

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

2007 Exploration	LE OF REPORT [type of survey(s)] Program on the Jake Propert	y [geological, ge	ochemic	al]	TOTAL COST \$24,057.	26
AUTHOR(S)	Peter A. Ronning, P.Eng. Mikkel Schau, Ph.D., P.Geo	SIG	NATURE(S) <u>"P. Ronning</u> "M. Schau"	g" & Kon	\sim
NOTICE OF WORK PE	RMIT NUMBER(S)/DATE(S)	not ap	plicable		YEAR OF WORK	2007
STATEMENT OF WOR	K - CASH PAYMENT EVENT NUMBI	ER(S)/DATE(S)_42	201034, 1	1 March 200	8	
PROPERTY NAME			Jake			
CLAIM NAME(S) (on w	hich work was done)_ clair	ms are not name	ed; minera	al tenure nur	nbers 533778 and 563	877
COMMODITIES SOUG	HT	copper, gold	l (molybd	enum, lead, :	zinc)	
MINERAL INVENTORY	MINFILE NUMBER(S), IF KNOWN			094D-	061	
MINING DIVISION	Omineca	NTS			094D	
LATITUDE56 OWNER(S) 1)	o <u>14</u> <u>20</u> " Electrum Resource Corp.	LONGITUDE1	<u>27</u> ° .	<u>19</u> , _	00" (at centre of w	ork)
MAILING ADDRESS 91	2, 510 West Hastings Street					
Van	couver, B.C., Canada V6B 1L8	3				
OPERATOR(S) [who pa	aid for the work]					
1)	Electrum Resource Corp.	2)				
MAILING ADDRESS 91	2, 510 West Hastings Street					
Van	couver, B.C., Canada V6B 1L8	3				
PROPERTY GEOLOG sandstone, s Eocene,	KEYWORDS (lithology, age, stratign siltstone, mudstone, conglome Bowser Lake Group, Kastberg propylitization, chalcopyrit	raphy, structure, alte erate, felspar por g Intrusions, qua te, bornite, moly	pration, min phyry, m artz, calcit odenite, c	eralization, size onzonite, qua te, carbonate galena, sphal	and attitude): artz monzonite, diorite, e, sericitization, chloritiz lerite, malachite	Jurassic, ation, □

Assessment Reports 01874, 03868, 04563, 25530, 25931, 16838

TYPE OF WORK INEXTENT OF WORKTHIS REPORT(IN METRIC UNITS)		ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
GEOLOGICAL (scale, area)			(Incl. support)
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil	46 samples, soil and talus fines	tenures 533778 and 563877	\$9,897.58
Silt	3 stream sediment samples	tenure 533778	\$645.49
Rock 51 rock samples		tenures 533778 and 563877	\$10,973.40
Other 1 piece of drill core		tenure 533778 or 563877	
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying	as listed under "GEOCHEMICAL"	tenures 533778 and 563877	\$2,540.79
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST	\$24,057.26

2007 Exploration Program

on the

Jake Property

Tenure Numbers

533778, 563877

BC Geological Survey

Assessment Report 30040

Mining Division:

Omineca

094D

NTS Map Sheet:

Latitude: 56° 14' 20" N Longitude: 127° 19' 00" W

Owner of Claims: Electrum Resource Corp.

Project Operator:

: Electrum Resource Corp.

Consultants: Peter A. Ronning, P.Eng. Mikkel Schau, Ph.D., P.Geo.

Report by: Peter A. Ronning, P.Eng. Mikkel Schau, Ph.D., P. Geo.

Date of Report: 30 May 2008

Table of Contents

Ι.	Summary and Conclusions	1
<i>II.</i>	Introduction	3
A	. Location and Access	3
B	Physiography	3
C.	Property Definition 1. Mineral Tenures 2. History	5 5 7
<i>III.</i>	Work Program	10
А	. Field Program	.10
B	. Laboratory Methods	.11
C.	Data Management, Display and Interpretation	.12
IV.	Geology	12
IV. A	<i>Geology</i> Regional Geological Setting	<i>12</i> .12
IV. A	Geology Regional Geological Setting 1. Surficial Geology	12 .12
IV. A	 Geology Regional Geological Setting 1. Surficial Geology 2. Bedrock Geology 	12 .12 .12 .13
IV. A	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology 3. Mineral Deposits in the District.	12 . 12 . 13 . 15
IV. A	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology 3. Mineral Deposits in the District. Local and Property Geology and Mineralization	12 . 12 . 13 . 15 . 19
IV. A B	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology	12 . 12 . 13 . 15 . 15 . 19 . 20
IV. A B	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology 3. Mineral Deposits in the District. Local and Property Geology and Mineralization 1. Local Minfile Occurrences. 2. Alteration and Mineralization	12 . 12 . 13 . 15 . 19 . 20 . 22
<i>IV.</i> А. В. <i>V.</i>	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology 3. Mineral Deposits in the District. Local and Property Geology and Mineralization 1. Local Minfile Occurrences. 2. Alteration and Mineralization	 12 12 13 15 19 20 22 24
IV. A B. V. VI.	Geology Regional Geological Setting. 1. Surficial Geology. 2. Bedrock Geology 3. Mineral Deposits in the District. Local and Property Geology and Mineralization 1. Local Minfile Occurrences. 2. Alteration and Mineralization Discussion of 2007 Work Conclusions and Recommendations	12 .12 .12 .13 .15 .19 .20 .22 24 26

List of Figures

Figure 1: Location Map	4
Figure 2: Mineral Tenures	6
Figure 3: Assessment Report and Minfile Locations	9
Figure 4: Regional Geology	17
Figure 5: Local Geology	23
Figure 6: Jake Property, Sample Locations for Rocks	XXXVIII
Figure 7: Silver Geochemistry in Rocks	XXXVIII
Figure 8: Gold Geochemistry in Rocks	XXXVIII
Figure 9: Copper Geochemistry in Rocks	XXXVIII
Figure 10: Molybdenum Geochemistry in Rocks	XXXVIII
Figure 11: Lead Geochemistry in Rocks	XXXVIII
Figure 12: Zinc Geochemistry in Rocks	XXXVIII
Figure 13: Arsenic Geochemistry in Rocks	XXXVIII
Figure 14: Sample Locations for Soils and Stream Sediments	XXXVIII
Figure 15: Silver Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 16: Gold Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 17: Copper Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 18: Molybdenum Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 19: Lead Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 20: Zinc Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 21: Arsenic Geochemistry in Soils and Stream Sediments	XXXVIII
Figure 22: Antimony Geochemistry in Soils and Stream Sediments	XXXVIII
Samples listed as being on page XXXVIII are D-sized plots in Appendix	6

List of Photos

Photo 1: Looking North at Mineralized Area	24
List of Tables	
Table 1: Claims in the Jake Property	5
Table 2: Simple Statistics for Rock Samples	25
Table 3: Simple Statistics for Soil Samples	25
List of Appendices	
Appendix 1: Statement of Costs	I
Appendix 2: Soil and Stream Sediment Sample Analyses	VI
Appendix 3: Rock Chip Sample Analyses	XII
Appendix 4: Sample Descriptions	XVIII
Appendix 5: Drill Core Quick Logs	XXXIII

Appendix 5: Drill Core Quick Logs Appendix 6: Oversize Maps

XXXVIII

I. <u>Summary and Conclusions</u>

The claims that comprise the Jake property are located in north-central British Columbia, at about Latitude 56° 14' 20" N, Longitude 127° 19' 00" W. There is no road access to the area, although there are disused exploration roads on the property. A disused rail line is situated about 11 kilometers northeast of the property. For the purpose of the exploration work described in this report, Electrum's crew gained access to the claims via helicopter from a fishing lodge on the Sustut River, about 13 kilometers northeast of the property. The supply hub for the area is Smithers, about 160 kilometers to the south.

The property is rugged, with a difference between the highest and lowest elevations of about 1,000 meters.

At the time the work described in this report was done, two contiguous claims made up Electrum's Jake property. In total those two claims cover 1366.478 hectares.

Mineralization on what is now Electrum's Jake Property was discovered in 1965. Since that time the property has been staked, re-staked, and otherwise changed hands a number of times. Operators have included Kennco Exploration (Western) Ltd., Canadian Superior Exploration Limited, Cities Service Minerals Corporation, Placer Development Limited, QPX Minerals and Teck Corporation. Sporadic exploration programs have included geological mapping, geochemical surveys, and geophysical surveys. Assessment reports filed with the government of B.C. describe 1,792.5 meters of core drilling by several different operators. Additional drilling is known to have been done but the data are not in the public domain.

For the work described in this report, a four-person crew visited the Jake property on three separate days in mid-August of 2007. As part of the program, 100 samples were collected; 51 rock samples, 3 stream sediment samples, 19 samples of talus fines and 27 soil samples. The two geologists in the crew participated in prospecting and sampling, examined such drill core as remained available, and assessed the potential of the property. In total the program cost \$24,000, the largest single component of which was helicopter transport.

The region is primarily underlain by clastic sediments of the middle to upper Jurassic Bowser Lake Group, and volcanic rocks with associated sediments of the lower Jurassic Hazelton Group. Cretaceous and what may be Tertiary stocks, dikes and sills intrude the Bowser Lake Group. The older, Cretaceous stocks belong to the Bulkley Plutonic Suite of intermediate composition granitoids. The Jake property is entirely underlain by sedimentary rocks of the Bowser Lake Group, intruded by large dikes that are presumed to be Tertiary.

As a result of work by prior operators, porphyry-style copper mineralization, with some gold and molybdenum, is known to exist on the Jake property. Gold, silver and base-metal-bearing quartz and carbonate veins are also present. Electrum's work during 2007 confirmed the presence of these types of mineralization.

Both the soil and rock sample results described in this report suggest that there is potential for exploration to the north, on the property, beyond the area of Electrum's sampling. The writers believe this to be the case, but with the caveat that the figures appearing in this report do not show any of the large number of soil and rock samples collected by prior workers. Furthermore, the locations and results of the holes drilled by prior operators must be factored in to any decision about future exploration. The locations of many of the drill holes are not public domain knowledge.

report 01, Jake Project

Printed: 03 Jun 2008 3:17

The rock sample results obtained by Electrum for metals of commercial interest include a significant number of elevated values. However, no mineralization with potential economic grades over mineable dimensions has been identified. The rock and soil sample results demonstrate the presence of geochemical anomalies that merit follow-up.

Further exploration is warranted on the two claims that comprised Electrum's Jake claims in 2007, and on adjacent claims that Electrum has acquired since then. The writers recommend a program that includes, first, the conversion of the abundant data from prior exploration programs to a digital form that is suitable for use in GIS and geological software. Effective use of that prior data is required in order to design an efficient new exploration program without unnecessarily repeating prior work. Likely components of a new exploration program would include additional geological mapping, soil and rock sampling and geophysical work on Electrum's property to the north of the area of known mineralization.

Electrum has acquired new claims adjacent to the two tenures considered in this report. Those new claims adjoin the old ones on the southeast, south and southwest. This report considers only the results of the 2007 exploration program and recommendations relating to building upon those results. The newly-acquired claims require separate consideration, although the types of recommendations made in this report, particularly the compiling of existing data, may well also apply to those claims.

II. Introduction

A. Location and Access

(see Figure 1 on page 4)

The claims that make up the Jake property are located in north-central British Columbia. They are southwest of the northwest-flowing Squingula River.

There is no road access to the area. A disused CN Rail line, formerly a BC Rail line, passes about 11 kilometers northeast of the property. Some of the few local residents use the rail line informally, running modified trucks on the rails.

For the purpose of the work described in this report, Electrum's field crew travelled by fixed wing aircraft from Smithers, B.C, about 160 kilometers south of the property, to a fishing lodge on the Sustut River, about 13 kilometers north-northeast of the property. The fishing lodge was used as a base of operations.

In order to access the property, a helicopter was employed. There was no machine based locally, so the helicopter had to be ferried daily from a camp near the Finlay River in the Toodoggone area, about 100 kilometers to the north of the Jake property.

B. Physiography

The property is rugged. The lowest point on the property is at latitude 127° 16' 55.1", where the northern boundary of tenure number 563877 crosses the Squingula River at an elevation of about 690 meters, in heavy timber. The highest point at the time of the 2007 work¹ was more than 1,630 meters, near the southern edge of tenure number 533778, well above tree line. Steep cliffs are common.

¹ Additional claims have been staked since the time the work was done and there are probably now higher elevations within the property.

report 01, Jake Project

C. Property Definition

1. Mineral Tenures

(see Figure 2)

The mineral tenures (claims) that comprised the Jake Property at the time the 2007 exploration work was done are listed in Table 1 and illustrated in Figure 2. Both are owned by Electrum Resource Corp.

Tenure Number	Claim Name	Map Number	Valid Until	Area	
533778	n/a	094D	08 May 2012	449.607	
563877	n/a	094D	31 July 2012	916.871	

The claims and expiry dates listed in Table 1 are as indicated by the Mineral Titles Online web application on 14 May 2008.

2. History

a) <u>History of the Jake Property</u>

The discussion of the history of the property in italics that follows is taken from Sketchley, 1988. Any alterations to Sketchley's text are indicated:

Mineralization on the Jake claims was discovered by Kennco Exploration (Western) Ltd. in 1965. The company conducted stream sediment and rock chip sampling, and diamond drilled two AX holes totalling 55.5 m.

Canadian Superior Exploration Limited staked the JKB claims in 1968 and conducted stream sediment and rock chip sampling. However, the claims were allowed to lapse. In 1971, Canadian Superior re-staked the area as the IN Group after following up anomalous copper values from a large gossan. Initial results indicated up to 0.4% Cu in altered feldspar porphyry. The discovery stimulated major work programs by Canadian Superior in 1972, 1973 and 1976. The work included soil and rock sampling, geological mapping, a ground magnetic survey, trenching, building of roads and diamond drilling. The drilling consisted of 3 X-ray holes totalling 94.5 m, 7 NQ holes totalling 900.5 m and 2 BQ holes totalling 305 m.

Cities Service Minerals Corporation optioned the property in 1977. It conducted additional soil and rock sampling, geological mapping and 437 m of diamond drilling in two holes.

The Canadian Superior Exploration Limited's discovery zone returned 0.39% Cu and 27.43 g Ag/tonne across a surface exposure of 27.5 m. The best known drill intersection by Canadian Superior Exploration Limited was similar in grade and width; the best by Cities Service Minerals Corporation was 0.19% Cu and 3.67 g Ag/tonne over 40 m. Apparently only a few rocks were assayed for Au; they generally returned less than 0.34 g/tonne, although a few were up to 0.69 g/tonne.

The work by Canadian Superior Exploration Limited and Cities Service Minerals Corporation indicated that all zones of interest had little chance of containing economic copper mineralization. However, Cities Service Minerals Corporation recommended that the overburden-covered areas to the northeast should be considered favourable for porphyry copper mineralization because the mineralized system trends in that direction.

(An interpretive paragraph that Sketchley included here has been omitted from this section but is mentioned in section IV.B.)

In 1986, Placer Development Limited conducted heavy mineral sampling throughout the area now covered by the Jake claims. Analytical results indicated a pronounced Au-As anomaly in the drainage now covered by the Jake 1 to 4 and 6 claims². The lower portion of this drainage coincides with the gossan related to previously explored mineralization. In the drainage basin immediately to the south, now covered by the Jake 5 to 8² claims, there is enrichment in As and Sb. This drainage basin contains several small gossans.

During staking of the Jake 1 to 4 claims, Placer Development Limited collected 10 chip samples of mineralized and/or altered drill core, and 121 soil samples at 40 m intervals along three traverse lines. The geochemical data of Placer Development Limited confirmed that a Cu

 $^{^{2}}$ This reference is to claims that existed in 1988, not to any claims that now exist.

porphyry system with Ag, identified by previous operators, exists north of the main creek. Placer Development Limited suggested a possibility for a Au-As mineralization in the rocks capping the porphyry system south of the main creek. Accordingly, they recommended that the down-thrown block south of the main creek should be explored for a structurally-controlled, epithermal, precious-metal deposit characterized by breccia pipes, fault-controlled alteration zones and large areas of crackle breccia.

In 1987, Minequest Exploration Services conducted an exploration program on behalf of QPX Minerals (Sketchley, 1988). Their purpose was to follow up gold and arsenic anomalies that had been identified by heavy mineral stream sediment sampling. Their work consisted mostly of soil sampling along contours, with lesser stream sediment and heavy mineral sampling. They collected 178 stream sediment, 9 heavy mineral, 1,147 soil and 197 rock samples. All of the stream sediment, heavy mineral and rock samples were analyzed, but only 596 of the soil samples were.

QPX did reconnaissance geological mapping and prospecting that covered about 40 square kilometers.

In 1990, Placer Dome did exploration work on what was then the Jake 4 claim, which partly overlapped what are now Electrum's tenures 533778 and 563877. They established a 10.9 line kilometer grid, on which they did soil sampling, a magnetometer survey and a VLF survey (Linden et al., 1990). There is no record in the public domain of any work that might have been done subsequent to 1990 and prior to 1997.

In 1997 Teck Corp. acquired the Jake property by staking. That year, Teck did work that included (Evans, 1998):

- Geological mapping at a scale of 1:5,000;
- Collecting and analyzing 37 rock samples;
- Collecting and analyzing 90 soil samples from 3 "recce" soil lines; and
- Locating and re-logging old drill core.

Teck followed this up with a 1998 program that included (Smith, 1999):

- Establishing two grids with, in total 25.25 kilometers of lines;
- Mapping the grids at a scale of 1:2,500;
- Collecting and analyzing 88 rock and 550 soil samples; and
- A petrographic study of 20 hand samples.

Electrum is aware that in 1999 Teck did an exploration program that included diamond drilling. The results of that work were not filed for assessment credit and hence are not in the public domain.

report 01, Jake Project

III. <u>Work Program</u>

A. Field Program

For the work described in this report, a four-person crew visited the Jake property on three separate days in mid-August of 2007. As part of the program, 100 samples³ were collected; 51 rock samples, 3 stream sediment samples, 19 samples of talus fines and 27 soil samples. One rock sample of the hundred samples attributed to Jake Property was in fact collected about 180 meters south of the southern edge of tenure 533778, off of what was then the property.

The two geologists in the crew participated in prospecting and sampling, examined such drill core as remained available, and assessed the potential of the property. In total the program cost \$24,000, the largest single component of which was helicopter transport.

During mid-August of 2007 this same crew worked on five other projects within about 25 kilometers of the Jake Property. Hence, rather than camp on the Jake Property, the crew stayed at the Suskeena Lodge, about 13 kilometers northeast of the property. A helicopter was used for daily transport to the several working areas. There was not a helicopter based in the vicinity of the lodge or the property, so one had to be ferried each day from a camp near the Finlay River in the Toodoggone area, about 100 kilometers to the north of the Jake Property. Ferry charges were shared with another exploration crew, not related to Electrum, which was also staying at the lodge. Despite the sharing of ferry costs, the logistics dictated that transportation was the largest component of the project costs, and cost more on a per-unit basis than it would have in an area with better logistics and services.

All sample locations, and other locations of interest, were determined using hand-held GPS units. No means of improving the precision of the GPS measurements, such as differential corrections, was used. The expected location accuracy is in the order of ± 20 meters.

The sampling procedures used were:

Rock This was a reconnaissance program, and the rock samples collected were grab Samples samples intended to give an indication as to the presence of mineralization, not to characterize a defined area of volume of material. Samples were collected from outcrops where material of interest was evident. In many instances, the ruggedness of the terrain meant that Electrum's crews were at best able to traverse talus slopes and collect rock samples from talus material believed to originate nearby, upslope. The nature of the samples, including whether or not they were in-situ, was recorded.

³ One piece of drill core was taken from the core stored on the site and analyzed. It is not included in total described here.

Soil Samples	Where true soil exists, soil samples were collected from the zone of metal accumulation, the "B" horizon, where it was possible to recognize it. It is a reddish-brown layer below a greyish zone of depletion, which in turn is below a black organic layer. Typically the material collected was at a depth of between 15 and 25 centimeters below the surface.
	On steeper slopes covered by talus, no true soil is developed, but talus fines were collected.
	Holes for soil samples were dug using either a small mattock and a trowel, or an ordinary rock hammer and bare hands. The soil was placed in an ordinary brown kraft paper soil sample envelope. Other than partial drying indoors at the base camp, no processing of the samples was done prior to their delivery to the lab.
Stream sediments	Most of the traverses on the Jake Property were planned with the intention of seeing as much rock as possible, so the routes were not optimal for stream sediment sampling. However, three stream sediment samples were collected, close together near a helicopter pick-up spot on the main eastward-draining creek on the property. The stream sediment samples were collected in a conventional way, looking for pockets of silt-sized material and placing the material collected in kraft paper soil envelopes. Samples were usually scooped up with bare hands.

The cost of this program, including all follow-up reporting and data management, was \$24,000. Details of these costs are set out in Appendix 1.

B. Laboratory Methods

The samples were analyzed at Assayers Canada in Vancouver, B.C. Descriptions of the analytical techniques, as provided by Assayers Corporation, are set out below:

a) <u>30 Element Aqua Regia Leach ICP-AES</u>

Elements Analyzed:

Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Zr

Procedure:

- 0.500 grams of the sample pulp is digested for 2 hours at 95°C with a 3:1 HCl:HNO3 mixture. After cooling, the sample is diluted to 25mL with deionized water.
- The solutions are analyzed by Inductively Coupled Plasma-Atomic Emission Spectra using standard operating conditions.
- Each batch has 24 samples, 3 duplicates, one blank and two standards. Each batch will be rerun if the duplicates or the standards do not match the expected values.
- Detection limit and analytical range are element specific.

b) Gold (Au) Geochemical Analysis

Element(s) Analyzed:

Gold (Au)

Procedure:

- The samples are fluxed, silver is added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.
- These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.
- A minimum of 10% of all assays are rechecked, then reported in parts per billion (ppb).
- Detection Limit: 1ppb

C. Data Management, Display and Interpretation

The results of analyses were received from the laboratory as Microsoft ExcelTM files. These data were loaded into Microsoft AccessTM, where the soil sample analyses were merged with location and other field information.

The analyses, with location information and other field data, were loaded into Manifold SystemTM, which was used for display, interpretation, and generating most of the figures in this report.

Figure 1, Figure 2 and Figure 3 were generated using tools on the B.C. government web site, The MapPlace.

IV. <u>Geology</u>

A. Regional Geological Setting (See Figure 4)

1. Surficial Geology

The discussion of surficial geology that follows is abstracted from Lord, 1948.

A large proportion of the area is covered by unconsolidated Pleistocene and Recent deposits. In general, these are thinnest above timberline, and become thicker and more widespread toward the lower valley surfaces. Outcrops are best seen at elevation and along ridge tops.

The glacial deposits can be characterized as unstratified ground moraine and stratified glaciofluvial and glacio-lacustrine accumulations deposited ahead of the ice front, and by kame terraces, kames and eskers deposited in contact with the ice.

Recent deposits include stream deposits, deltas, alluvial fans, talus, and soil. Modern streams moving less water than their glacial counterparts are terracing and cutting down through the previous glacial deposits and alluvial fans are spreading across the valley floors.

2. Bedrock Geology

The discussion of regional geology that follows was written to encompass the six project areas that Electrum held in 2007, within about 25 kilometers of the Jake property.

The regional geological summary outlined below is a simplified abstract of results gained during several geological mapping campaigns over the last 60 years in the area. The first campaign resulted in GSC Memoir 251 (Lord 1948), followed in 1975 by the Takla Project (Richards 1976 and references therein). Recently the GSBC and Geoscience BC have reported on two large regional projects; one being the Skeena Arch project (McIntire, 2007, and references therein). See also www.geosciencebc.com/s/2005-003.asp, which presents all the information in MapPlace on the areas encompassing and adjacent to the Skeena Arch in a GIS-ready form (parts of 6 NTS map areas). The other regional project is the Bowser Basin Initiative (Evenchick et al., 2007, and references used therein, see also <u>www.bowserbasin.ca</u>), which is an ongoing project designed in part to evaluate the petroleum potential of the basin. Both McIntire, 2007 and Evenchick et al., 2007 cover the area of interest.

Geological mapping over the last 60 years has resulted in different nomenclatures for various rock units. The 1948 Takla Group became the 1976 Takla, Hazelton and Bowser Lake Groups. In the latest revision of nomenclature Evenchick et al.(2007) use lithofacies assemblages rather than temporally-bound formations to subdivide the rock units. Rock type, more so than age, is important to exploration; hence the latest subdivision has utility.

The Mesozoic Bowser Basin covers some 60,000 square kilometres in northern central BC. This "successor" basin is flanked to the north by the Stikine Arch, to the west by the Coast Range, to the south by the Skeena Arch and to the east by the Stikinia tectonostratigraphic terrane and the later Sustut Basin. It rests largely on the lower Jurassic Hazelton Group. The basin is filled mainly by rocks belonging to the middle and upper Jurassic, lower Bowser Lake Group, comprising a southeastward prograding marine sequence some 3,000 metres thick. These rocks are overlain by the lower Cretaceous, upper Bowser Lake Group, comprising low energy fluvial deposits and alluvial fan and braided stream systems several thousands of metres thick.

The Hazelton Group crops out in the eastern part of the area of interest. Here both the upper and lower Hazelton are noted. The lower volcanic part of the group is represented by maroon plagioclase porphyry flows and breccias, green and grey-green aphyric and plagioclase porphyry flows, breccias and tuffs. The upper unit is largely composed of maroon sandstone and siltstone, chert pebble conglomerate, and local shallow marine grey and green sandstones. It includes thin limestone beds, and near the top, small thin scattered rhyolite domes and their associated sediments. A characteristic striped unit called the "pyjama beds" is used, locally as a marker bed, very near the upper contact of the Hazelton with the lower Bowser Lake Group.

The Bowser Lake Group in the southeast part of the basin consists of a lower Muskaboo Creek assemblage, overlain by the upper Jenkins Creek Formation. The middle Jurassic to earliest Cretaceous Muskaboo Creek shelf assemblages consist of mainly well-bedded sandstone, with interbeds of siltstone and conglomerate, and mudstone with occasional marine fossils. The mid-Cretaceous Jenkins Creek fluvial and lacustrine assemblage consists of mainly mudstone, siltstone, and fine grained sandstone arranged in fining upward cycles with local carbonaceous zones and local scattered plant fossils

The Skeena Group occurs mainly to the south of the area of interest but a few patches are noted in valley bottoms in later down-dropped portions of the Skeena fold belt.

The Sustut Group occurs mainly east of the area of interest. It represents the alluvial sediments eroded from the developing fold and thrust belt and resultant mountain system and provides an upper age limit for the upper Bowser basin as well as a maximum age for intrusive units contained it.

The Bowser Basin and Bowser Lake Group have been deformed during the late Cretaceous, into the northwest trending, northeast verging Skeena Fold Belt; a thick-skinned fold and thrust belt. Folds dominate the structure of the region. Fault-related folds are inferred primarily from geometry. The majority of the folds appear to be detachment folds, part of a large system of blind thrusts. Folds of competent basement volcanic rocks may be fault bend folds. Thrust truncations of detachment folds have also been identified. The thick section (+6,000 m) of thinly layered incompetent and competent strata facilitate detachment folding. The folds are mainly close to tight, upright to inclined to the northeast, and accompany northeasterly-directed thrusts. Current estimates of shortening suggest that it is probably somewhat greater than 44 %, and the root zone of the fold and thrust belt appears to be within the Coast Belt to the west. The folds are largely concentric in style and show bedding-plane slickenlines normal to the plunge. Deformation began in mid Cretaceous (Albian) times, and lasted until latest Cretaceous (Maastrichtian) time. Locally, contractional structures are noted, as are normal faults. They await integration into the regional picture. Many orogen-parallel faults show sub-horizontal slickenlines, presumably reflecting the latest dextral transverse deformation of the Cordillera.

In the area of interest the structural deformation manifests itself as a locally deformed, tilted thrust slab with the oldest rocks to the east. The toe of the main thrust is located near the northwest-draining Bear Lake Drainage system. Hazelton rocks are exposed here. The contact between the upper clastic part of the Hazelton group and the lower members of the clastic Bowser lake group is not yet differentiated in this area. Fossils indicate at least some of the beds are Bowser Lake equivalents but further stratigraphic studies are needed. A unit very similar to Jenkins Creek strata (mainly siltstone with carbon rich layers and plant fossils) but possibly somewhat older, is noted in the northwest part of the area of interest; it has been labeled the Endless Creek assemblage, awaiting formal correlation⁴. Locally, fault systems sub-parallel to the axes of the fold system, and appropriate secondary faults, create small offsets. The Motase valley south of the lake is possibly underlain by a small tongue of down dropped mid- to late Cretaceous Skeena group rocks, reaching up from the south. It is possible that several northwest-trending, northeast-verging thrust faults traverse the area of interest.

Cretaceous and Tertiary stocks intrude the Bowser Lake Group. Only a few intrusions in this area are related to the Bulkley suite intrusions that are found mainly to the south, where they are mainly 1 to 5 km in diameter, high level, compositionally intermediate hornblende and/or biotitebearing granitoids. Radiometric determinations to the south suggest ages of about 88 to 70 Ma. The Bulkley suite includes equigranular and porphyritic phases of hornblende diorite, biotite hornblende granodiorite, and quartz monzonite. These constitute a mainly calcalkaline suite. To

⁴ Note that on Figure 4 and Figure 5 rocks ascribed to the Endless Creek Assemblage in Evenchick et al., 2003, are shown as undivided Bowser Lake and Hazelton groups, or undivided Bowser Lake Group.

the south there are many undated medium-grained hornblende diorites which are also considered to be part of the Bulkley suite. Metamorphic aureoles around these stocks are narrow.

According to the latest mapping, Tertiary intrusions in the whole basin include tonalite, granodiorite, granite, diorite, monzogranite and monzodiorite. They are associated with the Babine and Kastberg plutonic suites. Intrusions east and south of Motase Lake, in the southern part of area of interest, are now designated as Tertiary, in contrast to their prior correlation, with the late Cretaceous Bulkley Suite and later Eocene dykes, in earlier publications and assessment reports. There are no current age determinations on these particular intrusive bodies. South of the area of interest, a variety of Tertiary intrusive suites have generated considerable commercial interest. These include the productive Babine, Nanika and Alice Arm suites. East of the area of Electrum's interest, hypabyssal Tertiary intrusions are called Kastberg intrusives. They are small stocks, dykes, and sills of distinctly porphyritic rocks thoroughly weathered to a depth of 1 cm or so. The phenocrysts are mainly blocky white plagioclase crystals, but quartz eyes and biotite are visible. Other facies show bipyramidal, rounded and embayed quartz phenocrysts with feldspar, biotite, and rare hornblende phenocrysts. No commercial deposits have been associated with these intrusions but they are often mineralized with pyrite, and locally carry precious metals.

The region has been subjected to only low grades of regional metamorphism. The Hazelton volcanics are at most prehnite-pumpellyite grade, and overlying rocks are generally lower grade than that. Recently the basin, and its carbon-rich beds, have been assessed for their suitability to be sources of and/or hosts to petroleum resources. The area of interest has been assessed as having low potential for both gas and oil production. As mentioned above, metamorphic aureoles around near surface intrusions are narrow. Rocks are mainly affected by high-level brittle styles of deformation. Minor ductile style deformation is only noted in the vicinity of the few intrusions in the area.

3. Mineral Deposits in the District

The area of interest to Electrum is mainly on map sheets 94D03 and 094D02W, and contains 24 Minfile occurrences, of which Electrum has 12 under claim. The styles of mineralization in the Minfile descriptions include "red bed" copper mineralization in Hazelton volcanic rocks, and porphyry systems are noted in late Cretaceous Bulkley type intrusions which, to the south, are hosts to a number of commercial deposits.

The following table lists the Minfile occurrences that Electrum holds in the area of interest. Number 061 relates to the Jake Property.

Claim Group or Project	Minfile Number	Commodity	host rock
PWD	-061	Cu, Mo	Porphyry Dykes/ Undifferentiated BL/Hs
TUT	-073	Мо	Bulkley / Undifferentiated BL/Hs
TUT	-041	polymetallic	Dykes/ Undifferentiated BL/Hs
PAT	-058	Cu	Hazelton volcanic units
PAT	-117	Cu	Hazelton volcanic units
PAT	-120	Cu	Hazelton volcanic units
PAT	-071	Cu	Hazelton volcanic units

SAY	-103	Cu	Hazelton volcanic units
IFT	-002-	Cu	Hazelton volcanic units
IFT	-062	Cu	Hazelton volcanic units
MOT-cluster	-042	polymetallic	Bulkley/Kastberg/Hazelton sediments
MOT-cluster	-072	polymetallic	Bulkley/Kastberg/
*BL/Hs undifferentiated sediments of upper Hazelton and lower Bowser Lake Group.			

report 01, Jake Project

report 01, Jake Project

Legend for Figure 4 and Figure 5

	Stratified Rocks
Cenozoic	
Quate	ernary
	Pleistocene and Recent
	Glacial till, alluvium, colluvium, unit designators in parentheses are the inferred
Q	underlying bedrock units; includes substantial areas covered by vegetation; Qla:
	landslide deposit.
Tortic	
Terua	Pliocene
	Mafic (basalt and/or andesite) flows, dykes, and small plugs; columnar jointed
Pv	feldspar phenocrysts
Mesozoic	
Creta	ceous
	Upper Lower and Upper Cretaceous
Sustut Group	
	Campanian and Maastrichtian
	Brothers Peak Formation: Sandstone, siltstone, conglomerate and tuff; sandstone
КВР	and siltstone are cream- and grey-weathering; tuff is cream-weathering;
	conglomerate in lateral continuous sheets is most common near base.
	Aptian or Albian to Campanian
	I ango Creek Formation: micaceous sandstone, siltstone, mudstone, and minor
КТС	qualize grit and people congromerate, sandstone is grey- and green-weathering,
	arev- black- and marcon-weathering
Juras	sic and Cretaceous
	Upper Jurassic and Lower Cretaceous
Bows	er Lake Group
JKBU	Undivided Bowser Lake Group
	Jenkins Creek Assemblage (nonmarine assemblage): mudstone, siltstone, fine-
	grained sandstone, medium-grained sandstone, and rare conglomerate and coal,
	commonly arranged in fining-upward cycles; sandstone is grey-, green-, and
JKBJC	brown-weathering, and occurs as laterally continuous sheets, discontinuous
	sheets, and lenses, lenses are planar and trough crossbedded, rossil plants
	abent
	Muskaboo Creek Assemblage (shelf assemblage): sandstone, siltstone, and
	conglomerate; primary lithofacies is sandstone, forming laterally continuous thin-to-
	thick-bedded sheets; less common are siltstone interbedded with sandstone, and
IKBMC	lenses of conglomerate; sandstone is green-, brown-, and grey-weathering, thin- to
UTEMO	thick-bedded, and locally arranged in coarsening-upward cycles; includes burrows,
	bivalve coquina, and other marine fossils, common ripple marks and crossbedding,
	and local hummocky cross-stratification; conglomerate increases in proportion and
lurae	
Julas	Upper Middle to Upper Jurassic
	Ritchie-Alger Assemblage (submarine fan assemblage): sandstone, siltstone, and
	rare conglomerate; approximately equal proportions of sheet-like intervals. up to 50
JBRA	m thick, dominated either by siltstone, shale and very-fine grained sandstone, or by
	medium-grained sandstone; siltstone and/or fine-grained sandstone is dark grey-
	and black-weathering, sandstone is medium- and light- grey-weathering; abundant

	turbidite features (e.g. Bouma cycles, flame structures, flute-and-groove casts);			
	sections characteristic of JBT not separated at the scale of mapping			
JB/H	Undivided Bowser Lake Group and upper Hazelton Group clastic rocks.			
	Lower and Lower Middle Jurassic			
Hazel	ton Group			
	Undivided volcanic and intercalated clastic rock of the Hazelton Group; includes			
	subaerial and marine mafic volcanic rocks and epiclastic rocks; felsic volcanic			
JHU	rocks include sills, dykes, welded and nonwelded ignimbrite, airfall tuff breccia;			
	epiclastic and bioclastic rocks, includes volcanic debris flow conglomerate, breccia,			
	conglomerate, siltstone, shale, and limestone.			
	Undivided clastic rocks of Spatsizi, Smithers, and Nilkitkwa formations and related			
	volcanic rocks; dominated by siltstone and shale, including siliceous well-bedded			
JHS∪	tuffaceous(?) siltstone, limy siltstone, calcareous to siliceous organic shale,			
	calcareous to siliceous silfstone, fine-grained sandstone; minor constituents are			
	mudstone, limestone, conglomerate, coarse-grained arkose, basalt, and rhyolite.			
	Intrusive Rocks			
Cenozoic				
Tertia	ry _			
	Eocene			
	Kastberg Intrusions: quartz monzonite and felsite			
ТК	(note that although these intrusions do not appear on the accompanying maps,			
	Intrusive rocks believed to belong to the Kastberg Intrusions underly much of the			
	mineralized area on the Jake Property.			
TB	Babine Plutonic Suite: granodiorite, quartz monzodiorite, monzodiorite			

B. Local and Property Geology and Mineralization

Sketchley, (1988) provided a good summary of the property geology as it was then known. The text in italics that follows is essentially that of Sketchley, with minor re-wording:

The Jake Claims are underlain by interbedded mudstone, siltstone, sandstone, wacke and minor conglomerate of the Bowser Lake Group. The mudstones are typically black, whereas the coarser sedimentary rocks vary from grey to black. Dark brown, recessive-weathering limey lenses occur locally. Plant fossils, indicated by black wavy laminae, are locally common. The coarser-grained rocks are typically blocky, whereas the finer-grained rocks are highly fractured. Cross-bedding is rare and was noted only in coarse-grained rocks. Pyrite nodules up to one centimeter in diameter are found in several locations.

The sedimentary rocks intruded by dyke swarms or adjacent to large intrusions are generally altered to hornfels. Some mudstones are "bleached" by alteration. Some hornfels is marked by a spotted texture. Locally abundant chlorite within zones of hornfels on the northern portion of the Jake claims indicates that some sedimentary rocks may have a volcanic component.

Intrusive rocks noted on the Jake are plagioclase porphyries. They are divided into two main varieties: those with biotite and plagioclase phenocrysts in an aphanitic matrix, and those with biotite, hornblende and plagioclase phenocrysts in a fine-grained matrix. Quartz phenocrysts were noted in only a few localities. The porphyritic rocks outcrop extensively in the northern portion of the Jake claims.

Smith (1999) described the results of petrographic work that indicated all of the intrusive rocks on the Jake Property are of latite to quartz latite in composition. While the use of the volcanic term latite is slightly odd, it implies that the intrusive rocks are monzonite to quartz monzonite. In terms of field nomenclature, based on macroscopic characteristics, Smith (1999) described feldspar porphyry, monzonite and diorite.

The intrusive rocks occur as a small stock and as a northeast-trending dyke swarm that is 7 km long by 2.5 km wide. The dikes extend under overburden to the northeast of the Jake claims and pinch out toward the southern portion of the claims. In the southern portion of the claims porphyritic rocks occur as a north-trending stock, 2.5 kilometers long by 0.5 kilometers wide. (The claims to which Sketchley was referring extended considerably farther to the south than do the two mineral tenures that are the topic of the present report.)

Rocks underlying the Jake claims were affected by at least one phase of deformation. Sedimentary rocks are characterized by flat-lying to gently-dipping strata and open folds with axes trending north-northwest. Axial planes are nearly vertical and fold axes plunge gently to the south-southeast. Major joint sets are nearly vertical and trend northeast and northwest. A less prominent joint set trends north-northwest. The predominance of dykes along northeasttrending joints suggests that the dykes postdate the deformation.

According to Evans (1998), "Adjacent to the dykes the Bowser sediments are extensively hornfelsed for 200 - 300 meters which suggests the dykes merge into a larger intrusive body at depth. Sediments are generally sub-vertical near the dyke swarm while gently folded and more flat lying elsewhere on the property suggesting the sediments have been influenced by the intrusive dykes in a doming effect. Contacts from the generally vertical drill holes and surface mapping suggests steep westerly dipping contacts with NW to NE strikes (generally northerly)."

In addition to the sediments and intrusive rocks described by previous authors, Smith (1999) described a sequence of volcaniclastic rocks that he suggested, provisionally, might be attributable to the Skeena Group. Petrographic work cited by Smith (1999) showed the volcaniclastics to be water-lain crystal lithic tuffs. The tuffs were thought to underly the sediments, but no contacts between the two were identified on the property. The authors of the present report did not identify any volcaniclastic rocks during the limited examination of the two tenures that are the topic of this report.

1. Local Minfile Occurrences

There is one Minfile occurrence on the Jake Property, with number 094D 061.

The description that follows is taken, with minor alterations, from the "Capsule Geology" section of the Minfile description.

094D 061 Most commonly known as Jake North, this prospect has also, from time to time, been called Motase A, IN, or JKB.

On Electrum's tenure number 533778 The Jake claims are underlain by interbedded mudstones, siltstones, sandstones, wackes and minor conglomerates of the Middle to Upper Jurassic Bowser Lake Group. These grey to black sediments commonly contain plant fossils, which occur as black wavy laminae. The sediments are intruded by dykes and stocks of biotite- plagioclase porphyry or biotite-hornblende-plagioclase porphyry. The sediments have been hornfelsed around the intrusions. The dykes have a general northeast trend and swarm over a distance of 7 kilometres, pinching to the south and covered by overburden to the north. The dykes are related to, and contemporaneous with, either the Cretaceous Bulkley Intrusions, which occur further to the south, or the Eocene Kastberg Intrusions (Assessment Report 16838). The sediments are generally flat-lying to gently dipping and are folded. The folds have vertical axial planes and the fold axes plunge gently to the south-southeast.

Sulphide mineralization is controlled by the large porphyry system developed by the dyke swarm. The mineralization can be divided into an early, middle and late hypogene stage and a supergene stage.

The early hypogene stage is characterized by copper-molybdenum sulphides in an intensely pyritized area. The best mineralization appears to be associated with potassic alteration and consists of chalcopyrite, molybdenite, bornite and pyrite disseminated in altered country rocks and in small veins or stockworks.

The middle hypogene stage is predominantly characterized by silver, lead and zinc-bearing veins. The veins are composed of white quartz and/or ankerite and contain dark brown sphalerite and pyrite with lesser galena and chalcopyrite.

The late hypogene stage is characterized by argillic alteration zones with pods and veins of pyritic chalcedony. Five alteration zones are recognized, a core vein zone, a silicified zone, an argillic zone, an argillic-sericite zone and an outer propylitic zone. Sulphide mineralization consist of disseminated sphalerite, galena and pyrite associated with the chalcedonic core vein zone. Minor chalcopyrite is associated with the argillic zone.

The supergene stage is characterized by jarosite gossan and hematite. Mineralization consists of native copper, malachite, azurite and chalcanthite. Chalcocite may be present, but was not positively identified (Assessment Report 16838).

One of the best samples analyzed was taken from near an unnamed tributary of the Squingula River. The sample assayed 2.25 grams per tonne gold, 0.16 per cent copper and 8.4 grams per tonne silver (Assessment Report 16838). Another sample from this area assayed 0.3 gram per tonne gold, 33 grams per tonne silver and 1.25 per cent lead (Assessment Report 16838).

2. Alteration and Mineralization

According to Sketchley (1988) the mineralization on the northern part of the Jake Property was emplaced or modified in four stages:

- Early copper-molybdenum mineralization;
- Middle silver-lead-zinc mineralization;
- Late hypogene mineralization; and
- Supergene copper mineralization.

Subsequent writers have presented varying schemes and paragenesis. Smith (1999) described sulphide veinlets up to 10 centimeters thick with varying amounts of quartz. The sulphides that Smith identified were pyrite, arsenopyrite, chalcopyrite, sphalerite and galena, in varying proportions.

The present writers identified the following types of mineralization, in drill core, outcrop or float. They are listed in no particular order of genesis or importance:

- Disseminated pyrite, with occasional traces of chalcopyrite and very rare molybdenite;
- Millimetric pyrite or chalcopyrite veinlets. Bornite may be present in some;
- Quartz and quartz-ankerite veinlets containing pyrite and locally chalcopyrite;
- Hydrothermal breccia with silica cement containing up to 5% pyrite;
- Carbonate veins containing galena;

Descriptions of rock samples, along with analyses for some metals of interest, appear in Appendix 4. Descriptions of mineralization noted in the drill core that Electrum's crew was able to examine appear in Appendix 5.

Figure 5: Local Geology

V. <u>Discussion of 2007 Work</u>

The purpose of the 2007 work on the Jake Property was to evaluate the potential of the property and determine what further work it merits. The author's conclusions relating to those questions are set out in section VI of this report.

The work focused in the areas that were the scenes of most past work; a relatively flat-topped ridge trending east-northeast, and another northeasterly-trending ridge to the south of it. Most of Electrum's work was done on the northerly of the two ridges. The ridges are separated by a steep-walled creek valley, on whose north slope are seen oxidized talus and outcrops, where much of the past work was concentrated. Photo 1 shows that north slope of the valley, or in other words, the south slope of the northern ridge.

Photo 1: Looking North at Mineralized Area

Looking north towards the area where most of the known mineralization is, and where most past work, including drilling, was done. Old exploration roads are visible. The mountains in the distance are north of the Sustut River.

The results of the 2007 sampling in general support the reports of previous workers. Those results appear in Figure 7 through Figure 22, in Appendix 6, at the end of this report. It is evident in the figures that most of Electrum's work was concentrated in the northeast quadrant of Tenure 533778, where the roads built by prior operators, though overgrown, facilitated traverses. Electrum's crew also did one traverse on the south part of Tenure 533778, in the vicinity of what Smith (1999) called the South Grid.

Table 2 and Table 3 summarize the results of Electrum's rock and soil sampling, respectively, for selected metals. The minimum, median, average (or mean) and maximum value are shown for all the data and for two subsets; all those samples on the north ridge ("north" in the tables), and all those samples on the south ridge ("south" in the tables).

Element	Area	Count	Minimum	Median	Average	Maximum
copper ppm	all	52	<1	76	260	2,261
copper ppm	north	37	<1	94	333	2,261
copper ppm	south	13	<1	71	90	270
gold ppb	all	52	<1	19	70	898
gold ppb	north	37	<1	32	93	898
gold ppb	south	13	<1	11	14	50
silver ppm	all	52	<0.2	0.2	3.6	74.4
silver ppm	north	37	<0.2	0.4	4.9	74.4
silver ppm	south	13	<0.2	<0.2	0.2	2.0
moly ppm	all	52	<2	<2	24	608
moly ppm	north	37	<2	<2	28	608
moly ppm	south	13	<2	<2	17	99
lead ppm	all	52	<2	15	564	17,500
lead ppm	north	37	<2	25	786	17,500
lead ppm	south	13	<2	11	18	78
zinc ppm	all	52	5	93	438	9,800
zinc ppm	north	37	24	126	587	9,800
zinc ppm	south	13	5	64	68	258

 Table 2: Simple Statistics for Rock Samples

able 3: Simple Statistics for Soll Sample

Element	Area	Count	Minimum	Median	Average	Maximum
copper ppm	all	46	<1	243	355	1,827
copper ppm	north	39	<1	219	378	1,827
copper ppm	south	7	45	273	226	361
gold ppb	all	46	3	70	147	595
gold ppb	north	39	3	60	130	595
gold ppb	south	7	112	188	237	393
silver ppm	all	46	<0.2	3.5	4.4	31.0
silver ppm	north	39	0.2	3.7	4.9	31.0
silver ppm	south	7	<0.2	1.4	1.6	4.1
moly ppm	all	46	<2	<2	12	120
moly ppm	north	39	<2	3	15	120
moly ppm	south	7	<2	<2	<2	<2

Element	Area	Count	Minimum	Median	Average	Maximum
lead ppm	all	46	32	224	371	4,117
lead ppm	north	39	32	255	410	4,117
lead ppm	south	7	93	146	146	212
zinc ppm	all	46	101	344	370	961
zinc ppm	north	39	101	400	399	961
zinc ppm	south	7	174	208	208	247

It is evident in Table 2 and Table 3 that for most of the selected metals, higher values are typically found on the north ridge than on the south ridge. The one exception to this is a curious one; gold in the soil samples on the south ridge is for the most part higher than on the north ridge. The "soil" samples on the south ridge are all talus fines, whereas on the north ridge many of the samples are true soils. The reason for the relatively high gold values in the talus fines on the south ridge isn't known, and the small number of samples collected there, only 7, make it inappropriate to draw any important conclusions.

Both the soil and rock sample results that appear in Figure 7 through Figure 22 leave one with the impression that there is potential for exploration to the north, beyond the area of Electrum's sampling. The writers believe this to be the case, but with the caveat that the figures appearing in this report do not show any of the large number of soil and rock samples collected by prior workers. Furthermore, the locations and results of the holes drilled by prior operators must be factored in to any decision about future exploration. The locations of some of the drill holes are not public domain knowledge.

The rock sample results obtained by Electrum for metals of commercial interest include a significant number of elevated values. However, no mineralization with potential economic grades over mineable dimensions has been identified. The rock and soil sample results demonstrate the presence of geochemical anomalies that merit follow-up.

VI. Conclusions and Recommendations

The purpose of the 2007 work on the Jake Property was to evaluate the potential of the property and determine what further work it merits. A sufficient number of samples were collected to confirm that mineralization is present, of the kind and character described by previous operators. The observations of the authors indicate that porphyry-style copper mineralization exists, with associated gold, and at least some molybdenum. Lead, zinc and silver are also present in anomalous quantities. The latter three metals, and some or all of the gold, may be related to quartz vein-style mineralization that is present in places. The nature of the relationship between the porphyry and vein-style mineralization is not clear. Even the relative ages of the two styles of mineralization are not known at present.

As noted in section V, the results of Electrum's rock and soil sampling demonstrate the presence of geochemical anomalies that merit follow-up. The first step in following up these results must be to incorporate them into a database with all of the public-domain data generated by prior operators.

The writers recommend the following work program:

- Convert the abundant geochemical data from work by prior operators into digital form and load it into Electrum's GIS database for the Jake Property.
- Convert as much of the existing geophysical data as possible into some form of image that can be used in a GIS system.
- Compile as much of the information from prior drilling as can be obtained, into a digital database suitable for display using appropriate software.

The steps described above will enable the designers of the next exploration program on the Jake Property to make the best use of their exploration resources. Likely components of the next program would include:

- Extend soil and rock sample coverage on a systematic grid pattern to the north and probably northeast of the existing data. It is possible that overburden cover and heavy timber to the north may render conventional sampling media less effective than desired. In that case, the use of less conventional media such as tree bark should be considered.
- A new geophysical survey covering the area of known mineralization and extending northwards and northeastwards. The writers consider an IP survey to be a likely choice of geophysical method, but the method used and design of the program are matters to be decided in consultation with a professional geophysicist.
- Geological mapping of the northern part of the Jake Property, much of which is in dense forest.

Electrum has acquired new claims adjacent to the two tenures considered in this report. Those new claims adjoin the old ones on the southeast, south and southwest. This report considers only the results of the 2007 exploration program and recommendations relating to building upon those results. The newly-acquired claims require separate consideration, although the types of recommendations made in this report, particularly the compiling of existing data, may well also apply to those claims.

VII. <u>Bibliography</u>

Baker, John F. and Rainboth, William

1972: Geophysical and Linecutting Report on the IN Group of Mineral Claims, Squingula River Area, for Canadian Superior Exploration Ltd. B.C. Assessment Report 3,868.

Brace, G.R. and Rainboth, W.

1973: Geochemical and Geophysical Report on the IN A, B, C, D, E Groups of Claims. Report for Canadian Superior Exploration Ltd. B.C. Assessment Report 4,563.

Evans, G.

- 1998: 1997 Geological and Geochemical Report on the Jake Property. Report for Teck Corp. B.C. Assessment Report 25,530.
- Evenchick, C.A., Ferri, F., Mustard, P.S., McMechan, M, Osadetz, K.G., Stasiuk, L, Wilson, N.S.F., Enkin, R.J., Hadlari, T. and McNicoll, V.J.
- 2003: Recent Results and Activities of the Integrated Petroleum Resource Potential and Geoscience Studies of the Bowser and Sustut Basins, Project, British Columbia.

Evenchick, C.A., Mustard, P.S., McMechan, M., Ferri, F., Porter, S., Hadlari, T., and Jakobs, G.

2007: Geology, McConnell Creek, British Columbia; Geological Survey of Canada, Open File 5571; BC Ministry of Energy, Mines and Petroleum Resources, Petroleum Open File 2007-10.

Kahlert, B.H. and Rainboth, W.

1968: Report on Geochemical and Prospecting Survey Carried Out on the Squingula Property of Canadian Superior Exploration Limited. Report for Canadian Superior Exploration Limited, B.C. Assessment Report 1,874.

Linden, Gerald E., Price, Stephen M. and Cannon, Richard

1990: A geological, Geochemical and Geophysical Report on the Jake Claims. Report for Placer Dome Inc. B.C. Assessment Report 20,607.

Lord, C.S.

1948: McConnell Creek Area – Cassiar District, British Columbia: Geological Survey of Canada, Memoir 251, 75 pp.

MacIntyre, D.G.

2007: Skeena Arch Metallogenic Data and Map. GeoFile 2007-3, Geoscience BC Report 2007-5, Geoscience BC Contribution GBC047.

Sketchley, Dale A.

1988: Jake Mineral Claims, Geochemistry and Geology. Report by MineQuest Exploration Associates Ltd. for QPX Minerals Inc. B.C. Assessment Report 16,838.

Smith, Scott W.

1999: Geological and Geochemical Report on the 1998 Program, Jake Property. Report for Teck Corporation. B.C. Assessment Report 25,931.

Statement of Qualifications for P.A. Ronning

I, Peter Arthur Ronning, of 1450 Davidson Road, Langdale, B.C., hereby certify that:

- I am a consulting geological engineer, doing business under the registered name New Caledonian Geological Consulting. My business address is 1450 Davidson Road, Gibsons, B.C., V0N 1V6.
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of British Columbia in geological engineering, with the degree of B.A.Sc. granted in 1973.
- 4. I am a graduate of Queen's University in Kingston, Ontario, with the degree of M.Sc. (applied) in geology granted in 1983.
- 5. I have worked as a geologist and latterly as a geological engineer in the field of mineral exploration since 1973, in many parts North and South America.
- 6. I am an author of the report entitled "2007 Exploration Program on the Jake Property" and dated 30 May 2008.
- 7. The conclusions expressed in this report are professional opinions, based upon my own work in the subject area and on sources acknowledged in the text. I participated in the field work described in this report. Having undertaken reasonable due diligence, and believing the information I have used to be correct, I nevertheless accept no responsibility for the accuracy of information that I did not personally originate.
- 8. I neither own nor control a beneficial interest in the mineral property that is the subject of this report, nor in any corporation or other entity whose value could reasonably be expected to be affected by the conclusions expressed herein, including Electrum Resource Corporation (a private company) and its affiliates. I do not expect to receive any such interest. I do have a personal and business relationship with the principal of Electrum.
- 9. This report may be used by Electrum for any lawful purpose for which it is suitable. Should it be necessary to use abridgments of or excerpts from the report, these must be made in such as way as to retain their original meaning and context. All reasonable efforts must be made to obtain my approval prior to any use of such abridgments or excerpts.

Peter A. Ronning, P.Eng.

Author's Certificate for Mikkel Schau

I have been a rock hound, prospector and geologist for over 40 years. My mineral exploration experience has been with Shell, Texas Gulf Sulfur, Kennco, Geophoto, Cogema and several public and private mining juniors. I have worked 10 years in southern BC and spent 23 years with the GSC as a field officer focused on mapping in northeastern Arctic Canada. For the last 12 years I have prospected and mapped in Nunavut, Nunavik, Yukon, Ontario and BC.

I reside at 1007 Barkway Terrace, Brentwood Bay, BC, V8M 1A4

I am a P.Geol. licensed (L895) in Nunavut and NT, and a P.Geo. (25977) in BC and Ontario (1047).

I am currently a BC Free Miner, # 142134.

My formal education is that of a geologist, I graduated with an honours B.Sc. in 1964 and Ph.D. in Geology in 1969, both, from UBC.

I am an author of the report entitled "2007 Exploration Program on the Jake Property" and dated 30 May 2008.

The conclusions expressed in this report are professional opinions, based upon my own work in the subject area and on sources acknowledged in the text. I participated in the field work described in this report. Having undertaken reasonable due diligence, and believing the information I have used to be correct, I nevertheless accept no responsibility for the accuracy of information that I did not personally originate.

I neither own nor control a beneficial interest in the mineral property that is the subject of this report, nor in any corporation or other entity whose value could reasonably be expected to be affected by the conclusions expressed herein, including Electrum Resource Corporation (a private company) and its affiliates. I do not expect to receive any such interest.

9. This report may be used by Electrum for any lawful purpose for which it is suitable. Should it be necessary to use abridgments of or excerpts from the report, these must be made in such as way as to retain their original meaning and context. All reasonable efforts must be made to obtain my approval prior to any use of such abridgments or excerpts.

Signed

Mikkel Schau,

Dated May 30, 2008

report 01, Jake Project

Printed: 03 Jun 2008 3:17

Appendix 1: Statement of Costs

The work on the Jake Property was part of a larger project that included work on 5 other claim blocks. Costs have been allocated as follows:

- Helicopter costs were allocated directly, for those days on which field work was done on the Jake claims. Certain other helicopter costs, such as an initial aerial reconnaissance of all the projects, were allocated proportionately.
- Analytical costs were allocated proportionately, depending on the number of samples from each project area.
- Professional fees for sampling, prospecting and geology, were allocated directly for those days on which field work was done on the Jake Property and proportionately for other tasks such as logistics, GIS services, travel, etc.
- All other costs were allocated proportionately.

The total cost of the Jake exploration work in 2007 was \$24,057.26, as indicated below. This is rounded to \$24,000 in all other parts of this report.

A summary table follows, showing the total costs allocated to the Jake claims.

	Jake
Proportion of Costs	0.23
Helicopter	\$9,355.21
Fixed Wing	\$620.42
Fares and Mileage	\$631.77
Field Supplies	\$280.07
Food and Lodging	\$2,152.04
Analytical	\$2,540.79
Professional Services	\$8,476.96
Total	\$24,057.26

On the following pages, details of the costs appear.

Helicopter:

Flight Slip/Invoice	Aircraft	Date	Air Time Cost	Fuel Cost	Total Charge	GST	Total Cost	PWD
3121	CTH	08-Aug-07	\$2,500.00	\$448.00	\$2,948.00	\$176.88	\$3,124.88	0.08
3125	CTH	09-Aug-07	\$2,875.00	\$515.20	\$3,390.20	\$203.41	\$3,593.61	0.58
3129	CTH	10-Aug-07	\$3,000.00	\$537.60	\$3,537.60	\$212.26	\$3,749.86	0.00
3133	CTH	11-Aug-07	\$2,750.00	\$492.80	\$3,242.80	\$194.57	\$3,437.37	0.00
3137	CTH	12-Aug-07	\$2,250.00	\$403.20	\$2,653.20	\$159.19	\$2,812.39	1.00
3142	CTH	13-Aug-07	\$2,750.00	\$492.80	\$3,242.80	\$194.57	\$3,437.37	0.00
3146	CTH	14-Aug-07	\$2,875.00	\$515.20	\$3,390.20	\$203.41	\$3,593.61	0.00
3150	CTH	15-Aug-07	\$2,250.00	\$403.20	\$2,653.20	\$159.19	\$2,812.39	0.00
3316	IZE	16-Aug-07	\$1,710.00	\$346.56	\$2,056.56	\$123.39	\$2,179.95	0.00
3317	IZE/CTH	17-Aug-07	\$1,440.00	\$291.84	\$1,731.84	\$103.91	\$1,835.75	1.00
3324	CTH	18-Aug-07	\$5,250.00	\$940.80	\$6,190.80	\$371.45	\$6,562.25	0.10
3325	CTH	19-Aug-07	\$2,750.00	\$492.80	\$3,242.80	\$194.57	\$3,437.37	0.00
							\$40,576.80	2.77
					Jake To	tal	\$9,355.21	

Fixed Wing Aircraft (total, allocation to Jake not separated in this table):

Flight Slip/Invoice	Aircraft	Date	Description	Miles	Rate/Mile	Flight Cost	Landing Fee	Total Charge	GST	Total Cost
		07-Aug-07	Smithers/Minaret return	210						\$1,113.00
232	E-FAFV	20-Aug-07	Smithers/Minaret return	210	\$7.00	\$1,470.00	\$18.65	\$1,488.65	\$89.32	\$1,577.97
										\$2,690.97

Fixed Wing Allocation to Jake: \$620.42

Invoice	Carrier	Date	Description	Total Charge	GST	Other Taxes	Total Cost
07-025	B.C. Ferries	20-Aug-07	Vehicle and 4 passengers	\$78.50			\$78.50
014 2148 473077	Air Canada	07-Aug-07	Air Fare Vancouver - Smithers Return	\$579.00	\$36.50	\$29.34	\$644.84
014 2148 473078	Air Canada	07-Aug-07	Air Fare Vancouver - Smithers Return	\$579.00	\$36.50	\$29.34	\$644.84
014 2148 473079	Air Canada	07-Aug-07	Air Fare Vancouver - Smithers Return	\$579.00	\$36.50	\$29.34	\$644.84
014 2148 473080	Air Canada	07-Aug-07	Air Fare Vancouver - Smithers Return	\$579.00	\$36.50	\$29.34	\$644.84
01-09-2007-01	B.C. Ferries	06-Aug-07	Ferry and bus	\$29.95			\$29.95
01-09-2007-01	B.C. Ferries	20-Aug-07	Ferry and bus	\$18.00			\$18.00
01-09-2007-01	M. Schau	06-Aug-07	40 km @ 0.48	\$17.20			\$17.20
01-09-2007-01	M. Schau	20-Aug-07	40 km @ 0.48	\$17.20			\$17.20
						Total	\$2,740.21

Fares and Mileage (total, allocation to Jake not separated in this table):

Fares and Mileage allocation to Jake: \$631.77

Field Supplies and Equipment (total, allocation to Jake not separated in this table):

Invoice	Vendor	Date	Description	Man Days	Rate/Man day	Total Charge	GST	Total Cost
52066	Assayers Canada	06-Aug-07	Sample bags			\$291.20	\$17.47	\$308.67
07-025	Air Canada	07-Aug-07	Shipping			\$105.00	\$6.30	\$111.30
07-025	Air Canada	20-Aug-07	Shipping			\$210.00	\$12.60	\$222.60
07-025	NCG	07-Sep-07	Use of vehicle, Rental of Radios			\$490.00	\$29.40	\$519.40
07-025	NCG	07-Sep-07	batteries, markers			\$50.00	\$2.80	\$52.80
						Total		\$1,214.77

Field Supplies and Equipment Allocation to Jake: \$280.07

Food and Lodging (total, allocation to Jake not separated in this table):

Invoice	Vendor	Date	Description	Man Days	Rate/Man day	Total Chai	GST	Total Cost
	Suskeena Lodge	07 - 20 Aug 07	Room and Board	25-Feb-00	\$150.00	\$8,400.00	\$504.00	\$8,904.00
07-025	La Quinta Richmond	06-Aug-07	3 Hotel Rooms			\$392.70	\$1.60	\$394.30
07-025	Silver Tower Café	06-Aug-07	Dinner 4 persons			\$33.80	\$2.03	\$35.83
							Total	\$9,334.13

Food and Lodging Allocation to Jake: \$2,152.04

Analytical:

Invoice	Vendor	Date	Description	Total Charge	GST	Total Cost
28-May-44	Assayers Canada	14-Oct-07	Analytical, over limits	\$363.00	\$21.78	\$384.78
9-Oct-44	Assayers Canada	28-Oct-07	Saw cutting and overlimits	\$487.25	\$29.24	\$516.49
22-Dec-43	Assayers Canada	30-Sep-07	Analytical	\$8,078.62	\$484.72	\$8,563.34
	Assayers Canada	04-Sep-07	Analytical			\$447.00
						\$9,911.61

Analytical Allocation to Jake: \$2,540.79

Professional Services (total, allocation to Jake not separated in this table):

Invoice	Vendor	Date	Description	Units	Number of Unit	Rate/Unit	Total Charge	GST	Total Cost
01-12-2007-01	Mikkel Schau, P. Geo.	01-Dec-07	Professional services	Man Days	5	\$500.00	\$2,500.00	\$150.00	\$2,650.00
06-Dec-07	Alec Tebbutt	06-Dec-07	Technical Services	Man Hours	23.5	\$40.00	\$940.00		\$940.00
2007090701	Alec Tebbutt	07-Sep-07	Technical Services (2 persons)	Man Days	27	\$300.00	\$8,100.00		\$8,100.00
2007090701	Alec Tebbutt	07-Sep-07	Planning and purchasing	Man Days	2.5	\$300.00	\$750.00		\$750.00
01-09-2007-01	Mikkel Schau, P. Geo.	11-Sep-07	Professional services	Man Days	17	\$500.00	\$8,500.00	\$510.00	\$9,010.00
	John Barakso		Supervision one Day	Man Days	1	\$700.00	\$700.00		\$700.00
07-022	New Caledonian Geological	31-Aug-07	Professional services	Man Hours	132	\$70.00	\$9,240.00	\$554.40	\$9,794.40
07-026	New Caledonian Geological	30-Sep-07	Professional services	Man Hours	5.3	\$70.00	\$371.00	\$22.26	\$393.26
07-032	New Caledonian Geological	31-Oct-07	Professional services	Man Hours	17.4	\$70.00	\$1,218.00	\$73.08	\$1,291.08
07-035	New Caledonian Geological	30-Nov-07	Professional services	Man Hours	14	\$70.00	\$980.00	\$58.80	\$1,038.80
08-001	New Caledonian Geological	31-Jan-08	Professional services	Man Hours	1	\$70.00	\$70.00	\$3.50	\$73.50
08-006	New Caledonian Geological	29-Feb-08	Professional services	Man Hours	0.5	\$70.00	\$35.00	\$1.75	\$36.75
08-011	New Caledonian Geological	15-Apr-08	Professional services	Man Hours	28.4	\$70.00	\$1,988.00	\$1.75	\$1,989.75
							Total		\$36,767.54

Professional Services Allocation to Jake: \$8,476.96

Appendix 2: Soil and Stream Sediment Sample Analyses

This tabulation of analytical results for the soil and stream sediment samples was prepared using digital files emailed to the writers directly from Assayers Corporation. The data have been re-formatted but not otherwise edited. The certificate numbers are shown.

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Со
Number	Name	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
7S0067SJ	PWDPR038	1	2.44	350	335	1.4	18	0.01	7	46
7S0067SJ	PWDPR039	<0.2	2.24	149	303	1.2	10	0.02	5	22
7S0067SJ	PWDPR040	<0.2	1.76	109	346	1.4	11	0.02	6	38
7S0067SJ	PWDPR041	1.4	2.26	294	357	1.2	39	0.03	6	50
7S0067SJ	PWDPR042	4.1	0.99	412	298	0.7	59	0.01	8	40
7S0067SJ	PWDPR043	3.5	2.02	293	301	0.8	33	0.01	6	16
7S0067SJ	PWDPR044	1.5	1.75	326	226	1.1	38	0.02	5	26
7S0067SJ	PWDRT301	2	1.59	58	384	0.6	<5	0.16	4	14
7S0067SJ	PWDRT302	2.5	2.08	72	259	0.7	<5	0.07	5	11
7S0067SJ	PWDRT303	3.8	1.95	76	310	0.6	<5	0.1	4	11
7S0067SJ	PWDRT304	3.6	1.99	39	158	0.5	<5	0.05	3	11
7S0067SJ	PWDRT305	3.3	1.52	65	309	0.5	<5	0.1	4	10
7S0067SJ	PWDRT306	1.3	1.11	74	226	0.7	<5	0.08	4	13
7S0067SJ	PWDRT307	9.2	1.12	110	301	0.6	8	0.09	6	38
7S0067SJ	PWDRT308	1.5	1.74	64	127	0.5	<5	0.05	3	15
7S0067SJ	PWDRT309	1.5	1.31	907	638	0.6	<5	0.03	4	22
7S0067SJ	PWDRT310A	0.4	1.23	91	195	0.5	<5	0.76	4	20
7S0067SJ	PWDRT310B	0.2	1.15	118	180	0.5	<5	0.35	3	18
7S0067SJ	PWDRT310C	0.2	1.85	122	258	0.5	<5	0.71	3	21
7S0067SJ	WAT101	2	1.93	263	178	0.7	5	0.03	4	15
7S0067SJ	WAT102	3.7	2.45	233	292	0.8	5	0.1	4	19
7S0067SJ	WAT103A	3.8	3.31	147	313	0.8	6	0.02	5	22
7S0067SJ	WAT103B	3.8	2.77	175	316	0.7	5	0.03	5	18
7S0067SJ	WAT104A	7.5	2.79	178	456	0.5	5	0.01	7	10
7S0067SJ	WAT104B	4.7	3.19	127	601	0.5	8	0.02	7	8
7S0067SJ	WAT105	2.4	1.53	88	189	0.7	<5	0.03	3	12
7S0067SJ	WAT106	3.7	0.95	111	475	0.7	<5	0.1	5	11
7S0067SJ	WAT107	3.5	2.08	61	536	0.5	<5	0.04	5	9
7S0067SJ	WAT108	5.1	2.22	117	1137	0.7	12	0.31	7	12
7S0067SJ	WAT109	12.8	1.8	113	560	0.5	7	0.12	5	8
7S0067SJ	WAT110	1.8	1.86	27	296	0.5	<5	0.07	3	8
7S0067SJ	WAT111	7.6	2.28	68	306	<0.5	5	0.04	3	6
7S0067SJ	WAT112	11.1	2.09	283	346	1.2	18	0.01	9	42
7S0067SJ	WAT113	1.7	2.91	49	197	1.1	<5	0.04	6	12
7S0067SJ	WAT114	15.4	1.58	241	402	0.7	8	<0.01	5	7
7S0067SJ	WAT115	1	2.03	53	227	0.7	<5	0.06	4	11
7S0067SJ	WAT201	31	1.43	322	227	0.9	13	0.01	7	6
7S0067SJ	WAT202	4.6	3.09	56	151	0.8	<5	0.01	4	8
7S0067SJ	WAT203	7.3	3.51	45	141	0.5	<5	0.02	3	8
7S0067SJ	WAT204	0.2	2.69	26	125	0.7	<5	0.05	3	10

report 01, Jake Project

for Electrum Resource Corporation

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Со
Number	Name	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
7S0067SJ	WAT205	4.5	2.05	45	98	0.6	<5	0.08	3	11
7S0067SJ	WAT206	0.7	1.31	61	218	0.7	<5	0.09	4	13
7S0067SJ	WAT207	1.3	3	27	150	0.8	<5	0.03	3	12
7S0067SJ	WAT208	2.8	3.19	35	63	0.7	<5	0.02	4	9
7S0067SJ	WAT209	2.4	2.36	33	128	0.7	<5	0.05	3	10
7S0067SJ	WAT210	1.6	1.98	34	100	0.5	<5	0.08	3	8
7S0067SJ	WAT211	3.8	2.01	69	124	<0.5	<5	0.04	3	12
7S0067SJ	WAT212	5.2	2.15	62	126	0.5	<5	0.06	4	12
7S0067SJ	WAT213	5.3	2.03	65	99	<0.5	<5	0.02	3	7

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Cr	Cu	Fe	Hg	К	La	Mg	Mn	Мо
Number	Name	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm
7S0067SJ	PWDPR038	12	317	13.12	1	0.18	40	0.16	1902	<2
7S0067SJ	PWDPR039	13	45	10.92	<1	0.15	54	0.12	1323	<2
7S0067SJ	PWDPR040	13	45	11.32	2	0.13	59	0.13	2011	<2
7S0067SJ	PWDPR041	13	246	11.84	1	0.14	51	0.16	2399	<2
7S0067SJ	PWDPR042	15	361	14.69	<1	0.1	33	0.23	1788	<2
7S0067SJ	PWDPR043	12	273	11.89	1	0.15	32	0.13	922	<2
7S0067SJ	PWDPR044	13	294	10.48	<1	0.07	46	0.13	1277	<2
7S0067SJ	PWDRT301	19	219	6.19	<1	0.21	27	0.37	771	14
7S0067SJ	PWDRT302	21	207	5.78	<1	0.14	17	0.36	777	<2
7S0067SJ	PWDRT303	17	289	5.51	1	0.12	22	0.29	660	11
7S0067SJ	PWDRT304	22	145	4.76	<1	0.08	<10	0.44	395	4
7S0067SJ	PWDRT305	16	199	5.26	<1	0.15	22	0.31	536	16
7S0067SJ	PWDRT306	14	215	5.33	1	0.13	32	0.26	2298	3
7S0067SJ	PWDRT307	14	1827	9.68	1	0.14	27	0.22	2099	61
7S0067SJ	PWDRT308	17	392	5.8	1	0.11	13	0.3	453	21
7S0067SJ	PWDRT309	16	422	6.15	1	0.14	28	0.28	793	4
7S0067SJ	PWDRT310A	12	68	4.62	<1	0.05	19	0.38	1868	<2
7S0067SJ	PWDRT310B	15	43	4.72	<1	0.04	20	0.43	1030	<2
7S0067SJ	PWDRT310C	16	42	5.38	1	0.05	11	0.66	967	<2
7S0067SJ	WAT101	15	286	7.21	1	0.11	16	0.22	342	10
7S0067SJ	WAT102	15	243	7.19	<1	0.11	13	0.29	576	9
7S0067SJ	WAT103A	21	1125	9.36	1	0.09	21	0.43	596	82
7S0067SJ	WAT103B	19	775	9.18	<1	0.09	20	0.4	722	32
7S0067SJ	WAT104A	29	1110	13.25	1	0.35	16	0.7	206	82
7S0067SJ	WAT104B	30	864	13.4	<1	0.31	21	0.61	115	64
7S0067SJ	WAT105	12	205	6.15	<1	0.14	27	0.18	728	2
7S0067SJ	WAT106	11	377	6.1	1	0.25	30	0.17	1810	10
7S0067SJ	WAT107	16	172	7.85	<1	0.21	17	0.21	816	7
7S0067SJ	WAT108	16	421	8.97	1	0.23	18	0.17	2495	49
7S0067SJ	WAT109	13	912	8.96	1	0.33	16	0.11	766	120
7S0067SJ	WAT110	21	167	4.5	1	0.12	10	0.39	392	3
7S0067SJ	WAT111	22	441	6.97	1	0.18	14	0.26	450	3

report 01, Jake Project

for Electrum Resource Corporation

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Мо
Number	Name	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm
7S0067SJ	WAT112	29	1432	14.2	4	0.3	21	0.08	>10000	<2
7S0067SJ	WAT113	30	113	6.04	2	0.11	22	0.35	3625	<2
7S0067SJ	WAT114	12	340	10.42	<1	0.58	24	0.14	555	<2
7S0067SJ	WAT115	15	9	6.02	2	0.1	23	0.16	1629	<2
7S0067SJ	WAT201	11	607	11.71	<1	0.43	21	0.08	1230	<2
7S0067SJ	WAT202	22	35	8.6	1	0.11	23	0.18	393	<2
7S0067SJ	WAT203	33	5	7.13	1	0.08	10	0.44	275	<2
7S0067SJ	WAT204	27	2	5.75	<1	0.05	<10	0.46	316	<2
7S0067SJ	WAT205	19	21	5.16	<1	0.05	13	0.37	441	<2
7S0067SJ	WAT206	14	57	5.28	1	0.11	29	0.29	1881	<2
7S0067SJ	WAT207	26	<1	6.32	<1	0.07	10	0.36	405	<2
7S0067SJ	WAT208	29	411	6.91	2	0.04	20	0.38	439	<2
7S0067SJ	WAT209	26	113	5.38	1	0.06	10	0.37	555	<2
7S0067SJ	WAT210	23	111	4.68	2	0.05	13	0.44	579	<2
7S0067SJ	WAT211	24	132	5.65	1	0.1	12	0.35	1440	<2
7S0067SJ	WAT212	21	39	5.98	2	0.06	<10	0.22	542	<2
7S0067SJ	WAT213	15	297	5.43	2	0.08	13	0.16	211	<2

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th
Number	Name	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
7S0067SJ	PWDPR038	0.05	29	2517	131	0.59	16	5	48	5
7S0067SJ	PWDPR039	0.04	21	2650	95	0.45	15	3	35	7
7S0067SJ	PWDPR040	0.02	29	2860	93	0.35	16	3	29	7
7S0067SJ	PWDPR041	0.04	24	2761	146	0.48	18	3	38	6
7S0067SJ	PWDPR042	0.01	22	3033	184	0.38	16	8	15	12
7S0067SJ	PWDPR043	0.04	14	3019	212	0.47	13	4	33	<5
7S0067SJ	PWDPR044	0.02	21	2808	161	0.17	16	2	10	5
7S0067SJ	PWDRT301	0.05	24	1289	263	0.42	7	6	86	6
7S0067SJ	PWDRT302	0.01	23	989	282	0.15	8	4	2	<5
7S0067SJ	PWDRT303	0.02	18	1861	245	0.18	7	3	34	6
7S0067SJ	PWDRT304	0.01	26	768	169	0.09	7	3	<1	<5
7S0067SJ	PWDRT305	0.02	20	1254	472	0.28	9	4	42	<5
7S0067SJ	PWDRT306	0.01	21	842	353	0.18	9	5	8	<5
7S0067SJ	PWDRT307	0.01	17	2758	981	0.22	14	5	15	6
7S0067SJ	PWDRT308	0.01	19	1123	238	0.08	<5	4	4	<5
7S0067SJ	PWDRT309	0.01	18	1100	970	0.14	10	11	6	<5
7S0067SJ	PWDRT310A	0.01	19	1014	67	0.07	5	5	34	<5
7S0067SJ	PWDRT310B	0.01	18	882	85	0.05	5	4	14	<5
7S0067SJ	PWDRT310C	0.02	19	936	27	0.06	8	7	41	<5
7S0067SJ	WAT101	0.02	18	1571	347	0.17	14	4	14	<5
7S0067SJ	WAT102	0.02	19	1591	301	0.14	13	4	16	<5
7S0067SJ	WAT103A	0.02	25	1308	224	0.2	13	7	8	<5
7S0067SJ	WAT103B	0.02	21	1581	243	0.2	11	5	7	<5
7S0067SJ	WAT104A	0.05	12	2605	307	0.51	20	17	63	<5

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page VIII

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th
Number	Name	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
7S0067SJ	WAT104B	0.09	10	2920	255	0.77	20	14	95	<5
7S0067SJ	WAT105	0.01	15	1245	265	0.16	7	4	4	<5
7S0067SJ	WAT106	0.02	14	1696	600	0.33	10	4	42	<5
7S0067SJ	WAT107	0.04	15	1889	318	0.51	11	3	74	6
7S0067SJ	WAT108	0.03	11	2357	579	0.3	9	3	130	<5
7S0067SJ	WAT109	0.03	9	2196	1422	0.62	21	4	90	<5
7S0067SJ	WAT110	0.01	26	844	55	0.14	8	3	1	<5
7S0067SJ	WAT111	0.02	16	3377	257	0.25	8	3	6	<5
7S0067SJ	WAT112	0.01	20	3303	327	0.69	16	3	30	<5
7S0067SJ	WAT113	0.01	25	2079	155	0.15	9	4	24	<5
7S0067SJ	WAT114	0.02	13	2616	696	1.16	18	2	121	12
7S0067SJ	WAT115	0.01	16	2009	170	0.07	6	2	3	<5
7S0067SJ	WAT201	0.03	8	2379	4117	0.93	64	1	31	5
7S0067SJ	WAT202	0.02	15	2335	151	0.17	10	3	9	8
7S0067SJ	WAT203	0.01	25	2102	69	0.11	10	4	7	<5
7S0067SJ	WAT204	0.01	27	1493	35	0.02	5	4	4	<5
7S0067SJ	WAT205	0.01	21	750	74	0.04	<5	3	2	<5
7S0067SJ	WAT206	0.01	17	1193	375	0.04	7	5	4	<5
7S0067SJ	WAT207	0.01	25	1636	32	0.03	8	4	5	<5
7S0067SJ	WAT208	0.01	21	2721	65	0.07	7	4	5	<5
7S0067SJ	WAT209	0.01	23	1492	141	0.04	5	4	2	<5
7S0067SJ	WAT210	0.01	23	626	106	0.03	8	5	2	<5
7S0067SJ	WAT211	0.01	21	1664	177	0.1	<5	4	2	<5
7S0067SJ	WAT212	0.01	17	2856	73	0.03	5	4	3	<5
7S0067SJ	WAT213	0.01	13	1813	116	0.07	10	5	1	<5

		ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ti	TI	U	V	W	Zn	Zr
Number	Name	%	ppm	ppm	ppm	ppm	ppm	ppm
7S0067SJ	PWDPR038	<0.01	15	<10	75	22	215	10
7S0067SJ	PWDPR039	0.01	14	11	75	17	174	8
7S0067SJ	PWDPR040	<0.01	23	<10	60	19	190	8
7S0067SJ	PWDPR041	0.01	21	<10	63	21	178	11
7S0067SJ	PWDPR042	<0.01	24	<10	67	25	208	10
7S0067SJ	PWDPR043	<0.01	12	22	90	20	244	8
7S0067SJ	PWDPR044	0.01	21	<10	65	16	247	10
7S0067SJ	PWDRT301	0.03	13	<10	53	<10	331	5
7S0067SJ	PWDRT302	0.02	12	<10	51	<10	692	4
7S0067SJ	PWDRT303	0.02	10	<10	51	<10	470	5
7S0067SJ	PWDRT304	0.02	<10	16	50	<10	247	6
7S0067SJ	PWDRT305	0.02	<10	<10	46	<10	434	3
7S0067SJ	PWDRT306	0.01	<10	<10	41	<10	840	3
7S0067SJ	PWDRT307	0.01	<10	<10	51	<10	485	7
7S0067SJ	PWDRT308	0.02	<10	18	52	<10	275	4
7S0067SJ	PWDRT309	0.02	<10	<10	71	<10	475	4

report 01, Jake Project

		ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ti	TI	U	V	W	Zn	Zr
Number	Name	%	ppm	ppm	ppm	ppm	ppm	ppm
7S0067SJ	PWDRT310A	0.01	<10	<10	49	<10	265	4
7S0067SJ	PWDRT310B	0.01	<10	<10	49	<10	350	3
7S0067SJ	PWDRT310C	0.03	<10	<10	69	<10	128	5
7S0067SJ	WAT101	0.01	<10	12	62	<10	429	5
7S0067SJ	WAT102	0.01	11	<10	68	<10	406	5
7S0067SJ	WAT103A	0.01	14	15	73	10	388	7
7S0067SJ	WAT103B	0.01	<10	14	76	10	432	6
7S0067SJ	WAT104A	0.08	18	62	146	23	136	9
7S0067SJ	WAT104B	0.06	10	69	139	26	101	10
7S0067SJ	WAT105	0.01	13	<10	54	<10	305	4
7S0067SJ	WAT106	0.01	15	<10	44	<10	423	4
7S0067SJ	WAT107	0.01	<10	<10	54	<10	347	6
7S0067SJ	WAT108	0.01	15	<10	87	<10	641	7
7S0067SJ	WAT109	0.01	15	<10	81	10	405	7
7S0067SJ	WAT110	0.02	10	<10	51	<10	226	3
7S0067SJ	WAT111	0.01	14	<10	81	10	101	4
7S0067SJ	WAT112	<0.01	18	<10	46	18	562	12
7S0067SJ	WAT113	0.01	11	<10	52	<10	570	4
7S0067SJ	WAT114	0.01	<10	23	49	11	439	8
7S0067SJ	WAT115	0.01	14	<10	58	<10	400	4
7S0067SJ	WAT201	<0.01	12	<10	25	<10	961	8
7S0067SJ	WAT202	0.02	18	20	67	13	186	10
7S0067SJ	WAT203	0.02	15	13	59	11	156	8
7S0067SJ	WAT204	0.01	<10	<10	64	<10	269	4
7S0067SJ	WAT205	0.01	16	<10	62	<10	323	3
7S0067SJ	WAT206	0.01	18	<10	48	<10	618	3
7S0067SJ	WAT207	0.01	11	11	67	<10	344	8
7S0067SJ	WAT208	0.02	<10	<10	67	<10	303	5
7S0067SJ	WAT209	0.02	<10	<10	61	<10	572	3
7S0067SJ	WAT210	0.02	<10	<10	57	<10	473	4
7S0067SJ	WAT211	0.02	<10	<10	65	<10	367	3
7S0067SJ	WAT212	0.02	<10	<10	72	<10	277	4
7S0067SJ	WAT213	0.01	<10	21	69	<10	161	4

		Geochem
Certificate	Sample	Au
Number	Name	ppb
7S0067SG	PWDPR038	304
7S0067SG	PWDPR039	188
7S0067SG	PWDPR040	186
7S0067SG	PWDPR041	311
7S0067SG	PWDPR042	393
7S0067SG	PWDPR043	168
7S0067SG	PWDPR044	112
7S0067SG	PWDRT301	49
7S0067SG	PWDRT302	60
7S0067SG	PWDRT303	40
7S0067SG	PWDRT304	36
7S0067SG	PWDRT305	146
7S0067SG	PWDRT306	131
7S0067SG	PWDRT307	348
7S0067SG	PWDRT308	68
7S0067SG	PWDRT309	91
7S0067SG	PWDRT310A	28
7S0067SG	PWDRT310B	12
7S0067SG	PWDRT310C	4
7S0067SG	WAT101	36
7S0067SG	WAT102	29
7S0067SG	WAT103A	118
7S0067SG	WAT103B	101
7500675G	WAT104A	210
7S0067SG	WAT104B	272
7S0067SG	WAT105	50
7S0067SG	WAT106	130
7S0067SG	WAT107	427
7500675G	WAT108	595
75006756	WAT109	284
7\$00675G	WAT110	10
7S0067SG	WAT111	295
7\$006756	WAT112	478
75006756	WAT113	62
7S0067SG	WAT114	192
75006756	WAT115	22
75006756	WAT201	<u> </u>
75006756	WAT202	
75006756	WAT202	35
75006750	WAT203	33
75006750	W/AT204	11
75006750	WAT205	70
75006750	W/AT207	л Л
75006750	W/AT208	<u></u>
79006790	WAT200	0
10000100		14

		Geochem
Certificate	Sample	Au
Number	Name	ppb
7S0067SG	WAT210	23
7S0067SG	WAT211	44
7S0067SG	WAT212	9
7S0067SG	WAT213	29

Appendix 3: Rock Chip Sample Analyses

This tabulation of analytical results for the rock samples was prepared using digital files emailed to the writers directly from Assayers Corporation. The data have been re-formatted but not otherwise edited. The certificate numbers are shown.

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ag	AI	As	Ba	Be	Bi	Са	Cd	Со
Number	Name	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
7S0067RJ	PR011	<0.2	0.43	51	143	0.6	<5	1.38	2	6
7S0067RJ	PWDPR030	<0.2	1.15	13	125	<0.5	<5	1.66	2	15
7S0067RJ	PWDPR031	0.2	0.43	25	235	<0.5	<5	<0.01	1	3
7S0067RJ	PWDPR032	<0.2	0.43	73	63	<0.5	<5	0.01	1	3
7S0067RJ	PWDPR033	<0.2	0.59	74	157	<0.5	<5	<0.01	1	5
7S0067RJ	PWDPR034	<0.2	4.65	176	73	<0.5	6	0.04	7	18
7S0067RJ	PWDPR035	<0.2	0.47	175	112	0.6	<5	0.82	2	7
7S0067RJ	PWDPR036	<0.2	0.47	355	415	<0.5	<5	<0.01	1	2
7S0067RJ	PWDPR037	0.8	4.62	133	145	<0.5	<5	0.04	7	9
7S0067RJ	PWDPR045	<0.2	0.61	13	119	0.5	<5	1.96	1	15
7S0067RJ	PWDPR046	2	1.52	53	102	<0.5	<5	1.99	3	7
7S0067RJ	PWDPR047	0.2	1.42	116	292	<0.5	<5	1.29	1	12
7S0067RJ	PWDPR048	1	0.43	113	89	<0.5	<5	0.18	2	16
7S0067RJ	PWDPR049	<0.2	1.74	14	25	<0.5	<5	0.75	4	46
7S0067RJ	PWDPR086	0.5	0.41	25	85	<0.5	<5	0.08	2	7
7S0067RJ	PWDPR087	<0.2	1.15	6	93	<0.5	<5	0.29	3	15
7S0067RJ	PWDPR088	<0.2	0.43	70	109	<0.5	<5	0.8	9	6
7S0067RJ	PWDPR089	8.3	0.4	99	72	<0.5	10	0.04	2	6
7S0067RJ	WAT001	0.3	0.58	<5	156	0.6	<5	0.3	3	9
7S0067RJ	WAT002	<0.2	2.08	14	69	<0.5	<5	1.01	3	42
7S0067RJ	WAT003	2.6	1.68	170	94	<0.5	19	0.1	6	21
7S0067RJ	WAT004	1.8	1.41	7	290	<0.5	<5	0.05	4	22
7S0067RJ	WAT116	1.5	0.56	94	262	<0.5	<5	0.06	2	2
7S0067RJ	WM001	3.1	2.53	192	36	<0.5	<5	0.21	5	33
7S0067RJ	WM002	0.2	0.58	23	105	<0.5	<5	0.1	2	23
7S0067RJ	WM003	<0.2	0.48	10	559	0.5	<5	0.9	1	12
7S0067RJ	WM004	0.4	0.61	7	150	<0.5	<5	0.74	1	6
7S0067RJ	WM005	1.4	2.58	12	127	<0.5	<5	1.46	1	7
7S0067RJ	WM006	2.2	0.33	55	46	<0.5	5	0.01	2	4
7S0067RJ	WM007	0.4	0.46	18	219	<0.5	<5	0.81	7	12
7S0067RJ	WM008	2.8	0.44	9	68	<0.5	<5	0.24	2	31
7S0067RJ	WM009	1.5	0.39	143	61	<0.5	<5	0.18	2	9
7S0067RJ	WM010A	61.3	0.17	639	37	<0.5	<5	2.85	48	6
7S0067RJ	WM010B	74.4	0.15	595	30	<0.5	<5	2.66	30	9
7S0067RJ	WM201	0.4	0.31	15	139	<0.5	<5	0.01	1	1
7S0067RJ	WM202	<0.2	0.38	6	91	<0.5	<5	1.44	2	4
7S0067RJ	WM203	1.7	0.31	21	276	<0.5	<5	<0.01	2	1
7S0067RJ	WM204A	<0.2	0.45	7	374	<0.5	<5	0.15	2	6
7S0067RJ	WM204B	<0.2	0.39	9	480	<0.5	<5	1.09	2	8
7S0067RJ	WM205	<0.2	0.41	<5	112	<0.5	<5	2.6	1	6
7S0067RJ	WM206	<0.2	0.43	13	131	< 0.5	<5	0.02	1	5

report 01, Jake Project

page XII

for Electrum Resource Corporation

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Со
Number	Name	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
7S0067RJ	WM207	8.4	0.37	51	57	<0.5	5	0.46	4	17
7S0067RJ	WM208	7.8	0.31	80	16	<0.5	14	0.05	6	21
7S0067RJ	WM209	<0.2	0.58	<5	296	<0.5	<5	0.15	1	4
7S0067RJ	WM210	<0.2	2.5	25	259	0.5	<5	3.22	2	23
7S0067RJ	WM210B	<0.2	3.24	16	119	<0.5	<5	1.6	3	27
7S0067RJ	WRT001	1.7	0.44	19	46	<0.5	<5	0.08	2	8
7S0067RJ	WRT002	0.9	1.24	21	85	<0.5	<5	0.03	3	4
7S0067RJ	WRT003	1.6	0.42	57	30	<0.5	12	<0.01	2	3
7S0067RJ	WRT004	<0.2	2.15	9	98	<0.5	<5	1.09	1	7
7S0067RJ	WRT005	0.3	1.82	<5	47	<0.5	<5	1.18	1	13
7S0067RJ	WRT006	<0.2	0.54	9	376	<0.5	<5	0.08	2	8
7V2101RJ	PWDPR-088	7.3	0.23	76	177	<0.5	<5	0.99	5	6
7V2101RJ	PWDPR-089	3.9	0.21	41	110	<0.5	<5	0.04	1	2
7V2101RJ	PWD-J99-4	<0.2	0.39	21	170	<0.5	<5	1.85	2	13

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Мо
Number	Name	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm
7S0067RJ	PR011	54	<1	5.22	1	0.38	15	0.43	6382	<2
7S0067RJ	PWDPR030	76	<1	3.92	<1	0.13	49	1.07	668	<2
7S0067RJ	PWDPR031	74	<1	1.64	2	0.13	<10	0.01	7	78
7S0067RJ	PWDPR032	62	1	3.45	1	0.12	18	0.01	16	<2
7S0067RJ	PWDPR033	38	270	3.42	<1	0.12	<10	0.01	46	<2
7S0067RJ	PWDPR034	206	167	>15.00	1	0.06	<10	2.21	503	<2
7S0067RJ	PWDPR035	58	117	3.87	<1	0.11	47	0.26	509	<2
7S0067RJ	PWDPR036	114	12	1.75	1	0.11	<10	0.02	10	<2
7S0067RJ	PWDPR037	221	76	13.78	2	0.06	11	2.62	719	<2
7S0067RJ	PWDPR045	72	5	2.73	<1	0.12	53	0.57	412	61
7S0067RJ	PWDPR046	79	253	4.19	<1	0.06	43	0.96	821	<2
7S0067RJ	PWDPR047	18	71	2.35	<1	0.71	12	0.58	556	<2
7S0067RJ	PWDPR048	80	197	5.65	1	0.13	29	0.02	17	99
7S0067RJ	PWDPR049	78	<1	10.31	<1	0.38	<10	1.2	246	<2
7S0067RJ	PWDPR086	47	<1	3.33	<1	0.26	35	0.02	1122	<2
7S0067RJ	PWDPR087	72	14	2.73	1	0.1	12	0.4	516	<2
7S0067RJ	PWDPR088	64	26	2.79	1	0.35	39	0.22	3232	<2
7S0067RJ	PWDPR089	50	39	4.82	<1	0.31	22	0.02	13	<2
7S0067RJ	WAT001	69	969	4.93	<1	0.2	39	0.16	1620	104
7S0067RJ	WAT002	64	94	6.72	<1	0.14	12	1.81	299	<2
7S0067RJ	WAT003	73	146	13.03	<1	0.22	<10	0.97	134	<2
7S0067RJ	WAT004	84	301	4.02	6	0.15	12	0.44	>10000	<2
7S0067RJ	WAT116	50	83	3.76	<1	0.33	27	0.02	398	<2
7S0067RJ	WM001	93	613	10.38	<1	0.21	<10	2.07	278	78
7S0067RJ	WM002	31	135	4.67	<1	0.14	<10	0.02	117	29
7S0067RJ	WM003	34	14	3.07	<1	0.16	44	0.15	578	<2
7S0067RJ	WM004	61	575	3.26	<1	0.16	34	0.55	211	19

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page XIII

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Мо
Number	Name	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm
7S0067RJ	WM005	60	491	2.73	<1	0.06	<10	1.2	184	2
7S0067RJ	WM006	61	3	4.92	<1	0.23	11	0.02	39	<2
7S0067RJ	WM007	70	156	4.34	<1	0.19	24	0.05	3400	<2
7S0067RJ	WM008	59	585	3.66	<1	0.2	12	0.02	32	<2
7S0067RJ	WM009	46	167	5.27	<1	0.27	11	0.01	330	<2
7S0067RJ	WM010A	73	1926	7.04	4	0.16	<10	0.92	>10000	<2
7S0067RJ	WM010B	80	2261	8.38	5	0.15	10	0.96	>10000	<2
7S0067RJ	WM201	57	12	1.86	<1	0.19	<10	0.02	129	13
7S0067RJ	WM202	60	33	4.16	<1	0.18	29	0.44	260	<2
7S0067RJ	WM203	49	40	4.09	<1	0.58	19	0.02	26	85
7S0067RJ	WM204A	72	11	2.29	<1	0.17	27	0.03	483	<2
7S0067RJ	WM204B	65	49	2.42	<1	0.18	29	0.06	1277	<2
7S0067RJ	WM205	67	<1	2.02	<1	0.18	34	0.33	699	<2
7S0067RJ	WM206	49	32	2.83	<1	0.2	22	0.01	40	<2
7S0067RJ	WM207	61	1747	7.59	<1	0.15	17	0.29	447	15
7S0067RJ	WM208	90	6	13.57	<1	0.29	<10	0.03	<5	<2
7S0067RJ	WM209	53	36	2.59	<1	0.14	26	0.02	286	<2
7S0067RJ	WM210	32	29	5.16	<1	0.15	16	0.83	1099	<2
7S0067RJ	WM210B	47	14	5.78	<1	0.03	10	2.23	1101	<2
7S0067RJ	WRT001	38	592	5.41	<1	0.27	<10	0.03	94	114
7S0067RJ	WRT002	35	441	6.23	<1	0.27	<10	0.47	156	18
7S0067RJ	WRT003	88	125	3.96	<1	0.17	10	0.04	9	608
7S0067RJ	WRT004	42	212	2.73	<1	0.11	<10	1.49	122	3
7S0067RJ	WRT005	76	308	3.44	<1	0.08	<10	1.31	119	<2
7S0067RJ	WRT006	43	92	1.6	2	0.23	33	0.02	5915	<2
7V2101RJ	PWDPR-088	24	1231	2.93	1	0.23	35	0.29	5066	<2
7V2101RJ	PWDPR-089	26	309	3.34	1	0.19	32	0.02	83	<2
7V2101RJ	PWD-J99-4	34	940	3.82	<1	0.14	47	0.88	328	<2

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th
Number	Name	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
7S0067RJ	PR011	0.01	8	840	15	1.85	5	<1	3	<5
7S0067RJ	PWDPR030	0.05	30	1627	5	1.96	5	4	144	11
7S0067RJ	PWDPR031	0.01	4	107	4	0.86	8	<1	2	<5
7S0067RJ	PWDPR032	0.01	5	969	34	1.05	9	1	3	5
7S0067RJ	PWDPR033	0.01	7	644	9	0.09	8	6	2	<5
7S0067RJ	PWDPR034	0.01	22	1503	13	3.12	15	20	19	<5
7S0067RJ	PWDPR035	0.03	17	1307	21	0.52	5	3	45	10
7S0067RJ	PWDPR036	0.01	5	237	11	0.66	28	1	1	<5
7S0067RJ	PWDPR037	0.01	14	1038	13	1.05	24	36	42	<5
7S0067RJ	PWDPR045	0.07	12	1102	10	1.35	<5	2	353	9
7S0067RJ	PWDPR046	0.06	15	1307	78	1.74	5	3	198	13
7S0067RJ	PWDPR047	0.04	13	447	<2	0.45	<5	2	60	<5
7S0067RJ	PWDPR048	0.02	12	768	36	3.26	7	1	4	7

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page XIV

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th
Number	Name	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
7S0067RJ	PWDPR049	0.12	44	1996	3	>5.00	13	13	12	<5
7S0067RJ	PWDPR086	0.01	6	1561	341	0.64	5	1	4	11
7S0067RJ	PWDPR087	0.03	51	601	7	0.03	<5	4	2	<5
7S0067RJ	PWDPR088	0.01	6	993	160	1.67	5	1	<1	5
7S0067RJ	PWDPR089	0.01	6	1060	79	3.1	<5	<1	6	9
7S0067RJ	WAT001	0.05	17	1029	<2	0.32	8	5	2	<5
7S0067RJ	WAT002	0.08	32	1244	7	3.83	7	11	17	<5
7S0067RJ	WAT003	0.07	19	1463	330	2.71	13	12	16	<5
7S0067RJ	WAT004	0.02	29	848	54	0.02	6	6	9	<5
7S0067RJ	WAT116	0.01	4	1619	131	0.24	6	1	2	10
7S0067RJ	WM001	0.02	27	1400	3	>5.00	17	9	14	<5
7S0067RJ	WM002	0.02	15	1019	18	1.95	<5	4	4	<5
7S0067RJ	WM003	0.05	16	1762	4	0.23	<5	2	55	<5
7S0067RJ	WM004	0.05	9	1648	4	1.6	<5	3	78	9
7S0067RJ	WM005	0.32	8	589	<2	1.1	<5	7	88	<5
7S0067RJ	WM006	0.01	7	589	136	3.06	5	<1	6	<5
7S0067RJ	WM007	0.02	16	1252	9	1.14	5	2	<1	<5
7S0067RJ	WM008	0.02	12	1545	84	2.94	<5	2	3	5
7S0067RJ	WM009	0.01	9	1330	30	3.17	<5	1	6	7
7S0067RJ	WM010A	0.01	9	496	9668	>5.00	206	<1	19	<5
7S0067RJ	WM010B	<0.01	10	431	>10000	>5.00	252	<1	8	<5
7S0067RJ	WM201	0.05	3	712	90	0.44	<5	1	<1	<5
7S0067RJ	WM202	0.05	10	1531	23	2.88	<5	1	110	7
7S0067RJ	WM203	0.11	2	913	46	1.22	5	<1	67	6
7S0067RJ	WM204A	0.04	8	1066	25	0.31	<5	1	<1	<5
7S0067RJ	WM204B	0.03	9	1077	29	0.45	<5	1	18	<5
7S0067RJ	WM205	0.04	8	1050	4	0.01	<5	2	118	<5
7S0067RJ	WM206	0.02	3	833	9	2.02	<5	1	<1	<5
7S0067RJ	WM207	0.03	10	1233	96	4.53	5	1	2	<5
7S0067RJ	WM208	0.01	9	522	87	>5.00	14	<1	19	<5
7S0067RJ	WM209	0.01	5	1381	15	0.14	<5	2	<1	5
7S0067RJ	WM210	0.04	15	1840	<2	0.16	<5	6	50	<5
7S0067RJ	WM210B	0.1	22	1132	<2	0.06	5	13	22	<5
7S0067RJ	WRT001	0.04	9	1260	15	1.49	<5	2	<1	<5
7S0067RJ	WRT002	0.05	5	1246	11	0.32	6	4	5	<5
7S0067RJ	WRT003	0.04	4	300	28	0.1	<5	1	3	<5
7S0067RJ	WRT004	0.17	12	568	<2	0.52	<5	7	86	<5
7S0067RJ	WRT005	0.14	13	853	3	1.82	<5	10	17	<5
7S0067RJ	WRT006	0.01	8	868	41	0.01	<5	1	1	<5
7V2101RJ	PWDPR-088	0.01	8	1131	202	1.05	5	1	23	6
7V2101RJ	PWDPR-089	0.01	3	1356	76	0.56	<5	1	11	8
7V2101RJ	PWD-J99-4	0.03	9	1646	13	1.49	<5	3	297	13

		ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ti	TI	U	V	W	Zn	Zr
Number	Name	%	ppm	ppm	ppm	ppm	ppm	ppm
7S0067RJ	PR011	<0.01	<10	<10	9	<10	126	11
7S0067RJ	PWDPR030	0.01	<10	<10	48	<10	101	23
7S0067RJ	PWDPR031	<0.01	<10	17	5	<10	8	2
7S0067RJ	PWDPR032	<0.01	<10	29	15	<10	15	9
7S0067RJ	PWDPR033	<0.01	<10	30	51	<10	33	3
7S0067RJ	PWDPR034	0.05	<10	75	810	29	85	12
7S0067RJ	PWDPR035	<0.01	<10	11	39	<10	69	16
7S0067RJ	PWDPR036	<0.01	<10	16	13	<10	5	2
7S0067RJ	PWDPR037	0.12	<10	56	712	27	76	11
7S0067RJ	PWDPR045	<0.01	<10	<10	21	<10	91	5
7S0067RJ	PWDPR046	<0.01	<10	<10	53	<10	258	13
7S0067RJ	PWDPR047	0.01	<10	<10	32	<10	35	2
7S0067RJ	PWDPR048	<0.01	<10	42	20	<10	64	12
7S0067RJ	PWDPR049	0.14	<10	52	138	17	47	8
7S0067RJ	PWDPR086	< 0.01	<10	<10	17	<10	246	7
7S0067RJ	PWDPR087	<0.01	<10	<10	39	<10	146	3
7S0067RJ	PWDPR088	<0.01	14	<10	8	<10	665	8
7S0067RJ	PWDPR089	<0.01	<10	30	13	<10	109	11
7S0067RJ	WAT001	<0.01	10	<10	75	<10	156	5
7S0067RJ	WAT002	<0.01	<10	21	118	11	74	5
7S0067RJ	WAT003	0.01	<10	81	210	23	162	10
7S0067RJ	WAT004	0.03	<10	<10	54	<10	162	6
7S0067RJ	WAT116	<0.01	<10	<10	19	<10	307	11
7S0067RJ	WM001	0.01	<10	48	119	19	75	8
7S0067RJ	WM002	< 0.01	<10	30	25	<10	76	4
7S0067RJ	WM003	<0.01	<10	<10	39	<10	105	14
7S0067RJ	WM004	0.01	<10	18	37	<10	41	9
7S0067RJ	WM005	0.01	<10	14	81	<10	40	3
7S0067RJ	WM006	< 0.01	<10	37	13	<10	99	7
7S0067RJ	WM007	<0.01	<10	<10	26	<10	654	17
7S0067RJ	WM008	< 0.01	<10	27	33	<10	146	12
7S0067RJ	WM009	< 0.01	<10	15	25	<10	191	11
7S0067RJ	WM010A	<0.01	<10	<10	4	<10	>10000	8
7S0067RJ	WM010B	<0.01	<10	<10	3	<10	6253	8
7S0067RJ	WM201	< 0.01	<10	22	6	<10	61	4
7S0067RJ	WM202	< 0.01	<10	33	33	<10	53	12
7S0067RJ	WM203	<0.01	<10	47	9	<10	93	6
7S0067RJ	WM204A	< 0.01	<10	<10	17	<10	185	9
7S0067RJ	WM204B	<0.01	<10	<10	15	<10	475	8
7S0067RJ	WM205	<0.01	<10	<10	29	<10	121	12
7S0067RJ	WM206	<0.01	<10	36	8	<10	35	10
7S0067RJ	WM207	0.01	<10	35	58	11	129	10
7S0067RJ	WM208	<0.01	<10	94	7	25	34	18
7S0067RJ	WM209	<0.01	<10	20	26	<10	88	11
7S0067RJ	WM210	<0.01	<10	<10	62	<10	79	5

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page XVI

		ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ti	TI	U	V	W	Zn	Zr
Number	Name	%	ppm	ppm	ppm	ppm	ppm	ppm
7S0067RJ	WM210B	0.06	<10	<10	162	<10	112	7
7S0067RJ	WRT001	<0.01	<10	48	34	<10	170	4
7S0067RJ	WRT002	<0.01	<10	45	64	<10	135	4
7S0067RJ	WRT003	<0.01	<10	33	16	<10	24	3
7S0067RJ	WRT004	0.01	<10	25	114	<10	48	3
7S0067RJ	WRT005	0.01	<10	22	107	<10	29	2
7S0067RJ	WRT006	<0.01	<10	<10	12	<10	391	8
7V2101RJ	PWDPR-088	<0.01	<10	<10	14	<10	1042	7
7V2101RJ	PWDPR-089	<0.01	<10	12	28	<10	79	7
7V2101RJ	PWD-J99-4	0.01	<10	12	59	<10	43	8

		Geochem	Geochem
Certificate	Sample	Au	Au-Check
Number	Name	ppb	ppb
7S0067RG	PR011	58	
7S0067RG	PWDPR030	3	
7S0067RG	PWDPR031	4	5
7S0067RG	PWDPR032	15	
7S0067RG	PWDPR033	27	
7S0067RG	PWDPR034	7	
7S0067RG	PWDPR035	14	
7S0067RG	PWDPR036	14	
7S0067RG	PWDPR037	50	
7S0067RG	PWDPR045	4	
7S0067RG	PWDPR046	6	
7S0067RG	PWDPR047	5	
7S0067RG	PWDPR048	25	32
7S0067RG	PWDPR049	11	
7S0067RG	PWDPR086	30	
7S0067RG	PWDPR087	<1	
7S0067RG	PWDPR088	19	
7S0067RG	PWDPR089	99	99
7S0067RG	WAT001	32	
7S0067RG	WAT002	8	8
7S0067RG	WAT003	99	
7S0067RG	WAT004	15	
7S0067RG	WAT116	40	
7S0067RG	WM001	56	
7S0067RG	WM002	5	5
7S0067RG	WM003	6	
7S0067RG	WM004	32	
7S0067RG	WM005	20	
7S0067RG	WM006	18	
7S0067RG	WM007	130	
7S0067RG	WM008	39	

		Geochem	Geochem
Certificate	Sample	Au	Au-Check
Number	Name	ppb	ppb
7S0067RG	WM009	60	
7S0067RG	WM010A	898	
7S0067RG	WM010B	886	942
7S0067RG	WM201	20	
7S0067RG	WM202	12	
7S0067RG	WM203	53	
7S0067RG	WM204A	25	
7S0067RG	WM204B	9	
7S0067RG	WM205	5	
7S0067RG	WM206	67	
7S0067RG	WM207	297	
7S0067RG	WM208	135	
7S0067RG	WM209	10	
7S0067RG	WM210	5	
7S0067RG	WM210B	3	
7S0067RG	WRT001	146	
7S0067RG	WRT002	37	
7S0067RG	WRT003	53	51
7S0067RG	WRT004	9	
7S0067RG	WRT005	13	
7S0067RG	WRT006	6	
7V2101RG	PWDPR-088	25	
7V2101RG	PWDPR-089	48	
7V2101RG	PWD-J99-4	40	

report 01, Jake Project

Appendix 4: Sample Descriptions

SampleID:	<u>elD:</u> PR011		604,154	North: 6,2	34,054	SampleType: core		
Ag_ppm:	-0.2	As_ppm:	51	Ba_ppm:	143	Cu_ppm:	-1	
Pb ppm:	15	Zn ppm:	126	Au ppb:	58	Mo ppm:	-2	

Small piece of drill core taken from PR-011, approximately from 296 ft. to 297 ft. Intense quartz-sericite alteration. Pyrite disseminated, about 5%. Possible traces of chalcopyrite.

SampleID:	<u>):</u> PWDPR030		East: 603,498		North: 6,231,723		SampleType: rock	
Ag_ppm:	-0.2	As_p	pm:	13	Ba_ppm:	125	Cu_ppm:	-1
Pb_ppm:	5	Zn_p	pm:	101	Au_ppb:	3	Mo_ppm:	-2

Grab sample from outcrop on ridge top. Feldspar porphyry, containing 1% disseminated pyrite. Hard, with a blocky fracture. Red, rusty weathering. Possible traces of chalcopyrite and bornite.

SampleID:	PWDPR031 East: 603,498		North: 6,2	231,723	SampleType:rock float			
Ag_ppm:	0.2	As_ppm:	25	Ba_ppm:	235	Cu_ppm:	-1	
Pb_ppm:	4	Zn_ppm:	8	Au_ppb:	4	Mo_ppm:	78	

On same ridge top site as PWDPR030. Grab sample of quartz vein rubble. Contains about 5% pyrite; traces of chalcopyrite, galena, and possibly bornite.

SampleID:	PWDPR032		East: 603,739		North: 6,231,899		SampleType: rock	
Ag_ppm:	-0.2	As_	ppm:	73	Ba_ppm:	63	Cu_ppm:	1
Pb_ppm:	34	Zn_	ppm:	15	Au_ppb:	15	Mo_ppm:	-2

On the ridge top approximately 100 meters south of claim boundary. Feldspar porphyry exhibiting quartz-sericite alteration. About 3% pyrite. Outcrop about 1 square meter.

SampleID:	PWDPR033		st: 603,875	North: 6,232,132		SampleType:rock	
Ag_ppm:	-0.2	As_ppn	n: 74	Ba_ppm:	157	Cu_ppm:	270
Pb_ppm:	9	Zn_ppn	n: 33	Au_ppb:	27	Mo_ppm:	-2

Same location as PWDPR034. Band less than a meter wide of intensely altered sediments trends across the ridge at about 325 degrees. Can't discern dip. The alteration varies from bleaching to semi-massive chlorite to semi-massive biotite. Two samples collected. PWDPR033 consists of bleached rock with patches of orange iron oxides, probably after pyrite. Disseminated pyrite still exists, about 1% of rock.

SampleID:	ampleID: PWDPR034		603,875	North: 6,232,132		SampleType: rock	
Ag_ppm:	-0.2	As_ppm:	176	Ba_ppm:	73	Cu_ppm:	167
Pb_ppm:	13	Zn_ppm:	85	Au_ppb:	7	Mo_ppm:	-2

Same location as PWDPR033. Band less than a meter wide of intensely altered sediments trends across the ridge at about 325 degrees. Can't discern dip. The alteration varies from bleaching to semi-massive chlorite to semi-massive biotite. Two samples collected. PWDPR034 consists of semi-massive biotite containing about 3% disseminated pyrite.

SampleID:	mpleID: PWDPR035		: 603,995	North: 6,232,176		SampleType: rock	
Ag_ppm:	-0.2	As_ppm:	175	Ba_ppm:	112	Cu_ppm:	117
Pb_ppm:	21	Zn_ppm:	69	Au_ppb:	14	Mo_ppm:	-2

Felsic feldspar porphyry as is commonly seen along the top of this ridge. About 1% pyrite disseminated, possible traces of chalcopyrite.

SampleID:	PWDPR	036 East:	604,051	North: 6,232,219		SampleType:roc	
Ag_ppm:	-0.2	As_ppm:	355	Ba_ppm:	415	Cu_ppm:	12
Pb_ppm:	11	Zn_ppm:	5	Au_ppb:	14	Mo_ppm:	-2

A tabular body of quartz vein breccia about 20 cm thick trends about 325 degrees across the ridge. The quartz contains fragments of black shale. Sulphides rare.

SampleID:	PWDPR037		East: 604,060		North: 6,232,244		SampleType: rock	
Ag_ppm:	0.8	As_p	pm:	133	Ba_ppm:	145	Cu_ppm:	76
Pb_ppm:	13	Zn_p	pm:	76	Au_ppb:	50	Mo_ppm:	-2

Outcrop of very rusty manganese-oxide rich sediment. It is intensely leached. Probably contained abundant pyrite. It probably originated as a siltstone and appears to have been strongly chloritized.

SampleID:	PWDPR038 East: 604,135		North: 6,2	232,345	SampleType:talusfines			
Ag_ppm:	1	As_ppr	n: 350	Ba_ppm:	335	Cu_ppm:	317	
Pb_ppm:	131	Zn_ppr	n: 215	Au_ppb:	304	Mo_ppm:	-2	

Sample of talus fines in a slide chute on the north slope of the ridge. Material is reddish-brown.

SampleID:	pleID: PWDPR039		st: 604,105	North: 6,232,379		SampleType: talusfine		nes
Ag_ppm:	-0.2	As_ppm	: 149	Ba_ppm:	303	Cu_ppm:	45	
Pb_ppm:	95	Zn_ppm	174	Au_ppb:	188	Mo_ppm:	-2	

Similar to PWDPR038.

	3				for Elect	rum Resource	Corporation
SampleID:	PWDPR04	0 East: 6	04,007	North: 6,23	32,406	SampleTyp	e:talusfines
Ag_ppm: Pb_ppm:	-0.2 93	As_ppm: Zn_ppm:	109 190	Ba_ppm: Au_ppb:	346 186	Cu_ppm: Mo_ppm:	45 -2
Similar to P	WDPR038.						
SampleID:	PWDPR04	1 East: 6	03,972	North: 6,23	32,402	SampleTyp	e: talusfines
Ag_ppm:	1.4	As_ppm:	294	Ba_ppm:	357	Cu_ppm:	246
Pb_ppm:	146	Zn_ppm:	178	Au_ppb:	311	Mo_ppm:	-2
Similar to P	WDPR038.						
SampleID:	PWDPR04	2 East: 6	03,882	North: 6,23	32,427	SampleTyp	e:talusfines
Ag_ppm:	4.1	As_ppm:	412	Ba_ppm:	298	Cu_ppm:	361
Pb_ppm:	184	Zn_ppm:	208	Au_ppb:	393	Mo_ppm:	-2
Similar to P	WDPR038.						
SampleID:	PWDPR04	3 East: 6	03,854	North: 6,23	32,447	SampleTyp	e: talusfines
Ag_ppm:	3.5	As_ppm:	293	Ba_ppm:	301	Cu_ppm:	273
Pb_ppm:	212	Zn_ppm:	244	Au_ppb:	168	Mo_ppm:	-2
Similar to P	WDPR038.						
SampleID:	PWDPR04	4 East: 6	03,697	North: 6,23	32,449	SampleTyp	e:talusfines
Ag_ppm:	1.5	As_ppm:	326	Ba_ppm:	226	Cu_ppm:	294
Pb_ppm:	161	Zn_ppm:	247	Au_ppb:	112	Mo_ppm:	-2
Talus fines f	rom a sma	Il slide chute	amongst	scrub juniper	r.		
SampleID:	PWDPR04	5 East: 6	03,317	North: 6,23	32,453	SampleTyp	e: rock talus
Ag_ppm:	-0.2	As_ppm:	13	Ba_ppm:	119	Cu_ppm:	5
Pb_ppm:	10	Zn_ppm:	91	Au_ppb:	4	Mo_ppm:	61

Collected at pick-up spot near toe of talus slope while waiting for helicopter. Felsic feldspar porphyry typical of the dikes in this area. Relatively fresh. About 2% pyrite disseminated. Possible traces of chalcopyrite.

SampleID:	PWDPR	046 East:	603,317	North: 6,2	32,453	SampleTy	pe:rock talus	
Ag_ppm:	2	As_ppm:	53	Ba_ppm:	102	Cu_ppm:	253	
Pb_ppm:	78	Zn_ppm:	258	Au_ppb:	6	Mo_ppm:	-2	

Collected at pick-up spot near toe of talus slope while waiting for helicopter. Medium grained granodiorite. Fresh, but contains about 3% pyrite disseminated. Possible traces of chalcopyrite.

SampleID:	PWDPR047 East: 603		603,317	03,317 North: 6,232,453			be: rock talus
Ag_ppm:	0.2	As_ppm:	116	Ba_ppm:	292	Cu_ppm:	71
Pb_ppm:	-2	Zn_ppm:	35	Au_ppb:	5	Mo_ppm:	-2

Collected at pick-up spot near toe of talus slope while waiting for helicopter. Fine grained felsic rock that presumably came from a dike or sill. Medium grey, not porphyritic. Hard, sharp, conchoidal fracture. Pyrite disseminated and concentrated on fracture surfaces. Possible traces of chalcopyrite.

SampleID:	elD: PWDPR048		t: 603,317	North: 6,232,453		SampleType:rock talu		alus
Ag_ppm:	1	As_ppm:	: 113	Ba_ppm:	89	Cu_ppm:	197	
Pb_ppm:	36	Zn_ppm	64	Au_ppb:	25	Mo_ppm:	99	

Collected at pick-up spot near toe of talus slope while waiting for helicopter. Feldspar porphyry; partly clay altered, meteorically. Pyrite disseminated. Millimetric veinlets of pyrite and possibly arsenopyrite.

SampleID:	PWDPR	049 Ea	st: 603,317	North: 6,232,453		SampleType: rock talus		
Ag_ppm:	-0.2	As_ppn	n: 14	Ba_ppm:	25	Cu_ppm:	-1	
Pb_ppm:	3	Zn_ppn	n: 47	Au_ppb:	11	Mo_ppm:	-2	

Probably feldspar porphyry, but highly altered. Mafics destroyed. Pyrite about 5% in subcentimetric veinlets and stringers. Fracture surfaces are coated with yellow and brown oxides.

SampleID:	SampleID: PWDPR086		East: 604,785		North: 6,2	33,853	SampleType:rock		
Ag_ppm:	0.5	As_p	om:	25	Ba_ppm:	85	Cu_ppm:	-1	
Pb_ppm:	341	Zn_p	pm:	246	Au_ppb:	30	Mo_ppm:	-2	

Outcrop in road cut. Feldspar porphyry typical of this area. The mafics have been destroyed, leaving orange-red iron oxides. Pyrite about 1%, disseminated, partly oxidized. Grab sample.

SampleID:	npleID: PWDPR087		st: 604,837	North: 6,2	33,884	SampleType:rock		
Ag_ppm:	-0.2	As_ppm	1: 6	Ba_ppm:	93	Cu_ppm:	14	
Pb_ppm:	7	Zn_ppm	1: 146	Au_ppb:	-1	Mo_ppm:	-2	

Probably subcrop; i.e. covered by a thin veneer of soil. Dirty sandstone or wacke. Contains grains of feldspar and quartz, plus rock fragments that are probably mudstone. Heavily coated with orange-red oxides. Traces of disseminated pyrite. Grab sample.

SampleID:	PWDPR	088	East:	604,920	North: 6,2	34,044	SampleTyp	e:rock
Ag_ppm:	-0.2	As_	_ppm:	70	Ba_ppm:	109	Cu_ppm:	26
Pb_ppm:	160	Zn_	_ppm:	665	Au_ppb:	19	Mo_ppm:	-2

Possible outcrop at the base of the road cut embankment. Probably originated as feldspar porphyry but now completely altered by quartz-sericite. Rusty red to yellow weathering. Pyrite disseminated, about 2%, surprisingly fresh. Grab sample.

	NCG
--	-----

SampleID:	PWDPR	089 Ea :	st: 604,920	North: 6,2	34,152	SampleTy	pe: rock
Ag_ppm:	8.3	As_ppn	1: 99	Ba_ppm:	72	Cu_ppm:	39
Pb_ppm:	79	Zn_ppn	n: 109	Au_ppb:	99	Mo_ppm:	-2

Outcrop similar in character to PWDPR088, but here it is more obvious that it is outcrop and not a large piece of float. Grab sample.

SampleID:	PWDRT3	BO1 East:	604,200	North: 6,2	33,744	SampleTy	be: talusfines
Ag_ppm:	2	As_ppm:	58	Ba_ppm:	384	Cu_ppm:	219
Pb_ppm:	263	Zn_ppm:	331	Au_ppb:	49	Mo_ppm:	14
Beige to tar	talus fine	es from a cat	road.				
SampleID:	PWDRT3	BO2 East:	604,297	North: 6,2	33,695	SampleTy	be: talusfines
Ag_ppm:	2.5	As_ppm:	72	Ba_ppm:	259	Cu_ppm:	207
Pb_ppm:	282	Zn_ppm:	692	Au_ppb:	60	Mo_ppm:	-2
Brown talus	fines; so	me clay conte	ent.				
SampleID:	PWDRT3	803 East:	604,389	North: 6,2	33,690	SampleTy	be: talusfines
Ag_ppm:	3.8	As_ppm:	76	Ba_ppm:	310	Cu_ppm:	289
Pb_ppm:	245	Zn_ppm:	470	Au_ppb:	40	Mo_ppm:	11
Light brown	earthy ta	alus fines.					
SampleID:	PWDRT3	BO4 East:	604,472	North: 6,2	33,697	SampleTy	be: soil
Ag_ppm:	3.6	As_ppm:	39	Ba_ppm:	158	Cu_ppm:	145
Pb_ppm:	169	Zn_ppm:	247	Au_ppb:	36	Mo_ppm:	4
Light brown	sandy so	il in a cat trai	1.				
SampleID:	PWDRT3	805 East :	604,310	North: 6,2	33,673	SampleTy	so il
Ag ppm:	3.3	As ppm:	65	Ba ppm:	309	Cu ppm:	199
Pb_ppm:	472	Zn_ppm:	434	Au_ppb:	146	Mo_ppm:	16
Soil sample	near som	e drill casing					
SampleID:	PWDRT3	BOG East:	604,218	North: 6,2	33,651	SampleTy	be: soil
Ag_ppm:	1.3	As ppm:	74	Ba_ppm:	226	Cu_ppm:	215
Pb_ppm:	353	Zn_ppm:	840	Au_ppb:	131	Mo_ppm:	3

	3				for Elect	rum Resource	Corporation
SampleID:	PWDRT307	East: 6	04,096	North: 6,2	33,654	SampleTy	pe: soil
Ag_ppm:	9.2	As_ppm:	110	Ba_ppm:	301	Cu_ppm:	1827
Pb_ppm:	981	Zn_ppm:	485	Au_ppb:	348	Mo_ppm:	61
<u>SampleID:</u> Ag_ppm: Pb_ppm:	PWDRT308 1.5 238 2	B East: 6 As_ppm: Zn_ppm:	04,015 64 275	North: 6,2 Ba_ppm: Au_ppb:	33,541 127 68	SampleTy Cu_ppm: Mo_ppm:	pe: soil 392 21
<u>SampleID:</u>	PWDRT309) East: 6	03,822	North: 6,2	33,418	SampleTy	pe: soil
Ag_ppm:	1.5	As_ppm:	907	Ba_ppm:	638	Cu_ppm:	422
Pb_ppm:	970	Zn_ppm:	475	Au_ppb:	91	Mo_ppm:	4
SampleID:	PWDRT310)A East: 6	03,528	North: 6,2	33,141	SampleTy	pe: strmsed
Ag_ppm:	0.4	As_ppm:	91	Ba_ppm:	195	Cu_ppm:	68
Pb_ppm:	67 2	Zn_ppm:	265	Au_ppb:	28	Mo_ppm:	-2
<u>SampleID:</u> Ag_ppm: Pb_ppm:	PWDRT310 0.2 / 85 2)B East: 6 As_ppm: Zn_ppm:	03,528 118 350	North: 6,2 Ba_ppm: Au_ppb:	33,141 180 12	SampleTy Cu_ppm: Mo_ppm:	pe: strmsed 43 -2
<u>SampleID:</u> Ag_ppm: Pb_ppm:	PWDRT310 0.2 27 2	OC East: 6 As_ppm: Zn_ppm:	03,528 122 128	North: 6,2 Ba_ppm: Au_ppb:	33,141 258 4	SampleTy Cu_ppm: Mo_ppm:	pe: strmsed 42 -2
<u>SampleID:</u> Ag_ppm: Pb ppm:	WAT001 0.3 -2	East: 6 As_ppm: Zn ppm:	04,305 -5 156	North: 6,2 Ba_ppm: Au ppb:	33,918 156 32	SampleTy Cu_ppm: Mo_ppm:	pe: rock 969 104
Sample co	ollected by a	prospector	r from an	outcrop nea	r an old (drill site.	

	3				for Elect	rum Resource	Corporation
SampleID:	WAT002	East: 6	503,789	North: 6,23	33,611	SampleTy	be: rock
Ag_ppm:	-0.2	As_ppm:	14	Ba_ppm:	69	Cu_ppm:	94
Pb_ppm:	7	Zn_ppm:	74	Au_ppb:	8	Mo_ppm:	-2
Sample co	ollected by	a prospecto	r from an	outcrop in a	road cut	. Description	unavailable.
SampleID	\A/ATOO2	East: 6	502 9/1	North: 6.2	22 610	SamplaTu	no: rock
Ag nomi	2 C		170		04		146
Ag_ppm:	2.0	As_ppm: Zn_nnm:	162	Da_ppin:	94	Cu_ppm: Mo_ppm:	140 _2
Po_ppin.	330	211_pp111.	102	Au_ppp.	55	Mo_ppin.	-2
SampleID:	WAT004	East: 6	504,675	North: 6,23	34,117	SampleTyp	be: rock
Ag ppm:	1.8	As ppm:	7	Ba ppm:	290	Cu ppm:	301
Pb_ppm:	54	Zn_ppm:	162	Au_ppb:	15	Mo_ppm:	-2
<u>SampleID:</u>	WAT101	East: 6	503,787	North: 6,23	33,611	SampleTyp	be: soil
Ag_ppm:	2	As_ppm:	263	Ba_ppm:	178	Cu_ppm:	286
Pb_ppm:	347	Zn_ppm:	429	Au_ppb:	36	Mo_ppm:	10
	N/AT402	E			22 644	Consulta T	
<u>SampleID:</u>	WA1102	East: t	503,787	North: 6,2:	33,611	SampleTyp	be:talus fines
Ag_ppm:	3.7	As_ppm: -	233	Ba_ppm:	292	Cu_ppm:	243
Pb_ppm:	301	Zn_ppm:	406	Au_ppb:	29	wo_ppm:	9
SampleID:	WAT103A	East: 6	503,893	North: 6,23	33,630	SampleTyp	be: soil
Ag_ppm:	3.8	As_ppm:	147	Ba_ppm:	313	Cu_ppm:	1125
Pb_ppm:	224	Zn_ppm:	388	Au_ppb:	118	Mo_ppm:	82
SampleID:	WAT103B	East: 6	503,893	North: 6,23	33,630	SampleTvr	be: talus fines
Ag nnm.	3.8	As ppm:	175	Ba ppm:	316	Cu ppm:	775
Pb_ppm:	243	Zn_ppm:	432	Au_ppb:	101	Mo_ppm:	32

	6				for Elect	rum Resource	Corporation
SampleID:	WAT104A	East: 6	03,973	North: 6,2	33,679	SampleTyp	be: soil
Ag_ppm:	7.5	As_ppm:	178	Ba_ppm:	456	Cu_ppm:	1110
Pb_ppm:	307	Zn_ppm:	136	Au_ppb:	210	Mo_ppm:	82
<u>SampleID:</u> Ag_ppm:	WAT104B 4.7	B East: 6 As_ppm:	03,973 127	North: 6,2 Ba_ppm:	33,679 601	SampleTyp Cu_ppm:	be: talus fines 864
Pp_ppm:	255	Zn_ppm:	101	Au_ppb:	272	ivio_ppm:	64
SampleID:	WAT105	East: 6	604,052	North: 6,2	33,749	SampleTyp	be: talus fines
Ag_ppm: Ph_nnm·	2.4 265	As_ppm: Zn_nnm:	88 305	ва_ррт: Ан pph:	189 50	Cu_ppm: Mo_nnm·	205
r o_ppin.	205	211_ppin.	303	Au_ppp.	50	wo_ppm.	2
SampleID:	WAT106	East: 6	04,155	North: 6,2	33,778	SampleTyp	be: talus fines
Ag_ppm:	3.7	As_ppm:	111	Ba_ppm:	475	Cu_ppm:	377
Pb_ppm:	600	Zn_ppm:	423	Au_ppb:	130	Mo_ppm:	10
SampleID:	WAT107	East: 6	04.254	North: 6.2	33.777	SampleTyr	be :talus fines
Ag ppm:	3.5	As ppm:	61	Ba ppm:	536	Cu ppm:	172
Pb ppm:	318	Zn ppm:	347	Au ppb:	427	Mo ppm:	7
SampleID:	WAT108	Fast: 6	04.348	North: 6.2	33,809	SampleTyr	se :talus fines
Ag nom:	5 1	As nom:	117	Ba nnm:	1137	Cu nnm:	421
Pb ppm:	579	Zn ppm:	641	Au ppb:	595	Mo ppm:	49
SampleID:	WAT109	East: 6	604,433	North: 6,2	33,868	SampleTyp	be: talus fines
Ag_ppm:	12.8	As_ppm:	113	Ba_ppm:	560	Cu_ppm:	912
Pb_ppm:	1422	Zn_ppm:	405	Au_ppb:	284	Mo_ppm:	120

	3				for Elect	rum Resource	Corporation
SampleID:	WAT110	East: 6	504,526	North: 6,2	33,910	SampleTy	pe: talus fines
Ag_ppm:	1.8	As_ppm:	27	Ba_ppm:	296	Cu_ppm:	167
Pb_ppm:	55	Zn_ppm:	226	Au_ppb:	19	Mo_ppm:	3
<u>SampleID:</u> Ag_ppm: Pb_ppm:	WAT111 7.6 257	East: 6 As_ppm: Zn_ppm:	504,607 68 101	North: 6,2 Ba_ppm: Au_ppb:	33,963 306 295	SampleTyı Cu_ppm: Mo_ppm:	pe: soil 441 3
<u>SampleID:</u>	WAT112	East: 6	504,670	North: 6,2	34,040	SampleTy	pe: soil
Ag_ppm:	11.1	As_ppm:	283	Ba_ppm:	346	Cu_ppm:	1432
Pb_ppm:	327	Zn_ppm:	562	Au_ppb:	478	Mo_ppm:	-2
<u>SampleID:</u> Ag_ppm: Pb_ppm:	WAT113 1.7 155	East: 6 As_ppm: Zn_ppm:	504,677 49 570	North: 6,2 Ba_ppm: Au_ppb:	34,150 197 62	SampleTyı Cu_ppm: Mo_ppm:	pe: soil 113 -2
SampleID:	WAT114	East: 6	504,731	North: 6,2	34,063	SampleTy	pe: soil
Ag_ppm:	15.4	As_ppm:	241	Ba_ppm:	402	Cu_ppm:	340
Pb_ppm:	696	Zn_ppm:	439	Au_ppb:	192	Mo_ppm:	-2
SampleID:	WAT115	East: 6	504,775	North: 6,2	33,820	SampleTy	pe: soil
Ag_ppm:	1	As_ppm:	53	Ba_ppm:	227	Cu_ppm:	9
Pb_ppm:	170	Zn_ppm:	400	Au_ppb:	23	Mo_ppm:	-2
SampleID:	WAT116	East: 6	504,766	North: 6,2	33,979	SampleTy	pe: rock
Ag_ppm:	1.5	As_ppm:	94	Ba_ppm:	262	Cu_ppm:	83
Pb_ppm:	131	Zn_ppm:	307	Au_ppb:	40	Mo_ppm:	-2

	3				for Elect	rum Resource	Corporation
SampleID:	WAT201	East: 6	504,670	North: 6,2	34,182	SampleTyp	be: soil
Ag_ppm:	31	As_ppm:	322	Ba_ppm:	227	Cu_ppm:	607
Pb_ppm:	4117	Zn_ppm:	961	Au_ppb:	495	Mo_ppm:	-2
SampleID	W/AT202	Fast: 6	504 720	North: 62	34 084	SampleTvr	ne: soil
	16		56	Bo nom:	151		25
Ph ppm:	4.0 151	As_ppin. 7n_ppm:	186	Au nnh:	51	Mo nnm:	-2
SampleID:	W/AT203	 Fast: 6	504 760	North: 62	33 996	SampleTvr	ne •soil
Ag nom:	7 2		ле Ле		1 / 1		E
Ph ppm:	69	As_ppin. 7n_ppm:	45 156	Au nnh:	35	Mo nnm:	-2
		Factor			22.002	for a star	1
SampleID:	WA1204	East: 6	504,790	North: 6,2	33,903	SampleTyp	be:soll
Ag_ppm:	0.2	As_ppm:	26	Ba_ppm:	125	Cu_ppm:	2
- b_ppin.		211_pp	205	Au_ppb.	5	wio_ppin.	-2
SampleID:	WAT205	East: 6	504,760	North: 6,2	33,807	SampleTyp	be: soil
Ag_ppm:	4.5	As_ppm:	45	Ba_ppm:	98	Cu_ppm:	21
Po_ppm:	74	Zn_ppm:	323	Au_ppb:	11	SomploTu	-Z
<u>Sampleid:</u>	0 7		61		210		
Ag_ppm:	U./ 375	As_ppm: Zn_ppm:	01 618	ва_ppm: Au_pph:	218 70	Cu_ppm: Mo_nnm·	57 -2
· 5_ pp	575	211_pp	010	Ad_bbo:	70	шо_ррш.	L
SampleID:	WAT207	East: 6	504,836	North: 6,2	33,882	SampleTyp	be: soil
Ag_ppm:	1.3	As_ppm:	27	Ba_ppm:	150	Cu_ppm:	-1
Pb_ppm:	32	Zn_ppm:	344	Au_ppb:	4	Mo_ppm:	-2

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page XXVII

	3				for Elect	rum Resource	Corporation
SampleID:	WAT208	East: (504,879	North: 6,2	33,955	SampleTy	pe: soil
Ag_ppm:	2.8	As_ppm:	35	Ba_ppm:	63	Cu_ppm:	411
Pb_ppm:	65	Zn_ppm:	303	Au_ppb:	8	Mo_ppm:	-2
<u>SampleID:</u>	WAT209	East: (504,922	North: 6,2	34,043	SampleTy	pe: soil
Ag_ppm:	2.4	As_ppm:	33	Ba_ppm:	128	Cu_ppm:	113
Pb_ppm:	141	Zn_ppm:	572	Au_ppb:	14	Mo_ppm:	-2
<u>SampleID:</u> Ag_ppm:	WAT210 1.6	East: (As_ppm:	504,921 34	North: 6,2 Ba_ppm:	34,141 100	SampleTy Cu_ppm:	pe: soil 111
Pb_ppm:	106	Zn_ppm:	473	Au_ppb:	23	Mo_ppm:	-2
<u>SampleID:</u> Ag_ppm: Pb_ppm:	WAT211 3.8 177	East: (As_ppm: Zn_ppm:	604,915 69 367	North: 6,2 Ba_ppm: Au_ppb:	34,254 124 44	SampleTy Cu_ppm: Mo_ppm:	pe: soil 132 -2
SampleID:	WAT212	East: (504,911	North: 6,2	34,348	SampleTy	pe: soil
Ag_ppm:	5.2	As_ppm:	62	Ba_ppm:	126	Cu_ppm:	39
Pb_ppm:	73	Zn_ppm:	277	Au_ppb:	9	Mo_ppm:	-2
SampleID:	WAT213	East: (504,890	North: 6,2	34,449	SampleTy	pe: soil
Ag_ppm:	5.3	As_ppm:	65	Ba_ppm:	99	Cu_ppm:	297
Pb_ppm:	116	Zn_ppm:	161	Au_ppb:	29	Mo_ppm:	-2
<u>SampleID:</u> Ag_ppm:	WM001 3.1	East: (As_ppm:	503,787 192	North: 6,2 Ba_ppm:	33,611 36	SampleTy Cu_ppm:	pe: rock 613
Pb_ppm:	3	Zn_ppm:	75	Au_ppb:	56	Mo_ppm:	78
$\frac{-1}{2}$ to 10 cm^{-1}	addad sili	 ceous siltstor	oo (hornfe	Je?) Pock ha	a light	areenish arev	colour on t

2 to 10 cm bedded siliceous siltstone (hornfels?) Rock has a light greenish grey colour on fresh surface. Pyrite veins and breccia zones cut across 10 to 20 cm thick bedding with orientation 300/35. Outcrop.

report 01, Jake Project

Printed: 03 Jun 2008 3:17

page XXVIII

SampleID:	WM002	East: 6	503,806	North: 6,2	33,610	SampleTy	be: rock
Ag_ppm:	0.2	As_ppm:	23	Ba_ppm:	105	Cu_ppm:	135
Pb_ppm:	18	Zn_ppm:	76	Au_ppb:	5	Mo_ppm:	29

Outcrop of porcelaneous silica with subconchoidal surfaces. Contains disseminated pyrite. Could be a silicified siltstone, or possibly a hornfels.

SampleID:	WM003	East:	East: 603,893		North: 6,233,630		be: rock
Ag_ppm:	-0.2	As_ppm:	10	Ba_ppm:	559	Cu_ppm:	14
Pb_ppm:	4	Zn_ppm:	105	Au_ppb:	6	Mo_ppm:	-2

Outcrop of fine grained, grey, silicified siltstone with a beige to tan salmon surface colour, presumably from staining by iron solutions, perhaps derived from very fine grained pyrite. Disseminations could be a hornfels.

SampleID:	ampleID: WM004		503,929	North: 6,2	233,645	SampleType: rock		
Ag_ppm:	0.4	As_ppm:	7	Ba_ppm:	150	Cu_ppm:	575	
Pb_ppm:	4	Zn_ppm:	41	Au_ppb:	32	Mo_ppm:	19	

Feldspar porphyry, has salmon pink alteration, with altered (sericitic) feldspars up to 5 mm, and cut by wall paper veins of pyrite.

SampleID:	WM005	East: 6	503,973	North: 6,2	.33,679	SampleTy	pe:rock
Ag_ppm:	1.4	As_ppm:	12	Ba_ppm:	127	Cu_ppm:	491
Pb_ppm:	-2	Zn_ppm:	40	Au_ppb:	20	Mo_ppm:	2

Outcrop of grey very fine grained rock with a microbreccia texture and pyrite disseminated in rock fragments and in veinlets; maybe this a microbreccia within the porphyry.

SampleID:	WM006	East: 6	504,071	North: 6,2	33,769	SampleTyp	e: rock
Ag_ppm:	2.2	As_ppm:	55	Ba_ppm:	46	Cu_ppm:	3
Pb_ppm:	136	Zn_ppm:	99	Au_ppb:	18	Mo_ppm:	-2

Outcrop of light beige feldspar porphyry with local sericitized feldspar and disseminated pyrite.

SampleID:	WM007	East:	604,254	North: 6,233,777		SampleType: rock	
Ag_ppm:	0.4	As_ppm:	18	Ba_ppm:	219	Cu_ppm:	156
Pb_ppm:	9	Zn_ppm:	654	Au_ppb:	130	Mo_ppm:	-2

Outcrop of red stained feldspar porphyry with pyrite veining. Feldspars are altered (kaolin present) but the red stain seems to mark areas of hematized mafic constituents.

SampleID:	WM008	East: 6	504,607	North: 6,2	33,963	SampleTy	pe: rock
Ag_ppm:	2.8	As_ppm:	9	Ba_ppm:	68	Cu_ppm:	585
Pb_ppm:	84	Zn_ppm:	146	Au_ppb:	39	Mo_ppm:	-2

Outcrop of relatively fresh porphyry, feldspars are sericitized with disseminated pyrite.

report 01, Jake Project

SampleID:	WM009	East: 604,670		North: 6,234,040		SampleType:roc	
Ag_ppm:	1.5	As_ppm:	143	Ba_ppm:	61	Cu_ppm:	167
Pb_ppm:	30	Zn_ppm:	191	Au_ppb:	60	Mo_ppm:	-2

Outcrop of microbreccia texture developed in sericitized feldspar porphyry with disseminated pyrite.

<u>SampleID:</u>	WM010A	East:	604,731	North: 6,2	34,063	SampleTy	pe: rock
Ag_ppm:	61.3	As_ppm:	639	Ba_ppm:	37	Cu_ppm:	1926
Pb_ppm:	9668	Zn_ppm:	9800	Au_ppb:	898	Mo_ppm:	-2

Outcrop of a Vein of galena in carbonate vein. site is stained presumably by manganese liberated from the dissolution of the carbonate. The host rock is pyritic and feldspar altered porphyry.

SampleID:	WM010B East: 6		604,731	North: 6,2	North: 6,234,063		pe: rock
Ag_ppm:	74.4	As_ppm:	595	Ba_ppm:	30	Cu_ppm:	2261
Pb_ppm:	17500	Zn_ppm:	6253	Au_ppb:	886	Mo_ppm:	-2

Outcrop of Vein of galena in carbonate vein. site is stained presumably by manganese liberated from the dissolution of the carbonate. the host rock is pyritic and feldspar altered porphyry

SampleID:	WM201	East: 6	504,137	North: 6,233,991		SampleType: rock	
Ag_ppm:	0.4	As_ppm:	15	Ba_ppm:	139	Cu_ppm:	12
Pb_ppm:	90	Zn_ppm:	61	Au_ppb:	20	Mo_ppm:	13

Outcrop of silicified siltstone, porcelaneous siltstone with limonite staining and alteration.

SampleID: WM202		East: 604,122		North: 6,233,972		SampleType: roc	
Ag_ppm:	-0.2	As_ppm:	6	Ba_ppm:	91	Cu_ppm:	33
Pb_ppm:	23	Zn_ppm:	53	Au_ppb:	12	Mo_ppm:	-2

Outcrop of limonite stained silicified feldspar porphyry with finely disseminated pyrite.

SampleID:	WM203	East: 604,200		North: 6,233,744		SampleType:roc	
Ag_ppm:	1.7	As_ppm:	21	Ba_ppm:	276	Cu_ppm:	40
Pb_ppm:	46	Zn_ppm:	93	Au_ppb:	53	Mo_ppm:	85

Outcrop of kaolinitized pyritized and locally silicified material of obscure origin.

SampleID:	WM204A	East:	604,297	North: 6,2	33,695	SampleTyp	e: rock
Ag_ppm:	-0.2	As_ppm:	7	Ba_ppm:	374	Cu_ppm:	11
Pb_ppm:	25	Zn_ppm:	185	Au_ppb:	25	Mo_ppm:	-2

Outcrop of bleached feldspar porphyry with local kaolinitic groundmass.

report 01, Jake Project

SampleID:	WM204B East: 604,29		604,297	North: 6,233,695		SampleType: rock	
Ag_ppm:	-0.2	As_ppm:	9	Ba_ppm:	480	Cu_ppm:	49
Pb_ppm:	29	Zn_ppm:	475	Au_ppb:	9	Mo_ppm:	-2

Outcrop of Dark weathering feldspar porphyry (manganese stained).

SampleID:	WM205	East: 604,218		North: 6,233,651		SampleType: roc	
Ag_ppm:	-0.2	As_ppm:	-5	Ba_ppm:	112	Cu_ppm:	-1
Pb_ppm:	4	Zn_ppm:	121	Au_ppb:	5	Mo_ppm:	-2

Outcrop of feldspar porphyry with pale bluish grey matrix with relatively fresh feldspars (up to 1 cm, albite lamellae noted) no pyrite seen, no kaolin.

SampleID: WM206		East: 604,164		North: 6,233,656		SampleType:ro	
Ag_ppm:	-0.2	As_ppm:	13	Ba_ppm:	131	Cu_ppm:	32
Pb_ppm:	9	Zn_ppm:	35	Au_ppb:	67	Mo_ppm:	-2

Outcrop of pale beige weathering, pale bluish greyish feldspar porphyry (with feldspar to 5 mm) with abundant small pyrite crystals.

SampleID:	WM207	East: 604,096		North: 6,233,654		SampleType:rock	
Ag_ppm:	8.4	As_ppm:	51	Ba_ppm:	57	Cu_ppm:	1747
Pb_ppm:	96	Zn_ppm:	129	Au_ppb:	297	Mo_ppm:	15

Outcrop of feldspar porphyry with disseminated pyrite and veins of pyrite (up to 7 mm width).

SampleID:	WM208	East: 604,082		North: 6,233,614		SampleType:rock	
Ag_ppm:	7.8	As_ppm:	80	Ba_ppm:	16	Cu_ppm:	6
Pb_ppm:	87	Zn_ppm:	34	Au_ppb:	135	Mo_ppm:	-2

Outcrop of pyrite veined altered (sericitized) feldspar porphyry.

SampleID:	WM209	East: 604,015		North: 6,233,541		SampleType:rock	
Ag_ppm:	-0.2	As_ppm:	-5	Ba_ppm:	296	Cu_ppm:	36
Pb_ppm:	15	Zn_ppm:	88	Au_ppb:	10	Mo_ppm:	-2

Outcrop of altered feldspar porphyry with rust spots with pyrite cores.

SampleID:	WM210	East: 603,528		North: 6,233,141		SampleType:rock	
Ag_ppm:	-0.2	As_ppm:	25	Ba_ppm:	259	Cu_ppm:	29
Pb_ppm:	-2	Zn_ppm:	79	Au_ppb:	5	Mo_ppm:	-2

Outcrop of black siltstone, not mineralized or altered.

report 01, Jake Project

	NCG
--	-----

\checkmark							
SampleID:	WM210B	East: (503,528	North: 6,2	33,141	SampleTy	pe: rock
Ag_ppm:	-0.2	As_ppm:	16	Ba_ppm:	119	Cu_ppm:	14
Pb ppm:	-2	Zn ppm:	112	Au ppb:	3	Mo ppm:	-2
Outeren of	ahin conald		minorali-		d		
Outcrop of a	cinh condic	finerale, not	mmeranz		u.		
SampleID:	WRT001	East: 6	504,305	North: 6,2	33,918	SampleTy	pe: rock
Ag_ppm:	1.7	As_ppm:	19	Ba_ppm:	46	Cu_ppm:	592
Pb_ppm:	15	Zn_ppm:	170	Au_ppb:	146	Mo_ppm:	114
Sample colle	ected by a	prospector r	ear an ol	d drill site.			
F	···· , ·	r - r					
SampleID:	WRT002	East: (504,381	North: 6,2	33,992	SampleTy	pe: rock
Ag ppm:	0.9	As nom:	21	Ba ppm:	85	Cu ppm:	441
Pb ppm:	11	7n ppm:	135	Au pph:	37	Mo ppm:	18
			100			_ pp	10
Rock sample	e collected	by a prospe	ctor. Des	cription unav	ailable.		
SampleID:	WRT003	East: (503,794	North: 6,2	33,611	SampleTy	pe: rock
Ag_ppm:	1.6	As_ppm:	57	Ba_ppm:	30	Cu_ppm:	125
Pb_ppm:	28	Zn_ppm:	24	Au_ppb:	53	Mo_ppm:	608
Rock sample	o collected	hy a prospe	tor Des	cription upay	ailable		
noen sumpr	concerca	by a prosper					
SampleID:	WRT004	East: (503,809	North: 6,2	33,611	SampleTy	pe: rock
Δg nnm·	-0.2	Δs nnm·	ý Q	Ba nnm·	98		212
Ph nnm	-2	7n nnm	48	Δu nnh·	9	Mo nnm:	3
· •_pp	-		40		J	- · · · ·	
Sample colle	ected by a	prospector f	rom an ex	kposure in a r	oad cut.	Description	not available.
SampleID:	WRT005	East: 6	503,841	North: 6,2	33,619	SampleTy	pe: rock
Ag_ppm:	0.3	As_ppm:	-5	Ba_ppm:	47	Cu_ppm:	308
Pb_ppm:	3	Zn_ppm:	29	Au_ppb:	13	Mo_ppm:	-2
Sample colle surface.	ected by a	prospector f	rom an oi	utcrop in a ca	t road. I	Hard rock wit	h an oxidized outer
SampleID:	WRT006	East: (504,675	North: 6,2	34,117	SampleTy	pe: rock
Ag nom:	-0.2	As ppm:	9	Ba ppm:	376	Cu ppm:	92
Pb ppm:	41	Zn ppm:	391	Au ppb:	6	Mo ppm:	-2
Compared as III					-	····	_
sample colle	ected by pi	ospector. H	aru plack	TOCK IN road	LUL.		

Appendix 5: Drill Core Quick Logs

This appendix contains quick logs of that drill core that Electrum's crew found to be still usable.

Cores located at core dump include three generations of cores.

• An old set of cores, which until fairly recently was well racked, but now has suffered from a collapse and later dispersion. Birds and other creatures have rendered the tags illegible.

Some of the core was relatively rich in pyrite (some short core lengths were more than half pyrite).

- A set of DDH which were laid out on the ground and represent 1970's drilling. Of these most of the tags had been destroyed. Several of these core boxes were investigated and results are described below.
- The core boxes for the 1999 drill holes were found stacked and protected from animals with a wrapping of chicken wire. The 1999 core was in very good condition.

These logs were prepared in a brief period of time and cannot be comprehensive. However, as the original drill logs for these holes are not in the public domain, it was deemed useful to obtain such a description as time permitted. Intervals are approximate.

From (feet)	To (feet)	Description
		Hole 70-73-1
209	226	split gravelly microbreccia with quartz and pyrite matrix, fragments are dark siltstone; local patches of botryoidal silica and pyrite, rare quartz veins up to a cm across, some have a very thin dark center fill, also very thin (wallpaper) veins of "botryoidal quartz
280	291.5	split microbreccia with matrix of quartz and pyrite, fragments are feldspar porphyry, local veins with thin (.25 mm) layers of sulphides (either bornite or very stained pyrite). Scarce quartz veins, local botryoidal quartz.
369	384	split very clay rich rock (argillic alteration) host is rust stained feldspar porphyry with altered dark minerals. Veins of solid pyrite with very local chalcopyrite (thickness of one such vein is a foot, on either side a halo of very clayey rock some 2 to 4 ft wide). Locally sphalerite was noticed in a thin pyrite vein cutting recognizable porphyry.
411	424	split pale pinky beige feldspar porphyry with thin wallpaper veins of white slick alteration (not kaolin, possibly sericite)
437.6	453	split altered porphyry, local veins with limonite fillings, also local wall-paper veins with chalcopyrite and ankerite?.Also a very fine grained grey blue metallic unidentified mineral on and in chalcopyrite, set in clay altered rock, wall paper relatively abundant but mostly coated with pyrite
453	465.3	split beige clay coloured host rock is fine grained porphyry with crowded clay altered feldspars and local veins with brown material (soft), ankerite? And local 1 mm thick, mainly pyrite with minor chalcopyrite veins, also joints with thin coatings of chalcopyrite.
468.5	482.?	split greyish pink fine grained porphyry with limonite alteration (deep red and orange colours) resulting from 10-15% disseminated pyrite.

From (feet)	To (feet)	Description
482.3	497	split main rock type is porphyry with brown altered feldspars in a siliceous matrix, with abundant disseminated pyrite. Small sections of microbreccia. Thin grey veins up to 1 ½ cm thick. With quartz, pyrite and chalcopyrite. Also a 3 cm thick vein of quartz, chalcopyrite, scarce grey mineral. A 1 cm vein of pyrite and copper minerals (mainly green alteration minerals) also cuts siliceous alteration of matrix of porphyry. Also near vein, a local concentration (a patch) of sulphides, mainly pyrite, but also some chalcopyrite within alteration Local wall paper on joints is chalcopyrite and green alteration.
497	512.3	split near a fault zone? With later intense limonite staining. Mottled alteration, altered feldspars beige and soft->limonite, some disseminated sulphides and local leached areas. Some of the less altered rock pieces are breccia. Veins up to a cm thick with "ankerite" and sulphides (pyrite greater than chalcopyrite greater than bornite? And very minor fine grained grey metallic mineral) also minor local sulphide disseminations. Core box marked with blue ribbon
512.3	527.7	 split More heterogeneous section, a central part is altered to clay and rust with some relic pyrite, Less altered porphyry on either side of alteration (a fault?). The salmon pink coloured porphyry carries local wall paper joints with pyrite, chalcopyrite limonite and ankerite?. Thin blue grey quartz vein with tiny but identifiable chalcopyrite and very tiny specks of grey metallic mineral. NB blue grey metallic mineral is not galena, nor molybdenite. Might it be tetrahedrite? It's in tiny wee specks.
527.7	543	split salmon pink porphyry with sulphide veins; feldspars are beige (clay altered) porphyry is mainly fine grained with small feldspars, although a few reach cross sections of several mm. Vein with sulphide center, selvages with disseminated sulphides and quartz, feldspars in selvage area are white, away from selvage they are pink.
543	558.?	split mainly salmon pink porphyry with variable amounts of sulphide (mainly pyrite), some feldspars are clay altered and beige. Thin pyrite vein has quartz` rich selvage. A thicker pyrite vein 7 mm thick with border of quartz rich matrix and relic feldspars, also many wall paper joints, usually several cm apart. One quartz vein has a K-spar core???, also saw a thin brown ankerite vein (saw carbonate cleavage and was soft)
558.3	573.5	split salmon pink porphyry with veins and disseminated pyrite. Matrix of porphyry is very siliceous with variable amounts of pyrite. Some fp have well preserved cleavage faces, others are altered in part to ankerite. Very local bornite?, some pyrite, mainly pyrite
573.1?	???	split abundant and scattered sulphide veins in porphyry. Veins are quartz, ankerite and pyrite. A four foot section carries mainly sulphide (pyrite, some chalcopyrite, minor bornite, both in veins and disseminated near veins. Matrix is largely replaced by quartz (and locally by ankerite) Feldspars are altered to a brownish pink.
613	628.6	split mainly feldspar porphyry with minor biotite, local hornblende. Very few veins, most of core is salmon pink in colour, feldspars are reddish, save a 2 ft section in which feldspars are white and clay-altered. Very few sulphides.
644	???	split Several types of porphyry; several dykes? Type with fine grain, ½ mm feldspars, grey coarser type with biotite/chlorite and feldspars to 2 mm. And white types with altered feldspars to 3 mm, and silicified matrix. scarce 2-3 mm thick veining of quartz, rusty ankerite and sulphides

From (feet)	To (feet)	Description
660.2	675	split relatively fresh, reddish type porphyry with sparse porphyry (hematite staining?) also grey type porphyry with more abundant pyrite, and relatively fresh biotite with a several mm thick single prominent sulphide vein (bornite) see picture, also wall paper joints with limonite and hematite(?) and thin mm thick quartz veins
675.7	692	split deep mainly fresh feldspar porphyry with felsic very fine grained matrix and rare quartz eyes. Feldspars are 1 to three mm, are pink and often weather out and take up about 60%, about 10% is biotite/chlorite, with a few rare hornblende needles set in a silicic matrix . Scattered flakes of molybdenite(?) and few pyrite grains, few wall paper joints
		Hole 70-73-2
12	26	split clay altered limonite stained porphyritic rock, w/ malachite stained joint surfaces
26	37	clay altered limonite stained porphyritic rock with local sections of pyrite veins and local patch of microbreccia with quartz and pyrite in matrix
37	4?	mainly broken core fragments of clay altered limonite stained porphyritic rock with local breccias
48.5	5??	split as above with 3 ft (1 meter) thick section of very pyrite rich material
196	211	split microbreccia, local wall paper with chalcopyrite and ankerite?, also black coating (Mn compound? Possibly neotocite(?))
217	226	split (The reason for the break between 211 and 217 is not evident; perhaps they lost core?) Microbreccia with beige porphyry fragments, shows local quartz veins with thin dark centerline of sulphide
226	241	split beige porphyry
302	???	split sediments (siltstone) with veins of quartz and pyrite
		Hole 70-73-7
???	114	split rusty and green weathering breccia with very rusty fragments set in a cement of pyrite
11?	???	split white clay rich material (local sediment (siltstone?) breccia with clay vein fill and chalcopyrite on fracture surfaces as well as complex pyrite veins (stockwork?)
		Summary of Holes 70-73-1, -2 and -7
Hole 1 cut thick, with	through a co variable amo	opper mineralized and altered (sericite?) porphyry. The section was about 177 ft ounts of chalcopyrite found in veins with pyrite and as wall paper.
Hole 2 hit p was preser	oyrite veins a nt at 200 ft de	bout 230 to 300 ft down. The hole was not carefully examined, but chalcopyrite own.
Hole 7 at a matrix and	bout 110 ft s veins (possi	hows local breccia of deeply altered clay rich country rock fragments with sulphide bly as a stockwork) carrying mostly pyrite but minor chalcopyrite.

From (feet)	To (feet)	Description
		Hole J-99-02
110	258	Feldspar porphyry. Quartz-sericite-pyrite alteration, with variable quantities of pyrite. Parts of this interval have been split.
258	272	Very finely crystalline felsic dike. Medium grey, quartz-sericite altered, about 3% pyrite disseminated with traces of chalcopyrite. Interval has been split.
272	294	Feldspar porphyry; quartz-sericite-pyrite alteration. Interval has been split.
294	332	Core missing, though blocks are present to mark intervals.
332	375	Medium grey very finely crystalline felsic dike. Pyrite disseminated in variable amounts. Pyrite and trace chalcopyrite in millimetric stringers. Locally some bleached material.
	375	End of Hole
		Hole J-99-03
66	105	Feldspar porphyry as described in J-99-04. Quartz-sericite alteration. Variable quantities of pyrite, with traces of chalcopyrite. Interval has been split.
105	204	Feldspar porphyry. Quartz-sericite alteration. Sulphide content very low. Interval not split.
204	400	Feldspar porphyry. Quartz-sericite alteration. Pyrite disseminated in the order of 1%. Traces of chalcopyrite.
	1	Hole J-99-04
4	138	Feldspar porphyry; very felsic; feldspar phenocrysts make up 20% of the rock. Phenos are sub-millimetric to 3 millimetres. Groundmass is felsic. Pervasive quartz-sericite-pyrite alteration with traces of chalcopyrite and bornite. Sulphides make up about 2% of the rock. The following sections were split: 100 – 105 110 – 115
138	141	Medium grey fine grained rock, possibly a cross-cutting dike. Certainly different from the porphyry. Pyrite disseminated about 3%, chalcopyrite disseminated about 0.5%. Trace of a grey metallic mineral associated with quartz veinlets. This interval was not split.
141	362.5	Feldspar porphyry as 4 – 138, with minor variations. The sulphide content is variable. A few intervals have been split.
362.5	440	As 138 - 141, but exhibits argillic alteration as opposed to quartz-sericite. Sulphides are not pervasive, but are localized in veinlets containing pyrite- chalcopyrite-bornite. Much of the interval is white and chalky.
		Hole J-99-05
5	290	Feldspar porphyry; intense quartz-sericite alteration, disseminated pyrite about 2%. Local quartz veinlets contain pyrite and traces of chalcopyrite. Most of interval not split. 150 – 159 split.

From (feet)	To (feet)	Description
	290	End of Hole
		Hole J-99-06
5	81.5	White feldspar porphyry, argillically altered. Specks of hematite less than 1%. Interval not split.
81.5	156	Feldspar porphyry similar to preceding interval. Pyrite about 3%, disseminated and concentrated in quartz veinlets. Traces of chalcopyrite and bornite with the pyrite. Veinlets comprise about 2% of the rock.
156	191	Feldspar porphyry similar to 5 – 81.5
191	211	Feldspar porphyry, laced with quartz veinlets that form about 2% of the rock. Euhedral pyrite disseminated, forming about 1% of the rock. There is minor chalcopyrite in the quartz veinlets.
211	323	Altered feldspar porphyry as 5 – 81.5. Locally there are intervals of hydrothermal breccia containing sub-rounded, sub-centimetric fragments of clay-altered country rock. The cement is silica containing about 3% pyrite, disseminated. Breccia intervals up to 2 ft. long forming about 5% of the entire interval.
323	350	Hydrothermal breccia containing about 5% pyrite. Interval has been split.
350	395	Feldspar porphyry as $5-81.5$. The argillic alteration is stronger. The rock is white. Interval not split.
395	405	Intense argillic alteration laced with quartz veinlets. Pyrite disseminated, 2% to locally 5%. Minor chalcopyrite and bornite.
405	412	Very finely crystalline hard white porcelaneous rock. Possibly a finely crystalline dike. Minor breccia cemented by silica and pyrite.
	412	End of Hole

Appendix 6: Oversize Maps

This appendix contains the following figures, designed to be plotted on D size sheets.

- Figure 6: Jake Property, Sample Locations for Rocks
- Figure 7: Silver Geochemistry in Rocks
- Figure 8: Gold Geochemistry in Rocks
- Figure 9: Copper Geochemistry in Rocks
- Figure 10: Molybdenum Geochemistry in Rocks
- Figure 11: Lead Geochemistry in Rocks
- Figure 12: Zinc Geochemistry in Rocks
- Figure 13: Arsenic Geochemistry in Rocks
- Figure 14: Sample Locations for Soils and Stream Sediments
- Figure 15: Silver Geochemistry in Soils and Stream Sediments
- Figure 16: Gold Geochemistry in Soils and Stream Sediments
- Figure 17: Copper Geochemistry in Soils and Stream Sediments
- Figure 18: Molybdenum Geochemistry in Soils and Stream Sediments
- Figure 19: Lead Geochemistry in Soils and Stream Sediments
- Figure 20: Zinc Geochemistry in Soils and Stream Sediments
- Figure 21: Arsenic Geochemistry in Soils and Stream Sediments
- Figure 22: Antimony Geochemistry in Soils and Stream Sediments

E0300 m	PWDPR030 PWDPR031 	60400 m	604500 m	Image: Stream
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 6
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Sample Locations for Rocks	Scale: 1:5,000	22-May-2008

U DOISD	e ⁻¹ 500 m 603500 m	604000 m	604500 m	Copper in Rocks Copper in ppm <3 3 3 3 2098 98462 4622153 >2153 Category of Sample float, includes talus in place 605000 m
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 9
Electrum Resource	Base Map from BCGS Open File GF-2007-3	in Rocks		
Corp.	Geochemical Data from Electrum Resource Corp.		Scale: xx	22-May-2008

0000 m	500 m	80400 m	Silver in Soils Silver in ppm	in Stream Sediments Silver in ppm 40.1 0.10.3 0.31 12 25 >5 Mineral Claims Electrum Claims Other Claims Other Claims Defenses Streams 100 meter contours Roads
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property Silver Geochemistry in	UTM Projection Based on NAD 83	Figure 15
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

0 60300 m	500 m 603500 m	64000 m	Gold in Soils Gold in ppb Gold in ppb Gold in ppb Gold in ppb Gold in ppb Gold in ppb Gold in Soils Gold in ppb Gold in Soils Gold in ppb Gold in Soils Gold in	in Stream Sediments Gold in ppb 5 59 920 2031 3152 52 G0500 m
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property Gold Geochemistry in	UTM Projection Based on NAD 83	Figure 16
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

E0300 m	500 m 603500 m	60400 m	Copper in Soils Copper in ppm 39116 116215 215317 317665 604500 m	Copper in Stream Sediments P 0 9 9 9.34 3452 5274 74117 >117 0 100 meter contours 0 000 meter contours
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property Copper Geochemistry in	UTM Projection Based on NAD 83	Figure 17
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007- Other Data: Electrum Resource Corp.	³ Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

6231500 m			Molybdenum in Soils Molybdenum in ppm	in Stream Sediments Molybdenum in ppm <1 14 Ice
	500 m		2237 3754 >54	710 Streams 1015 100 meter contours >15 Roads
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 18
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

	500 m 603500 m	60400 m	Lead in Soils Lead in ppm	in Stream Sediments Lead in ppm 6 621 2143 4368 68124 >124
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 19
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

6231500 m			Zinc in Soils Zinc in ppm • <60 • 60100 • 100225 • 225500 • 500793	Zinc in Stream Sediments Mineral Claims Zinc in Stream Sediments Electrum Claims Vineral Claims Other Claims Vineral Claims Cher Claims Vinero
	500 m	604000 m	>793	>415 Roads
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 20
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 m	604000 п	Arsenic in Soils Arsenic in ppm • <14 • 1435 • 3568 • 68110 • 110263 • 263	Arsenic in Stream Sediments Arsenic in Stream Sediments Arsenic in ppm
Bear Lake Area Jake Property	Drawn By: PAR	Jake Property Arsenic Geochemistry in	UTM Projection Based on NAD 83	Figure 21
Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008

6231500 m					U O O C E C E C E C E C E C E C E C E C E
0	603000 m	500 m 603500 m	604000 m	Antimony in Soils Antimony in ppm <5 57 710 1014 1418 >18 	Antimony in Stream Sediments Antimony in ppm <3 36 36 68 810 1012 100 meter contours >12
	Bear Lake Area Jake Property	Drawn By: PAR	Jake Property	UTM Projection Based on NAD 83	Figure 22
	Electrum Resource Corp.	Base Map: BCGS Open File GF-2007-3 Other Data: Electrum Resource Corp.	Soils and Stream Sediments	Scale: 1:5,000	22-May-2008