

Assessment Report on Diamond Drilling performed on the Aley Carbonatite Property

Located in the Omineca Mining District, British Columbia, Canada

NTS: 94B.041 & 94B.042

Located at Map Center at approximately 56° 27' N Latitude 123° 44' W Longitude UTM NAD 83, Zone 10

Owner: Aley Corporation Operator: Taseko Mines Limited through its wholly owned subsidiary, Aley Corporation

Tenure Numbers: 513258, 516635, 520172, 520261, 520262, 520263, 520264, 520265, 554104, 554107, 559138, 559535, 559540

> Authors: Crystal J. Chung, B.Sc., GIT Jeremy Crozier, MBA, MSc, BSc (Hons) August 18, 2008, revised January 8, 2009

TABLE OF CONTENTS

Summary	1
Location and Access	2
Physiography and Climate	3
Claims	5
Exploration History	7
Regional Geology	
Property Geology	12
2007 Diamond Drilling	16
Conclusions and Recommendations	
Statement of Costs	20
References	22
Statements of Authors' Qualifications	23

LIST OF FIGURES

Figure 1 - Property Location Map	4
Figure 2a - Overview Claims Map	5
Figure 2b - Detailed Claims Map illustrating claims upon which work was conducted	6
Figure 3 - Regional Geological Map	.10
Figure 4. Property Geology Map	

LIST OF TABLES

Table 1 - Claims on which Work was Conducted	. 7
Table 2 - Claims on which Work was Applied	. 7
Table 3. Aley Property Core Logging Codes	17
Table 4. Drill Hole Collars.	17

LIST OF APPENDICES

Appendix A – Geological Drill Logs Appendix B – Sample Logs Appendix C – Assay Certificates Appendix D – Analytical Procedures Appendix E – Drill Sections

Summary

The Aley Property, owned by Aley Corporation, itself a wholly-owned subsidiary of Taseko Mines Limited, is located in northeastern British Columbia within the Omineca Mining Division. The property comprises thirteen contiguous mineral claims covering 5936 hectares in the headwaters of the Ospika River closely adjacent to Ospika Arm of Williston Lake. The Aley claims are centered on 56° 27' N 123° 44' W, NTS mapsheets 94B.041 and 94B.042. Exploration work was conducted during the period August 29 through October 11, 2007 and comprised a program of helicopter-supported exploration drilling. Taseko Mines Limited was the operator of the program.

Work reported on includes:

- i. A diamond drill program comprising a total meterage of 1,369m over 11 holes. The objective of the drill program was the confirmation of previous exploration work undertaken by Cominco between 1985 and 1986. The program also sought to establish a better understanding of the deposit geometry as well as collection of sufficient sample material for metallurgical test work. While some metallurgical material was indeed collected, this remains in safe storage pending future analysis. As such, no assessment credit has been applied with respect to any element of metallurgical test work beyond the collection and bagging of the samples themselves. All such sample material remains in appropriate storage awaiting analysis once deemed appropriate,
- ii. 388 (in addition to 22 duplicate) samples of sawn NQ2 and BTW sized core obtained through diamond drilling were sent for assay analysis. Samples were assayed for Nb, Ta, U and Th as well as a standard multi-element suite, by iPL of Richmond, BC.

Assessment credit has been applied through the BC online system based on a total expenditure of \$1,234,935. At \$902 per meter, this work was clearly expensive when compared to other exploration projects in BC. The high relative costs of the program may be explained as follows:

- iii. Taseko Mines Limited concluded the acquisition of Aley Corporation in late July 2007 at which point management were desirous of an immediate exploration program. In view of the compressed time frame, the ensuing exploration program did not benefit from months of prior planning and contractor selection. Moreover, given the highly active nature of the exploration sector and availability of funding during the summer of 2007, almost all drill contractors were fully occupied.
- iv. In consideration of the late commencement of exploration activities, the availability of suitable drilling equipment and contractors accustomed to working in high-alpine conditions with helicopter-only support, was limited. As such only a Hydracore prospector rig and a modified skid-mounded B20 with an Isuzu power pack were available, the former being under-powered for the job in question and the latter being large and cumbersome to move, necessitating the use of an expensive Bell 407 helicopter where a Bell 206LR would otherwise have been sufficient. These limitations, in conjunction with an inexperienced drill crew and the fact that the two rigs were owned and managed by different contractors, gave rise to a substantial increase in helicopter utilization and costs.
- v. In the case of the Hydracore rig, both the torque and feedpower were inadequate with respect to drilling of the heavily jointed and intermittently sandy ground that are typical of the upper alpine component of the carbonatite intrusion. The effect of this incompatibility was to vastly reduce the efficiency of the rig while dramatically increasing all-inclusive costs on a per foot basis.

- vi. Given the sole reliance on helicopter support and in consideration of the windy mountainous terrain, drill moves were time consuming. Helicopter efficiency was further impaired through adherence to restricted flight paths in order to minimize disturbance to the mountain goat community.
- vii. The early onset of winter conditions (1-2' of snow by mid-September) had a marked effect on productivity and efficiency. Snow storms (common in the alpine conditions) frequently precluded helicopter flight, giving rise to highly punitive helicopter, drilling rig and crew standby costs. On many occasions, night shifts were not possible for reasons of safety and despite the installation of multiple diesel heaters and water pumps, freezing of water lines became a recurring problem, as did the freezing of the water sources themselves. At their maximum extent, the water supply lines were in the order of 10,000', with an elevation change of 1,500'. With further reference to the matter of water supply, the remote, steep and snow-encumbered nature of the property meant significant helicopter and man hours were required to maintain and periodically de-ice water lines.
- viii. Niobium assay is a more specialized and costly undertaking than more common Au or Cu analytical packages.

Location and Access

The Aley claims are located in the Omineca Mining District in northeastern BC (Figure 1), centered at 56°27'N and 123°44'W. The property derives its name from Aley Creek, a prominent valley located northeast of the claims. No other named topographic features on NTS topographic sheet 94B/05 (1:50,000 scale) occur on the property.

The property is situated approximately 20 km northeast of the head of the Ospika Arm of Williston Lake. Logging roads lead from Mackenzie, BC along the west shore of Williston Lake around its head, via the Tsay Keh Dene community, and down the east shore of the same lake to CANFOR's Ospika Camp. Northern Thunderbird Air of Prince George operate a scheduled daily service that links Prince George, Mackenzie, the Ospika Camp and various other settlements by means of Cessna Caravan. Barge access has historically been available from Mackenzie (approximately 90 km south on Williston Lake) for the purposes of movement of heavy equipment, though at the time of writing had been suspended due to the vastly diminished logging activities in the region (Abitibi is the owner of the last serviceable barge). Logging roads and a caterpillar trail constructed by Cominco in 1985 once provided rough surface access to the property, however due to the poor state of repair of this trail and in consideration of time consuming permitting process for its re-establishment, site access and equipment transport during the 2007 field season was effected by Bell 206 and 407 helicopters. Helicopter access was conducted principally from the airstrip at Ospika Camp approximately 30 km from the claims as well as a staging site on a cut block 10 km from the claims

Recently-constructed logging roads under the jurisdiction of Canfor extend approximately 20 km beyond the Ospika Camp towards the property. These logging roads are proximal to the disused Cominco caterpillar trail which conditional upon permitting could be readily reopened, connecting the Ospika Camp to the road access previously made on the property. In 2005 (prior to the acquisition of Aley Corporation by Taseko Mines Limited), AllNorth Consultants of Prince George conducted a helicopter-supported survey of the access to the Aley claims via existing Canfor logging roads, upon which basis a route (on Aley claim blocks) connecting the logging roads to the disused trail was designed. The Allnorth road has been substantially modified from the previous trail in compliance with the current Forest Practices Code of British Columbia, and the Forest Road

Engineering Guide for road construction. This work was presented by Allnorth in a detailed report entitled "Aley Property Exploration Road Survey" dated September 6, 2005 by Ken MacDonald, P.Geo., The reader is advised that no assessment value derived from Allnorth's survey, design and reporting work has been associated with or declared as a component of the current report.

Physiography and Climate

Elevations range from 1,300 m in the creek valleys to the west and south of the claim blocks to 2,233 m on the ridge to the very east of the property known as the Saddle Zone. The topography primarily consists of steep mountainous terrain with U to V-shaped glacial valleys. Small creeks drain from several peaks that form a ridge along the centre of the property in all directions. Flows are seasonal depending on snow meltwater, rain, and winter freezing and avalanche trains are evident on some of the steeper slopes

Boreal forest covers the area below the tree line (~1600-m). Much of the central part of the claims lie above the tree line and these areas are dominated by alpine shrubs and grasses. The higher elevations are commonly covered with sparse grass, broken scree, and outcrop.

The northern boreal forest region is subjected to an extreme range of weather conditions throughout the year. Summers are short, from June to late September with variably dry to wet with local storms, which may give heavy rainfall or even snow at any time. Humidity ranges from very dry to humid. Autumn is short with the rapid onset of snowstorms and heavy rains starting in late September, which effectively ends the field season. Snow stays on the ground from October through early June and may remain all year in relatively shaded patches on the peaks on the property. As such, exploration is limited to the period from June to late September only.

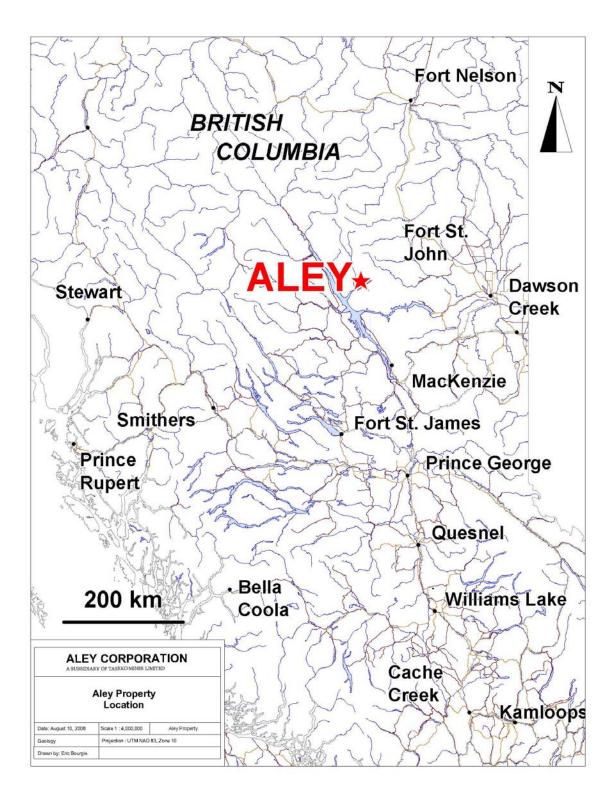


Figure 1 - Property Location Map

<u>Claims</u>

Taseko Mines Limited, through its wholly owned subsidiary Aley Corporation, is the 100% owner of the Aley mineral claims and was the operator of the programs described in this report. In the period from August 29 through October 11, 2007, work was conducted on one of the thirteen mineral claims that together constitute the Aley property.

A map of all claims relative to topography and road access has been presented in Figure 2a; Figure 2b illustrates the claims in which drill sites were located thereby indicating in which work was conducted. Copies of Figures 2a and 2b have been included at their original scale at the rear of this compilation. Table 1 provides a summary of claims upon which work was conducted and Table 2 a listing of claims to which assessment work has been applied.

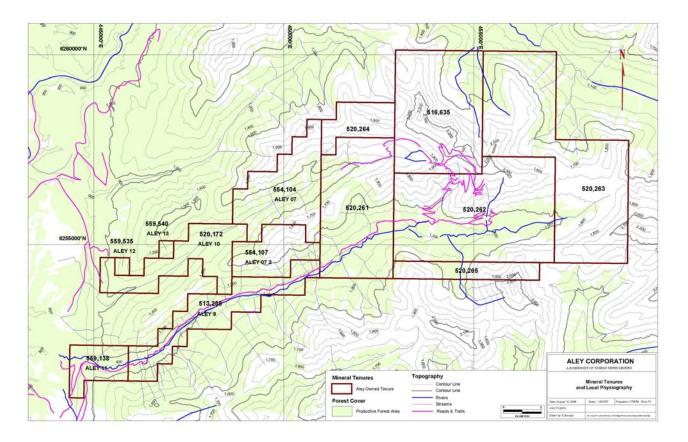


Figure 2a - Overview Claims Map

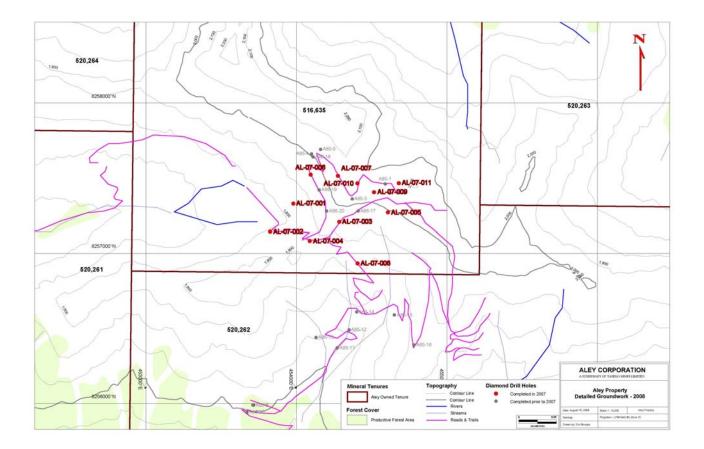


Figure 3b - Detailed Claims Map illustrating claims upon which work was conducted

Tenure Number	Total Holes Drilled on Claim	Drill Hole Numbers
		2007-01
		2007-02
		2007-03
		2007-04
		2007-05
516635	11	2007-06
		2007-07
		2007-08
		2007-09
		2007-10
		2007-11

Table 1 - Claims on which Work was Conducted

Table 2 - Claims on which Work was Applied

Tenure Number	Tenure Type	Owner	Map Number	Good To Date	Status	Area
513258	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	411.556
516635	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	750.575
520172	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	339.846
520261	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	697.374
520262	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	1072.953
520263	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	1161.984
520264	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	178.717
520265	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	178.889
554104	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	446.975
554107	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	232.517
559138	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	161.117
559535	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	17.887
559540	Mineral	200960 (100%)	094B	2018/jan/31	GOOD	17.885

Exploration History

Cominco Ltd. acquired the Aley property subsequent to an initiative in 1980 that was originally focused on the follow-up of regional base metals anomalies to the north of the property, at which time no other claims existed in the region. K.R. Pride followed the stratigraphy southeast from these anomalies and in so doing encountered what hes suspected to be a carbonatite complex. Samples collected by Pride showed evidence of carbonatite including the presence of pyrochlore. In 1982, PC LeCouteur of Cominco visited the property to collect further samples and to assess the scale of the potential body. In October 1982, claims Aley 1 through Aley 4 (80 units in total) were staked in order to cover the carbonatite complex. Additional staking in 1986 added the claims Aley 5 through Aley 7 (32 units) and the final claim Aley 8 was added in March 1986 (20 units).

Field work commenced in 1983 and continued regularly through the 1986 field season. Metallurgical studies were conducted between 1983 and 1985. No exploration was undertaken between September 1986 and September 2004, when Aley Corporation acquired control of the mineral claims from Teck-Cominco.

The initial work conducted by Cominco included

- i. The construction of 20-km bulldozer access trail from Ospika barge landing to the Aley camp (1984), now partially superseded by the recent logging roads and CANFOR's Ospika Camp.
- ii. The development of approximately 28 km of caterpillar trails to drill sites accessible by means of 4x4 Land Cruiser from a small camp located near the centre of the carobonatite plug.
- iii. The preparation orthophotographic base maps (1983).
- iv. Magnetometer surveys at both reconnaissance and detailed local grid scale (17 linekilometers); scintillometer reconnaissance surveys.
- v. Geological mapping at a scale of 1:5,000 over claims Aley 1-7, and at a 1:500 scale in the case of exploration trenching.
- vi. Soil sampling on contour lines and along road banks.
- vii. Rock chip sampling of outcrops, talus, road cuts with outcrop/subcrop, and all trenches (5-m contiguous samples).
- viii. Diamond drilling in two campaigns totaling 3,046.36m over 19 holes in two areas of interest, namely the Saddle and Central Zones. NQ core was drilled in 1985 and BQ in 1986. All core was stored on site and sample preparation work was undertaken in the field.
- ix. An environmental baseline study was initiated during the 1985 and 1986 field seasons by Norelco.
- x. Metallurgical testing using gravity separation on a 4 ton bulk sample in 1983 and 1984. Some flotation testwork was carried out until 1991 with varying success.
- xi. Mineralogical studies conducted on samples throughout programs.

Cominco compiled reports for each field season outlining the work carried out and the results achieved. In these reports, Cominco provided preliminary estimates for the resource based on inhouse analysis, suggesting 15 million tonnes in the Saddle Zone and 15 to 20 million tonnes in the Central Zone. The details of these estimates and the grade assumed have not been recovered from the Cominco files. While there is no written record of why Cominco did not continue with work on the property, it is believed that activities were terminated as an element of the takeover of control of Cominco by Teck who owned 50% of the Niobec Operation in Quebec;

Following the acquisition of control of the mineral claims Aley Corporation in 2004, the exploration efforts concentrated on trench sampling for metallurgical material and the confirmation of previous geology and drill hole collar locations. Trenches were opened by means of drilling and blasting in the vicinity of the previous Cominco trenches cut in 1985 and 1986. The purpose of these trenches was twofold, firstly to acquire material suitable for metallurgical testwork, and secondly to confirm the grades estimated by Cominco in the 1980's. The samples were collected from trenches in the Central Zone near to the location of CZ-85-6, CZ-85-6A and CZ-85-8, and in the Saddle Zone at SZ-84-4. In total, 912 kg of sample were gathered from the Aley site. During the same period, all of the major zones identified by Cominco in their previous work were visited and drill holes locations identified and logged using GPS. This work was carried out as a means by which to validate the previous mapping and survey work undertaken using conventional survey compass mapping, as compared to current GPS technology in order to identify any systematic errors in the mapping developed by Cominco. Aley Corporation reported a "reasonable correlation" between the Cominco

sampling work and that of Aley Corporation and that in their view.GPS survey work verified the Cominco mapping as reasonable and suitable for continued exploration, with the recommendation of conducting a survey for future resource work.

In 2006, a geological review and compilation of previous drilling and trenching were performed by Dave Thomas of AMEC with the objective of evaluating the mineralization and planning the 2006 field program. The 2006 drilling program was postponed to 2007 to accommodate a study being carried out on mountain goat movements and allow more time for consultation with First Nations.

In 2006, some metallurgical test work continued on surface samples blasted from the Saddle and Central Zone trenches to which end approximately 1200 kg of material was worked on by PRA laboratories in Vancouver. Work carried out in 2006 also included A preliminary wildlife and environmental survey executed in conjunction the Tsay Keh Dene First Nation. None of the 2006 activities have been included in the applied assessment value.

Regional Geology

The Aley Carbonatite complex intrudes the Cambrio-Ordovician sediments of the northern Rocky Mountain fold and thrust belt (Figure 3). The host of the intrusive is an assemblage of continental shelf sediments with lesser associated volcanics. The following descriptions are derived from the field work and synthesis done by U.K. Mäder (Mäder, 1986). Some of the units may exist only near the carbonatite, but this may also be due to the artifact of more detailed work near the complex, compared with the regional mapping cited by Mäder. The base is not exposed near the property and the top may be truncated by a major thrust fault.

Ages of the units are somewhat constrained by fossils. Mäder (Mäder, 1986) notes that the locally mapped units are correlative with the established formation names used by Thompson (1986) to define the stratigraphy of the Halfway River map area (94B). Mäder notes that, due to folding and faulting, no single type section exists. The thickness of the units is based on measurements of the units locally and should be considered a minimum value. The thickness of shaley units should be considered as minimum values, due to tectonic thinning.

The formations, from oldest to youngest are described below. The units within the formations are modified from Mäder (1986).

Kechika Formation (Cambrian)

Four units comprise the 1000 - > 1150 m of stratigraphy. The oldest, with no exposed base, is the *Cream Dolomite* unit. It occurs only within the contact aureole of the carbonatite intrusive in the mapped area as recrystallised dolomite marble with minor calcite marble with marly beds. Although Mäder suggest that this a contact aureole effect, he notes that the upper contact is sedimentary, not a chemical overprint. The overlying unit is the *Thin-bedded Limestone* unit with regular alternating beds of limestone and dark grey marls. Contact metamorphism recrystallises the marls into more durable rocks relative to the limestone. The *Grey Limestone* unit is an interbedded mixture of grey limestone and orange-brown siltstone and shale beds. The uppermost unit is the *Parallel Laminated* unit with buff-brown and grey thin laminated limestone bed intercalated with shaley and silty beds.

The contact is usually a fault contact in the area, but appears transitional elsewhere.

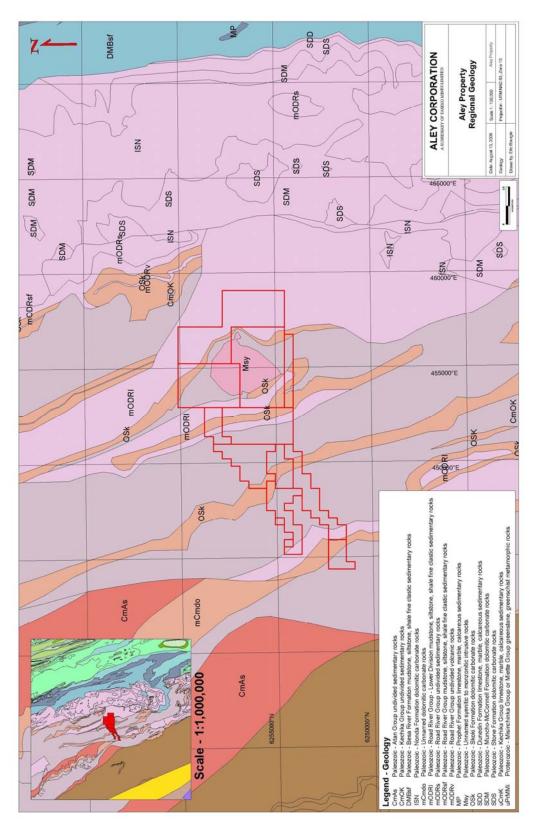


Figure 4 - Regional Geological Map

Skoki Formation (Ordovician)

The Skoki Fm is characterised by cliff-forming dolomite beds with several volcanic sequences in the middle. The *Lower Dolomite* unit forms medium to thick-bedded and massive dark grey dolomite with rare fossils. It may include beds of volcaniclastic tuffs and ash to 20-m thick locally. The *Skoki Volcanic* unit forms the middle of the formation. It generally is volcaniclastic at the base with more flows and pillow flows above. Mäder notes that where the source of volcaniclastics stops activity, the regular Skoki dolomite continue to be deposited. Mäder's sections show significant variability within the unit even within the map area around the carbonatite. Hence, the volcanic unit represents sporadic but persistent volcanism during the deposition of the dolomite. The *Upper Dolomite* unit is more massively bedded than the Lower Dolomite with the addition of minor black chert increasing towards the top. As in the Lower Dolomite, tuffs occur sporadically in the dolomite. The top of the Skoki Fm is marked by a rapid transition into the overlying black shale. The thickness is between 500 and 800 m.

Road River Group (Ordovician-Silurian)

Only the lower part of the unit was mapped near the carbonatite. The basal 750-m section is a package of mixed black shale, clastics and dolomite interbedded and can be divided into five units. The oldest is *Black Shale* unit with graptolitic black calcareous shales. The overlying unit is the *Dolomite-Black Shale* unit with well-bedded dolomite beds interlayered with laminated calcareous and/or dolomitic shale. Fossils are common in the dolomite beds. The *Sandstone* marker unit denotes an abrupt change with mature, well-sorted and graded sandstone with sharp upper and lower contacts. This unit is only 5-15 metres thick. The *Dolomite-Siltstone-Black Shale* unit, called by Mäder the Upper Dolomite-Black Shale unit, is similar to the unit below the sandstone, except that it consistently has more clastics and less dolomite than the lower unit. Ordovician graptolites occur in the black shale. It is in gradational contact with the *Laminated Siltstone* unit, which is dominated by thin-bedded fine clastics with minor dolomite beds. Silurian graptolites occur in this unit. The top contact is sharp.

The uppermost unit of the Road River Group in the map area is the *White Dolomite* unit, which weather a light grey colour. Mäder did not map the top of this unit.

The Aley carbonatite was emplaced between 330 and 360 Ma (middle to late Mississippian) in the sedimentary assemblage. This carbonatite and several others occurring along the Rocky Mountain Front are believed to be associated with deep structures along the margin of the North American Plate during the time of accretion. Mäder (Mäder, 1986) demonstrates that the carbonatite was intruded in a regime of a ductile shear zone that gave rise to metasomatism and ductile folding within the zone. The carbonatite penetrated the Cambrian Kechika Fm only. Later faulting may have truncated and displaced parts of the intrusive, but this has not been demonstrated.

The major period of structural deformation that formed the Rocky Mountains affected the sedimentary stratigraphy more than the carbonatite. The folding and thrusting within the imbricate Burden Thrust sheet folded the Paleozoic sediments into tight overturned folds with a steep westerly dip. Tectonic thinning and thrust faulting eliminated or reduced some stratigraphic elements, so that parts of the stratigraphic sequence are missing locally. The carbonatite suffered some minor shearing along the planes of mineral bands, and the dips of the mineral bands follow the enclosing rocks steeply to the west-southwest. However, it remains relatively unaffected internally by the younger folding event. Mäder notes that the orientation of several brittle shear zones dipping moderately to the west-southwest suggest that the intrusive may be cut by later

thrust faults. These projections would not affect the elevations of the mineralized zones of interest for the proposed exploration.

Property Geology

The stratigraphy discussed in the foregoing paragraphs transects the Aley property, at which point the dominant feature is the Aley carbonatite intrusion (Figure 4). The intrusion is ovoid in plan with the slightly longer axis aligned to the northeast and may be subdivided into two distinct components: an outer ring of "amphibolite" or metasomatised quartz syenite surrounding a carbonate core. The carbonate core is predominantly dolomite carbonatite with lesser amount of calcite carbonatite principally on the northwest margin. The contact between the two units is reported by all workers to be sharp, but convoluted locally. Niobium mineralization occurs only in the carbonatites.

The "syenite" (Mäder, 1986) or "amphibolite" (Pride, 1984) forms an almost complete ring around the carbonatite core, excepting a small contact area on the east side where carbonatite is mapped in contact with sedimentary rocks and the fault displacement along the southwest margin. Initial work by Cominco (Mawer, 1983) described this material as "amphibolite" since the rock is dominated by 5-40% modal Na-amphiboles (aegirine, arfvedsonite). Non-amphiboles make up the majority of the rock dominated by albite (30-60% mode) and quartz (5-50% mode) (Mäder, 1986).

The so-called ampibolite occurs in two phases. One is the massive amphibole-rich rock and the other a coarse breccia dominated by rounded amphibole-rich quartz syenite mixed with rounded clasts of amphibole-metasomatised Paleozoic sedimentary rocks, particularly pure early Cambrian quartzite that occurs some 1-km below the present surface. Pride (Pride, 1984) proposed that the amphibolite resulted from Mg and Fe metasomatisation that overprinted breccias of sedimentary rocks associated with the emplacement of the carbonatite, producing "fenitisation" as such bringing into question whether that the amphibolite indeed an intrusive rock.

Mäder (1986) observed that the rock had syenitic textures with original Na-amphiboles and the unusual petrochemistry that lead to quartz and albite dominance. This he termed quartz-albite syenite in order to distinguish it from the more common nepheline syenite normally associated with carbonatites. The rock in question had undergone extensive metasomatism that overprinted much of the original quartz-albite-arfvedsonite magmatic textures. Mader suggested that the metasomatism replaced albite and some arfvedsonite with aegirine and that quartz increased and sometimes recrystallised to form larger grains while residual albite reformed into finer grained albite aggregates.

The breccia comprises up to 30% xenoliths of quartzite and igneous rocks such as micro-syenite and albitite. Reaction rims caused by metasomatism rim the sedimentary clastics showing pervasive adsorption and formation of recrystallised quartz, albite, and secondary aegirine. Microsyenite clasts are much less common. These too show reaction rims with similar mineralogy observed in the massive metasomatised syenite and in the sedimentary clasts.

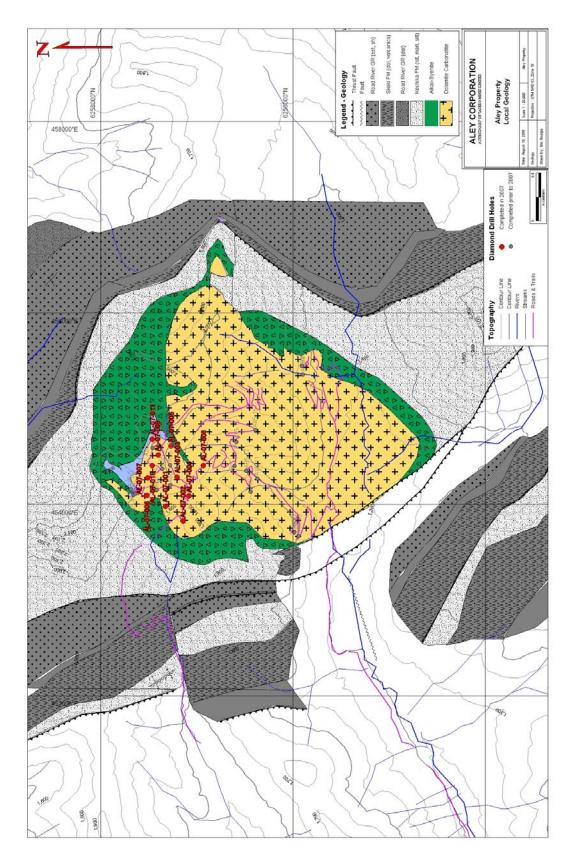


Figure 5. Property Geology Map

Mäder concluded that the syenite was intruded with concurrent brecciation and that metasomatism affected all of its phases. Both writers note that the contacts between the carbonatites and the syenite are sharp, even though the geometry can be quite complex locally with veins and shoots of carbonate in to the syenite and large apophyses of syenite remaining in the carbonatite.

The carbonatite is composed of dolomitic and calcitic phases. Dolomite carbonatite has 87-97% dolomite, 1-10% apatite and the balance as other minerals including fersmite with minor to rare pyrochlore remnants as the Nb minerals, pyrite, quartz, and albite. Calcite carbonatite is more variable in its mineral modes and typically contains calcite (40-95%), magnetite (0-40%), apatite (2-10%), pyrochlore (0-2%), biotite (1-10%), amphibole (0-5%), and pyrite (0-0.5%). The heterogeneity is due to the strong development of mineral banding.

The field relationship between the two carbonate phases is ambiguous. The dolomite carbonatite is spatially the most prominent occupying the centre and most of the margin of the exposures, probably on the order of 70% of the total carbonate area (Mäder, 1986). Calcite carbonatite is restricted to the northwest margin and as interlayers (dykes?) and apophyses in the dolomite carbonatite near the centre. The contacts are described as being sharp, if intimate. Interlayering has been recorded in drill core logs in the central area on the scale of several metres.

The contact aureole shows limited effect in the host rocks. Most of the changes are visible only within several tens of metres of the contact, but subtle colour and very weak mineral effects can be observed up to 500 m away. The principal effect is metamorphism of the carbonate sediments to weak marblisation with potassium feldspar and phlogopite. Minor elements are concentrated within 50 metres of the contact for Nb, REE, Th, and F (Mäder, 1986). The metamorphosed rock tends to have brown surface weathering colour. No calc-silicates or talc occur anywhere in or around the intrusion. The heterogeneity of the host rocks precludes a major element transfer calculation.

Mäder specifically elected not to use the term "fenite" to describe the alkali metasomatism due to his belief that the degree of metasomatism was so subtle and the major element components so little changed that using the term in the traditional sense would be misleading.

Two types of carbonatite dykes containing rare-earth minerals (REE dykes) occur near the intrusive body: the barium-rich, siliceous dykes on the northwest ridge and the barium-poor, silica-deficient dykes on the north ridge. They host a large part of the unusual minerals found on the property including a wide range of carbonates species. They are elevated in ferrous iron, sulfur, and manganese, but have low phosphate. Strontium, barium, and light rare earth elements may reach major proportion. Niobium and tantalum are depleted.

The Ospika diatreme dyke occurs about 250 metres west of the main intrusive near its centre. It lies in another thrust fault block that pushes the diatreme adjacent the carbonatite. It is 20×50 m with at least five breccia and massive phases. It intrudes the Skoki Fm. Contacts between phases may be sharp or gradational. The breccia clasts , which comprise up to 25% of the rock, are mainly sedimentary rock clasts ranging from 5 – 50-cm diameter.

The matrix is igneous-magmatic. The macro-minerals are phlogopite and augite with minor olivine in fine-grained calcite and dolomite with felted phlogopite, chlorite, amphibole, and pyrite. Fluorite occurs near the margins of the pipe.

Several smaller breccia dykes to 50-cm wide occur on ridges 0.5-1 km away. Although they appear similar, they are probably are not physically connected with the diatreme. There are no contact relations with the main carbonatite-syenite intrusion. Pell (Pell, 1987) classifies the diatreme and

associated dykes as ultramafic lamprophyre and notes they are relatively common near carbonatites.

Pell gives a Rb-Sr date on biotite at 334 \pm 7 Ma and a K-Ar date on the same material as 323 \pm 10 Ma, a bit older than the dates for the Aley carbonatite.

Two models have been proposed to explain the patterns observed at the Aley complex and may be summarized as follows:

- i. Pride (1984) proposes that the intrusion started with the brecciation of the country rocks as part of the initial doming associated with the onset of the carbonatite intrusion. The calcite carbonatite intruded and was shortly followed by Mg, Na, and Fe metasomatism. This metasomatism altered the contact including the breccias to form the amphibole rock and the weak "fenitisation" of the host rocks. The Mg-metasomatism lead to the dolomitisation of the central part of the calcite carbonatite, forming the dolomite carbonatite. One result was the alteration of primary pyrochlore to dominantly fersmite and later columbite. The REE dykes and the Ospika diatreme and associated lamprophyres were emplaced in the waning stages of the intrusion.
- ii. Mäder (Mäder, 1986) proposes that the amphibole-rich rock is original guartz-albite-Naamphibole syenite intruded the country rocks with associated brecciation that included xenoliths of country rock from depths to 1-km. The carbonatite intruded in two phases. The earlier one was the dolomite carbonatite, which probably was almost coeval with the syenite. The calcite carbonatite intruded the dolomitic phase and along the contact between the older carbonate and silicate rocks, leaving complexly interfingering contacts. It is possible that some of the calcite carbonatite resulted from metasomatism, too, but Mäder shows the geochemistry does not make these the carbonate equivalent of pegmatite (late-stage events). The known carbonatite processes cannot readily explain genesis of the two carbonate magmas. They do not support a parent-daughter relationship, as the calcite phase would be the parent and the dolomite the daughter, which is not supported by field relations. He concludes that they had a common magma source but followed different and unknown "paths of diversification". The metasomatism that affected the syenite was associated with the later carbonate intrusions. The metasomatic minerals in the syenite showed increases in Fe, Na, and Ti, but moderate to very strong depletions of Mg, Ca, K, Mn, and F. The latter may be deposited in the alteration of the adjacent country rocks. Mäder explains the different textures of mineral bands between the two carbonatites as a function of magma chamber fluid dynamics. He, too, believes the emplacement of the REE dykes, and Ospika diatreme breccia occurred in the final stages of contraction of the intrusion.

Mäder's model is developed well with arguments covering a range of processes. The one feature not explained is the persistent association of relatively unaltered pyrochlore with the calcite carbonatite and the altered pyrochlore (to fersmite and columbite) strongly associated with the dolomite carbonatite. It may be that the carbonatite magma was enriched in Nb and both phases contained original pyrochlore. Unknown factors in the chemistry of the dolomite carbonatite encouraged pyrochlore alteration, while these factors were not active in the calcite carbonatite magma.

2007 Diamond Drilling

Diamond drilling with a total meterage of 4,532 feet of NQ2 and BTW-sized core was undertaken over a total of 11 holes during the 2007 program at the Aley Property. The objective of the drill program was the confirmation of previous exploration work undertaken by Cominco between 1985 and 1986. The program also sought to establish a better understanding of the deposit geometry as well as collection of sufficient sample material for metallurgical test work Drilling was conducted by Peak Drilling of Courtenay, BC and Full Force Drilling of Peachland, BC using a Hydracore prospector rig and a modified skid-mounded B20 with an Isuzu power pack, respectively.

Unlike the 1985 and 1986 programs during which the property was accessed by means of cat-trail, all access to the property in 2007 was undertaken by means of helicopter, this being due to the fact that critical portions of the former access roads had collapsed and that their re-establishment in accordance with modern standards, would have been time-consuming and expensive. All drilling was performed on 16' x 16' timber pads built in-situ utilizing timber purchased in Mackenzie. Where possible, pads were constructed on the old cat trails, which had the advantage of being relatively flat, though elsewhere such pads were erected on slopes of up to 45 degrees. Wherever possible, the pads were carefully dismantled and the material subsequently re-used. Reclamation of drill sites was undertaken upon completion of drilling.

All project personnel were accommodated at Canfor's Ospika camp, situated on the lower northern flank of the Ospika arm of Williston Lake. Core logging, splitting and sampling was also undertaken at this facility, making use of the extensive outbuildings that served this purpose well. Although skeleton core was initially placed in secure storage at the Ospika Camp (inside a locked and boarded-off trailer under the supervision of a watchman), core was in 2008 removed to a permanent storage facility at the Gibraltar Mine near Williams Lake BC, itself owned at operated by taseko Mines Limited.

Table 3 lists the codes used by geological personnel when logging core from the Aley property. The logging system is based on a principal rock code, augmented by a combination of fabric and structure codes are modifiers to the rock code, such modifiers being utilized as prefixes and suffixes, respectively. As an example, while a laminated calcitic carbonatite would be logged as "ICC"; a sheared amphibolite as "AMXs". Detailed geological logs, embodying geological observations as well as downhole survey information are attached in Appendix A. Downhole surveys were performed by the drilling crews using the Reflex EZ-Shot tool by Reflex Instruments, North America Ltd. Table 4 shows the UTM coordinates for each of the diamond drill hole collars as well as the total length of core in metres.

A total of 388 samples, 22 duplicates, 11 blanks and 23 standards (one derived from low grade Aley carbonatite and the other a Canmet standards, OKA-1) were sent for assay analysis. Assay samples were collected according to geological intervals or subintervals thereof, averaging approximately 3 m sampling lengths. Competent 30 cm core sections were also collected for wax immersion specific gravity samples every 8-10 m length. All samples were sawn on site and shipped to PRA Laboratories in Vancouver, BC for preparation and from there on to IPL for analysis. Analysis for Nb, Ta, U, and Th was performed together with the standard multi-element analysis. Duplicates for quality control were forwarded to Global Discovery Labs (Teck Cominco) for XRF analysis. The remaining sawn half core was stored on site at Canfor's Ospika camp.

Sample logs for every hole are presented in Appendix B. Assay Certificates are included in Appendix C and assay methods and QAQC protocol are listed in Appendix D.

Table 3 - Aley Pr	operty Logging	Codes
-------------------	----------------	-------

Rock Code	Lithology	Fabric Code	Fabric
CASE	Casing	Х	Brecciated
OVBN	Overburden	I	Laminated
OXID	Oxide	f	Decalcified
AM	Amphibolite	v	Veined
CC	Calcite Carbonatite		
CD	Dolomite Carbonatite		
CCCD	Mixed Calcite and Dolomite Carbonatite	Structure Code	Structure
AMX	Amphibole and Mixed Carbonatite	Z	Fault
		е	Strained
	•	S	Shear Zone
		У	Dyke

Table 4 - Drill Hole Collars.

		UTM Zone 10 NAD 83		Elevation	Length	Casing
Hole ID	Core	Easting	Northing	(metres)	(metres)	(metres)
2007-001	NQ2	453979	6257329	1791	152.4	2.5
2007-002	NQ2	453825	6257144	1792	152.4	3
2007-003	BTW	454284	6257208	1925	97.3	13.7
2007-004	NQ2	454088	6257082	1870	86.86	7.41
2007-005	BTW	454608	6257271	1964	115.9	4
2007-006	NQ2	454094	6257522	1912	152.4	3.37
2007-007	NQ2	454275	6257514	1991	134.12	3.05
2007-008	BTW	454406	6256933	1775	127.41	4.57
2007-009	BTW	454515	6257405	2038	118.56	12.8
2007-010	NQ2	454405	6257464	2065	79.25	2.5
2007-011	BTW	454680	6257465	2068	152.4	2.46

Discussion and Conclusions

The 2007 exploration program focused on confirmation of the 1985-1986 exploration drilling work undertaken by Cominco, to provide better understand the geometry of the deposit and to yield sufficient material for further metallurgical test work. As such, drill holes were located either in moderate proximity to existing Cominco holes for purposes of confirmation, or between Cominco holes in order to test for continuity. Although it had initially been the intended that drilling of the Central Zone be carried out, this was not possible prior to the discontinuation of exploration activities. In addition to being unsafe to work in, the weather conditions gave rise to frozen water lines (notwithstanding the use of multiple pumps and heaters), them selves up to 10,000' long and with a raise of 1500' due to the fact that more proximal streams had already frozen. Also, by virtue of being helicopter portable, the rigs lacked the power or larger diameter (HQ) capacity to penetrate up to 140' of overburden and shattered, sandy bedrock found in the area. Although bentonite clay would have been the most suitable additive in terms of stabilization and improving return of cuttings, its use was limited in favour of less bulky products more suited to transport by helicopter. Total expenditure (including direct, indirect, head office costs and assaying) for the drill campaign was \$1,217,571.39, giving a cost per foot of \$269.20. With improved access and more appropriate equipment, costs for future exploration will be substantially lower.

Sections bearing Nb₂O₅ (%), Ta (ppm) and lithological codes¹ for the 1985, 1986 and 2007 drilling programs (plotted at a scale of 1:500) have been included in Appendix E. When reviewing the results described in the following paragraphs, it is it is important to take in to account the geological reasoning that guided the planning of the drilling pattern, specifically that niobate mineralization was thought to occur in relatively disseminated form within certain portions of the carbonatite intrusion. On this basis and with the intention of maximizing the efficiency of drilling, twinning of existing holes was not undertaken on a hole-for-hole basis and instead a hybrid drilling configuration comprising holes moderately adjacent to those drilled in 1985-1986, as well as infill holes, was deployed. As a guideline to the interpretation of results, Tisdale (2001) stated on behalf of Teck-Cominco that drilling had, at time of his writing *"indicated the potential for an open pittable resource in the order of 10 to million tones at 0.75% Nb₂O₅". Wider context with regard to Nb₂O₅ grade systematics may be gathered from the Niobec mine in Quebec, at which ROM Nb₂O₅ grades typically range between 0.66 and 0.73%.*

From the sections presented in Appendix E, the following observations may be made:

- i. Nb_2O_5 mineralization in holes 07-01, 07-02, 07-04 and 07-06² is almost entirely below 0.5% and in the case of 07-04, less than 0.25%. This is considered to be 86-19 and 86-20 that fall within the polygon defined by 07-01, 07-02, 07-04 and 07-06 and from which they are separated by 100-220m. Were one to suppose that Nb_2O_5 mineralization occurs in a relatively disseminated form, it is possible to draw the conclusion that the 2007 drilling in this vicinity did not entirely confirm historic work. If however one instead supposes that mineralization is confined to more restricted and concentrated "swirl bands" (as is tentatively suggested with reference to the 2007 drill core), it is equally possible that the 2007 drilling fell outside a semi-linear zone of relatively high Nb_2O_5 mineralization defined by 86-19 and 86-20.
- ii. Hole 07-03, which falls only 100m to the south of 85-03, exhibits Nb_2O_5 mineralization in the order of 0.1%, whereas 85-03 displays niobium mineralization in the 0.5-1% range. With reference to (i), 85-03 appears to be situated within what may potentially EW trend.
- iii. Scarcely 200m to the north of 07-03, 07-07 exhibits lower concentrations of Nb_2O_5 mineralization, typically in the order of 0.1-0.5%, though in two restricted instances is in very moderate excess of 1%. The differential between 07-03 and 07-07 suggests that significant local variation in Nb_2O_5 mineralization is demonstrable within the 2007 drilling data alone.

¹ In certain cases, lithological codes were not available for the 1985 and 1986 drilling, in which cases niobium data have been represented alone.

² Drillhole nomenclature has been devised such that the two preceding digits represent the year of drilling (1985, 1986 or 2007) and the latter two digits a sequential continuum (for 1985-1986) that was reset to '01' upon commencement of drilling in 2007

- iv. Perhaps the most stark contrast between the 1985-1986 program and 2007 exploration activity may be seen between 85-03 and 07-10. 07-10 was drilled only 100m to the north of 85-03 and while the original hole demonstrates consistent Nb₂O₅ mineralization almost entirely in the 0.4-1% range, the closely adjacent 2007 hole is almost entirely devoid of such mineralization. Check assays sent to alternative laboratories (GDL and COREM) confirm this surprising dearth of mineralization and samples from the same original analytical batch were indeed mineralized with respect to niobium. With the exception of one minor amphibolitic intersection, all core from 07-10 was logged as carbonatite; verification of core photographs confirm that this was indeed the case.
- v. Hole 07-09 exhibits Nb₂O₅ mineralization generally in excess of 0.5% with significant intersections in greater than 1%. It should also be noted that 07-09 was drilled approximately 100m to the southwest of 85-01 and 85-02, both of which demonstrated Nb₂O₅ grades in the order of 0.5%. Of all drilling conducted in 2007, 07-09 provides the closest confirmation of historic work.
- vi. 07-05, which was drilled approximately 100m to the south of 85-01 and 85-02 display Nb_2O_5 mineralization in the 0.5-1% range, albeit punctuated by the presence of numerous amphibolitic dykes.
- vii. To the northeastern most extent of the area drilled, 07-11 falls within 50m of 85-03, the former demonstrating apparently consistent Nb_2O_5 mineralization in the 0.4-1% range.
- viii. In an attempt to understand the mineralized extent of the carbonatite immediately to the south of the Saddle Zone, hole 07-08 was drilled. With exception of minor mineralization in its uppermost and lowermost portions, this hole is largely negative, further illustrating the discontinuous nature of mineralization.
- ix. In terms of the relationship between niobium grade and carbonatite facies (specifically calcitic or dolomitic, as referred to in the section of the report entitle "Property Geology"), no clear or consistent trend may be recognized. Using 07-09 as an example, calcitic carbonatite (CC) exhibits Nb₂O₅ mineralization in the ordered of 0.1% at 45m while at 84m in the same hole, CC shows Nb₂O₅ mineralization in excess of 2% the highest value recorded during the 2007 exploration program. In a similar fashion, dolomitic carbonatite (CD), displays notable heterogeneity with respect to Nb₂O₅ mineralization: at 54m in hole 07-07, CD is mineralized in the order of 0,1%, while in close proximity at 64m, the same facies displays values in excess of 1%. With the exception of very rare cases, amphibolite (essentially of syenitic composition) in unmineralized.
- x. With regard to the relationship between niobium and tantalum there, a degree of positive correlation the two elements may be observed (for example 07-06), though elsewhere an inverse correlation is noted (07-01 and 07-02)

In conclusion, while the results of the 2007 exploration program do, in part, confirm the work undertaken by Cominco in the 1980's, it is clear that:

xi. Strong niobate zonation exists within the Saddle Zone, probably due to the fact that mineralization occurs in a variable array of banded, aggregated and disseminated forms. It is proposed that these textures owe their origin to convection currents in the sub-solidus apatitic magmatic intrusion: as cooling took place and the melt became a Ca-Mg crystal mush, niobate mineral phases, together with minor magnetite were thrown by means of centrifugal action into a series of swirls shortly prior to final crystallization. Settling of the niobates does not appear to have occurred (or occurred in full at least) which has been tentatively explained in terms of the relatively moderate density gradient between the apatitic melt and the niobate phases, as well as the advanced stage of crystallization.

- xii. It should be understood that the Saddle Zone almost certainly does not represent a homogenous 'pod' of mineralization within the carbonatite and that future exploration should be designed to identify and better define mineralized features within the Saddle and Central Zones. At present, continuity between mineralized intercepts cannot be assumed as might be the case in deposit types where grade tends to be well disseminated. It is also noted that due to equipment limitations, drilling did not exceed a depth 152m hence the possibility of extension of mineralization at greater depth remains untested.
- xiii. The grades attained during the 2007 program are generally lower than those reported by Cominco with respect to the 1985-1986 programs,
- xiv. Very closely spaced drilling will be required to gain a more objective understanding of zoned "swirls" in which the mineralization appears to occur.

Recommendations for further work

Any drilling proposal aimed at gaining a better understanding of the mineralized potential of the Saddle and Central Zones should take into consideration the heterogeneity of the carbonatite intrusion, as well as the laterally restricted distribution of Nb_2O_5 mineralization. To gain confidence in the continuity of mineralization, a higher that average drill density is envisaged in order define known occurrences. At both zones, drilling should ideally be complimented by surface trenching in order to recover additional sample material – much of which would occur along access trails.

With improved access, more appropriate equipment and contractors, costs for future exploration will be substantially lower than those presented in this report.

Statement of Costs

Please see overleaf

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Ashley Nystrom, Technician,	Oct 2-15, Nov 1-12 (Core Splitting)	26	\$360.00	\$9,360.00	
Crystal Chung, Junior Geologist	Sep 12-25	13	\$360.00	\$4,680.00	
	Sept 26-Oct 31	19		\$9,500.00	
Dominique Bailey, Technician	Sep 12-27	15	\$375.00	\$5,625.00	
Eric Bourgie, Project Coordinator	Sep 14, Oct 1-6	7	\$400.00	\$2,800.00	
	Oct 7-13, 16-31, Nov 4-9, 25-26*	30.7	\$540.00	\$16,578.00	
Jeremy Crozier, Project Manager	Sep 1-4, 6-17, 19-24, Sep 26-Oct 17	25.75	\$750.00	\$19,312.50	
	Oct 21, 29-31, Nov 14-15, 27-30*	23.25	\$900.00	\$20,925.00	
Richard Roe, Senior Technician	Aug 25-Nov 4	71	\$335.00	\$23,785.00	
Jim Oliver, Consulting Geologist	Sep 12-16	5	\$810.00	\$4,050.00	
	*dates listed include partial days worked			\$116,615.50	\$116,615.50
Office Studies	List Personnel (note - Office only, do not include field days)	1	1	\$110,015.50	\$110,015.50
Database compilation	Gwendolen Ditson, Senior Geologist	6.9	\$500.00	\$3,425.00	
	Si Yuan Lee, Data Technician	0.3	\$500.00	\$125.00	
Computer modelling	Yury Lichtarov, Resource Modeller	3.0		\$1,500.00	
Reprocessing of data (graphics reproduction)	Brad Lodge, Draftsman	2.0	\$450.00	\$900.00	
	Graham Neale, Graphics Technician	0.5	\$500.00	\$250.00	
General research	Dave Yeager, Senior Geologist	9.5	\$500.00	\$4,750.00	
Report preparation	Jeremy Crozier, Project Manager	2.0	\$900.00	\$1,800.00	
	Crystal Chung, Junior Geologist	4.0	\$500.00	\$2,000.00	
Project Planning	Mark Rebagliati, PEng	0.5		\$564.00	
	Richard Roe, Senior Technician	4.0	\$260.00	\$1,040.00	
QAQC Management	Eric Titley, Senior Geologist, QAQC	3.3	\$600.00	\$1,950.00	
		3.5		\$2,695.00	
Metallurgical Advice	Stacy Freudigmann	0.1	\$740.00	\$74.00	
Permitting and Engineering	Allnorth consultants		total job	\$4,393.00	
Archaeological Overview Assessment	Archer CRM partership		total job	\$585.00	
		1	-	\$26,051.00	\$26,051.00
Diamond Drilling	No. of Holes, Size of Core and Metres	No.		Subtotal	
Peak Drilling Ltd.	644 meters at NQ2		total job	\$216,643.00	
Full Force Drilling Ltd.	805 meters at BQTW		total job	\$191,238.00	
CJL Enterprises	Contruction of 11 drill pads - 2 pad builders @ \$450 and \$425 per		total job	\$50,168.00	
Cordwood Industries	day respectively; 2 helpers @ \$375 per day		total iab	\$9,493.00	
cordwood maastnes	Supply of lumber for construction of drill pads	1	total job	\$9,493.00 \$467,542.00	\$467,542.00
Other Operations	Clarify	Days	Rate	Subtotal	\$407,542.00
Storage, handling, shipping and logistics	Bogart Cross, Logistics Technician	14.3	\$500.00	\$7,125.00	
storage, nandling, shipping and logistics		0.3	\$570.00		
	Keith Odribege, Warehouse Manager	2.5	\$420.00	\$1,050.00	
	Ted Oliver, Database Manager	5.0	\$580.00	\$2,900.00	
Administration	Renee Wardell, Admin Asst.	0.3	\$470.00		
				\$11,358.50	\$11,358.50
Transportation	Clarify	No.	Rate	Subtotal	
Airfares and taxis	Flights: YVR - Prince George - Ospika		total job	\$6,485.00	
Truck rental	Ron Ridley Rental, Williams Lake, two Ford F-350 pick-up trucks at	2.00	\$6,737.00	\$13,474.00	
	\$220 per month, plus \$0.5 per kilometer, plus damage repair				
Fuel	CANFOR forest products - site fuel (771 litres gasoline, 5530 litres		total job	\$10,166.00	
	diesel)				
	Canwest propane - propane for heating of water lines and drill		total job	\$1,901.00	
	infrastructure				
Helicopter	Yellowhead helicopters - provision of 1 x Bell 407 at \$1850 per hour,		total job	\$278,104.00	
	plus fuel, plus GST including pilot and engineer, for a total of 121.4				
	hours, using 22153 litres of Jet-B				
Road repair	Rental of motor grader to effect repair of Ospika FSR to effect access		total job	\$13,440.00	
	to Ospika Camp and helicopter staging area. Cordwood industries,				
Sample Transport	\$120 per hour plus GST. Transport of sawn half-core from Ospika Camp to PRA laboratories,		total iab	\$8,759.00	
sample transport	Vancouver; shipment of miscellaneous materials and srill supplies to		total job	\$8,759.00	
	Ospika during project execution. Russell Transfer, \$70 per hour for				
	truck and driver plus \$45 per hour expediting				
	In active and an very provide a per nour expediting	L	1	\$332,329.00	\$332,329.00
Accommodation & Food	Rates per day	1		\$332,327.00	#JJZ;JZ7.00
Rental of Ospika Camp from CANFOR	All-in rate of \$1100 per day irrespective of occupancy, Aug 26-Oct 16		total job	\$61,647.00	
Central and Interior Catering	2 x personnel @ \$450 per day plus food at cost plus 15% for entire	1	total job	\$89,233.00	
	team			+=-,200.00	
	·	'		\$150,880.00	\$150,880.00
Miscellaneous				,	,
	Safety equipment, 2 x GPS, sample bags and tickets, tools, water		total job	\$59,050.14	
	Safety equipment, 2 x GPS, sample bags and tickets, tools, water	1	-		
Field equipment purchase	supply equipment, first aid equipment				
			total job	\$3,544.02	
Field equipment purchase Scanning and digitisation of large format historic	supply equipment, first aid equipment		total job	\$3,544.02	
Field equipment purchase Scanning and digitisation of large format historic	supply equipment, first aid equipment		total job	\$3,544.02 \$62,594.16	\$62,594.16
Field equipment purchase Scanning and digitisation of large format historic maps Sample analysis and Assay	supply equipment, first aid equipment		total job		\$62,594.16
Field equipment purchase Scanning and digitisation of large format historic maps Sample analysis and Assay Process Research Associates	supply equipment, first aid equipment	440.0	total job \$149.83		\$62,594.16
Field equipment purchase Scanning and digitisation of large format historic maps Sample analysis and Assay	supply equipment, first aid equipment	440.0	\$149.83	\$62,594.16 \$65,923.00 \$1,642.24	
Field equipment purchase Scanning and digitisation of large format historic maps Sample analysis and Assay Process Research Associates	supply equipment, first aid equipment		\$149.83	\$62,594.16 \$65,923.00	\$62,594.16 \$67,565.24
Field equipment purchase Scanning and digitisation of large format historic maps Sample analysis and Assay Process Research Associates	supply equipment, first aid equipment		\$149.83	\$62,594.16 \$65,923.00 \$1,642.24	

References

MACDONALD, KEN, Sep 2005, Aley Property Exploration Road Survey, priv. Report to Aley Corp., 12 p

MÄDER, U.K., 1986. The Aley Carbonatite Complex, unpubl M.Sc. thesis, UBC, Vancouver, BC, 177p.

MAWER, A.B., 1983A. Aley Carbonatite 1982 Assessment Report, 28-June-83, priv rept to Cominco Ltd., 6p (includes assay sheets).

MAWER, A.B., 1983B. Aley Carbonatite: 1982 Year End Report, 14-Feb-83, priv rept to Cominco Ltd., 7p.

PRIDE, K.R., 1984. Aley Group 1983 Year End Report, May 1984, priv rept to Cominco Ltd., 26p with Appendices.

TISDALE, D., 2001. Summary report for: Aley Property, Omineca Mining Division

Statements of Authors' Qualifications

I, Crystal J. Chung do hereby state:

- That I am an employee of Hunter Dickinson Incorporated, with offices located at Suite 1020
 800 West Pender Street, Vancouver, British Columbia.
- 2. That I am a graduate in of the University of British Columbia, Vancouver with a Bachelor of Science in the Earth and Ocean Sciences Program in 2005.
- 3. That I am registered as a Geoscientist-In-Training (GIT) with the Association for Professional Engineers and Geoscientists of British Columbia (APEGBC).
- 4. That I have been employed as a geologist since graduation.

Signed on the 17 day of August, 2008

Crystal J. Chung, B.Sc., GIT

Statements of Authors' Qualifications

I, Jeremy S. Crozier do hereby state:

- That I am the Exploration Projects Manager for Taseko Mines Ltd., with offices located at 1020 – 800 West Pender Street, Vancouver, B.C.
- 2. That I am a graduate of the University of St.Andrews, Scotland (B.Sc., 1995) and have been employed as an exploration a geologist since that time. I subsequently earned an MSc degree from the University of the Orange Free State, South Africa (2001, part time) and an MBA from the Ecole des Hautes Etudes Commerciales, Montreal (2004).
- 3. That my experience has given me considerable knowledge in geological, geochemical and geophysical prospecting techniques as well as in the planning, execution and evaluation of exploration drilling programs.
- 4. That the accompanying Statement of Costs is an accurate statement of expenditures on the project.

Signed on the 17 day of August, 2008

Jeremy Crozier, MBA, MSc BSc.(Hons)

APPENDIX A

GEOLOGICAL LOGS

GEOLOGY LOG

Hole ID 2007-001

Page 1 of 11

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
	•
Т	Trace
W	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION				
Coordinate System	Easting	Northing	Elevation	
UTM	453979.00	6257329.00	1791.00	
Collar Azimuth	Collar Dip	Planned Depth	Final Depth	
	-90.00		152.40	
Overburden (m)	Casing (m)	Tricone (m)		
	0.00			
	Down-hole	e Survey Data		
-		ĩ		
Depth (m)	Azimuth	Inclination	Method	

Drilling Data												
Bit Size	From	То	Length									
NQ2	0.00	152.40	152.40									
	Professional/Tec	hnician Data										
	Person	Start Date	End Date									
Collar Survey												
Drill Contractor	Full Force Drilling											
Geology By	CC											
Geotechnical Log	DB											
Specific Gravity	CC											
Casing	Cemented	Plugged	Rehab. Pad									
in / out	yes / no	yes / no	yes / no									
	Comm	ents										

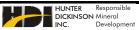
Taseko Mines Limited Aley Project	GEOL	OGY LOG		С	Crystal Chung Da	ate 05-Oc	t-07		Hole ID 2007-001 Page 2 of 11	
INTERVAL(m) Rock o	Α	LTERATION		MINI	ERALIZATION	STRUCTURE				
From To Code n L	Type %	% Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
0.0 2.5 CASE	amphibolite		nb			laminations				
Casing; no core rock recovery.	calcite		ma			veining				
	dolomite		ру							
	silica									
2.5 17.5 OVBN	amphibolite		nb			laminations				
Cored talus/overburden. Rounded-subrounded rubble of	calcite		ma			veining				
nixed rock fragments (weakly calcareous).	dolomite		ру							
	silica		1.							
17.522.0gCCVWDappled blue-grey and cream, medium grained (up to 0.4cm across) calcite carbonatite. Matrix is weak- moderately silicified and matrix grains appear to have yery weak alignment. Minor wisps and diffused bands of iner grained buff-brown dolomitic matrix (more reactive to HCI). Hard but blocky and rubble core rock; likely due to vicinity 	silica 2 amphibolite 0 calcite	 10 Generally occurs as diffused buff-brown coloured bands (up to ~3cm wide). 20 Moderately silicified matrix; weak sucrosic texture noted. 20 Pale to dark grey-green blebs (up to 0.4cm across) noted scattered throughout matrix; possibly chlorite(?). 25 Matrix appears to be weakly overprinted with pale peach- buff colouring. Darker bands often finer grained. 	nb ma py nb ma py	0.1	Fine-medium sized (<0.1-0.3cm) subhedral-euhedral grains of red- brown and dark grey black noted scattered in matrix. Some can be slightly irregular in shape. Small-medium sized (<0.1- 0.3cm) subangular-angular aggregates. Some euhedral grains also noted. Mostly dark black- brown colouring, possibly fersmite(?).	laminations veining laminations veining	VW W VW W	45 40 35	Very weak alignment of matrix grains forming weak laminations Difficult to determine vein density/orientation due to brokenne of core rock. Diffused and discontinuous brown bands at various orientations. Weak alignment of matrix grains forming weak diffused lamination Very diffused and diffused (aggregated) mineralized stringers (<0.2cm wide).	
26.2 28.4 gCC VW Dappled medium blue-grey with cream coloured blebs, ine grained, moderate-strongly silicified calcite carbonatite with patchy zones (~15% of interval) of buff- brown dolomite.	amphibolite calcite	 Moderately siliciifed matrix, generally in zones of slightly coarser grained. Buff-brown, sandy texture washed, tends to be weak- 	nb ma	0.15	Fine-medium sized (<0.1-0.3cm) subhedral-euhedral red-brown and dark black-brown aggregates.	laminations veining				

Taseko Mines Aley Projec		GEOI	LOC	GY LOG		C	Crystal Chung Da	ate 05-Oc	t-07	Hole ID 2007-001 Page 3 of 11		
	H C	ŀ	A L T E	ERATION		MINI	STRUCTURE					
From To Code n	L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
Hard and slightly blocky core rock with no breakage orientation. Buff-brown dolomitic be weakly decalcified, breaking down core zones) and giving surfaces a sandy texture	c zones tend to (minor rubble	silica	25	moderately decalcified (slightly blocky/rubble core). Moderate-strongly flooded by grey silica, except in decalcified dolomitic zones.	ру	0.05	Rare-trace amounts of small brassy blebs (up to 0.2cm across) noted in upper portion of interval.					
28.4 33.1 gICD Fair core rock recovery (~80%). Weakly laminated, fine grained (<0.1cm), l dolomite carbonatite with minor blue-grey of content. Weakly decalcified matrix, giving slightly pitted texture. Moderately hard and slightly blocky core ro preferred breakage orientation.	calcite core surface a	amphibolite calcite dolomite silica	10 2	Minor zones of slightly coarser grained, silicified grey calcite. Appears to be grey silica flooding calcitic zones.	nb ma py	0.2	Irregularly shaped blebs and aggregates of red-brown (up to 0.3cm across). Some dark black- brown grains also noted (fersmite?).	laminations veining	w vw	50	Weak laminations throughout matrix; defined by weak alignment of matrix grains and diffused banding of calcitic and dolomitic zones. Narrow, diffused veinlets of dolomite/calcite and of niobates; no dominant orientation.	
33.1 38.2 gICC Very weakly laminated and speckled, med light blue-grey calcite carbonatite. Minor z dolomite/weak iron staining. Weak-moder with some sucrosic textures. Hard, blocky and broken core rock; fracturi orientated at ~20 and ~55 degrees to core	ones of ately silicified ing generally	amphibolite calcite dolomite	0.3	Pale-medium grey green blebs noted scattered in matrix, generally associated with niobate mineralization; chlorite (?). Occurs as irregular and diffused peach-buff coloured washes and bands (up to ~2cm wide).	nb ma py	0.3	Mostly medium (up to 0.3cm) grained subhedral-euhedral aggregates/blebs of red brown. Some dark green coloured grains also noted. Possible rare amounts of finely disseminated magnetite; very fine silver-black specks noted in locallized clusters within matrix.	laminations veining	vw w	45 20	Weak laminations noted in patchy zones, mainly defined by weak alignment of matrix grains. Low vein density, mostly very diffused bands carrying aggregated mineralization, following low angled laminations.	
		silica	5	Weak-moderately silificied matrix, giving sucrosic textures; white and very pale grey silica.	L							
38.2 41.1 dCC Weak-moderately silicified, medium graine across), blue-grey calcite carbonatite. Tra amounts of wispy brown dolomite/iron stain reaction with HCI.	ce-minor ning. No	amphibolite calcite dolomite	1 2	Pale yellow-green blebs noted scattered throughout matrix. Mostly occurs as narrow,		0.2	Fine-medium disseminated grains, occasionally bladed in shape (up to 0.3cm across long axis). Red- brown colouring.	laminations veining	vw	40	Possibly very weakly laminated; silica flooding overprints most original textures (if present). Low vein density; mostly appearing	
Moderately hard and slightly blocky core ro mostly at ~40 degrees to core axis. Minor interval) comprised of shattered rubble. ~0.1% small-medium sized (up to 0.3cm) p hexagonal mica prisms (phlogopite?).	zones (<5% of bale yellow			diffused stringers (up to ~0.3cm wide). Occasional very pale coloured wash overprinting matrix.	ma py						to be diffused dolomitic bands (up to ~0.3cm wide).	
08-Aug-08 repLitho_FullL	og:Benort				Responsible					-		

Taseko Mines Limited	GEO	LO	GY LOG		C	Crystal Chung Da	ite 05-Oc	:t-07		Hole ID 2007-001
NTERVAL(m) Rock o		ALT	ERATION		MIN	ERALIZATION	Page 4 of 1			
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
	silica	10	Weak-moderately silicified matrix.							
41.1 42.4 dICCCD Nottled peach-buff and blue grey mixed carbonatite unit. calcite and dolomite contents appear to be fairly equal. Natrix is weak-moderately silicified. Weak porphyritic exture with mostly blue-grey (grey silica?) and cream oloured grains. No reaction to HCl. Noderately hard and competent core rock. Minor acturing with no preferred orientation.	amphibolite calcite dolomite	Ę	Alteration product(?). Irregular washes and bands with decreased grain size appear to overprint original textures. Weak-moderately silicified.	nb ma py	0.6	Fine-medium disseminations of dark brown/black, scattered throughout matrix; fersmite(?).	laminations	w	40	Weak laminations, noted by slightl orientated "banding" of peach-buf colouring.
42.4 46.8 gxCCz ault zone(?); very broken, shattered core rock. loderate silicified, medium grained blue-grey calcite arbonatite. No reaction with HCI. Trace-minor zones of isty-brown (reactive with HCI), generally noted on acture surfaces. Matrix has a weak and diffused recciated texture with rounded-subrounded blue-grey clasts" and a surrounding matrix of diffused cream- bloured stringers. loderately hard, somewhat blocky and very broken core ock; no preferred breakage orientation. ~25% of interval omprised of intact core. The remainder is large ubangular fragments of shattered core.	silica amphibolite calcite dolomite silica	5 5 7	Trace-minor amounts of irregular and diffused cream- buff stringers. Almost appears as an alteration effect. Moderately silica flooded section (grey quartz?).	nb ma py	0.1	Trace amounts of rounded- subrounded red-brown blebs scattered in matrix; generally associated with cream-buff stringers. Possible rare amounts of finely disseminated magnetite (?; small silver-black grains, non-magnetic, noted).	laminations	VW	40	Very weak laminations noted in mo intact sections. Appears to have been overprinted by silicification Diffcult to determine vein density/orientation due to brokenne of core rock. Moderate-strongly calcareous veinlets appear to be present.
46.847.9gCCWimilar to unit uphole at 42.37-46.75m. oderately silicified, medium grained blue-grey calcite arbonatite; very weak reaction with HCI. Slight increase dolomite content than above, occurring as medium rey-brown bands (up to ~2.5cm wide). Matrix has a very eak brecciated texture with lighter coloured "clasts" with eakly diffused contacts and darker grey or cream ringers infilling open-spaces. ard and slightly blocky core rock; preferred fracturing at 40 degrees to core axis.47.951.1gCCVW	silica	15 10	Mainly occuring as medium grey-brown, diffused stringers/bands (up to ~2cm wide). Moderately silicified (appears to be grey quartz) Pale to dark green coloured	nb ma py nb	0.1	Trace amounts of rounded- subrounded red-brown blebs (<0.3cm across) scattered throughout matrix. Appears to be very weakly forming very discontinuous stringers.	laminations veining laminations	W W	45	Very weak laminations noted, diffcult to determin orientation; appears to have been overprinted b silicification. Low-moderate vein density; locallized in upper portion of interv
47.9 51.1 gCC VW appled medium grey and cream, fine-medium grained 0.1-0.3cm), calcite carbonatite. Minor pervasive iron aining/dolomitic overprint(?). Weakly flooded with grey lica. oderate hard and competent core rock; trace fracturing 08-Aug-08 repLitho_FullLog:Report		1	Pale to dark green coloured grains and blebs (up to 0.2cm across) noted throughout matrix; possible chlorite or green micas(?).		0.3	Fine-medium sized, subhedral- euhedral aggregates (<0.1-0.3cm across). Some show weak poikioblastic textures with red- brown or rusty-black-brown	veining	w	45 55	~40-50 degrees to core axis; weak defined by slight alignment of matr grains and weakly orientated diffus "bands" of colour variation. Low-medium vein density; niobat

Taseko Mines Limited	GEC	DLO	GY LOG	/	C	rystal Chung Da	ate 05-Oc	t-07		Hole ID 2007-001	
Aley Project		ALT	ERATION		MINI	ERALIZATION	Page 5 of 11				
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
with no preferred orientation. ~0.2% medium grained (up to 0.3cm across) brown-black clots scattered throughout matrix, appears to be dark mica flakes.	calcite dolomite	20	Pervasive overprinting(?) of pale buff-brown colouring. Tends to be irregular but	ma py		colouring (pyrochlore and fersmite, respectively?).				grains forming very discontinuou stringers.	
	silica	5	slightly orientated washes or bands associated with niobate mineralization. Weak-moderately silicified matrix.	J							
51.1 54.9 dCC VW Weak-moderately silicified, fine-medium grained (<0.1- 0.3cm across), blue-grey calcite carbonatite. Very weak and localized reaction with HCI. Minor dolomitic content; mostly occurs as diffused bands throughout matrix (generally more reactive to HCI). Fairly hard and competent core rock; fractures tend to be	amphibolite calcite dolomite	10	Very diffused and irregular buff coloured bands (up to ~3cm wide). Alteration	nb ma	0.2	Fine-medium disseminated red- brown blebs (<0.1-0.2cm across). Medium sized (up to 0.4cm) brown clots often associated with mineralization.	laminations veining	vw	50	Low vein density, appears to be mostly narrow cream and white mo calcareous stringers (<0.2cm wide	
prientated at ~45 degrees to core axis. Most fractures along narrow diffused cream coloured bands.	silica	5	product(?). Weakly silicified matrix (grey quartz?); with weak-moderate sucrosic textures.	ру							
54.9 57.6 dCCCD VW Mottled buff and light grey, medium grained (0.2-0.5cm), calcite-dominated mixed carbonatite. Dolomite occurs as rregular and weak washes, almost as an alteration	amphibolite	0.2	Dark black-green blebs and specks tend to be associated with niobate mineralization; possible chlorite(?).	nb	0.15	Trace-minor amounts of fine- medium disseminated red-brown grains (<0.1-0.2cm across), scattered in matrix.	laminations veining	VW	30	Diffused "veinlets"/bands of buff brown (up to ~0.5cm wide).	
phase. Patchy zones of silicified blue-grey calcitic matrix (appears to be slightly brecciated. Moderately hard and competent core rock; minor fracturing with no dominant orientation.	calcite dolomite	20	Weakly pervasive overprinting of matrix with pale buff colouring (alteration product?). Buff-brown dolomitic blebs also noted throughout matrix and often have weak decalcification textures.								
	silica	2	Locallized grey silica flooded zones, generally in calcitic sections.								

Taseko Mines Limited
Aley Project


GEOLOGY LOG

Log by

Crystal Chung

Page 6 of 11

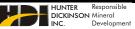
INTERVAL(m)	Rock	¢	Z o	H C			ALT	ERATION		MINI	ERALIZATION		:	STR	UCTURE
From To	Code		n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
57.6 64.5 dfCCCD M ottled buff and light grey, fine-medium grained (<0.1- 4cm) mixed carbonatite. Fairly equal amounts of fine ained buff-brown dolomite and cream-grey, slightly arser grained calcite throughout interval. Weak calcification textures noted on core surface, mainly nited to zones of buff-brown.		s of fine ightly ak nainly	amphibolite calcite dolomite	0.5	Dark green-black subangular- angular shaped grains noted; likely chlorite clots (<0.4cm across). Weakly variable composition;	nb	0.8	Finely disseminated (<0.1cm) to medium sized aggregates (up to 0.3cm) present. In more dolomitic sections, grains are often aligned and forming very discontinuous stringers. Red- brown and brown-black colouring.	laminations veining	W W	40	Weak laminations; defined by diffused bands of different coloured matrix. Low vein density; very diffused niobate bearing bands noted with no measurable orientation.			
volderately hard and tends to be orientate zones (~7%) of rubbl decalcification. ~0.2% fine (up to 0.1 yellow mica specks t	d at ~30 e; appea cm acro	degrears to ss) bl	ees to be zo ack-b	o core a ones of :	xis. Minor strong	silica		evidenced by range of colours (pale buff to medium brown). Often occuring as decalcified and diffused wisps and washes.	ma py	0.05	Rare-trace amounts of finely disseminated silver-black magnetite grains; mostly noticed in upper portion of interval.				
64.5 68.7 Speckled and mottler grained, weakly silicit calcite dominated ma 0.5cm across) pale g puff coloured "matrix" Moderately hard and amounts of fracturing	fied mixe atrix; me rey grain ". compet	d crea ed car dium- ns with ent co	bona coars n fine re ro	tite. Ve se graine grained ck with	ry weakly ed (up to d medium minor	amphibolite calcite dolomite	0.5	Fine-medium sized blebs of dark green noted; chlorite(?). Pale buff-brown colouring appears to be a weak- moderate overprint of matrix (alteration product?).	nb ma py	0.7	Fine-medium grained (up to 0.3cm across) disseminated and aggregated niobates. Mineralization is scattered throughout matrix.	laminations veining	vw vw	35 30	Locallized and very faint laminations; defined by slight alignment of matrix grains. Low vein density; appears to be diffused cream-white, weakly calcareous veinlets (up to ~1cm wide).
~0.2% fine-medium t matrix; likely to be m			ggreg	jates sc	attered in	silica	7	Matrix appears to be weak- moderately silicified.	PJ						
68.7 75.2 Speckled and mottler grained mixed carbor medium grained grey dolomite. Calcitic zo silicified.	natite. F v calcite	d cre airly e and fi	equal ne gr	amount ained bi	ts of uff-brown	amphibolite calcite	0.3	Dark green subrounded clots noted throughout matrix, often associated with niobate mineralization; chlorite(?).	nb	1.5	Fine-medium grained red-brown and dark black-brown aggregates (<0.1-0.5cm across). Mostly scattered throughout matrix, some rarely forming very discontinuous	laminations	vw	35	Locallized and very faint laminations noted in matrix. Defined mostly by alignment of matrix grains and occasionally by very diffused dolomitic bands (up to ~0.5cm wide)
Moderately hard and	oderately hard and fairly comp cturing dominantly orientated	mpete ed at	petent core rock with d at ~55 degrees to core	with to core	dolomite		Slightly variable composition; evidenced by slight colour variations in generally buff- coloured rock. Possible	ma py		stringers.	veining	vw	45	Very low vein density; mostly diffused bands of buff dolomite. Occasional discontinuous niobate stringers.	
						silica	5	alteration product (weak- moderate overprinting). Weakly silicified matrix (grey quartz).							

Taseko Mines Limited Aley Project	GEO	LO	GY LOG	,	C	rystal Chung Da	ate 05-Oct	t-07	F	Hole ID 2007-001 Page 7 of 11	
INTERVAL(m) Rock o C		ALT	ERATION		MINE	RALIZATION	STRUCTURE				
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
75.2 79.3 gCD S	amphibolite			nb	1.5	Fine-large aggregates of red-	laminations				
Buff-brown, fine grained (<0.1cm) dolomite carbonatite. Weakly decalcified matrix with weakly pitted texture. Slightly blocky core rock with ~12% shattered and rubble fragments. Dominant breakage orientation at ~50 degrees to core axis.	calcite	7	Locallized patches of blue- grey calcite carbonatite present, mostly in upper part of interval. Dolomite content in this zone almost appears to be an alteration product.			brown and dark black-green colouring (<0.1-0.7cm across). Subangular-angular in shape, forming minor irregular discontinuous bands (up to ~1.5cm wide).	veining				
	dolomite silica		Slightly variable composition.	ma py							
79.395.5gfCDzSPoor core rock recovery (~5%).Light-medium buff-brown fine grained dolomite carbonatite with minor zones of blue-grey calcite content. Weak-moderately decalcified matrix, pitted textures noted in more intact core. Weak-moderately brecciated with grey calcitic "clasts" and buff matrix. Possible fault zone/strong decalcification(?); broken down, blocky and rubbly core rock. No dominant fracturing orientation. ~15% of interval is comprised of intact core; the remainder is fine-medium sized rubble.95.599.2gCCM	amphibolite calcite dolomite silica amphibolite	0.5	Dark green blebs (up to 0.4cm across) noted; possibly chlorite(?). Light blue-grey, slightly coarser grained locallized zones; appears to be weakly silicified.	nb ma py nb	0.7	Seen in more intact core rock; finely disseminated to coarse aggregated (<0.1-0.5cm across), subangular-angular red-brown and dark grey green grains.	laminations veining laminations	W	30	Diffcult to determine vein density/orientation due to brokenness of core rock. Appears to be mostly veinlets of grey-white calcite and chocolate-brown dolomite (up to ~1cm wide).	
Weakly brecciated, blue-grey, fine-medium grained calcite carbonatite. Moderate dolomite content, mostly occurring as irregular and diffused veinlets infilling spaces between grey calcitic clasts. Fairly hard and moderately competent core rock with minor fracturing mostly orientated at ~35 degrees to core axis.	calcite dolomite silica	20	Irregular and diffused light- medium buff-brown washes and veinlets. Almost appears to be an alteration product.	ma py		elongated, up to 0.3cm across long axis) noted thoughout matrix. Red-brown and dark black-green colouring.	veining	m		No dominant orientation; Irregular and diffused buff veinlets infilling spaces between clasts in brecciated zones.	
99.2 101.3 dCCz W Similar to unit uphole at 95.5-99.22m. Blue-grey, weakly silicified, fine-medium grained calcite carbonatite. Buff-brown dolomite is noted on break surfaces. Fault zone/strong decalcification broken down by drilling process(?). Broken and rubble core rock with ~15% intact core. Remainder of interval comprised of rubble and shattered fragments. Moderately hard core rock.	amphibolite calcite dolomite silica	20	Coating break surfaces.	nb ma py	0.2	Noted in more intacts core; fine- medium disseminated grains of red-brown and dark grey-green.	laminations veining	m		Diffcult to determine vein density/orientation due to brokenness of core rock. Irregular and narrow cream-grey weakly calcareous stringers infilling spaces between clasts.	

Taseko Mines Limited	GE
Aley Project	

GEOLOGY LOG

Log by


Crystal Chung

Page 8 of 11

Rock	Z o	H			ALT	ERATION		MIN	ERALIZATION	STRUCTURE				
Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
101.3 107.1 gxCDz S por core rock recovery (~65%). ottled light and medium buff-brown, fine grained blomite carbonatite. Moderate brecciated texture with ibangular-angular clasts of lighter buff material and infi a slightly darker colour. ault zone/strong decalcification(?). Slightly hard and		ure with I and infill	amphibolite calcite dolomite silica		Variable composition.	nb	0.2	Noted in more intact core: fine- medium sized (<0.1-0.4cm), subhedral-euhedral red-brown and dark black-brown aggregates. Occasionally forming irregular and discontinuous bands	laminations veining	m s	50	Weak-moderate laminations noted more intact core; defined by tightl spaced narrow stringers. Difficult to determine vein density/orientation due to brokenne of core rock. No dominant		
core rock with ~30% intact core. Remainder of comprised of fine-medium rubble and shattered ts. Moderate decalcification textures noted core surface and break down of core into sandy	nder of nattered oted				ma py		inegatai and discontinuous bands.				orientation. Irregular calcareous stringers present, infilling brecciate zones.			
AMXy		S		amphibolite			nb			laminations	S	65	Moderate-strongly banded interval	
e and car	bonatit	e unit.		calcite	10	Light and medium grey narrowly banded calcite	ma pv		Possible rare-trace finely			60	defined mostly by discontinuous wisps of buff-brown dolomite.	
(up to 0.3 of buff-bro ghtly bloc	3cm) gi own do cky core	rey calci lomite. e rock w	te and ith	dolomite	5	occurs in locallized zones. Occurs mainly has medium buff-brown wisps and bands	PJ		disseminated pyrite grains but also possibly fine pale yellow	veining	W	60	Low-moderate vein density; mainl narrow white calcareous veinlets (<0.5cm wide) noted.	
ntacts ap	pear to	be	ne axis.	silica		(up to 1cm wide).								
ck-brown	mica s	pecks.												
fCCCD		М		amphibolite			nb	0.1	Fine-medium disseminated grains	laminations				
bonatite.	This in nd is ge	iterval ap	opears to	calcite	30	Patchy zones of light blue- grey calcite; often appearing to be weakly brecciated.			throughout matrix, generally noted in more dolomitic sections.	veining	m		Moderate vein density with no dominant orientation noted. Mostl irregular and slightly diffused grey	
rock; po:	ssible f	ault zon	e or	dolomite		Slightly variable composition and almost appears to be an	ma py		Possble rare-trace amounts of				white to cream-white calcareous veinlets (up to 0.5cm wide).	
nainder b	eing co	omprised	d of fine-			alteration product based on contact relationships.			finely disseminated pyrite grains noted.					
				silica										
				amphibolite	25	Dark green-grey, fine grained matrix. Moderately calcareous.	nb	0.2	Small-medium subangular- angular red-brown aggregates (up to 0.4cm across). Minor amounts	laminations	m	40	Moderately laminated matrix; defined by banded carbonatite and slight alignment of matrix grains	
-brown ca	alcite-de distinct	ominate but irreg	d mixed	calcite dolomite	10	Often occurs as buff-brown,	ma	0.05	of non-magnetitc silver-black grains also noted. Trace amounts of finely	veining	W	40	Diffcult to determine vein density due to moderate-strong banding o matrix. Appears to mainly be greater	
	Code gxCDz (~65%). m buff-br doderate sts of ligh ur. cification 30% intach e-mediur ecalcification 30% intach e-mediur ecalcification 30% intach e-mediur ecalcification and buff-br ghtly block ted at ~5 intacts ap urrounding ck-brown fCCCD erval of ligh bonatite. ininated ar Calcitic e rock; po- alcification nainder b tered rock	Code n e gxCDz / (~65%). m buff-brown, fin Aoderate breccia sts of lighter buff- ur. cification(?). Sli 30% intact core. he-medium rubb ecalcification tex break down of a AMXy e grained (<0.1cr e and carbonatii trix material with (up to 0.3cm) g of buff-brown do ghtly blocky con- ted at ~50 degreen- ntacts appear to rrounding wall re- ck-brown mica s fCCCD erval of light blue bonatite. This in ninated and is ge Calcitic zones a e rock; possible f alcification. ~35 nainder being co tered rock.	Nock o C Code n e C SxCDz S (~65%). m buff-brown, fine graine Moderate brecciated texts sts of lighter buff materia ur. cification(?). Slightly ha 30% intact core. Remain aur. cification (?). Slightly ha 30% intact core. Remain aur. cification (?). Slightly ha 30% intact core. Remain above intacts aureendium rubble and slightly core intact atk down of core intact Atk e AMXy S grained (<0.1 cm), dark e	Nock o C Code n c gxCDz S y (~65%). m buff-brown, fine grained Moderate brecciated texture with sts of lighter buff material and infill ur. cification(?). Slightly hard and 30% intact core. Remainder of ne-medium rubble and shattered ecalcification textures noted abreak down of core into sandy AMXy AMXy S e grained (<0.1cm), dark grey-	NOCK Code0 n eC LTypegxCDzSamphibolite calcitegxCDzSamphibolite calcite(~65%). m buff-brown, fine grained Moderate brecciated texture with sts of lighter buff material and infill ur. cification(?). Slightly hard and 30% intact core. Remainder of ne-medium rubble and shattered ecalcification textures noted d break down of core into sandyamphibolite calciteAMXySamphibolite calcitee grained (<0.1cm), dark grey- e and carbonatite unit. trix material with patchy zones of (up to 0.3cm) grey calcite and of buff-brown dolomite. ghtly blocky core rock with ted at ~50 degrees to core axis. ntacts appear to be urrounding wall rock; noamphibolite calcitefCCCDMamphibolite calcitic zones are weakly e rock; possible fault zone or alcification. ~35% of interval is nainder being comprised of fine- tered rock.amphibolite calcitetAMXySsilicatAMXySamphibolite calcitetaMXySsilica	Nock Code o C L Type % gxCDz S amphibolite calcite dolomite silica / (~65%). m buff-brown, fine grained amphibolite calcite dolomite silica / (~65%). m buff-brown, fine grained amphibolite calcite dolomite silica / (~65%). m buff-brown, fine grained amphibolite calcite dolomite silica / (~65%). soft ighter buff material and infilitur. amphibolite calcite dolomite silica / (~65%). soft ighter buff material and infilitur. amphibolite calcite ilica silica AMXy S amphibolite calcite 10 silica dolomite 5 egrained (<0.1cm), dark grey-	Duck Code o C Type Comments gxCDz S amphibolite calcite dolomite Variable composition. gxCDz S amphibolite calcite dolomite Variable composition. dofearte breactiant extures with asts of lighter buff material and infill ur. amphibolite calcite dolomite Variable composition. addication (?). Slightly hard and 30% intact core. Remainder of break down of core into sandy amphibolite calcite 10 Light and medium grey narrowly banded calcite occurs in locallized zones. AMXy S amphibolite calcite 10 Light and medium grey narrowly banded calcite occurs in locallized zones. dolomite 5 Occurs mainly has medium buff-brown wisps and bands (up to 1cm wide). silica dolomite 5 Occurs mainly has medium buff-brown wisps and bands (up to 1cm wide). silica rval of light blue-grey calcite and bonatite. This interval appears to be inated and is generally amphibolite calcite 30 Patchy zones of light blue-grey calcite. calcitic zones are weakly rock-brown mica specks. amphibolite silica silica silica IMXY S silica	Nuck 0 C L Type % Comments Type gxCDz S amphibolite calcite dolomite Variable composition. nb gxCDz S amphibolite calcite dolomite Variable composition. nb gxChr Sightly hard and 30% intact core. Remainder of the medium rubble and shattreed calcite amphibolite variable composition. ma AMXy S amphibolite calcite 10 Light and medium grey narrowly banded calcite occurs in locallized zones. nb of buff-brown dolomite. mathibolite calcite 10 Light and medium grey narrowly banded calcite occurs in locallized zones. nb of buff-brown dolomite. maphibolite calcite 10 Light and medium grey narrowly banded calcite occurs in locallized zones. nb ricets appear to be calcite 30 Patchy zones of light blue-grey calcite and born tracts appears to intact appears to intact appears to intact appears to intact appears to ba amphibolite rock-brown mica specks. amphibolite calcite 30 Patchy zones of light blue-grey calcite. ma rock: possible fault zone or aladification. ~35% of interval is mainder	Nock 0 C L Type % Comments Type % gxCDz S amphibolite calcite dolomite variable composition. nb 0.2 gxCDz S amphibolite calcite dolomite Variable composition. nb 0.2 gxCDz S amphibolite calcite dolomite Variable composition. nb 0.2 gxChz S amphibolite variable composition. nb 0.2 gxChz S amphibolite variable composition. nb 0.2 gxChz S amphibolite variable composition. na py AMXy S amphibolite calcite 10 Light and medium grey narrowly banded calcite na obuff-brown domine. calcite 10 Light and medium grey narrowly banded calcite na obuff-brown domine. silica amphibolite occurs mainly has medium py calcite and so degrees to core axis. amphibolite Silica na na calcite and si generally calci	Nuclear one C image: SCD2 S image: SCD2 S (-65%). amphibolite image: SCD2 S image: SCD2 S (-65%). amphibolite image: SCD2 S image: SCD2 Amphibolite calcite 10 Light and medium grey image: SCD2 M image: SCD2 S image: SCD2 S image: SCD2 M image: SCD2 M image: SCD2 M image: SCD2 M ipy Possible rare-trace	Number Comments Type % Comments Type % Comments Type gradiest per prediction (no grained dolomite amphibolite calcite amphibolite dolomite amphibolite variable composition. nb 0.2 Noted in more intact core: fine medium sized (<0.10.4cm), subledfal-eubedral red-brown and dark black-brown aggregates. Occasionally forming irregular and discontinuous bands. Iaminations MXX y S amphibolite calcite Variable composition. nb 0.2 Noted in more intact core: fine dolomite Variable composition. silica amphibolite calcite to Tight and medium grey narrowly bunded calcite occurs in localityed zones. nb naminations total break down of core into sandy of buf-brown domine. ght/bubboty core core with test as appear to be mrounding wall rock, no - talets appear to be mrounding wall rock, no - calcite amphibolite calcite nb nb nt nt Iaminations veining veining trock-brown mice speeks. amphibolite calcite amphibolite soccurs mainh bas medium buff-brown wigos and bands (up to 1cm wide). nb n.1 Fine-medium disseminated grains (up to 0.2cm arcos) scattered througbout matrix, generally noted in more dolomite sections. maindare breing comprised of fine- sect cock. nb	Nuck n C Image: Constraint of the second	Nuck no. no. C no. Type % Comments Type % Comments	

(Tasek A	o Min ley Pro			ed	GEO	DLO	GY LOG		(Crystal Chung Da	Hole ID 2007-001 Page 9 of 11			
INTERVAL(m)			H C			ALT	ERATION		ΜΙΝ	ERALIZATION	STRUCTURE			
From To	Code	n	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Moderately hard and oreferred breakage o axis. ~0.6% fine-medium s yellow mica flakes (b	pecks of blac	45 degre	es to co	e	silica	2	fined grained bands (up to ~0.6cm wide). Occasionally occurs as weak brown washes, overprinting matrix (alteration?). Calcitic sections are weak- moderately silicified.	ру		disseminated silver-black specks, occasionally forming narrow stringers. Possible rare-trace amounts of finely disseminated pyrite; however possibly micas.				and buff calcareous veinlets (up to 0.6cm wide).
117.3 119.6 Light-medium, mediu carbonatite with mino ouff-brown dolomite. silicified and brecciat slight darker grey cal Hard but broken core dominant fracturing o	r amounts of Matrix appea ed with lighter site and mino rock; ~58% i	1-0.3cm) fine grain the grain the grain the grain the grain the gr	ned (<0.1 weakly d clasts a ic infill.	,	amphibolite calcite dolomite	10	Dolomite generally occurs as very diffused bands (up to ~0.5cm wide). One section of strong buff-brown overprinting.	nb ma py	0.3	Finely disseminated to medium sized angular aggregates present (<0.1-0.4cm across). Mostly red- brown with minor amounts having silver-black colouring. Possible rare amounts of finely disseminated pyrite.	laminations veining	w m	40	Only noted in strongly dolomite flooded section. No dominant orientation. Mainly irregular and diffused buff-brown bands.
					silica	5	Weak-moderately silicified matrix.	 		• •				
119.6 122.5 Moderately brecciate comprised of pale blu silicified calcite with brown dolomite. Slightly hard and bloo orientation. Weak de core surfaces with sa ~0.5% fine-medium r yellow).	e-grey, mediu hfilling matrix ky core rock, calcification t ndy texture).	rbonatite um graine of fine-gr no prefe extures r	ed, weak rained, b erred brea noted (pit	y Iff- kage ed	amphibolite calcite dolomite silica	15	Pale blue-grey, weakly silicified calcite bearing clasts (up to ~1.5cm across). Slightly variable composition as evidenced by minor colour variations within a generally buff-brown matrix.	m .c	0.3	Fine-medium sized, subangular- angular aggregates (<0.1-0.3cm across). Mostly red-brown in colour. Possible rare amounts of finely disseminated pyrite grains (likely pale yellow mica specks).	laminations veining	vw s	50	Very weak alignment of matrix grains noted. No dominant orientation. Irregular and diffused buff-brown bands commonly seen throughout matrix.
122.5 125.6	ICC		S		amphibolite	1	Dark green, non-magnetitic	nb			laminations	m	35	Moderate-strongly laminated unit;
Moderately laminated medium grained calc prown dolomite conte Fairly hard and slight fracturing at ~60 deg decalcified matrix (pit ~0.2% fine-medium r	and speckle te carbonatite nt. y blocky core ees to core a ted textures r	d, grey-w e. Minor- e rock; pre ixis. Wea noted).	white fine- moderat eferred ak-mode		calcite dolomite	15	blebs noted scattered in matrix; possibly chlorite(?). Generally occurs as slightly diffused and wispy bands (up to ~2cm wide).	ma py	2.5	Medium sized subangular-angular silver-black aggregates of magnetite (up to 0.5cm across). Occasionally forming discontinuous stringers.	veining	m	30	defined by alignment of matrix grains/mineralization and by wispy buff-brown dolomitic bands. Diffcult to determine vein density; veining structures tend to follow lamination planes.
08-Aug-08		_itho_FullLo			silica	2	Weakly silicified matrix (grey quartz).							

Taseko Mines Limited
Aley Project

Log by

Crystal Chung

Page 10 of 11

INTERVAL(m)	Rock	Z O	Н			ALT	ERATION		MIN	ERALIZATION		5	STR	UCTURE
From To	Code	n e	C L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
125.6 130.3 Weakly brecciated, r blue-grey mixed carb grey calcite and pale matrix. Moderately hard and minor fracturing, pref core axis. Weakly do	onatite. Fa brown dolo fairly comp errably orig	airly eq omite. Detent o	ual amou Weakly s core rock at ~50 d	nts of ilicified with egrees to	amphibolite calcite dolomite		Slightly variable composition. Occurs mostly as weak irregular washes and bands (almost appears to have an alteration texture).	nb ma	0.3	Fine-medium size, subangular- angular aggregates (<0.1-0.4cm across). Ocasionally forming irregular bands (up to 1cm wide). Mostly noted in zones of higher dolomite content.	laminations veining	W S	55	Localized weak laminations; define by weak alignment of matrix grains No dominant orientation. Diffused buff-brown veinlets, infilling open spaces between clasts in brecciated zones.
comprised of shatter	ed and rub	ble.			silica	2	Weakly silicified matrix.	ру						
130.3 133.2 Weakly laminated, lig grained (<0.1-0.3cm) weakly silicified and precciated (cross-cut narrow rusty-brown s Moderately hard and of interval comprised	calcite cal appears to and slight tringers. slightly co of broken	bonati be ver ly offse mpeter and rul	te. Matrix y weakly t by abur nt core roo oble core	∷is very dant k. ~30% Break	amphibolite calcite dolomite	20	Generally occurs as diffused stringers/bands. Occasionally medium buff-brown colour appears to overprint matrix	nb ma	0.2	Minor amounts of angular red- brown grains (<0.1-0.4cm across) scattered throughout matrix. Some non-magnetitic silver-black grains also noted. Rare-trace disseminated magnetite present in matrix.	laminations veining	w m	55	Weak-moderate laminations; define by weak alignment of matrix grains No dominant orientation. Appears t be mostly diffused and irregular buf coloured stringers and bands (up to ~1cm wide).
urfaces tend to be r	noderate-s	trongly	calcareo	us.	silica	2	(alteration product?). Weakly silicified matrix (grey quartz).	ру						
133.2 136.5 Similar to unit uphole Light-mediu blue-gre carbonatite with mino Matrix is weak-mode very weakly brecciate with diffused buff vei nave weak pitted tex	y, fine-mec or buff-brow rately silicit ed (diffused nlets infill).	lium gr vn dolo ïed and d blue-g	ained cal mite cont d appears grey calci	ent. to be e clasts	amphibolite calcite dolomite	0.2	Subangular-angular dark green clots noted in matrix; possibly chlorite(?). Slightly variable composition. Generally	nb	0.1	Fine-medium subangular-angular disseminations (<0.1-0.3cm across). Mostly red-brown in colour with some a dark green black (possible fersmite?). Some grains cluster together and form rare stringers (most seen in	laminations veining			
Noderately hard and racturing at ~50 deg proken fragments.	blocky cor				silica	10	occurs as diffused and irregular bands and washes throughout matrix. Moderately silicified matrix, appearing to weakly overprint	ma py	0.01	dolomitic sections). Rare-trace finely disseminated magnetite.				
							original textures with a weak sucrosic texture.							
136.5 140.9 Nottled light and mea calcite carbonatite. I nainly as irregular w	Ninor-mode	erate d	olomite c	ontent,	amphibolite	0.3	Fine-medium grained dark green-black angular specks (up to 0.3cm across). Possible chlorite or niobate(?).	nb	0.1	Trace-minor amounts of disseminated niobate mineralization. Fine-medium grained, occasional euhedral	laminations	VW		Very faint possible laminations planes noted in localized zones. Appears to be at low angles (~10-20 degrees) to core axis.

Taseko Mines Limited Aley Project	GEOLOGY LOG
---	-------------

Crystal Chung

Page 11 of 11

INTERVAL (n	·	Rock	Z o	нс			ALT	ERATION		MIN	ERALIZATION		ę	STR	UCTURE
From To		Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
stringers (<0.1cm weakly brecciated a silicified matrix. Blocky and shattern orientation noted. being comprised of appear to have bro	appea ed cor ~50% f shatt	arance). re rock, 5 of intac tered roo	Weak no pref t core v ck (mos	moderater erred fra with rem	tely acturing ainder ents	calcite dolomite silica	15 10	Generally occurs as weakly decalcified and diffused buff- brown coloured bands. Weak-moderately silicified matrix. Localized weak sucrosic textures noted.	ma py		aggretate noted (up to 0.2cm across). Generally red-brown colouring.	veining	m		No dominant veining orientation and diffcult to determine vein denisty due to brokenness of core rock. Mostly narrow and diffused buff coloured calcareous stringers with some discontinuous/diffused mineralized bands (up to ~1cm wide).
140.9 145.2 Mottled light blue-g calcite-dominated r dolomite appear to colouring. Weakly Broken and shatter process. Breaks a (~10-30 degrees) to	rey ar mixed weak silicifi red co ppear	l carbona kly overp ied matr ore rock, r to be de	atite. F rint orig ix. likely c ominan	Pink-buff ginal ma lue to dr tly at lov	coloured trix illing v angles	amphibolite calcite dolomite silica	5	Weak-moderately silicified matrix.	nb ma py	1.5	Fine-large, irregularly shaped red- brown aggregates scattered throughout matrix (<0.1-0.8cm across long axis). Occasionally forming slightly discontinuous bands (up to ~1cm wide).	laminations	W	10	Diffult to determine lamination due to brokenness of core rock, but appears to have localized zones showing weak laminations at ~10 degrees to core axis. Diffcult to determin vein density/orientation due to brokenness of core rock. Matrix appears to be cross-cut by abundant narrow decalcified stringers.
145.2 152.4 Fair core rock reco Very shattered and process. Slightly mottled ligh grained (up to 0.3c is weak-moderately (pitted textures not Shattered and bloc mostly orientated a axis. Does not app textures noted. EOH @ 152.40m.	very (I broke m acro y silicit ed on ky cor t low a	en core; d mediun ross) cal ified and n more in ore rock; angles (possib n blue- cite cal slightly tact co fracturi ~10-30	grey, fin bonatite y decalc re). ng appe degree	e-medium . Matrix fied ars to be s) to core	amphibolite calcite dolomite silica	20 7	Buff coloured dolomite tends to occur as diffused bands and washes. Also noted on fracture surfaces. One minor zones noted to be mixed carbonatite with pink-buff coloured dolomite. Matrix is moderatel flooded by grey silica, slightly overprinting original textures.	nb ma py	0.3	Diffcult to determine niobate mineralization due to brokenness of core rock. From more intact sections, fine-medium sized red- brown aggregates are noted (<0.1- 0.4cm across) scattered through matrix. Occasional clusters form irregular and discontinuous stringers. Rare-trace amounts of finely disseminated silver-black magnetite, generally noted in the upper portion of the interval.	laminations	w		Possibly very weakly orientated at ~40 degrees to core axis. Diffcult to determine due to brokenness of core rock. Difficult to determine vein density/orientation. Core appears to be cross-cut by abundant narrow buff coloured stringers and veinlets (<1cm wide).

Log by

Hole ID 2007-002

Page 1 of 6

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
СС	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION												
Coordinate System Easting Northing Elevation												
UTM	453825.00	6257144.00	1792.00									
Collar Azimuth	Collar Dip	Planned Depth	Final Depth									
	-90.00		152.40									
Overburden (m)	Casing (m)	Tricone (m)										
	0.00											
•	Down hole	Sumuer Data										
	Down-noie	Survey Data										
Depth (m)	Azimuth	Inclination	Method									

	Drilling	Data										
Bit Size	From	То	Length									
NQ2	0.00	152.40	152.40									
	Professional/Tec	hnician Data										
Person Start Date End Date												
Collar Survey												
Drill Contractor	Full Force Drilling											
Geology By	JO											
Geotechnical Log	DB											
Specific Gravity	JO											
Casing	Cemented	Plugged	Rehab. Pad									
in / out	yes / no	yes / no	yes / no									
	Comme	ents										
Hole lost at 42.67n	n (140'), reamed and red (150'		n of core at 45.72									

Tase	co Mi	ne	s l in	nited	GEO		GY LOG			Jim Oliver Da	ate 13-Se	p-07		Hole ID 2007-002
	ley Pr						GILOG							Page 2 of 6
N T E R V A L (m		Z o	H			ALT	ERATION		MINE	RALIZATION			STR	UCTURE
From To	- Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.0 3.0	CASE				amphibolite			nb			laminations			
asing.					calcite			ma			veining			
					dolomite			ру						
					silica									
3.0 17.8	OVBN				amphibolite			nb			laminations			
ored Talus.					calcite			ma			veining			
					dolomite			ру						
					silica									
17.8 19.1	dlCD		S		amphibolite			nb	0.35	Niobates estimates at moderate to	laminations	w	22	Sporadic weak compositional bar
enerally tan to bro	own strongly o	dolomi	tic carbo	onatites	calcite					low levels, 0.35% across the	veining			
rming greater thar atrix grains. Blue	grey calcitic d	lolomit	es < 25%	%, of the	dolomite	50	Deep brown black Fe-Mn(?)	ma		inteval.				
terval. Weak com	positional laye	ers, we	eak S fat	orics.	J		dolomites. Minor mm to cm	ру						
					silica		scale calcitic veins.	PJ						
19.1 21.1	dCC		W		amphibolite			nb	0.25	Niobates are noted as very fine	laminations	W	20	very weak compositional layers
blue grey fine gra		arbona		ns the	calcite	5	Weak iron carbonate veinlets.	110	0.25	disseminations < 0.25 mm and are		vv	20	very weak compositional layers
iterval. This unit is on carbonate veinl	cut by irregul	ar hair	line to m	ım size	dolomite	5	weak non carbonate vennets.			present at low, 0.25% levels.	venning			
re likely apatite, at				grains	silica			ma						
					l			ру						
21.1 25.7	dfCD		S		amphibolite			nb	2	Rare compositional layers of	laminations	m	30	
eavy development In dolomitic. Fine g	grained 1-3 m	m dolc	omite ma	atrix	calcite					oxidized niobates. Black - red	veining			
ystals. Blocky frac ructural zones. De	ctured core, b	ut no s texture	ignificar s are we	nt eak.	dolomite	60	Heavy Fe-Mn (?) dolomitic carbonatites.			niobates are more common as				
					silica		caroonanies.			disseminations and aggregates. Aggregates may approach 0.5x1.5				
					<u>I</u>					cm.				
								ma						
								ру						
25.7 27.7	dCCCD		W		amphibolite			nb	1.25	Oxide phase are red black and	laminations	W	48	
regular washes of arbonates form 40					calcite					non-magnetic and are present as fine grained disseminations, < 1	veining			
08-Aug-08			ullLog:Rep					Responsible						

Taseko Mines Limited	GEOL	.OGY LO	Log by			Jim Oliver Da	ate 13-Se	p-07	Ho	e ID 2007-002
Aley Project										Page 3 of
ITERVAL(m) Rock o C Code n C	А	LTERATION	N		MINE	RALIZATION			STRUC	CTURE
rom To e L	Туре	% Cor	mments	Туре	%	Comments	Туре	Intens	CA	Comments
mm. Mottled tan to buff dolomitic carbonatites nprise approximately 60% of the interval. Strong HCL ponses are noted in tan to brown carbonatites, but L reactivity is generally weak in cream colored bonatites. Altered amphiboles, soft grey black	dolomite silica			ma py		mm across the long axis.				
gregates, locally flank red-brown oxides.	· · · · · 1. 11 · · 114 ·			1.	0.5	N' 1	1		40	
27.7 31.1 dCC W nassive, homogeneous grey cream calcitic carbonatite ms the interval. The rock matrix contains an	amphibolite calcite			nb	0.5	Niobates are present at low 0.5% levels, occassionally formng loose banded aggregates, but more commonly as small sub-cm disseminations and aggregates.	laminations veining		49	
undance of coarser 0.75x1.5 mm calcite-apatite ains. These grains have a high reflectance and appear be unaltered.	dolomite silica			ma						
31.1 36.9 gCCCD W	amphibolite			py nb	2.25	The interval contains a	laminations	W	35	
oradic decacification textures may be noted. Dolomitic rbonatites form 75-80% of the interval. Calcitic rbonatites the remainder. Drill core has commonly led and broken along zones of elevated de- cification. Significant faults are absent.	calcite dolomite silica				significant, 2.25%, of carse graine, locally 8-10 mm aggregates of non-magnetic grd black, niobates. Cluster of these oxides are invariably enveloped by an orange buff iron carbonate reaction rim.	veining				
				ma						
260 550 1000D M	· · · · · 1. '1. · 1'4 ·			ру	0.75	From 36.9 to 42.6 Niobates	1		50	
36.9 55.9 dCCCD M e carbonatite within this interval is dominated by calcic ases. Light cream-grey, medium grained calcite gains e common. Calcic phases from > 85% of the interval. lomitic phases occupy less than 15% of the interval cur as incomplete replacements or primary "mixes" h calcic carbonatites.	amphibolite calcite dolomite silica			nb	0.75	 From 36.9 to 42.6 Niobates 0.75%, from 42.6 to 55.9 m, niobates are estimated at 1%. These minerals occur as small, < 0.5 mm disseminations and locally as coarse aggregates or clusters. All aggregates or clusters have well define iron carbonate enriched reaction rims. 	laminations veining	W	50	
				ma						
55.0 57.0 HCD W	annah iha 114			py 	2.25	A have don't our all 1.1 a 1 a 1 a	1			
55.9 57.9 dfCD W	amphibolite			nb	2.25	Abundant small black oxide grains noted with these	laminations			

Taseko Mines Limited	GEOLO
Aley Project	

Log by

Jim Oliver

Hole ID

Page **4** of **6**

INTERV	A L (m)		Z o	Н С			ALTE	RATION		ΜΙΝΕ	RALIZATION		:	STRUC	CTURE
From	То	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
arbonate e	nriched a	nd comple	tely de	-calicified	l rock.	calcite					incompetant sands.	veining			
esser more nterval. The						dolomite			ma						
exceptional	y porous i					silica			ру						
alcified roc		IFCCCD		117] 1/	2		1		20	
57.9		dfCCCD		W		amphibolite			nb	2	Compositional layers are absent,	laminations		39	
	regular patches of tan to buff dolomitic carbonatites are ominant 70%. The intensity of matrix dolomite				calcite					niobates are present as small 0.5- 1.5 mm disseminations and	veining				
levelopment increase towards the a complete de-		de-	dolomite					occassionally as cm scale layer							
	alcification zone at 55.9-57.9. Minor, < 30 cm, zones of pmplete declacification are noted across this interval			silica					aggregates.						
ind blocky b						511100			ma						
grain size in									nv						
74.0	00 7	1.100		117					py	2		1		(0	
74.8	82.5	blCD		W		amphibolite			nb	3	Locally well defined bands of oxide minerals are noted. These	laminations		60	
The onset o characterize						calcite	5	minor microfractures and			may contain cm scale aggregates	veining			
predominan								veinlets			of niobates.	P			
Relative to u						dolomite			ma		of modules.				
mproved. D he rock ma						silica									
but the relat									ру						
82.5	106.5	blCCCD)	W		amphibolite			nb	1.25	Magnetite remains absent from	laminations	m	50	
Relative to t	he precee	eding inter	val, the	e percenta	age of	calcite					the sequence. Niobates are	veining			
ream to ve	ry light tar	n dolomite	horizo	ns has in	creased						present as fine to coarse grained	vennig			
and the perc lecreases.	centage of De-calcific	t well form	ied con ures ar	npositiona re again w	al lamella veak. The	dolomite					disseminations and as foliation				
nterval also	contains	what appe	ears to	be a peg		silica					parallel aggregates.				
arbonatite	phase bet	ween 86.4	4 and 8	7.0 m.					ma						
									ру						
106.5	112.9	dCD		W		amphibolite			nb	1	As uniform disseminations.	laminations	m	42	
The interval						calcite			ma	1	The interval is characterized by	veining			
uhedral ch	loritized a	mphibole a	aggreg	ates. The	e grain ficantly	dolomite					the first appearance of euhedral	-			
ncreased. D	Dolomite g	grains are o	commo	only in the	e noted at						magnetite. Magnetite is noted as				
he 0.5x1.5c						silica					well formed coarse grained				
eakly defir			npositio	onal layer	SIS						crystals, locally to 1.0 cm.				
		-				·			ру						
112.9	119.0	dCD		М		amphibolite			nb	1.25	all oxide phases are noted as	laminations	W	40	
Previously n	noted coar	se grained	d carbo	natites w	rith						relatively uniform disseminations.				
08-Aug	J-08		repLitho_	_FullLog:Rep	port				Responsible N Mineral Development						

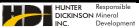
	GYLOG ERATION Comments	Type ma	MINE %	RALIZATION			STRUC	Page 5 of
_							STRUC	TURE
%	Comments		%	_				
		ma		Comments	Туре	Intens	CA	Comments
		ma			veining			
		ру						
2		nb	0.75		laminations	W	45	
		ma	0.1		veining			
		ру						
e		nb	0.15	random clots and disseminations	laminations			
		ma			veining			
		ру						
		<u> </u>						
e		nb	0.2			m	39	
				magnetite grains.	veining			
		ma	1.25					
		ру						
e		nb	0.1	Niobate minerals are rare and	laminations	m	34	
					veining			
				accompanied by an increase in				
ng silica			2	magnetite.				
		ma	3					
	e e e	e e e	e nb ma py e nb ma py e nb ma py e nb	e nb 0.15 ma py	e nb 0.1 random clots and disseminations ma py e nb 0.2 Niobates are present at very low levels, usually assoicated with magnetite grains. ma 1.25 py e nb 0.1 Niobate minerals are rare and have significantly decreased to under 0.2% in abundance. This is accompanied by an increase in magnetite. ma 3	ma 0.1 veining py	ma 0.1 veining py	ma 0.1 veining py nb 0.15 random clots and disseminations e nb 0.15 random clots and disseminations py py e nb 0.2 Niobates are present at very low levels, usually associated with magnetite grains. ma 1.25 e nb 0.1 Niobate minerals are rare and have significantly decreased to under 0.2% in abundance. This is accompanied by an increase in magnetite.

Fi		o Mi ley P			nited	GEO	DLOG	Y LOG	Log by			Jim Oliver	Date	13-Se	əp-07		Hole ID	2007-002 Page 6 of 6
INTER	V A L (m)		Z o	Н С			ALTER	ATION			MINE	ERALIZATION			:	STR	UCTUR	E
From	То	Code	n e	L		Туре	%	Comments	5	Туре	%	Comments	Т	уре	Intens	CA		Comments
interval, wi between 14										ру		pyrrhotite is identifed at lov 0.75% levels	N,					

Hole ID 2007-003

Page 1 of 8

Code	Mineralization Style							
nb	niobates							
ma	magnetite							
ру	pyrite							
рс	pyrochlore							
fs	fersimite							
cb	columbite							
Code	Fabric							
х	brecciated							
I.	laminated							
f	decalcified							
v	veined							
Code	Structure							
z	fault							
е	strained							
s	shear zone							
У	dyke							


O a da	1 Marshammer
Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION													
Coordinate System Easting Northing Elevation													
UTM	454284.00	6257208.00	1925.00										
Collar Azimuth	Collar Dip	Planned Depth	Final Depth										
	-90.00		97.30										
Overburden (m)	Casing (m)	Tricone (m)											
	0.00												
Down-hole Survey Data													
· · · · · · · · · · · · · · · · · · ·													
Depth (m)	Azimuth	Inclination	Method										

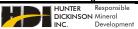
Bit Size	From	То	Length
BTW	0.00	97.30	97.30
	Professional/Te	echnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Peak Drilling		
Geology By	CC		
Geotechnical Log	DB		
Specific Gravity	CC		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Com	nents	
Not able	to advance; broken g	round. Drill under-	oowered.

Taseko Mines Limite Aley Project	d GEC	OLO	GY LOG		C	Crystal Chung Da	ate 18-Se	p-07		Hole ID 2007-003 Page 2 of 8		
NTERVAL(m) Rock o		ALT	ERATION		ΜΙΝΙ	ERALIZATION	STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
0.0 13.7 CASE	amphibolite			nb			laminations					
asing; no core recovery.	calcite			ma			veining					
	dolomite			ру								
	silica											
13.7 14.9 gfCC S	amphibolite			nb	0.2	Fine-medium grained aggregates	laminations					
oderately oxidized, light-medium brown, fine-medium	calcite					(0.1-0.2cm).	veining	m		Core rock is cross-cut by network		
rained (<0.3cm) calcitic carbonatite. Moderate-strong vaction to HCI. Weak-moderate locallized	dolomite	5	Minor section of less HCl	ma						cream-white calcite stringer/veinl (<1cm wide). No dominant		
ecalcification textures noted. airly competant core rock with no preferred breakage			reactive core rock at the beginning of the interval,	ру						orientation.		
ientation.			slightly pink-buff in colour.									
	silica	0.5	Matrix appears to be weakly									
			silicified.]	0.1				60			
14.9 16.8 dlCD W	amphibolite	0.2	Dark black-green, fine disseminations in diffused	nb	0.1	Red-brown, fine-medium disseminations in diffused	laminations	VW	60	Defined by narrow brown-buff laminations (up to 0.3cm wide)		
ght blue-grey, very weakly calcarious rockmass with ispy washes of pale brown-buff. Iron stained dolomit	9		bands, often occuring with			banding (up to ~1cm wide),	veining	w	80	Diffused mineralized bands, up		
arbonatite with minor calcite content(?). Fine grained and weakly silicified matrix (<0.1-0.2cm).			red-brown niobate mineralization.		0.05	following weak lamination planes.				~1cm wide)		
locky core rock with ~50% of the interval fractured ar ngular rubble.	d calcite	3	Irregular washes of pale	ma	0.05	Rare-trace silver-black specks noted, possibly magnetite.						
		U	brown-buff (however appears	ру		, r,8						
	1.1 .		to be more reactive to HCl)									
	dolomite	1										
	silica	I	Matrix is very weakly silicified.									
16.8 20.4 gxCCC W	amphibolite	0.7	Dark black-green, fine-	nb	0.05	Trace amounts of red-brown	laminations	vw	55	Very weak orientated wisps of		
D	"		medium subhedral to euhedral			aggregates, but possibly mostly				brown-buff.		
/eakly brecciated texture with a fine grained brown-bu roundmass (<0.2cm) and medium-coarse grained (up for the state of the state o			grains noted scattered throughout the matrix.	ma		hematite.	veining					
4cm) light blue-grey fragments. Fragments are ubangular to angular in shape and up to 1cm across.	calcite											
airly competant core rock with minor fracturing and n eferred orientation. ~50cm section of shattered core		30	Buff coloured irregular	ру								
ick.			washes of weakly HCl									
	silica		reactive rockmass.									
	Sinca]								

Taseko Mines Limited	C
Aley Project	

Log by

Crystal Chung


Page **3** of **8**

INTERVAL(m)	Rock	Z o	н С			ALT	ERATION		MIN	ERALIZATION		S	STR	UCTURE
From To	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
20.4 20.7 Moderately iron stair strong reaction with (0.1-0.3cm). Somewhat blockly co comprised of rubble No preferred breaka	HCI. Fine-I ore rock wit and decalc	mediur h ~609 ified "s	n grainec % of inter	l matrix val	amphibolite calcite dolomite silica	3	Calcite forms grey-white veinlets throughout the interval.	nb ma py	1	Red-brown fine-medium euhedral aggreates (<0.3cm across) occurs in discontinuous bands, orientated at ~55 degrees to core axis.	laminations veining	m	60	Narrow grey-white calcite veinlet (<0.4cm wide). Minor brecciated texture.
20.7 27.6 Similar to unit uphole Veak-moderately br c0.2cm) brown-buff roundmass. Browr in alteration wash (i lenerally medium-cc veakly reactive to H fairly competant co rientation.	ecciated te moderately h-buff colou ron staining parse graine Cl (possibly	xture v HCl re ring ap g?). Ar ed (up v weak	eactive opears to ngular cla to 0.5cm ly silicifie	almost be sts are) and d).	amphibolite calcite dolomite silica	0.5	Dark black-green, fine disseminations noted scattered throughout the matrix, possibly chlorite/amphibole. Weakly silicifed white calcite veinlets.	nb ma py	1.5	Niobates occurs as fine-medium sized subhedral to euhedral aggregates (up to 0.3cm across), mostly occurring in diffused bands <0.5cm in width. <0.7% pyrochlore, appears to be mostly fersmite(?).	laminations veining	m	40	~30-50 degrees to core axis. Grey white weakly silicified calcitic veinlets (<1cm wide).
27.6 31.7 Yery weakly laminate bockmass, crosscut eins, (silica?) cuttin olour and hardness s dolomite carbona ICI, it should be def fairly competant con- rientation.	by large wh g nearly su , the ground tite, howeve ined as cal	iite wea b-para dmass er, bas cite ca	akly calca llel to cor could be ed on rea rbonatite	arious e axis. By defined action with	amphibolite calcite dolomite silica	0.5	Dark black-green, fine- medium subhedral to euhedral grains (<0.3cm) scattered throughout matrix. Weakly silicified rockmass, generally in the white veining.	ma py	1	Fine-medium angular aggregates (<0.1-0.4cm) scattered throughout matrix. Dominantly appears to be fermsite or columbite.	laminations veining	vw s	45	Very weakly laminated, defined b wisps of white and brown-buff. Interval cross-cut by large white ve (~1.5cm wide) running sub-paralle to core axis. Other narrow white veinlets also present, no preferred orientation.
31.7 35.7 Weakly silicified, mo noderate reaction w carbonatite with min ine grained (<0.1cm slighly coarser grain- Fairly competant cor ock. Two dominant o subparallel to core	ith HCl. Po or dolomitic) while grey ed (<0.4cm e rock with fracture or	im buff ossibly conte y-white). minor	iron stair nt. Brow sections zones of	ned calcite n matrix is are shattered	amphibolite calcite dolomite silica	30 5	Weakly silicified matrix.	nb ma py	1.5	Fine-medium subhedral to euhedral aggregates, up to ~0.5cm across long axis. Mostly green-black aggregates with some having brown colouring (dominantly not pyrochlore). Tends to occur in discontinuous "bands" (up to ~1cm wide).	laminations veining	vw m	55 30	Hard, cream-white veining, rangin from 0.1-0.5cm wide.

railed and doining carbonalie unit with more dominant in stand carbonalie (275%), Mark in shury expansion in shury expansion in shury expansion in shury expansion in concords with infrareality shurped ender grantentiation at -56 signess to core sub- ender grantentiation. nm Niobate mineralization occurs in this interval mostly as medium sized aggregates (tp to 205%). Fair competant core now the finance of sub- ender grantentiation. Imministions w 35 veining w 0 ne narrow (-0.1cm wide). 41.0 43.2 gICD VW 41.0 43.2 gICD WW Weak-moderately fournation. mb Nitobate mineralization in this interval mostly as medium across). Minor amounts occurs as fine discurst. nb Imministions m 30 Moderately laminated, slightly difficult to measure due sub- sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	Aley Project									Page 4 of 8
From To Col II Type % Comments Type % Comments 33.7 38.7 4CCO W amphibolite anphibolite		AL.	TERATION		MIN	ERALIZATION		ę	STRU	UCTURE
Addite and object-bit, very weakly elicited rekronses. Wind rich and addite (~75%), Matrix is fairy squared with the medium scannet with more dominantly be ferms in. isina with the medium scannet with more dominantly be ferms in. sina with the medium scannet with more dominantly be ferms in. sina with the medium scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with the medium scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with the medium scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with the medium scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with scannet with facturing generative and ready deadelication. Matrix is always approximately along with scannet with facturing generative and ready competent deadelication. Matrix is always approximately along with scannet with facturing generative and ready competent deadelication. Matrix is always approximately and y multiplication for the scale as along ready competent deadelication. and matrix out with scannet with facturing generative and ready competent deadelication. and matrix out with scannet with facturing generative scannet with scannet wit		Type %	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
<pre>init insignation to graine (-0.2cm across). Very weakly animated, stightly mostly area to come ask. set way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with strong grained -0.2 grant way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with reacting grained -0.2 grant way weakly similar to an upper bold with reacting grant way way way with reacting grant way way way with reacting grant way way way way way way way way way way</pre>	Mottled pink-buff, very weakly silicified rockmass. Mixed calcite and dolomite carbonatite unit with more dominant	calcite		nb	0.3	increasing size to small (~0.2cm) aggregates moving downhole.				Translucent blue-cream quartz(?) veinlets (<1cm wide).
Bindlar to unit uphole al 35.86-38.71m. Monte pink buff, quijanular fine medium grained pink out, quijanular fine medium grained stady completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone completed backen down to a semisoid andy mut feature. Peters zone zone zone zone zone zone zone zone	with fine-medium grains (~0.2cm across). Very weakly oitted texture, with locallized zones (<1% of interval) of nearly complete decalcification. Matrix is abundantly speckled with small iron stained pits (<0.1cm). Fairly competant core rock with fracturing generally along	silica				Encery to dominancy be remiste.				
sandy much texture. silica pc 0.3 fis 0.5 41/1.0 43.2 gICD VW Weak-moderately laminated, weakly silicified dolomite carbonatic. Silightly breciation in this silica mb Niobate mineralization in this interval generally occurs as medium sized (~0.3cm) aggregates and lends to form diffused/fiscentinous bands, sc0.5cm wide. laminations m 30 Moderately laminated, slightly difficult to measure due to brecciation. Pale yellow-green phelgopite(?) in trace amounts, ~0.3% grains up to 0.4cm). amphibolite 0.6 n n 0.4 Fine aggregates (~0.1-0.2cm) across size (~0.1-0.2cm) schown in colour (from brown in colour (from perferred orientation. mb 0.4 Fine aggregates (~0.1-0.2cm) across) occuring in discontinuous veinlets (~0.5cm wide. laminations w Weakly laminated, defined by narrow bands (up to 0.3cm) wide() 43.2 gICD VW amphibolite 0.6 n n 0.4 Fine aggregates (~0.1-0.2cm) across) occuring in discontinuous veinlets (~0.5cm wide. laminations w Weakly laminated, defined by narrow bands (up to 0.3cm wide) 0.1 fs 0.2 n maninations w Weakly laminated, defined by narrow bands (up to 0.3cm wide) w Weakly laminated, defined by narrow bands (up to 0.3cm wide)	Similar to unit uphole at 35.66-38.71m. Mottled pink-buff, equigranular fine-medium grained (~0.2cm) rockmass. Weak-moderately decalcified with	calcite dolomite		nb		this interval mostly as medium sized aggregates (up to 0.5cm across). Minor amounts occur as			35	One narrow (~0.1cm wide) calcareous stringer runs sub-parallel to core axis along most of this unit.
Weak-moderately laminated, weakly silicified dolomite arbonatite. Slightly breciated near the lower contact of this unit. Minor localized cornes with decalcification extures: one ~20cm zone of almost complete weathering. Fairly competant core rock with fracturing mostly at ~65 degrees to core axis. calcite alcite about to silica antipiling open-space fractures, infilling open-space	Fairly competant core rock besides ~25cm section	silica		-		e				
Fairly competant core rock with fracturing mostly at ~65 degrees to core axis. silica 2 Grey-white quartz veinlets, infilling open-space fractures. space in crackle breccia. Pale yellow-green phelgopite(?) in trace amounts, ~0.3% (grains up to 0.4cm). amphibolite 0.6 pc 0.1 silica 2 Grey-white quartz veinlets, infilling open-space fractures. pc 0.1 silica space in crackle breccia. 43.2 46.2 glCD VW amphibolite 0.6 nb 0.4 Fine aggregates (~0.1-0.2cm across) occuring in discontinuous veinlets (<0.5cm wide).	Weak-moderately laminated, weakly silicified dolomite carbonatite. Slightly brecciated near the lower contact of this unit. Minor locallized zones with decalcificiation	calcite		nb		interval generally occurs as medium sized (~0.3cm) aggregates and tends to form			30	difficult to measure due to
Mottled pink-buff and blue-grey, fine-medium grained (0.1 0.2cm) dolomite carbonatite with trace calcite content. Matrix very weakly silicified. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts of fracturing, no preferred orientation. Competant core rock with minor amounts or fracturing, no preferred orientation. Competant core rock with minor amounts or fracturi	Fairly competant core rock with fracturing mostly at ~65 degrees to core axis. Pale yellow-green phelgopite(?) in trace amounts, ~0.3%	silica 2		Ĩ.		· · · · · · · · · · · · · · · · · · ·				space in crackle breccia.
dolomite py	Mottled pink-buff and blue-grey, fine-medium grained (0.1- 0.2cm) dolomite carbonatite with trace calcite content. Matrix very weakly silicified. Competant core rock with minor amounts of fracturing,	calcite 5	Zones with strong HCl reaction tend to be medium brown in colour (iron		0.4	across) occuring in discontinuous veinlets (<0.5cm wide). Mostly				narrow bands (up to 0.3cm wide) of brown-buff iron carbonate(?). Weak-moderate irregular veining, mostly appearing to run sub-parallel
	46.2 48.2 gfCD VW		Dark black-green, fine-	py nb	0.2	Fine-medium grained subhedral	laminations	VW	40	No clear bedding planes, but decalcification structures appear to

Crystal Chung

Taseko Mines Limited GEOLOGY LOG Alov Project

18-Sep-07 Date

2007-003 Hole ID

Taseko Mines Limited
Aley Project

Log by

Crystal Chung

Date 18-Sep-07

Hole ID 2007-003

Page **5** of **8**

INTER	V A L (m)		Z		H			ALT	ERATION		ΜΙΝ	ERALIZATION		S	STR	UCTURE
From	То	Code	r e				Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
bitted textu decalcifica decalcifica ollow a we Blocky and	rockmass w ure as evide ation (one ~ ation). Sma eak bedding d shattered el core axis	ence to we 5cm zone all (<0.1cm g/laminatic core rock	eak-r of c) pite on. . Ma	noderat omplete s also a iin fracti	e am ppea uring	ount of to running	calcite dolomite	2	(up to 0.2cm) form difused and discontinuous bands up to 0.5cm wide.	ma py		scattered throughout the matrix.	veining	W		be weakly orientated. Very diffused veining structures. One main (quartz?) veinlet (~1cm wide) noted running sub-parallel t core axis.
							silica	1	Infilling open-space fractures.							
Mottled gre	53.3 unit uphole ey and brov ckmass. Ap	wn-buff, fir	48.18 1e-m	3m. edium g			amphibolite	1.2	Fine-medium grained (up to 0.5cm) dark black-green specks forming diffused band (up to 1.5cm wide). Some	nb	0.4	Niobates mostly occur as aggregates in dicontinuous bands (up to 0.7cm wide). Appears to be mostly be pyrochlore with	laminations veining	w w	35 50	Weakly laminations, defined by wispys of brown-buff colouring. Carrying mineralization.
(65%) with as noted b amination Competan	n minor cald by small (<0 orientation at core rock	cite conten).1cm) pits n. , appears f	t. V , we to ha	ery wea akly foll we wea	kly d owing k silio	ecalcified) :ification	calcite dolomite	65	angular/euhedral grains.	ma		amounts of fersmite ($\sim 0.2\%$)				
	rix. Minor f		gene	erally or	ienta	ed at	silica	05		ру						
	55.0 own-buff, fi strongly de			ained (0			amphibolite calcite	0.3	Subhedral-euhedral grains up to ~0.5cm across.	nb		Generally occuring as fine- medium sized subhedral to euhedral grains scattered	laminations	vw	40	Very weak laminations, defined b diffused and wispy bands of brow buff colouring (<0.2cm wide)
vith very n Blocky cor lecalcified	-moderate minor brecc re rock with and formin	iated textu ~32% of t	ires. he ii	nterval c	comp	etely	dolomite silica			pc	0.2	throughout the matrix.	veining	W		No preferred orientations. Genera narrow white (weakly calcitic) stringers (<0.5cm wide).
rey and p ockmass.	dy laminate bink-buff, fir Appears t	ne-medium to be domi	or bi gra nant	recciatio ined (0. ly calcit	1-0.2 ic wit	cm) h minor	amphibolite	0.4	Subhedral grains of dark black-grey, sometimes occuring in discontinuous bands, mostly scattered	nb	0.2	Irregular aggregates (up to ~0.4cm across), forming discontinuous/diffused bands (up to 0.5cm wide). Dominantly dark	laminations	W	30	Weakly laminated, defined by wisp and irregular dolomitic and discontinuous mineralized bands (~0.5cm wide).
ucrosic te airly com ore rock.	petant core Preferred	e rock with	min	or zone	s of b	roken	calcite dolomite	25	throughout matrix.	ma py		black-brown, likely fersmite.	veining	w	25	Minor amounts of veining, general white, weak calcitic infilling materi for open-space fractures.
o core axi	IS.						silica	2	dolomite. Weakly silicified matrix. Some veining structures.	PJ						
	60.5 own-buff ar dolomite ca			en-grey			amphibolite	7	Appears to weakly flood the matrix, especially in the upper part of the interval. Medium-		0.1	Subhedral to euhedral aggregates (up to 0.7cm across long axis) scattered throughout the matrix.	laminations veining	vw w	35 35	Narrow white, weak-moderately

Taseko Mines Limited Aley Project	GEOLOGY LOG		Crystal Chung Da	ate 18-Se	p-07	Н	lole ID 2007-003 Page 6 of 8	
INTERVAL(m) Rock o C	ALTERATION	MIN	ERALIZATION	STRUCTURE				
From To Code n L	Type % Comments	Туре %	Comments	Туре	Intens	CA	Comments	
weakly chloritized but also silicified. Fairly competant core rock with trace amounts of fracturing at no preferred orientation.	coarse grained (up to 0.5cm) angular grains seen, forming very diffused veinlets. calcite 1 Minor veinlets (<1cm wide). dolomite	ma py					calcitic veinlets (<0.4cm wide).	
	silica							
60.564.0dfCCCDWMedium red-brown-buff, fine grained dolomitic rockmass. Patchy zones (~20%) with strong HCl reaction. Strongly	amphibolite calcite	nb 0.2	Fine-medium disseminations, increasing in size moving downhole, becoming aggregates	laminations veining	W			
decalcified unit; only ~38% of this interval is comprised of solid core rock. The remainder is nearly completely altered into a semi solid state with texture of sandy mud or shattered core with fragments all <3cm in length. Preferred breakage orientation at ~50 degrees to core axis.	dolomite silica		(<0.4cm across). Occasionally forming discontinuous and strongly diffused bands (<0.5cm wide). Appears to be mostly fersmite with minor pyrochlore.					
0.4% dark green mica forming tabular grains seen in the matrix; similar habit to niobate mineralization.		ma py	Possible rare-trace very finely disseminated pyrite.					
64.0 65.3 dfCC M Mottled grey and medium brown-buff, fine-medium grained (up to 0.2cm) calcite carbonatite. Trace-minor amounts of dolomite present, generally occuring as rregular washes of buff colouring. Moderately decalcified with weak pitted textures. Somewhat competant core rock with increasingly strong decalcification textures moving downhole (broken/shattered core rock).	amphibolite calcite dolomite silica	nb 0.08 ma py	Finely disseminated grains, following very weak laminations can be seen, forming very diffused bands (<0.3cm wide).	laminations veining	W	35	Wispy bands	
0.2% medium green phlogophite or chlorite(?) occuring as aggregates (up to 0.5cm).								
65.3 66.0 nfCCy S Medium-dark brown, fine grained (<0.1cm) matrix with medium-dark green phenocrysts of mica (biotite/phlogopite) and magnetite. Irregular grains up to 1.7cm across. Soft, easily broken core rock. Contacts at ~45 degrees	amphibolite calcite dolomite silica	nb ma 2 py	Silver-black clots of magnetite present in the matrix (up to ~2cm across).	laminations veining				
to core axis. 66.0 68.1 dfCCCD VW Interval of mixed brown-buff and grev rockmass. Iron 08-Aug-08 repLitho FullLog:Report	amphibolite	nb 0.05	Rare-trace mineralization. Mostly occuring as finely	laminations	VW	30	Very weak laminations, defined by slight variations in colour of the	

DICKINSON Mineral INC. Development

Taseko Mines Limited	GEC
Aley Project	

Log by

Crystal Chung

Hole ID 2007-003

Page **7** of **8**

INTERVAL(m)	Rock	Z o	H C			ALT	ERATION		MINE	RALIZATION		S	STR	JCTURE
From To	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
stained calcite carbor unit with ~20% dolom decalcified with ~50% completely altered int broken core rock with to core axis.	itic conten intact cor o a "sandy	t. Mode e rock. mud" n	rate-stro The ren natrix. E	ongly nainder is Blocky,	calcite dolomite silica					disseminated grains scattered throughout the matrix, becoming slightly coarsing grained moving downhole.	veining	vw	20	matrix. Narrow, irregular white stringers cross-cut core.
0.5% medium-dark gr occuring as clots, up			nlogopite	9)				ma py						
68.1 74.8 Strongly decalcified ro (<0.1cm) iron stained Only ~25% of the inte The remainder is sha and broken down into	calcite car rval is com tered core	rbonatite nprised rock or	e ground of intact through	mass. core. Iy altered	amphibolite	0.5	Locallized sections with (up to 0.8cm) aggregates of dark green chlorite/amphibole(?). Grains tend to form very discontinuous/diffused bands.	nb ma	0.1	Finely disseminated grains with rare narrow banding. Trace amounts of small aggregates (~0.2cm across).	laminations veining	vw	20	Very weak laminations, defined by slight colour variations in matrix.
reactive to HCl.					calcite dolomite silica	1		ру						
74.8 85.0 Similar to unit uphole Moderate-strongly de grained (<0.1-0.3cm)	calcified, b calcite car	lue-grey bonatite	. Matrix	is less	amphibolite calcite	0.4	Decrease in amounts of large aggregates from unit uphole.	nb	0.1	Trace amounts of fine-medium sized (up to 0.3cm) aggregates, generally forming weak diffused bands following lamination	laminations veining	w	25 25	Defined by slight alignment of grains in the matrix. Slight increase in intensity moving downhole. Very discontinuous stringers formed
iron stained (minor wa silicified when compa Core rock has texture of complete decalcific competant.	red to unit of semi-so	immedi olid "sar	ately up idy mud	hole. " (zones	dolomite silica	3	Slightly silicified matrix.	ma py		orienations.	, en ing			by elongated dark green amphibole(?) grains.
85.0 86.7 Weak-moderately lan buff dolomite carbona Dolomite is slightly cc	tite with m	inor am	ounts of	calcite.	amphibolite calcite	1	Forming narrow iron stained stringers.	nb ma	0.02	Rare-trace amounts of fine aggregates (0.1-0.2cm)	laminations veining	W VW	50 45	Irregular washes of brown-buff colouring have weak orientation. Narrow iron stained calcite stringers
and <0.1cm, respective Hard and competant of mostly orientated at ~	/ely). core rock v	vith min	or fractu		dolomite silica	5	Weak-moderately silicified matrix.	ру			<u> </u>			(<0.2cm wide).
86.7 88.9 Moderately decalcifier somewhat intact core of completely decalcif Mottled colouring with prown-buff.	rock. The ied semi-s	~45% o e remain solid "sa	der is co ndy muo	omprised I".	amphibolite calcite dolomite	0.5 20	Medium-coarse angular aggregates (0.3-0.5cm).	nb ma py	0.05	Rare-trace finely disseminated grains with rare fine-medium aggregates (0.2cm)	laminations veining	W VW	40 30	Very weak, defined by weakly orientated washes of colour. Narrow iron stained calcite stringers (<0.1cm wide).
08-Aug-08	r	repLitho_F	ullLog:Rep	ort			HUNTER DICKINSON INC.	Responsible Mineral Development						

Taseko Mines Limited GEOLOGY LOG Log by Aley Project								GY LOG	/	C	Crystal Chung Da	ate 18-Se	p-07		Hole ID 2007-003 Page 8 of 8
INTERVAL(m) Rock o C						ALT	ERATION		MINI	ERALIZATION		:	STR	UCTURE	
From	То	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
						silica									
88.9	94.6	glCCCD)	W		amphibolite	2	Dark black green angular	nb	0.5	Subhedral-euhedral aggregates	laminations	W	45	~40-50 degrees to core axis.
Weakly bar (up to 0.3cr Weak deca zones of co Dolomite du Fairly comp matrix (dec core. Prefe core axis.	n across) lcification implete de pminant ir petant core alcified zc erred fract	weakly ca textures (- ecalcificatio this unit. e rock with one) and m uring orien	lcareous <0.1cm on (~7% ~7% of inor are tation at	s rockm pits) wit of inter "sandy as of sh t ~45 de	ass. h minor val). mud" hattered egrees to	calcite dolomite silica		aggregates are abundant (up to 0.7cm), generally forming very diffused/discontinuous bands. Dominantly chlorite.	ma py		(up to 0.5cm across). Several narrow red-brown stringers noted in this interval (<0.2cm wide).	veining	W	40	Narrow iron stained carbonate stringers, <0.1cm wide. Appears to be mostly calcitic.
0.1% yellow phlogopite(ots (up to (0.4cm a	cross). I	Possible										
94.6 Medium bro strongly ca iron stainin due to drilli decalcificat comprised	careous r g. Blocky ng proces ion?). Mii	ockmass. and shatte s) with wea nor zones (Colouri ered cor akly pitte (<5%) o	ng likely e rock (ed surfa f interva	v due to possibly ce (weak	amphibolite calcite dolomite	0.3	Medium grained aggregates of dark green with phenocrysts(?) of white calcite (0.2cm across).	nb ma	0.03	Rare-trace amounts of fine- medium grained aggregates (<0.2cm). No noticable orientation due to broken core rock.	laminations veining	W	25	
EOH @ 97	23m.	<u></u>				silica			ру						

Hole ID 2007-004

Page 1 of 7

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
<u> </u>	
Code	Fabric
x	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
СС	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION											
Coordinate System	Easting	Northing	Elevation								
UTM	454088.00	6257082.00	1870.00								
Collar Azimuth	Collar Dip	Planned Depth	Final Depth								
	-90.00		86.86								
Overburden (m)	Casing (m)	Tricone (m)									
	0.00										
Down-hole Survey Data											
Depth (m)	Azimuth	Inclination	Method								

	Drilling	Data	
Bit Size	From	То	Length
NQ2	0.00	86.86	86.86
	Professional/Tec	hnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Full Force Drilling		
Geology By	CC		
Geotechnical Log	DB		
Specific Gravity	CC		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Commo Not able to advance		

(ST	asek	ωMi	nes	s Lin	nited	GEC	LO	GY LOG		(Crystal Chung Da	ate 21-Se	p-07		Hole ID 2007-004
	A	ley Pi	roje	ct											Page 2 of 7
NTER	V A L (m)		Z o	Н С			ALT	ERATION		MIN	ERALIZATION			STR	JCTURE
From	То	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.0	7.4	CASE				amphibolite			nb			laminations			
		asured appr recovery.	roximate	e depth.		calcite			ma			veining			
using, ne		crecovery.				dolomite			ру						
						silica									
7.4	9.1	ICC		М		amphibolite			nb		Trace amounts (0.5%) of red-	laminations	m	30	Defined by weak washes of colour
		ery minor peninated fine-				calcite					brown blebs (<0.2cm), but likely to be hematite rather than	veining			the matrix.
3cm acro	oss), iron s	stained calc ed, moving o	areous	matrix.	Weak-	dolomite					niobates.	venning			
oken cor	e rock, lik	ely due to d				silica	2	Weakly silicified matrix.	ma						
	-	prientation.							ру		Possibly reclic fine disseminated pyrite. Abundant small (<0.1cm)				
0.3% Pal ossibly p	e green m hlogopite(ica clots (up ?).	o to 0.40	m acros	ss).						pyrite. Abundant sman (<0.1cm) pits noted with iron staining.				
9.1	15.9	nAMX		W		amphibolite			nb		Small subhedral (<0.1cm) purple-	laminations			
yke?	mixed om	phibolite wit	hwaah		oitio and	calcite	20	Tends to be pale rusty brown			brown grains. Possible hematite(?).	veining	m		Narrow, irregular white calcite
olomitic c	arbonatite	. The matri	x is is fi	ne grain	ied and	dolomito	5	in colour (iron stained?)	ma		nematic(:).				stringers crosscut this unit.
nd to be	weak-mod	in colour. W derately iron	stained	ł.		dolomite	3		ру		Possible rare-trace finely				
		tant core ro attered core		~8% of i	interval	silica					disseminated pyrite.				
1% Pale	vellow-are	een mica no	ted (phl	ogopite	? Biotite?)										
15.9	19.6	nAM	, v	W		amphibolite		Bands (up to ~1.5cm wide) of	nb			laminations			
yke(?)		6			ith we in a v			dark green. Chlorite or biotite(?). Makes up ~1.5%	ma			veining	m	40	General orientation at ~40 degrees
nlorite) ur	nit. Very v	fine-grainec	reous, g	generally	y occuring			of matrix.	ру		Possible rare-trace finely				core axis. Mostly irregular narro iron stained carbonate stringers
e matrix.	Weak-m	own, iron sta oderately si	licified n	natrix.	•	calcite	10	Weakly calcareous unit.			disseminated pyrites, mostly oxidized.				(<0.1cm wide), with occasional
		l somewhat hattered and			rock.			Calcite also forms narrow iron-stained stringers (<0.1cm			OXIGIZEG.				cream-white silicified veinlets (<1
								wide).							wide).
						dolomite									
						silica	1	Appears to be a weakly silicified matrix.							
19.6	24.8	nxAMX		М		amphibolite		Weak-moderately calcareous	nb			laminations	W	25	Very weakly defined by bands of
yke(?)								matrix.	ma	0.2	Magnetite occurs mostly in grey				colour variation (diffused mica

Taseko Mines Limited Aley Project	GEC	0LO	GY LOG	,	C	rystal Chung Da	tte 21-Se	p-07		Hole ID 2007-004 Page 3 of 7
INTERVAL(m) Rock o C		ALT	ERATION		MINE	RALIZATION		:	STR	UCTURE
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Interval of mixed amphibolite and carbonatite. Fairly equal amounts of patchy zones of fine grained blue- green amphibolite/chlorite(?) and zones of medium grained speckled blue-grey carbonate. Fairly soft and easily broken core rock. Dominant	calcite dolomite	15	Calcite carbonatite washes become increasing iron stained moving downhole.	ny		coloured calcareous zones, generally as blebs, up to ~0.2cm across.	veining	vw	40	bands, <2cm wide). Irregular white calcitic stringers (<0.1cm wide).
fracturing orientation at ~25 degrees to core axis. ~38% of the interval is intact core rock with the remainder being rubble fragments.				ру						
Mica (mainly biotite) appear to make up ~15-20% of the matrix, forming discontinuous and diffused bands.										
24.8 26.9 dCC M	amphibolite		Matrix is speckled with fine	nb	0.02	Rare-trace finely disseminated	laminations	VW	20	
Fine-medium grained (up to 0.3cm across) weak- moderately silcified, blue-grey calcite carbonatite. Minor diffused bands of faded green chlorite(?), up to ~10cm wide.			(up to 0.1cm across) dark black-green grains (possibly chlorite or biotite). Makes up ~1.5% of interval.	ma		grains, occasional larger aggregate (up to 0.1cm).	veining	W		No dominant veining orientation, generally narrow and irregular iron stained carbonate stringers (<0.1cr
Hard and fairly competant core rock with fracturing dominantly at ~40 degrees to core axis.	calcite		$\sim 1.5\%$ of interval.	ру		Possible rare-trace finely				wide).
dominantiy at ~40 degrees to core axis.	4					disseminated pyrite (oxided).				
	dolomite									
	silica						•			
26.9 28.6 nxAMX W	amphibolite			nb			laminations			
Similar to unit uphole at 19.58-24.75m. Dyke(?). Interval of mixed amphibolite and dominantly iron stained	calcite	30	Mostly occuring as irregular washes and tends to be iron stained. Possibly weak	ma py			veining	W		No dominant veining orientation. Mostly irregular white calcite stringers (<0.2cm wide).
calcite carbonatite. Fairly equal amounts of fine grained (<0.1cm) blue-green amphibole/chorite(?) groundmass and irregular washes of rusty and grey calcite (0.1-0.2cm across).	dolomite		dolomite.				<u> </u>			stingers (vo.2em wide).
Fairly hard and slightly blocky core rock, no preferred fracturing orientation.	silica									
Mica (mainly biotite, minor phlogopite?) makes up ~25% of the matrix, blebs scattered throughout the matrix.										
28.6 35.4 fCC S	amphibolite			nb		Possible trace finely disseminated	laminations			
Fault zone(?), gouge material is not noted. Poor core rock recovery (~55%).	calcite					grains of purple-red-brown. Hematite(?)	veining			
Interval of strongly decalcified/weathered rock; mostly	dolomite			ma						
comprised of semi-solid ground up and incoherant core. These zones have clay-like texture.	silica			ру						
Very minor section of more intact core (~8% of interval); generally fragments of blue-grey calcite carbonatite with occasional fragments of medium blue-green amphibolite.	<u></u>									
08-Aug-08 repLitho_FullLog:Report			HUNTER	Responsible						

⁰⁸⁻Aug-08

INTERVAL(m) Rock Code Z o n H C Type From To Type Irace small pale yellow-green mica grains seens scattered throughout the matrix (<0.1cm). amphibolit calcite 35.4 39.6 nAM W Faulted dyke(?): gouge material not noted. amphibolite Poor core rock recovery (~65%). amphibolite Vedium blue-green, fine grained (<0.1cm) amphibolite dolomite vith washes of rusty brown and minor section of completely decalcified/weathered carbonatite (similar to unit at 28.59-35.36m). amphibolitic ~0.3% fine pale yellow-green mica (phlogopite?) amphibolitic dolomite scattered throughout the matrix. 39.6 42.6 fCC S Similar to unit at 28.59-35.36m. amphibolitic calcite dolomite grain solid ground up and incoherant core amphibolitic vith clay-like textures. No intact core rock noted in this amphibolitic calcite dolomite silica amphibolitic calcite dolomite silica silica amphibolitic 42.6 43.1 nAMy VW amphibolitic Winor interval of medium-dark amp	EOLOGY LOG	/ Crystal Chung Dat	te 21-Sep-07 Hole ID 2007-004 Page 4 of 7
FromToCouldnLTypeTrace small pale yellow-green mica grains seens scattered throughout the matrix (<0.1cm).35.439.6nAMWSauted dyke(?); gouge material not noted. Poor core rock recovery (~65%).amphibolite with washes of rusty brown and minor section of completely decalcified/weathered carbonatite (similar to unit at 28.59-35.36m).amphibolite silica-0.3% fine pale yellow-green mica (phlogopite?) scattered throughtout the matrix.amphibolit calcite39.642.6fCCSSimilar to unit at 28.59-35.36m. Fault(?).amphibolit calcitePoor core rock recovery (~60%).amphibolit calciteStrongly decalcified/weathered calcareous unit; mostly comprised of semi-solid ground up and incoherant core with clay-like textures. No intact core rock noted in this interval.amphibolit calcite42.643.1nAMyVWMinor interval of medium-dark amphibolite with moderate amounts of rusty-buff-brown dolomite (~25-30% of interval).amphibolit calcite43.148.8fCCMSimilar to unit uphole at 28.59-35.36m. Poor-fair core rock recovery (~65-70%).amphibolit calciteStrongly decalcified/weathered moderately calcareous unit. Appears to have been weak-moderately brecciated ("fragments" noted in semi-solid ground up and ncoherant core with clay-like textures; ~15% somewhat ntact core.amphibolit 	ALTERATION	MINERALIZATION	STRUCTURE
scattered throughout the matrix (<0.1 cm). amphibolit 35.4 39.6 nAM w amphibolit amphibolit calcite Poor core rock recovery (~65%). amphibolite calcite with washes of rusty brown and minor section of completely decalcified/weathered carbonatite (similar to dolomite vomit at 28.59-35.36m). *0.3% fine pale yellow-green mica (phlogopite?) scattered throughtout the matrix. amphibolit 39.6 42.6 fCC S amphibolit Similar to unit at 28.59-35.36m. Fault(?). amphibolit calcite Poor core rock recovery (~60%). Strongly decalcified/weathered calcareous unit; mostly silica silica 42.6 43.1 nAMy VW amphibolit Minor interval of medium-dark amphibolite with moderate amounts of rusty-buff-brown dolomite (~25-30% of interval). amphibolit calcite 43.1 48.8 fCC M amphibolit Similar to unit uphole at 28.59-35.36m. silica amphibolit Poor-fair core rock recovery (~65-70%). strongly decalcified/weathered moderately calcareous unit. amphibolit Similar to unit uphole at 28.59-35.36m. <	% Comments	Type % Comments	Type Intens CA Comments
Faulted dyke(?); gouge material not noted. calcite Poor core rock recovery (~65%). calcite Medium blue-green, fine grained (<0.1cm) amphibolite			
~0.3% fine pale yellow-green mica (phlogopite?) scattered throughtout the matrix. silica 39.6 42.6 fCC S Similar to unit at 28.59-35.36m. Fault(?). amphibolit Poor core rock recovery (~60%). anophibolit Strongly decalcified/weathered calcareous unit; mostly comprised of semi-solid ground up and incoherant core with clay-like textures. No intact core rock noted in this interval. amphibolit 42.6 43.1 nAMy VW Minor interval of medium-dark amphibolite with moderate amounts of rusty-buff-brown dolomite (~25-30% of interval). amphibolit 43.1 48.8 fCC M Similar to unit uphole at 28.59-35.36m. Poor-fair core rock recovery (~65-70%). amphibolit Strongly decalcified/weathered moderately calcareous unit. Appears to have been weak-moderately brecciated ("fragments" noted in semi-solid core sections). Most of the interval is comprised of semi-solid ground up and incoherant core with clay-like textures; ~15% somewhat intact core. anticle ~0.7% Fine grained clots of pale yellow-green and brown silica	15 Irregular iron stained calcareous washes seen in dark green groundmass.	nb Possible rare-trace disseminated mineralization. Small (<0.1cm) subhedral-euhedral grains noted scattered in the interval. ma	laminations veining w No dominant veining orientation. Mainly irregular white calcitic stringers (<0.2cm wide) noted in amphibolite sections.
Similar to unit at 28.59-35.36m. Fault(?). Poor core rock recovery (~60%). Strongly decalcified/weathered calcareous unit; mostly comprised of semi-solid ground up and incoherant core with clay-like textures. No intact core rock noted in this interval. 42.6 43.1 nAMy VW Minor interval of medium-dark amphibolite with moderate amounts of rusty-buff-brown dolomite (~25-30% of interval). 43.1 48.8 fCC M Similar to unit uphole at 28.59-35.36m. Poor-fair core rock recovery (~65-70%). Strongly decalcified/weathered moderately calcareous unit. Appears to have been weak-moderately brecciated ("fragments" noted in semi-solid ground up and incoherant core with clay-like textures; ~15% somewhat ntact core. ~0.7% Fine grained clots of pale yellow-green and brown		ру	
42.6 43.1 nAMy VW Minor interval of medium-dark amphibolite with moderate amounts of rusty-buff-brown dolomite (~25-30% of interval). amphibolit calcite dolomite 43.1 48.8 fCC M Similar to unit uphole at 28.59-35.36m. amphibolit silica Poor-fair core rock recovery (~65-70%). amphibolit calcite dolomite Strongly decalcified/weathered moderately calcareous unit. Appears to have been weak-moderately brecciated ("fragments" noted in semi-solid core sections). Most of the interval is comprised of semi-solid ground up and ncoherant core with clay-like textures; ~15% somewhat intact core. calcite silica ~0.7% Fine grained clots of pale yellow-green and brown amphibolit		nb Trace-minor amounts of purple- brown smears (<0.2cm across). Possible niobate mineralization or hematite(?). ma py	laminations veining
43.1 48.8 fCC M amphibolit Similar to unit uphole at 28.59-35.36m. amphibolit aclicite Poor-fair core rock recovery (~65-70%). calcite calcite Strongly decalcified/weathered moderately calcareous calcite dolomite unit. Appears to have been weak-moderately brecciated calcite dolomite ("fragments" noted in semi-solid core sections). Most of the interval is comprised of semi-solid ground up and incoherant core with clay-like textures; ~15% somewhat intact core. ~0.7% Fine grained clots of pale yellow-green and brown silica		nb ma	laminations w 50 Diffused bands of weakly orientated iron stained dolomite.
Similar to unit uphole at 28.59-35.36m. Poor-fair core rock recovery (~65-70%). Strongly decalcified/weathered moderately calcareous unit. Appears to have been weak-moderately brecciated ("fragments" noted in semi-solid core sections). Most of the interval is comprised of semi-solid ground up and ncoherant core with clay-like textures; ~15% somewhat intact core. ~0.7% Fine grained clots of pale yellow-green and brown	e 25 Washes of brown-buff occur in weak bands (up to ~3cm wide) at ~50 degrees to core axis.	py L	
 0.7% Fine grained clots of pale yellow-green and brown 	green clots (<0.1-0.3cm); likely to be chlorite.	nb ma 0.05 Rare-trace amounts of fine- medium (<0.2cm) silver-grey magnetic grains noted in more competant sections of core rock. py	laminationsw40Weak laminations noted in intact core pieces, defined by slight colour variations and weak-moderate alignment of grains.veiningvwPossible trace amounts of quartz and calcitic stringers (<0.1cm wide).
mica (biotite/phlogopite?) noted, generally forming very diffused/discontinuous stringers.			

(Taseko Mines Limited	GEOL	.00	GY LOG		C	Crystal Chung Da	ate 21-Se	p-07		Hole ID 2007-004		
Aley Project	Δ	LTE	RATION		MIN	ERALIZATION	Page 5 of STRUCTURE					
Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	СА			
From IO e - 48.8 51.1 xAMX W	amphibolite			nb			laminations	VW	45	Very weak laminations noted in		
Dyke(?). nterval of medium-dark green fine-grained (<0.1cm)	1	15	Amphibolite matrix becomes slightly more calcareous	ma			laminations	vw	45	carbonatite sections, defined by slight alignment of grains.		
amphibolite with sections of slightly coarser grained ~0.1cm) calcitic carbonatite (~13%). Contacts are diffused but is measured at ~40 degrees to core axis. Slightly blocky core rock with no dominant fracturing prientation.	dolomite silica		moving downhole.	ру		Possible rare-trace finely disseminated pyrite that has been oxidized out; small aligned oxidized pits noted.	veining	W		Narrow, irregular white calcite stringers with no preferred orientation. Several coarser graine		
D.5% phlogopite in matrix with trace amounts of brown piotite(?), generally occuring in irregular bands (0.2-1cm	Silica]			1			quartz(?) veinlets (~2cm wide) not		
wide).	1 1 1.	16		1 .								
51.1 59.0 fAMX W	amphibolite	16	Ground up sections of core has is very fine grained	nb			laminations		17	X7 1' 1 1 1 1		
Fault(?); no gouge material noted. Poor-fair core rock recovery (~65-70%). nterval of strongly to completely decalcified/weathered nixed weakly calcareous amphibolite (~16%) and iron			(<0.1cm) and has pale yellow- green colouring.	ma py			veining	W	45	Narrow, medium-dark purple brow stringers (<0.1cm), oxidized pyrit stringers(?).		
stained carbonatite. Unit is comprised of semi-solid fine- nedium grained ground up and incoherant core with clay-	calcite						-			•		
ke texture.	dolomite											
0.3% fine-medium sized (up to 0.3cm across) irregular blebs of purple brown, possibly hematite(?).	silica											
59.0 64.0 fAMX VW Dyke(?). Weak-moderately laminated and weakly brecciated	amphibolite calcite	20	Generally moderately iron-	nb ma			laminations	W	35	Weak-moderately defined by rust brown and white calcareous band (0.1-2cm wide).		
calcareous amphibolite with washes or iron stained calcite. Fine grained (<0.1cm) matrix is medium-dark green in colour with bands and stringers of pale cream			stained, occuring in irregular washes and bands. Irregular white calcite stringers	ру		Possible oxidized rare-trace disseminated pyrite (small,	veining	m	35	Narrow stringers (<0.2cm wide) o rusty brown colouring.		
and rusty brown. Brecciated texture mainly noted in strongly decalcified zones as pale yellow-green slightly			(<0.1cm) also present.			<0.1cm, rusty pits) scattered throughout the matrix.						
Somewhat soft rock, fairly competant with ~60% of intact core rock. The remainder of the interval is comprised of	dolomite silica					U	1					
strongly weathered/decalcified fine rubble/clay.												
~0.5% fine micas noted in the matrix.				1			1					
64.0 67.1 glCC M	amphibolite			nb			laminations	m	40	Weak-moderate laminations.		
Weak-moderately laminated, fine-medium grained (<0.1- 0.2cm across) blue-grey calcite carbonatite. Core rock is shattered and broken; possible fault zone(?). Fracturing dominantly at ~35 degrees to core axis.	calcite dolomite silica			ma py	0.3	Often occurs as subangular to angular clots (up to 0.4cm).	veining	W	40	~35-45 degrees to core axis. Generally carrying mica and magnetite clots (up to 0.3cm acros grains). Difficult to determine due		

To		o M ley P			nited	GEC)LO	GY LOG	,	Crystal Chung Date 21-Sep-07 Hole ID							
INTERV	A L (m)		Z	Н			ALTI	ERATION		MINI	ERALIZATION	Page 6 of 7 STRUCTURE					
From	То	Code	n e	C L		Type % Comments			Туре	%	Comments	Туре	Intens	CA	Comments		
Abundant (~ hexagonal p clusters.															brokenness of core rock.		
67.1	70.1	gfCC		S		amphibolite			nb			laminations					
Interval app immediately weathered/c in this interv	up hole lecalcifie al (<2%)	at 64.0-67 d and brok ; matrix is	.11m, b en dowi fine-me	ut much n. Rare i dium gra	intact core ined				ma	0.3	Sub-angular aggregates of silver- black magnetite noted in slightly more intact sections.	veining					
rubble and h Abundant (u likely to be p	p to ~5%) dark bla	ck-greer	n mica pr	•	silica			ру								
ikely to be phlogopite noted in mixed matrix.70.174.3gICCMSimilar to unit uphole at 64.0-67.11m.Weakly laminated, fine-medium grained (<0.1-0.3cm across) buff and grey calcite carbonatite.Core rock is slightly blocky with shattered and broken zones (up to ~65% of interval).					amphibolite calcite dolomite silica			nb ma py	0.2	Silver-black magnetite aggregates (0.2-0.4cm across) are weakly elongated along lamination planes.	laminations veining	W W	20 20	Weak laminations defined mostly b slight colour variations in the matrix Narrow bands (<0.3cm wide) of rusty brown crosscut core. Likely strongly iron stained calcite			
~4-5% pale sized (up to									4_1 <i>7</i>								
74.3	76.2	fCC		W		amphibolite			nb			laminations					
Similar to ur weathered/c					uff brown	calcite			ma			veining					
in colour and texture of m	d consist	s of fine gr	ained ru	ubble and	d has the	dolomite silica			ру								
76.2	80.2	gCCCD		W		amphibolite	0.2	Small-medium sized (0.1-	nb	0.05	Rare-trace disseminated grains,	laminations					
Interval of m brown-buff r 0.2cm) blue reactive to H	natrix an grey ma	d zones of trix. Brow	coarse n matrix	grained	(0.1- gly	calcite		0.3cm) clots of dark green, possibly chlorite.	ma		slightly increasing to aggregates (<0.1-0.2cm).	veining	w		No preferred orientation noted. Narrow (<0.1cm) dark purple-brows stringers.		
reaction.						dolomite			ру						÷		
Shattered core rock with rare intact pieces. ~0.2% dark green mica prisms (0.2cm across).						silica	0.5	Weakly silicified less HCl reactive sections.									
80.2 85.6 gfCCCD VW						amphibolite	0.3	Fine-medium grained (<0.1-	nb	0.07	Trace-minor amounts of fine-	laminations					
Mixed interval with weak-moderately silicified calcite carbonatite and irregular washes of buff brown (iron staining?). Brown patches (~10% of interval) are strong reactive to HCI.				(iron re strongly	calcite		0.2cm) clots of dark green, possibly chlorite.			medium sized aggregates (0.1- 0.3cm) of rusty red-brown colouring; possibly iron oxides.	veining	m	30	Narrow (<0.1cm wide) pink-buff coloured stringers.			
Slightly bloc	k core ro		-						ma								
08-Aug	-08		repLitho_	FullLog:Rep	oort				Responsible								

T	Taseko Mines Limited GEOLOGY LOG										rystal Chung Da	ate 21-Se	p-07	Hole ID	2007-004 Page 7 of 7
INTER	INTERVAL(m) Rock o C				ALT	ERATION		MINE	RALIZATION	STRUCTURE					
From	То	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
orientated a (~3%) of co ~0.1% fineg prisms.	ompletely o	decalcified	"sandy r	nud" ma	atrix.	dolomite silica	15	Weak-moderately silicified matrix, mainly in zones lacking iron staining.	ру						
85.6 Pink-buff fil rockmass. calcite. Slightly blo completely	ne grained Zones of cky core ro	brown app ock with ~5	weakly c ear to be 50% of th	e iron sta ne interv	ained al being	amphibolite calcite dolomite	0.3	Fine-medium sized dark green clots (<0.1-0.3cm), possibly chlorite.	nb ma py	0.05	Rare-trace fine-medium sized aggregates (0.1-0.3cm) of rusty red-brown, possibly iron oxides.	laminations veining	w	40	
EOH @ 86.86m.						silica			B			-			

Hole ID 2007-005

Page 1 of 5

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
x I	laminated
f	decalcified
•	veined
v	venied
	• -
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION									
Coordinate System	Easting	Northing	Elevation						
UTM	454608.00	6257271.00	1964.00						
Collar Azimuth	Collar Dip	Planned Depth	Final Depth						
	-90.00		115.90						
Overburden (m)	Casing (m)	Tricone (m)							
	0.00								
	Down-hole	e Survey Data							
		-							
Depth (m)	Azimuth	Inclination	Method						

	Drilling	g Data	
Bit Size	From	То	Length
BTW	0.00	115.90	115.90
	Professional/Te	echnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Peak Drilling		
Geology By	JO		
Geotechnical Log	DB		
Specific Gravity	JO		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Comm	nents	•

Tas	eka	Mine	es Lin	nited	GEO	LO	GY LOG	,		Jim Oliver Da	ate 14-Se	ep-07	Hol	le ID 2007-005
		ey Proj												Page 2 of 5
NTERVAL(m) Z H ALTERATION									MINE	RALIZATION		S	TRUC	TURE
From T	о	Code n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.0 4	1.0	OVBN			amphibolite			nb			laminations			
asing: Estimat	ited pos	ition of casing.	No casing	j block.	calcite			ma			veining			
											8			
					dolomite			ру						
					silica									
4.0 14	4.1	nCC	W		amphibolite			nb	0.15	Niobates exist as very fine	laminations		39	
fine grained li	iaht to t	an yellow creai	m carbona	tite is	calcite					grained disseminations, with no	veining			
ored in this inte	erval. G	irain size is hig	hly variab	e ranging						coarser grained aggreates or	venning			
		n to > 1.0 cm. I ne rock has a c			dolomite					compositional layers.				
CL response.	Sent. II	IE TUCK HAS A C	Unsistent	Jul weak	silica			ma						
·								ру						
14.1 18	8.2	OXID	VW		amphibolite			nb			laminations			
he interval is d	defined	by the abrupt o	onset of a	strongly	calcite			ma			veining			
xidized massiv	ve sulph	ide band. With	nin this inte	erval							, enning			
pproximately 3 ccurred.	3 m of c	ore loss or nor	i-recovery	nas	dolomite			ру						
oounou.					silica									
18.2 33	3.5 c	ICCCD	W		amphibolite			nb	0.2	Niobates exist as small very fine	laminations	W	50	
medium to oc	ccassior	nally coarse gra	ained pale	creamy	calcite					grained disseminations	veining			
uff calcitic carb	bonatite	characterizes	the interva	al. The						uniformaly distributed throughout	vennig			
ock mass has o	cored e	xceptionally we ind low rock ox	ell with lim	ited	dolomite					the rock mass.				
ompositional la	ayers m	ay be identified	d.	iy weak	silica			ma	0.05	Magnetite at trace levels.				
·					·			ру	0.25	Partially oxidized pyrites are				
								1.		noted across the interval. These				
										are oxidized to deep red oxides				
										and may potentially be				
										misidentified as niobates.				
33.5 38	8.5	nAM	М		amphibolite			nb			laminations			
hloritized, felte	ed textu	re amphibolitic	dykes for	m the	calcite	5	Minor mm scale calcite-	ma			veining			
iterval. The int	trusive r	nature of the co d enhanced ca	ontact id in	ferred by			hematite veins and veinlets	nv						
owards the stu	ircturall	lower contact.	Four princ	iple			are noted within this interval.	ру						
ineral groups	are ide	ntified: amphib	ole 35%: c	hlorite	dolomite									
		calcite 15%. M												
		which average noted. These			silica									
		ve been partia												
08-Aug-08		بورسانام	FullLog:Rep	ort			HUNTER	Responsible						

08-Aug-08

Taseko Mines Limited Aley Project	GEO	LO	GY LOG			Jim Oliver Da	ate 14-Se	p-07	Hole	D 2007-005 Page 3 of 5		
NTERVAL(m) Rock o C		ALTE	ERATION		MINE	RALIZATION	STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
e amphibolites. The unit is non-magnetic, contains no Iphide phases and no compositional layers.												
38.5 42.7 dCD VW edium to coarse grained yellow cream dolomitic irbonaties form the interval. This rock mass is very eakly reactive to HCL. Based on its HCL response it buld be classified as a dolomitic carbonatite; based on a color (low Fe-Mg contents?) it would be classified as a licitic carbonatite. The units upper contact is sharp but e lower contact is defined by a 75 cm white bleach one. Carbonate grains may exceed 0.75x1.25 cms.	amphibolite calcite dolomite silica			nb ma py	0.25	The rock contains 0.25-0.35% with most of the dark re-black oxides appear to be related to oxidized pyrites.	laminations veining	W	72			
hedral amphibole phenocrysts are disseminated at 2- levels across the interval. 47.8 49.7 nCC M e carbonatite is medium to pale yellow cream and is eakly reactive to HCL. Internal compositional layers are	amphibolite calcite			nb	0.05	Niobates are not conclusively identified within this interval.	laminations veining					
eakly developed. Coarse euhedral amphiboles are sent but fine grained weakly streaked amphibole impositional layers are weakly identified.	dolomite silica			ma py	0.25	Oxidized and intact pyritic sulphides are noted at low levels.						
49.7 70.5 nAM M nphibolite dykes in this interval are locally strongly loritized. Very fine grained felted chlorite has trograded and significantly replaced 75% of the imary amphibole in this body. The lower contact of the hit displays a well developed chill margin. Contact	amphibolite calcite	5	Phlogopite plus or minus pyrite may flank small scale sub mm fractures and veinlets.	nb ma py	0.25	Pyrite noted in trace levels.	laminations veining					
lations strongly suggest these are either co-eval ightly post date emplacement of the main carbonatite omplex. They appear to be un-related to fenitization. artially re-sorbed cabonate lenses are noted, particulary etween 55.7-57.3 m's with 50% carbonate ontamination between 64.5 and 69.5 m. Phlogopite icas increase in concentration within these intervals.	dolomite silica											
70.575.5dCDMeam to off-white calcitic carbonatites form the interval. e net percentage of definitive "buff" to brown dolomites erage less than 10%. The percentage, density and size coarse phlogopite bands increases towards the uctural lower contact. The lower contact at 75.5 m's is	amphibolite calcite dolomite silica			nb ma py	0.25	Niobates present as minor disseminations.	laminations veining	w	43			
ht with no evidence of shearing. 75.5 77.5 nAM M rowded actinolite lathes are identified form 70% of the ck matrix, phlogopite 15% and calcite the remainder.	amphibolite calcite			nb ma			laminations veining					

Taseko Mines Limited	GEO	LO	GY LOG	,		Jim Oliver Da	ate 14-Se	p-07]	Hole ID 2007-005		
Aley Project		ALT	ERATION		MINE	RALIZATION	Page 4 of STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
iobates are not identified and the dyke in non-magnetic.	dolomite			ру								
o sulphide phases are identified.	silica											
77.5 81.7 dICD W	amphibolite			nb	0.5	Niobates are present as fine	laminations	W	45			
edium grained dolomitic carbonatites are sporadically	calcite					grained disseminations, and very	veining					
mpositionally layered and are flecked with 1-1.5% de and sulphide phases. Well formed euhedral	dolomite					small 1.5 mm aggregates.	U					
roxenes and even larger 10x20 mm composite rbonate aggregates are formed win this interval.	silica			ma	0.25							
				ру	0.25		1		40			
81.7 85.6 nAM M edium green, moderately calcareous mafic dykes form	amphibolite	~		nb ma	0.25		laminations	W	48			
e interval. Mafic assemblages include, actinolite-	calcite	te 5 Both magnetite and pyrite a noted flanking late calcite			0.25		veining					
logopite-chlorite. Calcite exists as minor matrix infills d as late discordant dykes. Minor < 10% by volume,			veinlets.	ру	0.25							
lomitic carbonatite inclusions are noted.	dolomite											
	silica											
85.6 89.3 dlCD W	amphibolite			nb	0.75	Niobates may be included with	laminations	m	48			
eakly to moderately laminated dolomitic carbonatites	calcite					oxidized pyritic fractures.	veining					
e cored in this interval. Planar cm scale compositional ers are best identified towards the bottom of this	dolomite			ma								
erval. Dolomite crystals frequently exceed 1.0 x 1.5 cm length.	silica			ру	1	Associciated with microveinlets.						
89.3 95.3 nAM M	amphibolite			nb			laminations	W	50			
edium to dark green significatnly calcareous mafic	calcite	5	The unit is cut by minor	ma			veining					
kes form the interval. Relative to up-hole dykes the rcentage and volume of carbonatite inclusions has			calcite veinlets.	ру			0					
creased. Net sulphide and oxide levels are virtually n-existant. In contrast to the previous interval,	dolomite			1.7								
logopite levels have significantly decreased.	silica											
95.3 106.8 CD W	amphibolite			nb	0.25	Niobates are noted as medium to	laminations	W	52			
compact, buff yellow poorly laminated dolomite rbonatite charactizes the unit. Compositonal bands are	calcite			m 0		fine grained disseminations.	veining					
turally absent and the matrix is composed of	dolomite			ma	0.25	Largely evidiand						
erlocked fine to medium grains. As throughout this ehole, de-calicification textures are absent. Very	silica			ру	0.25	Largely oxidized.						
nor, <15 cm brown oxide zones are locally noted. The gest of these is identified at 97.1 m.												
106.8 115.9 nAM M	amphibolite			nb			laminations	W	22			
massive, moderately chloritic and significantly	-											
08-Aug-08 repLitho_FullLog:Report				Responsible Nineral Development								

(Tasek A	o Mi ley Pl			nited	GEO	OLO	GY LOG	,		Jim Oliver	Date	14-Se	p-07	Hole I	D 2007-005 Page 5 of 5
INTERVAL(m)	Rock Code	Z o	H C			ALTI	ERATION		MINE	RALIZATION			ę	STRUCT	URE
From To	Coue	n e	L		Туре	%	Comments	Туре	%	Comments		Гуре	Intens	CA	Comments
carbonatized mafic dy contains partially re-s absent. Internal com unit is non-magnetic. m.	orbed carb positional l	onatites ayers ar	. Niobat re abser	tes are nt and the		2	The interval is cut by numerous hairline calcite- hematite micoveinlets in the 2- 3% by volume range.	ma py	0.25	Minor dissemiations.	ve	ining			
					dolomite silica										

Hole ID 2007-006

Page 1 of 9

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
, I	laminated
f	decalcified
v	veined
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

	DRILL HOLE	INFORMATION	
Coordinate System	Easting	Northing	Elevation
UTM	454094.00	6257522.00	1912.00
Collar Azimuth	Collar Dip	Planned Depth	Final Depth
			152.40
Overburden (m)	Casing (m)	Tricone (m)	
	0.00		
•	Down hole	Summer Data	
	Down-noie	Survey Data	
Depth (m)	Azimuth	Inclination	Method

	Drilling	Data	
Bit Size	From	То	Length
NQ2	0.00	152.40	152.40
	Professional/Tec	hnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Full Force Drilling		
Geology By	CC		
Geotechnical Log	DB		
Specific Gravity	CC		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Comme	ents	

Tase		o Mi ey Pi			nited	GEO		GY LOG		C	rystal Chung Da	ate 13-S	Sep-07	Hole	D 2007-006 Page 2 of 9			
INTERVAL		Rock	Z o	H C			ALT	ERATION		MINE	RALIZATION	STRUCTURE						
From To		Code	n e	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments			
0.0 3.4	.4	OVBN				amphibolite			nb			veining						
Broken, rubbly co						calcite			ma									
fragments. Frag dark green only t	to mixe	ed blue-gr	reen-gr	rey, and l	brown-	dolomite			pc									
buff. Weakly oxi 3.4 9.4		ICC				amphibolite		trace amounts	nb	0.1	trace niobate group mineralization	veining						
Buff-grey, fine-m			weak-	moderate	əlv	calcite		groundmass of pale blue-grey	ma	0.1	trace mobate group mineralization	venning						
aminated rockm	nass. F	Rock fabr	ic at lo	w angles	(~20	calcite		calcite										
degrees) to core brown-buff dolom	nite in	a groundi	mass c	of pale bar	ue-green-	dolomite	6	brown-buff dolomite	pc									
grey calcite (5-79 Break surfaces a green soft minera	are wea	akly oxidi:	zed. T	race pale	e-grey-	silica												
(decalcification to Fairly competant (<25 degrees) to sub-parallel to co 9.4 13.	t core r o core a ore axis	ock with axis. One	fractur e large	ing at lov feracture	v angles e running	amphibolite			nb	2.5		veining						
Mottled medium			-graine	ed, rubbly	y	calcite	1.5	grey	ma			8						
rockmass. Weal (~25 degree) to c						dolomite		light brown-buff colouring	ру	2								
light brown-buff (of grey calcite. Rubbly and block possibly due to n decalcification te Pale blue-green s amphibole?) Nic amounts (<3%), rubble zones) an competant rock. mineralization, g niobate mineral f	(dolom ky core meteori extures soft mi obate g mostly nd occa Minor generall	ite) with i e rock with ic water v (near sur- ineral not proup min dissemin asionally i pyrite is y at core	rregula h stron veathe rface). eed (chl erals r nated (in banc associ	ar mm-sc ag pitted t ring or lorite afte noted in n (especial ds in mor iated with	ale bands textures; er noderate ly in e			8	17									
13.5 22.		ICC				amphibolite	0.5	irregular blebs scattered	nb	1.5	1-2%	veining						
Dappled pale blu	ue-gree	en grey, fi	ne-me	dium gra	ined (0.2-			throughout matrix	ma									
0.4cm across) ro low-moderate an	ngles (~	-15-40 de	grees)) to core	axis.				ру	0.7	forms core with pyrochlore rims							
Lamination defined bands of dolomined by the second s	nte and	d minor iri	regular	wn buff c r blebs (<	coloured 2.0cm	dolomite			pc		forms rims around pyrite blebs							
across) of pale g Fairly competant mostly following axis). Minor oxid 08-Aug-08	t core r Iamina	ock with tions (up noted or	occasi to ~30 n fractu) degree	to core ces.				Responsible									

Taseko Mines Limited Aley Project	GEOLC	DGY LOG	/	C	rystal Chung Da	ate 13-S	ep-07	H	Die ID 2007-006 Page 3 of 9		
	A L ⁻	ΤΕ Π Α Τ Ι Ο Ν		MINE	RALIZATION	STRUCTURE					
From To	Type %	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
liobate group minerals generally occur in mm-sclae tringers with some wider (up to ~1cm), defused bands I-2%). Rare-trace amounts of disseminated inineralization. Associated pyrite also occurs as core ones of mineralized blebs, with rims of dark red-brown yrochlore.											
22.3 23.2 AMy W	amphibolite		nb			veining					
ark velvet green, fine-medium grained (<0.1cm across)	calcite		ma	0.2	trace amounts noted "contact						
hloritic (after amphibole?) dyke. istinct contacts orientated at ~40 degrees to core axis.	dolomite				alteration zone"						
pper contact has small (<2cm wide) reaction "rims" hile the lower contact has buff coloured (dolomitic?)	uoioinite		pc								
he matrix is calcareous. Moderate amounts of brown akes (0.2-0.7cm across) of biotite is scattered rroughout. Core rock is cross-cut by narrow irregular arren calcite stringers. 224.75-24.97m "Contact alteration zone" aminated but disturbed. Bands of grey calcite and rown-buff dolomite. Trace pyrite and magnite blebs <1cm) noted, slightly elongated.											
23.2 32.0 ICC	amphibolite 48	~48% of interval comprised	nb		rare mineralization	veining					
lixed interval of grey medium grained (0.2-0.5cm) calcite		of chlorite/amphibolite	ma								
arbonatite intruded by dark velvet green nlorite/amphibole dykes (~48% of interval). Calacitic	calcite	dykelets	ру		trace amounts noted						
nes are weakly laminated with fabric generally ientated at low-moderate angles (<25 degrees) to core			17								
kis. These dykes are generally abundant with	dolomite										
otite/phlogopite, especially cloer to contacts. "Clasts" f banded calcite and bhlorite/amphibole (up to 2cm cross) appear to be entrained throughout (up to 20cm in ingth). he matrix is cross-cut by narrow (<0.5cm wide) calcite nd bands (<2cm wide) of tan-buff dolomite. Rare-trace mounts of mineralization noted in calcitic intervals. race amounts of sulphides seen in discontinuous ringers.											
926.85- ***m "dyke" 932.0-32.84m "dyke"											
32.0 41.3 ICCCD	amphibolite		nb	0.5	fine-medium grained	lamination	s w	10	mostly sub-parallel to core axi		
lottled pale blue-green grey and light tan-buff	calcite 70	medium-large grain size (0.3-			disseminations, ~0.1% in diffused	veining					

Taseko Mines Limited	GEO	LO	GY LOG		C	rystal Chung	Date 13-Se	ep-07	H	ole ID 2007-006			
Aley Project										Page 4 of 9			
INTERVAL(m) Rock o C Code n		ALT	ERATION		MINE	RALIZATION		STRUCTURE					
From To e	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments			
coloured zones. Weakly laminated texture; fabric generally running sub-parallel to core axis. Somewhat competant core rock with minor amounts of fracturing, generally at ~30-50 degrees to core axis. Weak-moderate oxidization (?) noted on breakage surfaces. Minor amounts of irregular bands (up to 3cm wide) of	dolomite		fine grained (<0.1cm) buff narrow bands	ma py		trace disseminated grains							
medium-dark grey-green chlorite noted (<1% of interval). Niobate mineralization generally occurs as fine-medium disseminations (~0.5%) with <0.1% occuring in defused stringers. Trace pyrite is also seen.				1									
41.3 46.6 CCCD W	amphibolite		• • • • • • • •	nb	0.5	disseminated	laminations						
Mottled grey and buff rockmass, similar to unit abouve (34.40-44.50m). Variable grain sized (coarser in white calcite, finer in buff dolomite). Massive texture with weak- moderate silicification (weak sucrosic texture). Blue-grey calcitic zones have slightly dappled grey colouring. Somewhat competant core rock with zones of blockiness; these appear to generally be rubbley likely due to decalicification. Niobate mineralization occurs as disseminated blebs (<0.7cm across) and makes up ~0.5% of the matrix. Small elongated black specks are also noted, mainly in the lower part of this interval (<0.1cm).	dolomite		mixed carbonatite, but calcite dominated weak-moderate silicification of the matrix (surcrosic texture noted)	ma py			veining						
46.6 49.3 CCCD	amphibolite	1	diffused chlorite (after amphibole?) bands, up to 4cm	nb	0.5	disseminated grains (<0.2cm)							
Mottle buff and blue-grey rockmass, similar to above unit (44.50-50.16m). Dolomite is more dominate in this interval and makes up ~80% of the matrix. Similar massive texture with decrease in sucrosic texture. Weak- moderate pitted surface, mostly limited to zones with buff colouring. Soft dark grey-green defused bands (up to 4cm wide) of chlorite after amphibole(?) noted, generally cross-cutting core at ~35 degrees to core axis. Niobate mieralization mainly occurs in areas of rubbly core rock but is noted as fine disseminated grains (<0.2cm) throughout and makes up ~05% of the matrix. Small elongated black specks are also noted in ths interval (<0.1%) 49.3 62.9 dCD	calcite dolomite silica amphibolite	80	dolomite dominated matrix weak surcrosic texture	ma py nb	0.5	finely disseminated grains	laminations	W	35	diffused chlorite bands			
49.5 62.9 dCD Buff couloured fine grained (<0.2cm) dolomitic rockmass	calcite	5		nb ma	0.5	mery disseminated grains	veining						
with minor patches of dappled grey and white calcitic carbonatite. Mostly massive texture with locallized banding of darker buff dolomite. Slight decrease of dolomite moving downhole. Locallized speckled 08-Aug-08 repLitho FullLog:Report	dolomite	5		ру	0.05								
· - ·				Mineral Development									

-

Taseko Mines Limited	GEC)LO	GY LOG	/	С	rystal Chung Da	Hole ID 2007-006 Page 5 of 9					
INTERVAL(m) Rock o	ALTERATION				MINE	RALIZATION	STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
colouring due to small-medium (0.1-0.3cm) grains of dark grey-green amphibole occuring as diffused bands up to 5cm wide. Possibly trace silicification of the matrix. Possibly trace ankerite. Niobate mineralization occurs in trace-minor amounts generally as finely disseminated grains with rare associated sulphides (pyrite).	silica]								
62.9 66.6 dCD	amphibolite	0.1	Rare-trace amounts of	nb	0.05	Rare-trace disseminated grains	laminations					
Dappled pink-buff, fine grained rockmass with rare-trace	. 1. 1.		euhedral grains (<0.4cm).	ma			veining					
amounts of euhedral dark grey-green amphibole (<0.4cm across). Increasing dolomite content moving downhole.				ру		Minor amounts of associated						
Minor amounts of pale yellow-green specks (<0.3cm across) of phelgopite(?). Rare-trace amounts of	dolomite					pyrite.						
disseminated niobate mineralization (<0.5cm across) with rare amounts of associated pyrite.	silica											
Rare-trace phlogopite <0.3cm grains.												
66.6 86.3 gfCD	amphibolite	0.1	Euhedral aggreates (<0.7cm)	nb	0.8	Euhedral aggreages of niobates	laminations					
Massive fine grained (<0.1cm) buff dolomitic groundmass. Decreasing calcite and increasing	calcite					(up to ~2cm across), minor amounts as fine disseminations.	veining	m	30	Irregular veinlets, up to 1cm wide		
amphibole/chlorite content moving downhole. Very	dolomite		Phenocrysts(?), <0.7cm	ma		amounts as fine disseminations.				White calcite, translucent grey quartz, dark velvet green chlorite		
weakly pitted core surface, generally in areas of strong "rusting".	silica			ру						(after amphibole?)		
@84.58-85.35m "xCD" Large fragments (up to 6cm) and angular in shape. Infilling material appears to be clacite with minor amounts pf silicification.							J					
@90.75-91.32m "AMy" Dark green amphibole dyklet, likely associated with following unit (splay of dyke?). Upper contact is irregular and weakly brecciated. Lower contact is slightly irregular and orientated at ~50 degrees to core axis. Unit is cross- cut by calcite veinlets (<3cm).												
86.3 89.5 xAMXy	amphibolite			nb			laminations					
Likely to be a dark grey-green amphibolitic dyke that has been deformed and brecciated by faulting/magma	· · · · · · · · · · · · · · · · · · ·	10		ma			veining	S		Irregular white calcite veinlets (up t 1cm wide).		
mixing(?). Mixed rock with amphibolite groundmass.	dolomite	6		ру			J .					
Fragments/wispy bands (up to ~40cm wide) of pink-buff dolomite carbonatite. White calcite veining is abundant	silica			J								
throughout this unite (up to 1cm wide). Moderate strongly deformed (most structures are affected).												
Contacts are easily seen orientated at ~50 (upper) and												
08-Aug-08 repLitho_FullLog:Report				Responsible N Mineral								

Ale	Mine ey Proje			0.20									Page 6 of 9	
	Z Rock o	H C			ERATION		MINE	RALIZATION	STRUCTURE					
From To	Code n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
30 (lower) degrees to a	core axis.			-			-			-				
89.5 96.4	dCD	W		amphibolite			nb	0.2		laminations				
ottled pink-buff , fine-r ckmass (<0.1-0.4cm a				calcite	30	Minor zones of dappled blue-	ma			veining				
arser grained (up to 0).7cm) calcite.	Occasio	nal			grey calcitic carbonatite.	ру	0.05	Rare-trace amounts of sulphides					
egular blebs (up to 5c lorite (after amphibole		k velvet g	reen	dolomite					(pyrite) associated with niobate					
nall-medium grained ((up to 1cm) dai			silica					mineralization.					
opears to mostly be da inor amounts of red-bi	ark grey-green rown niobates.	amphibol Rare an	e with nounts of											
sociated sulphides, m	nainly pyrite.													
	dfCD	М		amphibolite		Medium-large (up to 1.5cm)	nb	0.2	Mainly occuring as fine-medium	laminations				
ottled and patchy pink ained dolomitic rockm						euhedral aggregates of dark green amphibole. Closer to	ma		grained disseminations (<0.3cm).	veining				
alcite.						lower contact.				-				
airly competant core ro 10cm wide) with mode	ock with localliz rate-strong pitt	ed zones ed textur	s (up to es	calcite	30		ру							
decalcification). Minor	fracturing, gen	erally orie	entated at	dolomite										
30 degrees to core axi ub-parallel to core axis			unning	silica										
102.2 109.7	ICC	М		amphibolite			nb	0.1	Trace amounts in stringers.	laminations	VW	25		
appled pale blue-grey			(cm)	-				0.1	Trace amounts in sumgers.				Low moderate on shed (up to 20	
alcitic rockmass with tr	race amounts o	of pink-bu	ff	calcite			ma			veining	W	20	Low-moderate angled (up to ~30 degrees). Wisps and stringers of	
olomitic wisps (~2%). aminated with minor su				dolomite	2	Pink-buff wisps.	ру	0.2	Small disseminated blebs (<0.5cm).				dolomitic carbonatite.	
ompetant core rock wi	th rare fracturin	ng. Wisp	s and	silica					(<0.3cm).					
tringers of dolomitic ca ace mineralization).	irbonatite (som	e carryin	g rare-											
109.7 115.4 d	CCCD	W		amphibolite			nb	0.1	Trace-minor amounts of red-	laminations				
appled medium blue-g				calcite					brown mineralization	veining	W	30	Grey-white calcite and/or quartz (
arbonatite. Similar to uppears to be weak-mo				dolomite	30		ma			, enning		00	to 1cm wide).	
henocrysts of calcitic s						XX71	ру	0.3						
rains). race-minor amounts of	f red-brown mi	neralizatio	n.	silica	35	Weak-moderately grey silica flooded matrix, withouth								
ppears to be dominant	ly pyrite with ra	re-trace	niobates.			sucrosic textures.								
airly competant core ro egrees to core axis. M				•										
alcite and/or quartz; do														
egrees to core axis.	400	W		omubil: -1:4-			nh	0.1	Trace employed of first and it	lomination				
	dCC			amphibolite			nb	0.1	Trace amounts of fine-medium grained red-brown grains.	laminations				
ottle blue-grey, fine-gr	ained calcitic r	ockmass	with trace				1		Stunica ica biowii giunis.					

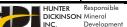
Taseko Mines Limited Aley Project	GEOLO	DGY LOG	,	C	rystal Chung Da	ate 13-Se	p-07	l	Hole ID 2007-006 Page 7 of 9		
INTERVAL(m) Rock o C	AL	TERATION		MINE	RALIZATION	STRUCTURE					
From To Code n L	Type %	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
amounts of pink-buff dolomite. Similar to unit uphole at 109.99-118.05m. Moderately silicified with weak- moderate surcrosic texture. Trace amounts of fine-medium grained (0.2-0.5cm across) red-brown blebs; likely to be niobate mineralization.	calcite dolomite 5 silica		ma py			veining					
116.5 128.1 dfCCCD W Mottled blue-grey and pink buff unit of mixed calcite and dolomite with possible weak silcification. Somewhat competant core rock with locallized zones (~30cm wide) of blockiness; generally associated with zones of strong pitted textures. Fracturing mostly prientated at ~30 degrees to core axis.	amphibolite calcite dolomite silica		nb ma py	0.2	Fine grained disseminations (<0.2cm)	laminations veining	VW	35	Often deformed and offset.		
128.1 131.6 dfCD M Poor recovery in this interval (<60%).	amphibolite 0.2 calcite 2 dolomite silica	 small dark black-green specks (<0.2cm across) Very minor amounts of calcitic carbonatite, appearning almost as clasts within dolomitic matrix. Weak-moderately silicified, generally near contacts and zones of very weak brecciation. 	nb ma py	0.05	trace amounts as fine disseminated grains	laminations veining	m	20	Measurable vein orientation at ~20 degrees to core axis. Many narrow irregular stringers.		
131.6 137.6 dCD M Mottled pink-buff dolomitic rockmass with minor zones of blue-grey calcite; very weakly banded texture with irregular and defused boundaries. Fairly competant core rock with minor amounts of fracturing. No dominant breakage orientation.	amphibolite 1.5 calcite 5 dolomite silica		nb ma py	0.75	Fine disseminations (<0.2cm across). Fine disseminations (<0.1cm across), generally oxidized to a rusty orange-brown colour.	laminations veining	vw	35	Very weak and difused wisps of darker buff dolomite.		
137.6138.4bAMyMTwo dark velvet green chlorite (after amphibole?)dykelets cross-cut the core in this interval. Contacts aredistinct and orientated at ~50-75 degrees to core axis.Two intervals of brown-buff dolomitic carbonatite, similarto above unit at 141.6-148.13m.08-Aug-08repLitho_FullLog:Report	amphibolite calcite 1 dolomite 20	White calcite veins (<2cm wide) cross-cut core rock Almost appears to overprint the chlorite matrix	nb ma	0.5	Fine-medium grained (<0.1- 0.3cm across), generally in dolomitic zones and occuring as discontinuous bands. Appears to be mainly finely disseminted throughout chloritic	laminations veining					

	Taseko Mines Limited Aley Project					DLO	GY LOG	,	C	rystal Chung Da	ate 13-Se	p-07		Hole ID 2007-006 Page 8 of 9	
INTERVAL(m)	Z O	H C		ALTERATION				MINE	RALIZATION	STRUCTURE					
From To	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
	•				silica			ру	0.05	matrix with occasional bleb (up to 1cm wide). Trace amounts of fine					
138.4144.5Slightly mottled pale o 0.5cm across) roc noderately silicified Docasional smears to liffused "contact" ori Somewhat blocky cc trackle-brecciated a contact at 65 degree144.5148.2Veakly laminated, p ninor irregular smear content moving down Competant core rock preakage orientation	kmass. App matrix with s to brown-buff ientation at ~ ore rock, cross mphibolite d ss to core axi dICD ink-buff dolo ars of blue-gr (<0.1cm). D nhole. < with few fra	opears to slight su f dolom ~45 deg ss-cut b ykelet (is.	b be wea ucrosic te ite; gene grees to o y one w ~7cm wi M wckmass itic carb ing dolor	k- exture. eral core axis. eakly ide); with onatite. nite	amphibolite calcite dolomite silica amphibolite calcite dolomite silica	1 10 15 5 2	One weakly crackle- brecciated dykelet cross-cuts core. Trace amounts of fine- medium grained blebs (0.1- 0.4cm) also noted. Irregular smears, usually associated with decalcified and pitted zones. Weak-moderately silicified matrix (sucrosic texture). Decreasing dolomite content moving downhole. Matrix appears to be very	ma py nb	0.7	disseminations. Finely disseminated grains (<0.1cm across) scattered throughtout the matrix. Niobates generally occur as fine disseminations (<0.1cm), with ~0.2% occurring as medium sized elongated blebs (up to 0.5cm across long axis). Mostly occurs in patches of pink-buff rock.	laminations veining laminations veining	VW W 	25	~15-40 degrees to core axis. Narrow, irregular grey-white and cream calcitic stringers.	
148.2 152.4	blCCCD		VW		amphibolite	0.5	weak-weakly silicified.	ma py nb	0.8	Niobate mineralization generally	laminations	m	30	Laminations defined by mm to c	
Neak-moderately la Appears to be slightl ragments (up to 7cr Blue-grey xenolith cl banded with narrow inely disseminated r Good competant cor broken core. No pre	ly brecciated n across). asts appear and discontin niobate mine re rock with v	l and co to be c nuous s eralizati very mi	ontain xe alcitic ca stringers on. nor zone	nolith arbonate carrying s of	calcite dolomite silica	30 5	(up to 0.3cm) scattered throughout the matrix.Mostly in xenolith fragments with distinct contacts.Matrix is weakly silicified,	ma		occurs in narrow (<0.2cm wide) discontinuous stringer following lamination orientation in calcitic zones. In dolomitic zones, niobates occur mostly as fine disseminations (~0.2%)	veining	w	30	scale bands of pink-buff dolomte a blue-grey calcite (up to 2cm wide Discontinuous veinlets/stringers (<0.2cm wide), generally carrying small niobate and/or pyrite grains	
OH @ 152.4m							espcially in calcite rich zones.	ру	0.1	Pyrite occurs similiarly to niobates; generally carried in narrow and discontinuous stringers in calcitic zones.					

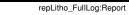
Hole ID 2007-007

Page 1 of 12

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Quala	Fabric
Code	Fabric
x	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
Z	fault
е	strained
s	shear zone
У	dyke


Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
СС	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

	DRILL HOLE	INFORMATION	
Coordinate System	Easting	Elevation	
UTM	454275.00	6257514.00	1991.00
Collar Azimuth	Collar Dip	Planned Depth	Final Depth
	-90.00		134.12
Overburden (m)	Casing (m)	Tricone (m)	
	0.00		
•	Down hold	Survey Data	
1			
Depth (m)	Azimuth	Inclination	Method


	Drilling	Data	
Bit Size	From	То	Length
NQ2	0.00	134.12	134.12
	Professional/Tec	hnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Full Force Drilling		
Geology By	CC		
Geotechnical Log	DB		
Specific Gravity	CC		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Comme	ents	
	Mechanical d	ifficulties.	

Taseko Mines Limiteo Aley Project	GEC)LO	GY LOG	/	С	rystal Chung Da	ate 17-Se	p-07		Hole ID 2007-007		
INTERVAL(m) Rock o		ALT	ERATION		MINE	RALIZATION	Page 2 of 12 STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
0.0 3.1 CASE	amphibolite			nb	-		laminations					
Casing; no core rock recovery.	calcite dolomite silica			ma py			veining					
3.1 9.8 gfCC W	amphibolite	0.3	Generally occuring as	nb	0.5	Mostly occuring as small	laminations					
Mottled grey and brown-buff calcitic rockmass. Weak reaction with HCl except in brown-buff coloured zones. Strong decalcificiation textures in soft, "muddy'/sandy zones. Texture also possibly due to weathering by	calcite		medium-dark grey-green slighly poikioblastic, angular grains.			subhedral-euhedral aggregates (up to 0.3cm across), some <0.1% occurs as fine disseminations. Appears to be	veining	W		Minor amounts of cream calcitic veinlets (<1cm wide). No dominan orientation.		
meteoric water. Blocky, rubble core with moderate recovery. <20% of the interval is intact core.No preferred fracturing orientation.	dolomite	15	Buff-brown coloured, increasing content moving downhole.	ma py		mainly pyrochlore.						
	silica	1	Weakly silicified matrix.				4 74					
9.8 13.8 gfCD W Medium-dark brown-buff strongly decalcified/weathered(?) interval. Rubble with <5% solid core rock. Most of interval has texture/matrix of sandy	amphibolite	0.5	Occasional phenocryst grained (subhedral-euhedral, <0.5cm across) seen in "sandy mud" matrix.	nb	0.7	Generally occuring as fine- medium grained subhedral- euhedral grains (0.1-0.4cm across).	laminations veining	W		Minor amounts of cream-white calcitic veinlets (<0.1cm), some carrying dark green amphibolite.		
mud. Rare sections of solid core rock are generally <15cm in ength. These zones are light-medium brown-buff coloured and reacts moderate-strongly to HCI.	calcite	3	Minor cream-white calcitic veinlets (<1cm wide). Occasional phenocryst grain (<0.4cm across) seen in "sandy mud" matrix.	ma py	0.05	Trace amounts of fine grained (<0.1cm) pyrite noted in "sandy mud" matrix.	1			eurying durk green umpinoonte.		
	dolomite silica						16					
13.8 16.6 bICCCD M Similar to unit uphole at 3.28-10.58m. Weak-moderately laminated/banded grey and medium	amphibolite calcite	0.8 40	Small subhedral-euhedral grains (<0.3cm). Groundmass of solid core	nb	0.5	Niobate mineralization mostly occurs in this interval in elongated grains following	laminations veining	m	45	~40-50 degrees to core axis. Brown buff bands up to 1.5cm wide.		
brown-buff calcitic rockmass. Moderate-strong reaction with HCI. ~63% of interval has texture of sandy mud and appears to be strongly decalcified/weathered by meteoric water(?). Solid sections of core rock also has moderate pitted textures, generally following lamination orientation.	dolomite		rock generally blue-grey in colour Buff-brown bands in calcitic groundmass. Dolomite also appears to compose most of the "sandy mud" matrix.	ma py Responsible		lamination orientation. Trace amounts of fine disseminations also noted.						

Tc		o Mi ley Pl			nited	GEC	DLO	GY LOG		C	rystal Chung Da	ate 17-Se	p-07	I	Hole ID 2007-007 Page 3 of 12	
INTERV	′ A L (m)	Rock	Z o	H C			ALT	ERATION		MINE	RALIZATION	STRUCTURE				
From	То	Code	n e	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
						silica	1	Solid sections of core rock appear to be moderately hard and likely to be weakly silicified.								
16.6	18.0	gfCD		S		amphibolite			nb	0.2	Slightly elongated blebs (up to	laminations				
Similar to in						calcite	5				0.3cm across long axis), appears	veining				
Medium-dar moderately						dolomite			ma		almost as discontinuous stringers.					
rock with ~3 matrix. Soli						silica				0.05	Rare-trace amounts of finely					
"sandy mud						1			ру	0.05	disseminated pyrite grains scattered throughout matrix.					
18.0 19.6 bfCCCD VW Similar to above unit at 14.8-17.83m. Weak-moderately laminated/banded grey and light- medium brown-buff calcitic rockmass. Weakly silicified					amphibolite	0.2	Occurs as medium grey-green sub-angular grains (up to 0.3cm), usually somewhat associated with mineralization		0.3	Niobates tend to occur as elongated blebs (up to (<0.4cm across long axis), nearly forming discontinuous stringers/bands.	laminations	m	45	Light brown-buff, slightly diffused bands ranging from 0.1 to ~3cm wide.		
matrix, mos ~33% of inte	tly in zone	es of blue-	grey col	ouring.		calcite			ma		discontinuous su nigers/bands.	veining				
locallized/al remainder is rubblely ser	most ban s made u	ded zones	of pitted	d texture	es. The	dolomite	30	Irregular wispy bands of light- medium bands of dolomite.								
						silica										
19.6	22.3	dfCD		М		amphibolite			nb	0.05	Rare-trace amounts of niobate	laminations				
Similar to u Medium-dar interval. Ru	rk brown-l Ibble with	ouff strongl ~10% of s	y decale olid core	e rock.		calcite	1	Grey calcite mostly occuring as narrow veinlets (<0.1cm			mineralization, mostly occuring as fine-medium disseminated grains (up to 0.3cm across).	veining	VW	55	Narrow grey-white calcicitic stringers (up to 0.5cm wide).	
Remainder mud.	of interva	has textu	e of ser	mi-solid	sandy	dolomite		wide)			Almost forming discontinuous					
Rare section						silica					stringers.					
length and r zone do not brecciated t material.	. Very m	nor zones	(<2%) 0	of noted	-	sinca			ma py							
22.3	27.3	bfCC		VW		amphibolite			nb	0.1	Niobates generally occur as	laminations	W	45	Weak-moderately diffused brown-	
Weakly lam 0.3cm acros	inated/ba ss) mottle	nded, fine- d cream-w	hite and	l light br	own-buff	calcite	7	Constally occurs on differend			weakly elongated small-medium grains (<0.1-0.3cm across) in				buff bands, ranging from 0.2 to 2.5cm wide.	
rockmass. Appears to mostly be calcitic with minor amounts of silicification. Strongly decalcified and rubble core ("sandy mud"		"bu	dolomite	1	Generally occurs as diffused and discontinuous stringers/bands.			very diffused bands, becoming more disseminated moving	veining	VW	40	Very discontinuous stringers carrying niobate mineralization.				
texture) with rock. Minor						silica	4	Weak-moderately silicified			downhole.					
08-Aug		-		ullLog:Re		11		HUNTER	Responsible							

INTER	/ A L (m)		Z o	н С			ALT	ERATION		ΜΙΝΙ	RALIZATION	STRUCTURE					
From	То	Code	n e	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
olomitic c	arbonatite	(<10cm in	length)					matrix.	ma								
									ру								
27.3	31.0	gfCD		S		amphibolite			nb	0.3	Niobates mostly occurring as	laminations					
noderately	decalcifie	buff, fine gr ed/weathere solid core r	d rockr	nass. B	llocky	calcite	1	Blue-white, medium grained (0.2cm across) calcite			small subhedral-euhedral grains (<0.2cm across) scattered	veining	W		Narrow calcite veinlets (<1cm wid with no preferred orientation.		
nterval is c	omprised	of semi-so	id "san	dy mud"	'.			generally occuring as narrow	ma		throughout matrix.						
ICI while r		e rock gene es do not.	rally rea	acts stro	ongly to	dolomite		veinlets (<1cm wide).	ру								
						silica			17								
31.0	33.7	glCC		W		amphibolite	0.2	Small-medium angular	nb	0.1	Small-medium grained aggregates	laminations	W	45	Wispy, diffused and irregular		
	led cream and light brown-buff, fine-medium grained			1		aggregates of dark grey-green			of red-brown niobate				banding of brown-buff (ranging free				
	0.1-0.3cm) rockmass with weak-moderate silicification the matrix. irly competant core rock with minor zones of blocky re and semi-solid "sandy mud" matrix. Preferred	cification	calcite		(up to 0.4cm across).			mineralization noted scattered throughout the matrix. Generally	veining	W	40	0.2 to 1cm wide) Irregular cream-white calcitic					
			dolomite	5	Diffused and irregular pale			occuring in brown-buff zones.	venning	vv	40	stringers, up to 0.4cm wide.					
		at ~50 deg				doioinite	5	brown-buff bands.	ma								
						silica	1	Weak-moderately silicified.	ру								
33.7	36.6	nfCD		М		amphibolite	0.1	Trace amounts of fine grained	nb	0.05	Rare-trace amounts as small	laminations					
		fine-grained white calcit				calcite	15	dark black-green chlorite. Mostly seen as infilling			aggregates (<0.2cm grains), generally noted in calcitic	veining	W	35	Narrow white calcite stringers		
f lighter co	loured, m	ore calcitic	and sil	icified ur		calence	15	material in healed brecciated			carbonatite zone.				(<0.2cm wide).		
Noderately	competar	nt core rock	with ~	45% soli				zones. Minor patch of cream	ma								
sandy mu	d" matrix.	of the inter Slight orier	ntation	noted or	ı	dolomite		white calcite carbonatite.	ру								
lecalcicific ore axis.	ation textu	ures, orienta	ated at	~40 deg	rees to	silica											
36.6	39.8	gCC		W		amphibolite	0.5	Fine to medium (<0.1-0.4cm),	nb	0.3	Small-medium red-brown,	laminations	VW	45	~30-50 degrees to core axis, wisp		
		e at 33.35-3				1		subhedral to euhedral grains			euhedral aggregates, up to 0.4cm				and diffused light brown-buff		
		ght brown-b Iss. Matrix						of dark black-green scattered throughout the matrix.	ma		across.	voining			colouring.		
licified.	,	e rock with			•	calcite		inoughout the matrix.	ma nv			veining					
ore and a	small zon	e (~20cm ii	n length	n) of sem	ni-solid	dolomite	15	Irregular "washes" of light	ру								
sanuy mu	i indliix.	No preferre		uning off	entation.	4		brown-buff, almost apear to be very weak bands.									

			Z	н			ΔΙΤ	ERATION		MIN	ERALIZATION	STRUCTURE				
INTERVAL (m)		Rock Code	0	c										5 T II	o o i o n E	
From To	1		n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
						silica	10	Matrix in this interval is weakly silicified.								
39.8 42.2	gf	CCCD		М		amphibolite			nb	0.2	Fine grained subhedral-euhedral	laminations				
nterval of mixed roo						calcite					red-brown niobate mineralization;	veining	w	65	Ranging from 0.2 to ~1.5cm wide,	
nedium brown-buff eactive to HCI). The						dolomite	70	Identified by medium buff-	ma		likely that majority is pyrochlore.				dark velvet green bands (chlorite?)	
vhite fine-medium g alcitic carbonatite (y silicified			brown colouring, however,							and white calcitic stringers (<0.3cm cross-cut the core rock.	
Somewhat competa	ant co	ore rock v	vith ~3	85% inta				reacts strongly to HCl.	ру						cross-cut the core rock.	
ock. Zones of med strongly decalcified						silica	1	Weak-moderately silicified patches.								
mud".	4.14				ila cailay	ļ		patenes.								
42.2 43.3	(dlCC		Μ		amphibolite	0.3	Rare-trace amounts of dark	nb	0.05	Trace amounts of fine-medium	laminations	m	30	Diffused bands of cream to brown-	
	eak-moderately laminated fine-medium grained (<0.1- lcm) white-grey calcitic carbonatite. Weak washes of nt brown-buff noted throughout the matrix; orientated a					green specks. Chloritic veinlets noted.			disseminated red-brown grains. Occasional aggregate (<0.4cm).				buff, ranging from <0.1 to 3cm wide (forming contact zones to veinlets)			
ight brown-buff note			calcite		vennets noted.	ma		Occasional aggregate (<0.4em).	veining	w	45	Narrow veinlets (<1cm) of white				
0 degrees to core axis. Matrix appears to be very sakly silicified.		dolomite	5	Irregular washes and				venning		15	calcite and dark green chlorite(?)					
Competant core roc	npetant core rock with minor amounts of facturing.	doioinite	5	"veinlets".	ру											
No preferred breaka	age c	prientation	າ.			silica	0.5	Locallized zones of weak								
								silicification.								
43.3 44.3	(lfCD		S		amphibolite			nb	0.07	Trace amounts of fine-medium	laminations	W	35	"Lamination" orientation seen in	
Medium brown-buff,		grained	(<0.10	m) rock	mass.	calcite	0.5	White calcite present mostly			grained disseminations.				semi-solid "sandy mud" matrix.	
Strongly reactive to Noderately blocky c		rock with	~40%	of this i	interval			as infilling material; seen as			Generally scattered but occasionally following veining	veining	VW		Irregular narrow white calcitic infilling veinlets (<0.5cm wide).	
comprised of strong Fracturing generally	gly de	ecalcified	"sand	y mud"	matrix.	1.1		narrow and irregular veinlets.			orientation. Rare graine >0.2cm				infining venifets (<0.5em wide).	
axis.		intaleu al	200	egrees		dolomite					across.					
						silica			ma							
									ру							
44.3 47.6	dl	CCCD		М		amphibolite	0.5	Small-medium grained dark	nb	0.4	Disseminated and aggregated red-	laminations	m		No dominant lamination orientation	
Veak-moderately la								blue-green grains. Slightly			brown grains (<0.1-0.3cm);				varies from low-moderate angles	
0.1-0.4cm) buff-gre alcite-dominanted								orientated along laminations.			weakly forming very diffused/discontinuous stringers.				(sub-parallel to ~40 degrees) to cor- axis.	
natrix, generally in o	calci	tic zones				calcite					Larger grains tend to be in	veining	w	40	Weak-moderate veining density;	
airly competant co prientated at ~35 de						dolomite	35	Fine grained brown-buff dolomite, occurs mostly as			dolomitic sections.	, ching	**	10	mostly narrow grey-white calcite	
lecalcified zones (~						J		irregular washes and bands	ma						stringers (<0.2cm wide).	
						(up to ~15cm wide).	ру									
08-Aug-08				ullLog:Re												

HUNTER Responsible DICKINSON Mineral INC. Development

Taseko Mines Limited GEOLOGY LOG

Log by

Crystal Chung

Taseko Mines Limited	GEOI
Aley Project	

Log by

Crystal Chung

Date 17-Sep-07

Hole ID 2007-007

Page 6 of 12

INTERV	A L (m)				н С			ALT	ERATION		MINI	ERALIZATION		:	STR	UCTURE
From	То	Code	n e		Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
							silica	5	Weakly silicified matrix.							
47.6 Mottled fine	49.2 grained b	gxCCC D uff-brow	n and	arev-c	M ream,	dolomite-	amphibolite calcite	30	Weakly silicified, slightly coarser grained calcitic	nb	0.4	Fine-medium sized (<0.1-0.5cm) red-purple-brown aggregates. Appears to be forming diffused	laminations	VW	40	Very weak laminations(?). Some clasts in brecciated noted to be weakly orientated.
dominated, brecciation "clasts" and	(~35% of grey-whit	interval) e calcite	with a string	ngular ers an	buff-b d dark	orown k maroon	dolomite		carbonatite.	ma		veinlets (<0.6cm wide).	veining	m	30	Irregular grey-white calcite veinlets infilling open space fractures (<1cm
decalcified of Somewhat of breakage or	competan						silica			ру						wide).
49.2 Fine grained locallized ca			ite car				amphibolite	0.1	Minor blebs (<0.3cm across) of yellow-green; possibly chlorite(?).	nb	0.6	Irregular disseminated and aggregated red-purple-brown blebs (up to ~1cm).	laminations			Slight banding of decalcified zones at ~15-20 degrees to core axis (up to ~5cm wide).
decalcified r 'sandy mud maroon brov Fairly hard a fracturing or	". Minor 2 wn dolom and slightl	te (mang y blocky	2% of ganife core r	interva ous?) ock. F	al) of d Preferr	lark red	calcite	15	Zones of cream-grey slightly coarser grained calcite; weakly silicified matrix.	ma py			veining	W	30	Trace-minor veining density; mostly irregular and narrow grey-white (some iron stained) calcitic stringers
inacturing of	Terriation		egrees				dolomite silica		Variable composition(?)							noted (<0.2cm wide).
53.7	55.0	dfCD			S		amphibolite			nb	0.1	Trace-minor amounts of finely	laminations			
Similar to un Medium tan dolomite car orecciation "clasts" and	-brown, w rbonatite. (~20% of white cal	eakly de Localliz interval) careous	calcifi ed zor with c stringe	ed, fine nes of oarse	weak angula	ar	calcite dolomite	10	Variable composition. Small bands of dark maroon colouring (possibly			disseminated niobate mineralization; rare-trace amounts of slightly elongated red- purple-brown grains (up to 0.2cm across long axis) also noted.	veining	W	50	Slightly vuggy white calcitic stringers (<0.4cm wide). Irregular veinlets (<1cm) infilling open-space fractures in brecciated zones.
wide) infillin Blocky core stringers, or	rock with	fractures	s gene						manganiferous?), mostly seen in strongly decalcified zones.	ma py		across long axis) also noted.				
	5 0.4	1100					silica									
55.0 Weakly lam grained (<0.			d crea	n-whit			amphibolite calcite			nb	0.2	Fine-medium disseminated red- purple-brown grains (up to 0.2cm across), subrounded in shape.	laminations	W	45	Weak-moderate laminations. Mainly defined by bands of colour variation between calcite and dolomite.
minor buff-b minor zones interval).	rown dolo	mite. W	eakly	silicifie	ed ma	trix with	dolomite	20	Occurs as diffused buff- brown and tan-brown wisps	ma	0.01	Rare-trace silver black very fine grained (<0.1cm) specks; possible	veining	W	45	Trace veining density; cream-grey and buff-brown bands (up to 4cm
Fairly hard a of fracturing fracture run length) note	, no prefe ning sub-p	rred brea	akage	orienta	ation.	One	silica	10	and bands (up to ~5cm wide). Weakly silicified matrix; weak sucrosic textures.	ру		magnetite(?).				wide) noted near lower contact.

Taseko Mines Limited	(
Aley Project	

Log by

Crystal Chung

Page 7 of 12

INTERV	A L (m)	Rock	Z o	Н С			ALT	ERATION		ΜΙΝ	ERALIZATION		S	STR	UCTURE
From	То	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
58.4 Medium tan- Weakly brec space fractu Blocky core, degrees to c	ciated wit res. dominan	h grey-wh	ite calo	cite infillin	g open-	amphibolite calcite dolomite silica	2	Grey-white calcite veinlets (<1cm wide).	nb ma py	0.2	Fine-medium sized (up to 0.3cm) dark euhedral grains (fermsite?).Finely disseminated brassy specks noted (<0.1cm); possibly	laminations veining	W W	50	Weak-moderately laminated, defined by alignment of matrix grains. No dominant orientation. Irregular grey-white calcite veinlets infill ope space fractures in brecciated zones
59.5 Mottled and a nixed carboi puff-brown d calcite. Stro precciation w open-spaces decalcificatio Fairly hard a racturing, pr	speckled natite. Fa olomite a ng dolom vith angul s. Minor z on (~3% c nd compe	airly equal nd slightly itic section ar clasts a zones of m of interval) etant core	amour coarse ns tenc nd wh oderat rock w	nt of fine g er grained I to have ite calcite te-strong	rained white slight infilling	amphibolite calcite dolomite silica	0.6	Soft dark blue-green blebs (<0.1-0.3cm); chlorite after amphibole. Tan-brown fine grained dolomitic zones tend to show weak-moderate brecciation. Otherwise, occurs as irregular wisps and bands. Weakly silicified matrix, most noticable in calcitic zones.	nb ma py	0.8	phlogopite flakes(?). Disseminated to aggregated irregularly shaped blebs (<0.1- 0.3cm across). Appears to be combination of red-brown pyrochlore and minor dark brown- black fersmite(?).	laminations veining	vw m	35	Very weakly laminated. No dominant orientation. Grey- white calcite veinlets (<2cm wide) infilling open-space fractures in brecciated zones.
63.1 Nottled tan-b o be dolomin and bands. Silicified. Lo noderate de Fairly hard a racturing, ge prientated at	te-domina Grey calc callized s calicified. nd compe enerally a	ated, occu itic zones mall zone etant core long veinin	ring as tend to s (~3% rock w ng stru	irregular b be weak of interva ith minor ctures. P	washes ly al) of	amphibolite calcite dolomite	0.5	Dark grey-green blebs (up to 0.5cm across), forming very diffused bands (up to ~2.5cm wide). Locallized zones of weak- moderate iron stained.	ma	0.4	Subhedral aggregates (up to ~1cm across) of red-brown and dark black-brown; often forming discontinuous stringers. Rare-trace amounts of silver- black magnetite scattered throughout matrix.	laminations veining	m w	20 65	~60-70 degrees to core axis. Mostl grey-white calcite veinlets (<1cm wide). Very diffused mineralized stringers also present.
65.7 Weakly lamin calcite-domin dolomitic cor moderate de dolomitic zor angular clast fractures. Fairly compe proken/block ~40 degrees	nated, mo nanted mi ntent mov calcificati nes tend t ts and wh etant core cy core.	ixed carbo ring downh ion (~8% d to appear ite calcite rock with Dominant l	natite. Iole. Nof inter Dreccia Infilling minor	Increasi Ainor zone val). Stro ated with I g open-sp zones of	ng es of ng arge ace	silica amphibolite calcite dolomite silica	2 35 2	Weakly silicified calcitic zones. Variable composition with mainly wisps and bands of tan-brown, but occasional dark maroon-brown colouring (manganiferous?) is noted. Very weakly silicified matrix.		0.5	Fine-medium grains, increasing in size (up to 0.5cm across) scattered throughout matrix, often forming discontinuous bands (<0.3cm wide) at ~40 degrees to core axis.	laminations	w	20	Variable lamination orientation, ~1 30 degrees to core axis. Defined by diffused bands of slight colour variation (up to ~3cm wide). Weak-moderate veining density wit no preferred orientation. Mostly veinlets (<1cm) of grey-white calcit as infill in brecciated zones.

Taseko Mines Limited Aley Project					GEC)LO	GY LOG		C	Frystal Chung	Date 17-Se	эр-07		Hole ID	2007-007 Page 8 of 12
INTERVAL(m)		Z o	н С			ALT	ERATION		MINE	RALIZATION			STR	UCTURE	
From To	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	(Comments
race-minor amount pecks, appears to b			cm) bras	ssy yellow											
72.9 75.1 Aedium tan-brown, j arbonatite. Localliz coarse angular clast calcitic stringer infill.	ed zones of s and narro	of weak	brecciati /uggy gre	on with ey-white	amphibolite calcite dolomite	2		nb	0.05	Trace amounts of what appears to be subhedral-euhedral (~0.1cm) niobate grains. Generally noted in zones of strong decalcification		w m	70	slight align 1 No domina	ations noted, defined ment and elongation on matrix grains. ant orientation. Narrow
lightly darker colou Blocky core rock wit lecalcified to fine-m 0.1% Fine yellow sp	ring (possil h ~40% of edium rubl	bly many interval ble and '	ganiferou moderat 'sandy m	is?). e-strongly iud".	silica			ma py		as more resistant grains.				calcite strin	0.4cm wide) grey-whit gers infillin open-spaces in brecciated zones.
) calcite ca	arbonatit	e. Minor	dolomitic	amphibolite	0.1	Possible trace amounts of chlorite (after amphibole?) throughout matrix.	nb	0.1	Trace amounts of slightly elongated red-brown grains (up t 0.3cm across long axis); often	laminations	VW	35	slight align	y laminated, defined l ment and elongation on matrix grains.
ucrosic textures).	irly hard and competant core rock with very minor			calcite dolomite	5	Generally occurring as weakly diffused buff-brown bands with cream-brown	ma py		forming slightly discontinuous stringers (<0.1cm wide).	veining	m	40	dolomite. N	ght buff-brown bands Ainor amounts of narro ous niobate stringers.	
					silica		envelopes (up to ~1cm wide).				_				
76.8 80.6 imilar to unit uphole ledium-dark tan-bro	own, fine g	rained, r	noderate		amphibolite calcite	2		nb	0.05	Rare-trace amounts of fine aggregates (up to 0.1cm) of black brown colouring, noticed mainly		VW	50	lamination	veak and locallized ns, defined by slightly ned matrix grains.
lecalcified dolomite lolomite (similar to i 6.77m). Weak-mo naroon-brown (man	mmediatel derately br ganiferous	y uphole ecciated ?) zone	e at 75.13 I, mostly s, with la	3- in darker rge	dolomite silica			ma		in zones of strong decalcification as more resistant grains.	¹ veining	w		blue-grey ca	nt orientation. Irregula alcitic veinlets (<1.5cm g brecciated zones.
ubangular-angular Blocky, rubbly core i emainder being stro natrix.	rock with ~	35% inta	act core,					ру							
.1% fine yellow mic 80.6 82.3	a specks. blCC		VW		amphibolite	0.1	Trace amounts elongated dark	nb	0.1	Trace amounts of mostly narrow	laminations	m	45	~40-55 0	legrees to core axis.
Beigh-cream-grey, fi Icross) calcite carbo Irained brown dolon	ne-mediun onatite with	i minor v	d (up to (visps of f	ine	ampinoonte	0.1	discontinuous stringers (up to 0.4cm across long axis);		0.1	but elongated red-brown grains (up to 0.5cm across long axis), forming discontinuous stringers		m	40	Lamination wisp and c	is defined by dolomitic liscontinuous stringers derate veining density;
Beigh-cream-grey, fi across) calcite carbo grained brown dolon matrix. 08-Aug-08	onatite with	n minor v k-moder	visps of f	ine ified			green grains, forming discontinuous stringers (up to	Responsible		but elongated red-brown grains (up to 0.5cm across long axis),			40	Lamination wisp and c	ns defined by dolo liscontinuous strin

Taseko Mines Limited	GEO		GY LOG		C	rystal Chung Da	ate 17-Sep	o-07	I	Hole ID 2007-007		
Aley Project										Page 9 of 12		
INTERVAL(m) Rock o C Code n		ALT	ERATION		ΜΙΝΙ	RALIZATION	STRUCTURE					
From To E	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
Hard and fairly competant core rock with trace fracturing, nostly orientated at ~40 degrees to core axis.	calcite		possibly chlorite or fersmite(?).	ma py	0.01	Possible rare-trace amounts.				very discontinuous niobate(?) stringers noted (<0.1cm wide).		
	dolomite	5	Buff-brown fine-grained dolomite, mainly occurs as diffused wisps and bands (up to ~1cm wide).									
	silica	15	Weak-moderately silicified matrix (sucrosic textures noted).									
82.3 86.0 gICD S Beigh-buff-brown, fine grained (<0.1cm) dolomite carbonatite. Matrix is weak-moderately laminated and ocally weakly brecciated (coarse angular clasts with calcite infilling open-space). Somewhat competant core rock with ~45% of interval moderate-strongly decalcified and broken down to fine- nedium rubble and "sandy mud" matrix.	amphibolite calcite dolomite silica	1	Variable composition with zones/bands of different shades of brown (tan- to maroon-brown).	nb ma py	0.1	Minor amounts of red-brown, slightly elongated blebs (up to ~0.2cm across long axis). Trace amounts of fine-medium (<0.1-0.2cm across) silver-black subangular grains.	laminations veining	m w	25	~20-30 degrees to core axis. Orientated diffused coloured band (up to ~1cm wide). Weak-moderate veining density with no dominant orientation. Vuggy an slightly irregular grey-blue calcitic veinlets (<1cm) often infilling brecciated zones.		
86.0 87.1 gICC VW Small interval of blue-grey, moderately silicified calcite carbonatite with minor wisps of dolomite. Sucrosic exture noted throughout matrix. Hard and competant core rock, rare fracturing at ~55 degrees to core axis.	amphibolite calcite dolomite silica	1 5	Very diffused beigh-buff bands (~0.3cm wide).	nb ma py	0.1	Trace-minor amounts of small red- brown (~0.1cm) blebs scattered in matrix.	laminations veining	VW	40	Possible very weak laminations, defined by slight matrix colour variations.		
87.190.4gfCCCDMMottled blue-grey and buff-blue mixed carbonatite. Medium grained calcite and fine grained dolomite appear to occur in fairly equal amounts. Fairly hard and somewhat competant core rock with ~30% of interval moderate-strongly decalcified and oroken down to semi-solid rubble and "sandy mud" matrix.0.1% trace-minor amounts of fine yellow mica specks (<0.1cm across), likey phlogopite.	amphibolite calcite dolomite silica	3	One ~50cm (at 89.2989.78m) -wide patch of calcite only carbonatite noted within this interval. Narrow and discontinuous mineralized stringers noted in sub-interval. Weakly silicified matrix.	nb ma py	0.1	Rare-trace fine-medium sized (up to 0.2cm) black-brown subhedral grains with ocasional red-brown blebs noted throughout matrix. Narrow discontinuous stringers noted in calcite-only carbonatite sub-interval.	laminations veining	w		Minor veining density with no preferred orientation. Generally narrow and discontinuous cream- white calcitic stringers infilling tension cracks (<1cm wide).		

Α	ley P	roje	ct		0.20									Page 10 of 12
INTERVAL(m)	Rock	Z o	H C			ALT	ERATION		MIN	ERALIZATION		;	STR	UCTURE
From To	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
90.4 94.5 Fault zone(?) Tan-brown, fine-grain appears to be minor calcite carbonatite. I noted. Interval of broken/sha core. Most of interva and ~20% completely mud" matrix.	zones of sil ocallized z attered core I is compris	licified of ones of e rock w sed of fi	vream-wł weak br vith <1% ne-medi	hite ecciation intact um rubble	amphibolite calcite dolomite silica	2	Variable composition as evidence by different colour bands (yellow-tan to dark maroon-brown).	nb ma py	0.2	Trace-minor amounts of fine- medium (up to 0.2cm) subhedral to euhedal black-brown grains.	laminations veining	W		Difficult to determine veining density/orientation due to brokenness of core rock. Grey-white calcite veinlets noted infilling brecciated zones (<1cm wide).
0.2% Trace-minor an 94.5 95.3 Fault zone(?) Smll interval of blue- carbonatite. Sucrosi throughout matrix. W Interal of broken/sha mainly orientated at I	CC grey, mode c texture no /eakly iron tered core ow-modera	rately s bted tex stained rock, a	VW ilicified c ture note opears to	alcite d be	amphibolite calcite dolomite silica	0.5 15	Narrow, irregular buff wisps. Weak-moderately silicified matrix.	nb ma py	0.05	Rare-trace subhedral-euhedral black-brown specks (<0.1cm)	laminations	vw	25	Possible very weak laminations, defined by very minor colour variations, generally between calcite and dolomite.
Similar to unit uphole Fault zone(?) Tan- to maroon-brow with minor intervals of only carbonatite. Loo orecciation (~10% of clasts with grey-white fractures. Interval of shattered	gxCDz at 90.38-9 n, fine graii f weak-moo callized zon interval); n e calcite infi and blocky	ned dol derately les of w nedium- illing op core ro	v silicified eak-moc coarse a en-space ck with ~	l calcite- lerate Ingular 9 25%	amphibolite calcite dolomite	0.2	Trace-minor amounts of chlorite (after amphibole?). Narrow, fine-grained dark grey-green bands noted mostly in brecciated zones. Several minor zones of cream- white calcite-only carbonatite (up to ~60cm in length). Variable composition,	nb ma py	0.25	Fine-medium subrounded blebs of red-brown (up to 0.2cm across), often slightly elongated and forming discontinuous stringers.	laminations	w	55	~50-60 degrees to core axis. Locallized zones of weak-moderate laminations, defined by slight alignment of matrix grains. Difficult to determine veining density/orientation due to brokenness of core rock. Grey-white, vuggy calcitic veinlets (<1cm wide) infilling brecciated open-spaces.
intact core. Most of i rubble and ~30% cor into semi-solid "sand 0.2% Fine yellow mic 106.0 110.4	npletely de y mud" ma	calcified trix.	d/broken		silica	1	variable composition, evidenved by bands/clasts of different colouring. weakly silicified calcitic matrix.	nb	0.05	Rare-trace niobate mineralization.	laminations			infining breeclated open-spaces.
Similar to unit uphole Mottled blue-grey and (<0.1-0.3cm across), carbonatite. Matrix h silicified?). Fairly competant core 08-Aug-08	d buff-blue, calcite-dor as weak su e rock with	fine-me ninant r ucrosic f ~15% c	nixed texture (v	veakly I	calcite dolomite	5	Narrow and irregular band/stringers of buff-tan (<1cm wide).	ma py			veining	W	40	Narrow, vuggy grey-white calcareous stringers (<0.5cm wide).

GEOLOGY LOG

Taseko Mines Limited

HUNTER Responsible DICKINSON Mineral INC. Development

Date 17-Sep-07

2007-007 Hole ID

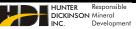
Taseko Mines Limited Aley Project	GEO	LO	GY LOG		C	Crystal Chung Da	ate 17-Se	p-07		Hole ID 2007-007 Page 11 of 12
INTERVAL(m) Rock o C		ALTI	ERATION		MINI	STRUCTURE				
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
comprised of shattered core. Preferred fracturing at ~40 degrees to core axis.	silica	7	Weak-moderately silicified matrix.							
110.4 114.5 gxCD M Weak fault zone(?). Mottled beigh-buff fine-grained dolomite carbonatite with minor calcite content. Locallized zones of weak-moderate brecciation with grey-white calcareous veinlets as infill. Blocky and broken core rock with ~25% intact core. Blocky and broken core rock with ~25% intact core. Small zones (~7% of interval) of complete decalcified/broken down into fine rubble and "sandy mud" matrix. 114.5 116.3 gICCCD W Weak-moderately laminated mottled blue-grey and beighouff calcite-dominant mixed carbonatite. Fine-medium grained (<0.1-0.3cm) weakly silicified matrix with irregular bands of fine-grained (<0.1cm) dolomite.	amphibolite calcite dolomite silica amphibolite calcite dolomite silica	5 25 5	Occasional patches of cream- white coarser grained (up to 0.3cm across) silicified calcite-dominant carbonatite. Variable composition evidenced by bands and clasts of different shades of brown. Slightly variable composition as evidence by slight colour changes (beigh to tan brown). Weakly silicified matrix, mostly in grey-white calcitic	nb ma py nb ma py	0.2	Fine-medium grained (up to 0.2cm) niobate mineralization, more concentrated moving downhole. Subhedral-euhedral black-brown grains. Fine-medium sized subrounded red-brown grains (up to 0.3cm across) scattered throughout matrix.	laminations veining laminations veining	w m m vw	25 45 40	Weak laminations, defined by slight alignment of matrix grains. Difficult to determine vein density/orientation due to brokenness of core rock. Vuggy grey-white calcite veinlets infill open-spaces in brecciated zones. Weak-moderate laminations, defined mostly by diffused buff-brown bands (up to ~0.6cm) of dolomite. Low vein density; mostly narrow white calcite stringers (<0.2cm wide)
116.3 121.6 gxCD M Similar to unit uphole at 110.39-114.52m. Weak fault zone(?). Tan- and maroon-brown, fine grained, brecciated dolomite carbonatite, with minor zones of calcite-only carbonatite. Vuggy grey-white calcitic veinlets infill open-spaces. Blocky and broken core rock with ~30% intact core. Minor zones (~3% of interval) of complete decalcification/broken down to fine rubble and "sandy mud" matrix. 121.6 125.2 gCCCD W Mottled medium blue-gren and buff-blue, fine-medium grained (up to 0.2cm across), calcite-dominanted mixed carbonatite. Matrix has weak sucrosic texture (weakly silicified). Locallized zones of weak brecciation, infill material is generally clean white vuggy calcite. Fairly hard and competant core rock with minor	amphibolite calcite dolomite silica amphibolite calcite dolomite	0.5 5 0.1 20	Soft, angular aggregates (up to ~1cm across) of dark black-green; chlorite(?). Variable composition. Dark grey-green blebs scattered throughout matrix. Buff coloured dolomite mostly occurs as irregular and	nb ma py nb ma	0.2	Fine-medium sized sub-rounded red-brown grains noted. Small (<0.1-0.2cm) dark black-brown blebs also noted in trace amounts (fersmite?). Rare-trace amounts of niobate mineralization, generally occuring as small (<0.1-0.2cm) slightly elongated red-brown blebs.	laminations veining laminations veining	w m w	35 60	Weak laminations noted in more intact core rock. Very weakly defined by washes of colour variations. Difficult to determine vein density/orientation due to brokenness of core rock. Vuggy irregular white calcite veinlets (up to ~2cm wide) as infill in brecciated zones. Low vein density, mostly bands of white vuggy calcite as infill material in brecciated zones. Some narrow calcite stringers also noted.

িয		o M ley F			imitec	GEC	DLO	GY LOG		C	Crystal Chung Da	ate 17-Se	p-07		Hole ID 2007-007 Page 12 of 12
INTER	NTERVAL(m) Rock Code			н С			ALT	ERATION		MIN	ERALIZATION		:	STR	UCTURE
From	То	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
fracturing,	mostly ori	entated at	~35 deg	grees t	to core axis.	silica	5	with no particular orientation. Weakly silicified matrix.							
dominante silicified m Fairly hard fracturing g	125.2 127.9 blCCCD M Moderately banded blue-grey and beigh-buff, calcite- dominanted mixed carbonatite. Weak-moderately silicified matrix. Fairly hard and somewhat competant core rock with fracturing generally along lamination planes at ~55 degrees to core axis.				, calcite- rately ock with	amphibolite calcite dolomite silica	35	Variable composition as noted by different colour bands of dolomite.	nb ma py	0.4	Irregular and slightly elongated narrow blebs (up to 0.5cm across long axis) of red-brown, often forming discontinuous stringers/veinlets.	laminations veining	m w	55	Moderately laminated, defined by diffused buff bands of dolomite (up to ~3cm wide). Minor vein density with mostly white calcite veinlets (<1cm wide).
127.9 134.1 bxCCC M D Poor-fair recovery (~75%). Weak fault zone(?). Mottled blue-grey and buff-brown interval of weakly orecciated mixed carbonatite. Fine-medium grained (<0.1-0.3cm) weakly silicified matrix) with fairly equal amounts of calcite and dolomite. Broken and blocky interval with ~27% intact core rock. Remainder of interval is comprised of shatterd core and angular rubble. No dominant fracturing orientation. EOH @ 134.12m.					weakly grained rly equal core rock. rd core and	amphibolite calcite dolomite silica	0.5	Dark grey-green blebs and bands noted in more intact core pieces.	nb ma py	0.15	In more intact core, trace amounts of irregular red-brown niobate bands are noted (<0.2cm wide). Small (<0.1cm) blebs are also seen scattered throughout matrix.	laminations veining	vw w	35	Very weakly laminated, defined by slight colour variations. Difficult to determine vein density/orientation due to brokenness of core rock. Minor amounts of vuggy calcite veinlets noted infilling brecciated sections.

Hole ID 2007-008

Page 1 of 10

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
Î	laminated
f	decalcified
v	veined
v	Venied
Code	Structure
z	fault
е	strained
S	shear zone
У	dyke


Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
w	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION										
Coordinate System	Easting	Northing	Elevation							
UTM	454406.00	6256933.00	1775.00							
Collar Azimuth	Collar Dip	Planned Depth	Final Depth							
	-90.00		127.41							
Overburden (m)	Casing (m)	Tricone (m)								
	0.00									
	Down hole	Survey Data								
	Down-noie	Survey Data								
Depth (m) Azimuth Inclination Method										

Drilling Data											
Bit Size	From	То	Length								
BTW	0.00	127.41	127.41								
	Professional/Te	echnician Data									
	Person	Start Date	End Date								
Collar Survey											
Drill Contractor	Peak Drilling										
Geology By	CC										
Geotechnical Log	DB										
Specific Gravity	CC										
Casing	Cemented	Plugged	Rehab. Pad								
in / out	yes / no	yes / no	yes / no								
	Comr	nents									

Taseko Mines Limitec				nited	GEC	DLO	GY LOG	/	C	Crystal Chung Da	ate 08-Oc	:t-07		Hole ID 2007-008		
	A	ley Pro	oje	ct		5 •									Page 2 of 10	
INTER	/ A L (m)		Z o	H C		ALTERATION				MIN	ERALIZATION	STRUCTURE				
From	То		n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
0.0	4.6	CASE				amphibolite			nb			laminations				
asing; no	core rock	recovery.				calcite			ma			veining				
						dolomite			ру							
						silica										
4.6	5.7	dCC		М		amphibolite			nb	0.1	Trace amounts of fine-medium	laminations	w	40	Locallized within pale buff dolomiti	
		edium graine				calcite					sized, red-brown disseminated				zones, weak-moderate laminations	
		cite carbonat				dolomite	15	Pale buff dolomite (possibly			grains (<0.1-0.2cm). Some are likely to be hematite.				are defined by discontinuous mineralized stringers.	
ard and s	lightly bloc	ky core rock (top of hole).	(likely	due to	drilling			weak iron staining?) present	ma		intery to be normatice.	veining	vw		Very log vein density; mostly narro	
	rientation.	top of hole).		bielene	,			in locallized zones. Often has weak-moderate banding	ру	0.05	Rare-trace amounts of fine-	C			cream calcareous stringers noted	
								textures and weakly	15		medium sized brassy blebs				with no dominant orientation.	
								decalcified.			scattered throughout matrix (<0.1-					
						silica	25	Matrix is moderately flooded			0.3cm).					
5.7	10.5	ICC		VW		amphibolite	0.7	by grey silica. Medium-coarse (up to 0.8cm	nb	0.05	Rare-trace red-brown blebs noted;	laminations	W	30	Faintly laminated, defined by	
		laminated, pa	ale hli		fine-	ampinoonte	0.7	across), subangular-angular	110	0.05	possibly hematite.	laminations	vv	50	diffused pale buff dolomite bands.	
edium gra	ained calci	te carbonatite	e. Tra	ace amo	unts of			dark green aggregates	ma			veining	w		Low vein density; narrow, irregular	
atrix appe	ears to be	oured dolomite moderately si	licified	d.				throughout matrix; chlorite/micas(?)	ру	0.1	Trace fine-medium pyrite blebs				and discontiuous white and grey	
		core rock with 60 degrees to			ng,	calcite		emorite/inicas(?)			are noted (<0.1-0.3cm across).				calcareous veinlets noted (<0.5cm wide).	
-		-				dolomite	10	Generally occurs as very				<u> </u>				
	ered in ma	icas (black-br trix.	own a	and pale	e yellow)	uoronnite	10	diffused buff coloured washes								
								and bands, overprinting								
						silica	25	matrix. Moderate-strongly silicified								
						silica	23	matrix; sucrosic textures								
								noted.								
10.5	14.2	blCC		W		amphibolite	0.2	Fine-medium dark green	nb	0.15	Fine-medium grained red-brown	laminations	vw	25	Very weakly laminated matrix;	
		, pale blue-gro moderately s						grains present throughout matrix.			elongated blebs (up to 0.4cm across long axis); often associated				defined by diffused pale brown bands (up to ~1cm wide).	
rbonatite	. Minor ar	nounts of pale	e buff	-brown (dolomitic	calcite					with pyrite; possibly hematite(?).	veining	w	40	Low vein density; mostly narrow an	
ard and c	ompetent	/eak iron stair core rock with	n minc			dolomite	10	Generally occurs as diffused	ma			Ũ			discontinuous mineralized stringers	
		50 degrees to bification (~8%					-	bands and pale washes over a	ру	0.3	Fine-medium sized (up to 0.4cm				(<0.2cm wide).	
08-Au		,		ullLog:Rep		ll.			Responsible							

Tasek	ωMi	nes	Lin	nited	GEO		GY LOG	,	C	rystal Chung Da	ate 08-Oc	ct-07		Hole ID 2007-008		
	ley Pi													Page 3 of 10		
NTERVAL(m)		Z o	H C			ALT	ERATION		MINE	RALIZATION	STRUCTURE					
From To	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
cones are often pale	buff-brown	in colour	ſ.		silica	25	calcitic matrix; often associated with dicontinuous mineralized stringers. Moderate-strongly pale grey silica flooded matrix.			across long axis) brassy coloured blebs noted. Occasionally elongated along foliation planes, forming very diffused and discontinuous bands.						
14.2 15.5 Possible amphibolite Medium grey, mediu calcite carbonatite w	m grained (urint in grained (urint in grained (urint in grained and an grained an g			oss)	amphibolite calcite dolomite			nb ma py	0.01	Possible rare-trace amounts of	laminations veining	vw	20	Very faint laminations, generall defined by very slight alignment mica grains in matrix. Low vein density; irregular crea		
Moderate-strongly ca Moderately hard and racturing noted. Slig ~50 degrees to core	l very compe ghtly diffuse axis (upper	d contac and lowe	ets at ~4 er, resp	10 and ectively).	silica					finely disseminated grains.	venning			white calcareous veinlets noted (<1cm wide).		
~2% fine-coarse gra bale yellow coloured				wn and				_			_					
15.5 19.3 Locally laminated, pa calcite carbonatite w tend to be slightly fin colour. Hard and competent dominantly orientate	ith minor do her grained a core rock w	lomite. I Ind is a p vith mino	Dolomit bale but	tic zones if-brown ring,	amphibolite calcite dolomite	20	Occurs in locallized zones of weakly banded dolomite and very diffused buff-brown	nb	0.2	Narrow and elongated red-brown blebs noted (up to 0.3cm across long axis). Some are associated with pyrite (hematite?) while others form diffused/discontinuous stringers.	laminations	m	30	Locallized weak-moderate laminations in matrix, generally dolomitic sections. Diffused bu coloured bands also define very f lamination throughout remainder interval.		
ocalized zones of w reas of higher dolor	veak decalic	ification,	genera	ally in	silica	25	bands throughout matrix. Often weakly decalcified. Moderately silicified matrix.	ma py	0.1	Trace amounts of small rounded brassy blebs of pyrite.	veining	vw	55	Low vein density; mostly very diffused and discontinuous band fine pyrite grains.		
19.3 24.8 Nottled light blue-greenedium-coarse grain noderately silicified,	ned (up to 0. calcite-dom	.7cm) ph inated m	naneritio nix carb	texture, onatite.	amphibolite	0.2	Angular black-green aggregates, often in small clusters; chlorite(?).	nb	0.3	Small elongated red-brown blebs (up to 0.3cm across long axis) noted throughout matrix, occasionally associated with	laminations	W	20	Weak and locallized lamination mostly noted in buff coloured zo (banded dolomite). Low-moderate vein density; creation		
Pale buff-brown finer diffused bands and in Moderately hard and o be orientated at ~3 angle fractures (~30	r grained dol ncreases mo l competent 35 degrees t	omite ge oving do core roc to core a	enerally wnhole k; fracti xis. Tv	occurs in ures tend vo low	calcite dolomite	35	Pale buff colouring appears to weakly overprint matrix (possibly iron	ma		pyrite (possibly hematite content?). Rare-trace amounts of discontinuous stringers.	veining	W	33	grey, weakly calcareous bands w diffused contacts noted.		
of interval.					silica	20	staining/alteration product?). Often weakly decalcified Moderately silicified matrix, mostly in more calcitic zones.	ру	0.4	Small, slightly elongated brassy coloured blebs (up to 0.4cm across long axis).						
24.8 26.1	CCy		W		amphibolite			nb			laminations					

Taseko Mi Aley P		nited	GEO	LO	GY LOG	/	C	Crystal Chung Da	ate 08-Oc	xt-07		Hole ID 2007-008	
INTERVAL(m) Rock	Z O C			ALTI	ERATION		MINI	ERALIZATION	STRUCTURE				
From To	n L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
Patches (xenolith) of cream colo unit (immediately uphole). Mod matrix. Fairly hard and competent core	lerate-strongly s	ilicified	calcite dolomite	5	Diffused and narrow bands (up to ~0.5cm wide).	ma py			veining	vw	30	Very low vein density; mostly crear white veinlets (<1cm wide).	
					Moderately silicified matrix								
26.1 27.5 CCCD Similar to unit uphole at19.30-2	VW		amphibolite	0.4	Dark grey-green aggregates noted (up to 0.3cm across).	nb			laminations	W	30	Weak laminations defined by slight alignment of matrix grains.	
Mottled blue-grey and pale buff phaneritic mixed carbonatite. M	medium-coarse		calcite			ma py	0.2	Fine-medium sized brassy	veining			<i>c c</i>	
Hard and very competent core i			dolomite silica	5		PJ	0.12	coloured blebs (up to 0.3cm across).					
27.5 30.7 ICC	VW		amphibolite	0.3	Fine dark black-green	nb			laminations	W	20	Weakly laminated, mainly defined b	
Light-medium grey, fine-medium strongly silicified calcite carbona of darker grey with abundant bio 14.28-15.46m. Rare dolomitic of	atite. Patches (otite, similar to u	dykes?)	calcite		aggregates (up to 0.3cm across); possibly chlorite(?).	ma py	1	Fine-medium sized (up to 0.4cm across) blebs of pyrite noted	veining	vw	40	slight alignment of matrix grains. Narrow and discontinuous stringers tends to be darker than surrounding	
Hard and competent core rock; preferred breakage orientation.	rare fractures w	ith no	dolomite silica	25	Moderate-strongly grey silica			scattered throughout the matrix.				matrix.	
~0.4% fine-medium grained bla yellow) micas; tends to occur in			bineu	23	flooded matrix.								
30.7 32.9 AMy Medium-dark green, fine-mediu	S m.grained ampl	nibolite	amphibolite			nb			laminations	VW	25	Very fainltly laminated, defined by slight alignment of matrix grains.	
dyke with locallized zones with zones of cream-white medium of	pitted surfaces.	Patchy	calcite dolomite			ma py			veining	W	35	Irregular veining, of cream-white calcitic veinlets (<0.4cm wide).	
(~17% of interval). Moderately soft and blocky cor fracturing orientation.	e rock; no domi	nant	silica						1				
~3% fine-medium grained (<0.3 Generally occurs in clusters or i throughout matrix.													
32.9 37.9 glAMX			amphibolite	35	Patches of dark green-grey.	nb			laminations	m	45	Irregular and patchy zones with	
Irregularly laminated, weak-mod amphibolite and carbonatite uni between different components (mixing?). Patchy zones of pale (dolomite/weak iron staining?). Hard and fairly competent core	t. No clear cont (possible magm pink-buff colou	tacts a ring	calcite dolomite	5	Weak pink-buff patches, appear to overprint matrix (alteration product?).	ma	2	Medium-coarse dark silver-black aggregates noted throughout matrix (up to ~1cm across). Generally occurs in clusters,	veining			weak-moderate laminations.	
denerally orientated at ~55 deal		silica	25	Moderate-strongly silicified			occasionally forming						

discontinuous bands. Often

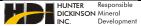
generally orientated at ~55 degrees to core axis.

silica

25

Moderate-strongly silicified

matrix; weak sucrosic textures


Taseko Mines Limited Aley Project	GEC	DLO	GY LOG		C	Crystal Chung Da	ate 08-Oc	xt-07		Hole ID 2007-008 Page 5 of 10
INTERVAL(m) Rock o	ERATION		MINI	ERALIZATION	STRUCTURE					
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
~3% fine-coarse grained (up to1cm across) dark micas; tends to occur in clusters and form discontinuous bands.			noted.	ру	0.5	associated with mica prisms. Elongated brassy coloured blebs (up to 0.4cm across long axis); possible rare pyrrhotite.				
37.9 38.8 AMy S	amphibolite		Possible hornblendes.	nb			laminations			
Dark grey, fine-medium grained amphibolite dyke. Possibly weakly silicified. Moderately hard an competent core rock; rare fracturing. Contacts at ~35 degrees to core axis.	calcite dolomite silica			ma py			veining	w	50	Low-moderate vein density; most noticable are cream-white calcitic veinlets (<1cm wide). Minor hairline stringers with no dominant
~2.5% fine grained (<0.2cm) black-brown micas. Generally occurs in clusters or irregular smears throughout matrix.										orientation also present.
38.8 42.0 gIAMX S Similar to unit uphole at 32.85-37.91m. Weak-moderately laminated, weak-moderately silicified mixed amphibolite and carbonatite unit. No clear contacts between differnet components (possible magma	amphibolite calcite dolomite			nb ma	1.5	Fine-coarse silver-black aggregates (up to 1cm across). Generally occurs in clusters,	laminations veining	m	30	Slightly diffused banded calcite carbonatite define lamination planes within matrix.
mixing?). Hard and competent core rock with rare fracutring; dominantly orientated at ~35 degrees to core axis.	silica	25	Moderate-strongly silicified matrix.			occasionally forming discontinuous bands. Often associated with micas.				
~2% fine-coarse grained (up to1cm across) dark micas; tends to occur in clusters and form discontinuous bands.				ру	0.1	Fine elongated brassy coloured blebs (<0.3cm across long axis).				
42.0 46.5 glCC VW	amphibolite			nb			laminations	VW	40	Very weak and patchy laminations throughout matrix.
Weakly laminated, fine-medium grained, light blue-grey calcite carbonatite. Matrix appears to be weak- moderately silicified. Minor patches of pale buff-brown (dolomite/weak iron staining). Hard and competent core rock; rare fracturing dominantly	calcite dolomite	5	Patches of pale pink-buff colouring; possibly weak iron	ma	0.3	Coarse aggregates of silver-black noted in lower portion of interval; appears to be carried in a cream- white calcareous veinlet.	veining	VW	35	Very low vein density; mostly narrow and discontinuous stringers noted.
prientated at ~50 degrees to core axis.	silica	25	staining. Moderate-strongly white and grey silica flooded matrix.	ру	1	Brassy coloured specks are noted throughout the matrix (up to 0.4cm across).				
46.5 50.7 dICC VW Light-medium blue-grey, fine-medium grained phaneritic calcite carbonatite. Very weakly laminated matrix. Rare-	amphibolite calcite	0.1		nb ma	0.05	Rare-trace amounts of fine grains scattered throughout matrix.	laminations	W	35	Very faintly laminated matrix; defined by slight alignment of matrix grains.
race amounts of dolomite, generally associated with mineralization. Weak-moderately silicified matrix. Fairly hard and competent core rock; minor fracturing mostly orientated at ~50 degrees to core axis. Very locallized decalified, generally along veining structures.	dolomite	2	Generally occuring mineralized stingers as diffused envelops.	ma py	0.5	Diffused and discontinuous stringers of irregular brassy coloured blebs (up to 0.3cm	veining	m	60	Low-medium vein density; mostly discontinuous and diffused mineralized bands (up to ~1cm).
08-Aug-08 repLitho_FullLog:Report				Responsible Mineral Development						

Taseko Mines Limited				/	C	Crystal Chung Da	ate 08-Oc	t-07		Hole ID 2007-008
Aley Project	GEC		GrLOG							Page 6 of 10
INTERVAL(m) Rock o C		ALT	ERATION		MIN	ERALIZATION		UCTURE		
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
	silica	25	Moderately silicified with pale grey quartz.			across).				
50.7 56.3 CC VW	amphibolite			nb			laminations	vw	30	Very faintly laminated; defined by very weakly aligned matrix grains
Similar to unit uphole at 46.53-50.69m. Light blue-grey, fine-medium grained (<0.1-0.3cm across) calcite carbonatite. Very weakly laminated and	calcite dolomite			ma py	0.2	Minor amounts of elongated	veining	W	45	Low vein density; very diffused stringers comprised of angular class
moderately silicifed matrix. Rare buff-grey dolomite(?). Fairly hard and very competent core rock; rare fracturing with no dominant orientation.	silica	25	Moderate-strongly silicified matrix. Flooded by light-			brassy blebs (up to 0.3cm across long axis).	<u> </u>			sumptised of angular class
~15% (at 52.82-53.66m) of interval is comprised of a dark grey and green calcareous amphibolite dyke.			medium grey quartz.							
~1% fine-medium angular grains of dark brown-black micas; tends to form diffused bands.										
56.3 57.5 AMXy S Possible dyke(?).	amphibolite			nb			laminations	VW	45	Very faintly laminated, defined by very weakly aligned mica grains.
Dark grey and green, fine-medium grained carbonatite with abundant dark mica content. Moderate-strongly	calcite dolomite			ma py	0.01	Rare-trace amounts of finely	veining	VW	40	Minor grey-white calcitic stringer noted (<0.4cm wide).
calcareous matrix, very weakly silicified. Moderately hard and competent core rock with minor amounts of fracturing, no dominant orientation. Weakly diffused contacts at ~30 degrees to core axis.	silica					disseminated pyrite specks; possibly small pale yellow micas(?).	1			noted (xo.+em wide).
~2-4% fine-medium grained dark black-brown micas (minor amounts of pale yellow grains).										
57.5 60.3 ICC VW	amphibolite calcite			nb ma			laminations	W	55	Weak-moderately laminated; define by fine-medium bands of varying grey colour (up to ~1cm wide).
noderately silicified calcite carbonatite. Trace amounts of slightly darker coloured bands (possibly weak iron staining/dolomite?). Hard and competent core rock with rare fracturing.	dolomite silica	25	Moderate-strongly silicified	ру	0.7	Fine-medium elongated brassy coloured grains (up to 0.5cm across long axis).	veining	m	50	Low-moderate vein density; mostl discontinuous/diffused stringers
~0.5% fine pale yellow grains of micas with some (~0.4%) black-brown mica grains.			matrix; weak-moderate sucrosic textures noted.	<u> </u>		across long axis).				comprised of angular dark green- black grains.
60.3 67.0 ICC VW	amphibolite			nb			laminations	W	30	Weak-moderately laminated.
Similar to unit uphole at 57.49-60.25m. .ight-medium grey, fine-medium grained (<0.1-0.3cm across), moderately silicified calcite carbonatite. Rare- race amounts of pink-orange colouring, mostly associated with discontinuous veining structures. fard and very competent core rock; rare fracturing.	calcite dolomite	1	Weak pink-buff colouring, mainly associated with veining structures; possibly hematite staining around	ma py	0.7	Fine-medium irregularly shaped blebs of brassy coloured pyrite (up to 0.5cm across).	veining	W	45	Low-moderate vein density; mostl discontinuous stringers comprised medium-coarse angular dark grey aggregates. Often have faded pinh buff envelopes (hematite?). One
08-Aug-08 repLitho_FullLog:Report				Responsible N Mineral Development						

Tase		Mine Pro		imite	d GEC	DLO	GY LOG		(Crystal Chung Da	ate 08-Oc	ot-07]	Hole ID 2007-008 Page 7 of 10	
INTERVAL (n	-		Z н С			ALT	ERATION		MIN	ERALIZATION	STRUCTURE				
From To	_ Co	de n e			Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
~1% dark green-bl ~0.4cm across).	ack mica	a prisms a	and flake	s (up to	silica	25	pyrite stringers. Moderate-strongly silicified matrix.							large coarse grained band present in lower portion of interval.	
67.073.1Weak-moderately grained calcite carl weak dolomitic bar with mineralization Fairly hard and mo minor fracturing, dr (~10-30 degrees) t~0.3% fine-medium scattered througho73.178.3Slightly mottled lig grained (up to 0.3c calcite carbonatite; portion of interval (Hard and very corr mostly located in u dominantly orienta	bonatite. hds pres bderately ominantl to core a n dark g but matrix C ht and m cm acros . Very w (possible oper poi ted at ~6	d, light bl Trace-n ent; appe compete y orientat xis. reen-blac c edium gr s), mode eak buff dolomite ore rock; tion of in 50 degree	ninor am ears to be ent core r ted at lov ck angula k angula vv rey, fine-i rrate-stroi colouring e overprir ; rare frac terval an es to core	fine-mediu pounts of e associated ock with v angles r mica grain r mica grain v medium nly silicified n near lowe tt?). sturing, d are e axis.	dolomite silica amphibolite calcite	10 20 5 20	Generally occurs as very diffused and weak bands (up to ~0.5cm wide). Also noted to form envelopes surrounding veining structures. Moderately silicified matrix. Very weak buff colouring (overprinting?) noted in lower portion of interval. Moderately silicified matrix.	ma py nb ma py	0.1 1 0.7	Rare-trace niobate mineralization; rusty red-brown blebs, often associated with pyrite likely to be hematite. Blebs generally form narrow and slightly discontinuous stringers (<0.3cm wide). Narrow and discontinuous pyrite stringers (<0.4cm wide). Often associated with pink-buff overprint in surrounding matrix. Irregularly shaped blebs of pyrite present within matrix (up to 0.4cm). Occasional pyrite veinlet also noted (<0.5cm wide).	laminations veining laminations veining	m m vw w	30 45 30 40	Weak-moderately laminated; defined by diffused bands of varying colour Narrow and discontinuous mineralized stringers. Often have weakly decalcified envelopes. Very faintly laminated; mostly defined by very weak alignment of matrix grains. Low vein density; mainly narrow and discontinuous silicified stringers wit minor mineralization. Several pyrite veinlets noted (<0.5cm wide).	
~0.3% fine (<0.3cr yellow coloured). 78.3 82.3 Weakly laminated medium grey calcit texture with coarse and fine-medium g carbonatite matrix. Moderately hard an fracturing. ~0.5% medium gra to ~1cm across), g	IC and spe te carbo angulai grained (and very o ained pa	C ckled, mc black gra c0.1-0.3c competen e-dark gr	S ottled ligh loderate p ains (up cm), weat ot core ro reen mica	t and prophyritic to 0.6cm) dy silicified ck; rare a prisms (u	amphibolite calcite dolomite silica	2	Faint green irregular blebs noted throughout matrix, occasionally forming envelops for veining structures. Weak-moderately silicified matrix; weak sucrosic textures	nb ma py	3 0.5	Medium-coarse subangular- angular aggregates (up to 1cm across). Appears to be forming discontinuous/diffused bands. Trace-minor amounts of fine- medium sized, slightly elongated brassy blebs (<0.5cm across long axis).	laminations veining	m	30	Weakly laminated; defined by very faint bands and weak alignment of coarse matrix grains. Diffcult to deterine vein density du to abundant amounts of slightly alignment coarse aggregates (forming discontinuous veinlets?)	
82.3 84.7 Similar to unit upho Weak-moderately 08-Aug-08	ole at 78	.33-82.32 d and sp		nottled pale	amphibolite	25	Two dark green-grey dykes; abundant dark green-brown mica grains.	nb ma Responsible	0.3	Large dark silver-black	laminations	m	30	Weak-moderately laminated; define by weak banding, increasing in intensity moving downhole.	

Aley Projec	ct										Page 8 of 10	
INTERVAL(m) Rock o	H C		ALT	ERATION		MIN	ERALIZATION	STRUCTURE				
From To Code n	L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
oink-buff and light and medium grey porp carbonatite. Medium-coarse dark green- (~0.5cm) in fine-medium grained (<0.1-0 carbonatite matrix. Pale pink-buff colour weak dolomitic content. Two minor dark	-black grains).3cm) ring possibly	calcite dolomite	5	Locallized zones of pale pink colouring (possible weak overprinting?)	ру	0.05	aggregates of magnetite present throughout the matrix (up to 0.5cm across). Trace-minor amounts of small-	veining	W	40	Low vein density; appears to be mostly fine-medium grained pale cream calcareous veinlets (<0.6cm wide).	
	kis. oderatly hard and fairly competent core rock; minor nounts of fracturing; dominant orientation at ~30		10	Weak-moderate silicification.	17		medium brassy coloured blebs, associated with magnetite.					
amounts of fracturing; dominant orientati degrees to core axis.	ion at ~30											
84.7 88.1 dCCCD Mottled pale pink and light-medium grey, grained, moderately silicified, calcite-don		amphibolite	0.5	Minor amounts of faded grey green blebs noted within matrix.	nb	0.15	Rusty red-brown grains, generally associated with pyrite mineralization; possibly	laminations	VW	45	Very weakly laminated, matrix appears to have very weak brecciated textures.	
carbonatite. Pale pink colouring increase downhole; often in bands (dolomite/iron s Fairly hard and somewhat competent co	es moving staining?). re rock;	calcite dolomite	10	Pale pink colouring, possibly	ma		hematite(?).	veining	m	50	Low-moderate vein density; mostly narrow and irregular creamed	
moderate amounts of fracturing, mostly orientated at ~50 degrees and sub-parallel to core axis. Slightly more mineralizated intervals also appear to be weakly			iron staining. Generally associated with mineralized	ру	0.7	Irregularly shaped blebs, often forming discontinuous stringers.				coloured stringers. Discontinuous, blebby mineralized stringers also present.		
decalcified.		silica	10	veining structures. Locallized weak-moderate silicification of the matrix.								
88.1 92.6 glCC	VW	amphibolite			nb	0.2	Dark rusty red-brown fine subhedral-euhedral aggregates are	laminations	W	35	Faint laminations noted; defined by weakly aligned coarse matrix grains.	
Similar to unit uphole at 84.73-88.09m. Mottled light-medium grey (minor pale pi grained, moderately silicified, calcite carb oink zones are locallized and may possik	bonatite. Pale	calcite dolomite	5	Trace-minor amounts of possible dolomite. Pale pink	ma		noted (<0.1cm).	veining	w	50	Low vein density; mostly narrow darker coloured bands (<0.4cm wide). Minor amounts of	
weak iron staining(?). Fairly hard and mostly competent core ro amounts of fracturing, mainly orientated to core axis. Very locallized zones of we	at ~50 degrees eak			zones tend to be associated with pyrite mineralization; likely to be hematite.	ру	0.7	Aggregated pyrite stringers (up to ~0.4cm wide) are present in this interval. Surrounding matrix				discontinuous/aggregated dark grey (micas?) bands also noted. Trace amounts of pyrite stringers.	
decalcification(?); pitted zones surroundi structures. ~0.8% subangular medium grained dark		silica	10	Weak-moderately silicified matrix, locallized to zones of light-medium grey colouring.			tends to be pitted (decalcified?).	<u> </u>			unounds of pyrice sumgers.	
mica grains (up to ~0.6cm across).	groon black]		nght medium grey colouring.								
92.6 99.4 gCC Very weakly mottled light-medium grey, f		amphibolite	0.3	Minor amounts of faint green clots within matrix.	nb ma			laminations	vw		Very faintly appears to be laminated. Angles appear to vary	
grained (up to 0.3cm across), moderate- calcite carbonatite. Matrix appears to be precciated in locallized zones (<2% of in	e very weakly terval). Narrow	dolomite			ру	0.1	Trace-minor amounts of pyrite; often forming narrow and				from ~20 to ~50 degrees to core axis. Defined by very faint matrix	
wisps of rusty brown noted; possibly dolo Hard and fairly competent core rock; min (increasing downhole) with dominant orie	nor fracturing	. silica	25	Moderate-strongly silicified matrix; weak sucrosic textures			discontinuous stringers and have weakly iron stained envelopes	veining	vw		grains. No dominant orientation;	
	ullLog:Report	11			Responsible		- *	1				

Crystal Chung

2007-008

Hole ID

08-Oct-07

Date

Taseko Mines Limited GEOLOGY LOG

Taseko Mines Limited Aley Project	GEO	LO	GY LOG		C	Crystal Chung Da	ate 08-O	ct-07		Hole ID 2007-008 Page 9 of 10	
INTERVAL(m) Rock o C		ALT	ERATION		MINI	ERALIZATION	STRUCTURE				
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
degrees to core axis. Two fractures noted running sub- parallel to core axis (~40cm in length).			can be seen in locallized zones.			(<0.1cm wide).				discontinuous veining structures follow changing weak lamination	
~0.2% irregularly shaped dark green-black mica grains (up to 0.4cm across).										planes.	
99.4 105.4 gCC VW	amphibolite	0.3	Trace-minor amounts of faint	nb	0.3	Fine rusty red-brown subhedral-	laminations				
Similar to unit uphole at 92.58-99.38m. Mottled light-medium grey, medium grained calcite carbonatite. Matrix is moderate-strongly silicified and cross-cut by narrow rusty brown stringers (dolomite	calcite		green blebs noted within matrix.			euhedral aggregates noted (up to 0.2cm across); often associated with pyrite; possibly hematite(?).	veining	m	30	Moderate vein density with varying orientations. Mainly narrow and irregular rusty-brown stringers	
bearing?). Two medium-dark grey dykes (up to (~45cm in length) present within interval; contacts at ~55 degrees to core axis. Hard and moderately competent core rock; moderate	dolomite	1	Interval is crosscut by abundant narrow rusty-brown stringers with possibly	ma py	0.8	Brassy coloured pyrite generally occurs as narrow and				(<0.1cm wide). Minor amounts of vuggy cream calcitic veinlets (<0.6cm wide).	
amounts of fracturing mostly at ~35 degrees to core axis. ~0.4% fine-medium grained dark green-brown hexagonal	silica	15	dolomitic content. Moderately silcified matrix.			discontinuous veinlets (<0.4cm wide).					
mica prisms (up to 0.4cm across). 105.4 108.9 ICC VW	amphibolite	0.1		nb	0.1	Trace-minor amounts of fine-	laminations	vw	60	Very weakly laminated, generally	
Weakly laminated and mottled light-medium grey, medium grained, moderately silicified calcite carbonatite.	calcite	~ ~				medium rusty-red-brown grains (up to 0.3cm across), often				noted in slightly aligned coarse matrix grains.	
Weakly brecciated texture throughout matrix. Two mottle dark grey and green dykes present in interval (up to ~75cm in length); contacts at ~35 degrees to core axis (possibly close to contact zones; splays of the main	dolomite	0.5	Interval crosscut by narrow and irregular rusty-brown stringers (possible	ma		associated with pyrite mineralization.	veining	m	40	Moderate vein density; mostly narrow stringers of rusty brown, some carrying pyrite.	
ntrusive body?). Moderately hard and slightly blocky core rock; fracturing tends to be at ~55 degrees to core axis.	silica	15	dolomite/iron staining?). Weak-moderately silicified matrix.	ру	0.3	Minor amounts of discontinuous/blebby pyrite					
						stringers. These tend to be slightly rusty in colour (possible hematite?)					
108.9 111.6 IAMX M	amphibolite		Possible chlorite content.	nb			laminations	VW	55	Very weakly laminated, only noted in grey carbonatite sections.	
Mixed contact zone between medium-dark grey and green amphibolite and carbonatite wall rock. Contacts and to be clightly diffused and are meatly grientated at	calcite	35	Tends to be weak-moderately banded.		0.2	Fine-medium disseminated grains	veining			in grey carbonance sections.	
tend to be slightly diffused and are mostly orientated at ~45 degrees to core axis. Both fine grained amphibolites and medium grained carbonatites are weakly silicified. Moderately hard and slightly blocky core rock; minor fractures at ~50 degrees to core axis.	dolomite	1	Minor diffused bands of cream-buff (up to ~1cm wide), strongly reactive to HCl.	ру	0.2	of pyrite, mostly noted in carbonatite sections. Yellow specks also noted in amphibolite sections; however, they appear to					
~2.5% fine-medium grained black-brown and pale yellow mica specks (<0.3cm across).	silica	10	Moderately silcified matrix.			mainly be mica grains.					
111.6 118.4 AMy M	amphibolite			nb			laminations				
08-Aug-08 repLitho_FullLog:Report	1		HUNTER DICKINSON INC.	Responsible Mineral Development							

Taseko Mines Limited	GEC			/	C	rystal Chung Da	ate 08-Oc	:t-07		Hole ID 2007-008	
Aley Project										Page 10 of 10	
INTERVAL(m) Rock o C		ALTE	RATION		MINE	RALIZATION			STRUCTURE		
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
amphibolite dyke(?). Weakly silicified matrix with what appears to possibly be abundant chlorite. Somewhat hard and competent core rock; minor fracturing, dominantly orientated at ~50 degrees to core axis.	calcite dolomite silica	2 5	Stringers Weakly silicified matrix.	ma py	0.05	Rare-trace amounts, mostly noted to be carried in calcitic veinlets.	veining	W	40	Interval is crosscut by grey-white calcitic veinlets (up to 0.3cm wide), mostly orientated at ~40 degrees to core axis but can vary. Often have grey envelopes.	
~3% fine-medium black-brown (minor pale yellow) micas grains (<0.4cm across). 118.4 121.6 AM W	amphibolite			nb			laminations				
Similar to unit uphole at 111.56-118.37m. Mottled medium-dark grey and grey-green fine grained amphibolite. Weak-moderately silicified matrix (grey quartz?). Possible fault zone(?). Fairly hard but shattered core rock; dominantly breakage orientation appears to be sub- parallel core axis. Minor rusty-brown infilling material,	calcite dolomite silica	1	Stringers	ma py		Possible trace amounts of finely disseminated grains; but likely to be pale yellow mica specks.	veining	m		Difficult to determine vein density/orientation due to brokenness of core rock. Appears to have mostly irregular white-grey calcitic veinlets/smears (<0.5cm wide).	
strongly reactive to HCI (dolomite?). ~2% dark black-brown with occasional pale yellow micas.				1							
121.6124.5AMySMottled dark grey and green-grey, fine-medium grained amphiobolite with abundant biotite.Moderate chlorite content.Moderately soft and pitted core rock.No clear fracture planes noted but breakage appears to be dominantly sub- parallel to core axis.Slightly rubbly and shattered core.	amphibolite calcite dolomite silica			nb ma py		Possible rare-trace amounts of finely disseminated grains; however likely to be pale yellow micas.	laminations veining			Diffcult to deteremine vein density/orientation due to large aggregates of chlorite(?). Appears to have irregular white and cream-white calcite veinlets.	
~10% fine-coarse green-black (minor pale yellow) micas grains (<0.6cm across). 124.5 127.4 AMy S	amphibolite			nb			laminations				
Dark grey and grey-green, fine grained amphibolite dyke(?). Matrix is moderately hard; weakly silicified(?). Minor chlorite content. Somewhat hard and slightly blocky core rock with no dominant fracturing orientation.	calcite dolomite silica	2	Irregular stringers/veinlets.	ma py		Possible rare-trace amounts; but likely to be pale yellow mica	veining	m	60	Low-moderate vein density; mostly white and narrow calcitic stringers/veinlets (up to 0.4cm wide)	
EOH @ 127.41m.	1			4		specks.					

2007-009 Hole ID

7 Page 1 of

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Code	Fabric
x	brecciated
Î	laminated
f	decalcified
v	veined
_	
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
w	Weak
М	Moderate
S	Strong

DRILL HOLE INFORMATION											
Coordinate System	Easting	Northing	Elevation								
UTM	454515.00	6257405.00	2038.00								
Collar Azimuth	Collar Dip	Planned Depth	Final Depth								
	-90.00		118.56								
Overburden (m)	Casing (m)	Tricone (m)									
	0.00										
•	Down hold	Survey Data									
	Down-hole Survey Data										
Depth (m)	Azimuth	Inclination	Method								

	Drilling	g Data	
Bit Size	From	То	Length
BTW	0.00	118.56	118.56
	Professional/Te	echnician Data	
	Person	Start Date	End Date
Collar Survey			
Drill Contractor	Peak Drilling		
Geology By	CC		
Geotechnical Log	DB		
Specific Gravity	CC		
Casing	Cemented	Plugged	Rehab. Pad
in / out	yes / no	yes / no	yes / no
	Comm	nents	•
Not able	to advance; broken g	round. Drill under-p	oowered.

Taseko Mines Limited	GEC)LO	GY LOG	/	C	rystal Chung Da	ate 24-Se	p-07		Hole ID 2007-009
Aley Project		ALT	ERATION		MINE	Page 2 of 7 STRUCTURE				
From To C C L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.0 12.8 CASE VW	amphibolite			nb			laminations			
Casing; ~1m of material recovered. Cored	calcite			ma			veining			
alus/overburden, appears to be dominantly dolomitic carbonatite.	dolomite			ру						
	silica									
12.8 13.8 ICC	amphibolite			nb	0.05	Rare-trace amounts of red-purple-	laminations	VW	25	
Very weakly laminated, blue-grey, fine-medium grained	calcite					brown blebs noted, carried in a	veining	vw	25	Very weak and diffused veining,
<0.1-0.3cm), silicified calcite carbonatite. Hard and fairly competant core rock with minor fracturing,	dolomite					calcareous veinlet (~0.4cm wide), possibly hematite.	U U			defining very weak laminations.
generally orientated at ~60 degrees to core axis. Minor zone of rubble at upper contact, likely due to drilling	silica	30	Moderate-strongly silicified	ma		possion nonacito.				Diffused purple-brown bands (up 0.5cm wide).
process.			matrix.	ру			1			0.50m wide).
13.8 15.0 fCD M	amphibolite			nb			laminations	w		Irregular and weakly diffused dar
Strongly decalcified unit, appears to likely have been	calcite			ma						brown bands noted (up to ~1.5cm
nedium-dark brown (manganiferous?) dolomite carbonate (by colouring).	dolomite			ру			voining			wide)
Unit is strongly to completely weathered (near surface)/decalcified and has texture of semi-solid sandy	silica			15			veining			
mud, with minor fragments of more competant core rock.				1						
Trace-minor amounts of fine yellow-silver mica (phlogopite?) specks (<0.3cm).										
15.0 15.5 xAMy W	amphibolite			nb			laminations			
Moderately brecciated dark green-blue amphibolite(?)	calcite	30	Irregularly iron stained calcite	ma			veining			
dyke. "Clasts" are small-medium in size (up to ~1.3cm across) and subangular in shape. Matrix is weakly	1.1 .		as infilling matrix material.	ру						
calcareous and reacts with weak HCl. Contacts are noted at ~35 (upper) and ~20 (lower)	dolomite									
degrees to core axis.	silica]						
15.5 17.8 fAMXy VW	amphibolite			nb		Rare-trace amounts of finely disseminated purple-red-brown	laminations			
Strongly weathered/decalcified unit with what appears to be mixed rock. ~40% is comprised of semi-solid,	calcite					grains (<0.1cm); possibly	veining			
medium-dark brown sandy mud (completely decalcified), while the remainder appears to be weakly bleached	dolomite	40	Strongly/completely			hematite?				
amphibolite(?; similar to unit uphole).	silica		decalificied.	ma						
~15% of this interval is intact core.				ру						
17.8 22.7 bfCD W	amphibolite			nb	0.8	Very diffused bands and small	laminations	W	45	
Mottled brown-buff and buff-grey dolomite carbonatite.	calcite	15	Patches of lighter colouring			disseminated grains (<0.1cm) of	veining	W	40	Very diffused bands of rusty-brow
08-Aug-08 repLitho_FullLog:Report				Responsible N Mineral Development			•			

Taseko Mines Limited	
Aley Project	

Log by

Crystal Chung

2007-009

Hole ID

Page **3** of **7**

INTERVAL (n		lock	Z o	ŀ				ALT	ERATION		ΜΙΝΙ	ERALIZATION		:	STR	UCTURE
From To	C	ode	n e				Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Patchy zones of cc Weakly laminated matrix. Fairly competant c silicification. ~30% decalcified/weathe	fine-m core roo % of int	ck with l terval is	oraine ocall mod	ed (<0. ized zo erate-s	1-0.3 nes trong	3cm) of weak gly	dolomite silica	5	(buff-grey). Possibly manganiferous due to strong colouring(?). Weak-moderately silicified calcite carbonatite zones.	ma py		purple-red-brown scattered throughout matrix; possibly hematite.				aggregates (<0.3cm).
22.7 25.6 Mottled buff-brown washes of dolomite colouring generally degrees to core ax Competant core ro of interval being co fine semi-solid "sar	and b e carbo y have kis. ock with omplete	onatite. diffusec h weak p ely weat	Pato cond "con pitteo	chy zor ntacts" I textur	ite ai ies o at ~4 es ai	f 40 nd ~7%	amphibolite calcite dolomite silica	40 5	Washes/diffused bands of medium brown-buff colouring. Weak-moderately silicified matrix, mostly in calcite carbonatite zones.	nb ma py	0.5	Fine (<0.1cm) disseminated grains of purple-red-brown scattered throughout matrix, occasionally increasing in size to ~0.1cm across.	laminations veining	w	40 40	Weak-moderately laminated, defined by weakly diffused bands of varying colour (up to ~30cm wide). Slightly irregular white calcite veinlets (<1cm wide) noted throughout matrix. ~40 degrees to dominant orientation, with ~25% running sub-parallel to core axis.
25.6 31.3 Strongly weathered yellow core. Proto manganifereous) d Weak and incohera Remainder of inter olocky/shattered co decalcified fine-me semi-solid "sandy in	d/deca olith app dolomit rant cor rval is c ore roc edium g	pears to te carbo re rock v comprise ck (~10%	hav natite with ed of %) ar	e been e. ~20% i zones id com	vn ar (pos ntact of olete	ssibly core.	amphibolite calcite dolomite silica	2	Very minor diffused bands of lighter, grey colouring. White calcite veinlets (<1cm wide) also present.	nb ma py	0.5	Fine-medium grained (up to 0.1cm) disseminated/aggregated euhedral graines of black-brown.	laminations veining	W	15	Difficult to determine orientation or veining due to brokenness of core rock. Minor white calcite veinlets noted (<1cm). Several bands (~1.3cm wide) of dark purple brown
31.3 33.0 Mottled medium-da dolomite carbonati Competant core ro generally orientate rock becomes less	ark buf ite. ock with ed at ~{	h minor 55 degre	amo ees te	unts of	d (< fract	turing,	amphibolite calcite dolomite silica	0.05	Rare-trace amounts of dark blue-green noted, mostly carried in irregular stringers.	nb ma py	0.2	Fine-medium (up to 0.1cm) disseminated rusty-black-brown grains with irregular boundaries.	laminations veining	vw w	25	Very weakly laminated, defined by slight colour variations. Irregular white calcite and dark blue green chlorite(?) stringers noted (<0.3cm wide), no preferred orientation.
33.0 39.6 Possible fault zone Strong-completely calcareous unit, lik dolomite carbonati orown, medium rus Interval is comprise intact core. Most of solid "sandy mud" 08-Aug-08	e(?) weath kely pro ite. Pa sty-bro ed of in of inter	otolith is atchy zor own and ncohera rval is co e.	mixe nes c pale nt cc ompr	ed calc of dark yellow ore rocł	akly ite ai purp with the s	nd le- n <1% semi-	amphibolite calcite dolomite	15	Dolomite appears to have slight variations in composition. Sections of dark purple-brown likely to	nb ma py Responsible	0.8	Fine (<0.1cm) subhedral-euhedral black-brown grains can be seen scattered throughout interval. Possibly rare-trace finely disseminated pyrite (possibly mica prisms).	laminations veining			

Taseko Mines Limited	GEO		GY LOG	,	C	Crystal Chung Da	ate 24-Se	p-07		Hole ID 2007-009
Aley Project	GEO		GILUG							Page 4 of 7
INTERVAL(m) Rock o C		ALT	ERATION		MINI	ERALIZATION			STR	UCTURE
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.1% Trace pale yellow-green mica hexagonal prisms (<0.2cm across).	silica		contain higher content of manganese(?).							
39.6 42.0 gCCCD W Mottled pink-grey and medium brown-buff mixed calcite and dolomite carbonatite. Calcite is generally coarser grained, up to 0.2cm across with brown-buff dolomite tends to have grains <0.1cm. Slightly blocky core rock with fracturing generally at ~45 degrees to core axis and ~40% of the interval as fine rubble/"sandy mud".	amphibolite calcite dolomite silica	0.2 30 5	Fine-medium (up to 0.1cm across) dark blue-green grains Weakly silicifed calcitic carbonatite zones.	nb ma py	0.2	Irregularly shaped aggregates, <0.1-0.3cm across, scattered throughout matrix.	laminations veining	vw vw	20 15	Very weakly laminated, defined by very slight colour variations and weakly aligned grains. Narrow white and dark black-green stringers (<0.1cm) at low angles to core axis; calcite, chlorite.
42.0 47.7 gICC W Weak-moderately laminated, mottled and weakly speckled blue-grey and brown-buff calcite carbonatite. Weak-moderately reactive to HCl (generally more reactive in fine grained brown-buff zones). Matrix has been moderately silicified. Fairly competant core rock with fracturing mostly at ~45 degrees to core axis. Minor zones of blocky and rubble core rock (~15% of interval).	amphibolite calcite dolomite silica	0.3 10 25	Sub-rounded (up to 0.4cm across) medium green blebs (likely chlorite). Weakly iron stained, giving slight rusty colouring. Moderately silicified matrix,	nb ma py	0.4	Fine-medium (up to 0.3cm across) red-brown blebs scattered in matrix.	laminations	m m	45	Weak-moderate laminations at ~40- 50 degrees to core axis, defined by by diffused brown-buff bands (up to 1.5cm wide). Weak-moderate diffused white and buff bands. Some carrying trace- minor mineralization.
0.1% Trace-minor amounts of small pale yellow micas (phlogopite?).			like cause of weak HCl reaction.							
47.752.1bICDMModerately laminated pink-buff fine-medium grained dolomite carbonatite.Pink-brown-buff sections tend to be finer grained (<0.1cm) compared to the lighter grey coloured grains (up to 0.2cm).Lower contact diffusely at ~40 degrees to core axis. Competant intact core rock with ~50% of interval comprised of blocky/shattered core and completely	dolomite	1 5	Medium sized (0.1-0.3cm) sub-angular grains of dark green chlorite (after amphibole?).	nb ma py	1	Fine-medium sized (<0.1-0.3cm) blebs, weakly aligned and forming very diffused/discontinuous stringers.	laminations veining	m vw	35 40	Moderate laminations defined by diffused bands on blue-grey calcite (up to 0.7cm wide). Very diffused/discontinuous stringer formed by mineralization. Narrow diffused white calcite stringers also noted.
52.1 56.0 dICCCD VW	silica amphibolite	1	Weakly silicified matrix. Fine-medium medium-dark	nb	1	Fine-medium (<0.1-0.2cm)	laminations	m	35	Weak-moderately banded matrix,
Grey and buff banded calcite carbonatite interval. Medium grained (up to 0.4cm) grey matrix is moderately silicified and coated with slightly orientated washes/bands of buff colouring (iron staining/dolomite?). Good competant core rock with minor fracturing	calcite dolomite	35	green blebs, forming discontinuous stringers. Wisps and diffused bands (up	ma	1	disseminated grains, occasionally forming discontinuous stringers following laminations.		w	30	weak-moderately banded matrix, defined by buff-coloured bands. Weak-moderately veining. Discontinuous/diffused mineralized stringers present.
orietnated at ~20-40 degrees to core axis. Minor zones with weak pitted textures.	silica	15	to ~10cm wide). Moderately silicified matrix.	ру						

Taseko Mines Limited
Aley Project

Log by

Crystal Chung

Page **5** of **7**

INTERVAL	L (m)	Rock	Z o	Z P C			ALT	ERATION		MINI	ERALIZATION		ę	STR	UCTURE
From T	Го	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Similar to unit u Mottled fine-me orown-buff weal moderately silic washes/wisps o Good competar	edium g akly calo cified gr of buff o nt core	grained gr careous r rey matrix colouring rock with	rey and ockma (with i (iron s (minor	ass. Wea rregular taining/de fracturin	k- plomite?). g, mostly	amphibolite calcite dolomite	1	Fine-medium grained (<0.1- 0.3cm) dark blue-green blebs, forming discontinuous stringers.	nb ma	0.7	Fine-medium sized, elongated (up to 0.3cm across long axis) rusty- brown blebs, occasionally forming discontinuous stringers.	laminations veining	w m	30	Very weak-weak laminations, defined mostly by wispy brown-buff bands (up to 2cm wide). Irregular iron stained carbonate veinlets (up to ~1.5cm wide) and narrow discontinuous dark green
orientated at lov core axis.	w-mode	erate ang	les (~!	5-35 degr	ees) to	silica	15	to 1cm wide). Moderately silicified matrix.	ру						stringers, mostly orientated at low angles (~sub-parallel to ~20 degrees) to core axis.
60.4 69 Moderately band dominant (with 1	nded bu		and bl			amphibolite	0.5	Fine-medium grained (<0.1- 0.2cm) dark green specks, generally forming diffused	nb	1.5	Fine-medium sub-angular red- brown grains (<0.1-0.4cm), often forming diffused bands, up to	laminations	m	30	Lamination defined by diffused blue grey and buff-brown bands (up to ~25cm wide).
calcitic zones ha 0.3cm) while bu Good competar ~30 degrees to	nave slig uff-brow nt core	ghtly coai vn zones rock with	rser gr are fin fractu	ain sizes e grainec iring gene	(up to I (<0.1cm). erally at			veinlets (up to ~1cm wide). Most noticable near lower contact.	ma		~2cm wide).	veining	m	35	Weak-moderately veining, often carrying dissminated red-purple- brown grains.
interval) of mod						calcite dolomite	35		ру		Possibly rare-trace finely disseminated pyrite in matrix, but likely to be small pale yellow	<u> </u>			
						silica	5	Weak-moderately silicified calcitic zones.			mica prisms.				
69.2 71 Weak-moderate medium grained Competant core	d (up to	0.2cm)	dolom	ite carbor	atite.	amphibolite	1	Fine-medium dark green subangular grains scattered throughout matrix, possibly biotite mica prisms.	nb	2	Fine-medium disseminated grains (up to 0.3cm across), occasionally forming diffused bands (up to ~1cm wide).	laminations veining	W	40	Weakly laminated, defined by diffused wisps of colour variation
zones with weal core surface).						calcite	5	Minor calcite content.	ma		i i i i i i i i i i i i i i i i i i i				
						dolomite silica			ру						
Similar to unit u Weak-moderate medium grained	uphole a ely lam d (<0.1	inated pe -0.2cm) c	71.31n each-b dolomi	rown-buff te domina	ated mixed	amphibolite	1	Small-medium (0.1-0.3cm) sized subangular grains noted scattered throughout matrix, 0.1% possibly biotite flakes.	nb	1.5	Fine-medium disseminated/aggregated grains (up to 0.5cm) forming discontinuous/diffused bands, up	laminations veining	w	40	Weak-moderate laminations, mainly defined by diffused bands of colour variations (up to ~20cm wide). Weak-moderate amount of veining,
carbonatite. Blu coarser grains. Competant core generally orienta ocallized zones	e rock v tated at	with mino t ~20 deg	r amo rees to	unts of fra	acturing, s. Minor	calcite dolomite silica	30 1	Weakly silicified matrix,	ma py	0.05	to ~1cm wide. Possible rare-trace finely			20	mostly running at low-moderate angles to core axis. Often discontinuous blebs of mineralization
surfaces (weak 08-Aug-08	decalo	cification t	texture			Silica	T	generally in zones of calcite.	Responsible		disseminated grains.				

Taseko Mines Limited
Aley Project

Log by

Crystal Chung

Page 6 of 7

INTERVAL(m)		Z o	н С			ALT	ERATION		MINI	ERALIZATION		S	STR	UCTURE
From To	Code	n e	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
77.9 80.6 Fine-medium graine calcite carbonatite w <0.1cm) pink-buff d	ith minor a plomite. N	imouni Iatrix i	s of fine of sweak-m	rained oderately	amphibolite	1.5	Fine-medium (<0.1-0.3cm) dark blue-green subangular grains. Some possibly biotite flakes or fersmite(?).	nb	2	Disseminated/aggregated subhedral-euhedral grains (up to 0.2cm) scattered throughout matrix. Pyrochlore and fersmite.	laminations	m	25	Weak-moderately laminated at low angles (~20-30 degrees) to core axis. Defined by diffused pink-bu bands.
aminated with patch silicified). lard and competant ones (~1%) with de	core rock	with ra	are fractur	ing. Rare	calcite dolomite	15	Diffused wisps and bands (up	ma py			veining	W	30	Trace-minor amounts of veining, generally formed by discontinuou blebs of amphibole(?)
enerally in zones of	pink-buff	colour	ng.		silica	20	to ~10cm wide). Moderately silicified matrix.							(.)
80.6 86.4 Similar to unit uphole Weakly laminated, n	nedium-co	arse g	rained (0.3		amphibolite	0.4	Dark blue-green fine-medium sized (up to 0.3cm) blebs; possibly amphibole or	nb	0.5	Fine-medium grained subrounded red-brown aggregates (up to 0.4cm across).	laminations	vw	30	Very weak laminations, varying fro ~20-45 degrees to core axis, define by slight colour variations.
eakly mottled blue- mounts of fine grain loderately silicified alcite grains and do	ned (<0.1c with sub-re lolmitic m	m) bro oundec atrix.	wn-buff d I equigrar	olomite. ular	calcite dolomite	15	fersmite(?). Irregular wisps and washes	ma py	0.01	Possible rare-trace finely disseminated grains.	veining	VW		Rare veining structures no preferra orientations. Mainly narrow irregular stringers (<0.1cm).
lard and competant 30cm length of grou ith weak-moderate	und core, l	ikely to				10	throughout core, appearing to form matrix surrounding calcite grains.	L						
					silica	20	Moderately silicified matrix.							
86.4 89.5 lottled fine grained ledium grained (0.1		ight br			amphibolite calcite	0.4		nb	0.3	Fine-medium sized (up to 0.4cm) elongated (along laminations) aggregates.	laminations	VW	25	Weakly laminated, defined by diffused bands of colour variatio (up to ~2cm wide).
arbonatite. Fairly e olomite. Matrix app veak sucrosic textu	qual amou bears to be re).	ints of mode	calcite ar rately sili	d cified	dolomite silica	25	Moderate-strongly silicified	ma	0.01	Rare-trace finely disseminated grains.	veining	W	45	Trace veining structures, appears mostly be narrow white calcite
lard and somewhat locky with no domir				htly			matrix, mostly seen in calcite zones.	ру						veinlets (<1cm).
89.5 96.8	gCCCE)	VW		amphibolite			nb	0.2	Fine-medium sized (up to 0.3cm	laminations	VW	30	Very weakly defined lamination
ery weakly laminate 4cm) blue grey and uff, calcite dominar	d finer grai It mixed ca	ned (u	p to 0.1cr	n) pink-	calcite dolomite	25	Irregular brown-buff wisps			across) red-brown grains. Some associated dark blue-green "rims"; possibly fersmite(?).	veining	W	45	Trace veining structures, mostly narrow white calcite veinlets (<10 wide).
oderatetly silicified ard and competant ientated at ~40 de	core rock	with fr ore axi	acturing g s.	enerally	silica	20	and washes throughout core. Moderately silicified matrix.	ma py	0.01	Rare-trace fine grains.				wide).
96.8 100.9 milar to unit uphole aminated, mottled b		96.78r		alcite	amphibolite	0.6	Fine-medium (up to 0.3cm) dark blue-green and black- brown grains; chlorite and	nb	0.5	Fine-medium black subhedral- euhedral grains scattered throughout matrix.	laminations	m	45	Moderately laminated, defined b diffused banding (up to ~1.5cm wide).

Taseko Mines Limited
Aley Project

Log by

Crystal Chung

Date 24-Sep-07

Hole ID 2007-009

Page **7** of **7**

INTERV	A L (m)	Rock	Z o	H C			ALT	ERATION		MIN	ERALIZATION		ę	STR	UCTURE
From	То	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
dominated m coarser grain weak sucros	ned than sic texture	the dolomi s (weak-m	tic zo odera	nes. Matr ately silicif	ix has ied).	calcite		biotite(?).	ma	0.04	Trace amounts of small-medium grained (<0.3cm) silver-black	veining	W	40	Irregular cream-white weakly calcareous veinlets (<1cm wide).
Hard and co orientated at (~5%) showi	t ~35 deg	rees to cor	re axi	s. Minor z	ones	dolomite	35	Diffused wisps and bands of red-brown	ру		grains.				
pink-brown-b				,		silica	20	Moderatly silicified matrix.				_			
100.9 Fine-medium blue-grey ca content (very	lcite carb	onatite wit	h very	/ minor do	y silicified,	amphibolite calcite dolomite	5	Very faint wisps of pink-buff	nb	0.1	Fine-medium sized (up to 0.2cm) red-brown and dark green-black aggregates scattered throughout the matrix.	laminations	vw	30	Very weak laminations noted, distinguished by wispy bands of pink buff dolomite.
Hard and co of fracturing noted runnin	mpetant (with no p	core rock v referred or	vith v rienta	ery minor tion. One	fracture			colouring. Slightly stronger reaction with HCl.	ma py	0.01	Rare-trace fine (<0.2cm) grains.	veining			
						silica	35	Moderate-strongly silicified matrix.	PJ						
107.0 Mottled pead mixed carbo	ch-buff ar	gCCCD	y dol	W omite dom	inanted	amphibolite calcite	35		nb	0.15	Fine-medium disseminated to aggregated red-brown grains. Some small (<0.1cm) black(?)	laminations veining	VW	20	Very weakly defined laminations.
brecciated te 0.4cm) grey peach-buff d	exture wit calcite ar lolomite.	h "clasts" o nd a fine gi Locally mo	of me rained	dium grair d (<0.1cm)	ned (up to) matrix of	dolomite silica	20	Moderate-strongly silicified			euhedral grains; possible fersmite(?).				
(generally in Hard and co fracturing wit	mpetant of	core rock.			ounts of			interval, sucrosic texture noted in locallized zones.	ma py	0.02	Trace amounts of fine-medium (up to 0.1cm) grains				
110.8 Poor core ro	118.3 ock recove	glCC ery (~65%)).	W		amphibolite calcite			nb	0.1	Mostly fine red-brown aggregates (up to 0.1cm) and rarely with	laminations	VW	30	Very weak laminations, defined by slight colour variations.
Similar to un Very weakly grey calcite o	laminate	d, weak-m	odera	tely silicifi	ed, blue- Iolomite	dolomite	15	Irregular brown-buff bands and wisps (up to ~3cm wide).			larger grains (up to 0.4cm). Dark black-green grains also noted; possible fersmite(?).	veining			
content. Hard and co perferrably o rock become	rientated	at ~40 deg	grees	to core as	xis. Core	silica	30	Moderately silicified unit with grey-white sucrosic textures.	ma py	0.01	Rare-trace amounts of magnetite.				
	118.6	bCD		W		amphibolite			nb		Niobates appear to occur in	laminations			
Poor recover material and possible (ma	ground o	ore rock.	Intac	t pieces sl	าอพ	calcite dolomite					narrow stringers (<0.4cm wide) in this interval.	veining			
EOH @ 118						silica			ma py						

Hole ID 2007-010

Page 1 of 7

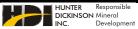
Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
Quala	Fabric
Code	Fabric
x	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
Z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
М	Moderate
S	Strong

	DRILL HOLE	INFORMATION	
Coordinate System	Easting	Northing	Elevation
UTM	454405.00	6257464.00	2065.00
Collar Azimuth	Collar Dip	Planned Depth	Final Depth
	-90.00		79.25
Overburden (m)	Casing (m)	Tricone (m)	
	0.00		
	Down-hole	Survey Data	
Depth (m)	Azimuth	Inclination	Method

	Drilling	Data			
Bit Size	From	То	Length		
NQ2	0.00	79.25	79.25		
	Professional/Tec	hnician Data			
	Person	Start Date	End Date		
Collar Survey					
Drill Contractor	Full Force Drilling				
Geology By	CC				
Geotechnical Log	DB				
Specific Gravity	CC				
Casing	Cemented	Plugged	Rehab. Pad		
in / out	yes / no	yes / no	yes / no		
	Comme	ents			
	Not able to advance	e; broken core			

		ey P	J	501											Page 2 of 7
INTER	/ A L (m)	Rock	Z o	H C			ALT	ERATION		MIN	ERALIZATION		ę	STR	UCTURE
From	То	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
0.0	2.5	CASE				amphibolite			nb			laminations			
No casing t Casing; no			roxima	te depth.		calcite			ma			veining			
Casing, no	COLE LOCK	ecovery.				dolomite			ру						
						silica									
2.5 7.0 gCCCD VW					amphibolite	1.5	Medium-coarse,dark blue- green angular grains (up to	nb	0.3	Fine-medium, weakly elongated (up to ~0.4cm across long axis)	laminations	VW	30	Very weak alignement of grains in matrix.	
Poor-moderate core rock recovery (~70%). Weak-moderately silicified, slightly mottled beigh-buff mixed carbonatite. Fairly equal amounts of calcite and dolomite. Blue-grey to cream-grey calcite grains, (usually			te and s, (usually	calcite		~2cm), associated with niobates; chlorite(?).	ma		red-brown blebs noted.	veining	m	50	Difficult to measure orientation due to very aggregated grains forming veinlets (up to ~20cm wide).		
up to ~0.5c diffused and Locallized z	d wispy zo	nes of beig	gh-buff	colouring	j .	dolomite			ру						vennets (up to ~20cm wide).
otherwise c	ore rock is	fairly com	petant	. Minor r	ubble in	silica	20	Weak-moderately silicified matrix.							
7.0 Weakly lam calcite-dom 0.4cm) in c dolomitic se	iinated, mo inant carb alcitic zone ections. In	onatite. Fires with fine areas of s	and be ine-me er (<0.1 strong	dium gra 1 cm) grai dolomite,	ined (0.1- ns in weak	amphibolite	0.4	Fine-medium dark black- green subangular blebs, generally associated with niobates; possible fersmite(?) or chlorite.	nb	0.3	Fine-medium grained (up to 0.3cm) red-brown blebs, very weakly elongated along lamination orientation. Rare-trace fine silver-black grains	laminations veining	W W	35	Weak laminations defined by slight alignment of matrix grains and buff brown wisps (<0.1cm wide).Minor amounts of veining structures no preferred orientation. Rust-brown
brecciation dolomitic "g moderately	roundmas silicified m	s" and cre natrix; occa	am-wh asional	iite "clast Ily appea	s". Weak- rs to have	calcite	30	Occurs as irregular beigh-buff		0.05	(<0.1cm).				wispy stringers, often have pitted surfaces.
porphyritic f dolomitic "g Hard and fa	roundmas	s".		-		dolomite	50	wisps and washes, wisps are orientated along laminations.	PJ						
mostly orier						silica	17	Weak-moderately silicified matrix, weak surcosic textures				_			
10.7 Medium bu manganifer	eous due t	o strong b	rown c	olouring)	. Weak	amphibolite	1	Coarse dark blue-green angular clots (up to ~1cm), generally associated with	nb	1.5	(Possible hematite). Irregular discontinuous bands of red-purple- brown. Aggregates up to ~1cm.	laminations veining	m		No dominant orientation, often discontinuous.
with brown grey "clasts	amounts of cream-white calcite. Slight brecciated textur with brown "groundmass" and weakly calcareous white- grey "clasts". Calcitic zones appear to be weak-				is white-	calcite	20	niobates (biotite?).	ma py						
moderately Slightly bloo decalcificat	cky core ro					dolomite silica	5	Localized silicification;							
breakage.								generally in calcitic sections.							
13.0	18.5	glCCCD		VW		amphibolite	0.5	Coarsed grained (up to	nb	0.2	Fine-medium (<0.1-0.3cm) red-	laminations	m	25	Slightly variable laminations,
Wookly lam	inatod fin	o modium	araino	d (0 1 0	Som)				I						


Taseko Mines Limited GEOLOGY LOG **Alev Proiect**

Log by

Crystal Chung

Page 2 of 7

repLitho_FullLog:Report

Taseko Mines Limited	GEO)LO	GY LOG		С	Crystal Chung Da	te 26-Se	p-07		Hole ID 2007-010		
Aley Project		<u> </u>	ERATION		MINI	ERALIZATION	Page 3 of 7					
NTERVAL(m) Rock o C		ALI	ERATION	MINERALIZATION					316	UCIURE		
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
nottled cream-grey, calcite-dominanted mixed arbonatite. Trace-minor amounts of wispy fine grained <0.1cm) brown-buff dolomite. Weak-moderately ilicified matrix. lard and competant core rock with minor fracturing (no referred orientation).	calcite dolomite	15	0.7cm) piokioblastic dark green sub-angular clots. Occurs as diffused wisps (up	ma py	0.02	brown blebs. Rare-trace amounts of fine magnetite grains.	veining	m	40	ranging from ~15-35 degrees to cor axis. Weak-moderate veining density; mostly diffused and discontinuous stringers (<0.1cm.		
	silica	20	to ~2cm wide). Minor zones of weak brecciated texture with dolomitic "groundmass".							sungers (<0.1em.		
18.521.1gAMXMossible dyke(?); no defined contacts.lixed amphibolite(?) and carbonatite unit. Mottledolouring with buff-brown wisps and cream-grey and dark	amphibolite	25	Dark blue-green blebs abundantly throughout matrix. Some faded to a pale blue-grey.	nb ma	0.3	Fine-medium sized rounded blebs (<0.1-0.2cm across) scattered in matrix.	laminations veining	W	45	Diffused and wispy buff-brown dolomitic bands (up to ~0.7cm wide		
rey-green blebby "groundmass". Weak-moderately ilicified grey matrix with slight green tint (chlorite?). lard and fairly coherant core rock. No preferred reakage orientation.	calcite dolomite	20	Calcite dominant unit. Occurs as wispy bands, often pitted/decalcified.	ру	0.01	Rare smears of brassy yellow; possibly pyrite (or micas?).						
	silica	5	Weak-moderately silicified.									
21.1 27.5 gCD M	amphibolite	5	Pale green grains noted in matrix (chlorite?).	nb	1	Fine-medium sized (<0.1-0.3cm) aggregates of red-brown.	laminations	VW		Very weak banding defined by sligh colour variations.		
Veakly mottled medium brown, fine grained (<0.1cm) olomite carbonatite with minor calcite content. Weakly ilicified with a very slight brecciated texture (buff-brown roundmass with grey-white rounded-subrounded	calcite	15	Weak-moderately silicified white calcite grains.	ma	0.02	Rare magnetic zones throughout matrix. Finely disseminated(?).	veining	W	30	Wispy bands of rusty-brown (up to ~1cm wide). Trace irregular		
clasts"). Ioderately hard and fairly competant core rock with ninor zones of blocky core. Preferred fracturing	dolomite silica	2		ру						mineralized stringers (<0.5cm wide		
rientation at ~35 degrees to core axis. 27.5 31.1 gCC M ossible dyke(?). Upper contact is shattered core but	amphibolite	1	"Rims" of pale green around some magnetite grains;	nb ma	10	Coarse subhedral aggregates (up	laminations	VW	40	Brown-buff dolomitic wisps tend to be orientated at ~40 degrees to core		
ower contact appears to be diffusely orientated at ~40 egrees to core axis. Nottled/dappled grey and dark black-grey calcite arbonatite with abundant magnetite. Trace-minor	calcite dolomite	5	chlorite after amphibole(?). Irregular wisps and washes of	ру	0.05	to 0.8cm across). Rare-trace pyrite blebs (<0.2cm).	veining	w	30	axis. ~25-30 degrees, white calcite veinlets (<1cm wide).		
mounts of buff-brown dolomite wisps. airly competant core rock with minor zones (<5%) of locky core. No preferred fracturing orientation.	silica	5	buff-brown colouring.									
.8% Medium-coarse black-brown mica prisms (up to 0.8cm across); biotite/phlogopite.												
31.1 33.2 glCCCD M	amphibolite			nb			laminations	m	35	Moderate-strongly laminated at ~30		

Tasek	co Min	esl	im	nited			GY LOG	,	C	Crystal Chung Da	ate 26-Se	p-07]	Hole ID 2007-010
	ley Pro			mea	GEC		GILOG							Page 4 of 7
N T E R V A L (m)	· · · · ·		H C		ALTERATION				MINE	ERALIZATION			STR	UCTURE
From To	Code n		Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Moderately laminated, fine-medium grained (up to 0.3cm) calcite-dominanted mixed carbonatite. Weakly silicified matrix with trace-minor amounts of dolomite wisps/stringers. Slightly blocky core with dominant fracturing orientation			calcite dolomite	10	Minor amounts of buff-brown wisps and stringers (<0.7cm wide).	ma py	1.5	Fine-medium sized (up to 0.4cm) silver black disseminated/aggregated grains.	veining			45 degrees to core axis; ddefined narrow bands of varying colour (<0.5cm wide).		
 55 degrees to co 3% Fine-medium size prisms (<0.1-0) 	sized pale yellov				silica	1	Very weakly silicified.				1			
mica prisms (<0.1-0.3cm), likely to be phlogopite.33.236.6dCDVWPale peach-buff coloured, fine grained (<0.1cm) weakly silicified dolomite carbonatite, with weak-moderate calcite content. Weakly decalcified unit (small rusty-brown pits noted on surface).Fairly hard but blocky core rock with fracture planes mostly orientated at ~25 degrees to core axis.				weakly e calcite	amphibolite	0.5	Pale green blebs (up to 0.2cm across); possibly chlorite(?). Mica prism(?).	nb	0.3	Finely disseminated red-brown specks noted throughout matrix. Some fine subhedral black grains	laminations veining			
					calcite dolomite silica	20		ma py		also noted.				
36.6 41.6 imilar to unit uphole ossible dyke(?). Le xis. Upper contact rokenness of core i appled grey and da bundant magnetite videnced by rusty-b ones. Wispy iron s ompetant core rock t ~45 degrees to co	ower contact at is not measural rock. ark black-grey ca . Very weakly d brown pitted and staining/dolomite k with trace-mine	n. ~45 de ole due alcite ca ecalcifi weakly stringe	to arbona ed as y rubb ers.	atite with led	amphibolite calcite dolomite	1 5	Pale green "rims" associated with magnetite; chlorite after amphibole(?). Coarse dark green aggregates (up to 0.6cm across); mica prisms. Irregular wispys and washes of buff-brown colouring with minor zones (~15% of interval) of strong dolomite occurrence.	ma	12 0.1	Medium sized subhedral aggregates (up to 0.5cm). Rare- trace amounts of purple-brown also noted, possible hematite(?). Trace amounts of brassy blebs (<0.3cm across).	laminations	vw m	50 35	Defined by very weak and narro stringers (<0.2cm wide) Weak-moderate veining density ~1.5 grey calcareous bands of slightly less magnetite mineralizat
41.6 42.5 ottled buff-brown c rbonatite. Blue-gr ained when compa oderately silicified loite "clasts" and c ard and competant	dolomite-domina rey calcite zones ared to buff-brow matrix. Slight b dolomite matrix.	nt mixe tend to vn dolo recciato	o be c mite.	Weak-	silica amphibolite calcite dolomite silica	30 2	Weakly silicified, mainly in calcitic zones.	nb ma py	0.8	Disseminanted, increasing in size to aggregates (<0.1-0.2cm across).	laminations veining	w	40	Trace veining structures; irregul and diffused buff coloured string (<0.4cm wide).
42.5 46.1 beckled cream-whi sps and washes o	gfCC ite calcite carbor	natite w			amphibolite calcite		culture zones.	nb	2	Irregular red-purple-brown aggregates of niobates (with possibly some hematite?). Grain	laminations veining	W	45	Weak veining structures, mostly diffused bands of rusty-brown (up

Aley Project Page 5 of 7														
INTERVAL(m)	Z Rock o	H C			ALTI	ERATION		ΜΙΝΙ	ERALIZATION	STRUCTURE				
From To	Code n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
noderately decalcified nedium sized (up to C oits; oxidized minerali vith fine-medium size fairly hard and moder of interval is moderate surfaces). Fracturing core axis.	0.4cm across) et zation(?). Weak d (<0.1-0.4cm) g ately competant ly decalcified (ve	ihedral ru ly silicified rains. core rock ery pitted	sty-brown d matrix <. ~25%	dolomite silica	20 5	Wisps and washes of rusty- buff-brown, increasing in content moving downhole. Weakly silicified matrix.	ma py		size decreases slightly moving downhole (0.1-0.4cm across).				~1cm wide).	
	gCCCD	W		amphibolite	0.1	Trace amounts of dark green-	nb	1.5	Irregular fine-medium sized (<0.1-	laminations				
Similar to unit uphole Aottled cream-white a Iominanted mixed ca natrix, mostly in band noderately silicified m	at 42.52-46.05m and buff-brown de bonatite. Weak s of rusty-brown atrix.	olomite- ly decalci . Weak-		calcite dolomite	25	brown clots noted (<0.2cm across); chlorite or mica(?).	ma py		0.5cm) red-brown aggregates.	veining	vw	30	Trace amounts of veining structures mostly diffused and weakly decalcified rusty-brown bands (up to ~2.5cm wide).	
Hard and coherant co preferred breakage or		acturing v	with no	silica	3	Weakly silicified matrix.								
48.6 51.3 gCD Fine-grained (<0.1cm) medium buff- carbonatite with patches of medium cream-grey calcite carbonatite. Wea mostly in cream-white zones. Weak Hard and competant core rock with		ained (0. ly silicified decalcifie	1-0.4cm) d matrix, ed.	amphibolite calcite dolomite	0.4 20	Dark blue-green clots (<0.1- 0.4cm across) noted scattered throughout matrix; possibly mica prisms, generally forming very discontinuous bands (up to ~2cm wide).	nb ma py	0.1	Fine-medium sized (<0.1-0.3cm across) red-brown blebs.	laminations veining	w	35	Irregular and diffused bands (up to ~3cm) of dolomite and narrow stringers (<0.5cm).	
				silica	2	Weakly silicified calcitic matrix.								
51.3 55.9 Dappled blue-grey cal content, occuring as v	ispy bands of lig	ght buff-br	rown	amphibolite calcite			nb	0.02	Trace amounts of slightly elongated red-brown blebs (up to 0.3cm across long axis).	laminations	vw	35	Very weak laminations, defined by wispy bands of buff-brown (up to ~0.8cm wide).	
colouring. Matrix appe ine-medium sized gra Hard and fairly compet racturing orientation a	ins (<0.1-0.4cm tant core rock w). ith domina	ant	dolomite	15	Occurs as buff-brown wispy bands and irregular washes throughout the matrix.	ma py			veining	W	50	Minor veining density; white very weakly calcareous veinlets (~0.6cm wide).	
				silica	25	Moderately silicified matrix; grey quartz may also be present in matrix.								
55.9 60.3 Aoderate-strongly dec nixed carbonatite. De	olomite content i		n the	amphibolite calcite			nb	0.5	Irregularly shaped red-purple- brown aggregates (up to 0.3cm across); some possibly	laminations	VW	55	Very weak laminations, buff-brown washes tend to show this preferred orientation.	

Crystal Chung

Date

26-Sep-07

2007-010

Hole ID

Taseko Mines Limited GEOLOGY LOG

Taseko Mines Limited Aley Project	GEO	LO	GY LOG	Crystal Chung Date 26-Sep-07 Hole ID 2007-010 Page 6 0							
INTERVAL(m) Rock o C		ALTE	ERATION		MINE	RALIZATION		;	STR	UCTURE	
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
upper part of the interval, decreasing content moving downhole. Calcite tends to be grey-white and medium grained (up to 0.6cm) and more competant while dolomite is medium brown in colour, fine grained and scop in arras of strong decalsification	dolomite	40	Medium brown dolomite sections are more reactive to HCl than calcitic zones.	ma py		hematite(?).	veining				
seen in areas of strong decalcification. Blocky core rock with ~25% of interval strongly decalcified to rubble and "sandy mud" matrix.	silica	2	Weakly silicified calcitic sections.								
60.3 61.2 gfCD M	amphibolite	0.3	Pale green blebs (<0.4cm) noted scattered throughout	nb	0.2	Irregularly shaped, slightly elongated red-purple brown	laminations	VW	45	Very weakly defined by slight colour variations.	
Medium buff-brown fine-grained (<0.1cm) dolomite carbonatite with increasing calcite content moving downhole. Weak-moderately decalcified with locallized zones of strong pitted textures. Fairly competant core rock with ~25% of interval moderately weathered/decalcified and soft. No preferred	calcite	30	matrix; chlorite(?). Medium grained (up to 0.3cm across) cream-grey matrix, increasing in content moving			aggregates (up to 0.3cm across long axis). Some weakly forming very discontinuous and diffused stringers.	veining	W	25	Minor veining density with narrow white, weakly calcareous stringers (<0.3cm wide).	
oreakage orientation.	dolomite silica		downhole; weakly silicified.	ma py							
61.2 64.8 fCC W Moderately decalcified mottled blue-grey calcite	amphibolite			nb	0.5	Slightly elongated irregularly shaped aggregates (up to ~0.4cm	laminations	VW	55	Very weakly defined by slight colour variations, generally noted between	
carbonatite with minor buff-brown dolomite content. Fine- medium grained (up to 0.3cm across) matrix with weak sucrosic textures from silicification. Increasing decalcification moving downhole. Fairly competant core rock, becoming more broken downhole throughout the interval. No preferred breakage prientation with ~10% fine rubble.	calcite dolomite	15	Occurs as fine grained buff- brown patches (up to ~1cm across) and irregular diffused bands and washes. Generally in zones with strong pitted	ma py		across long axis), generally in zones of dolomite.	veining	W	30	calcitic and dolomitic zones. Minor veining density, narrow grey stringers (<0.3cm wide).	
	silica	2	surfaces. Weakly silicified matrix.								
64.8 68.6 fCCCD W Fair core rock recovery (~70-80%). Strongly decalcified and broken interval of mixed calcite and dolomite carbonatite. Difficult to determine	amphibolite	0.6	Dark green clots noted throughout the interval (up to 0.4cm across); likely to be mica prisms.	nb	0.7	Fine-medium grained red-purple- brown aggregates (up to 0.5cm), appears to be forming weak bands, up to ~1cm wide (seen in	laminations veining				
percentages due to brokenness of core rock; appears to be dolomite-dominant based on colouring of core. Broken, rubbly core rock with ~12% intact core rock. The remainder of interval is comprised of fine-medium rubble and completely decalcified core ("sandy mud" matrix).	calcite dolomite silica	20		ma py		more intact core).					
68.6 70.6 gfCD M Fine grained (<0.1cm) buff-brown dolomite carbonatite. Weakly decalcified with locallized zones of weak and	amphibolite	1	Small-medium sized blue- green blebs (up to 0.5cm across) noted scattered	nb	0.6	Fine-medium grained irregular aggregates (<0.1-0.5cm across).	laminations veining				
08-Aug-08 repLitho_FullLog:Report	1			Responsible							

A	roje	ect											Page 7 of 7				
INTERVAL(m)	Rock	Z o	Z H		H C			ALT	ERATION		MIN	ERALIZATION	STRUCTURE				
From To		Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments				
broken core rock. Fairly competant core decalcified and rubbly ~40 degrees to core a	v. Preferre				calcite dolomite silica	5	throughout the matrix; chlorite after amphibole(?).	ma py									
70.672.7gCCVWSimilar to unit uphole at 61.2-64.79m.Mottled blue-grey calcite carbonatite with minor buff- brown dolomite conten. Fine-medium grained (0.1- 0.3cm) matrix with weak silicification.Blocky and shattered core rock with no preferred fracturing orientation.					amphibolite	1	Fine-medium light-dark blue- green blebs (<0.4cm across) noted; chlorite(?).	nb ma py	0.1	Rare niobate mineralization.	laminations veining	vw w	35 50	Very weakly laminated. Trace-minor veining density; narro and discontinuous stringers (<0.1cm			
					calcite dolomite	7	Generally occurs as buff- brown fine grained (<0.1cm) clots and irregular stringers (up to 0.3cm wide).	<u> </u>			I <u></u>			wide).			
72.7 79.3 gICCCD W Mottled beigh-buff calcite-dominant mixed carbonatite. Weakly silicified fine-medium grained matrix. Hard and competant core rock; minor fracturing at ~50 degrees to core axis. ~10% ground core ("sandy mud"				at ~50	silica amphibolite calcite	5	Weakly silicified matrix. Pale blue-green blebs (up to 0.6cm across); chlorite after amphibole(?), possibly minor amounts of dark mica prisms.	nb ma	0.1	Fine-medium grained red-purple- brown aggregates (<0.2cm across).	laminations veining	vw w	45 40	Very weakly laminated; defined by slight colour variations between calcitic and dolomitic zones. Trace veining density; mostly narro and irregular buff-brown stringers			
texture). EOH @ 79.25m.					dolomite	30 5	Occurs as irregular brown- buff washes throughout the core. Weakly silicified matrix.	ру						(<0.3cm wide).			

Crystal Chung

Log by

2007-010

Hole ID

26-Sep-07

Date

Taseko Mines Limited

GEOLOGY LOG

GEOLOGY LOG

Hole ID 2007-011

Page 1 of 11

Code	Mineralization Style
nb	niobates
ma	magnetite
ру	pyrite
рс	pyrochlore
fs	fersimite
cb	columbite
	-
Code	Fabric
х	brecciated
I	laminated
f	decalcified
v	veined
Code	Structure
z	fault
е	strained
s	shear zone
У	dyke

Code	Lithology
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
Code	Intensity
Т	Trace
W	Weak
Μ	Moderate
S	Strong

UTM Collar Azimuth 20.0	454680.00	6257465.00	2068.00			
			2068.00			
20.0	Collar Dip	Planned Depth	Final Depth			
	-90.00	-	152.40			
Overburden (m)	Casing (m)	Tricone (m)				
	0.00					
	Down-hole	Survey Data				
Depth (m)	Azimuth	Inclination	Method			
146.30	59	-88.3	Reflex EZ-shot			
	Drilliı	ng Data				
Bit Size	From	То	Length			
BTW	0.00	152.40	152.40			
	Professional/1	Fechnician Data				
	Person	Start Date	End Date			
Collar Survey						
Drill Contractor	Peak Drilling					
Geology By	CC					
Geotechnical Log	DB					
Specific Gravity	CC					
Casing	Cemented	Plugged	Rehab. Pad			
in / out	yes / no	yes / no	yes / no			
	Com	ments				

ST	asek	ωM	ine	s Lin	nited	GFC				C	Crystal Chung Da	ate 01-Oc	et-07		Hole ID 2007-011					
		ley F													Page 2 of 11					
NTER	V A L (m)		Z o	н С			ALTERATION			MIN	ERALIZATION	STRUCTURE					ATION			UCTURE
From	То	Code	n e	Ĺ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments					
0.0	2.5	CASE				amphibolite			nb			laminations								
asing; no	core rock	recovery.				calcite			ma			veining								
						dolomite			ру											
						silica														
2.5	4.1	OVBN		S		amphibolite			nb			laminations								
					dominantly	calcite			ma			veining								
edrock. I	Broken/blo	sibly blue- cky fragm	ents sho	ow variou	S	dolomite			ру											
extures; s	ome mode	erately lam	inated,	some pha	aneritic.	silica						1								
4.1	5.7	dlCC		М		amphibolite			nb			laminations	m		Sub-parallel to ~20 degrees to co					
		banded, lig				calcite			ma	0.1	Trace amounts of fine silver-				axis; defined by irregular bands					
are-trace	amounts	(<0.1-0.2) of iron sta	ining/do	lomite(?)		dolomite	0.05	Rare-trace small buff			black specks scattered in matrix.				light and medium blue-grey (up ~0.5cm wide).					
loderately	hard and	competar	it core r	ock, rare	fracturing.			coloured washes.			Also possible rare-trace pyrrhotite(?).	veining								
		subangula ains of mic				silica			ру	0.2	Mostly occurs in darker bands as	.								
lominantly	occuring	in darker t	olue-gre	y bands.	uoross),						slightly elongated blebs (<0.3cm									
5.7	6.9	dCC		М		amphibolite	0.1	Pale green blebs (up to 0.3cm	nb		across long axis). Possibly rare-trace amounts; fine	laminations	VW	40	Very weakly laminated at ~30-5					
		nottled ligh	t and m		ue-arey.	umphiconic	0.11	across), generally associated	no		red-brown specks noted.	furminutions		10	degrees to core axis. Defined wear					
ne-mediu	m grained	(<0.1-0.20 of iron sta	cm) calc	cite carbo	natite.			with pyrite.	ma	0.1	Fine-medium, silver-black blebs				by very dffused bands of light an					
loderately	hard and	competar	nt core r	ock, rare		calcite		~			(up to 0.2cm across); possibly rare pyrrhotite(?).	veining			medium grey matrix. Very diffused bands carrying mid					
-		at ~45 de	-			dolomite	0.05	Rare-trace irregular washed of buff colouring, possibly	ру	0.4	Dominantly occurs in darker blue-	venning			and sulphide grains (up to ~10 cr					
		im, subang kis) of darl						weak iron staining.			grey zones, generally as elongated				wide).					
	· · ·			<pre>// / / / / / / / / / / / / / / / / / /</pre>	blue-grey	silica					blebs (up to 0.5cm across long axis).									
6.9	9.5	dCC		М		amphibolite	1	Pale-light green subangular	nb		~0.1% Fine (~0.1cm) irregular	laminations								
	nt-medium	blue-grey						blebs (up to 0.5cm) scattered			blebs of red brown; possible	veining								
) calcite c ntent. Slig						in matrix. Some discontinuous bands of dark	ma	0.01	hematite. Rare finely disseminated									
urface.		petant core	•					velvet-green also noted;	111a	0.01	magnetite.									
f fracturin		orientated						chlorite(?).	ру											
xis.						calcite						•								
08-A	Jg-08		repLitho	FullLog:Rep	port				Responsible											

Taseko Mines Limited	GEO		GY LOG	/	С	Crystal Chung Da	ate 01-Oc	:t-07		Hole ID 2007-011
Aley Project										Page 3 of 11
INTERVAL(m) Rock o C		ALT	ERATION		ΜΙΝΙ	ERALIZATION		:	STR	UCTURE
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
~2-5% small-medium dark black-brown mica(?) blades (narrow and up to 0.2cm across long axis).	dolomite	0.5	Weak-moderate irregular rusty buff-brown washes and very diffused bands.							
	silica	0.1	Very weakly silicified.	<u> </u>						
9.5 14.0 gCCCD W Mottled light-medium blue-grey and brown-buff, fine- medium grained, calcite-dominant mixed carbonatite. Very weak and locallized silicification, generally noted in pale blue-grey sections. Fairly competant core rock with fracturing preferrably	amphibolite calcite	1	Dark blue-green subangular blebs (up to 0.3cm across) scattered throughout matrix; chlorite(?).	nb ma	0.7	Irregularly shaped red-brown and black-brown blebs (up to 0.2cm across). Occasionally forming very diffused/discontinuous bands. Rare-trace finely disseminated	laminations veining	vw	30	Very weak bedding planes; defined mostly by diffused banding of calcit and dolomite.
orienated at ~45 degrees to core axis. Minor zones (~5%) of broken/shattered core.	dolomite silica	35	Buff to grey brown zones; irregular diffused washes and bands with minor decrease in grain size (<0.1cm).		0.05	grains (<0.1cm). Rare-trace amounts of finely disseminated brassy specks; possibly pyrite or pale yellow mica (phlogopite?).				
14.0 16.7 gCC VW	amphibolite			nb	1	Fine subhedral-euhedral	laminations	VW	50	Very weakly bedded, defined mostly
Very weakly laminated, speckled and weakly mottled plue-grey, medium grained (0.1-0.3cm) calcite	calcite					aggregates of dark black-brown with minor amounts of red-brown				by slight colour banding and weak alignment of matrix grains.
carbonatite. Rare-trace iron staining/dolomite content. Weak-moderate silicification of calcitic matrix. Fairly hard and competant core rock with rare fracturing.	dolomite	15	Weak irregular washes and bands (up to ~3cm wide) of pink-buff colouring.			blebs (<0.4cm); likely niobates with possibly trace amounts of hematite(?).	veining	VW	50	Rare vein density; weakly diffused cream silicified veinlets noted (<1cr wide).
~1% Fine-medium (up to 0.2cm across long axis) brown- plack bladed grains, likely to be biotite mica scattered	silica	25	Grey silica, slight sucrosic	ma						wide).
throughout matrix.	L		textures.	ру	0.01	Rare-trace amounts of finely disseminated brassy specks; possibly phlogopite(?).				
16.7 19.3 gfCD W	amphibolite			nb	1	Appears to be dominantly	laminations	vw	40	Very weak laminations; weakly
Weakly laminated, speckled and mottled buff brown, fine- medium (<0.1-0.3cm) dolomite carbonatite with calcite. Moderately iron stained to rusty brown colouring. Weakly weathered/decalcified with pitted core surface. Slightly blocky core rock with fracturing generally prientated at ~30 degrees to core axis. ~30% of interval comprised of shattered/broken core.		30	Generally coarser grained than dolomitic component with weak silicification. Increasing slightly moving downhole.	ma		fersmite; fine-medium sized subhedral-euhedral dark black- brown grains (<0.1-0.2cm across). Trace-minor red-brown blebs (pyrochlore?) also noted.	veining			defined by alignment of matrix grains. Rare-trace vein density; mainly diffused bands of varying carbonatit and some discontinuous stringers (<0.2cm wide).
	silica	1		ру						
19.3 22.4 dfCCCD W Similar to unit upbole at 16.72-19.33m	amphibolite	1	Dark blue-green blebs (up to 0.4cm across) noted, slightly		0.7	Finely disseminated black grains noted scattered throughout matrix	laminations	W	50	Very weakly defined by alignment of matrix grains.

Taseko Mines Limited	GI
Aley Project	

EOLOGY LOG

Log by

Crystal Chung

01-Oct-07 Date

2007-011 Hole ID

Page **4** of **11**

INTERVAL (m) Rock	Z o	H C			ALT	ERATION		MIN	ERALIZATION	STRUCTURE					
From To	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
Weakly laminated, speckled light and rusty buff-brown medium grai mixed carbonatite. Appears to be stained calcite with locallized zone	ned (0.1 domina	-0.3cn Inted b	n across) y iron	calcite		orientated along laminations; possibly chlorite(?).			(fersmite?). Occasionally larger elongated bleb (up to 0.7cm across long axis) noted.	veining	VW		Low vein density, appears to be mostly orientated at low angles (sub- parallel to ~25 degress) to core axis.		
(<0.1cm) buff-brown dolomite. W weathered/decalcified with pitted of Fairly competant core, slightly blo generally orientated at ~35 degree	core sur cky with	faces. fractu	ring	dolomite	25	Variable composition. Dark maroon-brown bands present (manganiferous dolomite?).	ma py								
of interval is strongly weathered/d semi-solid fine rubble and "sandy	ecalicifie	ed into		silica	2	Weakly silicified matrix.									
22.4 29.5 gICCCD Weak-moderately laminated, spec	oklad lia	W ht and	modium	amphibolite	1.5	Dark blue-green specks and blebs noted throughout	nb	0.5	Fine disseminations to medium sized aggregates (<0.1-0.3cm	laminations	W	35	The second second second second second		
blue-grey, medium grained (up to dominated mixed carbonatite. De than unit immediately uphole with	0.3cm a	across) I in iror	calcite- staining	calcite		matrix; possibly chlorite(?).			across) of mostly red-brown specks/blebs.	veining	W	35	Low-moderate vein density with mostly diffused buff coloured bands with some dark green <1cm wide		
(<0.1cm), buff coloured dolomite of Moderately hard and competant c amounts of fracturing; generally o	content. ore rock	. Mino	Dr	dolomite	20	Occurs as irregular pink-buff coloured washes and bands.	ma	0.15	Fine-medium (up to 0.1cm) silver- black disseminations, tends to occur in locallized clusters.				veinlets (chlorite?).		
degrees to core axis. ~15% of int olocky and broken core.				silica	2	Weakly silicified calcitic matrix.	ру		occur in localized clusters.						
~1% fine-medium brown-black sp throughout matrix; likely to be mic seen in small pits on core surface	a flakes														
29.5 33.9 dCCCD Similar to unit uphole at 22.38-29. Very weakly laminated mottled blu		W and bu	ff fine-	amphibolite	0.5	Fine-medium grained dark black-green specks, often associated with niobate	nb	0.3	Fine-medium disseminated red- brown grains, generally occurs in buff coloured "matrix" zone and	laminations	VW	30	Very weak laminations, defined by very minor colour variations in the matrix.		
medium grained (<0.1-0.2cm), cal carbonatite. Core rock has slight 'clasts' of blue-grey silicified calcil	lcite-don brecciat	ninate ed tex	d mixed ture with	calcite		mineralization; (chlorite?).			tend to be rare in blue-grey "clasts".	veining	W	30	Very weakly calcareous irregular and diffused veinlets seen (<1cm wide).		
grained dolomite. "Clasts" have w cream-white. Moderately hard and competant c	ore rock	. Rare	e	dolomite	25	Occurs as almost as an alteration front, giving matrix	ma py								
fracturing, preferrably orientated a axis.	at ~45 de	egrees	to core	silica	7	a buff coloured overprint. Weak-moderately silicified (mainly calcitic) matrix.									
33.9 38.0 xAMX Contact zone to dyke(?); interval of	of mixed	M amph	ibolite	amphibolite	30	Fine-grained, medium-dark velvet green colouring;	nb	0.1	Trace-minor amounts of niobate mineralization, generally	laminations	W	30	Weak laminations are noted in locallized patches, mostly defined by		
and carbonatite. Mottled medium grey-green, crear matrix. Moderately calcareous wi	m-white,	buff-b	orown	calcite		chlorite (after amphibole?).			occurring in carbonatite sections of core. Fine-medium sized	veining			diffused dolomite bands.		
			ng from	dolomite	10	Occurs as irregular buff-	II		(<0.4cm across) irregularly						

Taseko Mines Limited	GEC		GY LOG		C	Crystal Chung Da	ate 01-Oc	:t-07		Hole ID 2007-011
Aley Project										Page 5 of 11
NTERVAL(m) Rock o C		ALT	ERATION		MINI	ERALIZATION	STRUCTURE			
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
ubrounded amphibolite "clasts" and carbonatite as latrix. ard and fairly competant core rock with minor zones of lockiness. .5% Fine-medium grained black-brown (and rare-trace	silica		bands.	ma py	0.01	Rare-trace amounts of fine brassy coloured specks. Possiby pyrite but also possibly pale yellow				
ale yellow) mica specks present in matrix.						mica flakes.	J			
ossible rare-trace finely disseminated galena(?). 38.0 39.7 xAMy W yke(?). ////////////////////////////////////	amphibolite calcite dolomite silica	10	Weak-moderately calcareous dark green matrix. Weak-moderately banded grey and white calcite infilling fractures.	nb ma	0.1	Finely disseminated silver-black specks are noted, generally in contact zone between amphibolite clasts and calcite infill. Possible trace amounts of pyrrhotite(?); brassy blebs are noted in matrix.	laminations veining	m		No dominant orientation. Only noted in banded calcite.
2% fine-medium sized (up to 0.3cm across) hexagonal ack-brown mica prisms are noted in darker coloured alcite bands.	L			ру		Trace amounts of soft brassy coloured blebs (up to 0.4cm across) noted in calcitic zones; possibly pyrite but does not streak dark grey.				
39.7 44.1 dICC S loderate-strongly banded, light and medium blue-grey nd green, fine-medium grained (<0.1-0.5cm) calcite arbonatite. Minor patches of pale rusty brown (iron taining/dolomite?) overprint. Slightly mixed unit with ubrounded clasts of dark grey-green amphibolite (up to	amphibolite calcite dolomite	15 0.05	Fine grained dark velvet grey- green clasts with very weakly diffused contacts. Minor zones of pale rusty-	nb ma	0.15	Trace-minor amounts of fine- medium disseminated silver-black grains. Possible rare-trace pyrrhotite.	laminations	m vw	25	Moderately banded at 15-30 degree to core axis; defined by diffused bands (up to ~5cm wide) of light a medium blue-grey. Low vein density; rare discontinue
15cm across). airly hard and competant core rock, rare fracturing at 30 degrees to core axis. 1.5% small-medium subangular-angular black-brown			brown overprint; possibly dolomite/iron staining of calcitic matrix.	ру	0.4	Brassy coloured blebs, occasionally elongated along laminations (up to 0.4cm across	<u> </u>			pyritic stringers (<0.3cm wide) no
and trace pale yellow) grains of mica (up to ~0.3cm cross); generally occuring in darker blue-grey bands.	silica					long axis).]			
44.1 48.2 gICC S imilar to unit uphole at 39.74-44.06m. loderate-strongly banded, light and medium blue-grey, ne-medium grained calcite carbonatite. Rare zones	amphibolite calcite dolomite			nb ma	0.1	Fine-medium sized subangular (up to 0.3cm across) aggregates of silver black magnetite. Tends	laminations	m	45	Moderate-strong laminations, defined by diffused light and medium blue-grey bands (up to ~3cm wide).
1%) of pale rusty-brown overprinting (iron taining/dolomite?) airly hard (possibly weakly silicified?) and competant	silica					to occur in darker coloured calcitic bands (in clusters).	veining	vw	50	Low vein density; narrow stringe noted (<0.4cm wide), tends to cro

	Taseko Mines Limite Aley Project					LO	GY LOG	Crystal Chung Da	ite 01-Oc	xt-07	Hole ID 2007-011 Page 6 of 11				
NTERVAL(m) Code n L			н		ALTERATION				MIN	ERALIZATION	STRUCTURE				
From T	Го	Code n	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
ore rock, rare f egrees to core		ng, dominatly	orientated	at ~25				ру	0.3	Brassy coloured blebs (up to 0.3cm across) scattered				cut laminations.	
1.5% small-me subangular in s ccuring in dark	shape;	up to 0.2cm a								throughout matrix.					
	2.7	glCC	S		amphibolite			nb			laminations	m	25		
Similar to unit u		at 39.74-44.06			calcite			ma	0.1	Fine-medium subangular silver-	veining	w	25	Slightly difficult to determine	
loderate-strono alcite carbonat	igly ban itite with	ided, light and n ~10% dark g	medium b rev-areen	lue-grey	dolomite					black aggregates (up to 0.2cm	6			veining density. Veining structure	
mphibolite dyk	klets. N	/linor (<3%) of	interval we		silica				0.2	across).				tend to follow lamination planes	
verprinted with taining?). airly hard and	•		U V		Silica			ру	0.3	Fine-medium brassy disseminated grains, occasionally elongated along laminations.					
1% small-med nica specks, m										ulong minimutons.					
52.7 58	8.8	xAMy	М		amphibolite		Weakly calcareous, fine	nb			laminations	m		No dominant orientation, only not	
lyke(?). ledium-dark gr	rov aroa	on fino arainor	lamphibol	lite unit			grained (<0.1cm) dark blue- green matrix.	ma	0.1	Finely disseminated grains of	vainina			in banded calcitic sections. No dominant orientation; white a	
eak-moderate	ely brec	ciated texture	s with sub	rounded	calcite	15	Weak-moderately banded			silver-black magnetite. Possible trace pyrrhotite.	veining	m		cream coloured calcite	
mphibole clast alcitic infill. Pc							grey and white calcitic infill	ру	0.5	Minor amounts of brassy yellow				bands/veinlets (up to 1.5cm wide	
ard and compone (~3% grey							in open space fractures.	PJ	010	blebs, weakly elongated (up to				infillin open-space fractures.	
ontact at ~35 c	degrees	s to core axis;	diffused lo		dolomite					0.3cm across long axis); generally					
ontact appears	s to be	at similar oriei	itation.		silica					noted in darker coloured calcitic bands.					
0.2% fine-med]			1		ourus.					
	2.5	glCC	S		amphibolite			nb			laminations	S	30	Moderate-strongly laminated uni defined by slightly diffused light a	
trongly banded rained (up to 0	d light a 0.3cm a	and dark blue- across) calcite	grey, fine-ı carbonatit	medium e. Minor	calcite			ma	2.5	Medium sized (up to 0.4cm				dark bands (up to ~0.5cm wide)	
atches of pale taining/dolomit	e rusty-b	orown overprin	t; possible	iron	dolomite	0.1	Pale rusty-brown overprint in			across), subrounded silver-black blebs, generally forming darker	veining		65	Difficult to determine vein density	
airly hard and	compe	ent(?). Very w	with rare f	racturing.			locallized zones of the matrix; possibly dolomite.			coloured bands				veining structures tend to follow	
0.2% fine blac	ck browi	n mica specks			silica	1	Weakly silicified matrix.			(discontinous/diffused veinlets).				lamination planes. Several dark narrow stringers (<0.2cm wide)	
					J		5	ру	1	Fine-medium grained disseminations, mostly associated				noted, cross-cutting laminations.	
										with magnetite presence.					
62.5 66	6.8 g	glCCCD	М		amphibolite			nb	0.1	Slightly elongated red-brown	laminations	w	45	Weak-moderately laminated; define	
Nottled buff-bro arbonatite. Fir					calcite	35	Blue-grey colouring with slightly larger grain size than			aggregates (up to 0.4cm across long axis) present, generally in				by diffused bands of colour variations (up to ~3cm wide).	

Taseko Mines Limited Aley Project	GEC	DLO	GY LOG	,	C	rystal Chung Da	ate 01-Oct-07 Hole ID 2007-011 Page 7 of 11					
NTERVAL(m) Rock o C		ALT	ERATION		MINE	RALIZATION			UCTURE			
From To Code n L	Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments		
ections with bands of slightly coarser grained (up to 3cm) grey calcite. airly hard (weakly silicified?) and competant core rock ith minor locallized zones of weak decalcification/break onw, giving core surface a sandy, pitted texture (~7% c terva). Minor amounts of fracturing at ~20 degrees to		1	dolomite. Weakly silicified matrix.	ma py		lower part of the interval.	veining					
ore axis. 0.7% fine-medium sized aggregates (up to 0.3cm cross) dark black-green and brown mica prisms (likely be biotite or phlogopite).												
66.8 75.7 gICCCD VW Veakly laminated and mottled blue-grey and pale pink- uff, calcite-dominanted carbonatite unit. Appears to be reak and diffusly brecciated with subrounded-rounded clasts" of medium grained (up to 0.3cm) blue-grey alcite and a mixed matrix of buff dolomite and cream- thite calcite. "Clasts" also appear to have weak reactio ms.	dolomite silica	1	Weak-moderately silicified calcitic matrix; weak sucrosic textures noted.	nb ma py	0.3	Fine-medium grained (<0.1- 0.3cm) red-brown blebs noted scattered throughout matrix. Possible finely disseminated magnetite (fine silver-black specks noted).	laminations	w vw	30	Weak laminations, noticed in locallized zones. Defined by diffused banded (up to ~0.5cm wi slight colour variations. Low vein density; difficult to determine as most veining structu appear to follow lamination plan		
oderately hard and fairly competant core rock with inor amounts of fracturing at ~35 degrees to core axis. ne fracture running sub-parallel to core axis noticed 60cm in length). 0.4% fine black-brown mica specks scattered in matrix				, rj								
75.781.9gfCDW/eak-moderately decalcified, fine grained medium buff- rown dolomite carbonatite with minor coarser grained alcite component.loderately decalcified/broken down core, giving surface pitted and sandy texture. Blocky, broken core rock wit 50% intact core. Remainder of interval is comprised of roken fragments of core. Preferred fracturing rientation at ~45 degrees to core axis.	amphibolite calcite	10	Slightly coarser grained than dolomitic sections with weak silicification.	nb ma	1	Subrounded, finely disseminated to medium sized aggregated (<0.1- 0.4cm) red-brown blebs. Occasionally forming discontinuous and diffused veinlets (<0.5cm wide).	laminations veining	vw	40	Very weak and faint, locallized laminations. Difficult to determine vein density/orientation due to brokenn of core rock. Discontinuous/diffu mineralized veinlets are noted (<0.2cm wide).		
81.9 88.0 gICC VW por recovery (~40%, 3.05m caved). ery weakly banded light blue-grey and pale buff, fine- edium grained calcite carbonatite. Weakly decalcified atrix, mostly along buff coloured bands, giving break urfaces a sandy texture. oderately hard and slightly blocky core rock with no eferred breakage orientation.	amphibolite calcite dolomite	0.2	Fine-medium dark green subangular grains (up to 0.2cm) noted. Generally occurs as diffused pale pink-buff coloured bands (up to ~1cm wide).		0.75	Disseminated and aggregated grains scattered througout matrix (<0.1-0.3cm across). Possible rare-trace amounts of magnetite(?); fine silver-black specks noted.	laminations veining	vw vw	35	Very weakly laminated, defined diffused bands of slight colour variations. Low vein density; mainly narrow discontinuous stringers (<0.2cr wide).		

Taseko N Aley	Aines Proje		nited	GEO		GY LOG	,	C	rystal Chung Da	ate 01-Oc	et-07	ł	Hole ID 2007-011 Page 8 of 11			
INTERVAL (m) Roc	•	H C			ALT	ERATION	RATION MINERALIZATION					STRUCTURE				
From To	le n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments			
		•		silica												
88.0 93.9 gfCC Very faintly banded, speckle and pink-buff mixed carbona calcitic and dolomitic conter texture or what appears to b staining/dolomitic overprintin grey calcite. Weak-moderately decalcifie coloured zones. Pitted core texture. Moderately hard an with fractiving month events	ed and mottle atite. Fairly on the Very weat one a secondation of mediur and matrix, mote surfaces hat and fairly com	equal am k breccia ry iron n grained stly in bu ve a slig petant co	aounts of ated d blue- uff ht sandy ore rock	amphibolite calcite dolomite	0.7	Dark blue-green aggregates noted associated with niobate mineralization; possibly chlorite(?). Rusty brown pits, likely to have been infilled by black-brown mica prisms.		2	Red-brown fine-medium sized (up to 0.4cm across) subangular- angular aggregates noted throughout matrix. Generally forming very diffused and discontinous veinlets (up to ~1.5cm wide).	laminations veining	vw w	25	Locallized and very faint laminations, difficult to measure orientation. Defined by diffused colour variations in stringers and some discontinuous mineralized stringers. Very diffused and blebby stringers (up to ~1.5cm wide).			
with fracturing mostly orienta axis.	aleu al ~40 (legrees	lo core	silica	2	Matrix appears to have been weakly silicified.	ру									
93.9 97.9 gCC Similar to unit uphole at 87.9 Mottled medium buff-brown	96-93.88m. and patchy			amphibolite calcite	35	Slightly coarser grey calcite grains with iron stained	nb	1	Fine-medium (up to 0.2cm) subangular-angular red-brown aggregates noted, scattered	laminations veining						
dolomite-dominated mixed of grained (up to 0.2cm across dolomite and slightly coarse Broken and slightly blocky of core. Remainder of interval fragments up to ~7cm in len prientation noted.	s) matrix with or grained gra core rock with comprised	finer gra ey calcite n ~45% i of angula	ained e. ntact ır	dolomite silica	1	matrix. Appears to have been weakly silicified (mostly noted in calcitic zones).	ma py		throughout matrix.							
97.9 102.3 dlC	D	М		amphibolite		calente zones).	nb			laminations	m	25	Ranging in orientation from ~10-40			
Buff-brown and cream, mod carbonatite with minor grey (~1m in length) of banded lig noted. Fairly competant core rock v banding orientation at ~30 d	lerately lamin calcite conte ght and med with fracturin	nated dol ent. One ium grey g genera	"clast" calcite	calcite dolomite	20	One ~1m interval noted of banded light and medium grey calcite.	ma	0.5	Fine-medium subhedral silver- black grained noted, generally contained within darker coloured bands and associated with mica prisms.	veining			degrees to core axis. Matrix is mostly pink-buff coloured with diffused darker coloured bands (<0.5cm wide). Difficult to determine veining			
~1.5% fine-medium (up to 0 and pale yellow green mica often seen in diffused darke	.3cm) graine (biotite/phlo	ed black- gopite) fl		silica	1	Very weakly silicified matrix, mostly noted in more calcitic sections.			Possible trace amounts; small brassy coloured aggregates noted throughout matrix, however may be yellow-green mica prisms.				density due to strong laminations; veining structures tend to follow bedding planes. Mainly very diffused mineralized bands (up to ~2cm wide).			
102.3 104.8 dC0 Mottled light and dark cream (<0.3cm), iron stained/dolon carbonatite. Irregular washe (<0.5cm wide) of buff colour	n-grey, fine-r nite overprin es and weak	ted(?) ca diffused	llcite bands	amphibolite calcite dolomite	20	Sandy-brown-buff colouring in irregular stringers/bands	nb	0.2	Fine-medium sized red-brown disseminated grains (up to 0.2cm across). Dark green specks also noted scattered throughout matrix	laminations veining	W	55	Narrow dark stringers (<0.3cm wide noted;			

08-Aug-08

repLitho_FullLog:Report

HUNTER Responsible DICKINSON Mineral INC. Development

Taseko Mines Limited				(Crystal Chung Da	te 01-O	ct-07		Hole ID 2007-011	
Aley Project	GEUL								Page 9 of 11	
NTERVAL(m) Rock o C	AL	TERATION		MIN	ERALIZATION	STRUCTURE				
From To Code n L	Туре %	Comments	Туре	%	Comments	Туре	Intens	CA	Comments	
natrix. airly hard and slightly blocky core rock; fracturing enerally at ~40 degrees to core axis. ~55% of interval	silica 2	and washes. Weakly silicified matrix.	ma		(possible fersmite?).					
tact core.			ру							
104.8 111.0 gxCCC M D Weak-moderately brecciated, mottled grey, cream, and puff coloured, fine-medium grained, calcite-dominated priord extension. Moderate delemite content along	amphibolite calcite dolomite 4		nb	0.7	Fine-medium, subangular-angular red-brown aggregates (up to 0.4cm across); some are silver- black coloured.	laminations	VW		Very faint and locallized laminations; difficult to determin orientation. Slight alignment of fragments in brecciated zones.	
nixed carbonatite. Moderate dolomite content also resent, generally occuring as irregular washes and ands, infilling open-space fractures in brecciated zones; ne grained (<0.1cm). Ioderate locallized decalcification (~40% of interval), reaking down core into fine rubble with a medium		zones, generally weak- moderately decalcified. Irregular veinlets also generally infilling open-space	ma py		Silver-black (non-magnetitic) aggregates also noted.	veining	w	35	Narrow medium-dark brown, discontinuous stringers (appears be dominantly dolomite; <0.3cn wide).	
rown, sandy texture. Slightly blocky core rock, no referred fracturing orientation.	silica	fractures in brecciated zones.								
111.0 112.6 gICCCD M ery weakly banded, calcite-dominated mixed arbonatite with minor-moderate dolomite content.	amphibolite calcite		nb	0.2	Small, slightly elongated (up to 0.3cm across long axis) red- brown blebs noted scattered	laminations	m	35	Locallized moderate-strong bandi narrow grey, cream, and brown bands (<0.3cm wide).	
ocallized zones of weak silicification, generally grey alcitic zones. lightly blocky core rock with fracturing preferrably at ~15 egrees to core axis.	dolomite 3.	fine-grained (<0.1cm) buff- brown washes and narrow	ma		throughout the matrix. Trace amounts of fine silver- black specks (non-magnetic);	veining				
	silica 1	bands throughout matrix. Weakly silicified matrix.	ру		possibly columbite(?).					
112.6 115.5 dfCD W	amphibolite 0.	6,6	nb	0.15	Fine-medium disseminated grains	laminations	W	40	In more intact sections, weak	
/eak-moderately decalcified, medium buff-brown blomite carbonatite. Minor calcite content. locky and broken core rock; ~40% of interval intact bre. Remainder of interval comprised of moderately ecalcified rubble with fine, brown sandy texture.	calcite 5	 (<0.3cm) noted; chlorite(?). Minor intervals of slightly coarser grained light blue- grey calcite. 	ma py		(up to 0.2cm).	veining			laminations are noted; defined b slight alignment of matrix grain Difficult to determine vein density/orientation due to brokenr	
0.5% small rusty-brown specks scattered throughout atrix; mica(?).	dolomite	Variable composition as evidenced by slight colour changes in banding.							of core rock.	
	silica									
115.5 120.1 dlCCCD M	amphibolite		nb	0.1	Trace amounts of red-brown fine-	laminations	m	40	Moderate-strongly laminated ur	
oderately laminated and mottled medium blue-grey and uff-grey, fine-medium grained (up to 0.3cm), calcite- ominanted mixed carbonatite. Weakly decalcified atrix, giving core surface a pitted texture.	calcite dolomite 4	0 Generally occurs as irregular washes and narrow bands of			medium disseminated blebs (often slightly elongated), up to 0.3cm across long axis.	veining	W	40	Slightly difficult to determine ver density; veining structures tend follow lamination planes. Narro	

		_	
Taseko Mines Limited		Log by	
	GEOLOGY LOG	_	
Aley Project			

Crystal Chung

Page 10 of 11

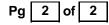
INTERV	′ A L (m)	Rock	Z O	н С			ALT	ERATION		ΜΙΝΙ	ERALIZATION		5	STRU	UCTURE
From	То	Code	n e	L		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Fairly comp core. Fracti						silica		fine grained (<0.1cm) buff- brown.	ma	0.2	Fine-medium grained (up to 0.3cm across) subangular-angular silver-black aggregates present in discontinous/diffused veinlets.				cream coloured calcareous stringe (<0.4cm wide) noted in matrix at various orientations.
									ру						
120.1 Similar to ur Weak-mode	erately bai	nded, mott	led pir	nk-buff (ir		amphibolite calcite	20	Fine around impervious	nb	0.2	Trace-minor amounts of red- brown elongated blebs (<0.5cm across long axis), occassionally	laminations	m	50	Strongly noticable in locallized zones while some areas appear to n be laminated at all.
tained?), fi arbonatite. rregular sar extures. Aoderately racturing ge	Pale rus nd often a hard and	ty brown o ssociated fairly comp	werprin with w	nt (dolom eak deca core rock	on bleite te?) is cification dolomite 20 Fine-grained irregular washes and bands; variable composition with bands and light buff and medium grey- maroon (manganiferous?). ma 1 Medium-coar subhedral-euhedr aggregates of m 0.4cm ac		forming discontinuous stringers. Medium-coarse grained, subhedral-euhedral silver-black aggregates of magnetite (0.2-	veining	W	15	Low vein density; narrow, low angled grey-white calcitic stringe present (<0.3cm wide).				
1% fine-mo ale yellow	edium, su	bangular-a				silica	1		ру		0.4cm across).				
125.6 Nottled blue rained calc	132.0 e-grey and cite carbo	dCC d pale buff- natite. We	akly d	ecalcified	l matrix,	amphibolite calcite	0.5	Pale and dark green blebs (up to 0.3cm across) noted; chlorite(?).	nb	0.1	Mostly fine-medium sized red- brown disseminated grains (up to 0.2cm). Rare larger euhedral aggregates noted.	laminations veining	vw w	20	Very faintly laminated, difficult measure orientation. Low vein density; mainly very diffused bands containing dark
ccuring in a taining/dolo airly hard a f fracturing	zones of v omite?). and comp I, no prefe	grey and pale buff-brown, fine-medium te carbonatite. Weakly decalcified matrix urface a slightly pitted texture; generally ones of wispy rusty-brown bands (iron mite?). nd competant core rock with minor amou no preferred orientation noted. -brown and yellow micas in matrix.		iron amounts	dolomite	20	Possible iron staining(?). Generally occurs as diffused wisps and irregular washes over matrix (appears almost	ma	0.7	Medium sized subangular-angular silver-black aggregates noted, often forming discontinuous/diffused stringers.				magnetite aggregates (up to ~0.5c wide).	
1.0 /0 black	<u>torom a</u>		liiddo	<u>in main</u> ,		silica		to be an weak overprint). Tends to be finer grained than rest of the matrix.	ру						
132.0	133.4	gCCCD		М		amphibolite			nb	0.7	Fine-medium red-brown blebs;	laminations	vw	45	Very weak to weakly laminated un
ixed carbo	nd mottleo onatite. V	d pale grey ery weakly	lamin	ated. Fin	e-medium	calcite	25	Dolo buff colours d potebas			rare irregular veinlet (<0.5cm) noted.				defined by slight alignment of mat grains and narrow bands of buff
noderately	silicified r	natrix).	a a	Pale buff coloured patches and wisps. Moderately silicifed matrix	ma	2	Medium-coarse, subhedral- euhedral, silver-black aggregates (up to 0.4cm across); usually	veining			brown.				
2% angula rown mica ccasionally	prisms so	cattered th	rougho	out matrix	;	black- (hard with sucrosic textures).	occuring in clusters or forming diffused/discontinuous bands								

(STasek A	o Mi ley Pi			nited	GEO	LO	GY LOG		C	Crystal Chung Da	ate 01-Oc	ot-07		Hole ID 2007-011 Page 11 of 11
INTERVAL(m)	Rock	Z o	H			ALT	ERATION		MINE	ERALIZATION		9	STR	UCTURE
From To	Code	n e	Ľ		Туре	%	Comments	Туре	%	Comments	Туре	Intens	CA	Comments
Increasing content mo	oving down	hole.								(<1cm wide).				
								ру						
133.4 141.6	xAMX		М		amphibolite	20	Fine grained velvet green	nb			laminations			
Mixed interval of domi possible small amphil These zones can also very diffused and grad	oolite dykes be minor 2	s (up to zones d	o ~70m ir of mica f	n length). looding;	calcite		matrix (chlorite); likely to be zones of mica flooding.	ma	0.1	Trace amounts of fine-medium disseminated magnetite grains (up to 0.2cm across).	veining	w	35	Low-moderate vein density; mostly very diffused biotite bands (up to ~2cm wide).
grained grey green su zones. Hard and competant o	brounded '	'clasts"	' noted ir	n darker	dolomite	5	Minor amounts of pale buff- brown overprinting of matrix (possible weak iron staining?).	ру	0.1	Trace-minor amounts of elongated brassy coloured blebs (up to 0.3cm across long axis);				
~5% fine-medium mic brown biotite, with trac Generally occuring in	ce pale yell	ow phl	ogopite.		silica	10	Moderately silicified matrix.			likely to be pyrite, but also could be pale yellow micas.				
141.6 146.5 Pale and medium blue medium grained calci moderate-strongly sili	te carbonat	ite. Ma	atrix app	ears to be	amphibolite calcite dolomite	5	Trace-minor amounts of	nb	0.1	Trace amounts of elongated red- brown blebs (<0.2cm across long axis.). One irregular veinlet noted at lower contact (~0.2cm	laminations	vw	45	Very faint laminations noted in localized zones. Silicification appears to have overprinting most
gradually deepens mo patches of finer graine iron staining?). Hard and fairly compe	oving down ed buff-brov etant core r	hole). wn mat ock wit	Trace-m rix (dolo h fractur	inor mite/weak ing		-	irregular washes and wisps of buff-bands colouring. Dolomitic matrix appears to	ma	0.07	wide). Rare-trace fine-medium disseminated silver-black grains.	veining	W	60	primary textures. Low vein density; mainly diffused and discontinuous mineralized veinlets (up to ~0.5cm wide).
dominantly orientated	-				silica	25	infill weakly brecciated sections. Moderate-strongly silicified matrix (grey silica).	ру	0.01	Rare amounts of finely disseminated brassy coloured specks; possibly pyrite or micas.				
146.5 152.4	dfCD		М		amphibolite			nb	0.2	Trace-minor amounts of red-	laminations	W	35	Weak-moderate laminations noted;
Weak-moderately lam grained (<0.1-0.2cm) zones of weakly silicif	dolomite ca ied grey ca	arbonat Icite. N	tite. Tra Neak-m	ce-minor oderately	calcite	10	Minor zones/patches of coarser grained grey calcite carbonatite.	ma	1	brown blebs noted, tends to be in upper portion of interval. Fine-medium sized (up to 0.3cm),				defined mostly by slight alignment or matrix grains and bands with slight colour variations.
texture.	rock with r	minor-n	dolomite Variabl evidence	Variable composition as evidenced by slight colour changes throughout matrix.			subangular-angular, silver-black aggregates of magnetite. Generally occurs in clusters or as	veining	W		Low-moderate vein density; mainly narrow dark stringers (<0.1cm wide) at various orientations.			
~0.5% fine-medium g yellow mica specks (ι flakes or small prisms	ip to 0.3cm				silica			ру	0.01	very diffused/discontinuous bands (up to ~0.7cm wide). Trace amounts of finely disseminated brassy coloured grains; possibly pyrite or pale				
EOH @ 152.40m.										yellow micas.				

APPENDIX B

SAMPLE LOGS

Drill C	ore Sample	es	Location	UTM NAD 83	Rem	arks					nformation
Assay Date	03-Dec-	07	Easting	653,809.793	Sac	ldle	Azimuth	0 °	Dat	e Start	29-Aug-07
Laboratory	iPL		Northing	7,710,728.108			Inclination	-90 °	Da	te End	30-Aug-07
File No.	07K55	15	Elevation	545.897			Length	152.40 M	etres Op	erator	Taseko
Sample I	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Lithology	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
0.00	17.50	2.50	Not Sample	ed					OVBN	No	t Sampled
17.50	21.97	4.50	831346	2586	<4	97.6	<10	<2	gCC	1/2	Core Sawn
21.97	26.23	4.30	831347	4054	<4	105.2	<10	<2	gCCCD	1/2	Core Sawn
26.23	28.36	2.10	831348	1258	<4	79.8	<10	<2	gCC	1/2	Core Sawn
28.36	30.76	2.40	831349	4754	<4	44.7	<10	<2	glCD	1/2	Core Sawn
30.76	33.05	2.30	831350	2796	<4	33.1	<10	<2	glCD	1/2	Core Sawn
33.05	35.78	2.70	831351	3076	58	77.1	<10	<2	glCC		Core Sawn
35.78	38.24	2.50	831352	2796	14	52.6	<10	<2	glCC	1/2	Core Sawn
38.24	41.12	2.90	831353	3146	12	46.8	<10	<2	dCC		Core Sawn
41.12	42.37	1.20	831354	769	12	50.9	<10	<2	dICCCD	1/2	Core Sawn
42.37	45.48	3.10	831355	489	<4	25.1	<10	<2	gxCCz	1/2	Core Sawn
45.48	47.93	2.50	831356	629	<4	55.6	<10	<2	gxCCz		Core Sawn
47.93	51.08	3.10	831357	1049	<4	55.1	<10	<2	gCC	1/2	Core Sawn
51.08	52.88	1.80	831358	629	<4	24.7	<10	<2	dCC	1/2	Core Sawn
52.88	54.86	2.00	831359	699	<4	66.5	<10	<2	dCC	1/2	Core Sawn
54.86	57.60	2.70	831360	839	5	62.8	<10	<2	dCCCD	1/2	Core Sawn
57.60	60.96	3.40	831361	2866	19	50.5	<10	<2	dfCCCD	1/2	Core Sawn
60.96	64.48	3.50	831362	3495	11	105.4	<10	<2	dfCCCD	1/2	Core Sawn
64.48	66.58	2.10	831363	2586	<4	71.1	<10	<2	gCCCD	1/2	Core Sawn
STANDARD	AHG-1		831364	629	<4	19.6	<10	<2		Qua	lity Control
66.58	68.72	2.10	831365	2936	<4	187.5	<10	<2	gCCCD	1/2	Core Sawn
68.72	72.00	3.30	831366	5103	5	149.2	<10	<2	gCCCD	1/2	Core Sawn
72.00	75.15	3.20	831367	909	9	73.4	<10	<2	gCCCD	1/2	Core Sawn
75.15	79.34	4.20	831368	979	47	97.8	<10	<2	gCD	1/2	Core Sawn
BLANK	Granite		831369	70	<4	14.9	<10	<2		Qua	lity Control
79.34	85.34	6.00	831370	699	45	104.2	<10	<2	gfCDz		Core Sawn
85.34	91.44	6.10	831371	2586	37	105.7	<10	<2	gfCDz		Core Sawn
91.44	95.50	4.10	831372	3146	57	149.4	<10	<2	gfCDz		Core Sawn
95.50	99.22	3.70	831373	2097	32	94.9	<10	<2	gCC		Core Sawn
99.22	101.26	2.00	831374	2167	27	86.9	<10	<2	dCCz		Core Sawn
101.26	104.23	3.00	831375	2656	37	113.2	<10	<2	gxCDz		Core Sawn
104.23	107.12	2.90	831376	699	78	80.6	<10	<2	gxCDz	1/2	Core Sawn
107.12	108.70	1.60	831377	559	58	66.2	<10	<2	IAMXy		Core Sawn
108.70	112.92	4.20	831378	1118	120	93.8	<10	<2	dfCCCD		Core Sawn
112.92	115.06	2.10	831379	2027	91	100.2	<10	<2	gIAMXy	1/2	Core Sawn
115.06	117.25	2.20	831380	1049	37	86.3	<10	<2	gIAMXy	1/2	Core Sawn
117.25	119.59	2.30	831381	1258	55	65.1	<10	<2	gxCC	1/2	Core Sawn
119.59	122.46	2.90	831382	6781	41	112.7	<10	<2	gxCD		Core Sawn
122.46	125.62	3.20	831383	839	90	74.4	<10	<2	ICC	1/2	Core Sawn



Drill C	Core Sample	es	Location	UTM NAD 83	Rem	narks	Directi	on / Leng	<u> </u>			nformation
Assay Date		·07	Easting	653,809.793	Sa	ddle	Azimuth					29-Aug-07
Laboratory			0	7,710,728.108			Inclinatio				End	30-Aug-07
File No.	07K55	15	Elevation	545.897			Length	152.40 M	etres	Ope	rator	Taseko
	Interval (met		Sample Number			alytical Res			Lithol	ogy	Sam	ple Method
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
STANDARD	OKA-1		831384	3565	24	33.8	<10	<2			Qua	lity Control
125.62	130.27	4.70	831385	699	59	69.4	<10	<2	gxCC	CD	1/2 (Core Sawn
130.27	133.20	2.90	831386	2517	<4	98.5	<10	<2	glC	С	1/2 (Core Sawn
133.20	136.46	3.30	831387	3635	<4	184.0	<10	<2	dC0	0	1/2 (Core Sawn
136.46	138.60	2.10	831388	5243	<4	240.4	<10	<2	dCO	0	1/2 (Core Sawn
138.60	140.90	2.30	831389	909	<4	95.4	<10	<2	dC0	0	1/2 (Core Sawn
140.90	143.26	2.40	831390	2517	<4	121.4	<10	<2	gCC0	CD	1/2 (Core Sawn
143.26	145.15	1.90	831391	1118	58	119.3	<10	<2	gCC0	CD	1/2 (Core Sawn
BLANK	Granite		831392	70	<4	17.4	<10	<2			Qua	lity Control
145.15	148.18	3.00	831393	839	26	74.7	<10	<2	gCC	Z	1/2 (Core Sawn
148.18	152.40	4.20	831394	3565	30	106.7	<10	<2	gCC	Z	1/2 (Core Sawn
		Drill H	lole Selecte	d Interval -	Weightee	d Average	e Analytic	al Resul	ts			
Sample	Interval (met	res)			Ana	alytical Res	ults					
From	То	Int.	1	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
17.50	152.40	134.90	_	2200	29	92.3	5	1	-			
17.50	41.12	23.62	Incl.	3118	11	72.5	5	1	-			
57.60	72.00	14.40	Incl.	3499	9	109.8	5	1	1			
85.34	104.23	18.89	Incl.	2576	39	112.1	5	1	1			
119.59	122.46	2.87	Incl.	6781	41	112.7	5	1	1			
130.27	152.40	22.13	Incl.	2629	15	127	5	1	-			

Drill C	Core Sample	es	Location	UTM NAD 83	Rem	arks	Direction / Length Drill Hole In				nformation
Assay Date	24-Nov-	-07	Easting	653,759.949		ole lost at	Azimuth	0 °	Dat	e Start	31-Aug-07
Laboratory	iPL		Northing	7,710,668.470), reamed and ontinuation of	Inclination	n -90 °	Dat	te End	04-Sep-07
File No.	07K53′	78	Elevation	546.202		72m (150').	Length	152.40 M	etres Op	erator	Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	sults		Lithology	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			•
0.00	17.80	17.80	Not Sample	d					OVBN	No	t Sampled
17.80	21.10	3.30	831250	699	<4	58.5	<10	<2	dCC	1/2	Core Sawn
21.10	23.38	2.30	831251	3705	37	118.5	<10	<2	dfCD	1/2	Core Sawn
23.38	25.70	2.30	831252	1957	16	110.8	<10	<2	dfCD	1/2	Core Sawn
STANDARD	AHG-1		831253	629	<4	31.1	<10	<2		Qua	lity Control
25.70	27.70	2.00	831254	769	7	79.2	<10	<2	dCCCD	1/2	Core Sawn
27.70	31.10	3.40	831255	3146	28	168.6	<10	<2	dCC	1/2	Core Sawn
31.10	34.00	2.90	831256	5453	56	167.7	<10	<2	gCCCD	1/2	Core Sawn
34.00	36.90	2.90	831257	3635	39	99.4	<10	<2	gCCCD	1/2	Core Sawn
BLANK	Granite		831258	35	<4	32.7	<10	<2		Qua	lity Control
36.90	40.60	3.70	831259	5103	45	117.1	<10	<2	dCCCD	1/2	Core Sawn
40.60	43.71	3.10	831260	3915	24	107.7	<10	<2	dCCCD	1/2	Core Sawn
43.71	46.88	3.20	831261	3286	18	83.4	<10	<2	dCCCD	1/2	Core Sawn
46.88	50.13	3.20	831262	4054	26	99.9	<10	<2	dCCCD	1/2	Core Sawn
50.13	53.28	3.10	831263	2447	13	78.1	<10	<2	dCCCD	1/2	Core Sawn
53.28	55.90	2.60	831264	4474	49	157.4	<10	<2	dCCCD	1/2	Core Sawn
55.90	57.90	2.00	831265	6501	119	367.6	<10	<2	dfCD	1/2	Core Sawn
57.90	60.00	2.10	831266	1887	24	139.1	<10	<2	dfCCCD	1/2	Core Sawn
60.00	64.00	4.00	831267	769	16	78.7	<10	<2	dfCCCD	1/2	Core Sawn
64.00	66.40	2.40	831268	2307	14	138.6	<10	<2	dfCCCD	1/2	Core Sawn
66.40	70.00	3.60	831269	2167	14	96.3	<10	<2	dfCCCD	1/2	Core Sawn
70.00	76.20	6.20	831270	1818	13	89.6	<10	<2	dfCCCD	1/2	Core Sawn
76.20	79.20	3.00	831271	3076	31	81.6	<10	<2	bICD	1/2	Core Sawn
79.20	82.50	3.30	831272	3565	21	87.4	<10	<2	bICD	1/2	Core Sawn
STANDARD	OKA-1		831273	629	<4	29.4	<10	<2		Qua	lity Control
82.50	85.40	2.90	831274	5872	36	87.8	<10	<2	bICCCD	1/2	Core Sawn
85.40	88.40	3.00	831275	3775	23	98.4	<10	<2	bICCCD	1/2	Core Sawn
88.40	91.40	3.00	831276	4684	7	64.3	<10	<2	bICCCD	1/2	Core Sawn
91.40	97.60	6.20	831277	3286	21	89.9	<10	<2	bICCCD	1/2	Core Sawn
97.60	106.50	8.90	831278	1887	37	136.5	<10	<2	bICCCD	1/2	Core Sawn
106.50	109.80	3.30	831279	909	142	209.6	<10	<2	dCD	1/2	Core Sawn
109.80	112.90	3.10	831280	699	142	138.1	<10	<2	dCD	1/2	Core Sawn
112.90	115.80	2.90	831281	419	85	172.4	<10	<2	dCD	1/2	Core Sawn
115.80	119.00	3.20	831282	489	93	222.1	<10	<2	dCD	1/2	Core Sawn
119.00	121.80	2.80	831283	629	141	269.1	<10	<2	dCCCD	1/2	Core Sawn
121.80	126.70	4.90	831284	280	50	69.4	<10	<2	dCCCD	1/2	Core Sawn
126.70	129.00	2.30	831285	419	39	79.6	<10	<2	nxAMXz	1/2	Core Sawn
129.00	131.61	2.60	831286	280	6	50.3	<10	<2	nxAMXz	1/2	Core Sawn
131.61	134.70	3.10	831287	699	56	120.5	<10	<2	nxAMXz	1/2	Core Sawn

Drill C	ore Sampl	es	Location	UTM NAD 83	Rem	arks	Directi	on / Leng	gth	Drill	Hole I	nformation
Assay Date		-	Easting	653,759.949	Saddle, H 42.67m (140'	ole lost at	Azimuth				Start	31-Aug-07
Laboratory	iPL		5	7,710,668.470		ontinuation of	Inclinatio				e End	04-Sep-07
File No.	07K53	78	Elevation	546.202	core at 45.	72m (150').	Length	152.40 M	etres	Оре	erator	Taseko
Sample	Interval (me	tres)	Sample Number		Ana	alytical Res	sults		Litho	logy	Sam	ple Method
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
134.70	139.90	5.20	831288	280	46	76.0	<10	<2	nC	D	1/2 (Core Sawn
139.90	143.00	3.10	831289	629	131	97.4	<10	<2	nAM	ЛХ	1/2 (Core Sawn
143.00	146.30	3.30	831290	559	119	73.0	<10	<2	nAM	ЛX	1/2 (Core Sawn
146.30	149.40	3.10	831291	489	118	98.0	<10	<2	nAM	ЛХ	1/2 (Core Sawn
149.40	152.40	3.00	831292	280	73	91.2	<10	<2	nAM	ЛX	1/2 (Core Sawn
STANDARD	AHG-1		831293	629	<4	25.6	<10	<2			Qua	lity Control
		Drill H	Iole Selected	d Interval - '	Weighted	d Average	e Analytic	al Result	S			
Sample	Interval (me	tres)			Analytical Results							
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
17.80	152.40	134.60		2197	48	115.1	5	1				

Drill C	ore Sample	es	Location U	TM NAD 83	Rem	arks	Direction / Leng			Drill	Hole I	nformation
Assay Date	02-Nov-	-07	Easting	653,902.336	Saddle, N		Azimuth	0 °			Start	04-Sep-07
Laboratory	iPL		Northing 7,	,710,695.243	advance; bro Drill unde	r-powered.	Inclinatio				e End	07-Sep-07
File No.	07J4892 - 0′	7J5010	Elevation	586.740		-	Length	97.30 Me	etres	Оре	rator	Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Lithol	logy	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
0.00	13.70	13.70	Not Sampled						CAS	SE	Not	Sampled
13.70	16.80	3.10	831000	1049	27	110.0	<10	<2	dlC	D	1/2 (Core Sawn
16.80	20.40	3.60	831001	979	96	198.1	<10	<2	gxCC	CD	1/2 (Core Sawn
20.40	24.00	3.60	831002	909	50	87.8	<10	<2	gxCC	CD	1/2 (Core Sawn
24.00	27.60	3.60	831003	769	87	134.3	<10	<2	gxCC	CD	1/2 (Core Sawn
27.60	31.70	4.10	831004	909	83	134.6	<10	<2	glC	С	1/2 (Core Sawn
31.70	35.70	4.00	831005	2377	79	190.1	<10	<2	gCC	CD	1/2 (Core Sawn
35.70	38.70	3.00	831006	350	67	71.8	<10	<2	dCC	CD	1/2 (Core Sawn
38.70	41.00	2.30	831007	559	126	120.8	<10	<2	gfCC	CD	1/2 (Core Sawn
41.00	43.20	2.20	831008	489	114	66.0	<10	<2	glC	D	1/2 (Core Sawn
43.20	46.20	3.00	831009	419	81	44.6	<10	<2	glC	D	1/2 (Core Sawn
46.20	48.20	2.00	831010	559	105	99.2	<10	<2	gfC	D	1/2 (Core Sawn
STANDARD	AHG-1		831011	629	<4	19.6	<10	<2			Qua	lity Control
48.20	53.30	5.10	831012	559	99	74.8	<10	<2	bICC	CD	1/2 (Core Sawn
53.30	55.00	1.70	831013	1049	188	133.4	<10	<2	gfC	D	1/2 (Core Sawn
55.00	60.50	5.50	831014	1049	127	105.3	<10	<2	gICC	CD	1/2 (Core Sawn
60.50	64.00	3.50	831015	2447	166	153.7	<10	<2	dfCC	CD	1/2 (Core Sawn
64.00	66.00	2.00	831016	629	137	92.8	<10	<2	dfC	C	1/2 (Core Sawn
66.00	68.10	2.10	831017	419	85	68.8	<10	<2	dfCC	CD	1/2 (Core Sawn
68.10	74.80	6.70	831018	699	124	131.9	<10	<2	dfC	С	1/2 (Core Sawn
74.80	80.00	5.20	831019	629	82	70.1	<10	<2	gfC	C	1/2 (Core Sawn
80.00	85.00	5.00	831020	1188	61	78.4	<10	<2	gfC	C	1/2 (Core Sawn
85.00	88.90	3.90	831021	419	35	43.3	<10	<2	dfCC	CD	1/2 (Core Sawn
88.90	91.80	2.90	831022	629	46	133.7	<10	<2	gICC		1/2 (Core Sawn
91.80	94.60	2.80	831023	1049	100	90.8	<10	<2	gICC	CD	1/2 (Core Sawn
94.60	97.30	2.70	831024	489	83	64.3	<10	<2	gC	С	1/2 (Core Sawn
		Drill H	lole Selected	Interval -	Weighted	d Average	e Analytic	al Result	S			
Sample	Interval (met	res)			Ana	alytical Res						
From	То	Int.	1	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
13.70	80.00	66.30		919	99	112.2	5	1				
13.70	35.70	22.00	Incl.	1184	72	143.9	5	1	1			
35.70	53.30	17.60	Incl.	491	97	76.8	5	1	1			
53.30	64.00	10.70	Incl.	1506	149	125.6	5	1	-			
64.00	80.00	16.00	Incl.	631	107	98.6	5	1	1			

Drill	Core Sample	es	Location U	TM NAD 83	Rem	arks	Directi	on / Leng	gth Dril	Hole I	nformation
Assay Date	e 02-Nov	-07	Easting	653,842.965		lot able to	Azimuth	0 °	Dat	e Start	05-Sep-07
Laboratory	iPL		Northing 7	710,654.701	advance; br	oken ground.	Inclinatio	n -90 °	Dat	e End	07-Sep-07
File No.	07J5010 - 0	7J5058	Elevation	569.976			Length	86.86 Me	etres Op	erator	Taseko
Sample	e Interval (met	res)	Sample Number		Ana	alytical Res	sults		Lithology	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
0.00	7.40	7.40	Not Sampled						CASE	Not	Sampled
7.40	9.10	1.70	831025	2377	9	32.8	<10	<2	ICC	1/2 (Core Sawn
9.10	12.50	3.40	831026	350	<4	37.6	<10	<2	nAMX	1/2 (Core Sawn
12.50	15.90	3.40	831027	2027	28	40.1	<10	<2	nAMX	1/2 (Core Sawn
15.90	19.60	3.70	831028	350	<4	29.2	<10	<2	nAM	1/2 (Core Sawn
19.60	22.20	2.60	831029	1957	11	52.5	<10	<2	nxAMX	1/2 (Core Sawn
22.20	24.80	2.60	831030	2796	8	78.5	<10	<2	nxAMX	1/2 (Core Sawn
STANDARD	OKA-1		831031	3705	20	38.0	<10	<2		Qua	lity Control
24.80	26.90	2.10	831032	769	4	25.9	<10	<2	dCC	1/2 (Core Sawn
26.90	28.60	1.70	831033	1818	15	52.9	<10	<2	nxAMX	1/2 (Core Sawn
28.60	35.40	6.80	831034	1678	22	64.8	<10	<2	fCC	1/2 (Core Sawn
35.40	39.60	4.20	831035	839	7	37.2	<10	<2	nAM	1/2 (Core Sawn
39.60	43.10	3.50	831036	2586	20	71.3	<10	<2	fCC	1/2 (Core Sawn
43.10	46.00	2.90	831037	3355	54	107.2	<10	<2	fCC	1/2 (Core Sawn
46.00	48.80	2.80	831038	1887	17	46.3	<10	<2	fCC	1/2 (Core Sawn
BLANK	Granite		230003	35	<4	16.1	<10	<2		Qua	lity Control
48.80	51.10	2.30	831039	280	<4	22.1	<10	<2	xAMX	1/2 (Core Sawn
51.10	59.00	7.90	831040	629	<4	50.0	<10	<2	fAMX	1/2 (Core Sawn
59.00	61.00	2.00	831041	2167	<4	45.6	<10	<2	fAMX	1/2 (Core Sawn
61.00	64.00	3.00	831042	699	<4	45.9	<10	<2	fAMX	1/2 (Core Sawn
64.00	67.10	3.10	831043	2097	87	126.0	<10	<2	gICC	1/2 (Core Sawn
67.10	70.10	3.00	831044	699	34	73.4	<10	<2	gfCC	1/2 (Core Sawn
70.10	74.30	4.20	831045	140	24	55.2	<10	<2	glCC	1/2 (Core Sawn
74.30	80.20	5.90	831046	699	35	80.7	<10	<2	gCCCD	1/2 (Core Sawn
80.20	82.90	2.70	831047	210	26	54.3	<10	<2	gfCCCD	1/2 (Core Sawn
82.90	85.60	2.70	831048	140	9	35.7	<10	<2	gfCCCD		Core Sawn
85.60	86.86	1.30	831049	419	17	52.4	<10	<2	gICCCD	1/2 (Core Sawn
		Drill H	Iole Selected	Interval -	Weighted	d Average	e Analytic	al Result	S		
Sample	e Interval (met					alytical Res	_				
From	То	Int.	1	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
7.40	86.86	79.46	J	1212	19	56.7	5	1			
7.40	48.80	41.40	Incl.	1678	16	53.1	5	1	-		
48.80	86.86	38.06	Incl.	705	22	60.5	5	1	-		

Drill C	Core Sample	es	Location l	JTM NAD 83	Rem	arks				Information	
Assay Date	05-Nov	-07	Easting	653,993.970	Sac	ldle	Azimuth	0 °	Da	te Start	08-Sep-07
Laboratory			-	,710,714.834			Inclinatio			te End	11-Sep-07
File No.	07J508	83	Elevation	598.627			Length	115.90 M	etres Op	perator	Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Lithology	Sam	ple Method
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			-
0.00	4.00	4.00	Not Sampled						OVBN	No	t Sampled
4.00	7.40	3.40	831050	699	26	165.3	<10	<2	nCC	1/2	Core Sawn
STANDARD	AHG-1		831051	559	<4	18.8	<10	<2		Qua	ality Control
7.40	10.80	3.40	831052	3495	39	316.2	<10	<2	nCC	1/2	Core Sawn
10.80	14.10	3.30	831053	70	5	32.0	<10	<2	nCC	1/2	Core Sawn
14.10	18.20	4.10	831054	7759	218	1038.1	<10	<2	OXID	1/2	Core Sawn
18.20	21.30	3.10	831055	2377	59	276.7	<10	<2	dCCCD	1/2	Core Sawn
21.30	24.40	3.10	831056	2796	114	124.2	<10	<2	dCCCD	1/2	Core Sawn
24.40	27.50	3.10	831057	909	97	80.3	<10	<2	dCCCD	1/2	Core Sawn
27.50	30.60	3.10	831058	1258	91	92.1	<10	<2	dCCCD	1/2	Core Sawn
30.60	33.50	2.90	831059	5243	41	148.4	<10	<2	dCCCD	1/2	Core Sawn
33.50	38.50	5.00	831060	2097	14	47.6	29.0	<2	nAM	1/2	Core Sawn
38.50	42.70	4.20	831061	4264	14	144.2	<10	<2	dCD	1/2	Core Sawn
42.70	47.80	5.10	831062	4054	14	150.0	<10	<2		1/2	Core Sawn
47.80	49.70	1.90	831063	559	<4	50.8	<10	<2	nCC	1/2	Core Sawn
49.70	53.80	4.10	831064	350	<4	24.1	<10	<2	nAM	1/2	Core Sawn
53.80	57.90	4.10	831065	839	<4	31.9	36.0	<2	nAM	1/2	Core Sawn
57.90	62.00	4.10	831066	280	<4	30.2	41.0	<2	nAM	1/2	Core Sawn
62.00	66.20	4.20	831067	280	<4	56.3	29.0	<2	nAM	1/2	Core Sawn
66.20	70.50	4.30	831068	350	<4	21.6	179.0	<2	nAM	1/2	Core Sawn
70.50	73.00	2.50	831069	2307	<4	85.7	<10	<2	dCD	1/2	Core Sawn
73.00	75.50	2.50	831070	2656	33	193.7	<10	<2	dCD	1/2	Core Sawn
STANDARD	OKA-1		831071	3775	20	44.0	<10	<2		Qua	ality Control
75.50	77.50	2.00	831072	419	<4	16.5	66.0	<2	nAM	1/2	Core Sawn
77.50	81.70	4.20	831073	2586	5	110.1	<10	<2	dICD	1/2	Core Sawn
81.70	85.60	3.90	831074	489	<4	19.1	93.0	<2	nAM	1/2	Core Sawn
85.60	89.30	3.70	831075	629	12	84.5	<10	<2	dICD	1/2	Core Sawn
BLANK	Granite		230004	35	<4	20.3	<10	<2		Qua	ality Control
89.30	95.30	6.00	831076	140	<4	19.3	88.0	<2	nAM	1/2	Core Sawn
95.30	98.50	3.20	831077	839	26	196.7	<10	<2	CD	1/2	Core Sawn
98.50	101.50	3.00	831078	909	50	271.5	<10	<2	CD	1/2	Core Sawn
101.50	104.50	3.00	831079	839	42	247.5	<10	<2	CD	1/2	Core Sawn
104.50	106.80	2.30	831080	2307	71	269.6	<10	<2	CD	1/2	Core Sawn
106.80	111.40	4.60	831081	140	<4	33.1	13.0	<2	nAM	1/2	Core Sawn
111.40	115.90	4.50	831082	350	<4	36.5	<10	<2	nAM	1/2	Core Sawn

Drill (Core Sampl	es	Location	UTM NAD 83	Rem	arks	Directi	on / Leng	gth	Drill	Hole I	nformation
Assay Date	e 05-Nov	-07	Easting	653,993.970	Sac	ldle	Azimuth	0 °		Date	e Start	08-Sep-07
Laboratory	iPL	i i	Northing	7,710,714.834			Inclinatio	n -90 °		Dat	e End	11-Sep-07
File No.	07J50	83	Elevation	598.627			Length	115.90 M	etres	Ор	erator	Taseko
Sample	e Interval (me	tres)	Sample Number		Ana	sults		Litho	ology	Sam	ple Method	
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
		Drill H	lole Selecte	d Interval -	Weighted	Average	e Analytic	al Result	s			
Sample	e Interval (me	tres)			Ana	lytical Res	sults					
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
4.00	115.90	111.90		1678	30	137.8	25	1				
7.40	47.80	40.40	Incl.	3241	61	229	8	1	1			
70.50	81.70	11.20	Incl.	2152	10	106.6	16	1	1			

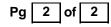
Drill C	ore Sample	es	Location	UTM NAD 83	Rem	arks	Directio	n / Leng	gth D	rill Hole I	nformation
Assay Date	06-Dec-	-07	Easting	653,846.234	Sac	ldle	Azimuth	0 °	D	Oate Start	08-Sep-08
Laboratory	iPL		Northing	7,710,789.575			Inclination	-90 °		Date End	11-Sep-07
File No.	07K52	71	Elevation	582.778			Length	152.40 M	etres	Operator	Taseko
Sample I	Interval (met	res)	Sample Number		Ana	lytical Res	ults		Litholog	gy Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			•
0.00	1.92	1.90	Not Sample	ed					OVBN	I No	Sampled
1.92	3.37	1.50	831145	839	<4	47.8	<10	<2	OVBN	l 1/2	Core Sawn
3.37	6.34	3.00	831146	3286	<4	44.6	<10	<2	ICC	1/2	Core Sawn
6.34	9.42	3.10	831147	6221	<4	36.3	<10	<2	ICC	1/2	Core Sawn
9.42	11.30	1.90	831148	2726	<4	38.0	<10	<2	CD	1/2	Core Sawn
11.30	13.48	2.20	831149	3076	<4	38.5	<10	<2	CD	1/2	Core Sawn
13.48	16.55	3.10	831150	1118	<4	39.6	<10	<2	ICC	1/2	Core Sawn
16.55	19.48	2.90	831151	979	<4	27.0	<10	<2	ICC	1/2	Core Sawn
STANDARD	OKA-1		831152	3705	15	38.5	<10	<2		Qua	lity Control
19.48	22.25	2.80	831153	3076	<4	37.0	<10	<2	ICC	1/2	Core Sawn
22.25	23.19	0.90	831154	979	<4	19.7	<10	<2	AMy	1/2	Core Sawn
23.19	26.20	3.00	831155	2097	<4	26.2	<10	<2	ICC	1/2	Core Sawn
26.20	29.30	3.10	831156	3006	<4	22.6	<10	<2	ICC	1/2	Core Sawn
29.30	31.96	2.70	831157	769	<4	39.3	<10	<2	ICC	1/2	Core Sawn
31.96	34.96	3.00	831158	979	<4	30.9	<10	<2	ICCCE	0 1/2	Core Sawn
34.96	38.13	3.20	831159	7270	<4	27.2	<10	<2	ICCCE	0 1/2	Core Sawn
38.13	41.34	3.20	831160	3355	<4	47.7	<10	<2	ICCCE		Core Sawn
41.34	44.05	2.70	831161	2586	<4	82.8	<10	<2	CCCE) 1/2	Core Sawn
44.05	46.60	2.60	831162	2027	<4	106.3	<10	<2	CCCE) 1/2	Core Sawn
46.60	49.30	2.70	831163	2377	5	144.5	<10	<2	CCCE) 1/2	Core Sawn
49.30	52.15	2.90	831164	3915	<4	113.5	<10	<2	dCD	1/2	Core Sawn
52.15	54.86	2.70	831165	3845	27	185.6	<10	<2	dCD		Core Sawn
54.86	57.91	3.00	831166	1118	11	130.7	<10	<2	dCD	1/2	Core Sawn
57.91	60.70	2.80	831167	2167	21	145.4	<10	<2	dCD	1/2	Core Sawn
60.70	62.91	2.20	831168	3775	58	194.0	<10	<2	dCD	1/2	Core Sawn
BLANK	Granite		831169	70	<4	20.3	<10	<2		Qua	lity Control
62.91	66.57	3.70	831170	2936	7	105.2	<10	<2	dCD	1/2	Core Sawn
66.57	69.80	3.20	831171	3355	<4	123.6	<10	<2	gfCD	1/2	Core Sawn
STANDARD	AHG-1		831172	629	<4	24.6	<10	<2			lity Control
69.80	73.15	3.40	831173	3146	31	258.6	<10	<2	gfCD		Core Sawn
73.15	76.40	3.20	831174	1887	31	177.1	<10	<2	gfCD		Core Sawn
76.40	79.84	3.40	831175	6012	84	340.4	<10	<2	gfCD		Core Sawn
79.84	83.17	3.30	831176	4963	<4	147.5	<10	<2	gfCD		Core Sawn
83.17	86.32	3.10	831177	2097	17	116.3	<10	<2	gfCD		Core Sawn
86.32	89.46	3.10	831178	1818	17	87.9	<10	<2	xAMX	y 1/2	Core Sawn
89.46	92.86	3.40	831179	2866	63	172.0	<10	<2	dCD	1/2	Core Sawn
92.86	96.44	3.60	831180	2447	54	159.7	<10	<2	dCD	1/2	Core Sawn
96.44	99.34	2.90	831181	1188	16	98.0	<10	<2	dfCD		Core Sawn
99.34	102.18	2.80	831182	4474	14	132.2	<10	<2	dfCD	1/2	Core Sawn

Drill C	Drill Core Samples		Location	UTM NAD 83	Rem	arks	Directi	on / Leng	gth [Drill Ho	e Information
Assay Date	06-Dec-	·07	Easting	653,846.234	Sac	ldle	Azimuth	0 °		Date Sta	rt 08-Sep-08
Laboratory	iPL		Northing	7,710,789.575			Inclinatio	n -90°	·	Date En	d 11-Sep-07
File No.	07K52	71	Elevation	582.778			Length	152.40 M	etres	Operato	r Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Litholo	gy Sa	ample Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
102.18	104.81	2.60	831183	979	<4	51.8	<10	<2	ICC	1	/2 Core Sawn
104.81	107.05	2.20	831184	559	<4	17.9	<10	<2	ICC	1	/2 Core Sawn
107.05	109.67	2.60	831185	629	<4	22.3	<10	<2	ICC	1	2 Core Sawn
109.67	112.77	3.10	831186	769	<4	31.0	<10	<2	dCCC	D 1.	2 Core Sawn
112.77	116.50	3.70	831187	489	<4	25.4	<10	<2	dCCC	D 1	2 Core Sawn
116.50	119.37	2.90	831188	699	11	75.1	<10	<2	dfCCC	D 1	/2 Core Sawn
119.37	122.26	2.90	831189	2167	23	92.5	<10	<2	dfCCC	D 1	/2 Core Sawn
122.26	125.15	2.90	831190	2167	46	117.3	<10	<2	dfCCC	D 1	/2 Core Sawn
125.15	128.05	2.90	831191	1957	38	75.6	<10	<2	dfCCC	D 1	/2 Core Sawn
STANDARD	OKA-1		831192	3565	16	38.1	<10	<2		C	uality Control
128.05	131.55	3.50	831193	559	<4	37.3	<10	<2	dfCE) 1	/2 Core Sawn
131.55	134.30	2.80	831194	4264	17	91.2	<10	<2	dCD) 1.	/2 Core Sawn
134.30	137.62	3.30	831195	2726	12	115.0	<10	<2	dCD) 1	/2 Core Sawn
137.62	138.36	0.70	831196	909	<4	31.4	<10	<2	bAM	y 1	/2 Core Sawn
138.36	141.46	3.10	831197	1049	<4	26.9	<10	<2	dCC	; 1,	/2 Core Sawn
141.46	144.50	3.00	831198	769	19	75.5	<10	<2	dCC	; 1	/2 Core Sawn
144.50	148.16	3.70	831199	2237	5	103.3	<10	<2	dICE) 1	/2 Core Sawn
148.16	150.38	2.20	831200	2726	36	83.4	<10	<2	bICCC	D 1	/2 Core Sawn
150.38	152.40	2.00	831201	3146	79	122.0	<10	<2	bICCC	D 1	/2 Core Sawn
		Drill H	lole Selecte	ed Interval -	Weighteo	d Average	e Analytic	al Resul	ts		
Sample	Interval (met	res)			Ana	alytical Res	ults				
From	То	Int.	-	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1		
3.37	152.40	149.03		2488	16	93.8	5 pp	1			
3.37	102.18	98.81	Incl.	2948	16	107.3	5	1	-		
119.37	-	-	1		-	-					

Drill C	ore Sample	es	Location	UTM NAD 83	Rem	arks	Directio	on / Leng	gth [Drill Hole	Information
Assay Date	19-Nov-	-07	Easting	653,899.452		lechanical	Azimuth	0 °		Date Start	12-Sep-07
Laboratory	iPL		3	7,710,788.591	diffic	ulties.	Inclinatio			Date End	16-Sep-07
File No.	07K534	46	Elevation	606.857			Length	134.12 M	etres	Operator	Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Litholo	ogy Sar	nple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
0.00	3.05	3.00	Not Sampled						CAS	E No	ot Sampled
3.05	9.83	6.80	831202	1118	<4	65.9	<10	<2	gfCC	2 1/2	Core Sawn
9.83	13.75	3.90	831203	5872	5	182.7	<10	<2	gfCE	0 1/2	Core Sawn
13.75	17.97	4.20	831204	9018	74	275.1	<10	<2	bICCC	CD 1/2	Core Sawn
17.97	22.28	4.30	831205	2656	74	251.3	<10	<2	dfCE	0 1/2	Core Sawn
22.28	27.28	5.00	831206	3076	53	250.5	<10	<2	bfCC	2 1/2	Core Sawn
27.28	30.98	3.70	831207	2307	31	152.4	<10	<2	gfCE	0 1/2	Core Sawn
30.98	33.67	2.70	831208	699	32	111.5	<10	<2	glCC	2 1/2	Core Sawn
33.67	36.60	2.90	831209	839	34	134.3	<10	<2	nfCE) 1/2	Core Sawn
36.60	42.15	5.50	831210	909	40	128.5	<10	<2	gCC	; 1/2	Core Sawn
42.15	44.26	2.10	831211	3216	<4	113.9	<10	<2	dICC	2 1/2	Core Sawn
44.26	47.62	3.40	831212	3076	9	92.6	<10	<2	dICCC	CD 1/2	Core Sawn
STANDARD	AHG-1		831213	629	<4	26.1	<10	<2		Qu	ality Control
47.62	49.22	1.60	831214	4054	22	158.3	<10	<2	gxCCC	CD 1/2	Core Sawn
49.22	51.82	2.60	831215	4194	<4	87.7	<10	<2	gfCE	D 1/2	Core Sawn
51.82	53.72	1.90	831216	3355	<4	49.2	<10	<2	gfCE	D 1/2	Core Sawn
53.72	55.87	2.10	831217	909	<4	24.6	<10	<2	dfCE	D 1/2	Core Sawn
55.87	58.39	2.50	831218	1188	<4	62.0	<10	<2	dICC	2 1/2	Core Sawn
58.39	59.45	1.10	831219	2796	<4	67.0	<10	<2	gxCl	D 1/2	Core Sawn
59.45	63.11	3.70	831220	3775	5	84.0	<10	<2	gCCC	D 1/2	Core Sawn
BLANK	Granite		831221	70	<4	26.6	<10	<2		Qu	ality Control
63.11	65.65	2.50	831222	8948	5	51.9	<10	<2	gICE) 1/2	Core Sawn
65.65	68.10	2.40	831223	3286	<4	54.0	<10	<2	gICCC	D 1/2	Core Sawn
68.10	70.51	2.40	831224	3286	6	70.0	<10	<2	gICCC	CD 1/2	Core Sawn
70.51	72.85	2.30	831225	1957	<4	44.5	<10	<2	gICCC	D 1/2	Core Sawn
72.85	75.13	2.30	831226	2377	<4	67.3	<10	<2	gxCI	D 1/2	Core Sawn
75.13	76.77	1.60	831227	699	5	49.9	<10	<2	blCC	2 1/2	Core Sawn
76.77	80.59	3.80	831228	699	<4	47.7	<10	<2	gxCl	D 1/2	Core Sawn
80.59	82.30	1.70	831229	2656	<4	39.3	<10	<2	bICC	2 1/2	Core Sawn
82.30	85.34	3.00	831230	3006	<4	66.1	<10	<2	gICE) 1/2	Core Sawn
85.34	87.10	1.80	831231	769	<4	61.0	<10	<2	glCC	2 1/2	Core Sawn
87.10	90.38	3.30	831232	769	<4	65.1	<10	<2	gfCCC	D 1/2	Core Sawn
STANDARD	OKA-1		831233	3705	15	44.9	<10	<2		Qu	ality Control
90.38	94.49	4.10	831234	2027	<4	150.4	<10	<2	gfCD	z 1/2	Core Sawn
94.49	97.54	3.10	831235	3775	12	110.0	<10	<2	gxCD)z 1/2	Core Sawn
97.54	100.58	3.00	831236	2586	10	88.2	<10	<2	gxCD)z 1/2	Core Sawn
100.58	103.55	3.00	831237	2796	<4	88.2	<10	<2	gxCD)z 1/2	Core Sawn
103.55	105.96	2.40	831238	1957	<4	54.9	<10	<2	gxCD)z 1/2	Core Sawn
105.96	108.11	2.20	831239	419	<4	21.2	<10	<2	CCC	D 1/2	Core Sawn

Drill C	ore Sampl	es	Location l	JTM NAD 83	Rem	arks	Directi	on / Leng	gth D	rill Hole	Information
Assay Date	19-Nov	-07	Easting	653,899.452	Saddle, M		Azimuth	n 0°		Date Start	12-Sep-07
Laboratory	iPL		Northing 7	,710,788.591	diffic	ulties.	Inclinatio	on -90 °	· · · ·	Date End	16-Sep-07
File No.	07K53	46	Elevation	606.857			Length	134.12 M	etres	Operator	Taseko
Sample	Interval (met	tres)	Sample Number		Ana	alytical Res	sults		Litholog	gy Sam	ple Method
From	То	Int.	Namber	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
108.11	110.39	2.30	831240	419	<4	22.1	<10	<2	CCCE	0 1/2	Core Sawn
110.39	112.04	1.70	831241	280	<4	121.5	<10	<2	gxCD) 1/2	Core Sawn
112.04	114.52	2.50	831242	3006	<4	149.8	<10	<2	gxCD) 1/2	Core Sawn
114.52	116.31	1.80	831243	3146	<4	63.4	<10	<2	gICCC	D 1/2	Core Sawn
116.31	118.87	2.60	831244	2237	<4	61.0	<10	<2	gxCD) 1/2	Core Sawn
118.87	121.63	2.80	831245	2027	7	58.5	<10	<2	gxCD) 1/2	Core Sawn
121.63	125.21	3.60	831246	280	<4	14.1	<10	<2	gCCC	D 1/2	Core Sawn
125.21	127.94	2.70	831247	1118	<4	78.3	<10	<2	bICCC	D 1/2	Core Sawn
127.94	131.06	3.10	831248	2796	29	96.7	<10	<2	bxCCC	D 1/2	Core Sawn
131.06	134.12	3.10	831249	3635	40	99.2	<10	<2	bxCCC	D 1/2	Core Sawn
		Drill H	lole Selected	Interval -	Weighted	Average	e Analytic	al Result	S		
Sample	Interval (met	tres)			Ana	alytical Res	sults				
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1		
3.05	134.12	131.07		2574	15	102.8	5	1			

Easing Date Liboratory File No. Easing File No. Easin File No. Easing File No.	Drill Co	ore Sample	es	Location	UTM NAD 83	Rem	arks	Directio	n / Leng	yth Dri	II Hole	nformation
File No. OTX5540 Elevation 541,020 Langth 127-11 Metrics Operator Tunkle Sample Interval (metres) Sample Number Number Na ppm Ta ppm Th ppm Uppm Re ppm Lithology Sample Method 0.00 4.57 5.66 1.10 831395 419 8 39.1 <10 <2 ICC 112 Core Sawn 1.05 1.4,24 4.20 831395 619 <4.47 <10 <2 ICC 112 Core Sawn 1.5.46 19.30 3.80 831395 699 <4 31.2 <10 <2 IDCC 112 Core Sawn 1.5.46 19.30 3.80 831402 35 <4 31.8 <10 <2 IDCC 112 Core Sawn 1.2.480 2.611 1.30 831402 35 <4 14.1 <10 <2 CCD 1/2 Core Sawn 3.71 3.20 831402 35 <4 14.1 <10 <2	Assay Date	10-Dec-	·07	Easting	653,940.311	Sac	ldle	Azimuth	0 °	Da	te Start	12-Sep-07
Sample Interval (metres) Sample Number Analytical Results Lithology Sample Method 4.57 5.66 1.00 8.31395 419 8 39.1 <10 <2 CCC 1/2 Core Sawn 5.66 10.05 4.40 831395 419 8 39.1 <10 <2 ICC 1/2 Core Sawn 10.05 14.24 4.20 831397 979 8 25.3 <10 <2 IDCC 1/2 Core Sawn 14.24 15.46 12.0 831397 979 8 25.3 <10 <2 IDCC 1/2 Core Sawn 14.24 15.46 12.0 831390 699 <4 31.2 <10< <2 IDCC 1/2 Core Sawn 12.16 24.80 2.60 831400 839 <4 31.8 <10 <2 IDCC 1/2 Core Sawn 24.80 26.11 1.30 831402 35 <4 14.1 <10< <2 Quality Control	Laboratory	iPL		Northing	7,710,610.657			Inclination	-90 °	Da	te End	13-Sep-07
From To Int. Number Number The per The per The per Lundary Sample Method 0.00 4.57 4.60 Not Sampled - CASE Not Sampled 4.57 5.66 1.10 831395 419 8 39.1 <10 <2 ICC 1/2 Core Sawn 10.05 14.24 4.20 831397 979 8 25.3 <10 <2 ICC 1/2 Core Sawn 14.24 15.46 1.20 831397 979 8 25.3 <10 <2 ICC 1/2 Core Sawn 15.46 19.30 38.0 8313939 649 4 24.4 <10 <2 ICC 1/2 Core Sawn 21.61 22.16 2.90 831400 839 <4 31.8 <10 <2 GICCD 1/2 Core Sawn 24.80 26.11 1.30 831403 559 30 85.6 <10 <2 GICD 1/2 Core Sawn <th>File No.</th> <th>07K554</th> <th>40</th> <th>Elevation</th> <th>541.020</th> <th></th> <th></th> <th>Length</th> <th>127.41 M</th> <th>etres</th> <th>perator</th> <th>Taseko</th>	File No.	07K554	40	Elevation	541.020			Length	127.41 M	etres	perator	Taseko
From To Int. Non-Sampled No. Number of the part of the	Sample I	nterval (met	res)			Ana	alytical Res	ults		Lithology	, Sam	ple Method
4.57 5.66 1.10 831395 419 8 39.1 <10	From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm		Can	
5.66 10.05 1.4.20 831396 2517 5 4.4.7 <10 <2 ICC 1/2 Core Sawn 10.05 14.24 4.20 831397 979 8 25.3 <10	0.00	4.57	4.60	Not Sample	d					CASE	No	t Sampled
10.05 14.24 4.20 831397 979 8 25.3 <10 <2 blCC 1/2 Core Sawn 14.24 15.46 1.20 831398 499 4 24.4 <10	4.57	5.66	1.10	831395	419	8	39.1	<10	<2	dCC	1/2	Core Sawn
14.24 15.46 1.20 831398 489 4 24.4 <10 <2 nIAMXy 1/2 Core Sawn 15.46 19.30 22.16 2.90 831400 839 <4	5.66	10.05	4.40	831396	2517	5	44.7	<10	<2	ICC	1/2	Core Sawn
15.46 19.30 3.80 831399 699 <4	10.05	14.24	4.20	831397	979	8	25.3	<10	<2	bICC	1/2	Core Sawn
19.30 22.16 2.90 831400 839 <4 31.8 <10 <2 gICCD 1/2 Core Sawn 22.16 24.80 2.60 831401 979 <4	14.24	15.46	1.20	831398	489	4	4 24.4 <10 <2 n		nIAMXy	1/2	Core Sawn	
22.16 24.80 2.60 831401 979 38.9	15.46	19.30	3.80	831399	699	<4	<4 31.2 <10 <2		<2	bICC	1/2	Core Sawn
BLANK Granite 831402 35 <4 14.1 <10 <2 Quality Control 24.80 26.11 1.30 831403 559 30 83.6 <10	19.30	22.16	2.90	831400	839	<4	31.8			glCCCD	1/2	Core Sawn
24.80 26.11 1.30 831403 559 30 83.6 <10 <2 CCy 1/2 Core Sawn 26.11 27.51 1.40 831404 1887 123 195.9 <10	22.16	24.80	2.60	831401	979	<4	38.9	<10	<2	glCCCD	1/2	Core Sawn
26.11 27.51 1.40 831404 1887 123 195.9 <10 <2 CCCD 1/2 Core Sawn STANDARD AHG-1 831405 559 <4	BLANK	Granite		831402	35	<4	14.1	<10	<2		Qua	lity Control
STANDARD AHG-1 831405 559 <4 21.6 <10 <2 Quality Control 27.51 30.73 3.20 831406 1188 99 137.9 <10	24.80	26.11	1.30	831403	559	30	83.6	<10	<2	CCy	1/2	Core Sawn
27.51 30.73 3.20 831406 1188 99 137.9 <10	26.11	27.51	1.40	831404	1887	123	195.9	<10	<2	CCCD	1/2	Core Sawn
30.73 32.85 2.10 831407 559 37 29.8 <10 <2 AMy 1/2 Core Sawn 32.85 35.77 2.90 831408 70 <4	STANDARD	AHG-1		831405	559	<4	21.6	<10	<2		Qua	lity Control
32.85 35.77 2.90 831408 70 <4 38.5 <10 <2 glAMX 1/2 Core Sawn 35.77 38.79 3.00 831409 140 <4	27.51	30.73	3.20	831406	1188	99	137.9	<10	<2	ICC	1/2	Core Sawn
35.77 38.79 3.00 831409 140 <4 41.3 <10 <2 glAMX 1/2 Core Sawn 38.79 42.01 3.20 831410 70 <4	30.73	32.85	2.10	831407	559	37	29.8	<10	<2	AMy	1/2	Core Sawn
38.79 42.01 3.20 831410 70 <4	32.85	35.77	2.90	831408	70	<4	38.5	<10	<2	gIAMX	1/2	Core Sawn
38.79 42.01 3.20 831410 70 <4	35.77	38.79	3.00	831409	140	<4	41.3	<10	<2	gIAMX	1/2	Core Sawn
46.53 50.69 4.20 831412 140 17 61.9 <10 <2 dICC 1/2 Core Sawn 50.69 53.14 2.50 831413 210 43 42.7 <10	38.79	42.01	3.20	831410	70	<4	52.1	<10		gIAMX	1/2	Core Sawn
50.69 53.14 2.50 831413 210 43 42.7 <10	42.01	46.53	4.50	831411	70	<4	56.6	<10	<2	glCC	1/2	Core Sawn
53.1456.313.208314142103736.6<10<2CC1/2 Core Sawn56.3157.491.20831415140<4			4.20	831412	140	17		<10		•	1/2	Core Sawn
56.31 57.49 1.20 831415 140 <4 28.2 <10 <2 AMXy 1/2 Core Sawn 57.49 60.25 2.80 831416 210 42 50.7 <10	50.69	53.14	2.50	831413	210	43	42.7	<10	<2	CC	1/2	Core Sawn
56.31 57.49 1.20 831415 140 <4 28.2 <10 <2 AMXy 1/2 Core Sawn 57.49 60.25 2.80 831416 210 42 50.7 <10	53.14	56.31	3.20	831414	210	37	36.6	<10	<2	СС	1/2	Core Sawn
60.2563.523.308314172802759.5<10<2ICC1/2 Core Sawn63.5267.013.5083141870431.9<10	56.31	57.49	1.20	831415	140	<4	28.2	<10		AMXy	1/2	Core Sawn
63.52 67.01 3.50 831418 70 4 31.9 <10 <2 ICC 1/2 Core Sawn 67.01 69.85 2.80 831419 280 <4	57.49	60.25	2.80	831416	210	42	50.7	<10	<2	ICC	1/2	Core Sawn
67.0169.852.80831419280<430.0<10<2blCC1/2 Core Sawn69.8573.083.20831420419<4	60.25	63.52	3.30	831417	280	27	59.5	<10	<2	ICC	1/2	Core Sawn
69.8573.083.20831420419<436.1<10<2blCC1/2 Core Sawn73.0875.592.5083142170<4	63.52	67.01	3.50	831418	70	4	31.9	<10	<2	ICC	1/2	Core Sawn
69.8573.083.20831420419<436.1<10<2blCC1/2 Core Sawn73.0875.592.5083142170<4				831419	280	<4						
73.0875.592.5083142170<430.5<10<2CC1/2 Core Sawn75.5978.332.7083142270<4												
75.59 78.33 2.70 831422 70 <4 45.0 <10 <2 CC 1/2 Core Sawn 78.33 82.32 4.00 831423 70 <4												
78.33 82.32 4.00 831423 70 <4 44.2 <10 <2 ICC 1/2 Core Sawn 82.32 84.73 2.40 831424 140 6 39.0 <10												
82.32 84.73 2.40 831424 140 6 39.0 <10 <2 ICC 1/2 Core Sawn STANDARD OKA-1 831425 3845 12 32.4 <10												
STANDARD OKA-1 831425 3845 12 32.4 <10 <2 Quality Control 84.73 88.09 3.40 831426 140 11 43.8 <10												
84.73 88.09 3.40 831426 140 11 43.8 <10 <2 dCCCD 1/2 Core Sawn 88.09 92.58 4.50 831427 70 <4												
88.09 92.58 4.50 831427 70 <4 37.6 <10 <2 glCC 1/2 Core Sawn 92.58 95.98 3.40 831428 35 <4			3.40							dCCCD		-
92.58 95.98 3.40 831428 35 <4 27.8 <10 <2 gCC 1/2 Core Sawn 95.98 99.38 3.40 831429 70 <4												
95.98 99.38 3.40 831429 70 <4 33.0 <10 <2 gCC 1/2 Core Sawn										-		
										-		
99.38 102.32 2.90 831430 /0 <4 46.1 <10 <2 qCC 1/2 Core Sawn	99.38	102.32	2.90	831430	70	<4	46.1	<10	<2	gCC		Core Sawn
102.32 105.41 3.10 831431 629 34 93.1 <10 <2 gCC 1/2 Core Sawn												
105.41 108.89 3.50 831432 210 10 46.4 <10 <2 ICC 1/2 Core Sawn										-		



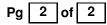
Drill (Drill Core Samples		Location	UTM NAD 83	Rem	arks	Directio	on / Leng	gth	Drill	Hole I	nformation
Assay Date		-	Easting	653,940.311	Sac	ldle	Azimuth	0 °			Start	12-Sep-07
Laboratory	iPL		Northing	7,710,610.657			Inclination	n -90 °		Date	e End	13-Sep-07
File No.	07K55	540	Elevation	541.020			Length	127.41 M	etres	Оре	rator	Taseko
Sample	Interval (me	tres)	Sample Number		Ana	lytical Res	ults		Litho	logy	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				-
108.89	111.56	2.70	831433	1049	21	23.4	<10	<2	IAN	1X	1/2 (Core Sawn
111.56	114.83	3.30	831434	489	9	10.4	130.0	<2	AN	1y	1/2 (Core Sawn
114.83	118.37	3.50	831435	2167	7	7.0	97.0	<2	AM	1y	1/2 (Core Sawn
118.37	121.61	3.20	831436	3495	19	11.8	136.0	<2	A	N	1/2 (Core Sawn
121.61	124.53	2.90	831437	419	<4	13.9	104.0	<2	AM	1y	1/2 (Core Sawn
124.53	127.41	2.90	831438	350	<4	13.9	144.0	<2	AN	1y	1/2 (Core Sawn
		Drill F	lole Selecte	d Interval -	Weighte	d Average	e Analytic	al Resul	ts			
Sample	Interval (me	tres)			Ana	lytical Res	ults					
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
4.57	124.53	119.96		574	14	43.2	17	1				
5.66	30.73	25.07	Incl.	1221	24	58.8	5	1	1			
108.89	121.61	12.72	Incl.	1839	14	12.5	96	1	-			

Drill C	ore Sample	es	Location	UTM NAD 83	Rem	arks	Directio	on / Leng	ath		nformation
Assay Date	06-Dec-		Easting	653,972.328	Saddle, N		Azimuth	0 °		Date Start	14-Sep-07
Laboratory	iPL			7,710,752.666	advance; bro		Inclinatio	n -90 °		Date End	18-Sep-07
File No.	07J514	45	Elevation	621.182	Drill under	r-powered.	Length	118.56 M	etres	Operator	Taseko
					-						
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	sults		Litho	logy Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm		0,	•
0.00	11.80	11.80	Not Sampled						CAS		t Sampled
11.80	17.81	6.00	831083	5942	35	60.7	<10	<2	fAM	Xy 1/2	Core Sawn
17.81	22.68	4.90	831084	5872	10	82.7	<10	<2	bfC	D 1/2	Core Sawn
22.68	25.61	2.90	831085	2097	<4	36.7	<10	<2	dfCC	CD 1/2	Core Sawn
25.61	31.33	5.70	831086	9926	13	76.8	<10	<2	dfC	D 1/2	Core Sawn
31.33	33.01	1.70	831087	6221	10	57.1	<10	<2	dC	D 1/2	Core Sawn
33.01	39.60	6.60	831088	11185	52	79.4	<10	<2	dfCC	CD 1/2	Core Sawn
39.60	41.95	2.40	831089	5173	15	37.4	<10	<2	gCC	CD 1/2	Core Sawn
41.95	44.82	2.90	831090	3146	<4	36.5	<10	<2	glC	C 1/2	Core Sawn
STANDARD	AHG-1		831091	629	<4	22.0	<10	<2		Qua	lity Control
44.82	47.73	2.90	831092	909	<4	22.2	<10	<2	glC	C 1/2	Core Sawn
47.73	52.07	4.30	831093	2796	<4	30.5	<10	<2	blC	D 1/2	Core Sawn
52.07	56.00	3.90	831094	699	<4	27.3	<10	<2	dICC	CD 1/2	Core Sawn
56.00	60.35	4.40	831095	2307	<4	36.6	<10	<2	dC	C 1/2	Core Sawn
60.35	63.39	3.00	831096	2936	<4	45.5	<10	<2	bICC	CD 1/2	Core Sawn
63.39	66.35	3.00	831097	7270	34	93.2	<10	<2	bICC	CD 1/2	Core Sawn
66.35	69.19	2.80	831098	6921	32	89.4	<10	<2	bICC	CD 1/2	Core Sawn
69.19	71.31	2.10	831099	7480	52	90.2	<10	<2	dlC	D 1/2	Core Sawn
BLANK	Granite		230005	35	<4	16.1	<10	<2		Qua	lity Control
71.31	74.50	3.20	831100	7829	53	94.3	<10	<2	bICC	CD 1/2	Core Sawn
74.50	77.88	3.40	831101	6221	55	103.5	<10	<2	bICC	CD 1/2	Core Sawn
77.88	80.62	2.70	831102	4544	34	73.6	<10	<2	dlC	C 1/2	Core Sawn
80.62	83.62	3.00	831103	4194	<4	79.0	<10	<2	gC	C 1/2	Core Sawn
83.62	86.37	2.80	831104	18245	42	58.3	<10	<2	gC	C 1/2	Core Sawn
86.37	89.47	3.10	831105	3915	42	104.0	<10	<2	gICC	CD 1/2	Core Sawn
89.47	93.28	3.80	831106	3216	54	103.1	<10	<2	gCC	CD 1/2	Core Sawn
93.28	96.78	3.50	831107	4823	119	165.4	<10	<2	gCC	CD 1/2	Core Sawn
96.78	100.93	4.20	831108	3076	164	131.8	<10	<2	dICC		Core Sawn
100.93	104.00	3.10	831109	210	10	23.8	<10	<2	gC	C 1/2	Core Sawn
104.00	107.00	3.00	831110	280	<4	28.9	<10	<2	gC		Core Sawn
107.00	110.77	3.80	831111	769	79	90.7	<10	<2	gCC		Core Sawn
STANDARD	OKA-1		831112	3635	19	40.6	<10	<2	-		lity Control
110.77	118.56	7.80	831113	1188	13	28.1	<10	<2	glC		Core Sawn

Drill C	Drill Core Samples		Location	UTM NAD 83	Rem	arks	Directi	on / Leng	gth	Drill	Hole I	nformation
Assay Date	06-Dec	-07	Easting	653,972.328	Saddle, N		Azimuth	0 °		Date	e Start	14-Sep-07
Laboratory	iPL		Northing	7,710,752.666	advance; bro	ken ground. r-powered.	Inclinatio	n -90 °		Date	e End	18-Sep-07
File No.	07J51	45	Elevation	621.182	Dim under	-powered.	Length	118.56 M	etres	Оре	erator	Taseko
Sample	Interval (me	tres)	Sample Number		Ana	lytical Res	sults		Litho	logy	Sam	ple Method
From	То	Int.	Namber	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				-
		Drill H	lole Selecte	d Interval -	Weighted	Average	e Analytic	al Result	S			
Sample	Interval (me	tres)			Ana	lytical Res	sults					
From	То	Int.	1	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
11.80	100.93	89.13		5625	35	73.4	5	1				
11.80	41.95	30.15	Incl.	7414	24	67	5	1	1			
63.39	100.93	37.54	Incl.	6187	61	101.5	5	1				

Drill (Core Sampl	es	Location l	JTM NAD 83	Rem	arks	Directi	on / Leng	gth _	Drill Hole	Information
Assay Date		-07	Easting	653,937.714	Saddle, N		Azimuth			Date Start	-
Laboratory			_	,710,773.432	advance; b	roken core	Inclinatio			Date End	21-Sep-07
File No.	07K51	71	Elevation	629.412			Length	79.25 Me	etres	Operator	Taseko
Sample	e Interval (met	res)	Sample Number		Ana	lytical Res	ults		Litholo	ogy San	nple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			
0.00	2.50	2.50	Not Sampled						CAS	E No	ot Sampled
2.50	6.96	4.50	831114	70	<4	33.8	<10	<2	gCCC	CD 1/2	Core Sawn
6.96	8.83	1.90	831115	35	<4	36.7	<10	<2	gICC0	CD 1/2	Core Sawn
8.83	10.71	1.90	831116	35	<4	42.7	<10	<2	gICC0	CD 1/2	Core Sawn
10.71	12.97	2.30	831117	70	<4	53.3	<10	<2	bxC	D 1/2	Core Sawn
12.97	15.70	2.70	831118	35	<4	38.4	<10	<2	gICC0	CD 1/2	Core Sawn
15.70	18.54	2.80	831119	35	<4	40.9	<10	<2	gICC0	CD 1/2	Core Sawn
18.54	21.09	2.60	831120	35	<4	50.0	<10	<2	gAM	X 1/2	Core Sawn
21.09	23.32	2.20	831121	70	<4	68.0	<10	<2	gCE	0 1/2	Core Sawn
23.32	25.37	2.10	831122	70	<4	64.4	<10	<2	gCE) 1/2	Core Sawn
25.37	27.47	2.10	831123	35	<4	45.7	<10	<2	gCE) 1/2	Core Sawn
27.47	31.10	3.60	831124	35	<4	71.0	<10	<2	gCC	2 1/2	Core Sawn
31.10	33.21	2.10	831125	35	<4	40.2	<10	<2	gICC0	CD 1/2	Core Sawn
BLANK	Granite		230006	35	<4	12.4	<10	<2		Qua	ality Control
33.21	36.58	3.40	831126	35	<4	30.1	<10	<2	dCE) 1/2	Core Sawn
36.58	39.15	2.60	831127	35	<4	85.2	<10	<2	gCC	2 1/2	Core Sawn
39.15	41.57	2.40	831128	35	<4	92.6	<10	<2	gCC	2 1/2	Core Sawn
41.57	43.90	2.30	831129	35	<4	73.2	<10	<2	gfC0	C 1/2	Core Sawn
43.90	46.05	2.10	831130	35	<4	70.3	<10	<2	gfC0	C 1/2	Core Sawn
46.05	48.61	2.60	831131	35	<4	60.5	<10	<2	gCCC	D 1/2	Core Sawn
TANDARD	AHG-1		831132	559	<4	21.5	<10	<2		Qu	ality Control
48.61	51.34	2.70	831133	35	<4	47.5	<10	<2	gCE) 1/2	Core Sawn
51.34	53.50	2.20	831134	140	6	134.0	<10	<2	glC0	C 1/2	Core Sawn
53.50	55.88	2.40	831135	70	<4	50.1	<10	<2	glC0	C 1/2	Core Sawn
55.88	57.91	2.00	831136	70	<4	87.3	<10	<2	gfCC0	CD 1/2	Core Sawn
57.91	60.32	2.40	831137	35	<4	52.0	<10	<2	gfCC0	CD 1/2	Core Sawn
60.32	61.88	1.60	831138	35	<4	54.2	<10	<2	gfCl	D 1/2	Core Sawn
61.88	64.79	2.90	831139	35	<4	41.2	<10	<2	fCC	; 1/2	Core Sawn
64.79	68.58	3.80	831140	70	<4	64.8	<10	<2	fCCC	D 1/2	Core Sawn
68.58	70.61	2.00	831141	70	<4	39.1	<10	<2	gfCI	D 1/2	Core Sawn
70.61	72.69	2.10	831142	70	<4	32.4	<10	<2	gCC	2 1/2	Core Sawn
72.69	76.20	3.50	831143	280	<4	52.6	<10	<2	gICCO	CD 1/2	Core Sawn
76.20	79.25	3.00	831144	70	<4	31.0	<10	<2	gICC0	CD 1/2	Core Sawn
	1	Drill I	Hole Selected	Interval -	Weighted	Average	Analytic	al Result	S		
Sample	e Interval (met	res)			Ana	lytical Res	ults				
From	То	Int.	1	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1		
2.50	79.25	76.75	4	61	2	55.1	5 5	1 1			

Drill C	Core Sample	es	Location	UTM NAD 83	Rem	arks	Directio	on / Leng	gth Dril	I Hole I	nformation
Assay Date	24-Nov-	-07	Easting	654,020.866	Sac	ldle	Azimuth	20 °	Dat	e Start	18-Sep-07
Laboratory	iPL		Northing 2	7,710,774.542			Inclination	n -90 °	Dat	e End	23-Sep-07
File No.	07K54′	74	Elevation	630.326			Length	152.40 M	etres Op	erator	Taseko
Sample	Interval (met	res)	Sample Number		Ana	alytical Res	ults		Lithology	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm			•
0.00	2.46	2.50	Not Sampled						CASE	No	t Sampled
STANDARD	OKA-1		831293B	3565	22	35.5	<10	<2		Qua	lity Control
2.46	4.06	1.60	831294	4124	21	43.0	<10	<2	OVBN	1/2	Core Sawn
4.06	6.93	2.90	831295	5103	17	20.1	<10	<2	dICC	1/2	Core Sawn
6.93	9.52	2.60	831296	3216	4	19.0	<10	<2	dCC	1/2	Core Sawn
9.52	11.81	2.30	831297	4474	44	79.6	<10	<2	gCCCD	1/2	Core Sawn
11.81	13.98	2.20	831298	6641	72	143.2	<10	<2	gCCCD	1/2	Core Sawn
13.98	16.72	2.70	831299	2726	50	61.2	<10	<2	gCC	1/2	Core Sawn
16.72	19.33	2.60	831300	2726	109	116.9	<10	<2	gfCD	1/2	Core Sawn
19.33	22.38	3.10	831301	2167	144	155.6	<10	<2	dfCCCD	1/2	Core Sawn
22.38	24.70	2.30	831302	3495	38	49.4	<10	<2	gICCCD	1/2	Core Sawn
24.70	27.12	2.40	831303	3216	49	56.9	<10	<2	gICCCD	1/2	Core Sawn
STANDARD	OKA-1		831304	3565	21	41.0	<10	<2		Qua	lity Control
27.12	29.48	2.40	831305	3635	86	85.9	<10	<2	gICCCD	1/2	Core Sawn
29.48	33.91	4.40	831306	2097	38	45.2	<10	<2	dCCCD	1/2	Core Sawn
33.91	38.04	4.10	831307	2656	8	56.6	<10	<2	xAMX	1/2	Core Sawn
38.04	39.74	1.70	831308	1957	5	22.3	<10	<2	xAMy	1/2	Core Sawn
39.74	44.06	4.30	831309	3006	14	53.0	<10	<2	dICC	1/2	Core Sawn
44.06	48.23	4.20	831310	3216	13	36.5	<10	<2	gICC	1/2	Core Sawn
48.23	52.71	4.50	831311	2726	12	36.6	<10	<2	gICC	1/2	Core Sawn
52.71	55.78	3.10	831312	2167	8	50.7	<10	<2	xAMy	1/2	Core Sawn
55.78	58.81	3.00	831313	2447	15	35.6	<10	<2	xAMy	1/2	Core Sawn
58.81	62.48	3.70	831314	3495	<4	46.7	<10	<2	gICC	1/2	Core Sawn
62.48	66.79	4.30	831315	1118	60	62.6	<10	<2	gICCCD	1/2	Core Sawn
66.79	69.69	2.90	831316	1118	81	66.6	<10	<2	gICCCD	1/2	Core Sawn
69.69	72.65	3.00	831317	2656	146	99.9	<10	<2	gICCCD	1/2	Core Sawn
72.65	75.71	3.10	831318	769	52	61.8	<10	<2	gICCCD	1/2	Core Sawn
75.71	78.64	2.90	831319	2936	17	49.3	<10	<2	gfCD	1/2	Core Sawn
78.64	81.88	3.20	831320	2866	<4	64.3	<10	<2	gfCD	1/2	Core Sawn
81.88	87.96	6.10	831321	2097	62	53.6	<10	<2	gICC	1/2	Core Sawn
87.96	90.63	2.70	831322	1049	92	83.7	<10	<2	gfCCCD	1/2	Core Sawn
90.63	93.88	3.20	831323	1188	122	88.0	<10	<2	gfCCCD	1/2	Core Sawn
STANDARD	AHG-1		831324	559	<4	17.0	<10	<2		Qua	lity Control
93.88	97.91	4.00	831325	839	93	86.9	<10	<2	gCCCD	1/2	Core Sawn
BLANK	Granite		831326	35	<4	18.8	<10	<2		Qua	lity Control
97.91	102.28	4.40	831327	2377	109	66.4	<10	<2	dICD	1/2	Core Sawn
102.28	104.84	2.60	831328	2307	56	81.7	<10	<2	dCC	1/2	Core Sawn
104.84	107.82	3.00	831329	2517	51	111.7	<10	<2	gxCCCD	1/2	Core Sawn
107.82	110.95	3.10	831330	2517	30	46.9	<10	<2	gxCCCD	1/2	Core Sawn



Drill C	Drill Core Samples Assay Date 24-Nov-07		Location U	ITM NAD 83	Rem	arks	Directi	on / Leng	gth	Drill	Hole I	nformation
Assay Date			,	654,020.866	Sac	ldle	Azimuth	-			e Start	18-Sep-07
Laboratory	iPL			,710,774.542			Inclinatio				e End	23-Sep-07
File No.	07K54	74	Elevation	630.326			Length	152.40 M	etres	Оре	erator	Taseko
Sample	Interval (met	tres)	Sample Number		Ana	alytical Res	sults		Lithol	ogy	Sam	ple Method
From	То	Int.	Number	Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm				
110.95	112.64	1.70	831331	280	7	28.5	<10	<2	gICC	CD	1/2 (Core Sawn
112.64	115.52	2.90	831332	3076	58	87.3	<10	<2	dfC	D	1/2 (Core Sawn
115.52	120.06	4.50	831333	2656	67	81.4	<10	<2	dICC	CD	1/2 (Core Sawn
120.06	122.77	2.70	831334	699	59	42.3	<10	<2	glC	С	1/2 (Core Sawn
122.77	125.59	2.80	831335	3146	100	69.4	<10	<2	glC	С	1/2 (Core Sawn
125.59	128.83	3.20	831336	2097	121	68.6	<10	<2	dC	С	1/2 (Core Sawn
128.83	132.04	3.20	831337	1887	19	43.7	<10	<2	dC	С	1/2 (Core Sawn
132.04	133.35	1.30	831338	4404	38	81.7	<10	<2	gCC	CD	1/2 (Core Sawn
133.35	137.60	4.20	831339	4823	82	34.3	<10	<2	xAN	١X	1/2 (Core Sawn
137.60	141.58	4.00	831340	3076	71	34.8	<10	<2	xAN	ſΧ	1/2 (Core Sawn
141.58	144.00	2.40	831341	1118	53	67.2	<10	<2	dC	С	1/2 (Core Sawn
144.00	146.51	2.50	831342	909	<4	29.1	<10	<2	dC	С	1/2 (Core Sawn
146.51	149.34	2.80	831343	1258	5	53.0	<10	<2	dfC	D	1/2 (Core Sawn
STANDARD	OKA-1		831344	3565	21	34.7	<10	<2			Qua	lity Control
149.34	152.40	3.10	831345	2866	36	113.9	<10	<2	dfC	D	1/2 (Core Sawn
		Drill H	lole Selected	Interval -	Weighted	Average	e Analytic	al Result	S			
Sample	Interval (met	tres)			Ana	alytical Res	sults					
From	То	Int.		Nb ppm	Ta ppm	Th ppm	U ppm	Re ppm	1			
2.46	152.40	149.94		2537	52	63.1	5	1				
2.46	62.48	60.02	Incl.	3149	35	58.7	5	1	1			

APPENDIX C

ASSAY CERTIFICATES

CERTIFICATE OF ANALYSIS iPL 07J4892

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ocess Research Associates Ltd		20	Sample	s Print: Oct 25, 2007 In: Oct 22	. 2007	Website ww [489214:	00:36:70	102507:0
oject : 0708410 ipper : Boja Grcic ipment: PO#: 9003 omment:	CODE B31100 B84100 B82101 B90000		TYPE Pulp Repeat Blk iPL Std iPL	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Certified) - no charge.			PULP 12M/Dis 12M/Dis 00M/Dis	REJ 00M/ 00M/ 00M/
	-Ana Ana	lytical lysis: Nb	Summan 205 Th U		NS=No Sample Rep=	=Replicate M	=Month D)is=Disc
ocument Distribution	## Code	Method		Description	Element	Limit		
Process Research Associates LtdEN RT CC IN11620 Horseshoe Way1 2 1 0RichmondDL 3D EM BTBCV7A 4V50 0 1 1Att: Boja GrcicPh:604/272-8Fx:604/272-00	1 01 0785 BL 02 0527 0 03 0728 04 0143 110 05 0405	ICP AqR/AA ICP ICPM WRock	% ppm ppm %	Nb205 by Multi-Acids Sp. Digestion Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid) Al203 by Whole Rock	Niobium Pentoxide Thorium Uranium Rhenium A1203	Low 0.01 0.1 2 0.01	100. 1000 10 100	.0 00 00
Em:bojagrcic@pralab.	551 500 06 0408 07 0406 08 0409 09 0403 10 0402	WRock WRock WRock WRock WRock	* * * * *	Ba0 by Whole Rock Ca0 by Whole Rock Fe2O3 by Whole Rock K20 by Whole Rock Mg0 by Whole Rock	BaO CaO Fe2O3 K2O MgO	0.01 0.01 0.01 0.01 0.01	100. 100. 100.	00 00 00
	11 0404 12 0410 13 0411 14 0401 15 0407	WRock WRock WRock WRock WRock	* * * *	MnO by Whole Rock Na2O by Whole Rock P2O5 by Whole Rock SiO2 by Whole Rock TiO2 by Whole Rock	MnO Na2O P2O5 SiO2 TiO2	0.01 0.01 0.01 0.01 0.01	100. 100. 100.	00 00 00
	16 0417 17 0420		%	Loss on Ignition @ 2000 F Total Whole Rock	Loss on Ignition Total	0.01 0.01		

* Our liability is limited solely to the analytical cost of these analyses.

Signature:

CERTIFICATE OF ANALYSIS iPL 07J4892

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

e NB205 x p 0.15 p 0.14 p 0.13 p 0.11 p 0.13 p 0.13 p 0.13 p 0.34	Th ppm 110.0 198.1 87.8 134.3 134.6	U ppm <10 <10 <10 <10	Re ppm <2 <2 <2	A1203 %	Ba0 % 0.02 0.01	Ca0 %	Fe203 %	K20 %	Mg0 % 16.77	Mn0 % 0.36	Na20 % 0.76	P205 % 2.33	SiO2 % 0.69	TiO2 % 0.03	LOI %
p 0.14 p 0.13 p 0.11 p 0.13 p 0.13	198.1 87.8 134.3	<10 <10	<2 <2	1.10			2.74			0.36	0.76	2 33	0 69	0.03	42 83
p 0.34		<10	<2 <2	1.02 1.07 0.99	0.01 0.01 0.01	31.80 31.12 31.10 31.80	3.05 2.88 3.37 2.96	<0.01 0.68 0.63 0.67	16.39 16.13 15.63 15.65	0.30 0.39 0.28 0.28	0.74 0.80 0.81 0.78	3.68 4.97 4.39 3.40	0.63 0.53 0.76 0.49	0.03 0.04 0.10 0.08 0.07	41.81 39.83 40.39 42.40
p 0.05 p 0.08 p 0.07 p 0.06	190.1 71.8 120.8 66.0 44.6	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.07 1.21 1.32 1.26 1.23	0.01 0.01 0.03 0.01 0.01	32.02 32.47 32.91 30.66 30.54	2.97 3.21 4.69 3.71 2.88	0.63 0.69 0.48 0.59 0.61	15.16 14.66 12.17 15.54 16.84	0.24 0.28 0.29 0.27 0.26	0.78 0.75 0.78 0.77 0.77	3.65 4.28 7.06 4.37 2.88	0.59 0.87 1.16 1.00 0.99	0.05 0.06 0.19 0.16 0.06	41.19 40.63 37.29 39.83 42.57
p 0.08 p 0.09 p 0.08 p 0.15 p 0.15	99.2 19.6 74.8 133.4 105.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	1.13 0.93 1.22 1.42 1.14	0.01 0.01 0.02 0.01	31.04 31.74 30.42 32.48 31.22	3.20 2.35 3.67 5.67 3.79	0.72 0.65 0.63 0.74 0.47	16.17 16.50 16.20 13.17 15.64	0.26 0.57 0.29 0.38 0.30	0.74 0.77 0.73 0.77 0.77	4.26 3.57 3.34 7.64 4.96	0.79 0.50 0.97 1.84 1.26	0.08 0.01 0.08 0.27 0.13	40.92 41.43 42.09 34.88 39.80
p 0.35 p 0.09 p 0.06 p 0.10 p 0.09	153.7 92.8 68.8 131.9 70.1	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.47 1.85 2.04 2.06 1.12	0.02 0.02 0.02 0.03 0.01	30.83 30.24 27.26 29.67 30.25	5.66 4.95 5.24 5.19 3.10	0.49 0.61 0.56 0.57 0.59	12.41 11.71 13.66 13.64 16.51	0.36 0.32 0.35 0.41 0.30	0.79 0.84 1.82 0.79 0.78	5.81 2.90 4.03 3.39 3.31	5.47 9.76 16.58 6.34 0.84	0.12 0.18 0.12 0.18 0.10	34.75 34.82 28.19 37.19 41.61
eat 0.16 eat 0.10 iPL <0.01 iPL 0.53 iPL 0.53	112.8 77.6 	<10 <10 	<2 <2 	1.15 1.13 	0.02 0.01	30.29 30.10 	2.83 3.35 	0.74 0.56 	16.70 16.76 	0.37 0.30 	0.79 0.81 	2.40 3.24 	0.66 0.82 	0.03 0.08 — —	42.55 41.55 — —
	0.08 0.09 0.08 0.15 0.15 0.35 0.09 0.06 0.10 0.09 0.09 0.09 0.06 0.10 0.09 0.09 0.10 0.09 0.10 0.09	0.08 99.2 0.09 19.6 0.08 74.8 0.15 133.4 0.15 105.3 0.35 153.7 0.09 92.8 0.06 68.8 0.10 131.9 0.09 70.1 at 0.16 112.8 at 0.10 77.6 iPL <0.01 — iPL 0.53 —	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08 99.2 <10											

1P 1		iPL 07J4892 Canada V7A Phone (604)						Richmond, B.C. Canada V7A 4V5 Phone (604) 879-	7878	lay	
ient : Process Research oject: 0708410		20 Samples 20=Pulp	2=Repeat	1=B1k iPL	1=Std iPL	Print [489214:00:36:70102507:001	: Oct 25.	Website www.ipl 2007 Page 2007 Sect	1	of 1 of 2	
ample Name	Total %	·				•					
31000 31001 31002 31003 31004	98.51 99.54 98.47 98.50 99.49										
31005 31006 31007 31008 31009	98.35 99.12 98.39 98.18 99.62										
31010 31011 31012 31013 31014	99.34 99.03 99.66 99.27 99.49										
31015 31016 31017 31018 31019	98.18 98.19 99.87 99.46 98.51										
E 831000 E 831019 Tank iPL CRMP_STD as Nb205 CRMP_STD as Nb205 REF	98.53 98.71 										

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

CERTIFICATE OF ANALYSIS iPL 07J5010

15	0 9001 2006
0	
0	A LIFIC NY.

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

roject : 0708410 hipper : Boja Grcic		CODE	AMOUNT	TYPE	PREPARATION DESCRIPTION		DUID	REJE
hipment: PO# Comment: PO#	¥: 9066	B31100 B84100 B82101 B90000	20 2 1	Pulp Repeat Blk iPL Std iPL	Pulp received as it is, no sample prep. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Certified) - no charge.		PULP 12M/Dis 12M/Dis 00M/Dis	00M/D 00M/D 00M/D
		Ana	alytical lysis: Nb	Summar 205 Th U	y Re Ta / Whole Rock analysis	NS=No Sample Rep=R	eplicate M=Month	Dis=Disca
Ocument Distribution		## Code	Method	Units	Description	Element	Limit Li	mit
Process Research Associat 11620 Horseshoe Way Richmond BC V7A 4V5 Att: Boja Grcic	1 2 1 0 DL 3D EM BT 0 0 1 1 Ph:604/272-81	1 01 0785 3L 02 0784 0 03 0527 04 0728 L0 05 0143	ICPM AqR/AA ICP	% ppm ppm ppm ppm	Nb2O5 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	$\begin{array}{cccc} 0.01 & 100 \\ 4 & 10 \\ 0.1 & 100 \\ 10 & 1 \end{array}$	igh .00 000 0.0 000 000
	Fx:604/272-08 Em:bojagrcic@pralab.c		WRock WRock WRock	20 20 20 20 20	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	0.01 100 0.01 100 0.01 100	.00 .00 .00 .00 .00
		11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock	% % % %	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	0.01 100 0.01 100 0.01 100	.00 .00 .00 .00 .00
		16 0407 17 0417 18 0420	2000 F	% %	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100	.00 .00 .00
						Δ	0	

Signature:

04	F	
1		

1	
t	15/0 9001-2000
	ABY
L	AT 188 18.
1	N NO D
P	CARE S
Ľ	TIFICA

Intertal

200 - 11620 Horseshoe Way Richmond, B.C.

Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : ^{IS} Process [®] Research [®] roject: 0708410	the second se	20	Samp	les 20=Pulp	2=Re	neat	1=B1k i	PI 1=	=Std iPL	F5010	17:27:19	70110207	Print: No	ov 02. 2	Website 007	www.ipl.ca Page	
Sample Name	Туре	NB205 %	Ta ppm	Th	U	Re	A1203	Ba0	Ca0	Fe203	K20 %	Mg0	MnO %	Na20 %	P205	Si02	Ti02
831020 831021 831022 831023 831023 831024	Pulp Pulp Pulp Pulp Pulp Pulp	0.17 0.06 0.09 0.15 0.07	61 35 46 100 83	78.4 43.3 133.7 90.8 64.3	<10 <10 <10 <10 <10	<>><><><><><><><><><><><><><><><><><><	1.15 1.12 1.13 1.25 1.16	0.01 0.02 0.01 0.02 0.02	28.50 29.10 30.90 29.50 31.72	2.65 3.00 4.54 4.31 3.89	<0.01 0.41 0.61 0.54 0.41	18.70 17.54 15.39 15.25 14.11	0.30 0.54 0.30 0.31 0.33	0.74 0.76 0.79 0.82 0.82	1.98 2.82 4.27 4.55 3.70	1.47 1.29 1.14 2.59 2.15	0.07 0.07 0.17 0.18 0.08
831025 831026 831027 831028 831029	Pulp Pulp Pulp Pulp Pulp Pulp	0.34 0.05 0.29 0.05 0.28	9 <4 28 <4 11	32.8 37.6 40.1 29.2 52.5	<10 <10 <10 <10 <10	\$\$\$\$\$	1.71 4.22 4.24 7.13 3.37	0.06 0.04 0.07 0.06 0.06	43.27 18.19 21.53 8.84 29.05	2.62 5.45 5.42 6.59 4.58	0.49 1.87 1.84 1.27 0.84	3.25 11.30 7.79 6.50 8.10	0.24 0.33 0.33 0.31 0.34	1.13 4.19 3.64 7.68 2.60	2.13 1.87 2.54 1.54 2.45	5.78 34.28 31.78 50.33 20.42	0.10 0.28 0.28 0.35 0.21
831030 831031 831032 831033 831034	Pulp Pulp Pulp Pulp Pulp	0.40 0.53 0.11 0.26 0.24	8 20 4 15 22	78.5 38.0 25.9 52.9 64.8	<10 <10 <10 <10 <10	<>> <> <> <> <> <> <> <>> <> <>> <>> <>	3.80 2.60 1.42 3.26 5.62	0.07 0.33 0.08 0.05 0.06	30.28 44.07 45.81 26.92 27.09	4.75 3.85 1.82 6.41 4.85	1.31 0.64 0.49 1.27 1.86	6.36 2.08 2.50 7.87 4.00	0.29 0.79 0.22 0.32 0.25	2.02 1.20 1.28 2.69 1.24	2.45 2.57 1.33 3.08 2.75	20.78 6.48 6.34 23.24 23.98	0.21 0.23 0.05 0.24 0.25
831035 831036 831037 831038 831039	Pulp Pulp Pulp Pulp Pulp	0.12 0.37 0.48 0.27 0.04	7 20 54 17 <4	37.2 71.3 107.2 46.3 22.1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	5.34 5.40 4.03 4.71 6.66	0.06 0.04 0.06 0.07 0.04	24.27 18.54 34.78 31.04 9.53	4.55 7.10 4.78 3.96 5.97	2.29 1.89 0.72 1.58 2.89	4.86 6.24 2.26 4.46 8.50	0.29 0.31 0.27 0.26 0.31	2.31 2.28 0.85 1.48 5.01	2.67 3.41 4.14 2.84 2.06	30.43 35.29 14.51 19.22 49.51	0.25 0.33 0.23 0.26 0.36
RE 831020 RE 831039 Blank iPL CCRMP_STD as Nb205 CCRMP_STD as Nb205 REF	Repeat Repeat B1k iPL Std iPL Std iPL	0.16 0.04 <0.01 0.52 0.53	61 <4 	79.6 23.6 	<10 <10 	<2 <2 	1.22 6.54 	0.01 0.04 	27.53 9.35 — —	2.52 5.85 — —	0.66 2.53	18.88 8.70 —	0.29 0.30 	0.82 5.02 	1.89 1.97 	1.46 50.76 	0.07 0.35
inimum Detection aximum Detection ethod —=No Test Ins=Insufficient Sa		ICP	ICPM A	gR/AA	ICP	ICPM	WRock	WRock	WRock	0.01 100.00 WRock	0.01 100.00 : WRock			0.01 00.00 : WRock	0.01 100.00 WRock		0.01 00.00 WRock

24	4	

ISO 9001.2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851

	RNATIONAL PLASMA LABS LTD OCCESS' Research ASS 08410		td >#	20 Samples 20=Pulp	2=Repeat	1=B1k iPL	1=Std iPL	ا Print: [501017:27:19:70110207:0028]	Nov 02, 0ct 25,	Website w 2007 2007	ww.ipl.ca Page Section	1 of 2 of
ample Name	e	LOI %	Total %									
331020 331021 331022 331023 331023 331024		44.10 42.90 40.49 39.10 40.42	99.67 99.57 99.75 98.42 98.80									
31025 31026 31027 31028 31028 31029		37.47 17.64 19.54 7.59 26.15	98.25 99.66 99.01 98.18 98.18									
331030 331031 331032 331033 331033 331034		27.16 33.36 37.93 23.06 26.60	99.50 98.21 99.27 98.41 98.55									
331035 331036 331037 331038 331039		22.52 18.31 32.73 28.71 8.84	99.85 99.13 99.36 98.59 99.66									
RE 831020 RE 831039 Blank iPL CCRMP_STD a CCRMP_STD a	as Nb205 as Nb205 REF	44.06 8.42 — —	99.40 99.85 — —									

 Method
 2000 F
 WRock

 —=No Test
 Ins=Insufficient Sample
 Del=Delay
 Max=No Estimate
 Rec=ReCheck
 m=x1000
 %=Estimate %
 NS=No Sample

150.90	01:200	0
á		
9	J	*
The France	10 1/1	

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process Research Associates Ltd Project : 0708410		11	Sample	es Print: Nov 02, 2007 In: Oct 26,	. 2007	Website www [505817:29		10207:003
Shipper : Boja Grcic Shipment: PO#: 9082 Comment:	B3: B84 B82		TYPE Pulp Repeat Blk iPL Std iPL	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Certified) - no charge.		1 0	PULP 2M/Dis 2M/Dis 00M/Dis	REJECT 00M/Dis 00M/Dis 00M/Dis
	H	Analytical Analysis: Nh	Summan 205 Th U	Y Re Ta / Whole Rock analysis	NS=No Sample Rep=	Replicate M=M	lonth D [.]	is=Discarc
Document Distribution 1 Process Research Associates Ltd EN RT CC IN FX	#	Code Method		Description	Element	Limit	Lim	
11620 Horseshoe Way 1 2 1 0 1 Richmond DL 3D EM BT BL BC V7A 4V5 0 0 1 1 0	01 0 02 0 03 0 04 0	0784 ICPM 0527 AqR/AA 0728 ICP	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low 0.01 4 0.1 10 2	Hic 100.0 1000 1000 1000 1000	00 00 .0 00
Em:bojagrcic@pralab.com	07 0 08 0 09 0	0405 WRock 0408 WRock 0406 WRock 0409 WRock 0403 WRock	* * * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	0.01 0.01 0.01 0.01 0.01	100.0 100.0 100.0 100.0	00 00 00
	12 (13 (14 (0402 WRock 0404 WRock 0410 WRock 0411 WRock 0401 WRock	* * * * *	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	100.0 100.0 100.0 100.0	00 00 00
	17 0	0407 WRock 0417 2000 F 0420 WRock	% %	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 0.01 0.01	100.0 100.0 105.0	00
		2 22 7 22 27			(
EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1 DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1= * Our liability is limited solely to the analytical cost of these analyses.	l=Yes =Yes	0=No) Totals 0=No) ID=C0	:: 1=Copy (32725	D=Invoice 0=3½ Disk BC Certified Signa	Assayers: David Ch ture:	in, Ron Willia	ims	

EB		
H 1	1	

	50	900	12	000
	1	1	7	1
AND ADDRESS TO A	1	-		2
C. 30, 3007 87 .:		1		

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851

INTERNATIONAL PLASMA LAB	the second se	218740 ·		2									l	ntertek		www.ipl.ca		
Client : Process Research A Project: 0708410	sociates Ltd Ship#	11	Samp	les 11=Pulp	1=Re	epeat	1=Blk i	PL 1	=Std iPL	[5058	317:29:35	:7011020	Print: 7:003n];	Nov 02. Oct 26,	2007 2007	Page Sectio	1 of 1 1 of 2	ź
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	MgO %	Mn0 %	Na20 %	P205 %	Si02 %	TiO2 %	
831040 831041 831042 831043 831044	Pulp Pulp Pulp Pulp Pulp	0.09 0.31 0.10 0.30 0.10	<4 <4 <4 87 34	50.0 45.6 45.9 126.0 73.4	<10 <10 <10 <10 <10	2222 22222	10.22 6.35 5.44 1.25 3.71	0.03 0.06 0.06 0.05 0.05	9.27 16.61 23.44 46.29 39.02	6.53 7.01 5.43 3.51 5.68	3.80 1.84 1.76 0.38 <0.01	3.27 6.90 5.33 1.85 2.51	0.14 0.40 0.34 0.23 0.25	0.99 2.31 1.87 0.86 0.86	2.84 2.04 3.60	45.70 35.56 28.07 2.12 8.42	0.45 0.40 0.25 0.12 0.21	
831045 831046 831047 831048 831049	Pulp Pulp Pulp Pulp Pulp	0.02 0.10 0.03 0.02 0.06	24 35 26 9 17	55.2 80.7 54.3 35.7 52.4	<10 <10 <10 <10 <10	88888	1.50 3.36 1.06 0.79 2.17	0.04 0.03 0.01 0.01 0.02	44.71 24.88 29.32 28.36 30.76	4.71 4.89 3.93 2.87 4.55	<0.01 1.73 0.51 0.70 0.90	2.02 11.50 16.21 17.64 11.49	0.25 0.27 0.25 0.23 0.23	1.14 0.95 0.83 0.84 0.99	3.60 4.52 3.79	3.94 13.41 1.91 0.72 6.93	0.19 0.24 0.12 0.11 0.19	
230003 RE 831040 Blank iPL CCRMP STD as Nb205 CCRMP STD as Nb205 REF	Pulp Repeat Blk iPL Std iPL Std iPL	<0.01 0.09 <0.01 0.53 0.53	<4 <4 	16.1 55.9 	<10 <10 	<2 <2 	13.75 10.31 	0.11 0.04 	3.46 9.14 	2.89 6.52 —	3.81 3.71 	1.23 3.24 	0.09 0.14 	4.56 1.09		66.18 45.56 —	0.36 0.45 —	
Minimum Detection Maximum Detection Method —=No Test Ins=Insufficient Sam	nple Del=Delay I		ICPM A	AqR/AA		ICPM	WRock	WRock	WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock		0.01 00.00 /Rock	

	Ę							CERTIF	FICATE C	F ANAL	YSIS	150 9001:2000	200 - 116 Richmond	20 Horsesho	e Way	
		ERNATIONAL							iPL 07J	5058		Statine Store	Canada V Phone (60 Fax (60			
Client Project	: P : 0	rocess R 708410	esearch	Associate	es Lt Ship	d #	11 Samples 11=Pulp	1=Repeat	1=Blk iPL	1=Std iPL	Prin [505817:29:35:70110207:00	t: Nov 02, h] Oct 26,	2007	Page Section	1 of 2 of	1 2
Sample	Na	me		l	_0I %	Total %										
831040 831041 831042 831043 831044				15. 17. 24. 38. 34.	.76 .49 .19	98.37 98.04 98.53 98.44 98.23										
831045 831046 831047 831048 831049				35. 33. 39. 42. 37.	.21 .65 .58 .39 .00	98.26 98.50 98.24 98.44 99.32										
230003 RE 8310 Blank CCRMP CCRMP	040 iPL STD	as Nb209 as Nb209	5 5 REF	2. 16.	.10 .07 	98.78 98.54 — —										
		tection tection		0.0 100.0 2000	00 1	0.01 05.00 WRock		era attorneede e								

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

ISO 9001.2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

oject : 0708410	0005		Sample			[508315:33:2	
nipper : Boja Grcic nipment: PO#: 9101 omment:	CODE B31100 B84100 B82101 B90000	AMOUNT 34 2 1 1	TYPE Pulp Repeat Blk iPL Std iPL	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Certified) - no charge.		12M/ 12M/ 00M/	PULP RE. /Dis 00M, /Dis 00M, /Dis 00M,
	Ana	lytical vsis: Nb	Summai 205 Th U	URe Ta / Whole Rock analysis	NS=No Sample Rep=Rep	licate M=Mont	th Dis=Dise
	## Code	59 1971 - 1994 - 197	Units		lement	Limit	Limit
Process Research Associates Ltd EN RT CC IN FX 11620 Horseshoe Way 1 2 1 0 1 Richmond DL 3D EM BT BL BC V7A 4V5 0 0 1 1 0 Att: Boja Grcic Ph:604/272-8810 Fx:604/272-0851 Fx:604/272-0851	02 0784 03 0527 04 0728	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm	Ta ICP(Multi-Acid) T Th Aqua Regia by AAS/ICP T U ICP U	iobium Pentoxide antalum horium ranium henium	Low 0.01 4 0.1 10 2	High 100.00 10000 1000.0 1000 10000
Em:bojagrcic@pralab.com	06 0405 07 0408 08 0406 09 0409 10 0403	WRock WRock WRock WRock WRock	* * * *	Ba0by Whole RockBCa0by Whole RockCFe203by Whole RockF	1203 a0 a0 e203 20	0.01 0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock WRock WRock	* * * *	MnO by Whole Rock M Na2O by Whole Rock N P2O5 by Whole Rock P	g0 n0 a20 205 i02	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	100.00 100.00 100.00 100.00 100.00
	16 0407 17 0417 18 0420	WRock 2000 F WRock	% %	Loss on Ignition @ 2000 F	i02 oss on Ignition otal	0.01 0.01 0.01	100.00 100.00 105.00
					Ω	P	

DL=Download 3D=3½ Disk EM=E-Mail B1=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

150 9001:2000
CERTIFICATION
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Туре													510000000000000000000000000000000000000	1,000 march		1.00
	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	BaO %	CaO %	Fe203 %	K20 %	MgO %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02
Pulp Pulp Pulp Pulp Pulp	0.10 0.08 0.50 0.01 1.11	26 <4 39 5 218	165.3 18.8 316.2 32.0 0.10%	<10 <10 <10 <10 <10	<> <> <> <> <> <> <> <> <> <> <> <> <> <	1.00 0.94 1.14 1.08 1.76	0.01 0.01 0.01 <0.01 0.02	30.04 31.13 29.86 0.61 22.56	3.08 2.29 3.74 1.48 25.40	<0.01 0.41 0.75 0.82 <0.01	17.81 16.93 16.31 0.34 8.62	0.47 0.56 0.21 0.01 0.20	0.86 0.89 0.88 1.08 0.96	2.54 3.51 3.72 0.22 9.63	0.98 0.59 1.56 90.30 2.60	0.04 0.01 0.04 0.09 0.36
Pulp Pulp Pulp Pulp Pulp	0.34 0.40 0.13 0.18 0.75	59 114 97 91 41	276.7 124.2 80.3 92.1 148.4	<10 <10 <10 <10 <10	<>> <> <> <> <> <> <> <> <> <> <> <>> <>> <>>	1.39 1.19 1.09 1.13 1.49	<0.01 <0.01 <0.01 <0.01 0.01	29.42 30.50 30.06 30.54 28.92	3.38 3.04 2.35 3.12 3.54	<0.01 0.53 0.67 <0.01 0.67	17.48 16.38 16.77 16.88 15.54	0.19 0.17 0.14 0.16 0.18	0.92 0.94 0.91 0.91 0.92	2.63 4.32 3.83 3.49 4.96	1.81 1.68 1.68 1.62 6.39	0.03 0.05 0.04 0.10 0.08
Pulp Pulp Pulp Pulp Pulp	0.30 0.61 0.58 0.08 0.05	14 14 14 <4 <4	47.6 144.2 150.0 50.8 24.1	29 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3.85 1.30 1.33 2.47 4.33	0.08 <0.01 <0.01 0.01 0.05	17.52 28.81 29.35 23.74 12.16	6.18 2.76 2.98 4.33 6.77	2.15 0.58 0.54 0.82 1.63	12.24 17.93 17.45 16.39 12.35	0.33 0.18 0.18 0.26 0.32	3.69 0.92 0.95 1.08 5.47	2.12 3.24 3.44 0.61 1.62	33.02 2.35 2.15 14.45 43.54	0.46 0.08 0.09 0.18 0.54
Pulp Pulp Pulp Pulp Pulp	0.12 0.04 0.04 0.05 0.33	<4 <4 <4 <4	31.9 30.2 56.3 21.6 85.7	36 41 29 179 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3.87 3.95 3.96 4.78 1.34	0.16 0.13 0.06 0.07 0.01	15.96 14.33 9.64 16.17 28.66	6.20 6.56 7.10 5.05 1.31	1.69 1.33 1.13 1.14 0.71	10.78 9.33 9.47 8.26 18.25	0.35 0.39 0.37 0.34 0.20	5.04 5.57 6.92 6.60 1.10	1.73 1.39 1.18 1.28 2.47	38.68 43.03 51.86 43.43 2.28	0.52 0.51 0.58 0.47 0.04
Pulp Pulp Pulp Pulp Pulp	0.38 0.54 0.06 0.37 0.07	33 20 <4 5 <4	193.7 44.0 16.5 110.1 19.1	<10 <10 66 <10 93	<>> <> <> <> <> <> <> <> <> <> <> <> <>	1.58 2.84 3.02 1.30 4.76	0.10 0.32 0.17 0.21 0.06	45.93 44.15 13.04 28.81 12.84	2.33 3.73 4.59 2.56 5.28	0.83 1.13 2.93 0.65 1.59	2.31 2.16 17.51 17.38 12.72	0.23 0.79 0.31 0.30 0.33	1.05 1.37 5.31 1.08 6.12	4.96 2.57 2.73 2.35 1.93	1.99 6.29 38.43 2.71 42.95	0.03 0.23 0.19 0.05 0.88
Pulp Pulp Pulp Pulp Pulp	0.09 0.02 0.12 0.13 0.12	12 <4 26 50 42	84.5 19.3 196.7 271.5 247.5	<10 88 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.32 2.83 1.37 1.22 1.27	0.01 0.06 0.01 0.01 0.01	29.04 13.15 28.19 29.41 29.53	2.28 6.98 2.87 2.60 2.42	0.67 1.32 0.59 0.76 0.48	16.97 13.45 17.78 17.71 17.79	0.36 0.37 0.23 0.21 0.20	0.96 5.74 0.99 0.99 1.08	2.99 2.06 1.76 2.60 2.56	2.33 44.24 2.90 0.77 1.65	0.02 0.47 0.05 0.02 0.02
Pulp Pulp Pulp Pulp Repeat	0.33 0.02 0.05 <0.01 0.10	71 <4 <4 <4 25	269.6 33.1 36.5 20.3 181.7	<10 13 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.56 4.67 4.39 14.74 1.20	0.02 0.05 0.03 0.11 0.01	26.75 10.46 16.88 3.60 29.21	3.16 8.30 4.51 2.98 2.98	0.84 1.12 1.69 4.25 <0.01	18.22 10.18 12.94 1.34 18.05	0.24 0.40 0.24 0.09 0.46	1.05 6.32 1.69 4.99 1.08	2.82 1.34 2.43 0.18 2.50	5.59 46.77 33.62 65.51 1.03	0.04 0.60 0.43 0.37 0.04
Repeat Blk iPL Std iPL Std iPL	0.34 <0.01 0.52 0.53	4	89.2 	<10 	<2 — —	1.47	0.01	29.17 	1.31 	0.55 	18.49 	0.20	1.23	2.47	2.16 	0.03
	Pulp Pulp Pulp Pulp Pulp Pulp Pulp Pulp	Pulp 0.08 Pulp 0.50 Pulp 0.01 Pulp 0.01 Pulp 0.11 Pulp 0.34 Pulp 0.40 Pulp 0.13 Pulp 0.13 Pulp 0.16 Pulp 0.61 Pulp 0.62 Pulp 0.05 Pulp 0.05 Pulp 0.05 Pulp 0.04 Pulp 0.05 Pulp 0.04 Pulp 0.05 Pulp 0.05 Pulp 0.04 Pulp 0.05 Pulp 0.04 Pulp 0.05 Pulp 0.33 Pulp 0.37 Pulp 0.07 Pulp 0.02 Pulp 0.12 Pulp 0.12 Pulp 0.12 Pulp 0.12 Pulp 0.12 Pulp 0.12 Pulp	Pulp 0.08 <4 Pulp 0.50 39 Pulp 0.01 5 Pulp 1.11 218 Pulp 0.34 59 Pulp 0.40 114 Pulp 0.13 97 Pulp 0.18 91 Pulp 0.30 14 Pulp 0.30 14 Pulp 0.30 14 Pulp 0.31 97 Pulp 0.30 14 Pulp 0.31 91 Pulp 0.32 14 Pulp 0.33 14 Pulp 0.05 44 Pulp 0.05 44 Pulp 0.04 44 Pulp 0.33 54 Pulp 0.33 54 Pulp 0.33 54 Pulp 0.37 5 Pulp 0.33 71 Pulp 0.33 71 Pulp 0.33 71 Pulp	Pulp 0.08 <4 18.8 Pulp 0.50 39 316.2 Pulp 0.01 5 32.0 Pulp 1.11 218 0.10% Pulp 0.34 59 276.7 Pulp 0.40 114 124.2 Pulp 0.13 97 80.3 Pulp 0.18 91 92.1 Pulp 0.75 41 148.4 Pulp 0.61 14 144.2 Pulp 0.61 14 144.2 Pulp 0.62 4 50.8 Pulp 0.05 44 30.2 Pulp 0.04 44 30.2 Pulp 0.04 44 56.3 Pulp 0.33 4 85.7 Pulp 0.33 4 85.7 Pulp 0.33 31 93.7 Pulp 0.37 5 110.1 Pulp 0.06 44 16.5 Pulp 0.07 4 19.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

Method ICP ICPM AqR/AA ICP ICPM WRock WRoc

150 2001.2000

Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLASMA LABS		÷						Intertek	Website ww			
lient : ^{ISP} rocess Research A roject: 0708410	Associates Lt Ship	:d ₩	34 Samples 34=Pulp	2=Repeat	1=Blk iPL	1=Std iPL	Prin [508315:33:27:70110507:00]	t: Nov 05. h] Oct 29.	2007 2007	Page Section	1 of 2 of	1 2
Sample Name	LOI %	Total %										
831050 831051 831052 831053 831054	42.82 42.57 41.17 1.55 25.99	99.68 99.84 99.38 97.58 98.08										
331055 331056 331057 331058 331059	42.25 40.86 41.72 41.60 36.47	99.51 99.66 99.27 99.55 99.15										
331060 331061 331062 331063 331064	16.81 41.12 41.12 34.35 10.57	98.45 99.27 99.58 98.72 99.35										
331065 331066 331067 331068 331068 331069	13.55 12.16 6.37 11.57 43.06	98.54 98.69 98.63 99.16 99.42										
331070 331071 331072 331073 331074	38.02 32.56 11.29 42.34 9.92	99.37 98.14 99.52 99.75 99.37										
B31075 B31076 B31077 B31078 B31079	42.59 43.36	99.39 98.83 99.34 99.66 99.74										
331080 331081 331082 230004 RE 831050	20.05 1.21	99.54 98.69 98.89 99.38 99.46										
RE 831069 Blank iPL CCRMP_STD as Nb205 CCRMP_STD as Nb205 REF	42.25	99.34 										
inimum Detection aximum Detection ethod =No Test Ins=Insufficient Samu	100.00 10 2000 F W	WRock								_		

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

150 9001 2000 CEATIFIC ATIO iterte

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process ^o Research ^{FI} Associates Ltd		32	Sample	es Print: Dec 06, 2007 In: Oct 31	. 2007	Website www.ipl.ca [514516:57:34:70120607:
roject : 0708410 hipper : Boja Grcic hipment: PO#: 9120 C omment:	CODE B31100 B84100	AMOUNT 32 2	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		PULP RE. 12M/Dis 00M. 12M/Dis 00M. Poplicato Wenth DiscDisc
	Ana	lytical s ysis: Nb2	Summan 205 Th U	ry Re Ta / Whole Rock analysis	NS=NO Sampie Rep-	Replicate M=Month Dis=Dis
	## Code	Method	Units	Description	Element	Limit Li <mark>m</mark> it Low High
Document DistributionProcess Research Associates LtdEN RT CC IN FX11620 Horseshoe Way1 2 1 0 1RichmondDL 3D EM BT BIBCV7A 4V50 0 1 1 0	03 0527	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	$\begin{array}{cccc} 100 & 100.00 \\ 0.01 & 10000 \\ 0.1 & 1000.0 \\ 10 & 1000 \\ 2 & 10000 \end{array}$
Att: Boja Grcic Ph:604/272-8110 Em:bojagrcic@pralab.com		WRock WRock WRock WRock WRock	* * * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock WRock WRock	20 20 20 20 20	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	MgO MnO Na2O P2O5 SiO2	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 0407 17 0417 18 0420	WRock 2000 F WRock	* * *	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
					A	Δ
	1 1				(//

DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

2601	
INTERNATIONAL PLASMA	LABS LTD.

TIFICK

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.inl.ca

roject: 0708410	Ship#			32=Pulp	2=Re	A						:7012060	7:0021]:0	ct 31, 2	\$03124 HC	Section	on 1 of
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	BaO %	CaO %	Fe203 %	K20 %	Mg0 %	MnO %	Na20 %	P205 %	Si02 %	TiO2 %
331083 331084 331085 331086 331087	Pulp Pulp Pulp Pulp Pulp	0.85 0.84 0.30 1.42 0.89	35 10 <4 13 10	60.7 82.7 36.7 76.8 57.1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2	5.40 2.61 1.57 3.63 3.75	0.03 0.03 0.02 0.03 0.03	23.32 33.87 32.99 29.95 32.65	3.94 4.73 3.79 7.25 7.11	1.31 1.06 1.01 1.49 1.51	15.92 9.70 12.66 9.09 4.61	0.25 0.34 0.40 0.37 0.36	0.72 0.71 0.65 0.72 0.68	3.98 6.93 2.91 8.45 5.53	14.30 7.76 4.56 10.73 14.12	0.17 0.19 0.06 0.28 0.28
31088 31089 31090 31091 31092	Pulp Pulp Pulp Pulp Pulp	1.60 0.74 0.45 0.09 0.13	52 15 <4 <4 <4	79.4 37.4 36.5 22.0 22.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	12.37 3.00 1.61 0.79 1.08	0.07 0.02 0.02 0.01 0.01	20.64 30.27 30.30 31.02 29.25	14.20 4.56 3.85 2.32 3.59	0.90 1.43 1.03 0.97 1.04	1.36 12.42 15.08 17.39 17.66	1.13 0.58 0.50 0.56 0.31	0.70 0.71 0.68 0.69 0.67	7.75 4.10 3.12 3.44 1.15	22.09 7.51 4.54 0.53 1.66	0.55 0.13 0.08 0.01 0.03
31093 31094 31095 31096 31097	Pulp Pulp Pulp Pulp Pulp	0.40 0.10 0.33 0.42 1.04	<4 <4 <4 <4 34	30.5 27.3 36.6 45.5 93.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	1.11 1.07 0.95 0.85 0.92	0.01 <0.01 <0.01 0.01 0.01	30.56 29.69 30.10 30.48 32.19	5.88 4.25 4.02 4.77 5.31	0.87 0.80 0.93 0.99 1.09	15.73 17.51 17.11 16.17 14.42	0.29 0.21 0.32 0.25 0.24	0.71 0.66 0.70 0.70 0.72	3.77 2.09 3.38 2.48 4.81	1.00 0.90 0.71 0.54 0.65	0.12 0.06 0.04 0.07 0.20
331098 331099 331100 331101 331102	Pulp Pulp Pulp Pulp Pulp	0.99 1.07 1.12 0.89 0.65	32 52 53 55 34	89.4 90.2 94.3 103.5 73.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.90 0.91 0.91 0.99 0.89	<0.01 0.01 0.01 0.01 <0.01	31.69 30.10 32.01 29.14 30.49	4.92 6.18 5.17 8.31 4.37	1.03 0.82 0.76 0.68 0.88	15.49 16.76 15.06 15.62 16.75	0.21 0.22 0.32 0.26 0.23	0.71 0.67 0.72 0.69 0.68	4.57 4.84 6.99 4.59 4.18	0.82 0.75 1.50 1.50 0.80	0.23 0.25 0.19 0.18 0.19
331103 331104 331105 331106 331107	Pulp Pulp Pulp Pulp Pulp Pulp	0.60 2.61 0.56 0.46 0.69	<4 42 42 54 119	79.0 58.3 104.0 103.1 165.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.96 1.23 0.94 0.90 0.93	0.02 0.01 0.01 0.01 0.01	29.76 31.97 29.77 30.15 30.84	4.56 4.39 4.15 3.84 4.22	1.10 0.38 0.80 0.62 0.77	17.03 16.40 17.82 17.77 16.98	0.20 0.22 0.25 0.23 0.24	0.71 0.73 0.71 0.70 0.72	3.89 4.69 2.96 2.83 4.38	1.29 1.34 0.64 0.53 0.53	0.13 0.14 0.12 0.11 0.19
331108 331109 331110 331111 331112	Pulp Pulp Pulp Pulp Pulp	0.44 0.03 0.04 0.11 0.52	164 10 <4 79 19	131.8 23.8 28.9 90.7 40.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2	1.04 0.93 0.93 0.91 2.61	0.01 <0.01 <0.01 <0.01 0.32	30.68 29.29 29.25 30.22 44.89	3.97 2.62 2.87 3.79 3.67	0.76 0.65 0.72 0.92 1.50	16.89 18.65 18.29 17.21 2.24	0.23 0.26 0.38 0.30 0.77	0.73 0.70 0.70 0.72 1.15	4.60 1.81 1.43 3.49 2.58	0.99 0.52 0.57 0.54 6.17	0.12 0.02 0.02 0.07 0.22
331113 230005 RE 831083 RE 831102	Pulp Pulp Repeat Repeat	0.17 <0.01 0.86 0.69	13 <4 35 38	28.1 16.1 55.3 69.6	<10 <10 <10 <10	<2 <2 <2 <2 <2	0.91 14.05 5.34 0.97	0.01 0.11 0.02 <0.01	30.43 3.57 22.85 30.35	2.18 2.88 3.84 4.55	0.83 4.31 1.43 0.75	17.80 1.21 15.93 16.89	0.43 0.09 0.24 0.23	0.75 4.51 0.75 0.75	3.47 0.21 3.89 4.06	0.61 66.29 14.08 0.83	0.03 0.36 0.15 0.19

X1	1		1	
		7		

ISO 9001.3500

(Therease

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851

international plas	arch Associates Lt		32 Samples		Print: Dec 06, 2007	vww.ipl.ca Page Section	1 of	1
roject: 0708410 Sample Name	Ship LOI	Total	32=Pulp	2=Repeat	[514516:57:34:70120607:002] Oct 31, 2007	Section	2 of	2
331083 331084 331085 331085 331086 331087	% 30.01 31.49 39.04 27.03 27.72	% 99.34 99.44 99.67 99.01 98.36						
331088 331089 331090 331091 331092	17.51 35.10 38.78 41.77 43.01	99.27 99.82 99.60 99.50 99.46						
331093 331094 331095 331096 331097	39.18 42.60 41.45 42.26 38.28	99.23 99.83 99.72 99.56 98.85						
331098 331099 331100 331101 331102	38.92 38.09 35.81 37.26 39.90	99.50 99.60 99.44 99.22 99.36						
831103 831104 831105 831106 831107	40.20 36.99 41.49 42.06 39.90	99.83 98.49 99.65 99.73 99.69						
831108 831109 831110 831111 831112	39.83 44.09 44.34 41.46 32.38	99.83 99.54 99.48 99.64 98.50						
831113 230005 RE 831083 RE 831102	41.41 0.97 29.86 39.84	98.88 98.57 98.39 99.40						
inimum Detection aximum Detection ethod	0.01 100.00 2000 F	WRock	No Estimate Rec=ReCheck	1000 %-5-1				

01	

INTERNATIONAL PLASMA LABS LTD.

CERTIFICATE OF ANALYSIS iPL 07K5171 (R)

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.inl.ca

Process Research Asso Project : 0708410		11	32	Sample	es Print: Dec 06, 2007 In: Nov 01	., 2007	Website www.i [517116:58	:54:70120607:0
Shipper : Boja Grcic	0#: 9128	CODE B31100 B84100	AMOUNT 32 2	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		12	PULP REJ M/Dis 00M/I M/Dis 00M/I
		An Ana	alytical lysis: Nb	Summan 205 Th U	ry Re Ta / Whole Rock analysis	NS=No Sample Rep=f	kepiicate m=mo	onth Dis=Disc
		## Code	Method	Units	Description	Element	Limit	Limit
Document Distribution Process Research Association 11620 Horseshoe Way Richmond BC V7A 4V5	tes Ltd EN RT CC IN 1 2 1 C DL 3D EM BT	1 03 0527	ICPM AqR/AA ICP	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low 0.01 4 0.1 10 2	High 100.00 10000 1000.0 1000 10000
Att: Boja Grcic	Ph:604/272-8 Em:bojagrcic@pralab.		WRock WRock WRock	* * * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	100.00 100.00 100.00 100.00 100.00
		11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock	* * * *	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00
		16 0407 17 0417 18 0420	2000 F	% %	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 0.01 0.01	100.00 100.00 105.00
							1	

ertified Assayers: David nams

INTERNATIO	NAL PLASMA LABS LTD.

18	0 9001 2000
	102
19	ATTENT
10	-1116-
11	ntertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.inl.ca

ient : Process Research oject: 0708410	Ship#	34	Samp	32=Pulp	2=Re	peat				[5171	16:58:54		Print: D 7:003n]; N			Page Secti	1 of ion 1 of
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	Ca0 %	Fe203 %	K20 %	Mg0 %	MnO %	Na20 %	P205 %	Si02 %	Ti02 %
831114 831115 831116 831117 831118	Pulp Pulp Pulp Pulp Pulp Pulp	0.01 <0.01 <0.01 0.01 <0.01	<4 <4 <4 <4	33.8 36.7 42.7 53.3 38.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.38 1.51 1.48 1.89 1.72	0.01 <0.01 <0.01 0.01 <0.01	27.43 30.70 30.66 32.20 30.42	5.50 3.66 3.20 6.98 2.71	<0.01 <0.01 <0.01 <0.01 <0.01	16.28 15.21 14.40 11.29 16.70	0.21 0.21 0.20 0.22 0.13	1.31 1.34 1.36 1.35 1.41	2.69 4.49 5.92 5.05 5.42	3.31 2.37 3.55 4.13 1.36	0.41 0.13 0.16 0.47 0.08
831119 831120 831121 831122 831122 831123	Pulp Pulp Pulp Pulp Pulp Pulp	<0.01 <0.01 0.01 0.01 <0.01	<4 <4 <4 <4	40.9 50.0 68.0 64.4 45.7	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.60 1.58 1.61 1.55 1.70	<0.01 <0.01 0.01 0.01 0.01	30.44 30.86 32.33 33.60 32.41	2.76 3.76 4.33 3.84 3.74	<0.01 <0.01 <0.01 <0.01 <0.01	14.97 13.71 12.64 11.57 13.09	0.14 0.17 0.23 0.20 0.23	1.37 1.42 1.43 1.43 1.47	5.71 6.43 7.19 6.76 5.35	3.27 3.81 4.05 3.18 2.80	0.17 0.27 0.22 0.17 0.15
831124 831125 831126 831127 831128	Pulp Pulp Pulp Pulp Pulp Pulp	<0.01 <0.01 <0.01 <0.01 <0.01	<4 <4 <4 <4 <4	71.0 40.2 30.1 85.2 92.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.79 1.99 1.86 1.81 1.83	0.04 0.05 0.01 0.05 0.04	40.14 45.29 31.62 39.11 40.84	6.96 3.56 2.32 7.71 7.46	<0.01 <0.01 <0.01 <0.01 <0.01	5.85 3.23 15.05 6.22 5.09	0.23 0.18 0.23 0.25 0.21	1.56 1.58 1.46 1.53 1.53	6.93 4.65 4.22 8.20 8.98	4.34 2.55 1.68 4.28 4.41	0.29 0.13 0.12 0.34 0.33
831129 831130 831131 831132 831133	Pulp Pulp Pulp Pulp Pulp Pulp	<0.01 <0.01 <0.01 0.08 <0.01	<4 <4 <4 <4 <4 <4	73.2 70.3 60.5 21.5 47.5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2	1.75 1.58 1.55 1.54 1.71	0.01 0.01 0.01 0.01 0.01	35.40 29.98 29.85 30.47 33.74	4.55 5.79 5.32 2.27 4.27	<0.01 <0.01 <0.01 <0.01 <0.01	10.60 13.59 12.86 16.41 12.23	0.22 0.26 0.26 0.55 0.22	1.44 1.46 1.42 1.46 1.46	7.67 8.53 6.53 3.47 5.71	2.39 4.12 5.42 0.49 1.92	0.27 0.28 0.21 0.01 0.21
831134 831135 831136 831137 831138	Pulp Pulp Pulp Pulp Pulp Pulp	0.02 0.01 0.01 <0.01 <0.01	6 <4 <4 <4 <4	134.0 50.1 87.3 52.0 54.2	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.58 1.60 1.75 1.63 1.75	0.01 <0.01 0.02 0.01 0.01	25.25 31.27 33.78 30.48 32.99	2.45 3.79 8.37 5.38 5.30	<0.01 <0.01 0.36 0.41 <0.01	11.10 14.49 9.33 13.94 12.08	0.18 0.22 0.35 0.33 0.21	1.48 1.41 1.47 1.49 1.53	6.48 6.24 12.04 6.51 6.57	21.98 1.46 3.46 1.43 1.36	0.13 0.22 0.40 0.25 0.21
831139 831140 831141 831142 831143	Pulp Pulp Pulp Pulp Pulp Pulp	<0.01 0.01 0.01 0.01 0.04	<4 <4 <4 <4 <4	41.2 64.8 39.1 32.4 52.6	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.66 2.12 2.09 1.76 2.62	0.01 0.02 0.01 <0.01 0.02	30.27 31.15 34.52 29.36 30.09	3.58 6.39 4.89 2.94 4.78	<0.01 <0.01 <0.01 <0.01 <0.01	13.59 12.93 11.70 16.70 13.72	0.23 0.32 0.20 0.25 0.36	1.50 1.61 1.51 1.45 1.64	6.54 7.87 4.78 3.55 5.65	6.27 2.34 1.31 0.71 4.65	0.17 0.24 0.22 0.07 0.16
831144 230006 RE 831114 RE 831133	Pulp Pulp Repeat Repeat	0.01 <0.01 0.01 <0.01	<4 <4 <4 <4	31.0 12.4 39.2 50.8	<10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.02 14.72 2.58 1.79	0.01 0.11 <0.01 0.01	29.58 3.71 27.35 33.33	2.64 2.87 5.65 4.22	<0.01 3.94 <0.01 <0.01	16.92 1.16 15.67 12.34	0.17 0.09 0.21 0.22	1.51 5.89 1.54 1.58	4.44 0.16 2.62 5.60	1.31 64.44 3.33 1.91	0.07 0.36 0.42 0.20

12	

ISG WO1 2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

search Associates L Ship	p#	32 Samples 32=Pulp	2=Repeat	Print: [517116:58:54:70120607:00)	Dec 06. Nov 01.	2007 Page 2007 Section	1 of 2 of	f 1 f 2
LOI %	Total %							
40.00 40.08 38.48 35.88 39.59	99.52 99.71 99.40 99.45 99.55							
39.28 37.07 35.68 36.58 38.19	99.72 99.08 99.72 98.87 99.15							
30.61 36.54 41.14 29.31 28.49	98.74 99.76 99.69 98.81 99.19							
35.38 33.64 35.85 42.91 38.12	99.69 99.23 99.27 99.59 99.61							
28.29 38.66 28.40 37.39 37.61	98.93 99.36 99.72 99.25 99.62							
36.01 33.87 38.39 42.86 35.64	99.83 98.86 99.63 99.67 99.33							
40.85 2.12 39.98 37.91	99.50 99.57 99.36 99.11							
	Shi LOI % 40.00 40.08 38.48 35.88 39.59 39.28 37.07 35.68 36.58 38.19 30.61 36.54 41.14 29.31 28.49 35.38 33.64 35.85 42.91 38.12 28.29 38.66 28.40 37.39 37.61 36.01 33.87 38.39 42.86 35.64 40.85 2.12	Ship# L0I Total % 40.00 99.52 40.08 99.71 38.48 99.40 35.88 99.45 39.59 99.55 39.28 99.72 37.07 99.08 35.68 99.72 36.58 98.87 30.61 98.74 36.54 99.75 30.61 98.74 36.54 99.76 41.14 99.69 29.31 98.81 28.49 99.19 35.38 99.69 35.85 99.27 42.91 99.59 38.12 99.61 28.29 98.93 38.66 99.36 28.40 99.72 37.39 99.25 37.61 99.62 36.01 99.83 33.87 98.86 38.39 99.63 42.86 99.67 35.64 99.33 42.86 99.50 40.85 99.50 2.12 99.57	Ship# 32=Pulp L0I Total % % 40.00 99.52 40.08 99.71 38.48 99.40 35.88 99.45 39.59 99.55 39.28 99.72 37.07 99.08 35.68 99.72 37.07 99.08 35.68 98.87 38.19 99.15 30.61 98.74 36.54 99.76 41.14 99.69 29.31 98.81 28.49 99.19 35.85 99.27 42.91 99.59 38.12 99.61 28.29 98.93 33.66 99.36 28.40 99.72 37.39 99.25 37.61 99.62 36.01 99.83 33.87 98.86 38.39 96.3 42.86 99.67 35.64	Ship# 32=Pulp 2=Repeat LOI Total * * 40.00 99.52 40.08 99.71 38.48 99.40 35.88 99.45 39.59 99.55 39.28 99.72 37.07 99.08 35.68 98.87 36.58 98.87 36.54 99.76 41.14 99.69 29.31 98.81 28.49 99.19 35.38 99.69 33.64 99.23 35.85 99.27 42.91 99.59 33.64 99.23 35.85 99.27 42.91 99.59 38.12 99.61 28.40 99.72 37.39 99.25 37.61 99.62 36.01 99.83 33.87 98.86 38.39 96.63 38.39 99.63 38.42 99.67 35.64 99.33 40.85 99.50 2.12 99.57	Ship# 32=Pulp 2=Repeat [517116:58:54:70120607:0039] L01 x x x x 40.00 99.52 40.03 99.71 38:48 99.40 38:48 99.45 39.55 39.28 99.75 39.28 99.75 33:59 99.55 39.28 99.72 37.07 99.08 35.68 98.73 38.19 99.15 30.61 98.74 40.04 40.05 35.88 99.76 40.01 99.77 36.54 99.76 40.01 99.17 36.54 99.76 40.01 99.19 35.38 99.69 33.64 99.27 37.39 99.27 42.91 99.59 38.66 99.36 40.99 72 37.39 99.25 37.61 99.62 37.39 99.26 37.61 99.62 36.61 99.33 40.85 99.57 36.64 99.33	Ship# 32=Pulp 2=Repeat [517116:58:54:70120607:0000] Nov 01. 1 x <	Ship# '32=Pulp 2=Repeat [517116:58:54:70120607:0003 Nov 01. 2007 Section U01 Total x <td< td=""><td>Ship# 32=Pulp 2=Repeat [517116:58:54:70120607:0009 Nov 01, 2007 Section 2 o U01 Total * <t< td=""></t<></td></td<>	Ship# 32=Pulp 2=Repeat [517116:58:54:70120607:0009 Nov 01, 2007 Section 2 o U01 Total * <t< td=""></t<>

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

0454					CF	ERTIFI	CATE OF ANALYS	IS		150 900 1,2000	200 - 11620 Richmond,		e Way
							iPL 07K5234			STATIFIC ATION	Canada V7 Phone (604	A 4V5	
										Intertek	Fax (604		
INTERNATIONAL PLASMA L					20	C I				Intertex	Website w		
Process Research As Project : 0708410	sociates L	a			20	Sample	es Print: Nov 02, 2007	In: Nov 02.	2007		[523416	5:59:14:70	110207:001]
Shipper : Boja Grcic			CO	DE AM	IOUNT	TYPE	PREPARATION DESCRIPTION					PULP	REJECT
Shipment: Comment:	PO#: 9144		B311 B841	00	20 2	Pulp Repeat	Pulp received as it is, no s Repeat sample - no Charge	ample prep.				12M/Dis 12M/Dis	00M/Dis 00M/Dis
			A	nalyt	ical	Summar	-y		NS=No Sar	nple Rep=F	eplicate	M=Month	Dis=Discard
				nalyšis									
			## Co	de Me	thod	Units	Description		Element		Limi Lo	t Lii w H	mit igh
Document Distribut	ion	EN RT CC IN FX	01 07	84	ICPM	ppm	Ta ICP(Multi-Acid)		Tantalum			4 10	000
11620 Horseshoe Way Richmond		1 2 1 0 1											
BC V7A 4V5		DL 3D EM BT BL 0 0 1 1 0											
Att: Boja Grcic		Ph:604/272-8110 Fx:604/272-0851											
	Em:boja	grcic@pralab.com											
										0			
	C 2000 20 10 10			-							l		
EN=Envelope # RT=Report Styl DL=Download 3D=3½ Disk EN	A=E-Mail BT=B	BS Type BL=BBS(1=	=Yes 0 =Yes 0=	=No) =No) II	Totals: D=C03	1=Copy 0 2725	=Invoice 0=3½ Disk	BC Certified	Assayers:	David Chi	Ron Wi	lliams	
* Our liability is limited solely to	the analytical co	ost of these analyses.		8				Signat	ture:	A	1C-	2	

	A STATE AND A LABS LTD.			CERTIF	ICATE OF ANAL iPL 07K5234	YSIS	ISO 9001-2000 Tipica tion	200 - 11620 Horsesh Richmond, B.C. Canada V7A 4V5 Phone (604) 879-787 Fax (604) 272-085 Website www.ipl.ca	8
Client Project	: Process Research Assoc : 0708410	ciates Ltd Ship#	20 Samples 20=Pulp	2=Repeat		Print [523416:59:14:70110207:001	: Nov 02] Nov 02	2007 Page	1 of 1 1 of 1
Sample	Name 1	Гуре	Ta ppm						1
831000 831001 831002 831003 831004	F	Pulp Pulp Pulp Pulp Pulp	27 96 50 87 83						
831005 831006 831007 831008 831009	F F F	Pulp Pulp Pulp Pulp Pulp	79 67 126 114 81						
831010 831011 831012 831013 831014	F	Pulp Pulp Pulp Pulp Pulp	105 <4 99 188 127						
831015 831016 831017 831018 831019	F	Pulp Pulp Pulp Pulp	166 137 85 124 82						
RE 8310 RE 8310		Repeat Repeat	33 84						
				ж					
Maximum Method	Detection Detection est Ins=Insufficient Sample	I	4 0000 ICPM ax=No Estimate Rec=ReCheck	m=x1000 %	=Estimate % NS=No Sample				

150 9001 2002 CERTIFICATIO Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process Research Associates Ltd Project : 0708410		57	Sample	es Print: Dec 06, 2007 In: Nov 06	, 2007	Website www.ipl.ca [527116:58:24:70120607:002
Shipper : Boja Grcic Shipment: PO#: 9155 Comment:	CODE B31100 B84100	AMOUNT 57 3	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		PULP REJEC 12M/Dis 00M/Di 12M/Dis 00M/Di
	Ana	lytical vsis: Nb2	Summa 205 Th U	ry Re Ta / Whole Rock analysis	NS=No Sample Rep=R	eplicate M=Month Dis=Discar
	## Code		Units	Description	Element	Limit Limit
Document Distribution1 Process Research Associates LtdEN RT CC IN FX11620 Horseshoe Way1 2 1 0 1RichmondDL 3D EM BT BLBCV7A 4V50 0 1 1 0	03 0527	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low High 0.01 100.00 4 10000 0.1 1000.0 10 1000 2 10000
Att: Boja Grcic Ph:604/272-8110 Em:bojagrcic@pralab.com	06 0405 07 0408 08 0406 09 0409 10 0403	WRock WRock WRock WRock WRock	* * * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock WRock WRock	* * * * *	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 0407 17 0417 18 0420	WRock 2000 F WRock	* * *	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1					Assayers: David Chiu	

DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

F1	

CERTIFICATE OF ANALYSIS iPL 07K5271 (R)

15	0.001 1000 0
1.53	
1	
1.0	1 100 10

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851

1 of 2

Section 1 of 2

Ti02

0.09

0.05

0.06

0.05

0.12

0.16

0.08

0.25

0.09

0.22

0.11

0.08

0.12

0.05

0.09

0.07

0.07

0.03

0.05

0.04

0.04

0.03

0.02

0.04

0.40

0.02

0.03

0.01

0.05

0.05

0.08

0.09

0.05

0.09

0.04

0.04

0.03

0.11

0.02

0.01

100.00

WRock

%

Website www.ipl.ca

							пL	0/1	,2/1 (K)				ATTIFICATION	Phone (a V7A 4V (604) 879 (604) 272
ient : Process Rese oject: 0708410		57	Samp	ples 57=Pulp	3=R	epeat				[527]	116:58:2	4:701206	1000	Intertek Dec 06. Nov 06.		e www.i Pa Se
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %		Mn0 %			
831145 831146 831147 831148 831148 831149	Pulp Pulp Pulp Pulp Pulp Pulp	0.12 0.47 0.89 0.39 0.44	<4 <4 <4 <4	47.8 44.6 36.3 38.0 38.5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.74 0.97 1.00 0.96 1.77	0.07 0.02 0.01 0.01 0.01	27.86 30.83 30.63 30.02 25.25	4.22 4.19 4.56 5.20 6.41	1.00 0.64 0.50 0.62 0.62	16.09	0.37	0.89 0.91 0.90	4.77 4.26 4.34	0. 0. 0.
331150 331151 331152 331153 331154	Pulp Pulp Pulp Pulp Pulp	0.16 0.14 0.53 0.44 0.14	<4 <4 15 <4 <4	39.6 27.0 38.5 37.0 19.7	<10 <10 <10 <10 <10	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.85 1.48 2.85 1.64 2.01	0.01 0.01 0.34 0.01 0.02	26.10 27.10 43.61 25.59 18.65	4.67 5.38 4.11 5.59 8.58	1.00 0.55 1.21 0.63 1.57		0.49	0.92 1.39 0.92	2.89 2.75 3.20	6. 6. 11.
331155 331156 331157 331158 331159	Pulp Pulp Pulp Pulp Pulp	0.30 0.43 0.11 0.14 1.04	<4 <4 <4 <4	26.2 22.6 39.3 30.9 27.2	<10 <10 <10 <10 <10	<>>< <>< <>< <><><><><><><><><><><><><>	1.95 1.75 2.40 1.42 1.29	0.02 0.03 0.03 0.03 0.02	29.83 32.05 27.78 32.20 34.93	5.48 4.23 5.39 3.70 4.16	1.53 1.29 2.25 1.26 0.60	12.02	0.52	1.65 2.15 1.22	3.17 2.81 2.74	10. 12. 6.
331160 331161 331162 331163 331164	Pulp Pulp Pulp Pulp Pulp	0.48 0.37 0.29 0.34 0.56	<4 <4 <4 5 <4	47.7 82.8 106.3 144.5 113.5	<10 <10 <10 <10 <10	<>>> <><><><><><><><><><><><><><><><><>	1.30 1.44 1.33 1.50 1.14	0.01 <0.01 0.01 0.01 0.01	28.78 26.59 28.16 30.10 29.79	4.17 4.44 4.01 4.18 4.22	1.10 0.71 0.58 1.15 0.62	16.68 16.22 17.34 15.63 16.63	0.44 0.24 0.24 0.26 0.25	0.99 0.95 0.98	3.00 2.77 3.85	6. 3. 3.
331165 331166 331167 331168 331169	Pulp Pulp Pulp Pulp Pulp	0.55 0.16 0.31 0.54 0.01	27 11 21 58 <4	185.6 130.7 145.4 194.0 20.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.23 1.09 1.17 1.21 16.10	0.01 0.01 0.01 0.01 0.12	29.77 28.55 29.70 30.14 4.07	3.91 4.07 4.12 3.78 3.36	0.86 0.63 0.44 0.83 4.67	16.75 16.68 16.64 16.17 1.48		0.95 0.96 0.97	3.65 4.05 5.20	3. 1. 0.
331170 331171 331172 331173 331174	Pulp Pulp Pulp Pulp Pulp	0.42 0.48 0.09 0.45 0.27	7 <4 <4 31 31	105.2 123.6 24.6 258.6 177.1	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.23 1.18 1.03 1.18 1.27	0.01 0.01 0.01 0.01 0.01	29.86 29.57 30.84 29.71 29.68	2.85 3.17 2.45 4.01 3.74	0.35 0.62 0.52 0.74 0.43	16.48		1.00 1.01 1.01	4.90 3.81 4.31	3. 0. 2.
331175 331176 331177 331178 331179	Pulp Pulp Pulp Pulp Pulp	0.86 0.71 0.30 0.26 0.41	84 <4 17 17 63	340.4 147.5 116.3 87.9 172.0	<10 <10 <10 <10 <10	<>>><><><><><><><><><><><><><><><><><>	1.45 1.32 1.67 4.02 1.24	0.01 0.01 0.01 0.01 0.01	31.96 28.81 27.49 24.62 28.95	3.49 3.38 2.68 2.40 2.15	0.41	17.05 19.63	0.21	1.00 0.95 0.96	5.43 3.62 3.52	6.1 7.2 7.9
331180 331181 331182 331183	Pulp Pulp Pulp Pulp	0.35 0.17 0.64 0.14	54 16 14 <4	159.7 98.0 132.2 51.8	<10 <10 <10 <10	~~~~	1.40 1.31 2.22 1.29	0.01 0.01 0.01 0.02	29.29 29.72 27.78 29.90	2.89 3.62 4.64 2.30	0.37 0.68 0.79 0.82	16.53		0.92	2.71 4.55	1.2
nimum Detection ximum Detection thod	ent Sample Del=Delay	ICP	4 10000 ICPM	AqR/AA	ICP	ICPM	0.01 100.00 WRock	WRock	WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

01	
7	ONAL PLASMA LARS IT

150 9001.2000

Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Research roject: 0708410	Associates Lto Ship	d #	57 Samples 57=Pulp	3=Repeat	Print:	Dec 06,	2007	www.ipl.ca Page Section	1 of
ample Name	A	Total %	57-Fulp	3-repear	[527116:58:24:70120607:0021]	NOV 06.	2007	Section	2 01
831145 831146 831147 831148 831149	39.67 40.12 40.10 39.64	98.46 99.34 99.08 99.32 98.19							
831150 831151 831152 831153 831153 831154	37.11 36.48 31.94 33.79	99.07 98.01 98.14 98.13 98.40							
331155 331156 331157 331158 331159	32.44 30.06 36.64	98.69 98.33 98.32 98.45 98.22							
831160 831161 831162 831163 831163 831164	39.22 40.85 38.90	99.64 99.62 99.32 99.78 99.14							
831165 831166 831167 831168 831169	39.96 40.17 39.76	99.24 98.98 99.43 99.30 99.56							
831170 831171 831172 831173 831174	38.38 41.46 39.54	99.36 99.51 99.86 99.68 99.72							
831175 831176 831177 831178 831178 831179	36.29 37.93 35.55	99.36 99.34 99.36 99.66 99.74							
831180 831181 831182 831183	40.67 42.15 36.76 41.35	99.57							

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

01		
INTERNAT	IONAL PLASMA LABS	LTD.

CHITIFIC NTO	î	
CENTIFICATIO		150 9001 2000
CHATIFICATIO		ARY
17 18 1		
Cardenard		CENTIEIC NIO
		Tenerate

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Rese roject: 0708410	arch Associates Ltd Ship#	57	Samp	les 57=Pulp	3=Re	peat				[5271]	16:58:24	:70120607	Print: De 7:002) No		007	Page Section	2 of
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	BaO %	CaO %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %
831184 831185 831186 831187 831188	Pulp Pulp Pulp Pulp Pulp Pulp	0.08 0.09 0.11 0.07 0.10	<4 <4 <4 <4 11	17.9 22.3 31.0 25.4 75.1	<10 <10 <10 <10 <10	88888	0.99 1.01 0.98 0.99 1.08	0.01 0.01 0.01 0.01 0.01	29.34 30.87 29.57 29.20 30.10	1.94 2.12 2.48 2.35 2.89	0.48 0.42 0.64 0.81 0.50	18.58 17.79 17.97 18.30 17.36	0.56 0.52 0.51 0.55 0.34	1.22 0.97 0.99 1.02 0.94	1.88 4.17 3.27 2.27 3.59	0.39 0.44 0.74 0.31 0.47	0.04 0.01 0.01 0.01 0.02
831189 831190 831191 831192 831193	Pulp Pulp Pulp Pulp Pulp Pulp	0.31 0.31 0.28 0.51 0.08	23 46 38 16 <4	92.5 117.3 75.6 38.1 37.3	<10 <10 <10 <10 <10	88888	1.08 1.19 1.15 2.86 1.24	<0.01 0.01 0.33 0.02	27.80 29.63 29.83 44.52 33.26	3.27 3.08 2.81 3.86 2.11	0.89 0.84 0.51 1.51 0.69	16.44 17.13 17.56 2.18 14.97	0.25 0.28 0.27 0.81 0.51	0.89 0.95 0.96 1.40 0.94	3.11 4.40 3.20 2.74 2.47	0.73 0.94 0.89 6.17 1.14	0.02 0.03 0.05 0.24 0.02
831194 831195 831196 831197 831198	Pulp Pulp Pulp Pulp Pulp	0.61 0.39 0.13 0.15 0.11	17 12 <4 <4 19	91.2 115.0 31.4 26.9 75.5	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.28 1.23 3.99 1.78 1.09	0.02 0.01 0.02 0.01 0.01	31.80 31.31 18.62 26.87 29.10	2.95 3.19 5.33 2.91 3.70	0.79 <0.01 2.52 0.92 0.58	15.53 16.38 15.29 16.51 17.11	0.18 0.20 0.22 0.23 0.26	0.94 1.25 1.46 0.96 0.90	4.87 4.72 2.75 2.65 2.51	1.39 0.82 28.98 7.16 0.85	0.04 0.03 0.18 0.05 0.02
831199 831200 831201 RE 831145 RE 831164	Pulp Pulp Pulp Repeat Repeat	0.32 0.39 0.45 0.12 0.56	5 36 79 <4 <4	103.3 83.4 122.0 48.6 129.8	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.10 1.32 1.33 1.79 1.19	0.01 0.01 0.05 <0.01	28.17 26.87 29.14 27.04 28.90	3.56 4.48 2.94 4.08 4.04	0.56 1.50 0.53 0.79 0.61	18.32 16.02 17.72 16.84 17.65	0.23 0.25 0.24 0.28 0.24	0.94 1.04 0.95 1.05 0.99	2.14 2.98 3.10 2.13 3.59	0.65 6.66 1.76 4.49 1.01	0.03 0.07 0.05 0.07 0.03
RE 831184	Repeat	0.07	<4	18.4	<10	<2	1.00	0.01	28.71	1.89	0.97	19.03	0.56	1.05	1.84	0.40	0.04

Minimum Detection 0.01 0.1 10 2 0.01 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1000 10000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Maximum Detection 100.00 10000 1000.0 100.00 100.00 100.00 100.00 Method ICPM AqR/AA ICP ICP ICPM WRock

2	

ISO 9001.2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLA							Intertek		www.ipl.ca		
lient : Process Rese roject: 0708410	arch Associates L Shi	td p#	57 Samples 57=Pulp	3=Repeat	[527116:58:24:70120	Print: 607:0021]	Dec 06. Nov 06.	2007	Page Section	2 of 2 of	222
ample Name	LOI %	Total %									_
831184 831185 831186 831186 831187 831188	43.97 41.30 42.07 43.34 42.31	99.41 99.63 99.24 99.15 99.60									
831189 831190 831191 831192 831193	45.14 41.35 42.64 32.75 42.30	99.64 99.84 99.89 99.37 99.65									
831194 831195 831196 831197 831198	39.98 40.63 20.03 39.43 43.61	99.78 99.77 99.41 99.46 99.75									
831199 831200 831201 RE 831145 RE 831164	44.00 38.54 42.02 40.16 41.21	99.72 99.74 99.79 98.77 99.47									
RE 831184	44.06	99.55									
nimum Detection ximum Detection thod	0.01 100.00 2000 F	0.01 105.00									

 Method
 2000 F
 WRock

 —=No Test
 Ins=Insufficient Sample
 Del=Delay
 Max=No Estimate
 Rec=ReCheck
 m=x1000
 %=Estimate %
 NS=No Sample

150 9001 2000 C ATIFICATION Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process® Research Associates Ltd Project : 0708410		48	Sample	es Print: Nov 19, 2007 In: Nov 09	9, 2007	Website www.ipl.ca [534616:12:15:70111907:00]
Shipper : Boja Grcic Shipment: PO#: 9184 Comment:	CODE B31100 B84100	AMOUNT 48 3	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		PULP REJEC 12M/Dis 00M/Di 12M/Dis 00M/Di
	Ana Anal	lytical s ysis: Nb2	Summan 205 Th U	ry Re Ta / Whole Rock analysis	NS=No Sample Rep=R	eplicate M=Month Dis=Discar
	## Code	Method	Units	Description	Element	Limit Limit
Document Distribution1 Process Research Associates LtdEN RT CC IN FX11620 Horseshoe Way1 2 1 0 1RichmondDL 3D EM BT BLBCV7A 4V50 0 1 1 0	03 0527	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low High 0.01 100.00 4 10000 0.1 1000.0 10 1000 2 10000
Att: Boja Grcic Ph:604/272-8110 Fx:604/272-0851 Em:bojagrcic@pralab.com	07 0408	WRock WRock WRock WRock WRock	* * * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock WRock WRock	20 20 20 20 20	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 0407 17 0417 18 0420	WRock 2000 F WRock	% %	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
					1	Λ

01	61
1	
INTERNATI	ONAL PLASMA LABS LTD.

150 9001 2000
SHITIFIC ATION
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Resear roject: 0708410	Ship#	10	Samp	48=Pulp	3=R	epeat				[534	616:12:1	5:701119	07:001h]	Nov 19. Nov 09.	2007	Page Sect	
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %			Mg0 %	Mn0 %	Na20 %	P205 %		Ti02 %
831202 831203 831204 831205 831206	Pulp Pulp Pulp Pulp Pulp Pulp	0.16 0.84 1.29 0.38 0.44	<4 5 74 74 53	65.9 182.7 275.1 251.3 250.5	<10 <10 <10 <10 <10	<>> <> <> <> <> <> <> <> <> <> <> <> <>	1.55 2.16 1.97 1.87 1.94	0.02 0.05 0.04 0.04 0.05	31.48 30.27 32.60 31.68 29.68	3.69 8.90 7.95 6.00 6.47	0.66 0.62 0.76	14.38 10.92 11.05 12.39 13.73	0.23 0.55 0.33 0.38 0.48	1.27 1.32 1.33 1.29 1.33	4.91 5.02 7.77 5.23 5.79	1.19 2.12 1.45 1.28 1.64	0.03 0.10 0.13 0.09 0.07
831207 831208 831209 831210 831211	Pulp Pulp Pulp Pulp Pulp Pulp	0.33 0.10 0.12 0.13 0.46	31 32 34 40 <4	152.4 111.5 134.3 128.5 113.9	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.82 1.66 1.80 1.66 3.40	0.04 0.02 0.03 0.01 0.02	36.26 30.47 35.81 30.45 29.01	5.50 3.91 4.38 4.06 5.30	0.61 0.80 0.81	9.23 14.78 9.77 14.92 11.73	0.37 0.27 0.31 0.25 0.39	1.29 1.28 1.29 1.33 1.90	5.03 3.65 4.57 3.13 3.04	1.08 1.02 1.08 0.78 7.12	0.05 0.04 0.03 0.13
831212 T 831213 831214 831215 831216	Pulp Pulp Pulp Pulp Pulp	0.44 0.09 0.58 0.60 0.48	9 <4 22 <4 <4	92.6 26.1 158.3 87.7 49.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.57 1.42 1.76 1.63 1.64	0.01 0.01 0.02 0.03 0.02	31.37 29.37 34.35 36.44 32.88	4.45 2.29 4.18 4.90 4.00	<0.01 <0.01 0.57	14.69 16.86 11.28 10.78 12.49	0.27 0.56 0.53 0.38 0.44	1.38 1.30 1.46 1.27 1.33	2.83 3.48 4.17 4.50 4.34	0.64 0.48 1.70 0.75 1.15	0.04 0.01 0.08 0.13 0.04
831217 831218 831219 831220 831221	Pulp Pulp Pulp Pulp Pulp Pulp	0.13 0.17 0.40 0.54 0.01	<4 <4 <4 5 <4	24.6 62.0 67.0 84.0 26.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.53 1.60 1.67 1.77 15.03	0.02 0.02 0.03 0.02 0.11	33.11 30.23 37.07 33.43 4.19	3.21 3.68 4.94 4.61 3.02	0.50 0.61 0.87	13.45 14.84 9.18 11.99 1.46	0.41 0.47 0.38 0.29 0.10	1.30 1.29 1.29 1.25 5.42	2.93 3.73 4.52 3.39 0.17	0.64 1.51 0.76 0.93 63.69	0.02 0.07 0.14 0.11 0.38
831222 NUP 831223 831224 831225 831226	Pulp Pulp Pulp Pulp Pulp	1.28 0.47 0.47 0.28 0.34	5 4 6 4 4	51.9 54.0 70.0 44.5 67.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.87 1.64 1.74 1.53 1.98	0.02 0.02 0.02 0.02 0.02	32.99 31.46 31.58 30.17 35.70	4.03 3.37 4.16 4.90 6.32	0.59 0.46 0.37	11.17 13.79 13.18 14.75 8.21	0.30 0.45 0.37 0.27 0.57	1.38 1.27 1.31 1.30 1.33	5.92 3.58 4.08 2.22 3.79	4.28 3.02 3.34 1.24 2.39	0.10 0.05 0.10 0.07 0.09
831227 831228 831229 831230 831231	Pulp Pulp Pulp Pulp Pulp	$0.10 \\ 0.10 \\ 0.38 \\ 0.43 \\ 0.11$	5 4 4 4 4 4	49.9 47.7 39.3 66.1 61.0	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.45 1.82 1.47 2.00 1.52	$0.01 \\ 0.03 \\ 0.01 \\ 0.04 \\ 0.04$	29.47 36.51 30.02 35.39 31.41	3.25 4.33 3.41 5.12 2.57	0.70 0.76 1.07	16.89 9.71 16.34 9.41 15.69	0.37 0.60 0.45 0.58 0.52	1.31 1.32 1.23 1.30 1.32	1.78 2.72 2.14 4.21 3.41	0.56 1.30 0.47 2.25 0.53	0.02 0.05 0.03 0.10 0.03
831232 831233 831234 831235 831236	Pulp Pulp Pulp Pulp Pulp	0.11 0.53 0.29 0.54 0.37	<4 15 <4 12 10	65.1 44.9 150.4 110.0 88.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.68 3.00 2.39 2.52 2.02	0.05 0.28 0.05 0.04 0.04	30.77 37.60 33.05 30.89 31.90	3.99 3.35 5.76 5.72 4.69	1.08 0.86 0.56	16.16 1.90 10.79 12.82 12.37	0.58 0.70 0.67 0.53 0.64	1.42 1.67 1.48 1.50 1.45	2.46 2.36 3.42 3.16 3.77	0.93 5.64 3.32 3.50 2.08	0.04 0.21 0.10 0.13 0.08
831237 831238 831239 831240	Pulp Pulp Pulp Pulp	0.40 0.28 0.06 0.06	<4 <4 <4 <4	88.2 54.9 21.2 22.1	<10 <10 <10 <10	<2 <2 <2 <2 <2 <2	2.29 2.09 1.51 1.58	0.05 0.03 0.01 0.01	32.89 31.80 29.75 31.51	4.94 3.38 1.62 1.60	0.93 1.00	11.06 14.29 17.06 15.53	0.71 0.58 0.52 0.48	1.56 1.46 1.36 1.46	3.88 2.77 2.78 3.66	1.45 0.32	0.10 0.07 0.01 0.02
inimum Detection aximum Detection ethod —=No Test Ins=Insufficient	t Sample Del=Delay	0.01 100.00 1 ICP Max=No Esti	ICPM /	AaR/AA	10 1000 ICP ck m=x	ICPM	WRock	0.01 100.00 WRock % NS=1	WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

01	
X 1	
7	
INTERNATI	ONAL PLASMA LABS LTD

150 9901 2000 Rin Ca Ph Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Sample Name	LOI %	Total %				
831202 831203 831204 831205 831206	40.23 36.07 34.04 38.37 37.74	99.42 98.13 99.28 99.38 99.68				
831207 831208 831209 831210 831211	37.91 41.49 39.01 41.87 36.28	99.12 99.19 98.89 99.31 99.12				
831212 T 831213 831214 831215 831216	41.88 42.50 39.13 37.47 39.93	99.14 98.28 98.66 98.84 98.91				
831217 831218 831219 831220 831221	42.65 41.51 38.72 40.61 2.02	99.27 99.44 99.31 99.27 99.83				
831222 DUP 831223 831224 831225 831226	36.10 40.16 38.85 42.53 37.95	98.99 99.38 99.20 99.36 99.09				
831227 831228 831229 831230 831231	43.89 40.72 43.26 37.95 41.67	99.71 99.81 99.59 99.40 99.30				
831232 831233 831234 831235 831236	40.34 41.94 37.37 38.01 38.75	98.43 99.74 99.27 99.38 98.60				
831237 831238 831239 831240	37.59 40.84 43.45 42.22	98.84 99.70 99.40 99.21				

150 9001:2000
122
9 VI.5
TIFICA
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ient : Process Resea oject: 0708410	arch Associates Ltd Ship#	48	Samp	les 48=Pulp	3=Re	peat				[5346]	16:12:15	F 70111907	Print: No 2:001h] No	ov 19. 20 ov 09. 20)07)07	Page Sectio	2 of n 1 of	
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	
831241 831242 831243 831244 831245	Pulp Pulp Pulp Pulp Pulp	0.04 0.43 0.45 0.32 0.29	<4 <4 <4 <4 7	121.5 149.8 63.4 61.0 58.5	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.90 1.75 1.68 2.78 2.26	0.04 0.03 0.02 0.03 0.02	35.21 33.09 30.01 32.72 33.49	2.58 3.95 4.16 4.53 2.82	0.43 0.73 0.69 <0.01 0.50	11.67 13.42 14.96 11.11 12.23	0.57 0.30 0.38 0.31 0.36	1.42 1.42 1.41 1.50 1.33	3.54 4.94 3.86 2.55 2.79	1.21 0.75 1.54 5.72 1.84	0.06 0.10 0.09 0.12 0.16	
831246 831247 831248 831249 E 831202	Pulp Pulp Pulp Pulp Repeat	0.04 0.16 0.40 0.52 0.16	<4 <4 29 40 <4	14.1 78.3 96.7 99.2 66.1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.54 1.59 1.98 2.23 1.72	0.01 0.01 0.02 0.03 0.01	30.31 32.04 34.76 35.60 31.80	1.64 3.58 4.19 4.37 3.70	0.36 0.45 0.56 0.56 0.74	16.40 13.78 11.48 10.48 13.85	0.50 0.40 0.25 0.27 0.23	1.37 1.41 1.42 1.43 1.41	1.85 4.40 3.15 3.34 4.95	0.39 0.43 1.51 2.16 1.11	0.05 0.05 0.07 0.14 0.02	
E 831221 E 831241	Repeat Repeat	0.01 0.04	<4 <4	26.2 118.2	<10 <10	<2 <2	14.56 1.92	0.11 0.03	4.21 35.00	2.99 2.54	4.49 <0.01	1.49 11.65	0.10 0.55	5.56 1.42	0.29 3.54	62.06 1.49	0.38 0.04	

Minimum Detection 0.01 0.1 1020.010.010.01100010000100.00100.00100.00 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 100.00 10000 1000.0 Maximum Detection 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ICPM AqR/AA Method ICP ICP ICPM WRock

	LABOLTD			CERTIF	FICATE OF ANA iPL 07K5346	LYSIS	150 400 94777	ICATION .	Richmond, Canada V7 Phone (604 Fax (604	A 4V5 () 879-7878 () 272-0851	Way	
Client : SProcess Researc Project: 0708410		td p#	48 Samples 48=Pulp	3=Repeat		[534616:12:15:7011	Print: No	v 19. i	Website w 2007 2007	Page Section	2 of 2 of	2
Sample Name	LOI %	Total %									-	
831241 831242 831243 831244 831244 831245	40.47 39.03 40.43 37.76 40.61	99.10 99.51 99.24 99.14 98.41										
831246 831247 831248 831249 RE 831202	43.80 40.13 39.95 38.89 39.68	98.22 98.26 99.34 99.49 99.21										
RE 831221 RE 831241	2.06 40.58	98.29 98.75										

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ISO 0501:2000 CEETIFIED COMPANY	- T 4 J		c .			Website www.ipl.ca
Process Research Associate roject : 0708410	s Ltd	44	Sample	s Print: Nov 24, 2007 In: Nov 13	, 2007	[537815:57:07:70112407:0
hipper : Boja Grcic hipment: PO#: 91 C omment:	96 COD B3110 B8410	0 44	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		PULP REJ 12M/Dis 00M/ 12M/Dis 00M/
	Ar	alytical	Summar	y	NS=NO Sample Rep=R	eplicate M=Month Dis=Disc
	An	alysis: Nb	205 Th U	Ře Ta / Whole Rock analysis		
	## Cod	e Method	Units	Description	Element	Limit Limit
Document Distribution Process Research Associates Lt 11620 Horseshoe Way Richmond BC V7A 4V5	d EN RT CC IN FX 02 078 1 2 1 0 1 03 052 DL 3D EM BT BL 04 072 0 0 1 1 0 05 014	4 ICPM 7 AqR/AA 8 ICP	% ppm ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low High 0.01 100.00 4 10000 0.1 1000.0 10 1000 2 10000
Att: Boja Grcic Em:	Ph:604/272-8110 06 040 Fx:604/272-0851 07 040 bojagrcic@pralab.com 08 040 09 040 10 040	8 WRock 6 WRock 9 WRock	* * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 040 12 040 13 041 14 041 15 040	4 WRock 0 WRock 1 WRock	%	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	MgO MnO Na2O P2O5 SiO2	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 040 17 041 18 042	7 2000 F	* * *	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
					1	Δ

DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

15.0 9001,2000
CENTIFICATIO
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

iso 9001:2000 CERTIFIED C	COMPANY	44	Samp	ماد										New 04		www.ipl	2 22
oject: 0708410	Ship#		Sam	44=Pulp	3=Re	epeat				[537	815:57:07	7:7011240	07:001h]	Nov 24. Nov 13.	2007 2007	Page Sect	
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	BaO %	CaO %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %
331250 331251 331252 331253 331254	Pulp Pulp Pulp Pulp Pulp	0.10 0.53 0.28 0.09 0.11	<4 37 16 <4 7	58.5 118.5 110.8 31.1 79.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.75 0.95 0.87 0.76 0.92	0.01 0.02 0.01 0.01 0.02	31.54 31.74 31.17 31.45 30.44	3.78 4.96 4.92 2.38 3.50	0.51 0.72 0.83 <0.01 <0.01	16.24 14.00 15.03 17.90 17.01	0.60 0.31 0.27 0.58 0.39	0.63 0.61 0.64 0.68 0.64	2.44 4.55 3.73 3.66 4.07	0.78 2.86 3.17 0.51 1.78	0.04 0.15 0.20 0.01 0.13
331255 331256 331257 331258 331259	Pulp Pulp Pulp Pulp Pulp	0.45 0.78 0.52 <0.01 0.73	28 56 39 <4 45	168.6 167.7 99.4 32.7 117.1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.92 1.05 0.99 15.24 1.01	<0.01 0.01 0.11 0.02	30.70 29.67 30.93 3.82 31.50	4.02 7.27 3.93 3.08 2.53	0.56 0.65 0.53 4.22 0.65	16.09 15.55 16.44 1.27 17.20	0.26 0.21 0.33 0.10 0.29	0.69 0.71 0.70 4.23 0.72	4.95 5.47 5.12 0.15 3.62	1.89 3.79 2.63 66.17 1.76	0.15 0.43 0.12 0.38 0.10
331260 331261 331262 331263 331264	Pulp Pulp Pulp Pulp Pulp	0.56 0.47 0.58 0.35 0.64	24 18 26 13 49	107.7 83.4 99.9 78.1 157.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.81 0.81 0.85 0.84 0.97	0.01 <0.01 0.01 0.01 0.01	30.30 30.01 30.56 31.25 30.24	3.37 3.38 3.05 3.26 4.57	0.55 0.66 0.54 0.49 0.51	17.20 17.19 17.59 18.50 16.20	0.31 0.30 0.30 0.32 0.26	0.71 0.71 0.74 0.74 0.75	2.77 3.06 3.49 2.69 4.75	2.83 3.55 2.72 0.87 3.57	0.13 0.11 0.11 0.09 0.08
331265 331266 331267 331268 331269	Pulp Pulp Pulp Pulp Pulp	0.93 0.27 0.11 0.33 0.31	119 24 16 14 14	367.6 139.1 78.7 138.6 96.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.20 0.89 0.88 1.01 0.89	0.02 0.02 0.01 0.01 0.01	29.02 28.59 29.69 27.40 30.01	10.21 5.00 3.18 7.37 3.69	0.61 0.82 0.56 0.66 0.72	14.26 17.58 18.22 16.69 17.64	0.34 0.34 0.26 0.23 0.25	0.78 0.79 0.81 0.84 0.87	4.63 2.97 1.27 2.31 2.51	2.48 1.86 1.89 1.68 1.37	0.76 0.23 0.10 0.25 0.14
331270 331271 331272 331273 331274	Pulp Pulp Pulp Pulp Pulp	0.26 0.44 0.51 0.09 0.84	13 31 21 <4 36	89.6 81.6 87.4 29.4 87.8	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.92 0.99 0.98 0.85 1.05	0.01 0.01 <0.01 0.01 <0.01	30.08 29.82 30.23 31.57 30.58	3.70 4.43 4.02 2.33 3.38	0.39 <0.01 0.53 0.57 0.86	17.70 18.10 17.08 17.76 17.24	0.23 0.22 0.25 0.57 0.27	0.85 0.87 0.92 0.93 0.94	2.21 3.44 3.27 3.63 3.28	1.07 1.88 3.53 0.50 2.04	0.12 0.18 0.19 0.01 0.10
831275 831276 831277 831278 831279	Pulp Pulp Pulp Pulp Pulp	0.54 0.67 0.47 0.27 0.13	23 7 21 37 142	98.4 64.3 89.9 136.5 209.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.94 0.95 0.96 1.11 1.11	0.01 <0.01 0.01 0.01 0.03	30.22 29.68 31.01 31.57 38.37	3.60 3.21 2.34 2.74 6.29	0.66 0.68 0.58 0.71 0.84	18.13 17.60 18.26 16.90 9.31	0.25 0.22 0.25 0.29 0.27	0.98 1.04 1.02 1.02 1.09	3.15 3.63 3.45 3.27 5.76	0.68 1.29 0.68 2.14 3.09	0.06 0.06 0.07 0.07 0.21
331280 331281 331282 331283 331284	Pulp Pulp Pulp Pulp Pulp	0.10 0.06 0.07 0.09 0.04	142 85 93 141 50	138.1 172.4 222.1 269.1 69.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	1.12 1.05 1.08 1.02 1.06	0.03 0.01 0.01 0.01 0.01	38.87 33.66 32.27 31.04 28.88	4.29 3.99 4.50 3.71 2.50	0.81 0.55 <0.01 1.00 0.59	10.26 15.02 15.32 15.09 15.02	0.29 0.26 0.23 0.27 0.25	1.02 1.03 1.00 1.16 1.16	5.05 4.02 4.10 5.08 3.53	2.05 1.09 3.08 4.00 10.80	0.18 0.13 0.16 0.10 0.13
31285 31286 31287 31288	Pulp Pulp Pulp Pulp	0.06 0.04 0.10 0.04	39 6 56 46	79.6 50.3 120.5 76.0	<10 <10 <10 <10	<2 <2 <2 <2 <2 <2	2.44 2.05 1.86 1.17	0.03 0.06 0.06 0.01	30.68 43.59 42.60 34.84	3.34 3.74 6.83 4.14	0.72 0.63 0.76 0.73	13.04 3.50 2.57 12.59	0.26 0.32 0.24 0.30	1.11 1.74 1.93 1.22	5.09 5.05 5.06 4.02	12.84 7.10 6.23 2.48	0.15 0.15 0.34 0.18
inimum Detection aximum Detection ethod —=No Test Ins=Insufficient S	ample Dol-Dolers		ICPM /	AqR/AA	ICP	ICPM		WRock	WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

150 9001 2000	20
1000012000	Ric
	Ca
San Ton	Ph
"TIFICK"	Fa
Intertek	VA/

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Client : Process Resear	D COMPANY	44.6				website www.ipi.ca	525 S	22
Project: 0708410	ch Associates Ltd Ship#	44 Samples 44=Pul	p 3=Repeat	Print: No [537815:57:07:70112407:001h] No	v 24, 20 v 13, 20	007 Page 007 Section	1 of 2 of	2
Sample Name	LOI T %	Fotal %						
831250 831251 831252 ST831253 831254	38.18 9 39.12 9 42.01 9	99.93 99.06 99.96 99.96 99.65						
831255 831256 831257 831258 831259	35.03 9 37.99 9 1.19 9	99.93 99.84 99.72 99.95 99.92						
831260 831261 831262 DUP831263 831264	40.10 9 40.00 9 40.92 9	99.99 99.90 99.97 99.98 99.98						
831265 831266 831267 831268 831269	40.55 9 42.90 9 41.08 9	99.91 99.62 99.78 99.53 99.93						
831270 831271 831272 831273 831273	40.04 9 39.00 10 41.16 9	99.81 99.97 00.00 99.90 99.85						
831275 831276 831277 831278 831278 831279	40.63 9 41.09 9 40.05 9	99.77 98.98 99.71 99.88 99.99						
831280 831281 831282 831283 831283 831284	39.15 38.25 37.50	99.96 99.97 99.99 99.98 99.98						
831285 831286 831287 831288	32.06 31.50	99.93 99.99 99.98 99.92						
Minimum Detection Maximum Detection Method	0.01 (100.00 105 2000 F WF	0.01 5.00 Rock						

ISO 9001,2000
BTIFICHTIC
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLASMA			0										In	tertek	Fax (60 Website	04) 272-085 www.ipl.ca	1	
Client : Process Resear Project: 0708410	ch Associates Ltd Ship#	44	Samp	des 44=Pulp	3=Re	epeat				[5378]	15:57:07	ا 70112407	Print: No 7:001h] No	ov 24. 2 ov 13. 2	007 007	Page Sectior	2 of 1 of	22
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	Mg0 %	MnO %	Na20 %	P205 %	Si02 %	Ti02 %	
831289 831290 831291 831292 ST831293	Pulp Pulp Pulp Pulp Pulp Pulp	0.09 0.08 0.07 0.04 0.09	131 119 118 73 <4	97.4 73.0 98.0 91.2 25.6	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.25 1.36 1.35 1.33 0.91	0.04 0.05 0.06 0.05 0.01	44.03 44.83 46.07 47.53 30.60	5.05 5.44 5.45 6.35 2.26	0.72 0.97 0.87 0.97 0.66	5.17 4.85 3.90 1.91 18.32	0.33 0.32 0.30 0.23 0.55	1.34 1.32 1.36 1.27 1.30	5.09 4.82 5.07 5.01 3.48	2.25 2.84 2.23 1.28 0.49	0.22 0.22 0.20 0.23 0.01	
RE 831250 RE 831269 RE 831289	Repeat Repeat Repeat	0.10 0.31 0.08	<4 17 129	61.7 91.8 100.4	<10 <10 <10	<2 <2 <2	0.93 0.97 1.22	0.01 0.01 0.04	31.17 29.78 44.36	3.72 3.73 4.87	0.50 0.65 0.89	16.28 17.84 5.79	0.60 0.26 0.32	1.28 1.26 1.04	2.49 2.45 5.05	0.78 1.37 2.09	0.02 0.14 0.21	

 10
 2
 0.01
 0.01
 0.01
 0.01

 1000
 10000
 100.00
 100.00
 100.00
 100.00
 100.00

 ICP
 ICPM
 WRock
 WRock
 WRock
 WRock
 WRock
 Minimum Detection 0.01 0.1 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 100.00 10000 1000.0 ICP ICPM AqR/AA Maximum Detection 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Method WRock WRock WRock WRock WRock WRock WRock ----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

ISO HOOT 2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ient : Process Researc	n Associates Ltd Ship#	44 Samples 44=Pulp	3=Repeat	Print: [537815:57:07:70112407:00h]	Nov 24, Nov 13,	2007 2007	Page Section	2 of 2 of
ample Name	LOI Tot	al %						
31289 31290 31291 31292 7831293	34.46 99. 33.00 100. 33.07 99. 33.74 99. 41.13 99.	96 00 92 90 73						
E 831250 E 831269 E 831289	42.15 99. 41.52 99. 34.08 99.	93 96 95						

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process Research Associa Project : 0708410	ates Ltd		53	Sample	s Print: Nov 24, 2007 In: Nov 16	. 2007	[547415:55	:32:70112407:00
Shipper : Boja Grcic		CODE B31100 B84100	AMOUNT 53 3	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		12	PULP REJEC 2M/Dis 00M/Di 2M/Dis 00M/Di
	-	Anal Analy	ytical S sis: Nb2	ummar O5 Th U	y Re Ta / Whole Rock analysis	NS=No Sample Rep=R	eplicate M=Mc	onth Dis=Discar
	##	# Code	Method	Units	Description	Element	Limit	Limit
Document Distribution— 1 Process Research Associates 11620 Horseshoe Way Richmond BC V7A 4V5	Ltd EN RT CC IN FX 02 1 2 1 0 1 03 DL 3D EM BT BL 04 0 0 1 1 0 05	3 0527	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low 0.01 4 0.1 10 2	High 100.00 10000 1000.0 1000 10000
Att: Boja Grcic	Ph:604/272-8110 06 Fx:604/272-0851 07 Em:bojagrcic@pralab.com 08 09 10	7 0408	WRock WRock WRock WRock WRock	~ ~ ~ ~ ~	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	100.00 100.00 100.00 100.00 100.00
	12 13 14	1 0402 2 0404 3 0410 4 0411 5 0401	WRock WRock WRock WRock WRock	* * * * *	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	Mg0 Mn0 Na20 P205 Si02	0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00
	17	5 0407 7 0417 3 0420	WRock 2000 F WRock	% %	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 0.01 0.01	100.00 100.00 105.00
						0	1	

DL=Download 3D=3¹/₂ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

1

1	15.0	-	-
	1000	1000	
		150	5
	-n	1000	ī
11	-		i ii
			1,10

Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Researc roject: 0708410	ch Associates Ltd Ship#	53	Samp	les 53=Pulp	3=Re	epeat				[5474	415:55:32	2:7011240	Print:)7:001h];	Nov 24. Nov 16.	2007 2007	Page Sect	1 of ion 1 of
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	MgO %	MnO %	Na20 %	P205 %	Si02 %	Ti02 %
831273 831294 831295 831296 831297	Pulp Pulp Pulp Pulp Pulp	0.51 0.59 0.73 0.46 0.64	22 21 17 4 44	35.5 43.0 20.1 19.0 79.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.79 2.89 1.53 1.85 1.15	0.31 0.07 0.06 0.07 0.02	45.85 23.44 47.75 41.55 30.02	3.59 4.40 3.12 4.96 4.14	1.18 1.55 0.48 0.61 0.45	2.05 4.29 2.34 3.12 16.20	0.75 0.36 0.38 0.41 0.33	1.53 2.55 1.88 2.32 1.38	2.52 2.19 2.98 2.35 3.14	6.33 21.62 4.90 8.47 2.95	0.22 0.14 0.06 0.11 0.12
331298 331299 331300 331301 331302	Pulp Pulp Pulp Pulp Pulp	0.95 0.39 0.39 0.31 0.50	72 50 109 144 38	143.2 61.2 116.9 155.6 49.4	<10 <10 <10 <10 <10	88888 8888	1.18 1.09 1.16 1.25 1.07	0.03 0.01 0.02 0.03 0.01	31.34 29.31 28.95 29.13 30.14	5.03 3.10 4.36 4.58 3.89	0.72 0.78 0.42 0.73 0.51	14.37 17.38 17.70 16.18 16.02	0.30 0.29 0.28 0.33 0.33	1.39 1.28 1.34 1.26 1.36	5.68 3.44 3.36 4.64 3.51	3.53 2.14 1.89 2.68 1.94	0.17 0.10 0.12 0.16 0.07
331303 331304 331305 331306 331307	Pulp Pulp Pulp Pulp Pulp	0.46 0.51 0.52 0.30 0.38	49 21 86 38 8	56.9 41.0 85.9 45.2 56.6	<10 <10 <10 <10 <10	2222	1.05 2.77 1.08 1.25 1.79	0.01 0.31 0.01 0.01 0.03	29.62 44.46 29.33 28.86 41.30	3.22 3.60 3.23 3.24 2.71	0.61 1.20 0.79 0.56 0.66	16.32 2.10 16.85 17.65 4.53	0.28 0.75 0.26 0.27 0.31	1.46 1.80 1.30 1.31 1.57	4.11 2.59 4.00 2.52 3.19	3.04 6.31 2.16 3.05 8.57	0.08 0.22 0.07 0.07 0.08
331308 331309 331310 331311 331312	Pulp Pulp Pulp Pulp Pulp	0.28 0.43 0.46 0.39 0.31	5 14 13 12 8	22.3 53.0 36.5 36.6 50.7	<10 <10 <10 <10 <10	2222 2022	3.03 1.99 1.41 1.79 3.04	0.05 0.05 0.06 0.09 0.08	25.28 38.55 49.17 43.01 24.57	4.10 3.15 2.15 2.92 4.60	2.02 1.22 0.40 1.05 1.73	8.65 5.58 2.40 3.77 9.69	0.37 0.27 0.26 0.30 0.38	4.94 2.03 1.40 2.10 2.70	2.36 3.50 3.14 2.64 2.26	28.42 12.57 2.44 9.22 25.36	0.17 0.10 0.05 0.07 0.15
831313 DUP831314 831315 831316 831317	Pulp Pulp Pulp Pulp Pulp Pulp	0.35 0.50 0.16 0.16 0.38	15 <4 60 81 146	35.6 46.7 62.6 66.6 99.9	<10 <10 <10 <10 <10	<>>><><><><><><><><><><><><><><><><><>	2.51 1.43 1.33 1.12 1.21	0.06 0.05 0.01 0.01 0.01	32.55 42.25 30.84 29.05 29.97	4.28 5.76 4.01 2.52 2.77	1.46 0.74 0.48 <0.01 0.41	7.37 5.34 13.63 17.89 17.12	0.33 0.37 0.30 0.25 0.24	2.25 1.30 1.45 1.34 1.36	3.10 3.78 3.39 2.89 4.60	19.00 4.72 5.25 2.86 2.73	0.12 0.08 0.10 0.05 0.06
831318 831319 831320 831321 831322	Pulp Pulp Pulp Pulp Pulp Pulp	0.11 0.42 0.41 0.30 0.15	52 17 <4 62 92	61.8 49.3 64.3 53.6 83.7	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.11 1.13 1.07 1.15 1.19	0.01 0.01 0.01 0.01 0.01	29.03 28.21 28.72 29.17 29.75	3.31 5.08 4.16 3.04 4.10	<0.01 0.75 0.47 0.54 <0.01	18.33 17.17 17.93 17.93 17.16	0.24 0.28 0.24 0.27 0.35	1.29 1.28 1.31 1.28 1.27	2.56 3.99 2.97 3.12 3.43	1.29 1.80 1.16 1.75 2.13	0.04 0.12 0.06 0.07 0.13
831323 831324 831325 831326 831327	Pulp Pulp Pulp Pulp Pulp	0.17 0.08 0.12 <0.01 0.34	122 <4 93 <4 109	88.0 17.0 86.9 18.8 66.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.16 1.08 1.17 14.64 1.61	0.01 0.01 0.01 0.11 0.05	29.51 30.33 28.94 3.88 46.03	3.82 2.23 3.79 3.20 3.80	<0.01 0.45 0.50 4.18 0.57	17.16 17.51 16.74 1.40 3.70	0.29 0.55 0.28 0.10 0.32	1.21 1.27 1.24 5.55 1.46	3.93 3.52 3.42 0.26 3.08	2.72 0.51 3.03 64.01 3.01	0.12 0.01 0.08 0.40 0.11
831328 831329 831330 831331	Pulp Pulp Pulp Pulp	0.33 0.36 0.36 0.04	56 51 30 7	81.7 111.7 46.9 28.5	<10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	1.18 1.19 1.33 1.14	0.01 0.03 0.03 0.01	32.03 30.59 31.91 31.11	3.33 5.34 3.07 2.44	0.37 0.46 0.45 <0.01	14.96 15.23 14.33 16.47	0.34 0.41 0.50 0.55	1.17 1.24 1.28 1.21	3.70 3.99 3.40 4.03	2.66 1.48 3.06 2.26	0.07 0.21 0.04 0.02
inimum Detection aximum Detection ethod —No Test Ins=Insufficient	Samely Di Di		ICPM /	AqR/AA		ICPM	WRock		WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

150 9001 2000
TIFICH
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Resea		53 G			(televelace)		e www.ipl.ca	
roject: 0708410	arch Associates Ltd Ship#	53 Samples 53=Pulp	3=Repeat	[547415:55:32:701124	Print: Nov 24 07:001h] Nov 16	2007 2007	Page Section	1 of 2 of
ample Name	LOI To %	otal %						
31273 31294	36.51 100	9.97						
31295 31296 31297	34.18 99	9.90 9.99 9.81						
331298 331299	36.27 100 41.04 99	9.96						
331300 331301 331302	38.76 99	9.96 9.74 9.68						
831303 831304	33.82 99	9.35 9.93						
831305 831306 831307	41.12 99	9.77 9.91 9.87						
831308 831309	19.93 99 31.02 100	9.32 0.01						
831310 831311 831312	37.09 99 33.00 99	9.97 9.97 9.54						
B31313 DUP831314	34.00 99	9.52 9.83						
831315 831316 831317	41.90 99	9.13 9.87 9.96						
831318 831319	39.92 99	9.88 9.73						
831320 831321 831322	41.24 99	9.58 9.54 9.99						
831323 831324 831325	40.02 99	9.95 9.91						
831325 831326 831327	40.58 99 1.97 99	9.77 9.69 9.65						
831328		9.91						
831329 831330 831331	40.39 99	9.80 9.96						
inimum Detection aximum Detection ethod	0.01 0 100.00 105 2000 F WRG	.01 .00						

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLASMA													L.	ntertek	Website	www.ipl.	ca
ient : Process Researc oject: 0708410	ch Associates Ltd Ship#	53	Samp	les 53=Pulp	3=Re	epeat				[5474	15:55:32	:7011240	Print:)7:001h];	Nov 24. Nov 16.	2007 2007	Page Sect	2 of ion 1 of
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	MgO %	MnO %	Na20 %	P205 %	SiO2 %	Ti02 %
31332 31333 31334 31335 31336	Pulp Pulp Pulp Pulp Pulp Pulp	0.44 0.38 0.10 0.45 0.30	58 67 59 100 121	87.3 81.4 42.3 69.4 68.6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	1.16 1.27 1.36 1.38 1.38	0.02 0.02 0.05 0.02 0.02	30.52 36.02 42.59 34.42 39.25	3.70 3.67 3.32 2.74 3.10	<0.01 <0.01 <0.01 0.62 0.47	16.57 12.09 7.24 12.62 9.54	0.36 0.40 0.43 0.47 0.34	1.21 1.30 1.28 1.39 1.30	4.98 3.06 2.81 5.46 5.13	1.18 1.71 1.76 2.87 2.09	0.06 0.07 0.07 0.05 0.08
81337 81338 81339 81340 81341	Pulp Pulp Pulp Pulp Pulp Pulp	0.27 0.63 0.69 0.44 0.16	19 38 82 71 53	43.7 81.7 34.3 34.8 67.2	<10 <10 <10 <10 <10	<>> <> <> <> <> <> <> <> <> <> <> <> <>	1.10 1.62 2.12 2.37 1.51	0.01 0.07 0.05 0.11 0.03	32.05 40.99 32.88 29.29 36.64	2.59 4.34 2.50 2.95 1.87	<0.01 0.96 1.73 2.06 0.68	16.33 7.01 11.76 12.75 11.94	0.56 0.34 0.35 0.34 0.33	1.22 1.46 2.13 2.68 1.27	3.85 3.81 4.16 2.90 2.36	1.22 4.01 12.13 16.44 3.17	0.02 0.12 0.08 0.09 0.05
31342 31343 31344 31345 E 831273	Pulp Pulp Pulp Pulp Repeat	0.13 0.18 0.51 0.41 0.51	<4 5 21 36 22	29.1 53.0 34.7 113.9 36.4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.18 3.04 3.25 1.25 2.89	0.01 0.32 0.31 0.02 0.30	29.56 33.19 42.65 32.54 45.01	2.48 3.79 3.59 6.49 3.57	0.50 1.14 2.36 <0.01 1.11	17.46 2.17 2.11 13.26 2.06	0.62 0.79 0.76 0.47 0.75	1.32 2.57 2.56 1.57 1.72	2.19 2.59 2.49 4.95 2.57	1.45 6.99 7.00 1.52 6.30	0.02 0.24 0.22 0.12 0.22
Æ 831312 Æ 831332	Repeat Repeat	0.31 0.44	10 61	50.7 82.6	<10 <10	<2 <2	3.43 1.58	0.08 0.02	24.87 30.26	4.63 3.77	2.26 <0.01	9.13 16.25	0.38 0.37	3.50 1.30	2.29 4.46	24.64 1.14	0.14 0.06
				6													
nimum Detection aximum Detection wthod				0.1 1000.0 AqR/AA		2 L0000 ICPM	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

150 9001:2000
C. N. W. F. A
"ATIFICATIO
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ISO 9001:2000 CERTIFI	MA LABS LTD. IED COMPANY		1422 Mar 16			ntertek	Website v	ww.ipl.ca		
ient : Process Resea oject: 0708410	rch Associates Lt Ship	d #	53 Samples 53=Pulp	3=Repeat	Print: M [547415:55:32:70112407:00th]	Nov 24. Nov 16.	2007 2007	Page Section	2 of 2 of	
ample Name	LOI %	Total %								
31332 31333 31334 31335 31336	40.17 40.02 39.05 37.79 37.02	99.91 99.63 99.94 99.83 99.72								
31337 31338 31339 31340 31341	41.00 35.02 29.51 27.61 40.03	99.95 99.75 99.42 99.59 99.87								
31342 31343 31344 31345 E 831273	43.09 42.63 32.47 37.28 32.84	99.89 99.46 99.75 99.48 99.34								
E 831312 E 831332	24.48 40.12	99.82 99.32								
nimum Detection ximum Detection	0.01 100.00 1 2000 F	0.01								=

 Maximum Detection
 100.00
 105.00

 Method
 2000 F
 WRock

 -----No Test Ins=Insufficient Sample
 Del=Delay
 Max=No Estimate
 Rec=ReCheck
 m=x1000
 %=Estimate %
 NS=No Sample

150 9001 2000 C ATIFIC ATION Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Process Research Associates Ltd Project : 0708410		49	Sample	s Print: Dec 03, 2007 In: Nov 19	, 2007	[551516:40:53:70120307:001
Shipper : Boja Grcic Shipment: PO#: 9239 Comment:	CODE B31100 B84100	AMOUNT 49 3	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge		PULP REJECT 12M/Dis 00M/Dis 12M/Dis 00M/Dis
	Ana Anal	lytical ysis: Nb2	Summan 205 Th U	Y Re Ta / Whole Rock analysis	NS=No Sample Rep=R	Replicate M=Month Dis=Discard
	## Code		Units	Description	Element	Limit Limit
Document Distribution1 Process Research Associates LtdEN RT CC IN FX11620 Horseshoe Way1 2 1 0 1RichmondDL 3D EM BT BLBCV7A 4V50 0 1 1 0	03 0527	ICP ICPM AqR/AA ICP ICPM	% ppm ppm ppm ppm	Nb205 by Multi-Acids Sp. Digestion Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Niobium Pentoxide Tantalum Thorium Uranium Rhenium	Low High 0.01 100.00 4 10000 0.1 1000.0 10 1000 2 10000
Att: Boja Grcic Ph:604/272-8110 Em:bojagrcic@pralab.com	06 0405 07 0408 08 0406 09 0409 10 0403	WRock WRock WRock WRock WRock	** ** ** **	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock WRock WRock	% % % %	Mg0 by Whole Rock Mn0 by Whole Rock Na20 by Whole Rock P205 by Whole Rock Si02 by Whole Rock	MgO MnO Na2O P2O5 SiO2	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 0407 17 0417 18 0420	WRock 2000 F WRock	* *	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
					Λ	L

DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C032725 * Our liability is limited solely to the analytical cost of these analyses.

Signature:

ISO 9001/2000
CT TOT
Intertek

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

Client : Process Research Project: 0708410	Associates Ltd Ship#	49	Samp	49=Pulp	3=R	epeat				[551	516:40:5	3:7012030	Print:)7:001h];	Dec 03. Nov 19.	2007 2007	Page Sect	1 of ion 1 of
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %		MgO %	MnO %	Na20 %	P205 %	Si02 %	Ti02 %
31346 31347 31348 31349 31350	Pulp Pulp Pulp Pulp Pulp	0.37 0.58 0.18 0.68 0.40	<4 <4 <4 <4	97.6 105.2 79.8 44.7 33.1	<10 <10 <10 <10 <10	2222 2222 2222	0.44 0.41 0.40 1.12 1.00	0.01 0.01 0.02 0.04	28.19 27.52 27.92 34.40 37.20	0.05 0.03 0.02 4.82 4.34	0.63 0.49 0.98	16.53 15.81 16.60 12.86 11.37	0.20 0.15 0.28 0.28 0.30	0.70 0.85 0.91 1.00 1.03	0.37 0.34 0.05 3.90 2.45	2.36 2.16 0.39 2.20 1.74	0.02 0.01 0.01 0.09 0.05
31351 31352 31353 UP831354 31355	Pulp Pulp Pulp Pulp Pulp	0.44 0.40 0.45 0.11 0.07	58 14 12 12 <4	77.1 52.6 46.8 50.9 25.1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.68 0.73 0.69 0.62 0.64	0.01 0.01 0.01 0.01 0.01	30.32 30.35 32.74 30.42 31.32	3.14 3.10 2.26 2.83 2.06	0.75 0.54 0.90	17.60 16.88 16.52 17.18 17.76	0.30 0.32 0.41 0.32 0.36	1.07 1.23 1.12 1.15 1.22	2.54 3.67 5.69 3.84 3.90	2.24 2.88 0.68 0.97 0.52	0.04 0.04 0.02 0.01 0.01
31356 31357 31358 31359 31360	Pulp Pulp Pulp Pulp Pulp	0.09 0.15 0.09 0.10 0.12	<4 <4 <4 <4 5	55.6 55.1 24.7 66.5 62.8	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.55 0.51 0.49 0.49 0.55	0.01 0.01 0.01 0.01 <0.01	30.35 31.16 31.88 30.61 30.93	3.11 2.88 1.96 2.18 2.83	0.80	17.10 17.12 17.68 18.07 18.29	0.41 0.42 0.52 0.45 0.28	1.13 1.12 1.08 1.07 1.05	2.67 3.11 3.75 2.69 2.26	0.36 0.29 0.22 0.23 0.38	0.02 0.02 0.01 0.02 0.01
31361 31362 31363 31364 31365	Pulp Pulp Pulp Pulp Pulp Pulp	0.41 0.50 0.37 0.09 0.42	19 11 <4 <4 <4	50.5 105.4 71.1 19.6 187.5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2	0.59 0.67 0.59 0.64 0.73	0.01 0.01 0.02 0.01	30.66 33.03 30.42 31.61 31.88	3.96 3.66 3.54 2.38 3.83	0.70 0.60	17.31 15.85 18.35 17.77 16.30	0.25 0.20 0.19 0.58 0.22	1.05 1.03 1.01 0.67 0.68	2.22 3.85 2.30 3.55 5.27	1.37 0.62 0.45 0.64 0.61	0.02 0.02 0.01 0.03 0.03
331366 331367 331368 331369 331370	Pulp Pulp Pulp Pulp Pulp	0.73 0.13 0.14 0.01 0.10	5 9 47 <4 45	149.2 73.4 97.8 14.9 104.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.69 0.71 0.71 13.78 0.75	0.01 0.01 0.02 0.12 0.02	31.75 31.44 33.96 3.95 30.70	3.37 3.68 5.01 3.03 4.57	0.44 0.67 0.44 4.33 0.61	17.20 18.08 13.78 1.54 17.47	0.21 0.21 0.31 0.10 0.26	0.79 0.82 0.82 4.76 0.85	3.81 3.55 3.00 0.26 2.73	0.71 0.63 0.80 64.65 1.03	0.02 0.04 0.23 0.40 0.29
331371 331372 331373 JUP831374 331375	Pulp Pulp Pulp Pulp Pulp	0.37 0.45 0.30 0.31 0.38	37 57 32 27 37	105.7 149.4 94.9 86.9 113.2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.03 0.65 0.63 0.63 0.49	0.01 0.02 0.01 0.01 <0.01	30.29 32.34 31.56 28.95 31.57	5.37 4.56 4.18 4.45 <0.01	0.66	16.41 17.30 16.54 18.14 11.42	0.24 0.29 0.28 0.28 0.16	0.85 0.81 0.80 0.79 0.78	3.25 3.72 2.90 2.24 0.03	1.18 0.49 0.45 0.57 1.27	0.14 0.10 0.09 0.09 <0.01
331376 331377 331378 331379 331380	Pulp Pulp Pulp Pulp Pulp	0.10 0.08 0.16 0.29 0.15	78 58 120 91 37	80.6 66.2 93.8 100.2 86.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.71 1.86 1.90 1.35 1.32	<0.01 0.04 0.02 0.06 0.04	30.68 21.61 26.37 31.67 29.20	0.87 5.92 5.56 5.50 5.76	0.83	3.79 12.12 13.28 7.25 8.28	0.21 0.29 0.25 0.32 0.37	0.77 1.15 0.84 1.20 0.90	0.32 1.84 3.19 3.57 3.30	17.09 33.42 15.28 20.07 21.48	<0.01 0.26 0.22 0.19 0.23
331381 331382 331383 331384	Pulp Pulp Pulp Pulp	0.18 0.97 0.12 0.51	55 41 90 24	65.1 112.7 74.4 33.8	<10 <10 <10 <10	<2 <2 <2 <2 <2	1.02 0.93 1.12 2.43	0.02 0.05 0.05 0.32	29.14 31.81 45.01 45.36	4.41 5.55 7.00 3.80	0.46	12.03 11.56 3.23 2.14	0.31 0.30 0.32 0.80	0.71 0.62 0.69 1.10	3.54 4.43 4.90 2.56	13.39 8.54 4.23 6.54	0.18 0.16 0.23 0.22
nimum Detection aximum Detection ethod —No Test Ins=Insufficient Sa	ample Del=Delay M	0.01 100.00 1 ICP Max=No Esti	ICPM A	AgR/AA	ICP	ICPM	0.01 100.00 WRock =Estimate	WRock	WRock	WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

ISO 9001.3000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : Process Research roject: 0708410	Ship	#	49 Samples 49=Pulp	3=Repeat	E:	551516:40:53:70120307:00h	: Dec 03. Nov 19.	2007	Page Section	2 of
ample Name	LOI %	Total %								
31346 31347 31348 31349 31350	39.40 39.62 43.08 38.09 39.59	88.74 87.56 90.16 99.75 99.99								
31351 31352 31353 JP831354 31355	39.96	99.81 99.93 99.71 99.25 99.70								
31356 31357 31358 31359 31360	41.55 42.84	99.15 99.65 99.94 99.29 99.77								
31361 31362 31363 31364 31365	42.24 41.21	99.81 99.73 99.71 99.55 99.69								
331366 331367 331368 331369 331370	40.40 1.43	100.00 99.88 99.48 98.37 99.84								
331371 331372 331373 0UP831374 331375	39.06 41.56 41.96	99.80 99.96 99.69 98.66 83.64								
331376 331377 331378 331379 331380	19.67 32.20 25.79	82.76 99.93 99.94 98.07 98.74								
331381 331382 331383 331384	34.30 34.27 32.47 33.19	99.71								

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

ient : Process Resea oject: 0708410	Ship#	42	Samp	49=Pulp	3=Re	peat				[5515]	16:40:53	:70120307	7:001h]: N	ec 03. 20 ov 19. 20	007	Page Sectio	2 of n 1 of
ample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	Re ppm	A1203 %	Ba0 %	CaO %	Fe203 %	K20 %	Mg0 %	MnO %	Na20 %	P205 %	Si02 %	Ti02 %
31385	Pulp	0.10	59	69.4	<10	<2	0.92	0.02	40.50	4.65	0.47	6.08	0.32	0.65	4.46	7.37	0.20
31386	Pulp	0.36	<4	98.5	<10	<2	0.62	0.01	32.17	4.93	0.40	14.92	0.42	0.63	4.26	1.64	0.12
31387	Pulp	0.52	<4	184.0	<10	<2	0.76	0.01	32.35	3.94	<0.01	15.61	0.29	0.66	7.01	0.88	0.11
31388	Pulp	0.75	<4	240.4	<10	<2	0.85	0.01	33.34	3.61	1.02	14.20	0.22	0.66	9.70	0.74	0.12
31389	Pulp	0.13	<4	95.4	<10	<2	0.60	0.01	31.16	3.05	0.60	17.63	0.43	0.66	4.63	0.33	0.03
31390	Pulp	0.36	<4	121.4	<10	<2	0.64	0.01	30.74	4.47	0.58	15.80	0.23	0.65	5.68	0.46	0.10
31391	Pulp	0.16	58	119.3	<10	<2	0.84	0.03	30.28	4.54	0.74	17.48	0.18	0.72	5.30	1.20	0.23
L831392	Pulp	0.01	<4	17.4	<10	<2	13.72	0.11	3.85	2.85	4.24	1.44	0.09	4.90	0.22	66.35	0.37
31393	Pulp	0.12	26	74.7	<10	<2	0.81	0.01	29.11	3.80					2.20		0.37
31394	Pulp	0.51	30	106.7	<10	<2	0.71	0.01	31.03	3.97	0.65	16.98 16.84	0.34 0.27	0.68	3.38 5.28	1.10 0.59	0.08
E 831346	Repeat	0.38	<4	101.0	<10	<2	0.45	0.01	28.18	0.05	0.47	16.50	0.19	0.71	0.37	2.36	0.02
E 831365	Repeat	0.42	<4	178.0	<10	<2	0.74	0.01	31.65	3.83	0.45	16.26	0.20	0.66	5.14	0.61	0.03
E 831385	Repeat	0.10	65	68.6	<10	<2	0.93	0.02	40.70	4.70	0.47	6.07	0.32	0.65	4.45	7.33	0.20
												0.07	0.02	0.00	1.10	1.00	0.20

Minimum Detection 0.01 4 0.1 10 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Maximum Detection 100.00 10000 1000.0 1000 10000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ICPM AqR/AA ICP ICP ICPM WRock Method WRock

150 9001.2008

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

	INTERNATIONAL PLASMA LABS LTO	<u>L</u>							Intertek	Fax (60 Website v	4) 272-0851		
Client : Project:	Process Research Asso 0708410	ciates Lt Ship	∶d ¢#	49 Samples 49=Pulp	3=Repeat		[551516:40:53:70120	Print: 307:00h]	Dec 03. Nov 19.	2007	Page Section	2 of 2 of	2
Sample	Name	LOI %	Total %										
831385 831386 831387 831388 831388 831389		34.05 39.31 38.27 34.70 40.33	99.69 99.42 99.88 99.16 99.47										
831390 831391 BL83139 831393 831394	92	40.64 38.05 1.41 41.15 39.17	99.98 99.60 99.55 98.10 99.41										
RE 8313 RE 8313 RE 8313	365	39.70 39.81 34.06	89.01 99.39 99.87										
		11 - Ware 1.7	1. Adapt 1										
Maximum Method		0.01 100.00 1 2000 F	WRock										
=No To	est Ins=Insufficient Sample	Del=Delay	/ Max=N	to Estimate Rec=ReCheck	m=x1000 %=Estimate	% NS=No Sample							

150 9091-2000

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca [554012:23:46:70121007:00

INTERNATIONAL PLASMA LABS LTD. Processo Research Associates Ltd		44	Sample	es Print: Dec 10, 2007 In: Nov 20	(Intertex) V	Vebsite www.ipl.ca [554012:23:46:70121007:002]
Project : 0708410 Shipper : Boja Grcic Shipment: PO#: 9246 Comment:	CODE B31100 B84100 B90000	3	TYPE Pulp Repeat	PREPARATION DESCRIPTION Pulp received as it is, no sample prep. Repeat sample - no Charge Std iPL(Certified) - no charge.		PULP REJECT 12M/Dis 00M/Dis 12M/Dis 00M/Dis
	An Ana	alytical lysis: Nb	Summan 205 Th U	ry Re Ta / Whole Rock analysis	NS=No Sample Rep=Rep	licate M=Month Dis=Discard
Document Distribution		Method	%	Description Nb205 by Multi-Acids Sp. Digestion	Element Niobium Pentoxide	Limit Limit Low High 0.01 100.00
Richmond DL : BC V7A 4V5 0 Att: Boja Grcic	2 1 0 1 02 0784 3D EM BT BL 03 0527 0 1 1 0 04 0728 05 0143	ICPM AqR/AA ICP ICPM	ppm ppm ppm ppm	Ta ICP(Multi-Acid) Th Aqua Regia by AAS/ICP U ICP Re ICP(Multi-Acid)	Tantalum Thorium Uranium Rhenium	$\begin{array}{cccc} 4 & 10000 \\ 0.1 & 1000.0 \\ 10 & 1000 \\ 2 & 10000 \end{array}$
Ph:60	04/272-8110 06 0405 07 0408 08 0406 09 0409 10 0403	WRock WRock WRock	* * * *	A1203 by Whole Rock Ba0 by Whole Rock Ca0 by Whole Rock Fe203 by Whole Rock K20 by Whole Rock	A1203 Ba0 Ca0 Fe203 K20	$\begin{array}{ccccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	11 0402 12 0404 13 0410 14 0411 15 0401	WRock WRock WRock	* * * * *	MgO by Whole Rock MnO by Whole Rock Na2O by Whole Rock P2O5 by Whole Rock SiO2 by Whole Rock	MgO MnO Na2O P2O5 SiO2	$\begin{array}{cccc} 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \\ 0.01 & 100.00 \end{array}$
	16 0407 17 0417 18 0420	2000 F	* * *	TiO2 by Whole Rock Loss on Ignition @ 2000 F Total Whole Rock	TiO2 Loss on Ignition Total	0.01 100.00 0.01 100.00 0.01 105.00
					1	A

BC Certified Assayers: David Chiu, Ron Williams

Signature:

E 3 /		
X 1		
4		
	ONAL PLASMA LABS L	

	1	150 6001 1000
able stored time.		150 90/12000
CHATTIFIC ATTO		
ATIFICATIO		
		ATIFICATIO

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

lient : ^{SProcess} Resear roject: 0708410	ch Associates Ltd Ship#	44	Samp	des 44=Pulp	3=Re	peat	1=Std	iPL		[554	012.23.4	6.701210	Print:	Dec 10. Nov 20.	2007	www.ipl. Page	1 of
ample Name	Туре	NB205 %	Ta ppm	Th	U ppm	Re. ppm	A1203	Ba0	CaO %	Fe203	K20	Mg0	MnO	Na20	2007 P205	Sect Si02	tion 1 of TiO2
331395 331396 331397 331398 331399	Pulp Pulp Pulp Pulp Pulp Pulp	0.06 0.36 0.14 0.07 0.10	8 5 8 4 <4	39.1 44.7 25.3 24.4 31.2	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.85 1.10 1.03 2.75 0.88	0.01 0.01 0.01 0.03 0.01	30.31 32.10 30.11 21.92 29.62	3.77 3.23 3.73 3.93 3.57	0.49 0.39 1.39	16.63 17.76 15.50	0.29	0.71	3.41 6.46 3.63 3.70 2.47	3.56 2.80 3.61 28.92 1.34	0.06 0.04 0.03 0.15 0.01
31400 31401 31402 31403 31404	Pulp Pulp Pulp Pulp Pulp Pulp	0.12 0.14 <0.01 0.08 0.27	<4 <4 <4 30 123	31.8 38.9 14.1 83.6 195.9	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.80 1.36 14.27 2.02 1.08	<0.01 0.01 0.11 0.01 0.01	29.87 30.12 3.98 26.16 31.11	3.98 4.15 2.84 3.88 3.12	0.42 <0.01 4.19 0.44	17.90 16.90 1.42	0.40 0.38 0.10 0.35 0.27	0.90 1.03 4.69	2.54 4.37 0.32 3.58 7.01	2.03 3.88 65.72 18.08 4.46	0.03 0.05 0.39 0.14 0.05
31405 31406 31407 31408 31409	Pulp Pulp Pulp Pulp Pulp	0.08 0.17 0.08 0.01 0.02	<4 99 37 <4 <4	21.6 137.9 29.8 38.5 41.3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	0.80 1.34 2.49 1.43 1.68	0.01 0.01 0.10 0.11 0.07	30.97 30.73 26.66 42.32 37.30	2.34 2.71 4.60 5.08 7.03	0.46 0.55 1.42 <0.01 1.02		0.57 0.30 0.33 0.27 0.29	0.93 1.04 4.29 1.52 2.06	3.62 6.12 4.97 6.77 9.43	0.49 8.18 28.58 7.75 11.61	0.01 0.05 0.17 0.15 0.22
31410 31411 31412 31413 31414	Pulp Pulp Pulp Pulp Pulp	0.01 0.01 0.02 0.03 0.03	<4 <4 17 43 37	52.1 56.6 61.9 42.7 36.6	<10 <10 <10 <10 <10	~~~~~	1.42 0.96 1.04 1.42 1.26	0.06 0.01 0.01 0.01 0.01	38.83 32.65 31.27 29.04 28.65	7.23 4.92 4.58 3.44 3.40	0.91 0.50 <0.01 <0.01 0.49	5.73 14.04 16.61 16.04 16.52	0.24 0.25 0.23 0.26 0.24	1.10 0.87 0.77 1.16 1.39	9.62 6.80 4.26 4.23 3.78	3.63 3.68 2.43 10.70 9.03	0.30 0.26 0.04 0.07 0.10
31415 31416 31417 31418 31419	Pulp Pulp Pulp Pulp Pulp	0.02 0.03 0.04 0.01 0.04	<4 42 27 4 <4	28.2 50.7 59.5 31.9 30.0	<10 <10 <10 <10 <10	88888	1.42 1.17 1.19 1.49 1.15	0.04 <0.01 <0.01 <0.01 <0.01	26.89 31.12 31.25 30.68 31.26	5.12 3.17 3.78 5.61 3.37	0.58 <0.01 <0.01 <0.01 <0.01	10.86 17.87 16.27 16.65 18.20	0.32 0.23 0.26 0.23 0.41	3.63 0.87 0.88 0.86 0.88	8.92 4.40 5.93 5.93 4.08	29.36 2.93 4.90 2.97 1.75	0.18 0.12 0.14 0.24 0.05
31420 31421 31422 31423 31424	Pulp Pulp Pulp Pulp Pulp	0.06 0.01 0.01 0.01 0.02	<4 <4 <4 <4	36.1 30.5 45.0 44.2 39.0	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1.00 1.16 1.18 1.43 1.89	<0.01 <0.01 <0.01 0.06 0.06	31.04 32.33 32.03 42.68 37.36	3.08 3.68 4.90 6.12 5.37	0.70 <0.01 <0.01 0.72 0.88	18.42 16.99 16.25 5.59 7.40	0.40 0.26 0.20 0.22 0.24	0.92 0.88 0.90 1.02 1.60	3.61 6.32 7.34 6.97 5.43	1.60 2.26 3.24 3.68 11.31	0.03 0.14 0.21 0.19 0.17
31425 31426 31427 31428 31429	Pu]p Pu]p Pu]p Pu]p Pu]p	0.55 0.02 0.01 <0.01 0.01	12 11 <4 <4 <4	32.4 43.8 37.6 27.8 33.0	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	2.65 1.52 1.36 1.13 1.18	0.32 0.01 <0.01 <0.01 <0.01	46.26 30.95 28.97 30.43 31.09	3.61 4.43 3.59 2.25 2.47	1.06 <0.01 <0.01 <0.01 <0.01	2.09 16.32 18.41 18.72 18.84	0.77 0.24 0.22 0.21 0.23	1.35 0.94 0.91 0.89 0.92	2.39 5.26 3.25 3.29 3.07	6.23 3.91 3.77 2.31 2.46	0.20 0.15 0.10 0.04 0.07
31430 31431 31432 31433	Pulp Pulp Pulp Pulp	0.01 0.09 0.03 0.15	<4 34 10 21	46.1 93.1 46.4 23.4	<10 <10 <10 <10	<2 <2 <2 <2 <2	1.18 1.92 2.29 2.83	0.01 0.01 0.01 0.08	29.95 27.65 27.78 30.97	2.85 3.57 3.87 4.24	<0.01 0.86 0.57 1.09	17.50 17.10 15.89 8.24	0.26 0.26 0.23 0.27	0.98 1.01 1.12 2.93	2.97 3.80 4.29 3.19	4.54 9.86 10.87 24.91	0.10 0.11 0.12 0.17
nimum Detection ximum Detection thod =No Test Ins=Insufficient S		0.01 100.00 10 ICP I fax=No Estin	ICPM A	$\Delta \Delta / R_r$	TCD T	CDM 1	0.01 00.00 1 WRock Estimate 9	LIDeels	LIDL	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock	0.01 100.00 WRock

E3 /		
\geq		
	7	

150 9001 2000

Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 CENTIFIC ATION

Fax (604) 272-0851 Website www.ipl.ca

200 - 11620 Horseshoe Way

lient ::sBrocess Resear roject: 0708410	Ship	са р#	44 Samples 44=Pulp	3=Repeat	1=Std iPL	Print [554012:23:46:70121007:002]	Dec 10. Nov 20.	2007 2007	Page Section	1 of 2 of	F
Sample Name	LOI %	Total %									
331395 331396 331397 331398 331399	38.51 36.10 38.27 19.61 41.31	99.20 99.99 99.67 99.72 99.91									
331400 331401 331402 331403 331403 331404	41.02 37.42 1.36 31.41 35.27	99.90 99.66 99.40 99.90 98.76									
31405 31406 31407 31408 31409	41.84 34.09 15.66 27.93 22.00	99.99 99.83 99.90 99.29 99.98									
331410 331411 331412 331413 331413 331414	29.93 34.55 38.22 33.59 34.63	99.00 99.49 99.46 99.96 99.51									
31415 31416 31417 31418 31419	12.56 38.05 35.03 33.63 38.36	99.88 99.94 99.64 98.29 99.51									
31420 31421 31422 31423 31423 31424	38.97 35.57 33.43 30.81 27.72	99.78 99.60 99.69 99.47 99.46									
31425 31426 31427 31428 31429	32.55 35.85 38.93 40.51 39.44	99.47 99.60 99.50 99.77 99.77									
31430 31431 31432 31433	32.62	99.05 99.36 99.66 99.79									

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

CERTIFICATE OF ANALYSIS iPL 07K5540 (R)

	1001.2000
1	AR
-	
. W	1000 100

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5

International plasma Lab Tient ::SProcess Researchor Project: 0708410	Associates Ltd Ship#	44	Samp	les 44=Pulp	2-0		1 644	(D)					Print: D	ec 10 2	Fax (6 Website	04) 879-78 04) 272-08 www.ipl.ca Page	851 a 2 of
Sample Name	Туре	NB205 %	Ta ppm	Th ppm	U ppm	epeat Re ppm	1=Std A1203	Ba0	Ca0 %	Fe203	12:23:46 K20	:7012100 Mg0 %	7:00[21]; N Mn0 %	Na20, 2	007 P205 %	Section SiO2	on 1 of TiO2
831434 831435 831436 831437 831438	Pulp Pulp Pulp Pulp Pulp	0.07 0.31 0.50 0.06 0.05	9 7 19 <4 <4	10.4 7.0 11.8 13.9 13.9	130 97 136 104 144	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.80 4.06 3.52 5.10 2.76	0.12 0.07 0.09 0.09 0.08	20.82 15.23 18.09 15.72 20.75	5.14 6.06 5.85 5.78 5.65	1.78 1.73 1.53 2.34 1.45	13.50 13.91 11.97 11.83 11.70	0.35 0.36 0.38 0.34 0.39	4.60 6.21 6.12 6.33 5.64	2.27 1.68 2.79 3.30 2.53	40.54 45.07 41.65 42.33 41.32	0.18 0.22 0.22 0.26 0.19
RE 831395 RE 831414 RE 831434 CCRMP_STD as Nb205 CCRMP_STD as Nb205 REF	Repeat Repeat Repeat Std iPL Std iPL	0.06 0.03 0.07 0.52 0.53	6 36 7 —	38.3 26.3 10.7	<10 <10 121 	∾∾∾	0.86 1.22 2.90	<0.01 0.01 0.13 —	30.36 28.83 20.84	3.82 3.36 5.12	<0.01 0.52 1.76	17.55 17.33 13.14 	0.29 0.25 0.35 —	0.95 1.55 4.64 	3.41 3.86 2.31	3.54 9.07 40.81 —	0.06 0.10 0.18
inimum Detection		0.01	4	0.1	10	2	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Maximum Detection 100.00 10000 1000.0 1000 10000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Method ICP ICPM AqR/AA ICP ICPM WRock ----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

C]]		
4		

Richr Richr Cana Phon Fax

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca 007 Page 2 of

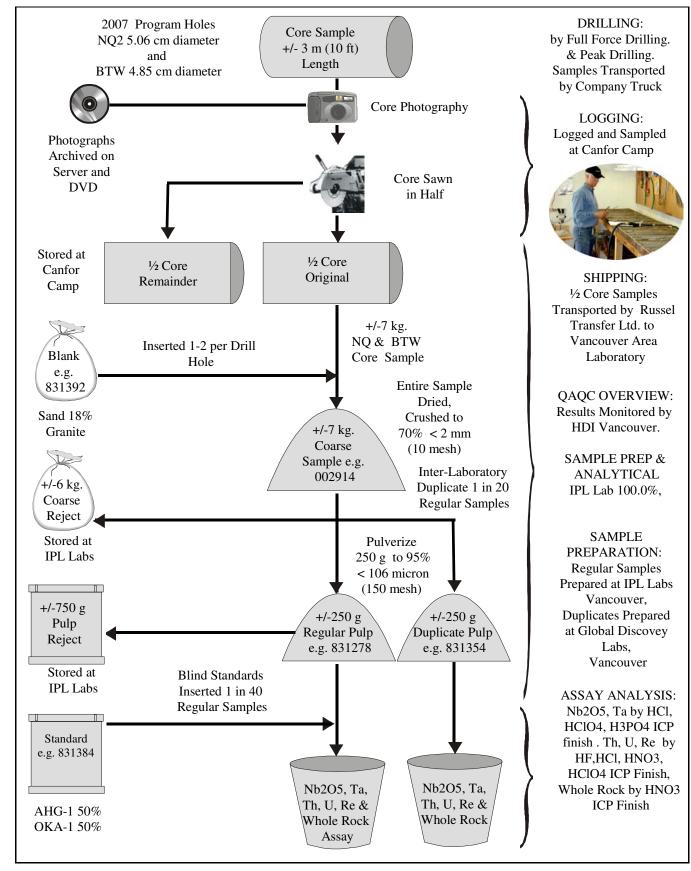
ient : Process®Research% oject: 0708410	Shi	td p#	44 Samples 44=Pulp	3=Repeat	1=Std iPL	Print 554012:23:46:70121007:002	: Dec 10. } Nov 20.	2007	www.ipl.ca Page Section	2 of 2 of	22
ample Name	LOI %	Total %									
81434 81435 81436 81437 81438	7.63 4.75 7.32 6.56 7.53	99.75 99.35 99.54 99.98 100.00									
RE 831395 RE 831414 RE 831434 CCRMP_STD as Nb205 CCRMP_STD as Nb205 REF	38.10 33.55 7.55 —	98.95 99.63 99.74 —									

APPENDIX D

ANALYTICAL PROCEDURES

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1

Website : www.ipl.ca Email : info@ipl.ca Phone : (604) 879-7878 Fax : (604) 879-7898


Method of Whole rock analyses by ICP

- (a) 0.20 grams of sample was mixed with lithium metaborate and fused in high temperature furnace for an hour, removed and leached in weakly diluted HNO3 acid, cooled, then bulked up to a fixed volume with di-mineralized water, and thoroughly mixed.
- (b) The specific elements were determined using a Inductivity Coupled Argon Plasma spectrophotometer. All major interfering, as well as trace, elements were inter-element corrected. All data are subsequently stored onto computer.
- (b) Loss of Ignition (LOI) is perform separately by weighing 2.0 grams of sample in a clay crucible and ignite at 1000C, the weight loss in percent is reported as LOI.
- * The whole rock package includes following elements: Al2O3, BaO, CaO, Fe2O3, K2O, LOI, MgO, MnO, Na2O, P2O5, SiO2 and TiO2

QUALITY CONTROL

The ICP instrument is first calibrated using six certified standards and a blank. The test samples are then run in batches. A sample batch consists of 38 or less samples. Two solutions are placed before a batch. These are in-house standard and acid blank, which are both digested along with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample. After every 38th sample (not including standards), two samples, chosen at random, are re-weighed and analyzed. At the end of a batch, the standard and blank used at the beginning is re-analyzed. Results from both sets of standards are compared to detect any calibration drift.

2007 Drill Core Sampling and Analytical Flow Chart

Taseko Mines Aley Project

GD_Aley.mdb [CoreFlow:Report] Date: 13-Aug-08

APPENDIX E

DRILL SECTIONS