


SKV

# ASSESSMENT REPORT ON THE PRINCE GEORGE PROJECT

BC Geological Survey Assessment Report 30059

## CARIBOO MINING DIVISION, BC

BCGA 93G.078, 079, 088, 089, 098, 099

## Exploration completed on MTO claims:

527473, 527479, 527481, 527488, 527489, 527493, 527494, 527505, 527516, 527521, 527542, 534575, 534577, 568930, 568932, 569680, 570049

#### Work filed on MTO claims:

534573, 534574, 534575, 534576, 534577, 534578, 534579, 527435, 527437, 527438, 527441, 527442, 527444, 527446, 527452, 527454, 527455, 527456, 527459, 427460, 527461, 527462, 527473, 527482, 527485, 527486, 527487, 527491, 527496, 527497, 527502, 527503

NTS:

93G/9W, 15E, 16W

LATITUDE:

53° 41'42" to 53° 53'59"N

LONGITUDE:

122° 15'05" to 122° 33'05"W

OWNER:

SKYGOLD VENTURES LTD

OPERATOR:

SKYGOLD VENTURES LTD

## **Table of Contents**

| 1.0      | Summary                                                      | 3         |
|----------|--------------------------------------------------------------|-----------|
| 2.0      | Project Location                                             | 3         |
| 3.0      | Access, Physiography and Climate                             | 5         |
| 4.0      | Exploration History                                          | 5         |
| 5.0      | Geological Setting                                           | 7         |
|          | 5.1 Regional Geology                                         | 7         |
|          | 5.2 Local Geology                                            | 8         |
| 6.0      | Gold Mineralisation                                          | 8         |
| 7.0      | 2007 Geological Mapping and Rock Sampling Program            | 9         |
|          | 7.1 Lithology                                                | 9         |
|          | 7.2 Alteration and Mineralization                            | 9         |
| 8.0      | Sampling Method and Analysis                                 | 9         |
| 9.0      | Interpretations and Conclusions                              | 10        |
| 10.0     | Recommendations for Further Exploration                      | 10        |
| 11.0     | References                                                   | 11        |
| 12.0     | Statement of Costs                                           | 12        |
| 13.0     | Statement of Qualifications                                  | 13        |
| List e   | of Figures                                                   |           |
| Figure : | 1: Prince George Project - Location Map                      | 3         |
| Figure : | 2: Prince George Project - Claim Map                         | 4         |
| Figure : | 3: Prince George Project - Historical Exploration            | 6         |
| Figure 4 | 4: Prince George Project – Sample Locations                  | in pocket |
| Figure ! | 5: Prince George Project – Geology Plan                      | in pocket |
| List (   | of Tables                                                    |           |
| Table 1  | 1: Prince George Project – Summary of Historical Exploration | 7         |
| List     | of Appendices                                                |           |
| Append   | dix A: Geochemical Results                                   | 14        |
|          | dix B: Sample Descriptions                                   |           |

## 1.0 Summary

From 27<sup>th</sup> October to 9<sup>th</sup> November 2007, geological mapping and rock-chip sampling was undertaken over the claim blocks that constitute Skygold Venture Ltd's ("the Company") Prince George Project ("the Project"). The aim of the program was to improve the geological outcrop map over the project area and determine the source of a known soil gold anomaly to focus future exploration. A total of 111 rock samples were taken for geochemical analysis.

During the duration of the field program, an additional 31 claim blocks were pegged to secure further prospective ground to the west and south of the existing project area.

## 2.0 Project Location

The Prince George Project is situated approximately 30km southeast of the city of Prince George in northern central British Columbia, Canada. The project area is located within the north eastern portion of NTS map sheet 93G within the Cariboo Mining District and comprises 116 claim blocks over an area 52,648 hectares (526.5 km²).

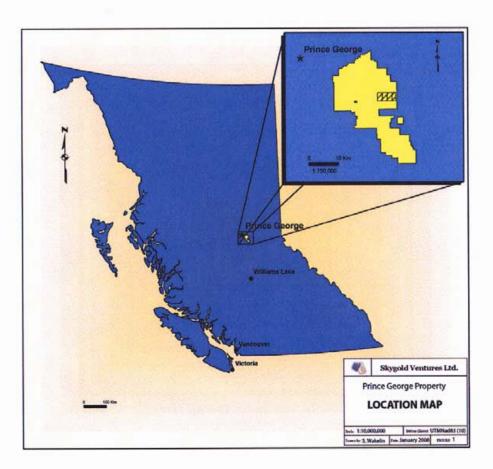



Figure 1: Prince George Project - Location Map

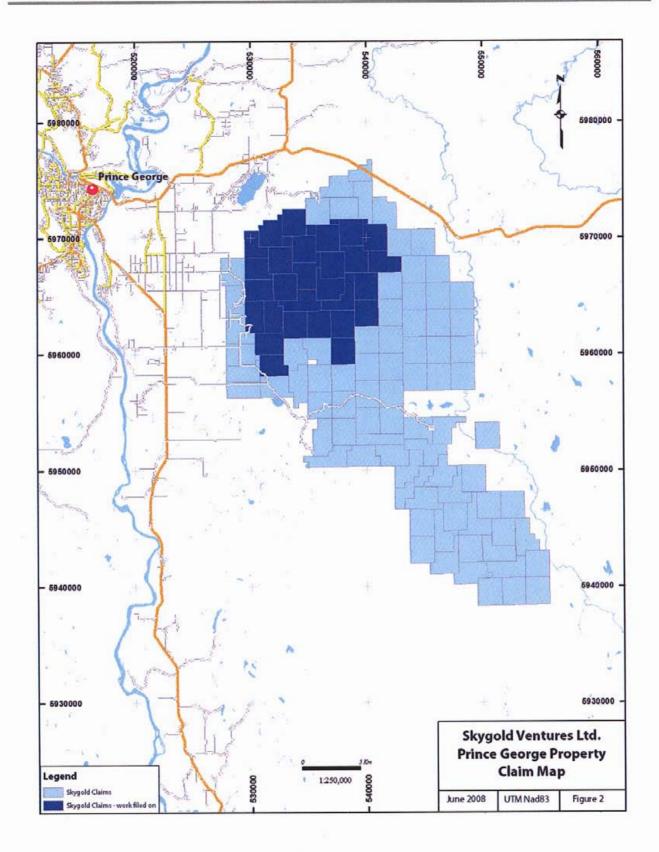



Figure 2: Prince George Project - Claim Map

## 3.0 Access, Physiography and Climate

The project area can be accessed from Prince George by Highways 16 and 97 which connect to the Willow-Cale Road, North Willow Road and numerous 4 x 4 tracks. The condition of the 4 x 4 tracks was variable at the time the field program was conducted. Several of the tracks leading into the center of the project area were inaccessible due to thick snow cover or mud.

The project area is situated in a moderately gentle terrain with rolling hills surrounded by lowlands with glacial cover and is dissected by numerous creeks and rivers. Elevation within the project area ranges from approximately 700m to 1000m above sea level. The vegetation in the area is dense and is characterized by willow, alder, spruce and pine.

The region receives a moderate amount of precipitation (42 to 62cm annually), a large proportion of which falls as snow.

## 4.0 Exploration History

The project area has been the subject of limited prospecting and exploration activities for a variety of commodities (including gold, copper, molybdenite, scheelite and zinc). The area to the south of Tabor Lake was the hub of exploration in 1931 when placer gold was first discovered at Skaret Creek (Location A - Figure 3). Pyritic quartz stringers and disseminated molybedenite hosted by andesitic volcanic rocks were also reported in the same vicinity. Scheelite was first discovered in the project area in 1963 by prospectors L Grinde & C.B. O'Brien on the Burn Claims (Location B – Figure 3). These claims were later renamed the Cat, Tac and Prince Claims and were the focus of exploration activities by Union Carbide Exploration Ltd in 1967, L Grinde & C.B. O'Brien in 1977 and by Mattagami Lake Mines Ltd in 1978-1980. Stillwater Enterprises Ltd carried out diamond drilling in this area in 1990 to test the source of the placer gold. Placer gold has also been reported in Tabor Creek and Willow River, the later being the focus of exploration activities by J.D. Graham & Associates Ltd in 2001 and 2005. A copper showing discovered in 1990 on the Swan Claim (Location C – Figure 3) was the subject of geochemical surveys by Mingold Resources Inc. and by Hudson Bay Exploration & Development Co. Ltd in 1996.

In 2006 a significant gold anomaly was delineated by the Company during a heavy mineral stream sediment sampling program. The sampling confirmed earlier government regional geochemical surveys with values up to 1120 ppb gold in standard silt samples. The sample area covers an area of lowlands with thin glacial till cover to the south east of the project area and is underlain by the Triassic slate/phyllite assemblage of rocks with veining and alteration noted in several outcroppings.

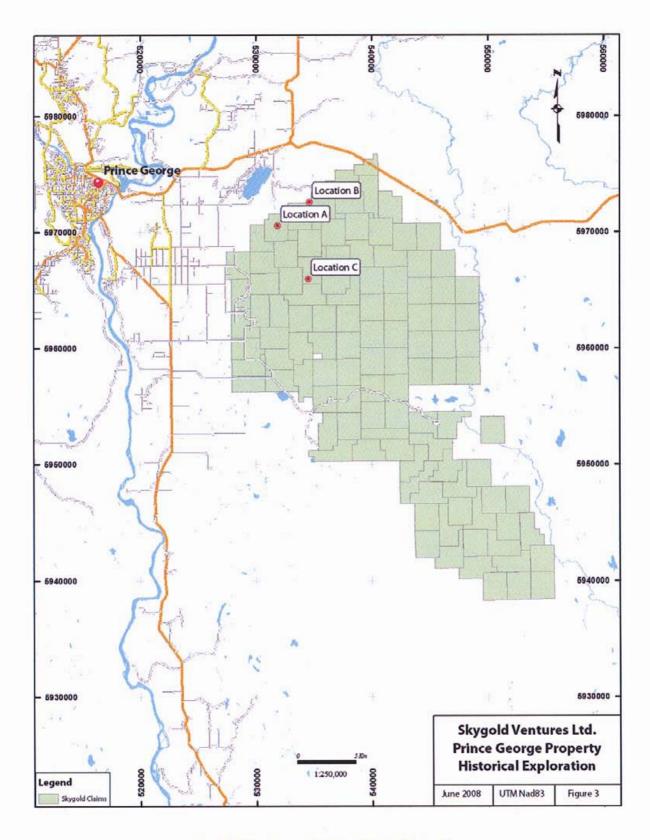



Figure 3: Prince George Project - Historical Exploration

Table 1: Prince George Project – Summary of Historical Exploration

| Year | Company                                         | Exploration Activities                                                                                                                              | Claim and ARIS<br>Report                 |
|------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2006 | Skygold Ventures Ltd                            | Reconnaissance geological mapping, 413 soil samples, 34 stream sediment silt samples, 34 heavy mineral stream sediment samples and 40 rock samples. | 29,051 (numerous claims refer to report) |
| 2005 | J.D. Graham &<br>Associates Ltd.                | Examination of placer gold samples from the Willow River (2 samples).                                                                               | 27,841<br>Gold Channel Claim             |
| 2001 | J.D. Graham &<br>Associates Ltd.                | Examination of placer gold samples from the Willow River (3 samples).                                                                               | 26,575<br>Gold Channel Claim             |
| 1996 | Hudson Bay Exploration<br>& Development Co. Ltd | Geochemical survey targeting previous copper and zinc anomalies (68 soil samples).                                                                  | 24,714<br>Swan Claim                     |
| 1991 | Stillwater Enterprises<br>Ltd.                  | Diamond drill program targeting gold (4 holes).                                                                                                     | 21,071<br>Steven Claim                   |
| 1990 | Mingold Resources Inc.                          | Geochemical survey targeting copper and zinc (128 soil samples).                                                                                    | 20,525<br>Swan Claim                     |
| 1990 | Cathedral Gold<br>Corporation.                  | Airborne geophysical survey (430 line kilometers).                                                                                                  | 20,213<br>Pitt Claim                     |
| 1987 | LAC Minerals Ltd.                               | Geochemical surveys (185 soil, 2 stream silt and 5 rock samples)                                                                                    | 16,375<br>Buck Claim                     |
| 1980 | Mattagami Lake Mines<br>Ltd.                    | Percussion (12 holes) and diamond drilling (2 holes) program targeting tungsten and molybdenum.                                                     | 8,328<br>Cat, Tac and Prince<br>Claims   |
| 1979 | Mattagami Lake Mines<br>Ltd.                    | Induced polarization and resistivity survey targeting scheelite and molybdenum.                                                                     | 8,808<br>Cat, Tac and Prince<br>Claims   |
| 1978 | Mattagami Lake Mines<br>Ltd.                    | Geochemical survey (591 soil samples), geophysical electromagnetic surveys and geological mapping targeting scheelite.                              | 6,876<br>Cat, Tac and Prince<br>Claims   |
| 1977 | L Grinde & C.B. O'Brien                         | Diamond drilling (1 hole)                                                                                                                           | 6,644<br>Cat Claims                      |
| 1967 | Union Carbide Exploration Ltd.                  | Diamond drilling (3 holes), geological mapping                                                                                                      | 1,129<br>Burn Claims                     |
| 1961 | Bardyke Mines Ltd.                              | Geophysical electromagnetic survey.                                                                                                                 | 353<br>Axe Claims                        |

## 5.0 Geological Setting

## 5.1 Regional Geology

The Prince George Project lies within the Quesnel Terrane, a volcanic arc terrane which is part of the Intermontane Subterrane of the Canadian Cordillera. The project area is situated in close proximity to the regional Eureka Thrust, which marks the eastern margin of the Quesnel Terrane. The terrane was formed from amalgamating volcanic island arcs and oceanic basins that were accreted onto the margin of North America in the late Triassic to early Jurassic. A reconstruction of the Triassic and early

Jurassic environment of the Quesnel Terrane involves a shallow water (<1km) island-arc chain of subduction-related volcanoes shedding detritus into an eastern clastic basin.

The Quesnel Terrane is largely composed of Middle and Upper Triassic volcanic and sedimentary units which have been structurally stacked as a result of thrust imbrications and are named the Takla Group in northern and central British Columbia and the Nicola Group in the south. These units are locally overlain by Lower Jurassic volcanic and sedimentary rocks, and are intruded by Late Triassic through to Early Jurassic plutons.

Structurally, the Quesnel Terrane is cut by major NW trending dextral strike-slip faults. Broad folds prevail in the thick volcanic sequences, while tighter folds in the sedimentary sequences are associated with thrusting.

## 5.2 Local Geology

Systematic mapping of the project area was undertaken by the Geological Survey of Canada ("GSC") in the early 1960s and was published as a 1:253 440 scale map which accompanied GSC Bulletin 196 by H.W. Tipper (1961). Tipper's description of the project area mainly includes Upper Triassic and Lower Jurassic strata (argillite, greywacke, andesite, basalt and related tuffs and breccias, minor conglomerate and limestone) and Lower Jurassic quartz monzonite, monzonite, granite and minor diorite, with a relatively thin covering of glacial deposits (5 to 20 feet deep) over the majority of the western portion of the project area.

More recently, the project area was mapped as part of GSC Open File 2172 by L.C. Struik, E.A. Fuller and T.E. Lynch (1990). Struik et al (1990) assign the Upper Triassic and Lower Jurassic strata described by Tipper (1961) with the aforementioned Takla and Nicola Groups as they are age and lithological equivalents.

Within the project area, the Takla Group consists of a package of sedimentary rocks (including argillite, greywacke, conglomerates) and interlayered porpyritic andesites and basaltic andesites with locally thin layers of tuff. Immediately along the eastern boundary of the project area, the Quesnel Terrane is juxatoposed against the Slide Mountain Terrain, which comprises Lower Mississippian to Permian mafic and ultramafic igneous rocks, mafic volcanic and deep water cherts and argillites. To the south, the project area is bounded by the large Cretaceous Naver pluton which is interpreted to have intruded the Eureka Thrust at depth.

## 6.0 Gold Mineralisation

Economically, the Takla and Nicola Group rocks are an important component of the Quesnel Terrane. The groups have been reported to contain copper and gold concentrations and locally silver, lead and zinc (Struick et al 1990). Placer gold showings appear to be spatially related to lode gold deposits. Within the same host rocks (Nicola Group) to the south of the Prince George

project area lies the Company's Spanish Mountain sediment hosted gold deposit, which is a potential bulk tonnage deposit currently the subject of a feasibility stage drilling program.

## 7.0 2007 Geological Mapping and Rock Sampling Program

The 2007 field program consisted of prospecting, geological mapping and rock sampling with the aim of delineating new gold anomalies and following-up the stream sediment gold anomaly identified in the 2006 field program. Mapping was mainly confined to outcrop exposed adjacent to 4x4 logging access tracks. As part of the regional mapping program, 36 rock samples were collected for analysis. In addition, prospecting was undertaken across the project area by Prospector Elmer Debock and 75 samples were collected for analysis.

## 7.1 Lithology

The project area contains a moderate amount of outcrop, with glacial till more prevalent in the northern and eastern parts of the project area. The rock types encountered were dominantly an interlayered sequence of argillite, mudstone, siltstones, greywacke, conglomerates and minor andesites. The dominant strike direction is NW-SE which parallels the regional Eureka Thrust, with dips varying from moderate (20°) to steep (sub-vertical) across the project area, dominantly to the SW.

Intrusives (diorite, gabbro and trochtolite) were encountered towards the western margin of the project area, which are interpreted to form part of the Ste. Marie pluton. Further south, quartz-plagioclase-biotite granites were mapped in several locations.

## 7.2 Alteration and Mineralization

The dominant alteration mineralogy encountered within the mudstones and argillites, which were the target of the rock-chip sampling, included pyrite, sericite and minor arsenopyrite and chalcopyrite. Quartz veining was evident within the mudstones and argillites in several locations.

## 8.0 Sampling Method and Analysis

All samples collected in the Prince George project area were subjected to a quality control procedure that ensured the best practice in the handling, sampling, analysis and storage of the samples. The rock samples collected during the 2007 program were 5kg representative samples of the outcrop, obtained by rock hammers and collected in sterile plastic sampling bags. In total, 111 samples were dispatched to EcoTech Laboratory Ltd for analysis.

### 11.0 References

- Belik, G.D. (2007): Geological and Geochemical Report on the Prince George Property, Quesnel Trough SHV Project; Geological Survey of Canada Assessment Report 29,051.
- Buchanan, M.D. & Van Damme, V.P. 1996: Geochemical Report on the Swan Property, Geological Survey of Canada Assessment Report 24,714.
- Graham, J.D. 2001: Examination of Placer Samples, Gold Channel Placer Property, Geological Survey of Canada Assessment Report 26,575.
- Graham, J.D. 2005: Field Collection & Examination of Placer Samples, Gold Channel Placer Property,
   Geological Survey of Canada Assessment Report 27,841.
- Grinder, L. & O'Brien, C.B. 1977: Diamond Drilling Report on the Cat 3 Claim, Geological Survey of Canada Assessment Report 6,644.
- Freeze, J.C. 1991: Diamond Drilling Assessment Report on the Tabor Mountain Property Steven Claim,
   Geological Survey of Canada Assessment Report 21,071.
- Helsen, J.N. & Mercer, W. 1978: Geological Report Cat, Tac and Prince Claims, Geological Survey of Canada Assessment Report 6876.
- Helsen, J. 1980: Report on Percussion Drilling O'Brien Option Prince George, B.C., Geological Survey of Canada Assessment Report 8,328.
- Macrae, R. 1961: Geophysical Report The Axe Claim Group, Geological Survey of Canada Assessment Report 353.
- Ming, Y. 1987: Geochemical and Assessment Report on the Buck 1 Claim, Geological Survey of Canada Assessment Report 16,375.
- Mullen, A. 1980: Report on the Induced Polarization and Resistivity Survey on the Cat, Tac and Prince Claims, Geological Survey of Canada Assessment Report 8,808.
- Reynolds, P. 1990: Geochemical Report on the Swan 1 Claim, Geological Survey of Canada Assessment Report 20,525.
- Royall, J.J. 1967: Report on Geological Mapping and Diamond Drilling Programme, Geological Survey of Canada Assessment Report 1,129.
- Schiarizza, P. 2003: Geology and Mineral Occurrences of Quesnel Terrane, Kliyul Creek to Johanson Lake (94D/8,9), via website: http://www.llbc.leg.bc.ca/Public/PubDocs/bcdocs/96990/2003/07-Schiarizza-83-100-w.pdf
- Struik, L.C., Fuller, E.A. & Lynch, T.E. 1990: Geology of Prince George (East Half) Map Area (93G/E)
  Descriptive Notes and Fossil List, Geological Survey of Canada, Open File 2172, Map 1288A.
- Tipper, H.W. 1961: Geology, Prince George, Cariboo District, British Columbia; Geological Survey of Canada, Map 49-1960.

## 12.0 Statement of Costs

| Professional Services                  |                       |                          |
|----------------------------------------|-----------------------|--------------------------|
| Bob Singh                              |                       |                          |
| Regional Mapping and Reconnaissance    | 3.0 days @ \$700/day  | \$2,100.00               |
| Elmer DeBock                           | 25.0 days @ \$375/day | \$9,375.00               |
| Prospecting: Data Collection           |                       |                          |
| Aud DeBock                             | 25.0 days @ \$225/day | \$5,625.00               |
| Prospecting: Field Assistant           |                       |                          |
| Kathryn Moran                          |                       |                          |
| Planning, Mapping and Data Compilation | 14.0 days @ \$350/day | \$4,900.00               |
| Report Writing                         | 3.0 days @ \$500/day  | \$1,500.00               |
| Hector Diakow                          |                       |                          |
| Mapping: Field Assistant               | 14.0 days @ \$300/day | \$4,200.00               |
| Sarah Wakelin                          |                       |                          |
| Data Compilation and Drafting          | 3.0 days @ \$350/day  | \$1,050.00               |
|                                        |                       |                          |
| Expenses                               |                       |                          |
| Geochemical Sample Analyses            |                       |                          |
| EcoTech Laboratory Ltd                 | 111 rock samples      | \$5,494.50               |
| Field Supplies                         |                       | \$1,463.86               |
| Lodging & Meals                        |                       | \$9,438.53               |
| Transportation                         |                       |                          |
| Flights & Taxi                         |                       | \$1,366.76               |
| 3 x Trucks                             |                       | \$2,950.00<br>\$1,391.28 |
| Fuel                                   |                       | \$1,391.20               |
|                                        |                       | ĆEO 054.03               |
| Sub Total                              |                       | \$50,854.93              |
| Skygold Management (10%)               |                       | \$5,085.83               |
|                                        |                       |                          |
| TOTAL                                  |                       | \$55,940.49              |
|                                        |                       |                          |

# **APPENDIX A Geochemical Results**

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| Tag#   | Certificate  | Au(g/t) | Ag   | Al%               | As        | Ba              | Bi            | Ca%   | Cd      | Со             | :Cr             | Cu   | Fe%  | ,La              | Mg%   | Mn   | Mo      |
|--------|--------------|---------|------|-------------------|-----------|-----------------|---------------|-------|---------|----------------|-----------------|------|------|------------------|-------|------|---------|
| G32952 | AK07-18415KY | 1       | 0.4  | 1.81              | 15        | 110             | <5            | 0.39  | 6       | 13             | 85              | 153  | 3.72 | <10              | 1.08  | 315  | 5       |
| G32953 | AK07-1841SKY | •       | 0.2  | 1.2               | 10        | <sup>'</sup> 75 | <5            | 0.51  | 6       | ·<br>9         | 52              | 95   | 5.93 | <10              | 0.36  | 261  | 51      |
| G32954 | AK07-1841SKY | •       | 0.5  | 0.86              | 15        | 110             | <5            | 0.13  | 19      | 30             | 135             | 554  | >10  | <10              | 0.67  | 833  | 10      |
| G32955 | AK07-1841SKY |         | 0.2  | 1.37              | 10        | 185             | <5            | >10   | 4       | 15             | 70              | 48   | 3.35 | <10              | 1.06  | 848  | <1      |
| G32956 | AK07-1841SKY |         | 0.6  | 1.57              | 15        | 85              | ·<5           | 0.37  | 6       | 22             | 111             | 134  | 2.93 | <10              | 1.02  | 285  | 20      |
| G32957 | AK07-1841SKY | •       | 0.3  | 2.32              | 20        | 50              | ·<br><5       | 2     | 4       | 6              | 45              | 108  | 4.01 | <10              | 0.71  | 309  | 2       |
| G32958 | AK07-18415KY |         | 0.2  | -0.85             | 10        | 55              | <5            | 0.66  | 5       | 8              | 50              | 197  | 4.43 | 10               | 0.4   | 211  | 4       |
| G32959 | AK07-1841SKY | •       | 0.7  | 0.47              | 5         | .95             | ·<5           | 0.28  | 2       | 12             | 60              | 127  | 1.58 | ·<br><10         | 0.04  | 54   | 2       |
| G32960 | •            | •       | <0.2 | 0.86              | 10        | .75             | ·<5           | 0.7   | 2       | 17             | 102             | 59   | 1.81 | <10              | 0.59  | 233  | 6       |
| G32961 | AK07-1841SKY | <0.03   | <0.2 | 1.58              | 10        | 40              | :<5           | 0.17  | 4       | .8             | 137             | 26   | 3.4  | <10              | 1.24  | 421  | <1      |
| G32962 | +            | •       | <0.2 | 0.09              | <5        | 10              | <5            | 0.02  | <1      | 2              | 164             | 12   | 0.45 | <10              | 0.04  | 126  | .<1     |
| G32963 | AK07-1841SKY | •       | <0.2 | 0.07              | <5        | 10              | <5            | 0.03  | <1      | 1              | 168             | 6    | 0.33 | <10              | 0.04  | 36   | <1      |
| G32964 | AK07-18415KY |         | 0.2  | 0.54              | ·<5       | 75              | <5            | -0.86 | 2       | ·<br>5         | 149             | 18   | 1.28 | <10              | 0.38  | 251  | <1      |
| G32965 | AK07-1841SKY | •       | 0.2  | 0.39              | ·<5       | 55              | ·<br><5       | 0.11  | 1       | 4              | 161             | 17   | 1.07 | <10              | 0.26  | 144  | <1      |
| G32966 | AK07-1841SKY |         | 0.7  | 0.11              | ;<5       | 30              | ·<br><5       | 1.77  | 98      | !5             | 176             | . 84 | 2.98 | <10              | 0.07  | 364  | <1      |
| G32967 | AK07-1841SKY |         | 0.3  | 0.65              | 10        | 50              | ·<br><5       | 0.18  | 14      | 6              | 156             | 21   | 1.48 | <10              | 0.49  | 585  | <1      |
| G32968 | AK07-1841SKY |         | 0.2  | 0.71              | :5        | 75              | ·<br><5       | 0.24  |         | <sup>:</sup> 9 | 197             | 36   | 1.91 | <10              | 0.53  | 227  | 2       |
| G32969 | AK07-1841SKY | •       | <0.2 | 0.13              | <5        | 15              | ·<br><5       | 0.04  | ·<br><1 | 3              | 190             | 11   | 0.62 | <10              | 0.08  | 95   | <1      |
| G32970 | AK07-1841SKY |         | <0.2 | 0.1               | 15        | 20              | <5            | 0.1   | 1       | 2              | 176             | .10  | 0.57 | <10              | 0.02  | 213  | <1      |
| G32971 | AK07-1841SKY | •       | <0.2 | 0.08              | <5        | 10              | ·<br><5       | 0.03  | <1      | 1              | 179             | 5    | 0.36 | <10              | 0.04  | 74   | <1      |
| G32972 | AK07-1841SKY | •       | <0.2 | 0.2               | 5         | 35              | ;<5           | 0.07  | <1      | .2             | 215             | 7    | 0.69 | <sup>'</sup> <10 | 0.1   | :142 | <1      |
| G32973 | AK07-1841SKY | •       | 0.2  | <sup>!</sup> 0.05 | ·<br><5   | 10              | ·<br><5       | 0.01  | ·<br><1 | · 1            | 190             | 6    | 0.42 | ·<br><10         | 0.01  | 134  | <1      |
| G32974 | AK07-1841SKY |         | 0.2  | 0.28              | <5        | 30              | ·<5           | 0.04  | 1       | 2              | 209             | 7    | 0.92 | ·<10             | 0.19  | 170  | <1      |
| G32975 | AK07-1841SKY | •       | <0.2 | 0.02              | <5        | 20              | <5            | 0.02  | ·<br><1 | 4              | 177             | 10   | 0.33 | <10              | <0.01 | 206  | <1      |
| E54739 | AK07-1841SKY |         | <0.2 | 2.89              | 20        | 45              | <5            | 2.58  | .5      | 30             | 97              | 71   | 4.36 | <10              | 2.06  | 446  | <1      |
| E54740 | AK07-1841SKY |         | <0.2 | 3.09              | 35        | 65              | ·<5           | 2.2   | 7       | 33             | 168             | 86   | 6.3  | <10              | 2.89  | 950  | <1      |
| E54741 | AK07-1841SKY |         | <0.2 | 2.7               | 20        | 40              | <5            | 2.41  | 4       | 22             | <sup>:</sup> 65 | ·58  | 3.59 | <10              | 1.33  | 523  | <1      |
| E54742 | AK07-18415KY | 1       | 0.2  | 1.32              | 25        | 70              | <5            | 0.11  | ·<br>3  | 14             | 41              | 47   | 2.67 | 10               | 0.99  | 253  | <1      |
| E54743 | AK07-1841SKY | •       | 0.2  | 0.25              | .=-<br><5 | 70              | <5            | 7.85  | 3       | ·5             | 60              | 14   | 2.49 | <10              | 1.31  | 1660 | 1       |
| E54744 | AK07-1841SKY |         | 0.2  | 2.17              | 40        | 50              | ·<5           | 1.92  | 2       | 19             | 111             | 39   | 2.34 | <10              | 0.18  | 193  | 2       |
| E54745 | AK07-1841SKY |         | 0.4  | 1.41              | 20        | 80              | <5            | 1.26  | 3       | 11             | 79              | 57   | 3    | 10               | 1.32  | 975  | <1      |
| E54746 | AK07-1841SKY | i       | 0.3  | 3.24              | 25        | 225             | ·<5           | 0.64  | 5       | 14             | 82              | 45   | 4.5  | 10               | 1.38  | 358  | 9       |
| E54747 | AK07-1841SKY | •       | <0.2 | 0.12              | .=-<br><5 | 30              | <5            | 0.39  | ·<br><1 | 2              | 128             | 4    | 0.8  | 10               | 0.05  | 205  | <1      |
| E54748 | AK07-1841SKY |         | <0.2 | 2.09              | 20        | 110             | <5            | 0.73  | 4       | 13             | 73              | 54   | 4.05 | <10              | 1.49  | 607  | ·<br><1 |
| E54749 | AK07-1841SKY |         | <0.2 | 1.7               | 15        | 65              | ·<5           | 2.63  | .4      | 14             | 60              | 56   | 3.71 | <10              | 1.23  | 667  | ·<br><1 |
| E54750 | AK07-1841SKY | •       | 0.2  | 1.84              | 25        | 50              | <5            | 5.68  | 5       | 13             | 78              | 60   | 4.28 | <10              | 1.49  | 1090 | <1      |
| E54751 | AK07-1841SKY | •       | <0.2 | 2.02              | :25       | 40              | <5            | 8.04  | 4       | 13             | 56              | 105  | 3.88 | 10               | 1.54  | 943  | <1      |
| E54752 | AK07-1841SKY | •       | 0.4  | 2.15              | 25        | 150             | <5            | 4.03  | ·<br>5  | 17             | 50              | 112  | 4.56 | 10               | 1.42  | 769  | ·<1     |
| E54753 | AK07-1841SKY | 1       | <0.2 | 1.99              | 20        | 80              | <5            | 0.8   | 5       | 16             | 58              | 88   | 4.47 | <10              | 1.17  | 614  | <1      |
| E54754 | AK07-1841SKY | •       | 0.3  | 1.86              | 15        | 105             | <b>&lt;</b> 5 | 3.65  | .4      | 15             | 70              | 84   | 3.71 | 10               | 1.35  | 794  | ·<br><1 |
| E54755 | AK07-1841SKY |         | <0.2 | 1.86              | 15        | 80              | <5            | 3.01  | ·<br>3  | 15             | 107             | 117  | 2.7  | <10              | 0.74  | 637  | 1       |
| E54756 | AK07-18415KY | -       | 0.2  | 2.33              | 20        | 130             | ·<5           | 0.77  | 5       | 14             | 72              | 104  | 4.6  | <10              | 1.84  | 550  | 4       |
| E54757 | AK07-1841SKY |         | 0.3  | 1.11              | 10        | 110             | <5            | 0.85  | .3      | 5              | 15              | 60   | 3.35 | 10               | 0.81  | :364 | 6       |
| -34/3/ | WOL-TO-TOW   | *0.05   | ;0.5 |                   |           |                 |               | ;     |         |                |                 |      |      |                  | 14.4- |      |         |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH
AG: 4 ACID DIGEST/AA-FINISH

Jutta Jealouse B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| Tag#   | Certificate  | Au(g/t) | Ag   | Al%   | As  | Ва         | Bi              | Ca%  | Cd  | Co | Cr         | Cu  | Fe%  | La  | Mg%   | Mn   | Mo  |
|--------|--------------|---------|------|-------|-----|------------|-----------------|------|-----|----|------------|-----|------|-----|-------|------|-----|
| E54758 | AK07-1841SKY | <0.03   | 0.9  | 1.86  | 80  | 100        | <5              | 0.05 | 18  | 29 | 75         | 87  | >10  | <10 | 1.35  | 129  | 128 |
| E54759 | AK07-1841SKY | <0.03   | 0.3  | 0.56  | 20  | 50         | <5              | 0.11 | 3   | 13 | 69         | 74  | 3.08 | <10 | 0.24  | 112  | 3   |
| E54760 | AK07-1841SKY | <0.03   | <0.2 | 2.63  | 25  | 125        | <5              | 0.38 | 5   | 14 | 68         | 83  | 4.74 | <10 | 2.14  | 1078 | <1  |
| E54761 | AK07-1841SKY | <0.03   | 0.4  | 1.82  | 15  | 75         | <5              | 1.22 | 5   | 20 | 117        | 330 | 4.93 | <10 | 1.4   | 372  | <1  |
| E54762 | AK07-1841SKY | <0.03   | <0.2 | 1.47  | 10  | 55         | <5              | 1.12 | 5   | 15 | 57         | 200 | 4.57 | <10 | 0.94  | 246  | <1  |
| E54763 | AK07-18415KY | < 0.03  | 0.2  | 2.49  | 25  | 145        | <5              | 0.92 | ·5  | 20 | <b>7</b> 5 | 122 | 5.1  | <10 | 1.88  | 643  | <1  |
| E54764 | AK07-1841SKY | <0.03   | <0.2 | 1.13  | 10  | 55         | ·<5             | 0.85 | 4   | 14 | 53         | 83  | 3.69 | <10 | 0.64  | 293  | <1  |
| E54765 | AK07-1841SKY | 1       | <0.2 | 1.45  | 15  | 105        | ·<5             | 0.38 | 4   | 11 | 53         | 27  | 3.22 | <10 | 0.91  | 713  | <1  |
| E54766 | AK07-1841SKY | •       | <0.2 | 1.21  | 25  | 100        | `<5             | >10  | 5   | 13 | 40         | 44  | 3.78 | <10 | 1.16  | 1368 | <1  |
| E54767 | AK07-1841SKY |         | <0.2 | 2.7   | 20  | 65         | <5              | 3.35 | 6   | 25 | 67         | 10  | 5.43 | <10 | 2.22  | 972  | <1  |
| E54768 | AK07-1841SKY | •       | 0.3  | 0.64  | 15  | 70         | <5              | 2.23 | 3   | 7  | 124        | 53  | 2.12 | 10  | 0.55  | 393  | 24  |
| E54769 | AK07-1841SKY | •       | 0.4  | 0.49  | 35  | 155        | <5              | 1.11 | 2   | 3  | 100        | 29  | 1.83 | <10 | 0.42  | 365  | 11  |
| E54770 | AK07-1841SKY |         | 0.5  | 0.39  | 30  | 165        | <5              | 2.92 | 5   | 12 | 70         | 149 | 4.06 | <10 | 0.33  | 984  | <1  |
| E54771 | AK07-18415KY |         | <0.2 | 1.57  | 25  | 155        | ·<5             | 1.86 | 5   | 16 | 43         | 163 | 4.37 | <10 | 1.12  | 842  | <1  |
| E54772 | AK07-1841SKY | •       | <0.2 | 0.09  | ·<5 | 25         | <5              | 2.47 | <1  | 1  | 161        | 11  | 0.43 | <10 | 0.05  | 322  | <1  |
| E54773 | AK07-1841SKY | •       | <0.2 | 0.03  | <5  | ` <b>5</b> | <5              | 0.11 | <1  | <1 | 196        | 6   | 0.28 | <10 | <0.01 | 37   | <1  |
| E54774 | AK07-1841SKY |         | <0.2 | 0.19  | 5   | 90         | ·<5             | 7.51 | 2   | 4  | 53         | 40  | 1.38 | <10 | 0.18  | 1300 | <1  |
| E54775 | AK07-18415KY | •       | <0.2 | 0.19  | <5  | 80         | <5              | 3.36 | 2   | 3  | 124        | 28  | 1.37 | <10 | 0.47  | 672  | <1  |
| E54776 | AK07-1841SKY | •       | 0.6  | 0.71  | 5   | 115        | <5              | 3.14 | 4   | 11 | 85         | 153 | 3.04 | <10 | 0.45  | 744  | 7   |
| E54777 | AK07-1841SKY | 1       | 0.2  | 0.15  | 30  | 55         | <5              | 2.84 | 3   | 5  | 112        | 12  | 2.29 | <10 | 0.37  | 576  | <1  |
| E54778 | AK07-1841SKY | •       | 0.4  | 1.39  | 20  | 120        | <5              | 3.11 | 4   | 14 | 109        | 110 | 3.12 | <10 | 1.08  | 637  | <1  |
| E54779 | AK07-1841SKY | •       | 0.2  | 0.38  | ·<5 | 120        | <5              | 1.88 | 2   | 7  | 100        | 81  | 2.11 | <10 | 0.47  | 528  | <1  |
| E54780 | AK07-18415KY |         | 0.3  | 1.66  | 25  | 50         | ·<br><5         | 1.95 | 4   | 11 | 198        | 32  | 3.27 | <10 | 1.58  | 594  | 2   |
| E54781 | AK07-1841SKY | 1       | 0.4  | 1.03  | 10  | 20         | <sup>'</sup> <5 | >10  | 5   | 5  | 48         | 29  | 1.22 | <10 | 0.66  | 365  | 7   |
| E54782 | AK07-1841SKY | 1       | 0.8  | 1.25  | 10  | 75         | <b>&lt;</b> 5   | 0.43 | 103 | 14 | 126        | 133 | 4.42 | <10 | 0.96  | 335  | 5   |
| E54783 | AK07-18415KY | 1       | 0.2  | 1.88  | 15  | 260        | <5              | 2.32 | 5   | 14 | 143        | 36  | 3.39 | <10 | 1.55  | 613  | <1  |
| E54784 | AK07-1841SKY | •       | 0.5  | 1.51  | 10  | 70         | ·<5             | 1.05 | 6   | 13 | 194        | 59  | 2.33 | <10 | 0.67  | 411  | 16  |
| E54785 | AK07-1841SKY | •       | 0.3  | 1.07  | 10  | 170        | <5              | 0.22 | 10  | 8  | 114        | 46  | 2.72 | <10 | 0.71  | 313  | 2   |
| E54786 | AK07-18415KY | :       | <0.2 | 0.12  | 5   | 60         | <5              | 0.03 | 2   | 9  | 185        | 48  | 1.3  | <10 | 0.06  | 347  | 1   |
| E54787 | AK07-1841SKY |         | 0.2  | 1.25  | 20  | 95         | ·<5             | 0.45 | 4   | 11 | 145        | 46  | 2.75 | <10 | 1.01  | 634  | 2   |
| E54788 | AK07-1841SKY |         | <0.2 | 0.77  | 40  | 65         | ·<br><5         | 0.5  | 2   | 5  | 154        | 13  | 1.58 | <10 | 0.68  | 417  | <1  |
| E54789 | AK07-18415KY |         | <0.2 | 0.87  | 10  | 80         | ·<5             | 0.15 | 2   | 6  | 158        | 23  | 1.99 | <10 | 0.54  | 348  | <1  |
| E54790 | AK07-1841SKY | *       | 0.4  | 0.34  | 30  | 50         | ·<5             | >10  | 11  | 3  | 76         | 15  | 0.76 | <10 | 0.19  | 682  | <1  |
| E54791 | AK07-1841SKY | •       | 0.5  | 1.22  | 20  | 60         | <5              | 0.2  | 6   | 6  | 47         | 50  | 4.98 | 10  | 0.64  | 251  | 7   |
| E54792 | AK07-1841SKY | •       | 0.6  | 1.26  | 10  | 80         | <5              | 2.82 | 18  | 16 | 48         | 74  | 3.11 | 10  | 0.7   | 448  | 6   |
| E54793 | AK07-1841SKY |         | 1    | 0.87  | 20  | 45         | ·<5             | 0.34 | 3   | 6  | 57         | 14  | 2.19 | <10 | 0.49  | 148  | 33  |
| E54794 | AK07-18415KY | •       | 0.5  | 1.6   | 15  | 90         | <5              | 0.57 | 5   | 26 | 162        | 112 | 3.41 | <10 | 1.27  | 454  | <1  |
| E54795 | AK07-1841SKY |         | <0.2 | 1.05  | 10  | 55         | <5              | 1.39 | 3   | 13 | 52         | 43  | 2.26 | <10 | 0.72  | 394  | <1  |
| E54796 | AK07-1841SKY |         | 1    | 1.22  | 15  | 120        | <5              | 4.79 | 10  | 35 | 62         | 242 | 8.23 | <10 | 2.18  | 993  | <1  |
| E54797 | AK07-1841SKY | •       | 0.4  | 1.86  | 35  | 100        | <5              | 3.11 | 10  | 78 | 48         | 711 | 8.72 | <10 | 1.48  | 410  | <1  |
| E54798 | AK07-1841SKY |         | 0.2  | 1.37  | 10  | 70         | <5              | 0.44 | 4   | 20 | 77         | 110 | 3.6  | <10 | 0.84  | 226  | 12  |
| E54799 | AK07-1841SKY | •       | 0.3  | 1.22  | 80  | 85         | <5              | 0.69 | 4   | 19 | 83         | 121 | 3.83 | <10 | 0.68  | 358  | 4   |
| E54800 | AK07-18415KY | ,       | <0.2 | 1.27  | 20  | 120        | . ·s            | 0.73 | 3   | 15 | 59         | 22  | 2.48 | <10 | 0.75  | 378  | 1   |
| L34000 | UVA1-10-12V1 | 10.05   | -0.2 | 1.4.7 |     | 110        |                 |      |     |    |            |     |      |     |       |      |     |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH AG: 4 ACID DIGEST/AA-FINISH

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| ag#      | Certificate    | iAu(g/t) | Ag   | Al%  | As | Ва  | Bi            | Ca%  | Cd | Co  | Cr  | Cu  | Fe%  | La  | Mg%  | Mn   | Мо              |
|----------|----------------|----------|------|------|----|-----|---------------|------|----|-----|-----|-----|------|-----|------|------|-----------------|
| 32951    | AK07-1841SKY   | < 0.03   | 0.2  | 1.85 | 70 | 115 | <5            | 0.5  | 8  | 143 | 161 | 989 | 8.03 | <10 | 2.05 | 272  | <sub>!</sub> <1 |
| REG32952 | AK07-1841SKY   | '        | 0.5  | 1.87 | 10 | 110 | <5            | 0.38 | 6  | 13  | 86  | 156 | 3.81 | <10 | 1.1  | 320  | 6               |
| REG32961 | AK07-1841SKY   | •        | <0.2 | 1.56 | 15 | 40  | <5            | 0.17 | 4  | 8   | 132 | 26  | 3.45 | <10 | 1.26 | 411  | <1              |
| REG32970 | AK07-1841SKY   | :        | <0.2 | 0.11 | 15 | 15  | <5            | 0.11 | 1  | 2   | 170 | 11  | 0.58 | <10 | 0.03 | 214  | <1              |
| REE54750 | AK07-1841SKY   | •        | 0.2  | 1.84 | 25 | 50  | <5            | 5.61 | 5  | 13  | 74  | 57  | 4.29 | <10 | 1.45 | 1055 | <sub>.</sub> <1 |
| REE54759 | AK07-1841SKY   |          | 0.2  | 0.54 | 20 | 50  | ·<5           | 0.11 | 3  | 13  | 65  | 79  | 3.03 | <10 | 0.24 | 110  | <sub>.</sub> 3  |
| REE54768 | AK07-1841SKY   |          | 0.3  | 0.61 | 10 | 65  | <5            | 2.13 | 3  | 7   | 120 | 51  | 2.08 | <10 | 0.53 | ,384 | 24              |
| REE54785 | AK07-1841SKY   | i        | 0.4  | 1.08 | 10 | 170 | <5            | 0.23 | 10 | 18  | 118 | 40  | 2.61 | <10 | 0.66 | 313  | 2               |
| RESG3295 | AK07-18415KY   |          | 0.5  | 1.91 | 15 | 120 | <b>&lt;</b> 5 | 0.43 | 6  | 12  | 78  | 137 | 3.9  | <10 | 1.06 | 308  | 5               |
| RESE5475 | d AK07-1841SKY | <0.03    | 0.2  | 1.81 | 25 | 50  | <5            | 5.31 | 5  | 13  | 79  | 55  | 4.15 | <10 | 1.36 | 1009 | .<1             |
| RFSF5478 | 5 AKO7-1841SKY | <0.03    | 0.3  | 1.22 | 15 | 175 | <5            | 0.23 | 15 | 9   | 118 | 43  | 2.91 | <10 | 0.82 | 322  | 2               |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| Tag#   | Na%    | Ni | P    | Pb  | Sb            | Sn   | Sr   | Ti%    | U   | v       | W             | Y        | Zn            |
|--------|--------|----|------|-----|---------------|------|------|--------|-----|---------|---------------|----------|---------------|
| G32952 | 0.04   | 21 | 1090 | 6   | <5            | <20  | 934  | 0.14   | <10 | 106     | <10           | 6        | 95            |
| G32953 | 0.03   | 10 | 1290 | 8   | 5             | <20  | 1515 | 0.15   | <10 | 114     | <10           | 3        | 178           |
| G32954 | 0.03   | 38 | 360  | 28  | 5             | <20  | 17   | 0.07   | <10 | 295     | <10           | <1       | 155           |
| G32955 | 0.02   | 10 | 690  | 4   | <5            | <20  | 401  | 0.1    | <10 | 100     | <10           | 3        | 67            |
| G32956 | 0.04   | 48 | 820  | 10  | ·<5           | ·<20 | 38   | 0.18   | <10 | 170     | <10           | 3        | 142           |
| G32957 | 0.05   | 5  | 1820 | <2  | <5            | <20  | 48   | 0.08   | <10 | 136     | ·<br><10      | 3        | 32            |
| G32958 | 0.04   | 3  | 1570 | 8   | <5            | <20  | 140  | 0.1    | <10 | 62      | <10           | 6        | 35            |
| G32959 | 0.03   | 6  | 330  | 4   | <5            | <20  | 103  | 0.02   | <10 | 11      | <10           | 6        | 15            |
| G32960 | 0.04   | 29 | 1040 | <2  | <5            | <20  | 58   | 0.07   | <10 | 44      | <10           | 4        | 69            |
| G32961 | 0.02   | 16 | 260  | 8   | <5            | <20  | 13   | 0.03   | <10 | 63      | <10           | 1        | 98            |
| G32962 | 0.01   | 11 | 50   | 2   | <5            | <20  | 7    | <0.01  | <10 | 2       | <10           | 2        | 13            |
| G32963 | 0.01   | 5  | 40   | 4   | <5            | <20  | 6    | <0.01  | <10 | 4       | <10           | <1       | 3             |
| G32964 | 0.04   | 13 | 370  | 6   | <5            | <20  | 44   | 0.05   | <10 | 22      | <10           | 3        | 58            |
| G32965 | 0.02   | 11 | 260  | 12  | <5            | <20  | 17   | 0.03   | <10 | 15      | <10           | 2        | 28            |
| G32966 | 0.01   | 10 | 110  | 10  | ·<br><5       | <20  | 143  | <0.01  | <10 | 1       | <10           | 3        | 1184          |
| G32967 | 0.02   | 29 | 520  | 4   | <5            | <20  | 12   | 0.05   | <10 | 14      | <10           | 5        | 148           |
| G32968 | 0.02   | 33 | 500  | 4   | <5            | <20  | 23   | 0.07   | <10 | 50      | <10           | `5       | 81            |
| G32969 | 0.02   | 11 | 70   | 6   | <5            | <20  | 8    | <0.01  | <10 | 6       | <10           | 1        | 15            |
| G32970 | 0.01   | 7  | 150  | 2   | <5            | <20  | 10   | < 0.01 | <10 | 2       | <10           | 1        | 12            |
| G32971 | 0.01   | 5  | 60   | 4   | <5            | <20  | 6    | <0.01  | <10 | 3       | <10           | <1       | 5             |
| G32972 | 0.02   | 7  | 140  | 10  | <5            | <20  | 10   | 0.02   | <10 | 9       | <10           | 1        | 9             |
| G32973 | < 0.01 | 6  | 30   | 38  | <5            | <20  | 5    | <0.01  | <10 | 4       | <10           | <1       | 5             |
| G32974 | 0.01   | 10 | 110  | 16  | ·<br><5       | <20  | 4    | 0.02   | <10 | 10      | <10           | 1        | 21            |
| G32975 | < 0.01 | 8  | 20   | 4   | <5            | <20  | `5   | <0.01  | <10 | ·<br><1 | <10           | <1       | 18            |
| E54739 | 0.04   | 76 | 530  | ·<2 | <5            | <20  | 14   | 0.32   | <10 | 89      | <10           | 8        | 52            |
| E54740 | 0.06   | 66 | 490  | <2  | 5             | <20  | 49   | 0.09   | <10 | 160     | <10           | 10       | 58            |
| E54741 | 0.07   | 30 | 280  | <2  | <5            | <20  | 13   | 0.23   | <10 | 103     | <10           | 6        | 41            |
| E54742 | 0.02   | 32 | 630  | 8   | <5            | <20  | 11   | < 0.01 | <10 | 10      | <10           | 2        | 78            |
| E54743 | 0.03   | 21 | 440  | 20  | <5            | <20  | 860  | < 0.01 | <10 | 9       | <10           | 15       | 62            |
| E54744 | 0.18   | 28 | 240  | 6   | <5            | <20  | 406  | 0.13   | <10 | 13      | <10           | 5        | 28            |
| E54745 | 0.02   | 56 | 610  | 22  | <5            | <20  | 94   | <0.01  | <10 | 15      | <10           | <b>3</b> | 86            |
| E54746 | 0.18   | 34 | 670  | 12  | <5            | <20  | 133  | 0.13   | <10 | 78      | <10           | 7        | <sup>89</sup> |
| E54747 | 0.05   | 8  | 270  | 14  | <5            | <20  | 59   | <0.01  | <10 | 1       | <10           | ,1       | ,21           |
| E54748 | 0.06   | 19 | 1420 | 6   | <5            | <20  | 92   | 0.13   | <10 | 82      | <10           | 5        | 80            |
| E54749 | 0.07   | 11 | 1400 | 4   | <5            | <20  | 145  | 0.1    | <10 | 86      | <10           | 5        | 72            |
| E54750 | 0.04   | 10 | 1190 | 60  | <5            | <20  | 688  | 0.07   | <10 | 147     | <10           | 5        | 90            |
| E54751 | 0.03   | 20 | 1450 | 8   | <5            | <20  | 1013 | < 0.01 | <10 | 125     | <10           | 13       | 59            |
| E54752 | 0.03   | 44 | 1180 | 8   | <5            | <20  | 196  | 0.15   | <10 | 57      | <10           | 10       | 127           |
| E54753 | 0.05   | 18 | 1510 | 4   | <5            | <20  | 125  | 0.12   | <10 | 109     | <10           | 7        | 67            |
| E54754 | 0.04   | 36 | 1310 | 6   | <5            | <20  | 149  | 0.14   | <10 | 79      | <10           | 9        | .78           |
| E54755 | 0.03   | 20 | 800  | 6   | <5            | <20  | 82   | 0.13   | <10 | 82      | <b>&lt;10</b> | 5        | 53            |
| E54756 | 0.06   | 17 | 1300 | 2   | <5            | <20  | 60   | 0.19   | <10 | 127     | <10           | 6        | 100           |
| E54757 | 0.01   | 11 | 590  | 10  | <u>i&lt;5</u> | <20  | 24   | 0.09   | <10 | 7       | <10           | 6        | 44            |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH
AG: 4 ACID DIGEST/AA-FINISH

Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#            | Na%   | Ni     | Р    | Pb              | Sb  | Sn  | Sr   | Ti%    | U   | , V             | W                | Y              | Zn               |
|-----------------|-------|--------|------|-----------------|-----|-----|------|--------|-----|-----------------|------------------|----------------|------------------|
| E54758          | 0.05  | 56     | 930  | 48              | 20  | <20 | 13   | <0.01  | <10 | .67             | <10              | <1             | .58              |
| E54759          | 0.02  | 30     | 660  | 20              | <5  | <20 | 28   | <0.01  | <10 | .14             | <sub>.</sub> <10 | 4              | 55               |
| E54760          | 0.04  | 44     | 1190 | 8               | <5  | <20 | 39   | 0.09   | <10 | 96              | <sub>.</sub> <10 | .6             | <sub>,</sub> 113 |
| E54761          | 0.1   | 24     | 1350 | 2               | <5  | <20 | 97   | 0.16   | <10 | 113             | <10              | 3              | .48              |
| E54762          | 0.08  | 11     | 1920 | 6               | <5  | <20 | 71   | 0.13   | <10 | 92              | <10              | 3              | 20               |
| £54763          | 0.08  | 28     | 1310 | <2              | ·<5 | <20 | 84   | 0.15   | <10 | 137             | .<10             | 7              | .87              |
| E54 <b>7</b> 64 | 0.08  | 9      | 1720 | <2              | ·<5 | <20 | 179  | 0.14   | <10 | 57              | <10              | .6             | 33               |
| E54765          | 0.08  | 10     | 1170 | <2              | <5  | <20 | 38   | 0.07   | <10 | 77              | <10              | 4              | 70               |
| E54766          | 0.02  | 12     | 1030 | <2              | <5  | <20 | 1005 | <0.01  | <10 | 71              | <10              | .5             | 52               |
| E54767          | 0.02  | 63     | 3010 | <2              | .<5 | <20 | 195  | 0.11   | <10 | .70             | <10              | <sub>.</sub> 5 | .72              |
| E54768          | 0.02  | 32     | 500  | 12              | <5  | <20 | 178  | <0.01  | <10 | .12             | <10              | 4              | 56               |
| E54769          | 0.02  | 10     | 320  | 8               | <5  | <20 | 42   | 0.03   | <10 | 16              | <10              | 4              | .40              |
| E54770          | 0.03  | 12     | 1310 | 8               | <5  | <20 | 328  | <0.01  | <10 | <sub>;</sub> 9  | <10              | 6              | .73              |
| E54771          | 0.02  | 33     | 1970 | 4               | <5  | <20 | 298  | 0.03   | <10 | 41              | <10              | 4              | .77              |
| £54772          | <0.01 | ·<br>6 | 90   | 14              | ·<5 | <20 | 476  | <0.01  | <10 | 4               | <10              | 1              | .7               |
| E54773          | <0.01 | 5      | 10   | 2               | <5  | <20 | 32   | <0.01  | <10 | 1               | <sub>.</sub> <10 | <1             | .3               |
| E54774          | 0.02  | 9      | 920  | 14              | <5  | <20 | 876  | <0.01  | <10 | 4               | <10              | <sub>.</sub> 6 | 34               |
| E54775          | 0.01  | 11     | 610  | 16              | ·<5 | <20 | 427  | <0.01  | <10 | 6               | <10              | .8             | 34               |
| E54776          | 0.02  | 49     | 950  | <sup>:</sup> 18 | <5  | <20 | 316  | <0.01  | <10 | 17              | <10              | 5              | 109              |
| E54777          | 0.03  | 6      | 830  | 12              | <5  | <20 | 251  | < 0.01 | <10 | 5               | <10              | <sub>.</sub> 5 | 35               |
| E54778          | 0.03  | 27     | 1140 | 10              | <5  | <20 | 593  | 0.1    | <10 | 63              | <10              | .8             | .63              |
| E54779          | 0.03  | 21     | 910  | 16              | <5  | <20 | 361  | 0.01   | <10 | 13              | <10              | 5              | .39              |
| E54780          | 0.02  | 50     | 820  | 28              | <5  | <20 | 84   | 0.09   | <10 | 121             | <10              | 7              | 59               |
| E54781          | <0.01 | 30     | 830  | 6               | <5  | <20 | 280  | 0.03   | <10 | 66              | .<10             | 5              | .161             |
| E54782          | 0.02  | 38     | 1090 | 18              | ·<5 | <20 | 30   | 0.09   | <10 | 51              | <10              | 7              | 1373             |
| E54783          | 0.04  | 67     | 1150 | 6               | <5  | <20 | 69   | 0.14   | <10 | 106             | <10              | 7              | 88               |
| E54784          | 0.02  | 59     | 580  | 6               | <5  | <20 | 15   | 0.09   | <10 | 60              | <10              | 4              | .190             |
| E54785          | 0.03  | 17     | 730  | 14              | ·<5 | <20 | 25   | 0.08   | <10 | 39              | <10              | 4              | 224              |
| E54786          | 0.01  | 11     | 70   | 4               | <5  | <20 | 8    | <0.01  | <10 | 8               | <10              | <1             | .11              |
| E54787          | 0.04  | 48     | 1060 | 6               | <5  | <20 | 36   | 0.08   | <10 | 59              | <10              | .8             | .104             |
| E54788          | 0.02  | 14     | 580  | .6              | <5  | <20 | 47   | 0.04   | <10 | :28             | <10              | <sub>.</sub> 2 | .47              |
| E54789          | 0.02  | 19     | 670  |                 | <5  | <20 | 18   | 0.03   | <10 | 30              | <10              | 3              | <sub>.</sub> 59  |
| E54790          | 0.01  | 6      | 170  | 28              | ·<5 | <20 | 242  | 0.01   | <10 | 10              | <10              | 1              | 181              |
| E54791          | 0.02  | 28     | 670  | 10              | <5  | <20 | 27   | 0.06   | <10 | <sub>.</sub> 57 | <sub>.</sub> <10 | 13             | :357             |
| E54792          | 0.02  | 74     | 870  | ·<br>6          | <5  | <20 | 79   | 0.07   | <10 | .43             | <b>&lt;1</b> 0   | 14             | 558              |
| E54793          | 0.02  | 19     | 670  | 10              | <5  | <20 | 42   | 0.08   | <10 | 61              | <10              | .4             | 46               |
| E54794          | 0.03  | 78     | 1080 | 4               | <5  | <20 | 41   | 0.06   | <10 | 51              | <10              | <sub>.</sub> 5 | .202             |
| E54795          | 0.12  | 11     | 1770 | 2               | <5  | <20 | 167  | 0.1    | <10 | 71              | <10              | ,6             | .46              |
| E54796          | 0.06  | 24     | 2890 | 12              | <5  | <20 | 1263 | 0.07   | <10 | 243             | <10              | 7              | 120              |
| E54797          | 0.24  | 32     | 5550 | 6               | ·<5 | <20 | 273  | 0.14   | <10 | 269             | <10              | 12             | 48               |
| E54798          | 0.03  | 47     | 1040 | 8               | <5  | <20 | 39   | 0.1    | <10 | 98              | <10              | .8             | 76               |
| E54799          | 0.04  | 18     | 1160 | 4               | <5  | <20 | 55   | 0.15   | <10 | 139             | <10              | 6              | 89               |
| E54800          | 0.07  | 15     | 1270 | 2               | ·<5 | <20 | 97   | 0.11   | <10 | 95              | <10              | .5             | [88]             |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH AG: 4 ACID DIGEST/AA-FINISH

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#     | Na%    | Ni  | Р    | Pb | Sb  | Sn  | Sr  | Ti%   | Ū   |     | W   | Y  | Zn  |
|----------|--------|-----|------|----|-----|-----|-----|-------|-----|-----|-----|----|-----|
| G32951   | 0.05   | 147 | 230  | 4  | <5  | <20 | 33  | 0.19  | <10 | 290 | <10 | <1 | 37  |
| REG32952 | 0.05   | 22  | 1130 | 4  | <5  | <20 | 911 | 0.13  | <10 | 110 | <10 | 5  | 96  |
| REG32961 | 0.02   | 16  | 250  | 6  | <5  | <20 | 12  | 0.02  | <10 | 65  | <10 | 1  | 97  |
| REG32970 | 0.01   | 7   | 150  | 2  | <5  | <20 | 8   | <0.01 | <10 | 3   | <10 | 1  | 11  |
| REE54750 | 0.04   | 10  | 1190 | 54 | ·<5 | <20 | 700 | 0.06  | <10 | 146 | <10 | 6  | 91  |
| REE54759 | io.02  | 29  | 660  | 18 | <5  | <20 | 25  | <0.01 | <10 | 12  | <10 | 4  | 51  |
| REE54768 | 0.02   | 31  | 480  | 10 | <5  | <20 | 177 | <0.01 | <10 | 12  | <10 | 4  | 55  |
| REE54785 | 10.02  | 18  | 750  | 12 | ·<5 | <20 | 25  | 0.08  | <10 | 37  | <10 | 4  | 210 |
| RESG3295 | 520.04 | 18  | 1100 | 4  | 5   | <20 | 924 | 0.13  | <10 | 113 | <10 | 6  | 99  |
| RESE5475 | do.04  | 9   | 1190 | 56 | <5  | <20 | 657 | 0.06  | <10 | 140 | <10 | 5  | 85  |
| RESE5478 | 50.03  | 19  | 750  | 10 | i<5 | <20 | 30  | 0.1   | <10 | 40  | <10 | 5  | 218 |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| T2.7.#          | Certificate   | Au(g/t)  | Ag                | Al%               | As              | Ba             | Bi                    | Ca%   | Cd                | Со              | Cr              | Cu              | Fe%               | K%    | La              | Mg%  | Mn                |
|-----------------|---------------|----------|-------------------|-------------------|-----------------|----------------|-----------------------|-------|-------------------|-----------------|-----------------|-----------------|-------------------|-------|-----------------|------|-------------------|
| Tag #<br>G43601 | AK07-2295SKY  | .Au(g/t/ | .0.4              | 7.31              | .,∧3<br>.<5     | 190            | <5                    | 6.4   | .ca<br><1         | 11              | :135            | 98              | 2.99              | 0.39  | <10             | 0.85 | 460               |
| 1               | AK07-2295SKY  | <0.03    | 0.6               | 9.01              | .<5             | 1695           | <5                    | 2.48  | <1                | 10              | 183             | 68              | 4                 | 2.44  | 10              | 1.66 | 577               |
| G43609          |               | •        | 0.4               | 7.76              | <5              | 1545           | , <b>&lt;</b> 5       | 5.44  | 1                 | 19              | 330             | 52              | 5.95              | 2.63  | <10             | 5.05 | 1085              |
| G43610          | AK07-2295SKY  | <0.03    | +                 | 7.78              | .\3<br><5       | 835            | .\J                   | 2.78  | 2                 | 24              | 181             | 61              | 5.31              | 2.37  | 20              | 2.09 | 862               |
| G43611          | AK07-2295SKY  | <0.03    | 0.8               |                   |                 |                |                       | >10   | 25                | 5               | .119            | 52              | 1.65              | 0.97  | 20              | 1.25 | 400               |
| G43612          | AK07-2295SKY  | <0.03    | 0.6               | 2.77              | <5<br>          | 415            | .<5<br>.rc            |       | 4                 | 16              | 192             | .32             | 4.59              | 2.41  | 20              | 2.62 | 509               |
| G43613          | AK07-2295SKY  | <0.03    | 0.6               | 7.67              | <5              | 735            | <5<br>-               | 1.91  |                   |                 |                 | .80<br>84       | 4.59              | 2.66  | 10              | 2.48 | 843               |
| G43614          | AK07-2295SKY  | <0.03    | 0.8               | 8.95              | .<5             | 525            | <b>&lt;</b> 5         | 2.13  | <1                | 19              | 67              | •               | •                 |       | i               |      | 739               |
| G43615          | AK07-2295SKY  | <0.03    | 0.6               | 7.82              | .<5             | 1140           | ,<5                   | 3.24  | .2                | 15              | 92              | 78              | 4.21              | 2.69  | 20              | 1.9  | •                 |
| G43616          | AK07-2295SKY  | ,<0.03   | 0.6               | 5.32              | .<5             | 660            | ;<5                   | >10   | .6                | .8              | 126             | 64              | 2.46              | 2.33  | 20              | 0.72 | 875               |
| G43618          | AK07-2295SKY  | <0.03    | 0.2               | 7.63              | .10             | 915            | <5                    | 2.19  | ,5                | .11             | .98             | 89              | .4.33             | 2.58  | 20              | 1.76 | 687               |
| G43619          | AK07-2295SKY  | <0.03    | [0.2              | 8.18              | <sub>.</sub> <5 | ,1135          | <5                    | 3.51  | <1                | ,8              | .31             | 14              | 3.58              | 3     | 20              | 1.21 | 788               |
| G43620          | AK07-2295SKY  | <0.03    | <sub>.</sub> <0.2 | 8.09              | <sub>.</sub> <5 | ,1360          | <5                    | 2.7   | <b>&lt;1</b>      | .14             | 44              | 78              | 3.72              | 2.93  | 10              | 2.16 | 1176              |
| G43621          | AK07-2295SKY  | <0.03    | 0.2               | 7.62              | ;<5             | 1015           | .<5                   | 0.66  | <b>&lt;1</b>      | .17             | .85             | 55              | 4.44              | 2.81  | .20             | 2.52 | 644               |
| G43622          | AK07-2295SKY  | <0.03    | 0.4               | 8.28              | .10             | ; <b>11</b> 50 | <sub>,</sub> <5       | .2.5  | .<1               | :19             | ,96             | .88             | 4.86              | 3.01  | 20              | 1.6  | 680               |
| G43624          | AK07-2295SKY  | <0.03    | <0.2              | 8.09              | 10              | 1075           | <b>i&lt;</b> 5        | 4.7   | <sub>.</sub> <1   | 24              | 72              | 55              | 5.08              | 1.68  | <10             | 3.84 | .1111             |
| G43625          | AK07-2295SKY  | <0.03    | <0.2              | 8.61              | <b>.&lt;5</b>   | :350           | <5                    | .4    | <b>&lt;1</b>      | 12              | 65              | :40             | 4.2               | 0.67  | 20              | 1.36 | 942               |
| G43626          | AK07-2295SKY  | <0.03    | <0.2              | 7.37              | ;<5             | 930            | .<5                   | 1.34  | .<1               | .7              | 123             | 65              | 4.43              | 2.14  | 20              | 2.05 | 534               |
| G43627          | AK07-2295SKY  | <0.03    | <0.2              | 9.07              | <5              | 1575           | <sub>.</sub> <5       | 2.74  | .<1               | <sub> </sub> 13 | .34             | .66             | 4.86              | 2.87  | .10             | 2.36 | 583               |
| G43628          | AK07-2295SKY  | <0.03    | 0.2               | 7.01              | <5              | 965            | <5                    | 1.24  | <1                | 12              | <u></u> 98      | 69              | 3.72              | 2.35  | 20              | 1.86 | ,4 <del>9</del> 0 |
| G43629          | AK07-2295SKY  | <0.03    | 0.4               | 8.33              | 30              | :880           | <5                    | 0.8   | <1                | 15              | :108            | 33              | 4.72              | 3.05  | <sub>i</sub> 30 | 1.1  | 1222              |
| G43630          | AK07-2295SKY  | <0.03    | 0.2               | 5.61              | .10             | 435            | <sup>'</sup> <5       | 3.75  | <1                | 7               | 129             | 16              | 2.66              | 1.15  | 10              | 0.93 | 716               |
| G43631          | AK07-2295SKY  | <0.03    | 0.2               | 7.54              | 10              | 1905           | ·<br><5               | 3.06  | <1                | 6               | 26              | 38              | 2.61              | 3.32  | <10             | 1.35 | 792               |
| G43632          | AK07-2295SKY  | <0.03    | 0.2               | 8.42              | ·<5             | 2165           | ·<5                   | 0.42  | <1                | 10              | 116             | 95              | 3.3               | 4.34  | 10              | 1.7  | 441               |
| G43633          | AK07-22955KY  | <0.03    | 0.2               | 5.82              | ·<5             | 600            | ·<5                   | 5.76  | 2                 | .8              | 115             | 20              | 2.62              | 1.96  | 30              | 3.42 | 1163              |
| G43634          | AK07-2295SKY  | <0.03    | 1.2               | 7.15              | ·<5             | 1415           | <5                    | 0.48  | <1                | 9               | 88              | 59              | 2.81              | 2.41  | 20              | 1.55 | 490               |
| G43635          | AK07-2295SKY  | < 0.03   | <0.2              | <sup>:</sup> 7.51 | 10              | 1260           | <5                    | 2.03  | <1                | 12              | 53              | 56              | 3.76              | 2.16  | 20              | 1.93 | 906               |
| G43636          | AK07-2295SKY  | <0.03    | <0.2              | 7.7               | <5              | 125            | ·<br><5               | 5.45  | <1                | 36              | 328             | 27              | 5.47              | 1.19  | 20              | 3.81 | 683               |
| G43637          | AK07-2295SKY  | <0.03    | <0.2              | 5.07              | ·<br>5          | 470            | ·<5                   | 1.46  | <1                | .7              | 133             | 28              | 2.39              | 1.79  | 20              | 1.7  | 740               |
| G43638          | AK07-2295SKY  | <0.03    | <0.2              | 6.04              | <br><5          | .575           | ·<5                   | 1.8   | <1                | 10              | 157             | 64              | 2.68              | 2.1   | 30              | ,2.1 | 1370              |
| G43639          | AK07-2295SKY  | <0.03    | <0.2              | 7.49              | 5               | 720            | ·<5                   | 0.19  | ·<br><1           | 11              | <sup>;</sup> 98 | .33             | <sup>:</sup> 3.18 | 2.54  | 20              | 1.83 | 546               |
| G43640          | AK07-2295SKY  | <0.03    | 0.2               | 4.43              | 20              | 760            | ·<5                   | 0.11  | <1                | . 7             | 192             | 233             | 4.59              | 1.61  | 20              | 0.46 | 219               |
| G43641          | AK07-2295SKY  | <0.03    | <0.2              | >10               | ,=°<br><5       | 315            | . ~5                  | 2.88  | <1                | 18              | 47              | 37              | 4.22              | 1.95  | <10             | 2.8  | 586               |
| G43642          | AK07-2295SKY  | <0.03    | 0.2               | 8.08              | . <5            | 275            | <5                    | 2.49  | <1                | 18              | 89              | 77              | 4.44              | 1.06  | 10              | 2.35 | 514               |
| L               | AK07-22955KY  | <0.03    | 0.2               | 8.75              | <5              | 995            | .<5                   | 2.74  | <1                | 13              | 143             | 74              | 4.19              | 2.65  | 20              | 2.13 | 613               |
| G43643          |               | <0.03    | 0.4               | 8.26              | 15              | 1120           | <5                    | 1.17  | <1                | 9               | 108             | <sup>:</sup> 73 | 4.39              | 2.74  | 10              | .2   | 614               |
| G43644          | AK07-2295SKY  | •        |                   |                   | :5              | 1435           | , <b>\</b> 5          | 0.27  | <1                | .13             | 102             | 48              | 3.16              | 2.95  | 30              | 1.97 | 512               |
| G43645          | AK07-2295SKY  | <0.03    | 0.2               | <sub>1</sub> 8.44 | 10              | :995           | .<5                   | 5.02  | . <u>~1</u><br><1 | :13             | .71             | 52              | 5.27              | 1.96  | 30              | 4.02 | 1309              |
| G43646          | AK07-2295SKY  | <0.03    | <0.2              | 9.11              |                 | 965            | S3<br>  <b>&lt;</b> 5 | 3.34  | <1                | :23             | 34              | .32<br>48       | 4.96              | 1.87  | 20              | 3.48 | 1219              |
| G43647          | AK07-2295SKY  | <0.03    | <0.2              | 9.52              | ;5<br>-£        |                | •                     | .3.34 | ,\1<br><1         | 12              | :34<br>90       | .40<br>:80      | 2.54              | 2.01  | 20              | 1.59 | 540               |
| G43648          | AK07-2295SKY  | <0.03    | 0.2               | 6.01              | <5<br>-F        | :800<br>765    | .<5<br>.<5            |       | ,<1<br><1         | 14              | 114             | 81              | 3.27              | 1.9   | .20<br>:20      | 1.76 | 639               |
| G43649          | AK07-2295\$KY | <0.03    | 0.2               | 6.53              | <5<br>          | 765            | .<5<br>E              | 0.76  |                   | .14<br>7        |                 | .81             | 2.6               | 0.07  | ;20<br>;<10     | 2.25 | 1367              |
| G43650          | AK07-2295SKY  | <0.03    | 0.2               | 0.83              | <5<br>s         | 30             | <b>&lt;</b> 5         | 8.48  | .<1               | •               | 196             |                 |                   |       |                 |      |                   |
| G43651          | AK07-2295SKY  | <0.03    | ,<0.2             | 7.76              | :<5<br>:-       | 175            | ,<5<br>               | 3.97  | :<1               | :28             | .77             | .88             | 5.89              | 0.43  | 10              | 3.73 | 1307              |
| G43652          | AK07-2295SKY  | .<0.03   | <0.2              | 8.95              | .< <u>5</u>     | 510            | .<5                   | 3.79  | ;<1               | 29              | 67              | .68             | 6.27              | .1.44 | <10             | 2.77 | 1178              |
| REG43601        | AK07-2295SKY  |          | 0.4               | 7.48              | <5              | 215            | .<5                   | 6.8   | _<1               | 12              | 135             | 104             | 3.28              | ¦0.55 | 10              | 0.87 | 468               |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH
AG: 4 ACID DIGEST/AA-FINISH

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| Tag#      | Certificate  | Au(g/t) | Ag   | Al%  | As  | Ba   | Bi | Ca%  | Cd | Co | Cr  | Cu  | Fe%  | к%   | La  | Mg%  | Mn  |
|-----------|--------------|---------|------|------|-----|------|----|------|----|----|-----|-----|------|------|-----|------|-----|
| REG43618  | AK07-2295SKY | = .     | 0.4  | 7.42 | 10  | 915  | <5 | 2.04 | 5  | 12 | 98  | 91  | 4.2  | 2.62 | 20  | 1.76 | 680 |
| REG43628  | AK07-2295SKY | •       | 0.4  | 7.04 | ·<5 | 995  | <5 | 1.24 | <1 | 13 | 101 | 72  | 3.58 | 2.43 | 20  | 1.92 | 509 |
| RESG43601 | AK07-2295SKY | <0.03   | 0.4  | 7.19 | <5  | 185  | <5 | 6.19 | <1 | 11 | 134 | 100 | 2.72 | 0.5  | <10 | 0.79 | 451 |
| RESG43645 | AK07-2295SKY | <0.03   | <0.2 | 8.54 | 5   | 1430 | <5 | 0.28 | <1 | 14 | 100 | 50  | 3.07 | 2.78 | 30  | 1.91 | 518 |

AG: 4 ACID DIGEST/AA-FINISH

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

| Tag#     | Мо            | Na%  | :Ni            | P             | Pb              | Sb              | Sn  | Sr   | Ti%   | U    | V                | W             | Y   | Zn   |
|----------|---------------|------|----------------|---------------|-----------------|-----------------|-----|------|-------|------|------------------|---------------|-----|------|
| G43601   | 2             | 1.95 | 28             | 1110          | 49              | ·<5             | <20 | 221  | 0.29  | <10  | 146              | <10           | 12  | 82   |
| G43609   | 5             | 2.26 | 24             | 1740          | 40              | <5              | <20 | 655  | 0.51  | <10  | 306              | <10           | 14  | 67   |
| G43610   | <1            | 1.52 | 78             | 1430          | 30              | <5              | <20 | 716  | 0.36  | <10  | 265              | <10           | 13  | 194  |
| G43611   | 2             | 1.8  | 99             | 1610          | 34              | <5              | <20 | 749  | 0.45  | <10  | 284              | <10           | 25  | 303  |
| G43612   | 13            | 0.58 | 51             | 2440          | 12              | <5              | <20 | 1142 | 0.16  | <10  | 436              | <10           | 25  | 840  |
| G43613   | 10            | 1.87 | <del>9</del> 5 | 1640          | 40              | <5              | <20 | 361  | 0.49  | <10  | 337              | <10           | 16  | 169  |
| G43614   | <b> &lt;1</b> | 2.04 | 29             | 1950          | 36              | <5              | <20 | 454  | 0.5   | <10  | 241              | <10           | 16  | 95   |
| G43615   | 2             | 2.53 | 39             | 1830          | 36              | <5              | <20 | 568  | 0.42  | <10  | 220              | <10           | 19  | 82   |
| G43616   | 5             | 0.79 | 46             | 1850          | 24              | <b>.&lt;5</b>   | <20 | 654  | 0.27  | <10  | 274              | <10           | 25  | 162  |
| G43618   | 16            | 1.87 | 47             | 1370          | 36              | <5              | <20 | 274  | 0.43  | <10  | 346              | <10           | 19  | 310  |
| G43619   | 1             | 2.11 | 13             | 1940          | 76              | <5              | <20 | 881  | 0.37  | <10  | 95               | <10           | 18  | 86   |
| G43620   | <1            | 3.18 | 35             | 1560          | 34              | <5              | <20 | 577  | 0.34  | <10  | 146              | <10           | 11  | 86   |
| G43621   | <1            | 1.98 | 50             | 1510          | 32              | <sub>.</sub> <5 | <20 | 245  | 0.45  | <10  | 189              | <10           | 17  | 105  |
| G43622   | <1            | 1.96 | .32            | 1690          | .44             | <sub>.</sub> <5 | <20 | 217  | 0.36  | <10  | 197              | <10           | 13  | 95   |
| G43624   | <1            | 2.82 | 36             | 1450          | 32              | <5              | <20 | 604  | 0.47  | <10  | 261              | <10           | 16  | 71   |
| G43625   | <1            | 4.33 | 13             | 2040          | .32             | 5               | <20 | 1329 | 0.39  | <10  | <sub>.</sub> 171 | <10           | .15 | 68   |
| G43626   | <1            | 1.85 | 23             | 1300          | 34              | <sub>.</sub> <5 | <20 | 503  | 0.47  | <10  | 182              | <10           | 18  | 75   |
| G43627   | <1            | 2.91 | 15             | 2100          | .34             | <b>.&lt;5</b>   | <20 | 1147 | 0.39  | <10  | 190              | <10           | 16  | .68  |
| G43628   | <1            | 1.88 | 43             | 1350          | 32              | <5              | <20 | 550  | 0.38  | <10  | 150              | <10           | 20  | 92   |
| G43629   | 15            | 1.43 | 59             | 1090          | 50              | <5              | <20 | 163  | 0.26  | <10  | 158              | <10           | 9   | 147  |
| G43630   | <1            | 3.25 | 12             | 1340          | 28              | <5              | <20 | 426  | 0.27  | <10  | 76               | <10           | 13  | 45   |
| G43631   | <1            | 2.78 | 12             | 1680          | 28              | <sub>.</sub> <5 | <20 | 676  | 0.25  | ·<10 | 140              | <10           | 9   | 49   |
| G43632   | <1            | 1.03 | 24             | 1890          | 34              | <sub>.</sub> <5 | <20 | 117  | 0.26  | <10  | 154              | <b>&lt;10</b> | 9   | 79   |
| G43633   | <u>.</u> 7    | 0.54 | [35            | ; <b>78</b> 0 | 52              | <sub>.</sub> <5 | <20 | 739  | 0.2   | <10  | 186              | <10           | .11 | .141 |
| G43634   | <b>&lt;1</b>  | 2.28 | .24            | 1370          | .24             | <sub>.</sub> <5 | <20 | 158  | .0.17 | <10  | 125              | <10           | .7  | 67   |
| G43635   | <1            | 2.89 | 34             | 1250          | .28             | ·<5             | <20 | 468  | 0.36  | <10  | 145              | <10           | 7   | 101  |
| G43636   | <1            | 1.5  | 128            | 1880          | 30              | <5              | <20 | 253  | 0.73  | <10  | 247              | <10           | 23  | .77  |
| G43637   | 1             | 0.63 | 31             | 530           | 22              | <5              | <20 | 116  | 0.25  | <10  | 79               | <10           | 8   | 74   |
| G43638   | <1            | 1.03 | 61             | 740           | 32              | <sub>.</sub> <5 | <20 | 94   | 0.31  | <10  | 94               | <10           | 9   | 82   |
| G43639   | <b>!&lt;1</b> | 1.02 | 50             | 710           | :40             | :<5             | <20 | .49  | 0.35  | <10  | . <b>8</b> 5     | <10           | 6   | 83   |
| G43640   | 29            | 0.33 | <b>.8</b> 5    | 1160          | 34              | .<5             | <20 | 66   | 0.16  | <10  | 365              | <10           | ,11 | .247 |
| G43641   | <1            | 3.67 | .32            | .670          | ¸38             | .<5             | <20 | 520  | .0.31 | <10  | 142              | <10           | 8   | 76   |
| G43642   | <b> &lt;1</b> | 2.77 | .33            | .980          | <sub>,</sub> 36 | <sub>.</sub> <5 | <20 | 436  | 0.47  | <10  | 219              | <10           | 17  | .80  |
| G43643   | <1            | 2.93 | 28             | 1870          | 52              | <sub>.</sub> <5 | <20 | 866  | 0.41  | <10  | 184              | <10           | 17  | 56   |
| G43644   | <1            | 2.57 | 27             | 1710          | 38              | <5              | <20 | 758  | 0.4   | <10  | 178              | <10           | 16  |      |
| G43645   | 1             | 1.23 | 42             | 800           | 42              | <5              | <20 | 165  | 0.39  | <10  | 126              | <10           | 15  | 74   |
| G43646   | <1            | 2.82 | 57             | 2540          | <sub>,</sub> 32 | <sub>.</sub> <5 | <20 | 348  | 0.58  | <10  | 236              | <10           | 19  | .85  |
| G43647   | <1            | 3.87 | 38             | 1840          | 34              | <sub>.</sub> <5 | <20 | 336  | 0.56  | <10  | 221              | <10           | 14  | 66   |
| G43648   | <b>&lt;</b> 1 | 1.01 | 35             | 590           | 30              | <sub>.</sub> <5 | <20 | 95   | 0.31  | <10  | 101              | <10           | 17  | 60   |
| G43649   | <1            | 1.37 | 39             | 690           | 34              | <5              | <20 | 101  | 0.36  | <10  | 117              | <10           | 20  | 72   |
| G43650   | <1            | 0.16 | 15             | 200           | 12              | <5              | <20 | 534  | 0.04  | <10  | 36               | <10           | 6   | 23   |
| G43651   | <1            | 3.26 | 43             | 1320          | 30              | <5              | <20 | 410  | 0.54  | <10  | 262              | <10           | 19  | 74   |
| G43652   | <1            | 2.69 | 39             | 1920          | 34              | <5              | <20 | 240  | 0.6   | <10  | 302              | <10           | 20  | 83   |
| REG43601 | 2             | 1.94 | 29             | 1150          | 34              | :<5             | <20 | 226  | 0.3   | <10  | 148              | <10           | 12  | 83   |

Values in ppm unless otherwise reported

ICP: 4 ACID DIGEST/ICP-FINISH
AG: 4 ACID DIGEST/AA-FINISH

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#      | Мо             | Na%  | Ni | 'P   | Pb | Sb           | Sn  | Sr  | Ti%  | U   | V   | W   | Y  | Zn  |
|-----------|----------------|------|----|------|----|--------------|-----|-----|------|-----|-----|-----|----|-----|
| REG43618  | 16             | 1.88 | 46 | 1340 | 36 | ·<5          | <20 | 275 | 0.42 | <10 | 349 | <10 | 19 | 303 |
| REG43628  | .1             | 2.01 | 43 | 1370 | 36 | ·<5          | <20 | 574 | 0.37 | <10 | 155 | <10 | 20 | 93  |
| RESG43601 | <sup>!</sup> 2 | 1.98 | 27 | 1090 | 58 | <5           | <20 | 214 | 0.28 | <10 | 145 | <10 | 11 | 82  |
| RESG43645 | i 2            | 1.23 | 42 | 800  | 40 | <u>&lt;5</u> | <20 | 67  | 0.39 | <10 | 127 | <10 | 15 | 72  |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#      | Certificate  | Au(g/t)            | Ag   | AI%  | As   | Ba   | Bì      | Ca%  | Cd      | Co | Cr  | Cu  | Fe%       | K%   | La  | Mg%  | Mn               |
|-----------|--------------|--------------------|------|------|------|------|---------|------|---------|----|-----|-----|-----------|------|-----|------|------------------|
| G43602    | AK07-1935SKY | <0.03              | <0.2 | >10  | 100  | 1245 | <5      | 0.2  | <1      | 17 | 131 | 65  | 5.31      | 1.8  | 40  | 0.88 | 504              |
| G43603    | AK07-1935SKY | <0.03              | 0.2  | 7.55 | 40   | 220  | <5      | 7.14 | <1      | 16 | 130 | 97  | 6.46      | 0.56 | 10  | 2.03 | 1356             |
| G43604    | AK07-19355KY | <0.03              | 1.1  | 7.82 | 60   | 1405 | <5      | 8.99 | <1      | 26 | 204 | 226 | 6.9       | 1.46 | 10  | 1.79 | 1637             |
| G43605    | AK07-1935SKY | <0.03              | 0.2  | 8.36 | 30   | 1610 | <5      | 6.71 | <1      | 29 | 93  | 133 | 7.39      | 1.5  | 10  | 3.24 | 1272             |
| G43606    | AK07-1935SKY | < 0.03             | <0.2 | 2.59 | :10  | 160  | <5      | >10  | <1      | 9  | 154 | 22  | 3.67      | 0.18 | <10 | 1.41 | 1992             |
| G43607    | AK07-1935SKY | <0.03              | <0.2 | 7.79 | .30  | 995  | ·<5     | 5.64 | <1      | 30 | 107 | 109 | 7.47      | 1.53 | 10  | 3.08 | 1327             |
| G43608    | AK07-1935SKY | 0.03               | 2.9  | 8.14 | 60   | 490  | ·<br><5 | >10  | <1      | 23 | 115 | 122 | 6.26      | 1.11 | 10  | 1.42 | 1544             |
| G43617    | AK07-1935SKY | <0.03              | <0.2 | 7.18 | 20   | 430  | ·<5     | >10  | <1      | 25 | 407 | 87  | 5.33      | 1.18 | 10  | 2.85 | 1973             |
| G43623    | AK07-1935SKY | <0.03              | 0.4  | 8.7  | 10   | 1305 | ·<5     | 1.29 | ·<br><1 | 12 | 124 | 83  | 4.68      | 1.44 | 10  | 2.18 | 516              |
| G43653    | AK07-1935SKY | <0.03              | 0.8  | 8.07 | 10   | 1490 | ·<5     | 0.2  | ·<1     | .3 | 263 | 24  | 3.23      | 2.55 | 20  | 1.35 | 211              |
| G43654    | AK07-1935SKY | <sup>†</sup> <0.03 | 0.2  | 7.49 | 15   | 1300 | ·<br><5 | 0.8  | <1      | .9 | 155 | 29  | ,<br>3.51 | 1.81 | 20  | 1.13 | <sup>!</sup> 642 |
| REG43602  | AK07-1935SKY | !                  | <0.2 | >10  | 1.00 | 1240 | .<5     | 0.19 | <1      | 16 | 131 | 63  | 5.42      | 2.28 | 40  | 0.84 | 493              |
| RESG43602 | AK07-1935SKY | <0.03              | <0.2 | >10  | 110  | 1290 | ·<5     | 0.19 | <1      | 17 | 125 | 165 | 5.44      | 2.04 | 40  | 0.85 | 495              |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#      | Mo           | Na%  | Ni  | P    | Pb | Sb      | Sn  | √Sr          | Ti%  | U   | ٧    | W   | Υ           | Zn  |
|-----------|--------------|------|-----|------|----|---------|-----|--------------|------|-----|------|-----|-------------|-----|
| G43602    | <1           | 0.91 | 57  | 750  | 44 | ·<5     | <20 | 114          | 0.22 | <10 | 145  | <10 | ·<br>5      | 121 |
| G43603    | <1           | 2.39 | 26  | 1460 | 40 | ·<br><5 | <20 | 527          | 0.13 | <10 | 231  | <10 | 11          | 78  |
| G43604    | 2            | 1.69 | 30  | 1440 | 34 | 10      | <20 | 6 <b>7</b> 9 | 0.21 | <10 | 268  | <10 | وز          | .78 |
| G43605    | <b>&lt;1</b> | 2.41 | -30 | 1750 | 32 | <5      | <20 | 626          | 0.54 | <10 | 312  | <10 | 18          | 89  |
| G43606    | ·<1          | 0.26 | 15  | 200  | 26 | ·<5     | <20 | 1529         | 0.09 | <10 | 100  | <10 | .4          | 43  |
| G43607    | ·<1          | 2.4  | ·33 | 1620 | 30 | <5      | <20 | 555          | 0.49 | <10 | 311  | <10 | 16          | 97  |
| G43608    | 1            | 2.37 | 26  | 1580 | 38 | ·5      | <20 | 915          | 0.15 | <10 | 239  | <10 | و:          | 88  |
| G43617    | <1           | 1.7  | .91 | 2310 | 30 | 5       | <20 | 644          | 0.4  | <10 | 225  | <10 | 15          | 67  |
| G43623    | 16           | 2.28 | 18  | 1440 | 36 | ·<5     | <20 | 499          | 0.48 | <10 | 200  | <10 | 19          | 102 |
| G43653    | 23           | 1.42 | 21  | 550  | 40 | <5      | <20 | 162          | 0.36 | <10 | 213  | <10 | <b>`</b> 17 | 189 |
| G43654    | <1           | 2.76 | 21  | 1160 | 36 | ·<5     | <20 | 434          | 0.4  | <10 | 146  | <10 | 14          | 86  |
| REG43602  | <1           | 0.9  | 55  | 760  | 46 | <5      | <20 | 116          | 0.23 | <10 | 151  | <10 | 5           | 123 |
| RESG43602 | <1           | 0.95 | 54  | 790  | 44 | ·<br><5 | <20 | 117          | 0.22 | <10 | i152 | <10 | .6          | 125 |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615-800 W. Pender Street VANCOUVER, BC V6B 2V6

|          |             | Au  |       |              |     | 1   |    |      |    |    | ÷.  |     |      |     |      |      | _  |
|----------|-------------|-----|-------|--------------|-----|-----|----|------|----|----|-----|-----|------|-----|------|------|----|
| Tag#     | Certificate | ppb | Ag    | <b>A</b> I % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Мо |
| 32976    | AK07-1884i  | 50  | 0.6   | 1.74         | 15  | 95  | 20 | 1.08 | <1 | 19 | 88  | 125 | 3.89 | <10 | 1.35 | 449  | 3  |
| 32977    | AK07-1884i  | 5   | 0.4   | 2.15         | 35  | 105 | 25 | 0.38 | <1 | 14 | 56  | 69  | 4.88 | <10 | 1.35 | 520  | 5  |
| 32978    | AK07-1884i  | 5   | 0.4   | 1.81         | 15  | 105 | 20 | 0.5  | 2  | 11 | 61  | 66  | 3.56 | <10 | 1.21 | 424  | 9  |
| 32979    | AK07-1884i  | 10  | <0.2  | 0.6          | 10  | 55  | <5 | 0.33 | <1 | 7  | 115 | 12  | 1.68 | 40  | 0.28 | 256  | 2  |
| 32980    | AK07-1884i  | <5  | <0.2  | 0.85         | 25  | <5  | <5 | >10  | <1 | .7 | 49  | 22  | 1.96 | <10 | 0.65 | 2177 | 1  |
| 32981    | AK07-1884i  | <5  | < 0.2 | 1.62         | 30  | 25  | 5  | 7.04 | <1 | 14 | 105 | 55  | 3.23 | <10 | 1.45 | 967  | 2  |
| 32982    | AK07-1884i  | <5  | <0.2  | 2.16         | 20  | 20  | 15 | >10  | <1 | 22 | 83  | 79  | 4.55 | <10 | 1.69 | 1445 | 4  |
| 32983    | AK07-1884i  | 10  | 0.2   | 1.77         | 15  | 115 | 20 | 2.92 | 2  | 20 | 59  | 89  | 3.57 | <10 | 1.17 | 690  | 6  |
| 32984    | AK07-1884i  | <5  | < 0.2 | 1.06         | 15  | 30  | <5 | >10  | <1 | 10 | 29  | 77  | 2.32 | <10 | 0.71 | 1359 | 1  |
| 32985    | AK07-1884i  | 10  | 0.2   | 1.35         | 25  | 45  | 15 | >10  | <1 | 15 | 44  | 80  | 2.47 | <10 | 1.03 | 863  | 2  |
| 32986    | AK07-1884ì  | <5  | <0.2  | 2.7          | 20  | 120 | 35 | 1.56 | 1  | 20 | 82  | 69  | 4.14 | <10 | 2.17 | 688  | 5  |
| 32987    | AK07-1884i  | <5  | 0.4   | 2.65         | 20  | 95  | 30 | 0.44 | <1 | 12 | 105 | 46  | 4.19 | <10 | 2.28 | 545  | 8  |
| 32988    | AK07-1884i  | 45  | 0.6   | 0.78         | 140 | 60  | <5 | 0.24 | <1 | 15 | 138 | 215 | 3.26 | <10 | 0.31 | 717  | 3  |
| 32989    | AK07-1884i  | <5  | 0.2   | 2.92         | 20  | 530 | 35 | 0.5  | <1 | 20 | 104 | 134 | 4.94 | <10 | 1.82 | 651  | 3  |
| 32990    | AK07-1884i  | 5   | <0.2  | 3.99         | 45  | 725 | 50 | 2.35 | 1  | 23 | 207 | 83  | 5.13 | <10 | 3.41 | 1043 | 8  |
| 32991    | AK07-1884i  | <5  | 0.2   | 1.74         | 10  | 310 | 35 | 0.69 | 1  | 15 | 85  | 45  | 3.35 | <10 | 1.09 | 853  | 7  |
| 32992    | AK07-1884i  | <5  | 0.2   | 1.39         | 15  | 205 | 20 | 0.99 | <1 | 11 | 45  | 43  | 3.26 | <10 | 0.79 | 489  | 4  |
| 32993    | AK07-1884i  | <5  | 0.2   | 1.69         | 25  | 190 | 25 | 1.56 | <1 | 19 | 70  | 61  | 3.47 | <10 | 0.92 | 780  | 4  |
| 32994    | AK07-1884i  | <5  | < 0.2 | 1.7          | 15  | 55  | 20 | 1.23 | <1 | 15 | 54  | 17  | 3.1  | <10 | 1.07 | 773  | 1  |
| 32995    | AK07-1884i  | 40  | <0.2  | 1.69         | 15  | 50  | 20 | 1.45 | <1 | 13 | 124 | 34  | 3.19 | <10 | 1.45 | 520  | 3  |
| 32996    | AK07-1884i  | <5  | 0.2   | 2.48         | 15  | 100 | 25 | 0.74 | 2  | 18 | 55  | 65  | 4.79 | <10 | 1.86 | 742  | 6  |
| RE32976  | AK07-1884i  | 35  | 0.4   | 1.8          | 10  | 85  | 30 | 1.11 | 2  | 19 | 89  | 129 | 4    | <10 | 1.4  | 464  | 7  |
| RE32985  | AK07-1884i  | 10  | 0.2   | 1.38         | 25  | 35  | 15 | >10  | 1  | 16 | 45  | 77  | 2.54 | <10 | 1.06 | 869  | 4  |
| RES32976 | AK07-1884i  |     | 0.4   | 1.81         | 15  | 95  | 20 | 1.08 | 2  | 19 | 84  | 124 | 3.79 | <10 | 1.4  | 457  | 3  |

Values in ppm unless otherwise reported

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615-800 W. Pender Street VANCOUVER, BC V6B 2V6

|          |      |     |      |    |    |     |      |      | •      |     |               | •          |     |
|----------|------|-----|------|----|----|-----|------|------|--------|-----|---------------|------------|-----|
| Tag#     | Na % | Ni  | Р    | Pb | Sb | Sn  | Sr   | Ti % | ,<br>Ū | v   | w             | Y          | Zn  |
| 32976    | 0.06 | 32  | 1420 | 50 | 15 | <20 | 63   | 0.24 | <10    | 137 | <10           | 6          | 108 |
| 32977    | 0.03 | 23  | 1220 | 66 | 20 | <20 | 67   | 0.26 | <10    | 66  | <10           | 2          | 97  |
| 32978    | 0.03 | 22  | 1390 | 54 | 30 | <20 | 34   | 0.18 | <10    | 96  | <10           | 4          | 94  |
| 32979    | 0.02 | 14  | 260  | 62 | 5  | <20 | <1   | 0.01 | <10    | 9   | <10           | <u>.</u> 3 | 25  |
| 32980    | 0.01 | 13  | 440  | 20 | 15 | <20 | 2629 | 0.03 | <10    | 42  | <10           | 5          | 33  |
| 32981    | 0.03 | 21  | 990  | 42 | 15 | <20 | 976  | 0.03 | <10    | 104 | <10           | 5          | 75  |
| 32982    | 0.03 | 23  | 1200 | 44 | 25 | <20 | 1390 | 0.04 | <10    | 170 | <10           | 5<br>7     | 58  |
| 32983    | 0.04 | 53  | 1460 | 44 | 25 | <20 | 152  | 0.07 | <10    | 68  | <10           | 7          | 182 |
| 32984    | 0.03 | 16  | 970  | 30 | 5  | <20 | 1453 | 0.11 | <10    | 35  | <10           | 12         | 63  |
| 32985    | 0.02 | 37  | 950  | 38 | <5 | <20 | 486  | 0.11 | <10    | 56  | <10           | 7          | 88  |
| 32986    | 0.08 | 31  | 670  | 60 | 35 | <20 | 46   | 0.22 | <10    | 128 | <10           | <1         | 78  |
| 32987    | 0.07 | 10  | 830  | 66 | 30 | <20 | 45   | 0.27 | <10    | 152 | <10           | 4          | 80  |
| 32988    | 0.03 | 34  | 870  | 52 | <5 | <20 | 35   | 0.05 | <10    | 20  | <10           | 8          | 126 |
| 32989    | 0.09 | 31  | 1530 | 82 | 15 | <20 | 60   | 0.22 | <10    | 161 | <10           | 4          | 97  |
| 32990    | 0.1  | 107 | 1460 | 92 | 40 | <20 | 130  | 0.24 | <10    | 213 | /< <b>1</b> 0 | <1         | 105 |
| 32991    | 0.1  | 11  | 1140 | 46 | 20 | <20 | 75   | 0.18 | <10    | 129 | <10           | 1          | .76 |
| 32992    | 0.12 | 6   | 2250 | 40 | <5 | <20 | 80   | 0.2  | <10    | 115 | <10           | 3          | 50  |
| 32993    | 0.16 | 14  | 1860 | 44 | 20 | <20 | 118  | 0.2  | <10    | 114 | <10           | 4          | 66  |
| 32994    | 0.05 | 9   | 1140 | 42 | 10 | <20 | 189  | 0.18 | <10    | 65  | <10           | <1         | 84  |
| 32995    | 0.03 | 30  | 950  | 46 | 15 | <20 | 104  | 0.12 | <10    | 90  | <10           | .2         | 83  |
| 32996    | 0.04 | 27  | 1970 | 68 | 30 | <20 | 71   | 0.2  | <10    | 83  | <10           | 2          | 102 |
| RE32976  | 0.06 | 36  | 1450 | 48 | 30 | <20 | 62   | 0.24 | <10    | 141 | <10           | 5          | 109 |
| RE32985  | 0.02 | 40  | 980  | 38 | 15 | <20 | 467  | 0.11 | <10    | 58  | <10           | 6          | 91  |
| RES32976 | 0.06 | 35  | 1490 | 48 | 30 | <20 | 61   | 0.24 | <10    | 142 | <10           | 4          | 109 |

Values in ppm unless otherwise reported

Jutta Jealouse B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

| Tag#         | Certificate  | Au(g/t) | Ag   | Al%  | As  | Вa         | Bi  | Ca%  | Cd  | Со | Cr   | Cu  | Fe%  | К%   | La  | Mg%   |
|--------------|--------------|---------|------|------|-----|------------|-----|------|-----|----|------|-----|------|------|-----|-------|
| RSREG-001    | AK07-14585KY | <0.03   | 17.6 | 1.39 | 10  | 175        | <5  | >10  | 2   | 1  | 265  | 132 | 1.41 | 1.18 | <10 | 0.31  |
| RSREG-002    | AK07-1458SKY | <0.03   | 0.8  | 1.27 | <5  | <b>8</b> 5 | <5  | 0.55 | <1  | `3 | 316  | 77  | 2.76 | 1.03 | <10 | 0.06  |
| RSREG-003    | AK07-1458SKY | <0.03   | 0.2  | 9.71 | 15  | 575        | <5  | 0.17 | <1  | 15 | 146  | 113 | 5.46 | 2.52 | 40  | 1.08  |
| RSREG-004    | AK07-1458SKY | <0.03   | <0.2 | 3.87 | 25  | 605        | <5  | >10  | 2   | 2  | 187  | 94  | 2.93 | 1.46 | <10 | 1.06  |
| RSREG-005    | AK07-1458SKY | <0.03   | 1.6  | 3.49 | 10  | 345        | <5  | 0.19 | <1  | 2  | 452  | 97  | 1.34 | 1.3  | 20  | 0.14  |
| RSREG-006    | AK07-1458SKY | <0.03   | 0.4  | 6.1  | 5   | 2155       | <5  | 6.18 | <1  | 13 | 183  | 212 | 2.65 | 2.73 | 10  | 0.62  |
| RSREG-007    | AK07-1458SKY | <0.03   | <0.2 | 5.48 | ·<5 | 575        | `<5 | 1.36 | ·<1 | 12 | 463  | 166 | 3.23 | 2.19 | 20  | 1.34  |
| RSREG-008    | AK07-1458SKY | <0.03   | <0.2 | 1.35 | <5  | 185        | <5  | 0.05 | <1  | 1  | 200  | 155 | 0.67 | 1.11 | <10 | 0.08  |
| RSREG-009    | AK07-1458SKY | <0.03   | 0.2  | 5.25 | 25  | 320        | <5  | >10  | <1  | 6  | 83   | 20  | 3.1  | 1.26 | 40  | 0.26  |
| RSREG-010    | AK07-1458SKY | <0.03   | 0.2  | 7.57 | 30  | 560        | ·<5 | >10  | <1  | 13 | 87   | 27  | 3.66 | 1.74 | 30  | 0.82  |
| RERSREG-001  | AK07-1458SKY | i       | 16   | 2.54 | 10  | 365        | <5  | >10  | 2   | 2  | -239 | 87  | 1.56 | 0.36 | 10  | ,0.32 |
| RESRSREG-001 | AK07-1458SKY | ·<0.03  | 11.6 | 1.42 | 10  | 170        | <5  | >10  | .1  | 2  | 266  | 130 | 1.45 | 1.1  | <10 | 0.3   |

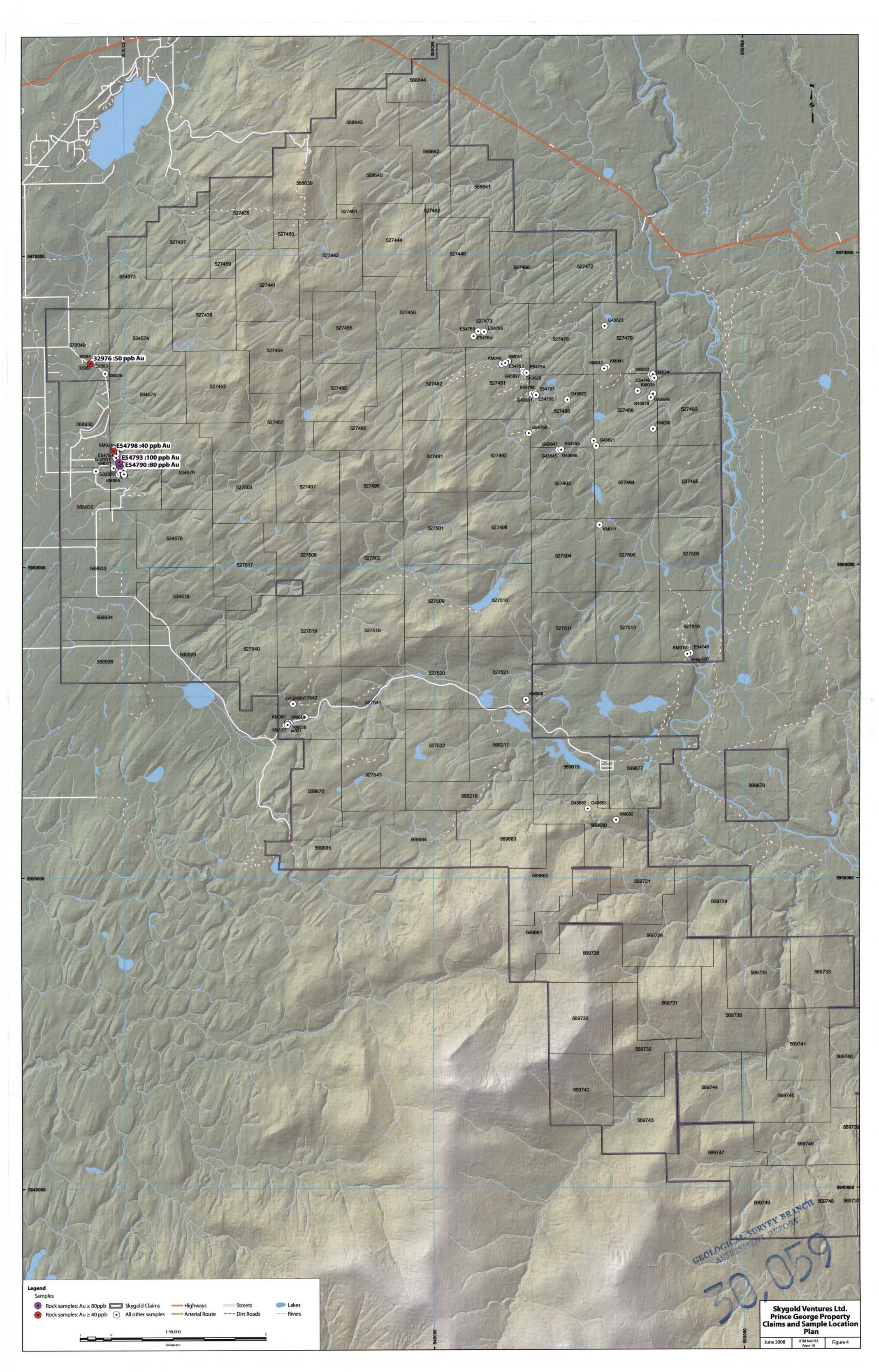
ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4 Skygold Ventures 615 - 800 W. Pender Street Vancouver, BC V6B 2V6

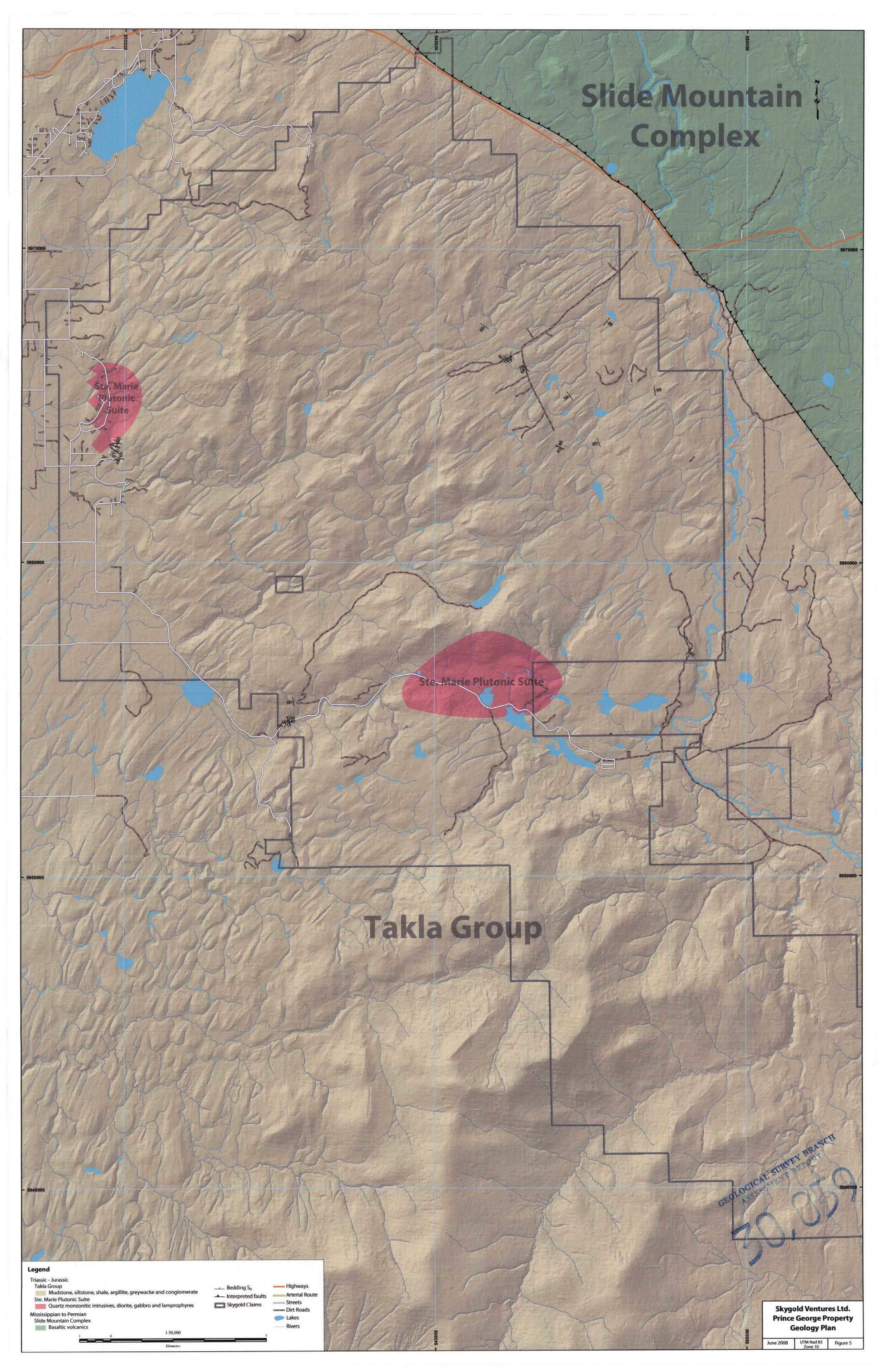
| Tag#         | Mn   | Mo  | Na%  | Ni | P    | Pb  | Sb | Sn  | Sr   | Ti%  | U   | , V | ,W  | ,Y | Zn  |
|--------------|------|-----|------|----|------|-----|----|-----|------|------|-----|-----|-----|----|-----|
| RSREG-001    | 520  | 10  | 0.61 | 14 | 210  | 98  | 50 | <20 | 1853 | 0.02 | <10 | 46  | <10 | 12 | .71 |
| RSREG-002    | 688  | <1  | 0.31 | 20 | 150  | 30  | 10 | <20 | 51   | 0.04 | <10 | 29  | <10 | 7  | 50  |
| RSREG-003    | 228  | <1  | 1.16 | 36 | 760  | 68  | <5 | <20 | 311  | 0.42 | <10 | 160 | <10 | 6  | 102 |
| RSREG-004    | 965  | 18  | 0.64 | 29 | 470  | 22  | 5  | <20 | 1883 | 0.05 | <10 | 67  | <10 | 22 | 73  |
| RSREG-005    | 92   | ·<1 | 1.31 | 7  | 440  | 24  | 10 | <20 | 75   | 0.2  | <10 | 38  | <10 | 4  | 17  |
| RSREG-006    | 1263 | 3   | 1.06 | 27 | 1230 | 36  | 10 | <20 | 671  | 0.18 | <10 | 165 | <10 | 13 | 76  |
| RSREG-007    | 394  | <1  | 0.79 | 30 | 460  | 30  | 10 | <20 | 188  | 0.33 | <10 | 90  | <10 | 16 | 82  |
| RSREG-008    | 97   | 7   | 0.29 | 6  | 100  | 16  | 10 | <20 | 14   | 0.04 | <10 | 21  | <10 | 2  | 17  |
| RSREG-009    | 441  | <1  | 0.92 | 19 | 520  | 32  | <5 | <20 | 1152 | 0.16 | <10 | 48  | <10 | 23 | 56  |
| RSREG-010    | 447  | <1  | 0.91 | 27 | 560  | 34  | <5 | <20 | 877  | 0.22 | <10 | 57  | <10 | 16 | 74  |
| RERSREG-001  | 519  | 10  | 0.61 | 14 | 230  | 104 | 45 | <20 | 1749 | 0.03 | <10 | 35  | <10 | 12 | 69  |
| RESRSREG-001 | 535  | 13  | 0.56 | 14 | 200  | 100 | 40 | <20 | 1741 | 0.02 | <10 | 47  | <10 | 11 | 65  |

AG: 4 ACID DIGEST/AA-FINISH

# **APPENDIX B**

# **Sample Descriptions**


| SAMPLE                        | NORTHING | EASTING | SAMPLE DESCRIPTION                                                                                                                                                                       | GEOLOGICAL<br>MEASUREMENTS                                                      |
|-------------------------------|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| G43601                        | 5965500  | 543161  | Black argillite with quartz veins and pyrite                                                                                                                                             |                                                                                 |
| G43608 –<br>G43611            | 5963290  | 529850  | Blocky, joint oxidized competent argillite                                                                                                                                               | S0 48°→202<br>S0 45°→205                                                        |
| G43612                        | 5963310  | 529852  | Blocky, joint oxidized competent siltstone-mudstone (silica-carb flooded) numerous thin quartz veins.                                                                                    | S0 50°→358                                                                      |
| G43613                        | 5963800  | 529759  | Blocky, jointed siltstone                                                                                                                                                                | S0 68°→208                                                                      |
| G43614                        | 5963750  | 529760  | Blocky, jointed siltstone                                                                                                                                                                | S0 69°→184                                                                      |
| G43615                        | 5963700  | 529725  | Blocky, jointed siltstone                                                                                                                                                                | S0 32°→022                                                                      |
| G43616                        | 5963660  | 529710  | Blocky, jointed siltstone                                                                                                                                                                | S0 72°→192                                                                      |
| G43617                        | 5965490  | 547073  | Siltstone with significant localized qtz-cb veins and minor iron-oxide weathered pits (ex-ankerite or pyrite). Vuggy veinlets with cubic weathering pits.  Trace pyrite +/- chalcopyrite | 69°→082(?)                                                                      |
| G43618 -<br>G43619            | 5965370  | 546993  | Siltstone with interbedded schistose, foliated mudstone and blocky greywacke. Numerous quartz veins and stringers parallel to bedding and foliation.                                     | Subvertical / 140<br>70°/ 122<br>Subvertical / 120                              |
| G43620                        | 5964000  | 545149  | Siltstone-mudstone scree on side of road; laminar bedding, cubic fine-grained oxidized pyrite cubes and weathered pits                                                                   |                                                                                 |
| G43621                        | 5963830  | 545231  | Siltstone with minor quartz veinlets                                                                                                                                                     | Subvertical / 157<br>85°→247                                                    |
| G43622                        | 5965310  | 544302  | Strongly oxidized, jointed and fractured siltstone                                                                                                                                       | 58° →236                                                                        |
| G43623                        | 5967680  | 545514  | Black competent argillite with disseminated pyrite                                                                                                                                       | Subvertical / 210<br>81°/232, 68°→130                                           |
| G43624 -<br>G43625            | 5967530  | 541561  | Siltstone with vuggy qtz-cb veins, in contact with greywacke, evidence of folding.                                                                                                       | 85°→214                                                                         |
| G43626                        | 5966560  | 542400  | Argillite/mudstone                                                                                                                                                                       | 82°→266<br>82°→246                                                              |
| G43627                        | 5966260  | 542866  | Argillite/mudstone                                                                                                                                                                       | 78°→244                                                                         |
| G43628                        | 5966180  | 542894  | Argillite/mudstone in trench, bedding gently folded                                                                                                                                      | 68°→144                                                                         |
| G43631                        | 5954960  | 535249  | Contact of competent blocky siltstone above black schistose shale                                                                                                                        | 40°→268                                                                         |
| G43632 <del>-</del><br>G43635 | 5954970  | 535259  | Black schistose shale with concentrated quartz veins and trace oxidized pyrite                                                                                                           |                                                                                 |
| G43640                        | 5955580  | 535430  | Graphitic black shale outcrop                                                                                                                                                            | 60°→260                                                                         |
| G43645 -<br>G43647            | 5963710  | 544008  | Insitu contact of schistose and platy black shale with conglomerate and blocky, jointed competent greywacke.  Sequence indicates younging direction is NE.                               | A = $50.66^{\circ} \rightarrow 0.18$<br>Contact = $43^{\circ} \rightarrow 0.32$ |
| G43652 -<br>G43653            | 5952220  | 544969  | Black argillite within black shale saprolite slopes on side of knoll capped by granite.  Competent argillite contains trace arsenopyrite, pyrite, sericite +/- phlogopite.               | Subvertical / 143                                                               |
| G43654                        | 5963040  | 529849  | Competent argillite with sericite, pyrite +/- galena                                                                                                                                     |                                                                                 |


| E54746 | 5957190 | 548266 | Shale, w/ some staining                                                                              |
|--------|---------|--------|------------------------------------------------------------------------------------------------------|
| E54748 | 5966110 | 547062 | Shale sub/c for 100m some sulphide staining in a few qtz stringers                                   |
| E54749 | 5965990 | 547109 | Slate w/ some qtz stringers and some py                                                              |
| E54750 | 5965990 | 547109 | Qtz vn in slate w/ minor Py                                                                          |
| E54754 | 5966180 | 542987 | Slate from the same zone as sample (54750). No visible sulphides                                     |
| E54755 | 5965520 | 543260 | Shale host rock w/ Py diss throughout, qtz vn to 6cm in road cut                                     |
| E54756 | 5965520 | 543260 | Shale o/c on road, some qtz stringers and diss Py throughout shale                                   |
| E54757 | 5965470 | 543293 | Shale o/c w/ Py in road side cut. Zone 100m long                                                     |
| E54758 | 5963720 | 544098 | Greywacke. Zone 1m wide and is fairly well mineralized with Py                                       |
| E54760 | 5964250 | 543059 | Shale o/c along edge of road, sample for back ground values                                          |
| E54761 | 5966550 | 542396 | Coarsely crystalline greywacke and py.                                                               |
| E54762 | 5966550 | 542396 | Coarsely crystalline host rock. Volcanic appears to contain some Aspy.                               |
| E54763 | 5966500 | 542303 | Massive shale w/ minor py, extends zone to 650 to 700m                                               |
| E54764 | 5967380 | 541277 | V. rust stained granular greywacke on road cut, 10m long                                             |
| E54765 | 5967530 | 541430 | Greywacke like rock with numerous qtz. And calcite stringers and diss py                             |
| E54766 | 5967510 | 541623 | Alt. zone in slate o/c. py diss throughout                                                           |
| E54769 | 5955160 | 535826 | Shale sub crop w/ some qtz stringers and py throughout. Found in borrow pit near o/c/ Zone 25m long  |
| E54770 | 5954960 | 535336 | Shale o/c 50m long 30m high along road. Slight qtz stringers present in shale, shale weathered brown |
| E54771 | 5954920 | 535272 | Brown weathered shale, no stringers or py. Sampled for background values                             |
| E54780 | 5963270 | 529943 | Qtz stringers in shale o/c along road cut for 150m. Some py and calcite present                      |
| E54781 | 5963270 | 529943 | Qtz vns in slate at placer operation to 12cm are common. Py and cpy also common                      |
| E54773 | 5963060 | 529899 | Qtz calcite, py zone 12 cm thick, in place solid o/c for 300m w/ intermittent qtz/ calcite zones     |
| E54782 | 5963190 | 529636 | Stringers of qtz and calcite to 4 cm in width plus some py                                           |
| E54783 | 5963210 | 529834 | Qtz and calcite in shale abundant. Zone 6-10cm wide                                                  |
| E54785 | 5963150 | 529819 | 2-12cm wide qtz vn py and possibly cpy, fairly common on cut face                                    |
| E54786 | 5963120 | 529803 | Qtz vns to 30cm wide, rusty and crystalline, with py present, common on slope                        |
| E54787 | 5963090 | 529820 | Qtz stringers 10 to 12 cm wide in places, qtz also frothy in places. Py and possibly arseno present. |
| E54788 | 5963080 | 529803 | Qtz stringers fragment on slope. Fragments appear to be hematite stained. All samples in shale host  |

| E54789 | 5963040 | 529818 | Qtz stringers up to 4 cm wide in all hematite stained common on slope with shale host rock          |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------|
| E54790 | 5963260 | 529848 | Qtz calcite stringers 8 cm wide slightly magnetic. Float common at the base of o/c                  |
| E54791 | 5963350 | 529833 | Fracture filling with qtz, py cubes, 2-4 cm wide in shale hostrock                                  |
| E54792 | 5963350 | 529833 | Shale with network of calcite and qtz stringers. Zone 80m wide in shale host rock.                  |
| E54793 | 5963380 | 529816 | Py stringers in shale cut face                                                                      |
| E54794 | 5963380 | 529794 | Float boulders of qtz and frothy qtz, carrying fair py host rock tan weathering along edge of road  |
| E54795 | 5963840 | 529626 | Intrusive o/c, possible Navar Pluton 150m into intrusive o/c                                        |
| E54796 | 5963820 | 529636 | Altered intrusive zone with qtz vns carrying pyrrhotite. Boulders to 1.5m                           |
| E54797 | 5963800 | 529641 | Intrusive near massive py and pyrrhotite                                                            |
| E54798 | 5963740 | 529636 | Fe-rich altered sedimentary rocks near contact with intrusive                                       |
| E54799 | 5963800 | 529663 | Zones of qtz and calcite w py in shale hostrock, host rock heavily sulphide stained. Sedimentary o  |
| E54800 | 5963720 | 529656 | Poorly matured skarn, carrying small amount of py. Skarn immediately above intrusive o/c            |
| G32951 | 5963670 | 529630 | Iron rich intrusive o/c below altered sed. rocks. Extends along road for 250m                       |
| G32952 | 5963590 | 529655 | Shale w py stringers throughout, near intrusive o/c                                                 |
| G32953 | 5963590 | 529655 | Shale zone 80 cm wide material shattered and bleached in shale o/c                                  |
| G32954 | 5963590 | 529655 | Frothy qtz in broken down py zone, 40 cm wide. Zone below previous 2 samples                        |
| G32955 | 5963510 | 529719 | Qtz and calcite zones, 4-6cm wide py in fractures. Hostrock shale                                   |
| G32956 | 5963810 | 529783 | Shale with py rich zone on ridge to at far NW end of shale zone. Zone continues for 400m.           |
| G32957 | 5963730 | 529734 | Altered zones bleached w unknown action. Zone 50cm wide on intrusive o/c                            |
| G32958 | 5963680 | 529734 | Alteration zone in intrusive exposure. Zone coarsely crystalline and bleached w minor py            |
| G32959 | 5963680 | 529734 | Sample for lower part of alteration zone on road cut. Zone is bleached and coarsely crystalline.    |
| G32960 | 5963650 | 529733 | Alteration zone, qtz/calcite stringers in bleached zone in shales. Some py and possibly As present  |
| G32961 | 5963070 | 529879 | Qtz vns in shale, milky and rusty. Vns 25cm wide, vertical dip and strike of 031 degrees            |
| G32962 | 5963070 | 529879 | 8 cm wide qtz vn, milky and rusty in shale                                                          |
| G32963 | 5963070 | 529879 | Qtz vn 15 cm, milky and rusty, showing some py. Strike 070, dip vertical. 3 vns in 15m of rock face |
| G32964 | 5962980 | 529802 | Qtz vn 8-10 cm wide are rusty, are in shale hostrock                                                |
| G32965 | 5962980 | 529802 | 10 cm wide rusty qtz vn in shale host rock (strike 098)                                             |
| G32966 | 5962980 | 529802 | Foamy, rusty 40 cm wide qtz vn in shale host rock, no dip or strike                                 |

| _      |         |        |                                                                                                      |
|--------|---------|--------|------------------------------------------------------------------------------------------------------|
| G32967 | 5963070 | 529934 | Frothy qtz zone 2-3m wide shows trace of malachite host rock is shale. Strike 345                    |
| G32968 | 5963110 | 529963 | Frothy qtz in qtz rich zone. 50cm wide and shattered.                                                |
| G32969 | 5963080 | 529068 | 10cm wide qtz vn on surface, some py present in vn                                                   |
| G32970 | 5963040 | 529854 | 12cm qtz vn in roots of blow down tree. The qtz is coarsely crystalline                              |
| G32971 | 5962940 | 529962 | Qtz vns to 35cm in width in black shale host rock                                                    |
| G32972 | 5962950 | 529973 | Rusty 5cm qtz vn carrying py in shale                                                                |
| G32973 | 5962940 | 529984 | Rusty vn from vein network                                                                           |
| G32974 | 5962950 | 529978 | Qtz vn to 12cm wide, rusty and coarsely crystalline. In shale hostrock. Strike                       |
| G32975 | 5962990 | 529975 | Qtz vns in shale 8-10cm thick, milky coarsely crystalline and in some cases shattered                |
| 32976  | 5966530 | 528887 | Greywacke and slate. Py diss.                                                                        |
| 32977  | 5966550 | 528956 | Slate with diss., sulphide staining in o/c                                                           |
| 32978  | 5966560 | 528971 | Slate o/c well mineralized w py, heavily sulphide stained for 200m                                   |
| 32979  | 5966570 | 528971 | Zone of fractures of qtz/calcite filling, some py on margin fractures to 5cm wide in slate host roc  |
| 32980  | 5966590 | 528956 | Shear zone 1m wide w qtz and calcite sulphide zone possibly pyrite in bottom cut                     |
| 32981  | 5966590 | 528956 | 5m from prev. Shattered zone with qtz filling and arseno, zone 2m wide in c at trench                |
| 32982  | 5966590 | 528956 | 6m from 32980 shear zone expands to 6-8m with py and some chalco. Strike at 220                      |
| 32983  | 5966590 | 528956 | Shear zone qtz/calcite crack filling and py. Shear zone expanded 10 wide                             |
| 32984  | 5966590 | 528956 | Shear zone strike length 50m long, has parallel 1-3 cm vns w qtz/calcite and py                      |
| 32985  | 5966590 | 528956 | Continuation of shear zone qtz/calcite and py, zone heavily sulphide stained in slate host rock. o/c |
| 32976  | 5962980 | 529802 | Foamy, rusty 40 cm wide qtz vn in shale host rock, no dip or strike                                  |
| 32977  | 5963070 | 529934 | Frothy qtz zone 2-3m wide, shows trace of malachite host rock is shale. Strike 345                   |
| 32978  | 5963110 | 529963 | Frothy qtz in qtz rich zone. 50cm wide and shattered.                                                |
| 32979  | 5963080 | 529068 | 10cm wide qtz vn on surface, some py present in vn                                                   |
| 32980  | 5963040 | 529854 | 12cm qtz vn in roots of blow down tree. The qtz is coarsely crystalline                              |
| 32981  | 5962940 | 529962 | Qtz vns to 35cm in width in black shale host rock                                                    |
| 32982  | 5962950 | 529973 | Rusty 5cm qtz vn carrying py in shale                                                                |
| 32983  | 5962940 | 529984 | Rusty vn from vein network                                                                           |
| 32984  | 5962950 | 529978 | Qtz vn to 12cm wide, rusty and coarsely crystalline. In shale hostrock. Strike                       |

| 32985     | 5962990 | 529975 | Qtz vns in shale 8-10cm thick, milky coarsely crystalline and in some cases shattered              |
|-----------|---------|--------|----------------------------------------------------------------------------------------------------|
| R\$001    | 5954910 | 535261 | Fine-grained sediments with sericite and carbonate alteration bedding SO 45/300                    |
| RSREG-007 | 5957160 | 548163 | Fine-grained bedded phyllite-siltstone. Minor quartz veining with chlorite and sericite. SO 45/250 |



