Assessment Report

BC Geological Survey Assessment Report 30590

Rock and Stream Sediment Geochemistry on the JD Mineral Claims (JD 1-4, 6-9, 13-14, & 19-27 Mineral Claims)

Liard Mining Division, B.C.

104I/05, 104I/06

UTM Zone 09 NAD83 465000E 6462000N

58⁰ 19' North Latitude 129⁰ 35' West Longitude

For

Paget Moly Corp.

By

Tony Barresi

January 2009

Table of Contents

Introduction	3
Location and Access	3
Physiography, Climate and Vegetation	5
Claims and Ownership	5
Exploration History	7
Regional Geological Setting	8
Property Geology	. 10
Mineralization and Alteration	. 10
And Ginger	. 12
Straight-Up	. 13
Work Completed 2008	. 14
Rock Geochemistry	. 14
Joyce	. 14
And Ginger	. 16
Stream Sediment Geochemistry	. 16
Conclusions	. 17
Appendix A Statement of Qualifications	. 19
Appendix B Statement of Costs	. 21
Appendix C Rock Sample Descriptions	. 23
Appendix D Stream Sediment Sample Descriptions	. 36
Appendix E Analytical Certificates	. 39

List of Tables

Table 1: Claim Status Table 2: Historical Exploration on JD Table 3: Significant rock assay results from And Ginger showing Table 4: Significant stream sediment geochemistry

List of Figures

Figure 1 Location Map Figure 2 Claim Location Map Figure 3 Regional Geology Figure 4 Mineralized Zones Figure 5 Rock Sample Locations

Geology and Geochemistry of the JD Mineral Claims

Introduction

The JD property was visited during an extensive field-program based out of Dease Lake, during the months of June and July, 2008. While the scope of the project was broader than the JD, the JD Property was a main focus. A total of 23 person-days were spent on the property, mapping, checking RGS anomalies, prospecting, and evaluating MINFILE occurrences. Sixty-four rock and silt samples were collected for analysis.

The aforementioned work successfully identified historical showings (the Joyce, NUP and Wolf), a new zones of mineralization (the And Ginger zone), and a broad zone of strong alteration (the Straight Up zone).

Location and Access

The JD Property is located 28 Km southeast of Dease Lake in NTS 104I/05 and 104I/06, latitude 58°19'N, longitude 129°34'W (Figure 1). It is 17 Km east of the Stewart Cassiar Highway (BC highway 31), and 32 Km southeast of the airport at Dease Lake (Figure 1). It is within 10 Km of the Kutcho Creek road and within 1 Km of a hunting road – both of these roads currently require all terrene vehicles, or heavy equipment to safely travel. The Kutcho Creek road is currently approved for upgrading which would make it accessible by truck. In 2008, access to the property was via. helicopter based out of the Dease Lake airport.

The property consists of 19 claims totaling 5380.26 hectares (Figure 2). It includes areas with regional geochemical Cu, Mo and Au anomalies and covers three MINFILE showings, the Joyce porphyry Mo, the NUP Cu Mo occurrence, and the Wolf vein related Cu Au.

Physiography, Climate and Vegetation

The JD property straddles the headwaters of Snowdrift Creek on the northern slopes of the Three Sisters Range in the Cassiar Mountains. Elevations range from 1500 to 2000 meters, and topography is characterized by steep mountain slopes and steeply incised drainages separated by broad "U" shaped glacial valleys. There are few trees on the property, and the lower slopes are covered by buckbrush, willow and alder. Climate is typical of interior areas in northern B.C., with long, sometimes severe winters and short summers.

Claims and Ownership

The JD property consists of 19 claims in good standing covering 5380.26 Hectares as indicated on Figure 2. They are owned 100% by Paget Moly Corp., a wholly owned subsidiary of Pembrook Mining Corp. Claims 545775, 545780, 545768, and 545779 are valid until Sept 15, 2008; claim 567874 is valid until Oct 12, 2008; claims 545770, 545767, 545773, 545772, 549769, 545769, and 545774 are valid until Oct 15, 2008, and claims 586371, 586375, 586368, 586380, 586387, 586382, and 586390 are valid until June 16, 2009.

Tenure Number	Owner	Map Number	Good To Date	Status	Area
545775	213190 (100%)	104I	2008/sep/15	GOOD	425.819
545780	213190 (100%)	104I	2008/sep/15	GOOD	102.209
545768	213190 (100%)	104I	2008/sep/15	GOOD	102.158
545779	213190 (100%)	104I	2008/sep/15	GOOD	85.173
567874	213190 (100%)	104I	2008/oct/12	GOOD	84.998
545770	213190 (100%)	104I	2008/oct/15	GOOD	425.709
545767	213190 (100%)	104I	2008/oct/15	GOOD	425.463
545773	213190 (100%)	104I	2008/oct/15	GOOD	255.461
545772	213190 (100%)	104I	2008/oct/15	GOOD	425.712
549769	213190 (100%)	104I	2008/oct/15	GOOD	425.265
545769	213190 (100%)	104I	2008/oct/15	GOOD	425.464
545774	213190 (100%)	104I	2008/oct/15	GOOD	255.46
586371	213190 (100%)	104I	2009/jun/16	GOOD	255.246
586375	213190 (100%)	104I	2009/jun/16	GOOD	425.611
586368	213190 (100%)	104I	2009/jun/16	GOOD	323.549
586380	213190 (100%)	104I	2009/jun/16	GOOD	255.551
586387	213190 (100%)	104I	2009/jun/16	GOOD	255.55
586382	213190 (100%)	104I	2009/jun/16	GOOD	408.832
586390	213190 (100%)	1041	2009/jun/16	GOOD	17.032

Table 1: Claim Status

Exploration History

Exploration in the area of the JD Property took place in the 1970's and 1980's as documented in seven assessment reports available on the B.C. Ministry of Mines ARIS website (<u>http://www.em.gov.bc.ca/cf/aris/</u>). Work completed and documented in these reports is summarized in Table 2.

Table 2: Historical	exploration	work in t	the JD	Property	area	(including	the NUP,	Wolf	and	Joyce
showings).										

Report #	Year Work Done	Company	Work Done
Placer Dome File # 1967-28; 1968-37	1967 -1968	US Smelting, Refining and Mining Corp.	IP, trenching, diamond drilling
4498	1972	El Paso Mining	Mapping, soil sampling
4644	1973	Kennco	IP
4645	1973	Kennco	Soil sampling
4659	1973	Kennco	Airborne magnetics
4660	1973	Kennco	Ground magnetics
10356	1982	Serrana Res / Noranda	Soil sampling
10923	1982	Serrana Res / Noranda	Soil sampling

Early work on the JD property was conducted in 1967 and 1968 by the US Smelting, Refining and Mining Corporation. A variety of geophysical methods, including IP, were used to investigate the extent of Mo mineralization hosted in a biotite porphyritic granite on the Joyce prospect (MINFILE 104I 049). This was followed up by extensive trenching and at least ten diamond drill holes.

Initial exploration of the NUP prospect in the early 1970's by Kennco included soil sampling, IP, and airborne and ground magnetic surveys. Between 1975 and 1976 Utah Mines carried out advanced exploration including drilling several diamond drill holes,

two of which were located within the JD-19 claim (B.K. Bowen, pers. comm., 2007). Between 1977 and 1980 Noranda Mines and Canadian Superior Oil held the property. No assessment work was filed during the period 1975-1980.

In 1981 Serrana Resources began a second wave of exploration by staking the Drift claims, and in 1982 carried out a soil sampling survey.

In the eastern part of the property, El Paso Mining discovered copper mineralization on the north slope of Glacier Mountain in 1972, and carried out a program of mapping and soil sampling on the Wolf prospect (MINFILE 104I 056). No subsequent work has been recorded in this area.

Regional Geological Setting

The JD Property is located in northern Stikine Terrane, which comprises mid-Paleozoic to Middle Jurassic arc volcanic and intrusive rocks (Figure 3). The property is situated within the east to northeast trending Stikine Arch, a positive tectonic element that separates Jurassic sedimentary basins, with the Whitehorse Trough to the north, and the Bowser Basin to the south. The property is underlain by undifferentiated Upper Triassic to Lower Jurassic volcanic rocks which are overlain to the north by Lower Jurassic Takwahoni Formation clastic sedimentary rocks. The Triassic-Jurassic sequence is intruded by Middle to late Jurassic granodiorite of the Snowdrift Creek pluton, which underlies most of the property. The JD property is about 5 kilometers south of the King Salmon Fault, which marks the collisional suture zone between Stikine terrane and the Cache Creek oceanic terrane.

Property Geology

Topographic highs within the JD property are comprised predominately of Upper Triassic Stuhini Group mafic to intermediate flows and pyroclastic rocks. Low-lying valleys, and the lower slopes of mountains are composed mainly of intermediate to felsic granitoids of the Snowdrift Pluton. The Stuhini Group volcanics consist mainly of clinopyroxene and/or plagioclase porphyritic basalt or basaltic andesite flows. Intrusive rocks have a wide range of compositions, including fine to coarse grained granitoids (quartz monzonite to granite) with both equigranular and biotite +/- k-feldspar +/- quartz porphyritic textures. Intrusive bodies of highly magnetic black to dark gray bladed plagioclase-feldspar gabbro locally intrude volcanic rock in the north-east portion of the property. K-feldspar-granite dykes are locally present in the southwestern portion of the property near the contact with a larger body of granodiorite. Alteration is not ubiquitous in intrusive rocks, but where alteration is present it is typically in association with these bodies. The northern and western portions of the property (near the Joyce, Straight-Up, NUP and And Ginger showings- Figure 4), are composed of nearly flat-lying basalt flows, which weather into distinct flat-topped terraces, defining 1 to 10 meter thick beds/flow-units. Bedding is defined in a similar way in the western portion of the property but there the volcanic flows are folded on a sub-kilometer scale with fold axes that plunge gently to the south.

Mineralization and Alteration

Five geographically discrete areas within the JD claims are host to broad zones of alteration and/or mineralization. The most western portion of the property (claim JD19) is part of an extensive series of alteration zones extending at least 8 km to the west, including the T-4, Thorn 75, Tanzill 3, and Tanzilla 1 MINFILE occurrences. The central portion of the JD claim block is host to three previously documented showings, the NUP, Wolf and the Joyce, and two newly discovered areas of mineralization and alteration, the And Ginger, and Straight-Up showings. This report documents work conducted on the Joyce, And Ginger, and Straight-Up showings (Figure 4), the Wolf showing was not visited due to long-lasting snow-pack, and the alteration in JD19 was the subject of exploration in 2007.

Joyce

The Joyce showing consists of variably altered and Mo +/- Cu mineralized porphyritic intrusive rock which occurs on the lower slopes of a broad valley. Documentation of previous exploration on the Joyce property was not publicly available until after the 2008 exploration program, but now two reports are available through BCGS Property File, which document diamond drilling, trenching and geophysics (Placer Dome File # 1967-28; 1968-37).

The Joyce showing is composed of at least three discrete intrusive bodies separated by basaltic-andesite. Each intrusive body is unique and textural and mineralogical variations within the bodies are common. Molybdenum mineralization is found in equigranular sugary textured apalite, and in biotite porphyritic medium grained granite. It is associated with multiple types of alteration, and in particular, with a high density of randomly oriented quartz veins. Mo occurs as up to 12% disseminated and globs of molybdenite within quartz veins, but typically in only trace amounts. Alteration which occurs in association with Mo is variable but the rock weathers to a medium yellow colour and the feldspar is often completely replaced by clay minerals causing the rock to loose competency and to weather into yellow sand or well rounded soft boulders. Patches of pervasive silicification aid in locally maintaining the competency of rock outcrop.

And Ginger

Follow-up work on a RGS Cu anomaly resulted in the discovery of Cu and Ag mineralization previously unreported on the JD claims. Mineralization has been delineated over an 800 X 500 m area which outcrops as cliffs and slopes of a broad ridge separating valleys in the Sisters Range (Figure 4). Mineralization is hosted in a variety of basaltic flows. It occurs as veins and pods which include epidote, chlorite, quartz, calcite, and at least one of the following copper minerals (in order of most to least abundant): bornite, tetrahedrite, chalcopyrite, and chalcosite. Malachite and azurite are common secondary minerals. Mineralization is associated with 1) rhyolite dikes where they have quartz veins; and 2) strong epidote and chlorite replacement (propylitic alteration).

On the middle to lower reaches of the western slope mineralization is mainly related to rhyolite dykes. The dykes range in orientation and size, and occupy less than 1% of outcrop. They are sea-green, semi-translucent, and aphanitic; approximately 1/3 of the rhyolite dykes host quartz veins which occur mainly as open space fillings, with a central gap that contains euhedral crystal terminations and Cu-Ag minerals. Some rhyolite has a network of small veins and veinlets, that occupy up to 10% volume and which contain variable amounts of copper. Some small quartz + Cu veins (less than 1 cm wide) have zones up to 10 cm long where they are entirely bornite. Only bornite and a subsidiary amount of chalcopyrite are present on this portion of the showing

Along the ridge-top and the eastern cliffs there is mineralization associated with quartz veins in rhyolite; however, here there is also mineralization in association with propylitic alteration. The northern portion of the showing is less intensely altered, and calcite veins and pods are more abundant that quartz. In this area mineralization occurs in association with epidote + chlorite + calcite \pm quartz veins and pods. To the south propylitic alteration is more intense and includes zones of complete epidote and chlorite replacement. Here mineralization occurs in quartz veins as well as along the margins of strong epidote alteration. Blebs and veinlets of tetrahedrite and bornite are the main sulfides in these rocks, and occupy up to 2% volume in the zones of mineralization. A field x-ray fluorescence analysis which focused on a bleb of amalgam (but probably also quartz) found 14% Cu and 500 ppm Ag.

Straight-Up

Several prominent gossans were identified on the ridge to the NW of Glacier Lake. The gossanous rock is best exposed where it is deeply incised by first order creeks; however a number of small gossanous outcrops along the ridge and slopes suggest that there may be continuous alteration beneath much of the talus that drapes the slopes. Gossanous rocks only outcrop along the ridge top in low-lying saddles, and the alteration system is capped along the top of the ridge by basalts which only show weak propylitic alteration.

Alteration in the "Straight Up" zone varies based on lithology, and on alteration intensity. Both the northern and southern incised creek outcrops have variable degrees of clay and chlorite alteration. Quartz + pyrite/hematite + chlorite/sericite alteration is pervasive throughout the area of alteration. Outside of the zones of alteration a weak foliation is developed and most of the altered rocks have a pronounced planar fabric which strikes roughly E-W, perpendicular to the ridge-line. The planar fabric is typically defined by the alignment of chlorite or sericite in a schistose fabric, however, in quartz-rich rocks, a gneissic fabric is defined by segregated discrete layers of sericite quartz and hematite. In a few locations alteration included golf-ball sized blobs of kaolinite within the quartzsericite schist. In one location a single outcrop of quartz + andalusite + muscovite + lazulite + sphene was identified. This rock was massive in outcrop with no obvious foliation, however muscovite inclusion trails in andalusite indicate that prior to andalusite growth there was a schistose fabric. Generally alteration is highly variable and outcrops within meters of one another commonly have dramatic variations in the intensity of alteration, development of tectonic fabrics, and mineralogy. Because the locally present unaltered lithologies are relatively homogeneous, it is unlikely that variations in alteration are the results of variations in protolith composition. Determination of protolith(s) is difficult; however, in a few locations there is an increase in alteration intensity from nearly pristine basalts into highly altered rock with complete textural destruction, indicating that at least some protolith is volcanic. However, intrusive rock commonly underlies volcanics in this region, and it is likely that some of the highly altered rock exposed on the middle and lower slopes is of intrusive origin.

Work Completed 2008

The JD property was visited periodically between June 13 and July 11 as part of a multiproperty exploration program based of out Dease lake. The property was visited a total of 23 mandays by the author, geologists John Bradford, Chris Lesley, Abraham Escalentae, and geology students and prospectors John Fleishman, Jason Stadey, Tim Sivak, and Brett Hannigan. The purpose of the project was to evaluate known showings, and to prospect in the region of RGS anomalies; to this end rock and silt geochemical samples were collected, and areas of economic interest were mapped. The program focused on the Joyce, Straight-up, and And Ginger showings, the later two were discovered during this program as a result of following up on RGS and colour anomalies. Some reconnaissance work was also conducted in other portions of the property.

Rock Geochemistry

Rock samples were collected from variably altered and/or mineralized outcrop and float. Data from these selected chip, panel and grab samples can be used to assess the tenor of specific styles and intensities of mineralization, as well as grades over given sample intervals. Samples were collected in plastic sample bags and sealed with plastic zip ties. Sample locations were recorded by GPS. Sample locations are marked with flagging tape and embossed aluminum tags. Samples were bundled in security sealed rice bags and shipped by truck to International Plasma Labs of Richmond B.C.

At the laboratory, the samples were dried, crushed and a 250 gram split pulverized to 90% passing -150 mesh using standard rock preparation procedures. The pulps were then analyzed for Au using a 30 gram fire assay with AA finish and for 30 elements by ICP-AES following a multi-acid digestion. Quality control at the laboratory is maintained by submitting blanks, standards and re-assaying duplicate samples from each analytical batch.

Rock sample descriptions and analytical results are in Appendix C. Sample locations are plotted on Figure 5.

Joyce

Samples from the Joyce showing returned variable Mo concentrations, and generally low but consistently elevated Cu concentrations. Volcanic rock samples have elevated Cu concentrations but no significant amounts of Mo (except sample 152265 which tested a 2 cm quartz vein in basalt with disseminated Mo in the wallrock that yielded 925 ppm Mo). Intrusive rocks, particularly those collected from historic trenches have high concentrations of Mo. The most impressive samples are two 30 meter chip-grab samples (152257 and 152258) and a 2 x 1 meter panel sample 152253, which contain 214, 210, and 501 ppm Mo respectively.

Straight Up

Nine rock samples collected from the Straight Up zone failed to yield significant base or precious metal concentrations. This is not unexpected because they tested highly leached rock with little visible Cu-Pb-Zn mineralization. The best assay is from sample 159261 a quartz vein in basalt talus which had 5% chalcopyrite: it yielded 254 ppm Cu and 137 ppm Zn. Generally Cu is elevated, especially in rocks which are less altered, and which clearly have a mafic volcanic protolith (i.e. 95, 61, 49 and 106, ppm Cu in samples 152956, 159252, 159254, 159255). High Al concentrations, ranging between 2.3% and 10.4% with an arithmetic average of 6.7%, are typical of strong acid alteration systems. Elevated Cu concentrations in less-altered rocks may represent mobilization from the highly leached core of the system to the periphery where metals were precipitated and concentrated.

And Ginger

Results from the And Ginger zone have variable elevated concentrations of Cu and Ag. The most impressive samples are listed in Table 3.

Table 5 Significant assay results if one the And Ginger Zone	Table 3	3 Significant	assay re	sults from	the And	Ginger zone
--	---------	---------------	----------	------------	---------	--------------------

	Ag	Cu
Sample	(ppm)	(ppm)
152274	0.3	830
152276	5.8	3266
152277	68.9	30367
152311	2.1	2147
152312	2.7	3615
152313	18.5	20769
152315	2.3	2455

Stream Sediment Geochemistry

Ten stream silt samples taken in 2008 were tested to determine if anomalous concentrations of precious and/or base metals and/or epithermal tracer elements (i.e. As, Sb, Hg) were present, and to otherwise establish a property scale background concentration for these elements. Samples of sandy silt were taken by hand without sieving from active creek beds and placed in cloth bags. Sample 152251 was collected from a pile of sand and silt which had collected at the base of a trench dug in the 1960's perpendicular to a steep slope, it should not be treated as a stream sediment sample. Sample shipment and analytical procedures are as discussed above under Rock Geochemistry. The samples were dried to 60 °C and sieved to -80 mesh up to 100 grams. Silt samples descriptions and analytical results are in Appendix D. Samples locations are plotted on Figure 5.

The 2008 samples confirmed the presence of weak but consistently elevated Cu and Zn concentrations in multiple drainages:

	Cu	Zn	
Sample	(ppm)	(ppm)	
151403	143	126	
151404	140	146	
151405	126	119	
158501	103	37	
159302	89	74	
159303	114	94	
159401	130	160	
159402	132	135	

Table 4 Cu and Zn	concentrations in	stream	silts
-------------------	-------------------	--------	-------

Conclusions

Consistent elevated Cu +/- Mo concentrations in stream sediments and rock samples from the JD claims, as well as the presence of large and intense alteration systems, are suggestive of a large, intrusion related, acid-leach system. Future exploration should focus on identifying the periphery of alteration systems, where remobilized metals may be precipitated. Soil and IP surveys on lover slopes and valley bottoms could be useful tools in identifying these periphery zones. Periphery zones with elevated metal concentrations would have Cu +/- Mo soil anomalies that correspond to the outer edge of chargeability high.

Bibliography

Ashton, J.M. and Ball, C.W. (1982): Geochemical Report on Drift Group Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 10,356

Goudie, M.A. and Hallof, P.G. (1973): Report on the Induced Polarization and Resistivity Survey on the NUP Claim Group, Snowdrift Project. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 4,644.

Graham, D.J. (1982): Geochemical Report on Drift Group Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 10,923.

Mullan, A.W. and Smith, P.K. (1973): Report on the Airborne Magnetic Survey Snowdrift Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 4,659.

Stevenson, R.W. (1973): Report on Soil Geochemical Survey. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 4,645.

Stevenson, R.W. (1973): Report on Magnetometer Survey. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 4,660.

Appendix A Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Tony Barresi, B.Sc., certify that:

- I am a self employed consulting geologist with a business address located at:
 62 East Side Dr.
 Ketch Harbour, NS, Canada
 B3V 1K5
- 2. I graduated from Saint Mary's University in 2005 with a Bachelor of Science in Geology and an currently a Ph.D. candidate at Dalhousie University.
- 3. Since 2004 I have been employed in exploration for base and precious metals in North America.
- 4. I supervised and participated in the 2008 exploration program from June13th to June 11th, 2008 and am therefore personally familiar with the geology of the Iron Mountain Property and the work conducted in 2008. I have prepared all sections of this report.

Dated this 2nd Day of February, 2009

Signature

Tony Barresi, B.Sc.

Appendix B Statement of Costs

Paget Resources Corporation Project Allocation Detail

JD Detail Report from 01/01/2008 to 08/12/2008							Amount	
1805 Mob/Demob - Travel to/from site		Flights Geologist					215.00	215.00
1810 Mob/Demob - Accommodations in trave		Room Nights	18		100		1,800.00	1,800.00
1834-Food		\$70 per Manday	27.5		\$	70.00	1,925.00	
1836 Camp - equipment and supplies							1,925.00	1,925.00
							630.00	630.00
1881 Transportation on-site - Helicopter			JD FUEL				2,784.31 12,795.06	15 570 07
1910-Freight			JD HELI COSTS				15,579.37	15,579.37
1936- Assay Samples		Samples		78	\$	28.00 \$	2,184.00 \$	2,184.00
1955 Geological - salaries and wages	06/15/2008	JB 06/15/08, John Bradford		:	Days 2		1,200.00	
	06/15/08	JF 06/15/08, John Fleishman			1		450.00	
	06/30/2008	AE 06/30/08, Abraham Escalante Abraham		1	3 1		1,650.00 550.00	
	06/30/2008 07/15/2008 07/31/2008	TB 06/30/08, Tony Barresi TB 07/15/08, Tony Barresi TB 07/31/08, Tony Barresi TB Travel			6 2.5 0.5 1		2,700.00 1,125.00 225.00 450.00	
	06/30/2008	CL 06/30/08, Chris Leslie CL Travel			4 1		1,300.00 325.00	
	06/30/2008 07/15/2008	BH 06/30/08 , Brett Hannigan BH 07/15/08, Brett Hannigan			1 0.5		250.00 125.00	
	07/15/2008	TS 07/15/08, Tim Sivak Travel		:	2 1		400.00 225.00	
	6/30/08	JS 06/30/08, Jason Stadey			1		225.00 11,200.00	
		AN 07/31/08, Ann Neal	0.1	_	8,4	24.00	842.40	
			Total Man Days		27.5		12,042.40	12,042.40
1971-Vehicle Rental				14		73.01	1022.14	1022.14
1973-Vehicle Fuel						o	800.00	800.00
						Sub-1	otal	36,347.91

Appendix C Rock Sample Descriptions

Sample	Area	UTM E	UTM N	Elevation (m)	Туре	Sample Length (m) if chip	Description
				()	- 71	(,	
159451	Joyce	467256	6457868	1592	Grab		High-grade, 4cm wide qtz vein w/ moly and pyrite.
159452	Joyce	467384	6457924	1585	Grab		Boulders of biot-hbl granite with moly and pyrite in qtz veins
159453	Joyce	466395	6456907	1588	Grab		Dissem. Pyrite in biot-phyric rhyolitic dacite.
159532	Joyce	465908	6459380		Panel	5 x 2m	Greenish gray, fine grained, locally vesicular andesite, mod mag, chl+epd+calc along fractures. Locally qtz ± Kspar stringers and filling voids. Local pyrite
159533	Joyce	468098	6461899		Float		Dark gray, strongly mag, fgr volc andesite. Epd + chl in rock matrix. Trace malachite in fractures assoc w/ jar-goe. Calcite in fracture.
159534	Joyce	466410	6460073		Panel	2 x 2m	Cgr, locally porp. granodiorite, fresh, 2% biot books, 1% hornb, local qtz eyes
159535	Joyce	468097	6461903		Panel	2 x 2m	Dark gray, mgr, plg rich volc andesites, strongly pyritized (10% pyrite diss and filling fracture)
152252	Joyce	466873	6457626	1618	Grab		Rusty coarse quartz with 1% Mo
152253	Joyce	466993	6457517	1668	Panel	2mX1m	Sericite altered biotite granite with 5% quartz veins, 5% pyrite and a trace of moly disseminated and along veins
152254	Joyce	467119	6457531	1698	Grab		weakly clay altered plagioclase phyric granodiorite with 2% disseminated pyrite
152255	Joyce	467161	6457421		Grab	2 x 2m	Gray, fgr, hornb-rich porp Volc andesites. Strongly mag, weak chloritized, 2% f-mgr diss pyrite and filling fracture. Weak oxidation: red-brown
152256	Joyce	467007	6457721	1616	Grab		sericite altered granite with 3% pyrite
152257	Joyce	467085	6457990	1591	Chip	30 m	Biotite phyric granite with equigranular med grained qz fld matrix - sericite and chlorite altered - $3-5\%$ 2-15cm thick qz veins 1% Cu + 1% Mo + 5% Pyrite. Occurs along margins of veins and disseminated in rock
152258	Joyce	467085	6457990	1591	Chip	30 m	Biotite phyric granite with equigranular med grained qz fld matrix - sericite and chlorite altered - $3-5\%$ 2-15cm thick qz veins 1% Cu + 1% Mo + 5% Pyrite. Occurs along margins of veins and disseminated in rock
152259	Joyce	466029	6458323	1620	Grab		CPX phyric basalt with 5% disseminated and fracture controlled pyrite

Sample	Area	UTM E	UTM N	Elevation (m)	Type	Sample Length (m) if chip	Description
Campio		••••	•••••	()	. , , , , , , , , , , , , , , , , , , ,	()	
152260	Joyce	465919	6458413		Panel	1 x 2m	Mod argz, biot rich feldspar porp. crosscut by a parallel system of white qtz veins with crustiform texture (6 veins x m, 0.2-1 cm wide, N308). Possible dike.
152261	Joyce	466895	6457441	1668	Grab		Weakly clay altered granodiorite with biotite phenocrysts 3% disseminated pyrite and 1% white qz veins
152262	Joyce	466809	6457499	1633	Grab		Same as 152261 but from bottom of trench
152263	Joyce	466425	6457921	1569	Chip	140 m	Pyritic basalt
152264	Joyce	466425	6457921	1569	Chip	140 m	Pyritic medium grained biotite phyric granite
152265	Joyce	466425	6457921	1569	Grab		Basalt with a 2 cm qz vein and associated 5% pyrite and 1% moly in the wallrock
152266	Joyce	465615	6457590	1620	Grab		Fine grained granite with 5% pyrite minor qz veins, sericite alteration, and a trace of Mo
152267	Joyce	465710	6457572	1590	Grab		Altered rock with destroyed texture (intrusive?). Many small 3mm qz veins with narrow albite selvages + narrow Kspar veins. Rocks is QSS. 8% pyrite
152268	Joyce	465786	6457777	1595	Chip	20 m	Sericite altered biotite phyric granite (med grained), with 4% pyrite, and a rare trace of pyrite. Little qz veining.
152269	Joyce	465786	6457777	1595	Grab		Coarse white qz vein with 1% pyrite and a trace of disseminated moly
152301	Joyce	466983	6457523	1670	Grab		from 131 trending main trench, disseminated moly and chalcopyrite in granodiorite/tonalite, Sericite and iron alteration pervasive
152302	Joyce	467095	6458003		Grab		from 005 trending northern trench, globular pyrite in sericite and pyrite altered biotite granodiorite, no moly present
152303	Joyce	467679	6457905	1629	Grab		grab sample of locally cpx phyric basaltic andesite with disseminated pyrite, concentrated along fractures
152274	And Ginger	470075	6457274	1810	Talus		Rhyolite with 10% 1-2 cm wide qz veins that contain massive and disseminated bornite to malachite. Overall 1% bornite in rock
152275	And Ginger	470137	6457901	1890	Grab		Qz + Hbl(now Chlorite) pegmatite dike with minor Cu staining and epidote veining.
152276	And Ginger	470137	6457901	1890	Grab		10 cm wide zone of open space filling qz and epidote veins in andesite with malachite + azurite and a trace of bornite
152277	And Ginger	470214	6457896	1910	Grab		rhyolite with 10 cm thick qz vein with 2% bornite, abundant malachite and a trace of chalcopyrite

						Sample	
				Elevation		Length	
Sample	Area	UTM E	UTM N	(m)	Туре	(m) if chip	Description
(= 0 0 = 0				1=00			
152278	And Ginger	469541	6457974	1703	Grab		30 cm wide banded Qz + Epidote + chlorite vein in basalt flow
450000		470007	0450077	4000			Contact between sea-green aphanitic rhyolite dike and
152309	And Ginger	470327	6458977	1920	Grab		epidote+chlorite+calcaite altered andesite: I races of bornite and
							Itetranedrite and Cu staining.
152310	And Ginger	470349	6458605	2010	Grab (f	felsenmeer)	interminated bernite and tetrahedrite + malachite and esturite staining
							Interminigled bornite and tetraneonite + malachite and azunte staming
152211		470201	6459420	2090	Grah		mixed blobs of bornito and totrabodrito. Wall rock is chlorito altorod
152511	And Ginger	470201	0400429	2000	Giab		
							1 m X 30 cm pod of Epidote + calcite + quartz with 1% Bornite 1%
152312	And Ginger	470252	6458389	2082	Grab		tetrahedrite, and Cu staining
152313	And Ginger	470259	6458144	2024	Grab		Zone of boxwork in epidote vein - lots of malachite
102010		470200	0-001-1-1	2024	Ciub		Clay altered granite dyke with rounded (resorbed?) guartz pheno's and
152314	And Ginger	469881	6458468	2000	Grab		party corroded biotite pheno's. Fld completely altered to clay. 3% pyrite
	inter en iger						disseminated
							Light weathering aphanitic rhyolite(?) in subscrop with 5% gz veins up to 10
152315	And Ginger	469934	6458848	1993	Grab		cm wide, that have variable Cu staining, a trace of a black Cu mineral
	Ū						(energite or chalcosite?) and a trace of chalcopyrite
150016	And Cingar	474007	6460040	1061	Crah		chlorite, epidote, tetrahedrite (?) mineralized qtv veins and host cpx phryic
152310	And Ginger	4/130/	6460940	1901	Grab		basalt
							grab sample from across a 15 meter saddle, samples comprise silicified
152317	And Ginger	471841	6460315	1976	Grab		volcanics with disseminated pyrite and qtz sericite schists with
							disseminated pyrite
152318	And Ginger	471863	6459854	1872	Grab		qtz, sericite, chlorite schist
							15cm wide coarse grained gtz vein locally yuggy translucent to white
152319	And Ginger	471943	6459716	1880	Grab		traces of pyrite and some feldspar phenocrystic basaltic andesite wall rock
152320	And Ginger	471967	6459672	1899	Grab		[qtz sericite (alunite?) schist
152321	And Ginger	471969	6459674	1899	Grab		rusty tractured pyrite altered andesite, local pervasive silica alteration and
450000		474057	0.4000000	4004			Idisseminated pyrite
152322	And Ginger	4/165/	6460280	1861	Grab		silicitied voicanics and qtz sericite schists with disseminated pyrite
152323	And Ginger	4/1/86	6460544		Grab		qtz sericite schist with chunky and specular hematite

Sample	Area	UTM E	UTM N	Elevation (m)	Туре	Sample Length (m) if chip	Description
152324	Straight Up	472065	6459279	1640	Grab (subcrop)	Subcrop of strongly chlorite + sericite altered andesite with 5-10% pyrite veins
152956	Straight Up	472209	6459690	1896	Grab (:	subcrop)	Amygdaloidal andesite with pyrite lined quartz filled vesicles, and 10% disseminated euhedral pyrite cubes
159251	Straight Up	471708	6460507	1942	Talus		QSS with 2% silver phylosilicate(?) + 3-5 % weathered out pyrite
159252	Straight Up	471651	6460435	1890	Grab		2 cm wide rusty rotten qz vein in andesites variably altered into quartz + chlorite + sericite schist
159254	Straight Up	471610	6460434	1874	Grab		1.5 cm thick qz + amphibole vein with sericite rosettes along margin. Wall rock is variably foliated and altered from andesite to QSS. 2% pyrite
159255	Straight Up	472209	6459690	1896	Grab (subcrop)	Qz-Ser-Chl schist with 5-10% pyrite mainly in foliation parallel veinlettes
159257	Straight Up	472694	6459677	1857	Grab		Surgery quartz supported in variable proportions of sericite and other clays - including golfball sized pods of kaolonite and a reddish pink clay (Fe stained?). No chlorite, no foliation.
159258	Straight Up	472962	6459765	1781	Grab		Qz rich QSS with visible sericite xl's. Minor amount of chlorite 1mm pods. 1% pyrite
159261	Straight Up	471596	6460293		Talus		Chlorite altered andesite with 2 cm Qz vein with 5% chalco

Sample	Wt	Au	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	TI	Bi	Cd	Co	Ni	Ва	W	Cr	V	Mn	La	Sr	Zr	Sc	Ti
	Kg	g/mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
159451	1.1	-0.01	-0.1	12	-2	2	-5	-5	-3	287	-10	-2	-0.2	2	3	10	-5	195	-1	42	3	20	-1	-1	-0.01
159452	1.3	-0.01	-0.1	41	-2	42	-5	-5	-3	604	-10	-2	-0.2	7	5	76	-5	105	39	358	20	28	-1	3	0.07
159453	1.6	-0.01	-0.1	37	-2	57	-5	-5	-3	6	-10	-2	-0.2	8	8	35	-5	55	32	348	21	25	5	3	0.01
159532	1.9	-0.01	-0.1	138	-2	138	-5	-5	-3	2	-10	-2	-0.2	35	25	480	-5	43	199	1532	60	54	-1	4	0.19
159533	2.1	-0.01	-0.1	59	-2	106	-5	-5	-3	2	-10	-2	-0.2	28	36	36	-5	99	123	1280	48	57	-1	4	0.17
159534	2	-0.01	-0.1	163	-2	44	-5	-5	-3	18	-10	-2	-0.2	10	7	130	-5	78	49	516	23	15	3	4	0.09
159535	2	0.01	-0.1	69	8	76	-5	-5	-3	8	-10	-2	-0.2	12	3	42	-5	53	59	514	39	20	10	4	0.12
152252	1.1	-0.01	-0.1	95	-2	13	-5	-5	-3	178	-10	-2	-0.2	4	3	25	-5	97	16	74	12	15	-1	-1	0.01
152253	2.8	-0.01	-0.1	157	-2	29	-5	-5	-3	214	-10	-2	-0.2	6	4	47	-5	68	45	230	13	19	-1	3	0.05
152254	1.7	-0.01	-0.1	39	-2	35	-5	-5	-3	29	-10	-2	-0.2	6	5	55	-5	54	42	282	19	22	1	4	0.05
152255	2.6	-0.01	0.1	209	-2	93	-5	-5	-3	6	-10	-2	-0.2	21	7	97	-5	32	141	702	48	49	2	4	0.23
152256	1.8	-0.01	-0.1	142	-2	50	-5	-5	-3	25	-10	-2	-0.2	7	5	69	-5	52	59	450	19	15	1	4	0.07
152257	4	-0.01	0.1	185	-2	46	-5	-5	-3	210	-10	-2	-0.2	8	5	51	-5	65	45	347	18	20	1	3	0.05
152258	3	-0.01	0.5	314	-2	53	-5	-5	-3	501	-10	-2	-0.2	7	5	50	-5	78	32	341	18	11	-1	2	0.03
152259	1.2	-0.01	-0.1	110	-2	44	-5	-5	-3	10	-10	-2	-0.2	22	9	50	-5	43	68	275	23	77	1	3	0.17

Sample	Wt	Au	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	ті	Bi	Cd	Со	Ni	Ва	w	Cr	v	Mn	La	Sr	Zr	Sc	Ti
	Kg	g/mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
152260	2.4	-0.01	-0.1	35	-2	53	-5	-5	-3	34	-10	-2	-0.2	5	8	90	-5	55	45	327	19	47	3	3	0.05
152261	1.9	-0.01	-0.1	134	-2	64	-5	-5	-3	6	-10	-2	-0.2	11	8	137	-5	64	65	465	21	15	-1	6	0.16
152262	2	-0.01	-0.1	154	-2	39	-5	-5	-3	10	-10	-2	-0.2	7	6	178	-5	59	47	301	17	22	1	3	0.09
152263	4.3	-0.01	-0.1	58	-2	48	-5	-5	-3	3	-10	-2	-0.2	17	14	215	-5	56	119	397	28	106	-1	3	0.19
152264	2.2	-0.01	-0.1	57	-2	46	-5	-5	-3	35	-10	-2	-0.2	9	7	69	-5	47	57	392	21	21	1	4	0.09
152265	1.6	-0.01	-0.1	86	-2	43	-5	-5	-3	925	-10	-2	-0.2	16	14	131	-5	64	104	331	29	74	-1	2	0.16
152266	1.7	-0.01	-0.1	23	-2	40	-5	-5	-3	311	-10	-2	-0.2	9	6	29	-5	53	35	292	20	75	4	2	0.04
152267	2.5	-0.01	-0.1	62	-2	21	-5	-5	-3	118	-10	-2	-0.2	5	1	47	-5	39	43	234	23	9	10	3	0.08
152268	2.4	-0.01	-0.1	22	-2	42	-5	-5	-3	33	-10	-2	-0.2	4	4	29	-5	62	43	318	17	18	2	3	0.10
152269	1.5	-0.01	-0.1	9	-2	-1	-5	-5	-3	13	-10	-2	-0.2	2	3	2	-5	185	-1	21	-2	-1	-1	-1	-0.01
152301	1.2	0.01	0.2	327	-2	38	-5	-5	-3	170	-10	-2	-0.2	8	6	39	-5	49	53	282	17	22	-1	4	0.06
152302	1.5	0.01	2.2	322	-2	44	-5	-5	-3	37	-10	-2	-0.2	9	8	22	-5	77	38	227	30	12	-1	3	0.06
152303	1.5	-0.01	0.2	205	-2	29	-5	-5	-3	2	-10	-2	-0.2	23	21	34	-5	34	50	176	23	66	1	2	0.15
152274	2	-0.01	0.3	830	5	6	-5	-5	-3	2	-10	-2	-0.2	2	2	32	-5	96	-1	455	13	21	4	-1	-0.01
152275	1.9	-0.01	-0.1	13	-2	46	-5	-5	-3	1	-10	-2	-0.2	13	13	10	-5	142	45	630	14	60	-1	1	0.02
152276	1.8	0.05	5.8	3266	12	63	-5	-5	-3	2	-10	-2	-0.2	19	13	9	-5	39	90	1195	25	104	2	2	0.13
152277	2.3	0.23	68.9	30367	224	133	25	-5	-3	2	-10	4	-0.2	8	4	42	-5	81	3	1184	29	4	-1	-1	-0.01

Sample	Wt	Au	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	ті	Bi	Cd	Co	Ni	Ва	w	Cr	v	Mn	La	Sr	Zr	Sc	Ti
	Kg	g/mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
152278	1.2	0.02	-0.1	154	-2	24	-5	-5	-3	1	-10	-2	-0.2	8	11	11	-5	118	40	632	11	103	-1	2	0.03
152309	1.6	0.02	1.5	1409	-2	95	-5	-5	-3	2	-10	-2	-0.2	38	45	108	-5	37	89	1175	37	61	1	3	0.16
152310	1.2	0.01	-0.1	122	-2	5	-5	-5	-3	1	-10	-2	-0.2	3	3	15	-5	115	37	217	9	131	2	2	0.04
152311	1	0.02	2.1	2147	12	10	-5	-5	-3	-1	-10	-2	-0.2	4	4	40	-5	99	23	207	6	34	1	1	0.04
152312	1	0.08	2.7	3615	22	7	-5	-5	-3	-1	-10	-2	-0.2	4	2	16	-5	58	44	327	11	400	3	3	0.12
152313	1.2	0.10	18.5	20769	207	143	-5	-5	-3	2	-10	-2	-0.2	25	23	24	-5	40	64	1730	36	40	-1	2	0.06
152314	1.5	-0.01	-0.1	104	-2	35	-5	-5	-3	4	-10	-2	-0.2	5	5	50	-5	34	18	256	17	9	3	-1	0.01
152315	1.8	0.01	2.3	2455	14	16	-5	-5	-3	1	-10	-2	-0.2	3	4	12	-5	127	5	95	8	2	-1	-1	-0.01
152316	1.3	0.01	-0.1	16	-2	57	5	-5	-3	2	-10	-2	-0.2	14	4	107	-5	53	115	756	21	123	-1	2	0.12
152317	2.2	-0.01	0.4	126	-2	6	-5	-5	-3	4	-10	-2	-0.2	4	2	37	-5	41	11	22	27	20	19	-1	0.02
152318	1.5	-0.01	-0.1	77	-2	198	-5	-5	-3	3	-10	-2	-0.2	18	10	45	-5	42	236	990	78	86	-1	10	0.04
152319	1.6	-0.01	-0.1	13	-2	8	-5	-5	-3	2	-10	-2	-0.2	2	3	48	-5	138	27	58	16	19	-1	-1	0.01
152320	1	-0.01	0.3	13	-2	5	-5	-5	-3	3	-10	-2	-0.2	2	-1	26	-5	23	8	27	14	19	11	-1	-0.01
152321	1.9	0.01	-0.1	80	-2	86	-5	-5	-3	5	-10	-2	-0.2	19	12	33	-5	37	141	587	46	160	3	9	0.02
152322	1.4	0.01	-0.1	113	-2	68	-5	-5	-3	3	-10	-2	-0.2	30	28	38	-5	58	85	304	59	260	6	3	0.03
152323	1.2	0.02	-0.1	6	-2	42	-5	-5	-3	2	-10	-2	-0.2	7	8	49	-5	30	195	138	69	9	-1	5	0.08

Sample	Wt	Au	Ag	Cu	Pb	Zn	As	Sb	Hg	Мо	ті	Bi	Cd	Co	Ni	Ва	w	Cr	v	Mn	La	Sr	Zr	Sc	Ті
	Kg	g/mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
152324	1.3	-0.01	-0.1	23	-2	118	-5	-5	-3	9	-10	-2	-0.2	18	15	55	-5	45	114	920	54	54	1	2	0.29
152956	1.5	0.01	-0.5	95	7	311	-5	-5	-3	5	-2	-2	-0.2	27	16	338	-5	97	290	1836	91	280	69	24	0.52
159251	1.4	-0.01	-0.5	9	9	8	-5	-5	-3	2	-2	-2	-0.2	9	7	71	-5	117	403	28	39	4	1	32	0.20
159252	1.5	0.01	-0.5	61	-2	123	-5	-5	-3	4	-2	-2	-0.2	18	25	300	-5	128	136	459	78	406	112	14	0.09
159254	1.8	0.04	-0.5	49	4	8	-5	-5	-3	6	-2	-2	-0.2	4	9	615	-5	130	190	22	56	85	72	39	0.20
159255	1.9	0.01	-0.5	106	24	111	-5	-5	-3	6	-2	-2	-0.2	30	14	831	-5	65	297	934	61	157	62	28	0.21
159257	1.5	-0.01	-0.5	8	11	6	-5	-5	-3	7	-2	-2	-0.2	3	2	599	-5	81	208	18	37	197	117	21	0.15
159258	1.6	-0.01	-0.5	20	19	54	-5	-5	-3	11	-2	-2	-0.2	6	5	608	-5	89	61	410	58	248	171	9	0.06
159261	1.6	0.01	-0.5	254	-2	137	-5	-5	-3	5	-2	-2	-0.2	35	17	212	-5	58	263	1918	98	646	57	19	0.47

Sample	AI	Ca	Fe	Mq	к	Na	Р
	%	%	%	%	%	%	%
159451	0.08	0.02	0.34	0.03	0.02	0.01	-0.01
159452	0.82	0.15	2.41	0.58	0.32	0.06	0.04
159453	1.07	0.15	2.31	0.7	0.06	0.04	0.06
159532	3.07	3.2	6.81	3.2	-0.01	0.03	0.14
159533	2.63	2.54	5.36	2.78	0.17	0.02	0.12
159534	0.96	0.26	2.02	0.67	0.26	0.06	0.04
159535	1.07	0.33	3.85	0.74	0.32	0.05	0.1
152252	0.32	0.07	1.59	0.20	0.12	0.03	0.01
152253	0.72	0.07	1.62	0.62	0.22	0.04	0.01
152254	0.78	0.12	2.16	0.66	0.33	0.06	0.04
152255	2.13	0.73	5.59	1.26	0.98	0.15	0.15
152256	0.93	0.17	2.11	0.70	0.34	0.05	0.05
152257	0.77	0.19	2.05	0.63	0.24	0.05	0.03
152258	0.67	0.22	2.07	0.54	0.19	0.04	0.03
152259	1.15	1.15	2.91	0.32	0.06	0.13	0.14

Sample	AI	Ca	Fe	Mg	к	Na	Р
	%	%	%	%	%	%	%
152260	1.18	0.10	1.81	0.65	0.32	0.04	0.05
152261	1.32	0.22	2.44	0.86	0.70	0.06	0.05
152262	0.98	0.13	2.07	0.69	0.35	0.04	0.04
152263	2.08	1.16	3.43	1.10	0.77	0.20	0.11
152264	0.98	0.22	2.37	0.79	0.42	0.07	0.05
152265	1.48	0.75	3.47	0.88	0.70	0.12	0.09
152266	0.93	0.24	2.58	0.70	0.03	0.05	0.04
152267	0.73	0.05	1.63	0.38	0.23	0.04	0.02
152268	0.95	0.08	1.84	0.72	0.06	0.04	0.04
152269	0.01	-0.01	0.30	-0.01	-0.01	0.01	-0.01
152301	0.83	0.14	2.25	0.72	0.34	0.06	0.01
152302	0.53	0.07	4.10	0.49	0.18	0.04	0.02
152303	0.89	0.85	3.25	0.42	0.14	0.11	0.13
152274	0.25	0.99	0.33	0.04	0.14	0.03	0.01
152275	1.07	0.45	1.49	1.04	0.03	0.02	0.02
152276	1.56	1.80	2.90	1.67	0.01	0.03	0.09
152277	1.38	0.23	3.58	0.88	0.05	0.01	0.01

Sample	AI	Ca	Fe	Mg	к	Na	Р
	%	%	%	%	%	%	%
152278	0.80	3.44	1.20	0.61	0.03	0.01	0.04
152309	3.07	1.50	4.00	3.35	0.08	0.04	0.18
152310	0.63	1.44	0.76	0.07	0.02	0.01	0.07
152311	0.24	0.23	0.70	0.14	0.05	0.02	0.02
152312	0.71	5.38	0.73	0.05	0.01	0.01	0.11
152313	1.57	0.90	3.75	1.46	0.07	0.02	0.12
152314	0.96	0.09	2.06	0.60	0.07	0.03	0.05
152315	0.14	0.03	0.62	0.08	0.04	0.01	0.01
152316	2.08	1.55	2.57	0.88	0.64	0.15	0.09
152317	0.36	0.02	2.39	0.07	0.32	0.06	0.03
152318	3.64	0.09	9.78	2.71	0.09	0.05	0.06
152319	0.24	0.03	2.08	0.10	0.12	0.07	0.02
152320	0.46	0.01	1.40	0.11	0.19	0.05	0.03
152321	6.32	2.73	6.22	1.97	0.47	0.62	0.12
152322	2.87	0.31	8.34	0.97	0.21	0.08	0.09
152323	1.57	0.01	9.83	1.27	0.97	0.02	0.13

Sample	AI	Ca	Fe	Mg	К	Na	Ρ
	%	%	%	%	%	%	%
152324	2.31	0.54	6.50	2.56	0.28	0.04	0.14
152956	9.67	5.31	7.94	2.53	1.58	0.85	0.12
159251	4.09	0.01	3.83	0.16	2.12	0.09	0.02
159252	6.66	0.54	6.65	0.97	0.51	0.19	0.13
159254	6.08	0.01	4.61	0.08	0.86	0.08	0.09
159255	10.35	2.33	4.92	1.31	3.10	0.40	0.14
159257	7.90	0.17	1.62	0.12	1.89	0.34	0.04
159258	7.51	0.66	3.97	0.69	4.82	0.94	0.03
159261	8.94	4.84	7.91	3.18	0.29	1.66	0.10

Appendix D Stream Sediment Sample Descriptions

				Elevation							
Sample	Area	UTM E	UTM N	(m)	Description	Ag	Cu	Pb	Zn	As	Sb
						ppm	ppm	ppm	ppm	ppm	ppm
					Tributary to main creek, just above where it joins with another						
151403	And Ginger	468819	6458988	1532	tributary which is sample 151404. 1 m wide slow but steady flow	-0.1	143	-2	126	-5	-5
151404	And Ginger	468792	6458988	1533	Tributary to creek sampled by 151403. 2 m wide and med speed	-0.1	140	-2	146	-5	-5
					Main creek just above where the tributary sampled by 151404						
151405	And Ginger	468853	6459019	1532	joins. 3 m wide and med speed	-0.1	126	-2	119	-5	-5
					Yellow sand at the bottom of a large trench (weathered rotten						
152251	Joyce	466858	6457641	1612	granite)	-0.1	258	-2	58	-5	-5
					Sulphur rich yellow stinky silt in 2 m wide shallow slow moving						
159302	Straight Up	470899	6459767	1604	creek that feeds out from a large gossan.	-0.1	89	-2	74	-5	-5
159401	And Ginger	469662	6457833	1710	.75 m wide slow but steady stream; near top of catchment	-0.1	130	-2	160	-5	-5
					Main creek but below a bunch of tributaries that are covered with						
159402	And Ginger	469058	6458400	1583	snow. 1 m wide and swift	-0.1	132	-2	135	-5	-5

Sample	Hg	Мо	ті	Bi	Cd	Co	Ni	Ва	w	Cr	v	Mn	La	Sr	Zr	Sc	Ti	AI	Ca	Fe	Mg	к	Na	Р
_	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%											
151403	-3	5	-10	-2	0	32	37	141	-5	70	131	1280	77	63	-1	4	0.16	3.09	0.63	5.62	2.40	0.24	0.02	0.11
151404	-3	4	-10	-2	0	34	36	183	-5	42	139	1671	77	58	1	4	0.18	3.31	0.71	5.64	2.68	0.41	0.02	0.11
151405	-3	4	-10	-2	0	28	41	115	-5	78	124	1232	83	55	6	4	0.20	3.10	0.63	6.05	2.27	0.21	0.02	0.10
152251	-3	95	-10	-2	0	12	10	166	-5	15	92	583	41	24	-1	6	0.13	1.66	0.14	3.34	1.03	0.61	0.01	0.07
159302	-3	4	-10	-2	0	7	9	147	-5	4	125	517	79	94	2	8	0.13	2.40	0.12	6.62	1.48	0.92	0.10	0.13
159401	-3	2	-10	-2	0	30	41	59	-5	65	128	2032	81	48	-1	4	0.10	2.72	0.76	5.26	2.82	0.14	0.02	0.13
159402	-3	2	-10	-2	0	30	42	62	-5	90	118	1736	71	54	-1	4	0.12	2.75	0.75	5.04	2.70	0.19	0.02	0.11

Appendix E Analytical Certificates

IALS PER A	

INTERNATIONAL PLASMA LABS LTD. ISO 9001:2000 CERTIFIED COMPANY

CERTIFICATE OF ANALYSIS iPL 08G3485

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipl.ca

Paget Resources Corp		25	Sample	es Print: Aug 07, 2008 In: Jul 28	, 2008	[348515:5	7:48:80080708:001
Project : Mo Shipper : Tony Barresi Shipment: PO#: Comment:	CODE B21100 B84100 B82101 B90023	AMOUNT 25 2 1 1	TYPE Rock Repeat B1k iPL STD iPL	PREPARATION DESCRIPTION crush, split & pulverize to -150 mesh. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Au Certified) - no charge		1	PULP REJEC 12M/Dis 03M/Di 12M/Dis 00M/Di 00M/Dis 00M/Di
	Ana	lytical	Summa	ry	NS=No Sample	Rep=Replicate M=N	10nth Dis=Discard
	Anal	ysis: AU	J(FA/AAS)) / ICP(Multi-Acid)30			
Document Distribution	## Code	Method	Units	Description	Element	Limit	Limit
I Paget Resources Corp 1040 W. Georgia St, Suite 1160 Vancouver BC V6E 4H1 Canada Att: John Bradford Ph:778 327 6540	01 0801 02 0368 03 0771 04 0761 05 0764	Spec FA/AAS ICPM ICPM ICPM	Kg g/mt ppm ppm ppm	Weight in Kilogram (1 decimal place) Au (FA/AAS 30g) g/mt Ag ICP(Multi-Acid) Cu ICP(Multi-Acid) Pb ICP(Multi-Acid) Depressed	Wt Gold Silver Copper Lead	0.1 0.01 0.5 1 2	9999.0 5000.00 500.0 20000 10000
Em:jbradford@pagetresources.com 2 Paget Resources Corp 1040 W. Georgia St, Suite 1160 Vancouver BC V6F 4H1	06 0780 07 0753 08 0752 09 0782 10 0767	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm ppm	Zn ICP(Multi-Acid) As ICP(Multi-Acid) Depressed Sb ICP(Multi-Acid) Depressed Hg ICP(Multi-Acid) Mo ICP(Multi-Acid)	Zinc Arsenic Antimony Mercury Molydenum	1 5 5 3 1	$10000 \\ 10000 \\ 2000 \\ 10000 \\ 10000 \\ 100$
Canada Att: Brian Booth Em:bbooth@tambomining.com	11 0797 12 0755 13 0757 14 0760 15 0768	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm ppm	Tl ICP(Multi-Acid) Bi ICP(Multi-Acid) Cd ICP(Multi-Acid) Co ICP(Multi-Acid) Ni ICP(Multi-Acid)	Thallium Bismuth Cadmium Cobalt Nickel	2 2 0.2 1 1	1000 2000 2000.0 10000 10000
1040 W. Georgia St. Suite 1160 Vancouver BC V6E 4H1 Canada Att: N. Luckman	16 0754 17 0777 18 0759 19 0779 20 0766	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm ppm	Ba ICP(Multi-Acid) W ICP(Multi-Acid) Cr ICP(Multi-Acid) V ICP(Multi-Acid) Mn ICP(Multi-Acid)	Barium Tungsten Chromium Vanadium Manganese	2 5 1 1 1	$10000 \\ 1000 \\ 10000$
Ph://8.32/.6540 Em:nluckman@pagetresources.com	21 0763 22 0773 23 0781 24 0786 25 0776	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm %	La ICP(Multi-Acid) Sr ICP(Multi-Acid) Zr ICP(Multi-Acid) Sc ICP(Multi-Acid) Ti ICP(Multi-Acid)	Lanthanum Strontium Zirconium Scandium Titanium	2 1 1 0.01	$10000 \\ 10000 \\ 10000 \\ 10000 \\ 10.00 \\ 10.00$
	26 0751 27 0758 28 0762 29 0765 30 0770	ICPM ICPM ICPM ICPM ICPM	% % %	Al ICP(Multi-Acid) Ca ICP(Multi-Acid) Fe ICP(Multi-Acid) Mg ICP(Multi-Acid) K ICP(Multi-Acid)	Aluminum Calcium Iron Magnesium Potassium	0.01 0.01 0.01 0.01 0.01	5.00 10.00 5.00 10.00 10.00
	31 0772 32 0769	ICPM ICPM	% %	Na ICP(Multi-Acid) P ICP(Multi-Acid)	Sodium Phosphorus		10.00 5.00
* Our liability is limited solely to the analytical cost of these analyses.	ii.			BC Certified	l Assayer: David	1 Chiu	
ID=C0556010705				Sign	ature:	the	

Signature: _____

CERTIFICATE OF ANALYSIS iPL 08G3485

Client : Paget Resource Project: Mo	es Corp Ship#	25	Samp	les 25=Rock	2=Re	epeat	1=B1k	iPL	1=STD i	PL [3	34851557	74880080	Pi [708001]	rint: Au In: Ju	g 07, 20 1 28, 20	008 008	Pag Sec	e 1 tion 1	of 1 of 2
Sample Name	Туре	Wt Kg	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm
0152325 0152327 0152328 0152330 0152331	Rock Rock Rock Rock Rock Rock	2.2 1.6 1.9 1.5 1.7	<0.01 <0.01 0.01 0.02 0.02	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7 421 19 31 57	7 <2 <2 18 43	24 125 89 72 307	<5 17 <5 <5 8	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	4 6 7 5 14	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	6 34 22 10 20	3 19 9 6 31	321 1280 1308 1832 455	<5 <5 <5 <5 <5	70 29 56 45 66
0152332 0152333 0152334 0152335 0152336	Rock Rock Rock Rock Rock Rock	1.6 1.7 1.5 1.4 1.4	<0.01 <0.01 0.01 0.04 0.01	<0.5 <0.5 <0.5 <0.5 <0.5	25 29 48 63 6	<2 5 <2 26 10	62 12 17 23 8	<5 9 54 80 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	6 11 128 5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	24 4 2 <1 <1	27 3 5 9 1	144 643 254 122 6201	<5 <5 <5 <5	77 36 52 157 30
0152337 0152338 0152339 0152340 0159251	Rock Rock Rock Rock Rock Rock	1.2 2.3 1.2 1.7 1.4	<0.01 <0.01 <0.01 <0.01 <0.01	<0.5 <0.5 <0.5 <0.5 <0.5	14 71 22 34 9	12 <2 16 7 9	23 39 24 18 8	12 <5 23 5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	8 5 7 4 2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	6 2 8 8 9	3 7 4 4 7	1665 1883 830 756 71	<5 <5 <5 <5	25 61 27 47 117
0159252 0159253 0159254 0159255 0159256	Rock Rock Rock Rock Rock Rock	$1.5 \\ 1.8 \\ 1.8 \\ 1.9 \\ 1.5$	0.01 <0.01 0.04 0.01 0.01	<0.5 <0.5 <0.5 <0.5 <0.5	61 4 49 106 95	<2 17 4 24 7	123 2 8 111 311	<5 <5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	4 9 6 5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	18 2 4 30 27	25 2 9 14 16	300 230 615 831 338	<5 <5 <5 <5	128 90 130 65 97
0159257 0159258 0159259 0159260 0159261	Rock Rock Rock Rock Rock Rock	$1.5 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.6$	<0.01 <0.01 <0.01 0.02 0.01	<0.5 <0.5 <0.5 <0.5 <0.5	8 20 27 7 254	11 19 9 13 <2	6 54 24 5 137	<5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	7 11 7 1 5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3 6 8 2 35	2 5 4 4 17	599 608 650 42 212	<5 <5 <5 <5	81 89 55 154 58
RE 0152325 RE 0159256 Blank iPL 0XI54 0XI54 REF	Repeat Repeat B1k iPL STD iPL STD iPL		<0.01 0.01 <0.01 1.87 1.87	<0.5 <0.5 	7 95 	8 7 	24 308 	<5 <5 	<5 <5 	<3 <3 	4 6 	<2 <2 	<2 <2 	<0.2 <0.2 	6 27 	3 16 	323 337 	<5 <5 	75 100
Minimum Detection Maximum Detection Method	9	0.1 999.0 5 Spec	0.01 000.00 FA/AAS	0.5 500.0 2 ICPM	1 20000 1 ICPM	2 10000 1CPM	1 10000 1 1CPM	5 10000 1CPM	5 2000 1 ICPM	3 10000 ICPM	1 1000 ICPM	2 1000 ICPM	2 2000 2 ICPM	0.2 2000.0	1 10000 1 1CPM	1 0000 ICPM	2 10000 ICPM	5 1000 1 ICPM	1 10000 ICPM

CERTIFICATE OF ANALYSIS iPL 08G3485

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipl.ca

Client : Paget Resources Corp Project: Mo	Sh	ip#	25 8	Sample	es 25=Rock	2=Re	peat	1=B1k iP	L 1=S	TD iPL	[34851	557488008	Pi 30708001	rint: Aug 07 In: Jul 28	7, 2008 8, 2008	Page Sectio	1 of n 2 of	1 2
Sample Name	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %				
0152325 0152327 0152328 0152330 0152331	13 248 190 58 139	356 1887 1466 198 881	29 104 84 48 61	154 642 610 358 177	66 38 56 42 66	4 18 14 9 10	0.16 0.56 0.48 0.24 0.36	6.58% 8.74% 8.82% 9.33% 8.42%	0.66 6.17 6.62 1.18 3.55	2.15 8.12% 6.31% 3.11 4.32	0.45 2.54 2.00 1.16 1.39	1.94 2.91 1.70 3.04 1.93	4.99 1.70 2.44 2.00 5.40	0.03 0.22 0.09 0.01 0.09				
0152332 0152333 0152334 0152335 0152335 0152336	361 59 93 139 8	1252 79 26 42 16	79 36 65 77 19	696 123 36 24 130	58 72 58 13 79	26 6 8 6 1	0.73 0.19 0.12 0.03 0.06	9.31% 8.74% 8.02% 2.57 7.38%	12% 0.14 0.02 0.02 0.01	4.49 2.97 6.10% 8.50% 0.22	2.28 0.35 0.18 0.07 0.02	0.27 4.14 3.71 0.80 8.28	2.46 1.49 0.08 0.02 0.18	0.15 0.03 0.08 0.20 0.01				
0152337 0152338 0152339 0152340 0159251	77 11 240 74 403	120 32 107 213 28	30 83 46 37 39	324 63 229 329 4	68 60 21 51 1	8 <1 20 6 32	0.31 0.03 0.46 0.27 0.20	9.04% 6.14% 9.53% 7.48% 4.09	0.28 0.01 0.08 0.46 0.01	2.87 8.75% 4.32 3.34 3.83	$0.30 \\ 0.14 \\ 0.34 \\ 0.33 \\ 0.16$	3.31 1.88 3.37 3.13 2.12	2.96 0.04 0.96 2.63 0.09	0.05 0.06 0.08 0.05 0.02				
0159252 0159253 0159254 0159255 0159256	136 127 190 297 290	459 12 22 934 1836	78 14 56 61 91	406 137 85 157 280	112 41 72 62 69	14 10 39 28 24	0.09 0.08 0.20 0.21 0.52	6.66% 3.87 6.08% 10% 9.67%	$0.54 \\ 0.02 \\ 0.01 \\ 2.33 \\ 5.31$	6.65% 0.57 4.61 4.92 7.94%	$0.97 \\ 0.01 \\ 0.08 \\ 1.31 \\ 2.53$	$0.51 \\ 0.44 \\ 0.86 \\ 3.10 \\ 1.58$	0.19 0.03 0.08 0.40 0.85	0.13 0.03 0.09 0.14 0.12				
0159257 0159258 0159259 0159260 0159261	208 61 80 29 263	18 410 344 141 1918	37 58 34 13 98	197 248 257 241 646	117 171 94 18 57	21 9 6 1 19	0.15 0.06 0.19 0.04 0.47	7.90% 7.51% 7.01% 2.23 8.94%	0.17 0.66 0.88 1.63 4.84	1.62 3.97 2.92 1.14 7.91%	0.12 0.69 0.90 0.05 3.18	1.89 4.82 3.79 0.26 0.29	0.34 0.94 2.87 0.34 1.66	$0.04 \\ 0.03 \\ 0.05 \\ 0.01 \\ 0.10$				
RE 0152325 RE 0159256 Blank iPL OXI54 OXI54 REF	14 287 	372 1804 	28 94 	149 279 	67 71 	4 24 	0.17 0.51 	6.72% 9.52% 	0.70 5.22 	2.10 7.82% 	0.47 2.48 	2.02 1.55 	5.02 0.84 	0.04 0.12 				
Minimum Detection Maximum Detection Method ————————————————————————————————————	1 10000 ICPM Del=Del	1 10000 1 ICPM ay Max=	2 .0000 1 ICPM =No Estin	1 .0000 1 ICPM nate Rec	1 .0000 1 ICPM c=ReChec	1 0000 ICPM k m=x1	0.01 10.00 ICPM 000 %=	0.01 5.00 ICPM =Estimate %	0.01 10.00 ICPM NS=No	0.01 5.00 ICPM Sample	0.01 10.00 ICPM	0.01 10.00 ICPM	0.01 10.00 ICPM	0.01 5.00 ICPM				

CERTIFICATE OF ANALYSIS iPL 08H3646

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipl.ca

Paget Resources Corp		55	Sample	les Print: Sep 10, 2008 In: Aug 06, 2	2008	[364615	:12:02:80091008:001
Shipper : Tony Barresi Shipment: PO#: Comment:	CODE B21100 B84100 B82101 B90026	AMOUNT 55 3 1 1	TYPE Rock Repeat B1k iPL Std iPL	PREPARATION DESCRIPTION crush, split & pulverize to -150 mesh. Repeat sample - no Charge Blank iPL - no charge. Std iPL (Au Certified) - no charge			PULP REJECT 12M/Dis 03M/Dis 12M/Dis 00M/Dis 00M/Dis 00M/Dis
	Ana	lvtical	Summa	rv	NS=No Sample	Rep=Replicate	4=Month Dis=Discarc
	Anal	lysis: AU	(FA/AAS	5) / ICP(AqR)30			
Document Distribution	## Code	Method	Units	Description E	lement	Limi	t Limit
1040 W. Georgia St, Suite 1160 Vancouver BC V6E 4H1 Canada Att: John Bradford	01 0801 02 0368 03 0721 04 0711 05 0714	Spec FA/AAS ICP ICP ICP	Kg g/mt ppm ppm ppm	Weight in Kilogram (1 decimal place) W Au (FA/AAS 30g) g/mt G Ag ICP S Cu ICP C Pb ICP L	lt iold iilver Copper .ead	L0 N// N// N// N//	V High A 9999.0 A 5000.00 A 100.0 A 10000 A 10000
Ph://8.327.6540 Em:jbradford@pagetresources.com 2 Paget Resources Corp 1040 W. Georgia St, Suite 1160 Vancouver	06 0730 07 0703 08 0702 09 0732 10 0717	ICP ICP ICP ICP ICP	ppm ppm ppm ppm ppm	Zn ICP Z As ICP A Sb ICP A Hg ICP M Mo ICP M	linc wrsenic wrtimony Wercury Wolydenum	N// N// N// N//	A 10000 A 10000 A 2000 A 10000 A 1000
Canada Att: Brian Booth Em:bbooth@tambomining.com	11 0747 12 0705 13 0707 14 0710 15 0718	ICP ICP ICP ICP ICP	ppm ppm ppm ppm	T1 ICP (Incomplete Digestion) T Bi ICP B Cd ICP C Co ICP C Ni ICP N	hallium Sismuth Cadmium Cobalt Lickel	N// N// N// N//	A 1000 A 2000 A 2000.0 A 10000 A 10000
3 Paget Resources Corp 1040 W. Georgia St, Suite 1160 Vancouver BC V6E 4H1 Canada Att: N. Luckman	16 0704 17 0727 18 0709 19 0729 20 0716	ICP ICP ICP ICP ICP	ppm ppm ppm ppm	Ba ICP (Incomplete Digestion)BW ICP (Incomplete Digestion)TCr ICP (Incomplete Digestion)CV ICP (Incomplete Digestion)VMn ICPM	arium ungsten hromium anadium anganese	N// N// N// N//	A 10000 A 1000 A 10000 A 10000 A 10000 A 10000
Em:nluckman@pagetresources.com	21 0713 22 0723 23 0731 24 0736 25 0726	ICP ICP ICP ICP ICP	ppm ppm ppm %	La ICP (Incomplete Digestion) L Sr ICP (Incomplete Digestion) S Zr ICP (Incomplete Digestion) Z Sc ICP S Ti ICP (Incomplete Digestion) T	anthanum trontium irconium candium itanium	N// N// N// N//	A 10000 A 10000 A 10000 A 10000 A 10.00
	26 0701 27 0708 28 0712 29 0715 30 0720	ICP ICP ICP ICP ICP	% % %	A1 ICP (Incomplete Digestion)ACa ICP (Incomplete Digestion)CFe ICP (Incomplete Digestion)IMg ICP (Incomplete Digestion)MK ICP (Incomplete Digestion)P	luminum alcium ron agnesium otassium	N/# N/# N/# N/#	10.00 10.00 10.00 10.00 10.00 10.00
	31 0722 32 0719	ICP ICP	% %	Na ICP (Incomplete Digestion) S P ICP P	odium hosphorus	N/# N/# //	10.00
						U	

BC Certified Assayer: David Chiu

Signature: David Chiu

Client : Paget Resour Project: JD	rces Corp Ship#	55	5 Samp	les 55=Rock	3=Re	epeat	1=B1k	iPL	1=Std	iPL [[364615]	1202800	91008001	Print: S 1] In: /	Sep 10, Aug 06,	2008 2008	Pa Se	ge ction	1 of 2 1 of 2
Sample Name	Туре	Wt Kg	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	l Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm
152252 152253 152254 152255 152256	Rock Rock Rock Rock Rock Rock	1.1 2.8 1.7 2.6 1.8	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 0.1 <0.1	95 157 39 209 142	<2 <2 <2 <2 <2 <2 <2 <2	13 29 35 93 50	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5	୍ୟ ୧୯ ୧୯ ୧୯ ୧୯	178 214 29 6 25	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	4 6 6 21 7	3 4 5 7 5	25 47 55 97 69	<5 <5 <5 <5 <5	97 68 54 32 52
152257 152258 152259 152260 152261	Rock Rock Rock Rock Rock	4.0 3.0 1.2 2.4 1.9	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 0.5 <0.1 <0.1 <0.1	185 314 110 35 134	<2 <2 <2 <2 <2 <2	46 53 44 53 64	<5 <5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	210 501 10 34 6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	8 7 22 5 11	5 5 9 8 8	51 50 50 90 137	<5 <5 <5 <5	65 78 43 55 64
152262 152263 152264 152265 152266	Rock Rock Rock Rock Rock	2.0 4.3 2.2 1.6 1.7	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	154 58 57 86 23	<2 <2 <2 <2 <2 <2	39 48 46 43 40	<5 <5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	10 3 925 311	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	7 17 9 16 9	6 14 7 14 6	178 215 69 131 29	<5 <5 <5 <5 <5	59 56 47 64 53
152267 152268 152269 152270 152271	Rock Rock Rock Rock Rock	2.5 2.4 1.5 1.8 1.3	<0.01 <0.01 <0.01 0.01 <0.01	<0.1 <0.1 <0.1 <0.1 0.1	62 22 9 69 19	<2 <2 <2 <2 <2 <2	21 42 <1 108 36	<5 <5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	118 33 13 4 4	<10 <10 <10 <10 <10	<2 <2 <2 3 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	5 4 2 6 2	1 4 3 7 2	47 29 2 64 437	<5 <5 <5 <5 <5	39 62 185 31 48
152272 152273 152274 152275 152276	Rock Rock Rock Rock Rock	2.2 2.1 2.0 1.9 1.8	<0.01 <0.01 <0.01 <0.01 0.05	<0.1 <0.1 0.3 <0.1 5.8	6 4 830 13 3266	<2 <2 5 <2 12	<1 3 6 46 63	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	1 5 2 1 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1 2 13 19	2 2 13 13	73 183 32 10 9	<5 <5 <5 <5 <5	103 82 96 142 39
152277 152278 159532 159533 159534	Rock Rock Rock Rock Rock	2.3 1.2 1.9 2.1 2.0	0.23 0.02 <0.01 <0.01 <0.01	68.9 <0.1 <0.1 <0.1 <0.1	3.04% 154 138 59 163	224 <2 <2 <2 <2 <2	133 24 138 106 44	25 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	2 1 2 2 18	<10 <10 <10 <10 <10	4 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	8 35 28 10	4 11 25 36 7	42 11 480 36 130	<5 <5 <5 <5 <5	81 118 43 99 78
159535 159536 159537 159538 159539	Rock Rock Rock Rock Rock	2.0 1.5 1.2 1.9 1.0	0.01 <0.01 0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	69 8 7 5 2	8 4 330 <2 14	76 1 2 1 1	<5 <5 <5 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	8 7 2 6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	12 1 <1 <1 1	3 2 2 <1 2	42 701 719 1276 489	<5 <5 <5 <5 <5	53 110 109 59 111
159540 159541 159542 159543	Rock Rock Rock Rock	1.2 1.5 1.3 1.2	0.01 0.03 <0.01 0.03	0.2 <0.1 <0.1 <0.1	17 244 27 58	<2 <2 9 <2	4 127 8 17	7 <5 22 <5	<5 <5 <5 <5	<3 <3 <3 <3	43 9 32 7	<10 <10 <10 <10	4 <2 2 8	<0.2 <0.2 <0.2 <0.2 <0.2	3 27 <1 <1	1 2 <1 <1	15 50 102 399	<5 <5 <5 <5	95 17 10 49
Minimum Detection Maximum Detection Method ————No Test Ins=Insufficie	9 ent Sample Del=Delay M	N/A 999.0 50 Spec 1 Iax=No Est	N/A 000.00 1 A/AAS imate Rec	N/A .00.0 1 ICP =ReChec	N/A 0000 10 ICP k m=x1	N/A 0000 1 ICP 000 %=	N/A 0000 10 ICP Estimate	N/A 0000 ICP % NS=	N/A 2000 1 ICP No Samp	N/A 0000 ICP le	N/A 1000 ICP	N/A 1000 ICP	N/A 2000 ICP	N/A 2000.0 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 1000 ICP	N/A 10000 ICP

Client : Paget Resources Corp Project: JD	Sh	ip#	55 \$	Sampl	es 5=Rock	3=Re	epeat	1=B1k iP	L 1=	Std iPL	[36461	51202800	P 91008001	rint: Sep 10, In: Aug 06,	2008 2008	Page Section	1 of 2 2 of 2
Sample Name	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %			
152252 152253 152254 152255 152256	16 45 42 141 59	74 230 282 702 450	12 13 19 48 19	15 19 22 49 15	<1 <1 1 2 1	<1 3 4 4 4	0.01 0.05 0.05 0.23 0.07	0.32 0.72 0.78 2.13 0.93	0.07 0.07 0.12 0.73 0.17	1.59 1.62 2.16 5.59 2.11	0.20 0.62 0.66 1.26 0.70	0.12 0.22 0.33 0.98 0.34	0.03 0.04 0.06 0.15 0.05	0.01 0.01 0.04 0.15 0.05			
152257 152258 152259 152260 152261	45 32 68 45 65	347 341 275 327 465	18 18 23 19 21	20 11 77 47 15	1 <1 1 3 <1	3 2 3 3 6	$\begin{array}{c} 0.05 \\ 0.03 \\ 0.17 \\ 0.05 \\ 0.16 \end{array}$	0.77 0.67 1.15 1.18 1.32	0.19 0.22 1.15 0.10 0.22	2.05 2.07 2.91 1.81 2.44	0.63 0.54 0.32 0.65 0.86	0.24 0.19 0.06 0.32 0.70	$0.05 \\ 0.04 \\ 0.13 \\ 0.04 \\ 0.06$	0.03 0.03 0.14 0.05 0.05			
152262 152263 152264 152265 152266	47 119 57 104 35	301 397 392 331 292	17 28 21 29 20	22 106 21 74 75	1 <1 1 <1 4	3 3 4 2 2	$\begin{array}{c} 0.09 \\ 0.19 \\ 0.09 \\ 0.16 \\ 0.04 \end{array}$	0.98 2.08 0.98 1.48 0.93	0.13 1.16 0.22 0.75 0.24	2.07 3.43 2.37 3.47 2.58	0.69 1.10 0.79 0.88 0.70	0.35 0.77 0.42 0.70 0.03	0.04 0.20 0.07 0.12 0.05	0.04 0.11 0.05 0.09 0.04			
152267 152268 152269 152270 152271	43 43 <1 59 64	234 318 21 581 217	23 17 <2 67 21	9 18 <1 56 51	10 2 <1 22 9	3 3 <1 2 5	0.08 0.10 <0.01 0.02 0.05	0.73 0.95 0.01 1.86 1.25	0.05 0.08 <0.01 0.05 0.07	1.63 1.84 0.30 7.59 1.79	0.38 0.72 <0.01 2.05 0.61	0.23 0.06 <0.01 0.50 0.64	0.04 0.04 0.01 0.02 0.05	0.02 0.04 <0.01 0.07 0.08			
152272 152273 152274 152275 152276	7 24 <1 45 90	14 111 455 630 1195	4 13 13 14 25	17 93 21 60 104	1 <1 4 <1 2	<1 1 <1 1 2	<0.01 <0.01 <0.01 0.02 0.13	0.15 0.51 0.25 1.07 1.56	0.01 0.01 0.99 0.45 1.80	0.29 1.07 0.33 1.49 2.90	<0.01 0.05 0.04 1.04 1.67	$\begin{array}{c} 0.01 \\ 0.03 \\ 0.14 \\ 0.03 \\ 0.01 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.03 \end{array}$	0.01 0.10 0.01 0.02 0.09			
152277 152278 159532 159533 159534	3 40 199 123 49	1184 632 1532 1280 516	29 11 60 48 23	4 103 54 57 15	<1 <1 <1 <1 3	<1 2 4 4 4	<0.01 0.03 0.19 0.17 0.09	1.38 0.80 3.07 2.63 0.96	0.23 3.44 3.20 2.54 0.26	3.58 1.20 6.81 5.36 2.02	0.88 0.61 3.20 2.78 0.67	0.05 0.03 <0.01 0.17 0.26	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.06 \end{array}$	0.01 0.04 0.14 0.12 0.04			
159535 159536 159537 159538 159539	59 7 12 3 2	514 13 16 9 11	39 6 12 3 9	20 63 135 27 77	10 6 2 1 5	4 <1 <1 <1 <1	0.12 <0.01 <0.01 <0.01 <0.01	$1.07 \\ 0.14 \\ 0.14 \\ 0.10 \\ 0.15$	0.33 <0.01 0.01 0.01 0.01	3.85 0.57 0.86 0.32 0.59	0.74 <0.01 <0.01 <0.01 <0.01	0.32 0.01 0.01 0.01 0.05	0.05 0.02 0.01 0.01 0.02	0.10 0.02 0.03 0.01 0.06			
159540 159541 159542 159543	2 84 22 21	10 641 3 7	19 55 45 100	6 153 102 8	32 17 9 <1	<1 4 <1 <1	<0.01 0.17 0.01 <0.01	0.08 4.57 0.22 0.09	<0.01 1.28 <0.01 <0.01	2.54 6.26 5.77 14%	<0.01 2.01 <0.01 <0.01	0.07 1.86 0.42 0.01	0.01 0.36 0.07 0.01	0.01 0.13 0.05 0.04			
Minimum Detection Maximum Detection Method ————————————————————————————————————	N/A 10000 1 ICP Del=Dela	N/A L0000 1 ICP ay Max=	N/A .0000 1 ICP =No Estin	N/A 0000 1 ICP nate Rec	N/A 0000 10 ICP =ReChec	N/A 0000 ICP k m=x	N/A 10.00 ICP 1000 %=	N/A 10.00 ICP =Estimate %	N/A 10.00 ICP NS=No	N/A 10.00 ICP Sample	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 5.00 ICP	******		

Client : Paget Resources Project: JD	s Corp Ship#	55	Samp	les 55=Rock	3=Re	peat	1 ≕ Bìk	iPL	1=Std i	PL [3	3646151	2028009	۲ 1008001	Print: Se] In: Au	ep 10, 2 ug 06, 2	2008 2008	Pag Sec	e 2 tion 1:	of 2 of 2
Sample Name	Туре	Wt Kg	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	ד ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm
159544 159545 159546 159451 159452	Rock Rock Rock Rock Rock	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.3 \\ \end{array} $	<0.01 <0.01 0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	80 56 46 12 41	<2 <2 <2 <2 <2 <2 <2	12 80 107 2 42	29 <5 51 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	6 4 6 287 604	<10 <10 <10 <10 <10 <10	3 <2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<1 19 24 2 7	<1 40 7 3 5	347 58 23 10 76	<5 <5 <5 <5 <5	10 92 40 195 105
159453 159454 159455 159456 159457	Rock Rock Rock Rock Rock	1.6 1.8 1.5 1.0 1.5	<0.01 <0.01 0.02 0.02 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	37 186 104 30 79	<2 <2 <2 <2 <2 <2	57 60 48 115 71	<5 36 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	6 3 5 3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	8 21 24 11 21	8 11 8 2 4	35 51 22 32 42	<5 <5 <5 <5	55 23 24 30 26
159458 159459 159460 159461 159462	Rock Rock Rock Rock Rock	2.2 1.8 1.4 1.6 1.8	0.05 0.05 0.61 <0.01 <0.01	<0.1 <0.1 95.9 <0.1 <0.1	571 179 4.61% 84 56	<2 <2 354 <2 <2	88 91 90 210 294	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	2 2 22 2 3	<10 <10 <10 <10 <10	<2 2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	14 3 15 20 12	4 4 13 2 2	50 109 36 59 73	<5 <5 <5 <5	32 17 36 25 30
159463 RE 152252 RE 152271 RE 159544 Blank iPL	Rock Repeat Repeat Repeat B1k iPL	2.3	0.03 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	26 97 18 79	<2 <2 <2 <2	5 14 37 10	<5 <5 30	<5 <5 <5 <5	<3 <3 <3 <3	3 184 4 6	<10 <10 <10 <10	<2 <2 <2 3	<0.2 <0.2 <0.2 <0.2	12 4 2 <1	3 4 2 <1	11 25 432 363	<5 <5 <5 	62 101 48 9
OXI67 OXI67 REF	Std iPL Std iPL		1.82 1.82								ananan Ananan								
Minimum Detection																			
Maximum Detection Method ————————————————————————————————————	99 Sample Del=Delay M	N/A 999.0 5 Spec ax=No Est	N/A 000.00 FA/AAS timate Re	N/A 100.0 1 ICP c=ReChec	N/A 0000 10 ICP k m=x1	N/A 0000 1 ICP 000 %=	N/A .0000 1 ICP =Estimate	N/A 0000 ICP % NS=	N/A 2000 1 ICP No Samp	N/A 0000 ICP le	N/A 1000 ICP	N/A 1000 ICP	N/A 2000 ICP	N/A 2000.0 ICP	N/A 10000 1 ICP	N/A 10000 1 ICP	N/A LOOOO ICP	N/A 1000 1 ICP	N/A .0000 ICP

(SO 9901:2000	
ANT ANNO 100	
Contractor	
(AND DESCRIPTION	
In Grave	
(and a second s	

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipl.ca

Client : Paget Resources Corp Project: JD	SI	hip#	55	Samp	oles 55=Rock	. 3=R	epeat	1=81k i	PL 1=	Std iPL	[3646]	151202800	P 91008001	rint: Sep 10] In: Aug 06), 2008 5, 2008	Page Section	2 of 2 1 2 of 2
Sample Name	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %	,		
159544 159545 159546 159451 159452	17 82 129 <1 39	3 684 624 42 358	68 31 61 3 20	30 41 253 20 28	5 7 4 <1 <1	<1 6 4 <1 3	<0.01 0.10 0.16 <0.01 0.07	0.26 1.94 2.57 0.08 0.82	0.01 1.20 1.10 0.02 0.15	6.69 3.39 6.18 0.34 2.41	<0.01 1.60 1.28 0.03 0.58	0.20 0.08 0.91 0.02 0.32	0.04 0.07 0.28 0.01 0.06	0.08 0.08 0.10 <0.01 0.04			
159453 159454 159455 159456 159457	32 66 39 16 114	348 808 449 266 664	21 55 61 54 45	25 235 75 6 112	5 <1 <1 16 4	3 2 1 <1 2	0.01 <0.01 <0.01 <0.01 0.22	1.07 2.37 1.41 1.13 2.07	0.15 0.53 0.40 0.07 1.40	2.31 4.42 7.85 6.15 4.68	0.70 1.09 0.75 0.90 1.27	$0.06 \\ 0.12 \\ 0.14 \\ 0.16 \\ 0.06$	0.04 0.10 0.05 0.01 0.13	0.06 0.17 0.14 0.08 0.22			
159458 159459 159460 159461 159462	108 76 123 129 109	583 261 15 1145 1128	38 67 18 64 48	74 66 38 53 58	3 <1 1 1 <1	3 5 9 3 4	0.22 <0.01 <0.01 0.04 0.03	1.63 3.44 2.55 2.59 2.82	1.23 0.15 0.20 0.30 0.34	4.55 7.67 1.50 8.38 5.94	$0.61 \\ 1.05 \\ 0.02 \\ 1.04 \\ 1.13$	0.12 0.07 0.06 0.06 0.06	$\begin{array}{c} 0.15 \\ 0.10 \\ 0.04 \\ 0.05 \\ 0.06 \end{array}$	0.21 0.14 0.25 0.12 0.15			
159463 RE 152252 RE 152271 RE 159544 Blank iPL	6 18 63 17	10 80 215 3	24 13 20 63	43 17 51 31	<1 <1 8 5	<1 <1 5 <1	<0.01 0.01 0.05 <0.01	0.28 0.33 1.32 0.26	0.04 0.07 0.07 0.01	3.54 1.56 1.83 6.54	<0.01 0.19 0.63 <0.01	0.06 0.13 0.61 0.20	0.05 0.03 0.05 0.04	0.01 0.01 0.08 0.08			
OXI67 OXI67 REF																	
Inimum Detection Aximum Detection Acthod	N/A 10000 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 10000 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 10.00 ICP	N/A 5.00 ICP			

1		
INTERN	ATIONAL PLAS	MA LABS LTD

CERTIFICATE OF ANALYSIS iPL 08H3685

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 272-7818 Fax (604) 272-0851 Website www.ipl.ca

Paget Resources Corp		29	Sample	es Print: Sep 05, 2008 In:	Aug 07, 2008	[368517:40	0:25:80090508:001]
Project : None Given Shipper : Tony Barresi Shipment: PO#: Comment:	CODE B21100 B84100 B82101	AMOUNT 29 2 1	TYPE Rock Repeat Blk iPL	PREPARATION DESCRIPTION crush, split & pulverize to -150 m Repeat sample - no Charge Blank iPL - no charge. Std iPL (Au Certified) - no charge	nesh.	1] (PULP REJECT L2M/Dis 03M/Dis L2M/Dis 00M/Dis)0M/Dis 00M/Dis
	890020	1	Stu IPL		NS=No Sample	Rep=Replicate M=N	1onth Dis=Discard
	Ana Ana	alytical lysis: AU	Summai (FA/AAS)	ry)/ ICP(AqR)30			
Document Distribution	## Code	Method	Units	Description	Element	Limit	Limit
1 Paget Resources Corp 1040 W Georgia St Suite 1160	01 0801	Spec	Kg	Weight in Kilogram (1 decimal plac	ce) Wt	LOW 0.1	9999.0
Vancouver	02 0368	FA/AAS	g/mt	Au (FA/AAS 30g) g/mt	Gold Silver	0.01	100.0
BC V6E 4H1 Canada	04 0711	ICP	ppm	Cu ICP	Copper	1	10000 10000
Att: John Bradford Ph:778.327.6540	05 0714	ICP	ppm	PD ICP	Ledu	1	10000
Em:jbradford@pagetresources.com	06 0730		ppm	Zn ICP As ICP	Arsenic	1 5	10000
2 Paget Resources Corp	08 0702	ICP	ppm	Sb ICP	Antimony	5	2000 10000
1040 W. Georgia St, Suite 1160 Vancouver	10 0732	ICP	ppm	Mo ICP	Molydenum	1	1000
BC V6E 4H1	11 0747	ICP	ppm	T1 ICP (Incomplete Digestion)	Thallium	10	1000
Att: Brian Booth	12 0705		ppm	Bi ICP Cd ICP	Bismuth Cadmium	0.2	2000.0
Em:bbooth@tambomining.com	14 0710	ICP	ppm	Co ICP	Cobalt	1	10000 10000
3 Paget Resources Corp	15 0/18	ICP	ppm		Destine	-	10000
1040 W. Georgia St, Suite 1160	16 0704	ICP	ppm maa	Ba ICP (Incomplete Digestion) W ICP (Incomplete Digestion)	Tungsten	5	1000
BC V6E 4H1	18 0709	ICP	ppm	Cr ICP (Incomplete Digestion)	Chromium Vanadium	1	10000
Canada Att: N. Luckman	20 0716	5 ICP	ppm	Mn ICP	Manganese	1	10000
Ph:778.327.6540 Em:nluckman@pagetresources.com		B ICP	ppm	La ICP (Incomplete Digestion)	Lanthanum	2	10000
	22 0723	B ICP	ppm	Sr ICP (Incomplete Digestion) 7r ICP (Incomplete Digestion)	Zirconium	1	10000
	24 0736	5 ICP	ppm	Sc ICP Ti ICP (Incomplete Digestion)	Scandium Titanium	$1 \\ 0.01$	10000 10.00
	25 0/20		10	Al LOD (Incomplete Digestion)	Aluminum	0.01	10.00
	26 070	L ICP 3 ICP	% %	Ca ICP (Incomplete Digestion) Ca ICP (Incomplete Digestion)	Calcium	0.01	10.00
	28 0712		% %	Fe ICP (Incomplete Digestion)	Iron Magnesium	0.01	10.00
	30 0720	D ICP	%	K ICP (Incomplete Digestion)	Potassium	0.01	10.00
	31 072	2 ICP	%	Na ICP (Incomplete Digestion)	Sodium Phosphorus	$0.01 \\ 0.07$	10.00
	32 0/19	9 ICP	%	r 10r	i nospitoi us	1 ° 1	
					Letter J Aggarger Davi		7
* Our liability is limited solely to the analytical cost of these analyses.				всс	eruneu Assayer: Davi	I IIII PAL	
					Signature:		

(150 9081.20	200
		18.
	TIPIC N	in the second se
	Interne	3
4 ₇₅		

Client : Paget Resources Corp Project: None Given Ship#		29	29 Samples 29=Rock			epeat	1=Blk iPL		1=Std iPL		3685174()258009	Print: Sep 05, 2 508001] In: Aug 07, 2			2008 2008		e 1 tion 1	of 1 of 2
Sample Name	Туре	Wt Kg	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm
152301 152302 152303 152308 152309	Rock Rock Rock Rock Rock Rock	$1.2 \\ 1.5 \\ 1.5 \\ 1.0 \\ 1.6$	0.01 0.01 <0.01 0.01 0.02	0.2 2.2 0.2 0.3 1.5	327 322 205 11 1409	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	38 44 29 1 95	<5 <5 <5 6 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	170 37 2 15 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	8 9 23 2 38	6 8 21 2 45	39 22 34 667 108	<5 <5 <5 <5 <5	49 77 34 78 37
152310 152311 152312 152313 152314	Rock Rock Rock Rock Rock Rock	1.2 1.0 1.0 1.2 1.5	0.01 0.02 0.08 0.10 <0.01	<0.1 2.1 2.7 18.5 <0.1	122 2147 3615 2.08% 104	<2 12 22 207 <2	5 10 7 143 35	<5 <5 <5 <5 <5	<5 <5 <5 <5	ଏ ଏ ଏ ଏ ଏ	1 <1 <1 2 4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	3 4 4 25 5	3 4 23 5	15 40 16 24 50	<5 <5 <5 <5	115 99 58 40 34
152315 152316 152317 152318 152319	Rock Rock Rock Rock Rock Rock	1.8 1.3 2.2 1.5 1.6	0.01 0.01 <0.01 <0.01 <0.01	2.3 <0.1 0.4 <0.1 <0.1	2455 16 126 77 13	14 <2 <2 <2 <2	16 57 6 198 8	<5 5 5 5 5 5 5 5	<5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~ ~	1 2 4 3 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3 14 4 18 2	4 4 2 10 3	12 107 37 45 48	<5 <5 <5 <5	127 53 41 42 138
152320 152321 152322 152323 152323 152324	Rock Rock Rock Rock Rock Rock	1.0 1.9 1.4 1.2 1.3	<0.01 0.01 0.02 <0.01	0.3 <0.1 <0.1 <0.1 <0.1	13 80 113 6 23	<2 <2 <2 <2 <2 <2	5 86 68 42 118	<5 <5 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	3 5 3 2 9	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2 19 30 7 18	<1 12 28 8 15	26 33 38 49 55	<5 <5 <5 <5	23 37 58 30 45
159406 159407 159408 159409 159410	Rock Rock Rock Rock Rock Rock	2.7 2.3 1.8 2.2 2.9	0.01 <0.01 0.01 0.01 <0.01	0.1 <0.1 <0.1 0.2 <0.1	91 42 13 19 2	<2 <2 4 5 6	64 40 2 3 <1	<5 8 <5 <5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	3 7 3 30 3	<10 <10 <10 <10 <10	<2 <2 <2 2 2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	12 5 3 5 2	4 2 2 <1	102 27 39 61 1153	<5 <5 <5 <5 <5	40 26 116 46 68
161801 161802 161803 161804 RE 152301	Rock Rock Rock Rock Repeat	2.1 2.0 2.1 2.1	0.04 <0.01 <0.01 <0.01 0.01	71.0 0.5 <0.1 <0.1 0.3	7.57% 152 155 126 333	1053 179 <2 <2 <2	316 123 25 79 39	316 <5 71 12 <5	369 <5 <5 <5 <5	<3 <3 <3 <3 <3	6 6 3 4 177	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2 9 26 26 8	5 2 6 8 6	14 22 38 33 40	<5 <5 <5 <5	128 22 65 11 52
RE 152324 Blank iPL OXI67 OXI67 REF	Repeat Blk iPL Std iPL Std iPL		<0.01 <0.01 1.82 1.82	<0.1	24 	<2 	117 	<5 	<5 	<3 	10 	<10 	<2 	<0.2 	18 	15 	55 	<5 	46
Minimum Detection Maximum Detection Method —=No Test Ins=Insufficient Sa	9 ample Del=Delay N	0.1 9999.0 5 Spec Max=No Es	0.01 000.00 FA/AAS timate Re	0.1 100.0 ICP c=ReChe	1 10000 1 ICP ck m=x1	2 .0000 : ICP 1000 %	1 10000 1 ICP =Estimate	5 .0000 ICP % NS=	5 2000 1 ICP =No Samp	3 .0000 ICP Ie	1 1000 ICP	10 1000 ICP	2 2000 ICP	0.2 2000.0 ICP	1 10000 1 ICP	1 10000 ICP	2 10000 ICP	5 1000 1 ICP	1 .0000 ICP

ISO 9001:2000	
CHATIFICS STOT	
Intertek	

Client : Paget Resources Corp Project: None Given	Ship#		29 Samples 29=Rock			2=Repeat		1=Blk iP	L 1=S	1=Std iPL		74025800	P 90508001	Print: Sep 05, 2008 .] In: Aug 07, 2008		Page Section	1 of 1 2 of 2	
Sample Name	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %				
152301 152302 152303 152308 152309	53 38 50 <1 89	282 227 176 8 1175	17 30 23 3 37	22 12 66 5 61	<1 <1 1 5 1	4 3 2 <1 3	0.06 0.06 0.15 <0.01 0.16	0.83 0.53 0.89 0.01 3.07	0.14 0.07 0.85 0.01 1.50	2.25 4.10 3.25 0.48 4.00	0.72 0.49 0.42 <0.01 3.35	0.34 0.18 0.14 <0.01 0.08	0.06 0.04 0.11 0.01 0.04	0.01 0.02 0.13 <0.01 0.18				
152310 152311 152312 152313 152314	37 23 44 64 18	217 207 327 1730 256	9 6 11 36 17	131 34 400 40 9	2 1 3 <1 3	2 1 3 2 <1	0.04 0.04 0.12 0.06 0.01	0.63 0.24 0.71 1.57 0.96	1.44 0.23 5.38 0.90 0.09	0.76 0.70 0.73 3.75 2.06	$0.07 \\ 0.14 \\ 0.05 \\ 1.46 \\ 0.60$	0.02 0.05 0.01 0.07 0.07	$\begin{array}{c} 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.03 \end{array}$	0.07 0.02 0.11 0.12 0.05				
152315 152316 152317 152318 152319	5 115 11 236 27	95 756 22 990 58	8 21 27 78 16	2 123 20 86 19	<1 <1 19 <1 <1	<1 2 <1 10 <1	<0.01 0.12 0.02 0.04 0.01	0.14 2.08 0.36 3.64 0.24	0.03 1.55 0.02 0.09 0.03	0.62 2.57 2.39 9.78 2.08	0.08 0.88 0.07 2.71 0.10	0.04 0.64 0.32 0.09 0.12	0.01 0.15 0.06 0.05 0.07	0.01 0.09 0.03 0.06 0.02				
152320 152321 152322 152323 152324	8 141 85 195 114	27 587 304 138 920	14 46 59 69 54	19 160 260 9 54	11 3 6 <1 1	<1 9 3 5 2	<0.01 0.02 0.03 0.08 0.29	0.46 6.32 2.87 1.57 2.31	0.01 2.73 0.31 0.01 0.54	1.40 6.22 8.34 9.83 6.50	0.11 1.97 0.97 1.27 2.56	0.19 0.47 0.21 0.97 0.28	0.05 0.62 0.08 0.02 0.04	0.03 0.12 0.09 0.13 0.14				
159406 159407 159408 159409 159410	49 21 2 7 <1	290 196 14 5 7	31 35 11 23 <2	61 9 12 32 10	14 12 6 11 6	3 2 <1 <1 <1	0.08 <0.01 <0.01 <0.01 <0.01	2.03 1.43 0.11 0.27 0.01	0.35 0.14 0.01 0.01 <0.01	3.11 4.46 0.63 2.11 0.15	0.87 0.38 0.01 0.01 <0.01	0.60 0.11 0.10 0.17 0.01	$0.10 \\ 0.01 \\ 0.02 \\ 0.10 \\ 0.01$	0.08 0.11 0.01 0.01 <0.01				
161801 161802 161803 161804 RE 152301	<1 9 31 40 55	213 1336 1165 950 289	54 38 28 61 18	<1 51 73 48 22	2 9 2 <1 <1	<1 <1 2 3 4	<0.01 <0.01 <0.01 <0.01 0.06	0.01 0.53 0.71 1.88 0.86	<0.01 1.82 5.09 2.70 0.15	7.41 4.57 3.29 7.27 2.33	<0.01 0.32 0.72 1.53 0.75	<0.01 0.16 0.02 0.11 0.34	$0.01 \\ 0.04 \\ 0.01 \\ 0.05 \\ 0.06$	<0.01 0.17 0.05 0.14 0.01				
RE 152324 Blank iPL OXI67 OXI67 REF		913 	53 	55 	1 	2	0.32	2.50	0.56 	6.97 	2.74	0.27	0.04	0.14				
Minimum Detection Maximum Detection 1 Method ————————————————————————————————————	1 10000 1 ICP	1 10000 1 ICP	2 0000 1 ICP	1 0000 1 ICP	1 0000 10 ICP	1 0000 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP Sample	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP				