

BC Geological Survey Assessment Report 30462

Gold Commissioner's Office VANCOUVER, B.C. Event Number 4241763

Assessment Report on Continued Geochemical and Petrology Investigations of

The

<u>Imperial Mineral Claim, (12 Units),</u> <u>Tenure Number 379554.</u>

Munro Mountain in the Atlin Mining Division, British Columbia, Canada.

Location, Inventory, Minfile.

• NTS Series 104N/12,

• LCP located at: North 59 degrees, 36 minutes and 24 seconds; West 133 degrees, 35 minutes and 37.1 seconds

• Elevation LCP: 921.87 metres

• National Mineral Inventory 104N12 Au3:

• Minfile No. 104N 008

By

 N. Clive Aspinall, M.Sc., P.Eng-(FMC#101024)
Pillman Hill Road, Atlin, BC, V0W- 1A0. Canada Tel: 1-250-651-0001., Fax: 1-250-651-0002. E-mail: krakatoa@northwestel.net

GEOLField work Date 4th-15th October 2008 Report Dated: 15th January 2009

TABLE OF CONTENT

Summary	page4
Introduction	5
Reliance on Other Experts	5
Location, Accessibility, Climate, Infrastructure and Physiography	5
History	6
Regional Geological Setting	8
Property Geology	8
Mineral Deposit Type and Imperial Claim Model	10
Mineralization	11
Drilling	11
Sample Method and Approach	11
Sampling Preparation, Analysis and Security	11
Geochemical Analyses	13
Data Verification	14
Adjacent Properties	14
Mineral Processing and Metallurgical Testing	14
Mineral Resource and Mineral Reserve Estimates	15
Other Relevant Data	15
Interpretation and Conclusions	15
Recommendations	15
References	16

Appendices

Geochemical analyses, assays Cost of Work Certificate of Author Location Map, Figure 1 Location Map, Position (1), Figure 2 Imperial Claim, Figure 3 Geochemistry Soil-Silt Returns 2008, Figure 4 Geochemistry Locations Rock-Soil-Silt Returns Combined 2007/2008, Figure 5 Interpreted Faults, Figure 6 Geochemistry Locations Rock-Soil Collected October 2007, Figure 7 18

Summary

The Imperial claim area has a long history dating back to 1898-1902. Leases which covered the property then were worked for hard rock gold from within two adits, recovering a reported 1.5 kg gold. No work was recorded on the property after operations stopped in 1902. During the mid 1980's, Homestake Mineral Development Ltd investigated the area, but then allowed the claims to drop due to discouraging results.

On 9th August 2000, the writer staked the Imperial claim property, (12 units) and carried out limited surface work during 2000, 2003, 2005, 2006, 2007 in addition to 2008.

The Imperial claim has served the writer primarily as geological model in assisting to understand the style of hard rock gold mineralization that sourced the Atlin gold placers during pre-Tertiary and Tertiary times.

These continued investigations have recognized quartz veinlets within the Imperial claim have two types of host rock. In 2008, hosting rocks with Au-Ag bearing quartz veins were revised. Prior to 2008, carbonatized basalt-andesite were misinterpreted as carbonatized ultramafics in previous years.

Revised host rocks are:

- Bull white quartz veinlets within massive structureless carbonated ultra-mafics. No visible sulphides are present in the quartz. Analyses show no trace of gold or silver. Trace fuchsite invariably present.
- Bull white quartz veinlets within altered silicified and carbonatized andesitebasalt volcanics adjacent to multiple slip zones. These quartz veinlets invariably show traces of chalcopyrite, (including associated malachite) and galena. Quartz samples from these zones invariably analyze trace gold and silver. Trace fuchsite invariably present.

It is recommended the property be diamond drilled to intersect identified quartz vein targets and quartz vein projections.

Introduction

This report is to document the assessment work carried-out on the Imperial mineral claim, tenure #379554 carried out by Nicholas Clive Aspinall, (FMC#101024) of Atlin BC, between 4th-15th October 2008, ref: Figure 1, 2, and 3 in appendices.

In 2008 field work objectives were to collect rock, soil and silt samples for geochemical analysis. A total of 17 soil, 1 silt and 2 rock samples were collected from the Imperial claim for analysis.

Reliance on Other Experts

Petrological work completed on the Imperial claim in previous years was performed by Dr. J.G Payne of Vancouver Petrographics Ltd, and referenced in this report.¹

Reference is made to GSC and BC mining survey reports, in addition to a Homestake Mineral Development Ltd assessment report.²

Dr. Chris Ash provided insight to auriferous listwanite models, (pers.com 2008) which allowed the writer to revise previous conclusions.

Location, Accessibility, Climate, Infrastructure and Physiography

The Imperial claim is located 7 km northeast of the community of Atlin. A bush road leads from Surprise lake road to the base of Munro Mountain, where the claim is situated.

The Imperial mineral claim is a legacy claim of 12 units, tenure # 379554 and located on the south-facing slope of Munro Mountain, near Atlin BC, see Figure 3, appendices.

The claim falls on NTS (National Topographic System) 104N/12E.

The LCP is located in a wooded area. Geographic Positioning System (GPS) Co-ordinates are: North 59 degrees, 36 minutes and 24 seconds, West 133 degrees, 35 minutes and 37.1 seconds, elevation 921.8 metres.

The south facing slopes of Munro Mountain are relatively steep, with slopes being up to 45° in steepness. These slopes ascend for approximately 250 metres above the Pine Creek valley.

The climate of the Atlin experience mild Falls extending from September to November, with some -40° F below days during January. Snows usually come late, arriving to stay in December and last until April.

Atlin Lake generally freezes early January and breaks up in early May.

c

¹ Aspinall, 2004, 2007

² Assessment Report # 17,945.

Spring and summer weather is variable from year to year.

History

Much of the following history of mineral exploration and gold mining on the Imperial Claim has been taken from the 1988 Homestake Mineral Development Ltd assessment report on Imperial Property, (A/R 17,495) and BC.Minfiles.

The original property was first staked in 1899. Gold had been discovered in a 150 metre long quartz vein. Two cross cut tunnels, and upper and a lower, were driven to intersect the discovered quartz vein. This quartz vein reportedly trends between 295°-310° dipping Southwest at 50°-60°.

The veins width varies reportedly from 0.12 metres to 2.6 metres. A bunk-house and a small stamp mill were built from funding by a syndicate called Nimrod.

According to BC Minfiles and other reports, in 1900 the Nimrod Syndicate miners milled 245 tonnes from the upper level, which yielded 13.7 grams per tonne gold while the lower tunnel produced 23 tonnes ore, which yielded 5.1 grams per tonne gold.

In 1902, a 1485 kilogram (3267 lbs) test sample from the upper tunnel was reported collected and treated in Vancouver. This test sample reportedly analyzed 1.2 oz/t Au and 1.26 oz/t Ag.

No information is available on the Imperial property from 1902 until 1984, when the Imperial and adjacent areas, were acquired by Lear Oil and Gas. This company contracted out a program of geological mapping, soil sampling, and VLF-EM and magnetometer surveys.

The property was then optioned by Homestake Mineral Development Company Ltd during the 1980's, who carried out the following work in 1987.

- 19 Km of grid line surveys
- Detailed geological mapping at 1:1000
- Collection of 245 rock and 26 soil samples for multi-element analysis.

Homestake reported that in 1933, a geologist from British Columbia Mines Branch took 14 samples from a 0.5 metre section of the upper tunnel vein over a length of 10.9 metres (35 feet). These samples reportedly averaged 0.8 oz/t Au and 1.0 oz/t Ag. However Homestake geologists could duplicate such grades.

All available records show the Imperial property has never been drilled.

The property was allowed to lapse and was re-staked by the writer on 9th August 2000 as the namesake Imperial claim of 12 units. The property has been worked briefly by the writer during summers of 2000, 2003, 2005 2006, 2007 and 2008.

Tables I and II record samples reported by the writer in 2004 and 2006. Note: In 2008 the hosting rock types were revised.

(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1							
Sample No.	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	Cr ppm	Field Relationships
IMP04-1	20	0.4	7	<2	13	962	163	Talus boulder fragments of altered ultramafics and quartz vein material, 50 m below Imperial quartz vein
IMP04-2	120	0.4	32	<2	13	763	286	Outcrop of carbonatized basalt-andesite on hanging wall to Imperial fault and associated Imperial quartz Vein.
IMP04-3	205	6.2	411	154	640	6	138	Quartz veins in carbonatized basalt-andesite contact zone – trace chalcopyrite and galena.
IMP04-4	715	24.5	153	50	206	4	153	Quartz veins from carbonatized basalt-andesite contact zone-trace chalcopyrite, pyrite, and galena.
IMP04-5	355	7.9	157	150	236	2	157	Quartz boulder fragments with sulphides

Table I. Samples collected from West Sector Imperial Claim 2004, (Some quartz vein host rocks revised in 2008)

Table II. Samples collected from Central Sector Imperial claim in 2006

Sample	Au	Ag	Cu	Pb	Zn	Ni	Cr	Description
NO.	ppb	ppm	ppm	Ppm	ppm	ppm	ppm	
Soils	and the	Carrow San	a sugar	a Sheering to b				
Imperial #1	5	<0.2	26	16	65	228	133	Grey talus fines/soil gabbro diabase outcrop. Trace of pyrrhotite. Occasional white stringer veinlets in gabbro
Imperial #2	10	<0.2	25	36	38	512	122	Talus fines/soil collected just north of gabbro contact. Brownish colour; some organics.
Imperial #6	30	<0.2	27	14	42	395	186	Talus fines talus fragment of Cache Creek conglomerate from up-slope
Imperial #7	5	,0.2	6	14	33	260	163	Talus fines/soil, light brown, some organics.
Rock				1	Station St.			
Imperial #3	10	0.3	6	6	8	335	156	Carbonatized U/B boulder rock sample from local outcrop with SE tending quartz veinlets, up to 8cm thick, dipping 75 deg to SW, following same trend as Imperial Fault.
Imperial #4	10	0.3	25	<2	9	659	139	Talus boulder, originating up hill and south of Imperial Fault. Carbonatized U/B with quartz veinlets 10 cm thick. Fuchsite.
Imperial #5	25	<0.2	2	<2	15	727	269	As above

During the 2007 six soils were collected but not reported as results were not received when the 2007 assessment report was due. These are reported here, with full details and sample locations provide in the appendices.

Table III. Soil samples collected in 2007 and not reported th	at Year ³
(Some quartz vein host rocks revised in 2008)	

Sample No.	Au ppb	Ag ppm	Cu ppm	Pb Ppm	Zn ppm	Ni ppm	Cr ppm	Description
Soils					E altre	1	- Alexandre	
IMP07-1	6.3	<0.1	34.8	5.9	61	285.6	176	Brown grey soil below diorite dike
IMP07-2	11.3	<0.1	12.5	4.1	41	186.9	144	Brown grey soil on south slope. Outcrops of andesite- basalt
IMP07-3	101.6	0.6	91.6	40.6	110	2260	501	Brown-grey soil; Outcrops of basalt-andesite ; qtz fragments
IMP07-4	16.1	0.4	60.2	43.6	91	574.6	289	Brown grey soil; carb ultramafics
IMP07-5	140.5	0.4	42.5	11.4	73	2031	466	Red soil; carb basalt -andesite; qtz vns; traces galena and chalco
IMP07-6	303.4	1.3	76.1	25.9	98	2549	253	Light tan soil; qtz vns; traces sulphides

³ Results were not available when Imperial A/R due in 2007. See appendices for Sample locations

-

A review of the gold samples above shows no distinctive anomalies. However, it can be noted that samples Imperial #6 and Imperial #5 are slightly higher in Au. These samples were collected closer to the Imperial Fault than others collected and within a listwanite halo, suggesting a slightly increase in gold contamination. Nickel and chromite returns are elevated due to the ultra-basic rocks present.

Regional Geological Setting

The Imperial claim falls within the northwestern margin of the northern Cache Creek Terrane. This Terrane consists of allochthonous remnants of a late Paleozoic to early Mesozoic Tethyan Ocean.⁴

The Tethyan ocean basin was destructed during the early Mesozoic subduction event when an ancient outboard island arc known as Stikinia collided with ancient North America, obducting Cache Creek Terrane onto a subduction- accretionary complex.

Within the Atlin area where the Imperial claim is situate, Cache Creek rocks consists of individual ultra-mafic thrust slices of the allocthonous remnants mentioned above, including limestone, argillites and meta-volcanic rocks now referred to as the Atlin Accretionary Complex.

The Atlin region for the past 100 years has been a focus of placer gold mining, and the source of gold has been attributed to the proximity of the ultra-mafic rocks in the region, specifically carbonate altered ultramafics, or listwanites.

Ultramafic rocks in the Atlin region include harzburgite associated with dunites and peridotite cumulates, believed to be wehrlite. These rocks are associated with argillites, greywackes, limestone and meta-andesites.

Lineaments proximal to the Imperial claim have been illustrated on figures in previous assessment reports provided by this writer.

Property Geology

With the help of BC Bulletin 95^5 and Dr. J.G. Payne's work, the writer reclassified Imperial claim property rocks to include the following.

- Fine grained metagabbro
- Listwanites, carbonatized ultramafics
- Harzburgite, dunite, peridotite cumulates, non-differentiated
- Meta andesite-basalts
- Scattered quartz veins with sulphides, copper carbonates and fuchsite are associated with the carbonatized ultramafics and met- andesite-basalts within fault zones and contact zones.

The following descriptions are taken from the writer's 2004 observations and in part Dr. J.G Payne's petrology work from rocks collected from the property

⁴ Ash, 1994.

⁵ Ash, 1994

Fine grained metagabbro: Within the Imperial Claim, two metagabbro bodies are recognized. One forms a distinct plug and lies on the west side of the claims. The second is mostly covered by the rock glacier debris and overburden.

The outward morphology the western plug is very different to all other rock exposures on the Imperial claim. It is dome like, yet rugged and saw tooth with steep cliff slopes in places. It stands an estimated 50 metres above its base. No petrology work has been done on this rock type to date.

Listwanites, carbonatized ultramafics In weathered outcrop, the rock is light tan in colour, and on fresh surface is light grey, very hard and very fine-grained. Fuchsite is concentrated as macro-lenses and averages up to 15% as seen on selected rock surfaces. Silica alteration is pervasive and gives the rock its hard characteristic. It is almost cherty in texture. Silica alteration is associated with the carbonate, described as magnesite in the Homestake report. Carbonate is more pervasive than the silica alteration, and is reflected on weathered surface by providing the tan colour to surface exposures. In all cases, it is the fuchsite, which catches the eye, and detailed prospecting reveals it within or proximal to ultramafic rocks.

Under thin section this rock illustrates scattered clusters of chromite (altered to pyrite and locally magnetite) enclosed with intergrowths of magnesite and quartz that in places show strongly elongated textures. Minor patches of fuchsite are in part associated with chromite and in part associated with quartz.

Harzburgite, dunite, peridotite cumulates, non-differentiated. In hand specimen this aphanitic is а dark rock ranging from to porphyritic in texture. In this section the dunite shows minor relic grains of chromite in replaced and recrystallized intergrowths of extremely fine grained magnesite and coarser grained ankerite, with less abundant quartz and minor fuchsite and opaques. Sub parallel. fracture-filling veinlets are dolomite/magnesite.

Meta andesite-basalts. In hand specimen this is a fine grained dark grey rock, and looks more like basalt than an andesite. Under the microscope plagioclase and actinolite is present as moderate to strong, yet in varying proportions. Disseminated opaques are concentrated in patches and seams, mainly in actinolite-rich zones. Numerous veinlets of quartz, in part with minor actinolite and/or plagioclase; some show evidence of strong deformation and recrystallization. A few veinlets are of actinolite.

Traces of sulphide and copper carbonate mineralization: In hand specimen sulphides are only seen in quartz, especially where quartz shows composite veining. The sulphides show preference to one pulse of quartz veining. In 2004 a thin section of quartz showed: seams of sericite-ankerite and disseminated grains and clusters of sulphides. One sulphide patch consists of chalcopyrite and pyrite with minor gold/electrum. Another smaller sulphide patch consists of galena and chalcopyrite. Sulphides and ankerite are altered moderately to strongly to limonite, hematite, and malachite.

Diorite/diabase dike. In hand sample, the rock is crystalline, dark grey, fine grained, with diabase texture. Shows traces of disseminated pyrite. Is located in fault zone. Under the microscope one sample shows phenocrysts of plagioclase (altered completely to quartz and ankerite), a few of clinopyroxene (altered completely to chlorite-ankerite), and one of quartz in a groundmass of plagioclase (altered strongly to sericite-ankerite), patches of ankerite, disseminated elongate flakes of biotite, interstitial patches of quartz, and minor pyrite, No quartz is present within this dike, but has been subject to alteration with adjacent carbonate ultramafics.

Diorite dike. During 2007 work a diorite dike was noted on the northwest side of the Imperial claim. In hand specimen, rock is crystalline, dark grey, porphyritic, sericite alteration. Under thin section, the rock can be described as porphyritic diorite that contains phenocrysts of plagioclase (altered slightly to sericite) and minor ones of hornblende (altered completely to tremolite/actinolite and biotite) in a groundmass of equant plagioclase, prismatic tremolite/actinolite, and flakes of biotite.

Mineral Deposit Type and Imperial Claim Model

The Imperial claim provides an ideal auriferous hard rock model that likely prevailed in multiple geological situations during pre-Tertiary and Tertiary times in the Atlin region, and this style or similar is suggested as one possible source model to Atlin placer gold.

Investigations in 2000, 2003, 2006, 2007 and 2008 show Imperial gold mineralization to be very weak as seen on surface, only with traces of sulphides in scattered quartz veinlets. Only one sample shown as a microscopic speck of gold/electrum, (identified in polished section in 2004).

These continued investigations on the Imperial claim have recognized quartz veinlets within the Imperial claim have two types of host rock. In 2008, altered hosting rock types to trace Au-Ag bearing quartz veins were revised. In some cases carbonatized basalt-andesite were misinterpreted as carbonatized ultramafics in previous years.

Now, these continued investigations have recognized quartz veinlets within the Imperial claim have two types of host rock.

- Bull white quartz veinlets within massive structureless carbonated ultra-mafics. No visible sulphides are present in the quartz. Analyses show no trace of gold or silver. Trace fuchsite invariably present.
- Bull white quartz veinlets within altered silicified and carbonatized andesitebasalt volcanics adjacent to multiple slip zones. These quartz veinlets invariably show traces of chalcopyrite, (including associated malachite) and galena. Quartz samples from these zones invariably analyze trace gold and silver. Trace fuchsite invariably present.

It is proposed that⁶:

- Where traces of gold and silver are present within the quartz veinlets, the veinlets occur in carbonatized/silicified andesite-basalt. In this case, slip faults are present, and gabbro dikes or stocks as well as ultramafic rocks are present in vicinity.
- Quartz veinlets within ultramafic rocks do not host comparable traces of gold and silver compared to andesite-basalt.

Mineralization

On surface mineralization is seen in trace amounts only. A 2004 quartz sample under microscope showed Imperial mineral content to be:

Mineral	percentage	main grain	size range (mm)
Quartz	93-95%	0.7-3	(recrystallized zones 0.02-0.1)
Sericite	3-4	0.02-0.05	
Ankerite	1-2	0.02-0.05	
Chalcopyrite	0.3	0.05-0.5	
Pyrite	0.3	0.1-0.3	
Calcite	0.2	0.2-0.5	(one grain 1.5 mm)
Galena	0.1	0.05-0.2	
Malachite	0.1	0.05-0.07	
Muscovite	minor	0.05-0.1	
Gold/electrum	traces	0.02-0.05	

Drill targets with potential gold-silver mineralization are proposed for three areas; one on the west side of the Imperial claim, and two in the central part of the claim. A south east trending drill target from the central part of the claim is a projection of the Imperial Fault. Ref: figure 5, appendices.

Drilling

The Imperial property is a grass roots property, and there are no known records that show diamond drilling ever took place on the property.

Sample method and Approach

During 2008, 17 soil samples and 1 silt sample and two rocks were collected.

Sampling Preparation, Analysis and Security

All samples were kept under the writer's scrutiny until presented to the Alex Stewart Eco Tech sample Preparation Laboratory, Macdonald Road, Whitehorse, YT before the pulps are transported to the analytical laboratory at 10041 Dallas Drive, Kamloops, British Columbia, V2C 6T4, Canada

Samples were then analyzed according to MULTI ELEMENT ICP ANALYSIS and geochemical gold.

⁶ After discussions with Chris Ash, September 2008.

Geochemical Gold Analysis

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stages crushed to minus 10 meshes and a 250 gram sub-sample is pulverized on a ring mill pulverizer to -140 mesh. The sub-sample is rolled, homogenized and bagged in a pre-numbered bag.

The sample is weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

Multi- Element ICP Analyses.

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl: HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

	Low	Upper		Low	Upper
Ag	0.2ppm	30.0ppm	Fe	0.01%	10.00%
Al	0.01%	10.0%	La	10ppm	10,000ppm
As	5ppm	10,000ppm	Mg	0.01%	10.00%
Ba	5ppm	10,000ppm	Mn	lppm	10,000ppm
Bi	5ppm	10,000ppm	Mo	Ippm	10,000ppm
Ca	0.01%	10.00%	Na	0.01%	10.00%
Cđ	ippm	10,000ppm	Ni	1ppm	10,000ppm
Co	Ippm	10,000ppm	P	10ppm	10,000ppm
Cr	lppm	10,000ppm	Pb	2ppm	10,000ppm
Cu	Ippm	10,000ppm	Sb	5ppm	10,000ppm
Sn	20ppm	10,000ppm			
Sr	Ippm	10,000ppm			
Ti	0.01%	10.00%			
U	10ppm	10,000pp			
V	1ppm	10,000ppm			
Y	1 ppm	10,000ppm			
Zn	lppm	10,000ppm			

Security.

All samples were collected from the field and stored inside the writer's office in Atlin under lock and key, before being shipped to the sample prep laboratory. The writer has not visited the laboratory in Kamloops, but has met the chief assayer, has been using that laboratory for the past five years and is satisfied with the analytical controls on sample analysis. At this point in time the writer has no reason to question the laboratory's security measures.

Geochemical Analyses

Seventeen soils, one silt and two rocks were collected on the south slope for geochemical ICP analysis for 28 elements and geochemical gold. The results of analyses and assays are shown in Table IV, V and VI. Copies of original analysis and assay sheets can be found in the appendices.

Two soil samples, 8BCRS65 and 8BCRS 69 were collected from a separate but adjacent assessment project just outside of the Imperial claim, but are included here. Consequently Table IV shows 19 samples and not 17.

8V	NAD27 Cana	da										
				Elevation								
Sample ID	Easting	Northing	Date/Time	(M)	Au(ppb)	Ag	As	Cr	Cu	Ni	Pb	Zn
			04/10/2008									
8Bcrs 50	577841	6608440	12:09	847.3	5	<0.2	15	171	29	300	18	43
			04/10/2008									
8Bcrs 51	577960	6608381	12:16	848	5	<0.2	10	196	29	304	28	39
00 50	570400	0000050	04/10/2008	050 4	-5			457		400	40	
8BCrs 52	5/8133	6608353	12:25	853.4	<5	<0.2	<5	157	38	460	18	21
8Bor 58	577434	6600660	12.51	1165.0	<5	<0.2	~5	133	26	161	10	40
0001 00	577454	0003003	08/10/2008	1105.9	-5	~0.2	-5	155	20	101	10	40
8Bcrs 59	577549	6609588	13:15	1183.8	<5	< 0.2	<5	77	82	97	10	51
020.000	011010		08/10/2008	1.0000	-50							
8Bcrs 60	577545	6609427	14:53	1096.1	<5	<0.2	10	81	110	96	10	51
and a second			08/10/2008									
8Bcrs 61	577513	6609356	14:58	1100	5	<0.2	20	110	84	119	12	53
			08/10/2008									
8Bcrs 62	577497	6609328	15:19	1076.9	50	<0.2	70	103	75	129	8	63
PPoro 62	677477	6600277	08/10/2008	1020.0	200	-0.2	270	10	60	76	G	01
ODCIS 05	5//4//	0009211	08/10/2008	1029.9	390	~ 0.2	270	49	00	10	0	01
8Bcrs 64	577497	6609093	15.49	971 1	5	<0.2	15	222	53	189	12	62
	011101	0000000	15/10/2008	07111	•	0.2	10	Part Ban Ave	00			-
8Bcrs 65	578589	6608157	13:49	835.2	5	<0.2	5	148	22	198	10	71
			15/10/2008									
8Bcrs 66	578727	6608189	14:01	851	5	<0.2	<5	116	19	105	8	31
8Bcrs 67	578946	6608227			<5	< 0.2	<5	96	12	93	10	19
1440.0000000000000000000000000000000000			15/10/2008			1000						
8Bcrs 68	579147	6608192	14:41	886.7	<5	<0.2	<5	130	21	152	8	26
Testerer Street			15/10/2008									
8Bcrs 69	579394	6607948	15:08	882.7	5	0.7	<5	48	81	387	12	26
			15/10/2008					-				
8Bcrt 70	5/9117	6608256	16:03	889.1	10	0.4	<5	/1	18	159	6	19
PPoro 71	E70004	6600204	15/10/2008	000	*CAE	0.4	20	150	60	255	76	202
obcis / i	579094	0000301	15/10/2008	090	040	0.4	20	100	00	200	10	293
8Bcrs 72	578973	6608398	16:46	922	<5	<0.2	<5	90	26	187	6	37

Table IV. Soil (s) & silt (t) samples collected from Imperial claim in 2008

Table V. Rock Analyses Samples from Imperial Claim, 2008

	NAD27 Can	ada										
Sample				Elevation								
ID	Easting	Northing	Date/Time	(M)	Au(ppb)	Ag	As	Cr	Cu	Ni	Pb	Zn
7R			08/10/2008									
63508	577475	6609122	16:08	937.9	>1000	1.9	20	198	49	12	34	129
7R			16/10/2008									
63509	578356	6608391	12:35	879.3	20	<0.2	<5	475	81	1619	4	32

	NAD27 (Canada			Au	Au
Sample ID	Easting	Northing	Date/Time	Elevation (M)	(g/t)	(oz/t)
7R 63508	577475	6609122	08/10/2008 16:08	937.9	2.79	0.0081

Table VI. Rock Assay Sample 7R 63508, Imperial Claim, 2008

Data Verification

The geochemical analyses carried out on this property in 2008 were done by qualified and respected professionals in the industry.

Adjacent Properties

Other mineral properties are situating in the area:

- Yellow Jacket, gold
- Atlin Ruffner, silver
- Ruby Creek, molybdenum

Mineral Processing and Metallurgical Testing

There is no history of metallurgical testing on the Imperial property. During 2008 there was no metallurgical work done on mineralized material from the property.

Mineral Resource and Mineral Reserve Estimates

Imperial claim is very much a grass roots property and no mineral reserves or estimates are possible at present time.

Other Relevant Data

No other relevant material than already discussed, included below or included in the appendices of this report is deemed important enough for inclusion into this report.

nor

Interpretation and Conclusions

These continued investigations have recognized quartz veinlets within the Imperial claim have two types of host rock. These are:

- Bull white quartz veinlets within massive structureless carbonated ultra-mafics. No visible sulphides are present in the quartz. Analyses show no trace of gold or silver. Trace fuchsite invariably present.
- Bull white quartz veinlets within altered silicified and carbonatized andesitebasalt volcanics adjacent to multiple slip zones. These quartz veinlets invariably show traces of chalcopyrite, (including associated malachite) and galena. Quartz samples from these zones invariably analyze trace gold and silver. Trace fuchsite invariably present.

1 /

Recommendations

It is recommended the property be diamond drilled on identified bull quartz vein targets and vein projections

Drill targets hosting trace mineralization are found in three areas; one on the west side of the Imperial claim, and two in the central part of the claim. A south east trending assumed fault from the central part of the claim is a projection of the Imperial Fault and therefore a potential drill target.

Clive Aspinall, P.Eng PRO Geologist OF 15th January 2009 N. C. ASPINALL BRITISH

References.

Aitkin, J. D., (1958) Atlin Map Area, BC. Geological Survey of Canada, Memoir 307

Ash, Chris. (1994). Origin and Tectonic Setting of Ophiolite Ultramafic and Related Rocks in the Atlin Area, British Columbia (NTS 104N). BCMM

Aspinall, NC. (1002). Assessment Report Covering preliminary geological investigations for jade and serpentines on and around the Imperial mineral claim, (12 Units), tenure number 379554, Monroe Mt., Located in the Atlin Mining Division, British Columbia, Canada.

Aspinall, NC. (2004). Assessment Report Covering Preliminary Geological Investigations on Altered Ultramafic and Volcanic Rocks on the Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada. (with Petrology Report by Dr. John Payne).

Aspinall, NC. (2005). Geological Reconnaissance of the Lake View Mineral Claims, Tenure Nos. 408341 and 408342, Located 59 deg 38' N, 133 deg 27' W, NTS 104N063, Atlin MD., BC.

Aspinall, N.Clive (2006) Assessment Report Covering Geological-Geochemical Investigations on Rocks and soils on the Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada. Mineral Claim Tag#209661; Field work Date: 3rd July 2006 Report Dated: 6th November 2006

Aspinall, N.C. (2007). Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada. By N. Clive Aspinall, M.Sc., P.Eng-(FMC#101024) Petrological work and rock descriptions by John G. Payne, Ph.D., P.Geol. Field work Date 3rd October 2007 Report Dated: 1st December 2007

Cairnes, D.D. (1910). Portions of the Atlin District, B.C. Paper No 26.Geological Survey Branch. Department of Mines, Ottawa.

Dandy, Linda, (1987). Diamond Drilling Report on the Lakeview Property, Atlin Mining Division, NTS 104 N/11W. Mark Management. Assessment Report 15,686.

Dandy, Linda. (2005). Technical Report on the Atlin Gold Property, Atlin Mining Division, BC. For Muskox Mineral Corp., Suite 120, 3442-118 Ave SE, Calgary, Alberta, T2Z 3X1.

Holland, S.S., (1950). Placer Gold Production of British Columbia. B.C Ministry of Energy, Petroleum Resources, Bulletin 28, pp.89. Claim (20 units), Margarita (1Claim), Butterfly (1 Claim). Kerr, Dawson & Associates LTD.

McIvor, Duncan, (1988). Summary Report: Geological Mapping and Lithological Sampling Programs on the Lear Property, (West Claim group). Atlin Mining Division, Assessment Report # 17495.

Appendices Geochemical analyses, assays Cost of Work Certificate of Author Location Map, Figure 1 Location Map, Position (1), Figure 2 Imperial Claim, Figure 3 Geochemistry Soil-Silt Returns 2008, Figure 4 Geochemistry Locations Rock-Soil-Silt Returns Combined 2007/2008, Figure 5 Interpreted Faults, Figure 6 Geochemistry Locations Rock-Soil Collected October 2007, Figure 7

8V	NAD27 Ca	nada										
Sample ID	Easting	Northing	Date/Time	Elevation (M)	Au(ppb)	Ag	As	Cr	Cu	Ni	Pb	Zn
8Bcrs 50	577841	6608440	04/10/2008 12:09	847.3	5	<0.2	15	171	29	300	18	43
8Bcrs 51	577960	6608381	04/10/2008 12:16	848	5	<0.2	10	196	29	304	28	39
8Bcrs 52	578133	6608353	04/10/2008 12:25	853.4	<5	<0.2	<5	157	38	460	18	27
8Bcr 58	577434	6609669	08/10/2008 12:51	1165.9	<5	<0.2	<5	133	26	161	10	40
8Bcrs 59	577549	6609588	08/10/2008 13:15	1183.8	<5	<0.2	<5	77	82	97	10	51
8Bcrs 60	577545	6609427	08/10/2008 14:53	1096.1	<5	<0.2	10	81	110	96	10	51
8Bcrs 61	577513	6609356	08/10/2008 14:58	1100	5	<0.2	20	110	84	119	12	53
8Bcrs 62	577497	6609328	08/10/2008 15:19	1076.9	50	<0.2	70	103	75	129	8	63
8Bcrs 63	577477	6609277	08/10/2008 15:29	1029.9	390	<0.2	270	49	68	76	6	81
8Bcrs 64	577497	6609093	08/10/2008 15:49	971.1	5	<0.2	15	222	53	189	12	62
8Bcrs 65	578589	6608157	15/10/2008 13:49	835.2	5	<0.2	5	148	22	198	10	71
8Bcrs 66	578727	6608189	15/10/2008 14:01	851	5	<0.2	<5	116	19	105	8	31
8Bcrs 67	578946	6608227			<5	<0.2	<5	96	12	93	10	19
8Bcrs 68	579147	6608192	15/10/2008 14:41	886.7	<5	<0.2	<5	130	21	152	8	26
8Bcrs 69	579394	6607948	15/10/2008 15:08	882.7	5	0.7	<5	48	81	387	12	26
8Bcrt 70	579117	6608256	15/10/2008 16:03	889.1	10	0.4	<5	71	18	159	6	19
8Bcrs 71	579094	6608301	15/10/2008 16:14	896	*645	0.4	20	158	60	255	76	293
8Bcrs 72	578973	6608398	15/10/2008 16:46	922	<5	<0.2	<5	90	26	187	6	37
8Bcrs 73	578837	6608448	15/10/2008 16:58	926	5	<0.2	<5	143	25	150	8	60
8Bcrs 74	578641	6608445	15/10/2008 17:21	921.1	<5	<0.2	10	147	32	502	12	42
CLAIM POST 4W3S	577480	6608255		-9999								
LCP POST	579502	6608191		-9999								

* Based on 90g

28-Nov-08 Alex Stewart Geochemical ECO TECH LABOF RY LTD.

ICP CERTIFICATE OF ANAL AK 2008- 1787

Clive Aspinall Sample Type: Soil Project: Imperial Shipment : # 6 Submitted by:Clive Aspinall

Values in ppm unless otherwise reported

		Au		-																										
Et #.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb_	Sb	Sn	Şr	Ti %	U	V	W	Y	Zn
1	8BCRS(T)-58	<5	<0.2	1.37	<5	245	5	0.37	<1	28	133	26	2.91	<10	1.45	752	2	0.02	161	430	10	10	<20	33	0.09	<10	64	<10	2	40
2	8BCRS(T)-59	<5	<0.2	1.61	<5	125	<5	1.47	<1	40	77	82	5.26	<10	0.68	844	2	0.04	97	840	10	<5	<20	55	0.04	<10	115	<10	13	51
3	8BCRS(T)-60	<5	<0.2	1.24	10	185	<5	1.66	1	36	81	110	3.61	<10	1.20	1109	2	0.02	96	1030	10	10	<20	61	0.07	<10	77	<10	12	51
4	8BCRS(T)-61	5	<0.2	1.44	20	255	10	1.31	1	39	110	84	3.95	<10	1.45	1046	2	0.03	119	1070	12	10	<20	65	0.09	<10	81	<10	10	53
5	8BCRS(T)-62	50	<0.2	1.07	70	260	10	2.32	1	39	103	75	5.93	<10	1.31	1271	2	0.02	129	690	8	5	<20	123	0.05	<10	100	<10	17	63
6	8BCRS(T)-63	390	<0.2	0.96	270	230	10	2.29	2	38	49	68	7.00	<10	1.15	1320	3	0.02	76	720	6	15	<20	134	0.05	<10	104	<10	11	81
7	8BCRS(T)-64	5	<0.2	1.74	15	255	<5	0.78	<1	29	222	53	3.43	<10	2.47	944	2	0.02	189	890	12	10	<20	42	0.10	<10	75	<10	6	62
8	8BCRS(T)-65	5	<0.2	1.05	5	100	<5	0.38	<1	23	148	22	2.86	<10	1. 46	437	1	0.02	198	320	10	10	<20	16	0.11	<10	59	<10	5	71
9	8BCRS(T)-66	5	<0.2	0.96	<5	200	<5	0.39	<1	22	116	19	2.29	<10	0.96	1237	2	0.03	105	760	8	5	<20	19	0.10	<10	43	<10	2	31
10	8BCRS(T)-67	<5	<0.2	0.88	<5	75	<5	0.33	<1	20	96	12	2.26	<10	0.69	444	1	0.02	93	100	10	<5	<20	16	0.12	<10	47	<10	3	19
11	88CRS(T)-68	<5	<0.2	1.16	<5	175	<5	0.54	<1	23	130	21	2.51	<10	1.25	1004	1	0.02	152	240	8	10	<20	32	0.11	<10	53	<10	3	26
12	8BCRS(T)-69	5	0.7	1.00	<5	195	<5	2.16	<1	22	48	81	1.51	<10	0.48	873	<1	0.04	387	460	12	5	<20	84	0.06	<10	30	<10	7	26
13	8BCRS(T)-70	10	0.4	0.44	<5	65	<5	7.09	<1	9	71	18	0.99	<10	1.46	312	1	0.03	159	830	6	15	<20	368	0.02	<10	15	<10	3	19
14	8BCRS(T)-71	*645	0.4	1.14	20	90	<5	0.52	<1	25	158	60	2.98	<10	2.25	471	<1	0.02	255	420	76	10	<20	27	0.11	<10	59	<10	5	293
15	8BCRS(T)-72	<5	<0.2	0.63	<5	140	<5	2.33	1	16	90	26	1.70	<10	1.51	526	1	0.02	187	1020	6	15	<20	82	0.05	<10	30	<10	3	37
16	8BCRS(T)-73	5	<0.2	1.09	<5	160	5	0.66	<1	23	143	25	2.55	<10	1.44	605	2	0.02	150	690	8	15	<20	41	0.09	<10	53	<10	2	60
17	8BCRS(T)-74	<5	<0.2	1.20	10	165	<5	0.77	<1	45	147	32	3.05	<10	3.28	853	2	0.02	502	720	12	20	<20	177	0.08	<10	51	<10	3	42

JJ/ap df/1770s

XLS/08

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer 19-Nov-08

Alex Stewart mical ECO TECH L. JAATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557

Et #.

1 2

Values in p

pm unless otherwise reported																											
Tag #	Au(ppb)	Ag Al 🤋	% As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	ها	Mg %	Mn	Mo Na %	6 Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	<u>V</u>	W	Y	Zn
7R63508	>1000	1.9 0.0	7 20	<5	<5	0.40	1	2	198	49	0.59	<10	0.06	64	<1 0.01	1 12	20	34	<5	<20	1	<0.01	<10	5	<10	<1	129
7R63509	20	<0.2 0.3	1 <5	35	<5	0.03	<1	87	475	81	5.44	<10	>10	1039	6 <0.0	1 1619	40	4	10	<20	<1	0.03	<10	12	<10	<1	32

OC DATA: Repeat:	7R63508	>1000	2.1 0.07	25	5	<5	0.39	1	3	211	49	0.63	<10	0.07	70	<1	<0.01	15	10	32	<5	<20	2	<0.01	<10	5	<10	<1 1	128
Resplit: 1	7R63508	>1000	2.0 0.07	20	<5	<5	0.39	1	3	201	52	0.60	<10	0.05	66	<1	<0.01	12	20	32	<5	<20	1	<0.01	<10	5	<10	<1 1	131
<i>Standard:</i> Pb129a SF30		825	11.7 0.82	10	65	<5	0.50	58	7	11 -	1444	1.69	<10	0.69	347	2	0.03	7	430 (61 8 2	15	<20	33	0.04	<10	1 9	<10	<1 99)8 5

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/ap df/8581 XLS/08 ICP CERTIFICATE (MALYSIS AK 2008- 8589

Clive Aspinali 317 Diamond Way Whitehorse, YT Y1A 6G4

Eco Tech Laboratory Ltd. 10041 Dallas Drive, Kamloops, British Columbia, V2C 6T4, Canada Tel + 250 573 5700 Fax + 250 573 4557 www.alexstewart.com

CERTIFICATE OF ASSAY AK 2008-8589

20-Nov-08

Clive Aspinall
317 Diamond Way
Whitehorse, YT

Y1A 6G4

No. of samples received: 2 Sample Type:Rock **Project: Imperial** Shipment #:7 Submitted by:Clive Aspinall

ET #.	Tag #	Au (g/t)	Au (oz/t)	
1	7R63508	2.79	0.081	<u> </u>
QC DAT	<u>A:</u> d:	0.40		
HISIIK2		3.46	0.101	

ECO TECH LABORATORY LTD.

JJ/ap XLS/07 Jutta Jealouse B.C. Certified Assayer

<u>Cost of Work</u>

Geologist, 2 day field work at \$750 per day	\$1500.00
Report, Geologist at \$750 per day/2 days	\$1500.00
2 rock samples, geochemistry/assays	\$76.81
17 soil/silt samples, geochemistry	\$399.84 FESSION
Report Reproduction	\$25.00 \$
Total	
	SENGINEER PROPOSI

Qualifications of writer

I, N. Clive ASPINALL, of Pillman Hill, the community of Atlin, British Columbia, and the City of Whitehorse Y.T do hereby certify that:

- I am a geologist with private offices within the above community and City
- I am a graduate of McGill University, Montreal, Quebec, with B.Sc degree in Geology (1964), and a Masters degree (1987) from the Camborne School of Mines, Cornwall, England, in Mining Geology.
- I am registered member of the Associations of Professional Engineers in the province of British Columbia.
- I own 100% interest in the Imperial claim.
- I have practiced mineral exploration for 50 years, in countries such as Libya, Saudi Arabia, North Yemen, Morocco, Indonesia, Mexico, Peru, Argentina, USA, Newfoundland, Ontario, Quebec, British Columbia and Yukon Territory, Canada.

I am author of: Event Number 4241763.

Assessment Report on Continued Geochemical and Petrology Investigations of the Imperial Mineral Claim, (12Units), Tenure Number 379554. Munro Mountain in the Atlin Mining Division, British Columbia, Canada. By N. Clive Aspinall, M.Sc., P.Eng. Field work Date 4th-15th October 2008 Report Dated: 15th January 2009.

Signed in Whitehorse, YT, 15th January 2009

80 Respectfully submitted, BRITISH M.Sc. P.Eng. N. CLIVE ASPINALI Geologist

CLIVE ASPINALL GEOLOGICAL LOCATION MAP IMPERIAL CLAIM TENURE 379554 OCTOBER 2008

FIGURE 1

CLIVE ASPINALL GEOLOGICAL LOCATION MAP POSITION (1) IMPERIAL CLAIM TENURE 379554 OCTOBER 2008

FIGURE 2

8V	NAD27 Cana	da		•	1	1	1		8Bcrs 6	9	9	Y	BRITISH
Sample ID	Easting	Northing	Date/Time	Elevation (M)	Au(ppb)	Ag	As	Cr	Cu	Ni	Pb	Zn	OLUMO
8Bcrs 50	577841	6608440	04/10/2008 12:09	847.3	5	<0.2	15	171	29	300	18	43	VCINE
8Bcrs 51	577960	6608381	04/10/2008 12:16	848	5	<0.2	10	196	29	304	28	39	200000
8Bcrs 52	578133	6608353	04/10/2008 12:25	853.4	<5	<0.2	<5	157	38	460	18	27	
8Bcr 58	577434	6609669	08/10/2008 12:51	1165.9	<5	<0.2	<5	133	26	161	10	40	
8Bcrs 59	577549	6609588	08/10/2008 13:15	1183.8	<5	<0.2	<5	77	82	97	10	51	
8Bcrs 60	577545	6609427	08/10/2008 14:53	1096.1	<5	<0.2	10	81	110	96	10	51	
8Bcrs 61	577513	6609356	08/10/2008 14:58	1100	5	<0.2	20	110	84	119	12	53	
8Bcrs 62	577497	6609328	08/10/2008 15:19	1076.9	50	<0.2	70	103	75	129	8	63	
8Bcrs 63	577477	6609277	08/10/2008 15:29	1029.9	390	<0.2	270	49	68	76	6	81	
8Bcrs 64	577497	6609093	08/10/2008 15:49	971.1	5	<0.2	15	222	53	189	12	62	
8Bcrs 65	578589	6608157	15/10/2008 13:49	835.2	5	<0.2	5	148	22	198	10	71	
8Bcrs 66	578727	6608189	15/10/2008 14:01	851	5	<0.2	<5	116	19	105	8	31	
8Bcrs 67	578946	6608227			<5	<0.2	<5	96	12	93	10	19	
8Bcrs 68	579147	6608192	15/10/2008 14:41	886.7	<5	<0.2	<5	130	21	152	8	26	
8Bcrs 69	579394	6607948	15/10/2008 15:08	882.7	5	0.7	<5	48	81	387	12	26	
8Bcrt 70	579117	6608256	15/10/2008 16:03	889.1	10	0.4	<5	71	18	159	6	19	
8Bcrs 71	579094	6608301	15/10/2008 16:14	896	*645	0.4	20	158	60	255	76	293	
8Bcrs 72	578973	6608398	15/10/2008 16:46	922	<5	<0.2	<5	90	26	187	6	37	
8Bcrs 73	578837	6608448	15/10/2008 16:58	926	5	<0.2	<5	143	25	150	8	60	
8Bcrs 74	578641	6608445	15/10/2008 17:21	921.1	<5	<0.2	10	147	32	502	12	42	

CLIVE ASPINALL GEOLOGICAL IMPERIAL CLAIM TENURE 379554 GEOCHEMISTRY LOCATIONS ROCK-SOIL-SILT COMBINED 2007/2008 INDICATING POTENTIAL DRILL TARGETS FOR ANOMALOUS GOLD-SILVER OCTOBER 2008

FIGURE 5

Legend

COLUMO

Potential dvill Earget

CLIVE ASPINALL GEOLOGICAL IMPERIAL CLAIM TENURE 379554 INTERPRETED FAULTS OCTOBER 2008

FIGURE 6

Lej. Interproted 2 Fault 2 2

ACME ANALYTICAL LABORATORIES LTD. Final Report Client: Clive Aspinall Geological File Created: ####### Job Number: VAN07002155 Number of S 6 Project: Imperial Shipment ID: P.O. Number: Received: #######

4

	Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX3	(1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
	Analyte	Mo	Cu	РЬ	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La
	Unit	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM	РРВ	PPM	PPM	PPM	PPM	PPM	PPM	%	%	PPM
	MDL	0.1	0.1	0.1	1	0.3	l 0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	. 1	0.1	0.:	. 0.1	. :	2 0.01	0.001	. 1
Sample	Туре																					
IMP07-1	Soil	0.7	34.8	5.9	61	<0.1	285.6	27.5	789	3.18	12.1	0.6	6.3	1.6	32	0.2	0.	0.1	. 63	3 0.71	. 0.062	: 9
IMP07-2	Soil	0.4	12.5	4.1	41	<0.1	186.9	23.2	457	2.65	6.7	0.3	11.3	1.5	19	<0.1	0.4	0.1	. 5!	5 0.35	0.032	: 6
IMP07-3	Soil	1.4	91.6	40.6	110	0.0	5 2260	192.7	1036	4.38	325.9	0.5	101.6	0.9	169	0.7	18.	2 1	. 40	3.24	0.061	. 6
IMP07-4	Soil	0.8	60.2	43.6	91	0.4	574.6	52	757	4.03	73.8	0.7	16.1	. 3	97	0.9) 2.8	3 0.8	7 9	9 2.18	0.159) 17
IMP07-5	Soil	2.7	42.5	11.4	73	0.4	2031	158.4	1304	5.19	247	0.8	140.5	2.8	222	. 0.2	8.:	i 0.5	5) 4.1	. 0.105	, 14
IMP07-6	Soil	2.4	76.1	25.9	98	1.3	3 2549	200.7	1254	4.84	1034	0.8	303.4	1.3	210	0.2	6) 2.5	5 39	9 3.39	0.058	\$7
Pulp Duplica	ites																					
IMP07-6	Soil	2.4	76.1	25.9	98	1.3	3 2549	200.7	1254	4.84	1034	0.8	303.4	1. 3	210	0.2	6	2.5	i 3	9 3.39	0.058	37
IMP07-6	REP	2.4	76.4	25.2	92	1.2	2 2609	205.9	1263	4.93	1003	0.7	285.5	1.2	199	0.2	66.	3 2.4	3	7 3.46	i 0.056	ک ک
Reference N	Aaterials																					
STD DS7	STD	21.6	116	72.8	416	0.1	3 62.5	10.4	686	2.65	51.5	5.1	. 62.9	4.7	82	6.8	6,	7 5.2	: 9	4 1.03	0.082	. 13
BLK	BLK	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1

Note: these analyses were not available for Imperial 2007 A/R.

1DX30	1DX30) 1DX30 1DX30		1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
Cr	Mg	Ba	Ti	В	Al	Na	κ	w	Hg	Sc	TI	S	Ga	Se
PPM	%	PPM	%	PPM	%	%	%	PPM	PPM	PPM	PPM	%	PPM	PPM
1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5
176	1.87	170	0.069	6	1.45	0.018	0.22	0.2	0.05	5.3	0.1	0.06	4	<0.5
144	1.61	97	0.094	2	1.16	0.014	0.06	0.2	0.02	3.1	<0.1	<0.05	4	<0.5
501	7.75	310	0.024	5	1.13	0.004	0.11	0.2	0.04	10	0.2	<0.05	4	0.6
289	4.53	241	0.084	7	1.85	0.022	0.17	0.1	0.03	8.3	0.2	<0.05	5	<0.5
466	6.75	135	0.007	2	1.73	0.005	0.08	0.1	0.03	10.3	0.3	<0.05	4	0.5
253	5.24	99	0.011	6	0.9	0.006	0.08	0.2	0.05	8	0.3	0.06	3	0.8
253	5.24	99	0.011	6	0.9	0.006	0.08	0.2	0.05	8	0.3	0.06	3	0.8
237	5.24	98	0.011	5	0.88	0.005	0.08	0.2	0.05	7.9	0.2	0.07	2	0.6
214	1.12	403	0.133	43	1.09	0.097	0.51	4.1	0.2	2.7	4.3	0.22	5	3.9
<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5

.

ns

FIGURE 🖓