BC Geological Survey Assessment Report 30498

2008 Assessment Report

Geological Reconnaissance and Rock Sampling on the Mount Bisson Property

Omineca Mining Division North-central British Columbia

55°32'25"N 123°58'23"W NTS 93N/9, 93O/5, 93O/12

Paget Resources Corporation 1160-1040 W. Georgia St. Vancouver, BC V6E 4H1

Frederick W. Breaks, Ph.D., P. Geo. October 15, 2008

Table of Contents

Introduction	3
Location and Access	3
Claims and Ownership	5
Exploration History	8
Geology and Mineralization	8
Work Completed in 2008	11
Geology	11
Laura Occurrence	11
Ursa Occurrence	12
M-12000 Road Occurrence	12
Rock Geochemistry	14
Ursa Occurrence	14
Laura Occurrence	14
M-12000 Road Occurrence	15
Mineral Identification	15
Conclusions and Recommendations	15
References	19

List of Appendices

Appendix A	Statement of Qualifications
Appendix B	Statement of Costs
Appendix C	Rock Samples
Appendix D	Analytical Certificates
Appendix E	Mineralogy Report

List of Figures

- Figure 1 Location Map
- Figure 2 Claim Map
- Figure 3 Regional Geology
- Figure 4 Sample Locations
- Figure 5 Geochemistry

List of Tables

Table 1 Claims

Geological Reconnaissance and Rock Sampling on the Mount Bisson Property

Introduction

The Mount Bisson Property, in the Munro Creek area west of Williston Lake, hosts rareearth granitic to syenitic pegmatites that belong to the NYF-geochemical family (Černý 2005; Ercit 2006). These pegmatites occur within 3 by 9 km area that has been defined as the Wolverine pegmatite field (Černý 2005; Ercit 2005). The rare-earth mineralization is developed in a variety of rock types that include granitic pegmatite, coarse-grained to pegmatitic syenite and monzonite, calc-alkaline pegmatites and in skarn assemblages. The property was acquired in May 2006 by Paget Resources Corporation and is 100 percent owned by the company. This report describes the results of a reconnaissance rock sampling and geochemistry program carried out in 2008.

Location and Access

The Mount Bisson Property is located in north-central British Columbia (Figure 1), approximately 58 kilometers northwest of Mackenzie and 36 kilometers southeast of Manson Creek. It straddles a series of roughly east-trending ridges west of Mount Bisson and east of Munro Creek and the Manson River. Elevations range from approximately 1000 to 1600 meters. Numerous logging roads provide access to the southern and western margins of the property. The property is accessible via the Fort St James-Manson Creek logging road or the Finlay-Nation forestry road from Mackenzie.

Claims and Ownership

The Mount Bisson Property (Figure 2) consists of 32 claims in the Omineca Mining Division that covers 13645.38 hectares. Mineral tenure numbers and details are as follows:

Table 1: Claims that	t comprise the Mount	Bisson property.
----------------------	----------------------	------------------

Tenure	Claim Name	Owner	Good To	Status	Area
			Date		
568821	YETI 7	201036 (100%)	2008/oct/29	GOOD	438.716
568836	YETI 17	201036	2008/oct/29	GOOD	439.544
		(100%)			
568832	YETI 14	201036 (100%)	2008/oct/29	GOOD	456.725
568833	YETI 15	201036	2008/oct/29	GOOD	457.005
EC0025		(100%)	2008/act/20		274 205
506655		(100%)	2000/001/29	GOOD	274.303
568818		201036	2008/oct/29	GOOD	458 105
300010	1 - 11 -	(100%)	2000/000/29	GOOD	430.105
568840	YETI 21	201036	2008/oct/29	GOOD	456.546
568839	YETI 20	201036	2008/oct/29	GOOD	456 405
	0	(100%)	2000,000,20		1001100
568838	YETI 19	201036	2008/oct/29	GOOD	256.033
		(100%)			
568837	YETI 18	201036 (100%)	2008/oct/29	GOOD	456.793
568830	YETI 12	201036	2008/oct/29	GOOD	456.482
		(100%)			
568819	YETI 5	201036	2008/oct/29	GOOD	457.644
		(100%)			
568828	YETI 11	201036	2008/oct/29	GOOD	456.481
		(100%)			
568812	YETI 1	201036	2008/oct/29	GOOD	457.573
		(100%)			
568817	YEII3	201036	2008/oct/29	GOOD	458.257
500045		(100%)	0000/a at/00	0000	400.007
568815	YEIIZ	(100%)	2008/oct/29	GOOD	439.007
568822	YETI 8	201036	2008/oct/29	GOOD	438.667
		(100%)			
568823	YETI 9	201036	2008/oct/29	GOOD	456.727
		(100%)			
568825	YETI 10	201036	2008/oct/29	GOOD	456.726
		(100%)			
568831	YETI 13	201036	2008/oct/29	GOOD	456.443
568820	VETL6	201036	2008/oct/20	GOOD	157 126
500020		201030	2000/00/29	3000	+57.430

		(100%)			
522747	BISS 3	201036 (100%)	2010/nov/25	GOOD	457.193
522749	BISS 4	201036 (100%)	2010/nov/25	GOOD	237.699
522755	LAURA 3	201036 (100%)	2010/dec/20	GOOD	458.132
522756	LAURA 4	201036 (100%)	2010/dec/20	GOOD	274.88
547760	BISS 5	201036 (100%)	2010/dec/20	GOOD	457.589
547761	BISS 6	201036 (100%)	2010/dec/20	GOOD	457.582
522753	LAURA 2	201036 (100%)	2010/dec/20	GOOD	457.701
522745	BISS 1	201036 (100%)	2010/dec/20	GOOD	366.338
522746	BISS 2	201036 (100%)	2010/dec/20	GOOD	439.15
522751	LAURA 1	201036 (100%)	2010/dec/20	GOOD	457.899

Exploration History

Recorded mineral exploration and discovery in the area commenced with a graphite showing found near the Munro Creek Road (AR 14545 Halleran, 1985). The Ursa #1 REE showing was subsequently discovered in 1986 along the same road and near the bridge across Munro Creek (AR 16781, Halleran, 1988). Discovery of the Laura showing ensued in 1987 (AR 17734, Halleran, 1988). In 1988, the Will #1 and #2 showings were discovered and detailed mapping, soil sampling and scintillometer surveys were conducted over four small grids on the Laura, Ursa and Will showings (AR 17872, Halleran, 1988). Follow-up mapping and sampling on the Laura grid was completed in 1989 (AR 19404, Halleran, 1989; Halleran and Russell, 1989). Further work in the area was non-existent until 1996 when a short review of the property took place (AR 24861, Leighton, 1997) and several check samples were taken. Recent work by Paget Resource Corporation involved an airborne magnetic-radiometric survey in 2006 (Luckman AR 28877, 2006) with 595 line-kilometres. Follow-up fieldwork and bedrock geochemistry was undertaken by Breaks in 2007 who examined the Ursa rareearth element occurrence and discovered rare-earth element mineralization in the northern part of the claim-group (see below: M-12000 Road occurrence).

Geology and Mineralization

The regional geology has been described in several references (McConnell, 1896; Dolmage, 1927; Armstrong, 1949; Muller, 1961; Tipper *et al*, 1974; Ferri and Melville, 1988). The property lies within the Omineca crystalline belt and comprises schists, micaceous quartzite and crystalline limestone and metamorphic rocks of the Proterozoic Wolverine complex that consist of amphibolite and calc-silicate gneiss. These units strike northwest and dip to the southwest and are intruded by dikes and stocks composed of medium- to coarse-grained syenite to monzonite and related granitic pegmatite that belong to the Mount Bisson intrusions as defined by Halleran (1991).

Detailed geologic descriptions of the property are available in Halleran and Russell (1990) and Halleran (1991) and in numerous Assessment Reports completed on showings covered by the Mount Bisson Property.

Rare-earth mineralization on the Mount Bisson Property is hosted by granitic pegmatites that vary from syenite to monzonite in composition and within metasomatic alteration halos that have overprinted gneisses of the Wolverine metamorphic complex.

Rare earth mineralization is distributed within several different rock units on the property, and is mainly contained in allanite subgroup minerals $[(Ca,Ce,Y)_2 (Al,Fe^{3+})_3Si_3O_{12}(OH)]$ of the epidote group. Minor levels of the rare-earth elements and yttrium may also be contained in titanite, epidote and vesuvianite as observed at the M-12000 Road occurrence.

Two lithologic units contain the highest grade and most widespread rare-earth element mineralization: allanite-bearing, monzonite to syenite pegmatite and a secondary alkalic metasomatic unit. These pegmatites were delineated over a strike length of 75 m and widths that range from 2 to 5 m (Halleran 1991). Allanite crystals attain a maximum size of 2 cm and locally comprise up to 35 per cent of the mode. Perthitic K-feldspar and plagioclase comprise most of the pegmatite and is augmented by orange titanite, aegerine-augite, diopside-hedenbergite, quartz, zircon and opaque oxides.

Historical assay data (ICP-MS) of Halleran and Russell (1990) indicated a range of total LREE (La, Ce, Nd, Sm and Pr) between 0.3 to 13.5 wt. percent for the syenitic pegmatite unit. Total heavy rare earth element (HREE) concentrations were found to be considerably lower and within a range of 11 and 360 ppm (Halleran 1991). High thorium and uranium concentrations are associated with high REE concentrations (AR19404, Halleran, 1989).

The secondary alkalic unit, as defined by Halleran (1991), consists of Wolverine amphibolite gneisses that have been metasomatized by pegmatite-forming fluids and are mineralogically characterized by an increase in allanite, apatite, feldspar, aegerine-augite and titanite and a decrease in quartz, hornblende and biotite. The original fabric of the metasomatized gneisses is often recognizable. The LREE content of the metasomatized gneisses ranges from 0.15 to 0.64 wt. percent and the HREE content is up to tens of parts per million (AR 19404, Halleran, 1989 and Halleran 1991).

Work Completed in 2008

The Mount Bisson area was examined during July 16 to 22, 2008 by Frederick W. Breaks, P. Geo. The purpose of the visit was to evaluate the economic potential of the claims by documenting the rock types, mineralogy and geological controls of the rare earth element mineralization. Geological and sample stations are shown in Figure 4. The following geological descriptions are based on notes by Breaks in the 2007 and current field investigations.

Geology

Detailed geology of the rare-earth pegmatites and associated metasomatic alteration that define the Wolverine pegmatite field will now be described.

Laura Occurrence

This occurrence is situated along the flanks of a 0.1 to 0.3 by 1.5 kilometer, NE-SWoriented linear magnetic anomaly with intensities that vary between 57,800 and 57,920 nT (Luckman AR 28877, 2006). The area is the locus for several granitic plutons designated as the Mount Bisson intrusions by Halleran (1991). Sixteen bulk rock samples were collected over a 0.5 by 0.8 kilometre area that corresponds to the central to southeastern parts of the old grid area of Halleran (AR 19404, 1989).

The main rock types encountered over this former grid area comprise massive to foliated medium- to coarse-grained biotite and hornblende-biotite granite, titanite-diopside granitic pegmatite with local platy black allanite, and strongly deformed and metamorphosed biotite-hornblende diorite. The latter rock type constitutes part of the Wolverine complex in this area as investigated by Halleran (AR 19404, 1989) who may have described these rocks as amphibolite.

At the Laura occurrence, the specific rock types consist of modestly magnetic, foliated allanite-magnetite-titanite-green pyroxene monzonite that is layered with rust-stained titanite-diopside-hornblende-quartz-white feldspar granitic pegmatite. The occurrence is sporadically exposed and the mineralization observed generally lies subparallel to the foliation surface. As the outcrops do not expose sections normal to this foliation, an inference as to potential thickness cannot be made without trenching across the zone.

The coarse hornblende-rich pegmatite layers exhibit replacement by veins and patches of allanite-titanite-plagioclase-diopside. Allanite occurs as glossy black, euhedral, platy crystals up to 15 mm in sections approximately normal to the a-axis. Identification of the allanite and the widespread deep green mineral as clinopyroxene of the diopside-hedenbergite series was confirmed by XRD and SEM work at the Geoscience Lab of the Ontario Geological Survey (*see* samples 926522-A and 926522-B in Appendix E).

Poorly exposed, titanite-green pyroxene-quartz-white feldspar pegmatite was encountered m SE of the Laura occurrence on a small hill covered with angular rubble. The pegmatite is of undetermined thickness and strike length and lies in contact with diorite host-rocks that exhibit a 5 cm thick metasomatic selvedge adjacent to the pegmatite. The metasomatized host-rock contains abundant green pyroxene and orange titanite, sparse allanite and an absence of hornblende in contrast to unaltered diorite at greater distances from the contact.

Local masses of titanite-quartz-plagioclase<<diopside-hedenbergite exhibit contain areas up to 5 by 10cm that are rich in platy, glossy black allanite. The allanite is estimated to comprise 20 percent of the mode in such domains.

Ursa Occurrence

The Ursa pegmatite, discovered by Halleran (AR16781, 1988), comprises strongly deformed, foliated and lineated, white granitic pegmatite with a conspicuous protomylonite fabric. The pegmatite, exposed along the Monro Creek road, is hosted in calc-silicate gneiss interlayered with fine-grained amphibolite that has locally been replaced by skarn masses and veins. The mineralogy of the pegmatite consists of quartz, biotite, white feldspar, and accessory green diopside, black allanite and orange-brown titanite.

Allanite grains are mainly confined to a plagioclase-rich border zone but also were identified in narrow, 1 to 5 cm thick granitic pegmatite veins at the main exposure. The relatively early event of titanite-calcite-plagioclase<<diopside skarn mineralization, evident in the amphibolite layers, is crosscut by granitic pegmatite veins which contain euhedral, black allanite up to 4 by 10 mm. Both the amphibolite-hosted skarn and the allanite-bearing granitic pegmatites were subsequently crosscut by a narrow, NE-striking, post-tectonic titanite-hornblende-biotite granite dyke.

M-12000 Road Occurrence

This rare-earth element occurrence, situated on claim 568821, was discovered during the 2007 fieldwork. A 150 m wide zone of diorite to quartz diorite intrusive rocks is hosted in highly deformed, locally migmatized, garnet-biotite-sillimanite clastic metasedimentary rocks of the Wolverine gneisses. Later masses of fine- to medium-grained biotite granite, related to the Chamberland Creek pluton, are situated immediately south of this occurrence.

The rare-earth element mineralization is evident in calcium-rich masses contained in a quartz-rich, calc-alkalic pegmatite system that post-dates the deformation of its diorite to quartz diorite host rocks. A 2 to 3 m wide light green halo, characterized by diopside replacement of hornblende, is symmetrically disposed along the 0.5 thick pegmatite veins. Several of these quartz-rich pegmatite vein systems with diopside-rich halos (20 modal percent) were observed within the diorite host-rocks.

The mineral assemblage of the rare-earth element mineralized domains in the pegmatite system consists of deep brown, non-metamict allanite, vesuvianite, scheelite, epidote (pink and pistachio green varieties), fluorapatite and sparse zircon associated with diopside, plagioclase and quartz.

Rock Geochemistry

Rock samples representative of all units at and proximal to the three rare-earth element mineralized localities were collected in order to define the trace element characteristics, and to establish the economic potential for rare-earth elements and base and precious metals. The samples were collected in plastic sample bags and sealed with plastic zip ties. Location data for the various sample sites are provided using Universal Transverse Mercator coordinates for Zone 10 in North American Datum 1983 (NAD 83) as shown in Figures 4 and 5. These localities were marked with flagging tape and embossed aluminum tags. Furthermore, digital photographs were taken of all sealed sample bags at their representative collection sites in the field. Samples were sent to Acme Analytical Laboratories of Vancouver directly from the project area in sealed bags with security tags.

At the laboratory, the samples were dried, crushed and pulverized using standard rock preparation procedures. The major and minor element chemistry was undertaken on a 100 gram sample of pulverized material by ICP-emission spectroscopy following lithium metaborate/tetraborate fusion and dilute nitric acid digestion. Loss on ignition was calculated by the difference in weight after ignition at 1000 degrees Celsius. Total trace elements (rare-earth elements, Y and refractory elements) were determined by ICP mass spectrometry following a lithium metaborate/tetraborate fusion and nitric acid digestion of 100 grams of pulverized material. Precious and base metals in the trace element package were analyzed on a 0.5 gram sample split that was digested in aqua regia and also analyzed by ICP-MS.

Quality control at the laboratory is maintained by submitting blanks, standards and reassaying duplicate samples from each analytical batch.

Descriptive information for the various bulk rock samples and analytical results are presented in Appendix C.

Ursa Occurrence

Previous work by Breaks in 2007 indicated that the highest total rare-earth element content from the Ursa pegmatite was contained in the allanite-titanite border zone (sample 07-FWB-05-03: 667 ppm). The current work extracted a large sample from the biotite potassic pegmatite core zone that revealed an anomalous but lower total REE content of 370 ppm (Appendix C: sample 629535).

Laura Occurrence

The sixteen bulk rock samples from the former Laura grid of Halleran (AR 19404, 1989) reveal a wide range in total REE content (Appendix C: 18 to 1466 ppm). The highest value of 1466 ppm was recorded at the Laura occurrence from a rust weathered, foliated,

titanite-biotite-green pyroxene syenite. Yttrium contents from the sample collection are low and in the range 8.7 to 36.8 ppm.

Notably high barium (mean = 2898 ppm) and strontium (mean = 1513 ppm) contents characterize the granitic and syenitic rocks from the Laura occurrence, which are twice the respective mean levels in samples from the rest of the grid. Another geochemical feature of the Laura occurrence is the general dominance of Ba over Sr for the vast majority of samples as the Ba/Sr ratios lie in the range of 0.4 to 4.5 (mean = 1.9).

One sample of medium-grained, allanite-magnetite-titanite-biotite granite from the Mount Bisson pluton, situated 0.45 km SE of the Laura occurrence (Appendix C: sample 926524), has elevated levels of total REE (669 ppm) and Ba (4418 ppm), coupled with and a high Ba/Sr ratio of 5.8. Such rocks may represent the parental granite mass that spawned the rare-earth element-enriched, coarse-grained to pegmatitic monzonite and syenite units at the Laura occurrence.

M-12000 Road Occurrence

Sample 926529 from the allanite-bearing assemblage of the quartz-rich calc-alkalic pegmatite registered 1463 ppm total REE, 123 ppm total HREE, 600 ppm W, 24 ppm Sn , 174 ppm Y, and low Th (30 ppm) and U (5.1ppm). The total HREE and Y levels are notably higher than any other bulk rock compositions documented elsewhere in the present work from the claim-group to date.

Significantly anomalous levels of Nd (324 ppm), Sm (57 ppm), Eu (13 ppm), Gd (50 ppm), Dy (30 ppm) and Tb (6.3 ppm) are evident in a range between 10 to 15 times the average upper continental crust averages for these elements (Taylor and McLennan 1985).

Mineral Identification

Eight samples of unknown minerals were concentrated in small plastic vials and submitted to the Geoscience Laboratory of the Ontario Geological Survey in Sudbury for X-Ray diffraction and scanning electron microscopy verification. The results of this work are given in Appendix E.

Conclusions and Recommendations

Rare-earth element mineralization at the Laura occurrence is associated with a NE-SWoriented, magnetic anomaly that is geologically interpreted as a magnetite-bearing, alkalic granitic pegmatite dyke system hosted in gneisses of the Wolverine metamorphic complex. The Wolverine gneisses mainly comprise highly deformed, biotite-hornblende diorite, previously described as amphibolites by Halleran (AR 19404, 1989). The rareearth element mineralization may plausibly be controlled by a contact zone along the margins of the largest of the Mount Bisson intrusions and its diorite host-rocks. Such a geological controlling feature could have led to entrapment of pegmatite-forming melts of syenite and monzonite composition with elevated rare-earth elements. This granitic pegmatitic dike system possibly extends SW into the adjacent calc-silicatedominant rocks of the Ingenika group that host the nearby Ursa occurrence on the basis of aeromagnetic data. Furthermore, the linear anomaly appears to emanate from an ovoid, 0.4 by 0.75 km, magnetic anomaly on claim 522745. This ovoid anomaly, with a range of magnetic intensities between 57,600 and 57,900 nT, could possibly represent a plutonic centre of the inferred dike system. Several other similarly oriented linear magnetic anomalies may represent related dykes in the calc-silicate host rocks proximal to the Ursa occurrence as on claims 522755 and 522756.

Further work is recommended at the Laura occurrence:

- Detailed geological mapping over a 500 by 500 metre grid
- Trenching across the mineralized zone
- Ground magnetic survey

The rare-earth element mineralization at the Laura occurrence is exposed on a small hill that contains outcrops that are largely parallel to a modestly, southwest-dipping foliation surface. Hence it is difficult to assess true thickness of this foliation-concordant mineralization. Outcrop is sporadic also making evaluation of the potential thickness of the mineralization difficult.

Trenching is highly recommended in this area in order to further evaluate the potential thickness and geological controls of the mineralization. This work should be undertaken in conjunction with detailed geological mapping program over at a 500 by 500 m grid centred on the Laura occurrence. As the main, medium-grained, foliated syenite and syenite pegmatite units at the occurrence are modestly magnetic, a ground magnetic survey may further help define extent of the mineralization especially if there is a contrast with non-magnetic diorite of the Wolverine gneisses.

Furthermore, some reconnaissance sampling of granitic rocks of the Mount Bisson intrusive suite should also be undertaken as the high Ba and Sr levels, which partially characterize the bedrock geochemistry at the Laura occurrence, could serve as useful pathfinder elements in the search for potentially new zones of mineralization.

Future sampling elsewhere on the claim-group should also focus on various NE-SWoriented linear magnetic anomalies previously mentioned on claims 522751 and 522745 but also evident on claims 522746, 547760, 568815 and 568833 to the north. These magnetic anomalies could represent additional rare-earth element pegmatite systems.

Detailed geological mapping and sampling is recommended proximal to the M-12000 Road REE occurrence as this mineralized locality has much higher total HREE and Y than found elsewhere on the claim-group to date. These chemical features coupled with elevated W (600 ppm) and low Ba (75 ppm) and dominance of Sr (580 ppm) over Ba suggest that this REE mineralization is of different character and possible origin *vis-à-vis* that from the Laura occurrence near Mount Bisson.

References

- Armstrong J.E. (1949): Fort St. James Map Area, Cassiar and Coast District, British Columbia; *Geological Survey of Canada*, Memoir 252, 210 pages.
- Černý, P. (2005): The classification of granitic pegmatites revisited; The Canadian Mineralogist, volume 43, 2005-2026.
- Dolmage V. (1927): Finlay River District, B.C.; *Geological Survey of Canada*, Summary Report 1927 Part A, Pages 19-41.

Ercit, T.S. (2005): REE-enriched granitic pegmatites; p. 175-199 *in* Linnen, R.L. and Samson, I.M. (editors), Rare-Element Geochemistry and Mineral Deposits, Geological Association of Canada, Short Course Notes 17.

- Ferri F., and Melville D.M. (1988): Manson Creek Mapping Project (93N/9); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1987, Paper 1988-1, pages 169-180.
- Halleran, A.A.D. (1985) Assessment Report, Mon Property; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 14545.
- Halleran, A.A.D. (1988): Geology and Geochemistry, Ursa #1; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 16781.
- Halleran, A.A.D. (1988): Geology and Geochemistry, Ursa 2 and 3; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 17734.
- Halleran, A.A.D. (1988): Geology, Geochemistry and Geophysics, Ursa Property; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 17872.
- Halleran, A.A.D. (1989): Geology and Geochemistry, Laura Property; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 19404.
- Halleran, A.A.D. and Russell, J.K. (1990): Geology and Descriptive Petrology of the Mount Bisson Alkaline Complex, Munroe Creek, British Columbia (93N/ 9E, 930/ 12W, 5W); in Geological fieldwork 1989, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1990-1, pages 297-304.
- Halleran, A.A.D. (1991): Geology, geochemistry and origins of the Mount Bisson alkaline complex, Munroe Creek, British Columbia, Canada; unpublished M.Sc. thesis, The University of British Columbia, 176pp.

- Leighton, D.G. (1997): Geological Report on the ERZ Property, Mt. Bisson Area, North-Central B.C.; B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report 24861.
- Luckman, N. (2006): Airborne geophysical survey on the Mount Bisson property, Omineca Mining Division, north-central British Columbia, Assessment File Report 28877, 13p.
- McConnell R.G. (1896): Report on an Exploration of the Finlay and Omineca Rivers; *Geological Survey of Canada*, Annual Report New Series, Volume VII Part C.
- Muller J.E. (1961): Geology of Pine Pass, British Columbia; *Geological Survey of Canada*, Map 11.
- Taylor, S.R. and McLennan, S.M. (1985): The continental crust: its composition and evolution; Blackwell Publications, London, 232p.
- Tipper H.W., Campbell R.B., Taylor G.C. and Stott D.F. (1974); Parsnip River, B.C.; *Geological Survey of Canada*, Map 142A, Sheet 93.
- Young, J. (2007): Geological and Geochemical Report on the Mount Bisson Property, Omineca Mining Division, north-central British Columbia, Assessment File Report 29693, 52 p.

Appendix A. Statement of Qualifications

I, Frederick W. Breaks, certify that:

1. I am a graduate of the University of British Columbia, Vancouver with a Bachelor of Science Degree in Honours Geology (1968).

2. I hold a Masters of Science Degree in Geology from McMaster University, Hamilton, Ontario (1971).

3. I hold a Ph.D. degree in Geology from Carleton University, Ottawa, Ontario (1989).

4. I have been practising my profession between 1971 and 2008 as a geoscientist with the Ontario Geological Survey and currently as an independent consulting geologist.

5. I am a Qualified Person according to the definition of "qualified person" as set out in National Instrument 43-101.

6. I am a member in good standing of the Association of Professional Geoscientists of Ontario (#760).

7. I have relied upon various sources of information provided by Paget Resources Corporation, information in the public domain and from field observations and data collected during a property visit in October 2007. Furthermore, I have 35 years' of fieldrelated experience, report writing and editing that has involved the geology and mineral deposits of the Superior and Grenville Provinces of Ontario. Many of my past projects have dealt with a wide range in rock types, structures, rare-element mineral deposits within a high grade metamorphic context very similar to the Wolverine metamorphic complex as described in this report.

8. I have relied upon the company's counsel for the legal status of mineral tenure.

9. As of this date, I am unaware of any material fact or material change with regard to the property that would make this report misleading.

10. I am independent of the Company and have no material interest in the firm or in any of its mineral properties.

11. Signed this 15th day of October, 2008 in the City of Sudbury, Ontario.

Frederick W. Breaks, P.Geo. Association of Professional Geoscientists of Ontario Membership # 760 Appendix B Statement of Costs

Item	Name Date	#	Cost	Item sub-total		Comment
MT BISSON WORK COSTS						
Geological - salaries and wages	Fred Breaks Jul 16-22 Chris Leslie	days 7 7	daily rate 600 325	4200.00 2275.00		
Food & Accommodation: on-site	Hotel Food	1 1	rate 1456.13 536.43	1456.13 536.43	6475.00	
Report	Preparation Materials, maps, binding, copying	days 3 1	daily rate 600 50	1800.00 50.00	1850.00	
Geochemical	Rock sample assays Thin sections Geo Labs SEM rental Freight	unit 1 1 1 1	rate 547.84 578.1 441 344.61	547.84 578.10 441.00 344.61		
Communications	Radio rental	1	42.8	42.80	1911.55 42.80	
Vehicle	Truck rental Fuel	7 1	80 460.66	560.00 460.66	1020.66	2400/month = 80/day
MOB/DEMOB COSTS						
Food & Accommodation: travel to/from site	Hotel Food	unit 0 1	rate 1 126.18	0.00 126.18	126.18	Included in work costs above.
Airfare	Fred Breaks	1	2530.79			
Wages: travel to/from site	Fred Breaks Chris Leslie	days 4 2	daily rate 600 325	2400.00 650.00		
Vehicle					3050.00	
	Truck rental Fuel	2 1	80 0	160.00 0.00	160.00	Included in work costs above.
		SUBTOTAL	. work/m	ob-demob	16628.75	
Transportation on-site - Helicopter	Helicopter			2530.79		
	SUBTOT Allowable helicopter c	AL helicop osts (maxi	ter costs: mum of 5	2530.79 0% work)	2530.79	
		Assess	ment worl	k to claim:	19159.54	

Appendix C Rock Samples

Area	Geologist	Date DD-MM-YY	UTM Zone	UTM E	UTM N	Sample	Туре	Description	Wgt
Will #2	FB	16-07-08	10	436475	6159147	926501	grab	Hornblende monzonite, fg-mg, white weathering. Sparse enclaves of biotite metapelite	0.97
Will #2	FB	16-07-08	10	436424	6159160	926502	grab	Float sample: angular, 20 by 40 by 50 cm, white syenite pegmatite with coarse ?aegerine and masses of chocolate brown unknown mineral (both separated for XRD). Apatite and magnetite = accessories	1.34
Near Will #2	FB	16-07-08	10	436949	6159148	926503	grab	Biotite< <hornblende and="" diorite,="" foliated="" lineated,<br="" strongly="">locally gneissic. Local foliation concordant pods and layers rich in calc-silicate minerals. Cut by sparse dykes of undeformed, ?aegerine syenite pegmatite</hornblende>	1.74
Near Will #2	FB	16-07-08	10	436948	6159149	926504	grab	Garnet-epidote calc-silicate pod	0.24
Between Will #1 and #2	FB	17-07-08	10	437629	6160071	926505	grab	Epidote-biotite-cpx-hornblende quartz diorite	1.46
Between Will #1 and #2	FB	17-07-08	10	437359	6160100	926506	grab	Float sample of titanite-plagioclase< <epidote calc-silicate="" rock,<br="">angular, 1 m diameter likely from nearby outcrop that consists mainly of strongly deformed amphibolite gneiss.</epidote>	1.18
Between Will #1 and #2	FB	17-07-08	10	437742	6160152	926507	grab	Metaultramafic rock (hornblendite), mg-cg, strongly magnetic	0.86
Between Will #1 and #2	FB	17-07-08	10	437734	6160146	926508	grab	Anorthosite layer in metagabbro host. Non-magnetic	0.83
Between Will #1 and #2	FB	17-07-08	10	437732	6160146	926509	grab	Gabbroic anorthosite, mg-cg, foliated, magnetic and altered by epidote	1.80
Between Will #1 and #2	FB	17-07-08	10	437733	6160159	926510	grab	Metaultramafic rock (hornblendite), mg-cg, 20% coarse magnetite	1.74
Between Will #1 and #2	FB	17-07-08	10	437753	6160152	926511	grab	Metaultramafic with coarse green pyroxene, strongly magnetic and rust stained	2.83
Between Will #1 and #2	FB	17-07-08	10	437809	6160176	926512	grab	White feldspar-rich rock, mg-cg, with 20% coarser masses of radiating black brown ?anthophyllite? Possible altered anorthosite? Amphibole separated for XRD work.	4.19
Laura	FB	18-07-08	10	440314	6153379	926513	grab	Syenite pegmatite, white with abundant unknown brown mineral	3.49
Laura	FB	18-07-08	10	440314	6153379	926514	grab	Biotite granite, mg, foliated with sparse clusters of unknown green mineral. Pegmatite segregations with white feldspar, biotite, unknown, non-magnetic steely black mineral (?ferrocolumbite) and cg green mineral (XRD sample for possible aegerine)	1.98
Laura	FB	18-07-08	10	440394	6153471	926515	grab	Hornblendite monzonite, mg, white	1.02
Laura Laura	FB FB	18-07-08 18-07-08	10 10	440480 440664	6153474 6153494	926516 926517	grab grab	Hornblende diorite, mg, foliated Calc-silicate rock (diopside-epidote-magnetite-garnet-	1.76
Laura	FB	18-07-08	10	440549	6153147	926518	grab	plagioclase). Well foliated and sparsely exposed. Possibly an enclave in biotite granite Biotite-white feldspar pegmatite, 0.8 m width concordant to	3.05
Laura	FB	18-07-08	10	440615	6153183	926519	grab	foliation of diorite gneiss host-rock Green pyroxene (?aegerine)-magnetite-hornblende-white	2.43
								feldspar pegmatite, rust stained, local coarse masses of hornblende. 5 metres width	
Laura	FB	18-07-08	10	440637	6153214	926520	grab	Syenite, mg, foliated with abundant green mineral (?aegerine?). Thoroughly rust stained. Layer rich in hornblende (1 cm thickness) in sample	2.24
Laura	FB	18-07-08	10	440668	6153223	926521	grab	Syenite, mg, foliated, white and no rust staining. Abundant green mineral (?aegerine?)	1.86
Laura	FB	18-07-08	10	440673	6153254	926522	grab	Syenite pegmatite, white to locally rust stained. Pieces selected from 30 by 100 cm old chipped out area. Green to brown pyroxene, titanite, hornblende and white feldspar	1.24
Laura	FB	18-07-08	10	440682	6153278	926523	grab	Syenite pegmatite float of plausible local derivation. Contains titanite, green pyroxene and white feldspar	1.67
Laura	FB	18-07-08	10	441025	6152965	926524	grab	Biotite granite, mg, massive and typical of large area of granite observed over entire traverse area. Similar to Chamberland Creek pluton	1.08
Near Will #1	FB	19-07-08	10	438846	6160250	926525	grab	Diopside-hornblende-plagioclase skarn. Sharpely cut by undeformed, white svenite pegmatite	2.02
Near Will #1	FB	19-07-08	10	437832	6160079	926526	grab	Metagabbro, massive, cg, relict plagioclase observed but mostly converted into fg recrystallized aggregates. Grades into deformed layers of magnetite-biotite< <hornholende< td=""><td>2.39</td></hornholende<>	2.39
								metaultramafic rock and anorthosite. Significant epidote	

Area	Geologist	Date DD-MM-YY	UTM Zone	UTM E	UTM N	Sample	Туре	Description	Wgt
Between Will #1 and #2	FB	19-07-08	10	437894	6160214	926528	grab	Magnetite-hornblende diorite interlayered with biotite tonalite. Strongly foliated and lineated with K-feldspar megacrysts variably deformed and dextrally rotated	kg 1.29
M12000 Road Ocurrence	FB	19-07-08	10	435627	6162093	926529	grab	Allanite-scheelite-diopside-epidote-plagioclase-quartz rock adjacent to quartz-rich pegmatite segregations in diopside guartz diorite	0.32
M12000 Road Ocurrence	FB	19-07-08	10	435627	6162093	926530	grab	Biotite-hornblende< <diopside-plagioclase diorite<br="" quartz="">adjacent to quartz-rich pegmatite segregations</diopside-plagioclase>	5.59
M12000 Road Ocurrence	FB	19-07-08	10	435627	6162093	926531	grab	Biotite-hornblende< <diopside-plagioclase diorite<br="" quartz="">adjacent to quartz-rich pegmatite segregations. Note this sample is a blind duplicate of 926530 re lab</diopside-plagioclase>	6.14
M12000 Road Ocurrence	FB	19-07-08	10	435624	6162107	926532	grab	Titanite-hornblende quartz diorite, strongly lineated, mg	1.29
Ursa	FB	20-07-08	10	439084	6150227	926533	grab	Allanite-titanite-biotite-hornblende granite dyke. Massive, mg, white on fresh surface. Dyke is post-tectonic and cuts across skarn veins and later white feldspar veins with sporadic allanite.	1.00
Ursa	FB	20-07-08	10	439175	6150180	926535	grab	Biotite-quartz-white feldspar granitic pegmatite, strongly deformed, protomylonite texture with quartz rods. Sample site at roadside and probably represents Halleran sample site.	5.41
Ursa	FB	20-07-08	10	439084	6150227	926536	grab	Allanite-titanite-biotite-hornblende granite dyke. Massive, mg, rust-stained.	0.70
Ursa	FB	20-07-08	10	441624	6151272	926537	grab	Rust stained boulder, silicic, magnetic with 5% pyrrhotite. 20 X 30 X 70 cm angular with several smaller rust stained boulders in proximity	1.78
Ursa	FB	20-07-08	10	441885	6151141	926538	grab	Epidote-rich calc-silicate layer at least 1 m thick in diopside calc-silicate gneiss	2.28

Rock	Samo	les
	Carrip	

Sample								-					_		_	_	_	_	_		
	SiO2	AI2O3	Fe2O3 %	MgO %	CaO %	Na2O %	K2O %	TiO2 %	P2O5 %	MnO %	Cr2O3 %	Ni ppm	SC ppm	LOI %	Sum %	Ba	Be	CO mag	Cs ppm	Ga ppm	tH maa
926501	57.59	15.67	6.75	3.89	5.32	6.25	2.39	0.71	0.35	0.15	0.01	20	19	0.40	99.47	2289	5	18.40	2.70	17.00	5.80
926502	63.60	18.78	2.44	0.62	2.06	7.96	2.86	0.08	0.05	0.11	0.00	20	13	1.10	99.65	1634	3	2.70	2.50	22.00	2.70
																	-				
926503	56.07	19.29	5.81	2.22	5.26	5.43	3.74	0.89	0.25	0.09	0.01	20	13	0.50	99.56	2441	2	11.90	3.10	20.80	8.40
926504 926505	42.76	18.00 14.98	13.67 5.21	3.31	14.97 3.83	0.11	0.98	0.80	0.27	0.44	0.01	20 20	11 18	4.30	99.55 99.77	982 866	1	21.30 13.30	1.10	58.20 17.10	5.40 5.50
	10.05			4.00	45.05	4.00						-								10.00	
926506	48.05	20.45	9.12	1.08	15.87	1.86	0.25	0.37	0.12	0.09	0.01	20	9	2.40	99.70	88	1	6.20	0.60	42.30	3.90
	05 75	00.00	10.00	0.04	44 70	1 00	0.00	0.07	0.50	0.47	0.00	40		1.50	00.04	400		07.00	0 70	07.50	0.00
926507	35.75	22.92	13.92	9.61	11.76	1.83	0.62	0.97	0.56	0.17	0.02	48	22	1.50	99.61	122	1	27.60	0.70	37.50	6.30
926508	53.49	24.40	2.66	1.29	8.26	6.17	0.33	1.23	0.24	0.05	0.01	20	12	1.50	99.66	108	1	4.10	0.90	17.20	8.30
926509	44.32	21.96	11.56	1.92	12.99	3.23	0.22	0.89	0.26	0.08	0.01	20	17	2.30	99.70	81	1	8.40	0.60	40.90	5.80
026510	22 55	13 56	17 17	7 17	6.03	1 10	0.31	0.32	0.36	0.22	0.01	/1	7	0.00	99.71	21	1	41.20	1 10	13 10	2 70
320310	22.00	10.00			0.00	1.10	0.01	0.02	0.00	0.22	0.01			0.00	00.11	2.		11.20	1.10	10.10	2.70
926511	20.10	9.85	49.56	6.88	1.54	0.28	0.26	0.43	0.52	0.12	0.01	20	9	10.10	99.70	19	1	19.50	0.90	29.90	3.20
926512	55.54	19.29	7.54	5.33	2.42	7.19	0.99	0.68	0.19	0.07	0.01	20	18	0.60	99.80	122	2	19.20	4.80	21.80	4.90
926513	70.61	16.11	1.40	0.31	2.41	5.00	3.16	0.07	0.05	0.02	0.00	20	4	0.60	99.73	1267	5	1.40	0.90	20.60	4.40
926514	69.46	14.84	1.91	0.56	2.32	3.72	5.96	0.20	0.07	0.05	0.00	20	10	0.40	99.51	2908	3	2.40	1.40	16.40	2.50
926515	70.96	14 84	2 30	0.50	1 85	4 57	4 15	0.24	0.08	0.03	0.00	20	3	0 10	99 64	2073	2	3 30	1 10	16 80	5 10
926516	54.24	14.56	8.65	2.65	10.66	3.51	0.81	2.43	1.29	0.15	0.00	20	12	0.80	99.75	118	1	18.20	0.30	21.50	4.30
926517	48.66	20.31	6.67	0.65	15.85	3.01	0.57	1.63	0.69	0.20	0.00	20	10	1.30	99.51	1549	3	18.00	1.30	29.60	8.30
	70.54	11.50	4 50	0.44	1.00	0.04	4.00	0.04	0.00	0.04	0.00			0.00	00 70	4.4.40		1.00	1.00	11.00	0.00
926518	73.54	14.59	1.53	0.11	1.69	3.64	4.20	0.04	0.02	0.01	0.00	20	T	0.30	99.73	1440	2	1.00	1.00	14.00	0.90
926519	62.81	18.04	3.68	0.91	4.01	6.27	2.82	0.34	0.24	0.08	0.00	20	14	0.50	99.66	832	3	8.00	0.40	20.00	7.30
926520	60.86	15.03	4.97	1.89	3.62	4.22	6.67	0.38	0.32	0.09	0.00	20	46	0.40	98.48	7025	3	5.30	0.80	19.00	5.00
926521	64.14	16.02	4.64	0.91	2.66	7.22	2.84	0.37	0.19	0.06	0.00	20	10	0.20	99.23	3984	3	6.90	0.30	20.70	1.90
926522	70.58	13.83	2.81	0.58	2.01	3.31	5.49	0.29	0.06	0.04	0.00	20	6	0.60	99.61	2245	2	3.80	1.30	19.30	1.60
926523	60.60	19.84	2.56	0.75	5.55	7.74	0.80	0.40	0.13	0.07	0.00	20	15	1.40	99.79	402	4	2.60	0.40	20.10	0.40
926524	69.07	14.72	3.33	0.62	1.61	3.76	4.91	0.48	0.16	0.03	0.00	36	2	0.50	99.22	4418	2	3.40	1.50	18.60	8.00
926525	50.46	11.88	8.80	6.28	15.81	2.45	0.68	0.88	0.15	0.29	0.01	32	34	2.00	99.69	312	11	35.20	2.60	15.60	1.90
926526	41.44	22.99	11.32	3.58	15.52	1.48	0.37	0.77	0.25	0.12	0.01	20	15	1.70	99.56	61	2	13.30	1.30	49.40	6.00
000507	50.00	10.01	4.00	2.05	0.50	0.44	0.00	0.70	0.00	0.00	0.04	00	45	0.70	00.00	50		0.50	0.00	10.00	E 00
926527	59.29	19.94	4.62	3.25	2.52	8.41	0.30	0.70	0.09	0.02	0.01	20	15	0.70	99.83	59	2	9.50	0.60	18.30	5.30

a .	1						1					1	1			1	1				
Sample													_		_	_	_	_		_	
	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ba	Be	Co	Cs	Ga	Hf
	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm
926528	57.36	15.16	7.87	4.69	5.79	3.78	3.18	0.79	0.24	0.13	0.03	20	21	0.60	99.66	900	1	24.80	0.90	17.90	4.40
926529	51.40	12.96	6.54	5.06	17.95	1.92	0.12	0.43	0.28	0.41	0.01	30	26	2.40	99.46	75	5	9.60	1.40	26.60	4.00
926530	63.53	16.06	1.97	2.84	6.71	6.09	1.08	0.62	0.24	0.06	0.01	20	14	0.50	99.72	449	5	2.00	0.40	16.50	8.20
926531	63.69	15.95	1.96	2.68	6.83	6.15	0.87	0.62	0.28	0.06	0.01	20	14	0.60	99.74	400	4	2.00	0.30	16.50	8.50
926532	64.14	16.78	4.07	1.41	4.23	5.57	2.31	0.53	0.14	0.04	0.00	20	9	0.50	99.72	1206	4	7.90	0.60	20.90	5.80
926533	74.54	13.61	0.94	0.12	0.88	3.68	5.53	0.08	0.05	0.04	0.00	20	6	0.50	99.97	450	4	0.90	13.20	20.00	1.80
926535	70.86	15.05	1.62	0.38	1.09	2.90	6.54	0.22	0.04	0.01	0.00	20	1	0.60	99.31	4877	1	1.10	3.20	15.10	1.20
926536	73.92	13.69	1.52	0.16	1.04	3.86	5.16	0.09	0.02	0.03	0.00	20	4	0.40	99.89	582	4	1.00	15.00	19.00	2.50
926537	50.46	19.08	8.88	1.75	8.10	4.45	1.83	1.17	0.70	0.08	0.02	44	21	3.10	99.61	894	1	26.10	0.80	18.30	3.00
926538	43.91	9.11	15.15	2.58	23.31	0.06	0.03	0.69	0.29	2.85	0.01	20	11	1.80	99.75	15	1	24.90	0.20	15.40	4.10

Sample	Nb	Ph	Sn	er.	Та	Th		v	w	7r	v	1.2	60	Dr	Nd	Sm	E	Gd	Th	Dv	Цо
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
926501	56.80	90.4	2	794.4	0.7	25.4	1.8	130	0.5	218.4	24.6	56.0	120.9								
026502	17.40	58.0	2	643.1	2.1	12.1	33	21	0.6	70.2	15.0	33.3	63.0	15.11	56.60	9.09	2.28	7.59	0.92	4.88	0.86
920302	17.40	50.9	2	043.1	2.1	13.1	3.3	21	0.0	19.2	15.0	32.3	03.9								
026502	11.20	116.2	2	642.6	0.5	7.0	2.1	69	07	225 F	10.6	21 5	60.4	6.90	22.30	3.24	0.93	2.89	0.45	2.43	0.51
920303	11.50	110.5	2	042.0	0.5	1.5	2.1	00	0.7	555.5	19.0	51.5	09.4								
026504	12 70	24.2	7	1010 /	0.4	5.2	20	204	5.0	222.2	22.0	40 G	60.1	8.96	35.90	6.08	2.07	5.13	0.70	3.58	0.72
926504	14.70	68.5	2	293.4	1.0	22.4	3.4	103	0.5	172.0	23.3	30.4	62.6	7.13	24.10	3.20	1.42	2.90	0.42	2.55	0.07
														8.02	33.50	6.56	1.67	5.66	0.83	4.35	0.84
926506	10.70	11.2	4	1729.1	0.8	40.6	5.2	191	1.3	124.1	24.4	37.0	73.9								
														8.65	33.20	5.96	1.50	5.40	0.79	4.32	0.84
926507	25.80	17.9	5	818.6	2.2	29.7	6.1	151	1.0	206.0	36.1	61.8	132.4								
926508	18.00	10.5	2	1986 3	11	19.0	2.6	35	12 7	278 7	11.8	534	108.9	15.19	56.50	9.39	1.92	8.30	1.19	6.31	1.18
320300	10.00	10.0	2	1000.0		10.0	2.0	00	12.1	210.1	11.0	00.4	100.5	12.72	46.30	5.81	0.98	4.68	0.50	2.45	0.43
926509	13.60	8.6	2	1514.4	0.8	18.1	4.0	152	1.4	201.8	22.1	62.4	115.6	40.40	40.00		4.00	0.47	0.70	4.00	0.70
926510	5 20	76	3	373.0	0.6	9.6	27	241	0.5	85.9	19.0	33.2	71.9	13.49	48.60	1.41	1.68	6.17	0.79	4.09	0.78
320310	0.20	1.0	Ũ	070.0	0.0	0.0	2.7	2	0.0	00.0	10.0	00.2	71.0	7.57	27.60	4.80	1.17	4.14	0.62	3.09	0.59
926511	11.80	11.2	3	56.4	0.8	16.8	2.1	166	1.3	104.3	16.4	18.7	41.7	4.00	47.40	0.00	0.05	0.40	0.54	0.00	0.55
926512	12 00	40.9	1	263.3	12	25.5	52	68	11	166.5	17.6	38.8	77.9	4.68	17.40	3.30	0.85	3.18	0.51	2.98	0.55
020012	12.00	10.0		200.0		20.0	0.2	00		100.0		00.0	11.0								
000540	0.50	00.0	-	004 7		00.0	0.0	0	0.5	470.0		50.0	400.4	9.83	36.00	5.98	1.09	4.86	0.64	3.36	0.67
926513	9.50	80.8	2	631.7	0.9	20.6	3.6	8	0.5	176.3	8.0	59.6	102.4	10.84	31.70	4.23	0.85	3.39	0.38	1.64	0.29
926514	29.80	134.8	3	702.8	2.0	16.5	3.7	13	0.5	71.7	22.3	141.5	239.2								
														26.84	87.20	10.76	2.52	9.28	1.02	5.10	0.89
926515	17.00	94.2 a a	2	540.1 741.0	1.1	20.4	4.6	19 98	0.5	166.4	29.2	38.8	66.2 82.5	7.70	24.80	3.48 9.17	0.85	2.87	0.36	1.80	0.32
926517	95.80	18.8	6	1354.8	3.4	13.1	5.5	81	0.5	234.7	24.3	51.7	100.4		10.00	0.17	0.20	0.00	1.22	0.10	1.00
														10.17	40.00	0.40	0.05	0.70	4 00	4.00	0.00
926518	2.10	110.5	1	528.7	0.2	3.2	0.8	12	0.5	40.5	1.0	4.9	7.6	12.17	49.20	8.12	2.25	6.73	1.00	4.39	0.88
						•								0.89	3.00	0.50	0.30	0.31	0.05	0.22	0.06
926519	34.70	57.2	4	663.7	2.6	42.6	6.4	48	0.5	232.7	34.8	184.9	425.8								
														47.14	162.50	17.15	2.91	10.44	1.33	6.63	1.23
926520	117.90	127.7	9	3726.1	1.4	9.7	2.0	112	0.5	191.8	18.0	474.6	671.7								
														68.01	203 20	20.09	4 46	15.06	1 14	4 30	0.57
926521	63.20	43.3	3	1636.1	0.7	2.4	0.3	96	0.5	65.2	8.7	160.5	241.1	00.01	200.20	20.00	1.10	10.00		1.00	0.07
000500	40.00	400 7		100.0	1.0	04.0		40	0.5	50.0	40.4	70.0	400 5	23.09	76.00	7.29	1.70	4.46	0.44	1.86	0.29
926522	18.20	138.7	1	496.2	1.3	24.2	4.4	40	0.5	53.2	13.4	76.8	130.5								
														12.13	36.40	4.40	1.08	3.19	0.50	2.39	0.48
926523	40.10	14.5	3	1045.7	6.0	1.2	1.9	29	0.5	16.0	36.8	7.7	24.9	4.00	04 40	F 00	1 60	E 07	1 10	6 70	1 11
926524	15.00	139.8	1	765.2	0.6	54.0	5.7	28	0.5	362.4	13.3	213.1	317.4	4.20	21.10	5.92	1.60	5.67	1.10	0.70	1.41
							-	-													
02652F	21 10	28.2	2	436 3	22	9.0	10.2	106	21	50 1	<u>4</u> 0 p	110	38.2	28.48	87.80	8.50	1.58	5.35	0.60	2.74	0.43
320323	21.10	20.2	3		2.3	9.0	10.2	190	2.4	50.1	-0.0	14.2	50.7	5.55	23.10	4.97	1.62	5.18	1.02	6.12	1.30
926526	12.30	17.8	3	2019.2	0.9	12.3	4.3	201	4.7	207.3	25.4	51.5	103.4								
00000	40.15			0.40.5	4.7	01.0	<u> </u>		<u> </u>	400.4		70.5	100.5	12.22	44.50	6.77	1.65	5.56	0.76	3.86	0.79
926527	13.10	9.3	1	242.2	1.3	21.3	3.5	68	0.5	183.1	4.3	76.3	160.3	17.79	62.60	7.34	1.74	3.04	0.30	0.97	0.18

Sample		_	-	_	_					_		_	_			_	_			_	
	Nb	Rb	Sn	Sr	Та	Th	U	V	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
926528	9.40	84.7	2	316.0	0.6	9.6	1.8	142	0.5	165.2	20.7	38.4	79.3								
														9.61	35.70	6.10	1.37	4.94	0.73	3.66	0.69
926529	20.50	10.4	24	578.7	0.7	30.4	5.1	181	600.5	140.2	174.3	258.7	602.7								
																-					
												17.0	100.1	83.98	324.00	56.77	13.29	49.83	6.31	29.94	5.50
926530	14.90	27.1	2	741.5	0.8	18.0	3.1	86	0.5	306.5	22.1	47.0	103.1	10.04	40.70	7 74	1 70	E 61	0 77	2.04	0.75
000504	17 20	20.9	2	721.0	0.6	16 5	2.0	01	0.5	206 E	24.2	44.0	105.2	12.04	46.70	1.71	1.70	0.01	0.77	3.01	0.75
920001	17.50	20.0	2	731.9	0.0	10.5	3.0	01	0.5	300.5	24.3	44.9	105.5								
														12 64	50.90	8 10	2 07	6.01	0.85	4 74	0.87
926532	11.30	59.4	2	885.7	0.6	13.7	3.5	52	0.5	219.7	19.3	44.0	92.7	12.01	00.00	0.10	2.07	0.01	0.00		0.07
						-								10.67	41.30	5.94	1.28	4.30	0.63	3.51	0.60
926533	27.40	266.1	3	88.3	2.2	14.5	4.0	31	2.7	43.6	19.3	19.3	34.2								
												~~ -		4.08	13.10	3.38	0.19	3.14	0.58	3.29	0.67
926535	10.40	219.0	1	495.5	0.8	41.6	3.3	8	0.5	33.4	6.6	93.7	167.7								
														19.68	68 80	9.09	1 64	6 27	0 54	1 77	0 18
926536	29.60	268.9	4	111.1	3.9	15.2	4.8	8	0.9	50.4	24.8	20.7	37.2	10.00	00.00	0.00	1.01	0.21	0.01		0.10
			-					-						4.26	14.90	3.45	0.26	3.68	0.70	4.08	0.74
926537	7.20	30.5	1	750.4	0.4	3.8	0.7	390	1.1	105.4	22.4	17.3	36.6								
														4.86	19.90	4.23	1.35	4.24	0.70	3.83	0.79
926538	24.50	1.6	4	581.4	1.3	5.5	1.8	73	1.0	164.9	20.7	32.2	66.4								
														8.07	30.30	5.21	1.22	4.64	0.70	3.73	0.71

Sample	Er	Tm	Vh	1	DEEt	TOTIC	TOT/S	۸.,	Мо	<u></u>	Dh	Zn	Ni	٨٥	Cd	Sh	Bi	٨а	۸.,	Ца	т	50
	nnm	nnm	nnm	nnm	nnm	101/0	101/3	nnh	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm
926501	ppin	ppin	ppin	ppin	ppin	70	70	ppp	0.4	17.3	5.9	67	21.6	3.2	0.1	0.1	0.1	0.1	1.4	ppin	0.4	0.5
926502	2.44	0.37	2.22	0.34	279.60	0.10	0.02		16	5.6	263.3	284	29	0.6	21	0.1	3.5	07	13	0.01	0.1	0.5
920302	1.43	0.22	1.41	0.21	139.12	0.11	0.02		1.0	5.0	200.0	204	2.5	0.0	2.1	0.1	0.0	0.7	1.0	0.01	0.1	0.0
926503									0.6	3.3	2.6	48	5.6	0.7	0.1	0.1	0.1	0.1	1.1		0.3	0.5
	1.95	0.29	1.94	0.28	168.50	0.04	0.02						10.0							0.01		
926504	2.62	0.51	3.89	0.68	158.87	0.21	0.02		0.8	61.2	15.9	146	10.8	1.4	0.1	0.1	0.4	0.1	0.8	0.01	0.1	0.5
926506	2.27	0.36	2.37	0.35	159.78	0.02	0.02		0.3	11.9	6.6	15	4.1	0.6	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
000507	2.32	0.36	2.19	0.33	176.76	0.05	0.02	0.5	0.0	47	4.5	25	10.0	0.0	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
926507	3.18	0.52	3.30	0.49	301.67	0.07	0.02	0.5	0.2	4.7	4.5	25	10.2	0.8	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
926508	1.13	0.17	1.09	0.16	238.72	0.10	0.02	0.5	0.2	0.9	3.6	6	1.5	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
926509	2.00	0.34	2.11	0.32	265.84	0.13	0.02	0.5	0.3	8.8	5.3	23	3.9	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
926510	1 68	0 27	1.63	0.26	158 52	0.03	0.02	0.5	0.5	1.3	3.9	12	18.7	0.8	0.1	0.1	0.2	0.1	1.6	0.01	0.1	0.5
926511	1.61	0.24	1.54	0.20	97.48	0.00	0.44	1.5	3.3	356.0	7.6	75	8.0	2.8	0.1	0.1	0.9	4.9	2.0	0.01	0.1	2.4
926512								0.7	0.3	22.4	4.7	34	9.8	0.6	0.1	0.1	0.1	0.1	0.5		0.4	0.5
926513	1.91	0.31	1.88	0.28	183.51	0.02	0.04		0.4	1.8	4.8	10	1.3	0.5	0.1	0.1	0.1	0.1	2.4	0.01	0.1	0.5
926514	0.82	0.13	0.78	0.12	217.17	0.03	0.02		0.4	5.0	4.4	9	1.4	0.5	0.1	0.1	0.1	0.1	2.0	0.01	0.1	0.5
	2.24	0.35	2.09	0.27	529.26	0.03	0.02													0.01		
926515	1.01	0.17	1.10	0.16	149.62	0.05	0.02		0.7	4.8	4.2	14	3.6	0.5	0.1	0.1	0.1	0.1	0.9	0.01	0.1	0.5
926516 926517	2.00	0.37	2.09	0.31	214.34	0.04	0.02		4.6	242.1	4.9	107	3.9	0.5	0.1	0.1	0.1	0.1	3.4	0.01	0.1	0.5
926518	2.00	0.00	2.20	0.01	2.2.00	0.00	0.02		0.5	1.4	2.6	6	3.4	0.5	0.1	0.1	0.1	0.1	1.9	0.01	0.1	0.5
926519	0.06	0.03	0.14	0.03	18.09	0.09	0.03		4.8	64.4	3.1	17	5.4	0.5	0.1	0.1	0.1	0.1	2.4	0.01	0.1	0.5
926520	3.20	0.52	2.70	0.40	866.85	0.03	0.02		0.8	35.5	8.4	11	2.1	0.5	0.1	0.1	0.1	0.1	4.0	0.01	0.1	0.5
000504	1.37	0.20	1.31	0.19	1466.20	0.04	0.02		0.5	0.0	11.0	14	10.0	0.5	0.1	0.1	0.1	0.1	25	0.01	0.1	0.5
926521	0.70	0.10	0.57	0.11	518.21	0.02	0.02		0.5	9.3	11.9	14	10.0	0.5	0.1	0.1	0.1	0.1	3.5	0.01	0.1	0.5
926522									1.0	19.9	2.9	8	3.4	0.5	0.1	0.1	0.1	0.1	1.1		0.1	0.5
926523	1.25	0.19	1.15	0.15	270.61	0.05	0.02		0.5	2.6	3.5	9	1.3	0.5	0.1	0.1	0.1	0.1	2.8	0.01	0.1	0.5
926524	3.45	0.53	2.50	0.31	67.59	0.10	0.02		0.4	2.5	2.7	31	2.7	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.2	0.5
000505	1.23	0.19	1.17	0.18	668.75	0.02	0.02			00 5		10	0.0	~ -		0.4		~ 1	<u>~</u> -	0.01		0.5
926525	4.05	0.68	4.28	0.68	111.45	0.28	0.02	0.5	0.6	80.5 2 1	9.5	19 20	8.9 5.3	0.5	0.1	0.1	0.1	0.1	0.7	0.01	0.1	0.5
320320								0.0	0.2	2.1	3.5	20	0.0	0.0	0.1	0.1	0.0	0.1	1.1		0.1	0.0
926527	2.32	0.38	2.26	0.35	236.32	0.04	0.02	0.6	03	40	12	12	47	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1	0.5
520521	0.37	0.10	0.59	0.09	331.71	0.03	0.03	0.0	0.0	4.9	1.2	13	-+.1	0.0	0.1	0.1	0.1	0.1	0.0	0.01	0.1	0.0

	1							-													-	
Sample	_	_								-		_										-
	Er	Tm	Yb	Lu	REEt	TOT/C	TOT/S	Au	Mo	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	TI	Se
	ppm	ppm	ppm	ppm	ppm	%	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
926528								0.5	0.6	42.1	1.2	34	9.4	0.5	0.1	0.1	0.1	0.1	0.5		0.1	0.5
	2 02	0.34	1 99	0.29	185 14	0.02	0.02													0.01		
926529	2.02	0.01		0.20		0.02	0.02		53	11 4	44.2	45	36	11	04	0.1	0.8	0.2	0.5	0.0.	0.1	05
320323									0.0	11.4	77.2	-10	0.0	1.1	0.4	0.1	0.0	0.2	0.0		0.1	0.0
	44.07	0.40	40.04	0.00	4 4 0 0 0 0	0.00	0.00													0.00		
	14.37	2.16	13.34	2.09	1462.98	0.38	0.02													0.06		
926530									0.6	1.8	2.2	5	3.8	0.5	0.1	0.1	0.1	0.1	0.5		0.1	0.5
	2.00	0.32	2.15	0.31	236.65	0.02	0.02													0.01		
926531									0.3	1.3	2.4	5	2.5	0.5	0.1	0.1	0.1	0.1	0.5		0.1	0.5
	2.16	0.36	2.12	0.31	241.33	0.02	0.02													0.01		
926532									0.7	53.7	1.6	12	4.1	0.5	0.1	0.1	0.1	0.1	0.5		0.1	0.5
	1 75	0.28	1 81	0.26	209.03	0.02	0.02		-		-				-		-	-		0.01	-	
026522		0.20		0.20	200.00	0.02	0.02		03	31	4.0	1/	5.6	2.0	0.1	0.2	0.6	0.1	22	0.0.	0.1	0.5
920333									0.5	5.4	4.0	14	5.0	2.5	0.1	0.2	0.0	0.1	2.2		0.1	0.5
					aa 17																	
	1.88	0.28	1.83	0.25	86.17	0.05	0.02													0.01		
926535									0.3	1.1	5.2	23	1.4	0.5	0.1	0.1	0.1	0.1	0.5		0.1	0.5
	0.33	0.06	0.32	0.04	370.12	0.02	0.02													0.01		
926536									0.9	17.9	4.4	9	13.0	3.1	0.1	0.4	0.2	0.1	1.3		0.1	0.5
	2 23	0.36	2 26	0.34	95 16	0.03	0.02			-				-	-		-	-	-	0.01	-	
926537		0.00	2.20	0.01	00110	0.00	0.02		04	392.0	15	14	56.5	16	0.1	0.1	0.2	0.1	2.8	0.0.	0.1	0.5
520001									0.4	002.0	1.5	14	00.0	1.0	0.1	0.1	0.2	0.1	2.0		0.1	0.0
	2.24	0.25	0.45	0 22	00.07	0.00	1.60													0.01		
	2.24	0.35	2.15	0.33	98.87	0.09	1.62													0.01		
926538									1.2	33.5	6.2	101	7.5	0.5	0.5	0.1	1.5	0.1	1.3		0.1	0.5
	1.98	0.33	1.81	0.29	157.59	0.22	0.02													0.01		

Appendix D Analytical Certificates

AcmeLabs

ACME ANALYTICAL LABORATORIES LTD.

www.acmelab.com

Method

Code

R150

4A&4B

DIS-RJT

3A

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Page:

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

John Bradford Submitted By: Canada-Vancouver Receiving Lab: July 23, 2008 Received: Report Date: August 29, 2008 1 of 3

Crush, split and pulverize rock to 200 mesh

Ignite samples, acid digest, Au by ICP-MS

Warehouse handling / Disposition of reject

Whole Rock Analysis Majors and Trace Elements

VAN08007559.1

Test

15

0.2

Wgt (g)

Report

Status

Completed

Completed

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	None Given MT. BISSON
Shipment ID:	
P.O. Number	
Number of Samples:	37

SAMPLE DISPOSAL

RTRN-PLP Return RTRN-RJT Return

ADDITIONAL COMMENTS

Number of

Samples

37

9

37

37

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Paget Resources Corp. 1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

CC:

Frederick W. Breaks

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

None Given August 29, 2008

2 of 3

Page:

Part 1

VAN08007559.1

CERTIFICATE OF ANALYSIS

Phone (604) 253-3158 Fax (604) 253-1716

	****	Method	WGHT	3A	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B										
		Analyte	Wgt	Au	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ba	Be	Co
		Unit	kg	ppb	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm
		MDL	0.01	0.5	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2
926501	Rock		0.97	N.A.	57.59	15.67	6.75	3.89	5.32	6.25	2.39	0.71	0.35	0.15	0.012	<20	19	0.4	99.47	2289	5	18.4
926502	Rock		1.34	N.A.	63.60	18.78	2.44	0.62	2.06	7.96	2.86	0.08	0.05	0.11	0.002	<20	13	1.1	99.65	1634	3	2.7
926503	Rock		1.74	N.A.	56.07	19.29	5.81	2.22	5.26	5.43	3.74	0.89	0.25	0.09	0.006	<20	13	0.5	99.56	2441	2	11.9
926504	Rock		0.24	N.A.	42.76	18.00	13.67	3.31	14.97	0.11	0.98	0.80	0.27	0.44	0.007	<20	11	4.3	99.55	982	1	21.3
926505	Rock		1.46	N.A.	64.16	14.98	5.21	2.79	3.83	4.06	3.21	0.60	0.18	0.09	0.007	<20	18	0.6	99.77	866	3	13.3
926506	Rock		1.18	N.A.	48.05	20.45	9.12	1.08	15.87	1.86	0.25	0.37	0.12	0.09	0.007	<20	9	2.4	99.70	88	<1	6.2
926507	Rock		0.86	<0.5	35.75	22.92	13.92	9.61	11.76	1.83	0.62	0.97	0.56	0.17	0.017	48	22	1.5	99.61	122	<1	27.6
926508	Rock		0.83	<0.5	53.49	24.40	2.66	1.29	8.26	6.17	0.33	1.23	0.24	0.05	0.011	<20	12	1.5	99.66	108	1	4.1
926509	Rock		1.80	<0.5	44.32	21.96	11.56	1.92	12.99	3.23	0.22	0.89	0.26	0.08	0.008	<20	17	2.3	99.70	81	1	8.4
926510	Rock		1.74	<0.5	22.55	13.56	47.17	7.17	6.93	1.10	0.31	0.32	0.36	0.22	0.009	41	7	0.0	99.71	21	<1	41.2
926511	Rock		2.83	1.5	20.10	9.85	49.56	6.88	1.54	0.28	0.26	0.43	0.52	0.12	0.007	<20	9	10.1	99.70	19	<1	19.5
926512	Rock		4.19	0.7	55.54	19.29	7.54	5.33	2.42	7.19	0.99	0.68	0.19	0.07	0.008	<20	18	0.6	99.80	122	2	19.2
926513	Rock		3.49	N.A.	70.61	16.11	1.40	0.31	2.41	5.00	3.16	0.07	0.05	0.02	0.002	<20	4	0.6	99.73	1267	5	1.4
926514	Rock		1.98	N.A.	69.46	14.84	1.91	0.56	2.32	3.72	5.96	0.20	0.07	0.05	<0.002	<20	10	0.4	99.51	2908	3	2.4
926515	Rock		1.02	N.A.	70.96	14.84	2.30	0.50	1.85	4.57	4.15	0.24	0.08	0.03	<0.002	<20	3	0.1	99.64	2073	2	3.3
926516	Rock		1.76	N.A.	54.24	14.56	8.65	2.65	10.66	3.51	0.81	2.43	1.29	0.15	<0.002	<20	12	0.8	99.75	118	<1	18.2
926517	Rock		1.95	N.A.	48.66	20.31	6.67	0.65	15.85	3.01	0.57	1.63	0.69	0.20	<0.002	<20	10	1.3	99.51	1549	3	18.0
926518	Rock		3.05	N.A.	73.54	14.59	1.53	0.11	1.69	3.64	4.26	0.04	0.02	<0.01	<0.002	<20	<1	0.3	99.73	1440	2	1.0
926519	Rock		2.43	N.A.	62.81	18.04	3.68	0.91	4.01	6.27	2.82	0.34	0.24	0.08	0.003	<20	14	0.5	99.66	832	3	8.0
926520	Rock		2.24	N.A.	60.86	15.03	4.97	1.89	3.62	4.22	6.67	0.38	0.32	0.09	0.003	<20	46	0.4	98.48	7025	3	5.3
926521	Rock		1.86	N.A.	64.14	16.02	4.64	0.91	2.66	7.22	2.84	0.37	0.19	0.06	0.003	<20	10	0.2	99.23	3984	3	6.9
926522	Rock		1.24	N.A.	70.58	13.83	2.81	0.58	2.01	3.31	5.49	0.29	0.06	0.04	<0.002	<20	6	0.6	99.61	2245	2	3.8
926523	Rock		1.67	N.A.	60.60	19.84	2.56	0.75	5.55	7.74	0.80	0.40	0.13	0.07	<0.002	<20	15	1.4	99.79	402	4	2.6
926524	Rock		1.08	N.A.	69.07	14.72	3.33	0.62	1.61	3.76	4.91	0.48	0.16	0.03	0.002	36	2	0.5	99.22	4418	2	3.4
926525	Rock		2.02	N.A.	50.46	11.88	8.80	6.28	15.81	2.45	0.68	0.88	0.15	0.29	0.012	32	34	2.0	99.69	312	11	35.2
926526	Rock		2.39	<0.5	41.44	22.99	11.32	3.58	15.52	1.48	0.37	0.77	0.25	0.12	0.007	<20	15	1.7	99.56	61	2	13.3
926527	Rock		2.76	0.6	59.29	19.94	4.62	3.25	2.52	8.41	0.30	0.70	0.09	0.02	0.008	<20	15	0.7	99.83	59	2	9.5
926528	Rock		1.29	<0.5	57.36	15.16	7.87	4.69	5.79	3.78	3.18	0.79	0.24	0.13	0.027	<20	21	0.6	99.66	900	1	24.8
926529	Rock		0.32	N.A.	51.40	12.96	6.54	5.06	17.95	1.92	0.12	0.43	0.28	0.41	0.009	30	26	2.4	99.46	75	5	9.6
926530	Rock		5.59	N.A.	63.53	16.06	1.97	2.84	6.71	6.09	1.08	0.62	0.24	0.06	0.009	<20	14	0.5	99.72	449	5	2.0

www.acmelab.com

1

Acmelabs Acme Analytical Laboratories Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

None Given August 29, 2008

www.acmelab.com

Page:

2 of 3 Part 2

VAN08007559.1

CERTIFICATE OF ANALYSIS

	Method	4A&4B																			
	Analyte	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu
	Unit	ppm																			
	MDL	0.1	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02
926501 Rock		2.7	17.0	5.8	56.8	90.4	2	794.4	0.7	25.4	1.8	130	<0.5	218.4	24.6	56.0	120.9	15.11	56.6	9.09	2.28
926502 Rock		2.5	22.0	2.7	17.4	58.9	2	643.1	2.1	13.1	3.3	21	0.6	79.2	15.0	32.3	63.9	6.90	22.3	3.24	0.93
926503 Rock		3.1	20.8	8.4	11.3	116.3	2	642.6	0.5	7.9	2.1	68	0.7	335.5	19.6	31.5	69.4	8.96	35.9	6.08	2.07
926504 Rock		1.1	58.2	5.4	12.7	34.2	7	1213	0.4	5.2	2.8	294	5.9	223.3	22.0	40.6	68.1	7.13	24.1	3.20	1.42
926505 Rock		1.1	17.1	5.5	14.7	68.5	2	293.4	1.0	22.4	3.4	103	0.5	172.0	23.3	30.4	62.6	8.02	33.5	6.56	1.67
926506 Rock		0.6	42.3	3.9	10.7	11.2	4	1729	0.8	40.6	5.2	191	1.3	124.1	24.4	37.0	73.9	8.65	33.2	5.96	1.50
926507 Rock		0.7	37.5	6.3	25.8	17.9	5	818.6	2.2	29.7	6.1	151	1.0	206.0	36.1	61.8	132.4	15.19	56.5	9.39	1.92
926508 Rock		0.9	17.2	8.3	18.0	10.5	2	1986	1.1	19.0	2.6	35	12.7	278.7	11.8	53.4	108.9	12.72	46.3	5.81	0.98
926509 Rock		0.6	40.9	5.8	13.6	8.6	2	1514	0.8	18.1	4.0	152	1.4	201.8	22.1	62.4	115.6	13.49	48.6	7.47	1.68
926510 Rock		1.1	43.1	2.7	5.2	7.6	3	373.0	0.6	9.6	2.7	241	<0.5	85.9	19.0	33.2	71.9	7.57	27.6	4.80	1.17
926511 Rock		0.9	29.9	3.2	11.8	11.2	3	56.4	0.8	16.8	2.1	166	1.3	104.3	16.4	18.7	41.7	4.68	17.4	3.30	0.85
926512 Rock		4.8	21.8	4.9	12.0	40.9	1	263.3	1.2	25.5	5.2	68	1.1	166.5	17.6	38.8	77.9	9.83	36.0	5.98	1.09
926513 Rock		0.9	20.6	4.4	9.5	80.8	2	631.7	0.9	20.6	3.6	<8	<0.5	176.3	8.0	59.6	102.4	10.84	31.7	4.23	0.85
926514 Rock		1.4	16.4	2.5	29.8	134.8	3	702.8	2.0	16.5	3.7	13	<0.5	71.7	22.3	141.5	239.2	26.84	87.2	10.76	2.52
926515 Rock		1.1	16.8	5.1	17.0	94.2	2	540.1	1.1	20.4	4.6	19	<0.5	166.4	10.2	38.8	66.2	7.70	24.8	3.48	0.85
926516 Rock		0.3	21.5	4.3	42.4	9.9	2	741.0	2.7	3.8	1.7	98	3.1	152.4	29.2	37.7	82.5	11.14	48.6	9.17	3.25
926517 Rock		1.3	29.6	8.3	95.8	18.8	6	1355	3.4	13.1	5.5	81	<0.5	234.7	24.3	51.7	100.4	12.17	49.2	8.12	2.25
926518 Rock		1.0	14.0	0.9	2.1	110.5	<1	528.7	0.2	3.2	0.8	12	<0.5	40.5	1.0	4.9	7.6	0.89	3.0	0.50	0.30
926519 Rock		0.4	20.0	7.3	34.7	57.2	4	663.7	2.6	42.6	6.4	48	<0.5	232.7	34.8	184.9	425.8	47.14	162.5	17.15	2.91
926520 Rock		0.8	19.0	5.0	117.9	127.7	9	3726	1.4	9.7	2.0	112	<0.5	191.8	18.0	474.6	671.7	68.01	203.2	20.09	4.46
926521 Rock		0.3	20.7	1.9	63.2	43.3	3	1636	0.7	2.4	0.3	96	<0.5	65.2	8.7	160.5	241.1	23.09	76.0	7.29	1.70
926522 Rock		1.3	19.3	1.6	18.2	138.7	1	496.2	1.3	24.2	4.4	40	<0.5	53.2	13.4	76.8	130.5	12.13	36.4	4.40	1.08
926523 Rock		0.4	20.1	0.4	40.1	14.5	3	1046	6.0	1.2	1.9	29	<0.5	16.0	36.8	7.7	24.9	4.28	21.1	5.92	1.60
926524 Rock		1.5	18.6	8.0	15.0	139.8	1	765.2	0.6	54.0	5.7	28	<0.5	362.4	13.3	213.1	317.4	28.48	87.8	8.50	1.58
926525 Rock		2.6	15.6	1.9	21.1	28.2	3	436.3	2.3	9.6	10.2	196	2.4	50.1	40.8	14.2	38.7	5.55	23.1	4.97	1.62
926526 Rock		1.3	49.4	6.0	12.3	17.8	3	2019	0.9	12.3	4.3	201	4.7	207.3	25.4	51.5	103.4	12.22	44.5	6.77	1.65
926527 Rock		0.6	18.3	5.3	13.1	9.3	<1	242.2	1.3	21.3	3.5	68	<0.5	183.1	4.3	76.3	160.3	17.79	62.6	7.34	1.74
926528 Rock		0.9	17.9	4.4	9.4	84.7	2	316.0	0.6	9.6	1.8	142	<0.5	165.2	20.7	38.4	79.3	9.61	35.7	6.10	1.37
926529 Rock		1.4	26.6	4.0	20.5	10.4	24	578.7	0.7	30.4	5.1	181	600.5	140.2	174.3	258.7	602.7	83.98	324.0	56.77	13.29
926530 Rock		0.4	16.5	8.2	14.9	27.1	2	741.5	0.8	18.0	3.1	86	<0.5	306.5	22.1	47.0	103.1	12.64	48.7	7.71	1.78

Acme Laboratories Ltd.

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

Page:

None Given August 29, 2008

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

FICATE OF ANALYSIS

CERT

www.acmelab.com

2 of 3 Part 3

VAN08007559

		-										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									
	Metho	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B2	A LECO2	A LECO	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyt	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag
	Uni	t ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MD	. 0.05	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1
926501 F	lock	7.59	0.92	4.88	0.86	2.44	0.37	2.22	0.34	0.10	<0.02	0.4	17.3	5.9	67	21.6	3.2	<0.1	<0.1	<0.1	<0.1
926502 F	lock	2.89	0.45	2.43	0.51	1.43	0.22	1.41	0.21	0.11	<0.02	1.6	5.6	263.3	284	2.9	0.6	2.1	<0.1	3.5	0.7
926503 F	lock	5.13	0.70	3.58	0.72	1.95	0.29	1.94	0.28	0.04	<0.02	0.6	3.3	2.6	48	5.6	0.7	<0.1	<0.1	<0.1	<0.1
926504 F	lock	2.98	0.42	2.55	0.67	2.62	0.51	3.89	0.68	0.21	<0.02	0.8	61.2	15.9	146	10.8	1.4	0.1	<0.1	0.4	<0.1
926505 F	lock	5.66	0.83	4.35	0.84	2.27	0.36	2.37	0.35	0.02	<0.02	0.3	1.7	1.6	32	8.5	0.6	<0.1	<0.1	<0.1	<0.1
926506 F	lock	5.40	0.79	4.32	0.84	2.32	0.36	2.19	0.33	0.05	<0.02	0.3	11.9	6.6	15	4.1	0.6	<0.1	<0.1	0.3	<0.1
926507 F	lock	8.30	1.19	6.31	1.18	3.18	0.52	3.30	0.49	0.07	<0.02	0.2	4.7	4.5	25	18.2	0.8	<0.1	<0.1	0.1	<0.1
926508 F	lock	4.68	0.50	2.45	0.43	1.13	0.17	1.09	0.16	0.10	<0.02	0.2	0.9	3.6	6	1.5	<0.5	<0.1	<0.1	<0.1	<0.1
926509 F	lock	6.17	0.79	4.09	0.78	2.00	0.34	2.11	0.32	0.13	<0.02	0.3	8.8	5.3	23	3.9	<0.5	<0.1	<0.1	0.1	<0.1
926510 F	lock	4.14	0.62	3.09	0.59	1.68	0.27	1.63	0.26	0.03	<0.02	0.5	1.3	3.9	12	18.7	0.8	<0.1	<0.1	0.2	<0.1
926511 F	lock	3.18	0.51	2.98	0.55	1.61	0.24	1.54	0.24	0.17	0.44	3.3	356.0	7.6	75	8.0	2.8	<0.1	0.1	0.9	4.9
926512 F	lock	4.86	0.64	3.36	0.67	1.91	0.31	1.88	0.28	<0.02	0.04	0.3	22.4	4.7	34	9.8	0.6	<0.1	<0.1	<0.1	<0.1
926513 F	lock	3.39	0.38	1.64	0.29	0.82	0.13	0.78	0.12	0.03	<0.02	0.4	1.8	4.8	10	1.3	<0.5	<0.1	<0.1	<0.1	<0.1
926514 F	lock	9.28	1.02	5.10	0.89	2.24	0.35	2.09	0.27	0.03	<0.02	0.4	5.0	4.4	9	1.4	<0.5	<0.1	<0.1	<0.1	<0.1
926515 F	lock	2.87	0.36	1.80	0.32	1.01	0.17	1.10	0.16	0.05	<0.02	0.7	4.8	4.2	14	3.6	<0.5	<0.1	<0.1	<0.1	<0.1
926516 F	lock	8.56	1.22	5.78	1.00	2.65	0.37	2.09	0.31	0.04	<0.02	0.5	6.2	1.9	29	2.6	<0.5	<0.1	<0.1	<0.1	<0.1
926517 F	lock	6.73	1.00	4.39	0.88	2.30	0.35	2.28	0.31	0.09	0.02	4.6	242.1	4.9	107	3.9	0.7	0.7	<0.1	0.1	0.5
926518 F	lock	0.31	0.05	0.22	0.06	0.06	0.03	0.14	0.03	0.09	0.03	0.5	1.4	2.6	6	3.4	<0.5	<0.1	<0.1	<0.1	<0.1
926519 F	lock	10.44	1.33	6.63	1.23	3.20	0.52	2.70	0.40	0.03	<0.02	4.8	64.4	3.1	17	5.4	<0.5	<0.1	<0.1	<0.1	<0.1
926520 F	lock	15.06	1.14	4.30	0.57	1.37	0.20	1.31	0.19	0.04	<0.02	0.8	35.5	8.4	11	2.1	<0.5	<0.1	<0.1	0.1	<0.1
926521 F	lock	4.46	0.44	1.86	0.29	0.70	0.10	0.57	0.11	<0.02	<0.02	0.5	9.3	11.9	14	16.8	<0.5	<0.1	<0.1	<0.1	<0.1
926522 F	lock	3.19	0.50	2.39	0.48	1.25	0.19	1.15	0.15	0.05	<0.02	1.0	19.9	2.9	8	3.4	<0.5	<0.1	<0.1	<0.1	<0.1
926523 F	lock	5.87	1.18	6.78	1.41	3.45	0.53	2.56	0.31	0.10	<0.02	0.5	2.6	3.5	9	1.3	<0.5	<0.1	<0.1	<0.1	<0.1
926524 F	lock	5.35	0.60	2.74	0.43	1.23	0.19	1.17	0.18	<0.02	<0.02	0.4	2.5	2.7	31	2.7	<0.5	<0.1	<0.1	<0.1	<0.1
926525 F	lock	5.18	1.02	6.12	1.30	4.05	0.68	4.28	0.68	0.28	<0.02	0.6	80.5	2.8	19	8.9	<0.5	0.1	<0.1	0.1	<0.1
926526 F	lock	5.56	0.76	3.86	0.79	2.32	0.38	2.26	0.35	0.04	0.02	0.2	2.1	9.5	20	5.3	<0.5	<0.1	<0.1	0.3	<0.1
926527 F	lock	3.04	0.30	0.97	0.18	0.37	0.10	0.59	0.09	0.03	0.03	0.3	4.9	1.2	13	4.7	<0.5	<0.1	<0.1	<0.1	<0.1
926528 F	lock	4.94	0.73	3.66	0.69	2.02	0.34	1.99	0.29	<0.02	<0.02	0.6	42.1	1.2	34	9.4	<0.5	<0.1	<0.1	<0.1	<0.1
926529 F	lock	49.83	6.31	29.94	5.50	14.37	2.16	13.34	2.09	0.38	<0.02	5.3	11.4	44.2	45	3.6	1.1	0.4	<0.1	0.8	0.2
926530 F	lock	5.61	0.77	3.81	0.75	2.00	0.32	2.15	0.31	<0.02	<0.02	0.6	1.8	2.2	5	3.8	<0.5	<0.1	<0.1	<0.1	<0.1

Client:

Paget Resources Corp. 1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project:	
Report Date:	

None Given August 29, 2008

Page:

www.acmelab.com

2 of 3 Part 4

VAN08007559.1

CERTIFICATE OF ANALYSIS

	Method	1DX	1DX	1DX	1DX
	Analyte	Au	Hg	TI	Se
	Unit	ppb	ppm	ppm	ppm
	MDL	0.5	0.01	0.1	0.5
926501	Rock	1.4	<0.01	0.4	<0.5
926502	Rock	1.3	<0.01	<0.1	<0.5
926503	Rock	1.1	<0.01	0.3	<0.5
926504	Rock	0.8	<0.01	<0.1	<0.5
926505	Ŕock	1.0	<0.01	0.1	<0.5
926506	Rock	<0.5	<0.01	<0.1	<0.5
926507	Rock	<0.5	<0.01	<0.1	<0.5
926508	Rock	<0.5	<0.01	<0.1	<0.5
926509	Rock	<0.5	<0.01	<0.1	<0.5
926510	Rock	1.6	<0.01	<0.1	<0.5
926511	Rock	2.0	<0.01	0.1	2.4
926512	Rock	0.5	<0.01	0.4	<0.5
926513	Rock	2.4	<0.01	<0.1	<0.5
926514	Rock	2.0	<0.01	<0.1	<0.5
926515	Rock	0.9	<0.01	<0.1	<0.5
926516	Rock	1.2	<0.01	<0.1	<0.5
926517	Rock	3.4	<0.01	<0.1	<0.5
926518	Rock	1.9	<0.01	<0.1	<0.5
926519	Rock	2.4	<0.01	<0.1	<0.5
926520	Rock	4.0	<0.01	<0.1	<0.5
926521	Rock	3.5	<0.01	<0.1	<0.5
926522	Rock	1.1	<0.01	<0.1	<0.5
926523	Rock	2.8	<0.01	<0.1	<0.5
926524	Rock	<0.5	<0.01	0.2	<0.5
926525	Rock	0.7	<0.01	<0.1	<0.5
926526	Rock	1.1	<0.01	<0.1	<0.5
926527	Rock	<0.5	<0.01	<0.1	<0.5
926528	Rock	<0.5	<0.01	0.1	<0.5
926529	Rock	0.5	0.06	<0.1	<0.5
926530	Rock	<0.5	<0.01	<0.1	<0.5

Acmelabs Acme ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

Client:

Page:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Part 1

Project:

Report Date:

None Given August 29, 2008

www.acmelab.com

3 of 3

VAN08007559.

				A State of the second							6.6											Contraction of the
		Method	WGHT	3A	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4E										
		Analyte	Wgt	Au	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ва	Be	Co
		Unit	kg	ppb	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm
		MDL	0.01	0.5	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2
926531	Rock		6.14	N.A.	63.69	15.95	1.96	2.68	6.83	6.15	0.87	0.62	0.28	0.06	0.009	<20	14	0.6	99.74	400	4	2.0
926532	Rock		1.29	N.A.	64.14	16.78	4.07	1.41	4.23	5.57	2.31	0.53	0.14	0.04	0.003	<20	9	0.5	99.72	1206	4	7.9
926533	Rock		1.00	N.A.	74.54	13.61	0.94	0.12	0.88	3.68	5.53	0.08	0.05	0.04	0.002	<20	6	0.5	99.97	450	4	0.9
926535	Rock		5.41	N.A.	70.86	15.05	1.62	0.38	1.09	2.90	6.54	0.22	0.04	<0.01	< 0.002	<20	<1	0.6	99.31	4877	1	1.1
926536	Rock		0.70	N.A.	73.92	13.69	1.52	0.16	1.04	3.86	5.16	0.09	0.02	0.03	<0.002	<20	4	0.4	99.89	582	4	1.0
926537	Rock		1.78	N.A.	50.46	19.08	8.88	1.75	8.10	4.45	1.83	1.17	0.70	0.08	0.017	44	21	3.1	99.61	894	<1	26.1
926538	Rock		2.28	N.A.	43.91	9.11	15.15	2.58	23.31	0.06	0.03	0.69	0.29	2.85	0.009	<20	11	1.8	99.75	15	1	24.9

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Part 2

VAN08007559.1

Project: Report Date:

Page:

None Given August 29, 2008

3 of 3

www.acmelab.com

CERTIFICATE OF ANALYSIS

Phone (604) 253-3158 Fax (604) 253-1716

		Method	4A&4B																			
		Analyte	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu
		Unit	ppm																			
		MDL	0.1	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02
926531	Rock		0.3	16.5	8.5	17.3	20.8	2	731.9	0.6	16.5	3.0	81	<0.5	306.5	24.3	44.9	105.3	12.64	50.9	8.10	2.07
926532	Rock		0.6	20.9	5.8	11.3	59.4	2	885.7	0.6	13.7	3.5	52	<0.5	219.7	19.3	44.0	92.7	10.67	41.3	5.94	1.28
926533	Rock		13.2	20.0	1.8	27.4	266.1	3	88.3	2.2	14.5	4.0	31	2.7	43.6	19.3	19.3	34.2	4.08	13.1	3.38	0.19
926535	Rock		3.2	15.1	1.2	10.4	219.0	<1	495.5	0.8	41.6	3.3	<8	<0.5	33.4	6.6	93.7	167.7	19.68	68.8	9.09	1.64
926536	Rock		15.0	19.0	2.5	29.6	268.9	4	111.1	3.9	15.2	4.8	<8	0.9	50.4	24.8	20.7	37.2	4.26	14.9	3.45	0.26
926537	Rock		0.8	18.3	3.0	7.2	30.5	<1	750.4	0.4	3.8	0.7	390	1.1	105.4	22.4	17.3	36.6	4.86	19.9	4.23	1.35
926538	Rock		0.2	15.4	4.1	24.5	1.6	4	581.4	1.3	5.5	1.8	73	1.0	164.9	20.7	32.2	66.4	8.07	30.3	5.21	1.22

Acme Laboratories Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

Page:

None Given August 29, 2008

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

3 of 3 Part 3

VAN08007559.1

CERTIFICATE OF AN	JALY	′SIS						
Method	4A&4B	4A						
Analyte	Gd	Tb	Dy	Но	Er	Tm	Yb	
	6							

		Method	4A&4B	4A&4B2/	A LECO	A LECO	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX						
		Analyte	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag
		Unit	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm							
		MDL	0.05	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1
926531	Rock		6.01	0.85	4.74	0.87	2.16	0.36	2.12	0.31	<0.02	<0.02	0.3	1.3	2.4	5	2.5	<0.5	<0.1	<0.1	<0.1	<0.1
926532	Rock		4.30	0.63	3.51	0.60	1.75	0.28	1.81	0.26	<0.02	0.02	0.7	53.7	1.6	12	4.1	<0.5	<0.1	<0.1	0.1	<0.1
926533	Rock		3.14	0.58	3.29	0.67	1.88	0.28	1.83	0.25	0.05	<0.02	0.3	3.4	4.0	14	5.6	2.9	<0.1	0.2	0.6	<0.1
926535	Rock		6.27	0.54	1.77	0.18	0.33	0.06	0.32	0.04	<0.02	<0.02	0.3	1.1	5.2	23	1.4	<0.5	<0.1	<0.1	<0.1	<0.1
926536	Rock		3.68	0.70	4.08	0.74	2.23	0.36	2.26	0.34	0.03	<0.02	0.9	17.9	4.4	9	13.0	3.1	<0.1	0.4	0.2	<0.1
926537	Rock		4.24	0.70	3.83	0.79	2.24	0.35	2.15	0.33	0.09	1.62	0.4	392.0	1.5	14	56.5	1.6	<0.1	<0.1	0.2	<0.1
926538	Rock		4.64	0.70	3.73	0.71	1.98	0.33	1.81	0.29	0.22	0.02	1.2	33.5	6.2	101	7.5	<0.5	0.5	0.1	1.5	0.1

Client:

Paget Resources Corp. 1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project:	
Report Date:	

None Given August 29, 2008

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

3 of 3 Part 4

CERTIFICATE OF ANALYSIS

		Method	1DX	1DX	1DX	1DX
		Analyte	Au	Hg	TI	Se
		Unit	ppb	ppm	ppm	ppm
		MDL	0.5	0.01	0.1	0.5
926531	Rock		<0.5	<0.01	<0.1	<0.5
926532	Rock		<0.5	<0.01	<0.1	<0.5
926533	Rock		2.2	<0.01	<0.1	<0.5
926535	Rock		<0.5	<0.01	<0.1	<0.5
926536	Rock		1.3	<0.01	<0.1	<0.5
926537	Rock		2.8	<0.01	<0.1	<0.5
926538	Rock		1.3	<0.01	<0.1	<0.5

VAN08007559.1

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Part 1

Project: Report Date:

Page:

None Given August 29, 2008

Phone (604) 253-3158 Fax (604) 253-1716

QUALITY CONTROL REPORT

www.acmelab.com

1 of 2

VAN08007559.1

	Method	WGHT	3A	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B										
	Analyte	Wgt	Au	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ba	Be	Co
	Unit	kg	ppb	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm
	MDL	0.01	0.5	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2
926514	Rock	1.98	N.A.	69.46	14.84	1.91	0.56	2.32	3.72	5.96	0.20	0.07	0.05	<0.002	<20	10	0.4	99.51	2908	3	2.4
Pulp Duplicates																					
926501	Rock	0.97	N.A.	57.59	15.67	6.75	3.89	5.32	6.25	2.39	0.71	0.35	0.15	0.012	<20	19	0.4	99.47	2289	5	18.4
REP 926501	QC			57.43	15.70	6.74	3.92	5.33	6.33	2.42	0.72	0.35	0.15	0.013	<20	19	0.4	99.48	2302	4	18.8
926509	Rock	1.80	<0.5	44.32	21.96	11.56	1.92	12.99	3.23	0.22	0.89	0.26	0.08	0.008	<20	17	2.3	99.70	81	1	8.4
REP 926509	QC																				
926522	Rock	1.24	N.A.	70.58	13.83	2.81	0.58	2.01	3.31	5.49	0.29	0.06	0.04	< 0.002	<20	6	0.6	99.61	2245	2	3.8
REP 926522	QC			70.50	13.82	2.69	0.55	2.07	3.35	5.63	0.30	0.06	0.03	<0.002	<20	7	0.6	99.61	2216	2	3.7
926527	Rock	2.76	0.6	59.29	19.94	4.62	3.25	2.52	8.41	0.30	0.70	0.09	0.02	0.008	<20	15	0.7	99.83	59	2	9.5
REP 926527	QC																				
Reference Materials																					
STD CSC	Standard																				
STD CSC	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD OREAS76A	Standard																				
STD OREAS76A	Standard																				
STD OXD57	Standard		345.0																		
STD OXD57	Standard		350.1																		
STD SO-18	Standard			58.05	14.13	7.62	3.32	6.38	3.70	2.15	0.69	0.82	0.39	0.548	37	24	1.9	99.70	501	<1	27.3
STD SO-18	Standard			58.06	14.13	7.63	3.32	6.38	3.70	2.15	0.69	0.83	0.39	0.548	37	25	1.9	99.73	505	<1	28.5
STD SO-18	Standard			58.11	14.11	7.61	3.33	6.39	3.69	2.14	0.69	0.82	0.39	0.547	47	24	1.9	99.73	497	<1	26.6
STD SO-18	Standard			58.09	14.10	7.60	3.33	6.39	3.69	2.15	0.69	0.82	0.39	0.548	39	26	1.9	99.72	499	<1	26.3
STD SO-18	Standard			58.07	14.15	7.62	3.32	6.40	3.69	2.14	0.69	0.82	0.39	0.549	35	25	1.9	99.74	519	<1	27.3
STD SO-18	Standard			58.07	14.13	7.62	3.33	6.39	3.71	2.15	0.69	0.83	0.39	0.550	39	26	1.9	99.76	510	<1	27.3
STD SO-18	Standard			58.10	14.13	7.61	3.33	6.37	3.70	2.15	0.69	0.83	0.39	0.549	39	26	1.9	99.76	507	<1	26.7
STD SO-18	Standard			58.09	14.13	7.61	3.33	6.37	3.70	2.15	0.69	0.82	0.39	0.548	52	26	1.9	99.74	497	<1	26.1

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

QUALITY CONTROL REPORT

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

None Given August 29, 2008

www.acmelab.com

Page:

1 of 2 Part 2

VAN08007559.1

	Method	4A&4B	4A&4B	4A&4B																	
	Analyte	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu
	Unit	ppm	ppm	ppm																	
	MDL	0.1	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02
926514	Rock	1.4	16.4	2.5	29.8	134.8	3	702.8	2.0	16.5	3.7	13	<0.5	71.7	22.3	141.5	239.2	26.84	87.2	10.76	2.52
Pulp Duplicates																					
926501	Rock	2.7	17.0	5.8	56.8	90.4	2	794.4	0.7	25.4	1.8	130	<0.5	218.4	24.6	56.0	120.9	15.11	56.6	9.09	2.28
REP 926501	QC	2.7	18.4	5.9	56.8	93.9	2	826.1	0.6	30.8	2.1	134	<0.5	224.0	24.9	56.5	123.5	15.32	59.1	9.19	2.31
926509	Rock	0.6	40.9	5.8	13.6	8.6	2	1514	0.8	18.1	4.0	152	1.4	201.8	22.1	62.4	115.6	13.49	48.6	7.47	1.68
REP 926509	QC																				
926522	Rock	1.3	19.3	1.6	18.2	138.7	1	496.2	1.3	24.2	4.4	40	<0.5	53.2	13.4	76.8	130.5	12.13	36.4	4.40	1.08
REP 926522	QC	1.4	18.5	1.8	18.6	139.9	2	488.5	1.3	26.0	3.7	34	<0.5	53.7	13.5	77.4	134.0	12.17	39.3	4.21	1.10
926527	Rock	0.6	18.3	5.3	13.1	9.3	<1	242.2	1.3	21.3	3.5	68	<0.5	183.1	4.3	76.3	160.3	17.79	62.6	7.34	1.74
REP 926527	QC																				
Reference Materials																					
STD CSC	Standard																				
STD CSC	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																		- 142 February 1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		
STD DS7	Standard																				
STD OREAS76A	Standard																				
STD OREAS76A	Standard																				
STD OXD57	Standard															A					
STD OXD57	Standard																				
STD SO-18	Standard	7.0	17.2	9.6	21.0	28.6	15	407.1	7.1	10.0	16.5	206	14.8	280.9	32.3	12.1	26.2	3.42	13.8	2.88	0.87
STD SO-18	Standard	7.0	17.8	9.8	21.8	29.4	15	417.1	7.3	10.1	16.7	210	16.1	290.4	33.1	12.2	26.5	3.43	13.9	2.97	0.90
STD SO-18	Standard	6.7	17.2	9.6	20.8	27.8	15	400.8	7.2	10.0	16.5	201	14.7	279.9	30.9	11.7	25.8	3.38	13.8	2.86	0.86
STD SO-18	Standard	6.7	17.5	9.7	20.9	28.1	15	402.6	7.2	10.0	16.5	201	15.0	282.0	31.0	11.9	26.1	3.39	13.7	2.87	0.86
STD SO-18	Standard	7.0	17.9	9.9	22.0	28.8	16	419.2	7.3	10.3	16.4	212	14.4	296.5	31.8	12.4	26.8	3.43	13.9	2.96	0.89
STD SO-18	Standard	7.1	17.8	10.0	22.0	28.7	15	414.7	7.2	9.8	16.3	206	14.7	294.5	31.7	12.1	26.5	3.41	13.8	2.91	0.88
STD SO-18	Standard	6.9	17.4	9.7	21.5	28.4	15	405.4	7.3	10.3	16.3	204	14.9	289.4	31.4	12.0	26.5	3.40	13.9	2.87	0.86
STD SO-18	Standard	6.8	17.3	9.5	21.1	27.8	15	399.3	7.1	9.7	15.9	197	14.4	283.0	31.0	11.7	26.0	3.38	13.8	2.89	0.86

Acmelabs Acmelabs 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

VIANIOGOGZEEG A

Project: Report Date:

Page:

ate:

None Given August 29, 2008

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

OUNLIEV CONTROL DEDOD

www.acmelab.com

1 of 2 Part 3

QUALITIO	JNIKUL	NEF														VAI	NUO	JU73))))))		
	Method	4A&4B	4A&4B2/	A LECOZ	A LECO	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX						
	Analyte	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag
	Unit	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm							
	MDL	0.05	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1
926514	Rock	9.28	1.02	5.10	0.89	2.24	0.35	2.09	0.27	0.03	<0.02	0.4	5.0	4.4	9	1.4	<0.5	<0.1	<0.1	<0.1	<0.1
Pulp Duplicates																					
926501	Rock	7.59	0.92	4.88	0.86	2.44	0.37	2.22	0.34	0.10	<0.02	0.4	17.3	5.9	67	21.6	3.2	<0.1	<0.1	<0.1	<0.1
REP 926501	QC	7.54	0.94	4.82	0.90	2.38	0.38	2.27	0.33			0.6	15.9	6.2	69	23.2	2.7	<0.1	<0.1	0.1	<0.1
926509	Rock	6.17	0.79	4.09	0.78	2.00	0.34	2.11	0.32	0.13	<0.02	0.3	8.8	5.3	23	3.9	<0.5	<0.1	<0.1	0.1	<0.1
REP 926509	QC									0.12	<0.02										
926522	Rock	3.19	0.50	2.39	0.48	1.25	0.19	1.15	0.15	0.05	<0.02	1.0	19.9	2.9	8	3.4	<0.5	<0.1	<0.1	<0.1	<0.1
REP 926522	QC	3.16	0.48	2.51	0.51	1.15	0.21	1.13	0.15												
926527	Rock	3.04	0.30	0.97	0.18	0.37	0.10	0.59	0.09	0.03	0.03	0.3	4.9	1.2	13	4.7	<0.5	<0.1	<0.1	<0.1	<0.1
REP 926527	QC											0.3	4.6	1.3	13	4.8	<0.5	<0.1	<0.1	<0.1	<0.1
Reference Materials																					
STD CSC	Standard									3.09	4.19				****						
STD CSC	Standard									3.10	4.21										
STD DS7	Standard											21.0	111.0	71.0	410	57.7	49.5	6.0	4.9	4.3	0.9
STD DS7	Standard											22.2	118.0	70.2	418	58.1	50.4	5.9	4.9	4.3	1.0
STD DS7	Standard											18.3	96.8	77.7	357	49.6	48.9	5.8	4.8	4.8	0.8
STD DS7	Standard											19.4	98.6	72.3	382	50.5	48.8	5.3	4.5	4.6	0.7
STD OREAS76A	Standard									0.16	16.56										
STD OREAS76A	Standard									0.16	16.39										
STD OXD57	Standard																				
STD OXD57	Standard																				
STD SO-18	Standard	2.98	0.51	2.96	0.62	1.79	0.28	1.76	0.27												
STD SO-18	Standard	3.05	0.52	3.03	0.63	1.83	0.28	1.79	0.28												
STD SO-18	Standard	2.94	0.50	2.91	0.60	1.76	0.28	1.73	0.26												
STD SO-18	Standard	2.98	0.50	2.91	0.61	1.81	0.28	1.76	0.26												
STD SO-18	Standard	3.00	0.51	3.00	0.61	1.82	0.28	1.78	0.27			*****									l
STD SO-18	Standard	2.95	0.51	2.93	0.63	1.82	0.29	1.80	0.27												
STD SO-18	Standard	2.92	0.50	2.92	0.61	1.78	0.28	1.75	0.26												
STD SO-18	Standard	2.87	0.50	2.92	0.60	1.74	0.28	1.72	0.26												

1160 - 1040 West Georgia Street
Vancouver BC V6E 4H1 Canada

Project:
Report Date:

Client:

None Given August 29, 2008

Page:

www.acmelab.com

1 of 2 Part 4

Paget Resources Corp.

QUALITY CONTROL REPORT

	Method	1DX	1DX	1DX	1DX
	Analyte	Au	Hg	TI	Se
	Unit	ppb	ppm	ppm	ppm
	MDL	0.5	0.01	0.1	0.5
926514	Rock	2.0	<0.01	<0.1	<0.5
Pulp Duplicates					
926501	Rock	1.4	<0.01	0.4	<0.5
REP 926501	QC	<0.5	<0.01	0.4	<0.5
926509	Rock	<0.5	<0.01	<0.1	<0.5
REP 926509	QC				
926522	Rock	1.1	<0.01	<0.1	<0.5
REP 926522	QC				
926527	Rock	<0.5	<0.01	<0.1	<0.5
REP 926527	QC	0.6	<0.01	<0.1	<0.5
Reference Materials					
STD CSC	Standard				
STD CSC	Standard				
STD DS7	Standard	64.7	0.22	4.3	3.4
STD DS7	Standard	62.9	0.23	4.2	3.7
STD DS7	Standard	56.0	0.20	4.1	3.4
STD DS7	Standard	47.5	0.18	4.0	3.7
STD OREAS76A	Standard				
STD OREAS76A	Standard				
STD OXD57	Standard				
STD OXD57	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				
STD SO-18	Standard				

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Method	1DX	1DX	1DX	1DX
Analyte	Au	Hg	TI	Se
Unit	ppb	ppm	ppm	ppm
MDL	0.5	0.01	0.1	0.5
Rock	2.0	<0.01	<0.1	<0.5
Rock	1.4	<0.01	0.4	<0.5
QC	<0.5	<0.01	0.4	<0.5
Rock	<0.5	<0.01	<0.1	<0.5
QC				
Rock	1.1	<0.01	<0.1	<0.5
QC				
Rock	<0.5	<0.01	<0.1	<0.5
QC	0.6	<0.01	<0.1	<0.5
	inde ford a first of the first-section instant of the first of the			
Standard				
Standard				

VAN08007559.1

Acmelabs Acmelabs 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

Page:

Date:

None Given August 29, 2008

2 of 2 Part 1

QUALITY CONTROL REPORT

Phone (604) 253-3158 Fax (604) 253-1716

		WGHT	3A	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B									
		Wgt	Au	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ba	Be	Co
		kg	ppb	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm
		0.01	0.5	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2
STD SO-18	Standard			58.08	14.15	7.63	3.34	6.40	3.71	2.15	0.69	0.83	0.39	0.548	42	26	1.9	99.82	500	<1	26.4
STD SO-18	Standard			58.09	14.12	7.63	3.33	6.40	3.69	2.15	0.69	0.83	0.39	0.547	42	27	1.9	99.78	502	<1	26.5
STD OXD57 Expected			367																		
STD DS7 Expected																					
STD CSC Expected																					1.0.01000000000000000000000000000000000
STD OREAS76A Expected																					
STD SO-18 Expected				58.47	14.23	7.67	3.35	6.42	3.71	2.17	0.69	0.83	0.39	0.55	44	25			514		26.2
BLK	Blank		<0.5																		
BLK	Blank																				a fa fainn a daoin fa fainn an airte
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				Control from the Control of Contr
BLK	Blank			<0.01	<0.01	<0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.002	<20	<1	0.0	< 0.01	<1	<1	<0.2
BLK	Blank			<0.01	<0.01	<0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.002	<20	<1	0.0	<0.01	<1	<1	<0.2
BLK	Blank			<0.01	<0.01	<0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.002	<20	<1	0.0	<0.01	<1	<1	<0.2
BLK	Blank			<0.01	<0.01	<0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.002	<20	<1	0.0	<0.01	<1	<1	<0.2
BLK	Blank			<0.01	<0.01	<0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.002	<20	<1	0.0	<0.01	<1	<1	<0.2
Prep Wash																				1991 I. F. Farlanka, fan fan de samer farlande fa	
G1	Prep Blank	<0.01	1.4	67.41	15.40	3.92	1.24	3.66	3.45	3.72	0.40	0.18	0.10	0.004	<20	5	0.3	99.78	950	3	4.9
G1	Prep Blank	<0.01	4.1	66.77	15.62	3.93	1.29	3.69	3.54	3.67	0.42	0.22	0.10	0.003	<20	6	0.5	99.75	941	2	5.3

www.acmelab.com

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

t Date:

None Given August 29, 2008

Page:

2 of 2 Part 2

VAN08007559.1

QUALITY CONTROL REPORT

		4A&4B																			
		Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu
		ppm																			
		0.1	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02
STD SO-18	Standard	6.8	17.2	9.9	21.3	27.6	15	399.9	7.1	9.7	16.0	195	14.5	285.8	31.2	12.0	26.3	3.39	13.9	2.87	0.85
STD SO-18	Standard	6.7	17.6	9.7	21.2	28.0	15	403.2	7.3	9.9	16.1	195	15.0	285.7	30.8	11.8	25.8	3.39	13.7	2.83	0.84
STD OXD57 Expected																					
STD DS7 Expected																					
STD CSC Expected																					
STD OREAS76A Expected																					
STD SO-18 Expected		7.1	17.6	9.8	20.9	28.7	15	407.4	7.4	9.9	16.4	200	15.1	280	33	12.3	27.1	3.45	14	3	0.89
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.1	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02
BLK	Blank	<0.1	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02
BLK	Blank	<0.1	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	1.4	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02
BLK	Blank	<0.1	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02
BLK	Blank	<0.1	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02
Prep Wash																					
G1	Prep Blank	4.7	17.0	4.1	21.2	127.4	2	718.5	1.3	7.2	4.3	49	<0.5	130.7	16.7	23.2	46.1	5.81	22.5	3.67	1.05
G1	Prep Blank	4.8	17.5	3.8	22.2	125.0	1	715.4	1.4	7.9	4.0	52	<0.5	128.1	16.6	30.2	60.7	7.04	25.6	4.06	1.09

www.acmelab.com

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

1973

Client:

Paget Resources Corp.

1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project: Report Date:

August 29, 2008

None Given

Phone (604) 253-3158 Fax (604) 253-1716

Page:

2 of 2 Part 3

QUALITY CONTROL REPORT VAN08007559.1																					
		4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B	4A&4B2	A LECO2	A LECO	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
		Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.05	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1
STD SO-18	Standard	2.89	0.50	2.86	0.59	1.77	0.28	1.72	0.26												
STD SO-18	Standard	2.89	0.50	2.90	0.60	1.77	0.28	1.75	0.26												
STD OXD57 Expected																					
STD DS7 Expected												20.9	109	70.6	411	56	48.2	6.4	5.9	4.5	0.9
STD CSC Expected										3.13	4.19										
STD OREAS76A Expected										0.16	18										
STD SO-18 Expected		2.93	0.53	3	0.62	1.84	0.29	1.79	0.27												
BLK	Blank																				
BLK	Blank											<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
BLK	Blank											<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
BLK	Blank									<0.02	<0.02										
BLK	Blank									<0.02	<0.02										
BLK	Blank	<0.05	<0.01	<0.05	<0.02	<0.03	<0.01	<0.05	<0.01												
BLK	Blank	<0.05	<0.01	<0.05	<0.02	<0.03	<0.01	<0.05	<0.01											9	
BLK	Blank	<0.05	<0.01	<0.05	<0.02	< 0.03	<0.01	<0.05	<0.01												
BLK	Blank	<0.05	<0.01	< 0.05	<0.02	<0.03	<0.01	<0.05	<0.01			******									
BLK	Blank	<0.05	<0.01	< 0.05	<0.02	<0.03	<0.01	<0.05	<0.01		~****										
Prep Wash																					
G1	Prep Blank	3.26	0.48	2.81	0.57	1.66	0.27	1.89	0.30	0.05	<0.02	0.4	3.5	3.1	43	4.9	1.3	<0.1	<0.1	<0.1	<0.1
G1	Prep Blank	3.68	0.51	2.88	0.55	1.64	0.28	1.81	0.30	0.04	<0.02	0.4	4.9	27.7	83	5.0	1.4	0.2	0.3	<0.1	0.1

www.acmelab.com

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Paget Resources Corp. 1160 - 1040 West Georgia Street Vancouver BC V6E 4H1 Canada

Project:
Report Date:

None Given August 29, 2008

2 of 2

Page:

Part 4

VAN08007559.1

QUALITY CONTROL REPORT

		1DX	1DX	1DX	1DX
		Au	Hg	TI	Se
		ppb	ppm	ppm	ppm
		0.5	0.01	0.1	0.5
STD SO-18	Standard				
STD SO-18	Standard				
STD OXD57 Expected					
STD DS7 Expected		70	0.2	4.2	3.5
STD CSC Expected					
STD OREAS76A Expected					
STD SO-18 Expected					
BLK	Blank				
BLK	Blank	<0.5	<0.01	<0.1	<0.5
BLK	Blank	<0.5	<0.01	<0.1	<0.5
BLK	Blank				
BLK	Blank				
BLK	Blank				
BLK	Blank	1			
BLK	Blank				
BLK	Blank				
BLK	Blank				
Prep Wash		T			
G1	Prep Blank	2.5	<0.01	0.3	<0.5
G1	Prep Blank	2.6	<0.01	0.4	<0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

Appendix E Mineralogy Report

Geoscience Laboratories Willet Green Miller Centre 933 Ramsey Lake Road Sudbury, ON P3E 6B5 Phone: (705) 670-5634 FAX: (705) 670 3047

Mineralogy Report

Client Contact: GL Job Number: Test Group: Date: Fred Breaks 08-0258 SEM-101 September 29, 2008

Client Request:

Mineral ID of grains, as indicated.

Client ID: 08-FWB-06-02 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data and X-ray diffraction data were collected from a sub-sample of the grain. The green mineral is identified as a **clinopyroxene**, with a composition that is intermediate between diopside and hedenbergite.

Figure 1: EDS spectra of an uncoated grain, sample # 08-FWB-06-02.

Client ID: 08-FWB-09-01 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data were collected from a sub-sample of the grain. The white mineral is identified as apatite (chlor-apatite).

Figure 2: EDS spectra of an uncoated grain, sample # 08-FWB-09-01.

Client ID: 08-FWB-10-01 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data and X-ray diffraction data were collected from a sub-sample of the grain. The brown mineral is identified as an **amphibole**, from the anthophyllite-gedrite group.

Figure 3: EDS spectra of an uncoated grain, sample # 08-FWB-10-01.

Client ID: 08-FWB-11-01 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data were collected from a sub-sample of the grain. The green mineral is identified as a **clinopyroxene**, with a composition that is intermediate between diopside and hedenbergite.

Figure 4: EDS spectra of an uncoated grain, sample # 08-FWB-11-01.

Client ID: 08-FWB-17-01 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data and X-ray diffraction data were collected from a sub-sample of the grain. The red mineral is identified as an **iron oxide**, likely goethite. A reproducible silica peak was noted in the EDS spectra, possibly part of the mineral structure.

Figure 5: EDS spectra of an uncoated grain, sample # 08-FWB-17-01.

Client ID: 08-FWB-20-01 (LIMS ID 08-0258-0001)

Energy dispersive X-ray data and X-ray diffraction data were collected from a sub-sample of the grain. The orange-brown mineral is identified as **titanite**.

Figure 6: EDS spectra of an uncoated grain, sample # 08-FWB-20-01.

Client ID: 629522-A (LIMS ID 08-0258-0001)

Energy dispersive X-ray data were collected from a sub-sample of the grain. The black mineral is identified as **allanite**.

Figure 7: EDS spectra of an uncoated grain, sample # 629522-A.

Client ID: 629522-B (LIMS ID 08-0258-0001)

Energy dispersive X-ray data were collected from a sub-sample of the grain. The green mineral is identified as a **clinopyroxene**, with a composition that is intermediate between diopside and hedenbergite.

Figure 8: EDS spectra of an uncoated grain, sample # 629522-B.

Analyzed by: John Hechler Geoscience Laboratories Reviewed by: Dave Crabtree Geoscience Laboratories