Rock Geochemistry Report

Bracebridge Mineral Claims

BC Geological Survey Assessment Report 30297

Nelson Mining Division

Southeast BC

Work Performed Summer 2007

Report Written By Sean Kennedy, Prospector

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

T COLOR

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] ROCK GEDCHEMISTRY REPORT ON THE BRI	ACE	BRIDGE	MINERAL		53765.00
AUTHOR(S) SEAN KENNEDY				1	
	• •				
NOTICE OF WORK PERMIT NUMBER(S)DATE(S)					
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S	5 <u>)</u> 4	21205	3		
PROPERTY NAME BRACEBRIDGE				· · · · ·	
CLAIM NAME(S) (on which work was done) 557707, 562993	, 50	64195	564650		
COMMODITIES SOUGHT					· · · · ·
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN				,	
MINING DIVISION NEW IN	NTS				
LATITUDEO LONGITUDE		0		" (at	centre of work)
OWNER(S)					
1) DRN KLEYCHUK	2)	Rub	KLEWCH	⊳K	• ••••••••••••••••••••••••••••••••••••
MAILING ADDRESS					
OPERATOR(S) [who paid for the work]	_		<u> </u>		
1) RUDY RED RESOURCES	_ 2)				····
MAILING ADDRESS	_				
# 212, 1000-9th AVE. 5W					
CALCARY ALTR, TZP ZYG	_				
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur	re, aite	ration, min	neralization, size	and attitude):	
BELT-PURCELL SUPERGROUP, METASEDIAL	-NTS	, Cup	PER MINE	RALICATION	N SHEAK ZONE
HOSTED.		·			•
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMEN	IT RE	PORT NU	MBERS		

			¥
		-	
TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COST APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
• • •			
Ground, mapping			
•			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			· · · · · · · · · · · · · · · · · · ·
Radiometric			
Seismic	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Other		······································	
Airborne			
GEOCHEMICAL			
number of samples analysed for)			• . •
Soil			
Silt 27 SOMPLE	<		540
Rock 27 SAMPLE		ALL	
Other			
DRILLING total metres; number of holes, size)			
Core			
Non-core	· -		
RELATED TECHNICAL	·····-································		
Sampling/assaying 10 MAJ DAYS	WHITE HAVE TRUCK	ALL	2725
Petrographic			
• • • • • • • • • • • • • • • • • • • •			
Mineralographic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other REPORT DRITING			300
		TOTAL C	OST \$ 3765.00

· · · .

(

(

.....

•

June 2008

Table of Contents		
Introduction	Page	3
Location and Access	Page	3
Property	Page	3
Physiography	Page	4
History	Page	4
Geology	Page	4
Rock Geochemistry	Page	4
Conclusions and Recommendations	Page	5
Statement of Costs	Page	5
Statement of Qualifications	Page	6
Rock Sample Location Map with Copper in ppm	Page	7
Appendix Rock Sample UTM/description		
Rock Sample Analysis		

List of Illustrations Property Location Map

Page 3

٠,

Introduction

During the summer of 2007 a rock geochemistry program was undertaken on the Bracebridge mineral claims. The work was funded by Ruby Red Resources Ltd. Rock samples were collected from the area to start a database for further evaluation of the property.

Location and Access

The Bracebridge mineral claims are located in the Purcell Mountains of southeast BC, about 50 kilometres west of Kimberley. The claims are in the West Fork of the St. Mary River just east of Office Creek. The property is accessed by the main West Fork St. Mary FSR as well as an old exploration road that is located in the draw east of Office Creek.

Claim Map, Regional Location Top Right

Property

The property consists of four mineral tenures 557707, 564195, 574650, and 562993 all of which are owned by Dan Klewchuk and Rob Klewchuk.

Physiography

The Bracebridge claims are located in the western part of the St. Mary River valley, typically the area is steep sloped with vertical relief in excess of 1500 meters. Brush is normally good in the timber with open stands of pine, spruce, cedar, hemlock and fir, depending on the maturity of the forest. Valley bottoms and slide chutes are typically brushy with thick alder, and devils club. Higher elevations are barren of trees and brush and often cliffy and scree covered.

<u>History</u>

The Bracebridge mineral claims are located over a number of old crown grants. Historical work in the area included blasting of pits and adits on mineralized quartz carbonate veins. A number of other junior and major exploration companies have worked on the claims including Cominco. Work consisted mainly of mapping, sampling, some geophysics and limited diamond and reverse circulation drilling. Best results from the diamond drilling were obtained by Cominco where they intersected ore grade copper mineralization over economic widths.

Geology

The claims are underlain by rocks of the Belt-Purcell Supergroup, a group of mid-Proterozoic clastic sediments, gabbro-diorite intrusive sills and dykes, and flood basalts. The Bracebridge is located along the western limb of the Purcell anticlinorium, a broad northerly dipping fold. In the area of the Bracebridge, Belt-Purcell sediments of the clastic Creston formation, carbonate rich Kitchener and carbonate rich Dutch Creek formations are highly deformed and consist mostly of schists and phyllites. Magnetic mafic dykes and sills were noted intruding the sediments. The Bracebridge claims are located along a northerly trending shearzone with widths over 100 meters.

Rock Geochemistry

During the program 27 samples were collected and analysed with a 31 element ICP by Acme Analytical Labs. The majority of the samples were collected along the Bracebridge shear zone, samples BB07-14 to 21 were collected from the Office Creek area, BB07-22 to 27 were from old workings along the northern strike of the shearzone. A map with copper plotted in ppm is located on page 7, sample descriptions and UTM coordinates along with analysis are in the appendix.

Rock samples collected from the old workings, which were typically quartz carbonate veins occurring along fold hinges with abundant chalcopyrite, pyrite, and malachite, assayed over a percent copper with multi-ounce silver and elevated gold values. Samples collected below the old workings from chlorite schist bands with disseminated chalcopyrite contained copper values up to 888 ppm copper (BB07-7). One sample (BB07-11), taken below the historic workings, of a quartz vein containing pyrite and chalcopyrite with a 15 cm width carried over 35,000 ppb Au. Samples collected from Office Creek returned highly elevated values of copper, lead, and zinc as well as some multi-ounce silver.

Conclusions and Recommendations

During the summer of 2007 a rock geochemistry program was conducted on the Bracebridge mineral claims, 27 rock samples were collected from the area. A number of samples from the Office Creek area returned significant values for copper, lead, zinc, silver and gold. Samples taken from old workings of quartz carbonate veins with copper mineralization contained multi-ounce silver, elevated gold, and high copper values. An area of elevated copper mineralization hosted by chlorite schist bands was noted. One sample of pyrite bearing quartz, taken from the main Bracebridge shear, contained an ounce per tonne of gold.

At this point further work is warranted on the claims. Prospecting and rock geochemistry should be completed on the entire property, old information should be compiled into a working database, the old exploration road should be brushed and all old workings and diamond drill hole locations should be found. A test soil line should be run to determine if soils would work in areas with poor outcrop.

Statement of Expenses

Mike Kennedy,	Prospector	3 days @ \$300/day	\$900
Sean Kennedy,	Prospector	3 days @ \$300/day	\$900
Eric Holm,	Prospector	3 days @ \$175/day	\$525
Jarred Johnson,	Prospector	1 day @ \$150/day	\$150
Transportation,	4X4 Truck	3 days @ \$150/day	\$450
Rock Samples,		27 samples @\$20/sample	\$540
Report Writing	Sean Kennedy	1 day @\$300/day	<u>\$300</u>
Total			\$3765

Statement of Qualifications

I, Sean Kennedy, certify that:

- 1. I am an independent prospector residing at 272 Kimbrook Crescent, Kimberley, BC.
- 2. I have been actively prospecting in the East Kootenay district of BC for the past 15 years
- 3. I have been employed as a professional prospector by junior mineral exploration companies.
- 4. I own and maintain mineral claims in BC

APPENDIX

. .

Brace Bridge 2007 Rock Sample

Sample # U	TM E	UTM N	Description
BB07-01	534606	5512654	X-cutting Qtz vein Carb. Alt, Little Cpy, Lim, sericite 302/86
BB07-2,3,4 5	534549	5512886	green schist beds/lens with diss Cpy,PO/Py up to 20cm wide over 7m zone BEDS 78/70N
BB07-06	534549	5512886	SAME AS ABOVE 3 CM WIDE
BBO7-07	534610	5512972	Band of chlorite schist, folded, Cpy,Py,Lim
BB07-08	534610	5512972	3 cm wide chlorite schist band Cpy, sericite 177/73 beds
BB07-09 30)m above B	B07-08	Same as above
BB07-10	534588	5513037	Qtz vein in chlorite schist,Cpy, bornite,Py
BB07-11 at	ove last	10m	15cm qtz vein Cpy,Py
BB07-12	534580	5513063	20cm wide zone sheared phylitic material, blue metal diss, vugs w/yellow oxide
BB07-13	534591	5513076	Qtz vein,Cpy,Py,MoS?,Sericite,ZnS
BB07-14	533296	5512450	Qtz float, rusty Po, PbS, ZnS?, Cpy, Anchorite
BB07-15	533296	5512450	Epidote(Olivine?)rich biotitc sill 187/84E 24mwide,py Pinkish phase in hangin wall magnetic.CPY,weird pinkish stuff, UltraMafic?
BB07-16	533525	5512973	Qtz Vein with >90%Py
BB07-17	533562	5512 89 5	Qtz/carb veins, hem, banded texture, Py, Cpy, Mal
BB07-18,19	533562	5512993	60 cm wide piece of qtz breccia, matrix of Py, Po, Cpy, orange coloured creamy fragments
BB07-20	533542	5513495	Qtz float in grey/black muds, ZnS/Py/Cpy?/PbS?
BB07-21	533530	5513722	1m cubed Qtz vein float full of Py>70% sulphide vugs/black sulphide?
22-26	534826	5513456	Zone of cleaved whitish phyllite seds tightly folded, plunging back into hillside, qtz veining with massive CuPy, Py, malachite, azurite, carb alt, main workings
27	534883	5513532	Pit dug on similar mineralization as last

									ř
						•			
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
BB-01	<1	301	5	105	0.5	61	28	2544	
BB-02	<1	59	<3	105	0.6	44	21	12704	
BB-03	<1	116	<3	133	<.3	25	39	1361	
BB-04	<1	491	4	86	0.5	62	38	3775	
RE BB-04	<1	471	<3	81	0.7	61	37	3648	
BB-05	<1	817	4	82	0.8	67	34	3870	
BB-06	<1	202	<3	87	0.5	39	14	2421	
BB-07	<1	888	56	28	10.6	105	116	11759	
BB-08	<1	352	3	82	0.5	68	33	3535	
BB-09	<1	174	<3	102	0.6	57	34	11097	
BB-10	2	277	16	3	1	45	51	204	
BB-11	7	805	246	4	6.4	91	79	251	
BB-12	12	29	6	<1	0.7	1	1	22	
BB-13	<1	195	12	11	1	44	46	3979	
BB-14	<1	2217	>10000	42	>100	73	137	296	
BB-15	1	63	64	51	0.6	25	24	437	
BB-16	<1	18	485	1	27.8	<1	<1	24	
BB-17	<1	3466	77	275	5.8	14	3	1214	
BB-18	<1	1761	35	26	1.6	32	31	50	
BB-19	<1	8143	623	475	19.1	18	51	37	
BB-20	1	281	628	>10000	20.2	22	38	120	
	- 4	4							
BB-21	<1	157	31	171	3.7	10	45	30	
88-21									
BB-21	Fe	As	U	Au	Th	Sr	Cd	Sb	
	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	
BB-01	Fe % 12.56	As ppm 16	U ppm <8	Au ppm <2	Th ppm 7	Sr ppm 6	Cd ppm 1.8	Sb ppm <3	
BB-01 BB-02	Fe % 12.56 13.41	As ppm 16 13	U ppm <8 <8	Au ppm <2 <2	Th ppm 7 8	Sr ppm 6 4	Cd ppm 1.8 2.2	Sb ppm <3 <3	
BB-01 BB-02 BB-03	Fe % 12.56 13.41 10.45	As ppm 16 13 13	U ppm <8 <8 <8	Au ppm <2 <2 <2	Th ppm 7 8 2	Sr ppm 6 4 45	Cd ppm 1.8 2.2 1.3	Sb ppm <3 <3 <3	
BB-01 BB-02 BB-03 BB-04	Fe % 12.56 13.41 10.45 12.36	As ppm 16 13 13 7	U ppm <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2	Th ppm 7 8 2 6	Sr ppm 6 4 45 5	Cd ppm 1.8 2.2 1.3 1.6	Sb ppm <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04	Fe % 12.56 13.41 10.45 12.36 11.94	As ppm 16 13 13 7 6	U ppm <8 <8 <8 <8 <8 <8 8	Au ppm <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6	Sr ppm 6 4 45 5 6	Cd ppm 1.8 2.2 1.3 1.6 0.8	Sb ppm <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05	Fe % 12.56 13.41 10.45 12.36 11.94 14.61	As ppm 16 13 13 7 6 11	U ppm <8 <8 <8 <8 8 8 8 8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6	Sr ppm 6 4 45 5 6 14	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57	As ppm 16 13 13 7 6 11 8	U ppm <8 <8 <8 <8 <8 <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 6	Sr ppm 6 4 45 5 6 14 2	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40	As ppm 16 13 13 7 6 11 8 2	U ppm <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 9	Sr ppm 6 4 45 5 6 14 2 7	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83	As ppm 16 13 13 7 6 11 8 2 7	U ppm <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 9 8	Sr ppm 6 4 45 5 6 14 2 7 5	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1.8	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-05 BB-06 BB-07 BB-08 BB-09	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18	As ppm 16 13 13 7 6 11 8 2 7 6	U ppm <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 9 8 9 8 9	Sr ppm 6 4 45 5 6 14 2 7 5 2	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28	As ppm 16 13 13 7 6 11 8 2 7 6 <2	U ppm <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 9 8 9 8 9 11	Sr ppm 6 4 45 5 6 14 2 7 5 2 2	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37	As ppm 16 13 13 7 6 11 8 2 7 6 <2 <2	U ppm < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 6 9 8 9 11 <2	Sr ppm 6 4 45 5 6 14 2 7 5 2 2 2 <1	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64	As ppm 16 13 13 7 6 11 8 2 7 6 <2 <2 <2	U ppm < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8	Au ppm <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 <2 6	Sr ppm 6 4 5 6 14 2 7 5 2 2 <1 2	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13	As ppm 16 13 13 7 6 11 8 2 7 6 <2 <2 <2 <2 <2	U ppm < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8	Au ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 <2 6 <2	Sr ppm 6 4 5 6 14 2 7 5 2 2 1 2 19	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-14	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 2 2 1551	U ppm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Au ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 <2 6 <2 <2	Sr ppm 6 4 5 6 14 2 7 5 2 2 <1 2 19 1	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 0.5	Sb ppm <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-11 BB-12 BB-13 BB-13 BB-14 BB-15	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 2 2 1551 6	U ppm 8	Au pp 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 2	Sr ppm 6 4 45 5 6 14 2 7 5 2 2 1 2 19 1 98	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 0.5 <.5	Sb ppm 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-14 BB-15 BB-16	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7 35.7	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 551 6 72	U ppm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Au pp 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 4	Sr ppm 6 4 45 5 6 14 2 7 5 2 2 1 2 19 1 98 3	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 <.5 0.5 <.5 1.7	Sb ppm 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-14 BB-15 BB-16 BB-17	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7 35.7 7.52	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 5 5 1 6 72 35	U ppm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Au pp 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 4 2	Sr ppm 6 4 45 5 6 14 2 7 5 2 2 12 19 1 98 3 10	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 <.5 <.5 <.5 5.5 1.7 5.4	Sb ppm 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-13 BB-14 BB-15 BB-16 BB-17 BB-18	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7 35.7 7.52 32.5	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 551 6 72 35 23	U	Au m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 4 2 3	Sr ppm 6 4 5 6 14 2 7 5 2 2 12 19 1 98 3 10 1	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 5.5 5.5 1.7 5.4 0.6	Sb ppm 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-13 BB-14 BB-15 BB-16 BB-17 BB-18 BB-19	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7 35.7 7.52 32.5 39.06	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 5 5 1 6 72 5 2 3 5 2 3 116	U	Au m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 4 2 3 4	Sr ppm 6 4 45 5 6 14 2 7 5 2 2 1 2 19 1 98 3 10 1 1	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 5.5 5.5 1.7 5.4 0.6 11.5	Sb ppm 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3	
BB-01 BB-02 BB-03 BB-04 RE BB-04 BB-05 BB-06 BB-07 BB-08 BB-09 BB-10 BB-11 BB-12 BB-13 BB-13 BB-14 BB-15 BB-16 BB-17 BB-18	Fe % 12.56 13.41 10.45 12.36 11.94 14.61 11.57 >40 12.83 14.18 5.28 7.37 0.64 6.13 22.2 3.7 35.7 7.52 32.5	As ppm 16 13 13 7 6 11 8 2 7 6 2 2 2 2 2 2 551 6 72 35 23	U	Au m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Th ppm 7 8 2 6 6 6 6 9 8 9 11 2 6 2 2 2 4 2 3	Sr ppm 6 4 5 6 14 2 7 5 2 2 12 19 1 98 3 10 1	Cd ppm 1.8 2.2 1.3 1.6 0.8 2.2 1.3 1.8 1 2.2 1.3 1.8 1 1.7 <.5 <.5 <.5 <.5 5.5 5.5 1.7 5.4 0.6	Sb ppm 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3	

•

	_		0-		1.5	• ••	14-	De
	Bi	V	Ca %	P %	La ppm	Cr	Mg %	Ba ppm
BB-01	ppm 4	ppm 62	0.52	0.096	11	ppm 26	2.79	79
BB-01 BB-02	- - <3	52	0.41	0.030	6	25	2.59	74
BB-02 BB-03	<3	313	3.74	0.143	6	12	3	847
BB-04	4	52	0.48	0.033	3	25	2.52	61
RE BB-04	<3	49	0.46	0.031	4	24	2.44	56
BB-05	10	50	1.89	0.029	4	23	2.66	16
BB-06	<3	51	0.06	0.019	5	28	2.16	124
BB-07	111	2	0.08	0.021	7	1	0.14	257
BB-08	5	52	0.57	0.044	5	23	2.29	34
BB-09	<3	65	0.2	0.052	15	25	2.3	47
BB-10	21	1	0.09	0.043	6	5	0.02	18
BB-11	551	1	0.03	0.004	1	7	0.02	7
BB-12	<3	2	0.02	0.017	16	4	0.01	39
BB-13	4	1	2.46	0.01	1	5	0.86	67
BB-14	300	<1	0.03	<.001	1	8	0.15	5
BB-15	<3	87	1.38	0.307	14	42	2.25	209
BB-16	619	<1	0.01	0.003	<1	2	0.01	3
BB-17	60	1	1.97	0.003	<1	6	0.54	13
BB-18	97	<1	0.02	0.002	<1	4	0.01	5
BB-19	162	<1	0.02	<.001	<1	1	<.01	3
BB-20	182	<1	0.01	0.001	2	5	0.01	12
BB-21	25	<1	0.01	0.003	<1	5	0.01	2
	Ti	В	Al	Na	K	W		
	%	ppm	%	%	%	ppm		
BB-01	0.07	<20	3.54	<.01	0.54	<2		
BB-02	0.1	<20	3.71	<.01	0.5	<2		
BB-03 BB-04	0.31 0.05	<20	3.18 3.15	0.03 <.01	2.09	<2		
RE BB-04	0.05	<20 <20	3.15	<.01 <.01	0.26 0.29	<2 <2		
BB-05	0.03	<20 <20	3.03	<.01 <.01	0.29	<2 <2		
BB-06	0.08	<20	3.16	<.01	0.5	<2		
BB-07	<.01	<20	0.15	0.02	0.07	<2		
BB-08	0.01	<20	3.22	<.01	0.11	<2		
BB-09	0.04	<20	3.33	<.01	0.22	<2		
BB-10	<.01	<20	0.08	<.01	0.05	<2		
BB-11	<.01	<20	0.03	<.01	<.01	<2		
BB-12	<.01	<20	0.27	0.02	0.17	<2		
BB-13	<.01	<20	0.1	0.01	0.05	<2		
BB-14	<.01	<20	0.02	<.01	0.01	<2		
BB-15	0.21	<20	1.76	0.03	0.21	<2		
BB-16	<.01	<20	0.02	<.01	0.03	<2		
BB-17	<.01	<20	2.01	0.01	0.1	<2		
BB-18	<.01	<20	0.36	<.01	0.03	<2		
BB-19	<.01	<20	0.06	0.01	<.01	<2		
BB-20	<.01	<20	0.06	0.01	0.04	<2		4
BB-21	<.01	<20	0.02	0.02	<.01	<2		

• ..•

Brace Bridge Workings

BB-22 BB-23 BB-24 BB-25 BB-26 BB-27 BB-23	Method Analyte Unit Rock Rock Rock Rock Rock Rock Rock	3A Au PPB 110.1 50.2 128.1 314 255.3 26.2 50.2	1D Mo PPM <1 <1 <1 <1 <1 <1 <1	1D Cu PPM >10000 >10000 >10000 >10000 >10000 >10000	1D Pb PPM 4 8 9 23 12 39 8	1D Zn PPM 363 267 547 247 845 135 267	1D Ag PPM >100.0 45.3 80.4 45.4 >100.0 27.8 45.3	1D Ni PPM 40 49 54 26 27 80 49
Comple	1D Co PPM	1D Mn PPM	1D Fe %	1D As PPM	1D U PPM	1D Au PPM	1D Th PPM	1D Sr PPM
Sample BB-22 BB-23 BB-24 BB-25 BB-25 BB-26 BB-27 BB-23	15 35 37 22 12 98 35	704 6711 6593 726 713 6694 6711	19.02 12.63 17.92 9.68 19.45 16.35 12.63		<8 <8 <8 9 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 14 9 2 <1 25 14
	1D Cd PPM	1D Sb PPM	1D Bi PPM	1D V PPM	1D Ca %	1D P %	1D La PPM	1D Cr PPM
Sample BB-22 BB-23 BB-24 BB-25 BB-26 BB-27 BB-23	3.6 2.9 6.6 3.1 5.9 2.5 2.9	<3 <3 <3 <3 <3 4 <3	4 5 7 25 22 21 5	3 <1 2 1 2 <1 <1	0.98 5.42 3.71 0.5 0.03 5.21 5.42	0.003 0.003 0.002 0.003 0.002 0.007 0.003	3 6 5 2 5 4 6	4 3 4 6 4 5 3
Sample	1D Mg %	1D Ba PPM	1D Ti %	1D B PP M	1D Al %	1D Na %	1D K %	1D W PPM
BB-22 BB-23 BB-24 BB-25 BB-26 BB-27 BB-23	0.37 1.46 1 0.17 0.02 1.72 1.46	<1 1 <1 <1 <1 1	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<20 <20 <20 <20 <20 <20 <20	0.05 0.06 0.11 0.12 0.1 0.04 0.06	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.02 <0.01 <0.01 <0.01 0.02 0.02	10 5 9 <2 7 <2 5

•

÷

• . •

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHO Ruby Red Resources Inc. PROJECT BRACE BRIDGE Acme file # A706373 Received: AUG 20 2007 * 23 samples in this disk file. Analysis: AU* GROUP 3A - IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) ELEMENT Au* SAMPLES ppb

	ppo
G-1	<.5
BB-01	4.6
BB-02	13. 4
BB-03	3.5
BB-04	2.9
RE 88-04	2.4
BB-05	5.1
BB-06	3.9
BB-07	17.8
BB-08	7.5
BB-09	2.7
BB-10	75.5
BB-11	35405.6
BB-12	276.6
BB-13	54.4
BB-14	468.5
BB-15	7.2
BB-16	63.4
BB-17	25.8
BB-18	19.6
BB-19	73.7
BB-20	55.3
BB-21	17.2
STANDAR	722.1