85.38 AN	Y	2.1	82.46	85.00	500407	2.54	305	0.03	0.7	
Andesite Porphyry		<u></u>	85.00	85.00	500408	0.00			<u> </u>	
			85.00	85.38	500409	0.38	210	0.03	0.6	
Mafic overprint. Plag laths look to have been altered by said mafic, or	Ý.	N.								
possibly epidote. Fracture/ vein controlled hematite and pyrite, veins being		2.5								
calcite. Pyrite occurs throughout andesite, both disseminated and polymorph of										
phenocrysts. Similar brown-grey calc/clay silicate alteration seen associated		M								
to veining.Similar alteration is abundant at the beginning of next unit.	, second s	Š.								
85.38 116.20 AN	X	54 5	85.38	87.50	500410	2.12	239	0.02	1.1	
Andesite porphyry			87.50	88.72	500411	1.22	133	0.06	0.3	
		Ň	88.72	90.00	500412	1.28	390	0.09	4.8	
Unit is altered to a similar green-white rock (calc/clay silicate) at the	70 - V	N.	90.00	92.50	500413	2.50	162	0.09	_<0.3	
beginning of unit (first 50-60 cm's), pheno's still visible. Very minor clay at		2.1	92.50	92.50	500414	0.00				
the beginning of unit. Beginning of unit also displays minor chlorite			92.50	95.00	500415	2.50	235	0.04	0.4	
alteration. Calcite veins crosscut unit. Vein and fracture controlled hematite.		N.	95.00	97.50	500416	2.50	218	0.01	<0.3	
Pyrite throughout, but not as abundant as previous units. at 88.9 a quartz	, second s	N.	97.50	100.00	500417	2.50	244	0.02	0.5	
carbonate brecciation is visible, and pyrite is abundant, very minor	100		100.00	100.30	500418	0.30	99	0.01	<0.3	
chalcopyrite, as well as a trace grey metallic sulphide, this is visible for		N. Y.	100.30	102.50	500419	2.20	2/3	0.01	<0.3	
roughly 25 cm's.	N.		102.50	105.00	500420	2.50	146	0.01	<0.3	
	, second s	N.	105.00	107.50	500421	2.50	169		_<0.3	
unite is broken down into a sub unit at 100.3 due to more intense calcite	l K		107.50	110.00	500422	2.50	206	0.01	_<0.3	
veining			110.00	110.00	500423	0.00	000	0.01		
	110	N.	110.00	110.74	500424	0.74	200		0.4	
		N.	110.74	112.50	500425	1.76	324	0.03	0	
	Ľ.	N. X	112.50	116.00	500420	2.50	149	0.01	<u> </u>	
	p.	м	113.00	110.20	500427	1.20		0.04	<u> </u>	
2008/05/29			l	I	I		I	I	 Page	3 of 7

					Hole Number: FC-07-04					
Falls Creek Project Diamond Dri	ll Log	9			Logg	ed by: D	C	I Da	_{ate:} 2008/	05/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
<u>116.20 119.62 Vein</u>		1205	116.20	117.50	500428	1.30	561	0.76	0.8	
Vein - Unit includes part of the host rock, as it also hosts massive pyrite			117.50	119.62	500429	2.12	122	0.02	<0.3	
veins, and seems to be affected by the same shearing that milled the vein.		\sim								
possibly Monz or Syenite. Lots of milled Quartz. Unit has undergone multiple										
silicification phases. minor Potassic alteration. Massive pyrite veins		\sim								
throughout, as well as polymorph or amygdule filling pyrite in the vein host										
rock. Mafic Xeno's seen at the beginning of the vein.	-	\sim								
<u>119.62</u> 122.57AN		1.5	119.62	120.00	500430	0.38	168	0.03	<0.3	
Andesite Porphyry	120	NG KG	120.00	122.57	500431	2.57	263	0.01	<0.3	
Some as throughout help. Dark group (motio quarmint). Calaita voina are										
Same as throughout hole. Dark grey-green (manc overprint). Calcite veins are		N.								
abundant where endote alt'n is strong		ху ХХ								
122 57 122 57 BX	1	K.								
Andesite BX -		290	122.57	122.57	500432	0.00				
		1227	122.57	124.75	500433	2.18	497	0.29	1.7	
Unit is brecciated by calcite veins. Overall the unit is ~25% pyrite, occuring		292	124.75	125.00	500434	0.25	280	0.08	3.1	
in the calcite veins, but also in areas of strong epidote alteration. At 124.05	120		125.00	127.50	500435	2.50	205	0.09	0.4	
, 30 cm's of massive pyrite is seen, ~95%, hosted in calcite. The unit ends in	150_	222	125.00	127.50	500436	2.50				
a andesite bx that is epidote and potasically altered. Hematite is present			127.50	130.00	500437	2.50	175	0.03	0.3	
throughout the unit.		222	130.00	132.50	500438	2.50	619	0.09	0.9	
			132.50	135.00	500439	2.50	92	0.08	<0.3	
		RSS	135.00	137.50	500440	2.50	278	0.01	<0.3	
	140		137.50	140.00	500441	2.50	153	0.01	<0.3	
		RSS	137.50	140.00	500442	2.50				
			140.00	142.50	500443	2.50	82	0.01	<0.3	
		B	142.50	145.00	500444	2.50	607	0.01	0.7	
			145.00	147.50	500445	2.50	233	0.02	0.7	
	150	BAA	147.50	150.00	500446	2.50	819	0.05	1.2	
	150_		150.00	152.50	500447	2.50	196	0.01	0.5	
		BAA	152.50	155.00	500448	2.50	227	0.00	0.5	
			155.00	155.34	500449	0.34	287	0.01	0.9	
		BCCC.	155.34	157.50	500450	2.16	209	0.02	0.7	
			157.50	160.00	500451	2.50	585	0.01	1	
	160		160.00	160.00	500452	0.00				
		Lala	160.00	162.50	500453	2.50	257	0.02	0.8	
			162.50	165.00	500454	2.50	412	0.04	0.8	
2008/05/29									Page	4 of 7

_		Hole Number: FC-07-04								
Falls Creek Project Diamond Drill	Log				Logg	ed by: D)C	Da	_{ate:} 2008/	05/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
	5	$\overline{\mathbf{X}}$	165.00	167.50	500455	2.50	103	0.01	0.4	
	5C		167.50	167.50	500456	0.00				
			167.50	168.50	500457	1.00	168	0.00	0.5	
	170	- K	168.50	170.00	500458	1.50	319	0.01	0.9	
			170.00	172.50	500459	2.50	515	0.03	1.1	
	5C	- 1	172.50	175.00	500460	2.50	333	0.02	<0.3	
			175.00	177.50	500461	2.50	551	0.02	0.8	
	<u>M</u>	<u>-</u>	177.50	180.00	500462	2.50	191	0.01	<0.3	
<u>179.48</u> 195.63ANBX	-180-00		180.00	182.50	500463	2.50	271	0.02	0.4	
Andesite Porphyry Breccia	3C	- 1, R	180.00	182.50	500464	2.50				
			182.50	185.00	500465	2.50	298	0.02	0.8	
Green Andesite rocks, intensly brecciated, multiple phases. Unit has undergone	E.	- 1	185.00	187.50	500466	2.50	158	0.00	0.6	
epidote and hematite alteration. Matrix is mainly calcite with patchy albite			<u>187.50</u>	190.00	500467	2.50	87	0.01	<0.3	
and sericite alteration as well.	190	}}	190.00	192.50	500468	2.50	118	0.01	<0.3	
			192.50	195.00	500469	2.50	129	0.06	<0.3	
10E 62 214 4E AN	P,	- 14	195.00	200.00	500470	2.50	101	0.01	0.4	
193.03 214.45 AN	Ví.		200.00	202.00	500471	2.50	65	0.01	2.2	
Andeshe porphyry	N.		200.00	202.50	500472	0.00	05	0.01	2.3	
Small eubedral, green plag, and amphibole	N.		202.50	205.00	500473	2 50	308	0.03	0.6	
(augite and hornblende) pheno's. Often the unit has a matic overprint, making	200		205.00	207.50	500475	2.50	221	0.10	1	
the pheno's difficult to distinguish. At 203.3 a small epidote alteration bears	N.		207.50	210.00	500476	2.50	252	0.04	1	
decent chalcopyrite and minor bornite mineralization. The unit also has trace			210.00	212.50	500477	2.50	250	0.01	1.3	
diseemnitaed pyrite. Overall the unit has undergone multiple phases of			212.50	212.50	500478	0.00				
alteration, hematite and epidote being the most prevolant. Potassic										
alteration, although uncommon in this unit, occurs in patchy areas. Overall,										
the alteration is very mottled. Locally there is minor calcite brecciation, and	N.C.									
the calcite looks to have been sericitized on occasion. near the bottom of the										
unit the epidote altered rounded plag pheno's, when hematized can bear	N.	-								
chalcopyrite and galena (possibly chalcocite). Similar red metallic mineral as	210	-								
top of hole 3 seen as well in said pheno's. Calcite veining is thorough, and		-								
occasional chalcopyrite and very minor bornite is seen.		-								
		-	212.50	215.00	500479	2.50	191	0.01	_1.3	
<u>214.45 270.36 BX </u>	55		215.00	217.50	500480	2.50	116	0.06	0.9	
Volcaniclastic breccia	p.	<u>}}</u> -	217.50	220.00	500481	2.50	230	0.14	1.3	
De des ens derbannen la drive mits lite en de its Abundant - 16-11 - 1-6			220.00	222.50	500482	2.50	232	0.06	0.8	
KOCKS are dark green, looking quite like andesite. Abundant pyrite througho <u>ut,</u>	_220		<u> </u>	222.50	500483					
2008/05/29					l		I		 Page	5 of 7

	Hole Number: FC-07-04								
Falls Creek Project Diamond Drill	l Log			Logg	ed by: C	C	Di	05/29	
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
both as stringers/veins and disseminated throughout Overall the unit is		222.50	225.00	500484	2.50	110	0.55	<0.3	
epidotized, and locally can be very developed. Hematite alteration is strong at		225.00	227.50	500485	2.50	5	0.71	0.3	
the top of unit, but is very weak at bottom. Small amounts of chalcopyrite and	5255	227.50	230.00	500486	2.50	46	0.07	0.3	
very minor bornite, also seen is similar red mineral often associated to		230.00	232.50	500487	2.50	75	0.01	0.4	
hematite. (bornite/cuprite?chalchantrite?) Calcite veins form local breccia	220 250	232.50	235.00	500488	2.50	176	0.04	0.6	
textures that are consistant throughout unit. Often the calcite is hematite	230	232.50	235.00	500489	2.50				
altered. Occasional chlorite alteration. Near the end of the unit, Olivine is	5250	235.00	236.89	500490	1.89	453	1.24	2.9	
seen.		236.89	237.50	500491	0.61	153	0.65	1	
~249.56 - area of intense quartz and calcite brecciation, pyrite up to 45%	555	237.50	240.00	500492	2.50	142	0.04	0.8	
		240.00	242.50	500493	2.50	422	0.04	0.9	
	240	242.50	244.70	500494	2.20	_84	0.17	0.5	
		244.70	244.70	500495	0.00				
		244.70	245.00	500496	0.30	14	0.13	0.4	
		245.00	247.50	500497	2.50	88	0.09	0.5	
		247.50	250.00	500498	2.50	142	0.29	0.4	
	250	250.00	251.25	500499	1.25	116	0.10	1.2	
	5752	251.25	252.50	500500	1.25	105	0.27	0.4	
	Shi	252.50	255.00	500501	2.50	45	0.26	0.5	
		255.00	257.50	500502	2.50	41	0.10	<0.3	
	Shi	257.50	260.00	500503	2.50	90	0.00	0.4	
	260	260.00	260.00	500504	0.00				
		260.00	262.50	500505	2.50	43	0.00	<0.3	
		262.50	265.00	500506	2.50	210	0.05	<0.3	
	S S S	265.00	267.50	500507	2.50	68	0.01	<0.3	
		267.50	270.00	500508	2.50	180	0.04	<0.3	
	555	270.00	270.00	500509	0.00				
<u>270.36</u> 271.61anBX									
	BAA	270.00	272.50	500510	2.50	146	0.02	1.2	
Very altered andesite with a quartz carb breccia. Looks to be calc silicate	<u>Call</u>								
altered, withe relic igneous textures. Breccia is mineralized by pyrite and	222								
galena.		070.50	075.00	500544		070			
<u>271.61</u> 313.03ANbx		272.50	275.00	500511	2.50	279	0.04	0.6	
Andesite breccia.		2/5.00	277.50	500512	2.50	129		<u><0.3</u>	
		277.50	280.00	500513	2.50	126	0.00	<0.3	
Rocks are green, with nematite alteration at beginning of unit. clasts are		200.00	280.00	500514	2.50	66	0.01	10.2	
matrix supported, with clasts generally being of the same andesite unit.	280	280.00	282.50	500515	2.50	00	0.01	<0.3	
2008/05/29		I	I	I	I	I	I	l Page	6 of 7

					Hol	e Numb	er:	FC-07	′-0 4	
Falls Creek Project Diamond Dri	ll Log				Logg	ed by: D	С	Da	_{ate:} 2008/0)5/29
From To Rocktype & Description		From	n	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
Clacite veins crosscut unit. Unit has been epidotized throughout. Chalcopyrite	Kr.	282.	50 2	85.00	500516	2.50	152	0.00	<0.3	
is seen in unit, at sample tag: 500512. Rocks grade to be unaltered andesite bx		285.	00 2	87.50	500517	2.50	46	0.01	<0.3	
at end of hole.	Ś.	287.	50 2	90.00	500518	2.50	_16	0.02	<0.3	
		290.	00 2	92.50	500519	2.50	129	0.01	<0.3	
	290	292.	50 2	95.00	500520	2.50	83	0.00	<0.3	
		295.	00 2	97.50	500521	2.50	52	0.01	<0.3	
		297.	50 3	00.00	500522	2.50	80	0.00	<0.3	
	No.	300.	00 3	02.50	500523	2.50	39	0.01	<0.3	
	200	302.	50 3	02.50	500524	0.00				
	300	302.	50 3	805.00	500525	2.50	76	0.01	<0.3	
	N.	305.	00 3	807.50	500526	2.50	30	0.01	<0.3	
		307.	50 3	10.00	500527	2.50	82	0.00	<0.3	
		310.	00 3	12.50	500528	2.50	14	0.01	<0.3	
	310	312.	50 3	12.50	500529	0.00				
	1 🖗	312.	50 3	13.03	500530	0.53	1228	0.01	0.9	
2008/05/29									Page	7 of 7

HOLE NUMBER: FC-07-05 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225773.000	CONTRACTOR:	Atlas
EAST:	666334.000	LOGGED BY:	JM
ELEVATION:	1075.000	DRILLING DATES:	2007/08/14 TO 2007/08/17
LENGTH (m):	285.60	LOG DATE	2007/08/14
CASING:	4.5	DIP / AZIMUTH:	-60.0 / 323
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	'ION: Forks Showing	ng	
COMMENTS: I	Forks Showing		
DEPTH (m)	DIP	AZIMUTH	
17.37	-58.78	323.47	
26.52	-58.87	323.62	
35.66	-59.04	323.50	
44.81	-58.99	323.75	
53.95	-59.21	323.89	
63.09	-59.15	323.69	
72.24	-59.19	323.81	
81.38	-59.34	324.07	
90.53	-59.31	324.51	
99.67	-59.24	325.05	
108.81	-59.24	325.21	
117.96	-59.14	325.92	
127.10	-59.05	326.23	
136.25	-59.11	326.38	
145.39	-59.04	327.02	
154.53	-58.90	328.22	
163.68	-58.98	327.35	
172.82	-58.98	327.60	

HOLE NUMBER: FC-07-05 Falls Creek Project DIAMOND DRILL LOG

NORTH:	6225773.000	CONTRACTOR:	Atlas
EAST:	666334.000	LOGGED BY:	JM
ELEVATION:	1075.000	DRILLING DATES:	2007/08/14 TO 2007/08/17
LENGTH (m):	285.60	LOG DATE	2007/08/14
CASING:	4.5	DIP / AZIMUTH:	-60.0 / 323
CORE SIZE:	NQ2	MAP REF:	
AREA:		ASSAY LAB:	Acme
FIELD LOCAT	ION: Forks Showin	ng	
COMMENTS: F	Forks Showing		
DEPTH (m)	DIP	AZIMUTH	
181.97	-58.90	327.65	
191.11	-58.78	328.12	
200.25	-58.73	328.64	
209.40	-58.59	328.69	
218.54	-58.77	328.77	
227.69	-58.59	329.46	
236.83	-58.53	330.45	
245.97	-58.31	330.61	
255.12	-58.70	330.38	
264.26	-58.57	330.19	
273.41	-58.52	330.08	
282.55	-58.61	330.55	

Hole Number: FC-07-05										
Falls Creek Project Diamond Drill	l Log				Logg	_{ed by:} J	М	Da	ate: 2008/0	05/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
0.00 4.57 Case	0									
Casing - no return										
			4.57	5.00	500531	0.43	43	0.00	<0.3	
Not bedrock. Rounded rocks with a few larger boulders that may have seemed lik	æ		5.00	6.94	500532	1.94	46	0.01	<0.3	
bedrock. Casing taken deeper to 6.71m.										
<u>6.94</u> 11.91FBX			6.94	7.50	500533	0.56	13	0.00	<0.3	
FBX			7.50	10.00	500534	2.50	4	0.00	_0.4	
Intense, pervasive hematite alteration. Protolith texture is difficult to		FXM -	7.50	10.00	500535	2.50				
discern. Speckled with limonite. Weak and faulted with gouge and sandy infill.	10	57527	10.00	11.91	500536	1.91	3	0.00	<0.3	
Minor, weak calcite/albite veining. Disseminated pyrite.		Sh hi								
<u>11.91 30.40 FBX</u>			11.91	12.50	500537	0.59	0	0.00	<0.3	
FBX		RAN	12.50	15.00	500538	2.50	0	0.00	<0.3	
Rounded to subangular polymictic clasts often with fuzzy, indistinct margins.			15.00	17.50	500539	2.50	0	0.00	<0.3	
Clast size varies from 1-2mm to 3 cm. Patchy hematite alteration, far less			17.50	20.00	500540	2.50	0	0.00	<0.3	
intense than previous unit and mostly limited to matrix. From top of unit until		Lada	20.00	22.50	500541	2.50	0	0.00	<0.3	
14.33 is fractured, faulty and gougey. Mostly minor cal/ab veining, some veins			22.50	25.00	500542	2.50	0	0.00	<0.3	
are up to 2cm wide. Disseminated pyrite (0.2%) and trace cp. Sharp lower			25.00	25.00	500543	0.00				
contact.	20	57527	25.00	27.50	500544	2.50	0	0.00	<0.3	
			27.50	30.00	500545	2.50	2	0.00	<0.3	
			30.00	30.40	500546	0.40	0	0.00	<0.3	
		BAA								
30.40 33.94 RK	30	Ľ <i>ľ</i>	30.40	32.50	500547	2.10	0	0.00	<0.3	
SD			32.50	33.94	500548	1.44	0	0.00	<0.3	
Extremely fine grained, intensely hematite alteration. Patches of zig-zagging										
cal/ab veins. Sharp upper and lower contacts.										
33.94 36.88 FBX			33.94	35.00	500549	1.06	0	0.00	<0.3	
FBX			35.00	36.88	500550	1.88	0	0.00	<0.3	
Polymictic clasts, Small (2-5mm) clasts are rounded. Larger clasts are angular		5301								
and contains plag phenos. Hematized matrix. Disseminated pyrite. Weak cal/ab										
veining. Sharp lower contact.		L'AYA								
		179-Fg								
36.88 50.90 Vein		5303	36.88	37.50	500551	0.62	48	0.00	0.5	
2008/05/29									Page	 1 of 7

						Hole Number: FC-07-05					
Falls Creek Project Diamond Dril	l Log				Logg	_{ed by:} J	М	Da	_{ate:} 2008/0	05/29	
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)		
Vein			37.50	37.50	500552	0.00					
Felsic vein. Light green-grey color. Contains sub-anhedral phenos of plag and	40		37.50	40.00	500553	2.50	16	0.00	<0.3		
small 1mm wide xstals that are glassy and quartz like. Rx do not react with			40.00	42.50	500554	2.50	0	0.00	<0.3		
acid. Upper and lower contacts are soft and green in color.			42.50	45.00	500555	2.50	0	0.00	<0.3		
			42.50	45.00	500556	2.50					
			45.00	47.50	500557	2.50	0	0.00	<0.3		
			47.50	50.00	500558	2.50	70	0.00	0.7		
	50		50.00	50.90	500559	0.90	11	0.00	<0.3		
50.90 157.04 FBX	50		50.90	52.50	500560	1.60	2	0.00	<0.3		
FBX		BAA	52.50	55.00	500561	2.50	0	0.00	<0.3		
Polymictic maroon volcanics with very hematized matrix. Clasts range from			55.00	57.50	500562	2.50	5	0.00	<0.3		
2mm-10cm, and are angular to rounded. The larger clasts are generally angular		BAA	57.50	60.00	500563	2.50	0	0.00	<0.3		
and composed of med-grained xstals that are sub to anhedral. These clasts	40		60.00	60.00	500564	0.00					
contain plag and a metallic mineral that is light bluish in color, but does not	00	BAA	60.00	62.50	500565	2.50	0	0.00	<0.3		
have the cubic cleavage of galena (possilby specular hematite or sphalerite).			62.50	65.00	500566	2.50	6	0.00	<0.3		
Calcite veins are thin and wispy, although thicker 0.5-3cm veins are common.		BAAA	65.00	67.50	500567	2.50	0	0.00	<0.3		
Calcite veins often contain a green, soft mineral.			67.50	70.00	500568	2.50	5	0.00	<0.3		
	70	BASA	67.50	70.00	500569	2.50					
			70.00	72.50	500570	2.50	13	0.00	<0.3		
			72.50	75.00	500571	2.50	14	0.00	<0.3		
			75.00	77.50	500572	2.50	0	0.00	<0.3		
		<u>BCC</u>	77.50	80.00	500573	2.50	2	0.00	<0.3		
	80		80.00	82.50	500574	2.50	3	0.00	<0.3		
		<u>BCC</u>	82.50	85.00	500575	2.50	4	0.00	<0.3		
			85.00	87.50	500576	2.50	4	0.00	<0.3		
			87.50	90.00	500577	2.50	3	0.00	<0.3		
	-		90.00	92.50	500578	2.50	5	0.00	<0.3		
	90		92.50	92.50	500579	0.00					
			92.50	95.00	500580	2.50	66	0.00	<0.3		
			95.00	97.50	500581	2.50	2	0.00	<0.3		
			97.50	100.00	500582	2.50	6	0.00	<0.3		
			100.00	102.50	500583	2.50	22	0.00	<0.3		
	100		102.50	105.00	500584	2.50	20	0.00	<0.3		
			102.50	105.00	500585	2.50					
			105.00	107.50	500586	2.50	22	0.00	<0.3		
			107.50	110.00	500587	2.50	33	0.00	<0.3		
			110.00	112.50	500588	2.50	26	0.00	<0.3		
2008/05/29									Page	2 of 7	

								Hol	e Numb	er:	FC-07	7-05	
Fa	IIs Creek	Project	Diamond Dri	ill Lo	g			Logg	_{ed by:} J	М	Da	_{ate:} 2008/	05/29
From	То	Rocktype	& Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
				110_		112.50	112.50	500589	0.00				
					Park	112.50	115.00	500590	2.50	26	0.00	<0.3	
					555	115.00	117.50	500591	2.50	21	0.00	<0.3	
						117.50	120.00	500592	2.50	15	0.00	<0.3	-
						120.00	122.50	500593	2.50	25	0.00	<0.3	
				120 _		122.50	125.00	500594	2.50	20	0.00	<0.3	
						125.00	127.50	500595	2.50	9	0.01	<0.3	
						127.50	127.50	500596	0.00				
						127.50	130.00	500597	2.50	12	0.00	<0.3	
						130.00	132.50	500598	2.50	20	0.00	<0.3	
				130_		132.50	135.00	500599	2.50	22	0.00	<0.3	
					BAAN .	135.00	137.50	500600	2.50	25	0.00	<0.3	
						137.50	140.00	500601	2.50	30	0.00	<0.3	
					BAA	140.00	142.50	500602	2.50	28	0.00	<u><0.3</u>	
				140		142.50	142.50	500603	0.00				
					BAA	142.50	145.00	500604	2.50	41	0.00	<0.3	
						145.00	147.50	500605	2.50	28	0.00	<0.3	
					RAA	150.00	152.50	500607	2.50	10	0.00	<0.2	
					<u>Cara</u>	152.50	155.00	500608	2.50	20	0.00	<u><0.3</u>	
				150 _		152.50	155.00	500609	2.50	20	0.00		
						155.00	157.04	500610	2.04	18	0.00	<0.3	
					250								
157.04	166.38	RK		7	L'àCA	157.04	157.50	500611	0.46	187	0.00	1.8	
RK						157.50	160.00	500612	2.50	134	0.00	5.2	
Banded, st	tratified rx whic	h have sheared or	metamorphosed textures. Layers			160.00	162.50	500613	2.50	148	0.01	2.1	
appear to h	have been som	ewhat mobilized. C	arbonate veining. Patchy hematite			162.50	165.00	500614	2.50	95	0.03	1.2	
alteration.	Disseminated	pyrite (0.1%). Pyrite	most commonly found in black,	160 _		165.00	165.00	500615	0.00				
fine graine	d layers that a	re mixed with non-li	near calcite streaming.			165.00	166.38	500616	1.38	149	0.03	3	
													-
				_									
166.38	181.18	_AN				166.38	167.50	500617	1.12	95	0.00		+
fbx AN				170	K.	167.50	170.00	500618	2.50	79	0.00	1.1	
					¬ *								
2008/05/	29					I	I	I		I	I	 Page	3 of 7

Hole Number: FC-07-05										
Falls Creek Project Diamond Dril	l Log				Logg	ed by: J	М	Da	_{ate:} 2008/0)5/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
Weakly brecciated andesite. Clast supported with a carbonate rich matrix.	I	1.1	170.00	172.50	500619	2.50	112	0.00	0.5	
Clasts are 1mm - 3cm and are angular. Locally coherent. Patchy hematite		YSi Se	172.50	175.00	500620	2.50	76	0.00	0.4	
alteration which is occasionally quite strong. Rare patches of calcite infilled		in de la compañía de Compañía de la compañía	175.00	177.50	500621	2.50	88	0.00	0.6	
amygdules. Mineralization is limited to very weak, disseminated pyrite. Sharp			177.50	180.00	500622	2.50	156	0.00	1.1	
lower contact.		ki.	180.00	181.18	500623	1.18	4898	0.02	1	
<u>181.18 195.76 JBX</u>	180	vý,	181.18	182.50	500624	1.32	160	0.01	1.6	
sd JBX		RSS	182.50	182.50	500625	0.00				
Moderate to strongly bx'd. Patchy hematite alteration which is occasionally			182.50	185.00	500626	2.50	74	0.00	1.5	
intense. Massive pyrite in sections of un-hematized green colored rock,			185.00	187.50	500627	2.50	76	0.00	1.4	
otherwise pyrite is disseminated. Pyrite = 2%.			187.50	190.00	500628	2.50	39	0.01	1.1	
			190.00	190.00	500629	0.00				
	190		190.00	192.50	500630	2.50	46	0.01	1	
		125A	192.50	195.00	500631	2.50	29	0.01	0.9	
			192.50	195.00	500632	2.50				
		252	195.00	195.76	500633	0.76	133	0.01	1.2	
195.76 198.22 FBX			195.76	197.50	500634	1.74	191	0.00	0.6	
FBX		1999	197.50	198.22	500635	0.72	155	0.00	1.3	
Polymictic and clast supported. Clasts are small, angular, ranging from 2mm -										
1cm. Hematite alteration increases with depth. Cut by calcite veins. Vein		1999								
controlled epidote. Albite/calcite veining. Disseminated pyrite (0.2%).										
······································		<u>BSS</u>								
<u>198.22</u> 201.03JBX			198.22	200.00	500636	1.78	134	0.00	3.1	
sd JBX		R C	200.00	201.03	500637	1.03	176	0.00	3	
Green colored. Calcite veining. Well mineralized with pyrite (0.5-1%). Very										
similar to the un-hematized sections of the VCbx described two units ago. Very		RSS								
coarse sandstone, similar texture to previous unit, but characterized by a	200									
creamy, milky green chlorite/albite alteration.		RSS								
201.03 205.04 VCbx			201.03	202.50	500638	1.47	125	0.00	0.7	
fbx JBX			202.50	205.04	500639	2.54	44	0.02	1	
Polymictic, clast supported. Clasts are small (mm scale), closely spaced and		HAY M								
angular to sub-angular. Unit criss-crossed by thin veinlets of calcite, as		57527								
well as thicker, hematite stained calcite veins. Weak, generally veined										
controlled hematite and epidote alteration. Weak, disseminated pyrite only.										
Moderately strong, carbonate filled fracture brecciation.		BATA								
205.04 208.38 FBX		<u>Caŭ A</u>	205.04	207.50	500640	2.46	12	0.00	0.5	
		RSR .	207.50	208.39	500641	0.89	22	0.00	0.5	
FBX										
2008/05/29			I	I	I	l	I	I	l Page	4 of 7

				Hol	e Numb	er:	FC-07	7-05	
Falls Creek Project Diamond Dril	l Log			Logg	ed by: J	M	D	_{ate:} 2008/	05/29
From To Rocktype & Description		From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
Hematized, polymictic. Clasts are angular to rounded. 50-50 clasts to matrix.									
208.38 219.26 AN		208.39	210.00	500642	1.61	37	0.00	0.8	
fP AN f	210	210.00	212.50	500643	2.50	28	0.00	1	
Probably a basalt or andesite. Veined with calcite and minor epidote. From	Ň.	212.50	215.00	500644	2.50	16	0.00	_1	
216.70 - 217.21 rocks are weak and contain minor gouge. Carbonate rich. Weakly		212.50	215.00	<u>500645</u>	2.50				
hematized throughout. Calcite veins and small round (possibly amygdules)	15	215.00	217.50	500646	2.50	32	0.00	<0.3	
contain chlorite. Weak, disseminated pyrite.	<u>.</u>	217.50	219.26	500647	1.76	33	0.00	<0.3	
<u>219.26</u> _221.30RK	Kî (219.26	220.00	500648	0.74	29	0.00	<0.3	
RK	220	220.00	221.30	500649	1.30	12	0.00	<0.3	
Aphanitic, intensely hematized. Abrupt upper contact. Lower contact is	220								
gradational.							_		
221.30 225.49 FBX		221.30	222.50	500650	1.20	7	0.00	<0.3	
JBX-FBX		222.50	225.00	500651	2.50	5	0.00	<0.3	
Mottled purple color. Appears to have bx'd the above unit and moderately	Pay M	225.00	225.49	500652	0.49	3	0.01	<0.3	
overprinted the clasts. Weak, patchy silicification. Both upper and lower	555								
contacts are gradational.	St Hi								
<u>225.49</u> 227.89 <u>RK</u>		225.49	225.49	500653	0.00				
SD c		225.49	227.50	500654	2.01	4	0.00	<0.3	
Pervasive, intense hematite flooding of possible clastic fine to coarse grained		227.50	227.89	500655	0.39	8	0.00	<0.3	
rock which may grade into the bx below. Gradational upper and lower contacts.									
227.89 230.35 FBX		227.89	230.00	500656	2.11	25	0.00	<0.3	
FBX		230.00	230.35	500657	0.35	42	0.00	<0.3	
Polymictic, matrix supported. Clasts are 1mm to 2cm and angular to sub-angular	· •								
Intensely hematized matrix. Cut by calcite veins with weak epidote. Sheared									
lower contact.	230								
230.35 233.27 RK		230.35	232.50	500658	2.15	3	0.00	<0.3	
SD f		232.50	232.50	500659	0.00				
Aphanitic, intensely/completely hematite altered.									
<u>233.27</u> 237.00FBX									
	BSS	232.50	235.00	500660	2.50	2	0.00	<0.3	
		235.00	237.50	500661	2.50	0	0.00	<0.3	
	BAA	235.00	237.50	500662	2.50				
FBX									
Cataclastic bx containing fault gouge. Veined with calcite.									
<u>237.00</u> 248.69FBX		237.50	240.00	500663	2.50	2	0.00	<0.3	
2008/05/29								 Page	5 of 7

	Hole Number: FC-07-05									
Falls Creek Project Diamond Dril	l Log	9			Logg	_{ed by:} J	Μ	Di	_{ate:} 2008/	05/29
From To Rocktype & Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
FBX	240	MON	240.00	242.50	500664	2.50	6	0.00	<0.3	
Fine-grained, pervasively hematized. Angular, calcite rich clasts.		H.L.	242.50	245.00	500665	2.50	2	0.00	<0.3	
		MY W	245.00	247.50	500666	2.50	0	0.00	<0.3	
248.69 249.84 FBX										
FBX										
Clay altered, silicified.	,	H-Y-M								
<u>249.84</u> 250.66 FLT										
	250		247.50	250.00	500667	2.50	_41	0.00	<0.3	
			250.00	252.50	500668	2.50	0	0.00	<0.3	
FLT - gouge and sand	1									
<u>250.66</u> 256.53 FBX		MONT	252.50	252.50	500669	0.00				
FBX		BAR	252.50	255.00	500670	2.50	0	0.00	<u><0.3</u>	
Fine-grained, pervasively hematized. Angular, calcite rich clasts.										
		HAL)								
253.91 - 254.6: bleached or less pervasively hematite altered, patchy										
SILICIFICATION			255.00	257 50	500671	2.50	0	0.00	-0.2	
256 52 261 21 EDV	1	May M	255.00	257.50	500672	2.50		0.00	<u><0.3</u>	
		555	257.50	262 50	500672	2.50	19	0.00	<0.2	
EBY		S. H.	200.00	202.30	300073	2.30	10	0.00		
Matrix supported Very bleached looking. Cut with calcite veining. Clasts are										
small (0.2 - 0.5mm). Gradational upper and lower contacts	260	MAG								
261.21 283.07 FBX	1		262.50	265.00	500674	2.50	0	0.00	<0.3	
FBX			265.00	267.50	500675	2.50	0	0.00	<0.3	
Matrix supported. Clast frequency increases downhole. Clasts are angular and		MAX2	267.50	267.50	500676	0.00				
polymictic. Matrix is pervasively hematized.		252	267.50	270.00	500677	2.50	0	0.00	<0.3	
			270.00	272.50	500678	2.50	0	0.00	<0.3	
275.37 - 275.79: bleaching and faulting (gouge and sand)	270_		272.50	275.00	500679	2.50	0	0.00	<0.3	
278.24 - 279.7: bleaching			275.00	277.50	500680	2.50	30	0.00	<0.3	
			277.50	280.00	500681	2.50	65	0.00	0.5	
		Story .	280.00	282.50	500682	2.50	0	0.00	<0.3	
	280		282.50	282.50	500683	0.00				
	200_		282.50	283.07	500684	0.57	0	0.00	<0.3	
<u>283.07</u> 285.60 FBX			283.07	285.00	500685	1.93	11	0.00	<0.3	
FBX		RCCH I	285.00	285.60	500686	0.60	6	0.00	<0.3	
Cataclastic? Clast supported with a calcite rich matrix. Angular 0.2 - 1 cm		LALA								
		1	1	1			1	1		1
2008/05/29			I	I	I		l	I	 Page	6 of 7

_						Hole Number: FC-07-05							
Fa	alls Creek	(Project	Diamon	d Drill Log				Logg	ed by: J	М	Da	_{ite:} 2008/0)5/29
From	То	Rocktype	& Description			From	То	Sample	Width	Cu (ppm)	Au (g/t)	Ag (ppm)	
clasts.				Ę									
285.60	285.60	EOH											
2008/05/	/29											Page	7 of 7

APPENDIX B

ASSAYS

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 P

PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Imperial Metals Corporation PROJECT Falls Creek File # A718205 Page 1 200 - 580 Hornby St., Vancouver BC V6C 3B6 Submitted by: Gary Roste

Data____FA

SAMPLI	S# Au** gm/mt	Sample kg	
G-1 500033 500034 500035 500035 500035	<pre>< .01 .02 <.01 <.01 <.01 <.01 <.01 <.01</pre>	6.8 7.5 7.5 1.6	
50003 50003 50003 50004 50004	7 <.01 3 .02 9 <.01 <.01 <.01	.8 6.2 6.4 6.0 2.8	
500042 50004 50004 50004 50004 50004	2 <.01 <.01 <.01 <.01 <.01 <.01 <.01	3.8 7.1 5.2 1.7 .9	
50004 50004 50004 50005 50005	7 3 9 (pulp) 1 (pulp) (2.01 3.80 .01 <.01	5.9 7.2 .1 6.5 6.8	
50005 50005 50005 50005 50005 50005	2 <.01 3 <.01 4 <.01 5 <.01 5 <.01	6.9 6.2 2.4 6.4 6.9	
50005 RE 50 RE 5 50005 50005	7 .01 2057 <.01 20057 <.01 3 .01 9 .01	6.0 - 6.8 7.0	
50006 50006 50006 50006 50006 50006	0 <.01 1 <.01 2 <.01 3 <.01 4 <.01	6.8 7.2 4.2 2.7 5.3	
STAND.	ARD SL20 6.13	-	
Sample type: DRILL CORE P150. Samples	beginning 'RE'	are Reruns and 'RRE	' are Reject Reruns.

	SAMPLE#	Au** Sa gm/mt	mple kg
	G-1 500065 500066 500067 500068	.01 <.01 .02 .07 .02	1.7 2.3 1.6 6.3
	500069	.01	2.4
	500070	.02	7.5
	500071	.01	1.7
	500072	.01	3.6
	500073	.10	.1
	500074	.01	1.5
	500075	.01	1.7
	500076	.01	3.1
	500077	.01	2.2
	500078	<.01	1.7
	500079	.01	6.4
	500080	.01	6.2
	500081	.01	6.7
	500082	<.01	6.7
	500083	.84	.1
	500084	<.01	6.4
	500085	.01	2.3
	500086	.01	6.4
	500087	.01	4.0
	500088	<.01	2.1
	RE 500088 RRE 500088 500089 500090 500091	.01 <.01 <.01 <.01 <.01 <.01	- 6.3 1.8 1.2
	500092	<.01	3.4
	500093	.01	6.5
	500094	<.01	3.4
	500095	.01	3.9
	500096	<.01	6.1
	STANDARD SL20	6.09	-
Sample type: DRILL CORE P150. Sam	nples beginning	'RE' are	e Reruns and 'RRE' are Reject Reruns.

Data 🕇 FA

Data_

SAMPLE#	Au**	Sample	
	gm/mt	kg	
G-1 500097 500098 500099 500100	<.01 .01 <.01 <.01 <.01 <.01	6.0 2.2 4.5 2.5	
500101 500102 500103 500104 500105	<.01 <.01 <.01 <.01 <.01 .11	2.6 1.2 2.5 2.3 1.5	
RE 500105 500106 500107 STANDARD SL20	.11 <.01 .04 6.11	1.7 4.9	

Sample type: DRILL CORE P150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

Raymond Chan

GEOCHEMICAL ANALYSIS CERTIFICATE

##

Imperial Metals Corporation PROJECT Falls Creek File # A718205 Page 1 200 - 580 Hornby St., Vancouver BC V6C 3B6 Submitted by: Gary Roste

Data____FA _____ DATE RECEIVED: AUG 7 2007 DATE REPORT MAILED:.....

																		A-12110-44121-011	NAV/0.3319/0323394								*** ***			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ هېرم	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррлі	Tī %	8 ppm	Al %	Na %	K %	W mqq
G-1 500033 500034 500035 500036	<1 <1 1 <1	3 205 133 313 73	उ उ उ उ र	43 78 69 74 72	<.3 <.3 <.3 <.3 <.3	3 23 18 18 23	3 26 22 22 23	530 1045 1175 1080 968	1.83 5.56 5.76 6.54 5.89	<2 3 6 5 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	6 <2 <2 <2 <2 <2	43 50 63 48 18	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 5 7	4 3 12 7 10	34 114 150 186 187	.43 3.68 7.38 3.45 1.77	.078 .132 .115 .130 .078	5 3 5 4 5	6 30 28 34 52	.62 2.02 1.71 1.67 2.23	209 11 113 35 18	.12 .11 .11 .25 .17	<20 <20 <20 <20 <20 <20	.95 2.70 2.27 2.67 3.09	.06 .04 .05 .12 .05	.52 .11 .16 .08 .04	<2 3 2 <2 <2 <2
500037 500038 500039 500040 500041	<1 1 1 1 1	325 246 276 291 206	7 <3 <3 <3 <3	74 92 96 84 84	<.3 <.3 <.3 <.3 <.3	21 20 23 19 20	22 26 28 24 22	1370 1130 1040 1136 989	6.28 7.14 6.90 5.96 6.28	4 <2 4 <2	<8 10 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 <2 2	37 29 29 34 42	<.5 <.5 <.5 <.5 <.5	<3 5 <3 5 <3	5 3 4 7 <3	165 163 161 144 138	5.36 4.17 2.18 4.42 2.95	.131 .133 .134 .186 .212	3 4 6 7	37 38 39 40 36	1.78 1.97 2.36 1.94 2.05	11 9 20 46 40	.23 .19 .21 .20 .20	<20 <20 <20 <20 <20	2.65 2.92 3.04 2.54 2.63	.07 .06 .06 .05 .07	.03 .02 .02 .04 .05	<2 <2 2 2 <2
500042 500043 500044 500045 500046	2 1 1 1 1	331 348 360 221 231	<3 <3 <3 <3 3	94 89 88 74 76	<.3 <.3 <.3 <.3 <.3	19 19 19 13 13	25 23 23 19 20	1146 927 941 1099 1134	6.97 6.70 6.51 5.58 5.68	<2 9 6 5 <2	<8 <8 <8 9 <8	<5 <5 <5 <5	2 <2 3 <2 3	46 46 55 170 149	< 5 < 5 < 5 < 5 < 5	5 7 3 <3 4	<3 <3 <3 <3 11	148 129 128 136 149	3.12 2.06 2.98 8.08 5.95	.213 .233 .226 .184 .225	6 7 8 10 12	37 34 34 20 22	2.26 2.18 1.93 2.72 1.98	49 26 28 9 13	.23 .23 .14 .01 .01	<20 <20 <20 <20 <20	3.02 2.76 2.47 .60 .53	.06 .08 .05 .03 .04	.05 .06 .04 .06 .12	<2 <2 <2 <2 <2 <2
500047 500048 500049 (pulp) 500050 500051	1 2 99 2 1	360 312 1183 248 156	9 <3 13 <3 3	77 90 47 84 91	<.3 <.3 .9 <.3 <.3	17 20 52 19 20	21 22 11 21 24	959 1089 307 1141 1116	6.33 6.83 3.40 6.81 7.08	10 5 21 5 6	<8 8 <8 <8 <8	<2 <2 <2 <2 <2	2 2 7 <2 <2	71 48 47 47 35	<.5 <.5 <.5 <.5 <.5	<3 6 7 5 3	4 5 <3 8	154 137 50 154 150	2.93 4.23 .87 4.55 3.10	.231 .210 .057 .213 .212	9 7 12 8 7	31 37 43 37 37	1.46 1.96 .67 2.01 2.45	48 17 170 146 62	.17 .13 .06 .13 .21	<20 <20 <20 <20 <20	2.24 3.07 1.19 3.04 3.03	.10 .09 .06 .10 .09	.08 .05 .29 .06 .03	3 2 3 <2 <2 <2
500052 500053 500054 500055 500056	1 1 <1 2 2	340 281 73 485 337	<3 <3 <3 <3 <3	89 82 73 102 92	<.3 <.3 <.3 <.3 <.3	18 18 24 16 17	23 21 22 23 23	969 1057 1024 1156 1033	6.13 6.44 6.03 7.48 6.59	3 5 19 5 <2	<8 <8 <8 10 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	36 46 19 39 47	<.5 <.5 <.5 <.5 <.5	10 5 <3 5 6	6 7 6 12 <3	131 141 200 150 128	3.03 3.88 1.65 3.04 3.05	.201 .200 .079 .227 .223	7 7 5 8 7	34 30 55 15 16	2.14 1.78 2.40 2.00 2.11	20 71 21 27 70	.25 .24 .18 .24 .25	<20 <20 <20 <20 <20	2.75 2.52 3.10 2.95 2.75	.09 .09 .05 .12 .08	.05 .08 .04 .04 .07	< 2 2 2 2 2 2 2 2 2 2 2 2
500057 RE 500057 RRE 500057 500058 500059	1 2 2 1	307 311 306 493 530	<3 <3 3 3 <3	107 108 108 93 90	<.3 <.3 <.3 <.3 <.3	21 21 21 20 20	26 25 25 25 23	1077 1078 1068 1098 1100	6.94 6.93 6.87 6.20 6.72	4 3 7 <2 7	<8 <8 <8 <8 8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	38 38 34 48 53	<.5 <.5 <.5 <.5	9 3 5 6 7	9 9 12 <3 <3	108 110 105 103 131	3.23 3.26 3.16 4.14 4.26	.210 .214 .213 .227 .229	6 6 7 7	26 26 26 26 27	2.03 2.05 2.03 2.02 1.95	41 40 40 89 174	.11 .11 .08 .16 .22	<20 <20 <20 <20 <20	3.04 3.14 3.00 2.76 2.56	.04 .05 .04 .06 .11	.06 .06 .06 .09 .17	<2 <2 <2 <2 <2 <2
500060 500061 500062 500063 500064	1 2 3 2 3	334 364 263 280 239	<3 <3 <3 <3 3	85 97 92 84 92	<.3 <.3 <.3 <.3 <.3	18 21 21 19 20	21 24 23 21 23	976 1073 1291 1317 1275	5.86 6.23 6.75 6.75 6.10	<2 2 11 11 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	48 69 56 62 70	<.5 <.5 <.5 <.5 <.5	<3 8 10 5 9	<3 <3 12 7 5	99 112 146 156 136	3.93 4.03 3.52 5.58 4.73	.206 .210 .241 .222 .231	5 6 7 7 8	24 24 30 27 21	1.83 1.90 2.04 1.71 2.00	66 89 68 298 551	.13 .21 .29 .28 .26	<20 <20 <20 <20 <20	2.29 2.24 2.50 2.15 2.46	.06 .05 .13 .11 .08	.11 .07 .12 .13 .16	<2 4 4 <2 <2
STANDARD DS7	19	99	61	368	.8	53	8	582	2.33	47	<8	<2	6	64	5.3	13	12	79	.86	.074	11	174	1.01	369	.11	34	.95	.08	.44	7

Sample type: DRILL CORE P150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

													In the second	*****														*******		CONTRACTOR DOCUMENTS CONTRACTOR
SAMPLE#	Mo mqq	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U maqa	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W mqq
G-1 500065 500066 500067 500068	<1 1 3 2 1	3 57 110 231 393	4 7 10 <3 8	43 73 84 91 67	<.3 <.3 <.3 <.3 <.3	3 18 21 21 21	3 20 24 27 21	510 991 1095 1033 969	1.78 5.78 7.40 6.45 5.27	<2 <2 8 7 7	<8 8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 <2 <2 <2 <2 <2	45 67 59 41 44	<.5 <.5 <.5 <.5 <.5	10 6 <3 <3 4	<3 <3 <3 <3 3	34 112 138 116 98	.40 3.40 3.65 2.98 3.73	.074 .199 .238 .237 .211	6 6 7 7 7	6 24 28 17 22	.59 1.58 1.90 2.31 1.70	198 72 355 47 88	.11 .20 .25 .04 .03	<20 <20 <20 <20 <20	.90 1.97 2.49 2.95 2.21	.06 .10 .14 .05 .05	.49 .12 .12 .14 .16	2 3 <2 <2 <2
500069 500070 500071 500072 500073 (pulp)	2 1 1 2 15	561 198 1768 376 1108	9 <3 5 8 15	76 78 71 97 93	<.3 <.3 .3 1.0 .9	18 20 20 17 27	22 23 24 22 21	1057 1208 1074 1191 857	5.56 6.59 6.50 6.88 5.29	7 5 <2 3 39	<8 9 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	72 68 68 100 137	<.5 <.5 <.5 <.5 <.5	<3 6 <3 <3 6	4 <3 11 <3 <3	101 134 97 97 126	4.90 4.23 4.34 5.66 4.12	.226 .233 .233 .226 .129	9 9 11 10 9	27 29 23 18 35	1.71 1.97 1.77 1.71 1.81	542 348 695 329 197	.10 .13 .01 <.01 .03	<20 <20 <20 <20 <20	2.05 2.36 2.02 1.40 1.75	.06 .12 .08 .09 .11	.13 .12 .15 .18 .30	2 <2 3 <2 <2
500074 500075 500076 500077 500078	3 1 1 2 2	46 73 200 46 47	6 5 8 12 <3	69 84 73 70 79	<.3 <.3 <.3 <.3 <.3	14 22 19 17 20	22 22 24 20 25	1423 981 1432 1182 1140	6.73 5.82 7.28 6.31 7.47	3 19 6 9 8	<8 <8 9 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 3 2 2	174 25 108 112 64	<.5 <.5 <.5 <.5 <.5	7 3 <3 <3 <3	7 <3 11 <3 9	134 198 156 117 175	7.17 2.17 5.26 6.18 3.58	.193 .079 .238 .232 .237	11 5 13 12 12	23 46 29 24 30	2.12 2.20 1.94 1.75 2.04	72 29 32 16 100	<.01 .22 .01 .01 .03	<20 <20 <20 <20 <20	1.69 3.07 2.10 1.65 2.49	.13 .07 .16 .10 .15	.06 .04 .09 .20 .08	<2 3 <2 <2 <2
500079 500080 500081 500082 500083 (pulp)	2 1 2 5	982 47 36 60 58	7 10 <3 <3 235	86 72 65 62 219	<.3 <.3 <.3 <.3 1.9	16 9 9 7 17	25 26 23 23 9	1422 1154 1046 1132 284	7.68 5.58 5.22 5.27 3.27	7 5 9 5 213	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	54 59 53 50 12	<.5 <.5 <.5 <.5	<3 <3 <3 4 23	4 5 <3 <3 <3	144 93 106 101 27	4.65 4.31 4.07 3.50 .42	.199 .085 .071 .068 .043	10 5 4 6	24 7 10 6 26	2.16 2.45 2.28 2.23 .43	41 23 20 65 26	.05 .01 .01 .01 .03	<20 <20 <20 <20 <20	3.01 2.59 2.38 2.50 .82	.09 .10 .09 .11 .05	.09 .15 .15 .10 .15	<2 <2 <2 <2 <2 <2
500084 500085 500086 500087 500088	1 2 1 1	175 172 108 42 146	<3 8 3 5 <3	75 66 68 65 83	<.3 <.3 <.3 .3 <.3	7 5 5 4 4	24 17 18 13 17	1205 1200 1164 1202 1050	6.37 6.36 5.81 3.89 5.74	<2 10 5 6	9 <8 <8 <8 <8	<2 <2 <2 <2	<2 <2 <2 <2 <2	64 34 86 114 113	<.5 <.5 <.5 <.5 <.5	4 <3 <3 <3 <3	7 <3 <3 8 <3	120 97 107 31 136	3.28 3.85 4.36 6.70 3.96	.080 .118 .127 .110 .125	4 7 8 5 7	5 2 1 1 3	2.52 1.55 1.67 1.45 1.67	533 6 97 416 61	02. 01.> 02. <.01.> .12	<20 <20 <20 <20 <20	3.32 2.80 3.58 .82 3.60	.08 .09 .25 .09 .34	.08 .08 .13 .21 .13	<2 <2 <2 <2 <2 <2
RE 500088 RRE 500088 500089 500090 500091	<1 1 <1 2 1	151 146 72 272 174	<3 4 <3 <3 5	81 76 69 61 62	<.3 <.3 <.3 <.3 <.3	5 5 18 3 4	17 17 20 16 19	1053 1016 905 1012 1074	5.72 5.49 5.54 5.65 5.64	4 7 14 7 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	2 2 <2 2 <2	114 113 18 80 55	<.5 <.5 <.5 <.5 <.5	6 <3 <3 <3 <3	<3 <3 5 5 4	139 131 178 113 97	3.98 3.90 1.54 3.06 4.23	.123 .121 .073 .124 .117	7 7 4 7 7	2 2 34 2 2	1.68 1.62 1.92 1.81 1.96	63 63 23 81 333	.12 .11 .20 .01 .01	<20 <20 <20 <20 <20 <20	3.72 3.61 3.02 2.65 2.88	.34 .33 .07 .17 .08	.13 .12 .04 .11 .08	<2 <2 <2 <2 <2 <2
500092 500093 500094 500095 500096	1 1 1 2 1	76 218 200 204 195	7 <3 <3 <3 <3	63 65 68 69 76	<.3 <.3 <.3 <.3 <.3	34 32 31 34 49	25 23 23 22 25	1228 1382 1236 1308 1264	6.56 6.42 6.24 6.49 6.66	12 18 13 11 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 2 <2 <2 <2	61 70 68 56 52	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 <3 8	16 9 9 <3 4	225 247 239 244 214	4.19 4.62 4.24 4.16 4.34	.101 .099 .102 .102 .091	6 6 5 4 4	67 62 50 56 98	2.68 2.73 2.33 2.37 2.96	74 114 631 171 144	.03 .15 .24 .28 .27	<20 <20 <20 <20 <20	2.69 2.67 2.58 2.75 3.16	.11 .15 .17 .18 .10	.08 .07 .06 .05 .04	<2 <2 <2 <2
STANDARD DS7	20	99	73	381	.6	55	9	613	2.37	46	<8	<2	5	68	5.1	10	10	82	.92	.076	12	186	1.05	388	.11	29	.98	.09	.45	5

Sample type: DRILL CORE P150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W mqq
G-1 500097 500098 500099 500099 500100	1 1 2 2	3 699 201 147 213	12 4 5 9 6	50 92 54 79 57	<.3 <.3 <.3 <.3 <.3	4 49 44 40 38	4 25 24 24 21	501 1350 1464 1068 1301	1.72 5.75 5.33 5.59 4.81	6 11 5 2 12	<8 <8 <8 <8 8	< <> <> <> <> <> <> <> <> <> <> <> <> <>	4 2 <2 2 2	43 170 97 54 55	<.5 <.5 <.5 <.5	<3 3 4 5 <3	ও ও ও ও ও	32 189 150 119 83	.41 5.03 6.06 5.40 7.73	.071 .093 .100 .113 .096	5 4 5 5 5	6 85 62 45 35	.59 2.85 2.07 2.48 1.51	222 1025 585 137 72	.11 .11 .01 .01 .03	<20 <20 <20 <20 <20	.88 2.91 2.35 2.51 1.87	.06 .12 .16 .08	.47 .08 .15 .21 .25	<2 <2 <2 <2 <2
500101 500102 500103 500104 500105	<1 1 2 1 6	202 228 243 179 202	10 15 <3 9 15	37 45 69 85 68	<.3 <.3 <.3 .3 1.8	21 28 29 22 28	13 15 23 20 27	1177 1469 1489 1445 1110	3.26 4.13 6.13 5.15 6.44	6 <2 4 5 78	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2	70 107 83 123 88	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	58 91 158 119 78	7.58 8.32 6.50 8.47 6.61	.103 .097 .099 .091 .094	4 4 5 5 3	24 31 47 36 16	.99 1.79 2.49 1.87 1.19	45 - 628 - 574 - 331 - 74 -	<.01 <.01 <.01 <.01 <.01	<20 <20 <20 <20 <20 <20	1.18 1.55 2.29 1.58 .82	.06 .07 .06 .07 .06	.21 .14 .09 .12 .16	<2 <2 <2 <2 <2 <2 <2
RE 500105 500106 500107 STANDARD DS7	5 1 4 22	197 71 172 96	17 3 9 71	67 71 62 374	1.9 <.3 .7	28 21 29 55	28 22 24 9	1105 1040 1213 616	6.46 6.16 5.53 2.37	76 27 19 55	<8 8 <8 <8	<2 <2 <2 <2	<2 <2 <2 7	86 24 71 69	<.5 <.5 <.5 5.3	<3 <3 <3 4	<3 <3 <3 <3	77 202 120 82	6.58 1.99 6.46 .90	.094 .080 .095 .076	3 5 4 11	15 46 33 185	1.19 2.32 2.37 1.06	70 22 46 385	<.01 .23 <.01 .11	<20 <20 <20 36	.82 3.16 1.71 .98	.06 .05 .07 .09	. 16 . 05 . 13 . 45	3 <2 2 4

Sample type: DRILL CORE P150, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHON

PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Imperial Metals Corporation PROJECT Falls Creek File # A718206 Page 1 200 - 580 Hornby St., Vancouver BC V6C 3B6 Submitted by: Gary Roste

		AUXC MINELTS N.A.
SAMPLE#	Au** Sample gm/mt kg	
G-1 463181 463182 463183 463184	<.01 - <.01 2.5 <.01 1.3 <.01 1.5 <.01 1.6	
463185 463186 463187 463188 RE 463188	<.01 2.2 <.01 1.8 <.01 1.5 <.01 1.6 <.01 -	
463189 463190 463191 463192 463193	<.01 1.9 <.01 2.8 <.01 1.7 <.01 2.0 <.01 2.1	
463194 463195 463196 STANDARD SL20	<.01 1.8 .04 3.1 <.01 1.3 5.98 -	

Sample type: ROCK P150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

4£

Imperial Metals Corporation PROJECT Falls Creek File # A718206 Page 1 200 - 580 Hornby St., Vancouver BC V6C 3B6 Submitted by: Gary Roste

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi V ppm ppm	Ca %	P %	La ppm p	Сг	Mg %	Ba ppm	ті %	B ppm	Al %	Na %	К %	W ppm
G1 463148 463149 463150 463151	<1 5 1 <1 <1	6 1090> 6200 23 36	5 10000> 107 27 46	40 10000 321 101 245	<.3 23.7 10.2 .4 <.3	4 28 2 2	4 20 22 6 1	538 1490 884 759 452	1.92 2.47 4.87 1.38 .52	2 147 12 11 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 <2 <2 4 7	54 32 64 42 10	<.5 665.5 3.2 .6 1.5	<3 4 3 3 3 3 3 3	10 35 <3 11 9 158 <3 18 8 1	.51 1.54 6.25 1.92 .37	.078 .067 .120 .022 .004	7 4 7 10 10	11 11 22 4 7	.62 .15 1.37 .79 .15	229 40 712 313 129	.13 <.01 .01 <.01 <.01	<20 <20 <20 <20 <20	1.04 .42 1.14 .46 .30	.08 .01 .02 .02 .01	.53 .17 .30 .23 .20	< < < < < < < < < < < < < < < < < < <
463152 463153 463154 463155 463156	2 2 1 2 2	373 444 178 480 87	22 12 15 14 12	105 109 105 97 82	.7 <.3 <.3 <.3 <.3	27 22 46 36 27	21 23 20 21 21	575 1094 981 1400 883	4.78 6.50 5.61 6.24 5.96	37 4 8 9 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 2 3 2 3 2 3 2	61 25 52 16 24	<.5 <.5 <.5 <.5 <.5	43453	20 93 <3 144 4 234 7 222 <3 203	3.41 1.96 2.94 2.56 2.40	.095 .218 .152 .147 .129	4 8 6 8 6	22 26 83 57 48	.75 2.27 2.50 2.17 1.90	132 117 69 38 40	.01 .19 .42 .36 .28	<20 <20 <20 <20 <20	.60 2.79 3.02 3.73 3.20	.04 .07 .15 .06 .05	.35 .11 .11 .04 .14	3 <2 <2 <2 <2 <2 <2 <2
RE 463156 463157 463158 463159 463160	<1 2 2 1 2	91 450 326 157 253	10 3 <3 3 14	82 88 86 96 87	<.3 <.3 <.3 <.3 <.3	26 24 56 37 24	21 24 26 28 24	893 1239 1382 1661 1089	5.98 7.36 7.44 7.76 5.99	3 9 3 7 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 3	25 20 24 25 38	<.5 <.5 <.5 <.5 <.5	43563	4 201 6 152 12 216 8 327 8 204	2.44 2.78 2.61 4.12 1.32	.129 .221 .166 .211 .211	5 9 8 12 10	46 43 91 54 42	1.95 2.20 3.02 3.36 2.14	38 45 63 103 82	.28 .24 .36 .30 .31	<20 <20 <20 <20 <20	3.22 3.56 3.29 3.01 2.26	.05 .06 .06 .05 .19	.14 .03 .06 .04 .08	<2 <2 <2 <2 <2 <2 <2 <2
463161 463162 463163 463164 463165	2 2 1 1 1	554 12 7 12 7	12 18 5 16 7	91 24 27 69 24	<.3 <.3 <.3 <.3 <.3	24 1 3 6 14	26 1 3 6 35	1277 383 717 547 1383	7.27 .72 2.01 2.66 1.68	4 8 26 25	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 2 3 <2	19 5 162 87 283	<.5 <.5 <.5 <.5	<3 <3 <3 <3 <3	5 170 5 4 8 21 <3 14 6 31	2.10 .02 11.51 2.33 14.43	.228 .007 .118 .048 .057	9 9 15 13 11	22 2 7 4 9	2.71 .04 .18 .39 .62	101 35 122 207 47	.22 <.01 .01 <.01 <.01	<20 <20 <20 <20 <20	3.39 .43 .50 .77 .26	.04 .03 .03 .03 .03	.11 .11 .25 .15 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2
463166 463167 463168 463169 463170	1 <1 1 1 <1	7 10 5 7 21	10 9 7 6 8	34 44 30 51 44	.5 .3 <.3 <.3 <.3	7 3 2 6 5	8 4 2 5 7	909 534 2100 1514 336	2.41 2.07 1.71 3.14 2.36	16 <2 5 9 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 3 2 2 2	154 99 1134 302 50	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3	4 39 <3 13 <3 6 3 23 4 17	3.88 4.91 26.04 15.55 1.90	.038 .035 .016 .050 .015	6 10 8 12 9	14 4 1 5 2	1.10 .30 .63 .72 .12	86 201 2414 172 210	<.01 <.01 <.01 <.01 <.01	<20 <20 <20 <20 <20 <20	.37 .76 .20 .43 .61	.06 .03 .02 .02 .03	.03 .24 .05 .13 .21	2 <2 4 <2 <2
463171 463172 463173 463174 463175	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																												
463176 463177 463178 463179 463180	2 1 1 1 2	55 162 84 96 100	14 14 10 15 6	60 86 65 61 66	<.3 <.3 <.3 <.3 <.3	13 35 24 24 24	18 35 25 23 24	654 1918 1486 1189 1286	5.59 7.42 6.48 5.84 6.70	3 3 2 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2	28 23 22 21 21	<.5 <.5 <.5 <.5 <.5	<3 <3 4 4 3	<3 84 3 218 7 232 <3 218 5 246	1.83 3.57 3.26 2.20 2.34	.069 .107 .120 .102 .131	8 6 6 8	15 111 44 48 55	1.42 3.39 2.91 2.94 2.67	241 142 65 66 64	<.01 .01 .29 .29 .29	<20 <20 <20 <20 <20	2.25 3.48 3.79 3.09 2.71	.03 .05 .07 .07 .06	.19 .09 .07 .08 .06	2 <2 2 <2 <2 <2 <2
STANDARD DS7	19	105	73	373	.9	54	9	589	2.38	51	<8	<2	7	67	5.4	7	9 80	.89	.076	12	186	1.01	387	.12	31	.98	.09	.45	6
GROUP 1D - 0.5 (>) CONCENTRAT ASSAY RECOMMENI - SAMPLE TYPE: DataFA	0 GM ION E DED F ROCK	SAMPLI EXCEED OR ROI P150	E LEACI S UPPEI CK AND Si DATE	HED WI R LIMI CORE amples REC	ITH 3 ITS. SAMPL S begi	ML 2 SOME ES I innin ED:	F CL	2 HCL IERALS J PB 7 <u>E' ar</u> JG 17	HNO3- S MAY 2N AS re Rei 2007	H20 BE P > 1% runs D	AT 9 ARTI , AG and ATE	5 DE ALLY > 3 'RRE RE	G. C ATT 0 PP <u>' ar</u> POR	FOR C ACKED. M & AU <u>e Reje</u> T MA	NE HOUR REFRA > 1000 ect Reru ILED:	R, D ACTOI) PPI uns.	ILUTED TO RY AND GF B	D 10 ML, RAPHITIC	ANALY SAMPI	(SED Les C	BY I AN L	CP-ES. IMIT A	U SOLU		Y.	Raym	2.5	Chan	ASS

ACRE ANNET CAL																														
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	Bi	v	Са	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	%	ppm	ppm	ppm	ррл	ррл	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ррл	%	%	%	ppm
6-1	<1	2	3	43	<.3	3	4	537	1.83	3	<8	<2	5	43	<.5	<3	<3	32	.41	.079	6	5	.61	209	.12	<20	.90	.06	.52	<2
463181	2	69	<3	51	<.3	37	26	1108	6.40	<2	<8	<2	2	54	<.5	7	<3	203	2.01	.099	5	98	3.47	162	.27	<20	3.05	.05	.06	<2
463182	<1	7	<3	51	<.3	5	5	558	1.23	4	<8	<2	<2	18	<.5	<3	4	16	1.66	.066	5	5	.29	49	<.01	<20	.65	.05	.19	<2
463183	<1	Ĺ.	<3	58	< 3	ž	- 4	397	1 22	<2	<8	~2	<2	13	<.5	<3	<3	15	.38	.063	5	4	.33	59	<.01	<20	.68	.05	.20	2
463186	2	105		62	~ 3	25	27	11/.8	5 67	-2	- 8	-27	<2	94	< 5	<3	<3	167	2 00	122	6	66	2 78	271	.16	<20	2.33	-06	-08	<2
403104		105	4	02	1.5	25	2.5	(140	5.01	~	-0	~2		74				101	L.07		Ŭ	00	2110				C.00	•••		-
/ 62195	-1	50	۲	15	~ 7	17	17	974	5 00	5	~9	-2	2	1.7	~ 5	~7	.7	140	2 7/	110	6	77	2 11	162	18	<20	1 80	ns	07	<2
403103			ر ،	40	\.J 7	20	17	1700	2.00	ر د	~0	2	2	4.5	2.2		~7	100	7 20	120	0	9/	2.51	1102	.10	~20	2 60	.00	.0/	~2
403100		404	0 7	11	<.J	20	21	1220	c.05	~~	<u>~0</u>	2	2	30	2.2	~>	-7	100	3.1/	176	~ ~	74	2.70	47	.04	~20	2.00	.04	10	~~
465187	<	104	2	()	<,>	20	21	1520	5.82	2	<8	<2	2	20	5.2	<>	< >	211	2.14	.120	<i>'</i>	30	2.12	01	.20	~20	2.41	.00	.10	20
463188	<1	67	5	56	<.3	22	19	1273	5.61	5	<8	<2	<2	20	<.5	<3	د>	217	2.70	.097	Š	49	1.01	21	.28	<20	2.44	.00	.04	~2
RE 463188	<1	67	<3	57	·< . 3	23	19	1344	5.97	<2	<8	<2	2	22	<.5	5	<3	234	2.95	.100	5	52	1.94	53	.33	<20	2.56	.06	.05	<2
																														_
463189	<1	3	<3	10	<.3	1	<1	287	. 19	<5	<8	<2	<2	249	.5	<3	8	11	36.35	.034	1	- 3	.17	32	<.01	<20	.06	.01	.01	<2
463190	<1	6	- 6	43	<.3	4	- 3	1098	1.96	4	<8	<2	3	138	<.5	<3	<3	8	12.58	.068	13	4	1.16	230	<.01	<20	.34	.02	.15	<2
463191	2	16	<3	63	<.3	7	11	1114	5.41	5	<8	<2	4	134	<.5	<3	8	42	7.13	.139	10	4	.08	342	<.01	<20	.50	.02	.24	<2
463192	<1	3	3	13	<.3	2	3	1135	1.13	<2	<8	<2	<2	1373	<.5	<3	<3	11	23.98	.039	2	<1	.19	3077	<.01	<20	.16	.01	.09	<2
463193	<1	8	<3	11	<.3	3	3	1624	1.24	2	<8	<2	<2	559	<.5	<3	<3	11	23.98	.075	8	2	.12	275	<.01	<20	.24	.02	.10	<2
463194	2	10	<3	14	<.3	8	15	1798	3.13	68	<8	<2	<2	397	<.5	3	<3	9	17.10	.099	8	3	.08	78	<.01	<20	.26	.01	.15	<5
463195	2	2280	<3	75	1.6	, 9	้ล	473	2.69	82	<8	<2	2	51	.6	<3	<3	50	2.94	.096	3	7	.57	281	<.01	<20	.24	.01	.18	<2
463196	2	46	्र < र	94	ž	15	11	316	2 71	20	<8	<2	2	85	<.5	<3	<3	25	1.51	.047	5	3	.32	117	<.01	<20	.27	.04	.11	2
STANDARD DS7	21		5	707	1 0	55	, , , ,	625	2 30	4.6	- 28	~2	2	72	5 6	-3		80	03	078	11	188	1 07	396	11	41	.98	.10	.46	ũ.
STANDARD Dar	1 61	77	0.0	376	3.0	22	0	06,5	C.J7	40	~0	~2	0	12	2.0	-0	J	00	.,,	.0,0	1.1	100	1.07	370	• • •	-+ >		• • •	. 70	-

Sample type: ROCK P150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD.

3064 Highway 16 Smithers BC V0N 2N0 Canada Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Submitted By: Receiving Lab: Received: Report Date: Page: Patrick McAndless Acme Analytical Laboratories (Smithers) Ltd. August 27, 2007 October 03, 2007 1 of 3

SMI07000001.1

CLIENT JOB INFORMATION Project: Falls Creek Shipment ID: P.O. Number

33

CERTIFICATE OF ANALYSIS

Number of Samples:

SAMPLE DISPOSAL

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method	Number of	Code Description	Test	Report
Code	Samples	-0	Wgt (g)	Status
(KRP	33	Crush and Split at Remote Prep		Completed
2150	33	Pulverize to 150 mesh		
D	33	Aqua Regia digestion ICP-ES finish	0.5	Completed
Group 6-Au	33	Fire assay fusion Au by ICP-ES	29.2	Completed

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

1D

Cd

0.5

< 0.5

ppm

1D

Sr

1

27

ppm

SMI0700001.1

1D

Bi

3

5

ppm

1D

٧

1

ppm

233

1D Ca

%

0.01

2.14

1D

Sb

3

<3

ppm

Project:

Falls Creek October 03, 2007

2 of 3

1D

Th

2

<2

ppm

1D

Au

ppm

2

<2

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Report Date:

												Page:	
CERTIFI	CATE OF AN	JALY	′SIS				The Real			in the second			
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
	Analyte Unit	Wgt kg	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8
463197	Rock	1.5	<1	104	4	109	<0.3	25	29	1273	6.95	<2	<8
463198	Rock	2.1	<1	108	<3	67	<0.3	9	20	800	5.28	3	<8
463199	Rock	1.5	<1	124	<3	78	< 0.3	24	32	1025	5.74	<2	<8
463200	Rock	2.4	<1	104	<3	60	< 0.3	57	32	1003	6.04	<2	<8
463201	Rock	2.7	1	111	<3	47	<0.3	47	27	5440	4.95	5	<8
463202	Rock	2.4	<1	264	<3	51	<0.3	31	23	1248	4.87	4	<8
463203	Rock	2	<1	241	<3	92	<0.3	25	24	1537	6.65	4	<8
100004	B 1		1.4	the second second			241.04		101			1000	

the second state of a state base of the second state of the second																					200 C
463198	Rock	2.1	<1	108	<3	67	<0.3	9	20	800	5.28	3	<8	<2	<2	78	<0.5	<3	4	144	2.44
463199	Rock	1.5	<1	124	<3	78	<0.3	24	32	1025	5.74	<2	<8	<2	<2	24	0.6	<3	8	146	1.85
463200	Rock	2.4	<1	104	<3	60	<0.3	57	32	1003	6.04	<2	<8	<2	<2	34	0.6	<3	5	185	2.90
463201	Rock	2.7	1	111	<3	47	<0.3	47	27	5440	4.95	5	<8	<2	<2	121	0.9	<3	4	116	15.36
463202	Rock	2.4	<1	264	<3	51	<0.3	31	23	1248	4.87	4	<8	<2	<2	57	0.5	3	5	168	2.11
463203	Rock	2	<1	241	<3	92	<0.3	25	24	1537	6.65	4	<8	<2	<2	37	0.6	<3	4	200	4.49
463204	Rock	2.3	3	709	4	39	1.5	3	9	308	1.96	8	<8	<2	<2	60	<0.5	<3	5	35	0.79
463205	Rock	1.6	1	54	6	112	< 0.3	152	19	833	4.22	6	<8	<2	<2	73	0.5	<3	<3	81	3.49
463206	Rock	1.7	2	32	4	90	<0.3	33	7	663	3.99	<2	<8	<2	<2	75	<0.5	<3	<3	85	3.21
463207	Rock	1.5	2	36	6	91	< 0.3	138	18	760	3.89	12	<8	<2	<2	207	<0.5	<3	<3	61	3.67
463208	Rock	2.5	<1	34	5	57	<0.3	23	8	446	3.36	17	<8	<2	<2	126	<0.5	<3	<3	60	4.16
463209	Rock	2	2	32	6	95	<0.3	163	17	437	3.69	5	<8	<2	<2	51	<0.5	<3	<3	76	1.07
463210	Rock	2.9	<1	131	<3	76	< 0.3	86	32	1247	7.51	38	<8	<2	<2	19	0.5	<3	<3	264	2.08
463211	Rock	1.4	<1	26	<3	43	<0.3	11	15	754	4.57	8	<8	<2	<2	28	<0.5	<3	4	123	1.11
463212	Rock	2.6	<1	114	5	51	<0.3	15	30	889	5.17	25	<8	<2	<2	28	<0.5	<3	<3	129	1.91
463213	Rock	1.9	2	14	5	16	< 0.3	4	3	214	1.99	<2	<8	<2	2	5	<0.5	<3	<3	20	0.04
463214	Rock	1.6	2	26	7	26	<0.3	3	4	392	1.51	2	<8	<2	4	230	<0.5	<3	4	25	1.96
463215	Rock	1.6	<1	26	6	75	<0.3	8	13	949	4.82	<2	<8	<2	4	65	1.0	<3	5	91	3.00
463216	Rock	2	40	13	9	138	1.3	9	35	729	10.23	313	<8	<2	<2	14	1.7	4	5	143	0.81
463217	Rock	1.6	<1	9	7	46	<0.3	4	5	925	2.98	<2	<8	<2	<2	111	0.7	4	<3	28	8.41
463218	Rock	2	<1	12	6	45	<0.3	30	10	958	3.25	<2	<8	<2	<2	100	<0.5	3	<3	96	3.30
463251	Rock	2	<1	367	5	93	0.9	22	22	1304	6.70	8	<8	<2	<2	37	0.8	5	<3	217	2.15
463252	Rock	2.3	<1	71	<3	66	0.7	52	37	953	6.99	13	<8	<2	<2	27	1.0	5	4	199	1.76
463253	Rock	2.2	<1	84	<3	78	0.6	14	23	1266	5.96	2	<8	<2	<2	18	1.2	<3	<3	189	2.81
463254	Rock	1.5	<1	9	<3	31	< 0.3	17	4	825	2.23	6	<8	<2	<2	333	<0.5	<3	5	10	12.13
463255	Rock	1.3	<1	6	8	33	<0.3	3	2	155	0.48	<2	<8	<2	5	22	<0.5	<3	<3	3	0.55
463256	Rock	1.8	<1	<2	40	143	0.4	2	23	1488	4.88	11	9	<2	3	188	1.5	<3	<3	116	6.87
463257	Rock	2.4	<1	10	13	70	<0.3	1	7	1143	1.58	5	<8	<2	<2	185	0.6	<3	<3	22	3.81
463258	Rock	2.3	<1	7	13	43	< 0.3	2	8	821	2.58	7	<8	<2	<2	55	<0.5	3	<3	23	1.81

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Page:

Falls Creek October 03, 2007

2 of 3

Phone 1250 847 4548 Fax 1 250 847 4549

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
463197	Rock	0.081	4	38	2.79	44	0.49	<10	3.49	0.06	0.08	2	< 0.01
463198	Rock	0.075	4	4	1.51	58	0.36	27	3.65	0.18	0.11	<2	< 0.01
463199	Rock	0.048	2	16	2.58	25	0.37	<10	2.90	0.02	0.05	<2	< 0.01
463200	Rock	0.062	3	74	3.34	92	0.36	<10	3.21	0.04	0.04	<2	<0.01
463201	Rock	0.048	3	111	2.10	76	0.15	<10	2.61	0.06	0.13	2	< 0.01
463202	Rock	0.190	7	50	2.32	131	0.25	<10	2.25	0.04	0.12	<2	< 0.01
463203	Rock	0.246	9	34	2.40	31	0.08	<10	2.97	0.05	0.13	<2	< 0.01
463204	Rock	0.086	5	<1	0.05	1771	<0.01	<10	0.41	0.04	0.28	<2	0.03
463205	Rock	0.064	7	102	1.75	158	< 0.01	<10	2.81	0.03	0.24	<2	< 0.01
463206	Rock	0.109	12	33	2.05	76	<0.01	<10	2.76	0.06	0.10	<2	< 0.01
463207	Rock	0.063	5	70	1.17	357	< 0.01	<10	0.89	0.03	0.14	<2	< 0.01
463208	Rock	0.015	1	9	2.41	120	< 0.01	<10	0.52	0.03	0.04	<2	<0.01
463209	Rock	0.055	6	137	1.76	207	<0.01	<10	2.42	0.03	0.12	<2	<0.01
463210	Rock	0.174	5	200	4.10	26	0.32	<10	3.49	0.04	0.05	3	0.07
463211	Rock	0.080	4	11	1.89	40	0.27	<10	2.21	0.08	0.19	<2	< 0.01
463212	Rock	0.100	2	21	1.95	39	0.26	<10	2.56	0.04	0.17	<2	0.08
463213	Rock	0.019	7	11	0.56	53	< 0.01	<10	0.88	0.07	0.13	<2	< 0.01
463214	Rock	0.062	13	3	0.16	93	0.01	<10	0.53	0.04	0.18	<2	< 0.01
463215	Rock	0.135	18	10	1.56	162	0.17	<10	3.67	0.09	0.13	<2	< 0.01
463216	Rock	0.168	9	17	0.59	32	< 0.01	<10	0.52	0.04	0.19	<2	0.12
463217	Rock	0.100	16	5	0.27	129	0.03	<10	0.86	0.03	0.34	<2	< 0.01
463218	Rock	0.082	13	81	0.75	645	0.05	<10	1.29	0.06	0.05	<2	<0.01
463251	Rock	0.285	9	26	2.22	42	0.36	<10	2.79	0.04	0.03	<2	<0.01
463252	Rock	0.138	4	110	2.76	23	0.27	<10	2.41	0.05	0.05	<2	< 0.01
463253	Rock	0.102	7	30	2.99	37	0.36	<10	3.47	0.05	0.05	<2	< 0.01
463254	Rock	0.012	7	7	1.29	241	<0.01	<10	0.40	0.05	0.10	<2	<0.01
463255	Rock	0.031	21	<1	0.14	84	< 0.01	<10	0.73	< 0.01	0.29	<2	< 0.01
463256	Rock	0.202	11	<1	1.09	1648	0.02	<10	0.62	< 0.01	0.34	<2	< 0.01
463257	Rock	0.012	5	7	1.08	2842	< 0.01	<10	0.27	<0.01	0.17	<2	<0.01
463258	Rock	0.002	4	2	1.02	167	0.02	<10	0.39	0.01	0.24	<2	<0.01

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI0700001.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date: Falls Creek October 03, 2007

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

												Page:			3 of 3	Pa	rt 1				
CERTIFI	CATE OF A	NAL	/SIS	;					E PR		-					13	SMI	070	000	D1.1	
	Metho	WGHT	1D Mo	1D Cu	1D Ph	1D 7n	1D Ag	1D Ni	1D Co	1D Mp	1D Eo	1D As	1D	1D Au	1D Th	1D Sr	1D Cd	1D Sh	1D Bi	1D	1D
	Un	t kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%							
	MD	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
463402	Rock	1.6	<1	58	13	74	0.5	20	26	1355	6.27	18	<8	<2	<2	94	1.3	5	<3	134	5.93
463403	Rock	1.8	<1	36	<3	60	0.5	13	27	1281	5.89	<2	<8	<2	<2	75	0.9	4	<3	175	6.38
463404	Rock	2	3	884	21	159	2.5	14	20	1497	6.53	282	<8	<2	<2	175	2.4	8	<3	64	11.52

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date: Falls Creek October 03, 2007

3 of 3

3064 Highway 16 Smithers BC V0N 2N0 Canada Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Page:

Client:

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	ĸ	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
463402	Rock	0.004	3	24	2.75	80	< 0.01	<10	0.68	< 0.01	0.18	<2	< 0.01
463403	Rock	0.071	5	16	2.38	327	<0.01	<10	1.44	0.03	0.16	<2	< 0.01
463404	Rock	0.018	2	5	2.94	49	< 0.01	<10	0.24	0.01	0.12	<2	0.07

SMI07000001.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Falls Creek October 03, 2007

1 of 1

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Report	t Date:

Project:

Page:

QUALITY C	ONTROL	REP	OR	T												Ş	SMI	0700	0000	1.1	
	Method Analyte	WGHT Wgt	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	1D Cd	1D Sb	1D Bi	1D V	1D Ca
	Unit	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%							
Pulp Duplicates	MDL	0.01	- 1	4	0	1	0.3	R	1	2	0.01	2	0	2	2	1	0.5	3	3	1	0.01
463213	Rock	1.9	2	14	5	16	< 0.3	4	3	214	1.99	<2	<8	<2	2	5	<0.5	<3	<3	20	0.04
REP 463213	QC	1.0	2	14	5	15	<0.3	4	3	206	1.00	2	<8	<2	<2	5	<0.5	<3	<3	20	0.04
463258	Rock	2.3	<1	7	13	43	<0.3	2	8	821	2.58	7	<8	<2	<2	55	<0.5	3	<3	23	1.81
REP 463258	QC	1972	<1	7	<3	46	< 0.3	2	8	839	2.62	5	<8	<2	<2	57	<0.5	4	3	24	1.85
Reference Materials					-			_													1100
STD SL20	Standard																				
STD SL20	Standard																				
STD DS7	Standard		20	109	66	395	0.8	51	9	620	2.35	52	9	<2	5	74	5.7	6	7	82	0.94
STD DS7	Standard	-	19	104	61	391	0.8	50	8	604	2.33	49	<8	<2	4	72	5.5	6	5	82	0.94
STD SL20	Standard																				
STD SL20	Standard																				_
STD SL20 Expected																					
STD DS7	Standard		23	116	60	461	1.2	59	9	717	2.69	54	14	<2	5	95	6.6	5	7	87	1.15
STD DS7	Standard		21	109	74	413	1.0	55	9	670	2.57	50	<8	<2	5	88	6.0	7	6	83	1.06
STD DS7 Expected			20.92	109	70.6	411	0.89	56	9.7	627	2.39	48.2	4.9	0.07	4.4	68.7	6.38	5.86	4.51	86	0.93
BLK	Blank		<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	N.A.	<1	10	<3	44	< 0.3	4	4	574	1.92	<2	<8	<2	4	64	<0.5	<3	3	36	0.74

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

ate:

Falls Creek October 03, 2007

1 of 1

3064 Highway 16 Smithers BC V0N 2N0 Canada Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Page:

Part 2

QUALITY CONTROL REPORT

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
Pulp Duplicates													
463213	Rock	0.019	7	11	0.56	53	< 0.01	<10	0.88	0.07	0.13	<2	<0.01
REP 463213	QC	0.018	7	10	0.53	52	< 0.01	<10	0.83	0.07	0.12	<2	
463258	Rock	0.002	4	2	1.02	167	0.02	<10	0.39	0.01	0.24	<2	< 0.01
REP 463258	QC	0.002	4	2	1.06	170	0.02	<10	0.40	0.01	0.24	<2	
Reference Materials													
STD SL20	Standard												5.93
STD SL20	Standard												N.A.
STD DS7	Standard	0.072	12	191	1.04	384	0.11	42	1.01	0.09	0.45	2	
STD DS7	Standard	0.071	12	183	1.05	388	0.11	36	1.01	0.09	0.44	4	
STD SL20	Standard												5.89
STD SL20	Standard												6.06
STD SL20 Expected													5.911
STD DS7	Standard	0.085	15	239	1.20	437	0.15	35	1.25	0.12	0.51	3	
STD DS7	Standard	0.079	14	225	1.13	416	0.13	29	1.16	0.12	0.48	4	-
STD DS7 Expected	san san san san san san	0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.01	<10	< 0.01	< 0.01	< 0.01	<2	< 0.01
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.01	<10	< 0.01	< 0.01	< 0.01	<2	< 0.01
BLK	Blank												< 0.01
BLK	Blank												< 0.01
Prep Wash													
G1	Prep Blank	0.071	8	10	0.65	218	0.13	<10	1.04	0.08	0.52	<2	0.05

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000001.1

CERTIFICATE OF ANALYSIS

ACME ANALYTICAL LABORATORIES LTD.

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Submitted By: P Receiving Lab: A Received: A Report Date: C Page: 1

Client:

Patrick McAndless Acme Analytical Laboratories (Smithers) Ltd. August 27, 2007 October 04, 2007 1 of 4

SMI07000002.1

Project:	Falls Creek	
Shipment ID:		
P.O. Number		
Number of Samples:	65	

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

ethod ode	Number of Samples	Code Description	Test Wgt (g)	Report Status
KRP	65	Crush and Split at Remote Prep		Completed
150	65	Pulverize to 150 mesh		
)	65	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed
roup 6-Au	65	Fire assay fusion Au by ICP-ES	29.2	Completed

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

500134

500135

500136

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: ort Dat Rec

Page:

Phone 1250 847 4548 Fax 1 250 847 4549

Rock Pulp

Drill Core

Drill Core

< 0.01

2.1

2.5

4

<1

<1

54

164

121

port	Date:	

October 04, 2007

Falls Creek

www.acmelab.com

2 of 4

CERTIFICA	TE OF AN	NAL Y	/SIS						L'EST	Sec. B	ALC: C	100					SMI	070	000	02.1	
	Method Analyte	WGHT Wgt	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	1D Cd	1D Sb	1D Bi	1D V	1D Ca
	MDL	0.01	ppm 1	ppm 2	2 ppm	ppm 1	ppm	ppm 4	ppm 4	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
500108	Drill Core	5.5	<1	101	-3	68	<0.3	34	24	1272	5.45	2	0	<2	<2 <2	72	0.5	3	3	120	0.01
500109	Drill Core	6.5	<1	111	<3	58	<0.3	21	21	1358	4.95	-2	-0	<2	-2	76	<0.6	~3	-3	130	6.90
500110	Drill Core	6.8	<1	115	<3	101	0.7	23	22	1307	5 28	6	<8	<2	<2	105	<0.5	-3	-3	70	7.74
500111	Rock Pulo	<0.01	95	1195	15	53	1.0	54	12	320	3.40	20	<8	~2	-2 B	54	-0.5	-3	-3	79 63	1.02
500112	Drill Core	62	<1	192	6	122	1.0	26	26	1444	5.58	20	<8	-2	62	04	1.0	-2	-0	102	9.02
500113	Drill Core	61	<1	125	<3	03	0.7	20	20	1546	6.12	30	~0	-2	~2	102	1.0	~ 0	<0	102	8.06
500114	Drill Core	2.5	<1	230	<3	91	0.6	25	24	1250	5.24	23	<8	-2	~2	103	1.0	- 3	-3	112	6.02
500115	Drill Core	3.4	<1	268	6	82	<0.3	27	25	1200	5.40	6	<0	~~~	-2	00	0.0	-3	-0	106	0.93
500116	Drill Core	5.4	<1	99	4	90	<0.3	23	10	1100	4.83	11	<0	<2	~2	00	1.0	-3	-3	120	0.72
500117	Drill Core	6.6	<1	218	<3	67	<0.3	23	23	1228	5.45	3	<8	<2		70	<0.5	4	-3	99	6.59
500118	Drill Core	6.6	<1	171	<3	75	<0.3	20	24	1215	5.93	-2	<8	-2	-2	62	~0.5	-3	-3	164	6.00
500119	Drill Core	6.6	<1	205	<3	81	<0.3	31	24	1205	6.81	3	<0	~2	~2	71	<0.6	-3	-2	210	5.33
500120	Drill Core	6.3	<1	248	<3	84	<0.3	30	26	1200	6.42	-2	<8	-2	-2	96	-0.5	-3	-3	219	0.30
500121	Drill Core	5.3	<1	231	<3	84	<0.3	33	26	1352	6.43	3	<8	<2	-2	66	0.0	-3	-3	194	0.90
500122	Drill Core	1.6	<1	164	<3	69	<0.3	35	26	1378	6.45	<2	<8	<2	<2	04	0.6	-3	-3	211	7.00
500123	Drill Core	7.7	<1	71	5	94	<0.3	22	22	1170	6.23	15	<8	-2	-2	23	<0.5	-5	-3	210	2.40
500124	Drill Core	6.6	<1	202	<3	72	<0.3	29	24	1345	6.02	2	<8	<2	<2	112	<0.5	-2	-3	102	6.62
500125	Drill Core	6.5	<1	167	<3	68	<0.3	33	26	1334	6 17	<2	<8	<2	<2	104	<0.5	-3	-3	240	6.10
RRE 500125	Drill Core	N.A.	<1	162	<3	68	<0.3	33	26	1387	6.13	<2	<8	<2	<2	102	0.7	-3	-3	245	6.25
500126	Drill Core	6.6	<1	79	<3	79	<0.3	32	26	1281	5.39	<2	<8	<2	<2	102	0.6	<3	-3	166	6.41
500127	Drill Core	3.7	<1	68	<3	81	<0.3	27	24	1176	5.52	4	<8	22	-2	75	0.0	-3	-3	120	6.34
500128	Drill Core	2.5	<1	238	4	132	0.8	35	27	1332	6 14	30	<8	<2	<2	109	1.2	<3	<3	115	6.93
500129	Drill Core	5.9	<1	851	4	133	3.2	36	23	1294	6.31	42	<8	<2	<2	84	1.4	<3	27	140	6.34
500130	Drill Core	2.8	<1	441	<3	301	10.8	38	25	2341	7.00	68	<8	<2	<2	183	4.0	44	-2	107	13 34
500131	Drill Core	2.6	<1	415	<3	263	10.3	40	25	1914	6.06	74	<8	<2	<2	112	4.0	34	<3	107	12.22
500132	Drill Core	6.8	<1	250	<3	119	2.1	30	17	1422	4 79	37	<8	<2	<2	103	2.0	<3	-3	02	0.52
500133	Drill Core	2.5	<1	310	10	97	1.0	50	28	1381	5.79	54	<8	<2	<2	74	2.1	<3	4	89	6.83

9

31

26

291

1441

1176

3.24

7.09

5.94

219

41

26

<8

<8

<8

<2

<2

<2

<2

<2

<2

14

64

54

1.1

0.9

0.8

14

<3

<3

27

177

157

<3

<3

<3

0.52

6.74

6.43

18

61

59

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

213

83

65

1.6

< 0.3

< 0.3

226

4

4

www.acmelab.com

Client:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Falls Creek October 04, 2007

2 of 4

Phone 1250 847 4548 Fax 1 250 847 4549

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	P	La	Cr	Mg	Ba	Ti	в	AI	Na	ĸ	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
500108	Drill Core	0.100	4	38	2.69	196	< 0.01	<10	1.25	0.08	0.19	<2	0.01
500109	Drill Core	0.089	4	28	2.16	65	<0.01	<10	0.77	0.08	0.24	<2	< 0.01
500110	Drill Core	0.087	3	21	1.65	168	<0.01	<10	0.51	0.07	0.24	<2	0.01
500111	Rock Pulp	0.058	14	45	0.73	174	0.07	<10	1.35	0.06	0.31	<2	3.71
500112	Drill Core	0.081	3	18	1.99	263	<0.01	<10	0.44	0.07	0.21	<2	0.02
500113	Drill Core	0.090	3	21	2.37	451	<0.01	<10	0.47	0.06	0.25	<2	0.10
500114	Drill Core	0.086	3	19	2.04	462	<0.01	<10	0.41	0.06	0.23	<2	<0.01
500115	Drill Core	0.092	3	20	2.00	221	<0.01	<10	0.51	0.07	0.28	<2	0.01
500116	Drill Core	0.069	2	14	1.95	187	< 0.01	<10	0.39	0.05	0.21	<2	0.03
500117	Drill Core	0.098	5	33	1.98	379	<0.01	<10	1.30	0.08	0.26	<2	0.01
500118	Drill Core	0.105	5	63	2.42	125	0.01	<10	2.72	0.08	0.12	<2	0.01
500119	Drill Core	0.120	6	71	2.86	79	0.03	<10	3.61	0.12	0.10	<2	< 0.01
500120	Drill Core	0.101	6	65	2.34	946	<0.01	<10	3.31	0.05	0.09	<2	<0.01
500121	Drill Core	0.102	6	75	2.52	162	0.04	<10	3.42	0.07	0.10	<2	< 0.01
500122	Drill Core	0.096	6	70	2.43	430	0.05	<10	3.18	0.06	0.08	<2	0.01
500123	Drill Core	0.078	6	56	2.67	26	0.27	<10	3.65	0.04	0.04	<2	< 0.01
500124	Drill Core	0.093	6	58	2.69	275	0.02	<10	2.80	0.19	0.18	<2	0.01
500125	Drill Core	0.099	6	66	2.54	59	0.02	<10	3.63	0.32	0.10	<2	0.01
RRE 500125	Drill Core	0.100	6	63	2.62	44	0.02	<10	3.58	0.32	0.10	<2	< 0.01
500126	Drill Core	0.104	6	46	2.39	213	<0.01	<10	2.58	0.24	0.19	<2	< 0.01
500127	Drill Core	0.097	4	24	1.99	203	< 0.01	<10	0.52	0.09	0.23	<2	0.01
500128	Drill Core	0.096	3	25	2.17	764	<0.01	<10	0.47	0.07	0.25	<2	0.01
500129	Drill Core	0.106	4	22	2.36	325	< 0.01	<10	0.41	0.06	0.23	<2	0.13
500130	Drill Core	0.078	2	12	3.64	1571	<0.01	<10	0.25	0.03	0.12	<2	0.03
500131	Drill Core	0.082	2	15	3.48	455	<0.01	<10	0.27	0.03	0.13	<2	0.04
500132	Drill Core	0.068	2	17	2.80	538	<0.01	<10	0.32	0.04	0.16	<2	0.05
500133	Drill Core	0.124	5	41	2.55	23	<0.01	<10	0.58	0.06	0.20	<2	0.08
500134	Rock Pulp	0.041	6	28	0.44	27	0.04	<10	0.89	0.04	0.15	<2	0.79
500135	Drill Core	0.117	6	92	3.59	30	<0.01	<10	2.14	0.05	0.14	<2	<0.01
500136	Drill Core	0.118	7	94	2.97	35	<0.01	<10	1.93	0.06	0.15	<2	0.07

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI0700002.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: Re

Page:

October 04, 2007

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

eport	Date:	

	15	

Falls Creek

CERTIFIC	ATE OF AN	IAL Y	′SIS														SMI	070	000	02.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500137	Drill Core	2.2	<1	308	4	60	0.6	61	26	1457	6.11	55	<8	<2	<2	77	1.0	<3	6	80	8.88
500138	Drill Core	1.5	<1	102	<3	70	<0.3	67	24	1489	6.38	37	<8	<2	<2	56	0.9	<3	<3	204	8.79
500139	Drill Core	6.4	<1	274	<3	70	<0.3	66	28	1374	6.70	29	<8	<2	<2	61	0.9	<3	<3	222	7.60
500140	Drill Core	7.2	<1	265	<3	65	<0.3	66	29	1505	6.38	7	<8	<2	<2	74	1.1	<3	<3	175	8.17
500141	Drill Core	3.5	<1	186	<3	89	<0.3	70	29	1457	6.77	3	<8	<2	<2	50	0.7	<3	<3	234	6.49
500142	Drill Core	2.9	<1	193	<3	86	< 0.3	67	27	1532	6.40	9	8	<2	<2	66	1.2	<3	<3	218	7.41
500143	Drill Core	6.7	<1	185	<3	78	< 0.3	70	28	1562	6.16	8	10	<2	<2	49	1.3	<3	<3	215	6.98
500144	Drill Core	6.2	<1	159	<3	83	<0.3	76	30	1530	6.24	17	10	<2	<2	57	1.2	<3	<3	195	7.04
500145	Drill Core	5.9	<1	235	<3	87	0.4	69	27	1368	6.16	15	11	<2	<2	57	1.4	<3	<3	192	6.43
RRE 500145	Drill Core	N.A.	<1	230	<3	83	< 0.3	71	28	1394	6.24	14	<8	<2	<2	61	1.4	<3	<3	196	6.62
500146	Drill Core	6.1	<1	175	<3	68	<0.3	73	29	1376	6.35	18	10	<2	<2	60	1.5	<3	<3	186	6.73
500147	Drill Core	6.2	<1	222	<3	70	< 0.3	74	29	1419	6.98	15	<8	<2	<2	55	1.1	<3	<3	197	7.20
500148	Drill Core	6	<1	154	<3	72	< 0.3	71	31	1386	6.77	40	10	<2	<2	56	1.4	<3	<3	191	6.79
500149	Drill Core	1.7	<1	72	4	79	< 0.3	22	21	1053	5.56	27	8	<2	<2	22	0.9	<3	<3	195	2.25
500150	Drill Core	5.2	<1	102	<3	68	< 0.3	60	24	1345	5.89	14	10	<2	<2	51	1.3	<3	<3	150	6.64
500151	Drill Core	6.8	1	265	<3	66	0.6	67	28	1479	6.51	12	<8	<2	<2	56	1.1	<3	<3	170	7.01
500152	Drill Core	6.5	<1	113	4	68	< 0.3	62	24	1840	5.55	12	<8	<2	<2	94	1.1	<3	<3	115	9.41
500153	Rock Pulp	< 0.01	101	1341	21	55	0.8	54	12	346	3.62	31	17	2	6	56	<0.5	4	<3	51	1.09
500154	Drill Core	5.8	<1	129	3	82	< 0.3	67	25	1220	5.28	10	12	<2	<2	46	1.7	<3	4	101	5.88
500155	Drill Core	0.8	2	359	14	48	1.9	65	53	1163	3.94	87	<8	<2	<2	61	0.9	<3	3	60	6.18
500156	Drill Core	5.7	1	216	<3	76	0.7	39	20	1441	4.69	46	15	<2	<2	78	1.2	<3	<3	85	6.85
500157	Drill Core	5.6	1	255	7	109	1.1	43	24	1889	6.05	67	11	<2	<2	50	1.8	<3	<3	102	5.94
500158	Drill Core	2.6	<1	375	<3	64	1.1	36	19	1601	5.09	40	14	<2	<2	61	1.2	<3	3	118	6.85
500159	Drill Core	3.4	<1	99	<3	63	< 0.3	15	20	1787	4.95	3	14	<2	<2	68	1.2	<3	<3	106	9.07
500160	Drill Core	5.4	<1	158	<3	66	0.8	15	22	1575	5.35	8	10	<2	<2	74	1.1	<3	<3	109	7.02
500161	Drill Core	6	<1	192	3	57	< 0.3	14	23	1176	5.23	<2	<8	<2	<2	93	12	<3	<3	88	5.09
500162	Drill Core	6.6	1	95	7	254	< 0.3	10	26	1409	5.90	42	11	<2	<2	225	1.9	<3	<3	87	6.17
500163	Drill Core	6.4	<1	32	<3	68	< 0.3	10	24	1458	5.85	34	10	<2	<2	96	1.1	<3	<3	126	6.11
500164	Drill Core	1.8	<1	82	5	88	<0.3	24	24	1120	6.13	14	<8	<2	<2	23	0.7	<3	<3	236	1.91
				405			-0.0			1070	0.54		-		-		0.0				

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Falls Creek October 04, 2007

3 of 4

Phone 1250 847 4548 Fax 1 250 847 4549

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
500137	Drill Core	0.137	6	43	1.94	101	<0.01	<10	0.69	0.06	0.31	<2	0.90
500138	Drill Core	0.119	8	123	3.30	12	<0.01	<10	2.94	0.06	0.15	<2	0.03
500139	Drill Core	0.133	8	134	3.40	47	<0.01	<10	2.79	0.05	0.09	<2	0.13
500140	Drill Core	0.125	8	110	3.11	662	<0.01	<10	2.45	0.06	0.13	<2	0.01
500141	Drill Core	0.139	7	165	3.34	391	< 0.01	<10	3.67	0.04	0.07	<2	0.01
500142	Drill Core	0.135	7	140	3.12	679	<0.01	<10	3.19	0.04	0.06	<2	0.01
500143	Drill Core	0.134	7	145	3.12	66	<0.01	<10	3.31	0.03	0.06	<2	0.01
500144	Drill Core	0.139	7	152	3.07	70	<0.01	<10	3.27	0.06	0.11	<2	0.01
500145	Drill Core	0.131	7	136	3.31	17	<0.01	<10	3.06	0.04	0.07	<2	0.03
RRE 500145	Drill Core	0.134	7	132	3.42	23	<0.01	<10	3.20	0.05	0.08	<2	0.03
500146	Drill Core	0.133	7	133	3.39	14	<0.01	<10	3.67	0.06	0.11	<2	0.07
500147	Drill Core	0.138	7	147	3.53	7	<0.01	<10	3.80	0.06	0.11	<2	0.02
500148	Drill Core	0.131	7	155	3.60	5	<0.01	<10	4.15	0.04	0.07	<2	0.09
500149	Drill Core	0.077	5	54	2.29	22	0.21	<10	3.18	0.04	0.06	<2	0.01
500150	Drill Core	0.121	6	103	3.02	5	<0.01	<10	2.71	0.06	0.10	<2	0.01
500151	Drill Core	0.140	6	105	2.97	57	<0.01	<10	2.82	0.07	0.15	<2	0.03
500152	Drill Core	0.120	5	82	2.63	381	<0.01	<10	2.13	0.04	0.13	<2	0.02
500153	Rock Pulp	0.058	13	50	0.77	198	0.08	<10	1.43	0.07	0.33	<2	3.86
500154	Drill Core	0.132	4	69	2.18	120	<0.01	<10	1.64	0.06	0.15	<2	0.04
500155	Drill Core	0.143	3	28	1.53	165	<0.01	<10	0.54	0.08	0.18	<2	0.06
500156	Drill Core	0.124	4	23	1.59	350	<0.01	<10	0.45	0.06	0.27	<2	0.02
500157	Drill Core	0.140	5	33	2.40	56	< 0.01	<10	0.83	0.07	0.24	<2	0.10
500158	Drill Core	0.138	5	43	1.95	142	<0.01	<10	1.14	0.11	0.25	<2	0.08
500159	Drill Core	0.071	4	10	2.10	480	< 0.01	<10	1.72	0.08	0.17	<2	0.01
500160	Drill Core	0.074	4	11	2.11	115	<0.01	<10	1.78	0.09	0.20	<2	< 0.01
500161	Drill Core	0.071	3	9	2.20	137	<0.01	<10	1.25	0.10	0.24	<2	0.01
500162	Drill Core	0.066	4	4	2.19	148	<0.01	<10	1.61	0.08	0.23	<2	0.03
500163	Drill Core	0.064	5	6	2.65	509	<0.01	<10	2.52	0.11	0.20	<2	< 0.01
500164	Drill Core	0.086	6	57	2.43	30	0.28	<10	3.46	0.04	0.05	<2	< 0.01
500165	Drill Core	0.072	5	7	2.80	158	< 0.01	<10	3.23	0.12	0.15	<2	< 0.01

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI0700002.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date: Falls Creek October 04, 2007

4 of 4

3064 Highway 16 Smithers BC V0N 2N0 Canad Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Report	Dat

Page:

Part 1

CERTIFIC	CATE OF AN	NALY	′SIS					FERRE		No.	- Win	1113				Stell	SMI	070	000	02.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500166	Drill Core	0.7	<1	227	<3	82	< 0.3	32	22	1083	5.64	<2	9	<2	<2	56	0.6	<3	<3	197	2.57
500167	Drill Core	6.2	<1	342	8	84	0.8	13	16	2254	3.92	3	11	<2	<2	306	1.4	<3	<3	94	15.39
500168	Drill Core	2.6	<1	272	18	118	0.5	19	21	3289	5.08	<2	14	<2	<2	455	2.1	<3	<3	146	21.48
500169	Drill Core	3.7	<1	285	8	58	0.4	12	13	2099	3.01	<2	11	<2	<2	358	1.2	<3	<3	79	20.84
500170	Drill Core	4.1	<1	373	9	70	0.6	12	14	2393	3.84	4	11	<2	<2	272	1.3	<3	<3	105	14.34

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

October 04, 2007

4 of 4

Falls Creek

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	Ge
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
500166	Drill Core	0.202	7	41	2.49	58	0.26	<10	3.02	0.05	0.04	<2	< 0.01
500167	Drill Core	0.160	5	8	4.20	21	<0.01	<10	0.41	< 0.01	0.11	<2	<0.01
500168	Drill Core	0.102	4	8	5.89	4	<0.01	<10	0.16	< 0.01	0.02	<2	<0.01
500169	Drill Core	0.135	4	11	3.86	5	<0.01	<10	0.30	< 0.01	0.04	<2	< 0.01
500170	Drill Core	0.183	5	12	3.53	5	<0.01	<10	0.30	<0.01	0.04	<2	<0.01

SMI0700002.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project:

Page:

October 04, 2007

Falls Creek

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Report Date:	

1 of 2

QUALITY C	ONTROL	REPORT SMI070													0700	000002.1					
	Method Analyte	WGHT Wat	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fo	1D As	1D	1D	1D Th	1D 87	1D Cd	1D Sh	1D Bi	1D	11
	Unit	kg	ppm	%	nom	nnm	nom	nnm	nnm	nnm	nnm	DDDD	v nom	0,							
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	ррлі 1	0.01
Pulp Duplicates																	0.0		•		0.01
500116	Drill Core	5.4	<1	99	4	99	<0.3	23	19	1199	4.83	11	<8	<2	<2	82	1.0	4	<3	99	6.64
REP 500116	QC																				0.01
500118	Drill Core	6.6	<1	171	<3	75	< 0.3	29	24	1215	5.93	<2	<8	<2	<2	62	0.6	<3	<3	164	5.33
REP 500118	QC		<1	186	<3	80	<0.3	31	25	1363	6.47	<2	<8	<2	<2	68	0.9	<3	<3	176	5.87
500136	Drill Core	2.5	<1	121	4	65	< 0.3	59	26	1176	5.94	26	<8	<2	<2	54	0.8	<3	<3	157	6.43
REP 500136	QC											1775.3	50		237	1.1			196	101	0.10
500144	Drill Core	6.2	<1	159	<3	83	< 0.3	76	30	1530	6.24	17	10	<2	<2	57	12	<3	<3	195	7.04
REP 500144	QC		1	156	<3	82	< 0.3	75	29	1487	6.07	17	<8	<2	<2	55	1.3	<3	<3	191	6.86
500170	Drill Core	4.1	<1	373	9	70	0.6	12	14	2393	3.84	4	11	<2	<2	272	13	<3	<3	105	14 34
REP 500170	QC	2756(5-5	10.0043	600038	1025			1964	0.00	ares.		X.					1.0			100	14.04
Reference Materials																					
STD DS7	Standard		19	99	61	404	0.7	52	7	634	2.43	45	10	<2	6	78	5.5	6	5	78	0.98
STD DS7	Standard		20	96	62	399	0.9	53	8	626	2.38	49	<8	<2	5	77	6.0	6	6	80	0.98
STD DS7	Standard		19	93	69	382	0.6	51	7	597	2.25	46	13	<2	4	71	5.8	4	4	75	0.92
STD DS7	Standard	1	26	124	75	469	0.8	61	9	759	2.79	61	19	<2	5	87	6.7	<3	5	91	1 15
STD DS7 Expected			20.92	109	70.6	411	0.89	56	9.7	627	2.39	48.2	4.9	0.07	4.4	68.7	6.38	5.86	4.51	86	0.93
STD SL20	Standard							550	1000		10000	1000	2297	7.77	100		0.00	0.00	1.01	00	0.00
STD SL20	Standard																				
STD SL20	Standard																				
STD SL20	Standard																				
STD SL20	Standard																				
STD SL20	Standard																				
STD SL20 Expected																					
BLK	Blank		<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank	1	<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank			9575	1	100		286	<u></u>	1.100		1.15	-5		-4-	24	-0.0	-0		-1	-0.01
BLK	Blank																				
BLK	Blank										_										

Imperial Metals Corporation

SMI0700002.1

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Falls Creek October 04, 2007

1 of 2

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

Page:

Part 2

QUALITY CONTROL REPORT

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au
	Unit MDL (%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
	MDL	0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
Pulp Duplicates													
500116	Drill Core	0.069	2	14	1.95	187	< 0.01	<10	0.39	0.05	0.21	<2	0.03
REP 500116	QC												0.04
500118	Drill Core	0.105	5	63	2.42	125	0.01	<10	2.72	0.08	0.12	<2	0.01
REP 500118	QC	0.110	6	69	2.65	134	0.01	<10	2.94	0.09	0.13	<2	
500136	Drill Core	0.118	7	94	2.97	35	< 0.01	<10	1.93	0.06	0.15	<2	0.07
REP 500136	QC												0.02
500144	Drill Core	0.139	7	152	3.07	70	<0.01	<10	3.27	0.06	0.11	<2	0.01
REP 500144	QC	0.135	8	150	2.98	73	< 0.01	<10	3.18	0.06	0.11	<2	
500170	Drill Core	0.183	5	12	3.53	5	<0.01	<10	0.30	<0.01	0.04	<2	< 0.01
REP 500170	QC				101000								< 0.01
Reference Materials													
STD DS7	Standard	0.070	12	214	1.08	403	0.12	35	1.07	0.10	0.46	<2	
STD DS7	Standard	0.073	12	220	1.04	397	0.12	29	1.05	0.10	0.46	<2	
STD DS7	Standard	0.070	11	193	1.00	379	0.11	34	0.97	0.09	0.43	<2	
STD DS7	Standard	0.082	15	248	1.22	463	0.14	46	1.24	0.12	0.54	4	
STD DS7 Expected		0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	
STD SL20	Standard												5.88
STD SL20	Standard												5.97
STD SL20	Standard												5.90
STD SL20	Standard												5.93
STD SL20	Standard												5.94
STD SL20	Standard												5.99
STD SL20 Expected													5.911
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.01	<10	< 0.01	< 0.01	< 0.01	<2	< 0.01
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.01	<10	< 0.01	< 0.01	< 0.01	<2	<0.01
BLK	Blank	1.0000000				59 G C	100514240	1-20-62			a strangesta	1.7073.	< 0.01
BLK	Blank												0.01
BLK	Blank											_	< 0.01

Page:

Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Falls Creek October 04, 2007

3064 Highway 16 Smithers BC V0N 2N0 Canad Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

2 of 2

Part 1

SMI0700002.1

QUALITY	CONTROL REPORT	
A REAL PROPERTY AND A REAL		

		WOHT	10	10	10	10	10	10	10	10	40	40	40	40	40	40	40	40	40	40	40
		WONT		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
		0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	N.A.	<1	<2	<3	43	<0.3	4	3	549	1.84	<2	<8	<2	5	65	<0.5	<3	<3	33	0.69

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Page:

Falls Creek October 04, 2007

Phone 1250 847 4548 Fax 1 250 847 4549

www.acmelab.com

2 of 2

Part 2

SMI0700002.1

QUALITY CONTROL REPORT

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	G6
		Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au
		%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	GM/T
		0.001	1	1	0.01	1	0.01	10	0.01	0.01	0.01	2	0.01
BLK	Blank												<0.01
Prep Wash													
G1	Prep Blank	0.067	7	8	0.68	220	0.12	<10	1.02	0.09	0.50	<2	< 0.01

ANALYTICAL LABORATORIES LTD.

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Submitted By: Receiving Lab: Received: Report Date: Page:

Steve Robertson Acme Analytical Laboratories (Vancouver) Ltd. August 21, 2007 November 03, 2007 1 of 8

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	Falls Creek
Shipment ID:	
P.O. Number	ACME FILE: A718253
Number of Samples:	188

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status
R150	188	Crush, split and pulverize drill core to 150 mesh		Completed
3B	188	Fire assay fusion Au by ICP-ES	30	Completed
1D	188	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed

ADDITIONAL COMMENTS

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

SMI07000048.1

CERTIFICATE OF ANALYSIS

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

SMI07000048.1

Project: Report Date:

November 03, 2007

2 of 8

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

eport	Date:	

						Page:		
See.	and a	P.S.		Serie			No.	
1D	1D	1D	1D	1D	1D	1D	1D	1D
Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U

	Method	WGHT	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	2	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1
500171	Drill Core	2.1	<2	<1	343	<3	86	< 0.3	24	23	1169	6.10	<2	<8	<2	2	78	1.2	<3	<3	147
500172	Drill Core	3.8	<2	<1	247	4	91	0.4	26	24	1117	6.35	<2	8	<2	2	82	1.3	<3	6	157
500173	Drill Core	3.8	<2	<1	269	9	87	< 0.3	25	24	1127	6.33	<2	<8	<2	2	87	1.4	<3	<3	161
500174	Drill Core	6.7	<2	<1	186	4	73	0.3	22	20	1026	5.41	3	<8	<2	<2	81	1.1	<3	<3	142
500175	Rock Pulp		764	4	54	235	221	1.7	17	9	289	3.25	218	<8	<2	<2	13	1.3	17	<3	26
500176	Drill Core	7.3	5	<1	210	<3	82	0.6	27	23	1012	5.71	2	<8	<2	3	74	0.8	<3	<3	159
500177	Drill Core	5.7	<2	<1	372	<3	76	0.4	24	21	939	5.39	<2	<8	<2	2	64	0.7	<3	<3	131
500178	Drill Core	7.2	<2	<1	274	33	74	< 0.3	26	20	927	5.55	<2	<8	<2	2	46	<0.5	<3	<3	164
500179	Drill Core	6.8	2	<1	325	<3	73	<0.3	24	20	895	5.61	<2	<8	<2	3	50	0.5	4	<3	183
500180	Drill Core	7.1	2	<1	315	<3	73	< 0.3	23	18	865	5.27	<2	<8	<2	3	45	<0.5	<3	<3	164
500181	Drill Core	7.3	<2	<1	360	<3	74	< 0.3	24	19	935	5.43	<2	<8	<2	3	31	0.6	<3	<3	149
500182	Drill Core	3.3	<2	<1	147	<3	74	<0.3	28	21	971	5.66	<2	<8	<2	4	30	0.5	<3	<3	173
500183	Drill Core	3.1	<2	<1	186	<3	73	< 0.3	29	21	953	5.63	<2	<8	<2	3	30	0.7	<3	<3	178
500184	Drill Core	7.3	<2	<1	179	<3	73	< 0.3	25	20	999	5.58	<2	<8	<2	4	28	0.5	3	<3	175
500185	Drill Core	6.6	4	<1	401	<3	74	< 0.3	22	18	851	5.11	<2	<8	<2	3	40	<0.5	<3	<3	148
RRE 500185	Drill Core		2	<1	410	<3	76	< 0.3	22	17	866	5.22	<2	<8	<2	3	41	<0.5	4	<3	156
500186	Drill Core	6.3	6	<1	367	<3	70	0.4	23	17	753	5.16	<2	<8	<2	3	50	<0.5	<3	<3	168
500187	Drill Core	6.6	4	<1	323	<3	76	0.3	25	19	1019	5.49	<2	<8	<2	4	39	0.7	<3	<3	157
500188	Drill Core	1.6	4	<1	79	<3	81	0.4	20	21	1268	5.21	21	<8	<2	<2	23	0.8	<3	<3	199
500189	Drill Core	2.3	<2	<1	169	<3	75	< 0.3	27	19	961	5.63	<2	<8	<2	4	49	0.5	<3	<3	166
500190	Drill Core	7.1	2	<1	251	<3	73	< 0.3	24	18	933	5.34	<2	<8	<2	3	40	<0.5	<3	<3	162
500191	Drill Core	7	<2	<1	431	<3	78	0.3	24	20	944	5.57	<2	<8	<2	4	34	0.6	<3	<3	170
500192	Drill Core	6.6	<2	<1	262	<3	88	< 0.3	29	21	1214	6.49	<2	<8	<2	4	37	0.9	<3	<3	189
500193	Drill Core	7.2	<2	<1	448	<3	74	0.3	23	19	889	5.32	<2	<8	<2	3	43	0.7	<3	<3	162
500194	Drill Core	7	5	<1	411	<3	68	< 0.3	23	18	813	5.13	3	<8	<2	3	44	<0.5	4	<3	161
500195	Drill Core	6.5	<2	<1	194	<3	71	0.4	24	19	1120	5.30	3	<8	<2	2	44	0.8	5	<3	153
500196	Drill Core	7.1	<2	<1	168	<3	78	< 0.3	27	21	1119	5.68	3	<8	<2	3	37	0.8	<3	<3	170
500197	Drill Core	6.8	<2	<1	184	<3	78	< 0.3	28	23	1132	5.87	5	<8	<2	3	43	0.9	5	4	204
500198	Rock Pulp		3646	100	1272	18	54	1.5	57	12	351	3.62	30	<8	4	7	53	0.5	5	<3	55
500199	Drill Core	0.9	4	<1	239	<3	83	< 0.3	26	22	1096	5.75	3	<8	<2	2	39	0.7	<3	<3	187

ACME ANALYTICAL LABORATORIES LTD.

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

2 of 8 Part 2

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500171	Drill Core	3.36	0.218	11	49	2.47	33	0.13	<20	2.68	0.10	0.07	<2
500172	Drill Core	3.82	0.218	10	49	2.52	55	0.12	<20	2.81	0.10	0.08	<2
500173	Drill Core	3.97	0.217	10	50	2.53	58	0.12	<20	2.84	0.11	0.09	<2
500174	Drill Core	6.18	0.207	11	38	1.43	29	0.05	<20	1.96	0.07	0.16	<2
500175	Rock Pulp	0.48	0.041	5	27	0.44	28	0.04	<20	0.85	0.04	0.15	<2
500176	Drill Core	3.43	0.225	11	45	2.10	55	0.16	<20	2.97	0.09	0.09	<2
500177	Drill Core	3.23	0.216	10	42	2.22	27	0.19	<20	3.35	0.06	0.07	<2
500178	Drill Core	2.40	0.215	10	43	2.35	19	0.25	<20	2.98	0.10	0.06	<2
500179	Drill Core	2.43	0.216	10	44	2.20	16	0.27	<20	2.87	0.10	0.07	<2
500180	Drill Core	2.17	0.212	10	43	1.82	103	0.28	<20	2.84	0.09	0.07	<2
500181	Drill Core	2.30	0.194	9	42	2.07	15	0.30	<20	3.25	0.05	0.05	<2
500182	Drill Core	2.93	0.153	9	45	2.25	13	0.33	<20	3.69	0.06	0.03	<2
500183	Drill Core	3.27	0.161	10	45	2.25	12	0.32	<20	3.93	0.06	0.03	<2
500184	Drill Core	3.03	0.184	10	44	2.19	14	0.32	<20	3.80	0.05	0.03	<2
500185	Drill Core	2.29	0.218	10	42	1.51	15	0.28	<20	2.72	0.08	0.08	<2
RRE 500185	Drill Core	2.38	0.221	11	44	1.50	15	0.29	<20	2.71	0.08	0.08	<2
500186	Drill Core	2.30	0.214	10	43	1.52	17	0.26	<20	2.47	0.14	0.08	<2
500187	Drill Core	2.40	0.179	9	44	2.21	17	0.32	<20	3.02	0.09	0.07	<2
500188	Drill Core	1.68	0.078	5	53	2.18	40	0.25	<20	2.99	0.05	0.07	<2
500189	Drill Core	2.51	0.165	7	43	2.47	18	0.43	<20	3.30	0.14	0.06	<2
500190	Drill Core	2.53	0.184	8	45	2.07	18	0.35	<20	2.91	0.06	0.06	<2
500191	Drill Core	2.41	0.218	11	45	1.89	18	0.37	<20	2.87	0.09	0.06	<2
500192	Drill Core	2.81	0.168	9	48	2.85	16	0.44	<20	3.93	0.07	0.05	<2
500193	Drill Core	2.81	0.232	11	45	1.66	18	0.30	<20	2.91	0.10	0.08	<2
500194	Drill Core	2.37	0.215	10	43	1.69	19	0.33	<20	2.51	0.11	0.08	<2
500195	Drill Core	3.02	0.208	8	42	2.13	17	0.31	<20	2.71	0.09	0.08	<2
500196	Drill Core	2.62	0.186	8	46	2.34	12	0.31	<20	2.89	0.07	0.06	<2
500197	Drill Core	3.70	0.197	9	45	2.52	14	0.36	<20	3.11	0.06	0.08	<2
500198	Rock Pulp	1.01	0.062	14	50	0.74	201	0.08	<20	1.35	0.06	0.34	<2
500199	Drill Core	3.50	0.179	9	46	2.16	18	0.34	<20	3.16	0.07	0.08	<2

CERTIFICATE OF ANALYSIS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

CERTIFIC	CATE OF AN	IALY	′SIS		E					TRA		Wir I			See.		SMI	070	000	48.1	
	Method	WGHT	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	2	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1
500200	Drill Core	6.7	<2	<1	217	<3	71	< 0.3	24	19	929	5.40	5	<8	<2	3	40	0.6	3	<3	185
500201	Drill Core	8.2	<2	<1	247	<3	80	<0.3	26	20	938	5.62	<2	<8	<2	3	39	0.6	<3	<3	175
500202	Drill Core	6.9	<2	<1	436	<3	77	<0.3	23	18	1009	5.55	<2	<8	<2	3	29	0.7	<3	<3	151
500203	Drill Core	7.2	<2	<1	340	<3	75	<0.3	24	18	946	5.41	2	<8	<2	3	39	0.7	<3	<3	168
500204	Rock Pulp		186	13	1113	12	97	1.2	28	22	908	4.90	42	<8	<2	<2	139	2.1	<3	<3	129
500205	Drill Core	7.3	2	<1	362	<3	73	<0.3	24	19	958	5.37	<2	<8	<2	3	38	0.8	<3	<3	170
500206	Drill Core	5.8	2	<1	266	<3	84	< 0.3	25	20	972	5.47	2	<8	<2	2	43	1.1	4	<3	166
500207	Drill Core	4.1	<2	<1	289	<3	91	0.4	26	22	1126	6.02	3	<8	<2	3	48	1.2	<3	<3	169
500208	Drill Core	4.1	3	<1	339	4	90	0.4	25	21	1141	5.74	2	<8	<2	2	59	1.3	5	<3	172
500209	Drill Core	6.8	<2	<1	331	<3	81	< 0.3	26	21	1046	5.87	3	<8	<2	3	52	1.0	<3	<3	167
500210	Drill Core	7.5	3	<1	352	<3	86	< 0.3	26	21	1002	5.70	2	<8	<2	3	43	0.9	<3	3	163
500211	Drill Core	6.7	<2	<1	332	<3	88	< 0.3	26	23	1200	6.34	<2	<8	<2	2	53	0.5	<3	6	144
RRE 500211	Drill Core		3	<1	327	<3	85	< 0.3	25	22	1174	6.12	<2	<8	<2	2	52	0.6	<3	5	144
500212	Drill Core	6.3	<2	<1	224	<3	83	< 0.3	24	24	1282	6.47	<2	<8	2	<2	41	0.5	<3	6	142
500213	Drill Core	2	4	<1	74	7	89	< 0.3	21	22	1083	5.46	21	<8	<2	<2	22	0.6	<3	5	191
500214	Drill Core	7	<2	<1	442	<3	77	< 0.3	23	21	1029	5.47	<2	<8	<2	3	50	<0.5	<3	5	162
500215	Drill Core	7	3	<1	152	<3	79	< 0.3	27	22	1015	6.13	3	<8	<2	<2	48	<0.5	<3	6	170
500216	Drill Core	7.2	<2	<1	115	<3	68	<0.3	23	19	829	5.32	5	<8	<2	<2	46	<0.5	<3	5	131
500217	Drill Core	7.3	2	<1	219	<3	65	< 0.3	22	19	838	5.27	3	<8	<2	2	43	<0.5	<3	6	141
500218	Drill Core	7.3	2	<1	404	<3	66	<0.3	22	19	858	5.21	3	<8	<2	3	43	<0.5	<3	3	141
500219	Drill Core	7.1	<2	<1	241	5	105	<0.3	23	23	1284	5.92	2	<8	<2	2	132	1.1	<3	5	130
500220	Drill Core	7.3	2	<1	228	<3	72	<0.3	24	22	975	5.88	<2	<8	<2	3	75	0.6	<3	<3	149
500221	Drill Core	7.1	4	<1	256	<3	77	<0.3	25	22	986	6 12	2	<8	<2	<2	57	<0.5	-3	3	182
500222	Drill Core	6.9	5	<1	313	<3	73	<0.3	22	21	000	5.98	4	<8	<2	-2	57	<0.5	-3	5	175
500223	Drill Core	7.4	3	<1	443	<3	77	<0.3	22	21	1114	5.64	3	<8	<2	2	50	<0.5	-3	-3	162
500224	Rock Puln	1.4	3548	95	1343	18	55	12	50	13	360	3.58	31	<8	-2	7	54	<0.5	-3	-5	52
500225	Drill Core	77	2	<1	186	<3	77	<0.2	25	22	1018	6.00	c2	-0	-2	2	56	-0.5	-3	-2	105
500226	Drill Core	6.6	2	-1	216	-0	00	<0.3	20	24	1270	6.37	-4	-0	-4	-2	64	0.5	-3	-3	103
500227	Drill Core	7.2	2	<1	160	<3	88	<0.3	20	24	1347	6.50	-2	~0	-2	-2	76	0.6	-3	3	176
500228	Drill Core	6.0	<2	21	105	-3	00	<0.3	20	20	11947	6.16	-2	~0	-2	-2	70	0.0	-3	3	1/0

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

3 of 8 Part 1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

3 of 8 Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	P	La	Cr	Mg	Ba	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500200	Drill Core	2.22	0.210	9	48	1.73	23	0.32	<20	2.70	0.11	0.08	<2
500201	Drill Core	2.37	0.180	9	46	1.90	20	0.36	<20	3.01	0.11	0.07	<2
500202	Drill Core	2.60	0.217	10	43	1.77	12	0.29	25	3.05	0.08	0.04	<2
500203	Drill Core	2.61	0.210	10	43	1.77	16	0.30	<20	2.85	0.10	0.08	<2
500204	Rock Pulp	4.28	0.131	9	36	1.78	194	0.04	<20	1.93	0.11	0.33	<2
500205	Drill Core	2.47	0.213	10	47	1.71	17	0.29	<20	2.71	0.11	0.07	<2
500206	Drill Core	2.67	0.219	11	44	1.73	17	0.27	<20	2.90	0.09	0.11	<2
500207	Drill Core	3.79	0.220	12	49	2.10	44	0.26	<20	3.33	0.06	0.08	<2
500208	Drill Core	4.87	0.204	11	48	2.02	47	0.24	<20	3.52	0.06	0.11	<2
500209	Drill Core	2.91	0.228	11	50	2.10	16	0.32	<20	3.21	0.11	0.09	<2
500210	Drill Core	2.59	0.234	11	50	2.02	13	0.29	<20	3.15	0.10	0.09	<2
500211	Drill Core	2.61	0.226	10	48	2.27	13	0.13	<20	3.34	0.11	0.06	<2
RRE 500211	Drill Core	2.63	0.223	10	47	2.25	13	0.15	<20	3.20	0.11	0.06	<2
500212	Drill Core	3.82	0.232	9	44	2.42	9	0.15	<20	3.27	0.06	0.03	<2
500213	Drill Core	1.81	0.081	5	55	2.49	23	0.16	<20	3.24	0.05	0.05	<2
500214	Drill Core	2.39	0.229	12	48	1.86	15	0.20	<20	2.93	0.15	0.06	<2
500215	Drill Core	2.34	0.166	9	50	2.58	16	0.38	<20	3.69	0.30	0.05	<2
500216	Drill Core	2.04	0.178	7	50	2.09	19	0.27	<20	3.05	0.29	0.07	<2
500217	Drill Core	3.18	0.210	8	46	1.73	17	0.23	<20	2.53	0.12	0.07	<2
500218	Drill Core	2.44	0.233	10	47	1.50	13	0.17	35	2.26	0.12	0.07	<2
500219	Drill Core	7.04	0.171	9	36	2.61	81	0.06	<20	2.00	0.12	0.13	<2
500220	Drill Core	4.08	0.187	9	41	2.13	67	0.14	<20	2.68	0.13	0.08	<2
500221	Drill Core	2.83	0.233	11	49	2.07	25	0.18	<20	2.55	0.15	0.10	<2
500222	Drill Core	2.80	0.205	9	45	2.48	43	0.29	<20	2.91	0.27	0.06	<2
500223	Drill Core	2.84	0.257	10	48	2.16	15	0.25	<20	2.88	0.15	0.08	<2
500224	Rock Pulp	1.01	0.063	13	47	0.76	189	0.06	<20	1.29	0.06	0.33	3
500225	Drill Core	2.47	0.192	8	49	2.61	14	0.26	<20	3.32	0.27	0.06	<2
500226	Drill Core	5.50	0.192	9	46	2.80	63	0.20	<20	3.36	0.06	0.14	<2
500227	Drill Core	5.37	0.184	10	46	3.13	220	0.21	<20	3.62	0.08	0.16	<2
500228	Drill Core	4.92	0.210	9	42	2.42	106	0.12	<20	3.05	0.15	0.17	<2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

	Method	MOUT	20	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	Analyte	Wat	38	Mo	10	1D Ph	10	10	1D Ni	10	Mo	TD Fo	10	10	10	Th	10	Cd	Sh	Bi	
	Unit	ka	ppb	nnm	nom	nom	20	nom	nom	000	nom	PC	A5	0	nom	nom	nnm	nnm	0000	nnm	nnm
	MDL	0.01	2	1	2	3	2 1	0.3	ррлі 1	ррлі 1	2	0.01	2	8	2	2	1	0.5	3	3	1
500229	Drill Core	8.9	4	<1	202	<3	69	<0.3	21	19	1268	5.40	3	<8	<2	<2	58	<0.5	<3	5	155
500230	Drill Core	5.8	5	<1	195	<3	84	<0.3	26	22	1246	6.33	2	<8	<2	<2	47	<0.5	<3	4	172
500231	Drill Core	7.2	3	<1	168	<3	75	<0.3	23	20	1086	5.76	3	<8	<2	<2	49	<0.5	<3	7	169
500232	Drill Core	3.2	4	<1	317	<3	80	<0.3	24	22	1361	6.08	2	<8	<2	2	61	<0.5	<3	<3	175
500233	Drill Core	3.5	5	<1	340	<3	81	<0.3	24	22	1401	6.04	4	<8	<2	<2	62	0.6	<3	5	174
500234	Drill Core	7	5	<1	299	<3	79	<0.3	25	22	1363	6.19	2	<8	<2	<2	61	0.6	<3	<3	176
500235	Drill Core	6.7	3	<1	323	<3	82	<0.3	26	23	1382	6.42	<2	<8	<2	<2	58	0.6	<3	4	185
500236	Drill Core	2.1	3	<1	73	<3	76	<0.3	20	24	1231	5.73	17	<8	<2	<2	27	0.7	<3	4	205
500237	Drill Core	7.4	4	<1	345	<3	86	< 0.3	25	24	1576	6.35	6	<8	<2	<2	63	0.9	<3	8	167
500238	Drill Core	7.2	12	<1	359	<3	83	<0.3	23	23	1507	5.97	20	<8	<2	<2	54	0.6	<3	4	126
500239	Drill Core	4.5	3	<1	295	<3	99	0.3	26	24	1578	6.41	13	<8	<2	<2	66	1.1	<3	6	134
500240	Drill Core	2.5	<2	<1	62	<3	88	<0.3	45	29	924	6.05	7	<8	<2	<2	75	1.0	<3	<3	173
500241	Drill Core	4.3	<2	<1	336	<3	54	< 0.3	36	22	895	5.31	7	<8	<2	<2	79	0.8	<3	<3	157
500242	Drill Core	6.3	<2	<1	87	<3	56	<0.3	35	24	1063	6.08	11	<8	<2	<2	74	0.9	<3	<3	233
500243	Drill Core	5.9	<2	<1	518	<3	46	< 0.3	29	19	1011	4.80	8	<8	<2	<2	92	0.7	<3	<3	159
RRE 500243	Drill Core		<2	<1	512	<3	45	< 0.3	29	19	1003	4.98	8	<8	<2	<2	93	0.7	<3	<3	167
500244	Drill Core	5.5	<2	<1	556	<3	45	<0.3	29	19	1002	5.04	8	<8	<2	<2	128	0.8	<3	<3	163
500245	Drill Core	2	14	<1	4044	9	82	2.0	21	23	1036	5.48	42	<8	<2	2	17	0.8	<3	4	202
500246	Drill Core	6	<2	<1	1820	<3	48	0.9	33	22	970	4.97	11	<8	<2	<2	106	0.6	<3	4	203
500247	Drill Core	5.7	<2	<1	342	<3	46	< 0.3	31	18	940	5.28	10	<8	<2	<2	117	<0.5	<3	<3	203
500248	Drill Core	6.4	<2	<1	659	<3	52	< 0.3	33	21	1048	5.24	14	<8	<2	<2	129	0.8	<3	4	204
500249	Drill Core	7.6	<2	<1	57	<3	56	<0.3	36	23	906	5.45	14	<8	<2	<2	126	0.8	<3	<3	230
500250	Drill Core	6.4	<2	<1	281	<3	56	0.4	34	23	1047	5.16	10	<8	<2	<2	113	0.6	<3	<3	205
500251	Drill Core	3.8	<2	<1	1241	<3	52	0.7	34	22	1065	4.92	9	<8	<2	<2	122	0.5	<3	<3	207
500252	Drill Core	3	<2	<1	982	<3	51	0.4	33	20	1039	4.75	9	<8	<2	<2	123	0.7	<3	<3	195
500253	Drill Core	6.6	<2	<1	546	<3	51	< 0.3	33	21	1187	4.61	10	<8	<2	<2	127	0.5	<3	<3	187
500254	Drill Core	6.8	<2	<1	231	<3	68	< 0.3	44	25	1137	6.25	11	<8	<2	<2	97	0.8	<3	<3	261
500255	Drill Core	7	<2	<1	964	3	59	0.4	37	21	1568	4.88	11	<8	<2	<2	105	0.6	<3	<3	220
500256	Drill Core	6	<2	<1	919	<3	55	0.7	37	22	1373	5.25	16	<8	<2	<2	120	0.8	<3	<3	238
500257	Drill Core	7.3	<2	<1	241	<3	67	< 0.3	42	25	1065	5.75	17	<8	<2	<2	105	0.7	<3	4	247

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Page:

4 of 8 Part 1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

4 of 8

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ва	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500229	Drill Core	5.13	0.198	8	42	2.17	28	0.28	<20	2.78	0.12	0.07	<2
500230	Drill Core	2.50	0.193	8	48	2.70	19	0.30	<20	3.60	0.14	0.06	<2
500231	Drill Core	2.01	0.199	8	49	2.27	21	0.31	<20	3.10	0.19	0.07	<2
500232	Drill Core	3.95	0.190	8	46	2.63	13	0.28	<20	3.84	0.11	0.05	<2
500233	Drill Core	3.77	0.196	8	47	2.71	13	0.29	<20	4.02	0.11	0.05	<2
500234	Drill Core	3.65	0.190	10	47	2.61	13	0.29	<20	3.60	0.12	0.06	<2
500235	Drill Core	3.19	0.198	10	50	2.80	12	0.30	<20	3.65	0.11	0.05	<2
500236	Drill Core	2.15	0.079	5	50	2.45	26	0.21	<20	3.48	0.06	0.05	<2
500237	Drill Core	6.07	0.209	12	44	2.52	15	0.27	<20	3.61	0.07	0.14	<2
500238	Drill Core	6.64	0.209	11	34	1.82	12	0.13	<20	2.96	0.04	0.20	<2
500239	Drill Core	6.97	0.192	11	39	2.25	12	0.02	<20	3.44	0.04	0.18	<2
500240	Drill Core	5.45	0.119	8	67	2.60	471	0.03	<20	2.57	0.07	0.13	<2
500241	Drill Core	6.98	0.126	8	37	1.65	335	0.01	<20	1.33	0.03	0.21	<2
500242	Drill Core	7.25	0.119	8	43	1.59	373	0.02	<20	1.64	0.06	0.18	<2
500243	Drill Core	7.49	0.114	8	34	1.57	286	0.01	<20	0.95	0.02	0.20	<2
RRE 500243	Drill Core	7.34	0.111	8	34	1.56	301	0.01	<20	0.96	0.02	0.20	<2
500244	Drill Core	7.51	0.112	8	36	1.57	273	0.02	<20	1.07	0.02	0.19	<2
500245	Drill Core	1.92	0.074	6	51	2.24	21	0.20	<20	3.12	0.03	0.04	<2
500246	Drill Core	6.50	0.111	8	42	1.62	273	0.02	<20	1.38	0.02	0.19	<2
500247	Drill Core	5.52	0.113	8	42	1.95	369	0.02	<20	1.25	0.03	0.20	<2
500248	Drill Core	7.65	0.110	8	50	1.55	212	0.03	<20	1.69	0.03	0.16	<2
500249	Drill Core	6.37	0.112	8	55	1.77	339	0.03	<20	2.00	0.03	0.13	<2
500250	Drill Core	7.14	0.102	7	47	1.70	670	0.03	<20	1.71	0.03	0.15	<2
500251	Drill Core	7.48	0.097	7	50	1.72	491	0.03	<20	1.70	0.03	0.13	<2
500252	Drill Core	7.36	0.102	7	48	1.70	572	0.02	<20	1.67	0.03	0.14	<2
500253	Drill Core	5.93	0.102	7	47	2.23	333	0.02	<20	1.69	0.04	0.13	<2
500254	Drill Core	5.85	0.119	9	71	2.04	295	0.04	<20	2.23	0.05	0.14	<2
500255	Drill Core	7.37	0.110	8	54	2.17	389	0.03	<20	1.96	0.07	0.14	<2
500256	Drill Core	7.40	0.109	8	57	2.05	171	0.03	<20	2.09	0.10	0.14	<2
500257	Drill Core	5.57	0.110	8	65	2.24	188	0.04	<20	2.29	0.11	0.13	<2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: e:

November 03, 2007

Falls Creek

5 of 8

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report	Date

Page:

Part 1

CERTIFIC	ATE OF AN	IALY	/SIS														SMI	070	000	48.1	
	Method	WGHT	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	2	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1
500258	Rock Pulp		695	4	61	219	212	1.8	18	9	288	3.15	211	<8	<2	<2	16	0.9	18	<3	33
500259	Drill Core	7.2	4	<1	43	<3	82	<0.3	45	30	1037	6.20	18	<8	<2	2	104	0.7	<3	<3	200
500260	Drill Core	6.6	2	<1	63	<3	70	<0.3	40	28	984	5.95	14	<8	<2	<2	78	<0.5	<3	<3	224
500261	Drill Core	7	<2	<1	57	4	69	0.3	40	28	1177	5.88	10	<8	<2	<2	81	0.8	<3	<3	202
500262	Drill Core	6.8	3	<1	48	4	64	0.4	38	26	1039	5.74	17	<8	<2	<2	92	0.6	<3	<3	237
500263	Drill Core	3.8	<2	<1	49	<3	60	0.4	41	25	1130	6.41	20	<8	<2	<2	111	1.2	<3	<3	265
500264	Drill Core	3.3	3	<1	45	<3	59	<0.3	41	25	1184	6.57	21	<8	<2	<2	113	1.3	<3	<3	279
500265	Drill Core	6.8	<2	<1	298	<3	59	<0.3	41	22	1044	5.76	19	<8	<2	<2	111	0.7	<3	<3	226
500266	Drill Core	6.8	2	<1	1576	<3	71	<0.3	41	30	1455	5.92	8	<8	<2	<2	77	0.8	<3	<3	263
500267	Drill Core	7.6	<2	<1	87	3	69	<0.3	42	29	1262	6.00	7	<8	<2	<2	75	0.7	<3	<3	264
500268	Drill Core	6.6	<2	<1	351	<3	63	<0.3	38	22	1056	5.39	13	<8	<2	<2	119	0.7	<3	<3	190
500269	Drill Core	6.9	2	<1	199	3	55	< 0.3	30	17	968	4.67	6	<8	<2	<2	118	0.9	<3	4	150
500270	Drill Core	6.8	4	<1	613	4	51	0.4	26	14	875	4.28	6	<8	<2	<2	106	<0.5	<3	<3	142
500271	Drill Core	7.6	6	<1	102	13	105	< 0.3	25	13	805	4.45	8	<8	<2	<2	109	1.6	<3	<3	76
500272	Drill Core	6.9	7	<1	26	14	151	< 0.3	11	6	901	3.43	34	<8	<2	<2	84	2.0	<3	3	75
500273	Drill Core	7.5	3	<1	639	4	71	0.4	45	29	1105	6.76	12	<8	<2	<2	115	1.0	<3	<3	275
500274	Rock Pulp		3404	102	1324	21	57	1.3	58	12	372	3.88	31	<8	3	8	59	<0.5	4	<3	62
500275	Drill Core	7.1	4	<1	4601	3	66	1.7	44	22	921	6.15	6	<8	<2	2	110	0.9	<3	<3	258
500276	Drill Core	8.2	<2	<1	693	9	75	0.4	18	24	1046	6.30	11	<8	<2	<2	107	1.1	<3	3	141
RRE 500276	Drill Core		<2	<1	733	7	74	< 0.3	19	23	1037	6.38	11	<8	<2	<2	106	0.7	<3	<3	140
500277	Drill Core	5.9	3	<1	198	10	123	0.4	30	31	909	6.18	3	<8	<2	<2	110	1.1	<3	<3	173
500278	Drill Core	1.7	2	<1	82	11	97	<0.3	25	24	1073	5.89	16	<8	<2	3	23	0.7	4	<3	236
500279	Drill Core	7	<2	<1	197	6	71	< 0.3	30	19	915	5.22	21	<8	<2	<2	108	1.0	<3	<3	98
500280	Drill Core	7.4	<2	<1	121	3	52	<0.3	31	19	989	4.91	10	<8	<2	<2	93	0.9	<3	<3	97
500281	Drill Core	7.2	4	<1	415	8	37	0.6	25	18	1166	4.47	226	9	<2	<2	110	0.9	5	<3	51
500282	Rock Pulp		723	5	58	222	221	1.8	17	9	279	3.09	212	<8	<2	<2	13	1.3	16	<3	27
500283	Drill Core	7.2	5	<1	38	4	51	< 0.3	22	15	718	5.65	6	<8	<2	<2	131	0.9	<3	<3	106
500284	Drill Core	7.3	3	<1	44	7	39	<0.3	19	9	863	4.55	6	11	<2	<2	146	0.7	<3	<3	80
500285	Drill Core	7.2	3	<1	113	4	55	< 0.3	35	17	842	5.13	4	8	<2	<2	107	0.9	<3	<3	116
500286	Drill Core	7	<2	<1	234	<3	54	0.4	38	24	1047	5.58	10	8	<2	<2	104	0.8	<3	<3	165

CERTIFICATE OF ANALYSIS

ACME ANALYTICAL LABORATORIES LTD.

Client:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

5 of 8

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 2

SMI07000048.1

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500258	Rock Pulp	0.56	0.040	6	27	0.44	35	0.04	<20	0.93	0.05	0.19	<2
500259	Drill Core	4.72	0.110	8	74	2.87	261	0.05	<20	2.77	0.11	0.12	<2
500260	Drill Core	4.32	0.118	8	67	2.56	105	0.04	<20	2.45	0.08	0.09	<2
500261	Drill Core	5.16	0.110	7	74	2.53	117	0.04	<20	2.33	0.07	0.09	<2
500262	Drill Core	5.72	0.110	8	58	2.56	129	0.03	<20	2.36	0.10	0.09	<2
500263	Drill Core	6.60	0.115	9	62	2.08	128	0.03	<20	2.20	0.16	0.15	<2
500264	Drill Core	7.07	0.113	9	66	1.99	105	0.03	<20	2.17	0.15	0.15	<2
500265	Drill Core	5.58	0.109	8	60	2.03	148	0.03	<20	2.17	0.17	0.20	<2
500266	Drill Core	5.80	0.116	8	71	2.37	422	0.02	<20	2.41	0.06	0.11	<2
500267	Drill Core	4.58	0.123	9	74	2.24	262	0.02	<20	2.37	0.07	0.16	<2
500268	Drill Core	7.61	0.091	7	54	2.44	157	< 0.01	<20	2.34	0.15	0.21	<2
500269	Drill Core	7.21	0.101	7	31	1.73	181	< 0.01	<20	1.36	0.12	0.22	<2
500270	Drill Core	6.99	0.092	6	25	1.22	220	<0.01	<20	1.04	0.10	0.20	<2
500271	Drill Core	7.22	0.107	7	15	1.05	380	<0.01	<20	0.87	0.08	0.20	3
500272	Drill Core	5.32	0.095	4	10	0.96	687	< 0.01	<20	0.42	0.05	0.15	<2
500273	Drill Core	5.23	0.118	9	71	2.35	654	0.02	<20	2.63	0.13	0.22	<2
500274	Rock Pulp	1.11	0.061	15	50	0.78	222	0.09	<20	1.56	0.08	0.40	<2
500275	Drill Core	4.66	0.122	8	65	2.42	443	< 0.01	<20	2.98	0.16	0.27	<2
500276	Drill Core	5.54	0.090	7	19	1.84	487	< 0.01	<20	1.88	0.11	0.26	<2
RRE 500276	Drill Core	5.39	0.090	6	22	1.83	477	< 0.01	<20	1.79	0.11	0.25	<2
500277	Drill Core	5.49	0.095	6	17	1.54	702	<0.01	<20	1.65	0.15	0.28	<2
500278	Drill Core	1.43	0.084	6	71	2.77	31	0.22	<20	3.35	0.07	0.04	<2
500279	Drill Core	7.05	0.109	6	22	1.08	307	< 0.01	<20	1.17	0.10	0.22	3
500280	Drill Core	6.25	0.115	7	27	1.04	309	<0.01	<20	1.31	0.10	0.21	<2
500281	Drill Core	8.82	0.106	6	9	0.55	415	<0.01	<20	0.43	0.12	0.19	<2
500282	Rock Pulp	0.47	0.041	6	25	0.42	28	0.04	<20	0.81	0.04	0.15	<2
500283	Drill Core	8.31	0.108	6	11	0.59	463	< 0.01	<20	0.43	0.15	0.19	<2
500284	Drill Core	9.01	0.101	5	10	0.42	1164	<0.01	<20	0.39	0.14	0.19	<2
500285	Drill Core	8.60	0.092	6	27	0.97	400	<0.01	<20	1.22	0.14	0.18	<2
500286	Drill Core	6.24	0.094	7	44	2.10	483	< 0.01	<20	1.93	0.17	0.16	<2

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: Report Date:

ate:

November 03, 2007

Falls Creek

6 of 8

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Re	port	t Da	ate

Page:

CERTIFICA	TE OF AN	JALY	′SIS							Par of				AL AL	CONT.		SMI	070	0004	48.1	
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	3B Au ppb 2	1D Mo ppm 1	1D Cu ppm 2	1D Pb ppm 3	1D Zn ppm 1	1D Ag ppm 0.3	1D Ni ppm 1	1D Co ppm 1	1D Mn ppm 2	1D Fe % 0.01	1D As ppm 2	1D U ppm 8	1D Au ppm 2	1D Th ppm 2	1D Sr ppm 1	1D Cd ppm 0.5	1D Sb ppm 3	1D Bi ppm 3	1D V ppm 1
500287	Drill Core	7	<2	<1	143	<3	52	0.4	38	27	1155	5.33	13	<8	<2	<2	95	0.9	<3	<3	149
500288	Drill Core	7.4	<2	<1	82	<3	66	<0.3	36	23	984	5.19	5	10	<2	<2	100	0.8	<3	<3	145
500289	Drill Core	7.1	3	<1	533	5	57	0.6	33	23	1048	5.45	35	10	<2	<2	138	0.9	<3	<3	115
500290	Drill Core	7.3	2	<1	230	<3	57	0.5	38	20	1127	5.32	9	<8	<2	<2	183	1.2	<3	<3	85
500291	Drill Core	3.4	3	<1	308	<3	102	0.4	28	17	1330	5.04	31	<8	<2	<2	126	1.7	<3	<3	120
500292	Drill Core	6.9	9	<1	159	<3	99	<0.3	24	14	1143	5.05	21	<8	<2	<2	114	1.5	<3	<3	109
500293	Drill Core	3	7	<1	229	<3	74	<0.3	43	27	1205	6.41	4	<8	<2	<2	113	1.0	<3	<3	181
500294	Drill Core	7.2	8	<1	205	<3	61	< 0.3	43	25	1140	5.69	7	10	<2	<2	126	1.1	<3	4	190
500295	Drill Core	1.5	4	<1	79	<3	79	<0.3	22	23	1083	5.52	24	<8	<2	<2	22	1.0	<3	<3	212
500296	Drill Core	6.7	4	<1	121	<3	67	<0.3	42	21	1162	5.32	3	<8	<2	<2	132	1.2	<3	<3	159
500297	Drill Core	6.5	4	<1	65	<3	59	< 0.3	38	20	1433	5.10	4	<8	<2	3	148	1.0	<3	<3	155
500298	Drill Core	7	7	<1	119	<3	67	<0.3	44	25	1119	6.22	7	<8	<2	2	148	1.0	<3	<3	207
500299	Drill Core	6.9	9	<1	121	<3	65	< 0.3	44	26	1121	6.17	7	<8	<2	<2	166	0.9	<3	<3	210
500300	Drill Core	7.4	3	<1	155	<3	64	<0.3	43	26	1084	6.30	6	<8	<2	<2	125	0.8	<3	<3	215
500301	Drill Core	6.6	22	<1	99	<3	44	< 0.3	30	17	1094	5.01	4	<8	<2	<2	164	0.7	<3	<3	140
500302	Drill Core	3.1	7	<1	125	<3	54	< 0.3	33	22	984	4.71	8	11	<2	<2	415	0.9	<3	<3	101
500303	Drill Core	2.9	9	<1	142	<3	50	< 0.3	29	19	1041	4.31	6	9	<2	<2	727	0.9	<3	<3	94
500304	Drill Core	7.1	5	1	221	<3	58	0.3	36	25	1131	5.46	12	<8	<2	<2	395	1.0	<3	<3	160
500305	Drill Core	6.6	9	<1	92	<3	64	< 0.3	37	24	1181	5.68	12	<8	<2	<2	146	1.0	<3	<3	143
500306	Drill Core	5.5	6	<1	393	<3	63	0.4	50	26	1053	5.62	4	8	<2	<2	111	0.9	<3	<3	169
500307	Drill Core	7.6	5	<1	513	<3	67	0.4	47	24	1335	5.74	3	<8	<2	<2	104	1.1	<3	<3	141
500308	Drill Core	6.7	5	<1	86	<3	96	0.3	61	30	1311	6.59	3	<8	<2	<2	132	1.3	<3	4	193
500309	Drill Core	6.9	6	<1	244	9	137	0.7	48	23	1372	6.41	5	<8	<2	<2	153	1.8	<3	4	149
500310	Drill Core	6.4	5	<1	190	<3	121	0.3	55	28	1972	6.11	4	<8	<2	<2	138	1.3	<3	3	209
500311	Drill Core	7	5	<1	177	<3	89	0.4	54	28	1783	6.12	2	<8	<2	<2	142	1.2	<3	4	232
RRE 500311	Drill Core		8	<1	166	<3	89	0.3	52	26	1753	5.71	3	<8	<2	<2	140	1.1	<3	<3	219
500312	Rock Pulp		721	5	57	226	218	1.7	17	9	287	3.11	214	<8	<2	<2	13	1.1	17	<3	27
500313	Drill Core	7.2	5	<1	159	<3	74	0.4	56	31	1337	6.23	<2	<8	<2	<2	126	1.0	<3	4	229
500314	Drill Core	6.9	5	<1	179	<3	72	0.4	54	29	1255	6.35	<2	<8	<2	<2	159	0.9	<3	4	277
500315	Drill Core	6.4	4	<1	183	3	73	<0.3	61	31	1275	6.80	<2	<8	<2	<2	174	1.0	<3	<3	298

ACME ANALYTICAL LABORATORIES LTD.

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

6 of 8

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500287	Drill Core	5.73	0.101	7	45	2.29	253	<0.01	<20	1.83	0.16	0.17	<2
500288	Drill Core	6.39	0.082	6	46	2.61	225	< 0.01	<20	2.07	0.15	0.17	<2
500289	Drill Core	7.78	0.092	6	27	1.30	370	<0.01	<20	1.56	0.13	0.15	<2
500290	Drill Core	10.73	0.099	6	19	0.67	930	<0.01	<20	0.74	0.12	0.18	<2
500291	Drill Core	9.11	0.084	4	16	2.32	938	< 0.01	<20	0.42	0.06	0.14	<2
500292	Drill Core	7.59	0.083	4	15	1.90	1031	<0.01	<20	0.44	0.07	0.14	<2
500293	Drill Core	6.36	0.106	7	47	2.60	237	< 0.01	<20	2.14	0.11	0.15	<2
500294	Drill Core	6.70	0.108	8	52	2.21	518	0.02	<20	2.61	0.14	0.15	<2
500295	Drill Core	1.59	0.077	5	54	2.37	23	0.22	<20	3.16	0.03	0.03	<2
500296	Drill Core	7.75	0.108	7	47	1.72	940	0.01	<20	2.11	0.11	0.18	<2
500297	Drill Core	9.49	0.096	6	47	1.73	702	0.01	<20	2.16	0.11	0.18	<2
500298	Drill Core	6.17	0.101	6	55	2.62	354	0.02	<20	2.73	0.17	0.17	<2
500299	Drill Core	5.23	0.102	6	63	2.81	414	0.03	<20	2.62	0.15	0.13	<2
500300	Drill Core	5.13	0.103	7	63	3.07	254	0.03	<20	2.77	0.15	0.13	<2
500301	Drill Core	8.36	0.094	6	39	1.82	454	0.01	<20	1.77	0.13	0.18	<2
500302	Drill Core	9.12	0.101	6	27	1.33	270	< 0.01	<20	1.14	0.13	0.19	<2
500303	Drill Core	11.22	0.094	6	24	1.30	455	< 0.01	<20	1.06	0.12	0.17	<2
500304	Drill Core	8.39	0.091	5	40	2.17	135	< 0.01	<20	2.24	0.16	0.15	<2
500305	Drill Core	7.29	0.082	5	39	2.72	61	< 0.01	<20	1.41	0.10	0.12	<2
500306	Drill Core	6.09	0.111	7	66	2.48	94	< 0.01	<20	2.16	0.13	0.16	<2
500307	Drill Core	7.06	0.096	7	57	2.19	38	< 0.01	<20	1.93	0.10	0.15	<2
500308	Drill Core	7.72	0.115	8	73	2.52	38	< 0.01	<20	3.10	0.11	0.16	<2
500309	Drill Core	7.78	0.115	8	47	1.71	67	< 0.01	<20	1.91	0.13	0.25	<2
500310	Drill Core	9.76	0.104	8	87	2.55	159	< 0.01	<20	3.43	0.09	0,16	<2
500311	Drill Core	8.42	0.104	8	92	3.12	100	< 0.01	<20	3.64	0.09	0.13	<2
RRE 500311	Drill Core	8.25	0.101	8	88	2.98	89	< 0.01	<20	3.55	0.09	0.12	<2
500312	Rock Pulp	0.47	0.041	6	25	0.42	28	0.04	<20	0.84	0.04	0.15	<2
500313	Drill Core	6.26	0.098	7	92	3.67	61	<0.01	<20	4.02	0.13	0.08	<2
500314	Drill Core	6.17	0.107	8	93	3.36	46	0.13	<20	4.22	0.30	0.05	<2
500315	Drill Core	6.21	0.112	7	107	3.99	51	0.28	<20	4.91	0.36	0.05	<2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Drainat

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report Date:

Page:

November 03, 2007

7 of 8

Social Dril Core 6.4 7 7 2 115 7 166 <0.3													0.000									
Method Analyte WGHT 38 10	CERTIFIC	ATE OF AN	IAL	/SIS														SMI	070	000	48.1	
Analysis Word Mo		Method	WGHT	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
by by pp pp<		Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v
Image Image <th< th=""><th></th><th>Unit</th><th>kg</th><th>ppb</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>%</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th><th>ppm</th></th<>		Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
500316 Drill Core 6.4 7 2 115 7 156 0.3 26 1225 6.68 2.3 4.8 4.2 4.2 2.4 120 0.8 -3 -3 500317 Drill Core 6.4 7 1 187 4 64 0.3 60 31 1315 7.15 8 4.8 <2 2 120 0.8 <3 -3 500318 Drill Core 6.4 7 188 4.6 50.3 63 29 1301 7.10 <2 <8 <2 <2 121 4.5 -3 <3 500320 Drill Core 6.3 7 <17 <3 67 40.3 44 22 1333 7.14 <8 2 2 108 6.3 <3 <3 <3 <3 131 54 12 338 3.47 31 <8 2 2 2 108 6.3 <3 <3 500324 Drill Core 6.3 6 125 57		MDL	0.01	2	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1
500317 Ortil Core 6.4 7 <1 187 4 64 <0.3 60 31 1315 7.15 8 <8 <2 <2 120 0.0 6.3 <3 <3 500318 Drill Core 6.1 11 <1	500316	Drill Core	3.2	7	2	115	7	156	<0.3	25	26	1225	6.68	23	<8	<2	<2	25	0.8	<3	<3	239
500318 Drill Core 6.1 11 <1 186 4 65 <0.3 52 32 1398 7.22 10 <68 <2 <2 120 0.7 <3 <33 500319 Drill Core 6.5 9 <1	500317	Drill Core	6.4	7	<1	187	4	64	<0.3	60	31	1315	7.15	8	<8	<2	<2	120	0.8	<3	<3	283
500319 Drill Core 6.4 7 <1 164 <3 78 <0.3 53 29 1301 7.10 <2 <88 <2 <2 138 0.9 <3 <33 <3 500320 Drill Core 6.5 9 <1	500318	Drill Core	6.1	11	<1	186	4	65	<0.3	52	32	1398	7.22	10	<8	<2	<2	120	0.7	<3	<3	312
500320 Drill Core 6.5 9 <1 175 <3 67 <0.3 49 30 1439 7.12 <2 <8 <2 <2 121 <0.5 <3 <3 <3 500321 Drill Core 8.3 7 <1	500319	Drill Core	6.4	7	<1	184	<3	78	<0.3	53	29	1301	7.10	<2	<8	<2	<2	138	0.9	<3	<3	315
500321 Drill Core 8.3 7 <1 173 <3 68 <0.3 46 27 1271 6.83 <2 <8 <2 <2 109 0.6 <3 <3 500322 Rock Pulp 3564 98 1233 21 53 1.1 54 12 338 3.47 31 <8	500320	Drill Core	6.5	9	<1	175	<3	67	< 0.3	49	30	1439	7.12	<2	<8	<2	<2	121	<0.5	<3	<3	283
500322 Rock Pulp 3564 98 1233 21 53 1.1 54 12 338 3.47 31 <88 2 8 51 0.5 6 <3 500323 Drill Core 6.3 6 <1	500321	Drill Core	8.3	7	<1	173	<3	68	< 0.3	46	27	1271	6.83	<2	<8	<2	<2	109	0.6	<3	<3	287
500323 Drill Core 5.3 3 <1 252 <3 67 <0.3 44 22 1353 7.04 5 <8 <2 <2 91 0.6 <3 <3 <3 <1 252 <3 67 <0.3 47 26 120 6.6 2 <8 <2 <2 87 <0.5 <3 <3 <3 <3 <1 185 <3 70 <0.3 51 29 121 7.46 <2 <8 <2 <2 28 <3 <2 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 </td <td>500322</td> <td>Rock Pulp</td> <td></td> <td>3564</td> <td>98</td> <td>1233</td> <td>21</td> <td>53</td> <td>1.1</td> <td>54</td> <td>12</td> <td>338</td> <td>3.47</td> <td>31</td> <td><8</td> <td>2</td> <td>8</td> <td>51</td> <td>0.5</td> <td>6</td> <td><3</td> <td>52</td>	500322	Rock Pulp		3564	98	1233	21	53	1.1	54	12	338	3.47	31	<8	2	8	51	0.5	6	<3	52
500324 Drill Core 6.3 6 <1 185 <3 70 <0.3 47 26 1230 6.96 2 <8 <2 <2 87 <0.5 <3 <3 500325 Drill Core 6.7 3 <1	500323	Drill Core	5.3	3	<1	252	<3	67	<0.3	44	22	1353	7.04	5	<8	<2	<2	91	0.6	<3	<3	267
500325 Drill Core 6.7 3 <1 205 <3 76 <0.3 51 29 1241 7.46 <2 <8 <2 <2 124 <0.5 <3 <3 500326 Drill Core 6.4 3 <1	500324	Drill Core	6.3	6	<1	185	<3	70	<0.3	47	26	1230	6.96	2	<8	<2	<2	87	<0.5	<3	<3	287
500326 Drill Core 6.4 3 <1 199 <3 77 <0.3 51 29 1322 7.54 <2 <8 <2 <2 199 <3 <3 500327 Drill Core 3 <2	500325	Drill Core	6.7	3	<1	205	<3	76	< 0.3	51	29	1241	7.46	<2	<8	<2	<2	124	<0.5	<3	<3	330
500327 Drill Core 3 <2 <1 200 4 73 <0.3 49 28 1186 6.71 <2 <8 <2 <2 119 0.6 <3 <3 <3 <3 <0.3 <0.3 50 29 1213 6.66 <2 <8 <2 <2 119 0.6 <3 <3 <3 <3 <0.3 <0.3 50 29 1213 6.66 <2 <8 <2 <2 116 0.5 <3 <3 <3 <3 <33 133 1338 7.07 10 <8 <2 <2 118 1.2 <3 <3 <33 <33 1338 7.07 10 <8 <2 <2 118 1.2 <3 <3 <33 <33 1338 7.07 10 <8 <2 <2 118 1.2 <3 <3 <33 <33 1338 7.07 10 <8 <2 <2 118 1.2 <3 <3 <33 <33 <33 <33 <33	500326	Drill Core	6.4	3	<1	199	<3	77	< 0.3	51	29	1322	7.54	<2	<8	<2	<2	95	<0.5	<3	<3	274
500328 Drill Core 3.8 2 <1 193 <3 73 <0.3 50 29 1213 6.96 2 <8 <2 <2 116 0.5 <3 <3 500329 Drill Core 7.4 <2	500327	Drill Core	3	<2	<1	200	4	73	< 0.3	49	28	1186	6.71	<2	<8	<2	<2	119	0.6	<3	<3	288
500329 Drill Core 7.4 <2 <1 181 6 70 <0.3 51 333 1338 7.07 10 <8 <2 <2 112 0.9 <3 <33 500330 Drill Core 6.8 <2	500328	Drill Core	3.8	2	<1	193	<3	73	<0.3	50	29	1213	6.96	2	<8	<2	<2	116	0.5	<3	<3	298
500330 Drill Core 6.8 <2 <1 172 4 72 <0.3 48 29 1147 6.21 6 <8 <2 <2 118 1.2 <3 4 500331 Drill Core 7.3 3 <1	500329	Drill Core	7.4	<2	<1	181	6	70	< 0.3	51	33	1338	7.07	10	<8	<2	<2	121	0.9	<3	<3	297
500331 Drill Core 7.3 3 <1 171 <3 67 <0.3 45 25 1191 6.24 <2 <8 <2 <2 10 1.1 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	500330	Drill Core	6.8	<2	<1	172	4	72	< 0.3	48	29	1147	6.21	6	<8	<2	<2	118	12	<3	4	258
500332 Drill Core 7.3 <2 <1 189 <3 73 <0.3 48 26 1216 6.60 <2 <8 <2 <2 117 <0.5 <3 <3 <3 500333 Drill Core 6.5 2 <1	500331	Drill Core	7.3	3	<1	171	<3	67	<0.3	45	25	1191	6.24	<2	<8	<2	<2	120	<0.5	<3	<3	260
500333 Drill Core 6.5 2 <1 194 <3 76 <0.3 56 29 1327 7.01 <2 <8 <2 <2 10 0.8 <3 <3 500333 Drill Core 3.7 <2	500332	Drill Core	7.3	<2	<1	189	<3	73	< 0.3	48	26	1216	6.60	<2	<8	<2	<2	117	<0.5	<3	<3	284
500334 Drill Core 3.7 <2 <1 80 5 87 <0.3 23 26 118 6.41 20 <8 <2 <2 22 0.6 <3 <3 500335 Drill Core 7.2 2 <1	500333	Drill Core	6.5	2	<1	194	<3	76	< 0.3	56	29	1327	7.01	<2	<8	<2	<2	120	0.8	<3	<3	207
500335 Drill Core 7.2 2 <1 189 4 70 <0.3 53 28 126 6.70 <2 <8 <2 <2 124 0.5 <3 <3 500336 Drill Core 6.7 3 <1	500334	Drill Core	3.7	<2	<1	80	5	87	<0.3	23	26	1198	6.41	20	<8	<2	<2	22	0.6	-3	<3	225
500336 Drill Core 6.7 3 <1 189 3 72 <0.3 50 26 106 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 43 43 50 26 1068 6.44 <2 <8 <2 <2 127 <0.5 <3 <3 <3 <3 <2 <0.3 50 26 1068 6.44 <2 <8 <2 <2 127 <0.5 <3 <3 <3 <3 <2 <0.3 50 26 1068 6.44 <2 <8 <2 <2 127 <0.5 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	500335	Drill Core	7.2	2	<1	189	4	70	<0.3	53	28	1268	6.70	<2	<8	<2	<2	124	0.5	<3	<3	288
500337 Drill Core 6.9 <2 <1 199 5 70 <0.3 50 27 1117 6.77 <2 <8 <2 <2 129 <0.5 <3 <3 500338 Drill Core 7 3 <1 174 <3 70 <0.3 50 31 1119 6.92 <2 <8 <2 <2 129 <0.5 <3 <3 500338 Drill Core 6.8 2 <1 155 4 63 <0.3 44 29 1245 6.47 4 <8 <2 <2 24 0.5 <3 <3 500339 Drill Core 6.8 2 <1 155 4 63 <0.3 142 6.47 4 <8 <2 <2 240 0.7 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	500336	Drill Core	6.7	3	<1	189	3	72	<0.3	50	26	1068	6 44	<2	<8	<2	<2	127	<0.5	<3	<3	200
500338 Drill Core 7 3 <1 174 <3 70 <0.3 50 31 1119 6.92 <2 <8 <2 <2 134 <0.5 <3 <3 500339 Drill Core 6.8 2 <1	500337	Drill Core	6.9	<2	<1	199	5	70	<0.3	50	27	1117	6.77	<2	<8	<2	<2	120	<0.5	<3	<3	202
500339 Drill Core 6.8 2 <1 155 4 63 <0.3 44 29 1245 6.47 4 <8 <2 <2 240 0.7 <3 <3 500339 Drill Core 7.17 6 <1	500338	Drill Core	7	3	<1	174	<3	70	<0.3	50	31	1110	6.92	<2	<8	<2	22	134	<0.5	-3	-3	200
	500339	Drill Core	6.8	2	<1	155	4	63	<0.3	44	29	1245	6 47	4	<8	23	22	240	0.7	-3	-3	231
VVVV DUILVUE 1/1/ D SI ID/ 3 DD SU3 0/ 25 102 635 22 28 29 29 29 160 D7 29 29	500340	Drill Core	7.17	6	<1	167	3	66	<0.3	47	25	1182	6.35	-2	-0	12	-2	150	0.7	-3	-3	248
500341 Drill Core 8 <2 <1 170 <3 67 <0.3 45 22 080 5.02 <2 <8 <2 <2 150 0.7 <3 <3	500341	Drill Core	8	<2	<1	170	<3	67	<0.3	45	22	980	5.92	<2	~0~		-2	104	c0.5	-3	<3	202
500342 Drill Core 6.8 2 <1 181 6 67 <0.3 44 26 1115 6.45 2 <8 <2 <2 104 <0.5 <3 <3	500342	Drill Core	6.8	2	<1	181	6	67	<0.3	44	26	1115	6.45	-2	-0	-4	-2	146	-0.0	-3	-3	207
500343 Drill Core 3.3 9 <1 175 3 72 <0.3 47 26 1328 7.08 <2 <2 145 0.7 <3 <3	500343	Drill Core	3.3	9	<1	175	3	72	<0.3	47	20	1329	7.09	-2	<0	~2	-2	145	-0.F	<3	<3	228
500344 Drill Core 3 <2 <1 182 4 71 <0.3 47 26 1212 6.89 <2 <2 <2 75 <0.5 <3 <3	500344	Drill Core	3	<2	<1	182	4	71	<0.3	47	20	1212	6.80	~2	~0	~2	~2	10	<0.5	<3	<3	247
500345 Drill Core 7.1 3 <1 188 <3 76 <0.3 48 27 1084 840 <2 <9 <2 <2 03 0.6 <3 <3	500345	Drill Core	71	3	<1	188	<3	76	<0.3	47	20	1064	6.40	-2	-0	-4	-2	100	0.0	<3	<3	244

Imperial Metals Corporation

SMI07000048.1

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

7 of 8 Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500316	Drill Core	2.14	0.088	5	60	2.70	28	0.28	<20	4.04	0.05	0.07	<2
500317	Drill Core	4.04	0.116	7	119	5.23	142	0.09	<20	4.91	0.23	0.05	<2
500318	Drill Core	4.56	0.111	8	101	4.95	18	0.28	<20	4.79	0.25	0.05	<2
500319	Drill Core	4.49	0.116	8	86	4.67	64	0.33	<20	4.71	0.34	0.05	<2
500320	Drill Core	4.60	0.104	7	66	4.56	109	0.27	<20	4.45	0.31	0.04	<2
500321	Drill Core	3.47	0.107	7	73	4.88	217	0.26	<20	4.31	0.28	0.03	<2
500322	Rock Pulp	0.96	0.060	12	47	0.71	177	0.07	<20	1.27	0.06	0.33	3
500323	Drill Core	3.54	0.104	7	86	4.93	44	0.26	<20	4.32	0.23	0.04	<2
500324	Drill Core	2.85	0.113	7	87	4.81	60	0.24	<20	4.46	0.25	0.04	<2
500325	Drill Core	3.80	0.122	8	87	4.63	69	0.33	<20	4.78	0.37	0.05	<2
500326	Drill Core	2.88	0.121	8	84	4.72	259	0.27	<20	4.49	0.23	0.17	<2
500327	Drill Core	5.11	0.123	8	91	3.71	131	0.24	<20	4.21	0.30	0.10	<2
500328	Drill Core	4.85	0.119	7	89	3.84	80	0.24	<20	4.42	0.30	0.09	<2
500329	Drill Core	6.47	0.113	7	95	3.72	87	0.26	<20	4.23	0.27	0.08	<2
500330	Drill Core	6.18	0.117	7	79	3.00	31	0.20	<20	4.00	0.31	0.09	<2
500331	Drill Core	6.30	0.106	7	57	2.56	79	0.22	<20	3.65	0.30	0.10	<2
500332	Drill Core	4.78	0.114	7	54	2.77	69	0.25	<20	3.76	0.33	0.08	<2
500333	Drill Core	5.13	0.117	7	79	3.57	125	0.32	<20	4.33	0.33	0.08	<2
500334	Drill Core	1.69	0.085	5	53	2.66	31	0.27	<20	3.79	0.06	0.07	<2
500335	Drill Core	6.46	0.114	7	75	3.10	40	0.33	<20	4.04	0.33	0.08	<2
500336	Drill Core	4.66	0.118	7	65	2.47	71	0.32	<20	4.03	0.39	0.09	<2
500337	Drill Core	4.27	0.125	7	73	3.13	344	0.33	<20	3.85	0.33	0.07	<2
500338	Drill Core	4.88	0.110	7	78	3.92	537	0.32	<20	4.49	0.33	0.05	<2
500339	Drill Core	7.95	0.100	6	65	3.63	331	0.15	<20	4.12	0.18	0.05	<2
500340	Drill Core	6.58	0.105	7	68	2.99	233	0.12	<20	3.59	0.12	0.15	<2
500341	Drill Core	6.76	0.105	7	68	2.05	36	0.11	<20	3.44	0.21	0.16	<2
500342	Drill Core	7.44	0.115	7	72	2.57	10	0.08	<20	3.44	0.11	0.16	<2
500343	Drill Core	7.05	0.111	7	79	2.88	44	0.12	<20	3.73	0.11	0.15	<2
500344	Drill Core	6.17	0.116	7	83	2.89	7	0.14	<20	3.45	0.09	0.15	<2
500345	Drill Core	7.22	0.117	7	67	2.21	55	0.07	<20	4.13	0.31	0.14	<2

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Page:

November 03, 2007

Falls Creek

8 of 8

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 1

CERTIFIC	ERTIFICATE OF ANALYSIS															SMI07000048.1					
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	3B Au ppb 2	1D Mo ppm 1	1D Cu ppm 2	1D Pb ppm 3	1D Zn ppm 1	1D Ag ppm 0,3	1D Ni ppm 1	1D Co ppm 1	1D Mn ppm 2	1D Fe % 0.01	1D As ppm 2	1D U ppm 8	1D Au ppm 2	1D Th ppm 2	1D Sr ppm 1	1D Cd ppm 0.5	1D Sb ppm 3	1D Bi ppm 3	1D V ppm 1
500346	Drill Core	6.6	<2	<1	178	<3	70	< 0.3	42	23	1214	5.91	<2	<8	<2	<2	86	0.5	<3	<3	188
RRE 500346	Drill Core		<2	<1	184	<3	69	< 0.3	44	26	1386	6.16	<2	<8	<2	<2	92	0.5	<3	5	191
500347	Drill Core	7.3	2	<1	191	<3	79	<0.3	50	27	1022	6.77	<2	<8	<2	<2	177	0.5	<3	<3	287
500348	Drill Core	6.8	<2	<1	160	3	60	<0.3	39	22	1234	5.75	3	<8	<2	<2	330	0.7	<3	<3	237
500349	Drill Core	5.8	<2	<1	169	<3	66	< 0.3	38	21	1062	5.81	<2	12	<2	<2	99	0.6	<3	<3	237
500350	Drill Core	6.3	<2	<1	180	4	71	<0.3	42	26	1155	6.61	<2	<8	<2	<2	124	1.5	<3	<3	288
500351	Drill Core	6.1	3	<1	178	11	66	<0.3	39	25	1117	5.86	<2	<8	<2	<2	88	1.3	<3	<3	204
500352	Drill Core	6.9	<2	<1	180	15	71	<0.3	47	28	1208	6.58	6	<8	<2	<2	158	1.6	<3	<3	246

ACME ANALYTICAL LABORATORIES LTD.

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

8 of 8

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
	Analyte	Ca	Р	La	Cr	Mg	Ba ppm	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%		%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
500346	Drill Core	7.26	0.114	7	56	2.41	17	< 0.01	<20	3.31	0.14	0.19	<2
RRE 500346	Drill Core	8.20	0.116	7	57	2.50	16	< 0.01	<20	3.41	0.13	0.19	<2
500347	Drill Core	7.00	0.120	7	71	2.87	36	0.18	<20	4.41	0.33	0.11	<2
500348	Drill Core	9.06	0.100	6	64	2.50	15	0.14	<20	3.28	0.20	0.08	<2
500349	Drill Core	7.40	0.109	7	61	2.98	60	0.20	<20	3.75	0.19	0.09	<2
500350	Drill Core	6.42	0.112	8	65	3.45	59	0.28	<20	4.13	0.30	0.07	<2
500351	Drill Core	7.67	0.114	7	59	2.24	10	0.04	<20	3.01	0.10	0.17	<2
500352	Drill Core	8.20	0.117	8	69	2.43	15	0.17	<20	3.55	0.24	0.11	<2

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

1 of 3 Part 1

QUALITY (CONTROL	REPORT SMI0700004														8.1					
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	3B Au ppb 2	1D Mo ppm 1	1D Cu ppm 2	1D Pb ppm 3	1D Zn ppm 1	1D Ag ppm 0.3	1D Ni ppm 1	1D Co ppm 1	1D Mn ppm 2	1D Fe % 0.01	1D As ppm 2	1D U ppm 8	1D Au ppm 2	1D Th ppm 2	1D Sr ppm 1	1D Cd ppm 0.5	1D Sb ppm 3	1D Bi ppm 3	1C V ppm 1
Pulp Duplicates																					
500181	Drill Core	7.3	<2	<1	360	<3	74	<0.3	24	19	935	5.43	<2	<8	<2	3	31	0.6	<3	<3	149
REP 500181	QC		<2																		
500198	Rock Pulp		3646	100	1272	18	54	1.5	57	12	351	3.62	30	<8	4	7	53	0.5	5	<3	55
REP 500198	QC			96	1311	17	54	1.5	57	12	345	3.59	28	<8	3	7	52	0.6	7	<3	54
500211	Drill Core	6.7	<2	<1	332	<3	88	< 0.3	26	23	1200	6.34	<2	<8	<2	2	53	0.5	<3	6	144
REP 500211	QC		<2			-															
500239	Drill Core	4.5	3	<1	295	<3	99	0.3	26	24	1578	6.41	13	<8	<2	<2	66	1.1	<3	6	134
REP 500239	QC		4																		1000.0
500240	Drill Core	2.5	<2	<1	62	<3	88	< 0.3	45	29	924	6.05	7	<8	<2	<2	75	1.0	<3	<3	173
REP 500240	QC			<1	60	<3	88	< 0.3	46	29	925	6.16	9	<8	<2	<2	73	0.9	<3	<3	177
500247	Drill Core	5.7	<2	<1	342	<3	46	<0.3	31	18	940	5.28	10	<8	<2	<2	117	<0.5	<3	<3	203
REP 500247	QC		<2																		
500277	Drill Core	5.9	3	<1	198	10	123	0.4	30	31	909	6.18	3	<8	<2	<2	110	1.1	<3	<3	173
REP 500277	QC			<1	183	9	121	< 0.3	29	31	892	6.08	4	<8	<2	<2	106	0.9	<3	<3	164
500287	Drill Core	7	<2	<1	143	<3	52	0.4	38	27	1155	5.33	13	<8	<2	<2	95	0.9	<3	<3	149
REP 500287	QC		2									0000000	180	- 10	2017	~~					
500297	Drill Core	6.5	4	<1	65	<3	59	< 0.3	38	20	1433	5.10	4	<8	<2	3	148	1.0	<3	<3	155
REP 500297	QC			<1	76	3	59	<0.3	37	20	1419	5.09	4	<8	<2	<2	142	1.0	<3	<3	158
500299	Drill Core	6.9	9	<1	121	<3	65	< 0.3	44	26	1121	6.17	7	<8	<2	<2	166	0.9	<3	<3	210
REP 500299	QC		9														100	0.0		.0	210
500332	Drill Core	7.3	<2	<1	189	<3	73	< 0.3	48	26	1216	6.60	<2	<8	<2	<2	117	<0.5	<3	<3	284
REP 500332	QC		21.25	<1	191	<3	75	<0.3	49	27	1224	6.65	<2	<8	<2	<2	117	0.6	<3	<3	277
500352	Drill Core	6.9	<2	<1	180	15	71	<0.3	47	28	1208	6.58	6	<8	<2	<2	158	1.6	<3	<3	246
REP 500352	QC			<1	177	10	70	<0.3	46	27	1175	6.35	<2	<8	<2	<2	155	1.6	<3	<3	230
Reference Materials	0.800			20 1	10.010						111.2	0.00	Sec. 1		- 16	5.7.8k	100	1.9	-0	-0	200
STD DS7	Standard			20	107	67	412	1.0	56	9	662	2.48	54	<8	<2	5	73	6.1	5	<3	88
STD DS7	Standard			20	113	66	400	1.0	53	9	637	2.41	51	<8	<2	5	70	6.0	ß	5	00
	0				110	75	449	1.0	50	0	694	2.62	61	-0		5	05	0.0	6		00

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

1 of 3

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

QUALITY CONTROL REPORT

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ва	ті	в	AI	Na	к	w
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
Pulp Duplicates													
500181	Drill Core	2.30	0.194	9	42	2.07	15	0.30	<20	3.25	0.05	0.05	<2
REP 500181	QC		15/10-52										
500198	Rock Pulp	1.01	0.062	14	50	0.74	201	0.08	<20	1.35	0.06	0.34	<2
REP 500198	QC	0.96	0.060	14	47	0.73	199	0.08	<20	1.37	0.06	0.33	2
500211	Drill Core	2.61	0.226	10	48	2.27	13	0.13	<20	3.34	0.11	0.06	<2
REP 500211	QC												
500239	Drill Core	6.97	0.192	11	39	2.25	12	0.02	<20	3.44	0.04	0.18	<2
REP 500239	QC												
500240	Drill Core	5.45	0.119	8	67	2.60	471	0.03	<20	2.57	0.07	0.13	<2
REP 500240	QC	5.47	0.118	8	68	2.60	470	0.03	<20	2.57	0.07	0.13	<2
500247	Drill Core	5.52	0.113	8	42	1.95	369	0.02	<20	1.25	0.03	0.20	<2
REP 500247	QC												
500277	Drill Core	5.49	0.095	6	17	1.54	702	< 0.01	<20	1.65	0.15	0.28	<2
REP 500277	QC	5.40	0.093	6	18	1.49	704	< 0.01	<20	1.62	0.15	0.28	<2
500287	Drill Core	5.73	0.101	7	45	2.29	253	<0.01	<20	1.83	0.16	0.17	<2
REP 500287	QC												
500297	Drill Core	9.49	0.096	6	47	1.73	702	0.01	<20	2.16	0.11	0.18	<2
REP 500297	QC	9.30	0.096	6	47	1.70	681	0.01	<20	2.17	0.11	0.18	<2
500299	Drill Core	5.23	0.102	6	63	2.81	414	0.03	<20	2.62	0.15	0.13	<2
REP 500299	QC												
500332	Drill Core	4.78	0,114	7	54	2.77	69	0.25	<20	3.76	0.33	0.08	<2
REP 500332	QC	5.00	0.118	7	54	2.86	70	0.23	<20	3.69	0.32	0.07	<2
500352	Drill Core	8.20	0.117	8	69	2.43	15	0.17	<20	3.55	0.24	0.11	<2
REP 500352	QC	7.99	0.114	8	66	2.38	15	0.16	<20	3.42	0.23	0.11	<2
Reference Materials													
STD DS7	Standard	0.97	0.080	12	199	1.10	422	0.11	43	1.04	0.09	0.48	4
STD DS7	Standard	0.93	0.077	11	193	1.08	408	0.11	43	1.01	0.09	0.47	4
STD DS7	Standard	1.07	0.085	14	218	1.17	433	0.13	49	1.13	0.10	0.49	4

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project:

Falls Creek

2 of 3

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report Date:

Page:

November 03, 2007

QUALITY CO	ONTROL	L REPORT SMI070000														004	48.1				
		WGHT Wgt	3B Au	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	1D Cd	1D Sb	1D Bi	1D V
		6.01 kg	ppb 2	ppm 1	ppm 2	ppm 3	ppm 1	ppm 0.3	ppm 1	ppm 1	ppm 2	% 0.01	ppm 2	ppm 8	ppm 2	ppm 2	ppm 1	ppm 0.5	ppm 3	ppm 3	ppm 1
STD DS7	Standard			21	113	75	440	0.9	58	8	661	2.54	50	8	<2	5	79	6.7	5	<3	83
STD DS7	Standard			19	101	66	398	0.7	53	8	609	2.37	50	<8	<2	5	71	5.6	7	7	81
STD DS7	Standard			20	100	63	393	0.7	52	7	601	2.33	46	<8	<2	5	69	5.5	6	7	80
STD DS7	Standard			20	102	67	407	1.1	53	8	620	2.40	47	<8	<2	5	70	6.0	4	5	79
STD DS7	Standard			19	110	67	413	1.0	51	8	633	2.42	46	<8	<2	5	71	5.8	3	6	78
STD DS7	Standard			18	104	62	394	1.2	52	8	595	2.33	43	<8	<2	4	69	5.5	8	3	78
STD DS7	Standard	-		21	111	69	431	0.9	57	8	673	2.58	51	<8	<2	5	80	6.3	4	4	85
STD DS7	Standard	-		21	106	68	420	1.0	56	9	661	2.51	54	<8	<2	6	77	6.4	6	<3	85
STD DS7	Standard			19	102	65	411	0.9	54	9	612	2.40	53	<8	<2	5	71	5.9	5	6	81
STD DS7	Standard			19	99	62	375	0.9	52	8	616	2.33	46	10	<2	5	72	5.8	<3	4	81
STD DS7	Standard			18	95	61	377	0.9	50	8	608	2.29	47	<8	<2	4	72	5.5	<3	5	81
STD DS7	Standard			19	103	66	385	1.3	53	9	639	2.37	49	<8	<2	6	74	6.0	4	6	82
STD DS7	Standard			17	114	64	391	0.8	51	8	594	2.34	52	<8	<2	6	68	5.6	<3	4	81
STD OXD57	Standard	-	397	Nel M.		0.2004			ilen.	7,785	1093-047										
STD OXD57	Standard		408																		
STD OXD57	Standard	-	405																		
STD OXD57	Standard		428																		
STD OXD57	Standard		418																		
STD OXD57	Standard	-	416																		
STD OXD57	Standard		403																		
STD OXD57	Standard		392																		
STD OXD57	Standard		382																		
STD OXD57	Standard		398																		
STD OXD57	Standard		401																		
STD OXD57	Standard		418																		
STD OXD57	Standard		401																		
STD DS7 Expected				20.92	109	70.6	411	0.89	56	9.7	627	2.39	48.2	4.9	0.07	4.4	68.7	6.38	5.86	4.51	86
STD OXD57 Expected			413				1.11110-11														
BLK	Blank		<2																		

ACME ANALYTICAL LABORATORIES LTD.

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

2 of 3 Part 2

QUALITY CONTROL REPORT

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Ca	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	ĸ	w
		%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
		0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
STD DS7	Standard	1.01	0.084	13	207	1.11	421	0.12	38	1.06	0.10	0.48	4
STD DS7	Standard	0.94	0.072	12	190	1.05	394	0.12	37	1.00	0.09	0.45	3
STD DS7	Standard	0.86	0.072	12	189	1.03	404	0.12	41	0.97	0.08	0.45	6
STD DS7	Standard	0.93	0.075	12	197	1.04	395	0.12	38	0.99	0.09	0.46	4
STD DS7	Standard	0.96	0.073	12	197	1.08	392	0.12	31	1.04	0.09	0.46	5
STD DS7	Standard	0.87	0.071	12	183	1.01	387	0.11	24	0.96	0.09	0.44	5
STD DS7	Standard	1.02	0.079	14	205	1.12	440	0.13	27	1.09	0.10	0.49	4
STD DS7	Standard	1.01	0.080	12	206	1.11	417	0.12	45	1.07	0.10	0.47	4
STD DS7	Standard	0.92	0.078	11	192	1.05	408	0.11	38	0.97	0.09	0.46	4
STD DS7	Standard	0.94	0.072	12	194	1.03	390	0.11	31	1.00	0.09	0.45	6
STD DS7	Standard	0.91	0.071	11	185	1.05	385	0.11	29	0.98	0.08	0.44	4
STD DS7	Standard	0.98	0.072	12	205	1.07	394	0.12	39	1.07	0.10	0.45	3
STD DS7	Standard	0.93	0.070	12	196	1.01	389	0.11	34	0.99	0.09	0.44	4
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD OXD57	Standard												
STD DS7 Expected		0.93	80.0	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8
STD OXD57 Expected													
BLK	Blank												

SMI07000048.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

852 E. Hastings St. Vancouver BC V6A 1R6 Canac Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

3 of 3 Part 1

QUALITY	CONTROL	REP	POR	T												5	SMIC)700	0004	8.1	
		WGHT Wgt kg	3B Au ppb 2	1D Mo ppm	1D Cu ppm 2	1D Pb ppm 3	1D Zn ppm	1D Ag ppm	1D Ni ppm	1D Co ppm	1D Mn ppm 2	1D Fe %	1D As ppm 2	1D U ppm	1D Au ppm	1D Th ppm 2	1D Sr ppm	1D Cd ppm	1D Sb ppm 3	1D Bi ppm 2	1D V ppm
BLK	Blank	0.01	<2		<u>.</u>	~		0.0				0.01	-	0				0.0			· ·
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank			<1	<2	<3	<1	<0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank		<2																		
BLK	Blank			<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank		<2																		
BLK	Blank		2																		
BLK	Blank			<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank			<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank			<1	<2	<3	<1	<0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank			<1	<2	<3	<1	<0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank			<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank			<1	<2	<3	<1	< 0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1
BLK	Blank		<2																3/2		
BLK	Blank	-	4																		
Prep Wash																					
G1	Prep Blank	<0.01	<2	<1	7	4	44	<0.3	3	3	550	1.90	<2	<8	<2	4	64	<0.5	<3	<3	34

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

November 03, 2007

Falls Creek

3 of 3

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

QUALITY CONTROL REPORT

		1D	1D	1D	1D 1D	1D	1D	D 1D	1D	1D	1D	1D	1D
		Ca	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w
		%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
		0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2
BLK	Blank												i i
BLK	Blank												
BLK	Blank												
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank												
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	<0.01	< 0.01	<2
BLK	Blank												
BLK	Blank												
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	<0.01	<0.01	< 0.01	<2
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank												
BLK	Blank												
BLK	Blank												
BLK	Blank												
BLK	Blank	< 0.01	< 0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	< 0.01	<2
BLK	Blank	1000											
BLK	Blank												
Prep Wash													
G1	Prep Blank	0.57	0.071	7	9	0.61	216	0.13	<20	1.03	0.09	0.51	2

SMI07000048.1

CERTIFICATE OF ANALYSIS

ACME ANALYTICAL LABORATORIES LTD.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Submitted By: Steve Robertson Receiving Lab: Acme Analytical Laboratories (Vancouver) Ltd. Received: August 28, 2007 October 17, 2007 Report Date: 1 of 5

SMI0700083.1

CLIENT JOB INFORMATION

Project:	Falls Creek	
Shipment ID:	FC-005	
P.O. Number	ACME FILE: A718283	
Number of Samples:	115	

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Client:

Page:

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status
YKRP	115	Crush and Split at Remote Prep		Completed
P150	115	Pulverize to 150 mesh		
1D	115	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed
3B	115	Fire assay fusion Au by ICP-ES	30	Completed

ADDITIONAL COMMENTS

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Falls Creek October 17, 2007

2 of 5

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report Date

Page:

CERTIFICA	CERTIFICATE OF ANALYSIS SMI07000083.1																				
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500353	Drill Core	6.4	<1	196	<3	62	<0.3	44	23	852	6.56	<2	<8	<2	<2	108	1.1	<3	<3	283	5.31
500354	Rock Pulp		4	54	234	222	1.8	18	9	294	3.23	217	<8	<2	<2	14	1.3	20	<3	29	0.53
500355	Drill Core	6.4	1	406	1405	5768	11.7	13	26	134	8.56	>10000	<8	7	<2	4	68.6	17	74	10	0.07
500356	Drill Core	6.6	2	17	6	100	<0.3	74	22	518	5.15	142	<8	<2	6	19	<0.5	<3	<3	173	0.77
500357	Drill Core	5.9	<1	169	18	108	0.9	35	22	1322	5.34	4	9	<2	<2	122	1.0	<3	<3	119	11.19
500358	Drill Core	6	<1	200	125	155	1.7	34	23	1334	4.93	16	<8	<2	<2	139	2.9	5	<3	126	10,43
500359	Drill Core	1.7	<1	71	8	77	<0.3	21	24	1187	6.04	27	<8	<2	<2	17	1.0	<3	<3	216	1.32
500360	Drill Core	6.8	<1	148	9	65	<0.3	38	23	1297	5.61	9	11	<2	<2	295	1.4	<3	<3	176	11.78
500361	Drill Core	4.6	<1	184	14	164	1.1	42	29	1198	7.07	9	11	<2	<2	81	2.5	4	<3	199	7.37
500362	Drill Core	1.2	<1	46	11	41	0.4	5	16	908	4.55	8	11	<2	<2	65	0.6	<3	<3	97	3 24
500363	Drill Core	6.2	<1	52	6	24	0.5	3	12	959	3.33	6	<8	<2	<2	89	0.7	<3	<3	66	5.35
500364	Drill Core	3.4	<1	51	5	35	0.8	4	17	923	4.21	14	<8	<2	<2	44	0.7	<3	<3	106	2.67
500365	Drill Core	2.9	<1	16	153	110	8.4	3	2	205	1.10	684	<8	35	<2	11	1.0	<3	<3	11	0.12
500366	Drill Core	6.4	1	17	149	102	2.7	4	3	219	1.17	671	8	5	<2	11	1.0	<3	<3	12	0.12
500367	Drill Core	3.6	<1	72	<3	48	0.5	7	18	1045	4.42	23	<8	<2	<2	44	0.8	<3	<3	104	2 38
500368	Drill Core	6.3	<1	52	<3	38	< 0.3	5	18	992	4.36	22	10	<2	<2	46	0.7	4	<3	108	2.00
500369	Drill Core	5.5	<1	44	5	58	0.4	5	26	877	5.46	27	<8	<2	<2	25	0.8	4	<3	130	1 20
500370	Drill Core	7.6	1	224	17	53	0.6	5	21	535	6.12	42	<8	<2	<2	25	0.7	<3	4	183	1.23
500371	Drill Core	3.3	2	57	30	70	0.3	10	28	692	7.65	67	<8	<2	<2	37	1.0	4	<3	220	1.20
500372	Drill Core	3.4	<1	67	3	75	< 0.3	19	22	1194	5.96	27	<8	<2	<2	18	1.0	<3	23	230	1.45
500373	Drill Core	3.2	2	56	29	78	1.1	7	21	711	6.46	48	<8	<2	<2	52	1.1	<3	12	163	2.35
500374	Drill Core	6.3	<1	101	224	87	2.8	4	3	178	1.39	1573	<8	<2	<2	10	0.6	<3	12	103	0.10
500375	Drill Core	1	<1	56	10	101	0.4	18	43	1218	7 19	18	<8	<2	<2	54	<0.5	<3	10	150	2.07
500376	Drill Core	7.9	<1	617	9	72	0.8	18	40	1078	6.86	24	9	<2	<2	85	<0.5	<3	-3	152	2.07
500377	Drill Core	7.7	1	470	7	83	0.9	33	50	877	8.56	24	<8	<2	2	50	<0.5	-3	-0	100	2.50
500378	Rock Pulp		17	1243	13	111	0.9	30	24	1031	6 10	50	<8	<2	3	150	1.6	-5	-3	230	2.40
500379	Drill Core	6.8	1	37	5	97	1.3	29	44	1074	8.17	23	< 9	<2	2	60	<0.5	4	-0	147	4.92
RRE 500379	Drill Core		1	38	8	101	1.4	28	45	1055	8 38	20	<8	<2	<2	74	<0.5	<3	<3	212	4.03
500380	Drill Core	6.5	3	24	5	79	1.6	26	41	1295	8.07	10	10	-2	-2	140	<0.5	<0	<-3 4	225	4.08
500381	Drill Core	7	<1	23	5	89	1.0	34	47	1053	8.40	11	<8	<2	2	60	<0.5	<3	<3	239	4.26

Project:

1D

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek October 17, 2007

2 of 5

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1D

1D

1D

1D

1D

1D

Dago	í	

3B

Report Date:

Part 2

CERTIFICATE OF ANALYSIS Method 1D 1D 1D 1D Analyte P La Cr Ma

	Analyte	Analyte P La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2
500353	Drill Core	0.109	8	64	3.17	40	0.25	<20	4.07	0.29	0.10	<2	3
500354	Rock Pulp	0.041	6	24	0.43	29	0.04	<20	0.88	0.04	0.16	<2	686
500355	Drill Core	0.011	8	91	0.21	14	< 0.01	<20	0.39	0.04	0.08	>100	4
500356	Drill Core	0.058	24	185	2.56	343	0.17	<20	3.89	0.04	1.30	<2	2
500357	Drill Core	0.097	6	36	1.13	15	< 0.01	<20	2.74	0.07	0.22	<2	<2
500358	Drill Core	0.091	6	33	1.48	9	< 0.01	<20	2.67	0,06	0,19	<2	3
500359	Drill Core	0.076	6	54	2.84	26	0.19	<20	3.37	0.04	0.05	<2	6
500360	Drill Core	0.091	7	43	2,92	87	< 0.01	<20	3.17	0.07	0.15	<2	4
500361	Drill Core	0.111	8	46	2.33	122	<0.01	<20	4.00	0.07	0.16	<2	<2
500362	Drill Core	0.123	7	<1	1.25	57	0.03	<20	1.51	0.04	0.35	<2	91
500363	Drill Core	0.118	10	1	0.72	171	0.01	<20	1.05	0.02	0.53	<2	98
500364	Drill Core	0.116	7	<1	0.94	64	0.05	<20	1.56	0.05	0.66	<2	39
500365	Drill Core	0.010	6	52	0,36	33	0.05	<20	0.69	0.10	0.28	3	31
500366	Drill Core	0.010	7	53	0.38	37	0.05	<20	0.70	0.11	0.30	3	35
500367	Drill Core	0.129	7	1	1.12	69	0.11	<20	1.66	0.10	0.47	<2	68
500368	Drill Core	0.128	8	<1	1.19	172	0.18	<20	1.76	0.10	0.65	<2	44
500369	Drill Core	0.125	7	1	1.66	64	0.16	<20	2.16	0.05	0.78	<2	49
500370	Drill Core	0.103	7	1	0,93	39	0.03	<20	1.46	0.07	0.28	<2	45
500371	Drill Core	0.126	8	1	1.08	32	0.03	<20	1.61	0.05	0.40	<2	65
500372	Drill Core	0.072	5	50	2.60	22	0.24	<20	3.45	0.04	0.05	<2	5
500373	Drill Core	0.078	10	1	1.06	359	0.02	<20	1.90	0.06	0.44	<2	19
500374	Drill Core	0.016	4	45	0.48	23	0.01	<20	0.80	0.11	0.14	7	73
500375	Drill Core	0.107	4	12	2.32	26	0.05	<20	2.39	0.04	0.43	<2	84
500376	Drill Core	0.095	5	22	1.95	374	0.03	<20	1.82	0.06	0.38	<2	64
500377	Drill Core	0.127	6	54	1.47	60	0,06	<20	1.85	0.05	0.35	<2	87
500378	Rock Pulp	0.146	9	41	2.07	122	0.04	<20	2.16	0.12	0.35	<2	58
500379	Drill Core	0.157	7	44	1.45	138	0.03	<20	1.86	0.04	0,32	2	194
RRE 500379	Drill Core	0.136	7	43	1.47	161	0.03	<20	1.86	0.03	0.31	<2	222
500380	Drill Core	0.172	8	41	1.12	2498	0.05	<20	2.07	0.03	0.33	3	310
500381	Drill Core	0.128	7	48	1.49	59	0.04	<20	2.66	0.04	0.57	<2	559

SMI07000083.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Dened Det

October 17, 2007

Falls Creek

Acmelabs ACME ANALYTICAL LABORATORIES LTD. Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report Date:

Page:

3 of 5 Part 1

CERTIFICATE OF ANALYSIS SMI07000083.1																					
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500382	Drill Core	7.9	<1	17	4	90	0.7	22	52	946	9.41	13	<8	<2	<2	74	<0.5	<3	<3	203	4.36
500383	Drill Core	8.3	14	2566	32	70	3.1	19	32	323	17.27	89	<8	<2	<2	83	1.1	11	73	225	1,47
500384	Drill Core	7.2	<1	264	7	135	0.6	60	75	1118	7.08	11	<8	<2	<2	180	0.6	<3	<3	214	3.88
500385	Drill Core	2.4	<1	266	33	57	1.5	41	22	1255	5.86	8	9	<2	<2	179	0.6	<3	8	236	4.07
500386	Drill Core	5	<1	398	4	71	0.9	46	32	1240	6.41	28	<8	<2	<2	216	<0.5	<3	<3	201	3.90
500387	Drill Core	1.6	8	1101	37	68	3.6	44	42	399	9.31	73	<8	<2	2	50	<0.5	4	42	189	1.58
500388	Drill Core	2.4	<1	70	<3	88	0.3	21	24	1200	6.55	24	<8	<2	<2	20	<0.5	<3	<3	234	1.61
500389	Drill Core	5.5	<1	244	<3	103	0.8	56	25	1085	6.95	18	9	<2	<2	67	<0.5	<3	<3	242	2.60
500390	Drill Core	7.7	<1	204	<3	79	0.7	48	27	1309	6.47	13	<8	<2	2	108	<0.5	<3	<3	212	2.88
500391	Drill Core	3.6	<1	274	<3	78	0.9	49	26	1290	6.56	19	<8	<2	<2	112	<0.5	3	<3	219	3.10
500392	Drill Core	3.7	<1	292	<3	82	0.9	47	24	1390	6.69	18	<8	<2	<2	120	<0.5	4	<3	239	3.12
500393	Drill Core	7.2	<1	248	<3	56	0.6	33	21	1036	5.11	10	<8	<2	<2	87	<0.5	<3	<3	162	2.79
500394	Drill Core	6.5	<1	116	<3	35	<0.3	8	16	494	3.69	6	12	<2	2	73	<0.5	<3	<3	83	2.08
500395	Drill Core	6.7	4	43	6	44	0.6	5	9	296	2.99	5	<8	<2	<2	38	<0.5	3	8	76	2.02
500396	Drill Core	5.4	<1	25	5	35	<0.3	4	9	185	2.78	4	<8	<2	2	35	<0.5	<3	<3	49	1.32
500397	Drill Core	1.5	22	753	83	74	2.6	6	15	321	11.21	91	11	<2	<2	45	<0.5	<3	9	158	2.22
500398	Rock Pulp		101	1385	20	55	1.5	58	13	376	3.82	31	11	4	8	56	0.5	5	<3	57	1.07
500399	Drill Core	7	1	82	3	35	0.3	5	9	277	3.02	4	<8	<2	<2	49	<0.5	3	3	53	1.92
500400	Drill Core	5.9	1	34	<3	43	<0.3	5	9	295	2.14	4	8	<2	2	61	<0.5	<3	<3	30	2.09
RRE 500400	Drill Core		1	37	<3	42	<0.3	5	9	307	2.16	7	<8	<2	<2	65	<0.5	<3	<3	30	2.28
500401	Drill Core	0.9	5	70	<3	38	<0.3	5	12	330	2.34	12	<8	<2	<2	62	<0.5	<3	<3	21	2.30
500402	Drill Core	7.3	18	87	9	30	<0.3	4	8	353	2.43	15	<8	<2	<2	59	<0.5	<3	<3	23	2.57
500403	Drill Core	3.8	1	24	7	32	<0.3	3	7	330	2.38	9	9	<2	<2	71	<0.5	<3	<3	20	2.81
500404	Drill Core	3.9	3	53	15	43	<0.3	3	8	263	2.69	10	<8	<2	<2	57	<0.5	<3	3	23	2.31
500405	Drill Core	7.3	29	430	31	124	0.9	6	14	303	4.09	104	12	<2	<2	59	2.4	3	19	10	3.08
500406	Drill Core	6.9	11	216	30	79	0.7	23	17	423	4.77	63	9	<2	<2	74	0.8	<3	<3	49	3.41
500407	Drill Core	7.5	<1	305	<3	44	0.7	48	23	895	6.10	38	<8	<2	<2	178	<0.5	<3	3	150	3.32
500408	Drill Core	1.7	<1	87	<3	88	<0.3	24	26	1230	6.58	21	8	<2	<2	22	0.6	<3	<3	234	2.12
500409	Drill Core	1.3	<1	210	<3	55	0.6	49	28	953	5.76	14	<8	<2	<2	119	1.4	<3	3	122	3.47
500410	Drill Core	5.8	10	239	20	85	1.1	36	22	1017	5.52	35	<8	<2	<2	127	1.7	10	4	95	5.49

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek

3 of 5

Report Date:

Client:

Project:

Page:

October 17, 2007

Acmelabs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2
500382	Drill Core	0.107	5	33	1.06	406	0.04	<20	2.47	0.04	0.51	<2	832
500383	Drill Core	0.101	5	31	0.53	712	0.06	<20	1.23	0.02	0.41	6	993
500384	Drill Core	0.108	5	66	2.39	170	0.11	<20	2.52	0.07	0.35	<2	38
500385	Drill Core	0.106	6	71	2.58	168	0.14	<20	2.35	0.10	0.30	<2	12
500386	Drill Core	0.108	6	70	2.48	170	0.10	<20	2.58	0.11	0.52	<2	19
500387	Drill Core	0.169	4	31	0.70	28	0.02	<20	0,89	0.04	0.27	3	2067
500388	Drill Core	0.075	4	56	2.70	24	0.25	<20	3.53	0.04	0.06	<2	5
500389	Drill Core	0.135	7	65	2.26	118	0.08	<20	2.11	0.05	0.44	<2	106
500390	Drill Core	0.125	6	63	2.48	92	0.14	<20	2.16	0.07	0.46	<2	58
500391	Drill Core	0.127	5	66	2.25	129	0.12	<20	2.05	0.07	0.42	<2	61
500392	Drill Core	0.124	6	66	2.35	156	0.10	<20	2.12	0.06	0.36	<2	60
500393	Drill Core	0.119	6	38	1.64	85	0.06	<20	1.56	0.06	0.33	<2	39
500394	Drill Core	0.115	14	7	0.78	178	0.03	<20	1.14	0.07	0.34	<2	27
500395	Drill Core	0.103	12	4	0.28	91	0.01	<20	0.61	0.05	0.31	<2	68
500396	Drill Core	0.104	11	3	0.22	237	0.01	<20	0.46	0,06	0.37	<2	48
500397	Drill Core	0.066	4	3	0.33	17	0.01	<20	1.21	0.05	0.14	3	250
500398	Rock Pulp	0.061	13	51	0.78	177	0.08	<20	1.42	0.07	0.34	2	3466
500399	Drill Core	0.099	12	4	0.42	167	0.01	<20	0.77	0.06	0.29	<2	78
500400	Drill Core	0.099	9	4	0.66	164	< 0.01	<20	1.00	0.05	0.24	<2	6
RRE 500400	Drill Core	0.094	9	4	0.63	191	<0.01	<20	0.97	0.06	0.25	<2	8
500401	Drill Core	0.095	8	2	0.59	205	<0.01	<20	0.66	0.05	0.24	<2	6
500402	Drill Core	0.093	9	3	0.57	211	< 0.01	<20	0.65	0.06	0.24	<2	16
500403	Drill Core	0.097	7	3	0.54	493	< 0.01	<20	0.38	0.06	0.25	<2	17
500404	Drill Core	0.088	5	2	0.36	293	<0.01	<20	0.31	0.04	0.25	<2	15
500405	Drill Core	0.090	3	2	0.23	26	< 0.01	<20	0.29	0.05	0.23	<2	77
500406	Drill Core	0.108	4	20	0.54	55	<0.01	<20	0.53	0.05	0.22	<2	42
500407	Drill Core	0.123	4	90	2.26	118	0.15	<20	2.13	0.10	0.46	<2	31
500408	Drill Core	0.088	5	56	2.70	28	0.26	<20	3.80	0.05	0.03	<2	9
500409	Drill Core	0.112	5	82	2.33	155	0.06	<20	1.96	0.09	0.55	<2	27
500410	Drill Core	0.095	5	46	2.05	84	0.02	<20	1.29	0.05	0.41	<2	21

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate, Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI0700083.1

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek Project: Report Date:

October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

4 of 5 Part 1

CERTIFIC	CATE OF AN	JALY	′SIS														SMI	070	000	83.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%								
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500411	Drill Core	3	<1	133	9	221	0.3	33	31	1008	6.07	22	<8	<2	<2	70	1.7	<3	4	150	4.44
500412	Drill Core	3.1	309	390	273	75	4.8	26	27	834	5.52	60	<8	<2	<2	54	2.0	<3	74	117	6.00
500413	Drill Core	6.4	<1	162	<3	56	<0.3	28	26	785	4.95	8	<8	<2	<2	69	1.2	4	4	117	1.83
500414	Rock Pulp		5	58	231	221	1.7	18	9	282	3.11	211	<8	<2	<2	13	1.5	19	<3	26	0.45
500415	Drill Core	6.1	6	235	6	53	0.4	32	30	856	5.35	13	<8	<2	<2	66	1.2	<3	5	134	2.62
500416	Drill Core	6,1	<1	218	5	44	<0,3	30	30	777	4.37	9	<8	<2	<2	88	1.1	<3	4	106	2.41
500417	Drill Core	5.8	1	244	<3	51	0.5	29	26	845	4.69	7	<8	<2	<2	60	1.0	<3	5	111	1.97
500418	Drill Core	0.8	<1	99	<3	55	<0.3	24	16	853	4.38	5	<8	<2	<2	35	0.7	<3	5	99	1.16
500419	Drill Core	4.8	2	273	5	50	<0.3	30	29	967	5.16	9	<8	<2	<2	56	1.4	3	5	147	2.57
500420	Drill Core	6.1	<1	146	5	41	<0.3	28	23	840	5.23	15	<8	<2	<2	62	1.1	<3	<3	162	2.96
500421	Drill Core	6.4	<1	169	<3	43	<0.3	29	24	996	5.61	12	<8	<2	<2	40	1,3	<3	4	175	2.83
500422	Drill Core	6.5	<1	206	<3	41	<0.3	28	23	967	5.18	12	<8	<2	<2	42	1.3	<3	<3	147	3.05
500423	Drill Core	1.7	<1	76	17	89	<0.3	23	26	1166	6.31	25	<8	<2	<2	18	1.6	<3	5	221	1.62
500424	Drill Core	1.6	<1	286	<3	47	0.4	24	15	803	4.26	5	<8	<2	<2	61	1.2	<3	<3	122	2.36
500425	Drill Core	4.1	1	324	4	36	0.6	32	38	739	4.83	43	<8	<2	<2	71	1.4	4	<3	124	3,63
500426	Drill Core	5.9	<1	149	4	39	<0.3	33	23	778	4.51	9	<8	<2	<2	59	1.1	<3	<3	142	3.40
500427	Drill Core	2.7	<1	130	10	42	<0.3	44	23	940	5.71	17	<8	<2	<2	66	1.6	<3	6	180	4.69
500428	Drill Core	3	2	561	10	50	0.8	50	46	736	10.50	66	<8	<2	<2	28	1.7	<3	4	191	3.92
500429	Drill Core	4.9	1	122	<3	22	<0.3	26	12	492	3.25	19	<8	<2	<2	51	0.7	<3	3	89	3.05
500430	Drill Core	0.9	1	168	8	35	<0.3	45	18	669	4.43	13	<8	<2	<2	62	1.1	<3	4	115	2.64
500431	Drill Core	5.4	<1	263	4	48	<0.3	45	23	829	5.75	12	<8	<2	<2	69	1.5	<3	<3	180	3.88
500432	Rock Pulp		106	1299	26	58	1.1	57	12	348	3.55	32	<8	3	8	54	0.9	6	<3	53	1.01
500433	Drill Core	5.4	2	497	13	66	1.7	43	43	706	8.91	249	<8	<2	<2	47	1.7	<3	15	98	4.04
500434	Drill Core	0.5	1	280	15	124	3.1	60	17	773	5.93	29	<8	<2	<2	40	1.5	10	6	151	5.59
500435	Drill Core	2.1	1	205	4	82	0.4	59	26	1089	5.69	23	<8	<2	<2	38	1.8	<3	<3	162	4.66
500436	Drill Core	2.8	<1	150	7	77	0.4	52	23	1077	5.71	23	<8	<2	<2	38	1.2	4	<3	167	4.53
500437	Drill Core	6	<1	175	7	49	0.3	58	24	1051	5.30	18	<8	<2	<2	61	1.6	3	<3	179	5.66
500438	Drill Core	7.2	<1	619	8	55	0.9	54	25	1103	4.84	29	<8	<2	<2	56	1.4	<3	<3	173	4.69
500439	Drill Core	7.2	<1	92	8	42	<0.3	49	21	1124	4.45	11	<8	<2	<2	39	1.1	3	<3	143	4.30
500440	Drill Core	6.7	<1	278	3	39	<0.3	53	21	1513	4.84	15	<8	<2	<2	43	1.3	3	4	167	6.74

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

ACME ANALYTICAL LABORATORIES LTD.

Page:

Falls Creek

4 of 5

October 17, 2007

	Method	1D	1D	1D	1D	1D	1D	
	Analyte	P	La	Cr	Mg	Ba	TI	
	Unit	%	ppm	ppm	%	ppm	%	
	MDL	0.001	1	1	0.01	1	0.01	
500411	Drill Core	0.075	4	49	2.22	15	0.07	
500412	Drill Core	0.060	3	40	1.69	15	0.11	
500413	Drill Core	0.081	2	56	2.63	14	0.21	
500414	Rock Pulp	0.042	6	26	0.42	28	0.04	
500415	Drill Core	0.081	2	57	2.77	14	0.20	
500416	Drill Core	0.077	2	44	2.19	7	0.20	
500417	Drill Core	0.083	2	53	2.46	10	0.22	_
500418	Drill Core	0.083	2	53	2.50	5	0.19	_
500419	Drill Core	0.086	3	53	2.73	6	0.26	_
500420	Drill Core	0.082	3	40	2.36	8	0.29	

CERTIFICATE OF ANALYSIS

AcmeLabs

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B
	Analyte	Р	La	Cr	Mg	Ва	ті	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2
500411	Drill Core	0.075	4	49	2.22	15	0.07	<20	2.16	0.05	0,22	<2	57
500412	Drill Core	0.060	3	40	1.69	15	0.11	<20	1.67	0.04	0.21	<2	91
500413	Drill Core	0.081	2	56	2.63	14	0.21	<20	2.33	0.09	0.26	<2	89
500414	Rock Pulp	0.042	6	26	0.42	28	0.04	<20	0.79	0.04	0.15	<2	754
500415	Drill Core	0.081	2	57	2.77	14	0.20	<20	2.30	0.08	0.19	<2	44
500416	Drill Core	0.077	2	44	2.19	7	0.20	<20	1.94	0.08	0.09	<2	12
500417	Drill Core	0.083	2	53	2.46	10	0.22	<20	2.26	0.07	0.12	<2	15
500418	Drill Core	0.083	2	53	2.50	5	0.19	<20	2.39	0.06	0.10	<2	9
500419	Drill Core	0.086	3	53	2.73	6	0.26	<20	2.55	0.08	0.10	<2	10
500420	Drill Core	0.082	3	40	2.36	8	0.29	24	2.58	0.08	0.12	<2	7
500421	Drill Core	0.082	3	46	2.54	7	0.27	<20	2.54	0.08	0.10	<2	6
500422	Drill Core	0.085	3	48	2.66	7	0.22	<20	2.47	0.07	0.14	<2	13
500423	Drill Core	0.085	6	64	2.74	20	0.21	<20	3,50	0.03	0.04	<2	3
500424	Drill Core	0.083	2	49	2.41	3	0.23	<20	2.00	0.06	0.07	<2	5
500425	Drill Core	0.097	3	47	1.99	19	0.19	<20	2.07	0.10	0.24	<2	25
500426	Drill Core	0.098	3	55	2.47	9	0.20	<20	2.45	0.11	0.26	<2	9
500427	Drill Core	0.109	5	98	2.49	12	0.31	<20	2.37	0.09	0.27	<2	40
500428	Drill Core	0.109	5	114	1.89	13	0.22	<20	2.02	0.04	0.14	<2	760
500429	Drill Core	0.089	3	58	1.18	23	0.14	<20	1.24	0.07	0.22	<2	19
500430	Drill Core	0.130	3	107	2.50	40	0.25	<20	2.35	0.09	0.38	<2	27
500431	Drill Core	0.126	4	122	3.02	9	0.30	<20	2.52	0.07	0.32	<2	7
500432	Rock Pulp	0.061	13	48	0.76	179	0.07	<20	1.33	0.06	0.33	<2	3329
500433	Drill Core	0.065	4	43	1.39	20	0.03	<20	1.40	0.04	0.27	<2	294
500434	Drill Core	0.131	7	72	1.23	16	0.06	<20	1.39	0.04	0.33	<2	75
500435	Drill Core	0,136	6	94	2.43	29	0.21	<20	2.21	0.05	0.23	<2	90
500436	Drill Core	0.124	6	90	2.26	27	0.20	<20	2.09	0.05	0.23	<2	63
500437	Drill Core	0.136	5	89	1.74	56	0.29	<20	1.69	0.05	0.27	<2	25
500438	Drill Core	0.141	5	92	1.78	27	0.27	<20	1.75	0.05	0.26	<2	88
500439	Drill Core	0.137	4	96	2.29	8	0.25	<20	2.19	0.06	0.16	<2	83
500440	Drill Core	0.137	5	84	1.95	12	0.27	<20	1.87	0.05	0.18	<2	7

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Falls Creek

5 of 5

October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

CERTIFIC	ATE OF AN	VALY	/SIS														SMI	070	000	83.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%								
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500441	Drill Core	3.4	<1	153	6	39	<0.3	51	21	1567	5.44	12	<8	<2	<2	45	1.4	<3	<3	154	8.12
500442	Drill Core	3.8	<1	136	<3	40	<0.3	52	21	1503	5.27	11	<8	<2	<2	47	1.4	<3	<3	155	7.79
500443	Drill Core	3	<1	82	12	40	<0.3	49	21	1624	5.13	8	<8	<2	<2	45	1.4	<3	<3	129	10.03
500444	Drill Core	7	<1	607	5	47	0.7	55	24	1144	4.71	11	<8	<2	<2	42	1.1	<3	3	145	4.15
500445	Drill Core	6.7	<1	233	<3	40	0.7	50	20	1193	4.69	9	<8	<2	2	39	1.1	<3	3	138	5.66
500446	Drill Core	7.2	<1	819	<3	49	1.2	54	30	1396	4.45	12	<8	<2	<2	46	1,5	<3	5	128	7.22
500447	Drill Core	6.9	<1	196	<3	40	0.5	53	23	919	4.69	11	<8	<2	<2	34	0.9	<3	4	128	2.62
500448	Drill Core	6.4	<1	227	5	43	0.5	56	22	1135	5.17	9	<8	<2	2	34	1.1	<3	<3	142	3,90
RRE 500448	Drill Core		<1	220	<3	44	0.4	57	23	1133	5.25	10	<8	<2	2	36	1.1	<3	<3	148	4.03
500449	Drill Core	1	<1	287	6	51	0.9	51	26	1514	5.62	5	<8	<2	2	61	1.8	<3	6	160	7.10
500450	Drill Core	5.7	<1	209	5	53	0.7	40	26	1240	4.94	5	<8	<2	3	93	1.3	<3	<3	131	7.28
500451	Drill Core	6.7	<1	585	4	48	1.0	45	23	1368	5.61	11	<8	<2	<2	47	1.6	<3	<3	183	5.51
500452	Rock Pulp		4	56	228	220	1.9	17	9	298	3.28	218	<8	<2	<2	14	1.2	18	<3	27	0.51
500453	Drill Core	6.9	<1	257	5	52	0.8	33	26	1405	6.20	13	<8	<2	2	39	1.6	<3	4	196	5.84
500454	Drill Core	7.2	<1	412	<3	49	0.8	21	27	1017	5.46	13	<8	<2	3	36	1.3	<3	5	141	3.78
500455	Drill Core	7.1	<1	103	<3	42	0.4	18	19	1014	5.14	9	<8	<2	<2	29	0.8	<3	<3	136	2.76
500456	Drill Core	2	<1	83	5	86	<0.3	21	23	1096	5.91	17	<8	<2	2	19	1.4	<3	<3	209	1.92
500457	Drill Core	3	<1	168	<3	134	0.5	23	18	1041	5.28	10	<8	<2	2	43	1.0	<3	<3	138	2.37
500458	Drill Core	4.4	<1	319	8	53	0.9	20	22	1251	5.82	10	<8	<2	<2	74	1.5	3	6	125	6.45
463260	Rock	3.8	<1	54	5	60	<0.3	23	24	1082	5.58	<2	<8	<2	2	240	1.4	<3	<3	173	4.09
463061	Rock	2	<1	154	7	102	0.4	47	23	1734	5.70	4	<8	<2	2	19	1.1	<3	<3	230	1.90
463062	Rock	2.8	<1	102	<3	90	<0,3	48	21	1367	5.44	<2	8	<2	2	31	1.0	<3	<3	232	1.92
463064	Rock	5.8	<1	77	4	60	0.5	25	23	998	4.70	<2	10	<2	<2	36	1.0	<3	4	132	4.29
463065	Rock	4	<1	81	4	67	0.4	33	30	1041	4.91	<2	<8	<2	2	63	1.0	<3	5	111	3.05
463219	Rock	3.8	<1	154	<3	146	0.3	26	33	1812	7.35	15	8	<2	2	27	1.6	<3	5	331	2.46

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek Project October 17, 2007 Report Date:

3B

Au

ppb

2

8

6

12

8

16

53

9

3

3

8

19

9

574

23

35

14

2

4

11

6

<2

6

<2

<2

<2

Phone (604) 253-3158 Fax (604) 253-1716

Drill Core

Drill Core

Drill Core

Drill Core

Drill Core

Drill Core

Rock

Rock

Rock

Rock

Rock

Rock

500453

500454

500455

500456

500457

500458

463260

463061

463062

463064

463065

463219

www.acmelab.com

				10	2
	۰.:	÷	in	20	P
	5	е	a	'a	۲

1D

W

2

<2 <2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

ppm

1D

Na

%

0.01

0.04

0.05

0.05

0.06

0.07

0.07

0.08

0.06

0.07

0.04

0.04

0.07

0.04

0.06

0.06

0.08

0.04

0.11

0.06

0.42

0.05

0.08

0.06

0.04

0.03

1D

κ

%

0.01

0.16

0.17

0.18

0.07

0.10

0.07

0.06

0.09

0.09

0.09

0.11

0.05

0.16

0.04

0.04

0.08

0.03

0.09

0.22

0.08

0.06

0.10

0.08

0.08

0.06

Part 2

5 of 5

CERTIFICATE OF ANALYSIS Method 1D 1D 1D 1D 1D 1D 1D 1D Analyte P Ti в La Cr Mg Ba AI Unit % % % % ppm ppm ppm ppm MDL 0.001 0.01 0.01 1 1 1 0.01 20 500441 Drill Core 0.120 4 66 1.84 11 0.20 <20 1.90 500442 Drill Core 0.122 4 65 1.87 0.20 <20 1.95 11 500443 Drill Core 0.112 4 65 1.66 29 0,11 <20 1.92 0.130 3 500444 Drill Core 121 2.23 346 0.20 <20 2.17 Drill Core 0.118 3 1.86 30 0.15 <20 2.08 500445 89 500446 Drill Core 0.109 2 104 2.03 19 0.20 <20 2.27 2.66 500447 Drill Core 0.126 3 105 2.32 20 0.21 <20 500448 Drill Core 0,125 3 100 2.29 15 0.20 <20 2.79 0.126 <20 RRE 500448 **Drill Core** 4 103 2.36 19 0.21 2.86 0.126 5 2.46 <20 2.78 500449 Drill Core 117 98 0.08 3 500450 Drill Core 0,106 74 1.92 118 0.12 <20 1.62 500451 Drill Core 0.123 4 113 2.44 33 0.26 <20 3.17 500452 Rock Pulp 0.041 6 27 0.43 29 0.04 <20 0.88

0.128

0.138

0.146

0.081

0.146

0.138

0.149

0.142

0.135

0.075

0.085

0.094

3

3

4

5

4

6

12

8

8

4

3

6

82

41

38

55

40

28

26

87

86

26

48

39

2.31

1.92

1.98

2.40

2.09

1.88

2.01

3.18

2.36

2.16

2.91

3,60

15

29

52

20

92

90

104

60

76

159

159

68

0.25

0.17

0.22

0.22

0.25

0.08

0.05

0.32

0.33

0.19

0.16

0,11

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

3.05

2.47

2.61

3.21

2.83

1.52

4.99

3.62

3.03

3.37

3.23

3.73

SMI07000083.1

Project:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek

Report Date:

October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 2 Part 1

QUALITY C	ONTROL	REF	POR	Г												3	SMI	0700	8000	3.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
Pulp Duplicates																					
500378	Rock Pulp		17	1243	13	111	0.9	30	24	1031	6.10	50	<8	<2	3	150	1.6	4	<3	147	4.92
REP 500378	QC																				
500396	Drill Core	5.4	<1	25	5	35	<0.3	4	9	185	2.78	4	<8	<2	2	35	<0.5	<3	<3	49	1.32
REP 500396	QC		<1	24	3	36	<0.3	4	9	183	2.83	3	12	<2	2	35	<0.5	<3	<3	49	1.32
500417	Drill Core	5.8	1	244	<3	51	0.5	29	26	845	4.69	7	<8	<2	<2	60	1.0	<3	5	111	1.97
REP 500417	QC																				
500438	Drill Core	7.2	<1	619	8	55	0.9	54	25	1103	4.84	29	<8	<2	<2	56	1.4	<3	<3	173	4.69
REP 500438	QC		<1	621	4	55	0.8	54	25	1095	4.92	28	<8	<2	<2	55	1.4	<3	<3	173	4.97
RRE 500448	Drill Core		<1	220	<3	44	0.4	57	23	1133	5.25	10	<8	<2	2	36	1.1	<3	<3	148	4.03
REP RRE 500448	QC											1110									
Reference Materials																					
STD OXD57	Standard																				
STD OXD57	Standard																				
STD OXD57	Standard																				
STD OXD57	Standard																				
STD DS7	Standard		21	117	71	413	0,9	56	8	659	2.52	51	<8	<2	4	80	6.1	7	4	89	1.02
STD DS7	Standard	-	19	105	69	399	0.9	52	8	630	2.44	46	11	<2	4	75	6.1	4	<3	87	0.97
STD OXD57	Standard	-																			
STD OXD57	Standard	-																			
STD DS7	Standard		22	112	73	424	1.1	60	10	673	2.64	51	<8	<2	7	77	6.4	6	6	90	1.04
STD DS7	Standard	-	21	110	69	397	1.0	55	9	644	2.46	49	10	<2	6	78	6.1	4	7	87	0.99
STD DS7	Standard		20	103	72	401	0.8	55	8	629	2.37	50	<8	<2	5	70	6.5	5	5	81	0.93
STD DS7	Standard		19	99	73	398	0.6	53	8	625	2.36	49	<8	<2	4	69	6.0	3	<3	79	0,92
STD DS7	Standard	-	20	102	67	407	1.1	53	8	620	2.40	47	<8	<2	5	70	6.0	4	5	79	0.93
STD DS7	Standard		19	110	67	413	1.0	51	8	633	2.42	46	<8	<2	5	71	5.8	3	6	78	0.96
STD DS7 Expected			20.92	109	70.6	411	0.89	56	9.7	627	2.39	48.2	4.9	0.07	4.4	68.7	6.38	5.86	4.51	86	0.93
STD OXD57	Standard																				
STD OXD57	Standard																				

Project:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek Report Date:

October 17, 2007

1 of 2

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:	

Part 2

QUALITY CONTROL REPORT

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2
Pulp Duplicates													
500378	Rock Pulp	0.146	9	41	2.07	122	0.04	<20	2.16	0.12	0.35	<2	58
REP 500378	QC												61
500396	Drill Core	0.104	11	3	0.22	237	0.01	<20	0.46	0.06	0.37	<2	48
REP 500396	QC	0.106	11	3	0.22	240	0.01	<20	0.45	0.06	0.37	<2	
500417	Drill Core	0.083	2	53	2.46	10	0.22	<20	2.26	0.07	0.12	<2	15
REP 500417	QC												15
500438	Drill Core	0,141	5	92	1.78	27	0.27	<20	1.75	0.05	0.26	<2	88
REP 500438	QC	0.140	5	92	1.78	26	0.28	<20	1.75	0.05	0.26	<2	
RRE 500448	Drill Core	0.126	4	103	2.36	19	0.21	<20	2.86	0.07	0.09	<2	3
REP RRE 500448	QC								CONTRACTA CO				2
Reference Materials													
STD OXD57	Standard												397
STD OXD57	Standard												408
STD OXD57	Standard												418
STD OXD57	Standard												403
STD DS7	Standard	0.075	13	212	1.12	419	0.12	42	1.09	0,10	0.48	6	
STD DS7	Standard	0.072	12	199	1.06	403	0.11	39	1.01	0.09	0.45	5	
STD OXD57	Standard												416
STD OXD57	Standard												403
STD DS7	Standard	0.081	13	217	1.17	434	0.12	44	1.09	0.10	0.48	4	
STD DS7	Standard	0.076	13	205	1.09	403	0.12	39	1.04	0.10	0.45	3	
STD DS7	Standard	0.077	12	188	1.07	397	0.12	37	0.98	0.08	0.46	3	
STD DS7	Standard	0.076	11	191	1.06	394	0.11	39	0.98	0.09	0.46	<2	
STD DS7	Standard	0.075	12	197	1.04	395	0.12	38	0.99	0.09	0.46	4	
STD DS7	Standard	0.073	12	197	1.08	392	0,12	31	1.04	0.09	0.46	5	
STD DS7 Expected		0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	
STD OXD57	Standard				- Calcina								410
STD OXD57	Standard												404

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000083.1

Project:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

October 17, 2007

Falls Creek

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2 Part 1

QUALITY C	ONTROL	REP	OR	U													SMI	0700	008	3.1	
		WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
		0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
STD OXD57 Expected																					
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0,3	<1	<1	<2	< 0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0,3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	<0.01	<1	2	3	35	<0.3	4	3	526	1.73	<2	<8	<2	3	56	<0.5	<3	<3	33	0.52

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Falls Creek

Report Date:

3B

Au

ppb

2 413 <2

<2

<2

<2

<2 <2 <2 2

<2

4

<2

October 17, 2007

www.acmelab.com

Page:

1D

w

<2

<2

<2

<2

<2

ppm 2

Project:

2 of 2 Part 2

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Р	La	Cr	Mg	Ba	Ti	в	AI	Na	ĸ
		%	ppm	ppm	%	ppm	%	ppm	%	%	%
		0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01
STD OXD57 Expected											
BLK	Blank	< 0.001	<1	<1	<0.01	<1	< 0.01	<20	<0.01	<0.01	< 0.01
BLK	Blank	< 0.001	<1	<1	<0.01	<1	< 0.01	<20	<0.01	<0.01	< 0.01
BLK	Blank	< 0.001	<1	<1	<0.01	<1	< 0.01	<20	<0.01	<0.01	<0.01
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01
BLK	Blank										
BLK	Blank										
BLK	Blank										
BLK	Blank										

7

0.58

9

209

0.12

<20

0.96

0.07

0.49

QUALITY CONTROL REPORT

Blank

Blank

Prep Blank

0.067

BLK

BLK

G1

Prep Wash

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000083.1

ACME ANALYTICAL LABORATORIES LTD.

www.acmelab.com

1D 3B

7AR

Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	Falls Creek	
Shipment ID:	FC-006	
P.O. Number	ACME FILE: A718305	
Number of Samples:	235	

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Imperial Metals Corporation 200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

CC:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Submitted By: Receiving Lab: Received: Report Date:

Steve Robertson Acme Analytical Laboratories (Vancouver) Ltd. September 04, 2007 October 17, 2007 1 of 9

SMI07000093.1

Method Number of **Code Description** Test Report Samples Code Wgt (g) Status R150 235 Split and Crush to 70% passing 10 mesh

235	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed
235	Fire assay fusion Au by ICP-ES	30	Completed
235	1:1:1 Aqua Regia digestion ICP-ES analysis	1	Completed

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Client:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project:

Falls Creek October 17, 2007

2 of 9

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Report Date:	

CERTIFIC	ATE OF AN	JALY	/SIS				5 28		A.B. H		and the	100					SMI	070	000	93.1	
	Method Analyte	WGHT Wgt	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	1D Cd	1D Sb	1D Bi	1D V	1D Ca
	Unit	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%							
500459	Drill Core	6.7	<1	515	-3	81	0.3	10	22	1200	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500460	Drill Core	73	<1	333	-5	50	<0.3	10	26	1160	6.03	14	<0	52	<2	80	1.5	0	<3	147	5.76
500461	Drill Core	6.6	<1	551	-3	49	-0.5	22	20	1406	0.02	17	<0	~2	<2	69	1.3	<3	3	150	4.09
500462	Drill Core	6.6	<1	101	7	40	<0.3	20	20	1400	0.40	0	<0	-2	<2	82	1.0	<3	<3	145	6.13
500463	Drill Core	3.4	=1	271	63	-45	-0.5	16	19	1902	0.05	10	×0 40	~2	<2	/4	1.1	<3	<3	154	7.06
500464	Drill Core	3.3	21	382	7	42	0.4	10	10	1072	4.02	10	<0	<2	<2	93	1.0	<3	<3	137	9.23
RRE 500464	Drill Core	0.0	<1	362	-3	40	0.5	19	22	12/3	5.23		<0	<2	<2	99	1.2	<3	<3	153	6.48
500465	Drill Core	67	<1	202	-5	96	0.4	10	23	1295	5.11	11	<0	<2	< <u>2</u>	115	1.1	4	<3	150	6.48
500466	Drill Core	7	<1	158	11	42	0.0	13	16	1470	5.22	6	<0	~2	<2	88	0.6	<3	<3	110	11.36
500467	Drill Core	67		97		42	<0.0	20	10	1470	5.23	6	<0	~2	<2	87	1.3	<3	<3	130	8.50
500468	Drill Core	8.7	-1	110	4	64	<0.3	20	23	1207	5.94	14	<8	<2	<2	44	1.0	<3	<3	154	3.42
500469	Drill Core	7.2		120	-2	20	<0.3	10	23	1387	0.78	10	<8	<2	<2	52	1.2	<3	<3	137	8.26
500470	Drill Core	7.2	<1	101	-0	30	<0.3	10	10	20/1	4.97		<8	<2	<2	52	1.1	<3	<3	121	14.10
500471	Drill Core	6.7	-1	176	<3	49	0.4	22	22	1001	6.03	20	<8	2	<2	66	0.9	<3	5	192	5.34
500472	Drill Core	6.0	-1	170	-0	40	0.5	22	20	1024	5.00	20	<8	<2	<2	61	1.1	<3	5	151	8.70
500472	Pack Bula	0.5	105	1207	00	190	2.0	21	22	1142	5.89	12	<8	<2	<2	92	2.5	<3	1	147	4.54
500474	Drill Core	6.9	105	200	-17	54	1.3	07	13	304	3.65	32	<8	5	5	57	0.6	<3	<3	56	1.03
500475	Drill Core	5.0		306	<3	53	0.6	21	23	1151	4.57	9	<8	<2	<2	92	<0.5	<3	4	153	4.13
500475	Drill Core	0.9	-1	221	43	00	1.0	51	31	1512	6.30	13	<8	<2	<2	54	1.0	<3	5	206	5.35
500470	Drill Core	0.9	~1	202	<3	70	1.0	50	32	1646	5.85	16	<8	<2	<2	75	1.1	3	4	168	7.43
500479	Drill Core	10	<1	250	<3	60	1.3	46	27	1638	5.70	13	<8	<2	<2	53	0.9	<3	5	172	5.21
500470	Drill Core	1.9		101	<3	152	0.3	23	22	1073	5.14	9	<8	<2	<2	44	3.2	<3	4	196	1.55
500480	Drill Core	7.1 E.A	1	191	<3	57	1.3	44	27	1550	5.71	9	<8	<2	<2	61	0.9	<3	6	195	5.42
500480	Drill Core	5.4	<1	116	<3	62	0.9	44	33	1349	5.86	13	<8	<2	<2	68	0.9	<3	4	154	5.45
500401	Drill Core	7.9	<1	230	<3	66	1.3	38	32	1543	5.86	9	<8	<2	<2	63	1.4	<3	5	160	7.74
500482	Drill Core	1	<1	232	<3	68	0.8	34	29	1324	6.64	10	<8	<2	<2	67	1.4	<3	6	202	7.92
500403	Rock Pulp		100	1292	17	52	1.4	55	12	347	3.50	30	<8	5	6	56	0.6	3	3	54	1.01
500484	Drill Core	6.3	<1	110	<3	65	<0.3	33	28	1443	6.93	19	<8	<2	<2	166	0.8	<3	6	231	5.70
500485	Drill Core	6.1	<1	5	<3	64	0.3	31	34	1217	6.65	10	<8	<2	<2	68	0.9	<3	7	256	5.94
500486	Drill Core	6.6	<1	46	<3	59	0.3	29	37	1279	6.28	13	<8	<2	<2	76	0.9	<3	5	225	7.57
500487	Drill Core	6.2	<1	75	<3	63	0.4	30	24	1104	6.21	9	<8	<2	<2	55	0.6	<3	4	228	4.37

www.acmelab.com

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Page:

October 17, 2007

Falls Creek

2 of 9

Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	10	10	10	10	10	38	740
	Analyte	P	La	Cr	Ma	Ba	ті	B	A1	Na	ĸ	w	A 11	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	nom	nnh	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500459	Drill Core	0.140	4	38	2.32	91	0.14	<20	2.52	0.05	0.15	<2	27	0.053
500460	Drill Core	0.143	4	51	2.23	61	0.25	<20	2.59	0.05	0.03	<2	15	0.033
500461	Drill Core	0.150	6	37	2.08	287	0.09	<20	2.11	0.06	0.20	<2	15	0.055
500462	Drill Core	0.121	5	37	2.12	164	0.17	<20	2.65	0.05	0.18	<2	9	0.019
500463	Drill Core	0.151	5	33	1.32	477	0.07	<20	1.71	0.05	0.20	<2	17	0.028
500464	Drill Core	0.168	5	38	1.73	485	0.13	<20	2.03	0.06	0.18	<2	34	0.037
RRE 500464	Drill Core	0.158	5	38	1.69	682	0.13	<20	2.01	0.06	0.18	<2	68	0.036
500465	Drill Core	0.125	6	27	1.61	116	0.01	<20	2.24	0.06	0.30	<2	21	0.026
500466	Drill Core	0.141	6	28	1.48	227	0.04	<20	1.71	0.06	0.30	<2	3	0.015
500467	Drill Core	0.150	4	38	2.26	55	0.18	<20	2.70	0.08	0.15	<2	14	0.009
500468	Drill Core	0.147	6	34	1.60	87	0.13	<20	2.27	0.05	0.25	<2	11	0.011
500469	Drill Core	0.123	5	30	1.32	38	0.12	<20	1.88	0.04	0.15	<2	57	0.013
500470	Drill Core	0.146	5	41	2.59	91	0.28	<20	3.03	0.06	0.14	<2	7	0.010
500471	Drill Core	0.137	5	39	1.94	54	0.17	<20	2.65	0.04	0.22	<2	173	0.018
500472	Drill Core	0.072	4	33	2.67	120	0.18	<20	2.78	0.06	0.18	<2	13	0.006
500473	Rock Pulp	0.061	14	49	0.77	194	0.08	<20	1.39	0.07	0.33	<2	3312	0.125
500474	Drill Core	0.069	3	55	2.45	50	0.22	<20	2.48	0.08	0.20	<2	27	0.030
500475	Drill Core	0.129	4	158	2.95	10	0.17	<20	2.92	0.05	0.04	<2	96	0.020
500476	Drill Core	0.117	6	139	2.42	99	0.03	<20	2.66	0.04	0.16	<2	38	0.024
500477	Drill Core	0.086	4	98	2.62	50	0.14	<20	2.75	0.05	0.10	<2	14	0.024
500478	Drill Core	0.081	5	45	2.02	90	0.24	<20	3.15	0.26	0.06	<2	13	0.008
500479	Drill Core	0.059	3	88	2.53	9	0.13	<20	2.96	0.05	0.08	<2	8	0.020
500480	Drill Core	0.065	5	67	2.18	276	0.04	<20	2.55	0.06	0.23	<2	64	0.011
500481	Drill Core	0.078	5	61	2.21	246	0.07	<20	2.70	0.05	0.21	<2	138	0.022
500482	Drill Core	0.101	6	46	1.98	137	0.04	<20	2.50	0.04	0.23	<2	57	0.022
500483	Rock Pulp	0.059	13	47	0.74	186	0.07	<20	1.34	0.07	0.32	<2	3540	0.125
500484	Drill Core	0.104	6	50	3.19	35	0.03	<20	3.01	0.05	0.12	<2	551	0.011
500485	Drill Core	0.110	6	54	2.64	94	0.02	<20	2.68	0.06	0.04	<2	712	< 0.001
500486	Drill Core	0.105	5	51	2.35	58	0.04	<20	2.54	0.05	0.08	<2	71	0.005
500487	Drill Core	0.111	6	50	2.81	18	0.09	<20	2.37	0.07	0.12	<2	8	0.006

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000093.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

SMI0700003 1

Project: Report Date:

Page:

Date:

October 17, 2007

Falls Creek

3 of 9

852 E. Hastings St. Vancouver BC V6A 1R6 Canad Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

CO. I. P. C.	1 ISTAIL THE AREA STREET	CLUM PL	C-SUMET	and the second	1200200	1.00		1.11									Civil	010	0000		
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500488	Drill Core	3.2	<1	176	<3	57	0.6	30	24	1256	6.22	13	<8	<2	<2	92	0.6	<3	5	238	3.53
500489	Drill Core	3.4	<1	98	<3	53	0.4	31	25	1251	6.44	12	<8	<2	<2	85	0.7	<3	6	244	3.56
500490	Drill Core	4.8	<1	453	4	65	2.9	31	38	931	8.37	78	<8	3	<2	45	1.0	3	8	373	4.55
500491	Drill Core	1.8	<1	153	<3	54	1.0	17	24	1187	6.49	19	<8	2	<2	53	0.7	<3	5	154	3.64
500492	Drill Core	6.7	<1	142	<3	46	0.8	14	24	1107	5.01	13	<8	<2	<2	76	0.6	<3	5	135	5.71
500493	Drill Core	6.9	<1	422	<3	76	0.9	12	31	1056	6.44	26	<8	<2	<2	41	0.6	<3	9	143	4.43
500494	Drill Core	5.7	<1	84	<3	75	0.5	11	53	1139	8.06	37	<8	<2	<2	32	0.8	<3	7	149	4.14
500495	Drill Core	2.5	<1	83	<3	98	<0.3	21	22	1044	5.13	6	<8	<2	<2	49	2.3	<3	3	188	1.79
500496	Drill Core	0.8	<1	14	<3	79	0.4	19	58	1069	8.69	62	<8	<2	<2	32	0.8	<3	9	154	4.29
500497	Drill Core	6.3	<1	88	<3	64	0.5	11	32	997	5.59	14	<8	<2	<2	51	0.8	<3	5	107	6.03
500498	Drill Core	6.5	<1	142	<3	50	0.4	11	23	840	5.15	20	<8	<2	<2	58	0.9	<3	4	112	5.90
500499	Drill Core	3.1	1	116	3	40	1.2	8	27	725	6.30	61	<8	<2	<2	59	0.8	<3	11	73	5.87
500500	Drill Core	3.3	<1	105	<3	55	0.4	7	26	738	5.89	10	<8	<2	<2	52	0.7	<3	5	110	4.03
500501	Drill Core	5.8	<1	45	<3	51	0.5	7	27	882	6.10	14	<8	<2	<2	42	0.5	<3	6	148	3.82
500502	Drill Core	6.5	<1	41	<3	48	< 0.3	7	44	1131	6.03	40	<8	<2	<2	53	0.8	<3	6	136	4.52
RRE 500502	Drill Core		<1	31	<3	47	<0.3	6	30	1119	6.09	24	<8	<2	<2	50	0.6	<3	5	142	4.45
500503	Drill Core	6.7	<1	90	<3	49	0.4	8	24	899	5.68	9	<8	<2	<2	49	<0.5	<3	7	133	2.33
500504	Rock Pulp		4	56	223	223	1.8	18	9	282	3.09	211	<8	<2	<2	12	1.2	18	<3	24	0.45
500505	Drill Core	6.1	<1	43	11	54	< 0.3	9	25	797	6.25	5	<8	<2	<2	64	1.6	4	<3	155	2.42
500506	Drill Core	7.2	<1	210	12	76	< 0.3	10	39	885	6.55	53	<8	<2	<2	41	1.6	4	6	144	3.12
500507	Drill Core	7.2	<1	68	18	49	<0.3	8	21	845	6.13	9	<8	<2	<2	50	1.5	3	4	162	2.83
500508	Drill Core	7.1	<1	180	6	45	< 0.3	10	31	1036	5.62	15	<8	<2	<2	54	1.7	4	4	151	4.52
500509	Drill Core	2.7	<1	78	14	164	< 0.3	22	21	938	5.06	6	<8	<2	<2	46	4.5	<3	4	191	1.73
500510	Drill Core	6.5	4	146	53	115	1.2	8	18	762	4.34	51	<8	<2	<2	35	2.5	<3	<3	80	3.99
500511	Drill Core	7	<1	279	10	48	0.6	6	17	709	4.22	19	<8	<2	<2	40	1.2	<3	<3	97	3.43
500512	Drill Core	6.8	<1	129	7	52	< 0.3	11	21	1002	5.04	10	<8	<2	<2	53	1.6	<3	6	128	4.00
500513	Drill Core	3.6	<1	126	10	51	< 0.3	11	20	976	4.95	9	<8	<2	<2	52	1.4	<3	<3	126	3.88
500514	Drill Core	3.6	<1	45	11	38	< 0.3	11	22	1064	4.69	8	<8	<2	<2	70	0.9	<3	6	119	5.61
500515	Drill Core	7.1	<1	66	5	36	< 0.3	10	27	1814	4.33	10	<8	<2	<2	63	1.3	<3	4	102	9.97
500516	Drill Core	6.9	<1	152	10	44	<0.3	11	24	1053	4.78	5	<8	<2	<2	64	1.2	<3	<3	109	4.75

www.acmelab.com

Acmelabs ACME ANALYTICAL LABORATORIES LTD.

www.acmelab.com

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Page:

Falls Creek October 17, 2007

3 of 9

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500488	Drill Core	0.115	5	47	2.67	115	0.26	<20	2.39	0.07	0.28	<2	36	0.017
500489	Drill Core	0.118	5	51	2.82	204	0.26	<20	2.34	0.07	0.19	<2	13	0.010
500490	Drill Core	0.102	5	41	1.07	102	0.13	<20	1.52	0.04	0.18	3	1241	0.046
500491	Drill Core	0.096	6	25	1.98	104	0.17	<20	2.60	0.05	0.22	<2	648	0.014
500492	Drill Core	0.085	4	28	1.84	106	0.23	<20	2.31	0.05	0.15	<2	40	0.013
500493	Drill Core	0.069	4	29	2.10	24	0.32	<20	2.54	0.05	0.23	<2	44	0.041
500494	Drill Core	0.065	5	25	2.77	13	0.22	<20	3.36	0.04	0.33	<2	173	0.008
500495	Drill Core	0.082	5	41	1.79	80	0.22	<20	3.41	0.40	0.06	<2	<2	0.008
500496	Drill Core	0.066	5	41	2.43	18	0.14	<20	2.96	0.04	0.35	<2	132	0.001
500497	Drill Core	0.074	5	16	1.67	37	0.03	<20	2.67	0.04	0.60	<2	94	0.009
500498	Drill Core	0.068	5	22	1.46	133	0.05	<20	2.58	0.04	0.99	<2	289	0.014
500499	Drill Core	0.069	5	14	1.12	19	0.03	<20	2.09	0.03	0.83	<2	95	0.011
500500	Drill Core	0.080	5	7	1.89	144	0.06	<20	2.82	0.05	0.82	<2	271	0.011
500501	Drill Core	0.081	4	10	2.18	59	0.19	<20	3.02	0.06	0.66	<2	256	0.004
500502	Drill Core	0.081	5	9	2.19	19	0.14	<20	3.05	0.05	0.32	<2	103	0.004
RRE 500502	Drill Core	0.081	4	9	2.12	19	0.16	<20	2.97	0.06	0.35	<2	47	0.003
500503	Drill Core	0.079	3	10	2.71	19	0.27	<20	2.87	0.06	0.17	<2	4	0.009
500504	Rock Pulp	0.041	5	25	0.42	27	0.03	<20	0.80	0.04	0.14	<2	733	0.006
500505	Drill Core	0.077	3	13	3.01	4	0.39	<20	2.82	0.06	0.09	<2	3	0.005
500506	Drill Core	0.079	3	10	2.54	8	0.35	<20	2.59	0.06	0.31	<2	51	0.019
500507	Drill Core	0.079	3	11	2.51	85	0.37	<20	2.69	0.06	0.45	<2	10	0.007
500508	Drill Core	0.081	3	14	2.27	23	0.31	<20	2.35	0.06	0.22	<2	44	0.017
500509	Drill Core	0.082	5	40	1.77	104	0.25	<20	3.15	0.35	0.06	<2	<2	0.008
500510	Drill Core	0.104	4	6	1.45	11	0.13	<20	1.77	0.05	0.30	<2	22	0.014
500511	Drill Core	0.107	5	7	1.34	16	0.16	<20	1.71	0.06	0.32	<2	36	0.028
500512	Drill Core	0.093	3	12	2.29	22	0.27	<20	2.48	0.06	0.23	<2	15	0.012
500513	Drill Core	0.090	3	12	2.27	22	0.28	<20	2.42	0.06	0.22	<2	4	0.005
500514	Drill Core	0.080	3	14	2.17	19	0.22	<20	2.35	0.04	0.10	<2	7	0.006
500515	Drill Core	0.077	3	12	2.09	20	0.14	<20	2.28	0.04	0.11	<2	6	0.016
500516	Drill Core	0.082	3	14	2.62	11	0.14	<20	2.77	0.05	0.13	<2	4	0.005

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000093.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

SMI07000093 1

Project: Report Date:

Page:

Date:

Falls Creek October 17, 2007

4 of 9

852 E. Hastings St. Vancouver BC V6A 1R6 Canad Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

and the second	and the second se	and the second second	and the second		Company of the local division of the local d	- 103 P	100	111		and the second			FRI GALLER		and south	PERSONAL PROPERTY.	0.00	and the state			100.7111
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500517	Drill Core	5.1	<1	46	15	53	< 0.3	12	26	933	4.97	6	<8	<2	<2	49	1.1	<3	5	114	3.46
500518	Drill Core	8.9	<1	16	9	66	<0.3	9	25	1119	5.62	5	<8	<2	<2	40	0.9	<3	3	141	2.42
500519	Drill Core	6.9	<1	129	15	67	< 0.3	12	33	1503	6.72	15	10	<2	<2	47	1.7	<3	5	170	3.37
500520	Drill Core	7	<1	83	15	62	< 0.3	12	21	1390	5.71	12	<8	<2	<2	54	1.5	<3	4	143	3.38
500521	Drill Core	7	<1	52	10	64	<0.3	8	20	1347	5.63	9	<8	<2	<2	37	1.6	3	<3	114	4.22
500522	Drill Core	7.3	<1	80	7	67	< 0.3	8	27	1273	5.31	29	<8	<2	<2	39	1.2	<3	7	134	2.70
500523	Drill Core	6.6	<1	39	9	59	<0.3	6	20	1096	4.61	17	<8	<2	<2	47	1.2	<3	4	109	3.17
500524	Drill Core	2.5	<1	30	3	58	<0.3	5	20	1283	5.18	13	<8	<2	<2	37	0.9	<3	<3	110	3.37
500525	Drill Core	7.2	<1	76	6	136	<0.3	21	22	1113	5.24	13	<8	<2	<2	47	3.4	<3	5	202	1.85
500526	Drill Core	7.3	<1	30	9	62	<0.3	5	20	1326	5.19	19	<8	<2	<2	34	1.2	<3	<3	123	3.62
500527	Drill Core	6.8	<1	82	4	64	<0.3	4	19	1135	4.75	23	<8	<2	<2	30	1.3	<3	<3	104	2.02
500528	Drill Core	7.1	<1	14	<3	68	< 0.3	7	19	1236	5.17	17	<8	<2	<2	36	1.1	<3	5	127	2.46
500529	Rock Pulp		<1	35	<3	77	< 0.3	6	22	1142	4.67	25	8	<2	<2	55	1.2	<3	4	111	2.22
500530	Drill Core	1.5	95	1228	24	54	0.9	55	12	335	3.39	29	9	3	7	51	0.7	4	<3	51	0.96
500531	Drill Core	1.5	<1	43	12	72	<0.3	4	20	1190	4.66	25	<8	<2	<2	47	1.2	<3	6	103	2.14
500532	Drill Core	1.8	<1	46	5	83	<0.3	17	20	861	4.42	4	<8	<2	<2	60	1.0	<3	5	129	1.67
500533	Drill Core	1.4	<1	13	11	42	< 0.3	5	11	2599	3.43	5	<8	<2	<2	52	0.7	<3	<3	42	3.05
500534	Drill Core	2	<1	4	22	40	0.4	2	11	4070	3.68	3	9	<2	<2	68	0.8	<3	<3	27	5.52
500535	Drill Core	2.3	<1	9	19	43	<0.3	5	12	3102	3.57	3	<8	<2	2	61	0.8	<3	<3	42	3.77
500536	Drill Core	2.5	<1	3	27	35	< 0.3	1	9	2577	3.19	4	10	<2	3	62	0.7	<3	<3	26	3.39
500537	Drill Core	1.3	<1	<2	13	49	<0.3	<1	4	1926	1.93	<2	8	<2	3	66	<0.5	<3	<3	13	2.64
500538	Drill Core	5.5	<1	<2	20	33	< 0.3	<1	2	1336	2.06	<2	<8	<2	4	65	<0.5	<3	<3	19	1.89
500539	Drill Core	7.8	<1	<2	12	22	< 0.3	<1	2	1394	1.73	<2	<8	<2	3	50	<0.5	<3	<3	13	2.08
500540	Drill Core	5.6	<1	<2	16	23	<0.3	<1	2	1204	1.91	2	<8	<2	4	48	<0.5	<3	<3	18	1.82
RRE 500540	Drill Core		<1	<2	6	22	< 0.3	<1	2	1176	1.76	<2	<8	<2	5	47	<0.5	<3	<3	17	1.78
500541	Drill Core	3.4	<1	<2	14	19	< 0.3	<1	2	1238	1.97	<2	<8	<2	5	57	<0.5	<3	<3	25	1.77
500542	Drill Core	9.1	<1	<2	8	26	<0.3	1	3	2317	2.19	<2	<8	<2	4	69	0.5	<3	<3	13	3.34
500543	Drill Core	2.4	<1	75	3	151	<0.3	21	20	1177	5.19	5	<8	<2	<2	50	5.0	<3	4	185	1.79
500544	Drill Core	5.8	<1	<2	13	17	<0.3	<1	2	1307	2.19	<2	<8	<2	4	59	<0.5	<3	<3	17	1.85
500545	Drill Core	6.4	<1	2	14	24	<0.3	1	3	1475	2.03	<2	<8	<2	3	70	<0.5	<3	<3	20	2.14

www.acmelab.com

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Page:

Falls Creek October 17, 2007

4 of 9

Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

and the second second second	All and the set of the set of the		and set the	D-BELAST	- Andrews	Contraction of the second	1.0 Table	THE PARTY OF	-12-11	ALC: NOT THE OWNER	- Internation	and the second	01/34	No. of Lot
	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500517	Drill Core	0.059	2	15	3.00	27	0.26	<20	3.29	0.05	0.15	<2	5	0.002
500518	Drill Core	0.053	3	9	2.77	62	0.11	<20	3.38	0.07	0.19	<2	18	0.013
500519	Drill Core	0.077	4	21	2.61	95	0.23	<20	3.27	0.06	0.10	<2	5	0.008
500520	Drill Core	0.071	3	24	2.31	134	0.28	137	3.11	0.10	0.10	<2	2	0.005
500521	Drill Core	0.077	4	12	2.10	14	0.14	<20	2.95	0.06	0.12	<2	5	0.008
500522	Drill Core	0.068	2	7	2.13	17	0.26	<20	3.16	0.13	0.07	<2	3	0.004
500523	Drill Core	0.071	2	8	1.90	14	0.24	<20	3.11	0.24	0.07	<2	7	0.003
500524	Drill Core	0.100	3	8	1.86	17	0.23	<20	2.93	0.09	0.08	<2	4	0.007
500525	Drill Core	0.084	5	43	1.87	95	0.28	<20	3.40	0.40	0.07	<2	8	0.003
500526	Drill Core	0.090	3	9	1.94	10	0.24	<20	3.40	0.06	0.05	<2	7	0.008
500527	Drill Core	0.108	5	10	1.65	68	0.26	<20	2.65	0.09	0.06	<2	<2	0.001
500528	Drill Core	0.074	3	9	2.01	16	0.27	<20	3.09	0.11	0.08	<2	5	0.004
500529	Rock Pulp	0.082	3	5	1.88	18	0.25	<20	3.25	0.20	0.06	<2	3450	0,127
500530	Drill Core	0.059	13	45	0.71	166	0.07	<20	1.24	0.06	0.31	2	9	0.005
500531	Drill Core	0.090	4	5	1.64	21	0.26	<20	2.96	0.18	0.06	<2	<2	0.007
500532	Drill Core	0.091	9	22	1.64	191	0.23	<20	2.54	0.06	0.13	<2	8	0.004
500533	Drill Core	0.127	7	5	0.93	2008	0.08	<20	0.69	0.02	0.20	<2	<2	0.001
500534	Drill Core	0.132	8	<1	0.82	2857	0.03	<20	0.40	< 0.01	0.28	<2	<2	< 0.001
500535	Drill Core	0.135	9	4	0.56	2728	0.07	<20	0.69	0.02	0.26	<2	<2	< 0.001
500536	Drill Core	0.111	7	1	0.44	1931	0.03	<20	0.39	< 0.01	0.29	<2	2	< 0.001
500537	Drill Core	0.091	8	2	0.74	1280	< 0.01	<20	0.32	< 0.01	0.24	<2	<2	< 0.001
500538	Drill Core	0.070	9	2	0.53	929	0.01	<20	0.39	<0.01	0.31	<2	<2	< 0.001
500539	Drill Core	0.061	10	2	0.74	562	0.02	<20	0.26	< 0.01	0.24	<2	<2	< 0.001
500540	Drill Core	0.064	12	3	0.56	429	0.01	<20	0.35	< 0.01	0.31	<2	<2	< 0.001
RRE 500540	Drill Core	0.068	11	3	0.55	384	0.01	<20	0.30	< 0.01	0.27	<2	<2	< 0.001
500541	Drill Core	0.061	10	3	0.56	677	0.01	<20	0.37	< 0.01	0.31	<2	<2	<0.001
500542	Drill Core	0.056	12	4	1.20	969	0.02	<20	0.29	0.01	0.27	<2	<2	<0.001
500543	Drill Core	0.084	5	39	1.90	97	0.23	<20	3.36	0.37	0.06	<2	5	0.007
500544	Drill Core	0.061	13	4	0.58	586	0.02	<20	0.28	0.02	0.26	<2	<2	<0.001
500545	Drill Core	0.059	10	5	0.73	731	0.02	<20	0.34	0.02	0.20	<2	3	<0.001
56,92351AU297.					0110	101	0.04	12.0	0.04	0.00	0.20	-1	5	

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000093.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Date:

Falls Creek October 17, 2007

852 E. Hastings St. Vancouver BC V6A 1R6 Canac Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS SMI07000093.1 Method WGHT 1D Ag Analyte Wgt Mo Cu Pb Zn Ni Co Mn Sr Fe U Au Th Sb Bi ν Ca As Cd Unit kg % % ppm MDL 0.01 2 1 3 1 0.3 1 1 2 0.01 2 8 2 2 1 0.5 3 3 1 0.01 500546 Drill Core 1.2 <1 <2 15 22 < 0.3 <1 3 807 1.71 2 <8 <2 3 131 <0.5 <3 <3 22 2.19 500547 Drill Core 5.2 <1 <2 12 18 < 0.3 <1 1020 2.96 13 <2 <2 <8 127 <0.5 <3 <3 38 8 3.36 500548 Drill Core 4 <1 <2 10 18 < 0.3 <1 1250 3.23 8 <8 <2 <2 193 0.6 <3 <3 35 5.87 7 500549 Drill Core 3.1 <1 <2 5 19 < 0.3 1 10 1365 2.88 2 <8 <2 <2 137 0.6 <3 <3 57 4.97 500550 Drill Core 4.2 <2 6 2 <1 21 < 0.3 10 1555 2.63 <2 <8 <2 <2 130 0.5 <3 <3 72 5.18 500551 Drill Core 1.3 48 <3 21 <1 0.5 <1 3 511 0.73 12 <8 <2 <2 85 <0.5 <3 <3 9 1.83 500552 Rock Pulp 104 1244 20 55 1.1 56 12 330 3.44 27 <8 2 7 53 <3 51 0.97 0.9 4 500553 Drill Core 7.8 16 <1 16 12 < 0.3 <1 <1 3 798 0.66 4 <8 <2 58 <0.5 <3 <3 2 1.49 500554 Drill Core 6.5 <2 <1 <3 11 < 0.3 <1 <1 970 0.61 <2 <8 <2 2 55 <0.5 <3 <3 1 1.87 500555 Drill Core 3.1 <1 <2 <3 8 < 0.3 <1 <1 776 0.50 <2 <8 <2 3 38 <0.5 <3 <3 1.34 <1 500556 Drill Core 3.4 <1 <2 <3 0.55 10 < 0.3 <1 <' 858 <2 <8 <2 3 40 <0.5 <3 <3 1.56 1 500557 Drill Core <2 7.1 <1 <3 14 < 0.3 <1 <1 750 0.48 <2 <8 <2 4 41 <0.5 <3 <3 <1 1.41 500558 Drill Core 6.8 <1 70 <3 33 0.7 1 1062 0.65 15 <8 <2 4 67 <0.5 <3 <3 2 2.00 1 500559 Drill Core 2 11 9 <1 80 < 0.3 10 7 821 1.29 6 <8 <2 2 67 <0.5 <3 <3 25 2.27 500560 Drill Core 2 4 <1 9 38 < 0.3 3 13 1374 3.16 <2 <8 <2 <2 136 0.7 <3 <3 60 5.66 500561 Drill Core 6.3 <1 <2 12 56 < 0.3 11 2.63 <2 <2 1 1358 <2 <8 113 0.5 <3 <3 47 5.14 500562 Drill Core 7.1 <1 5 <3 55 < 0.3 1 12 2.75 <2 <2 <2 87 149 <8 < 0.5 <3 <3 58 5.04 500563 Drill Core 6.4 <1 <2 <3 40 < 0.3 <1 9 1327 2.64 2 <8 <2 <2 90 <3 <3 37 <0.5 5.01 500564 Rock Pulp 5 54 225 225 1.8 18 9 281 3.19 215 <8 <2 <2 13 21 <3 26 0.46 1.2 500565 Drill Core 6.9 <1 <2 79 42 < 0.3 <1 8 1273 2.63 3 9 <2 <2 96 <0.5 <3 <3 31 4.88 500566 Drill Core 7.3 6 <1 <3 36 < 0.3 <1 1496 2.61 3 <8 <2 <2 92 <3 <3 35 7 0.5 5.59 500567 Drill Core 6.9 <1 <2 <3 40 < 0.3 1 8 1288 2.80 3 <8 <2 <2 102 <3 <0.5 <3 40 4.81 500568 Drill Core 3.5 <1 5 <3 34 < 0.3 1 6 2.73 4 <2 <2 83 <3 1167 <8 <0.5 <3 33 4.46 500569 Drill Core 3.8 <1 3 <3 35 < 0.3 <1 7 1176 2.62 3 <8 <2 <2 70 <0.5 <3 <3 30 4.41 500570 Drill Core 7.2 13 <1 <3 46 < 0.3 1 8 1462 2.91 <2 <8 <2 <2 93 0.6 <3 <3 53 5.85 500571 7 Drill Core <1 14 <3 64 < 0.3 <1 8 1548 3.34 5 <8 <2 <2 93 0.5 <3 <3 44 4.33 500572 Drill Core 7.1 <1 <2 <3 29 < 0.3 <1 2.39 2 <2 <2 5 1238 <8 66 <0.5 <3 <3 28 4.10 500573 Drill Core 6.6 <1 2 <3 35 < 0.3 <1 7 1508 2.78 4 8 <2 <2 62 <0.5 <3 <3 41 5.50 500574 Drill Core 7.2 <1 3 <3 1 32 < 0.3 6 3 <2 71 1263 2.45 <8 <2 <0.5 <3 <3 31 4.86 500575 Drill Core 5.5 <1 4 <3 40 < 0.3 1 1242 2.72 5 <8 <2 <2 89 <0.5 <3 <3 7 44 4.37

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

CME ANALYTICAL LABORATORIES LTD.

www.acmelab.com

Page:

5 of 9 Part 1

www.acmelab.com

1.	1200		
~	1 -	-	£
	10	n	
· · ·	10		••

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

October 17, 2007

Falls Creek

5 of 9

Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500546	Drill Core	0.056	7	2	0.45	984	0.01	<20	0.31	0.04	0.26	<2	<2	< 0.001
500547	Drill Core	0.072	4	1	0.50	453	0.01	<20	0.47	0.11	0.29	<2	<2	<0.001
500548	Drill Core	0.063	4	1	0.58	679	0.02	<20	0.42	0.10	0.25	<2	<2	<0.001
500549	Drill Core	0.058	4	2	0.82	403	0.02	<20	0.45	0.10	0.27	<2	<2	< 0.001
500550	Drill Core	0.064	4	2	1.06	256	0.01	<20	0.39	0.10	0.24	<2	<2	<0.001
500551	Drill Core	0.006	2	2	0.44	349	<0.01	<20	0.37	0.09	0.25	<2	<2	0.005
500552	Rock Pulp	0.061	13	47	0.73	182	0.07	<20	1.28	0.06	0.31	3	3238	0.122
500553	Drill Core	0.006	4	2	0.40	315	< 0.01	<20	0.28	0.06	0.25	<2	3	0.002
500554	Drill Core	0.006	5	2	0.57	282	<0.01	<20	0.28	0.07	0.24	<2	<2	< 0.001
500555	Drill Core	0.007	5	1	0.42	231	<0.01	<20	0.26	0.06	0.25	<2	<2	<0.001
500556	Drill Core	0.007	5	2	0.51	215	<0.01	<20	0.26	0.06	0.26	<2	<2	<0.001
500557	Drill Core	0.008	6	2	0.51	290	<0.01	<20	0.34	0.07	0.30	<2	<2	< 0.001
500558	Drill Core	0.007	7	2	0.78	524	<0.01	<20	0.36	0.09	0.29	<2	<2	0.006
500559	Drill Core	0.186	6	59	0.74	145	< 0.01	<20	0.57	0.14	0.41	<2	<2	0.001
500560	Drill Core	0.040	4	2	1.17	190	0.02	<20	0.39	0.13	0.23	<2	<2	< 0.001
500561	Drill Core	0.066	5	1	1.44	386	0.01	<20	0.39	0.12	0.22	<2	<2	<0.001
500562	Drill Core	0.078	6	<1	0.94	174	0.02	<20	0.38	0.11	0.24	<2	<2	<0.001
500563	Drill Core	0.073	8	4	0.78	242	0.02	<20	0.38	0.13	0.22	<2	<2	<0.001
500564	Rock Pulp	0.043	5	26	0.43	27	0.04	<20	0.82	0.04	0.15	<2	705	0.005
500565	Drill Core	0.074	9	2	0.79	297	0.02	<20	0.37	0.13	0.23	<2	<2	<0.001
500566	Drill Core	0.077	9	4	0.68	511	0.02	<20	0.36	0.12	0.23	<2	<2	<0.001
500567	Drill Core	0.073	8	2	0.74	263	0.02	<20	0.46	0.13	0.27	<2	<2	<0.001
500568	Drill Core	0.083	9	5	0.59	178	0.02	<20	0.48	0.13	0.29	<2	<2	<0.001
500569	Drill Core	0.080	9	1	0.61	147	0.02	<20	0.46	0.13	0.28	<2	<2	<0.001
500570	Drill Core	0.079	9	4	0.67	156	0.03	<20	0.40	0.11	0.25	<2	<2	0.001
500571	Drill Core	0.068	9	1	0.84	156	0.04	<20	0.42	0.11	0.28	<2	<2	0.002
500572	Drill Core	0.067	7	3	0.53	153	0.02	<20	0.38	0.13	0.24	<2	<2	<0.001
500573	Drill Core	0.068	8	2	0.51	78	0.02	<20	0.40	0.13	0.26	<2	<2	<0.001
500574	Drill Core	0.071	8	3	0.53	142	0.02	<20	0.35	0.13	0.22	<2	<2	<0.001
500575	Drill Core	0.076	9	1	0.58	164	0.02	<20	0.39	0.13	0.25	<2	<2	<0.001

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000093.1

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: Report Date:

October 17, 2007

852 E. Hastings St. Vancouver BC V6A 1R6 Canad Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

 POI	٠	Date.

6 of 9

Falls Creek

CERTIFICA	ATE OF AN	IAL Y	′SIS						S. D. C.	IV/		in sta				25.12	SMI	070	000	93.1	
	Method Analyte	WGHT Wgt	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D U	1D Au	1D Th	1D Sr	1D Cd	1D Sb	1D Bi	1D V	1D Ca
	MDL	0.01	ppm 1	ppm 2	ppm 3	ppm 1	ppm 0.3	ppm 1	ppm 1	ppm 2	0.01	ppm 2	ppm 8	ppm 2	ppm 2	ppm 1	ppm 0.5	ppm 3	ppm 3	ppm 1	% 0.01
500576	Drill Core	5.4	<1	4	13	49	<0.3	<1	7	1470	2.53	<2	<8	<2	<2	79	<0.5	<3	<3	42	4.66
500577	Drill Core	6.6	<1	3	7	63	<0.3	2	15	1445	3.34	6	<8	<2	<2	124	<0.5	4	<3	81	1.82
500578	Drill Core	6.8	<1	5	6	49	< 0.3	1	9	1338	3.02	5	<8	<2	<2	200	0.6	<3	<3	69	3.21
500579	Drill Core	2	<1	9	<3	70	<0.3	1	9	1608	3.10	6	<8	<2	<2	125	<0.5	<3	<3	56	3.36
500580	Drill Core	6.7	<1	66	7	106	<0.3	18	19	917	4.61	<2	<8	<2	<2	50	2.4	5	4	169	1.72
500581	Drill Core	7	<1	2	10	60	<0.3	2	15	1311	3.70	<2	<8	<2	<2	137	0.6	4	<3	87	2.63
500582	Drill Core	7.3	<1	6	15	82	<0.3	2	14	1554	3.57	<2	<8	<2	<2	152	0.6	5	<3	74	3.23
500583	Drill Core	6.4	<1	22	7	92	<0.3	2	15	1414	3.71	<2	<8	<2	<2	117	0.6	3	<3	91	2.84
500584	Drill Core	3	<1	20	6	68	<0.3	3	16	1661	3.71	<2	<8	<2	<2	133	0.7	<3	<3	70	3.09
500585	Drill Core	3.5	<1	18	8	55	<0.3	3	12	1431	3.35	<2	<8	<2	<2	124	<0.5	<3	<3	61	2.90
500586	Drill Core	7	<1	22	14	78	<0.3	3	17	2028	4.33	4	<8	<2	<2	152	0.8	3	<3	88	3.28
500587	Drill Core	6.7	<1	33	3	105	<0.3	4	19	1807	4.50	2	<8	<2	<2	126	0.8	<3	<3	102	3.71
RRE 500587	Drill Core		<1	34	6	99	<0.3	3	18	1745	4.26	<2	<8	<2	<2	127	0.9	5	<3	96	3.93
500588	Drill Core	6.8	<1	26	5	77	< 0.3	4	15	1316	3.77	<2	<8	<2	<2	69	0.5	<3	<3	73	2.53
500589	Drill Core	2.4	<1	71	8	113	<0.3	19	20	926	4.82	4	<8	<2	<2	38	2.9	<3	<3	178	1.68
500590	Drill Core	6.4	<1	26	8	62	<0.3	6	16	1155	3.67	<2	<8	<2	<2	76	<0.5	<3	<3	78	2.45
500591	Drill Core	6.5	<1	21	11	64	< 0.3	7	18	1322	4.14	<2	<8	<2	<2	37	0.7	4	<3	102	2.01
500592	Drill Core	6.3	<1	15	8	58	< 0.3	5	15	1494	3.78	3	<8	<2	<2	52	0.8	<3	<3	76	2.83
500593	Drill Core	7.4	<1	25	7	73	< 0.3	2	13	1407	3.74	<2	<8	<2	<2	49	0.6	<3	<3	72	2.61
500594	Drill Core	6.8	<1	20	6	74	< 0.3	2	14	1794	4.00	<2	<8	<2	<2	75	0.7	3	<3	81	2.96
500595	Drill Core	6.4	<1	9	7	64	< 0.3	2	8	1190	2.40	<2	<8	<2	<2	106	0.6	<3	<3	33	2.81
500596	Rock Pulp		5	53	222	211	1.6	18	9	275	3.04	203	<8	<2	<2	13	1.2	19	<3	27	0.48
500597	Drill Core	6.6	<1	12	<3	40	<0.3	<1	6	871	1.96	<2	<8	<2	<2	80	<0.5	<3	<3	22	1.83
500598	Drill Core	7.3	<1	20	7	53	< 0.3	<1	9	1851	3.22	8	<8	<2	<2	100	<0.5	3	<3	42	4.50
500599	Drill Core	6.7	<1	22	5	63	< 0.3	3	12	1411	3.48	5	<8	<2	<2	71	0.6	3	<3	72	2.94
500600	Drill Core	7	<1	25	9	93	<0.3	4	16	1606	4.08	3	<8	<2	<2	42	0.7	4	<3	109	2.42
500601	Drill Core	7.2	<1	30	11	92	< 0.3	4	19	1771	4.30	4	<8	<2	<2	35	0.8	<3	4	126	2.26
500602	Drill Core	6.7	<1	28	11	69	< 0.3	4	19	1729	4.82	<2	<8	<2	<2	39	0.8	<3	5	144	2.96
500603	Drill Core	3	<1	78	4	99	< 0.3	20	20	978	5.18	3	<8	<2	<2	50	2.0	5	4	193	2.12
500604	Drill Core	7	<1	41	9	88	<0.3	5	23	1889	5.66	3	<8	<2	<2	35	1.0	<3	6	170	2.82

CERTIFICATE OF ANALYSIS

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Falls Creek October 17, 2007

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

6 of 9 Part 2

SMI07000093.1

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500576	Drill Core	0.073	9	3	0.81	129	0.02	<20	0.42	0.12	0.25	<2	<2	< 0.001
500577	Drill Core	0.063	5	1	2.07	180	0.04	<20	0.35	0.09	0.19	<2	<2	< 0.001
500578	Drill Core	0.068	5	5	1.65	497	0.03	<20	0.31	0.09	0.18	<2	<2	< 0.001
500579	Drill Core	0.069	8	1	1.42	758	0.02	<20	0.44	0.12	0.26	<2	<2	0.001
500580	Drill Core	0.074	4	34	1.51	95	0.25	<20	2.94	0.41	0.05	<2	<2	0.007
500581	Drill Core	0.058	3	2	1.55	786	0.03	<20	0.34	0.08	0.19	<2	<2	< 0.001
500582	Drill Core	0.050	4	5	1.74	574	0.03	<20	0.33	0.08	0.19	<2	<2	< 0.001
500583	Drill Core	0.051	5	2	1.72	313	0.03	<20	0.34	0.09	0.20	<2	<2	0.002
500584	Drill Core	0.045	6	5	1.90	262	0.04	<20	0.60	0.10	0.19	<2	<2	0.003
500585	Drill Core	0.045	6	3	1.69	234	0.03	<20	0.54	0.10	0.20	<2	<2	0.002
500586	Drill Core	0.054	6	4	1.91	538	0.05	<20	0.58	0.10	0.22	<2	<2	0.002
500587	Drill Core	0.059	6	2	1.93	728	0.04	<20	1.09	0.14	0.21	<2	<2	0.004
RRE 500587	Drill Core	0.057	6	4	1.81	1102	0.04	<20	0.99	0.13	0.20	<2	<2	0.004
500588	Drill Core	0.044	6	4	1.76	214	0.04	<20	1.34	0.14	0.27	<2	3	0.003
500589	Drill Core	0.076	4	37	1.67	74	0.25	<20	2.82	0.23	0.05	<2	<2	0.008
500590	Drill Core	0.036	5	6	1.83	106	0.05	<20	1.51	0.15	0.18	<2	<2	0.003
500591	Drill Core	0.039	5	8	1.94	86	0.07	<20	1.51	0.11	0.12	<2	<2	0.003
500592	Drill Core	0.053	6	6	1.65	116	0.06	<20	1.30	0.11	0.13	<2	<2	0.002
500593	Drill Core	0.058	6	7	1.57	519	0.05	<20	1.30	0.11	0.11	<2	<2	0.003
500594	Drill Core	0.070	7	1	1.57	347	0.06	<20	1.21	0.12	0.14	<2	<2	0.002
500595	Drill Core	0.034	5	7	1.43	692	0.02	<20	0.49	0.09	0.25	<2	10	0.001
500596	Rock Pulp	0.041	6	25	0.41	28	0.04	<20	0.83	0.04	0.15	<2	721	0.006
500597	Drill Core	0.047	10	<1	0.91	95	0.02	<20	0.56	0.09	0.34	<2	<2	0.002
500598	Drill Core	0.085	9	3	1.08	45	0.04	<20	0.56	0.08	0.34	<2	<2	0.003
500599	Drill Core	0.069	7	7	1.25	475	0.05	<20	1.02	0.09	0.25	<2	<2	0.002
500600	Drill Core	0.062	6	6	1.75	186	0.11	<20	1.46	0.09	0.17	<2	<2	0.003
500601	Drill Core	0.054	6	8	2.13	49	0.18	<20	1.69	0.09	0.17	<2	<2	0.004
500602	Drill Core	0.060	6	9	2.07	63	0.20	<20	1.71	0.10	0.15	<2	<2	0.003
500603	Drill Core	0.079	5	41	1.72	94	0.27	<20	3.12	0.32	0.07	<2	<2	0.008
500604	Drill Core	0.049	7	7	2.73	38	0.22	<20	2.17	0.10	0.15	<2	<2	0.004

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project:

Falls Creek October 17, 2007

7 of 9

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Repor	t Date:
Repo	t Date.

Page:

CERTIFIC	ATE OF AN	IAL Y	′SIS														SMI	070	000	93.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500605	Drill Core	7.5	<1	28	8	82	<0.3	4	20	1679	4.91	4	<8	<2	<2	36	1.1	3	<3	145	3.19
500606	Drill Core	6.4	<1	21	13	71	<0.3	3	17	1246	4.75	<2	<8	<2	<2	56	0.7	<3	<3	120	2.10
500607	Drill Core	6.5	<1	19	7	74	<0.3	4	13	1459	3.95	2	<8	<2	<2	92	0.6	4	<3	75	3.32
500608	Drill Core	3.9	<1	20	<3	90	<0.3	2	10	1301	2.99	<2	<8	<2	<2	76	0.5	3	3	52	3.21
500609	Drill Core	3.6	<1	13	<3	84	<0.3	2	9	1123	3.05	<2	<8	<2	<2	61	<0.5	3	<3	52	2.63
500610	Drill Core	5.5	<1	18	6	34	<0.3	4	8	1495	2.62	<2	<8	<2	<2	78	<0.5	4	<3	36	4.51
500611	Drill Core	1.2	3	187	18	61	1.8	11	16	2113	3.33	36	<8	<2	<2	203	2.0	<3	5	28	10.61
RRE 500611	Drill Core		3	269	17	56	1.7	11	15	1988	3.23	40	<8	<2	<2	197	1.6	<3	10	27	10.32
500612	Drill Core	7	3	134	42	70	5.2	11	16	2058	3.29	24	<8	<2	<2	188	1.6	3	7	23	11.63
500613	Drill Core	5.9	3	148	21	85	2.1	14	18	1778	3.55	28	<8	<2	<2	174	1.9	4	8	32	8.99
500614	Drill Core	7	<1	95	6	52	1.2	13	11	1360	3.62	11	<8	<2	<2	170	0.9	<3	6	67	7.90
500615	Rock Pulp		4	53	223	211	1.5	16	8	266	3.12	206	<8	<2	<2	12	1.3	18	<3	24	0.45
500616	Drill Core	3.4	<1	149	4	43	3.0	12	10	1330	4.04	5	<8	<2	<2	116	1.0	<3	6	87	9.46
500617	Drill Core	2.9	<1	95	<3	79	1.0	23	17	1856	4.04	6	<8	2	<2	122	1.1	<3	7	95	10.79
500618	Drill Core	6.7	<1	79	4	64	1.1	15	14	2077	3.54	6	9	2	<2	150	1.4	<3	5	94	13.66
500619	Drill Core	6.6	<1	112	5	58	0.5	18	18	1376	4.79	5	<8	<2	<2	122	1.3	<3	5	107	6.43
500620	Drill Core	6.2	<1	76	8	55	0.4	16	15	1155	4.96	5	<8	<2	<2	51	1.0	3	7	82	4.20
500621	Drill Core	7.3	<1	88	9	53	0.6	18	16	1399	4.40	<2	<8	<2	<2	146	1.1	<3	8	89	6.89
500622	Drill Core	7.1	<1	156	8	69	1.1	18	19	1972	3.66	5	<8	<2	<2	155	1.3	<3	4	79	12.39
500623	Drill Core	3.1	<1	4898	7	123	1.0	23	32	1642	5.08	8	<8	<2	<2	84	1.5	<3	6	208	8.09
500624	Drill Core	3.7	<1	160	10	19	1.6	19	17	197	2.84	18	<8	<2	<2	38	<0.5	4	<3	29	1.02
500625	Drill Core	3.4	<1	99	<3	121	< 0.3	18	19	1073	5.06	3	<8	<2	<2	55	2.8	<3	4	175	2.10
500626	Drill Core	6.5	<1	74	10	29	1.5	24	18	425	2.86	18	<8	<2	<2	82	<0.5	4	3	38	2.00
500627	Drill Core	7.3	<1	76	7	76	1.4	32	24	1189	4.71	17	<8	<2	<2	109	1.1	<3	<3	76	5.48
500628	Drill Core	6.8	<1	39	8	33	1.1	14	12	1107	4.19	11	<8	<2	<2	57	0.8	<3	4	36	6.63
500629	Rock Pulp		95	1197	18	52	1.1	49	11	309	3.29	26	<8	3	7	47	0.8	5	4	46	0.90
500630	Drill Core	6.7	2	46	10	67	1.0	28	19	1022	6.60	35	9	<2	<2	44	1.5	6	4	51	5.59
500631	Drill Core	3.4	<1	29	<3	81	0.9	25	18	1719	4.67	8	9	<2	<2	66	1.4	4	9	83	10.66
500632	Drill Core	3.4	<1	26	<3	84	0.8	26	18	1478	4.97	11	<8	<2	<2	62	1.1	<3	3	76	8.62
500633	Drill Core	2	1	133	10	49	1.2	19	18	1203	6.56	108	9	<2	<2	45	1.4	4	6	55	6.88

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project:

Report Date:

Page:

October 17, 2007

Falls Creek

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

7 of 9

Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500605	Drill Core	0.051	7	8	2.57	92	0.15	<20	1.96	0.11	0.11	<2	<2	0.003
500606	Drill Core	0.045	6	6	2.15	364	0.09	<20	1.80	0.14	0.17	<2	<2	0.003
500607	Drill Core	0.057	8	7	2.10	176	0.05	<20	1.43	0.13	0.26	<2	<2	0.002
500608	Drill Core	0.076	8	6	1.17	408	0.04	<20	0.99	0.11	0.26	<2	3	0.002
500609	Drill Core	0.069	9	7	1.03	228	0.04	<20	0.96	0.11	0.28	<2	<2	0.002
500610	Drill Core	0.077	7	16	0.92	421	0.01	<20	0.49	0.08	0.28	<2	<2	0.002
500611	Drill Core	0.068	4	9	1.27	333	<0.01	<20	0.40	0.06	0.28	<2	4	0.020
RRE 500611	Drill Core	0.067	3	9	1.19	245	<0.01	<20	0.40	0.06	0.28	<2	4	0.028
500612	Drill Core	0.071	5	10	0.81	512	<0.01	<20	0.36	0.06	0.26	<2	3	0.013
500613	Drill Core	0.090	5	12	0.97	409	< 0.01	<20	0.54	0.08	0.30	<2	5	0.015
500614	Drill Core	0.090	5	20	0.54	477	0.01	<20	1.16	0.06	0.34	<2	27	0.011
500615	Rock Pulp	0.041	5	25	0.41	29	0.04	<20	0.79	0.04	0.13	<2	819	0.006
500616	Drill Core	0.082	5	25	0.46	285	< 0.01	<20	1.35	0.06	0.41	<2	25	0.015
500617	Drill Core	0.067	5	57	1.38	2211	<0.01	<20	2.17	0.06	0.16	<2	3	0.011
500618	Drill Core	0.058	4	34	1.09	1078	< 0.01	<20	1.66	0.06	0.20	<2	4	0.009
500619	Drill Core	0.065	5	31	1.44	3176	0.02	<20	1.85	0.09	0.29	<2	<2	0.012
500620	Drill Core	0.062	5	32	1.05	1266	0.02	<20	1.55	0.09	0.34	<2	<2	0.009
500621	Drill Core	0.071	5	32	1.17	3476	0.01	<20	1.37	0.08	0.33	<2	4	0.010
500622	Drill Core	0.067	5	35	1.06	1381	< 0.01	<20	1.36	0.07	0.32	<2	3	0.016
500623	Drill Core	0.077	5	51	1.58	105	< 0.01	<20	2.12	0.08	0.26	<2	21	0.508
500624	Drill Core	0.075	<1	23	0.18	22	< 0.01	<20	0.63	0.08	0.45	<2	5	0.015
500625	Drill Core	0.073	4	41	1.81	199	0.25	<20	3.24	0.35	0.06	<2	<2	0.010
500626	Drill Core	0.074	1	27	0.28	26	< 0.01	<20	0.78	0.08	0.42	<2	3	0.007
500627	Drill Core	0.067	3	36	0.89	31	< 0.01	<20	1.71	0.07	0.33	2	2	0.008
500628	Drill Core	0.085	3	23	0.27	22	< 0.01	<20	0.92	0.07	0.42	<2	6	0.004
500629	Rock Pulp	0.055	11	43	0.67	178	0.06	<20	1.17	0.05	0.29	2	3609	0.126
500630	Drill Core	0.067	3	31	0.61	15	< 0.01	<20	1.41	0.07	0.33	<2	10	0.005
500631	Drill Core	0.074	5	42	0.95	160	0.01	<20	1.74	0.06	0.27	<2	6	0.003
500632	Drill Core	0.072	4	39	0.98	92	< 0.01	<20	1.82	0.06	0.29	<2	6	0.003
500633	Drill Core	0.077	3	34	0.52	28	< 0.01	<20	1.21	0.06	0.39	<2	5	0.013

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

SMI07000093.1

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: Report Date:

Page:

October 17, 2007

Falls Creek

8 of 9

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICA	TE OF AN	JALY	'SIS		Heating			N. CON				See al				The second	SMI	070	000	93.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500634	Drill Core	4.6	<1	191	4	70	0.6	25	20	1586	4.60	<2	<8	<2	<2	87	1.4	<3	5	104	7.92
500635	Drill Core	1.9	1	155	8	51	1.3	29	26	1420	4.34	25	<8	<2	2	61	1.0	4	4	75	8.80
500636	Drill Core	4.5	2	134	18	59	3.1	74	58	461	4.59	66	<8	<2	<2	51	0.6	<3	<3	40	1.78
500637	Drill Core	2.6	1	176	21	73	3.0	65	43	619	4.94	28	<8	<2	<2	42	0.9	6	4	63	2.60
500638	Drill Core	4	<1	125	10	58	0.7	29	23	1196	5.30	26	<8	<2	<2	71	1.3	4	5	88	5.77
500639	Drill Core	7.1	<1	44	11	48	1.0	18	16	1448	4.40	<2	<8	<2	<2	136	1.3	<3	5	94	7.70
500640	Drill Core	6.7	2	12	9	61	0.5	16	8	912	2.60	<2	<8	<2	<2	108	0.8	<3	4	38	7.59
500641	Drill Core	2.3	2	22	10	51	0.5	13	7	767	2.53	<2	<8	<2	3	76	0.8	<3	<3	44	5.49
500642	Drill Core	4.6	1	37	10	78	0.8	23	18	1597	3.86	<2	<8	<2	<2	81	1.3	<3	4	91	7.13
500643	Drill Core	6.4	1	28	6	57	1.0	19	17	1927	3.63	<2	10	<2	<2	82	1.2	<3	<3	72	7.99
500644	Drill Core	3.2	<1	16	7	63	1.0	19	20	1941	3.47	<2	<8	<2	<2	55	1.3	<3	4	76	7.31
500645	Drill Core	4.3	<1	17	6	62	1.0	21	19	1831	3.63	<2	<8	<2	2	53	1.2	<3	<3	80	6.50
500646	Drill Core	6.3	<1	32	6	66	<0.3	16	16	1753	3.12	3	<8	<2	<2	61	0.8	<3	<3	57	6.43
500647	Drill Core	4.4	<1	33	7	58	< 0.3	15	14	1722	3.07	<2	9	<2	<2	51	0.6	<3	4	49	5.97
500648	Drill Core	2	<1	29	5	44	<0.3	5	6	485	2.39	2	<8	<2	<2	25	<0.5	<3	<3	19	1.73
500649	Drill Core	3	<1	12	<3	43	< 0.3	3	7	692	2.08	<2	<8	<2	<2	42	<0.5	<3	<3	10	2.44
500650	Drill Core	2.8	<1	7	4	24	< 0.3	4	4	634	0.85	3	<8	<2	<2	32	<0.5	<3	<3	4	2.81
500651	Drill Core	6.4	<1	5	<3	23	< 0.3	2	4	618	0.81	2	<8	<2	<2	82	<0.5	<3	<3	4	2.94
500652	Drill Core	1.1	<1	3	<3	31	<0.3	2	4	496	0.98	4	<8	<2	2	54	<0.5	<3	<3	4	1.97
500653	Drill Core	2.7	<1	51	<3	74	< 0.3	19	21	1112	5.20	16	<8	<2	<2	54	0.5	<3	6	177	2.17
500654	Drill Core	5	<1	4	<3	29	<0.3	3	4	417	1.51	2	<8	<2	2	21	<0.5	<3	<3	10	1.39
500655	Drill Core	0.9	<1	8	3	42	< 0.3	12	6	434	2.31	7	<8	<2	<2	31	<0.5	3	<3	17	1.54
500656	Drill Core	5.3	<1	25	5	35	< 0.3	5	5	760	1.33	4	<8	<2	<2	44	<0.5	<3	<3	21	3.04
500657	Drill Core	1.1	<1	42	<3	41	< 0.3	7	7	684	1.24	2	<8	<2	<2	34	<0.5	<3	3	37	2.69
500658	Drill Core	5.5	<1	3	6	28	< 0.3	7	8	550	3.77	8	<8	<2	<2	50	<0.5	<3	<3	54	1.90
500659	Rock Pulp		4	52	218	220	1.3	17	9	276	3.11	205	<8	<2	<2	13	1.0	19	<3	26	0.48
500660	Drill Core	5.3	<1	2	9	15	< 0.3	11	6	1167	4.87	28	<8	<2	<2	52	0.7	<3	3	59	7.08
500661	Drill Core	3.9	<1	<2	7	14	< 0.3	14	7	1110	4.37	23	<8	<2	<2	43	0.6	<3	<3	32	6.44
RRE 500661	Drill Core		<1	2	7	17	< 0.3	15	7	1107	4.42	22	<8	<2	<2	43	<0.5	<3	4	32	6.38
500662	Drill Core	3.2	<1	<2	7	9	<0.3	8	5	1448	4.36	31	<8	<2	<2	64	0.6	<3	<3	33	8.76

CERTIFICATE OF ANALYSIS

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Page:

Client:

Falls Creek October 17, 2007

8 of 9

Phone (604) 253-3158 Fax (604) 253-1716

Part 2

1	SMI07000093.1
-SAVE	

www.acmelab.com

alle	2/11	100	1	No.

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500634	Drill Core	0.082	5	41	1.14	1335	0.01	<20	1.74	0.09	0.40	<2	2	0.019
500635	Drill Core	0.079	4	40	0.76	44	< 0.01	<20	1.40	0.08	0.33	<2	3	0.014
500636	Drill Core	0.073	2	32	0.48	15	< 0.01	<20	1.08	0.08	0.42	<2	4	0.013
500637	Drill Core	0.092	2	45	0.84	27	<0.01	<20	1.54	0.09	0.38	<2	4	0.016
500638	Drill Core	0.073	4	37	1.12	48	< 0.01	<20	1.64	0.09	0.30	<2	2	0.012
500639	Drill Core	0.082	5	25	0.60	3150	0.01	<20	1.35	0.08	0.31	<2	17	0.005
500640	Drill Core	0.055	9	15	0.36	653	<0.01	<20	1.02	0.13	0.24	<2	<2	0.001
500641	Drill Core	0.050	10	15	0.36	314	< 0.01	<20	0.98	0.17	0.25	<2	2	0.002
500642	Drill Core	0.130	11	27	0.75	677	< 0.01	<20	1.92	0.23	0.22	<2	<2	0.004
500643	Drill Core	0.123	12	23	0.64	313	< 0.01	<20	1.41	0.25	0.25	<2	<2	0.003
500644	Drill Core	0.128	12	33	1.12	149	< 0.01	<20	2.51	0.27	0.22	<2	<2	0.002
500645	Drill Core	0.132	12	32	1.15	140	<0.01	<20	2.36	0.30	0.23	<2	<2	0.001
500646	Drill Core	0.124	12	21	0.94	104	<0.01	<20	1.77	0.20	0.20	<2	<2	0.003
500647	Drill Core	0.129	11	21	0.84	22	< 0.01	<20	1.42	0.19	0.25	<2	<2	0.004
500648	Drill Core	0.016	13	7	0.57	109	<0.01	<20	1.14	0.21	0.21	<2	<2	0.003
500649	Drill Core	0.013	12	7	0.87	436	< 0.01	<20	1.20	0.20	0.21	<2	<2	0.001
500650	Drill Core	0.016	11	19	0.54	168	< 0.01	<20	1.09	0.18	0.18	<2	<2	< 0.001
500651	Drill Core	0.014	16	22	0.54	1457	<0.01	<20	1.14	0.20	0.21	<2	<2	< 0.001
500652	Drill Core	0.009	13	22	0.68	827	< 0.01	<20	1.08	0.17	0.16	<2	5	<0.001
500653	Drill Core	0.066	4	55	2.66	167	0.26	<20	3.60	0.16	0.06	<2	<2	0.005
500654	Drill Core	0.006	12	8	0.64	83	<0.01	<20	1.12	0.18	0.21	<2	<2	<0.001
500655	Drill Core	0.010	10	12	0.70	102	< 0.01	<20	1.30	0.23	0.25	<2	<2	< 0.001
500656	Drill Core	0.052	9	12	0.54	217	<0.01	<20	0.99	0.17	0.21	<2	<2	0.003
500657	Drill Core	0.128	11	16	0.70	12	< 0.01	<20	1.42	0.21	0.22	<2	4	0.004
500658	Drill Core	0.025	5	20	0.79	486	< 0.01	<20	1.09	0.19	0.22	<2	<2	< 0.001
500659	Rock Pulp	0.038	6	24	0.42	26	0.04	<20	0.81	0.04	0.15	<2	713	0.005
500660	Drill Core	0.085	11	39	0.53	218	<0.01	<20	0.96	0.20	0.27	<2	<2	<0.001
500661	Drill Core	0.082	7	37	0.54	94	<0.01	<20	0.99	0.19	0.29	<2	<2	< 0.001
RRE 500661	Drill Core	0.079	8	36	0.55	116	< 0.01	<20	1.01	0.19	0.29	<2	<2	<0.001
500662	Drill Core	0.113	9	39	0.51	237	< 0.01	<20	0.72	0.19	0.25	<2	<2	<0.001

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project: Report Date:

October 17, 2007

Falls Creek

9 of 9

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

	Method	WOUT	10	10	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	Analyte	Wat	Mo	10	1D Db	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	Init	wgt	MO	Cu	PD	Zn	Ag	NI	LO	MIN	re	AS	U	Au	In	sr	Ga	80	Ві	v	Ca
	MDI	0.01	ppm 4	ppm	ppm	ppm	ppm	ppm	ppm 4	ppm	70	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
500663	Drill Core	6.01	<1	2	5	10	<0.3	6	6	554	3.40	- 2		-2		21	0.5	-3		42	1.44
500664	Drill Core	6.2	<1	6	4	20	<0.3	2	4	481	2.51	4	<8	-2	-2	21	<0.5	-3	-3	42	1.60
500665	Drill Core	67	<1	2	7	23	<0.3	2	4	749	3.26	7	<0	-2	2	24	<0.5	~3	-3		2.24
500666	Drill Core	4.3	<1	<2	10	22	<0.3	1	4	686	2.50	6	<0	<2	-2	24	<0.5	-3	-3	20	1.40
500667	Drill Core	6	<1	41	<3	21	<0.3		2	570	1.17	5	<0		-2	27	<0.5	-0	-2	40	2.42
500668	Drill Core	62	<1	<2	-3	16	<0.3	1		340	1.17		<0	-2	-2	21	<0.5	-3		40	2.13
500669	Drill Core	2.8	<1	53	<3	69	<0.3	18	21	1084	5.38	15	<0	~2	-2	54	<0.5	-3	-3	101	1.70
500670	Drill Core	5.9	<1	<2	<3	22	<0.3	<1	21	495	1 25	10	<8		-2	30	<0.5	-0	-0	101	1.70
500671	Drill Core	5.8	<1	<2	<3	24	<0.3	<1	2	514	1.12	-6	<0	-2	<2	20	<0.5	-3	-3	22	1.40
500672	Drill Core	6.4	<1	9	<3	28	<0.3	<1	4	533	0.75	5	<8	-2	<2	30	<0.5	-3	-3	13	1.72
500673	Drill Core	57	<1	18	17	20	<0.3	2	5	535	1.95	5	~0	~~	-2	74	<0.5	-0	-0	10	1.02
500674	Drill Core	5.8	<1	<2	9	40	<0.3	4	8	300	2.00	8	-0		-2	105	<0.5	-0	-3	20	2.11
500675	Drill Core	61	<1	<2	12	38	<0.3	4	8	788	3.43	7	<0	<2	-2	76	<0.5	-3	-3	27	1.04
500676	Rock Pulp	0.1	4	54	223	227	1.4	18	Q	200	3.99	215	<8	<2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13	1.1	19	-3	20	0.40
500677	Drill Core	64	<1	<2	10	41	<0.3	5	8	834	3.64	210	11		2	26	<0.5	10	-0	20	1.05
500678	Drill Core	6.4	<1	<2	10	28	<0.3	2	5	780	3.04	6	- 8	-4	2	20	<0.5	-3	-3	22	1.95
500679	Drill Core	62	<1	<2	10	20	<0.3	1	4	683	1.57	6	-0	-2	-2	40	<0.5	-2	-3	20	2.20
500680	Drill Core	5.8	<1	30	<3	22	<0.3	<1	2	447	1.37	6	0	<2	-2	22	<0.5	-3	<3	24	1.40
RRE 500680	Drill Core	0.0	<1	24	4	21	<0.3	c1	2	447	1.3/	4	<0	-2	<2	22	<0.5	-3	-3	24	1.42
500681	Drill Core	5.8	<1	65	<3	27	0.5	<1	3	604	0.70	10	-0			57	<0.5	-3	-3	16	2.29
500682	Drill Core	6	<1	<2	5	18	<0.3	<1	2	614	1.53	5	<0	-2	-2	23	<0.5	-3	5	20	2.30
500683	Rock Pulp	Ŭ	99	1320	16	53	1.0	55	12	258	3.50	31	<8	3	6	54	<0.5	5	7	54	1.04
500684	Drill Core	15	<1	1020	3	20	<0.3	<1	2	519	1.12	31	<0	-2	-2	34	<0.5	5	- /	10	2.20
500685	Drill Core	1.3		11	-3	20	<0.3	2	2	1000	0.52	4	<0	<2	<2	20	<0.5	< 3	4	19	2.38
00000	DTILCOLE	4.3	<u></u>	11	-0	20	<0.5	2	3	1203	0.53	4	<8	<2	<2	31	<0.5	<3	3	17	6.26

CERTIFICATE OF ANALYSIS

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Falls Creek October 17, 2007

9 of 9

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 2

SMI07000093.1

	Method	10	10	10	10	10	10	10	10	10	10	10	38	740
	Analyte	P	10	Cr	Ma	Ba	Ti	B		Na	ĸ	W	20	Cu
	Unit	9/	nnm	nnm		nnm	9/	nnm	%	0/	9/	nnm	nnh	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
500663	Drill Core	0.023	5	17	0.53	30	< 0.01	<20	0.83	0.17	0.23	<2	<2	< 0.001
500664	Drill Core	0.011	3	18	0.64	462	< 0.01	<20	0.82	0.18	0.21	<2	<2	< 0.001
500665	Drill Core	0.026	6	13	0.67	28	< 0.01	<20	0.76	0.19	0.25	<2	<2	< 0.001
500666	Drill Core	0.011	4	8	0.70	92	< 0.01	<20	0.69	0.19	0.23	<2	<2	< 0.001
500667	Drill Core	0.012	4	23	0.78	423	< 0.01	<20	0.73	0.18	0.20	<2	<2	0.004
500668	Drill Core	0.014	4	6	0.47	51	< 0.01	<20	0.51	0.21	0.19	<2	<2	< 0.001
500669	Drill Core	0.071	4	37	2.58	194	0.29	<20	3.47	0.15	0.05	<2	2	0.005
500670	Drill Core	0.012	4	9	0.66	95	<0.01	<20	0.47	0.20	0.17	<2	<2	< 0.001
500671	Drill Core	0.009	5	2	0.82	82	< 0.01	<20	0.51	0.18	0.19	<2	<2	< 0.001
500672	Drill Core	0.003	3	7	0.81	327	<0.01	<20	0.33	0.16	0.15	<2	<2	< 0.001
500673	Drill Core	0.011	3	12	0.61	1305	<0.01	<20	0.38	0.16	0.19	<2	<2	0.002
500674	Drill Core	0.027	6	20	0.71	1610	<0.01	<20	0.39	0.15	0.18	<2	<2	< 0.001
500675	Drill Core	0.038	6	22	0.66	1053	<0.01	<20	0.56	0.19	0.25	<2	<2	< 0.001
500676	Rock Pulp	0.040	6	25	0.43	28	0.04	<20	0.84	0.04	0.15	<2	767	0.005
500677	Drill Core	0.035	5	29	0.76	19	<0.01	<20	0.54	0.20	0.23	<2	<2	< 0.001
500678	Drill Core	0.020	6	19	0.49	22	< 0.01	<20	0.53	0.21	0.22	<2	<2	< 0.001
500679	Drill Core	0.015	6	14	0.67	596	< 0.01	<20	0.44	0.20	0.17	<2	<2	< 0.001
500680	Drill Core	0.013	5	3	0.47	81	<0.01	<20	0.48	0.22	0.20	<2	<2	0.003
RRE 500680	Drill Core	0.012	5	12	0.47	84	< 0.01	<20	0.39	0.21	0.16	<2	<2	0.003
500681	Drill Core	0.007	4	2	0.58	514	<0.01	<20	0.44	0.20	0.16	<2	<2	0.006
500682	Drill Core	0.017	8	8	0.30	37	<0.01	<20	0.44	0.19	0.19	<2	<2	< 0.001
500683	Rock Pulp	0.059	13	48	0.75	180	0.08	<20	1.38	0.06	0.33	<2	3239	0.124
500684	Drill Core	0.007	5	3	0.34	13	<0.01	<20	0.52	0.20	0.21	<2	<2	< 0.001
500685	Drill Core	0.009	10	14	0.43	26	<0.01	<20	0.43	0.19	0.17	<2	<2	< 0.001
500686	Drill Core	0.010	9	2	0.51	220	<0.01	<20	0.47	0.20	0.17	<2	<2	< 0.001

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project:

Page:

October 17, 2007

Falls Creek

1 of 4

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY	CONTROL	REP	POR	Т													SMI	0700	0009	3.1	
	Method	WGHT	1D Mo	1D Cu	1D Ph	1D Zn	1D Ag	1D Ni	1D Co	1D Mp	1D Fo	1D Ac	1D	1D Au	1D Th	1D Sr	1D Cd	1D Sh	1D Bi	1D V	10
	Unit	kg	ppm	%	maa	ppm	ppm	ppm	ppm	ppm	opm	ppm	ppm	%							
	MDL	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
Pulp Duplicates																					
500462	Drill Core	6.6	<1	191	7	49	<0.3	20	23	1482	6.05	6	<8	<2	<2	74	1.1	<3	<3	154	7.06
REP 500462	QC																				
500464	Drill Core	3.3	<1	382	7	43	0.5	19	22	1273	5.23	8	<8	<2	<2	99	1.2	<3	<3	153	6.48
REP 500464	QC		<1	384	6	43	0.6	19	22	1260	5.25	11	<8	<2	<2	98	1.2	<3	<3	158	6.37
500478	Drill Core	1.9	<1	77	<3	152	0.3	23	22	1073	5.14	9	<8	<2	<2	44	3.2	<3	4	196	1.55
REP 500478	QC		<1	76	<3	150	<0.3	23	22	1046	5.12	7	<8	<2	<2	44	3.0	<3	3	197	1.46
500483	Rock Pulp		100	1292	17	52	1.4	55	12	347	3.50	30	<8	5	6	56	0.6	3	3	54	1.01
REP 500483	QC																				
500491	Drill Core	1.8	<1	153	<3	54	1.0	17	24	1187	6.49	19	<8	2	<2	53	0.7	<3	5	154	3.64
REP 500491	QC																				
500505	Drill Core	6.1	<1	43	11	54	< 0.3	9	25	797	6.25	5	<8	<2	<2	64	1.6	4	<3	155	2.42
REP 500505	QC		<1	42	18	53	<0.3	9	25	798	6.11	4	<8	<2	<2	63	1.4	<3	<3	152	2.36
500517	Drill Core	5.1	<1	46	15	53	< 0.3	12	26	933	4.97	6	<8	<2	<2	49	1.1	<3	5	114	3.46
REP 500517	QC	0.0005.00				S-1981	13250	0.770	1.7473.1												
500523	Drill Core	6.6	<1	39	9	59	< 0.3	6	20	1096	4.61	17	<8	<2	<2	47	1.2	<3	4	109	3,17
REP 500523	QC																3053			1000	
500546	Drill Core	1.2	<1	<2	15	22	< 0.3	<1	3	807	1.71	2	<8	<2	3	131	<0.5	<3	<3	22	2.19
REP 500546	QC		<1	<2	13	22	< 0.3	<1	3	781	1.68	<2	<8	<2	3	130	<0.5	<3	<3	22	2.19
500559	Drill Core	2	<1	11	9	80	<0.3	10	7	821	1.29	6	<8	<2	2	67	<0.5	<3	<3	25	2.27
REP 500559	QC	774	2.54%			1.12.000								1.000		557.0			1000	2020	
500570	Drill Core	7.2	<1	13	<3	46	< 0.3	1	8	1462	2.91	<2	<8	<2	<2	93	0.6	<3	<3	53	5.85
REP 500570	QC			10	175	17.		5.7				170		100					1.1		0.00
RRE 500587	Drill Core		<1	34	6	99	<0.3	3	18	1745	4.26	<2	<8	<2	<2	127	0.9	5	<3	96	3.93
REP RRE 500587	QC			•••			010		10	1110	114.0						0.0	0		00	0.00
500590	Drill Core	6.4	<1	26	8	62	<0.3	6	16	1155	3.67	<2	<8	<2	<2	76	<0.5	<3	<3	78	2 45
REP 500590	OC		<1	27	9	64	<0.3	6	17	1169	3 73	<2	<8	<2	<2	78	0.7	2	<2	78	2 45
500596	Rock Puln	-	5	53	222	211	16	18	9	275	3.04	203	<8	<2	<2	13	12	19	-3	27	0.49
DED 500506	00		2		666	611	1.5	10	3	215	0.04	200	-0	-2	-6	13	1.6	13	-0	61	0.40

01		
	iont	
	ICHL.	

Imperial Metals Corporation

SMI07000093.1

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Page:

October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Falls Creek

1 of 4 Part 2

QUALITY	CONT	ROL	REPORT	
A REAL PROPERTY AND A REAL	and the second division of the second divisio		Contraction of the local distance of the loc	ļ

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Au	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
Pulp Duplicates														
500462	Drill Core	0.121	5	37	2.12	164	0.17	<20	2.65	0.05	0.18	<2	9	0.019
REP 500462	QC												10	
500464	Drill Core	0.168	5	38	1.73	485	0.13	<20	2.03	0.06	0.18	<2	34	0.037
REP 500464	QC	0.167	5	39	1.71	487	0.14	<20	2.05	0.06	0.18	<2		
500478	Drill Core	0.081	5	45	2.02	90	0.24	<20	3.15	0.26	0.06	<2	13	0.008
REP 500478	QC	0.080	5	45	1.99	89	0.23	<20	3.07	0.26	0.06	<2		
500483	Rock Pulp	0.059	13	47	0.74	186	0.07	<20	1.34	0.07	0.32	<2	3540	0.125
REP 500483	QC												10110000	0.132
500491	Drill Core	0.096	6	25	1.98	104	0.17	<20	2.60	0.05	0.22	<2	648	0.014
REP 500491	QC												589	
500505	Drill Core	0.077	3	13	3.01	4	0.39	<20	2.82	0.06	0.09	<2	3	0.005
REP 500505	QC	0.076	3	12	2.94	4	0.38	<20	2.78	0.06	0.09	<2		
500517	Drill Core	0.059	2	15	3.00	27	0.26	<20	3.29	0.05	0.15	<2	5	0.002
REP 500517	QC		691		0.000		1-11/1755							0.002
500523	Drill Core	0.071	2	8	1.90	14	0.24	<20	3.11	0.24	0.07	<2	7	0.003
REP 500523	QC										- Artic		2	
500546	Drill Core	0.056	7	2	0.45	984	0.01	<20	0.31	0.04	0.26	<2	<2	< 0.001
REP 500546	QC	0.057	7	3	0.44	1016	0.01	<20	0.30	0.04	0.26	<2		
500559	Drill Core	0.186	6	59	0.74	145	< 0.01	<20	0.57	0.14	0.41	<2	<2	0.001
REP 500559	QC											1102.0	17203	0.001
500570	Drill Core	0.079	9	4	0.67	156	0.03	<20	0.40	0.11	0.25	<2	<2	0.001
REP 500570	QC												<2	
RRE 500587	Drill Core	0.057	6	4	1.81	1102	0.04	<20	0.99	0.13	0.20	<2	<2	0.004
REP RRE 500587	QC												<2	
500590	Drill Core	0.036	5	6	1.83	106	0.05	<20	1.51	0.15	0.18	<2	<2	0.003
REP 500590	QC	0.037	5	7	1.86	106	0.05	<20	1.49	0.15	0.18	<2		
500596	Rock Pulp	0.041	6	25	0.41	28	0.04	<20	0.83	0.04	0.15	<2	721	0.006
REP 500596	QC			1333		C1874	20220.000		10000	1.1942/02/2044	1.00004100	13500	1015110	0.006

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Project

Falls Creek October 17, 2007

2 of 4

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

QUALITY C	ONTROL	L REPORT SMI07000093.1																			
		WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
		Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
		0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
500632	Drill Core	3.4	<1	26	<3	84	0.8	26	18	1478	4.97	11	<8	<2	<2	62	1.1	<3	3	76	8.62
REP 500632	QC		<1	26	<3	86	0.9	26	19	1486	4.98	12	<8	<2	<2	63	1.4	4	5	78	8.62
500638	Drill Core	4	<1	125	10	58	0.7	29	23	1196	5.30	26	<8	<2	<2	71	1.3	4	5	88	5.77
REP 500638	QC																				
500641	Drill Core	2.3	2	22	10	51	0.5	13	7	767	2.53	<2	<8	<2	3	76	0.8	<3	<3	44	5.49
REP 500641	QC																				
500657	Drill Core	1.1	<1	42	<3	41	< 0.3	7	7	684	1.24	2	<8	<2	<2	34	<0.5	<3	3	37	2.69
REP 500657	QC																				
500661	Drill Core	3.9	<1	<2	7	14	<0.3	14	7	1110	4.37	23	<8	<2	<2	43	0.6	<3	<3	32	6,44
REP 500661	QC		<1	<2	7	14	<0.3	14	7	1141	4.47	22	10	<2	<2	43	0.6	<3	<3	33	6.59
500665	Drill Core	6.7	<1	2	7	23	< 0.3	2	4	748	3.26	7	<8	<2	2	24	<0.5	<3	<3	26	2.24
REP 500665	QC																				
500683	Rock Pulp		99	1320	16	53	1.0	55	12	358	3.59	31	<8	3	6	54	<0.5	5	7	54	1.04
REP 500683	QC																				
Reference Materials																					
STD R3A	Standard			_																	
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard	-																			
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD OXD57	Standard	-																			
STD OXD57	Standard																				

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 2

Project: Report Date:

Page:

October 17, 2007

Falls Creek

2 of 4

Phone (604) 253-3158 Fax (604) 253-1716

QUALITY CONTROL REPORT

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
		Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Au	Cu
		%	ppm	ppm	% 0.01	ppm 1	% 0.01	ppm 20	% 0.01	% 0.01	% 0.01	ppm 2	ppb 2	% 0.001
		0.001	1	1										
500632	Drill Core	0.072	4	39	0.98	92	< 0.01	<20	1.82	0.06	0.29	<2	6	0.003
REP 500632	QC	0.073	4	39	0.99	107	< 0.01	<20	1.84	0.06	0.30	<2		
500638	Drill Core	0.073	4	37	1.12	48	<0.01	<20	1.64	0.09	0.30	<2	2	0.012
REP 500638	QC									- comparent			2	
500641	Drill Core	0.050	10	15	0.36	314	< 0.01	<20	0.98	0.17	0.25	<2	2	0.002
REP 500641	QC		14.1.1							1152.48	0000000			0.002
500657	Drill Core	0.128	11	16	0.70	12	< 0.01	<20	1.42	0.21	0.22	<2	4	0.004
REP 500657	QC												<2	121.2003
500661	Drill Core	0.082	7	37	0.54	94	< 0.01	<20	0.99	0.19	0.29	<2	<2	< 0.001
REP 500661	QC	0.083	8	37	0.56	96	< 0.01	<20	1.02	0.19	0.30	<2		
500665	Drill Core	0.026	6	13	0.67	28	< 0.01	<20	0.76	0.19	0.25	<2	<2	< 0.001
REP 500665	QC							57 Y 1 4 K		0.000000	109-2010/1			< 0.001
500683	Rock Pulp	0.059	13	48	0.75	180	0.08	<20	1.38	0.06	0.33	<2	3239	0.124
REP 500683	QC										0444-022-0		904	
Reference Materials													000000	
STD R3A	Standard													0.811
STD R3A	Standard													0.803
STD R3A	Standard	-												0.823
STD R3A	Standard													0.863
STD R3A	Standard													0.822
STD R3A	Standard				_	_								0.812
STD R3A	Standard													0.838
STD R3A	Standard													0.861
STD R3A	Standard													0.832
STD R3A	Standard										-			0.834
STD R3A	Standard													0.827
STD R3A	Standard													0.820
STD OXD57	Standard												402	
STD OXD57	Standard												412	

www.acmelab.com

SMI07000093.1

Client:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Part 1

Falls Creek

Project: Report Date:

Page:

October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

3	of	4
	3	3 of

QUALITY CO	ONTROL	REF	POR	Т													SMI)700	009	3.1	
		WGHT Wgt kg	1D Mo ppm	1D Cu ppm	1D Pb ppm	1D Zn ppm	1D Ag ppm	1D Ni ppm	1D Co ppm	1D Mn ppm	1D Fe %	1D As ppm	1D U ppm	1D Au ppm	1D Th ppm	1D Sr ppm	1D Cd ppm	1D Sb ppm	1D Bi ppm	1D V ppm	1D Ca %
STD OXD57	Standard	0.01	1	2	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
STD OXD57	Standard																	_			
STD OXD57	Standard	-																			
STD OXD57	Standard	-																			
STD R3A	Standard																				
STD R3A	Standard																			_	
STD R3A Expected																					_
STD OXD57	Standard										_										
STD OXD57	Standard																				_
STD OXD57	Standard																				
STD OXD57	Standard																				
STD OXD57	Standard										_										
STD OXD57	Standard																			_	
STD OXD57	Standard	-																			
STD OXD57	Standard																				
STD OXD57	Standard	-																			
STD OXD57	Standard	-																			
STD DS7	Standard		20	107	67	401	1.1	57	9	656	2.48	51	<8	<2	4	80	6.2	4	5	87	0.00
STD DS7	Standard		20	108	65	397	1.0	54	9	621	2.43	47	<8	<2	4	73	5.9	5	5	85	0.00
STD DS7	Standard		23	115	69	415	1.0	57	9	692	2.58	56	<8	<2	5	82	6.0	4	10	91	1.08
STD DS7	Standard		20	109	68	417	1.2	56	9	678	2.56	53	<8	<2	4	80	6.0	5	6	90	1.04
STD DS7	Standard		20	106	70	412	0.7	56	8	629	2.40	46	<8	<2	4	73	6.3	5	<3	80	0.94
STD DS7	Standard		20	104	59	414	0.7	55	8	628	2.43	49	12	<2	5	74	6.3	7	<3	80	0.96
STD DS7	Standard		22	111	81	418	1.2	58	9	668	2.58	51	<8	<2	5	79	7.0	5	6	88	1.02
STD DS7	Standard		19	107	67	398	0.6	55	9	616	2.42	50	11	<2	5	71	6.1	4	8	80	0.91
STD DS7	Standard		19	94	65	403	0.8	49	8	606	2.39	44	<8	<2	4	71	5.6	<3	7	74	0.92
STD DS7	Standard		22	110	73	435	0.9	54	8	641	2.61	46	11	<2	5	78	6.1	5	6	82	1.02
STD DS7	Standard		18	99	60	383	0.7	50	8	608	2.34	46	13	<2	4	71	5.4	6	5	81	0.91
STD DS7	Standard		19	100	60	389	0.8	52	8	611	2.34	47	<8	<2	4	73	5.6	6	7	85	0.94

ACME ANALYTICAL LABORATORIES LTD.

- 8	CI	ieı	nt:
	G	e	nτ:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Octo

Falls Creek October 17, 2007

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

art 2

SMI07000093.1

QUALII	ΓΥ (CONT	ROL	REP	ORT

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	3 7AR
		Р	La	Cr	Mg	Ва	ті	в	AI	Na	к	w	Au	Cu
		%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
		0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
STD OXD57	Standard												397	
STD OXD57	Standard												397	
STD OXD57	Standard						_						401	
STD OXD57	Standard												395	
STD R3A	Standard													0.822
STD R3A	Standard													0.825
STD R3A Expected														0.811
STD OXD57	Standard												404	
STD OXD57	Standard												397	
STD OXD57	Standard												395	
STD OXD57	Standard												415	
STD OXD57	Standard												396	
STD OXD57	Standard												407	
STD OXD57	Standard												413	
STD OXD57	Standard												412	
STD OXD57	Standard												407	
STD OXD57	Standard												448	
STD DS7	Standard	0.076	13	214	1.10	413	0.12	39	1.08	0.11	0.48	4		
STD DS7	Standard	0.075	12	202	1.03	410	0.10	39	1.00	0.09	0.47	4		
STD DS7	Standard	0.076	14	224	1.15	427	0.13	39	1.17	0.11	0.50	4		
STD DS7	Standard	0.076	13	221	1.15	430	0.13	40	1.11	0.10	0.50	4		
STD DS7	Standard	0.077	12	200	1.06	400	0.11	36	1.00	0.09	0.46	4		
STD DS7	Standard	0.078	12	206	1.07	403	0.12	41	1.04	0.10	0.47	4		
STD DS7	Standard	0.080	14	228	1.11	429	0.12	41	1.10	0.10	0.50	<2		
STD DS7	Standard	0.075	12	209	1.06	402	0.12	37	0.98	0.09	0.47	4		
STD DS7	Standard	0.071	11	206	1.04	389	0.12	30	1.00	0.09	0.44	5		
STD DS7	Standard	0.075	13	230	1.14	418	0.12	41	1.11	0.10	0.49	5		
STD DS7	Standard	0.068	11	196	1.04	392	0.11	30	0.98	0.09	0.45	3		
STD DS7	Standard	0.070	13	198	1.03	388	0.11	37	0.99	0.10	0.44	4		

Client:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project:

Report Date:

October 17, 2007

Falls Creek

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

4 of 4 Part 1

QUALITY C	ONTROL	REP	POR	T		MIT STATE	No.	-					A CONTRACTOR				SMI)700	009	3.1	ta his
		WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
STD DS7	Standard	0.01	10	102	66	201	0.3	54	1	612	0.01	2	8	-2 -2	2	76	0.5	3	-3	70	0.01
STD D57	Standard		10	102	57	370	0.7	52	9	595	2.04	40	~0	-2	5	70	6.0	6	7	79	0.94
STD 057	Standard		19	90	57	3/6	0.7	53	0	565	2.21	42	<0	~2	0	70	0.0	0	1	70	0.90
STD OXD57	Standard																				
STD OXD57	Standard																				_
STD OXD57 Expected	Clandard		20	105	74	402	0.7	54	0	640	0.44	40	-0	-0	r	70	6.0	c	c	20	0.05
STD DS7	Standard		20	105	/1	403	0.7	54	9	613	2.41	48	<8	<2	5	72	6.2	0	0	80	0.95
STD DS7	Standard		21	102	70.0	415	0.8	50	9	643	2.48	45	<8	<2	5	11	0.4	5 00	4	01	0.97
STD DS/ Expected	Diast	-	20.92	109	70.6	411	0.89	00	9.7	627	2.39	48.2	4.9	0.07	4.4	08.7	0.38	0.00	4.51	80	0.93
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank	-	<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank	-	<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank		<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	<0.01
BLK	Blank	_	<1	<2	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<2	<1	<0.5	<3	<3	<1	< 0.01
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	<0.01	<1	17	<3	52	<0.3	5	4	594	2.03	<2	<8	<2	6	62	<0.5	<3	<3	36	0.55

QUA

Client:

Page:

Imperial Metals Corporation

200 - 580 Hornby St. Vancouver BC V6C 3B6 Canada

Project: Report Date:

Falls Creek October 17, 2007

4 of 4

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

(CONTROL REPORT

www.acmelab.com

Part 2

SMI07000093.1

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	3B	7AR
		Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Au	Cu
		%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	%
		0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	2	0.001
STD DS7	Standard	0.073	13	202	1.03	384	0.12	41	1.01	0.10	0.45	2		
STD DS7	Standard	0.071	12	192	1.00	371	0.11	25	0.96	0.09	0.43	4		
STD OXD57	Standard												396	
STD OXD57	Standard												382	
STD OXD57 Expected													413	
STD DS7	Standard	0.077	12	203	1.05	409	0.11	34	1.00	0.09	0.47	4		
STD DS7	Standard	0.079	13	210	1.08	420	0.12	35	1.06	0.10	0.48	3		
STD DS7 Expected		0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8		
BLK	Blank	< 0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	< 0.01	<0.01	<2	<2	< 0.001
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	<0.01	<20	< 0.01	< 0.01	< 0.01	<2	<2	< 0.001
BLK	Blank	< 0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<2	<0.001
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<2	< 0.001
BLK	Blank	< 0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<2	<0.001
BLK	Blank	<0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	< 0.01	<0.01	<2	<2	< 0.001
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<2	<0.001
BLK	Blank	<0.001	<1	<1	< 0.01	<1	< 0.01	<20	< 0.01	<0.01	<0.01	<2	<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
BLK	Blank												<2	
Prep Wash														
G1	Prep Blank	0.079	7	52	0.64	242	0.13	<20	1.08	0.09	0.57	2	<2	0.002

APPENDIX C

ANALYTICAL TECHNIQUE

MDIC01: ICP Analysis of Aqua Regia Digested Geological Materials

SCOPE :

This method is suitable for the semi-quantitative analysis of geological samples within the defined analytical ranges where the limitation of strong mineral acid apply.

PRINCIPLE :

Upper Limit

Units

Element Detection Limit

Upper Limit

Units

The sample (0.5 grams) is digested with a mixture of hydrochloric and nitric acids. The samples are heated in a hot water bath (90 $^{\circ}$ C). After the digestion step the samples are cooled, bulked to the final volume and mixed well. The resulting solution is analyzed by ICP-AES.

Ca

0.01

10.00

%

Li

1

20000

ppm

10

2000

ppm

0.01

10.00

%

Fe

0.01

10.00

%

5

2000

ppm

Element Bi Cr Κ Mn Sn Ti Zr Ag **Detection Limit** 0.2 5 0.01 20 0.01 1 1 1 1 Upper Limit 200.0 2000 20000 10.00 20000 20000 2000 10.00 5000 Units ppm ppm ppm % ppm ppm ppm % ppm Pb Element Cu La Mo Zn Cd **Detection Limit** 2 5 0.2 1 1 1 1 1 1 Upper Limit 10000 2000 10000 10000 2000 20000 10000 10000 2000.0 Units ppm ppm ppm ppm ppm ppm ppm ppm ppm Na Element Ta Co Mg Nb Detection Limit 5 10 20 2 0.01 0.01 1 1 1

2000

ppm

2000

ppm

20000

ppm

10000

ppm

10.00

%

10000

ppm

APPLICABLE ANALYTE RANGES FOR ICP-AES:

10.00

%

1

2000

ppm

2000

ppm

1000

ppm

Page 1 of 3

Bondar Clegg	Author	:	Peter Drouin
North Vancouver	Revision No.	:	6
	Expiry Date	:	04/03/01

MDIC01 : ICP Analysis of Aqua Regia Digested Geological Materials

A slightly modified version of this method has been set up for clients with sample matrices containing high total dissolved solids (i.e. high Iron (Fe) concentrations). For this modified version of the method, the sample weights have been reduced, increasing the dilution factor. The applicable analyte ranges for this modified method are listed below.

Element	Ag	Bi	Cr	K	Mn	Ni	Sn	Ti	Zr	Al	Ca	
Detection Limit	0.2	5	1	0.01	1	1	20	0.01	1	0.01	0.01	
Upper Limit	400.0	4000	40000	20.00	40000	20000	4000	10.00	10000	20.00	20.00	
Units	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	%	%	
Element	Cu	La	Mo	Pb	Sr	V	Zn	As	Cd	Fe	Li	
Detection Limit	1	1	1	2	1	1	1	5	0.2	0.01	1	
Upper Limit	20000	4000	20000	20000	4000	20000	20000	20000	4000.0	20.00	20000	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	
Element	Na	Sb	Та	W	Ba	Co	Ga	Mg	Nb	Sc	Te	Y
Detection Limit	0.01	5	10	20	1	1	2	0.01	1	5	10	1
Upper Limit	20.00	4000	2000	4000	10000	20000	20000	20.00	20000	4000	4000	4000
Units	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm

In addition to standard elements listed above the following elements maybe report in place or in addition to the elements listed above.

Element	Be	Hg	Р	S*	Se
Detection Limit	0.5	0.5	10	0.01	10
Upper Limit	2000.0	1000.0	20000	10.00	2000
Units	ppm	ppm	ppm	%	ppm

*Please note that S is list as "Qualitative" only.

Bondar Clegg	Author	:	Peter Drouin
North Vancouver	Revision No.	:	6
	Expiry Date	:	04/03/01

MDIC01 : ICP Analysis of Aqua Regia Digested Geological Materials

PRECISION:

The tolerance criteria for variation of analytical data result from all stages of the analysis and are subject to the sample matrix and the specific technique used.

Expected tolerance criteria at various concentrations for th	is method are as follows:
--	---------------------------

Element	Duplicate of Reference Value	Tolerance
Ag, Cd	Detection Limit 0.2	+/- 100%
(ppm)	0.4 1.0	50%
	1.2 5.0	25%
	5.2 50.0	15%
	50.2 200.0	10%
	>200.0	15%
Bi, Sb, Sc, As, Ce	Detection Limit 5	+/- 100%
(ppm)	10 25	50%
	30 50	25%
	55 500	15%
	505 2000	10%
	>2000	15%
Cr V Zn Li Y Nb	Detection Limit 1	+/- 100%
$\begin{array}{c} \text{Ba La Sr 7r} \\ \end{array}$	2 10	50%
(ppm)	11 20	25%
(ppiii)	21 200	15%
	201 200	10%
	> 2000	15%
K T ALCE E N	Detection Limit 0.01	1370
K, 11, Al, Ca, Fe, Na,	Detection Limit 0.01	+/- 100%
Mg, S	0.02 0.05	50%
(%)	0.06 0.10	25%
	0.11 1.00	15%
	1.01 10.00	10%
	>10.00	15%
Sn, W	Detection Limit 20	+/- 100%
(ppm)	40 100	50%
	120 200	25%
	220 2000	10%
	>2000	15%
Ni, Cu, Co, Mn, Mo,	Detection Limit 1	+/- 100%
Sr(ppm)	2 5	50%
· · · ·	6 10	25%
	11 100	15%
	101 1000	10%
	>1000	15%
Ph Ga	Detection Limit 2	+/- 100%
(ppm)	A 10	50%
(ppm)	12 20	25%
	22 20	150/
	22 200	10%
	202 2000	10%
	> 2000	15%
Te, Ta, P, Se	Detection Limit 10	+/- 100%
(ppm)	20 50	50%
	60 100	25%
	110 1000	10%
	>1000	15%
Be, Hg	Detection Limit 0.5	+/- 100%
(ppm)	1.0 2.5	50%
	2.0 25.0	25%
	25.5 500.0	10%
	>500.0	15%

This table is intended as a guideline in the absence of repeatability and reproducibility data.

APPENDIX D

SAMPLE DESCRIPTIONS

SAMPLE	EASTING	NORTHING	Sample description
463148	666304	6225826	Quartz-Carbonate Breccia
463149	664350	6223978	Qtz-Carb Breccia
463150	666268	6225778	Soft-altered Gypsum-Anhydrite. Top of unit has FeOx'd succession
463151	666240	6225782	Silicious extrusive
463152	666071	6225465	Silicious Iron-Carb Breccia
463153	666071	6225465	Hematitic Breccia
463154	664030	6225422	Andesite (plagioclase-feldspar porphyry).Unsorted Euhedral, Subhedral and "Star-shaped" phenocrysts 1-5 cm in size. Qtz/Albite altered.
463155	663946	6225458	Brecciated Andesite of similar composition as previous sample. Minor specular hematite.
463156	663947	6225459	Andesite (plagioclase-feldspar porphyry). Spherical and Subhedral Plagioclase phenocrysts. Mafic
463157	663922	6225460	Intrusive-looking (subvolcanic). Weak undeterminable sulphide content.
463158	663828	6225485	Coherent extrusive (looks as if almost a BX)
463159	663754	6225518	
463160	663749	6225522	Plagioclase-Pheno porphyry. Very fine grained groundmass. Looks extrusive, but may be rapidly cooling subvolcanic. Hematitic, Manganese Ox'd.
463161	663663	6225587	Andesite-Plag-pheno's.
463162	663665	6225597	Silicious Fe stained rock.
463163	662969	6224626	Green Limey sediments. Reacts w/ HCl., Ankerite Blebs.
463164	663034	6224626	Limey sed w/ ID fossils. Sandstone , silica replacement of fossils.
400405	CC2020	6004646	Limey sed w/ ID fossils. Sandstone, silica replacement of fossils. Local minor preciation. More silicious than previous
403105	663038	6224616	Silicified limev fassilized and monte. Sulphide minoralization (Cov. Dv)
403100	663056	6224617	Limov Sode "groop" voine undotormined minoralogy
403107	663072	0224010	Silica & Otz carb in silicified sods
403100	662100	6224010	Limey seds w/ Otz carbonate yeins and yeinlets
403109	662270	6224004	Limey seds w/ arkerite alteration. Lots of bedding. Very Soft green
403170	668258	6223103	Plag porphyry - missing sample
403171	664144	6223003	Silica altered seds. Disseminated sulphides
463172	664227	6223993	Sediments Minor breccia textures Sulphide mineralization (Pvr. Covr)
400170	004227	0220002	Very minor calcite and silica alteration.
463174	664343	6223981	Breccia, Pyroclastic sediment (clastic sed?). Very Iron-Ox'd and Very Hematitc. Carbonate throughout, reacts with HCI. Often silica altered as well. Very difficult to distinguish due to strong hematitic overprint.
463175	664350	6223978	"Third" showing. Malachite stains in qtz carb breccia/sediments. Fe alteration. Strong presence of Cu minerals.
463176	664136	6223946	Sandstone, Fine grained. Trace disseminated sulphides. Bedding and Fossils
463177	664421	6223485	Intrusive?? Bears intrusive textures, monzonite-ish. Trace disseminated sulphides

463178	664601	6222292	Intrusive, Monz-ish. Disseminated sulphides.
463179	664711	6222208	Pyroxene, BX (undefined rock)
463180	664700	6222176	Basalt, Olivine, Pyroxene.
463181	664705	6222112	Intrusive? Monz-ish. Pyrite and other sulphides.
463182	664701	6222066	Intrusive? Verv Iron altered. Large Pheno's ~monzonitic. *Float* sampled.
463183	664722	6222065	float sample. Similar to previous.
463184	664695	6222000	Intrusive Monz-toid
163185	664674	6221009	Intrusive Monz-toid
462105	664765	6221355	Intrusive BX Weakly silicified
403100	664602	6210025	Basalt222 <not accurate<="" td=""></not>
403107	664940	6219933	Andesite/Basalt BX - outeron shows clasts?
403100	660211	62219373	Silicified and monte. En avid alteration. Carbonate alteration in Otz voine.
403109	009211	0221725	and stringers. Very trace disseminated sulphides.
463190	668576	6222826	Extrusive-subvolcanic Igneous. Qtz veining throughout outcrop
463191	668291	6223119	Layered Sandstone. Small, graphitic minerals, weak sulphides (pyr)
463192	668247	6223175	Qtz-Carb vein, carbonate weathering. Bull quartz-dead.
463193	668248	6223177	
463194	668258	6223193	Calcic-Carbonaceous Limestone. Up to 35% Pyrite. Flow/Shear (ductile) banded pyrite. Epidote and clasts of graphite.
463195	668204	6223248	Silicified Siltstone. Fe alteration. Hematitic.Locally Weakly Brecciated. Malachite, Azurite, Chrysocolla. Weak Chalcopyrite. Pyrite oxidizing to Fe Alteration. Chalcopyrite to Malachite.
463196	667028	6224981	Pyroclastic BX bedding planes 014/78 (rh)
463197	667237	6223669	Cream-Blue Extrusive. Altered andesite. Trace disseminated sulphides. Hornblende, Micas (possibly rhyolite?)
463198	667227	6223681	Cream-Blue Extrusive. Altered andesite. Trace disseminated sulphides. Hornblende, Micas (possibly rhyolite?). More weathered than previous.
463199	667126	6223678	Extrusive Igneous. Abundant pyrite.
463200	667145	6223751	Extrusive Igneous. Trace disseminate sulphides.
463201	667126	6223859	Intrusive-Sub intrusive. Xenos of protolith rock. Potassic alteration. Qtz- Albite alteration
463202	667121	6224146	Intrusive-Sub intrusive. Hematite alteration. Disseminated Sulphides. Weak epidote alteration.
100000			Intrusive. Monz-toid, yet very coarse grained. Chlorite, epidote and potassic alteration. Fe Alteration. Calcite and Qtz veining.
463203	666706	6224582	
463204	666035	6225433	Fails Creek. Highly silicitied voicanics.
463205	665550	6227923	Black Shaley Seds. Qtz-Albite-Calcite veining/alt'n.
463206	665619	6227647	Seds, Fe altered. Calcite Altered. Epithermal style alteration.
463207	665571	6227560	
463208	665554	6227387	Seds with Calcite veining.
463209	665619	6228235	Black Sediments with clacite veining
463210	666061	6225277	Intrusive-Sub Volcanic. Silicified
463211	666059	6225256	Intrusive-Sub Volcanic. Silicified
463212	666044	6225237	
463213	670737	6222974	Intrusive, Monz-like. Qtz. Lots of secondary Fe alteration
463214	669845	6224090	Altered igneous. Lots of Qtz(chalcedony and jasper) Mica's

463215 463216	669680 668034	6224493 6223609	Igneous (latite-syenite??) Silicous Limestone. Outcrop shows itself along creek w/ exposed strike of 170 (350) degrees. Strong flow/shear (ductile) banded pyrite mineralization. Pyrite aiding in strong oxidization at top of exposure.
463217	663048	6224638	Calcareous Limey Seds. Reacts w/ HCl. Disseminated Sulphides.
463218	663313	6224614	Mixed Fragmental collapse-like Breccia (FBX). Qtz and Qtz carb fragments in a clast supported mtx. Rhodochrocite. Hematite alteration
463219	667541	6222813	
463220	667103	6222018	
463251	666284	6224730	PP (the bladed plag unit we always saw)
463252	666084	6225284	Basalt BX. Red hematized matrix. Epidote
463253	665649	6221844	Basalt BX.
463254	666117	6226368	Basalt with quartz veining & Fe oxide
463255	666116	6226366	rotten, whitish (possibly qtz/carb??) unit looks like intrusion in the outcrop. (~1m north of 463254)
463256	665946	6226468	large qz vein sandwiched between two 463257 units. Fe oxide, weak epi. Contact b/w 256 & 257 is gradational (see qtz in the maroon unit). Contact measures 266/ 44 NE
403230	000040	0220400	Seds? Very hematized. Soft green mineral (gypsum/apatite?) present
463257	665936	6226470	This mineral is commonly on the property.
463258	665764	6226746	intensly hematized rocks quartz veinlets. Can't see any original textures.
			Disseminated pyrite. Veinlets of hematite. Biotite , chlorite, mafic minerals.
463260	662585	6225409	Magnetic
463261	663482	6225242	Andesite???
463262	663613	6225291	Andesite? Very hard.
463264	668075	6222057	Basalt
463265	668177	6221957	Basalt with "milky" look. Similar to rocks a top of ridge. Pyrite.

APPENDIX E

Dr. Chris Rees----Field Observations

Dr. Chris Rees

Field Observations August 19 – 22, 2007

Falls Creek Project

A. FALLS – FORKS PROJECT

Background Geology

The area lies within the Stikine terrane or Stikinia, of the Intermontane Belt. The geology of the area is shown in the crude map above (Melissa is making a much better version). The stratigraphy is summarized below (oldest to youngest).

1 Late Triassic Takla Group, Savage Mountain Formation – *basaltic to andesitic volcanic rocks*; and 1a Dewar Formation – *coarse clastic sedimentary rocks*;

- 2 Early Jurassic Hazelton Group, Telkwa Formation calc-alkaline andesitic-basaltic volcanics and sediments; and 2b Nilkitkwa Formation – sedimentary rocks;
- 3 Middle Jurassic Hazelton Group, Smithers Formation sedimentary rocks;
- 4 Middle Jurassic Bowser Lake Group, Ashman Formation *mudstone, siltstone, shale*;
- 5 Late Cretaceous to Eocene Sustut Group, Tango Creek Formation *sedimentary rocks*.

The stratified rocks are intruded by

6 mid-Cretaceous gabbroic to dioritic rocks affiliated with the Axelgold intrusion,

7 high-level quartz-phyric felsic intrusions of the Eocene Kastberg Plutonic Suite.

The claim group is roughly bisected by a NNE-trending fault. Southeast of this fault, the rocks are Takla Group, Savage Mountain Formation (unit 1 on the map). Northwest of the fault are predominantly calc-alkaline volcanics and probably sediments of the Telkwa Formation of the Hazelton Group (unit 2 on the map). There may be other, sedimentary Hazelton Group units present as well. East of the NW-trending fault that forms the eastern limit of the claim group, there are reportedly Middle Jurassic Bowser Lake Group rocks (unit 4 on the map). The Falls and Forks showings occur roughly at the intersection of the two faults.

As for the minor intrusions on the claims, I'm not sure if they are Takla or Hazelton syn-arc intrusions, or representatives of the younger, Cretaceous or Eocene suites in the region.

2007 Fieldwork

As an introduction on the first day, we examined core from holes drilled at (1) the 'Third Showing' (FC-07-3), (2) Falls Creek showing (FC-07-4), and (3) Forks showing (FC-07-5). All comments below are the result of a pretty quick inspection, and should not necessarily overrule what the logs or on-site geos might say. The Third and Falls showings were also visited in the field, as well as (4) the East Creek showing. We did not get to the Forks showing.

1. FC-07-3 from 'Third Showing'

Hole drilled at -60/???

Most of the core I looked at appears to be altered **andesite** or **andesitic basalt**. Where visible through the alteration, the rock has a pale to medium green, finegrained groundmass, and is frequently (but not universally) characterized by coarse to very coarse bladed phenocrysts of presumably plagioclase. These phenocrysts can reach 3 cm in length and typically are intergrown in clusters or in intersecting crosses or rosettes.

FC-07-3: Andesite w/ mild fracture-controlled hematite alteration, and conspicuous bladed, intergrown phenocrysts of probably plagioclase (not a ferromagnesian mineral).

(The large size of the phenocrysts is unusual for most volcanics, and an alternative, subvolcanic intrusive interpretation might be kept in mind.) In deeper parts of the hole, where the rock is much less altered, the phenocrysts form cream coloured, smaller rosettes or glomerocrysts 1 or 2 cm across, contrasting with the dark green fine to medium grained groundmass of the andesite/basalt.

The **alteration** was most pronounced in the upper part of hole FC-07-3 that I saw (I didn't see the first few boxes, but was told they were similar). This alteration is associated with a fine pervasive crackly *in situ*, jigsaw-fit brecciation, and is characterized by maroon hematite oxidation. Usually the coarse porphyritic texture (referred to above) is obscured by the alteration, but locally it is visible. The hematite alteration varies from mild and streaky, to a pervasive red-brown. Locally it produces a type of pseudobreccia (i.e. 'pseudo- fragmental') texture, with small round remnants of green andesite surrounded by hematite oxidation which has diffused in from the fractures. The rocks are also liberally cut by mmto cm-scale carbonate (mainly calcite) veins.

large (2-3cm) plagioclase phenocryst

FC-07-3: Porphyritic andesite w/ fracture-controlled hematite alteration producing pseudobreccia texture (i.e. pseudo-FBX).

At some depth (I neglected to record the metres), the JBX is significantly sheared and quite strongly silicified (see photos below). The silica is streaky to poddy, and some is bright red, and is probably what has previously been described as jasper. It will be interesting to see if these siliceous shear zones correspond with a gold spike.

General view of sheared JBX or TBX and veins, FC-07-3.

Red and grey-white silica veins and replacement, FC-07-3.

'Jasper' replacement in sheared JBX or TBX in altered andesite, FC-07-3.

I didn't notice an increase in sulfides here, though (loggers correct me if I'm wrong). Anyway, the samples to look for are 500271 and 500272.

Overall, the alteration and structural preparation is quite impressive, although I'm sceptical about its relevance wrt proximity to a significant hydrothermal system or porphyry. The silicification was the most interesting to me. Apparently, malachite is restricted to near-surface core, and the chalcopyrite in the rest of the core is sporadic. Fine pyrite is generally disseminated.

Field visit to the 'Third Showing'

At the surface, the rocks are weathered and friable; however, the coarse ?plag phenos seen in the core (described above) are clearly recognizable as creamy yellow weathered crystals (see photo below). The groundmass is almost completely hematized. The outcrop was cut by prominent fractures trending 085°/57°S, and 200°/65°W. Some of these fractures are coated with significant malachite (photo below).

Pieces from Third showing, showing porphyritic ?andesite, w/ malachite on fractures.

Not all the rocks at the showing are friable. Some are medium-dark greenishgrey, harder and more recrystallized and may be silicified. This malachite showing is quite localized. About 30 metres away up the creek, the rocks don't look very altered and they lack malachite.

2. Hole FC-07-4 from the 'Falls Showing'

Hole drilled at -60/230, right under the surface showing.

I didn't look at this core in detail. Most of the core was green fine-grained andesite, with small augite or hornblende phenocrysts. Maroon hematite alteration was common. Lower down some intervals of the core comprised matrix-supported, somewhat polymictic FBX. This FBX was probably volcaniclastic rather than hydrothermal.

These presumed Savage Mountain Formation volcanic and volcaniclastic rocks are cut by a coarsely porphyritic intrusive, marked by blocky anhedral to

subhedral feldspar phenocrysts typically around 1 cm across. Quartz phenocrysts are also present. I thought this porphyry was somewhat silicified, or was associated with silicification. It is quite thin in FC-07-4, but apparently thicker on surface, so maybe it thins at depth, where we intersected it. The assays will tell if it is mineralized.

Doug tells me we drilled through the silicified zone at the heart of the Falls showing, and I looked at it in the core, but I can't recollect it now, and didn't photograph it. He said it had no sulfides. As always, the assays will tell if this silicified zone returns the same multi-gram gold values found by previous workers on the surface.

Field visit to the 'Falls Showing'

A visit to the Falls showing the following day was brief for logistical reasons, and we didn't see the main part, which is the silicified zone in Savage Mountain Formation (Takla) volcanics (Peatfield, 1989). We stayed close to the helicopter pad and checked out a contact between an "Intrusive" and the volcanics, shown on Peatfield's map (actually by J. Turner). The intrusive is red-pink, fine to medium grained quartz monzonite(?) with 0.5-1% anhedral quartz phenocrysts. The volcanics are green fine-grained andesite with plagioclase phenocrysts up to 1.5 cm long. These volcanics are pretty much the same as seen at the Third Showing and in drill hole FC-07-3, so it must be quite typical of this Takla unit. By the same token, at this Falls locality, the rocks are similarly altered – hematized and possibly silicified, and have malachite on fractures.

3. Hole FC-07-5 from 'Forks Showing'

Hole drilled at -60/324.

According to the Ryznar memo, the Forks showing consists of quartz and iron carbonate breccia within a zone of highly hematized and silicified basalts of (I presume) the Takla Group, Savage Mountain Formation. It contains polymetallic mineralization including copper, lead and zinc, silver and gold.

All I saw of this Forks showing hole was what was on the tables in the core shack. There were significant intervals of matrix-rich, polymictic FBX, ranging down to sandstone or siltstone where there was a paucity of clasts (just a few small granules). This grain-size variation suggests a degree of sorting, so I would conclude these rocks are water-lain sediments or volcaniclastics. No bedding was visible due to a strong to intense pervasive hematite alteration throughout these clastics. In addition to these clastic rocks, I saw intervals of green-grey fine-grained andesite-basalt. I didn't recognize any alteration or silicification, but what I saw was probably not representative of the main Forks showing.

4. East Creek Showing

This was found by Doug and Jen during their mapping. The copper showing lies right on the creek and consists of a pale grey to cream, rusty weathering, highly altered rock of unknown parentage. It is silicified and cut by mm-scale white quartz veins. In addition, there are numerous anastomosing crackly microfractures carrying chalcopyrite and pyrite, as well as malachite and azurite, where oxidized. The overall alteration looks to me like quartz-ferrocarbonate.

About 70 metres upstream to the south is another showing of altered and strongly pyritized limestone. It is pale grey, fine to medium grained, dense and quite hard (silicified??). It has flecks of fine graphite up to 4 mm across. Fine (0.2 to 1 mm) pyrite amounts to 5-8%, forming linear streaks, 1-3 mm thick riddled through the rock. It's not clear if it follows bedding laminae, but it's very irregular. No malachite noted. The limestone is cut by veins, mainly of white calcite, but also some mm-scale quartz veins.

A few metres away was unaltered limestone or calcarenite.

Overall, not a bad little showing.