Assessment Report

BC Geological Survey Assessment Report 30403

Rock Geochemistry on the Iron Mountain Mineral Claims Nicola Mining Division, B.C.

92I/02

UTM Zone 10 NAD83 602600E 6367500N

50⁰ 03' North Latitude **120⁰ 48'** West Longitude

For

Pembrook Mining Corp.

By

Tony Barresi

August 2008

Table of Contents

Introduction	3
Location and Access	3
Physiography, Climate and Vegetation	5
Claims and Ownership	5
Exploration History	7
Regional Geological Setting	8
Property Geology	8
Mineralization and Alteration	8
Work Completed 2006	14
Rock Geochemistry	14
Conclusions	17
Bibliography	19
Appendix A Statement of Qualifications	20
Appendix B Statement of Costs	22
Appendix C Rock Sample Descriptions	24
Appendix D Analytical Certificates	37

List of Tables

Table 1: Claim Status

List of Figures

Figure 1 Location Map Figure 2 Claim Location Map Figure 3 Regional Geology Figure 4 Property Geology and Mineralized Zones Figure 5 Rock Sample Locations

Geology and Geochemistry of the Iron Mountain Mineral Claims

Introduction

The Iron Mountain property, which includes tenures 545703, 522778,583337 and 522777, was visited from June 5, through June 10, in order to evaluate its economic mineral potential. Four geologists, Tony Barresi, Chris Leslie, Tim Sivak and Brett Hannigan, traversed the property in two person groups, with the aim of visiting all historical showings, locations with reported anomalous Cu, Au, and Ag concentrations, and to prospect areas which had no record of previous work (i.e. tenure 583337 and the NW edge of the property above the Coquihalla highway). Most traverses were conducted from the Island Shaft which is connected to Iron Mtn. road by an un-maintained subsidiary road.

The work described above successfully identified iron oxide copper-gold mineralization hosted by intermediate to felsic volcanics.

Location and Access

The Iron Mountain gold-copper project is located east of the Coquihalla Highway (B.C. Highway 5) just 7.5 kilometers south of the town of Merritt (NTS 092I/2W) (Figure 1). Access is via the Comstock rd. exit on the Coquihalla highway – to Gwen Lake Rd – and then Iron Mtn. road which crosses tenure 522777. The roads are well maintained but active log hauling occurs on Gwen Lake rd.

The Property consists of four claims totaling 1182 hectares. The property covers several zones of iron oxide-gold-copper mineralization on Iron Mountain, including the North, Diane and Charmer occurrences. The central Diane Zone is 250 meters south of Stirling Creek, 2.5 kilometers west-southwest of the summit of Iron Mountain.

Physiography, Climate and Vegetation

The property is located in the intermontane belt with moderate annual precipitation, cool summers and cold winters. The area consists of a broad erosional plateau with extensive glacial cover incised by gentle drainages. Elevations range from 1500 to 1800 meters above sea level. Tree line is at roughly 1600m. Below tree line the forest is dominated by short subalpine fir and willow while above tree line vegetation is dominantly lichen, short grasses and minor clumps of dwarf birch and willow. The claims are largely covered by a thin veneer of glacial till although several of the higher areas have a large proportion of outcrop.

Claims and Ownership

The Iron Mountain property consists of 4 claims in good standing covering 1182.84 Hectares as indicated on Figure 2. They are owned 100% by Paget Resources Corp., a wholly owned subsidiary of Pembrook Mining Corp. Claims 522778, 522777 and 545703 are currently valid until November 25, 2008, and claim 583337 is valid until April 30, 2009.

Table 1: Claim Status

Tenure Number	Owner	Map Number	Good To Date	Status	Area
522778	201036 (100%)	0921	2008/NOV/25	GOOD	415.002
522777	201036 (100%)	0921	2008/NOV/25	GOOD	103.7857
545703	201036 (100%)	0921	2008/NOV/25	GOOD	456.605
583337	201036 (100%)	0921	2009/APR/30	GOOD	207.452

Exploration History

The earliest exploration reported in the Iron Mountain area took place around the turn of the century. This work focused on base metal mineralization occurring as stringers and blebs in andesitic flows and pyroclastics and culminated in the sinking of three shafts, the Charmer, the Islander and the Victoria in 1896. Subsequent development in the area does not appear to have occurred until 1927 when Emmitt Todd located a galena-sphalerite-barite vein along a sediment/rhyolite contact 1.1 kilometers northeast of the Charmer shaft. Local silver and copper mineralization was also reported. A 32 meter shaft known as the Leadville was sunk in the following year, but it was not until 1947 that any production occurred. In that year, 36 tons of ore containing 67 ounces of silver, 11,810 pounds of lead and 484 pounds of zinc was shipped to Trail.

In 1951, Granby Consolidated Mining and Smelting Power Company Limited optioned the Leadville property and dewatered the shaft. No further work was undertaken until 1958 when diamond drilling was performed north of the Leadville by New Jersey Zinc. By 1961, local interests began development around the Charmer and Islander shafts. This work included extensive trenching, stripping and sampling. Five years later, Manor Mines drilled two holes near the Leadville shaft.

Between 1968 and 1974, Acoplomo Mining and Development Company Ltd. of Merritt staked the Makelstin claims over the south slopes of Iron Mountain and conducted a program of linecutting, geophysics, geochemistry, geological mapping, prospecting, trenching and approximately 200 meters of diamond drilling. The claims were subsequently allowed to lapse. The ground was again staked two years later by Quintana Mineral Corp. who conducted a short program of geochemistry and geology. Between 1979 and 1981, JMT restaked the area surrounding the original workings as the Gyproc Group and conducted an exploration program for Chevron Minerals Ltd., who subsequently relinquished their option.

In 1983, Aberford Resources Ltd. located the Diane 1-5 claims west of the Gyproc Group based on anomalous results from a regional reconnaissance geochemical program. Subsequent work, including prospecting, geological mapping and geochemistry was successful in outlining seven areas of mineralization. The 1984 exploration program on the Diane claims (Stirling Group) was conducted by Kidd Creek Mines Ltd. and included ground geophysics and soil and rock geochemistry.

In 1986, International Maple Leaf Resource Corp. entered into an option agreement with Abermin Corporation (formerly Aberford Resources Ltd.) and undertook a program of soil and rock geochemistry, geological mapping, prospecting and trenching, carried out by Orequest Consultants Ltd. of Vancouver. An airborne geophysical survey was also conducted by Aerodat Ltd. of Mississauga, Ontario.

In 1987-1988, the Aberford road was up-graded and several new sections added in order to provide better all-weather access. In addition, limited cat trenching was undertaken in order to locate extensions of the mineralization. In order to test the mineralized trend

within the Original Zone, nine diamond drill holes were completed from four pads established west of the trenches excavated in 1986.

Regional Geological Setting

The Iron Mountain area is underlain by a northeast trending belt of Upper Triassic volcanic and sedimentary rocks of the Nicola Group. Iron Mountain is located within a northeast-trending fault-bounded segment of the Nicola Group which represents the southern structural extension of the Nicola Horst (Figure 3). Evidence of Proterozoic basement has been documented in the core of the Nicola Horst northeast of the property (Erdmer, 2002). The Nicola Horst is bounded by northeast trending faults which were active during regional Eocene extension. Nicola Group within the horst is bounded on its west side by Lower Cretaceous andesites of the Spences Bridge Group and Eocene andesites of the Princeton Group.

The western Nicola belt, in which the Iron Mountain Project is situated, comprises an east to southeast facing sequence of calc-alkaline andesitic flows that grade upward into pyroclastic rocks, epiclastic sediments and abundant limestone. Intrusive rocks of probable Late Triassic – Early Jurassic age crop out about four kilometers southwest of the property.

Property Geology

The claim area is underlain by a thick (at least 3 km) pile of intermediate volcanic rocks that dip steeply (65° - to vertical), towards the E and SE. Most volcanic units are thin and not laterally extensive, suggesting a chaotic volcanic environment proximal to a volcanic centre. In general the lowermost strata, near the Coquihalla and on the lower reaches of the NE and E sides of Iron Mountain are dominated by plagioclase porphyritic and vesicular/amygdaloidal (epidote, chlorite, calcite and quartz) andesite flows. Above the 1200 meter contour lava flows occupy approximately 30% of the exposed rock and are interbedded with pyroclastic and epiclastic volcanics. These include varieties of tuffs (ash, crystal, and lapilli), as well as volcanic sandstones and conglomerates. A number of exposures of flow-banded dacite, with limited lateral extent are evidence of local felsic volcanic centers. Felsic lapilli and ash layers in pyroclastic and epiclastic rocks are probably lateral equivalents of these dacitic domes. Sedimentary intervals are rare and are limited to shales and laminated (exhalative?) red hematite and jasper layers; previous reports of limestone intervals were not observed in outcrop or talus. The top of the exposed volcanic sequence is located to the east of the Iron Mountain property; it is reported to contain abundant felsic (including rhyolite) volcanics which are host to silver-lead-zinc-barite mineralization of possible volcanogenic origin (Leadville occurrence). Minor brittle structures are apparent on the property but have very limited lateral extent. No evidence was observed to substantiate the NW-SE striking vertical fault which some workers have postulated runs up Stirling Creek. There is no evidence of ductile or penetrative deformation on Iron Mountain.

Alteration and Mineralization

The upper and lower portions of Iron Mountain have distinct characteristics of alteration and mineralization which roughly correspond to the upper and lower andesite lithological units.

Lower Iron Mountain

The lower andesite unit, which is composed of mainly andesite flows, has pervasive epidote and patchy chlorite alteration. Epidote occurs as radiating acicular sprays within vesicles, as veins, and hardball sized globs within the andesite; in most locations feldspars have been replaced by saussurite. Mineralization is very sparse in the lower andesite unit and consists of euhedral disseminated pyrite and blebs of specular hematite. Pyrite can occupy up to 15% volume of the rocks in meter wide halos around brittle fracture zones. It typically occupies approximately 1 % volume in rusty outcrops which are abundant in the lower unit. Hematite is rare in the lower unit but was observed in at least two locations as < 1% disseminated blebs.

Upper Iron Mountain

According to petrographic work carried out in 2006, all of the rocks on upper portions of Iron Mountain have experienced significant amounts of sericite alteration; such that they are labelled quartz sericite schist in petrographic reports. Observations during 2008 fieldwork failed to identify pervasive, textural destruction, penetrative fabrics, or visible alteration on upper Iron Mountain. Rather, these rocks appear pristine in most locations, and are affected by bleaching, sericite and silica alteration in localized (usually less than 2 meter wide) zones. Broader zones of Fe and Fe-Ca alteration are patchy throughout the upper unit, and are characterized by disseminated specular hematite (up to 2% volume), ankerite veins and limonite. Fe and Fe-Ca alteration zones usually form an envelope around areas with Fe + Cu \pm Au mineralization, but they are not always associated with historical Au occurrences.

The following section includes observations made from a number of historical showings on upper Iron Mountain (Figure 4)

Charmer Zone

The Charmer Zone consists of three shafts named, in order from the SE to NW, the Charmer, Island and Victoria shafts, as well as a number of trenches that extend west of the Island Shaft. The most impressive mineralization occurs at the Island shaft which also has the most evidence of former workings. Here a pervasive Fe and Fe-Ca alteration halo surrounds discreet zones of intense chlorite, sericite and silica alteration which collectively occupy an exposed 15 X 50 m area. NE striking and near vertical quartz and specular hematite veins are strongly associated with chalcopyrite blebs that occupy up to 1% volume. Cu staining is abundant but not pervasive on fracture surfaces along the full extent of exposure. A NE striking trench truncates the NW portion of the outcrop and appears to have sampled strongly brecciated and sericite altered bleached andesite with hornblende phenocrysts that have been replaced by chlorite. The Island Shaft exploited the most silica altered and Cu stained rocks. The Charmer and Island shafts exploited much more localized zones of mineralization. At the Charmer shaft no mineralization extends beyond the limit of the shaft, but samples taken from the tailings are silica flooded and contain up to 1% chalcopyrite, abundant specular hematite (cobble sized massive pieces), and are Cu stained. The Victoria Shaft exploited a discreet bedding parallel zone, which extends along strike beyond the shaft as an up to 1 meter thick silica flooded zone with massive hematite, malachite, and up to 1% chalcopyrite. The lateral extent of the zone could not be tested beyond 20 meters due to limited exposure. Although the three shafts are aligned on a NW trending line, outcrops between shafts are poorly mineralized with patchy Fe/Fe-Ca alteration and rare hematite veins, suggesting that their alignment is coincidental. Trenches that lie to the west of the Island Shaft expose rocks with patchy Fe/Fe-Ca alteration envelopes that include discreet zones of silica and sericite alteration. Disseminated and vein hematite constitute the only visible mineralization in these trenches, however a historical Au sample was collected from an outcrop of dacite with minor silica veining and flooding.

Original Zone/South Zone/Diane Zone

This area is exposed in a series of trenches that cross pervasive Fe/Fe-Ca altered rock. Within the Fe altered envelope discreet (less than 3 m wide) zones of chlorite, silica and sericite alteration are also present. The mineralized area forms a NW-SE trending zone that extends over 540 meters which includes 200 meter elevation change. It is hosted in epiclastic and pyroclastic intermediate volcanics. The base of the zone is characterized by minor Fe alteration with disseminated hematite and jasper veins. Farther up in the zone, specular hematite veins become thick (up to 40 cm), and in places there is hematite replacement of groundmass in lapilli tuffs; here some of the hematite veins and zones also contain up to 2% disseminated chalcopyrite. In addition, discreet zones of sericite alteration with quartz veinlets are present and are commonly associated with Cu staining. Cu concentration and silica/sericite alteration are associated with minor brittle faults, brecciation, and increased jointing; hematite veins sometimes occur independent of these features. The most impressive mineralization in the Original Zone occurs across 1 meter in trench 8, where a brittle fault oriented 200/72 is the focus of Fe and Cu mineralization. The structure is 5 meters long; it is truncated to the NE by another minor fault, and to the SW it grades into increasingly unfractured/unmineralized rock. The mineralization includes anastomosing hematite veins, and quartz veinlets, both containing chalcopyrite, and abundant Cu staining on fault surfaces and gouge. The top of the Original Zone has very little Cu mineralization and is characterized by Fe alteration, and white quartz and jasper veins. Veins within the Original Zone occur in all orientations; however, zone parallel NW-SE striking vertical veins are the most abundant. Tectonic structures typically cross-cut the zone at oblique angles, and joint sets are in all orientations. The Original Zone is limited in surficial extent to the area exposed in trenches. Outcrops at the limits of the trenches, and outside of the trenches, are unmineralized and only sparsely Fe altered.

Lowell Zone

This zone consists of a single road parallel trench Located 200 meters south of the uppermost trench of the Original Zone. It exposes parallel east-west striking quartz, hematite + chalcopyrite, and massive malachite veins in variably Fe-Ca altered andesite. The zone is approximately three meters wide, and is open at depth and to the west. The veins do not extend into outcrops upslope to the east or along strike.

North Zone

The North Zone is composed of a series of historical and unconnected Cu and Au showings. The area is characterized by patchy and weak Fe alteration (including minor epidote). A few discreet areas less than a meter wide have historically returned significant Cu \pm Au values. The showings that include Au contain narrow (2 cm thick) quartz/hematite veins with a trace of chalcopyrite and Cu staining. Other Cu bearing zones are laterally continuous N-NE striking 5 to 30 cm thick hematite veins, up to 30 cm thick, which are associated with Cu staining, chalcopyrite blebs and fault breccias/gouge. The various historical showings in this area do not seem to be part of a broader zone of mineralization and alteration like the Original Zone.

New Areas and Other Cu-Au anomalies

Traverses led through a wide variety of areas that had no previous recorded work. These areas were barren of mineralization although minor Fe alteration in the form of disseminated hematite and ankerite were occasionally present. Locations on the N and W side of the property which had historical Cu and Au concentrations were also visited. In several cases the locations of these samples could not be identified; the locations of the outcrops may be been recorded incorrectly, or the outcrops may have been destroyed or buried. On the western side of the property the locations of some rocks that contain anomalous but sub-economic Au concentrations were identified. Au in these rocks is related to localized (1 to 5 meter square) zones of intense sericite alteration.

Work Completed 2008

The Iron Mountain property was visited from June 5 through June 10, in order to evaluate its economic mineral potential. Four geologists, Tony Barresi, Chris Leslie, Tim Sivak and Brett Hannigan, traversed the property in two person groups, with the aim of visiting all historical showings, locations with reported anomalous Cu, Au, and Ag concentrations, and to prospect areas which had no record of previous work (i.e. tenure 583337 and the NW edge of the property above the Coquihalla highway).

Mapping and rock sampling was completed on tenures 545703, 522778,583337 and 522777.

Rock Geochemistry

Rock samples were collected from mineralized zones on the property in order to define the character and location of the mineralization. The samples types vary from selected grab samples of mineralized rock to continuous chip samples across a specific width. Samples were collected in plastic sample bags and sealed with plastic zip ties. Sample locations were recorded by GPS. Samples were taken to International Plasma Laboratories of Richmond, B.C. directly from the project area in sealed bags with security tags. Sample locations are marked with flagging tape and embossed aluminum tags.

At the laboratory, the samples were dried crushed and pulverized using standard rock preparation procedures. The pulps were then analyzed for Au using a 30 gram fire assay with AA finish and for 30 elements by ICP. Quality control at the laboratory is maintained by submitting blanks, standards and re-assaying duplicate samples from each analytical batch.

Rock sample descriptions and analyses are in Appendix C. Several distinct areas were sampled; sample locations are identified on Figure 5.

Charmer Zone

16 samples were collected from the Charmer Zone, including samples from near each of the three adits within the zone. 10 of the 16 samples contained 0.2% Cu or higher and five had 0.5% Cu or higher. The best samples (0162014, 0162015 and 0162016) were collected from the vicinity of the Victoria Adit. These include a grab sample from the tailings pile with 13 g/t Au, 10 g/t Ag, and 2.9% Cu; and a 1.2 m continuous chip sample with 4 g/t Au, 3 g/t Ag and 1.3% Cu.

Original Zone/ Diane Zone

24 samples, including 11 measured chip samples were collected from the Diane Zone, mainly from exposures in the 11 historical trenches that were excavated in 1986 (Cavey,

1986). The samples represent the most visibly altered and mineralized rocks exposed throughout the zone. 14 of the samples contain over 0.1% Cu with an arithmetic average of 0.31%. Samples 0162030 and 0159508 have 1.04% (over 1.23 meters) and 1.31% Cu respective. In general Cu concentrations are elevated in all hematite bearing rocks. Au concentrations are elevated in particular areas, usually associated with quartz alteration or veining. Sample 0162027 was pervasively silica altered and yielded 3.41 g/t Au and 0.12% Cu over 1.28 meters, and sample 0159519, a pervasively hematite and quartz veined andesite yielded 2.16 g/t Au and 0.198% Cu over 1.5 meters.

Lowell Zone

Four contiguous chip samples and three grab samples were collected from the Lowell Trench. An average of the four chip samples weighted by sample length yielded 1.06 g/t Au and 0.31 % Cu over 3.38 meters, including 1.5 g/t Au over 1 meter and 1.13% Cu over 0.38 meters. Grab samples were considerably higher grade with up to 19.5 g/t Au and 8.87% Cu.

North Zone

15 samples were collected from the North Zone including two chip samples. Despite the historical record of elevated Au in this area, very few of these samples had economically significant Au concentrations (the highest value is 1 g/t and only 3 samples were over 0.1 g/t). Cu is prevalent in the sampled intervals and the arithmetic average of Cu in all samples collected is 0.43%. 9 of the 15 samples have over 0.2% Cu and sample 0159524 yielded 2.48% Cu. Sample 0159525 is a 1.73 meter measured chip sample that crosses the zone from which the aforementioned high-grade sample was collected: this sample yielded 0.68% Cu over 1.73 meters. Samples collected from the lower elevations of the North Zone yielded the lowest grades despite containing traces of visible chalcopyrite.

New Areas and Other Cu-Au anomalies

9 samples, including one chip sample, were collected from outside of traditional areas of exploration in the Iron Mountain property. None of these samples contained significant Au concentrations, but two samples of mineralized talus (samples 162049 and 159530) yielded 0.85% and 1.76% Cu respectively. The sources of these talus boulders could not be located.

Interpretation of Mineralization and Alteration

The differences in alteration and mineralization between the upper and lower reaches of Iron Mountain correspond to differences in lithology and crustal levels. We propose that the alteration and mineralization styles shift as a result of a) rock permeability and b) oxidizing vs. reducing chemical conditions. At the lower reaches of Iron Mountain pervasive but relatively low amounts of Fe-Ca enrichment are present in the form of epidote veining, feldspar saussuritization, and disseminated pyrite. Higher up on Iron Mountain rocks are no longer enriched pervasively, rather Fe-Ca is very strong but limited to discreet areas, usually with increased fracture permeability. The transition between these two types of Fe-Ca enrichment also coincides with the contact between the upper and lower andesite units. Based on these observations we suggest that when Fe-Ca rich fluids inundated the rocks exposed at the base of Iron Mountain, the lack of permeability and brittle structures, caused a homogeneous and pervasive alteration. In the upper unit the permeability of the epiclastic rocks, as well as the increased abundance of joint-sets and tectonic structures, allowed fluids to become concentrated in particular conduits. In addition, at the higher crustal level, the chemical conditions may have changed from reducing to oxidizing, encouraging the precipitation of hematite as opposed to pyrite. The concentration of Fe in conduits of high permeability in the upper andesite unit is also responsible for $Cu \pm Au$ mineralization. Copper was most likely scavenged from the volcanic pile during fluid migration; the amount of Fe enrichment is inconsistent with leaching from the volcanic pile, and is probably from a deeper source.

While some Fe-Cu showings also contain Au, many of the Au showings on Iron Mountain occur with very little Cu, and sometimes with no Fe; in these cases they coincide with strong but localized sericite alteration or quartz veins. We suggest that while Au was likely mobilized into some of the Fe-Cu showings, some of the Au showings on Iron Mountain are independent of that mineralizing event. In general Au concentrations are low and showings are very limited in size.

Conclusions

- 1. Iron Mountain is composed of a lower flow dominated andesite unit and an upper epiclastic/pyroclastic intermediate volcanic unit with minor andesite flows and localized dacitic domes.
- 2. Alteration and mineralization on Iron Mountain are related to Fe-Ca fluids which have affected the upper and lower parts of the mountain differently.
 - a. The lower unit is pervasively altered with epidote veins, saussuritized felspars, and disseminated pyrite
 - b. The upper unit is altered in patchy but discreet zones with hematite ankerite and limonite. Within these Fe-Ca envelopes there are narrow zones of more intense Fe, silica and sericite alteration; these zones are also the locations of $Cu \pm Au$ mineralization.
- 3. The differences in mineralization style between upper and lower units is likely due to differences in oxidizing vs. reducing environments and the increased amount of permeable conduits in the upper unit.
- 4. While Au has been mobilized into Fe-Cu related structures, its occasional occurrence independent of these structures suggests that it may be related to a separate mineralizing event.

Bibliography

Cavey, G., LeBel, L. and Jerema, M. (1986). Report on detailed geological, geochemical and geophysical surveys for International Maple Resource Corporation on the Stirling Group, Diane 1-5 Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 16,058.

Christopher, P. (1989). Geochemical, geological, geophysical and diamond drilling assessment report on the Iron Mountain Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 18,888.

Crooker, G.F. (1987). Geological and geophysical assessment report on the Iron Mountain property, Nicola Mining Division, Merritt area, B.C. for Golden Dynasty Resources Ltd. (quoted in Christopher, 1989).

Erdmer, P., Moore, J.M., Heaman, L., Thompson, R.I., Daughtry, K.L. and Creaser, R.A. (2002). Extending the ancient margin outboard in the Canadian Cordillera: record of Proterozoic crust and Paleocene regional metamorphism in the Nicola horst, southern British Columbia. Canadian Journal of Earth Sciences, v. 38, pp. 1605-1623.

Haynes, D.W. (2002): Iron Oxide Copper (-Gold) Deposits: Their Position in the Ore Deposit Spectrum and Modes of Origin. *in* Porter, T.M. (Ed), 2002 - Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, volume 1; PGC Publishing, Adelaide, pp 71-90.

Meyers, R.E., Moore, J.M., Hubner, T.B., and Pettipas, A.R. (1990): Metallogenic Studies in South-Central British Columbia: Mineral Occurrences in the Nicola Lake Region (92I/SE). Exploration in B.C. 1989. B.C. Ministry of Energy, Mines and Petroleum Resources, pp. 119-134.

Nelles, D.M. (1988): Diamond drilling report on the Stirling Group (Diane 1-5 Mineral Claims). B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 17721.

Appendix A Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Tony Barresi, B.Sc., certify that:

- I am a self employed consulting geologist with a business address located at: 62 East Side Dr. Ketch Harbour, NS, Canada B3V 1K5
- 2. I graduated from Saint Mary's University in 2005 with a Bachelor of Science in Geology and am currently a Ph.D. candidate at Dalhousie University.
- 3. Since 2004 I have been continuously employed in exploration for base and precious metals in North America.
- 4. I supervised and participated in the 2008 exploration program from June 5th to June 10th, 2008 and am therefore personally familiar with the geology of the Iron Mountain Property and the work conducted in 2008. I have prepared all sections of this report.

Dated this 25st Day of September, 2008

Joner Barris, Signature

Tony Barresi, B.Sc.

Appendix B Statement of Costs

Item	Name Date	#	Cost	Item sub-total	Comment
IRON MOUNTAIN					
WORK COSTS					
Geological - salaries and wages		davs	daily rate		
Geological - salaries and wayes	Tony Barresi	uays 6	450	2700	
	Chris Lesley	6	325	1950	
	Tim Sivak	6	225	1350	
	Brett Hannigan	6	250	1500	
					7500.00
Early Assessment delivery and the					
Food & Accommodation: on-site	Lintal	man-days	rate	1010 00	
	Food	7	174.14	1218.98	
	1000	/	175.45	1220.01	2446 99
					2440.77
Report		days	daily rate		
	Preparation	2	450	900	
	Materials, maps, binding, copying			0	
					900.00
Geochemical	De de completere	74	rate	4775	
	Rock sample assays	/1	25	1//5	
	Freight	1	03.34	03.34	1840 54
Vehicle			rate		1040.34
	Truck rental	7	80	560	
	Mileage	400	0.25	100	
	-				660.00
MOB/DEMOB COSTS					
Food & Accommodation: travel to/from site		man-days	rato		
Tood & Accommodation. traver to/morn site	Hotel	2	90	180	
	Food	2	95	190	
					370.00
Wages: travel to/from site		days	daily rate		
	Tony Barresi	2	450	900	
	Chris Lesley	2	325	650	
	Tim Sivak	2	225	450	
	Brett Hannigan	2	250	500	2500.00
Vehicle			rate		2300.00
- 511010	Truck rental	2	80	160	
	Mileage	1195	0.25	298.75	
	~				458.75
		SUBTOTAL	L work/m	ob-demob	16676.28

Assessment work to claim: 16676.28

Appendix C Rock Sample Descriptions

					Sample	
. .	_			Elevation	Length	
Sample	Area	UTM E	UTM N	(m) Type	(m) if chip	Description
0450504		050045		4504 01	0.75	Parallel zones of massive hematite, narrow and wispy qz veins and Cu stained
0159501	Charmer	659345	5544644	1564 Chip	0.75	andesite
0450500	Charman	050070		1552 Orah		Best material from the Charmer Shaft 1 Dump; Quartz flooded volcanics, trace of
0159502	Charmer	659273	5544587	1553 Grad		Charco + malachite and 20% nematite
0150503	Charmor	658507	5544720	1565 Grab		lots of fractures: trace of purite
0159505	Channel	030397	5544720	1303 Giab		Weakly silicified decitic volcanics: minor clay alteration in places. Location of
0159504	Charmer	658694	5544720	1551 Grab		large historical Au sample - Reason for Au undetermined
0100001	Chambr	000001	0011120			large meterioal / a bampie - reducer for / a anacterminoa.
0159505	Charmer	658795	5544832	1580 Grab		Highly clay altered (Kalonite?) intermediate volcanic with 10% hematite blebs
0159506	Charmer	658795	5544832	1580 Grab		80% hematite veins in grev intermediate volcanic rock.
	••••••		0011002			Clav and silica altered volcanic rock with 10% Qz veins + 5 - 10 % disseminated
0159507	Charmer	658847	5544843	1585 Chip	1.1	hematite + hematite veins.
				·		high grade grab samples, hematite-malachite-chalcopyrite altered; jasper +/- qtz
0162010	Charmer	659047	5544885	1598 grab		veined aphanitic intermediate volcanic
						high grade sample from trench wall, chalcopyrite-malachite-hematite qtz vein
0162011	Charmer	659037	5544886	1581 grab		with small amounts of host andesite
						aphanitic intermediate-mafic volcanic with abundant chlorite pseudomorphs,
						pervasive manganese and limonite, jasper/qtz veins host for malachite and
0162012	Charmer	659058	5544914	1580 chip	1	hematite mineralization
						perverive attaining (an earle) with melochite and hemotite mineralization heat
0162013	Charmor	650058	5511011	1580 chip	1	is variably silicitied felsic (associated with veining?) enclastic local issner veins
0102013	Channel	039030	5544514		I	is variably sincined reisic (associated with venning?) epiciastic, local jasper vents
						victoria shaft, intensely mineralized gtz vein material, hematite-malachite-azurite-
0162014	Charmer	658820	5545154	1560 grab		chalcopyrite mineralization, cherry picked from pile, limonite after hematite
				5		on strike with mined rocks at victoria shaft; bedding parallel malachite-hematite
						2cm qtz vein, coherent mafic and intermediate interflow volcanics, vuggy limonite
0162015	Charmer	658825	5545135	1568 chip	1.22	boxwork 5cm vein
						plag porphyro-aphanitic andesite with massive hematite +/- malachite (exposed
0162016	Charmer	658718	5545199	1552 chip	0.75	on fracture surfaces), small chlorite altered veinlits
0162017	Charmer	658718	5545199	1552 grab		high grade hematite +/- malachite vein
0162018	Charmer	658738	5545176	1551 grab		rusty aphanitic intermediate volcanic, small (1mm) qtz veins

Sample	Au1	Au2	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	ТΙ	Bi	Cd	Со	Ni	Ва	W	Cr	V	Mn	La	Sr	Zr	Sc	Ti	AI
0159501	0.08		-0.1	1999	-2	137	-5	-5	-3	2	4 -10	-2	0	41	9	119	-5	35	64	1215	11	4	-1	3	0.01	2.91
0159502	0.33		0.4	4496	-2	43	-5	-5	-3	(6 -10	-2	0	6	4	81	13	139	5	366	8	1	-1	-1	0.01	0.15
0159503	0.02		-0.1	108	-2	145	18	-5	-3	2	2 -10	-2	0	4	2	345	-5	67	2	879	6	7	2	2	-0.01	0.19
0159504	-0.01		-0.1	16	-2	65	-5	-5	-3		1 -10	-2	0	4	3	161	-5	58	5	704	8	3	1	2	0.01	0.39
0159505 0159506	0.02 -0.01		-0.1 -0.1	58 -1	-2 -2	11 17	-5 -5	-5 -5	-3 -3	4	2 -10 1 -10	-2 -2	0 0	18 14	2 5	46 31	-5 5	40 58	8 14	34 48	11 6	3 -1	-1 -1	-1 -1	0.04 0.02	0.26 0.08
0159507	-0.01		-0.1	3	-2	9	-5	-5	-3		1 -10	-2	0	3	2	60	-5	34	16	33	8	4	-1	2	0.03	0.41
0162010	0.21		0.7	5480	-2	49	-5	-5	-3	-*	1 -10	-2	0	17	6	25	12	30	16	210	9	-1	-1	1	0.01	0.82
0162011	0.10		1.1	5631	-2	53	-5	-5	-3		1 -10	-2	0	12	5	68	-5	53	8	486	3	-1	-1	1	-0.01	1.30
0162012	0.08		1.2	9512	-2	81	-5	-5	-3	4	2 -10	-2	0	31	6	21	-5	24	10	196	6	1	-1	2	-0.01	0.74
0162013	0.43		1.0	1963	-2	86	38	11	-3	4	2 -10	-2	0	31	6	42	-5	24	48	402	5	10	-1	4	0.03	1.23
0162014	11.13	13.15	9.9	27805	-2	117	-5	-5	-3		1 -10	-2	0	31	9	117	-5	55	33	314	4	2	-1	2	-0.01	1.94
0162015	4.07	4.03	2.9	12903	-2	175	-5	-5	-3	2	4 -10	-2	0	13	8	37	-5	21	39	589	13	3	-1	3	-0.01	3.34
0162016 0162017 0162018	0.08 0.04 0.03		2.8 0.3 -0 1	13322 3836 115	-2 -2 -2	45 37 246	-5 -5 -5	-5 -5 -5	-3 -3 -3	6 1(6 -10) -10	-2 -2 -2	0 0 0	24 41 17	5 6 6	53 27 68	8 8 -5	12 11 20	25 29 112	220 200 3121	11 18 6	3 -1 8	-1 -1 -1	4 3 11	-0.01 0.02 0.01	0.39 0.11 3.25
5102010	0.00		0.1	110	~	240	0	0	5	,	- 10	~	0	.,	0	00	0	20	4	5.21	0	0		• •	0.01	0.20

Sample	Fe	Mg	Κ	Na	Р	
0159501	15.63	0.90	0.16	-0.01	0.12	
0159502	5.34	0.06	0.03	0.01	0.02	
0159503	1.48	0.01	0.17	0.01	0.07	
0159504	3.52	0.04	0.19	0.01	0.06	
0159505 0159506	8.72 19.80	0.01 -0.01	0.22 0.03	-0.01 -0.01	0.04 0.02	
0159507	5.94	0.04	0.29	0.01	0.04	
0162010	14.42	0.21	0.14	-0.01	0.03	
0162011	5.34	0.37	0.16	0.01	0.03	
0162012	6.84	0.17	0.25	0.01	0.05	
0162013	9.30	0.39	0.27	0.04	0.05	
0162014	10.32	0.54	0.16	0.01	0.07	
0162015	13.40	0.92	0.23	0.01	0.12	
0162016 0162017 0162018	19.77 24.32 10.37	0.02 -0.01 1.94	0.23 0.04 0.09	0.01 -0.01 0.03	0.10 0.01 0.17	

				Elevation		Sample	
Sample	Area	UTM E	UTM N	(m)	Type	(m) if chip	Description
Campio	7.1.04	••••	•••••	(,	.) 60	() •p	high grade grab sample, malachite bearing gtz veins (1mm), minor pyrite in host
0159508	Diane	658344	5545236	1446	grab		mafic volcanics
					0		high grade kspar (?)-chlorite altered silicified intermediate plag porphyritic
0159509	Diane	658341	5545225	1426	grab		volcanic, qtz veins (1mm) with euhedral hematite crystals
0159510	Diane	658341	5545225	1426	grab		grab, black plag porphyritic intermediate volcanic, disseminated pyrite, silicified
							fractured aphanitic andestite, locally fractures contain qtz and hematite
0159511	Diane	658313	5545387	1406	grab		
0159512	Diane	658313	5545387	1406	grab		kspar (Fe qtz?)/qtz vein material with plag porphyritic andesite host massive hematite associated with qtz and jasper veins (1-2mm) and host
0159513	Diane	658288	5545399	1398	grab		aphanitic andesite
							high grade qtz and hematite filled amydalules (up to 1.5 cm), sericite + chlorite
0159514	Diane	658292	5545419	1395	grab		altered andesite, local qtz veining with hematite mineralization
	_						structually controlled mineralization, 40cm of intense hem+malachite (+bornite?)
0159515	Diane	658278	5545424	1392	chip	1	mineralization, brittle fault gouge is also mineralized
0450540	D .	050070		4000			high grade grab from mineralization from chip (0159515), hematite vein
0159516	Diane	658278	5545424	1392	grab		(+bornite?) with malachite mineralization in nost rock
							high grade hematite-azurite-malachite mineralization locally associated with
0159517	Diane	658275	5545435	1392	grab		small wispy oxidized qtz veins, dark green aphanitic intermediate volcanic host
							rusty weathering, fractured, plag porphyritic and epiclastic volcanics, hematite
0159518	Diane	658266	5545456	1384	channe	e 1.5	5 mineralization pervasive throughout, qtz veining define fracture pattern
							(top ~75%) rusty, pervasively hematite veined, chlorite altered aphanitic volcanic,
	_ .						(bottom ~25%) dark grey, plag porphyritic, wispy qtz veins (1mm), hematite
0159519	Diane	658266	5545456	1384	channe	e 1.5	pervasive, local malachite associated with veining
0162019	Diane	658048	5545541	1305	Grab		Layered red jasper - not apparently mineralized
0162020	Diane	658091	5545528	1318	Grab		Chlorite altered andesite with 30-40% volume hematite veins 35 cm wide hematite vein with a trace of chalcopyrite + Cu staining. Wall rock
0162021	Diane	658144	5545558	1325	Chip	1.13	3 also Cu stained
0162022	Diane	658144	5545558	1325	Chip	1.37	7 Brecciated sericite altered Fe and Cu stained rock with 15% hematite veins
0162023	Diane	658144	5545558	1325	Grab		Strongly bleached, sericite altered and fractured rock
0162024	Diane	658179	5545526	1340	Chip	1.64	Sericite altered Cu stained volcanic
0162025	Diane	658179	5545526	1340	Chip	0.82	2 Cu stained 15 cm wide hematite vein with Cu stained wallrock
					-		

Sample	Au1	Au2	Ag	Cu	Pb	Zn	As :	Sb	Hg	Мо	TI	Bi	Cd	Со	Ni	Ва	W	Cr	V	Mn	La	Sr	Zr	Sc	Ti	AI
0159508	0.08		-0.1	13191	-2	43	-5	-5	-3	1	I -10	-2	0	36	67	21	-5	48	28	663	7	2	-1	2	0.02	2.00
0159509	0.02		-0.1	31	-2	97	-5	-5	-3	1	I -10	-2	0	14	8	61	-5	59	68	1822	6	7	2	7	0.08	1.80
0159510	-0.01		-0.1	59	-2	77	-5	-5	-3	3	3 -10	-2	0	11	6	64	-5	54	37	1693	6	6	-1	5	0.04	1.86
0159511 0159512	0.05 -0.01		-0.1 -0.1	47 335	-2 -2	115 28	-5 -5	-5 -5	-3 -3	2 -1	1 -10 -10	-2 -2	0 0	152 13	2 11 3 2	65 51	7 -5	21 39	66 29	206 595	8 7	1 3	-1 3	4 4	0.03 -0.01	1.36 1.18
0159513	0.02		-0.1	136	-2	135	-5	-5	-3	Ę	5 -10	-2	0	26	5 14	73	-5	31	97	903	10	2	-1	6	0.01	5.46
0159514	0.39		0.1	396	-2	100	-5	-5	-3	2	4 -10	-2	0	25	5 13	111	-5	44	124	741	5	4	-1	6	0.01	3.68
0159515	0.26		0.2	1623	-2	137	-5	-5	-3	3	3 -10	-2	0	25	5 15	100	11	36	125	837	10	4	-1	6	0.03	4.38
0159516	0.15		1.0	6415	-2	75	-5	-5	-3	3	3 -10	-2	0	36	59	28	32	40	64	475	6	1	-1	3	0.06	2.33
0159517	0.29		0.4	4094	-2	144	-5	-5	-3	2	1 -10	-2	0	38	8 28	31	-5	75	89	750	6	3	-1	4	0.01	4.15
0159518	0.11		0.4	1274	-2	57	-5	-5	-3		1 -10	-2	0	25	5 5	29	12	34	17	293	-2	2	-1	2	0.02	1.59
0159519	2.13	2.16	1.7	1979 349	-2	42 38	-5 -5	-5 -5	-3	Ę	5 -10	-2	0	22	2 6	47 159	15 -5	23	36 85	233	-2 3	4	-1 -1	1	0.05	1.29
0162020	0.02		-0.1	16	-2	34	-5	-5	-3		3 -10	-2	0	34	5	62	44	21	48	123	2	6	-1	2	0.03	0.95
0162021	0.22		3.8	1924	-2	18	-5	-5	-3	6	6 -10	-2	0	33	3 4	41	37	26	24	42	3	2	-1	-1	0.02	0.25
0162022	0.09		5.6	1937	11	1/4	20	93	-3	E A	0 -10	-2	0	95	<i>i</i> 5	107	6	23	∠1 24	801	17	2	-'I •	8	-0.01	0.41
0162023	0.03		-0.1	22	-2	Z1 70	-5 E	-5 F	-3		10-10	-2	0	1	2	70	-5 F	20	31 14	294	10	6	-'l 4	0	0.01	2.10 1.1E
0162024	0.03		1./	2040 1000	-2	19	-5 E	-3 E	-3		0 - 10 1 40	-2	0	35	, 4 , 0	10	-0	30	14	১∠ ४ ১০⊀		9	- I 4	2	-0.01	1.10
0102025	0.03		0.1	1238	-2	10	-D	-5	-3	2	+ -10	-2	0	23	у Э	00	22	19	39	331	Э	2	- 1	2	0.01	1.00

Sample	Fe	Mg	K	Na	Ρ
0159508	6.73	0.88	0.24	0.01	0.08
0159509	6.30	1.36	0.07	0.03	0.08
0159510	5.90	1.16	0.12	0.02	0.07
0159511 0159512	17.49 3.33	0.42 0.66	0.18 0.15	0.01 0.01	0.07 0.07
0159513	16.23	2.16	0.11	0.01	0.06
0159514	12.32	1.77	0.14	0.01	0.07
0159515	18.53	1.70	0.13	0.01	0.06
0159516	16.75	0.79	0.14	0.01	0.07
0159517	13.65	1.42	0.18	0.01	0.11
0159518	9.07	0.43	0.22	0.01	0.14
0159519 0162019 0162020	11.95 10.04 12.53	0.35 0.71 0.32	0.19 0.07 0.21	0.01 0.01 0.01	0.07 0.02 0.06
0162021 0162022 0162023 0162024 0162025	15.13 7.83 4.17 5.81 12 89	0.01 0.03 0.95 0.30 0.52	0.18 0.25 0.07 0.32 0.29	0.01 0.01 0.03 0.01 0.01	0.04 0.06 0.07 0.07

						Sample	
				Elevation		Length	
Sample	Area	UTM E	UTM N	(m)	Туре	(m) if chip	Description
0162026	Diane	658215	5545502	1355	Grab		Massive hematite vein (35 cm wide)
0162027	Diane	658215	5545502	1355	Chip	1.28	Pervasively silica altered with minor clay alteration
							Sericite and Fe-Ca altered andesite with 10% hematite stockwork and Cu
0162028	Diane	658215	5545502	1355	Chip	0.82	2 staining
0162029	Diane	658215	5545502	1355	Chip	2.05	Hematite replacement and stockwork in weakly sericite altered pyroclastic rock Andesite with 10% disseminated and replacement hematite and abundant Cu
0162030	Diane	658258	5545497	1363	Chip	1.23	staining
							high grade malachite sample selected from ankerite + qtz vein from chip sample
0162008	Lowell	658361	5544966	1500	grab		162003
0162009	Lowell	658361	5544966	1500	grab		chunky malachite exposed on fracture on road cut, related to 162008
		050070		4 4 9 9			high grade sample from sparsely mineralized outcrop. massive hematite and
0162002	Lowell	658378	5544801	1490	grab		malachite mineralization, not apparent to be structurally controlled
0400004	المسما	050004	FF 4 4000	4500		0.00	cm scale ankerite-qtz veins, intense malachite mineralization, specular nematite
0162004	Lowell	028301	5544966	1500	cnanne	9 0.38	on vein margins, 50% is mostly unimiteralized int. voicanic
0162005		650261	EE11066	1500	chonne	. 1	aphannic internediate volcanic, patchy hematite and sencite +/- chionte
0102005	Lowell	000001	5544966	1500	Channe	5 I	fine grained hedded velcanic with patchy specular hematite and coarse chlorite
0162006		658361	5511066	1500	channe	- 1	arains (nseudomorphs?) and limonite staining
0102000	Lowen	000001	5544500	1500	Channe	5 I	bedding parallel hematite mineralization pervasive at western end, 75% epiclastic intermediate volcanic locally hematite +/- malachite (associated with hematite)
0162007	Lowell	658361	5544966	1500	channe	<u> </u>	and pervasive limonite
0102001	Lowon	000001	0011000	1000	onann		1.5 to 2 cm gz-hematite vein with a trace of chalcopyrite. From zone with
0159520	North	658262	5546124	1272	Grab		previous Au results
0.00020		000202			0.00		Cu stained anastomozing hematite veins that occupy 8-% rock volume over 35
0159521	North	658306	5546029	1315	Grab		cm
0159522	North	658306	5546029	1315	Grab		Same as previous but located 12 meters along strike to SE
							20 cm thick unit of grey andesite with parallel 2-3mm qz veins occupying 10% of
0159523	North	658393	5545831	1341	Grab		rx. volume
0159524	North	658393	5545831	1341	Grab		25 cm thick zone of strong green tinted sericite altered and Cu stained andesite Chip samples that Includes zones of previous two samples + fault breccia and
0159525	North	658393	5545831	1341	Chip	1.72	Cu stained wallrock

Sample	Au1	Au2	Ag	Cu	Pb	Zn	As S	Sb	Hg M	No	TI	Bi	Cd	Со	Ni	Ва	W	Cr	V	Mn	La	Sr	Zr	Sc	Ti	AI
0162026	0.02		-0.1	1381	-2	79	-5	-5	-3	2	-10	-2	0	8	12	65	-5	20	168	470	14	2	-1	4	0.05	1.79
0162027	3.40	3.41	3.5	1244	-2	27	-5	-5	-3	9	-10	-2	0	65	5	130	20	15	60	81	5	13	-1	2	0.03	0.79
0162028	0.03		0.4	5671	-2	140	-5	-5	-3	3	-10	-2	0	59	11	73	-5	18	42	593	5	3	-1	4	-0.01	1.47
0162029	0.48		1.7	349	-2	14	-5	-5	-3	4	-10	-2	0	23	4	60	41	31	34	66	31	1	-1	-1	0.04	0.22
0162030	0.57		1.7	10356	-2	145	-5	-5	-3	3	-10	-2	0	36	12	53	-5	34	53	741	8	2	-1	6	-0.01	2.63
0162008	19.49	19.55	9.5	88730	50	109	17	-5	-3	-1	-10	-2	0	65	14	50	-5	50	103	151	3	5	-1	3	0.01	0.80
0162009	11.77	13.34	11.6	69585	33	89	8	-5	-3	-1	-10	-2	0	53	10	33	-5	33	35	117	2	3	-1	2	0.01	0.65
0162002	0.44		-0.1	723	-2	28	-5	-5	-3	2	-10	-2	0	34	5	90	-5	42	11	132	10	2	-1	-1	0.04	0.42
0162004	0.98		1.4	11353	-2	88	-5	-5	-3	2	-10	-2	0	22	8	31	-5	58	41	434	7	3	-1	2	0.01	2.30
0162005	0.06		-0.1	1718	-2	153	-5	-5	-3	4	-10	-2	0	22	9	61	-5	37	44	713	6	5	-1	3	0.01	3.82
0162006	0.02		-0.1	500	-2	193	-5	-5	-3	3	-10	-2	0	20	8	148	-5	16	49	898	5	10	-1	4	0.01	4.24
0162007	0.34		-0.1	4062	-2	153	-5	-5	-3	3	-10	-2	0	45	12	69	-5	33	65	723	6	4	-1	4	0.01	3.46
0159520	0.02		0.5	2332	-2	57	-5	-5	-3	3	-10	-2	0	9	3	90	9	45	23	361	2	2	-1	3	0.01	1.85
0159521	0.01		1.4	6745	-2	119	-5	-5	-3	4	-10	-2	0	4	4	48	-5	12	5	416	4	2	-1	2	-0.01	2.46
0159522	0.08		6.5	2890	-2	19	-5	-5	-3	3	-10	-2	0	3	4	30	89	33	11	39	6	4	-1	-1	0.01	0.24
0159523	0.04		0.1	861	-2	107	-5	-5	-3	2	-10	-2	0	6	13	31	-5	59	74	759	4	4	-1	4	-0.01	3.33
0159524	0.25		1.6	24854	-2	98	-5	-5	-3	7	-10	-2	0	122	14	58	-5	45	83	594	10	4	-1	4	0.01	2.33
0159525	0.08		0.8	6799	-2	99	-5	-5	-3	3	-10	-2	0	45	19	56	-5	56	108	786	9	4	-1	6	0.01	3.89

Sample	Fe	Mg	Κ	Na	Ρ	
0162026	21.34	0.93	0.04	-0.01	0.03	
0162027	14.61	0.09	0.20	0.01	0.07	
0162028	11.65	0.45	0.26	0.01	0.09	
0162029	12.60	0.01	0.16	-0.01	0.02	
0162030	12.57	0.89	0.25	0.01	0.09	
0162008	8 21	0.29	0 11	0.01	0 25	
0162009	7.51	0.24	0.13	0.01	0.12	
0.02000		0.2.	00	0.0.	0	
0162002	16.34	0.12	0.14	0.01	0.07	
0162004	7.64	0.95	0.21	0.01	0.15	
0162005	11.21	1.48	0.19	-0.01	0.09	
0162006	12.97	1.86	0.18	0.01	0.10	
0162007	12.71	1.49	0.21	0.01	0.09	
0159520	7.31	0.76	0.19	0.01	0.11	
0159521	8 03	0 76	0 19	0.01	0.06	
0159522	15.75	0.01	0.12	-0.01	0.02	
0.00022		0.0.	0	0.0.	0.0_	
0159523	11.83	1.35	0.17	0.01	0.09	
0159524	17.06	0.57	0.12	0.01	0.09	
0159525	13.93	2.07	0.16	0.01	0.09	

				Flevation	Sample Length
Sample	Area	UTM E	UTM N	(m) Type	(m) if chip Description
•					Abundant fracture controlled Cu staining in strongly jointed andesite - 8 m along
0159527	North	658405	5545813	1340 Grab	strike of sample 0159526
					From talus on edge of road, but looks like from a trench right there which is now
0159528	North	658419	5545789	1343 Grab	buried. Strongly Cu stained hematite and andesite + 1% chalcopyrite
					high grade sample, fracture controled malachite mineralization, host is massive
0162031	North	658339	5546219	1271 grab	plag phyric mafic volcanics
0162032	North	658263	5546233	1246 grab	chalcopyrite bearing fracture surfaces (qtz)
					high grade mineralization, hematite veins and chalcopyrite 'patches', local
0162033	North	658149	5546261	1197 grab	limonite alteration, pervasive epidote alterations, most veins carbonate
0162034	North	658108	5546238	1186 grab	malachite mineralizaiton on fracture surfaces
					rusty weathering, epiclastic, fault controlled; modally up to 10% pyrite, limonite
0162035	North	658028	5546237	1146 chip	1.2 pervasive
0162036	North	658028	5546237	1128 grab	high grade, epiclastic volcanic, modally 10% pyrite cubes (1-2mm)
					Extensive sericite alt. that destroyed all texture. Hematite staining and limonite is
162037	No Zone	658010	5544485	1458 Chip	0.50 also visible. From zone with previous Au results
162038	No Zone	657975	5544543	1459 Grab	Pervasive hematite staining + sericite alt. with patches of limonite.
162039	No Zone	657784	5544849	1370 Grab	From talus with specularite veins, hematite, limonite alt. and minor malachite.
162040	No Zone	656635	5544793	1050 Grab	Outcrop of unaltered pyritic andesite.
162041	No Zone	656252	5544088	1042 Grab	qz and epidote amygdules within strongly epidotized volcanics.
					high grade sample, hematite mineralization in rusty fractured tuff, associated with
0159529	No Zone	659509	5546679	1529 grab	small qtz veins.
					high grade sample from talus below historic copper kick, malachite and
0159530	No Zone	659315	5546859	1491 grab	chalcopyrite mineralized brecciated vein, no malachite observed in outcrop
					pyrite mineralized, modally up to 5%, epidote and chlorite altered mafic to
0159531	No Zone	659221	5546930	1438 grab	intermediate volcanic.
0162001	No zone	657867	5544020	1370 grab	kspar(?)-chl-epidote altered plag porphryritc andesite

Sample	Au1	Au2	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	ΤI	Bi	Cd	Со	Ni	Ва	W	Cr	V	Mn	La	Sr	Zr	Sc	Ti	AI
0159527	0.04		-0.1	934	-2	43	-5	5 -5	5 -3	3 (3 -10	-2	C	10	5	142	-5	22	19	391	12	5	-1	3	0.01	2.04
0159528	0.99		1.0	4434	-2	34	-5	5 -5	5 -3	} .	1 -10	-2	C	17	5	196	6	51	11	284	-2	8	-1	1	0.01	1.58
0162031	0.03		-0.1	4972	-2	33	-5	5 -5	5 -3	3 2	2 -10	-2	C	32	18	317	-5	42	197	795	5	9	-1	17	0.18	3.80
0162032	0.04		-0.1	242	-2	41	-5	5 -5	5 -3	3 2	2 -10	-2	C	12	8	67	-5	22	169	660	3	12	-1	8	0.15	2.47
0162033	0.02		-0.1	243	-2	42	-5	5 -5	5 -3	} .	1 -10	-2	C	35	15	99	-5	48	127	631	8	22	3	5	0.11	1.88
0162034	0.02		-0.1	4202	-2	72	-5	5 -5	5 -3	} -'	1 -10	-2	C	40	13	42	-5	42	79	1094	7	21	1	7	0.12	1.80
0162035	0.01		-0.1	35	-2	54	-5	5 -5	5 -3	3	3 -10	-2	C	15	4	32	-5	20	92	729	6	11	2	9	0.25	1.94
0162036	0.02		-0.1	33	-2	81	-5	5 -5	5 -3	} .	1 -10	-2	C	33	5	17	-5	16	124	1364	5	7	-1	10	0.15	2.90
162037	0.02		-0.1	26	-2	304	-5	5 -5	5 -3	} -'	1 -10	-2	C	4	2	557	-5	19	11	1772	-2	9	-1	6	-0.01	0.38
162038	0.02		-0.1	17	-2	190	-5	5 -5	5 -3	3 '	1 -10	-2	C	6	3	387	-5	16	28	2499	9	4	1	5	-0.01	1.50
162039	0.02		0.4	8473	-2	140	-5	5 -5	5 -3	6	5 -10	-2	C	12	6	213	-5	14	91	2029	6	3	-1	10	0.01	3.58
162040	-0.01		-0.1	54	-2	73	-5	5 -5	5 -3	3 (3 -10	-2	C	31	7	281	-5	14	157	1127	8	8	-1	9	0.01	2.54
162041	0.01		-0.1	180	-2	76	-5	5 -5	5 -3	3 2	2 -10	-2	C	21	28	51	-5	83	125	1605	8	22	4	12	0.17	2.26
0159529	0.01		-0.1	56	-2	22	-5	5 -5	5 -3	3 2	2 -10	-2	C	11	8	24	-5	59	68	398	4	16	4	5	0.12	1.33
0159530	0.08		2.0	17636	3	26	7	7 -5	5 -3	8 14	4 -10	-2	C	29	5	22	-5	82	39	193	-2	117	2	3	0.11	0.81
0159531	0.02		-0.1	530	-2	42	-5	5 -5	5 -3	3 2	2 -10	-2	C	24	16	142	-5	47	137	816	8	13	1	12	0.11	2.97
0162001	0.02		-0.1	218	-2	88	-5	5 -5	5 -3	3 2	2 -10	-2	C	15	19	48	-5	84	118	1442	3	40	11	7	0.24	1.54

Sample	Fe	Mg	K	Na	Ρ
0159527	7.40	0.99	0.20	0.01	0.11
0159528	7.27	0.56	0.18	0.01	0.07
0162031	11.14	3.80	0.04	0.03	0.08
0162032	8.45	2.61	0.07	0.04	0.17
0162033	5.94	1.89	0.04	0.05	0.09
0162034	3.95	1.73	0.09	0.04	0.09
0162035	7.36	1.55	0.09	0.05	0.13
0162036	9.03	2.65	0.02	0.03	0.14
162037	4.13	0.04	0.22	0.01	0.08
162038	4.18	0.59	0.41	0.02	0.08
162039	11.35	2.07	0.05	0.01	0.13
162040	8.57	2.05	0.06	0.02	0.09
162041	7.12	2.47	0.03	0.03	0.11
0159529	4.53	0.94	0.03	0.04	0.07
0159530	3.97	0.27	0.01	0.01	0.05
0159531	8.39	3.42	0.06	0.03	0.10
0162001	3.37	1.49	0.05	0.03	0.04

Appendix D Analytical Certificates

	S CTD.
	IED CON
	O CERTIFI
Sm2	TERNATIO 0 9001:20
ARE AREALS	Z i S

CERTIFICATE OF ANALYSIS iPL 08F2782

ISO SQUI-2000 CERTIFIED COMPANY Paget Resources Corp		71	Sample	es Print: Jul 11, 2008 In: .	Jun 12, 2008	[278210:50:0	100:80071108:001]
Project : None Given Shipper : Henry Marsden Shipment: Comment:	CODE B21100 B84100 B82101 B82101	AMOUNT 71 4 1	TYPE Rock Repeat BIK iPL STD iPL	PREPARATION DESCRIPTION crush, split & pulverize to -150 m Repeat sample - no Charge Blank iPL - no charge. Std iPL (Au Certified) - no charge	sh.	12M 122M 000	PULP REJECT //Dis 03M/Dis //Dis 00M/Dis //Dis 00M/Dis
	Ana	Ivtical S	inmmal		NS=No Sample	Rep-Replicate M-Mon	ith Dis=Discard
	Anal	ysis: AU(FA/AS)) ⁷ ICP(AqR)30			
Document Distribution	# Code	Method	Units	Description	Element	Lìmit Lou	Limit Hi <i>c</i> b
1 rayer resources curp 1040 W. Georgia St, Suite 1160 Vancouver BC V6E 4H1 Canada Canada Att: Jhn Bradford	01 0801 02 0368 03 0364 0721 0721	Spec FA/AAS FAGrav ICP	g/mt ppm	Weight in Kilogram (1 decimal place Au (FA/AAS 30g) g/mt Au FA/Grav in g/mt Ag ICP Cu rCP	e) Wt Gold Gold Silver Conner	0.01 0.07 0.1	999,0 5000,00 100,0 100,0 10000
Ph:778.327.6540 Em:jbradford@pagetresources.com	06 0714 07 0730			Pb 1CP	Lead 7 inc	I (VII	10000
2 Paget Resources Corp 1040 W. Georgia St, Suite 1160 Vancouver	0703 09 0703 0732	6666		As ICP Sb ICP Hg ICP	Arsenic Antimony Mercury	ក្រសា	10000 2000 10000
BC VDE 4H1 Canada Att: N. Luckman Em:nluckman@pagetresources.com	11 0717 12 0747 13 0705 14 0707 15 0710	999999		Mo ICP T1 ICP (Incomplete Digestion) Bi ICP Cd ICP Co ICP	Molydenum Thallium Bismuth Cadmium Cobalt	1 10 0.2 1	1000 1000 2000 2000.0 10000
3 Paget Resources Corp 1040 W. Georgía St, Suite 1160 Vancouver BC V6E 4H1 Canada Canada	16 0718 17 0704 18 0727 19 0709	222222		Ni ICP Ba ICP (Incomplete Digestion) W ICP (Incomplete Digestion) Cr ICP (Incomplete Digestion)	Nickel Barium Tungsten Chromium	н 0 0 п н	10000 10000 10000 10000
Em: bbooth@tamboming.com	21 0716 22 0713 23 0723 24 0731 25 0736	555555		W LCP (Incomplete Digestion) An ICP La ICP (Incomplete Digestion) Zr ICP (Incomplete Digestion) Sc ICP	Vanadium Manganese Lanthanum Strontium Zirconium Scandium	N	10000 10000 10000 10000 10000
	26 0726 27 0701 28 0708 29 0712 30 0715	ICP ICP ICP	અર અર અર અર	Ti ICP (Incomplete Digestion) Al ICP (Incomplete Digestion) Ca ICP (Incomplete Digestion) Fe ICP (Incomplete Digestion) Mg ICP (Incomplete Digestion)	Titanium Aluminum Calcium Iron Magnesium	10.0 10.0 10.0	10.00 10.00 10.00 10.00
	31 0720 32 0722 33 0719	ICP ICP	<u> </u>	K ICP (Incomplete Digestion) Na ICP (Incomplete Digestion) P ICP	Potassium Sodium Phosphorus	10.00	10.00 5.00
Interpretation of the solely to the analytical cost of these analyses. ID=C0556010307				BC Ce	rtified Assayer: David	chiu XC	

Signature: _

	որ Մոր	Bi ppm	88888	88888	88888	88888	88888	88888	88888	8888
*****	Print: 01] In:	μ	0000000				000000			
)711080(ow Mdd	46040	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	44040	04400	すうるアう	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~
	200980(Hg EH	&&&&&	<u> </u>	&&&&&	~~~~	~~~~	<u></u>	&&&&&	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	[27821(ds mg	<u> </u>	᠙ ᠙ ᠙ ᠙ ᠙ ᠙ ᠙	<u> </u>	ፚኇኇኇ	<u> </u>	ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ	ሌ ጭ ሙ ው ሙ ው ሙ ው ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ ሙ	ዮዮዮ
	0 iPL	As ppm p	សស ដ លស	<u> </u>	ዯ፞፞፞፞፞ዯ፞፞፞፞፞፞ዯ፟፞፞፞፞	ሌ ሌ ሌ ሌ ሌ	<u> </u>	ᢞ᠋ᡬᡐᡭᠵ	ዯ፞፞፞፞፞፞ዯ፟ኇኇ	8 1 1 3 5 5 5 6 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7
Š	1=STI	Zn mdd	137 43 45 65 11	17 9 97 77	115 28 135 100 137	75 144 57 57	119 107 98 99	86 86 22 26 26	42 88 28 88 28 88 28 88 15 3	89 153 89 89
8	lk ipL	4 4 d	88888	88888	99999	88888	88888	ფფფფლ	88888	<u>%%88</u> %
1	1-8	- B D B C C	999 108 16 58	59.13% v.1	47 335 396 623	415 094 979 332	745 861 799% 799	910 934 56 . 76%	530 218 723 .14% 718	500 062 .87% .96%
	-Repeat	Ag ppm	4			0100.44 0.5-44 0.5-440 2.5-1446	0.1.4	20101 2010 2010 2010 2010 2010 2010 201	0100.1	100.1 10.5 10.5 10.5 10.5 10.5 10.5 10.5
	ock 4	Au g/mt				.16				3.55
	nples 71-Ro	atu at	85828	228822	812888	Ratas	28488	<u>%</u> \$%:-%	88488	2885 212 212
	l San	1/6	000000	000000	00000	00000	00000			0.0011
	5	¥Ş	2.03	0.	1.5 1.75 1.1	1.0 1.2 1.7	111184	1.4	1.2	1.5 1.6 1.6
	Ship#									
w. el	≩a	Type	Rock Rock Rock	R0CC R0CC R0CC R0CC R0CC R0CC R0CC R0CC	80 80 80 80 80 80 80 80 80 80 80 80 80 8	80 80 80 80 80 80 80 80 80 80 80 80 80 8	80 80 80 80 80 80 80 80 80 80 80 80 80 8	8 8	202 202 202 202 202 202 202 202 202 202	88888 88888 88888
MA LARS C	ten cokra ces Cor	Contra o da la comuna de								
IOHAL PLAS	2000 CERTIF C Resour Given									
INTERNAT	Paget: None	Name								
	Cl ient Project	Sample	159501 159502 159503 159503 159505 159505	159506 159507 159508 159509 159509 159510	159511 159512 159513 159514 159514 159515	159516 159517 159513 159518 159519 159519 159519	159521 159522 159523 159523 159524 159525	159526 159527 159528 159528 159528 159530	159531 162001 162002 162002 162005 162005	162006 162007 162008 162008 162008

CERTIFICATE OF ANALYSIS iPI 08F2782

)

150 9001.2000

200 - 11620 Horseshoe way Canada V7A 4V5 Phone (604) 272-7818 Richmond, B.C.

	~~~	Mudd	ទដទទទទ	ო ზ ზ ზ ზ	~&&%	86556	ጜቘጜዺዺ	¥°80°8°8	ዯጜዯዯ	ሌሌሌሉ	5 1CP
	1 of n 1 of	Ba ppm	119 81 345 161 46	80108	65 51 73 100	84 23 31 84 84 84 84 84 84 84 84 84 84 84 84 84	56 83 30 <del>8</del> 8 58 31 30 <del>8</del> 8	142 196 24 22	142 148 01 10 148 161 10 10 10 10 10 10 10 10 10 10 10 10 10	148 50 33	0000 J
) 272-08 ww.ipi.ca	Page Sectio	N ndq	94000	08164	13421	a o c B o o	44040	പരപായവ	ရမ် စစ် စစ် စစ် စစ် စစ်	8479 0	1 0000 ICP
x (604 ebsite wr	~~~	Dpm Dpm	14 66 18 8	14 36 11 11	152 132 255 255 255 255 255 255 255 255 255 2	622338	1220 34 4520 34	11 29 29 29	828858	20 65 53 53 53	1 1CP 1
2 2 3	11, 2000	bp cd	0.2.2.2.2 0.2.0 0.2 0.2 0.2 0.2 0.2 0.2	0,0,0,0,0 0,0,0,0 0,0,0,0	00000 000000	0.0.0.0 0.0.0 0.0 0.0	8.8.8.8 9.9.9.9 9.9.9.9	0.000 0.0000 0000000000000000000000000	0.0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 0.000	0.2 1CP
	nt: Jul In: Jun	Bi ppm	88888	88888	88888	88888	88888	88888	88888	8888	2 2000 2 ICP
	Prir 18001]	LT mgg	000000 000000							000000 000000000000000000000000000000	1000 1000
	98007110	ow Mdd	400-0		44040	044DU	すうるてう	0010 <b>4</b>	~~~~~	$\omega \omega \Delta \Delta$	1 1000 ICP
	32105005	6H mdd	00000	00000	88888	&&&&&	<u> </u>	<u> </u>	&&&&&	0000	3 10000 1CP
	[278	ds mq	<u> </u>	᠙ᢞᡐ᠙ᡐ	<u> </u>	<u> </u>	<u> </u>	ઌ૿ઌ <u>૾</u> ઌ૾ઌ૾ઌ૾	ሌሌሌሌሌ ሌ	ዯ፟ኯ፟ኯ፟	2000 ICP
	std ipl	As ppm	ស <b>ស</b> ដ្ឋស្	ዯ፝፞፞፞፞፞፞ዯ፟ኇኇ	<u> </u>	<u> </u>	<u> </u>	ᡭ ᡭ ᡭ ᡭ ᡭ ᡭ ᡭ ᡭ ᡭ	ዯጜኇኇ	8 17 8	5 1000 ICP sample
	1	uZ bpm	137 43 145 65 11	17 97 77	115 28 135 100 137	75 57 57 57	119 107 98 99	86 22 26 22 26	42 88 88 153 153	193 153 89	1 10000 NS=N
	l=B1k iF	4 Edd	88888	88888	99999	88888	88888	8888a	99999	88640	2 10000 1CP stimate %
	eat ]	5 Ed	1999 1999 108 16 58	31 31 59	47 335 136 396 1623	6415 4094 1274 1979 2332	6745 2890 861 2.49% 6799	8910 934 4434 1.76%	530 218 723 1.14% 1718	500 4062 8.87% 6.96%	1 10000 1 1CP 00 %=E
	4=Rep	bA bmdd	00000 4.0000	00000	000000		10.010 10.0 10.0 10.0 10.0	2.0 2.0 2.0 2.0 2.0	0.1 0 1.4 1.0 1.0	0.1 9.5 11.6	0.1 100.0 1CP m=x10
	les 71=Rock	Au g/mt	Alexandre alexan	мения 		2.16	amara initera antera antera	-indate www.w		19.55 13.34	0.07 5000.00 FAGrav c=ReCheck
	Samp	Au g/mt	0.08 0.02 0.02 0.02	0.01 0.08 0.02 0.02 0.02	$\begin{array}{c} 0.05 \\ 0.02 \\ 0.39 \\ 0.26 \end{array}$	0.15 0.29 0.23 0.29 0.29 0.29	0.08 0.08 0.08 0.08	0.00480.081	0.02 0.02 0.98 0.06 88 0.06	0.02 0.34 19.49 11.77	0.01 000.00 FA/AAS imate Ro
	71	¥Ұ Хg	2:0		1.5 1.7 1.7 1.7	1.0 1.2 1.7	8.7.2.8	67734	1.7 0.7 0.7	1.2 0.5 1.6	0.1 9999.0 5 Spec Max=No Est
MALARS LTD.	TED COMPANY Ces Corp Ship#	Type	8000 8000 8000 8000 8000 8000 8000 800	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	R R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R R	ス 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ		8888 888 888 888 888 888 888 888 888 8	ent Sample Del=Delay
INTERNATIONAL FLAS	ISO SOULTON CERTIF Client : Paget Resour- Project: None Given	Sample Name	159501 159502 159503 159504 159504 159505	159506 159507 159508 159509 159510	159511 159512 159513 159514 159515	159516 159517 159518 159519 159520	159521 159522 159523 159524 159524	159526 159527 159528 159529 159530	159531 162001 162002 162004 162005	162006 162007 162008 162009	L Minimum Detection Maximum Detection Method ——No Test Ins=Insufficie

					-	CER		CATE iPL (	3 OF .) 8F27	ANAI 82	XSIS				200 - 1 200 - 1 Pitchmc Canado Phone Fanado Fanado	1620 Horsest ind, B.C. a V7A 4V5 (604) 272-78 (604) 272-08(	106 Way (8 51	
ISO 9001-2000 CERTIFIED COMPARY Client : Paget Resources Corp Project: None Given	Ship	*	71 Si	ample:	Rock	4–Rep	eat	1=81k if		STD iPL	[2782]	05009800	11108001	Print: Ju [] In: Ju	ul 11, 2008 m 12, 2008	Page Section	n 2 of 2	
Sample Name	ppm cr	۸ Mdd	u mdd	La ppm	Pp m	Zr ppm	Ppm Ppm	Ë Å	A1 %	% a	ц Ф %	₿ W	**	Na Na	۵. ۳			
159501 159502 159503 159504 159505	35 35 67 58 40	45 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1215 366 879 704 34	11 8 8 11 8 6 8 11	44200	22012	~~~~~	0.01 0.01 0.04 0.04	2.91 0.15 0.39 0.39 0.26	0.15 0.02 0.11 0.03	16% 16% 3.52 8.72 8.72	0.90 0.01 0.01 0.01	0.16 0.03 0.17 0.19 0.22	0.00 0.01 0.00 0.00 0.01 0.00	0.12 0.02 0.07 0.06 0.04			
159506 159507 159508 159509 159510	559 84 84 84 84 84 84 84 84 84 84 84 84 84	14 28 37 37	48 33 663 1822 1693	ଡ଼ଡ଼୵ଊଡ଼	V 14070	7772	100NG	0.02 0.03 0.08 0.04	0.08 0.41 1.80 1.86	0.01 0.04 0.18 0.85 0.28	20% 5.94 6.73 5.90	<ol> <li>0.01</li> <li>0.04</li> <li>0.88</li> <li>0.88</li> <li>1.36</li> <li>1.16</li> </ol>	0.03 0.29 0.24 0.12 0.12	0.01 0.01 0.03 0.03	0.02 0.04 0.08 0.07			****
159511 159512 159513 159514 159515	21 31 36 44 36	29 29 124 125	206 595 903 741 837	10 10 7 8 10 10 7 8		4°44	44000	0.03 0.01 0.03 0.03	$\begin{array}{c} 1.36\\ 1.18\\ 5.46\\ 3.68\\ 4.38\end{array}$	0.04 0.31 0.17 0.18 0.16	3.33 16% 12% 19%	0.42 0.66 2.16 1.77 1.77	0.15 0.15 0.11 0.13	0.01 0.01 0.01 0.01	0.07 0.07 0.06 0.07 0.06			
159516 159517 159518 159519 159520	40 75 75 75 75 75 75 75	89 17 23 23	475 750 293 261 361	ကလိုလိုတရ	13242	77777	<pre></pre>	0.06 0.01 0.05 0.05 0.01	2.33 4.15 1.59 1.29 1.85	0.15 0.21 0.28 0.10 0.24	17% 14% 9.07 7.31	0.79 0.43 0.35 0.76	0.18 0.18 0.19 0.19	0.01	0.07 0.11 0.14 0.07 0.11			*****
159521 159522 159523 159524 159525	12 59 56 56	11 11 83 108 108	416 39 759 786 786	40400	これれれれ	~~~~	0 4 4 V V	0.0000 0.01010 0.01010	2.46 0.24 3.33 2.33 3.89	0.10 0.20 0.09 0.18	8.03 16% 17% 14%	0.76 0.01 1.35 2.07	0.19 0.12 0.12 0.12 0.12	0.00 0.00 0.00 0.00	0.06 0.02 0.09 0.09			
159526 159527 159528 159529 159530	82 59 82 82 82 82 82 82 82 82 82 82 82 82 82	58 11 39 39	509 391 398 398 193	020 <b>4</b> 0	11488552 117	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n u H u u	0.02 0.01 0.12 0.12	2.07 2.04 1.58 0.81 0.81	$\begin{array}{c} 0.12 \\ 0.29 \\ 0.39 \\ 0.90 \end{array}$	11 7.27 7.27 3.97	0.71 0.99 0.94 0.27	0.14 0.20 0.03 0.01 0.01	0.01 0.01 0.04 0.01	0.07 0.11 0.07 0.05 0.05			*****
159531 162001 162002 162004 162005	47 58 37 37	137 118 41	816 1442 132 434 713	671038	40 80 80 80 80 80 80 80 80 80 80 80 80 80		324238	0.11 0.24 0.01 0.01	2.97 1.54 2.30 3.82 3.82	0.43 0.14 0.21 0.21	8.39 3.37 7.64 11%	3.42 1.49 0.95 1.48	0.06 0.05 0.14 0.21 0.19	$\begin{array}{c} 0.03\\ 0.01\\ 0.01\\ 0.01\end{array}$	0.10 0.04 0.07 0.05 0.09			
162006 162007 162008 162009	33 50 33 33 33	49 65 35 35	898 723 151 117	noon	04 to w	4444	4400	0.01 0.01 0.01	4.24 3.46 0.80 0.65	0.38 0.16 0.08 0.07	13% 13% 7.51	1.86 1.49 0.29 0.24	0.18 0.21 0.11 0.13	10.0 10.0 10.0	0.10 0.09 0.25 0.12			
Minimum Detection Maximum Detection Method No Test Ins-Insufficient Sample D	1 000 10 ICP el=Delay	1 1000 1000 100	1 0000 10 ICP No Estima	2 )000 10 1CP ite Rec=	1 000 10 ICP ReCheck	1 000 10 ICP m=x10	000 1 1CP 00	0.01 10.00 1CP Estimate %	0.01 10.00 ICP Ns=Ne	0.01 10.00 ICP Sample	0.01 10.00 1CP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP			

CTD.
A LABS
PLASH.
TIONAL
NTERNA SO \$001

# CERTIFICATE OF ANALYSIS iPL 08F2782



200 - 11620 Horseshoe way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipi.ca

<pre>int : Paget Resource lect: None Given</pre>	s Corp Ship#		1 Sample	SS I=Rock	4=Rep(	at 1-	-Blk iPL	. 1=S	TD iPL	[2782	1050098	0071108	Print 1 [100	ur : Jun	11, 2008 12, 2008		Page Sectio	2 01 Dn 1 01	~~~
e Name	Type	kt Kg	Au g/mt	Au g/mt	ppm ppm	ppm Cu	d mq	h Tr	As ppm	8 <u>E</u>	와 md	of md	= mdd	ra mq	p mg	S Ed	rv Ind	ppm mdd	× ∎dd
433510	Rock Rock Rock Rock	2.6 1.1 2.0 8.0	0.21 0.10 0.08 0.43 11.13	13.15	0.7 1.1 1.0 9.9	5480 5631 9512 1963 2.78%	88888	49 53 81 86 117	សសសន <u>្</u> តស	&&&=	&&&&&	4100m	10 10 10 10 10 10	88888	0.2 0.2 0.2 0.2 0.2	17 31 31 31 31	တက္ကတ္ရမ္ရ	25 68 117 21 21 25	នទទទទទ
o œ∽œ⊙	2000 2000 2000 2000 2000 2000 2000 200	99111	4.07 0.08 0.03 0.03 0.02	4.03	2.9 0.3 0.1 0.1	1.29 1.33 3836 349 349	88888	175 45 37 246 38	<del>የ</del> የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	<u>ស</u> សសសស	&&&&&	690064	10 10 10 10 10 10 10	<u> </u>	0.2 0.2 0.2 0.2 0.5 0.5 0.5	24 141 141 14	စိုစ္စစ္ရက္	37 53 27 68 159	ကိုထွထကိုကို
322120	8000 800 800 800 800 800 800 800 800 80	2.4.2.86	0.03 0.03 0.03 0.03 0.03		€0.1 3.8 5.6 1.7	16 1924 1937 22 2346	88388	34 174 21 79	\$\$\$\$\$\$	&&&&&	&&&&&	MH Q Q M	10 10 10 10 10 10 10 10 10 10 10 10 10 1	88888	0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2000 0.200000000	34 99 39 39 39	N4NV4	62 41 72 78 78	44 65 65 65 65
897.886 807.886	Rocc Rocc Rocc Rocc	0.9 1.8 1.8 1.8	0.03 3.40 0.03 0.03 0.03	3.41	1.6 3.5 1.4	1238 1381 1244 5671 349	88888	78 79 140 140	ጜጜኇኇ	%%%%%%	<u> </u>	40004		88888	0.22022 0.22022 0.22022	23 262 8 33 53 62 8 53	02214	96 13 13 13 13 13 13 13 13 13 13 13 13 13	22 25 20 41
2332 2332 2332	8000 800 800 800 800 800 800 800 800 80	24204	0.57 0.02 0.02 0.02		1.7 0.1 0.1 0.1	1.04% 4972 242 243 4202	88888	145 33 41 72 72	ዯዯኇኇ	<u> </u>	88888 8888 8888 8888 8888 8888 8888 8888	$\infty \propto \alpha \prec \neg \neg$	10 10 10 10 10 10 10 10 10 10 10 10 10 1	88888	0.2 0.2 0.2 0.2 0.2 0.2 0.0 0 0 0	36 32 35 40	n n n n n n n n n n n n n n n n n n n	317 99 42	<u> </u>
33 33 33 33 33 33 33 33 33 33 33 33 33	8000 800 800 800 800 800 800 800 800 80	1.011.0	0.02 0.02 0.02 0.02 0.02		00000	35 33 26 17 8473	88888	54 304 190 140	ራ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ ሌ	<u> </u>	~~~~	$\infty$ – $\Delta$ – $\infty$	00000000000000000000000000000000000000	88888	0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	15 44 12	450000	32 17 557 213 213	᠙᠙᠙᠙
40 11 59501 59520 52010	Rock Rock Repeat Repeat Repeat	0.9	0.01 0.01 0.08 0.02 0.22 212 212		0.1 0.4 0.7	54 2006 5463 5463	99999	73 76 57 49	<u> </u>	<mark>ጽ</mark> ሌ ሌ ሌ ሌ	&&&&&	32491		88888	0.2 0.2 0.2 0.2 0.2 0.2 0.2	23 17 96 17 96 17	28 30 6	281 51 121 26 26	<u>ကိုကိုကို ရ</u>
22029 c iPL t t REF	Repeat BIK 1PL STD 1PL STD 1PL		0.48 0.01 1.86 1.87		9.    T	351	♡	15	9	₽	♥	4	101	8	<0.2	1   33	4	09	4
un Detection un Detection f Test Ins=Insufficient	: Sample Del=Delav	0.1 9999.0 Spec Max=No E	0.01 5000.00 51 FA/AS 1 stimate Rec	0.07 000.00 FAGrav =ReCheck	0.1 100.0 1CP m=x10(	1 10000 11 1CP 30 %=Es	2 0000 10 ICP timate %	1 0000 10 ICP NS=No.5	5 000 ICP Sample	5 000 10 ICP	3 1CP 1	1 000 ICP	10 100 2 1CP 2	2 000 2( ICP	0.2 00.0 1 ICP	1 0000 1 ICP	1000 I	2 1000 ICP	1000 ICP

						CER		CATI iPL (	E OF 08F27	ANAI '82	SISX				200 - 1 Richme Canadé Phone Fax	620 Horses nd, B.C. V7A 4V5 604) 272-78 604) 272-08	hoe Way i18 i51	
INTERNATIONAL PLASMA LABS ITG. ISO 9001:2000 CENTIFIED COMPANY Client : Paget Resources Corp Project: None Given	Shi	巷	71 S	ample	s L=Rock	4=Rep	eat	1=81k i	ь Р	STD iPL	[2782]	05009800	1108001	Print: J L] In: J	ul 11, 2008 ul 12, 2008 un 12, 2008	<ul> <li>www.lpl.ca</li> <li>Page</li> <li>Sectio</li> </ul>	n 2 of n 2 of	22
Sample Name	PPG	۸ Mdd	uW	ppm b	Sr ppm	Zr ppm	S md	÷~%	A1 %	° S	9% 9%	5× W	**	Na Na	<b>d</b> %			
162010 162011 162012 162013 162013 162014	30 55 55	16 10 33 33 33	210 486 402 314 314	0000 <del>4</del>	44-30	44444		0.01 0.01 0.03 0.03	0.82 1.30 0.74 1.23	0.04 0.07 0.33 0.13	5.34 6.84 9.30 10%	$\begin{array}{c} 0.21 \\ 0.37 \\ 0.39 \\ 0.54 \\ 0.54 \end{array}$	0.14 0.16 0.25 0.27 0.16	0.01 0.01 0.04 0.01	0.03 0.03 0.05 0.05 0.07			
162015 162017 162017 162018 162018	821123	39 25 29 85 85	589 220 220 3121 405	3 6 88 113 3 6	wwaaro	~~~~	646H2	0.02 0.02 0.06	$\begin{array}{c} 3.34 \\ 0.39 \\ 0.11 \\ 3.25 \\ 1.33 \end{array}$	0.22 0.24 0.01 0.07	10220% 102% 108%	0.92 0.02 1.94 0.71	0.23 0.04 0.09 0.07	0.01 0.03 0.03 0.03	0.12 0.10 0.11 0.01 0.02			
162020 162021 162022 162023 162023	21 23 23 30 23 23 23 23	24 31 14 14	123 42 801 328 328	10 10 10 10 10	0 0 N N O O	44444	៷ឣ៳៰៰	0.02 0.02 0.01 0.01	0.95 0.25 2.10 1.15	0.08 0.03 0.11 0.27 0.17	13% 15% 7.83 4.17 5.81	$\begin{array}{c} 0.32\\ 0.03\\ 0.95\\ 0.30\\ 0.30\end{array}$	0.21 0.18 0.25 0.32 0.32	0.01	0.06 0.04 0.07 0.07			
162025 162026 162027 162028 162029	19 15 31 31	39 168 42 34 34	331 470 593 66	31 31 31 31	NNUMUH	77777	0404 <del>0</del>	0.01 0.05 0.04 0.04 0.04	1.55 0.79 0.79 0.22	0.10 0.08 0.15 0.01	13% 15% 12% 13%	0.52 0.93 0.09 0.45 0.01	0.29 0.20 0.20 0.16	0.00 0.00 0.00 0.00 0.00	0.07 0.03 0.09 0.02			
162030 162031 162032 162033 162033	34 42 42 42 42 42 42 42 42 42 42 42 42 42	53 197 169 127 79	741 795 660 631 1094	400000	22222	444au	176 758 75	<pre>&lt;0.01 0.15 0.15 0.11 0.12</pre>	2.63 3.80 2.47 1.88 1.80	0.13 0.70 0.89 0.75 0.75	13% 11% 3.95 3.95	0.89 3.80 2.61 1.73	0.25 0.04 0.09 0.09	$\begin{array}{c} 0.01\\ 0.04\\ 0.05\\ 0.04\end{array}$	0,09 0.18 0.09 0.09			
162035 162036 162037 162038 162039	20 116 116	92 124 28 28	729 1364 1772 2499 2029	ၜၯၯၟႍၹၜ	ULV048	~~~~	10 a a a a a a a a a a a a a a a a a a a	0.25 0.15 0.01 0.01 0.01	$ \begin{array}{c} 1.94 \\ 2.90 \\ 1.50 \\ 3.58 \\ 3.58 \\ \end{array} $	0.38 0.49 0.15 0.30	7.36 9.03 4.13 11%	1.55 2.65 0.04 2.07	0.09 0.22 0.41 0.05	0.01 0.02 0.02 0.02	0.13 0.14 0.08 0.08 0.13			
162040 162041 RE 159501 RE 159520 RE 162010	14 37 31 31 31	157 125 68 23 23	1127 1605 1211 359 210	12.3 H & & &	88494	4444	₩ ₩ ₩ ₩ ₩ ₩ ₩	0.017	2.54 2.26 1.85 0.82	0.27 0.63 0.16 0.24 0.04	8.57 7.12 7.27 15%	2.05 2.47 0.76 0.76 0.21	0.06 0.16 0.20 0.15	0.0000000000000000000000000000000000000	0.09 0.11 0.12 0.03 0.03			
RE 162029 Blank iPL 0X154 REF 0X154 REF	31	34		33	₩	♥	∀	0.04	0.23	0.01	13%	0,01	0.16	0.01	0.02			
Minimum Detection Maximum Detection Method ——No Test Ins=Insufficient Sample	1 10000 1 ICP Def=Deta	1 0000 ICP v Max	1 10000 1 1CP =No Estin	2 0000 1 ICP nate Rec	1 000 1( ICP =ReChecl	1 000 10 ICP m=x10	0000 V	0.01 10.00 ICP Estímate %	0.01 10.00 ICP % NS=N	0.01 10.00 ICP o Sample	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 1CP	0.01 5.00 ICP			