

BC Geological Survey Assessment Report 30429a

ASSESSMENT REPORT

TREASURE MOUNTAIN PROPERTY SIMILKAMEEN MINING DIVISION BRITISH COLUMBIA CANADA

NTS 92H/6E UTM Zone 10, 641000E, 5476000N Latitude 49°25'00"N, Longitude 121°03'40"W

> HULDRA SILVER INC. c/o 3475 West 34th Avenue, Vancouver, B. C., V6N 2K5.

Work performed by: Huldra Silver Inc. Report prepared by: Erik Ostensoe, P. C

Erik Ostensoe, P. Geo. 4306 West 3rd Avenue Vancouver, B. C., V6R 1M7.

and

Farshad Shirvani, M.Sc. 1405 - 675 West Hastings St. Vancouver, B. C., V6B 1N3.

Date of Report:

October 17th, 2008.

Submitted to Mineral Titles Branch, Ministry of Energy, Mines and Petroleum Resources

Eik A. Ostensoe

CONTENTS

page

0.0	SUMMARY	1
1.0	INTRODUCTION	2
2.0	DATA FROM 2007-2008 WORK	3
3.0	STATEMENT OF EXPENDITURES	4
4.0	STATEMENT OF QUALIFICATIONS	6

ATTACHMENTS - one hard copy, one CD-ROM version of

,

<u>Report of Property Review and Sampling Project, Treasure</u> <u>Mountain Property, Tulameen River Area, B. C., Canada</u> <u>NTS 92H/6E.</u> Prepared for Huldra Silver Inc. by Erik Ostensoe, P. Geo. and Farshad Shirvani, M. Sc. Date of Report: July 30, 2008.

ILLUSTRATIONS

follows page

FIGURE 1.	LOCATION MAP	2
FIGURE 2.	CLAIM MAP	2
FIGURE 3.	LEVEL 1 PLAN	2
FIGURE 4.	LEVEL 2 PLAN	2
FIGURES 5(a	a) - 5(d) incl. LEVEL 1 with 2007 Sampling	6
FIGURES 6(a	a) - 6(d) incl. LEVEL 2 with 2007 Sampling	6

, ,

•

TABULATIONS

 TABLE 1.
 MINERAL TENURES
 follows page 2

0.0 SUMMARY

The Treasure Mountain silver-lead-zinc deposit, located 29 km northeast of Hope, British Columbia, in the headwaters area of the Tulameen River, Similkameen M. D., is a fracture-controlled vein deposit. The deposit has been developed in several episodes in the period 1892 - present and has had a small amount of production of high grade silver ores. The Treasure Mountain mine comprises four levels of underground development, a large surface open cut, numerous surface trenches and pits, several diamond drill and rotary drill holes and is currently the subject of an economic evaluation. A Draft Permit Application has been submitted to the B. C. Ministry of Energy and Mines.

A program of check sampling and assaying was completed in the period July 13 - 19, 2007 and metallurgical investigations and mine planning are continuing. A National Instrument 43-101 compliant report that was completed in July, 2008 is a comprehensive and thorough compilation of historic and recent data that will be part of the economic evaluation currently in progress. That report is attached to this document in support of an application to apply costs incurred to maintain the various mineral tenures in good standing in accordance with rules and regulations administered by the Chief Gold Commissioner for British Columbia.

1.0 INTRODUCTION

This report was prepared for submission to the Mineral Titles Branch of the Ministry of Energy, Mines and Petroleum Resources of the Province of British Columbia in order to apply a portion of costs incurred in programs of sampling, metallurgical studies and economic evaluations, as assessment work to maintain in good standing various mineral tenures that comprise the Treasure Mountain mining property. The National Instrument 43-101-compliant technical report that is attached hereto will, in due course, also form part of a comprehensive submission of technical data to the Mines Branch in support of an application to obtain a permit to operate a small underground mine.

The Treasure Mountain mine is located 29 km northeast of Hope, British Columbia, in the Cascade mountain range (Figure 1). The mine is wholly owned by Huldra Silver Inc., a British Columbia corporation, based in Vancouver, B. C. The property includes fifty-one mineral tenures as listed in Table 1 and illustrated in Figure 2 of this report.

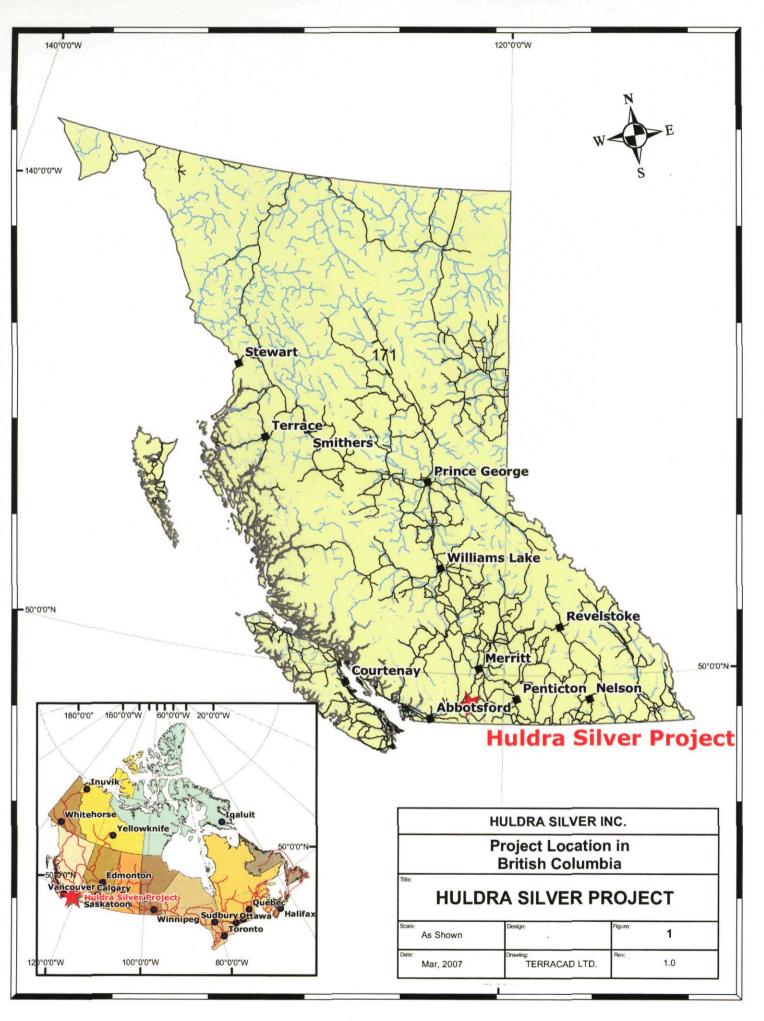
The technical report attached hereto includes discussions of the property, its location, access, climate, local resources and infrastructure, and regional and local geology, mineralization, and history, as well as a detailed discussion of the program of check sampling and assaying that was initiated in summer 2007, followed by metallurgical test work, resource calculations and a yet to be completed economic evaluation.

Field work was completed in compliance with the relevant requirements of the Mines Act and with the overall guidance of the District Inspector of Mines. Work Permit No. MX-<u>15-121, Approval No. 07-1500121-121-0706</u>, was obtained prior to commencement of work and the Mine Inspector was informed, usually on a daily basis, of the progress of work and of remediation and reclamation initiatives that were completed following the sampling work.

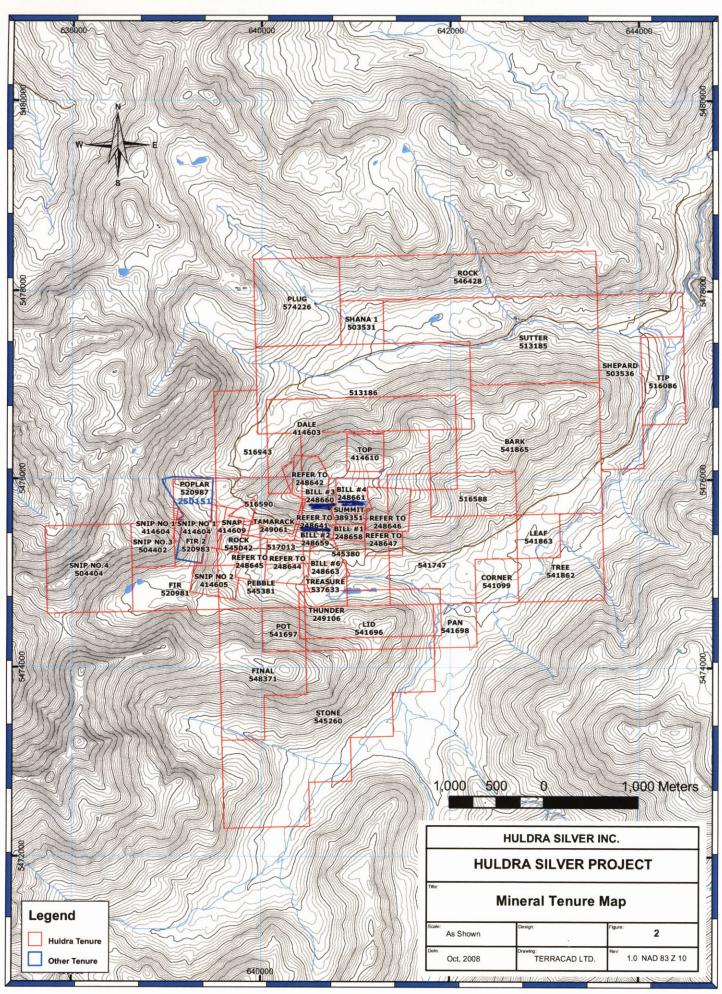
Seventy-eight chip samples, as illustrated in Figures 3, 4, 5(a) - 5(d) incl. and 6(a) - 6(d) incl., were taken from parts of Levels 1 and 2 of the Treasure Mountain mine by a small crew of a professional geologist who is familiar with relevant sampling techniques and requirements, a professional mining engineer with much experience in underground mining, a senior licensed shift boss, and a representative of the mining company. Sample locations were determined by reference to existing level plans that show in detail the configuration of the mine workings and survey points and samples were submitted to a full-service ISO 9001:2000 certified commercial laboratory for 30 element analysis by induced coupled plasma spectrometry. Certain samples were then analysed by fire assay with gravimetric finish.

Check sample sites were spaced about five metres from one another and the entire vein was not included in the program. Sample collection and handling was under the constant supervision of the consulting geologist who retained custody of the samples until they were delivered to the laboratory. Work was done on claims Bill #3 (tenure no. 248660). Bill #4 (tenure no. 248661) and tenure no. 248641.

Table 1: Mineral Tenures


Tenure Number	Claim Name	Good to Date	Area (hectares)
248641		2009/feb/13	25.0
248642		2017/may/10	25.0
248643		2009/feb/13	25.0
248644		2009/feb/13	25.0
248645		2009/feb/13	25.0
248646		2009/feb/13	25.0
248647		2009/feb/13	25.0
248658	Bill #1	2009/feb/13	25.0
248659	Bill #2	2009/feb/13	25.0
248660	Bill #3	2009/feb/13	25.0
 248661	Bill #4	2009/feb/13	25.0
248663	Bill #6	2009/feb/13	25.0
249061	Tamarack Fr.	2009/feb/13	25.0
249106	Thunder	2017/may/10	75.0
249108	Troll Fr.	2016/may/10	25.0
389351	Summit	2016/may/10	25.0
414603	Dale	2017/may/10	200.0
414604	Snip No. 1	2017/may/10	25.0
414605	Snip No. 2	2017/may/10	25.0
414609	Snap	2016/may/10	25.0
414610	Тор	2009/sep/29	25.0
 503531	Shana 1	2017/may/10	21.009
503536	Shepard	2017/may/10	105.05
504402	Snip No. 3	2017/may/10	21.107
504404	Snip No. 4	2017/may/10	84.071
513185	Sutter	2017/may/10	168.075
513186		2017/may/10	210.112
 516086	Tip	2017/may/10	42.023
516588		2009/feb/13	42.031
516590		2017/may/10	42.031
516943		2017/may/10	63.04
517013		2017/may/10	21.017
520981	Fir	2017/may/10	42.037
520983	Fir 2	2017/may/10	21.017
520987	Poplar	2017/may/10	21.015
537633	Treasure Mountain	2009/feb/13	21.0186
541099	Corner	2009/feb/13	21.0184
 541696	Lid	2017/may/10	63.0608
541697	Pot	2017/may/10	21.0204
541698	Pan	2017/may/10	21.0201
541747		2009/feb/13	126.1025
541862	Tree	2017/may/10	63.0531
541863	Leaf	2017/may/10	21.0165
 541865	Bark	2017/may/10	189.124
545042	Rock	2017/may/10	21.017
545260	Stone	2017/may/10	231.2698
545380		2009/feb/13	63.0571
545381	Pebble	2017/feb/13	42.0374
546428	Rock	2017/may/10	126.042
548371	Final	2017/may/10	84.088
 574226	Plug	2009/jan/21	84.031

Total area


2851.61 hectares

V claims worked on

~

claims worked on 248641, 24860, 248661 ____

Analytical data were compared to the large volume of historic data that had been generated prior to commencement of the check sampling. That data had been obtained in the course of underground development work: samples were taken at one metre intervals from the principal vein and from various splays in levels, sub-levels and raises and were analysed by a commercial laboratory. That work was largely completed in the period 1979 - 1989, prior to implementation of ISO certification and of NI 43-101 and CIMM Definition Standards for Mineral Resources and Mineral Reserves. Original assay certificates were provided from the Company's records.

Sample rejects from the check sampling program were given to the Company's consulting metallurgist who designed and monitored a program of confirmatory metallurgical test work at a commercial research laboratory. The objectives of the test work were to complete independent bench scale testing for the purpose of flow sheet development, and to obtain samples of tailings for use in acid drainage potential testing, tailings water quality determinations, treatability assessment of tailings waters, and solid-liquid separation testing related to determination of adaptability of dry stack tailings disposal.

2.0 DATA FROM 2007-2008 WORK

Check sampling failed to fully duplicate the original analytical results and the discrepancies were not satisfactorily explained. The existence of a substantial resource of "high grade" silver-lead-zinc "ore" was, however, confirmed and the original data were used in a modeling exercise and resource calculation that is included in the technical report that is attached to this report.

Metallurgical test work confirmed that a preliminary mineral processing flow sheet that had been designed by the Company's consulting metallurgist was viable. The latter combined the new data with previously generated test work data and smelter shipments and produced a comprehensive report, much of which is included in the technical report that is attached to this report.

A resource calculation based on historic and recent sampling of the principal Treasure Mountain silver-zinc-lead vein was completed by Terracad GIS Services Ltd. That company, using data management software, prepared a solid model of the vein defined from surface to Level 4 of the mine. Two domains were identified: hanging wall and footwall. For purposes of resource calculations, assay values were, where applicable, diluted to not less than 1.2 metre width and for calculation purposes the mineralized portion of the vein was then further defined by blocks with dimensions 5.0m by 2.0m by 1.5m. Indicated and inferred resources were calculated with the aid of variography and kriging techniques. Basic statistical analyses for silver, lead and zinc contents were also calculated and reported, as were value-tonnage curves that reveal sensitivity to metal prices. Inferred resources in the hangingwall domain with gross value* \$165 per tonne or greater were calculated to be 50,990 tonnes with gross value \$580.73 per tonne and indicated resources were calculated to be 38,114 tonnes with gross value \$672.41 per tonne. Inferred resources in the footwall domain were calculated to be 17,478 tonnes with gross value \$306.54 per tonne. No indicated resources were reported in the footwall domain.

* for calculation purposes silver was valued at \$15/oz, lead at \$0.70/lb and zinc at \$0.80/lb. All values in USD.

3.0 STATEMENT OF EXPENDITURES

This Statement of Expenditures was compiled from Company records. Certain expenditures that were incurred but are not directly related to topics discussed in the NI 43-101-compliant technical report that is attached to this report have been omitted from the statement. GST payments have been removed from the following costs.

- Backhoe services provided by Tri-Valley Contractors clean up in portals areas, place drains and timbers to make portals secure. Work also included certain road improvements and test pit excavations that are not applicable to this report. Total invoiced amount - \$24,107. Amount applicable to Technical Report: \$15,000.00
- (2) Consulting geologist (E. A. Ostensoe, P. Geo.) fees per invoices Work in field - July 21, 2007 - eight days @ \$450/day \$3,600.00 Work in office - Aug. 14, 2008 - 300 hours @ \$50/hour \$15,000.00 Preparation of assessment work filings - 3 days @ \$500/day \$1,500.00 Total......\$20,100.00

(3) Disbursements - E. Ostensoe - groceries, truck rental, gas,

highway tolls \$ 1,201.38

- (4) A. J. Beaton Mining Inc.- supervision, labour, living and travel costs incurred in providing underground services at Treasure Mountain mine, including liason with District Inspector of Mines, ensuring safe environment underground, assisting with sampling program, closing mine in a secure fashion. Includes wages for A. J. Beaton, P. Eng., licensed mine manager, and Alex McPherson, licensed shift boss Per invoices -
- (5) M. Bratlien project manager. Provided guidance with respect to mine layout, labour in mine, assisted in re-opening mine workings and then in closing the project in a manner that was environmentally responsible and secure against possible public misadventure.

Per invoice -

(6) Jasman Yee & Associates Inc., consulting metallurgists, design work for process flow sheet, March 2008 invoice \$9214.29

 (6) Process Research Associates (aka PRA) - Dec. 2007 invoice \$7,333.50 Jan. 2008 invoice \$9,351.32
 Provided metallurgical testing procedures as requested by Jasman Yee, P. Eng, consulting metallurgist - \$16,684.81

(7) Terracad GIS Services Ltd. - invoice no. 80060 - \$5,730.00 - invoice no. 8001 - \$4,470.00

- invoice no. 80062 - \$8,015.00

- invoice no. 80063 - \$1,538.45

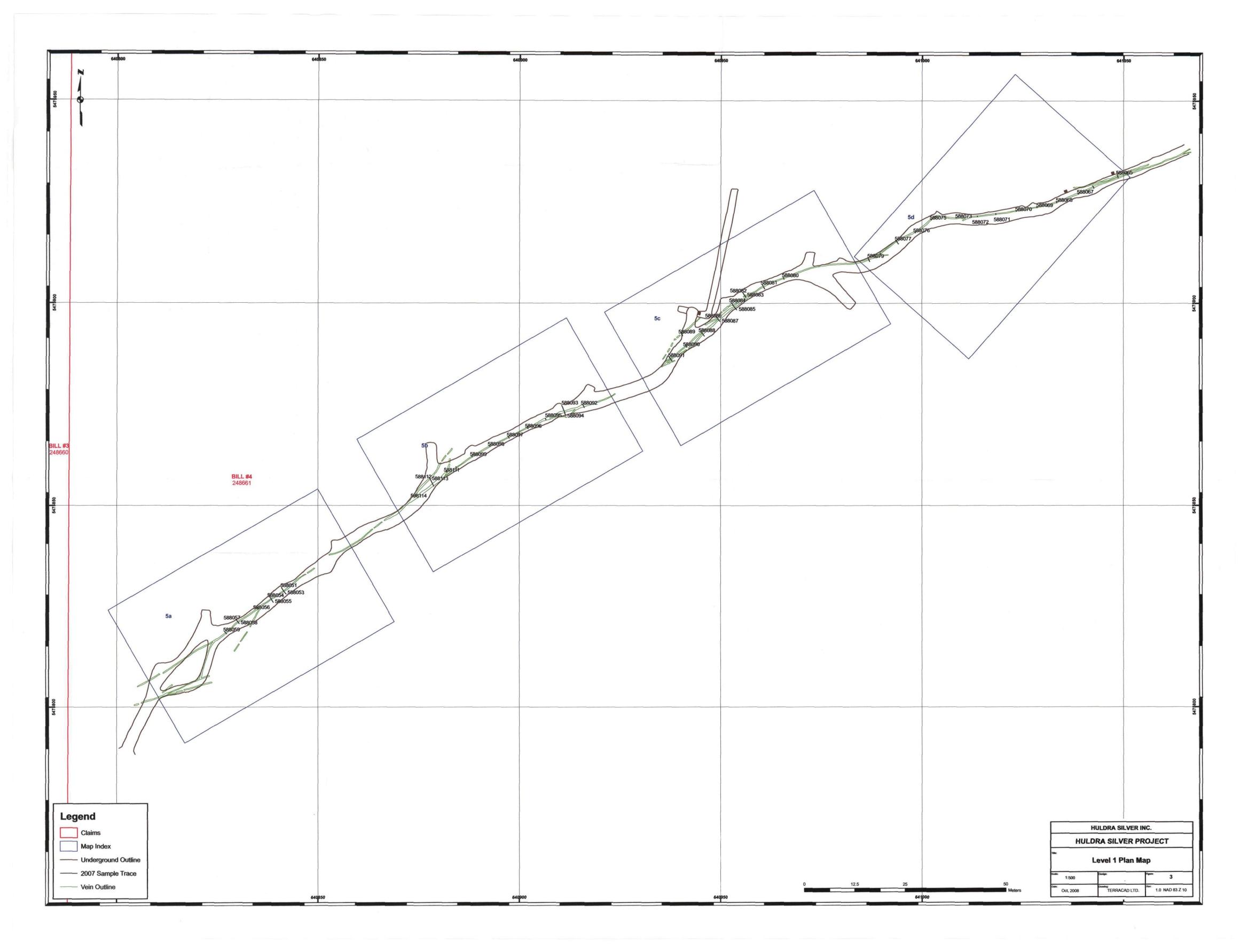
Provided graphic design, printing, formatting, scanning and compilation services, including drawings and images required for technical report. Provided data entry and geographic positioning required for computer-based solid and block modeling and resource calculations that are included in the technical report and will be used in an economic evaluation.

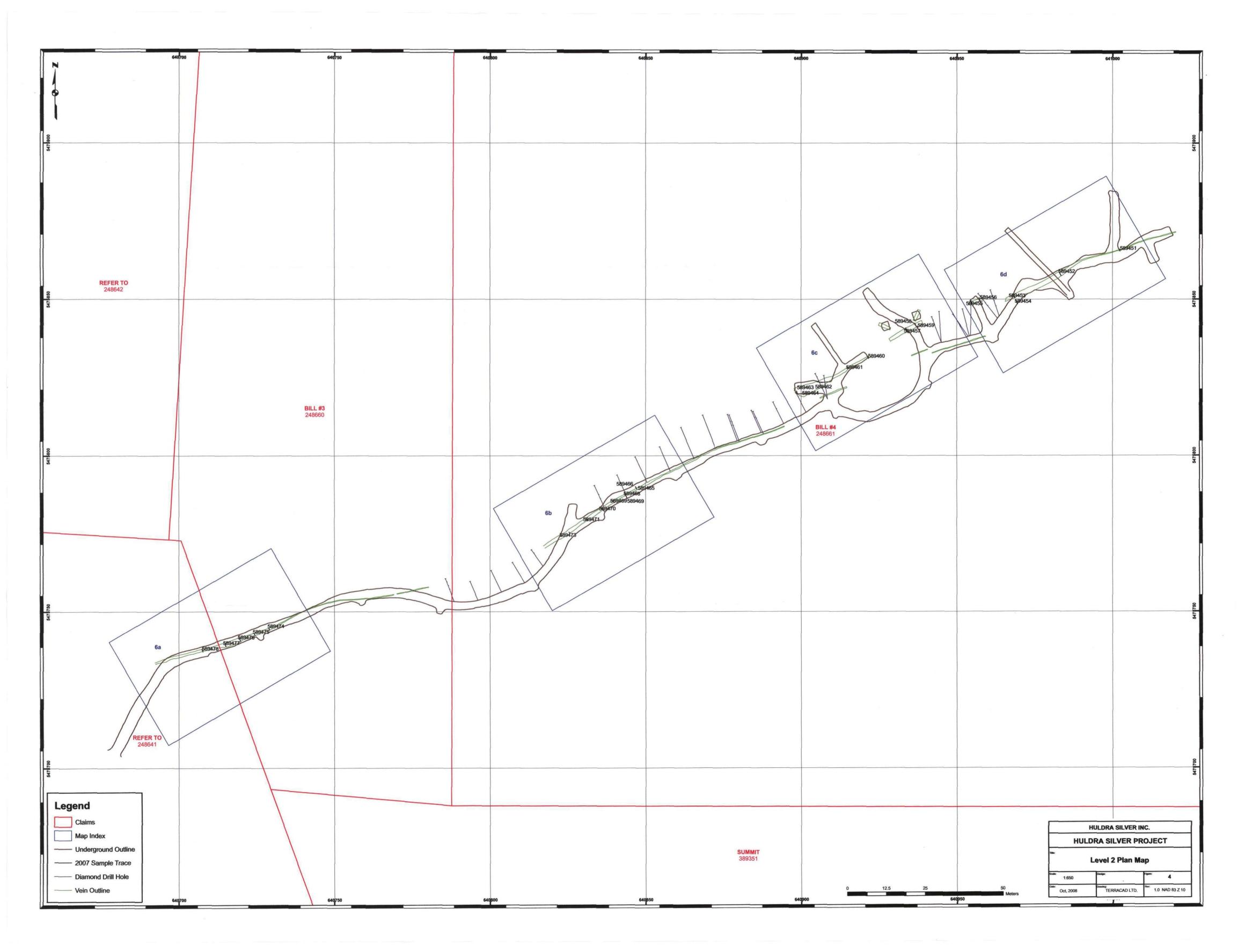
Total amount invoiced

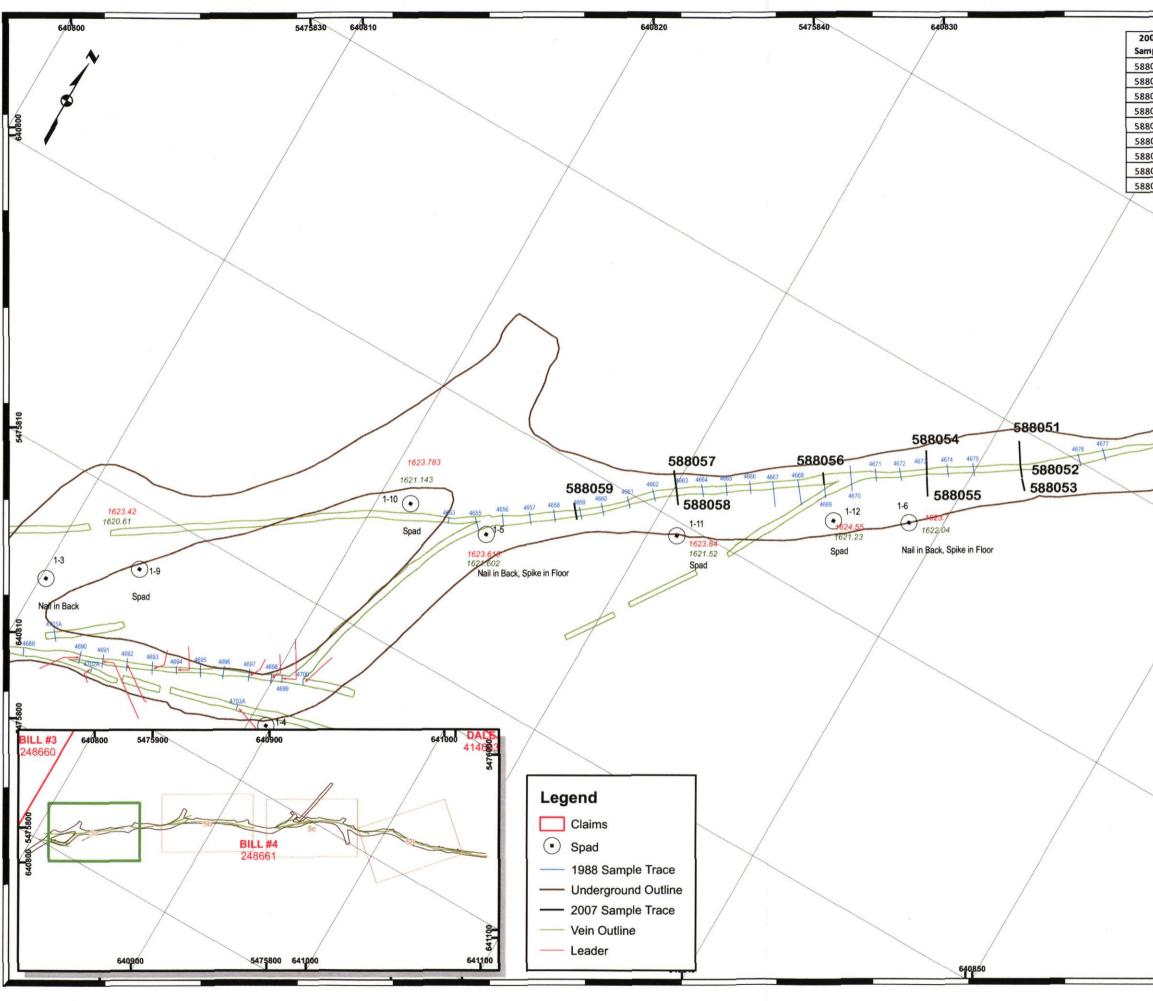
\$19,753.45

(8) iPL Analytical Laboratories - charges for 79 rock samples analysed for 30 elements by ICP-MS and assorted samples by rock assay methods for silver, lead and zinc - per invoices - <u>\$2,823.68</u>

TOTAL EXPENDITURES


<u>\$108,967.61</u> Fich A. Ostensoe

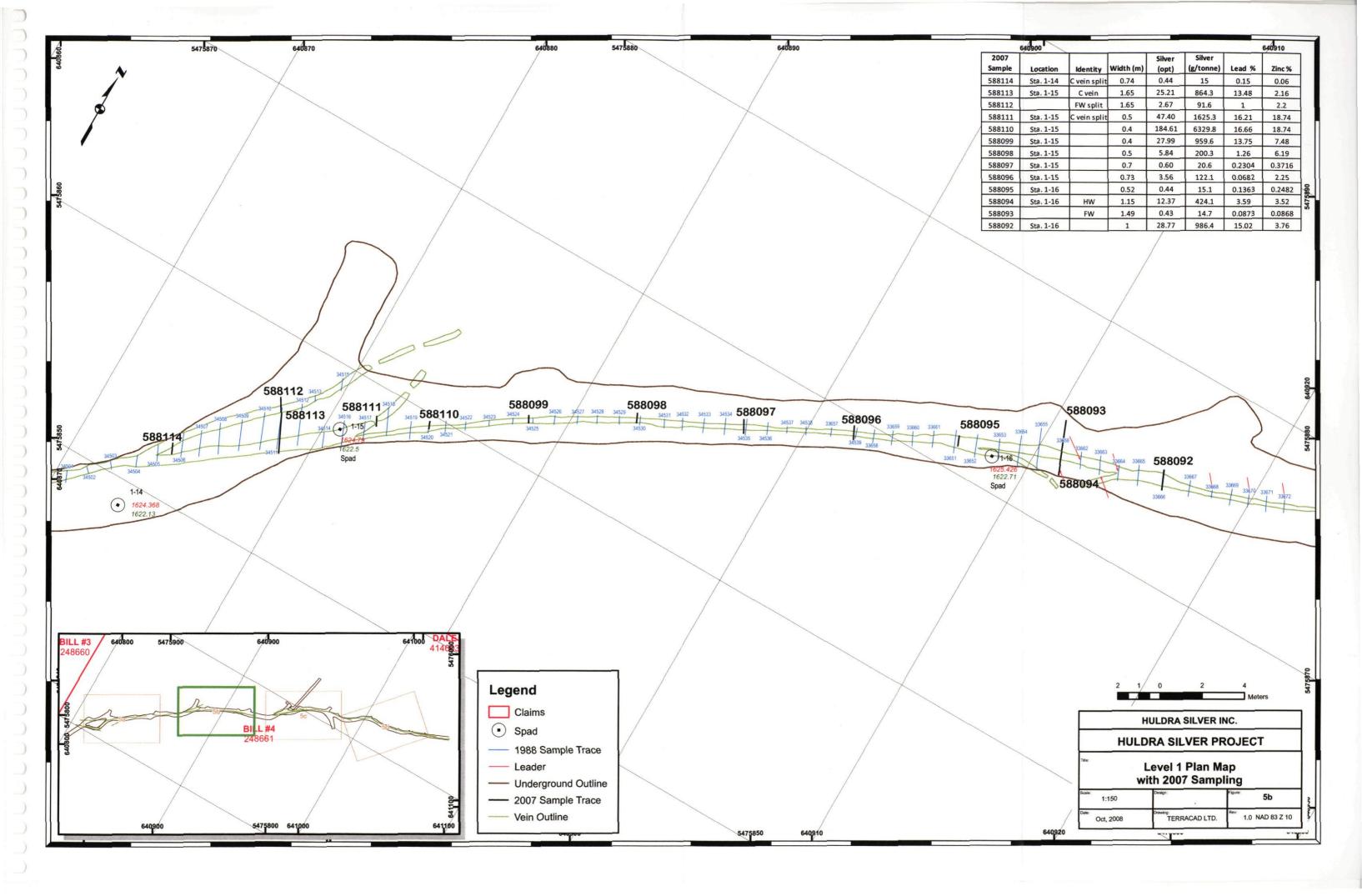

4.0 STATEMENTS OF QUALIFICATIONS

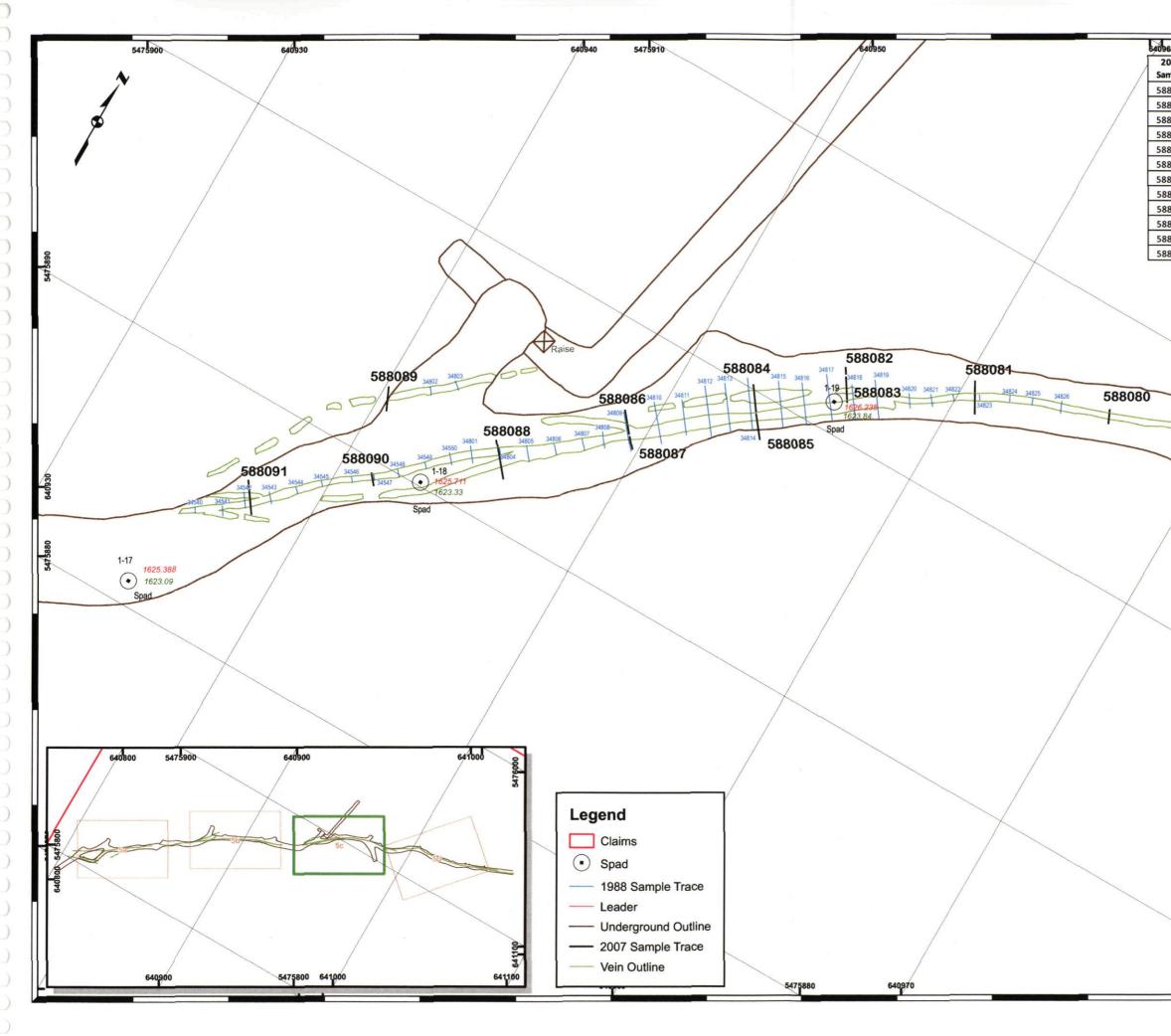

Erik A. Ostensoe, P. Geo.

This assessment report was prepared for Huldra Silver Inc. by Erik Ostensoe, P. Geo., a consulting geologist with residence in Vancouver, British Columbia. He is a graduate in Honours Geology of the University of British Columbia (1960) and is a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia and of the Northwest Territories Association of Professional Engineers and Geoscientists. He has practiced in the field of mineral exploration and mining geology, mainly in North America, for more than forty years and is familiar with methods and requirements of sampling mineral deposits similar to those found at Treasure Mountain, B. C. He carried out the program of check sampling that is described and discussed in the Technical Report that is included with this report and supervised and participated in the Resource Calculation that forms part of that report.

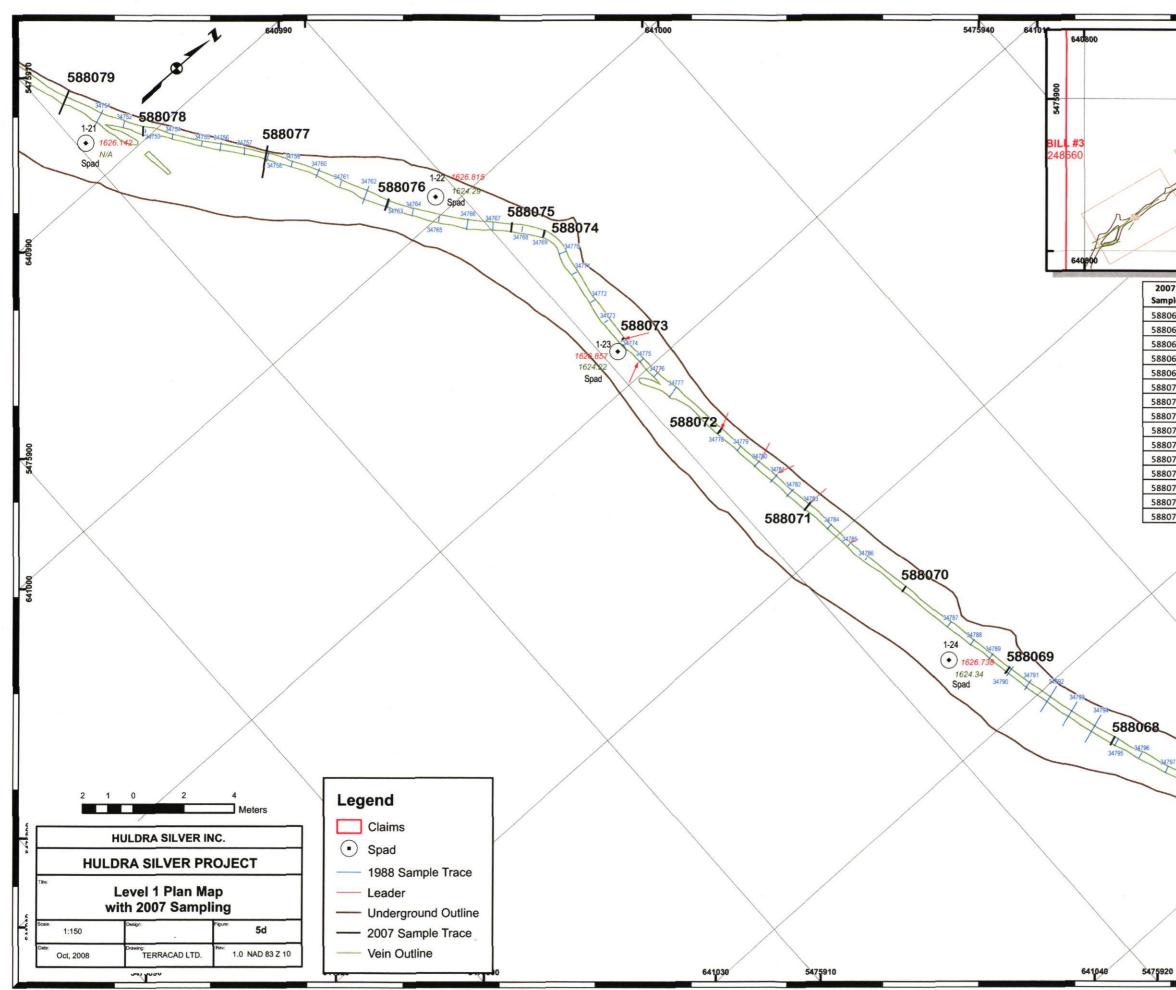
Farshad Shirvani, M. Sc., geologist and GIS specialist - is owner of Terracad GIS Limited, a service company that provides graphic and other services to the mining industry. Mr. Shirvani prepared the Resource Calculation that forms part of the Technical Report that is attached to this report. An M.Sc. graduate of Shiraz University in Shiraz, Iran, he has practiced in the fields of geology and GIS for more than twenty years and is in the process of obtaining membership in the Association of Professional Engineers and Geoscientists of British Columbia.

		640840	547585	0				6
007 mple	Location	Identity	Width (m)	Silver (opt)	Silver (g/tonne)	Lead %	Zinc %	Y
8051		Wallrock	0.5	0.78	26.8	0.58	0.88	
8052		C vein	0.5	7.98	273.6	1.74	6.58	
8053		Wallrock	0.94	0.28	9.5	0.04	0.3	
8054	portal		0.8	7.33	251.2	1.38	11.02	
8055			1	0.17	6	0.08	0.28	L.
8056	portal		0.48	0.20	6.9	0.08	0.38	EATEORD
8057	portal	HW wallrock	1	3.13	107.4	1.24	6.45	12
8058		FW C vein	0.38	5.25	180	2.59	9.38	
8059	portal		0.67	22.40	768.2	9.15	22	


1-13


547 1 0 Meters HULDRA SILVER INC. HULDRA SILVER PROJECT

Level 1 Plan Map with 2007 Sampling


2

Scale: 1:150	Design:	Figure: 5a
Oct, 2008	Drawing: TERRACAD LTD.	Rev: 1.0 NAD 83 Z 10
		~

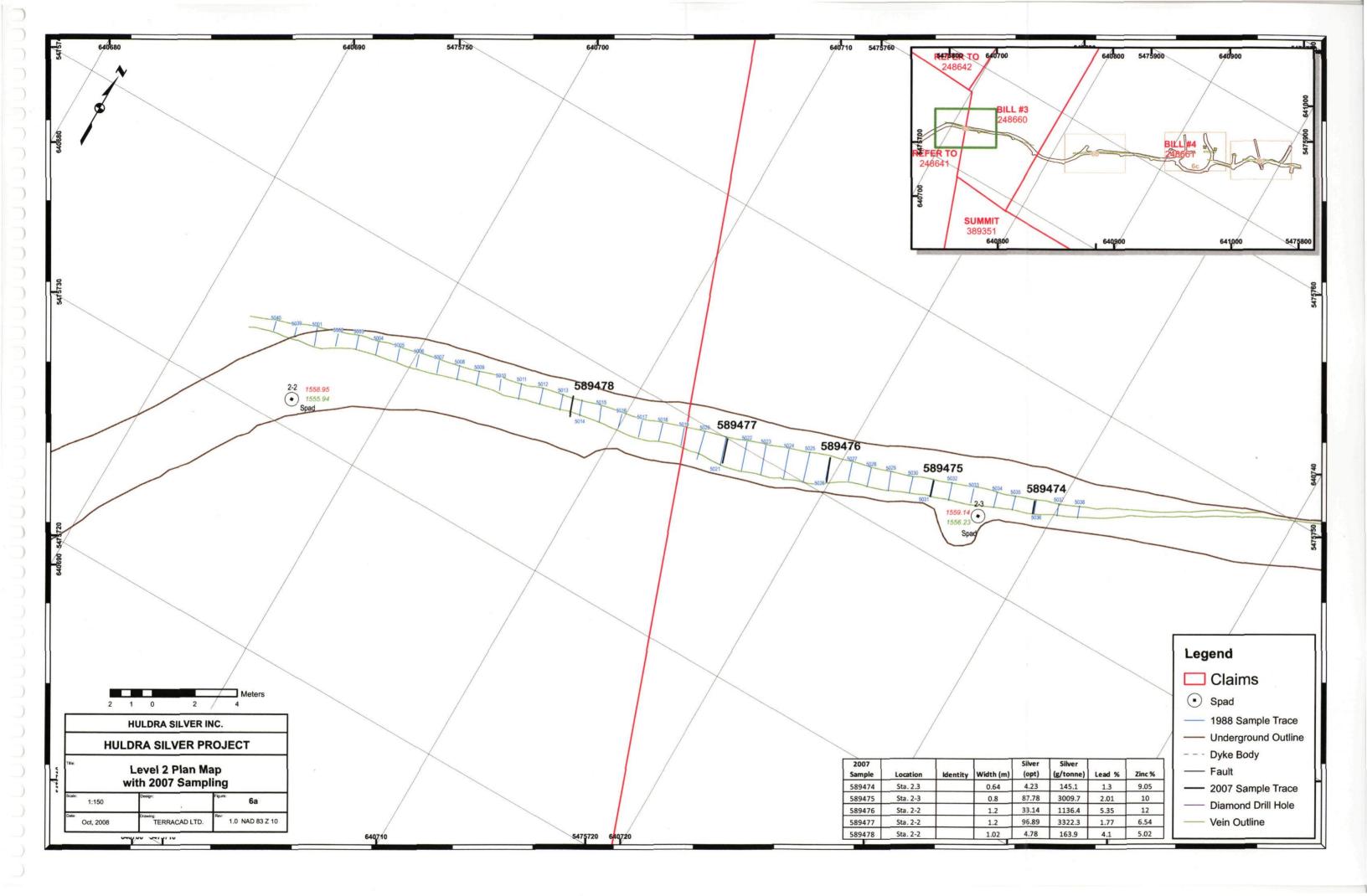
						1		_
50			,		1	640970	1	-
007		14	Martine Cont	Silver	Silver	land N	7	
nple	Location	Identity	Width (m)	(opt)	(g/tonne)	Lead %	Zinc %	
8080	Cto 1 10		0.6	6.11 1.10	209.6	8.73	0.6506	
8081 8082	Sta. 1-19		1.35	40.26	37.7	0.1898	0.3163	-
3083			0.3	48.99	1380.3 1679.6	10.04	16.18 4.35	
			1.05	6.24		13.56		
3084 3085	Cto 1.19		1.05	3.09	213.9	1.21	12.48	
	Sta. 1-18	EVA/	1.15	0.94	105.8	0.5761	6.38 1.98	
3086 3087	Sta. 1-18	FW	0.55	5.36	32.4 183.9	0.2459 5.68	4.45	1
3088	Sta. 1-18	TIVV	1.6	4.94	169.3	1.2	8.57	1
8089	Sta. 1-18		1.0	0.33	109.5	0.095	0.2337	
3090	Sta. 1-18		0.55	9.27	317.9	3.48	0.5883	1
8091	Sta. 1-10		1.4	5.33	182.6	2.65	14.27	
091	510.1-17		1.4	5.55	182.0	2.05	14.27	5475920
			/ .					547
			/					
		0	/					
		/						
/		/						
		//						80
	1	1		>				640980
			/					9
	/		/					/
_			X				/	
	1-2	0	(\				/	
	16	26.628		1			/	
		23.89					/	
	X	pad			1	~		
/						5/		
/						X	2	
/						T	1	
							1	6
								547 591
								547
		1			1 /	1		
							1	
					1 /		1	-
			\backslash		\mathbf{V}			
					X			
					X			
				/	X			
				/	X			
				/	X			
				/	X			
					X			
					X			
					X			
			2 1	0	2	4 Mi	èters	
				0	2	4 Mi	èters	0
							èters	0,000
			H	ULDRA	SILVER I	NC.		Ondraw .
			H	ULDRA		NC.		and me have
			HULD	uldra RA SI	SILVER I	NC. ROJECT		and in notion
			HULD	uldra RA SI	SILVER I	NC. ROJECT		and in notion
			HULD	ULDRA RA SI evel 1	SILVER I LVER PF	NC. ROJECT		and in notion
		Scale:	HULD	ULDRA RA SI evel 1	SILVER I	NC. ROJECT	r	and in notion
		Scale:	HULD	ULDRA RA SI evel 1 th 200	SILVER I LVER PF	NC. ROJECI ap ling		and in notion
		Scale: 1	HULD L wit	ULDRA RA SI evel 1 th 200	SILVER I LVER Pf Plan M 7 Samp	NC. ROJECT ap ling	Г 5с	and in notice
6409		Scale: 1 Date: Oct	HULD	ULDRA RA SI evel 1 th 200	SILVER I LVER PF	NC. ROJECT ap ling	r	and in notice

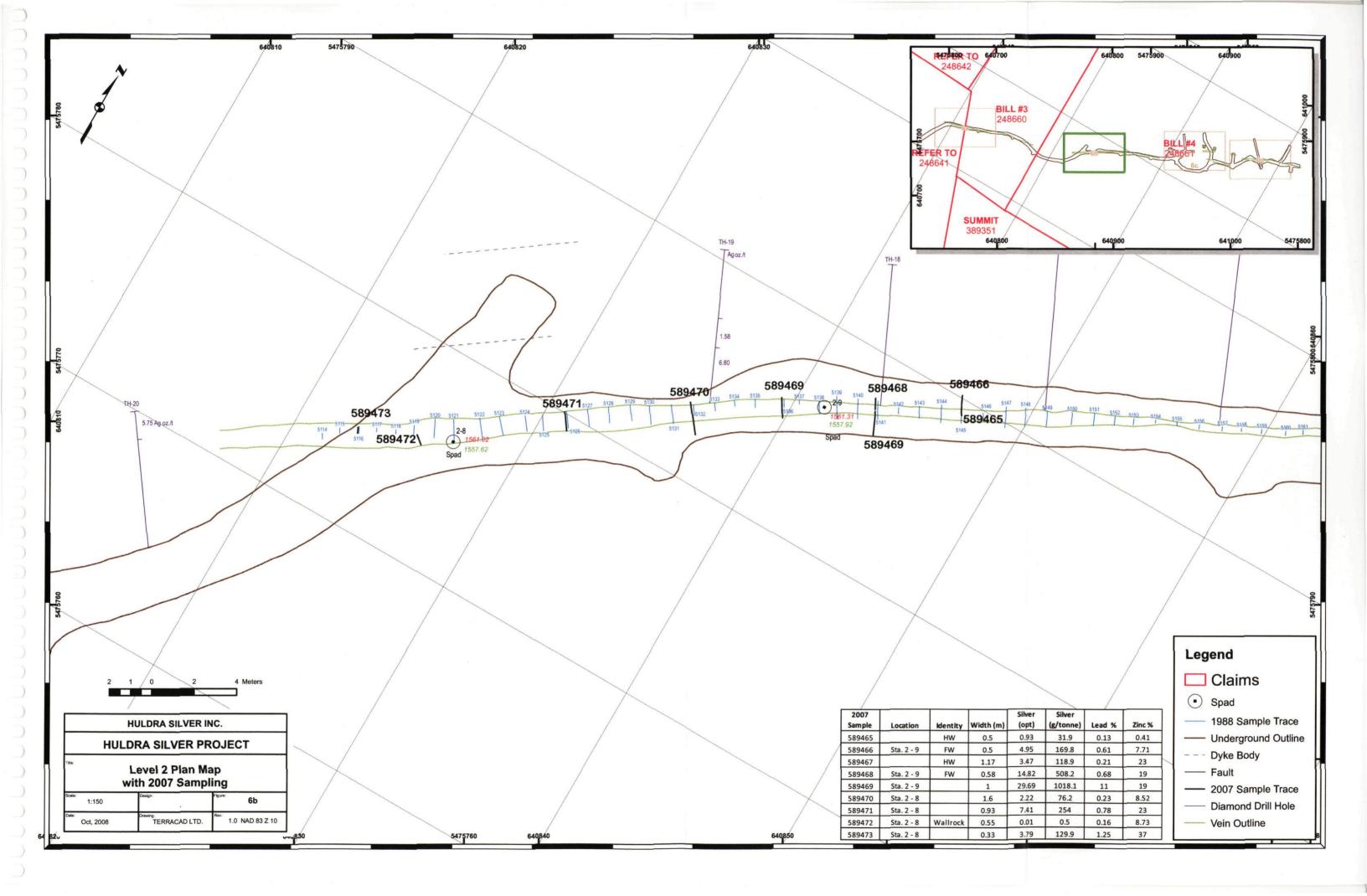
	640900	BIL	244 5661	641	50		
	640900)		641	000		
							/
2007 ample	Location	Identity	Width (m)	Silver (opt)	Silver (g/tonne)	Lead %	Zinc %
	Location Sta. 1-25	Identity	Width (m) 0.76			Lead %	Zinc %
ample 88065	-	Identity		(opt)	(g/tonne)		
ample 88065 88066	Sta. 1-25	Identity	0.76	(opt) 51.48	(g/tonne) 1765.2	11.85	4.86
ample	Sta. 1-25 Sta. 1-24	Identity	0.76 0.8	(opt) 51.48 0.94	(g/tonne) 1765.2 32.4	11.85 0.25	4.86 1.88
ample 88065 88066 88067 88068	Sta. 1-25 Sta. 1-24 Sta. 1-24	Identity	0.76 0.8 0.3	(opt) 51.48 0.94 98.87	(g/tonne) 1765.2 32.4 3390.1	11.85 0.25 17.02	4.86 1.88 2.8
ample 88065 88066 88067	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24	Identity	0.76 0.8 0.3 0.4	(opt) 51.48 0.94 98.87 136.36	(g/tonne) 1765.2 32.4 3390.1 4675.4	11.85 0.25 17.02 15.64	4.86 1.88 2.8 1.36
ample 88065 88066 88067 88068 88069	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24	Identity	0.76 0.8 0.3 0.4 0.34	(opt) 51.48 0.94 98.87 136.36 244.08	(g/tonne) 1765.2 32.4 3390.1 4675.4 8368.9	11.85 0.25 17.02 15.64 16.52	4.86 1.88 2.8 1.36 14.76
ample 88065 88066 88067 88068 88069 88070	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23	Identity	0.76 0.8 0.3 0.4 0.34 0.28	(opt) 51.48 0.94 98.87 136.36 244.08 25.93	(g/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1	11.85 0.25 17.02 15.64 16.52 16.5	4.86 1.88 2.8 1.36 14.76 1.74
ample 88065 88066 88067 88068 88069 88070 88071	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53	(g/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4	11.85 0.25 17.02 15.64 16.52 16.5 16.43	4.86 1.88 2.8 1.36 14.76 1.74 2.62
ample 88065 88066 88067 88068 88069 88070 88071 88072 88073	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42 0.28	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53 123.84	ig/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4 4246.2	11.85 0.25 17.02 15.64 16.52 16.5 16.43 18.76	4.86 1.88 2.8 1.36 14.76 1.74 2.62 5.91
ample 88065 88066 88067 88068 88069 88070 88071 88072 88073 88074	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23 Sta. 1-23	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42 0.28 0.42 0.28 0.1	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53 123.84 14.89	ig/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4 4246.2 510.4	11.85 0.25 17.02 15.64 16.52 16.5 16.43 18.76 2.05	4.86 1.88 2.8 1.36 14.76 1.74 2.62 5.91 0.9788
ample 88065 88066 88067 88068 88069 88070 88071 88071 88073 88074 88075	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23 Sta. 1-23 Sta. 1-22	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42 0.28 0.1 0.28	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53 123.84 14.89 8.85	ig/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4 4246.2 510.4 303.4	11.85 0.25 17.02 15.64 16.52 16.5 16.43 18.76 2.05 2.46	4.86 1.88 2.8 1.36 14.76 1.74 2.62 5.91 0.9788 5.68
ample 88065 88066 88067 88068 88069 88070 88071 88072	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23 Sta. 1-23 Sta. 1-22 Sta. 1-22 Sta. 1-22	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42 0.28 0.1 0.28 0.1 0.28 0.4	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53 123.84 14.89 8.85 43.44	ig/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4 4246.2 510.4 303.4 1489.5	11.85 0.25 17.02 15.64 16.52 16.5 16.43 18.76 2.05 2.46 11.85	4.86 1.88 2.8 1.36 14.76 1.74 2.62 5.91 0.9788 5.68 8.86 2.11
ample 88065 88066 88067 88068 88069 88070 88071 88072 88073 88074 88075 88076	Sta. 1-25 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-24 Sta. 1-23 Sta. 1-23 Sta. 1-23 Sta. 1-22 Sta. 1-22 Sta. 1-22 Sta. 1-22 Sta. 1-22 Sta. 1-22 Sta. 1-22	Identity	0.76 0.8 0.3 0.4 0.34 0.28 0.42 0.28 0.1 0.28 0.1 0.28 0.4 0.5	(opt) 51.48 0.94 98.87 136.36 244.08 25.93 53.53 123.84 14.89 8.85 43.44 39.32	ig/tonne) 1765.2 32.4 3390.1 4675.4 8368.9 889.1 1835.4 4246.2 510.4 303.4 1489.5 1348.2	11.85 0.25 17.02 15.64 16.52 16.5 16.43 18.76 2.05 2.46 11.85 11.29	4.86 1.88 2.8 1.36 14.76 1.74 2.62 5.91 0.9788 5.68 8.86

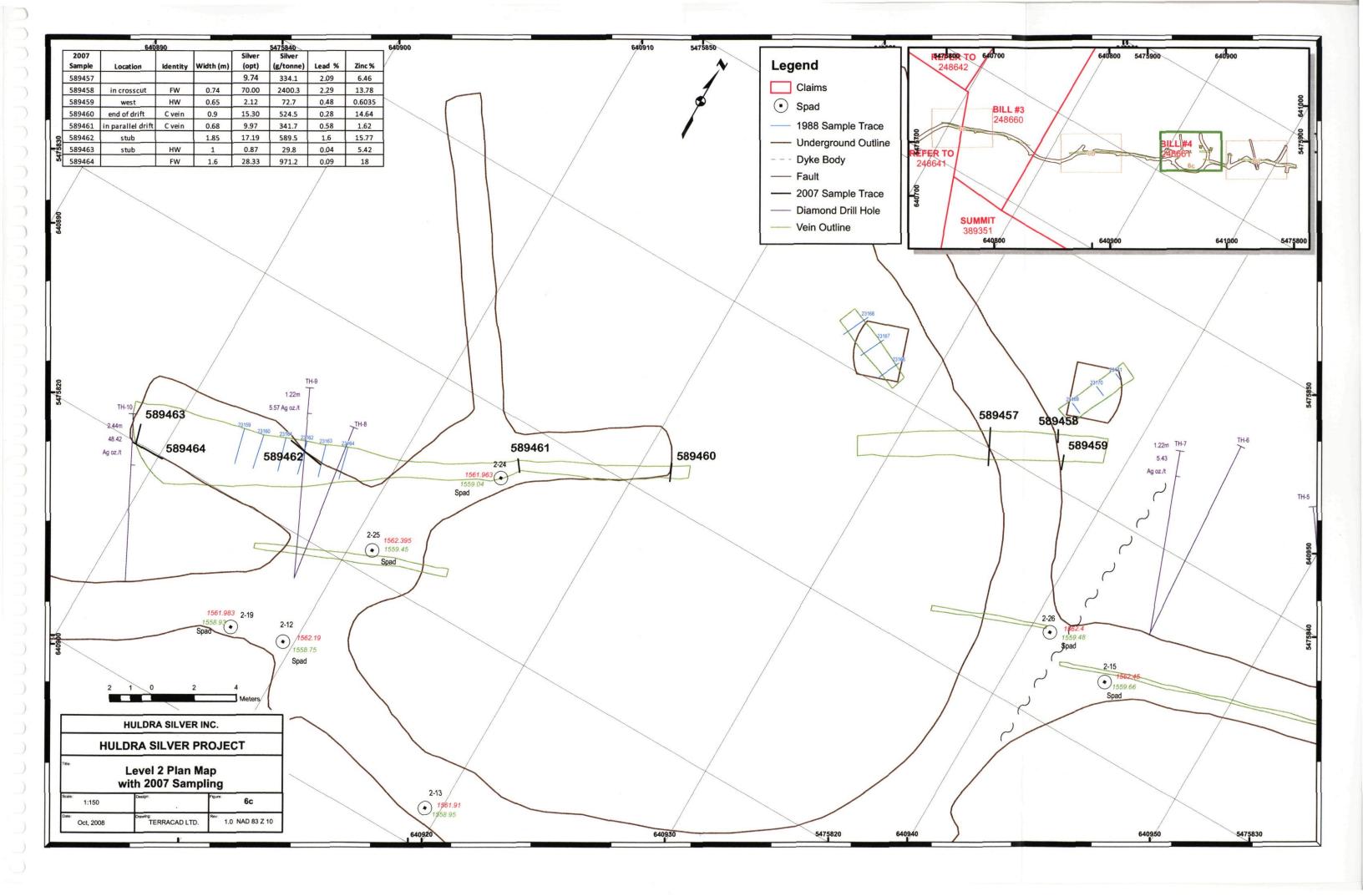
641040

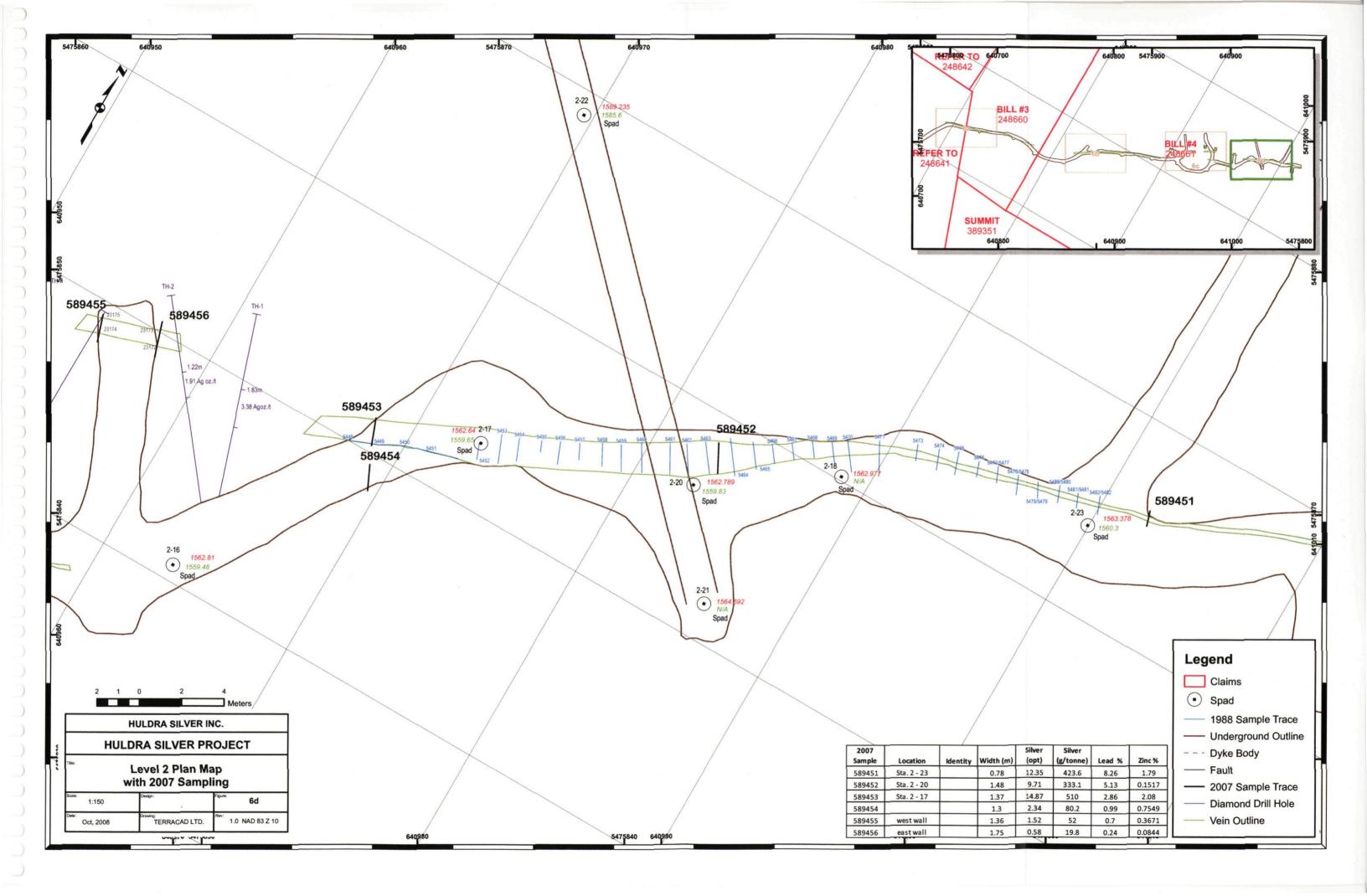
547594

588066


Raise £588065


641058


Raise


588067

A

Jasman Yee & Associates Inc. 6698 Lochdale Street Burnaby, BC, Canada V5B 2M8 Phone: 604 420-4772

 $\overline{}$

Confirmatory Metallurgical Testwork on Huldra Silver's Treasure Mountain Project Hope, BC

Prepared for

Mr. Peter Lighthall

AMEC Earth & Environmental

2227 Douglas Road

Burnaby, B.C.

Canada V5C 5A9

By

Jasman Yee, P. Eng

February 15, 2008

-

 $\overline{}$

Table of Contents

1.0 Introduction	2
2.0 Summary and Conclusions	3
3.0 Sample Collection	4
4.0 Head Assay Results	4
5.0 Metallurgical Test Composite Sample	4
5.1 Head Assay	
5.2 Whole Rock Analysis	
5.3 Work Index	5
5.4 Flotation Testwork	6
5.5 Lock Cycle Testwork	7
5.6 Thickening and Filtration	
6.0 Environmental Testing	9
7.0 Appendix	
7.1 Sample Receiving Log Sheet	10
7.2 Head Assay Result	
7.3 Whole Rock Analysis	
7.4 Work Index	
7.5 Flotation Testwork Data Sheets	

7.6 Lock Cycle Data Sheets.287.7 Thickening and Filtration357.8 Flowsheet used for 2006 study.51

1.0 introduction

In an email message dated June 18, 2007, Peter Lighthall of Amec, Inc. indicated that Huldra was ready to advance to the next development phase for their Treasure Mountain Project. As part of the new work program, he requested confirmatory metallurgical testwork and developing representative tailings samples to be used in support of permitting.

The objective of the new test program was to:

1. Obtain representative ore sample from the mine

2. Duplicate the bench scale testing that was used as the basis for flow sheet development and to generate samples of tailings for the following:

- Acid drainage potential testing
- Tailings water quality determinations
- Treatability assessment of the tailings water to meet CCME and BC discharge standards
- Solid-liquid separation testing to confirm that the tailings can be filtered for the dry stack

This report deals with the confirmatory metallurgical testwork used in developing the original flowsheet; producing representative tailings solids and liquids for further testing under the supervision of Fred Sverre of Entech Environmental Consultants Ltd.; and to confirm that the tailings produced can be filtered and stacked based on the results of the thickening and filtration testwork.

2.0 Summary and Conclusions

A summary of the results of the testwork performed at PRA together with the conclusions drawn are provided below:

- 1. Confirmatory testwork on a new composite of freshly collected samples from level 1 and level 2 adits at the Treasure Mountain Project site concluded that the flowsheet used in the study of 2006 is viable.
- 2. The assumed work index of 13.0(Imperial) used in the power calculations to size the grinding power requirement was confirmed. Ball mill work index obtained in the test at PRA was 12.6(Imperial) or 13.9(metric).
- 3. The sphalerite mineral in the new composite tested was not as active as the sample used in the Orocon study.
- 4. Use of zinc sulfate as a zinc depressant in the lead float was effective and a lower dosage can be used without decreasing the zinc recovery to the zinc concentrate product.
- 5. Sodium metabisulfite or sulfur dioxide equivalent was also tested and found to effective as well in depressing zinc in the lead flotation circuit.
- 6. The above two items suggest they are options available in the event soluble zinc concentrations in the tailings pond are unacceptable for direct discharge to the receiving environment.
- 7. The lead and silver head grades tested are slightly higher than the estimated ore resource grade and can be responsible for the higher lead and silver recoveries obtained in the lock cycle results. These recoveries are higher than the projected recoveries used in the 2006 study. However, the lead concentrate grade is lower than the projected grade.
- 8. The zinc concentrate grade and recovery are similar to the projected figures used in the 2006 study.
- 9. Other potential payable elements in the zinc concentrate were assayed. The elements of interest were indium, germanium and cadmium. The assays of these three elements produced from the locked cycle tests were less than 5g/t, less than 5g/t and about 0.65% respectively.
- 10. Settling testwork on the flotation tailings indicates flocculent is required to produce faster settling rates and clearer overflows than unflocculated tailings. The calculated thickener area requirement with flocculation is 0.56 m²/tonne-day of solids. Without flocculent, the thickener area requirement would be ten times larger.
- 11. Vacuum filtration on the settled product produced a cake with about 20% moisture. It would appear based on the cake characteristics that this cake can be dry-stacked. However, optimization tests are required to confirm the finding as the filtration rate was medium to slow probably due to the fabric used. Besides further testwork would be required in sizing the filter for this application.
- 12. Samples of tailings solids and liquids from the lock cycle series of tests were composited and shipped to Cantest for environmental testing under the direction of Fred Sverre of Entech Environmental Consultants Ltd.
- 13. In addition, a composite head sample used in the metallurgical test program was sent to Ms. Emily Chastain of Amec Earth and Environmental for ABA testwork.

3.0 Sample Collection

The samples used for the test program was collected by Erik Ostensoe in July of last year. He sampled the entire underground workings of levels 1 and 2 and the East and West drifts. Entire details such as sample locations and the individual assays can be found in his report. It was unfortunate access to level 3 was not possible as those workings were still flooded at the time of sampling and permission to access was not granted by the Ministry of Energy and Mines due to safety reasons.

A list of the sample assay rejects used for this metallurgical test program together with their weights is documented in PRA's receiving log sheet which is provided in Appendix 1 of this report.

4.0 Head Assay Results

The assays of the individual samples collected by Erik Ostensoe were analysed at IPL and are presented in his report. The locations of these samples together with a drawing showing where these samples were taken are also discussed in his report.

5.0 Metallurgical Test Composite Sample

Prior to testing, PRA was instructed to prepare 4 composites from the different working areas for head assays only. The objective was to ratio the weights for these 4 different areas such that an overall ore grade matching the ore resource grade would be met and it would closely resemble a representative sample.

The instructions for preparing these 4 composites with their designated names and the tag numbers used are provided below:

Level 1 East Composite: Sample numbers 588065 to 588079

Level 1 West Composite: Sample numbers 588051 to 588059, 588080 to 588100 and 588111 to 588115

Level 2 East Composite: Sample numbers 589451 to 589464

Level 2 West Composite: Sample numbers 589465 to 589478.

The sample with no name was not used.

Assays for these 4 composite samples are provided in the table below:

Sample Name	SampleType	Ag g/mt	Ag ppm	Pb %	Zn %
L1 East Comp	Pulp	3045.2	2499.0	20.15	4.67
L1 West Comp	Pulp		693.2	5.51	6.18
L2 East Comp	Pulp		514.0	1. 64	7.11
L2 West Comp	Pulp	-	493.0	2.12	14.92

There are two columns for silver assays. The first column is silver by fire assay with a gravimetric finish; the second is silver using acid digestion and ICP. For very high silver assays, the fire assay with a gravimetric finish is more reliable.

Based on the above composite assays, an overall or master composite for metallurgical testing was prepared according to the following instructions:

1 part of level 1 east 1 part of level 2 west 2 parts of level 1 west 2 parts of level 2 east

The objective was to ensure that the test composite would be representative of the grade of ore in the reserve estimation and closely resemble the lead to zinc ratio.

5.1 Master Composite Head Assay

The master composite head assays were performed in duplicate and the main assays are listed in the table below. Additional details on the head assays are provided in Appendix 2.

PRA

HEAD ASSAY REPORT

Client: Huldra Sample: as specified Date: 5-Nov-07 Project: 0707109

Elements	Units	Sai	nple iD	Detectio	n Limits	Analytical
		Composite	RE Composite	Min.	Max.	Method
Au	g/mt	0.16	0.16	0.01	5000	FA/AAS
Ag	ppm	943.6	952.7	0.50	1000	MuAICP
Pb	%	7.23	7.20	0.01	20	AsyMuA
Ox.Pb	%	0.19	0.18	0.01	100	AsyLeh
Zn	%	7.88	7.88	0.01	20	MuAICP
Ox.Zn	%	0.15	0.14	0.01	100	AsyLeh
S(tot)	%	6.87	6.92	0.01	20	Leco
S(-2)	%	6.77	6.81	0.01	100	AsyWet

The lead and silver grades were slightly higher than expected but would be suitable for meeting the prescribed metallurgical and environmental testing objectives. Oxidized lead and zinc assays were also performed to determine the degree of oxidation that had taken place since the sample was taken. The values in both cases were very low indicating minimal oxidation.

5.2 Whole Rock Analyses

Whole rock analyses was performed on the master composite and the results indicate the major mineral was silica at 41.7% followed by oxides of iron, aluminum, manganese, potassium and calcium in decreasing order. The quantity of the manganese oxide was not as substantial as was originally expected based on visual examination of the ore zones during sampling.

Complete details of the whole rock analyses can be found in Appendix 3.

5.3 Work Index

The Bond ball mill work index was determined on the master composite sample at a closing screen size of 74 microns. The work index for the sample was 13.9kWh/tonne of feed under simulated steady state conditions. The test was performed with six cycles to stabilize the circulating loads. Details of the test and data are provided in Appendix 4.

5.4 Flotation

The base case test was F1 and the procedure used was a grind of 70% passing 200mesh with zinc sulphate, soda ash, potassium ethyl xanthate and DF250 in the lead float. Lime to pH 11.0, copper sulphate to activate zinc and sodium isopropyl xanthate was used in the zinc float.

Procedure for F2 was similar to F1 but without any zinc sulfate and a lower lead float pH of 7 rather than 9.5.

F3 was similar to F2 but 100g/t of sodium metabisulfite was used for depressing zinc in the lead float.

Test F4 was similar to F1 but the zinc sulfate addition was reduced by a half and the lead float was performed at pH 7.5.

Results of the four tests are summarized in the table below followed by comments after each phase of flotation:

Summary of Flotation Tests Results

Combined Lead Rougher/Scavenger Flotation Results

Test #	t# Weight		Weight Assay				Distribution			
	g	%	Ag g/t	Pb %	Zn %	S %	Ag %	Pb %	Zn %	S ⁻² %
F1	445.4	22.9	4024.3	26.92	6.24	13.4	98.6	97.7	19.9	46.7
F2	369.2	19.1	4542.1	31.99	16.81	19.6	97.5	97.4	41.7	56.8
F3	312.5	15.8	5879.8	41.79	10.86	20.7	96.5	97.2	22.5	46.2
F4	292.5	15.0	5068.5	37.40	6.02	16.8	93.1	96.1	13.3	39.8

The high lead float pH of 9 in test 1 resulted in more mass pull to concentrate Zinc sulfate was more effective than sodium metabisulfite in depressing zinc in the lead float.

Combined Zinc Rougher/Scavenger Flotation Results

Treasure Mountain Project 7

Huldra Silver Inc.

Test#	Weight		Assay				Distribution			
	g	%	Ag g/t	РЬ %	Zn %	S %	Ag %	Рb %	Zn %	S ⁻² %
 F1	296.8	15.2	44.2	0.23	37.03	21.6	0.7	0.6	78.9	50.2
F2	245.7	12.7	71.1	0.38	34.56	20.6	1.0	0.8	57.1	39.9
F3	290.5	14.7	130.3	0.76	39.94	23.5	2.0	1.7	76.9	48.8
F4	284.4	14.6	99.7	0.58	39.60	24.1	1.8	1.5	85.1	55.4

Test #	Weight		Assay			Distribution				
			Ag	Pb	Zn	S	Ag	Pb	Zn	S ⁻²
	g	%	g/t	%	%	%	%	%	%	%
F1	742.2	38.1	2432.7	16.25	18.55	16.7	99.3	98.2	98.8	97.0
F2	614.9	31.8	2755.5	19.36	23.90	20.0	98.5	9 8.2	98.8	96.8
F3	603.0	30.5	3109.8	22.03	24.87	22.1	98.5	98.9	99.5	95.0
F4	576.9	29.6	2618.7	19.24	22.58	20.4	94.9	97.6	98.3	95.1

Use of metabisulfite in test F3 provided the best concentrate products

Final Flotation Tail

Test #	Weight		Assay			1	Distribution			
			Ag	Pb	Zn	S %	Ag %	Pb %	Zn %	Տ ⁻² %
	g	%	g/t	% %						
F1	1,204.4	61.9	10.9	0.18	0.14	0.3	0.7	1.8	1.2	3.0
F2	1,317.1	68.2	19.7	0.17	0.14	0.3	1.5	1.8	1.2	3.2
F3	1,371.3	69.5	21.3	0.11	0.06	0.5	1.5	1.1	0.5	5.0
F4	1,374.1	70.4	59.2	0.20	0.16	0.4	5.1	2.4	1.7	4.9

The silver recovery for test 4 appears to be off due to the poor check on the metallurgical balance.

The balance for the other elements such as lead, zinc and sulfur check very well.

Details of the individual test procedures, results and size analysis can be found in Appendix 5.

5.5 Lock Cycle Test

The lock cycle results show good concentrates can be produced at better than expected recoveries by using recycled water from the previous cycle. There does not appear to be any deleterious effect on the metallurgy with using recycled water. Hence, there is the possibility of reducing reagents further during the next phase of the project's development program.

Huldra Silver Inc.

The combined lead concentrate grade for cycles 4, 5 and 6 was 46.76%Pb, 7.554kg Ag/t with recoveries of 95.4% and 96.6% lead and silver respectively. The combined zinc concentrate for cycles 4, 5 and 6 was 54.76% and the recovery was 83.8%

Agreement of the silver, zinc and sulfur back calculated assays with the actual assayed head values are good and the grades and recoveries for these elements can be relied on with confidence. However, the check on the assayed head assay for lead with the back calculated assay is not as good. The lead recovery is therefore slightly biased on the high side and the lead concentrate assay could be biased on the low side. In any case the overall results are slightly better than the projected figures used in the 2006 report.

The lock cycle tests also demonstrated that the volume of the lead and zinc cleaner recycle streams will be very low.

In addition to regular assays used in the metallurgical balance, additional assays for indium, germanium and cadmium in the zinc concentrates were requested as these are potential payable elements in the zinc product. The assays of indium, germanium and cadmium are less than 5ppm, less than 5ppm and about 58ppm respectively.

Complete details of the lock cycle tests are provided in Appendix 6.

5.6 Thickening and Filtration

Two settling tests, one without flocculent and one with 40g/L P351 flocculent, were conducted on a split of the combined locked cycle zinc flotation tails. The pH of the sample tested dropped to 8.3 from 11.0 when left standing for a few days before the settling tests were conducted.

The initial settling rate without flocculent was 0.3m/day whereas with flocculent, the settling was about 10 times faster at 3.3m/day. Also the unit area requirement to produce an underflow density of 50% was 5.18m^2/tpd without flocculent and 0.56m^2/tpd with flocculent.

The thickening tests suggest flocculent would be required in the plant operation but optimization of flocculent usage and pH would be required in future test programs.

Details of the thickening tests and data are provided in Appendix 7

A vacuum filtration test was performed on the flocculated settled sludge from the thickening tests. The filter feed density was 50% solids and the filtration rate for solids was 148.3 kg/m²/h and 102 L/m²/h for liquids. The cake moisture was 19.6% and the filtrate was clear. The test demonstrated that the flocculated zinc tailings can be filtered with some difficulty and the characteristics of the filtered product suggests it is stackable. However, the filtration rate is slow and a larger than normal filter would be required for this application. It is recommended that optimization testwork is required in the final sizing of the filter together with a better selection of the filter medium.

The filtration test report is provided in Appendix 8.

..

6.0 Environmental Testing

Approximately 17 liters of zinc flotation tailings from the locked cycle series of test were sent for environmental testing on January 11th, 2008. The tailings pulps from the six cycles were composited and a summary of the analytical results of the solids are provided in the table below:

	Assays						
Product	Ag	Pb	Zn	S(T)			
Flotation Tails	g/t	%	%	%			
Zn Tails, Cycle 1	16.5	0.22	0.22	0.45			
Zn Tails, Cycle 2	18.6	0.27	0.16	0.47			
Zn Tails, Cycle 3	29.1	0.24	0.28	0.48			
Zn Tails, Cycle 4	25.9	0.24	0.17	0.38			
Zn Tails, Cycle 5	29.6	0.30	0.20	0.53			
Zn Tails, Cycle 6	15.9	0.26	0.22	0.45			
Total Zn Flotation Tails	22.6	0.26	0.21	0.46			

These tailings solids would closely resemble the tailings product from the operating plant. The solids and the liquids were sent to:

CANTEST LTD 4606 Canada Way Burnaby, BC V5G 1K5 Tel: 604 734 7276 Fax: 604 731 2386

Attention: Mr. Tim O'Hearn

These were the instructions of Fred Sverre of Entech Environmental Consultants Ltd.

In addition to the tailings sample, a cut of the head sample used in the locked cycle test was also sent for environmental ABA testing. This sample was sent to:

Amec Earth and Environmental 2227 Douglas Road Burnaby, BC V5C 5A9

Attn: Ms. Emily Chastain.

Jasman Yee & Associates Inc.

SAMPLE RECEIVING LOG SHEET

	ing Date: 4-Oct-07 Carrier: From iPL to PRA Receiver: On Han Pin	Project No: 0707109 Client: Huldra Page: 1 of 4						
Count	Sample Label	Container Type	Sample Type (C, R, P, SI, S)		Top Size	Weight (kg)		
1	588051	Paper Bag	Р	Dry	2#	1.0		
2	588052	Paper Bag	Р	Dry	2#	0.9		
3	588053	Paper Bag	Р	Dry	2#	1.0		
4	588054	Paper Bag	Р	Dry	2#	0.5		
5	588055	Paper Bag	Р	Dry	2#	0.6		
6	588056	Paper Bag	Р	Dry	2#	0.6		
7	588057	Paper Bag	Р	Dry	2#	0.6		
8	588058	Paper Bag	Р	Dry	2#	0.9		
9	588059	Paper Bag	P	Dry	2#	1.3		
10	588065	Paper Bag	Р	Dry	2#	1 .1		
11	588066	Paper Bag	Р	Dry	2#	0.8		
12	588067	Paper Bag	P	Dry	2#	1.3		
13	588068	Paper Bag	Р	Dry	2#	1.4		
14	588069	Paper Bag	P	Dry	2#	1.2		
15	588070	Paper Bag	Р	Dry	2#	0.9		
16	588071	Paper Bag	P	Dry	2#	0.7		
17	588072	Paper Bag	Р	Dry	2#	0.7		
18	588073	Paper Bag	Р	Dry	2#	0.7		
19	588074	Paper Bag	P	Dry	2#	1.0		
20	588075	Paper Bag	Р	Dry	2#	0.8		
Note :			··		<u> </u>	17.7		

Core, Rock, Pulp, Slurry, Solution

ľ

.

 $\overline{\mathbf{C}}$

-

SAMPLE RECEIVING LOG SHEET

Ca	Date: 4-Oct-07 arrier: From iPL to PRA eiver: On Han Pin	Project No: 0707109 Client: Huldra Page: 2 of 4					
Count	Sample Label	Container Type	Sample Type (C, R, P, SI, S)	Wet /Dry	Top Size	Weight (kg)	
21	588076	Paper Bag	Р	Dry	2#	1.9	
22	588077	Paper Bag	Р	Dry	2#	2.2	
23	588078	Paper Bag	Р	Dry	2#	1.5	
24	588079	Paper Bag	Р	Dry	2#	1.3	
25	588080	Paper Bag	Р	Dry	2#	0.8	
26	588081	Paper Bag	Р	Dry	2#	1.5	
27	588082	Paper Bag	Р	Dry	2#	0.7	
28	588083	Paper Bag	Р	Dry	2#	1.1	
29	588084	Paper Bag	Р	Dry	2#	1.2	
30	588085	Paper Bag	Р	Dry	2#	1.3	
31	588086	Paper Bag	Р	Dry	2#	1.1	
32	588087	Paper Bag	Р	Dry	2#	2.0	
33	588088	Paper Bag	Р	Dry	2#	1.4	
34	588089	Paper Bag	Р	Dry	2#	1.7	
35	588090	Paper Bag	Р	Dry	2#	0.9	
36	588091	Paper Bag	Р	Dry	2#	1.1	
37	588092	Paper Bag	Р	Dry	2#	3.6	
38	588093	Paper Bag	Р	Dry	2#	1.5	
39	588094	Paper Bag	Р	Dry	2#	1.2	
40	588095	Paper Bag	Р	Dry	2#	1.3	
Note :		.	<u></u>			29.0	

Core, Rock, Pulp, Slurry, Solution

_

Receiving Date: 4-Oct-07 Project No: 0707109 Carrier: From iPL to PRA Client: Huldra Receiver: On Han Pin Page: 3 of 4 Container Sample Type Weight Wet /Dry Top Size Sample Label Count (C, R, P, SI, S) Type (kg) 588096 Paper Bag Ρ 2# 1.9 41 Dry 588097 Ρ 42 Paper Bag 2# 1.9 Dry 588098 Ρ 43 Paper Bag Dry 2# 1.9 588099 Ρ 44 Paper Bag Dry 2# 1.8 45 588100 Ρ 2# Paper Bag Dry 1.6 588111 Ρ 2# 46 Paper Bag Dry 2.2 47 588112 Paper Bag Ρ Dry 2# 0.7 Ρ 48 588113 Dry 2# Paper Bag 1.6 49 588114 Paper Bag Ρ Dry 2# 0.5 588115 Ρ 50 Paper Bag Dry 2# 0.6 Ρ 51 589451 Paper Bag Dry 2# 2.6 52 589452 Ρ Paper Bag 2# 2.8 Dry 53 589453 Paper Bag Ρ Dry 2# 4.2 Ρ 589454 54 Paper Bag 2# 2.3 Dry 55 589455 Paper Bag Ρ 2# 3.2 Dry 56 589456 Paper Bag Ρ Dry 2# 2.9 57 589457 Paper Bag Ρ Dry 2# 4.8 58 589458 Ρ Paper Bag 2# Dry 4.8 59 589459 Ρ Paper Bag Dry 2# 2.4 60 589460 Ρ Paper Bag Dry 2# 2.3 46.4 Note :

SAMPLE RECEIVING LOG SHEET

Core, Rock, Pulp, Slurry, Solution

SAMPLE RECEIVING LOG SHEET

	ring Date: 4-Oct-07 Carrier: From iPL to PRA Receiver: On Han Pin	Project No: 0707109 Client: Huldra Page: 4 of 4						
Count	Sample Label	Container Type	Sample Type (C, R, P, SI, S)	Wet /Dry	Top Size	Weight (kg)		
61	589461	Paper Bag	P	Dry	2#	2.8		
62	589462	Paper Bag	P	Dry	2#	3.4		
63	589463	Paper Bag	Р	Dry	2#	3.5		
64	589464	Paper Bag	P	Dry	2#	3.8		
65	589465	Paper Bag	Р	Dry	2#	1.7		
66	589466	Paper Bag	Р	Dry	2#	1.2		
67	589467	Paper Bag	Р	Dry	2#	2.3		
68	589468	Paper Bag	Р	Dry	2#	2.6		
69	589469	Paper Bag	Р	Dry	2#	2.0		
70	589470	Paper Bag	P	Dry	2#	2.6		
71	589471	Paper Bag	Р	Dry	2#	4.9		
72	589472	Paper Bag	Р	Dry	2#	4.5		
73	589473	Paper Bag	P	Dry	2#	1.4		
74	589474	Paper Bag	Р	Dry	2#	2.9		
75	589475	Paper Bag	Р	Dry	2#	3.0		
76	589476	Paper Bag	Р	Dry	2#	4.0		
77	589477	Paper Bag	P	Dry	2#	3.4		
78	589478	Paper Bag	Р	Dry	2#	3.1		
79	No name	Paper Bag	P	Dry	2#	1.1		
80								
Note :		L		L		53.8		

Core, Rock, Pulp, Slurry, Solution

_

...

Client: Huidra

Sample: as specified

Date: 5-Nov-07 Project: 0707109

Elements	Units			Detection	Analytical				
	L1 East Comp	L1 West Comp	L2 East Comp	L2 West Comp	RE L1 East Comp	Min.	Max.	Method	
Ag	g/mt	3045.2	-	-	-	3035.6	0.3	9999	FAGrav
Ag	ррт	2499	693.2	514	493	2570.2	0.5	1000	MuAICP
РЬ	%	20.15	5.51	1.64	2.12	19.47	0.01	20	AsyMuA
Zn	%	4.67	6.18	7.11	14.92	4,75	0.01	20	MUAICP

_

Client: Huldra

Sample: as specified

Date: 5-Nov-07 Project: 0707109

Elements	Units	Samp	le ID	Detection	Limits	Analytical
		-	RE Master Comp.	Min.	Max.	Method
Au	g/mt	0.16		0.01	5000	FA/AAS
Ag	ppm	943.6		0.5	1000	MUAICP
Pb		7.23		0.01	20	AsyMuA
Ox.Pb	%	0.19	0.18	0.01	100	AsyLeh
Zn	%	7.88	7.88	0.01	20	MUAICP
Ox.Zn	%	0.15	0.14	0.01	100	AsyLeh
S(tot)	%	6.87	6.92	0.01	20	Leco
S(-2)	%	6.77	6.81	0.01	100	AsyWet
AI	ppm	38038	38272	100	50000	ICPM
Sb	ppm	8425	8289	5	2000	ICPM
As	ppm	545	555	5	10000	ICPM
Ba	ppm	68	65	2	10000	ICPM
Bi	ppm	<2	<2	2	2000	ICPM
Cd	ppm	599.8	615.9	0.2	2000	ICPM
Ca	ppm	15649	15824	100	100000	ICPM
Cr	ppm	80	83	1	10000	ICPM
Co	ppm	16	16	1	10000	ICPM
Cu	ppm	1354	1349	1	20000	ICPM
Fe	ppm	69316	69612	100	50000	ICPM
La	ppm	5	4	2	10000	ICPM
Pb	ppm	71897	71930	2	10000	ICPM
Mg	ppm	5594	. 5614	100	100000	ICPM
Mn	ppm	52685	53683	1	10000	ICPM
Hg	ppm	<3;	<3	3	10000	ICPM
Мо	ppm	14	14	1	1000	ICPM
Ni	ppm	<1	<1	1	10000	ICPM
P	ppm	158	168	100	50000	ICPM
к	ppm	16049;	15592	100	100000	ICPM
Sc	ppm	5;	6	1	10000	ICPM
Ag	ppm	841.2	858.6	0.5	500	ICPM
Na	ppm	1604	1583	100	100000	ICPM
Sr	ppm	49	50	1	10000	ICPM
TI	ppm	<2;		2	1000	ICPM
Ti	ppm	901	917	100	100000	ICPM
w	ppm	198		5	1000	ICPM
V	ppm	43	44	1	10000	ICPM
Zn	ppm	78080	78050	1	10000	ICPM
Zr	ppm	6;	6	1	10000	ICPM

Client: Huldra

Sample: as specified

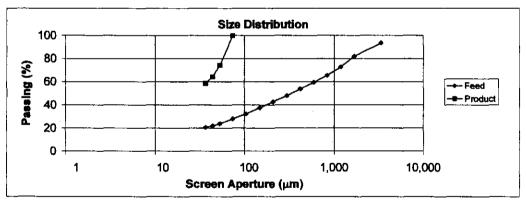
Date: 5-Nov-07 Project: 0707109

Compoundo	11-14	Sample ID		Detection	Analytical		
Compounds	Unit	Master Comp. RE I	laster Comp.	Min.	Max.	Method	
AI2O3	%	7.42	7.23	0.01	100	WRock	
BaO	%	0.04	0.03	0.01	100	WRock	
CaO	%	2.31	2.26	0.01	100	WRock	
Fe2O3	%	9.8	9.54	0.01	100	WRock	
K2O	%	2.84 [°]	2.96	0.01	100	WRock	
MgO	%	1.	1	0.01	100	WRock	
MnO	%	6.51	6.43	0.01	100	WRock	
Na2O	%	0.99 ¹	0.94	0.01	100	WRock	
P2O5	%	0.1	0.04	0.01	100	WRock	
SiO2	%	41.73	41.17	0.01	100	WRock	
TiO2	%	0.28	0.27	0.01	100	WRock	
LOI	%	11.21	11.75	0.01	100	2000 F	
Total	%	84.2	83.61	0.01	105	WRock	

Client: Huldra

Test BI-1 Sample: Master Composite

Date: 15-Nov-07 Project: 0707109


TEST CONDITIONS

Cycle	Oversize Wt. (grams)	Product WL (grams)	Feed Undersize (grams)	Net Product (grams)	Product per Rev. (grams/rev.)	Required Rev. (rev.)
1	1,048	519	437	82	0.82	100
2	1,031	534	145	389	1.06	367
3	1,075	490	149	341	1.21	281
4	1,104	461	137	324	1.27	256
5	1,117	448	129	319	1.28	250
6	1,115	450	125	325	1.29	251
7						

TEST RESULTS

SIZE ANALYSIS

Sieve	Size	% Passing		Material Charge WL-700 mL(g) = 1,565
Tyler mesh	μm	Feed	Product	Test Screen (µm) = 74
8	3,360	93.6		Undersize in Feed (%)= 27.9
10	1,680	81.9		Circulating Load (%) = 248
14	1,190	72.8		Gbp (ave.) = 1.29
20	841	65.5		Product P ₈₀ (µm) = 57.7
28	595	59.5		Feed F _{a0} (µm) = 1,569
35	420	53.9		W (kWh/ton) = 12.5
48	297	47.9		W (kWh/tonne) = 13.9
65	210	42.7		
100	149	37.5		
150	105	32.3		
200	74	27.9	100.0	
270	53	23.9	74.1	1
325	44	21.9	64.3	
400	37	20.7	58.7	

FLOTATION TEST PROCEDURE

Client: Hukira Test: F1 Sample: Master comp. Date: 19-Nov-07 Project: 0707109 Operator: Jim

Objective: initial rougher flotation to recover Ag, Pb and Zn

STAGE	TIME	pН	ORP	ADDIT	ION	COMMENTS
	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.6	170	ZnSO4	500	P70 =74µm, mil⊯1
Pb Flotation			:	(
Condition	3	9.5	91	Soda Ash	2600	
	1			PEX	50	
Pb Rougher Float	8.0	9.2	81	DF250	20	
Condition	3	9.2	ł	Soda Ash	n/a	
	3		ļ	ZnSO4	250	
	1			PEX	25	
Pb Scavenger Float	4.0	8.5	84	DF250	7	
Zinc Flotation						
Condition	3	11.0	-4.4	Lime	1500	
	3		ł	CuSO4	500	
	1			SIPX	50	
Zn Rougher Float	6	10.5	40	DF250	13	
Condition	3	11.0	8	Lime	300	
	3			CuSO4	250	
	1			SIPX	25	
Zn Scavenger Float	3	11.1	19	DF250	0	

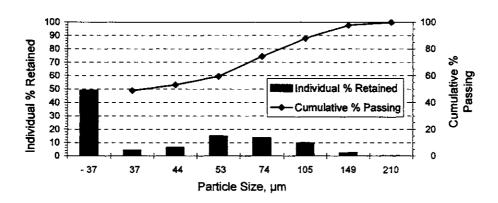
FLOTATION TEST METALLURGICAL BALANCE

Client: Hukira	Date: 19-Nov-07
Test: F1	Project: 0707109
Sample: Master comp.	Operator: Jim

Objective: initial rougher flotation to recover Ag, Pb and Zn

Product	Wei	ght		Assa	———— Iy			Dist	ribution	
]	-	Ag	РЬ	Zn	S	Ag	Pb	Zn	S-2
·	g	%	g/t	%	%	%	%	*	*	%
Pb Rougher Concentrate	362.9	18.6	4901.8	32.64	6.13	14.6	97.8	96.5	15.9	41.6
Pb Scavenger Concentrate	82.5	4.2	164.6	1.74	6.74	8.0	0.7	1.2	4.0	5.2
Total Pb Concentrate	445.4	22.9	4024.3	26.92	6.24	13.4	98.6	97.7	19.9	46.7
Zn Rougher Concentrate	247.5	12.7	44.5	0.20	44.20	25.6	0.6	0.4	78.5	49.6
Zn Scavenger Concentrate	49.3	2.5	42.6	0.41	1.02	1.6	0.1	0.2	0.4	0.6
Totai Zn Concentrate	296.8	15.2	44.2	0.23	37.03	21.6	0.7	0.6	78.9	50.2
Total Flotation Concentrate	742.2	38.1	2432.7	16.25	18.55	16.7	99.3	98.2	98.8	97.0
Final Tails	1,204.4	61.9	10.9	0.18	0.14	0.3	0.7	1.8	1.2	3.0
Calculated Head	1,946.6	100.0	934.3	6.31	7.16	6.6	100.0	100.0	100.0	100.0
Measured Head			948.2	7.22	7.88	6.9				

.


Client: Huldra Test: F1 Date: 19-Nov-07 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative		
Tyler Mesh	Micrometers	% Retained	% Passing		
65	210	0.0	100.0		
100	149	2.3	97.7		
150	105	9.8	87.8		
200	74	13.5	74.4		
270	53	14.8	59.6		
325	44	6.4	53.2		
400	37	4.2	49.0		
Undersize	- 37	49.0	-		
TOTAL:		100.0			

70 % Passing Size (μm) = 68

FLOTATION TEST PROCEDURE

Client: Huidra Test: F2

Sample: Master comp.

Date: 21-Nov-07 Project: 0707109 Operator: Jim

Objective: similar to F1, but without ZnSO4, lower pH in Pb float

STAGE	TIME	ρН	ORP	ADDI	TON	COMMENTS
	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48''	6.6	109			P70 =74µm, mill#1
-						
Pb Flotation						
Condition	10	6.5	109	MBS	n/a	
	3	7.5	90	Soda Ash	350	
	1			PEX	50	
Pb Rougher Float	8.0	7.5	56	DF250	20	
Condition	1	7.5	32	PEX	25	
Pb Scavenger Float	4.0	7.5	37	DF250		
Zinc Flotation						
Condition	3	11.0	-37	Lime	960	
	3			CuSO4	500	
	1			SIPX	50	
Zn Rougher Float	6	10.9	-2	DF250		
Condition	3	11.0	8	Lime	120	
	3			CuSO4	250	
	1		-	SIPX	25	
Zn Scavenger Float	3	10.9	32	DF250		

.

-

FLOTATION TEST METALLURGICAL BALANCE

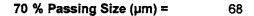
Client: Hukhra	Date: 21-Nov-07
Test: F2	Project: 0707109
Sample: Master comp.	Operator: Jim

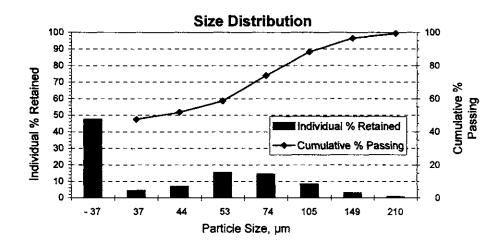
Objective: similar to F1, but without ZnSO4, lower pH in Pb float

Product	Wei	ght	Assay				Dist	ribution		
	1	-	Ag	РЬ	Zn	S	Ag	Pb	Zn	5-2
) g	%	g/t	%	%	%	*	*	. %	%
Pb Rougher Concentrate	294.3	1 5.2	5650.5	39.80	11.53	18.5	96.7	96.6	22.8	42.9
Pb Scavenger Concentrate	74.9	3.9	188.3	1.31	37.53	23.7	0.8	0.8	18.9	14.0
Total Pb Concentrate	369.2	19.1	4542.1	31.99	16.81	19.6	97.5	97.4	41.7	56.8
Zn Rougher Concentrate	209.6	10.9	69.7	0.34	40.29	23.8	0.8	0.6	56.8	39.3
Zn Scavenger Concentrate	36.1	1.9	79.5	0.61	1.30	2.3	0.2	0.2	0.3	0.7
Total Zn Concentrate	245.7	12.7	71.1	0.38	34.56	20.6	1.0	0.8	57.1	39.9
Total Flotation Concentrate	614.9	31.8	2755.5	19.36	23.90	20.0	98.5	98.2	98.8	96.8
Final Tails	1,317.1	68.2	19.7	0.17	0.14	0.3	1.5	1.8	1.2	3.2
Caiculated Head	1,932.0	100.0	890.4	6.28	7.70	6.6	100.0	100.0	100.0	100.0
Measured Head			948.2	7.22	7.88	6.9				

Client: Huldra Test: F2

(


 $\overline{\overline{}}$


Date: 21-Nov-07 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative % Passing		
Tyler Mesh	Micrometers	% Retained			
65	210	0.6	99.4		
100	149	2.9	96.5		
150	105	8.3	88.2		
200	74	14.3	73.9		
270	53	15.3	58.6		
325	44	6.8	51.8		
400	37	4.4	47.4		
Undersize	- 37	47.4	-		
TOTAL:		100.0			

Client: Huldra Test: F3 Sample: Master comp. Date: 5-Dec-07 Project: 0707109 Operator:

Objective: with 100g/t MBS in grind

STAGE	TIME	pН	ORP	ADDIT	ION	COMMENTS
	min		mv	Reagent_	g/tonne	
Grind (2kg)	9'48"	6.4	262	MBS	100	P70 =74µm, mil#1
Pb Flotation						
Condition	3	7.5		Soda Ash	250	
	1		5	PEX	50	
Pb Rougher Float	8.0	7.5	175	DF250	15	
Condition	1	7.5		PEX	25	
Pb Scavenger Float	4.0	7.6	119	DF250	5	
Zinc Flotation						
Condition	3	11.0		Lime	930	
Į	3	•		CuSO4	500	
	1			SIPX	50	
Zn Rougher Float	6	10.9	59	DF250	7	
Condition	3	11.0		Lime	90	
	3			CuSO4	250	
	1	:		SIPX	25	
Zn Scavenger Float	3	10.9	63	DF250		

..-

.

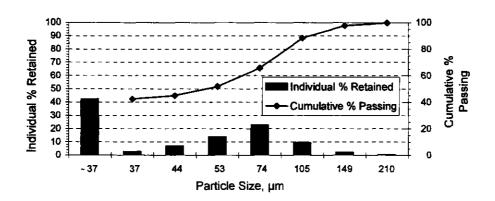
FLOTATION TEST METALLURGICAL BALANCE

Client: Huidra	Date: 5-Dec-07
Test: F3	Project: 0707109
Sample: Master comp.	Operator: LC

Objective: with 100g/t MBS in grind

Product	Wei	ght	Assay				Distribution				
				Pb	Zn	S	Ag	РЪ	Zn	5 ⁻²	
	g	*	g/t	%	%	%	%	%	*	%	
Pb Rougher Concentrate	206.1	10.4	8551.8	59.34	3.47	18.7	92.6	91.1	4.7	27.5	
Pb Scavenger Concentrate	106.3	5.4	699.2	7. 77	25.19	24.6	3.9	6.2	17.8	18.7	
Total Pb Concentrate	312.5	15.8	5879.8	41.79	10.86	20.7	96.5	97.2	22.5	46.2	
Zn Rougher Concentrate	231.4	11.7	113.4	0.67	49.22	28.1	1.4	1.2	75.5	46.4	
Zn Scavenger Concentrate	59.1	3.0	196.7	1.13	3.59	5.7	0.6	0.5	1.4	2.4	
Total Zn Concentrate	290.5	14.7	130.3	0.76	39. 94	23.5	2.0	1.7	76.9	48.8	
Total Flotation Concentrate	603.0	30.5	3109.8	22.03	24.87	22.1	98.5	98.9	99.5	95.0	
Final Tails	1,371.3	69.5	21.3	0. <u>1</u> 1	_0.06_	0.5		1.1	0.5	5.0	
 Calculated Head	1,974.2	100.0	964.6	6.80	7.64	7.1	100.0	100.0	100.0	100.0	
Measured Head			948.2	7.22	7.88	6.9					

_


Client: Huldra Test: F3 Date: 5-Dec-07 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative		
Tyler Mesh	Micrometers	% Retained	% Passing		
65	210	0.2	99.8		
100	149	2.1	97.7		
150	105	9.4	88.3		
200	200 74 22.6		65.6		
270	53	13.8	51.8		
325	44	6.8	45.0		
400	37	2.6	42.4		
Undersize	- 37	42.4	-		
TOTAL:		100.0			

70 % Passing Size (µm) = 80

Client: Huldra Test: F4 Sample: Master comp. Date: 5-Dec-07 Project: 0707109 Operator: Jim

Objective: similar to F1, but with less ZnSO4 in grind

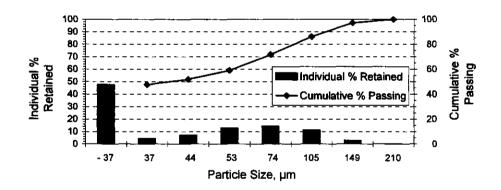
STAGE	TIME	pН	ORP	ADDIT	ION	COMMENTS
, 	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.7	191	ZnSO4	250	P70 =74µm, mil#1
Pb Flotation						
Condition	3	7.5		Soda Ash	325	
	1			PEX	50	
Pb Rougher Float	8.0	7.5	115	DF250	20	
Condition	3	7.5		Soda Ash	n/a	
	3			ZnSO4	250	
	1			PEX	25	
Pb Scavenger Float	4.0	7.4	105	DF250	7	
Zinc Flotation						
Condition	3	11.0		Lime	1080	
	3			CuSO4	500	
	1			SIPX	50	
Zn Rougher Float	6	10.7	72	DF250		
Condition	3	11.0		Lime	180	
	3		1	CuSO4	250	
	1			SIPX	25	
Zn Scavenger Float	3	10.9	96	DF250		

FLOTATION TEST METALLURGICAL BALANCE

Client: Huldra	Date: 5-Dec-07
Test: F4	Project: 0707109
Sample: Master comp.	Operator: Jim

Objective: similar to F1, but with less ZnSO4 in grind

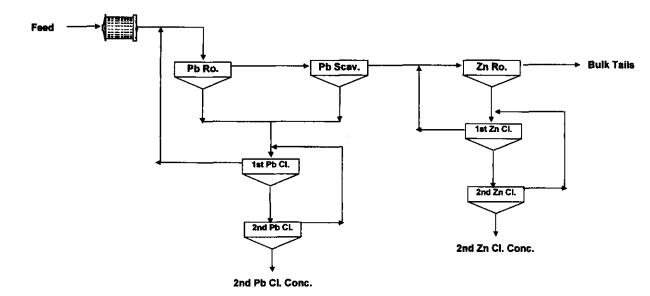
Product	Wei	ght		Distribution						
		-	Ag	РЬ	Zn	S	Ag	Pb	Zn	s-²
	g	%	g/t	%	%	%	%	%	*	. %
Pb Rougher Concentrate	208.9	10.7	6947.0	49.91	4.85	17.9	9 1.1	91.6	7.6	30.2
Pb Scavenger Concentrate	83.6	4.3	373.9	6.12	8.93	14.2	2.0	4.5	5.6	9.6
Total Pb Concentrate	292.5	15.0	5068.5	37.40	6.02	16.8	93.1	96.1	13.3	39.8
Zn Rougher Concentrate	224.7	11.5	99.9	0.53	49.62	29.7	1.4	1.0	84.2	53.9
Zn Scavenger Concentrate	59.8	3.1	99.0	0.77	1.95	3.1	0.4	0.4	0.9	1.5
Total Zn Concentrate	284.4	14.6	99.7	0.58	39.60	24.1	1.8	1.5	85.1	55.4
Total Flotation Concentrate	576.9	29.6	2618.7	19.24	22.58	20.4	94.9	97.6	98.3	95.1
Final Tails	1,374.1	70.4	59.2	0.20	0.16	0.4	5.1	2.4	1.7	4.9
Calculated Head	1,951.0	100.0	816.0	5.83	6.79	6.4	100.0	100.0	100.0	100.0
Measured Head	1	·	948.2	7.22	7.88	6.9				


Client: Huldra Test: F4 Date: 5-Dec-07 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative		
Tyler Mesh	Micrometers	% Retained	% Passing		
65	210	0.0	100.0		
100	149	2.8	97.2		
150	105	11.1	86.0		
200	74	14.3	71.7		
270	53	12.8	59.0		
325	44	6.9	52.0		
400	37	4.4	47.7		
Undersize	- 37	47.7			
TOTAL:		100.0			


70 % Passing Size (µm) = 71

LOCKED CYCLE FLOTATION TEST FLOWSHEET

Notes:

1. Use recycle water from each stage for the next cycle

FLOTATION TEST PROCEDURE

Client: Huldra Test: LC, Cyc.1 Sample: Master comp.

۲ م

(

 $\overline{}$

-

_

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

STAGE	TIME	pH	ORP	ADDIT	ION	COMMENTS
· · · · · · · · · · · · · · · · · · ·	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.8	190	MBS	100	P70 =74µm, mil#1
Lead Rougher Flotation			1			
Condition	3.0 1.0	7.5	79	Soda Ash PEX	165 50	
Pb Rougher Float	<u>8.0</u>	7.5		DF250	13	
Condition	3.0 3.0 1.0	7.5		Soda Ash ZnSO4 PEX	250 . 25	
Pb Scavenger Float	<u>4.0</u>	7.4	57	DF250	3	
Zinc Rougher Flotation					1	
Condition	3.0 3.0 1.0	11.0		Lime CuSO4 SIPX	708 500 50	
Zn Rougher Float	<u>9.0</u>	10.9	24	DF250	3	
Lead Cleaner (on Pb Ro. Conc. + Pb. Scav. Conc)					
1st Pb Cleaner Float	7.0	7.6	91	DF250	10	
2nd Pb Cleaner Float	5.0	7.6	110	DF250		
Zinc Flotation (on Zn Ro. Conc.)						
Condition	3.0	11.0	1	Lime	48	
1st Zn Cleaner Float	6.0	10.8	64	DF250	7	
Condition	3.0	11.0		Lime	18	
2nd Zn Cleaner Float	5.0	11.0	29	DF250	3	

Client: Huldra Test: LC, Cyc.2 Sample: Master comp.

 \mathbf{C}

 \overline{c}

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

STAGE	TAGE TIME PH ORP ADDITION		ION	COMMENTS		
	min	I	mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.9	120	MBS	100	P70 =74µm, mill#1
Lead Rougher Flotation				*		
Condition	3.0	7.5	ł	Soda Ash	160	
	1.0			PEX	50	
Pb Rougher Float	<u>8.0</u>	7.6	59	DF250	10	
Condition	3.0	7.5		Soda Ash		
	3.0]	ZnSO4	250	1
	1.0		1	PEX	25	
Pb Scavenger Float	<u>4.0</u>	7.4	47	DF250	3	
Zinc Rougher Flotation						
Condition	3.0	11.0	ľ	Lime	1110)
	3.0		ł	CuSO4	500	
	1.0			SIPX	50	
Zn Rougher Float	<u>9.0</u>	10.7	22	DF250	7	
Lead Cleaner					<u> </u>	<u> </u>
(on Pb Ro. Conc. + Pb. Scav. Conc)	2				
1st Pb Cleaner Float	7.0	7.5	97	DF250	7	
2nd Pb Cleaner Float	5.0	7.7	101	DF250		
Zinc Flotation						
(on Zn Ro. Conc.)						ļ
Condition	3.0	11.0	1	Lime	48	
1st Zn Cleaner Float	6.0	11.1	14	DF250	7	
Condition	3.0	11.0		Lime	24	
2nd Zn Cleaner Float	5.0	11.0	12	DF250	3	

FLOTATION TEST PROCEDURE

Client: Huidra Test: LC, Cyc.3 Sample: Master comp.

.

(

-

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

STAGE	TIME	рH	ORP	ADDIT	TON	COMMENTS
	min			Reagent	g/tonne	
Grind (2kg)	9'48"	6.9	150	MBS	100	P70 =74µm, mil#1
Lead Rougher Flotation						
Condition	3.0 1.0	7.5	:	Soda Ash PEX	150 50	
			1			
Pb Rougher Fioat	<u>8.0</u>	7.6	61	DF250	10	
Condition	3.0	7.5		Soda Ash		
	3.0	Ì		ZnSO4	250	
	1.0		5	PEX	25	
Pb Scavenger Float	<u>4.0</u>	7.2	48	DF250	3	
Zinc Rougher Flotation						
Condition	3.0	11.0	l t	Lime	900	
	3.0			CuSO4	500	
	1.0			SIPX	50	5
Zn Rougher Float	<u>9.0</u>	10.7	36	DF250	8	
Lead Cleaner					1	
(on Pb Ro. Conc. + Pb. Scav. Conc	}		}			
1st Pb Cleaner Float	7.0	7.7	88	DF250	3	
2nd Pb Cleaner Float	5.0	7.6	98	DF250		
Zinc Flotation						
(on Zn Ro. Conc.)			ļ	1		1
Condition	3.0	11.0	1	Lime	60	
1st Zn Cleaner Float	6.0	10.9	27	DF250	7	
Condition	3.0	11.0		Lime	6	
2nd Zn Cleaner Float	5.0	11.0	16	DF250	3	

Client: Huldra Test: LC, Cyc.4 Sample: Master comp.

_

 $\overline{\mathbf{r}}$

 $\overline{}$

~

. - -

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

STAGE	TIME	рН	ORP	ADDIT	ION	COMMENTS
	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.8	137	MBS	100	P70 =74µm, mil#1
Lead Rougher Flotation					}	
Condition	3.0 1.0	7.5	80	Soda Ash PEX	140 50	
Pb Rougher Float	<u>8.0</u>	7.6	55	DF250	13	
Condition	3.0 3.0 1.0	7.5		Soda Ash ZnSO4 PEX	250 25	
Pb Scavenger Float	<u>4.0</u>	7.3	41	DF250	3	
Zinc Rougher Flotation		ĺ				
Condition	3.0 3.0 1.0	11.0		Lime CuSO4 SIPX	930 500 50	
Zn Rougher Float	<u>9.0</u>	10.8	27	DF250	10	
Lead Cleaner (on Pb Ro. Conc. + Pb. Scav. Conc	}					
1st Pb Cleaner Float	7.0	7.7	88	DF250	3	
2nd Pb Cleaner Float	5.0	7.7	98	DF250		
Zinc Flotation						<u>-</u>
(on Zn Ro. Conc.)						
Condition	3.0	11.0		Lime	30	
1st Zn Cleaner Float	6.0	10.7	47	DF250	7	
Condition	3.0	11.0		Lime	6	
2nd Zn Cleaner Float	5.0	11.0	42	DF250	3	

Client: Hukira Test: LC, Cyc.5 Sample: Master comp. Date: 17-Jan-08 Project: 0707109 Operator: Licheng

Objective: Locked cycle test to recover Ag, Pb and Zn

STAGE	TIME	pН	ORP	ADDIT		COMMENTS
	min		mv	Reagent_	g/tonne	
Grind (2kg)	9'48"	6.8	125	MBS	100	P70 =74μm, mil#1
Lead Rougher Flotation						
Condition	3.0	7.5		Soda Ash	175	
	1.0			PEX	50	
Pb Rougher Float	<u>8.0</u>	7.6	49	DF250	12	
Condition	3.0	7.5		Soda Ash	-	
	3.0			ZnSO4	250	
	1.0			PEX	25	
Pb Scavenger Float	<u>4.0</u>	7.4	38	DF250	3	
Zinc Rougher Flotation					1	
Condition	3.0	11.0		Lime	990	
	3.0			CuSO4	500	
	1.0			SIPX	50	
Zn Rougher Float	<u>9.0</u>	10.7	40	DF250		
Lead Cleaner				† <u> </u>		
(on Pb Ro. Conc. + Pb. Scav. Conc)				ļ	
1st Pb Cleaner Float	7.0	7.7	74	DF250	3	
2nd Pb Cleaner Float	5.0	7.7	87	DF250		
Zinc Flotation						
(on Zn Ro. Conc.)				1	1]
Condition	3.0	11.0		Lime	36	
1st Zn Cleaner Float	6.0	10.7	35	DF250	3	
Condition	3.0	11.0		Lime	18	
2nd Zn Cleaner Float	5.0	10.9	13	DF250	3	

-

Client: Huldra Test: LC, Cyc.6 Sample: Master comp.

-

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

STAGE	TIME	pН	ORP	ADDIT	ION	COMMENTS
	min		mv	Reagent	g/tonne	
Grind (2kg)	9'48"	6.9	126	MBS	100	P70 =74µm, mil#1
Lead Rougher Flotation			,		ļ	
Condition	3.0 1.0	7.5		Soda Ash PEX	165 50	
Pb Rougher Float	<u>8.0</u>	7.6	47	DF250	15	
Condition	3.0 3.0 1.0	7.5		Soda Ash ZnSO4 PEX	250 25	
Pb Scavenger Float	<u>4.0</u>	7.4	38	DF250		
Zinc Rougher Flotation						
Condition	3.0 3.0 1.0	11.0		Lime CuSO4 SIPX	1050 500 50	
Zn Rougher Float	<u>9.0</u>	10.7	41	DF250		
Lead Cleaner (on Pb Ro. Conc. + Pb. Scav. Conc)					
1st Pb Cleaner Float	7.0	7.7	98	DF250	3	
2nd Pb Cleaner Float	5.0	7.7	94	DF250		
<u>Zinc Flotation</u> (on Zn Ro. Conc.)				Ţ		
Condition	3.0	11.0		Lime	72	
1st Zn Cleaner Float	6.0	10.9	24	DF250	3	
Condition	3.0	11.0		Lime	6	
2nd Zn Cleaner Float	5.0	10.6	46	DF250	3	

LOCKED CYCLE FLOTATION TEST METALLURGICAL BALANCE - WITH RECYCLE STREAMS

Client:	Huldra
Test:	LC
Sample:	Master comp.

7

> ------------

, . . , . .

```
Date: 17-Jan-08
Project: 0707109
Operator: Licheng
```

Product	We	ight		Assay							Dist	ribution	
		+	Ag	Pb	Zn	S(1)	h	Ge	Cd	Ag	Pb	Zn	S(T)
	(g)	(%)	git	Χ.	%	*	g/t	g/t	*	(%)	(%)	(%)	(*)
Totation Concentrate						-				<u> </u>			
nd Zn Cleaner Concentrate, Cycle 1	188.9	1.6	87.5	0.35	54.36	32.40	<5	<5	0.61	0.2	0.1	11.8	8.0
2nd Zn Cleaner Concentrate, Cycle 2	212.5	1.8	131.2	0.58	53.02	31.10	<5	<5	0.62	0.3	0.2	13.0	8.7
2nd Zn Cleaner Concentrate, Cycle 3	221,8	1.9	136.0	0.81	54.19	31.40	<5	<5	0.58	0.3	0.3	13.9	9.1
2nd Zn Cleaner Concentrate, Cycle 4	199.8	1.7	127.3	0.84	54.23	32.10	<5	<5	0.58	0.2	0.2	12.5	8.4
2nd Zn Cleaner Concentrate, Cycle 5	227.5	1.9	103.6	0.31	54.82	33.20	<5	<5	0.72	0.2	0.1	14.4	9.9
2nd Zn Cleaner Concentrate, Cycle 6	211.5	1.8	101.9	0.37	55.19	33.10	<5	<5	0.74	0.2	0.1	13.5	9.2
Total 2nd Zn Cleaner Concentrate	1262.0	10.8	115.0	0.54	54.31	32.22				1.4	1.0	79.0	53.A
2nd Pb Cleaner Concentrate, Cycle 1	226.6	1.9	7435.8	49.43	14.92	21.00				15.8	16.0	3.9	6.3
2nd Pb Cleaner Concentrate, Cycle 2	214.0	1.8	7800.2	47.09	12.30	20.80				15.7	14.4	3.0	5.8
2nd Pb Cleaner Concentrate, Cycle 3	234.8	2.0	7192.0	55.70	8.11	20.80				15.8	18.7	2.2	6.4
2nd Pb Cleaner Concentrate, Cycle 4	242.8	2.1	7085.3	51.65	9.64	21.40				16.1	17.9	2.7	6.8
2nd Pb Cleaner Concentrate, Cycle 5	202.7	1.7	8341.1	42.91	8.80	22.60				15.8	12.4	2.1	6.0
2nd Pb Cleaner Concentrate, Cycle 6	228.0	2.0	7355.8	44.98	7.68	21.20				15.7	14.6	2.0	6.3
Total 2nd Pb Cleaner Concentrate	1348,8	11.6	7510.6	48.82	10.23	21.28				96.0	94.1	16.9	37.7
Recycling Streams			1										
2nd Zn Cleaner Tails, Cycle 6	44.3	0.4	188.0	1.24	7.48	6.51				0.1	0.1	0.4	0.5
1st Zn Cleaner tails, Cycle 6	251.1	2.1	87.0	0.57	0.77	1.63				0.2	0.2	0.2	0.5
fotal Zn Cleaner Talls, Cycle 6	295,3	2.5	102.1	0.67	1.78	2.66				0.3	0.3	0.6	1.0
2nd Pb Cleaner Tails, Cycle 6	43.4	0.4	2902.0	18.33	13.05	18.20				1.2	1.1	0.7	1.0
ist Po Cleaner tails, Cycle 6	134.6	1.2	289.9	2.07	11.42	9.19				0.4	0.4	1.8	1.6
Fotal Pb Cleaner Talis, Cycle 5	177.9	1.5	926.4	6.03	11.82	11.39				1.5	1.5	2.4	2.7
Totation Tails													
Bulk Tails, Cycle 1	1296.9	11.1	16.5	0.22	0.22	0.45				0.2	0.4	0.3	0.8
Bulk Tails, Cycle 2	1501.5	12.9	18.6	0.27	0.16	0.47				0.3	0.6	0.3	0.9
Bulk Tails, Cycle 3	1280.2	11.0	29.1	0.24	0.28	0.48				0.3	0.4	0.4	0.8
uik Tails, Cycle 4	1494.9	12.8	25.9	0.24	0.17	0.38				0.4	0.5	0.3	0.7
bulk Tails, Cycle 5	1512.7	12.9	29.6	0.30	0.20	0.53				0.4	0.6	0.3	1.1
Bulk Tails, Cycle 6	1513.7	13.0	15.9	0.26	0.22	0.45				0.2	0.6	0.4	0.9
Total Bulk Flotation Tails	8599,9	73.6	22.6	0.26	0.21	0.46				1.8	3.1	2.0	5.2
Calculated Head	11683.8	100.0	912.8	5.99	7.42	8.62				100.0	100.0	100.0	100.0
leasured Head			948.2	7.22	7.88	6.90				ł			

LOCKED CYCLE FLOTATION TEST METALLURGICAL BALANCE - WITHOUT RECYCLE STREAMS

Client:	Huidra
Test:	LC
Sample:	Master comp.

Date: 17-Jan-08 Project: 0707109 Operator: Licheng

Objective: Locked cycle test to recover Ag, Pb and Zn

Product	We	ight				Assay					Dist	ribution	
		-	Ag	Pb	Zn	S(T)	In	Ge	Cd	Ag	Pb	Zn	\$(T)
	(g)	(%)	git	Χ.	*	*	git	git	*	(%)	(%)	(%)	(%)
Flotation Concentrate													
2nd Zn Cleaner Concentrate, Cycle 1	188,9	1.7	87.5	0.35	54.36	32.40	<5	<5	0.61	0.2	0.1	12.2	8.3
2nd Zn Cleaner Concentrate, Cycle 2	212.5	1.9	131.2	0.58	53.02	31.10	<5	<5	0.62	0.3	0.2	13.4	9.0
2nd Zn Cleaner Concentrate, Cycle 3	221.8	2.0	136.0	0.81	54.19	31.40	<5	<5	0.58	0.3	0.3	14.3	9.5
2nd Zn Cleaner Concentrate, Cycle 4	199.8	1.8	127.3	0.84	54.23	32.10	<5	<5	0.58	0.2	0.2	12.9	8.7
2nd Zn Cleaner Concentrate, Cycle 5	227.5	2.0	103.6	0.31	54.82	33.20	<5	<5	0.72	0.2	0.1	14.8	10.3
2nd Zn Cleaner Concentrate, Cycle 6	211.5	1.9	101.9	0.37	55,19	33.10	<5	<5	0.74	0.2	0.1	13.9	9.5
Total 2nd Zn Cleaner Concentrate	1262.0	11.3	115.0	0.54	54.31	32.22				1.4	1.0	81.5	55.5
2nd Pb Cleaner Concentrate, Cycle 1	226.6	2.0	7435.8	49.43	14.92	21.00				16.1	16.3	4.0	6.5
2nd Pb Cleaner Concentrate, Cycle 2	214.0	1.9	7800.2	47.09	12.30	20.80				15.9	14.7	3.1	6.1
2nd Pb Cleaner Concentrate, Cycle 3	234.8	2.1	7192.0	55,70	8.11	20.80				16.1	19.0	2.3	6.7
2nd Pb Cleaner Concentrate, Cycle 4	242.8	2.2	7085.3	51.65	9,64	21.40				16.4	18.2	2.8	7.1
2nd Pb Cleaner Concentrate, Cycle 5	202.7	1.8	8341.1	42.91	8.80	22.60				16.1	12.7	2.1	8.2
2nd Pb Cleaner Concentrate, Cycle 6	228.0	2.0	7355.8	44.98	7.68	21.20				16.0	14.9	2.1	6.6
Total 2nd Ph Cleaner Concentrate	1348.8	12.0	7510.6	48.82	10.23	21.28				96.8	95.8	16.4	39.1
Flotation Tails													
Bulk Tails, Cycle 1	1296.9	11.6	16.5	0.22	0.22	0.45				0.2	0.4	0.3	0.6
Bulk Tails, Cycle 2	1501.5	13.4	18.6	0.27	0.16	0.47				0.3	0,6	0.3	1.0
Bulk Tails, Cycle 3	1280,2	11.4	29.1	0.24	0.28	0.48				0.4	0.4	0,4	0.8
Bulk Tails, Cycle 4	1494.9	13.3	25.9	0.24	0.17	0.38				0.4	0.5	0.3	0.8
Bulk Tails, Cycle 5	1512.7	13.5	29.6	0.30	0.20	0.53				0.4	0.7	0.4	1.1
Bulk Tails, Cycle 6	1513.7	13.5	15.9	0.26	0.22	0.45				0.2	0.6	0.4	0.9
Total Bulk Fictation Talls	8599.9	76.7	22.6	0.26	0.21	0.46				1.9	3.2	2.1	5.4
Calculated Head	11210.6	100.0	933.9	6.13	7.60	6.54				100.0	100.0	100.0	100.0
Measured Head			948.2	7.22	7.88	6.90							

. .

,---

ی میں ار میں ار میں ار میں

_

LOCKED CYCLE FLOTATION TEST METALLURGICAL BALANCE - Cycle 6

 Client: Huldra
 Date: 17-Jan-08

 Test: LC
 Project: 0707109

 Sample: Master comp.
 Operator: Licheng

Objective: Locked cycle test to recover Ag, Pb and Zn

. . .

· -----

Product	We	ight		Ass	ay			Dist	ribution	
		-	Ag	Pb	Zn	S(T)	Ag	Pb	Zn	S(T)
	(g)	(%)	g/t	%	%	%	(%)	(%)	(%)	(%)
2nd Zn Cleaner Concentrate, Cycle 6	211.5	8.7	101.9	0.37	55.19	33.10	1.1	0.7	71.2	45.7
2nd Zn Cleaner Tails, Cycle 6	44.3	1.8	188.0	1.24	7.48	8.51	0.4	0.5	2.0	2.5
1st Zn Cleaner Concentrate, Cycle 6	255.8	10.5	116.8	0.52	46.94	28.85	1.6	1.1	73.3	48.1
1st Zn Cleaner tails, Cycle 6	251.1	10.3	87.0	0.57	0.77	1.63	1.1	1.2	1.2	2.7
Total Zn Rougher Concentrate, Cycle 6	506.8	20.9	102.0	0.55	24.07	15.36	2.7	2.3	74,4	50.8
2nd Pb Cleaner Concentrate, Cycle 6	228.0	9.4	7355.8	44.98	7.68	21.20	87.5	85.5	10.7	31.5
2nd Pb Cleaner Tails, Cycle 6	43.4	1.8	2902.0	18.33	13.05	18.20	6.6	6.6	3.5	5.1
1st Pb Cleaner Concentrate, Cycle 6	271.3	11.2	6644.2	40.72	8.54	20.72	94.0	92.1	14.1	38.7
1st Pb Cleaner tails, Cycle 6	134.6	5.5	289.9	2.07	11.42	9.19	2.0	2.3	9.4	8.1
Total Pb Ro. + Scav. Concentrate, Cycle 6	405.9	16.7	4537.7	27.91	9.49	16.90	96.0	94.4	23.5	44.7
Total Flotation Concentrate, Cycle 6	912.7	37.6	2074.6	12.71	17.59	16.05	98.7	96.7	98.0	95.6
Bulk Tails, Cycle 6	1513.7	62.4	15.9	0.26	0.22	0.45	1.3	3.3	2.0	4.4
Calculated Head	2426.4	100.0	790.3	4,94	6.75	6.32	100.0	100.0	100.0	100.0
Measured Head			948.2	7.22	7.88	6.90				

LOCKED CYCLE FLOTATION TEST METALLURGICAL BALANCE - Cycle 4+5+6

Client:	Huldra
Test:	LC
Sample:	Master comp.

.

,•

-

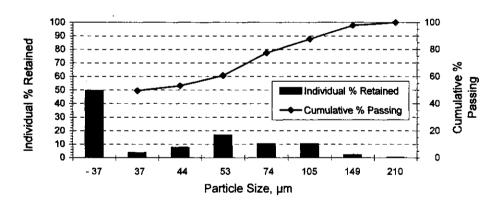
Date: 17-Jan-08 Project: 0707109 Operator: Licheng

Product	Wa	ight	I			Assay					Dist	ribution	
			Ag	Pb	Zn	S(T)	in	Ge	Cd	Ag	Pb	Zn	S(T)
	(9)	(%)	g/t	*	*	*	g/t	git	. %	(%)	(%)	(%)	(%)
Flotation Concentrate					-								
2nd Zn Cleaner Concentrate, Cycle 4	199.8	3.4	127.3	0.84	54.23	32.10	<5	<5	0.58	0.5	0.5	26.0	17.0
2nd Zn Cleaner Concentrate, Cycle 5	227.5	3.9	103.6	0.31	54.82	33.20	<5	<5	0.72	0.4	0.2	29.9	20.1
2nd Zn Cleaner Concentrate, Cycle 6	211.5	3.6	101.9	0.37	55.19	33.10	<5	-5	0.74	0.4	0.2	28.0	18.6
Total 2nd Zn Cleaner Concentrate	638,8	11.0	110.5	0.60	54,76	32.82				1.3	1.0	83.8	55.7
2nd Pb Cleaner Concentrate, Cycle 4	242.8	4.2	7085,3	51.65	9.64	21.40				32.7	38.0	5.6	13.8
2nd Pb Cleaner Concentrate, Cycle 5	202.7	3.5	8341.1	42.91	8.80	22.60				32.1	26.3	4.3	12.2
2nd Pb Cleaner Concentrate, Cycle 6	228.0	3.9	7355.8	44.98	7.68	21.20				31.8	31.1	4.2	12.8
Total 2nd Pb Cleaner Concentrate	673.5	11.5	7554.8	48.76	8.72	21.69				96.6	95.4	14.1	38.8
Flotation Tails													
Buik Tails, Cycle 4	1494.9	25.6	25.9	0.24	0.17	0.38				0.7	1.1	0.6	1.5
Bulk Tails, Cycle 5	1512.7	25.9	29.6	0.30	0.20	0.53				0.9	1.4	0.7	2.1
Buak Talis, Cycle 6	1513,7	25.9	15.9	0.26	0.22	0.45				0.5	1.2	0.8	1.8
Total Bulk Flotation Tails	4621.3	77.5	23.8	0.27	0.20	0.45				2.0	3.7	2.1	6.5
Calculated Head	6833.6	100.0	902.7	5.66	7.16	6.45				100.0	100.0	100.0	100.0
Measured Head			948.2	7.22	7.68	6,90							

Client: Huldra

Test: LC, Cyc.1

LC, Cyc.1


Date: 17-Jan-08 Project: 0707109

Sample: Master comp.

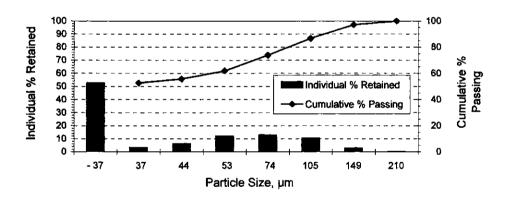
Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative		
Tyler Mesh	Micrometers	% Retained	% Passing		
65	210	0.1	99.9		
100	149	2.1	97.8		
150	105	105 10.2			
200	74	10.2	77.4		
270	53	16.7	60.7		
325	44	7.5	53.2		
400	37	3.6	49.5		
Undersize	- 37	49.5	-		
TOTAL:		100.0			

70 % Passing Size (µm) = 64

Date: 17-Jan-08 Project: 0707109

Client: Huidra


Test: LC, Cyc.2

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

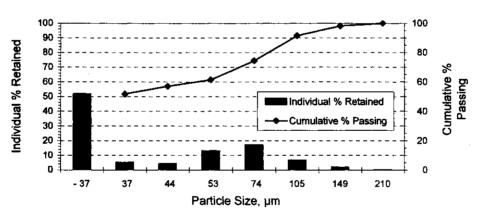
Siev	e Size	Individual	Cumulative		
Tyler Mesh	Micrometers	% Retained	% Passing		
65	210	0.0	100.0		
100	149	2.8	97.2		
150	105	10.5	86.7		
200	74	12.8	73.9		
270	53	12.0	61.9		
325	44	6.2	55.8		
400	37	3.1	52.7		
Undersize	- 37	52.7	-		
TOTAL:		100.0			

70 % Passing Size (μm) = 67

Date: 17-Jan-08

Project: 0707109

Client: Huldra

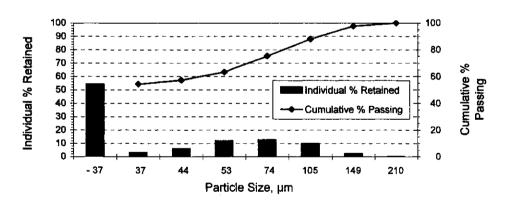

Test: LC, Cyc.3

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative % Passing		
Tyler Mesh	Micrometers	% Retained			
65	210	0.0	100.0		
100	149	1.8	98.2		
150	105	6.7	91.5		
200	74	17.1	74.4		
270	53	13.1	61.4		
325	44	4.4	57.0		
400	37	5.2	51.8		
Undersize	Undersize - 37		-		
TOTAL:		100.0			

70 % Passing Size (μm) = 66

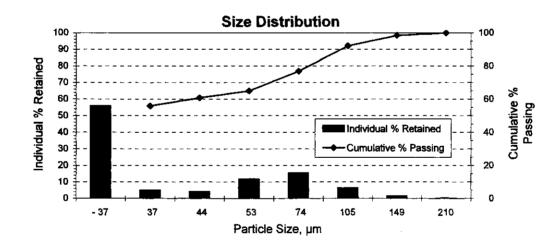

Client: Huldra Test: LC, Cyc.4 Date: 17-Jan-08 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative % Passing 100.0		
Tyler Mesh	Micrometers	% Retained			
65	210	0.0			
100	149	2.2	97.8		
150	105	9.8	88.0 75.3		
200	74	12.7			
270	53	11.9	63.4 57.3 54.3		
325	44	6.1			
400	37	3.0			
Undersize	- 37	54.3	-		
TOTAL:		100.0			

70 % Passing Size (µm) = 64


Client: Huldra Test: LC, Cyc.5 Date: 17-Jan-08 Project: 0707109

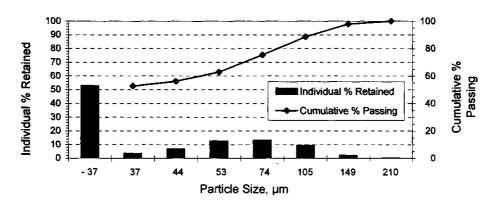
Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative % Passing		
Tyler Mesh	Micrometers	% Retained			
65	210	0.1	99.9		
100	149	1.5	98.4		
150	105	6.3	92.1 76.8		
200	74	15.3			
270	53	11.9	65.0 60.8 55.9		
325	44	4.2			
400	37	4.9			
Undersize	- 37	55.9	-		
TOTAL:		100.0			

Client: Huldra

Test: LC, Cyc.5


Date: 17-Jan-08 Project: 0707109

Sample: Master comp.

Grind: 2 kg for 9.8 minutes at 65% solids in stainless steel mill #1.

Siev	e Size	Individual	Cumulative % Passing 100.0		
Tyler Mesh	Micrometers	% Retained			
65	210	0.0			
100	149	2.0	97.9		
150	105	9.3	88.6		
200	74	13.2	75.4		
270	53	12.5	62.8 56.1		
325	44	6.7			
400	37	3.4	52.7		
Undersize	- 37	52.7	-		
TOTAL:		100.0			

70 % Passing Size (µm) = 64

SETTLING TEST REPORT

Client: Huldra

7 $\overline{}$ $\overline{}$ -

~

. مسبر

Test: ST-1 Sample: Locked cycle flotation tails

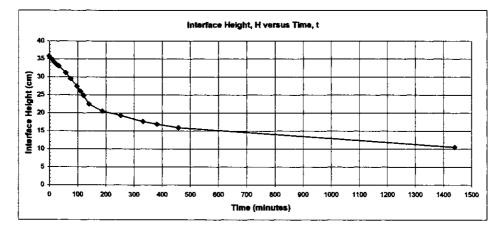
Date: 24-Jan-08 Project: 0707109

Time	Height	Sludge Density	Siurry pH:	8.3
(min.)	(cm)	(w/w % solids)	Coequiant	
0.00	35.8	26.7	Fiocculant	
3.00	35.4	26.9		
8.00	35.0	27.2		
16.00	34.2	27.7	Dry Solids Density:	: 2.90 g/cm ³
25.00	33.5	28.2	Liquid Density:	
33.00	33.1	28.5	Weight of Dry Solids:	
58.00	31.2	29.9		
75.00	29.5	31.2	Initial Slurry Weight:	: 2444 g
97.00	27.4	33.1	Initial Slurry Volume	
110.00	26.0	34.5	Initial Slurry Height	
120.00	24.9	35.6	Initial Weight Percent Solids:	
140.00	22.4	38.6	Initial Setting Rate:	
188.00	20.5	41.2		
252.00	19.3	43.1	Final Sediment Volume:	605 mL
332.00	17.6	46.0	Final Sediment Height:	
382.00	16.9	47.3		
458.00	15.9	49.3	Supernatant Clarity:	0
440.00	10.5	64.0	Floc Size:	
			Supernatant Clarity Scale	Floc Size Scale
			0 Crystal Clear, zero suspended solids	1 Very fine particles
	1		1 Transperent - some suspended solids	2 to 9 Floc eize increasing
			2 Somewhat transparent actualon	10 Very large flocs
	L		3 Less cloudy, non-transparent solution 4 Very cloudy discernible solid/liquid interface	

Unit Thickener Area Determination

venger Method/ Oltman Technique Required Underflow Pulp Density: Compression Point:

Slope (Settling Rate), R: Feed Dilution, F:


Underflow Dilution, D_u:

Liquid Relative Density, L:

50 w/w % solids 13.2 cm 949 min 0.3 m/d 2.78 (weight solution/weight solids) 1.00 (weight solution/weight solids) 1.00 Unit Thickener Area, A: 5.18 m²/tpd solids

5 Opeque, no edicifiquid interfece visible

A = (F - D_u)

SETTLING TEST REPORT

Client: Huldra Test: ST-2 Sample: Locked cycle flotation tails

.....

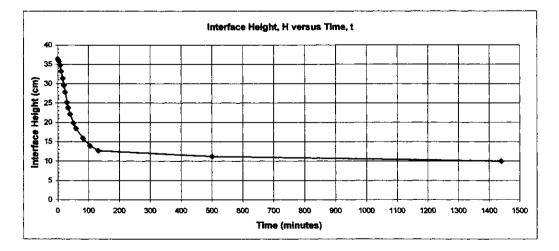
1

Date: 24-Jan-08 Project: 0707109

	Height	Sludge Density	Slurry pH:	8.3	
	(cm)	(w/w % solids)	Coaguiant:	n/a	
	36.4	26.2	Flocculant:	P351 4	0g/t
	36.2	26.3			
	35.8	26.5			
	34.8	27.1	Dry Solids Density:	2.90 g	/cm³
	33.2	28.2	Líquid Density:	1.00 g	/cm³
) [31.4	29.5	Weight of Dry Solids:	647.0 g	
	29.6	30.9			
) L	27.8	32.5	Initial Siurry Weight:	2494 g	
	25.2	35.1	Initial Slurry Volume:	2050 m	nL 🛛
	23.8	36.7	Initial Slurry Height:	36.4 c	m
	22.1	38.8	Initial Weight Percent Solids:	25.9 w	/w % solids
	19.8	42.0	Initial Settling Rate:	0.1 m	v∕n
	18.4	44.3	_		
	15.9	49.0	Final Sediment Volume:	590 m	۱L
) [.	13.9	53.6	Final Sediment Height:	10.0 c	m
	12.7	56.8			
	11.2	61.3	Supernatant Clarity:	0	
0	10.0	65.5	Floc Size:	1	
			Supernatant Clarity Scale	Floc Size Sc	ale
			0 Crystal Clear, zero suspended solids	1 V	ny fine particles
			1 Transparant - some suspended solids	2 to 9 Fi	oc size increasing
		1	2 Somewhat transparent solution	10 Ve	ery large llocs
		· i	3 Less cloudy, non-transparent solution		

oudy, non-t

4 Very cloudy discernible solid/liquid interface


5 Opeque, no solidifiquid interfece visible

Unit Thickener Area Determination

venger Method/ Oltman Technique

Required Underflow Pulp Density: 50 w/w % solids 14.9 cm 94 min **Compression Point:** Slope (Settling Rate), R: 3.3 m/d Feed Dilution, F: 2.85 (weight solution/weight solids) 1.00 (weight solution/weight solids) Underflow Dilution, D_u: Liquid Relative Density, L: 1.00 0.56 m²/tpd solids Unit Thickener Area, A:

 $\mathbf{A} = (\mathbf{F} - \mathbf{D}_u)$

VACUUM FILTRATION TEST REPORT

Client: Huldra Sample id: Locked Cycle Flotation Filter area: 94.12cm2 (0.1013sq.ft.) Filter cloth: Envirotech POPR-901F

7

<u>____</u> ((

. - -,

Pulp density: 50% Pulp temperature: 18 Pulp pH 8.3 Test series: VF-1 **~**.

Date: 24-Jul-08 Project: 0707109 Technician: JZ

Test	Vac	uum		Time			Cai	ke	Crust			Filtrate		
No.	Form	Dry	Form	Dтy	Cracks	Thickness	Wet	Dry	Moisture	Wet	Dry	Moisture	Volume	Clarity
	in Hg	in Hg	38C	Sec	SOC	(mm)	(g)	(g)	(%)	(g)	(g)	(%)	(mL)	
VF1	26	26	21	50	no crack	2	34.2	27.5	19.6	6.64	5.3	20.2	19	0
	Cake Capacity Determination Dry ibs/sq.ft./h= 30.4 kg/m²/h 148.3									Crystal Clea	Ciarity Scale f, zero suspended - some suspended	solids		

102

Filtrate Capacity Determination

Gal/sq.ft./h=

2.5 Um²n 2 Somewhat transparent solution 3 Less cloudy, non-transperent solution

4 Very cloudy discernible solid/kpuid interface

5 Opeque, no solicitiquid interface visible