

BC Geological Survey Assessment Report 30297

Nelson Mining Division Southeast BC

Work Performed Summer 2007

Ministry of Energy \& Mines
Energy \& Minerals Division
Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

\qquad

STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)MDATE(S) 4212053

PROPERTY NAME BRACEBRTOCIE.
CLAIM NAME(S) (on which work was done) $557707,562993,564195,564650$

MAILING ADDRESS

PROPERTY GEOLOGY KEYWORDS (fithology, age, stratigraphy, structure, alteration, mineralization, size and attiude):
BEG-PURCELL SUPEKGROUP, METRSEDIMENTS, CUPPER MINERALIZATION, SHEAK ZONE HOSTED.

TYPE OF WORK IN EXTENT OF WORK THIS REPORT (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (ind. support)
GEOLOGICAL (scale, area)		
Ground, mapping		
Photo interpretation		
GEOPHYSICAL (line-kilometres)		
Ground		
Magnetic		
Electromagnetic		
Induced Polarization -		
Radiometric		
Seismic		
Other		
Airbome		
GEOCHEMICAL (number of samples analysed for ...)		
Soil		
Silt		
Rock 27 SAMPLES	AUL	S40
Other		
DRILLING (total metres; number of holes, size)		
Core		
Non-core		
RELATED TECHNICAL Samplinglassaying 10 MA.J DAYS ,Wacmáes 4×4 TRuck	QLL	2925
Petrographic		
Mineralographic		
Metallurgic		
PROSPECTING (scale, area)		
PREPARATORY/PHYSICAL		
Line/grid (kilometres)		
Topographic/Photogrammetric (scale, area) \qquad		
Legal surveys (scale, area)		
Road, local access (kilometres)/trail		
Trench (metres)		
Underground dev. (metres)		
Other REPJRT URITINC		30.
	TOTAL COST	\$3765.00

Table of Contents
Introduction Page 3
Location and Access Page 3
Property Page 3
Physiography Page 4
History Page 4
Geology Page 4
Rock Geochemistry Page 4
Conclusions and Recommendations Page 5
Statement of Costs Page 5
Statement of Qualifications Page 6
Rock Sample Location Map with Copper in ppm Page 7
Appendix Rock Sample UTM/description
Rock Sample Analysis
List of Illustrations Property Location Map Page 3

Introduction

During the summer of 2007 a rock geochemistry program was undertaken on the Bracebridge mineral claims. The work was funded by Ruby Red Resources Ltd. Rock samples were collected from the area to start a database for further evaluation of the property.

Location and Access

The Bracebridge mineral claims are located in the Purcell Mountains of southeast BC, about 50 kilometres west of Kimberley. The claims are in the West Fork of the St. Mary River just east of Office Creek. The property is accessed by the main West Fork St. Mary FSR as well as an old exploration road that is located in the draw east of Office Creek.

Claim Map, Regional Location Top Right

Property

The property consists of four mineral tenures 557707, 564195, 574650, and 562993 all of which are owned by Dan Klewchuk and Rob Klewchuk.

Physiography

The Bracebridge claims are located in the western part of the St. Mary River valley, typically the area is steep sloped with vertical relief in excess of 1500 meters. Brush is normally good in the timber with open stands of pine, spruce, cedar, hemlock and fir, depending on the maturity of the forest. Valley bottoms and slide chutes are typically brushy with thick alder, and devils club. Higher elevations are barren of trees and brush and often cliffy and scree covered.

History

The Bracebridge mineral claims are located over a number of old crown grants. Historical work in the area included blasting of pits and adits on mineralized quartz carbonate veins. A number of other junior and major exploration companies have worked on the claims including Cominco. Work consisted mainly of mapping, sampling, some geophysics and limited diamond and reverse circulation drilling. Best results from the diamond drilling were obtained by Cominco where they intersected ore grade copper mineralization over economic widths.

Geology

The claims are underlain by rocks of the Belt-Purcell Supergroup, a group of mid-Proterozoic clastic sediments, gabbro-diorite intrusive sills and dykes, and flood basalts. The Bracebridge is located along the western limb of the Purcell anticlinorium, a broad northerly dipping fold. In the area of the Bracebridge, Belt-Purcell sediments of the clastic Creston formation, carbonate rich Kitchener and carbonate rich Dutch Creek formations are highly deformed and consist mostly of schists and phyllites. Magnetic mafic dykes and sills were noted intruding the sediments. The Bracebridge claims are located along a northerly trending shearzone with widths over 100 meters.

Rock Geochemistry

During the program 27 samples were collected and analysed with a 31 element ICP by Acme Analytical Labs. The majority of the samples were collected along the Bracebridge shear zone, samples BB07-14 to 21 were collected from the Office Creek area, BB07-22 to 27 were from old workings along the northern strike of the shearzone. A map with copper plotted in ppm is located on page 7 , sample descriptions and UTM coordinates along with analysis are in the appendix.

Rock samples collected from the old workings, which were typically quartz carbonate veins occurring along fold hinges with abundant chalcopyrite, pyrite, and malachite, assayed over a percent copper with multi-ounce silver and elevated gold values. Samples collected below the old workings from chlorite schist bands with disseminated chalcopyrite contained copper values up to 888 ppm copper (BB07-7). One sample (BB07-11), taken below the historic workings, of a quartz vein containing pyrite and chalcopyrite with a 15 cm width carried over $35,000 \mathrm{ppb}$ Au. Samples collected from Office Creek returned highly elevated values of copper, lead, and zinc as well as some multi-ounce silver.

Conclusions and Recommendations

During the summer of 2007 a rock geochemistry program was conducted on the Bracebridge mineral claims, 27 rock samples were collected from the area. A number of samples from the Office Creek area returned significant values for copper, lead, zinc, silver and gold. Samples taken from old workings of quartz carbonate veins with copper mineralization contained multi-ounce silver, elevated gold, and high copper values. An area of elevated copper mineralization hosted by chlorite schist bands was noted. One sample of pyrite bearing quartz, taken from the main Bracebridge shear, contained an ounce per tonne of gold.

At this point further work is warranted on the claims. Prospecting and rock geochemistry should be completed on the entire property, old information should be compiled into a working database, the old exploration road should be brushed and all old workings and diamond drill hole locations should be found. A test soil line should be run to determine if soils would work in areas with poor outcrop.

Statement of Expenses

Mike Kennedy,	Prospector	3 days @ \$300/day	$\$ 900$
Sean Kennedy,	Prospector	3 days @ \$300/day	$\$ 900$
Eric Holm,	Prospector	3 days @ \$175/day	$\$ 525$
Jarred Johnson,	Prospector	1 day @ \$150/day	$\$ 150$
Transportation,	4×4 Truck	3 days @ \$150/day	$\$ 450$
Rock Samples,		27 samples @\$20/sample	$\$ 540$
Report Writing	Sean Kennedy	1 day @\$300/day	$\$ 300$
Total			$\$ 3765$

Statement of Qualifications

I, Sean Kennedy, certify that:

1. I am an independent prospector residing at 272 Kimbrook Crescent, Kimberley, BC.
2. I have been actively prospecting in the East Kootenay district of $B C$ for the past 15 years
3. I have been employed as a professional prospector by junior mineral exploration companies.
4. I own and maintain mineral claims in BC

APPENDIX

Brace Bridge 2007 Rock Sample

Sample \#	UTM E	UTM N	Description
BB07-01	534606	5512654	X-cutting Qtz vein Carb. Alt,Little Cpy,Lim,sericite 302/86
BB07-2,3,4	534549	5512886	green schist beds/lens with diss Cpy,PO/Py up to 20 cm wide over 7 m zone
5			BEDS 78/70N
BB07-06	534549	5512886	SAME AS ABOVE 3 CM WIDE
BB07-07	534610	5512972	Band of chlorite schist, folded, Cpy,Py,Lim
BB07-08	534610	5512972	3 cm wide chlorite schist band Cpy, sericite 177/73 beds
BB07-09	30 m above B	807-08	Same as above
BB07-10	534588	5513037	Qtz vein in chlorite schist,Cpy, bornite,Py
BB07-11	above last	10 m	15cm qtz vein Cpy, Py
BB07-12	534580	5513063	20 cm wide zone sheared phylitic material, blue metal diss, vugs w/yellow oxide
BB07-13	534591	5513076	Qtz vein,Cpy,Py,MoS?,Sericite,ZnS
BB07-14	533296	5512450	Qtz float, rusty Po, PbS, ZnS?, Cpy, Anchorite
BB07-15	533296	5512450	Epidote(Olivine?)rich biotitc sill 187/84E 24mwide,py Pinkish phase in hangin wall magnetic.CPY, weird pinkish stuff, UltraMafic?
BB07-16	533525	5512973	Qtz Vein with $>90 \%$ Py
BB07-17	533562	5512895	Qiz/cart veins, hem, banded texture, Py, Cpy, Mal
BB07-18,19	533562	5512993	60 cm wide piece of qtz breccia, matrix of Py, Po, Cpy, orange coloured creamy fragments
BB07-20	533542	5513495	Qtz float in grey/black muds, $\mathrm{ZnS} / \mathrm{Py} / \mathrm{Cpy}$?/PbS?
BB07-21	533530	5513722	1 m cubed Qtz vein float full of Py>70\% sutphide vugs/black sulphide?
22-26	534826	5513456	Zone of cleaved whitish phyllite seds tightly folded, plunging back into hillside, qtz veining with massive CuPy, Py, malachite, azurite, carb alt, main workings
27	534883	5513532	Pit dug on similar mineralization as last

ELEMENT SAMPLES	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag pom	$\underset{\substack{\mathrm{Ni} \\ \mathrm{ppm}}}{ }$	Co ppm	Mn ppm
BB-01	<1	301	5	105	0.5	61	28	2544
BB-02	<1	59	<3	105	0.6	44	21	12704
BB-03	<1	116	<3	133	<. 3	25	39	1361
BB-04	<1	491	4	86	0.5	62	38	3775
RE BB-04	<1	471	<3	81	0.7	61	37	3648
BB-05	<1	817	4	82	0.8	67	34	3870
BB-06	<1	202	<3	87	0.5	39	14	2421
BB-07	<1	888	56	28	10.6	105	116	11759
BB-08	<1	352	3	82	0.5	68	33	3535
BB-09	<1	174	<3	102	0.6	57	34	11097
BB-10	2	277	16	3	1	45	51	204
BB-11	7	805	246	4	6.4	91	79	251
BB-12	12	29	6	<1	0.7	1	1	22
BB-13	<1	195	12	11	1	44	46	3979
BB-14	<1	2217	>10000	42	>100	73	137	296
BB-15	1	63	64	51	0.6	25	24	437
BB-16	<1	18	485	1	27.8	<1	<1	24
BB-17	<1	3466	77	275	5.8	14	3	1214
BB-18	<1	1761	35	26	1.6	32	31	50
BB-19	<1	8143	623	475	19.1	18	51	37
BB-20	1	281	628	>10000	20.2	22	38	120
BB-21	<1	157	31	171	3.7	10	45	30
	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	As ppm	$\underset{\mathrm{ppm}}{\mathrm{U}}$	Au ppm	Th ppm	Sr ppm	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$	Sb ppm
BB-01	12.56	16	<8	<2	7	6	1.8	<3
BB-02	13.41	13	<8	<2	8	4	2.2	<3
BB-03	10.45	13	<8	<2	2	45	1.3	<3
BB-04	12.36	7	<8	<2	6	5	1.6	<3
RE BB-04	11.94	6	8	<2	6	6	0.8	<3
BB-05	14.61	11	<8	<2	6	14	2.2	<3
BB-06	11.57	8	<8	<2	6	2	1.3	<3
BB-07	>40	2	<8	<2	9	7	1.8	<3
BB-08	12.83	7	<8	<2	8	5	1	<3
BB-09	14.18	6	<8	<2	9	2	1.7	<3
BB-10	5.28	<2	9	<2	11	2	<. 5	<3
BB-11	7.37	<2	<8	30	<2	<1	< 5	5
BB-12	0.64	<2	<8	<2	6	2	< 5	<3
BB-13	6.13	<2	<8	<2	<2	19	<. 5	<3
BB-14	22.2	1551	8	<2	<2	1	0.5	<3
BB-15	3.7	6	<8	<2	2	98	<. 5	<3
BB-16	35.7	72	<8	<2	4	3	1.7	<3
BB-17	7.52	35	<8	<2	<2	10	5.4	<3
BB-18	32.5	23	<8	<2	3	1	0.6	<3
BB-19	39.06	116	<8	<2	4	1	11.5	<3
BB-20	15.48	972	<8	<2	2	1	346.2	<3
BB-21	33.06	181	<8	<2	4	1	1.9	<3

	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Ca} \\ & \% \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \% \end{aligned}$	$\begin{gathered} \text { La } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$
BB-01	4	62	0.52	0.096	11	26	2.79	79
BB-02	<3	52	0.41	0.024	6	25	2.59	74
BB-03	<3	313	3.74	0.143	6	12	3	847
BB-04	4	52	0.48	0.033	3	25	2.52	61
RE BB-04	<3	49	0.46	0.031	4	24	2.44	56
BB-05	10	50	1.89	0.029	4	23	2.66	16
BB-06	<3	51	0.06	0.019	5	28	2.16	124
BB-07	111	2	0.08	0.021	7	1	0.14	257
BB-08	5	52	0.57	0.044	5	23	2.29	34
BB-09	<3	65	0.2	0.052	15	25	2.3	47
BB-10	21	1	0.09	0.043	6	5	0.02	18
BB-11	551	1	0.03	0.004	1	7	0.02	7
BB-12	<3	2	0.02	0.017	16	4	0.01	39
BB-13	4	1	2.46	0.01	1	5	0.86	67
BB-14	300	<1	0.03	<. 001	1	8	0.15	5
BB-15	<3	87	1.38	0.307	14	42	2.25	209
BB-16	619	<1	0.01	0.003	<1	2	0.01	3
BB-17	60	1	1.97	0.003	<1	6	0.54	13
BB-18	97	<1	0.02	0.002	<1	4	0.01	5
BB-19	162	<1	0.02	<. 001	<1	1	<. 01	3
BB-20	182	<1	0.01	0.001	2	5	0.01	12
BB-21	25	<1	0.01	0.003	<1	5	0.01	2

	Ti	B	Al	Na	K	W
	$\%$	ppm	m	$\%$	$\%$	ppm
\%						
BB-01	0.07	<20	3.54	$<.01$	0.54	<2
BB-02	0.1	<20	3.71	$<.01$	0.5	<2
BB-03	0.31	<20	3.18	0.03	2.09	<2
BB-04	0.05	<20	3.15	$<.01$	0.26	<2
RE BB-04	0.05	<20	3.03	$<.01$	0.29	<2
BB-05	0.01	<20	3.1	$<.01$	0.05	<2
BB-06	0.08	<20	3.16	$<.01$	0.5	<2
BB-07	$<.01$	<20	0.15	0.02	0.07	<2
BB-08	0.01	<20	3.22	$<.01$	0.11	<2
BB-09	0.04	<20	3.33	$<.01$	0.22	<2
BB-10	$<.01$	<20	0.08	$<.01$	0.05	<2
BB-11	$<.01$	<20	0.03	$<.01$	$<.01$	<2
BB-12	$<.01$	<20	0.27	0.02	0.17	<2
BB-13	$<.01$	<20	0.1	0.01	0.05	<2
BB-14	$<.01$	<20	0.02	$<.01$	0.01	<2
BB-15	0.21	<20	1.76	0.03	0.21	<2
BB-16	$<.01$	<20	0.02	$<.01$	0.03	<2
BB-17	$<.01$	<20	2.01	0.01	0.1	<2
BB-18	$<.01$	<20	0.36	$<.01$	0.03	<2
BB-19	$<.01$	<20	0.06	0.01	$<.01$	<2
BB-20	$<.01$	<20	0.06	0.01	0.04	<2
BB-21	$<.01$	<20	0.02	0.02	$<.01$	<2

	Method	3 A	1 D	1 D	1 D	1 D	1 D	1 D
	Analyte	Au	Mo	Cu	Pb	Zn	Ag	Ni
	Unit	PPB	PPM	PPM	PPM	PPM	PPM	PPM
BB-22	Rock	110.1	<1	>10000	4	363	>100.0	40
BB-23	Rock	50.2	<1	>10000	8	267	45.3	49
BB-24	Rock	128.1	<1	>10000	9	547	80.4	54
BB-25	Rock	314	<1	>10000	23	247	45.4	26
BB-26	Rock	255.3	<1	>10000	12	845	>100.0	27
BB-27	Rock	26.2	<1	>10000	39	135	27.8	80
BB-23	Rock	50.2	<1	>10000	8	267	45.3	49
	$1 D$	1 D	1 D					
	Co	Mn	Fe	As	U	Au	Th	Sr
	PPM	PPM	$\%$	PPM	PPM	PPM	PPM	PPM
Sample								
BB-22	15	704	19.02	<2	<8	<2	<2	6
BB-23	35	6711	12.63	<2	<8	<2	<2	14
BB-24	37	6593	17.92	<2	<8	<2	<2	9
BB-25	22	726	9.68	<2	9	<2	<2	2
BB-26	12	713	19.45	<2	<8	<2	<2	<1
BB-27	98	6694	16.35	<2	<8	2	<2	25
BB-23	35	6711	12.63	<2	<8	<2	<2	14

	1D							
	Cd	Sb	Bi	V	Ca	P	La	Cr
PPM	PPM	PPM	PPM	$\%$	$\%$	PPM	PPM	
Sample								
BB-22	3.6	<3	4	3	0.98	0.003	3	4
BB-23	2.9	<3	5	<1	5.42	0.003	6	3
BB-24	6.6	<3	7	2	3.71	0.002	5	4
BB-25	3.1	<3	25	1	0.5	0.003	2	6
BB-26	5.9	<3	22	2	0.03	0.002	5	4
BB-27	2.5	4	21	<1	5.21	0.007	4	5
BB-23	2.9	<3	5	<1	5.42	0.003	6	3

	1 D	1D						
	Mg	Ba	Ti	B	Al	Na	K	W
	$\%$	PPM	$\%$	PPM	$\%$	$\%$	$\%$	PPM
Sample								
BB-22	0.37	<1	<0.01	<20	0.05	<0.01	<0.01	10
BB-23	1.46	1	<0.01	<20	0.06	<0.01	0.02	5
BB-24	1	<1	<0.01	<20	0.11	<0.01	<0.01	9
BB-25	0.17	<1	<0.01	<20	0.12	<0.01	<0.01	<2
BB-26	0.02	<1	<0.01	<20	0.1	<0.01	<0.01	7
BB-27	1.72	<1	<0.01	<20	0.04	<0.01	0.02	<2
BB-23	1.46	1	<0.01	<20	0.06	<0.01	0.02	5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHO Ruby Red Resources Inc. PROJECT BRACE BRIDGE
Acme file \# A706373 Received: AUG 20 2007* 23 samples in this disk file.
Analysis: AU* GROUP 3A - IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm)
ELEMENT Au*
SAMPLES ppb
G-1 <. 5
BB-01 4.6
BB-02 13.4
BB-03 3.5
BB-04 2.9
RE BB-04 2.4
BB-05 5.1
BB-06 $\quad 3.9$
BB-07 17.8
BB-08 $\quad 7.5$
BB-09 2.7
BB-10 75.5
BB-11 35405.6
BB-12 276.6
BB-13 54.4
BB-14 468.5
BB-15 7.2
BB-16 63.4
BB-17 25.8
BB-18 19.6
BB-19 73.7
BB-20 55.3
BB-21 17.2
STANDAR 722.1

