BC Geological Survey Assessment Report 30595a

REPORT ON

THE 2008 EXPLORATION PROGRAM ON THE TODD CREEK PROPERTY SKEENA MINING DIVISION, STEWART GOLD CAMP, NORTHWESTERN BRITISH COLUMBIA

LATITUDE 56° 15' NORTH

LONGITUDE 129° 46' WEST

NTS 104 A/5, 104 A/4

BY

GEOFINE EXPLORATION CONSULTANTS LTD.

AND

INTUITIVE EXPLORATION INC.

BOOK 1 OF 2: REPORT & SCHEDULES A, B, C

FEBRUARY 2009

REPORT ON

THE 2008 EXPLORATION PROGRAM

ON THE TODD CREEK PROPERTY

RECEIVE SKEENA MINING DIVISION, FEE 2 7 2009 STEWART GOLD CAMP, Gold Commissioner's Office VANCOUVER NORTHWESTERN BRITISH COLUMBIA

LATITUDE 56° 15' NORTH

LONGITUDE 129° 46' WEST

NTS 104 A/5, 104 A/4

BY

GEOFINE EXPLORATION CONSULTANTS LTD.

AND

INTUITIVE EXPLORATION INC.

FEBRUARY 2009

FRONTSPIECE PHOTO 1:

LOOKING SOUTH FROM SOUTH ZONE TO MYLONITE WITH VMS HORIZONS AND MINERALIZATION

LOOKING SOUTH AT NEWLY DISCOVERED VMS EXHALITIVE HORIZONS, SOUTH ZONE DEPOSIT (207,000t GRADING 5.48 g/t Au), MYLONITE ZONE AND VMS FEEDER ZONE: TODD CREEK PROJECT

FRONTSPIECE PHOTO 2: LOOKING NORTH AT YELLOW BOWL, KNOB AND ORANGE MOUNTAIN TARGET AREAS (OMTA)

DDHTC08-02,03

FRONTSPIECE PHOTO 3:

VMS MINERALIZATION: MASSIVE CHALCOPYRITE, SPHALERITE, TRACE GALENA (SAMPLE 427005)

FRONTSPIECE PHOTO 4:

SUMMARY: 2008 TODD CREEK EXPLORATION PROGRAM:

The Todd Creek Property is located in the historic Stewart Gold Camp and straddles the Todd Creek Valley, approximately 35 km northeast of Stewart, Northwestern British Columbia. The Property now comprises 19,467 hectares in 67 mineral tenures, 30 of which (the "Todd Tenures") are registered in the name of Geofine Exploration Consultants Ltd. ("GFX") on behalf of Geofund, a private investment group; and, 37 of which (the "Funk Tenures") are registered in the name of Kelly Brent Funk.

In 2008 Intuitive Exploration Inc. ("NTE") optioned the Todd Tenures from Polar Star Mining Corporation ("POS") and Goldeye Explorations Limited ("GGY"). NTE has the right to earn up to a 70% interest in the entire property by expending \$5 M over a period of five years and by fulfilling escalating option payments and work conditions. The Todd Tenures are subject to a 2.5% NSR; and; the Funk Tenures to a 2% NSR. Both royalties are subject to a buyout.

The Todd Creek Property is located in the Eastern Volcanic Belt of the Stewart Gold Camp and is underlain by the favorable Hazelton Group Jurassic stratigraphy whish hosts most mineralization and significant deposits in the camp. A major structure, the Todd Creek Fault, trends north through the property and numerous occurrences of gold-copper mineralization are located in proximity to it, including the South Zone gold-copper deposit (207,000 t grading 5.48 g Au/t with significant Cu credits; non compliant NI 43-101 resource, Hemlo Gold Mines Annual Report, 1988).

The 2008 field program on the Todd Creek Property was initiated to follow-up positive results from the 2007 exploration program, which indicated that the property had potential for Eskay Creek type VMS and Au-Cu porphyry mineralization. The 2008 work was carried out from June 15 to October 31, 2008 by NTE geological staff and consultants, including Bob Perry, Vice President Exploration, NTE and supported by Geofine Exploration Consultants Ltd ("GFX") including David Molloy P.Geo. (APGO, APEGBC) and David Kennedy P.Geo. (APEGBC).

Project expenditures including initiation and overhead total about \$2.2 M and are shown by exploration category in Table E1. The work was carried out under BC Work Permit Number 0101265 and Mine No. MX-1-583 and included the interpretation of the EM data from the historic Aerodat 1994 airborne survey by JVX (2008); the digitizing and compilations of aspects of the historical data base; the permitting process including consultations with First Nations; the monitoring of field and avalanche conditions; construction of the exploration camp; grid installation and restoration (~6.5 km of geophysical grid, base, tie, drill lines and access lines); heliphotos and structural interpretations; geological and geochemical surveys (1041 rock and check samples; 23 stream sediment samples); mass spectrometer scans (261 samples); geophysical surveys (~66 km of

mag, 6.2 km of gradient IP); drill hole spotting, topographic and GPS surveys; diamond drilling (2582.62 m in 8 holes); core logging, sampling and additional sampling of core from three 2007 holes (a total of 1920 core and check samples); and, reclamation activities.

The work included the field and data review of the exploration status of the property and the preparation of a NI 43-101 report prepared by Dr. Mark Fedikow (2008) entitled *NI 43-101 Technical Report: Geology, Mineralization and Exploration of The Todd Creek Property, Northwestern British Columbia.* The project was also reviewed on 2 occasions in the field by staff of the BC Ministry of Energy, Mines and Petroleum Geologists, including Paul Wojdak, P.Geo. and JoAnne Nelson, P.Geo.

In view of the corporate reorganization of NTE in the fall of 2008, analytical results have been received to date for only 673 rock, core, and check samples from ALS Chemex Laboratories in Vancouver ("Chemex"). Most of the analytical results (1860) were put on hold at the lab; and, 445 of the rock samples and 6 stream samples were not shipped to the lab. Once the company is restructured in early 2009, it plans to have the results released by Chemex, submit the remaining samples and then compile the full 2008 data base.

In spite of the unavailability of 2311 analytical results for samples collected during the 2008 program at the time of report preparation, it is concluded that the 2008 exploration program as summarized below has significantly advanced the exploration status of the Todd Creek Property. The program has discovered substantial evidence of a large volcanogenic massive sulfide environment (Frontspiece Photos 1-4), which has been traced over a strike length of more than 7 km. The evidence includes the VMS stratigraphy intersected in three 2008 drill holes (DDHTC08-03 on the South Zone: -06 on the Knob Zone; and, -08 on the Mylonite Zone); massive sulfide mineralization in the Feeder Zone on the VMS Zone; multiple exhalite horizons at the Mylonite, South and Yellow Bowl Zones; and, the airborne EM anomalies interpreted south and north of the Knob Zone. The BC Government geologists referenced above have confirmed the favorable VMS environment, which is located in proximity to the Todd Creek fault and is postulated to extend from beyond the Knob Zone in the north to beyond the Mylonite Zone in the south (Frontspiece Photos 1, 2).

Samples of the VMS discovery mineralization from the Feeder Zone (Frontspiece Photo 3) returned initial assays up to 45.3 g Ag/t, 1.7% Cu and 7.1% Zn. Additional prospective ground on the east side of the Todd Creek Property was optioned (the Funk Tenures) to cover the apparent along strike extension of the feeder mineralization and the postulated main VMS depositional area, bringing the total land position to nearly 20,000 hectares. A large VMS target is interpreted based on the extent of the banded sulfide boulder train north of the Feeder Zone.

Core drilling in 2008 at the South Zone gold-copper deposit (the "SZD") returned an interval of 1.73 g Au/t and 0.26% Cu over a 17.36 m core length in DDHTC08-01. Assays have not been received for the bottom portion of that first hole or the seven additional holes from the \sim 2,582 meter program. Historic drilling at the South Zone has returned a number of strong intercepts, including 8.62 g Au/t

and 0.45% Cu over 11.7 m. Subsequent drilling at the South Zone in 2008 encountered VMS-style stratigraphy in DDHTC08-03 at a vertical depth of about 260 m, for which assays remain on hold. The SZD remains open at depth and particularly to the north, where an auriferous oxide phase of the mineralization (specularite) appears to have a magnetite signature. The magnetic anomaly has been partially delineated up to 2 km north of the northernmost historic MEXT drill holes (assays up 2.07 g Au/t, 0.15% Cu over 9.12 m in DDHMZ07-01; and, 1.06 g Au/t and 0.09 % Cu over 13.59 m in DDHMZ06-02). Project geologists have interpreted the South Zone deposit as occupying an important structural intersection that may also constitute a feeder to VMS stratigraphy and a conduit for later crosscutting epithermal or porphyry-related Au-Cu mineralization. As interpreted from heli photos, there is evidence that a felsic dome could be located to the west of the South Zone deposit.

The Todd Creek Property is located in the favorable Eastern Volcanic Belt of the Stewart Gold Camp that also hosts the Red Mountain deposit about 30 km to the south. The belt is thought to have the same potential for the diversity of deposits found in the much more intensely explored Western Belt that hosts the historic Silbak Premier Mine and Pinnacle's Silver Coin deposit. The Todd Creek Property is also located in the southeast area of Kerr-Sulphurets-Mitchell Au-Cu porphyry trend and that target type is also apparent on the Todd Creek Property e.g., on the Yellow Bowl Zone. Gold and gold-base metal drill targets associated with other potential VMS environments (Fall Creek, Orange Mountain) are apparent on the Todd Creek Property and they remain to be further evaluated and prioritized along with all the other targets, when all the analytical results from the 2008 program are available.

Based on the newly discovered VMS environment and the favorable geological/structural setting that currently includes a number of auriferous targets ready for drill testing e.g., South/MEXT Zone, Fall Creek 197 Zone, a detailed follow-up 2009 exploration program is recommended (Table E2). The proposed program would total about \$3.4 M and comprise 2 phases of exploration. Phase 1 activities would total about \$400,000 and would include obtaining the 1860 assays currently on hold at Chemex for the rock, stream and core samples; and, the analysis of the 451 additional rock and stream sediment samples stored in a secure Geofine facility in Stewart. The results would be compiled and integrated with the historic data base.

In order to thoroughly evaluate the large VMS environment discovered in 2008 and to conduct a reevaluation of the rest of the favorable geology on the Todd and Funk Tenures, a 1000 line km VTEM airborne electromagnetic/magnetic survey is proposed in the spring of 2009. The Phase 1 work would be supplemented by the initiation of 3D modeling to further delineate and interpret geological and structural controls, particularly in the area of the Fall Creek-Knob-Yellow Bowl-South-VMS-Mylonite Zones. Phase 1 activities would also include additional property acquisitions; and, the permitting process and contract letting for the 2009 program.

Recommended Phase 2 activities would include follow-up ground geophysical surveys, detailed mapping/sampling, and oriented diamond drilling as directed by the results of the Phase 1 program. VTEM anomalies would constitute a high priority follow up target, particularly when located in the interpreted VMS environment. The recommended Phase 2 program would total about \$3 M and would include at least 4000 m of diamond drilling (Table E2).

Feb 25 09					-				CEN
		+							
		-							
			ABL						
TODD CREEK	K 2008 EXPEN	DITURES, I	NW BR	ITISH COLUMBIA					
		JAN 1, 200	98 - DE	CEMBER 31, 2008					
		+ 1					• •• •• •• •• ••		<u>.</u>
							·······		
EXPENDITURE	CODE:	+					EXPENDITURES	TOTALS	GST
									· · · · · · · · · · · · · · · · · · ·
103: FIELD SUP	PLIES:								
	reporting						\$ 647.49		
	core logging	/splitting/bag	s/tarps/b	ox lids			3,643.00		
	drill pad /pic	kets					3,788.00		
	field equip i	incl. 2 core, 2	rock sav	WS			38046.00		
	core & rock	saw blades (f	Pothier () \$400/blade)			5085.00		
	field office/r	eport supplies	\$				3976.00	·····	
	Sleeping bag	s, etc.					\$ 246.13		
	Emergency b	olanket, ear plu	gs etc.				28.50		· · · · ·
	Sleeping bag	s for P. Highs	nith	 			100.59		
	Bob Perry	Sleeping bac	s, etc.				<u>\$ 246.13</u>		· · · · · ·
	Bob Perry	Emergency k	lanket, e	ar plugs, etc.			28.50		
	Bob Perry	Sleeping bag	IS for P. H	fighsmith	4000.4	4 00507	100.59		
	Bob Perry				1290.1	1.03527	1335.60		
	Bob Perry	Garmin GPS	and case	3	1120.42	1.03527	37.69		
	Bob Perry		ar		140.03	1.03527	1179.60		
	Mott Ridwall	Holmot Mat	Ar Bottle		140.93	1.07661	74.50		
	Matt Bidwell	Garmin GPS	60rev		432.39	1.07662	465.52		· · · · · · · · · · ·
	Matt Bidwell	Tripod	00034		21.09	1.07662	22 71		·····
	Matt Bidwell	Keyboard		· · · · · · · · · · · · · · · · · · ·	22.39	1.07661	24.11		
								59218.20	2593.82
107: FEES:				<u> </u>					
	field rates	\$275-\$535/D/	AY		<u>Days</u>	Day rate			
	(1047man	days)		L					
	CGILBERT	9.	5 DAYS	200	8.5	200	1700.00		
	CSMITH	27	DAYS	300	27	300	8100.00		
	C SMITH	1.	5 DAYS 🤅	§ 350	1.5	350	525.00		
	D KENNEDY I	P GEO 15	DAYS	525	15	535	8025.00		
	Geofine (MOL	LOY PGEO, 13	3 DAYS	2 1260)	133	1260	167580.00		
	J CALDER	EQUIP)		<u> </u>					
	JASON	5	DAYS @	400	5	400	2000.00	····· ·· ···	
I	JASON	2	DAYS @ -	425	2	425	850.00		

EXPENDITURE C	ODE:					EXPENDITURES	TOTALS	GST
· · · · · · · · · · · · · · · · · · ·								
	M MOLLOY	46.5 DAYS	@ 300	46.5	300	13950.00		
	R SNOWBALL	56.5 DAYS	@ 350	56.5	350	19775.00		
	TSETSAUT VENTURES	(2 83 DAYS @	367.50	83	367.5	30502.50		
	FEDIKOW RPT PGEO P	ENG REPORT				22373.00		
	WORKERS COMP					2060.00		
	Geofine (MOLLOY PGEO), 26 DAYS 🖉	1260)	26	1260	32760.00		
	J CALDER, EQUIP) in	cl 2008 report						
	M MOLLOY	40 hr @15/h	r data entry	40	15	600.00		
	WORKERS COMP					146.64		
	Geofine (MOLLOY PGEC), 8 DAYS @ 1	260/D D&J (log samples, demob)	8	1260.00	10080.00		
	J CALDER, EQUIP)							
							321027.14	
						·····		
					Cdn \$			
	field rates \$300-\$800	DAY US		Days	Day rate			
-			\$US	↓	@1.08 -	1.245		
	NTE PERSONNEL							
	field rates \$300-\$800	DAY			Days	Day rate		
	NTE PERSONNEL		· · · · · · · · · · · · · · · · · · ·					
	Bob Perry, Geologist		615/DAY	112.75	765.32	86289.88		
	Matt Bidwell, Geologis		535/DAY	101.25	667.5	67685.68		
	Patrick Highsmith, Geo	logist, Pres/N	765/DAY	29	953.39	27648.39		
	Scott Perry, Climber/S	ampler	350/DAY	25.5	394.52	10060.20		
	Greg Perry, Climber/S	ampler	350/DAY	25	394.52	9862.94		
	i							
	CONTRACTORS			L				
	GeoMax/ George Smit	n, Geologist	750/DAY	29.25	842.8	24651.90		
	SR Consulting/ Sando	r Ringhoffer, (525/DAY	21	585.9	12303.90		
	Alaska Earth Sciences	Roy Flynn, C	475/DAY	45.5	573.6	26098.92		·
i	Wave Geophylics/Craig	Beasley, Ge	800/DAY	13,625	837.09	11405.35		
	Perry Remote Sensing	/ Sandy Perry	800/DAY	20	970.6	19412.00		
						<u></u>		
	· · · · · · · · · · · · · · · · · · ·			 			295419.16	
	<u></u>			┥────		<u> </u>		
				·	<u> </u>			· · · · · ·
		·						
				<u> </u>		069.00		· · · · · · · · · · · · · · · · · · ·
JUN 10-OCE 31	rent sat prione, radio	phones	· · · · · · · · · · · · · · · · · · ·			900.00		
Logal	phone/internet field/re	speater renta				3361.00		
Legai			Constitute International (214/00)	4000				
	David L. Thomas		Canadian Immigration (7/4/08)	1800		1800.00		
····	David L. Thomas		Canadian Immigration (7/9/08)	350	1	350.00		
		1	. 2	L .]	1	6699.00	

TABLE E1

T

EXPENDITURE CO	DE:						EXPENDITURES	TOTALS	GST
						i			
109: SUBSISTANCI	E, ACCOMO	DATION:							
	crew meals/	food/grocer	ies/camp (Ave 20 men, 2.0 mo 🕲 \$30/day)		35346.00		
	crew, pad b	uilders, cre	w changes	accomodation in Stewart			4397.00		
·····	(apt rental)	@ \$750/mc	o & \$675/m	o)			· · · · · · · · · · · · · · · · · · ·		
	Jan 09 meet	ing with co	ntractors/re	ntal/copies re 2008 project			2000.00	······································	
						_			
	Alaska Earth	Sciences/R	Motel room	in YT (8/27/08)	77.7	1.245	96.74		
	Alaska Earth	Sciences/R	Motel Room	(9/5/08)	100	1.245	124.50		
	Scott Perry	ļ	1 night hote	& meal in BC	252.35	1.06578	268.95		
	Matt Bidwell		Hotel, meal	s (August)	533.5	1.07661	574.37		
	Matt Bidwell		Hotel, meal	s (July)	429.87	1.07661	462.80		
		ļ							.
		<u> </u>			<u> </u>				
	1							43270.36	
							· · · · · · · · · · · · · · · · · · ·		
111:MOB-DEMOB:							· · · · · · · · · · · · · · · · · · ·		
	within BC						1987.00		
· ;	travel to BC	L					3444.50		
·	Alaska Earth	Vehicle fue	el (7/24/08)		317.28	1.245	395.01		
	Alaska Earth	Vehicle fue	el (8/31/08)		241.94	1.245	301.22		
	Matt Bidwell	Car Rental	& Fuel (Aug	<u>a)</u>	390.25	1.07661	420.15		
· · .	Matt Bidwell	Car Rental	& Fuel (Jul	/)	708.87	1.07661	763.18		
	Matt Bidwell	Ground Tr	ansportation	(July)	170	1.07661	183.02		
	Bob Perry	Car Renta	(Aug)		255.4	1.03527	264.41		
								7758.49	
									<u></u>
115:VEHICLE REN	TAL, ALLOW	ANCE:							
	veh rental/pr	op travel fro	om Stewart				9613.79		
	1 vehicle/trai	iler @ \$300	0/mo for 2	5 months incl gas/insur/repairs			······································		
	& km charg	es				~			
	R Flynn	fuel			559.22	0.5	279.61		
i	M Bidwell	Car Rental	& Fuel (Aug	j) Terrace, BC	390.25	0.5	195.13		
	B Perry	Car Rental	(Aug) Terra	ce, BC	255.4	0.5	127.70		
	<u> </u>	<u> </u>							
	ļ	ļ			I			10216.23	
		<u> </u>							
	<u> </u>				ļ				
116: AIRLINES:							/		
	within BC	1					3833.00		
	travel to BC					-	3834.76		
	travel re proj	ect researc	h				0.00		
, 	travel TO to	Van re con	tractor mee	tings			481.25		
		i							
]		1			1				

EXPENDITURE CO	DDE:				EXPENDITURES	TOTALS	
				4.045			
	GeoMax/George Sm		1417.9	1.245	1765.29		
	Perry Remote Sensi	ng/S [ravel to & from BC	1950.31	1.20913	2358.18		
	Sandor Ringhotter	I ravel to & from BC	1694.62	1.0552	1788.16		
	Scott Perry	Travel to & from BC	1372 58	1 03527	1420 99		
	Greg Perry	Travel to & from BC	1372 58	1 03527	1420.99		
1	Bob Perry	Travel to & from BC (2 trips)	2795 97	1 03527	2894 57	+·	
	Patrick Highsmith	Travel to & from BC	1243.87	1.03666	1289.46		
	Matt Bidwell	Travel to & from BC (2 trips)	5214.29	1.07661	5613.78		
				····			
						26700.43	
					·····		
117: AIRCRAFT C	HARTER:	····					
JULY 1-AUG 31	Helicopter support	for drill program incl pad building/			556827.68		
	channel sampling,	geophysical surveys: VIH Heli minimum	-		· · · · · · · · · · · · · · · · · · ·		
	contract 3 hr/day for	or 3 months approx \$2300/hr	· _ · _ !		· · · · · · · · · · · · · · · · · · ·		- · · ·
	Granmac Fuel/serv	íces			85744.00		
	Prism Heli - on spe	c/demob			9629.00		
SAMPLES, DIGITI							
·[- · ··	Advanced Mineralog	y Redemscan	986.81	1.22647	1210.29		
+	Mike Aspiuna		1/5	1.0444	182.77		
	Wave Geophysics/C		3000	1.04636	3139.08		
	Digital Data Services	Scanning Services	240	1.02437	250.97		
		Digitizing	2000	1.04762	2936.37		
	LJ Nafi	Data Entry	555	1.01144	002.70	660785 12	
				• • • •			
<u> </u>							
118: LINECUTTIN	G, GRID RESTORAT	ION:			31632.62		
July 3-23	Ranex Lincutting, Smit	hers					
	2 cutters, 2 swampers	incl 20 crew days @ \$1557 IP crew & support					
	+					31632.62	-
120: GEOPHYSIC	AL SURVEYS:						
July 10-24							
	JVX re Gradient IP/Ma	g (65KM Mag, ~6.5km IP, equip rental, stdby)			47611.20		-
	· · · · · · · · · · · · · · · · · · ·					47611.20	
	-	A					_

TABLE E1

T

EXPENDITURE CO	<u>DE:</u>			EXPENDITURES	TOTALS	GS
121 GEOCHEMICA						
122: CAMP, PAD B	UILDING:		Rugged Edge Holdings	248874.99		
June -Sept 3			camp installation/maintenance/	· · · · · · · · · · · · · · · · · · ·		
; • • · · • • • • • • • • • • • • • • • •			core splitting/pad building/cook with			
, ~·	<u> </u>		level 3 first aid/rental of stoves/tents,			
· { ~~	ļ		food exped /pad materials delivery			
↓ ★	 _		bull cook			
· · · · · · · · · · · · · · · · · · ·			2.0 mo rent of 20 man camp			
					248874.99	
124: ENGINEERIN						
						<u> </u>
125: DIAMOND DRI						
EU. BRANGIE BIA			2600 m in 8 holes	323345 60	· - · · · · · · · · · · · · · · · · · ·	
July 22-Aug 21			Driftwood diamond Drilling			
· · · · · · · · · · · · · · · · · · ·			Smithers, BC			
			equip storage	4200.00		
					327545.60	
	1					
i 						
126: ASSAYS:Drill	core/MMI-M					
	Standards			2388.75		
	Core Storage - Stew	vart Warehouse r	ental	1575.00		
	ALS Chemex (aprox	\$37/sample) & s	hipping	94960.24		
+	· · · · · · · · · · · · · · · · · · ·				00000 00	
; ; <u>.</u>	+				98923.99	
124. COUDIED SH	D CAMPI EC TO					
IST, COURIER, SH	Pandetra Chomay	Data to NTE		4829.08		
	Daliusua, Chemex,	Data to NTE		4023.00	4829.08	
	+					
135: COPIER:	<u></u> +			·····		
	Field maps/perm	it prep		577.87		
		<u> </u>				
					577.87	
	SEMENT OTHER	CEEC,				
140. FILING, ASSE		ING FFFS F		15017.25		
		AIM STAKING		400.00		
<u> </u>	PFI	PORT WRITIN				
				100.00	· · · · · · · · · · · · · · · · · · ·	

TABLE E1

I

EXPENDITURE CODE:		EXPENDITURES	TOTALS	<u>GST</u>
	Bond refund to Polar/GGY	17500.00		
			33917.25	·····
OVERHEAD: Management Fees	& expenses:	58272.32		
pro rata portion profess fees/pr	oj insurance, accounts, office support & rental,			
office consumables, consultation	ons, weekly report			
			58272.32	· · · · · · · · · · · · · · · · · · ·
PROGRAM	EXPEDITURE TOTAL:	\$ 2,283,279.04	\$ 2,283,279.04	
		LESS GST:	-85921.14	
		ELIGIBLE	2197357.90	
		EXPENDITURES		

TABLE E2: PROPOSED BUDGET*:

2009 TODD CREEK EXPLORATION PROGRAM:

Option payments Geofund, Funk=	\$90,000
Staging area, permitting/contracts/logistics =	15,000
Additional Reclamation Bond =	10,000
Compilations, 3D Modelling=	25,000
Mobs/demobs/vehicle/crew changes=	40,000
Subsistence, accommodation=	75,000
Rentals, equipment (blades, boxes, pad material) =	60,000
Shipping=	15,000
Communications=	20,000
Total VTEM Airborne: 1000 km @ 200/km	
including mob & standby=	200,000
Total ground geophysics: terraTEM, mag, IP =	100,000
Total oriented diamond drilling:	
4000 m @ \$150/m =	600,000**
Total core, rock samples: 5000@ \$40/sample =	200,000
Core and sample storage=	12,000
Total grid @ 30 km @ \$2000/km =	60,000
Salaries incl geologists, data, splitter, samplers	
(90 days @ \$4000/day)=	360,000
Workman's comp=	10,000
Camp/mob/demob/cook, helper/padbuilders=	360,000
(90 days @ \$4000/day)	
Helicopter support:	
407: 90 days charter, eng, accom @ \$6700/day=	603,000
Reporting, filing fees:	80,000
Geophysics, Geology, Drilling Support Fees incl fue	1 150,000
Contingency=	75,000
SUB TOTAL PROPOSED BUDGET:	3,018,000
OVERHEAD @ 3%	95,000
GST	165,000
TOTAL PROPOSED BUDGET	\$3,420,000*

* Subject to contractor bids and a timely execution of heli, camp and drill contracts, and permitting process

TABLE OF CONTENTS:

_

	TITLE:	PAGE :
	SUMMARY	vi
	TABLE OF CONTENTS	x i
1.	INTRODUCTION:	2
2.	PROPERTY, OWNERSHIP, OPTION AGREEMENTS:	3
3.	LOCATION, ACCESS:	4
4.	TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION:	4
5.1 5.2 5.3 a b c d e f h i k	HISTORY: OWNERDHIP AND PARTICIPATION. EXPLORATION HISTORY. BC MINFILE SHOWINGS. SOUTH ZONE: MINFILE REPORT 104A 001	5 6 11 12 12 13 13 13 14 14 14 14 15 15
6.	REGIONAL GEOLOGY:	15
7.	REGIONAL MINERALIZATION	17
8.	PROPERTY GEOLOGY, MINERALIZATION:	20

TABLE OF CONTENTS (CONT.):

•

<u>TITLE:</u> <u>PA</u>	<u> GE :</u>
9. 2008 EXPLORATION PROGRAM	.23
9.1. LOGISTICS AND CONTRACTOR SUPPORT	.23
9.2. 2008 SECURITY, SAFETY, ENVIRONMENTAL PROTECTION,	
QUALITY ASSURANCE, DATA VERIFICATION,	
SAMPLING PROCEDURES	.24
9.2.a. SECURITY	.24
9.2.b. SAFETY, ENVIRONMENTAL PROTECTION	.24
9.2.c. QUALITY ASSURANCE	.25
9.2.d. DATA VERIFICATION	.26
9.2.e. SAMPLING METHODS	.26
9.2.e.i. DRILL CORE	
9.2.e.11. REPRESENTATIVE ROCK AND BOULDER SAMPLING	.27
9.2.e.111. CHIP SAMPLES	
9.2.e.IV. CHANNEL SAMPLES	.21
9.2. Θ . V. SIREAM SEDIMENI SAMPLES	20
9.2.1. SAMPLE PREPARATION AND ANALITICAL METHODS	28
9.2 f i i STREAM SEDIMENT SAMPLES	28
	.20
9.3 2008 TODD CREEK FIELD PROGRAM	.29
9.3.A. 2008 FIELD SURVEYS, RESULTS, INTERPRETAION BY	
TARGET AREA	. 30
9.3.A.i. VIRGINIA CREEK TARGET AREA	.30
9.3.A.i.a. EXPLORATION STATUS JANUARY 2008	.30
9.3.A.i.b 2008 EXPLORATION PROGRAM	30
i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS	.30
ii. INTERPRETATION	. 31
9.3.A.11. WATERFALL TARGET AREA	
9.3.A.1.a. EXPLORATION STATUS JANUARY 2008	31
9.3.A.1.D 2008 EXPLORATION PROGRAM	
1. 2008 GEOLOGICAL & GEOCHEMICAL SURVEIS	.31
II. INTERPRETATION	. 32
9.3.A. iii. ORANGE MOUNTAIN TARGET AREA	.32
9.3.A.i.a. EXPLORATION STATUS JANUARY 2008	.33
9.3.A.i.b 2008 EXPLORATION PROGRAM	.33
i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS	.33
ii. INTERPRETATION	.33

TABLE OF CONTENTS (CONT.):

ΠT	ייד די	•
- T - T	ישיד ד	÷

PAGE :

9.3.A.iv.	FALL CREEK SOUTH GRID, ORANGE MOUNTAIN
	TARGET AREA
9.3.A.i.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.i.b	2008 EXPLORATION PROGRAM
	i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS
	ii. GEOPHYSICAL SURVEYS
	iii. INTERPRETATION
9.3.A.v. H	CNOB ZONE TARGET AREA
9.3.A.i.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.i.b	2008 EXPLORATION PROGRAM
	i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS
	ii. GEOPHYSICAL SURVEYS40
	iii. DIAMOND DRILLING41
	iv. INTERPRETATION
0 0 0 ·	
9.3.A.VI.	YELLOW BOWL ZONE
9.3.A.1.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.1.D	2008 EXPLORATION PROGRAM
	1. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS
	11. GEOPHYSICAL SURVEYS45
	111. INTERPRETATION
9.3.A.vii	SOUTH ZONE TARGET AREA
9.3.A.i.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.i.b	2008 EXPLORATION PROGRAM
	i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS
	ii. GEOPHYSICAL SURVEYS
	ii. DIAMOND DRILLING
	iii. INTERPRETATION
9.3.A.viii	. VMS TARGET AREA
9.3.A.i.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.i.b	2008 EXPLORATION PROGRAM
i. 20	008 GEOLOGICAL & GEOCHEMICAL SURVEYS
ii. 1	INTERPRETATION
·	
9.3.A.ix.	MYLONITE TARGET AREA
9.3.A.i.a.	EXPLORATION STATUS JANUARY 2008
9.3.A.i.b	2008 EXPLORATION PROGRAM
	i. 2008 GEOLOGICAL & GEOCHEMICAL SURVEYS54
	ii. DIAMOND DRILLING

TABLE OF CONTENTS (CONT.):

TITLE:	PAGE :
iii. INTERPRETATION	56
9.4. CONCLUSIONS, RECOMMENDATIONS	57
9.4.A. CONCLUSIONS	57
9.4.B. RECOMMENDATIONS	58
10. REFERENCES	61
11. STATEMENT OF QUALIFICATIONS	65

APPENDIX A:

ALS CHEMEX CERTIFICATES OF ANALYSES

APPENDIX B: LIST OF PHOTOS:

TITLE:

APPENDIX B LOCATION:

FRONTSPIECE 1: VMS TARGET AREA, SOUTH ZONE TO MYLONITEi
FRONTSPIECE 2: VMS TARGET AREA, SOUTH ZONE TO OMTAii
FRONTSPIECE 3: VMS FEEDER ZONE OUTCROPiii
FRONTSPIECE 4: VMS FEEDER ZONE MINERALIZATIONiv
1A. AMERICAN CREEK GRAVEL PIT STAGING AREAv
1B. 2008 TODD CREEK CAMPvi
1C. PORT OF STEWART TERMINALvii
1D. PORT OF STEWART LOADING DOCKviii
1E. HELICOPTER SUPPORT, STEWART BCix
2A. KNOB ZONE GOSSAN
2B. KNOB ZONE WITH DDHTC08-06xi
3-AU. HISTORIC & 2008 NTE ROCK SAMPLES-GOLDxii
3-AG. HISTORIC & 2008 NTE ROCK SAMPLES-SILVER
3-CU. HISTORIC & 2008 NTE ROCK SAMPLES-COPPER
3-ZN. HISTORIC & 2008 NTE ROCK SAMPLES-ZINC
3A. MYLONITE ZONE WITH DDHTC08-08 ON EXHALITE HORIZONxvi
3B MAIN FYHALTTF HORIZON MYLONITE ZONE

APPENDIX B:

LIST OF PHOTOS (CON'T:

TITLE:

APPENDIX B LOCATION:

3B-2. VMS MINERALIZATION, DDHTCO8-08 AT TODD CREEK FAULTxix
3C. RHYOLITE FLOW BRECCIA, EAST OF DDHTC08-08xx
3D. UPPER, LOWER EXHALITE, TODD GLACIERxxi
3E. UPPER EXHALITE HORIZON WEST OF DDHTC08-08
3E-1. UPPER EXHALLTE HORIZON LOOKING WEST TO
FXTT CLACIER WILLOW DOWLING WEDE TO
2E HODED EVENITE CAMPLE NIME ODEEN CEDICINE COULOM
SF. OFFER EXHAUITE SAMPLE WITH GREEN SERICITE SCHISTXXIV
3G. PIRITIZED MAFIC VOLCANIC INTERBEDDED
WITH UPPER EXHALITE HORIZONXXV
4. AERIAL VIEW OF SOUTH ZONE DEPOSIT AREA
4A. MEXT OXIDE TARGET ASSOCIATED WITH SOUTH
ZONE DEPOSITxxvii
4B. SPEC TYPE OXIDE MINERALIZATION & 2007
MAG SIGNATURE TYTII
AR 1 MEYT ZONE DELL HOLES AND AUDIFEDOUS ON THE TADORT WAY
AC DY CIACTED EYHALLINE AND DOUDDURCOO OO CEE UD
4C. DI GLACIER EXHABITE AND DDHDDHICOO-OO SEI-UP
4C-1. ALTERED VOLGANICS & BY FAULT NEAR BY GLACIERXXXI
4C-2. BY, TODD CREEK & VMS FAULTS
4C-3. FELSIC DOME? ABOVE BY GLACIER EXHALITE
4D. SET-UP DDHTC08-01, SOUTH ZONExxxiv
4E. SET-UP DDHTC08-02, -03, SOUTH ZONE
4F. OXIDE DRILL CORE, SOUTH ZONE DEPOSIT, DDHTCO8-01xxxvi
4G. SULFIDE CRACKLE, SOUTH ZONE DEPOSIT, DDHTC08-02xxxvii
4H. QUARTZ PYRITE MINERALIZATION, DDHTC08-02xxxviii
41. VMS MINERALIZATION ABOVE SZD, DDHTC08-03
4J. SOUTH ZONE DEPOSIT MINERALIZATION, DDHTC08-03, x1
5A. YELLOW BOWL ZONE WITH STRUCTURAL FARRIC VI
5B VELLOW BOWL AITERATION VRC ZONE AND
FYUNITE UNDERN1::
EARABITE HORIZONXIII
SC. IELLOW BOWL IBS EXHALITE HORIZONXIIII
5D. YELLOW BOWL YES FELDSPAR PORPHYRY OUTCROP
5E. SOUTH OF YBS, CRACKLE TEXTURE
5F. SOUTH OF YBS, BANDED SULFIDE BOULDER
5G. SOUTH OF YBS, FOLD NOSE AND LADDER VEINS
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6B. ORANGE MOUNTAIN TARGET AREA ALTERATION
6C. MINERALIZATION, AMARILLO GRID. ORANGE
MOUNTAIN TARGET AREA

•

APPENDIX B: LIST OF PHOTOS (CON'T):

		<u> </u>
<u>TITLE:</u>		APPENDIX B LOCATION:
6D. QUARTZ-BARITE VE	INS, ORANGE MOUNTAIN	TARGET AREAli
7A. FALL CREEK MINER 7B. FALL CREEK D ZON	ALIZATION E MINERALIZATION	lii liii
7D. CHANNEL SAMPLING FALL CREEK	, 197 ZONE, SOUTH GR	ID, lv
8. NORTHEAST SHOWING	G, SOUTH GRID, OMTA	lvi
9A. WATERFALL ZONE 9B. WATERFALL ZONE, (CLOSE UP	lvii lvii
10A. KNOB ZONE, DDHT 10B. KNOB ZONE, DDHT	C08-04 SET-UP	lix
10C. KNOB ZONE, DDHT	CO8-04, 06 SET-UPS	lxi
10E. KNOB ZONE, DDHTC	C08-07 SEI-OF C08-04, 06, RECLAIME	Dlxiii
10G. DDHTC08-06, TOD	D CREEK FAULT	lxiv
11A. VMS ENVIRONMENT	SZD-YELLOW BOWL-KNO	B
112-1 VMS ENVIRONMENT	TH 1994 AIRBORNE ANO T MVIONITE-VMG-G7D T	MALIES
11A-2.VMS ENVIRONMEN	T MYLONITE-VMS-SZD-Y	ELLOW BOWL-KNOB
TARGET AREAS W	ITH HISTORIC & 2008	DRILL COLLARS 1xviii
11B. VMS FEEDER ZONE	AREA & BOULDER TRAIL	Nlxix
11C. SOUTHEAST AREA (OF VMS FEEDER ZONE	lxx
11D. SAMPLES, SOUTHER	AST AREA OF VMS FEED	ER ZONElxxi
11D-AU. 2008 NTE ROCH	K SAMPLING-GOLD	lxxii
11D-AG 2008 NTE ROCH	K SAMPLING-SILVER	lxxiii
11D-CU. 2008 NTE ROCI	K SAMPLING-COPPER	lxxiv
11D-ZN. 2008 NTE ROCH	K SAMPLING-ZINC	lxxv
11E. PYRITIC VEINLETS	S, VMS FEEDER ZONE	lxxvi
11E-1 BLACK CHLORITE	VEINLETS, AREA OF VI	MS FEEDER ZONE.lxxvii
IIF. LARGE SULFIDE BO	DULDER, VMS FEEDER Z	ONElxxviii
114 DANDED BOUTDED	LE BOULDEK	
111 OUTCOOD TETAND	FROM VED BOULDER TRA	
STRIKE OF VMS FI	EEDER ZONE	lxxxi

APPENDIX C: LIST OF FIGURES:

TITLE:

APPENDIX C LOC.:

FC-CHS-08: FALL CREEK & ICE, CHIP SAMPLE LOCATIONSi
FC-CS-08: FALL CREEK, CHANNEL SAMPLE LOCATIONS
FC-CS-08-A: FALL CREEK NORTH, CHANNEL SAMPLE LOCATIONS iii
EN-CS-08 FAD NODTH TADGET ADEA VIDGINIA ODEEK
CUNNEL CANDLE LOCATIONC
CHANNEL SAMPLE LOCATIONS
GI: AIRBORNE MAGNETIC SURVEY COMPILATION
G2: RADIOMERIC AIRBORNE SURVEY POTASSIUM CHANNEL ANOMALIES
GMAGINDEX-08: INDEX OF 2008 MAGNETOMETER SURVEYSvi
KG1: 2008 KNOB ZONE GRID WITH TOPOGRAPHYvii
KG2: AIRBORNE MAGNETIC SIGNATURE OF KNOB GRIDviii
KG3: 2007-2008 GROUND MAGNETOMETER SURVEY COMPILATION ix
KG4: 2008 KNOB ZONE GROUND MAGNETIC SURVEY ON TOPOG
KG5: KNOB ZONE 2008 DDH TRACES ON MAG 3D SOLID VOLUME
KG6: 2008 KNOB ZONE IP CHARGEABILTY WITH 2008 DDH
KG7: 2008 KNOB ZONE AIRBORNE RESISTIVITY WITH DDH xiji
KG8: 2008 KNOB ZONE IP RESISTIVITY WITH DDH
KG9. KNOB ZONE 2008 DDH TRACES ON MAC 3D SOLLD VOLIME
LONG-SECTION & CRADIENT-ARRAY ID
KC10. KNOB ZONE 2009 DDU TRACES ON MAC 2D SOLID VOLUME
LONG CECTION WITH A A25 DATE LOCAUDDAGE
LONG-SECTION WITH U.U25 PMT ISOSURFACE
& GRADIENT-ARRAY IP
KG11: 2008 DDH TRACES ON MAG 3D WITH 0.025 PMT
ISOSURFACE & GRADIENT-ARRAY IP
KG12: KNOB ZONE 2008 DDH TRACES ON MAG 3D WITH 0.2 PMT
ISOSURFACE & GRADIENT-ARRAY IP
KG13: KNOB ZONE AIRBORNE RADIOMETRIC COMPILATION WITH
2008 DDHxxi
KG14: KNOB ZONE SECTION 6234850N MAG 3D MODEL:
EQUIVALENT PERRCENT MAGNETITE (LOOKING NORTH)xxii
KG15: KNOB ZONE SECTION 6235600N MAG 3D MODEL:
EQUIVALENT PERRCENT MAGNETITE (LOOKING NORTH) xxiii
KC-CHS-08: KNOB ZONE CENTRAL. CHIP SAMPLE LOCATIONS

KC-CS-08: KNOB ZONE CENTRAL, CHIP SAMPLE LOCATIONS.....XXIV KC-CS-08: KNOB ZONE CENTRAL, CHANNEL SAMPLE LOCATIONS.....XXV KE-CS-08: KNOB ZONE EAST, CHANNEL SAMPLE LOCATIONS......XXVI KN-CHS-08: KNOB ZONE NORTH, CHIP SAMPLE LOCATIONS......XXVI APPENDIX C (CON'T): LIST OF FIGURES:

TITLE:

APPENDIX C LOC.:

KNW-CS-08: KNOB ZONE NORTHWEST, CHANNEL SAMPLE
LOCATIONSxxviii
KS-CHS-08: KNOB ZONE SOUTH, CHIP SAMPLE LOCATIONSxxix
KS-CS-08: KNOB ZONE SOUTH, CHANNEL SAMPLE LOCATIONSxxx
MYL-CHS-08: MYLONITE ZONE, CHIP SAMPLE LOCATIONS
MYLN-CS-08: MYLONITE NORTH, CHANNEL SAMPLE
LOCATIONSxxxii
MYLS-CS-08: MYLONITE SOUTH, CHANNEL SAMPLE
LOCATIONSxxxiii
NA-CHS-08: NORTH AREA (VIRGINIA CREEK, OMTA, WATERFALL)
CHIP SAMPLESxxiv
P. TODD CREEK PROPERTY TENURE OUTLINE
P1. TODD CREEK MINERAL TENURES
P2. FUNK OPTION MINERAL TENURES
SZ-CHS-08: SOUTH ZONE, CHIP SAMPLE LOCATIONSxxxvii
SZ-CS-08: SOUTH ZONE, CHANNEL SMAMPLE LOCATIONSxxxviii
T-CHSINDEX-08: TODD 2008 CHIP, REPRESENTATIVE AND
BOULDER SAMPLE AREAS
T-CSINDEX-08: TODD 2008 CHANNEL SAMPLE AREAS
T-RSCOMPAU08: 2008 AU VALUES IN ROCK SAMPLESxli
T-RSCOMPAU: HISTORIC AND 2008 AU VALUES IN
ROCK SAMPLESxlii
T-RSCOMPAG: HISTORIC AND 2008 AG VALUES IN
ROCK SAMPLESxliii
T-RSCOMPCU: HISTORIC AND 2008 CU VALUES IN
ROCK SAMPLESxliv
T-RSCOMPZN: HISTORIC AND 2008 ZN VALUES IN
ROCK SAMPLES
T-SS-08: TODD 2008 STREAM SEDIMENT SAMPLE
LOCATIONSxlví
VMS-CHS-08: VMS ZONE, CHIP SAMPLE LOCATIONS
VMS-CS-08: VMS ZONE, CHANNEL SAMPLE LOCATIONS
WF-CS-08: WATERFALL ZONE, VIRGINIA CREEK CHANNEL

SAMPLE LOCATIONS.....xlix

APPENDIX C (CON'T):

LIST OF FIGURES: TITLE: APPENDIX C LOC.: YB-CS-08: YELLOW BOWL ZONE, CHANNEL SAMPLE LOCATIONS.....1 YBN-CHS-08: YELLOW BOWL ZONE NORTH, CHIP SAMPLE LOCATIONS.....li YBS-CHS-08: YELLOW BOWL ZONE SOUTH, CHIP SAMPLE LOCATIONS.....lii 1. MAJOR MINES AND GOLD BELTS.....liii 2. BC MAJOR MINES AND EXPLORATION PROJECTS.....liv 3A. BC VMS DEPOSITS.....lv 3B. BC AU-CU PORPHYRY DEPOSITS.....lvi 4. NORTHWEST BC ROAD MAP WITH TODD CREEK PROJECT.....lvii

5. STEWART GOLD CAMP PROJECT MAP.....lviii 6. STEWART COMPLEX....lix 7. STEWART VOLCANIC BELT.....lx 8. DILWORTH FORMATION.....lxi 9. LANDSAT IMAGE, STEWART AREA INCL. VOLCANIC BELTS.....lxii 10. KSM AU-CU PORPHYRY TREND.....lxiii 11. STEWART CAMP AU-CU PORPHYRY DEPOSITS.....lxiv 13. TODD CREEK PROPERTY TARGET AREAS & 2008 DRILL HOLES..1xvi 14. MINFILE SHOWINGS.....lxvii

LIST OF TABLES:

TITLE:

PAGE :

E1	SUMMARY OF	2008 EXPENDITURESi	х.
E2	PROPOSED 20	09 EXPLORATION PROGRAM	9

APPENDIX D:

LIST OF TABLES:

TITLE:

APPENDIX D LOC.:

BV: BRAVO VENTURES HOMESTAKE RIDGE, SOME ASSAY RESULTSi
D1: SPECIFICATIONS OF 2008 DRILL HOLESii
DR1: DDHTC08-01: CORE SAMPLES AND AVAILABLE RESULTSiii
DR1A: DDHTC08-01 GRADE CALCULATIONiv
E1 SUMMARY OF 2008 EXPENDITURES
E2 PROPOSED 2009 EXPLORATION PROGRAMvi
FC-RSA-08: FALL CREEK ROCKS, AVAILABLE ANALYTICAL RESULTS.vii
FC-RSD-08: FALL CREEK ROCKS, DETAILED DESCRIPTIONSviii
FN-RSD-08: FAR NORTH AREA & VIRGINIA CREEK ROCKS
DETAILED DESCRIPTIONSix
H: HISTORY OF EXPLORATION ACTIVITIESx
K-RSA-08: KNOB ZONE ROCK SAMPLES, AVAILABLE
ANALYTICAL RESULTSxi
MS1: MASS SPECTROMETER SCANSxii
MYL-RSA-08: MYLONITE ZONE, ROCK SAMPLES, AVAILABLE
ANALYTICAL RESULTS
MYL-RSD-08: MYLONITE ZONE, NORTH ROCK SAMPLES, DETAILED
DESCRIPTIONSxiv
NA-RSA-08: NORTH AREA (VIRGINIA CREEK, WATERFALL) ROCKxv
OMTA-RSD-08: OMTA ROCKS, DETAILED DESCRIPTIONS
P1: TODD MINERAL TENURESxvii
P2: FUNK MINERAL TENURESxviii
QA1: QUALITY ASSURANCE: SUMMARY OF ACCEPTED
STATISTICAL VARIANCExix
QA2: QUALITY ASSURANCE: RESULTS OF ROCK SAMPLE STANDARDSxx

APPENDIX D (CON'T): LIST OF TABLES:

TITLE:

APPENDIX D LOC.:

_

QA3: QUALITY ASSURANCE: RESULTS OF CORE
SAMPLE STANDARDS
RBINDEX-08: REPRESENTAIVE AND BOULDER SAMPLE NUMBERS,
LOCATIONS AND DESCRIPTIONS
RINDEX-08: INDEX OF ROCK SAMPLE LOCATIONS, AREAS, NOTES.xxiii
S1: SAMPLE SUMMARYxxiv
SC1: ROCK SAMPLE SUMMARY
SR-07: SIGNIFICANT 2007 GOLD, COPPER DRILL RESULTSxxv
SZ-RSA-08: SOUTH ZONE ROCK SAMPLES, AVAILABLE
ANALYTICAL RESULTS
SZ-RSD-08: SOUTH ZONE ROCK SAMPLES, DETAILED DESCRIPTIONS
T-SSD-08: STREAM SEDIMENT SAMPLE LOCATIONS, NOTESxxvii
VMS-RSA-08: VMS ZONE ROCK SAMPLES, AVAILABLE
ANALYTICAL RESULTS
VMS-RSD-08: VMS ZONE ROCK SAMPLE DESCRIPTIONSxxix
W1: 2008 EXPLORATION ACTIVIATIES
YB-RSA-08: YELLOW BOWL ROCK SAMPLES, AVAILABLE
ANALYTICAL RESULTS
YB-RSD-08: YELLOW BOWL ROCK SAMPLES, DESCRIPTIONSxxxiii

APPENDIX E LIST OF DRILL LOGS:

TITLE:

APPENDIX E LOC.:

DRILL	LOG	DDHTC08-01	i
DRILL	LOG	DDHTC08-02i	.i
DRILL	LOG	DDHTC08-03ii	.i
DRILL	LOG	DDHTC08-04	v.
DRILL	LOG	DDHTC08-05	v
DRILL	LOG	DDHTC08-06	ri
DRILL	LOG	DDHTC08-07vi	.i
DRILL	LOG	DDHTC08-08vii	i

APPENDIX F LIST OF CROSS-SECTIONS:

TITLE:

APPENDIX F LOCATION:

KNOB	ZONE	PLAN &	CROSS	SECTION	6235600N,	, DDHTC08-04,	-06i
KNOB	ZONE	SECTI	ON 623	5580, DI	DHTC08-04,	, -06	ii
KNOB	ZONE	SECTI	ON 623	5000 DD	HTC08-05,	-07	iii

SOUTH ZONE PLAN & CROSS SECTION 6231150N, DDHTC08-01-03....iv SOUTH ZONE CROSS SECTION 6231200N, DDHTC08-01-03.....v SOUTH ZONE CROSS SECTION 6231145N, DDHTC08-01.....vi SOUTH ZONE CROSS SECTION 6231087N, DDHTC08-02, 03.....vii

MYLONITE CROSS SECTION 6228100N, DDHTC08-08.....viii

APPENDIX G:

JVX GEOPHYSICAL SURVEY METHOD AND INSTRUMENTATION

APPENDIX H:

JVX REPORT ON EM ANOMALIES ON THE TODD CREEK PROPERTY

REPORT ON THE 2008 EXPLORATION PROGRAM CARRIED OUT ON THE TODD CREEK PROPERTY, STEWART GOLD CAMP, SKEENA MINING DIVISION, NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:

This report reviews the results of the 2008 helicopter supported program carried out from the Todd Creek exploration camp (Photos 1A, B). The project is located in the Stewart Gold Camp of Northwestern British Columbia, about 35 km northeast of Stewart (Figures 1-3A, B, 4-7; P).

The 2008 field activities are summarized in Tables W1, S1, SC1 and D1 and were carried in most of the principal target areas (Figures 12, 13) to follow-up results of the 2007 program carried out by GFX (Molloy, 2007). Based on the positive 2007 results described in Section 5 below, a 2008 \$2.55 M program comprising 30 km of geological and geophysical surveys (mag, IP and deep EM surveying), and 6000 M of diamond drilling was recommended.

The Todd Creek Property is dominated by Jurassic Age pyroclastic rocks and interflow felsic and mafic stratigraphy of the Unuk River Formation, which host most of the significant mineralization in the Stewart Camp (Figures 2, 3A, 3B, 5-7). The mineralizing systems on the Todd Creek Property are considered immense (Fedikow, 2006) and have been traced over an almost continuous strike length of about 10 km from the Mylonite Zone in the south to beyond the Orange Mountain Target Area in the north (Figures 12-14). Structurally controlled epithermal-mesothermal Au-Cu vein mineralization comprises the most apparent historic exploration target on the Todd Property i.e., M Type (blebby chalcopyrite in multiphase breccia veins; Photo 7A) and Spec Type (auriferous specular hematite; Photo 4B). M Type comprises the South Zone Au-Cu deposit (NI 43-101 non-compliant drill indicated reserves of 207,000 tonnes grading 5.48 g Au/t, Hemlo Gold Mines Inc., 1988 Annual Report; with significant Cu values), the Fall Creek Zones and North A Zones. Spec Type is found mainly at the MEXT Zone and at depth in the South Zone deposit (Section 5.2, below).

However, based on the historic database, the Fedikow (2006) studies and the 2007 Todd exploration program (Section 8; Molloy, 2007); such epithermal mineralization is now postulated to be the near surface expression of more substantial Au-Cu porphyry and/or exhalative mineralizing systems at depth. For example, the SZD and it's along strike extensions (MEXT, NEXT Zones) are thought to be possibly associated with a VMS system at depth; or, a Au-Cu porphyry system related to an intrusion, such that the intrusion, the resulting deformation, the formation of the structurally hosted, gold-copper multiphase breccia veins and mineralogical and alteration zoning are closely related spatially, temporally and genetically. It is also contemplated that one or more such porphyry or exhalitive systems are also associated with the expansive sulfidized environments of the Yellow Bowl Zone (Photo 5B) and of the Orange Mountain Target Area (Photo 6A).

The favorable geological environment of the Todd Creek Property has thus been regarded as having excellent potential for hosting a substantial orebody and with the 2008 discovery of evidence of a significant VMS system, that potential is now readily apparent. The major discovery opportunity continues to relate to the principal target areas (South Zone, Yellow Bowl, Knob and Orange Mountain) but now has been expanded to the Mylonite and VMS Zones and ground covered by the Funk Option to the east (Figures 13; P, P2). It is concluded that the exploration rationale and strategy has now been advanced such that it could facilitate the discovery of a VMS deposit in 2009.

2. PROPERTY, OWNERSHIP, OPTION AGREEMENTS:

The Todd Creek Property (Figures 5, 12, 13, P1-3) now comprises 19,947 hectares and consists of 67 mineral tenures, 30 of which (the Todd Tenures) are registered in the name of Geofine Exploration Consultants Ltd. ("GFX") and on behalf of Geofund, a private investment group; and, 37 of which were optioned from Kelly Brent Funk and comprise the Funk Tenures. The Todd Tenures comprise the Todd 1-8, Todd 11-13 and Todd 18 Tenures; the Pat 4-5 Tenures; the Pat 20-24 Tenures; the Benji 8-12 Tenures; the Poly 8-11 Tenures; and, the Orange and Orange 2 Tenures (Figures P1, P2; Table P1) that cover 12,222 ha or about 122 square km; and, the Funk Tenures comprise Tenures 565637, 565639, 565641-565643, 567019, 567021, 567023, 567025-567040, 567042-49, 567051, 567178-82 (Figures P1-P3; Table P2). The tenures are located on British Columbia Mineral Titles Maps 104A04E, 104A04W, 104A05E and 104A05W.

Geofund is a private investment group that funds the research, acquisition, exploration and marketing of mineral targets. Goldeye Explorations Limited ("GGY") optioned the property in 2005 under an agreement with GFX, as agent for Geofund, with the right to earn a 100% interest by fulfilling escalating option payments and work conditions. Under the terms of an agreement signed with GGY in November 2006, Polar Star Mining Corporation ("POS") has the right to earn a 60% interest in the Todd Creek Property.

In 2008 Intuitive Exploration Inc. ("NTE") optioned the Todd Tenures from POS and GGY. NTE has the right to earn a 70% interest by expending \$5 M over a period of five years and by fulfilling escalating option payments and work conditions.

3. LOCATION AND ACCESS:

The Todd Creek Property is situated in the Skeena Mining Division, about 35 km northeast of the town of Stewart, Northwestern British Columbia (Figures 1, 4, 5). The property is located on NTS Map Sheets 104/A4 and 104/A5 and centred at about Latitude 56° 15', Longitude 129° 46' (Figure 12). The claims straddle the Todd Creek Valley, approximately 10 km north of the Stewart Highway 37A (Figures P1, 5, 12, 13, Frontspiece Photos 1, 2).

In view of the mountainous terrain, helicopter access is currently required, either from helicopter bases in Stewart (Photo 1E) or from a staging area near American Creek (Photo 1A; or, from the Bowser Lake access road off the Stewart-Cassiar Highway (Figure 5). The most logical land route to facilitate the development of an ore body potentially is up American Creek, along the existing road to the Mountain Boy Property; and, further north to Virginia Creek and then south along Todd Creek to the Orange Mountain Target Area; and, farther south to the South Zone deposit. Access could also possibly be attained by a \sim 5 km tunnel driven east to the Fall Creek area of the property from Kimbell Lake on American Creek.

4. <u>TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE &</u> <u>VEGETATION</u>:

The Todd Creek Property is located within the Boundary Ranges of the northern British Columbia Coastal Mountains (Photo P). The regional topography is characterized by the Todd Creek Valley, which has an elevation of between about 600 to 900 m on the property. East and west of Todd Creek, the valley rises steeply to elevations over 2000 m. Young, deep valleys hosting tributaries, which drain into Todd Creek and which facilitate geological and geochemical surveys characterize the mountainous topography (Frontspiece Photo 1, Photo 4C-2, 5: Figure 13). The heads of the valleys are often occupied by glaciers (Photo 5), which are currently receding at a rate of tens of metres per year. Approximately 25% of the property is covered by glaciers and ice fields (Figure 13).

The exploration field season generally extends from late June to October. Summers are usually characterized by long hours of daylight and pleasant temperatures. Although winters have been getting milder and glaciers have been rapidly receding, snow can cover higher evaluations in early September and accumulations can total several metres in a 24-hour period. Snow accumulations on the Todd Property in May 2008 totalled about 2 meters and the Todd Creek camp was installed in late June.

Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Tide Lake Flats (915 m elevation). The proximity to the ocean and relatively high mountains can make for highly changeable weather, including dense morning fog along the coast. The Town of Stewart is located on the Portland Canal (Photo 1C; Figure 5) and has the distinction of being Canada's most northerly, ice-free seaport.

Wildlife in the area consists of mountain goats, foxes, grizzly bears, black bears, wolves, marmots,

martins and ptarmigan. Vegetation in the Todd Valley ranges from dense tag alders to small areas of spruce forest, to sub-alpine spruce thickets, with heather and alpine meadows. Above tree line at approximately 1,200 m, bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail.

5. <u>HISTORY:</u>

5.1 OWNERSHIP AND PARTICIAPATION:

The ownership of and participants in the exploration of the Todd Creek Property are summarized below:

Newmont initiated work on the South or Main Zone in 1959. In 1969 the South Zone was staked for Kerr Addison Mines by Wilf Christians, who received title after the company failed to conduct any work. The claims were then sold to C. S. Powney. In 1981, J.R. Woodcock Consultants staked the North Zone and a large altered area (Orange Mountain) to the north which were worked from 1981-1984 with the participation of Riocanex. In 1985, Woodcock reduced his claim holding to two claim units.

In 1986 Noranda Exploration Company Limited staked the Toc 1-10 claims to cover the known showings and gossan zones along Todd Creek. Toc 11 and 12 were added in 1986 and Toc 13-15 in 1987. Noranda evaluated the property from 1986 to 1990 with some assistance from joint venture partner Golden Nevada Resources Inc.

Geofine Exploration Consultants Ltd., Nominee for Geofund, a private investment group, staked much of the current Todd Creek property in 1994. The Toc 10 claim covering the South Zone gold deposit lapsed in 1997 and was staked by Geofine as Todd 13. Geofine also staked the 2 remaining Woodcock units in 2006. Geofine, as Nominee of Geofund, has optioned the Todd Creek Property to a variety of companies: Oracle Minerals Ltd. in 1994; Island-Arc Resources in Ltd. 1997; Okak Bay Resources Ltd. in 1999; Island-Arc Mining Corporation in 2000; Lateegra Resources Corp. in 2004; and, Goldeye Explorations Ltd. in 2005 with participation from Polar Star Mining Corp. in 2006 and 2007. Polar Star had the option to earn up to 60% of GGY's interest in the Todd Creek Project. In 2008 Geofine marketed the property on behalf of Goldeye and Polar, resulting in Intuitive Exploration Inc.'s current participation, with the right to earn up to 70% of the Goldeye/Polar Star rights to earn an ownership interest in the property.

5.2 EXLORATION HISTORY:

The historic exploration activities on the Todd Creek Property are summarized in Table H. The South Zone copper-gold epithermal mineralization was discovered by Newmont Mining Corporation in 1959 and evaluated via trenching and five drill holes totalling 350 m. From 1981-1984, Woodcock and Riocanex conducted extensive geological and geochemical programs on their claims on and in the vicinity of Orange Mountain.

The next significant work on the South Zone was carried out by Noranda who staked the Toc 1-12 claims in 1986 and 1987 and completed mapping, trenching, sampling and the drilling of 57 holes (5225.5 m; 1987, 1988, 1990). The drilling outlined a non NI 43-101 compliant historical reserve of 207,000 tones grading 5.48 g Au/t (Hemlo Gold Mines Inc., 1988 Annual Report). The deposit was outlined over a strike length of about 375 m and to a vertical depth of about 150 m. Individual drill intersections ranged up to 8.83 g Au/t over 11.7 m and 6.12 g Au/t over 6.10 m. The Noranda work and that with joint venture partner Golden Nevada Resources also discovered numerous showings and zones which are described in the BC Minfiles that are included in the Section 5.3., Mineralization. The most significant mineralization was located on the North A Zone where drill intersections ranged up to 3.47 g Au/t and 0.75% Cu over 31.85 m (Minfile 106); and, on the Fall Creek East Zone where drill results ranged up to 3.94 g Au/t over 7.9 m (Minfile 107).

Oracle Minerals Ltd. under an option agreement with Geofine funded a \$200,000 exploration program carried out by Geofine in 1994. The Phase 1 exploration program included data compilations, geological and geochemical surveys on the Fall Creek North and Amarillo Zones, along with an Aerodat Airborne conventional EM, magnetic and radiometric survey (Molloy 1994). The radiometric survey was successful in delineating a large potassium channel anomaly associated with a magnetic low in the area of the Knob and Orange Mountain gossan zones. Based on the work, which confirmed the importance of a number of historical copper-gold and lead-zinc-silver showings and located others, a \$600,000 1997 follow-up program was recommended that included an 1800 m drill program. In view of the adverse investment climate in BC, Oracle did not to carry out the work.

Under an option agreement with Island-Arc Resources Ltd. in 1997, Geofine carried out a \$215,000 program that comprised the staking of 5 additional claims, an examination of the historical South Zone core from which 47 check samples were obtained (Molloy, 1997). The results were confirmative of the historic Noranda drill results. Geological and geochemical surveys (953 samples) were carried out on the Amarillo, North A, South and Yellow Bowl Zones and reconnaissance surveys on the East Target Area and the Mylonite Zone. The work continued to indicate the presence of significant epithermal mineralization, along with the potential for volcanogenic massive sulfides. An \$850,000 follow-up program was recommended that included 2600 m of diamond drilling on the Amarillo, North, Yellow Bowl, South and East Zones. The historic Noranda gold and copper drill intersections on the East and West Fall Creek and on the North A Zones were the main focus of the proposed drill program. The program was not carried out due to lack of funds.

In 1999, Okak Bay Resources Ltd. optioned the property from Geofine and funded an \$85,000 exploration program, which was carried out by Geofine (Molloy, 1999). The work included the discovery of the Zinc Zone; and, the important MEXT and NEXT Zones, in which auriferous specular hematite is a significant component of the mineralization. The MEXT and NEXT Zones represent the along strike northern extension of the South Zone. Detailed geological and geochemical surveys were carried out on the North A, Fall Creek and the Amarillo Zones. The historic Noranda drill holes on the South Zone were located and tied into the new 9950E Base Line. Fourteen proposed drill holes were spotted on the South Zone, NEXT, North and Amarillo Zones and a drill program comprising at least 1200 m was recommended (Molloy, 1999).

In 2000, Island Arc Mining Corporation funded a \$125,000 geological and geochemical program to

mainly evaluate the apparent northern extension of the South Zone deposit ("SZD"; Molloy, 2000). The work was carried out by Geofine and included the staking of the Benji 8-12 Claims, mainly to cover the postulated southern and northern extensions of the SZD; the taking and interpretation of helicopter air photos of the South Zone to precisely locate the South Zone Structure ("SZS") and its possible extensions; the refurbishing of parts of the historic Noranda/Geofine South Zone Grid and the re-spotting of the drill holes located in 1999 on the SZD; and, the carrying out of geological and geochemical surveys on control lines at the South Zone and the Knob Zone. The program also included the refurbishing of part of the Amarillo Grid and re-spotting of drill holes spotted in 1999, as snow conditions allowed. Some detailed grid lines were also installed over the Barite and North Barite Zones. A total of 368 rock, soil, stream sediment and check samples were collected and analyzed for gold and 34 element ICP. The mineralization types, favorable multielement signatures and structural fabric associated with the South and the MEXT/NEXT Zones were interpreted and the extent of the oxide phase (specular hematite) partially delineated.

Based on the results of the work it was concluded that the structural fabric of the South Zone deposit host rocks is prospective for the development of south plunging ore shoots; and, the deposit remains open at depth and to the south beyond Noranda's southernmost, historic drill hole. It was also concluded that the Knob Zone, located 3 km north of the South Zone deposit is one of the most important exploration targets on the property; the large Amarillo epithermal system, located 2.5 km northwest of the Knob Zone may have the largest tonnage potential for a polymetallic deposit on the property, including Eskay Creek VMS mineralization; and, the Yellow Bowl Zone has potential for gold-copper porphyry mineralization.

In 2004 Lateegra Resources Corp. optioned the property from Geofund and funded a \$329,000 exploration program carried out by Geofine. The work included grid restoration, topographic surveys, drill hole spotting, camp installation, diamond drilling, core logging and sampling, the collection of 3 large composite samples of mineralized talus and reclamation. The six confirmation and step out drill holes on the South Zone deposit (SZD) and the NEXT Zone totaled 761 m. Five of the holes were drilled on the SZD in the vicinity of the highest-grade Noranda historic holes; one of these was abandoned in overburden. The NEXT Zone was tested with one hole (DDHNZ04-01). All the holes intersected favorable alteration and mineralization over core lengths of between 20 to 36 m. The host lithologies are characterized by elevated Au and Cu values with lesser enrichments of Bi, Fe, Mn, Mo, Pb, S and Sb and Na and K depletion. DDHNZ04-01 constituted a 500 m step out from the most northerly Noranda historic hole and intersected five multiphase quartz breccia veins that returned up to 1.68 g Au/t and 0.49% Cu over a 7.02 m core length, including 4.18 g Au/t and 0.92% Cu over a 1.5 m core length. Drill hole DDHSZD04-04, the deepest hole ever drilled on the SZD, intersected the SZD mineralization at vertical depth of about 182 m and returned 3.09 g Au/t and 0.29% Cu over a core length of 10.00 m, including 10.51 g Au/t and 0.88% Cu over a core length of 2.22 m. Holes DDHSZD04-01, -02A and -03 were drilled in proximity to the historic Noranda higher-grade intersections and all holes hit the SZS as planned. However, the grades and widths in DDHSZD04-01 and DDHSZD04-03 were less than expected. DDHSZD04-02A provided the best indication of a wide zone, returning 1.08 g Au/t and 0.18% Cu over an 18.34 m core length, including 5.39 g Au/t and 0.88% Cu over a 2.3 m core length.

A compilation of the 32 historic and the five 2004 drill holes on the SZD indicated that the overall average grade of all these holes is 3.57 g Au/t and 0.34% Cu over an average core length of 4.61 m or over an estimated true width of 3.23 m. Using a cut-off of 3 g Au/t and an 8.2 gram meter product, the resulting average grade from the remaining 16 holes is 4.8 g Au/t and 0.43% Cu over an average core length of 6.4 m or an estimated true width of 4.5 m. It was recommended (Molloy, 2004) that a 2005 diamond drill program of sufficient scope and size be carried out to attempt to determine if the SZS has potential for hosting a significant ore body: four initial holes totaling about 1200 m to evaluate the SZD at depth; one hole totaling about 300 m to evaluate the NEXT Zone at depth; and, 4 holes totaling about 350 m to initially test the Gold Gully-MEXT Zone.

Under the terms of a 2005 option agreement, Goldeve Explorations Ltd. ("GGY") optioned the Todd Creek Property from Geofund and GGY and Polar Star Mining Corporation funded a 2006, \$550,000 exploration program. The work was carried out by Geofine and included grid restoration (~3 km), location of historic drill collars, topographic surveys, hole spotting, camp installation, diamond drilling (1330 m in 8 holes on the MEXT, East Fall Creek and North A Zones), core logging and sampling, reclamation and a MMI-M orientation soil geochemistry survey (11 sample sites, 44 samples; Fedikow, 2006a) on the Amarillo Grid of the Orange Mountain Target Area. The MMI-M survey was supervised by Dr. Mark Fedikow, who also reviewed the historic Todd Creek database and carried out a rock geochemical study utilizing the Todd Creek drill core (Fedikow, 2006). The postulated oxide target at the MEXT Zone was drill tested for the first time and returned 1.06 g Au/t and 0.09% Cu over a core length of 13.59 m at vertical depth of 232 m. DDHMZ06-01D was drilled on the south side of the MEXT Fault and intersected 0.91 g Au/t and 0.40% Cu over a core length of 8.9 m. The three remaining holes (DDHMZ01A-01C) drilled from the same set-up as DDHMZ06-01D intersected the MEXT breccia vein system on the north side of the MEXT Fault, providing important confirmation of the along strike continuity of the MEXT breccia vein system between the MEXT Zone and the NEXT Zone. Anomalous gold and copper values ranged up to 0.59 g Au/t and 0.085% Cu over a 28.35 m core length in DDHMZ06-1B, and 0.72 g Au/t and 0.23% Cu over a 5.18 m core length in DDHMZ06-1C. Based on the results of the 2006 program it was concluded that the South Zone mineralization has been traced for over one km and remains open at depth and along strike to the south and the north.

The two follow-up holes (DDHFC-01A, -01B) drilled on the Fall Creek East IP Zone failed to return intersections comparable to those obtained by Noranda in holes NTC88-47, 48 (e.g., 1.24 g Au/t and 0.39% Cu over a core length of 31.5 m incl. 3.14 g Au/t and 0.97% Cu over a core length of 11 m) and in hole NTC88-48 (e.g., 1.27 g Au/t and 0.12% Cu over a core length of 27.85 m incl. 3.94 g Au/t and 0.31% Cu over 7.90 m). However, each of the 2006 holes interested a number of well-sulfidized, multiphase breccia vein systems, which returned wide zones of anomalous copper and gold values e.g., 0.58 g Au/t and 0.12% Cu over a core length of 19.59 m in DDHFC06-01A; and, 0.58 g Au/t and 0.25% Cu over 10.95 m in DDHFC06-01B. The holes intersected multiple breccia vein systems with multi element signatures that are considered indicative of a high priority gold environment.

DDHNAZ06-01 was drilled on the North A Zone, north of Fall Creek, to follow-up the wide intersection of 1.51 g Au/t and 0.34% Cu over 16.75 m in DDHNTC 88-41; the outcrop sample near

Trench 5 (647 Showing), which returned 44.18 g Au/t and 3.30% Cu over 2 m; and, the gold values in additional outcrop samples, which ranged up to 4.04 g Au/t. Subsequent sampling of the 647 Showing in 2006, by Tim Beesley, P.Geo. an independent consultant, returned 117.17 g Au/t and 5.65% Cu over 2 m. Samples of angular, sulfidized and silicified boulders found near the outcrop in 2006 had gold contents up to 32.2 g and copper contents up to 4.47%. DDHNAZ06-01 was drilled under the North A Zone multiphase breccia system and returned 0.42 g Au/t and 0.17% Cu over a core length of 8.05 m incl. 1.04 g Au/t and 0.23% Cu over a core length of 2.5 m.

The 2006 MMI-M orientation survey was carried out on the Amarillo Grid of the Orange Mountain Target Area where conventional geochemical surveys had partially delineated one of the strongest multi element signatures (Pb-Zn-Ag-Cd) ever obtained by Geofine in the Stewart gold camp. The MMI-M survey was supervised in the field by Dr. Mark Fedikow and confirmed the importance of the historic geochemical anomaly: The magnitude of the MMI-M responses and the elements that typify the anomalies are suggestive of an epithermal/exhalite deposit type. The possibility of deep porphyry mineralization based on the Cu-Mo response cannot be ruled out and the possibility exists that any epithermal system on the property may be rooted in such an intrusive-hosted zone of mineralization.

Geofine acquired the remaining ground in the Orange Mountain Target Area when two inlier claims expired in October 2006.

Based on the interpretation of the analytical results via the utilization of multi element enrichment and depletion tables and the results from the deepest holes drilled to date (DDHSZD04-04 and DDHMZ06-02), it was concluded that the priority drill targets on the South Zone are located at a depth deeper than most of the targets tested to date. The Fedikow study indicated that the large and intense epithermal multiphase breccia vein systems may be associated with a buried porphyry system/oxide system or exhalative mineralization at depth. As the roots of these systems are approached with deeper drilling, it is anticipated that the widths and grades of the mineralization will increase and the type will change to a volcanogenic massive sulfide or porphyry target. Such a discovery, as referenced by Dr. Fedikow on the South Zone and elsewhere entails the deep follow-up of the intersections in a number of holes e.g., DDHSZD04-04 and DDHMZ06-02.

The 2007 field program was funded by the Goldeye/Polar Star Joint Venture and totalled about \$1.766 M. The work was carried out by Geofine and included interpretation of the historic Geonex Aerodat 1994 airborne survey and a general compilation of geophysical data and mineral showings (JVX, 2007); snow cat plowing and construction of the exploration camp; grid installation and restoration (South Grid, Orange Mountain Target Area and the MEXT-NEXT Grid on the South Zone) with about 22 km of geophysical grid, base, tie, drill lines and access lines); helicopter-acquired air photos and structural interpretations; GPS surveying of historic drill collars; geological and geochemical surveys; geophysical surveys (~18 km magnetics, VLF-EM and Spectral induced polarization; and, about 3600 m of borehole induced polarization; drill hole spotting, topographic and GPS surveys; diamond drilling (2818.02 m in 12 holes on the South Zone Grid, South Grid, and Amarillo Grid, Orange Mountain Target Area (OMTA); core logging and sampling; thin section studies; and reclamation.
As summarized below (Molloy, 2007) the results of the 2007 exploration program are regarded as positive and their interpretation along with the historical data base has provided the rationale for a 6000 m follow-up drill program that would emphasize drilling for a substantial discovery.

i) the intersection of significant gold-copper and gold values in a number of the drill holes e.g., 8.57 g Au/t and 0.55% Cu over a 1.82 m core length in DDHMZ07-01; 8.29 g Au/t and 2.41% Cu over a 1.99 m core length in DDHNAZ07-01; and, 7.32 g Au/t and 2.95% Cu over a 1.01 m core length in DDHNEZ07-01A;

ii) the discovery of apparently important new targets including the Yellow Bowl YBS Zone with up to 0.339 g Au/t and 0.87% Cu over 3 m in initial samples from the extensive gossan zone; the NAZ02A Zone i.e., the lower pyritized zone in DDHNAZ07-02A that returned 4.4 g Au/t over a 4.5 m core length, including 12.80 g Au/t over 1.5 m; the new 197 IP anomaly delineated over a strike length of \sim 750 m on the South Grid of the Orange Mountain Target Area;

iii) the interpretation of a number of EM anomalies from the 1994 Geonics Aerodat airborne survey; the EM anomalies associated with the area of the Knob Zone and other geological and geochemical attributes are thought to offer the opportunity for discovery of a significant VMS polymetallic deposit;

iv) the detailed delineation of a number of historic targets by the geophysical surveys e.g., the Northeast Zone/B Zone over \sim 350 m; the North A Zone over \sim 550 m; the apparent down dip/plunge extensions of the South Zone and the MEXT Zone via bore hole IP surveying; the delineation of the oxide target on the MEXT Zone by magnetic modeling i.e., a \sim 400 x 200 m cylinder shaped body that may reflect the separate auriferous oxide phase postulated to represent the northern extension of the South Zone gold-copper deposit;

v) The distribution of the multi element signatures and auriferous mineralization types suggested that the South Zone, Yellow Bowl Zone, southern and northeast areas of the South Grid of the OMTA offer favorable gold-copper environments while the core of the OMTA including the Amarillo Grid and the north and northwest area of the South Gird is amenable to silver-lead-zinc mineralization. Most importantly, the gold-copper potential was interpreted to extend from the southwest area of the South Grid to the generally unexplored, extensive east flank of the Orange Mountain Target Area. Areas transitional from the silver-zinc environments to gold-copper environments are locally apparent where for example, soil samples contain indications of both signatures; and, most apparently where rock and MMI-M elemental signatures are transitional from one metal environment to another e.g., Northeast Zone between the gold-copper mineralization of the B-D Zones to the Amarillo Zone; and, at the southern area of the Amarillo Grid where soil and rocks samples appear transitional from the silver-lead-zinc signature into gold and copper mineralization.

vi) the recognition and confirmation by thin section studies that felsic stratigraphy is associated with a number of the important exploration targets (Knob, North A, Northeast Zones); and, that the property has the potential for hosting volcanogenic massive sulfide mineralization. The multiphase breccia veins, which often have a semi massive sulfide component, may be the near surface

manifestation of such VMS systems. The Yellow Bowl South gossan zone appears to be hosted by felsic stratigraphy similar to that of the Knob Zone.

The rationale for a number of major targets i.e. Yellow Bowl (Au-Cu porphyry), Knob (VMS) and Orange Mountain (VMS) that had historically been tested by a total of only two drill holes was advanced. The exploration rationale continued to indicate that the ubiquitous epithermal mineralization on the property e.g. the South Zone gold-copper deposit may be directly associated with a large VMS and/or porphyry system(s) at depth. The 2008 exploration program proposal totalled \$2.5 M and recommended 6000 m of diamond drilling.

5.3. <u>BC MINIFILE SHOWINGS:</u>

Historical exploration activities on the Todd Creek Property evolved around the 12 mineral showings that are located on and in the vicinity of the property and that are referenced in the BC government's mineral records ("Minfile"). The showings are briefly described below and are shown on the Todd Tenures in Figure 14.

a. Minfile 001: South Zone Deposit on Todd 13:

The South Zone deposit is located on the Todd 13 Mineral Tenure, north of the Benji 9 and 10 Mineral Tenures (Figure 14). The South Zone was discovered by Newmont Mining Corporation in 1959, and was held by Noranda Exploration Company, Limited and Goldnev Resources Inc. as the Toc 10 Claim, until the spring of 1997. Geofine staked the South Zone deposit as part of the Todd Creek Property.

According to BC Assessment Report 18800, the South Zone is the most significant target area located on the Toc 10 and 11 Mineral Tenures. Drilling in 1987 tested the southern 175 m strike length of the zone and significant results include:

11.93 g gold/t over 1.73 m 4.10 g gold/t over 2.00 m 4.01 g gold/t over 1.50 m 3.25 g gold/t over 3.69 m 3.36 g gold/t over 2.61 m

Drilling in 1988 tested the down dip extension and strike continuity of the zone for an additional 200 m to the north. Intersections ranged from 1-30 m and significant values include:

6.91 g gold/t over 8.15 m 6.86 g gold/t over 2.00 m 6.53 g gold/t over 2.05 m 4.65 g gold/t over 6.15 m 8.83 g gold/t over 11.70 m 6.12 g gold/t over 6.10 m The zone has been tested by 34 holes comprising 3186 m. The zone was reported by Noranda to be hosted by altered feldspar porphyry exposed over an area of 950 by 500 m. Quartz-pyrite is the principal alteration, but near the mineralization, quartz-sericite is the dominant type. The mineralization consists of chalcopyrite, pyrite, specular hematite and malachite. The mineralization is hosted by a 5 to 15 m wide, northeast trending, fracture zone that dips west. The area is underlain by Upper Triassic to Lower Jurassic rocks of the Unuk River Formation, which is part of the Hazelton Group (Figure 8). The South Zone is reported to contain NI 43-101 non-compliant drill indicated reserves of 207,000 tonnes grading 5.48 g Au/t (Hemlo Gold Mines Inc., 1988 Annual Report).

b. Minfile 111: Mid Zone on Todd 12:

The Mid Zone was discovered by Noranda in 1986. It comprises an area about 500 by 250 m encompassing several west-southwest to northwest trending quartz-pyrite-chalcopyrite veins. The veins are 0.01 to 6.0 metres wide and 1 to 108 metres long. Grab samples assayed up to 1.68% copper with negligible molybdenum, lead, zinc, silver, arsenic, cadmium, antimony, and gold values. The mineralization is apparently hosted by altered felsic rocks composed of quartz-sericite-pyrite.

c. Minfile 110: Ridge Showing on Todd 12:

Noranda discovered the Ridge Showing in 1987. The showing consists of several mineralized outcrops that cover an area about 300 by 200 m. Mineralization comprises pyrite, chalcopyrite and malachite. North-northwest trending andesite flows and agglomerates are reported to be interbedded with feldspar porphyry (intrusive?) and rhyolite flows and tuffs. Grab samples assayed up to 0.34 g gold/t, 5.2 g silver/t, and 14.14% copper. The mineralization appears to be hosted by mafic volcanics that lie immediately west of a large gossan apparently associated with feldspar porphyry. Approximately 200 m north of the showing, a sample from outcrop assayed 12.7g silver/t, 1.17% lead and 1.71% zinc.

d. Minfile 109: Knob 1 Showing on Todd 3:

The Knob 1 showing was discovered by Noranda in 1987. The showing comprises several 1-10 cm wide pyrite +/- chalcopyrite veins that occur in a large, prominent gossan. The gossan includes extensive areas of quartz-sericite-pyrite alteration (Photo 2A). A grab sample from one of the veins assayed 0.37% copper. The mineralization occurs in pervasively altered, northwest trending andesite flows and breccias, which are intruded by fine grained mafic dykes.

e. Minfile 108: Toc 9 Showing on Todd 4:

Noranda discovered the Toc 9 Showing in 1986. Mineralization consists of narrow chalcopyrite veins that occur in 1-2 m wide discontinuous, north-northwest trending shear zones. The zones are reported to be hosted by altered feldspar porphyry composed of quartz, sericite and pyrite. Grab samples assayed up to 32.9 g gold/t and 3.08% copper.

f. Minfile 107: F1 Zone or Fall Creek East Zone on Todd 3:

The F1 Zone was discovered by Noranda in 1987 as a follow-up of anomalous values returned in a soil survey on the south side of Fall Creek. During 1986 to 1989 Noranda completed geological mapping, silt and soil geochemical surveys and four holes totalling 368 m on the zone. Significant intersections include:

6.72 g gold/t over 1.45 m 12.10 g gold/t over 1.25 m 2.73 g gold/t and 0.59% copper over 13.00 m incl. 5.41 g gold/t and 0.50% copper over 5.25 m 4.34 g gold/t over 2.00 m 3.94 g gold/t over 7.90 m incl. 4.71 g gold/t over 4.75 m

The mineralization is associated with pervasively altered andesites that contain quartz-sericite-pyrite zones and that are cut by mineralized structures with a variety of orientations. The main zone of interest is associated with quartz-pyrite-chalcopyrite-barite veins that have been traced for 400 m along strike and 300 m vertically. The drilling tested the zone over a strike length of 100 m and to a depth of 50 m.

IP and gold soil geochemistry delineated an anomalous area 900 by 450 m, which encompasses the F1 zone and several other mineralized outcrop and float occurrences. In 1990, Golden Nevada Resources Inc. drill tested a number of the IP targets with 10 holes that did return some significant results including 1.35 g gold/t over 15.35 m (Baerg, 1991). The encouraging results were never followed up.

g. Minfile 106: North A Zone on Todd 2:

The North A Zone (Photo 7A; Figure 6A) on the Todd 2 claim was a Newmont discovery and yielded significant results. The zone is described as northwest trending and vertically to steeply west dipping, comprising 0.1-2 m wide quartz, chalcopyrite, pyrite, hematite and breccia veins. The veins are commonly banded and brecciated and have been traced for 320 m. Trenching results ranged up to 3.8 g gold/t across 14.3 m.

The zone was tested with 9 holes and a Mise-a-la-masse survey. The drilling and geophysics suggest that the zone is discontinuous and poddy along strike and down dip. Widths on the zone range from 1-32 m. The zone was tested over a strike length of 150 m. Significant drill values include the following:

3.47 g gold/t, 0.75% copper over 31.85 m incl. 14.47 g gold/t, 2.06% copper over 5.95 m 2.83 g gold/t, 0.58% copper over 1.95 m 3.95 g gold/t, 0.22% copper over 2.00 m 3.43 g gold/t, 0.73% copper over 1.70 m 6.21 g gold/t, 0.60% copper over 1.75 m

Another zone located 200 to 550 m east of the above zone contains identical mineralization except for the absence of stringer mineralization. Chip sampling on this zone produced assay values up to 9.53 g gold/t and 0.35% copper across 1 m.

h. Minfile 105: North East Zone on Todd 2:

Noranda discovered the showing (Photo 8; Figure 6A) in the course the follow-up of a geochemical survey. The host rocks are propylitically altered green volcanics, green to buff agglomerates/flow breccias and tuff. Alteration consists of chlorite, carbonate, sericite and pyrite (2-5%). A feldspar porphyry dyke is exposed near the showing. Mineralization consists of a west-northwest trending barite-quartz-galena vein, which cuts the feldspar porphyry body. Samples assayed up to 39.30 g silver/t, 12% lead, and 6.2% zinc, with negligible copper and gold values.

i. <u>Minfile 104: Orange Mt. Showing on Woodcock's Todd Claim (2 units) within Todd 1 and Todd 2:</u>

The showing is hosted by altered volcanics within an alteration zone some 1500 m by 1200 m. A barite jasper zone lies within the alteration zone and is the locus of the showing. Mineralization comprises pyrite, barite, and galena. Abundant jarosite is noted in the intensely altered area. Chip samples ranging up to 232.5 g silver/t and 12.8% lead across 0.7 m were reported. Approximately 190 m east northeast of the showing, grab samples assayed up to 199.5 g silver/t and 27.7% lead. Approximately 250 m northeast of the showing grab samples assayed up to greater than 100 g silver/t, 0.22% copper, and 0.28% lead.

j. Minfile 103: Bow 31 Showing on Todd 2:

Brucejack Gold Ltd. outlined an area of anomalous gold and silver values in 1987-1988. Marlin Developments analyzed the previously collected samples for base metals. The showing consists of massive to weakly foliated, fine-grained tuff that contains 7 to 10% finely disseminated pyrite. A grab sample assayed 175.9 g silver/t, 0.41% lead, and 0.52% zinc.

k. Minfile 102: Bow 32 Showing on Todd 2 (2008 Waterfall Zone):

Brucejack Gold in conjunction with Marlin Developments found the zone (Photo 9A, B) in the follow-up of a geochemical survey. Mineralized outcrops occur on both sides of Todd Creek over a distance of about 200 m. Silver values from the outcrops typically range from 34 to 343 g/t. The highest-grade mineralization occurs on the east bank of the creek and is hosted in a hematite-chlorite altered felsic tuff. It consists of a 20 to 30 cm wide stock work of quartz, barite and carbonate containing 15% pyrite as disseminations and stringers. A sample of this mineralization assayed 2262.9 g silver/t. Immediately west of the showing on the west bank of the creek, a grab sample assayed 0.14 g gold/t, 233.1 g silver/t and 0.54% lead.

6. <u>REGIONAL GEOLOGY:</u>

The Todd Creek property is situated in a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figures 6, 7) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane, together with the Cache Creek and Quesnel Terranes, constitute the Intermontaine Superterrane, which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986, Figures 6-8, 12) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and Thorkelson, 1990; Lewis, et al, 1992; Creig, et al, 1995). The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision. The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick et al, 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian)
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian)
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian)
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian)

Alldrick assigned formational status (Mt. Dilworth Formation, Figure 8) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

The Unuk River Formation (Figure 8), a thick sequence of andesite flows and pyroclastic rocks with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart Camp (Figure 5). The unit is unconformably overlain by heterogeneous, maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure 8). This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic

member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc). Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and they include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with the Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.

Two main intrusive episodes occurred in the Stewart Area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally potassium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontaine - Insular superterrane boundary (Rubin et al., 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

7. <u>REGIONAL MINERALIZATION:</u>

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri, Red Mountain), Iskut (Snip, Johnny Mountain, Eskay Creek) Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 5). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic calc-alkaline intrusions and volcanic centres (Figure 9). In the Stewart area, the main regional trend of mineralization corresponds with the trend of the Jurassic Stewart Volcanic Belt or Western Volcanic Belt (Figures 7, 9). A second volcanic belt and associated regional linear trend of mineralization or Eastern Volcanic Belt is postulated to extend from south of the area of the Red Mountain deposit north through the Todd Creek area (Figure 9). The intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier gold-silver mine, which is located in the main, Stewart volcanic belt (Figures 5, 9). The mine produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was reopened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine was closed in the summer of 1997 and the mill was put up for sale.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena, with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsentiferous tetrahedrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1988).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

The Red Mountain gold deposit (Figure 5) is associated with the Goldslide Intrusion, a quartz monzonite body of Tertiary Age. On December 31, 2001, Seabridge Gold Inc. acquired a 100% interest in the Red Mountain advanced stage gold project from North American Metals Corp. a subsidiary of Wheaton River Minerals Ltd. In January 2003 Steffen Robertson and Kirsten (Canada) Inc. ("SRK") completed an engineering and preliminary economic study of the project for Seabridge. The SRK mineral resource calculation is shown in the following table (Seabridge, 2004):

Resources Used in SRK Study - All Categories of Resources (000's)			
	Tonnes	Au g/t	Ag g/t
Mineral Resources (All Categories > 0 g/t Au)	1,941.2	7.74	26.2
Mineral Resources (All Categories > 6 g/t Au)	1,216.6	9.14	28.7
Mining Recovery	89%		
Recovered Tonnes	1,081.2	9.13	28.9
Dilution Percent	14%		
Dilution Tonnes	180.7	0.55	n/a
Tonnes	1,261.9	7.90	24.7

Under SRK's base case analysis and using a 5% discount rate, a break-even project is achieved at a gold price of US\$399/oz. The life of mine cash operating costs average US\$213 per ounce and total costs, inclusive of capital, average US\$358 per ounce. A 50% increase in mineable tonnage and reductions of 15% in capital and operating costs would reduce the break even gold price to \$338.

Seabridge did not carry out any work on the Red Mountain project in 2006. The deposit is comprised of the Marc Zone and its northerly extension, the AV Zone. The zones comprise sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High-grade gold values are usually associated with the semi massive, coarse-grained pyrite aggregates, but also with stock works of pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartzmonzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the BC Molybdenum Mine at Lime Creek.

The Stewart Camp is also the host for major VMS and Au-Cu porphyry deposits. The world class Eskay Creek Mine (Figure 5; total deposit size of about 7.10 M oz gold equivalent) is an example of the VMS type and was obtained by Barrick Gold in a merger with Homestake in 2001. The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in

the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered (Blackwell, 1990; Barrett et al, 1996). Drilling continues to expand the original, approximately 280 m by 100 m zone that has an average thickness of 10 m.

The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high-grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization, are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

Other current examples of VMS mineralization in the Stewart are the BA deposit (Figures 3A 5) being explored by Mountain Boy Minerals; perhaps the Homestake Ridge deposit being explored by Bravo Ventures (Figure 5), which continues to report spectacular intersections over considerable widths (Table BV); and the recently discovered VMS mineralization on the Todd Creek Property (Frontspiece Photos 1, 3, 4).

The Granduc deposit (Figures 3A, 5) currently being explored by Bell copper is a large Besshi type sedex deposit comprised of chalcopyrite and magnetite. It remains open along strike and at depth and appears to have considerable exploration potential i.e., >50 M t grading about 15% magnetite and 2% Cu.

The Kerr-Sulphurets-Mitchell deposit (Figures 3B, 5, 10, 11) currently being explored by Seabridge is a world class Au-Cu porphyry deposit that just keeps getting bigger. Seabridge reports (pers. com.) that the 2008 exploration program has expanded the deposit by about 25% to ~40 M ounces of gold. As described by Seabridge (2009) the Kerr-Sulphurets property lies within the Stikine Terrane and is underlain largely by Upper Triassic to Middle Jurassic Hazelton Group volcanic, volcaniclastic and sedimentary rocks at the western edge of the Bowser Basin. At least three intrusive episodes have been documented in the area. The most important of these relative to mineralization appears to be felsic to intermediate plugs, small stocks and dykes. In the Sulphurets area, these intrusions are referred to as the Mitchell Intrusions; many of the intrusions are intensely altered and cut by faults.

The property is centred along the axis of the broad northerly plunging McTagg anticlinorium which forms the major structural element in the region. The Upper Triassic Stuhini Group argillaceous and turbiditic sedimentary rocks form the centre for the anticlinorium. These rocks are flanked by a younger volcanic sequence forming the Betty Creek, Unuk River and Mount Dilworth Formations of the Hazelton Group. Within this geologic framework, copper, gold and molybdenum mineralization and associated alteration are focused in a local core of the anticlinorium where intense folding, faulting, thrust faulting and intrusions are prevalent.

A number of deformed porphyry and vein type deposits occur in the Mitchell-Sulphurets area. These deposits are characterized by a strong copper-gold and minor molybdenum association, and spatially occur along the flanks of a horseshoe-shaped trend. A distinct mineral zoning pattern can be interpreted with gold-silver along the eastern flank, gold with minor copper and molybdenum at the north end, gold and copper along the west flank and copper with lesser gold at the southwest end.

8. TODD CREEK PROPERTY GEOLOGY, MINERALIZATION:

The Lower Jurassic Unuk River Formation of the Hazelton Group dominates southern and central areas of the property geology (Grove, 1982; Figures 6-8, 12). The formation hosts most of the significant base and polymetallic mineralization in the Stewart Camp. Unaltered rocks mainly comprise monotonous green-grey, red, purple tuff-breccia, breccia and agglomerate, with interbeds of crystal and lithic tuff. Green and grey-black andesite and dacite to rhyolite flows are commonly found in various areas of the property; however, their distribution is rather limited relative to that of the ubiquitous pyroclastic rocks.

Middle Jurassic Hazelton Group sediments (siltstone, greywacke, sandstone and conglomerate) of the Salmon Arm Formation overlie Unuk River Rocks on the northern part of the property. Rhyolite and rhyolite breccia of the Mt. Dilworth Formation (Figure 8) are found mainly on the northeast part of the property.

As indicated in Min File Report 104A 001, the rocks are reported to have been intruded by a number of feldspar porphyry bodies, the extent of which remains to be determined. As indicated by the airborne total magnetic intensity map (Figure G1), a number of circular to elongated magnetic lows and highs in the southern area of the property may reflect such intrusions or zones of alteration. However, based on Geofine's experience, much of the porphyry reported historically in the South Zone is silicified crystal tuff and crystal tuff breccia. Feldspar porphyry +/-hornblende was observed at the north end of the NEXT Zone and feldspar porphyry +/-hornblende is associated with the extensive pyritized breccias at the Knob Zone. Based on the coarse felsic breccia and associated porphyry, the Knob Zone is interpreted to be located proximal to a volcanic centre.

Varying degrees of pervasive alteration have been mapped ranging from calcite-epidote-pyrite, chlorite-quartz-pyrite, quartz-carbonate-pyrite to quartz-pyrite-sericite-jarosite-alunite. The prominent magnetic low in the centre of Figure G1 is reflective of the propylitic to pyrite-sericite alteration observed in the field. On Figure G2 (potassium count map) a broad potassium anomaly is associated with the magnetic anomaly. The area of the potassium anomaly includes the Knob and Yellow Bowl Zones and Orange Mountain, the areas with the most extensive jarosite-alunite-limonite gossan zones and most intensive sulfidization on the property.

The prominent gossan zone on the Orange Mountain Target Area (Photos 6A-D) is associated with altered (quartz-barite-jasper) pyroclastic rocks and andestitic flows. The Amarillo Zone is located on the east side of Orange Mountain (Photos 6A, C) and is thought to epitomize the top of a large epithermal system, characterized by ubiquitous barite and jasper, often mineralized with varying

amounts of galena, sphalerite and chalcopyrite.

As revealed in airphotos taken in 2007 (Photos 5A, B), the Yellow Bow Zone is much more extensive than originally thought. The Yellow Bowl Zone is bounded by faults (Figure 5A), with which Au-Cu mineralization is associated at the Yellow Bowl, Ice, Fall Creek, South and Knob Zones. The alteration of the crystal tuff and crystal tuff breccia is pervasive and includes silicification +/- sericite; and, carbonate + sericite +/- quartz. The altered pyroclastic rocks are interbedded with felsic units of rhyolite to dacite composition. Fine disseminated pyrite accompanies the alteration and chalcopyrite veins, lenses and stringers are often associated with carbonate +/- chlorite +/- sericite +/- quartz. Massive pyrite veins and lenses are common as fracture fillings in the gossan zones, generally with strongly anomalous Au and Cu values.

A major north trending fault system is postulated to be associated with the Todd Creek Valley (Frontspiece Photos 1, 2) The fault system includes the South Zone Structure (Frontspiece Photo 1; Photo 4) that generally trends about 10° and dips 65° to the west. As noted in Section 7, the regional fault system is interpreted to extend from south of the Red Mountain deposit, north across Bear Valley and the Todd Ice field, and down the Todd Creek Valley. As indicated in Figure 9, a regional mineralization trend is related to the structure, which is thought to be associated with a second zone of volcanism, the Eastern Jurassic Volcanic Belt.

The structural components of the Todd Creek Property are dominated by an orthogonal to sub orthogonal fabric that generally trends north-northeast and west-northwest. Dips are generally to the northwest and southeast. Most of the mineralization discovered to date is associated with the fabric and is most often hosted by the South Zone Structure, or structures orthogonal to it, particularly at or in the vicinity of structural junctions. Such junctions are conducive to the development of south plunging ore shoot morphologies, which are one of the current exploration targets at the SZD. The Mylonite and Knob Zones (Frontspiece Photos 1, 2) occur at prominent structural junctions and the latter zone, with associated airborne EM anomalies is considered a high priority exploration target.

Many of the historical showings on the property, including the SZD (NI 43-101 non compliant resource of 207,000 t grading 5.48 g Au, Hemlo Gold Mines Inc., 1988 Annual Report, along with significant copper credits) are structurally controlled and associated with multiphase quartz-pyrite-chalcopyrite +/-hematite, galena and sphalerite breccia vein systems. Such banded veins generally have a massive to semi-massive pyrite +/- chalcopyrite core, surrounded by sulfide matrix breccia and/or blebby chalcopyrite breccia. At the SZD, metallic zoning or replacement includes the transition from sulfides (pyrite and blebby chalcopyrite) to auriferous specularite e.g., at the MEXT Zone and generally towards the footwall rocks of the deposit. The mineralization is hosted mainly by quartz-pyrite and quartz-pyrite-sericite altered volcanic breccia, agglomerate and crystal tuff-breccia and crystal tuff. Extensive gossan zones of limonite +/- hematite and jarosite/alunite are developed on the sulfidized host rocks.

The intensely sulfidized felsic breccia at the Knob Zone and the felsic stratigraphy in the footwall rocks of the mineralized zones (A, Northeast Zone) along Fall Creek, which trend onto Orange Mountain are deemed to have VMS potential. The alteration and multielement signatures at the

Yellow Bowl and South Zones are considered indicative of Au-Cu porphyry and/or VMS systems at depth (Fedikow, 2006). Historic exploration efforts have not been focused on these apparently deep targets in view of the much more readily apparent copper-gold mineralization exposed in the outcrops of well-mineralized multiphase breccia vein systems. However, exploration success on the property is dependent on the discovery of an orebody, and the apparent targets with the size potential to host a large, economic deposit are associated with the Orange Mountain, Yellow Bowl and Knob Zones; and, most recently, the Mylonite, VMS, South, Yellow Bowl and Knob Zones.

9. <u>2008 EXPLORATION PROGRAM, TODD CREEK PROPERTY:</u>

The 2008 exploration program was carried out from June 15 to October 31, 2008 by NTE geological staff supported by Geofine Exploration Consultants Ltd ("GFX"), including David Molloy, P.Geo. (APGO, BCAPEG) and David Kennedy P.Geo. (BCAPEG). Project expenditures including initiation and overhead total about \$2.2 M and are shown by exploration category in Table E1. The work (Tables W1, S1, SC1, D1) was carried out under BC Work Permit Number 0101265 and Mine No. MX-1-583 and included the interpretation of the EM data from the historic Aerodat 1994 airborne survey by JVX (Appendix H); the digitizing of aspects of the historical data base by NTE; the permitting process including consultations with First Nations, various officials with the Ministry of Energy, Mines and Petroleum Resources including the Mining Inspector and with officials from the Ministry of Transportation; the monitoring of field and avalanche conditions; construction of the exploration camp (Photo 1B); grid installation and restoration (~6.5 km of geophysical grid, base, tie, drill lines and access lines; Photo KG1); heli airphotos and structural interpretations (Photo 5A); geological and geochemical surveys (1041 rock and check samples); 23 stream sediment samples; mass spectrometer scans (261 samples, Table MS1); geophysical surveys (~66 km of mag, 6.2 km of gradient IP); drill hole spotting, topographic and GPS surveys; diamond drilling (2582.62 m in 8 holes; Table D1); logging and sampling of 2008 core (1891 core and check samples) and additional sampling of the 2007 core (29 core and check samples; Table S1); and, reclamation activities. The work also included the review of the exploration status of the property and the preparation of a NI 43-101 report written by Dr. Mark Fedikow entitled NI 43-101 Technical Report: Geology, Mineralization and Exploration of The Todd Creek Property, Northwestern British Columbia. The field program was also reviewed on two separate occasions by BC geological field crews, including Paul Wojdak, P.Geo. and JoAnne Nelson, P. Geo.

9.1. LOGISTICS AND CONTRACTOR SUPPORT:

The 2008 field program was initiated in June with helicopter monitoring of snow and avalanche conditions. The camp was installed commencing June 23 on the South Zone (Photo 1A, B) by Rugged Edge Holdings Ltd. of Smithers and supported by a Bell 407 helicopter (Photo 1E) stationed on site and supplied by Vancouver Island Helicopters Ltd. of Stewart BC. The Knob Grid (Photo 2A; Figure KG1) was installed by Ranex Exploration of Smithers shortly thereafter. JVX Ltd. of Richmond Hill carried out geophysical surveys (gradient IP, magnetometer; Figures KG3-6) on the South and MEXT Zones in the first half of July, aided by the Ranex line cutting crew. The JVX survey method and instrumentation is included in Appendix G. The drill program was carried out by Driftwood Diamond Drilling Ltd. of Smithers BC, with drill pads installed by Rugged Edge (Photo 10B). Granmac Services of Stewart provided fuel and expediting services. The camp and drill demobilization and reclamation activities were completed by October 31. Some additional

geochemical and geological surveys were carried out from Stewart in September and October. A total of 2984 rock, drill core, and stream sediment samples were collected (Table S1). A total of 2516 rock and core samples were submitted to ALS Chemex Labs ("Chemex") in Terrace for prep and the pulps were sent to Vancouver for gold assaying and for 33 element ICP analysis. Most of the stream sediment samples were sent directly to Chemex in Vancouver for gold and ICP analysis.

In view of the corporate reorganization of NTE initiated in the fall of 2008, only 673 assays were received from Chemex in 2008 (Table S1). Most of the analytical results (for 1860 core and sediment samples) were put on hold at the lab; and, 445 of the rock samples and 6 of the sediment samples are stored in Stewart pending shipment to the lab. Once the company is restructured in early 2009, it plans to have the results released and the remainder of the samples analyzed. The available analytical results for all the samples are shown on the Chemex Certificates of Analysis, which are included in Appendix A.

9.2. 2008 SECURITY, SAFETY, ENVIRONMENTAL PROTECTION, QUALITY ASSURANCE OF ANALYTICAL DATA, DATA VERIFICATION, SAMPLING PROCEEDURES:

9.2.a. SECURITY:

The 2008 exploration program utilized a number of security/confidentiality measures and procedures. The requirement of confidentiality for third party contractors was documented in their service contracts. The exploration camp was located some distance from the main drill camp (Photo 1B) to ensure privacy and security for the program orchestration, core logging and sampling, communications, and database generation. The core was sealed in core boxes at the drill sites and once delivered to the exploration camp, remained in the care of Geofine and NTE.

Geofine and NTE personnel carried out the core logging and splitting and placed the samples in labelled and tagged sample bags, which were immediately secured in rice bags in the core shack for shipment. The rice bags were sealed with tape and colour-coded security tags. The bags were shipped to Stewart by Geofine personnel and were stored in a secure Geofine warehouse until shipment by Bandstra Transportation to Chemex. The lab was required to verify that the security tags were still in place for each shipping bag when the samples arrived at their facility.

9.2.b. SAFETY, ENVIRONMENT PROTECTION:

The 2008 exploration program utilized an Emergency Response Plan (ERP) that was formulated by Geofine and approved by the Mining Inspector. All personnel were expected to become familiar with the safety and environmental protection measures, which included safety meetings, safety training re. emergency procedures and safety officers monitoring safety and environmental issues in the upper and lower camp and in the field. The program was carried out based on the requirements of the BC

Government project permit and the laws and regulations of BC. All contractor staff were required to have at least Level 1 BC First Aid Certificates. A cook with Level 3 was on site for the duration of the program and a first aid station was maintained in the cook's tent. The 407 helicopter contracted from VIH in Stewart remained on-site for the entire program and was equipped with a Blue Sky communication system to immediately alert Medivac in the case of injuries. Two satellite communication systems were utilized on site as well as three satellite telephones. Hand held radios were used for field communications and a repeater station was installed to ensure communications between the camp and the field.

The program was carried out with adherence to the appropriate environmental standards, safeguards and equipment requirements. The campsite was maintained in a clean and natural state with garbage burned in a proper fire pit on a daily basis and non-combustible materials flown to the staging area and shipped to Stewart. Bladders were used for multi purpose fuel that was consumed by the drill, generator and helicopter. Absorbent materials were placed under all drums used for tent heating and drill fuel. The drill sites were maintained in a clean and orderly state, with cuttings being contained in sump ponds. The ponds were lined with tarps and sediments were allowed to settle out, with clear water drained off the top of the ponds. After the drill program the ponds were drained and the sludge material removed and buried.

All the drill set-ups were dismantled and the lumber stored with the core at the exploration camp. All drill sites were left in a clean and natural state and no contaminants were discharged in drainage channels. The upper and lower camps were dismantled and all garbage and materials removed. The camp floors were moved with the helicopter and stored with the core at the lower camp site and with the camp lumber at the upper camp site. Before, during and after photos were taken of most activities and are provided annually to the mining inspector.

9.2.c. QUALITY ASSURANCE:

Ore Reference Standards from CDN Resource Laboratories Ltd. (Delta, B.C.) were used in the 2008 program for monitoring of the accuracy and precision of analytical results for all rock samples including drill core, outcrop rock chips and channel samples submitted to Chemex for analysis in 2008. Limited data received at the time of preparation of this report indicates good correlation between the Chemex analytical results and the recommended values provided for the four CDN standards (Tables QA1 CDN-BL-3, CDN-HC-2, CDN-CGS-15, CDN-GS-5D) utilized as checks. This data is referenced in Tables QA2, 3, which also includes the Chemex Certificate number and dates in order to monitor variations over time frames. Based on these results, there are no apparent analytical problems and the Chemex analytical results are considered acceptable.

ii) **INTERPRETATION:**

The geological environment of the area is considered of interest in view of the Noranda results and further work would be subject to the analytical results from the 2008 samples and the 2009 airborne survey proposed in Section 9.4.A. below.

9.3.A.ii. WATERFALL TARGET AREA:

The Waterfall Target Area (Figures 12, 13, 14; Photos 9A, B) represents a prominent resistant knob of silicified, weakly to moderately fractured outcrop with generally narrow quartz-sulfide veins and stringers in and on the edges of Todd Creek on the east flank of the OMTA. The target is described in Minfile 102: Bow 32 Showing on Todd 2, included below:

a) EXPLORATION STATUS, JANUARY 2008:

Brucejack Gold in conjunction with Marlin Developments found the zone in the follow-up of a 1987 geochemical survey. Mineralized outcrops occur on both sides of Todd Creek over a distance of about 200 m. Silver values from the outcrops typically range from 34 to 343 g/t. The highest-grade mineralization occurs on the east bank of the creek and is hosted in a hematite-chlorite altered felsic tuff. It consists of a 20 to 30 cm wide stockwork of quartz, barite and carbonate containing 15% pyrite as disseminations and stringers. A sample of this mineralization assayed 2262.9 g silver/t. Immediately west of the showing on the west bank of the creek, a grab sample assayed 0.14 g gold/t, 233.1 g silver/t and 0.54% lead.

b) <u>2008 EXPLORATION PROGRAM:</u>

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The 2008 geological and geochemical surveys included the collection of 26 channel samples and 6 chip samples (Figures NA-CHS-08, WF-CS-08; Tables RINDEX, NA-RSA-08). The analytical results for the chip and channel samples are shown in Table NA-RSA-08 and on the Chemex Certificates of Analysis provided in Appendix A. Based on the results in Table NA-RSA-08, the rock sample results are generally characterized by low to strongly anomalous gold (up to 0.26 g Au/t, weakly anomaolous to strong silver values (up to 151 g Ag/t); weakly anomalous to generally strong lead values (up to 0.49%) and weak to strongly anomalous zinc values (up to 0.32%). Individual samples have values ranging up to 0.15 g Au/t, 141 g Ag/t, 0.49% Pb and 0.09% Zn in sample 429650.

Three stream sediment samples (429759, 429765, 429766; Figure T-SS-08; Table T-SSD-08) were taken in the vicinity of the Waterfall Zone but the analytical results remain on hold.

ii) **INTERPRETATION:**

Relative to the overall exploration rationale for the Todd Creek Property, the sample results are regarded as significant. That rationale includes a VMS environment that includes interpreted stacked exhalite horizons with associated Au-Cu mineralization in Fall Creek (Molloy 2007); a northerly transition to the Ag-Pb-Zn mineralization on the Amarillo Grid, OMTA; the apparent haloing of the base metal zoning to the south by the Au-Cu mineralization in Fall Creek and to the east, up Todd Creek to the north; the northern 1994 Geonics Aerodat northern EM anomaly northeast of the Waterfall Zone that has never been followed-up (JVX, 2008); and, the distinctive multielement signature (MES) in the rock samples. Such specific Ag-Pb-Zn signatures often are found proximal to significant Au-Cu mineralization in the Stewart Gold Camp, including at the Red Mountain deposit, and as such should be regarded as part of the rationale for the evaluation of most areas of the property with a deep penetrating VTEM airborne survey.

9.3.A.iii. ORANGE MOUNTAIN TARGET AREA (OMTA):

a) EXPLORATION STATUS, JANUARY 2008:

The area is located about 2 km north of Fall Creek and is characterized by a 1.5 by 2 km prominent gossan zone with jarosite/alunite, limonite and manganese and numerous, steeply dipping barite veins and local areas of baritized rock (Figures 12, 13; Photos 6A-D). The host rocks comprise strongly silicified, pyritized and locally sericitized crystal tuff breccia in an apparent high-level epithermal environment.

In 1997 Geofine located the strongest Ag-Pb-Zn-Cd soil geochemical anomaly on the Amarillo Grid that it had ever encountered in its exploration efforts in the Stewart Gold Camp (Geofine, 1997). The results from a 2006 northern MMI-M orientation soil line and a 2007 southern MMI-M line confirmed the strong multi element soil signature (MES) that includes Au, Ag, As, Zn, Cd, Cu, REE, Mo, Pb. The MMI-M results also indicated the MES extends onto the cliffs above the grid.

The 2007 Amarillo Grid hole DDHAM07-01 and undercut hole DDHAM07-01A, the first ever drill test on Orange Mountain, evaluated the apparent source areas of the strong MMI-M and conventional soil geochemistry and associated favorable alteration. The holes intersected numerous pulses of generally strong and locally intense, mainly pyrite mineralization that entails the strongest sulfidization encountered on the Todd Creek Property to date. For example, DDHAM07-01 encountered 13 pulses of sulfides in zones that comprise approximately 55% of the core. The pyrite occurs as disseminations in silicified crystal tuff breccia, as fracture fillings including semi-massive pyrite and as sulfide matrix breccia, in which fragments are often partially or completely replaced by pyrite. Subject to confirmation by thin section studies, segments of the mineralization may be associated with exhalite horizons surrounded by classic ankeritic halos.

Although no economic values were intersected (Table SR-07), the holes were collared into multielement signatures in what is interpreted to be a pyritic halo. It was concluded that the Amarillo

Grid of the OMTA has potential for hosting a substantial VMS deposit. Approximately 1500 m of drilling was recommended to test the signatures in DDHAM07-01, -01A at a deeper depth and to test the MMI-M anomalies and mineralization located on the southern MMI-M line. If the follow-up drilling is successful, a series of set ups at various elevations and along strike locations will be required to adequately test the target.

b) 2008 EXPLORATION PROGRAM:

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

Only minimal work was carried out on the OMTA in 2008, and that included a review of the 2007 drill holes DDHAM07-01, -01A referenced above. The 2008 field work included the collection of 4 chip samples (430613-16; Figure NA-CHS-08; Tables NA-CHS-08, NA-RSA-08) and one stream sediment sample (Figure T-SS-08; Table T-SSD-08). The chip samples are from oxidized, earthy, altered crystal tuff breccia from the Amarillo Zone (Tables OMTA-RSD-08; RINDEX-08). The stream sediment sample 429659 (Figure T-SS-08) was collected about one km southwest of the Waterfall Zone. Assays are pending for the rock and sediment samples.

ii) **INTERPRETATION:**

Based on the encouraging results from the 2007 program referenced above on the OMTA and those referenced below from the Fall Creek Grid, OMTA, detailed follow-up work is recommended. However, such work in both areas would be focused by the property wide airborne VTEM and magnetic survey recommended in Section 9.4.A. below, as part of the Phase 2, 2009 exploration program.

9.3.A.iv. FALL CREEK SOUTH GRID, OMTA:

a) <u>EXPLORATION STATUS, JANUARY 2008:</u>

Much of the 2007 exploration program was focused on the South Grid (Photo 6A) and its exploration status at the end of 2007 is summarized below. The grid is located on the south flank of Orange Mountain and hosts numerous Au-Cu zones (Photos 7A-D) located in the vicinity of Fall Creek e.g., BD-NE, A, A02A; 203, 197/Ice, AM Zones (Molloy, 2007). The zones may be related to the interpreted centre of a VMS Au-Cu system at the Knob Zone. Moreover, their structural controls appear to define the plumbing of the large hydrothermal system and explain the transitional zoning along the structures from the Au-Cu environment proximal to Fall Creek to the Ag-Pb-Zn signature towards and intensely developed on Orange Mountain. The IP survey has been very useful in delineating the plumbing system and the magnetic survey (Figure KG3) provides information on the stratigraphic controls of the mineralized zones. This model may also provide the rationale for the variety of the apparent target types including Au-Cu VMS associated with stacked exhalative horizons in hanging wall rocks west of the Knob Zone along the Fall Creek Valley; Ag-Pb-Zn VMS

mineralization on Orange Mountain; Au-Cu porphyry at Yellow Bowl; and, near surface epithermal multiphase Au-Cu and Ag-Pb-Zn veins along the extensive plumbing systems.

As a result of this theory, a number of high priority targets immediately become apparent in the Fall Creek area (Molloy 2007). Seven areas of interest are located on the grid and they include:

i) East Area: reconnaissance geophysical line L12375E located a priority IP anomaly with magnetic association. The target requires further definition via geophysical and geochemical surveys. Subject to positive results, follow-up evaluation with two drill holes totaling 200 m is recommended.

ii) Area of the historic B, B1, Northeast AND NEW D Showings: geological surveys located the new D and the southern extension of the D Showing, with semi massive sulfide components (Photos 6A, 7B, C). Sub crop samples returned values ranging up to 5.89 g Au/t and 6.1% Cu; and, 1.275 g Au/t and 11.05% Cu. IP surveying outlined an anomaly associated with the showings over strike length of 350 m that remains open to the north and south. The general target area, like that of the A Zone referenced below is associated with a broad magnetic low that strikes NW across the grid and is thought to possibly represent propylitically altered host rocks (Figures G1, KG3). An airborne radiometric potassium channel anomaly (Figure G2) is associated with the target area. MMI-M soil sampling located a 185 m wide multi-element soil anomaly on L209+50E that includes anomalous Au and Cu in the vicinity of the Northeast Showing (Photo 8). The mineralization may be associated with a felsic horizon in the footwall of the zone. Initial drilling of the B Zone returned up to 7.32 g Au/t and 2.95% Cu over a 1.01 core length in DDHNEZ07-01A (Photo 6A; Table SR-07). Follow-up drilling (400 m) is required to evaluate the area of the Northeast Showing (Photo 8) and along strike to the north and south. The area of the B1 and the B Zones in the area of Fall Creek is also deemed to warrant follow-up drilling in the vicinity of the intersection of the mineralized structures and the Fall Creek Fault, where a 1994 composite sample returned 2.21 g Au/t and 2.28% Cu over 6.5 m (Molloy, 1994, 2007). The mineralization is thought to have southern plunge morphologies similar to those on the South Zone and careful drill targeting is required.

iii) A Zone and new NAZ02A Zone: The historic A Zone was delineated by the Spectral IP survey over a strike length of about 550 m and tested by 5 holes from two set-ups about 100 m apart (Molloy, 2007). The zone is located on the west edge of a broad magnetic low near the same magnetic high referenced above and interpreted to be associated with potassically altered crystal tuff breccia (Photo 6A; Figure KG3). The foot wall of the zone is thought to be composed of dacite. Results from the historic Noranda trenching ranged up to 3.8 g Au/t over 14.3 m and historic drill results ranged up to 3.47 g Au/t and 0.75% Cu over a 31.85 m core length including 14.47 g Au/t and 2.06% Cu over 5.95 m.

Results from the northern tier of the three 2007 holes (DDHNAZ07-01, -01A, -01B; Table DR 1) ranged up to 19.5 g Au/t and 5.83% Cu over a core length of 0.82 m (Photo 7A; Table SR-07). The southern tier of 2 holes (DDHNAZ07-02, -02A) returned up to 1.06 g/t Au and 0.34% Cu over a 3.3 m core length representing the down dip extension of the A Zone.

Hole DDHNAZ02-02A apparently intersected two new zones of interest at depth on the east side of

the A Zone. The zones are associated with intensely pyritized and silicified crystal tuff breccia and returned Au values of 1 g Au/t over a 8.41 m core length at a vertical depth of about 205 m; and 4.4 g Au/t over a core length of 4.5 m, including 12.8 g Au/t over 1.5 m at a vertical depth of 274 m (Table SR-07). Deep follow up drilling comprising about 600 m is recommended to evaluate the new zones north and south of Fall Creek.

iv) The 197 ZONE: The zone is located on the west end of the South Grid where IP surveying in 2007 had traced the target over a 750 m strike length (Photos 6A, 7D). The 197 Zone is associated with the possible structural contact of a magnetic low and the high (Figure KG3). The magnetic low appears to signature propylitically altered (limonitized, sulfidized, silicified, chloritized) crystal tuff breccia, often with quartz-carbonate-sulfide fracture fillings. The northwest area of the anomaly has a strong Ag-Cd-Pb-Zn MMI-M soil signature (Lines 21100N-21200N, with an apparent transition to an Au-Cu-As-Mo signature on L207+50N (Table MMI 197). Conventional soil geochemistry has outlined a large As anomaly with some Au and Cu correlation (Molloy, 1997). Historic float material (sample 598689, Map 5B) collected from a gossan zone on BL20000E at 21000N returned 2160 ppm Zn, 618 ppm Cd and 8.2 g Ag/t. The 2007 geological surveys located sulfidized, silicified, malachite stained crystal tuff breccia with quartz-carbonate-sulfide-fuchsite fracture fillings that returned up to 1.84 g Au/t, 8.2 g Ag/t, 0.93% Cu, 0.05% Pb and 5.02% Zn in a 1 m x 2 m outcrop composite sample (901626). The target is furthered evidence by the results from other samples that include anomalous Au, Cu (up to 0.47%), Pb and Zn (up to 0.29%) values. The mineralization is directly associated with or proximal to the 197 IP anomaly.

The 197 Zone remains open in both directions and appears to be the northern extension of the important Ice Zone Fault, located on the west side of the Yellow Bowl Zone, where a 1990 Noranda drill hole (NTC DDH90-55) returned strongly anomalous Au and As values over the first 103 m, including 10.3 g Au/t over 1.5 m. It is associated with favorably altered and mineralized crystal tuff volcanic breccias. The zone should be further evaluated with geophysical surveys on an expansion of the South Grid, south of Fall Creek. The 197 Zone has never been evaluated by diamond drilling and is considered to be a high priority drill target, particularly in the vicinity the structural junction with Fall Creek; on its postulated southern extension; in the vicinity of the Ice Creek Showing; and, in the vicinity of the transition from the Ag-Pb-Zn signature in soil and rock samples to the Au-Cu signature. About 400 m of diamond drilling is proposed to initially evaluate priority geophysical targets associated with the favorable geochemical signatures and geological environment. An additional 200 m of diamond drilling is recommended to be allocated to a hole undercutting NTC90-55.

b) <u>2008 EXPLORATION PROGRAM:</u>

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The 2008 field program on the South Grid focused mainly on the 197 Zone referenced above, where 271 rock samples (Tables W1, SC1, RBINDEX-08; RINDEX-08) and three sediment samples were collected (Figure T-SS-08; Table T-SSD-08). The rock samples comprise 245 channel samples (Figures FC-CS-08, FC-CS-08A) which were taken on 4 lines (Photo 7D) across the 197 Zone over a strike length of about 150 m. As shown in Table FC-RSA-08, no analytical results are available for the channel samples, which are described in Table FC-RSD-08. The channel samples generally comprise altered (weakly to strongly oxidized, weak-strongly fractured, often bleached, carbonated, silicified) crystal tuff breccia with up to 3-4% sulfides, mainly in stringers, veins and stockworks including pyrite, sphalerite and galena, often with quartz and calcite.

Of the 24 chip samples (Figure FC-CHS-08; Table FC-RSA-08), three (430502-04) were taken from the mineralization in Trench 1 on the A Zone; one (429948) was taken on the 197 Zone; and 20 (430923-42) were taken about 800 m south of Fall Creek, south of the 197 Zone, on the Ice Zone. The available analytical results for the A Zone samples have interesting Au contents ranging between 1.0 and 35.6 g/t, silver contents ranging between 6.7 and 13.7 g/t and copper contents ranging between 0.59 to 3.3% (Table FC-RSA-08). The chip samples from the Ice Zone are generally well altered (oxidized) and fractured with quartz-sericite-pyrite veins and stockworks. They have generally low to strongly anomalous gold contents (between <0.001 to 0.28 g); low Ag values (up to 1.6 g) and low Cu values, with one high value of 0.93% (Table FC-RSA-08).

In addition to the rock samples referenced above two representative samples (427027, 028) from angular boulders were collected on the south extension of the D Zone (Photo 6A; Figure T-CHSINDEX-08; Table RBINDEX-08). These samples remain to be assayed.

One stream sediment sample (429662) was taken on the south side of Fall Creek from the Ice Creek area and two stream sediment samples (429660, 429661) were taken on the north side of Fall Creek west of the 197 Zone (Figure T-SS-08; Table T-SSD-08). Analytical results are on hold.

MS scans were carried out on nine of the chip samples, with scans on 3 of the A Zone samples and 6 on the Ice Zone samples. Chlorite, illite, goethite and smectite were indentified in some of the A Zone samples. Muscovite, illite, goethite, limonite, jarosite and pyrite were identified in the some of the Ice Zone samples.

ii) **GEOPHYSICAL SURVEYS:**

The 2007 ground magnetometer survey on the South Grid was expanded in 2008 to cover the area south of Fall Creek in the southwest corner of the grid (Figure GMAGINDEX-08). The survey continued to delineate the apparent controls of the 197 Zone i.e., the west edge of the northwest trending magnetic high. The ground magnetic data collected from various target areas in 2008

(Figure GMAGINDEX-08) has been integrated by NTE with the historic ground magnetic data on Figure KG3. As a result, a broader target rationale is immediately apparent e.g., the A Zone on the east side of the magnetic anomaly on the South Grid; the partially outlined anomaly extending north along Todd Creek and associated with a partially outlined IP anomaly; and, for example in a wider context, the partially outlined magnetic anomaly associated with the oxide target on the South Zone. The geological surveys discovered a magnetite rich zone in altered mafic volcanic stratigraphy in the area of the Ice Zone that is also partially delineated by the magnetic compilation on Figure KG3.

iii) **INTERPRETATION:**

The gold contents available from the 2008 chip and channel samples on the Todd Creek Property are shown on Figure T-RSCOMPAU08. The gold, silver, copper and zinc contents of the historic rock samples and those contents available from the 2008 chip and channel samples have been compiled on Figures T-RSCOMPAU, AG, CU, ZN, respectively. The results indicate that the South Zone and East Fall Creek have the most abundant gold-copper mineralization. However, these areas have received the most detailed exploration based on the numerous showings. The least explored areas on the property to date i.e., the Knob, Yellow Bowl and Orange Mountain Target Areas show weaker values that warrant follow up work. The Yellow Bowl and newly discovered VMS Zone both have obvious potential for copper and gold mineralization based on the compilation of the results of the chip samples.

The readily apparent attributes of the South Grid need to be evaluated with a deep looking airborne EM system as part of the re-evaluation of all the areas of the property, including the Orange Mountain Target Area to the north, the Yellow Bowl Target Area to the south and the Knob Target Area to the east. The drill targets that have been outlined to date e.g., deep A Zone and 197 Zone would be reprioritized based on the overall discovery objectives that should include the detailed follow-up of all priority EM conductors delineated by the airborne survey.

9.3.A.v. KNOB ZONE:

a) <u>EXPLORATION STATUS, JANUARY 2008:</u>

The favorable attributes of the Knob Zone (Photos 2A, B; Molloy, 2007). include an extensive jarosite/alunite gossan with favorably altered (silicified, sericitized, intensely sulfidized) felsic volcanic breccias and flows located at a prominent structural junction (Todd Creek, Fall Creek, Knob Faults; Frontspiece Photos 2, Photo 2B). The zone is proximal to the most significantly apparent alteration zones (Yellow Bowl and Orange Mountain Target Areas) located to date on the Todd Creek Property and is thought be situated close to a felsic centre. The Knob Zone is locally intruded by feldspar porphyry and has favorable magnetic and potassic signatures (Figures G1, G2, KG3). The historic Noranda and Geofine geological and geochemical surveys have outlined favorable multielement signatures in the altered rocks, including Au (up to 970 ppb), Ag (up to 14.4 ppm), Cu (up to 3697 ppm) and As (up to 1860 ppm). A stream sediment sample taken in the vicinity of the

EM anomalies referenced below returned 20 ppb Au, 17 ppm Ag, 401 ppm Cu, 60 ppm Pb, 1775 ppm Zn.

The airborne EM anomalies interpreted by JVX (Figure 11A;) from a 1994 Geonics Aerodat airborne survey add substantially to the exploration rationale and may be associated with a volcanogenic massive sulfide deposit. Drill testing is the obvious next step after the airborne EM anomalies have been precisely located on the Knob Zone by ground geophysics, including deep looking EM. At least three initial holes totaling about 800 m are proposed, the first of which would be collared in hanging wall rocks on the west side of Todd Creek in propylitically altered crystal tuff breccias near the Jeremy Showing. The holes would be drilled east across the Todd Creek Fault into the EM anomalies on the Knob Zone. The geophysical survey should be expanded to cover the South Grid and the area south of Fall Creek, where other VMS horizons may occur.

b) <u>2008 EXPLORATION PROGRAM:</u>

A large part of the 2008 Todd Creek exploration program was focused on the Knob Zone. The work included the installation of the 6.5 km Knob Grid (Figure KG1); the carrying out of geological and geochemical surveys including the compilation of the 1994 Geonics Aerodat radiometric survey (Figure G1) the collection of 259 rock samples; and, 6.2 km of gradient IP (Figures KG6, 8) and 17.3 km of magnetic surveying by JVX Ltd. (Figure GMAGINDEX-08; Table W1). Four follow-up holes were drilled comprising about 1446 m and 1048 core and check samples were sent to the Chemex Lab in Terrace, BC. The 2008 work included the compilation of the historic gold, silver, copper, and zinc results from rock samples (Figures T-RSCOMPAU, AG, CU, ZN, respectively) and the gold contents of the 2008 rock samples (Figure T-RSCOMPAU08).

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The rock samples (Table RINDEX-08) comprise 161 channel and 98 chip samples (Table SC1; Figures T-CSINDEX-08, T-CHSINDEX-08). The samples were collected from extensive areas of oxidized, silicified and sericitized dacite and crystal tuff breccia with fractures fillings of massive pyrite often with traces of chalcopyrite. MS scans were also carried out on 89 of the Knob rock samples (Tables W1, MS1).

The channel samples generally were taken over 1 to 1.5 m and in four areas of the Knob Zone: the Central, East, Northwest, and South i.e., Mini Knob (Figures KC-CS-08, KE-CS-08, KNW-CS-08, KS-CS-08, respectively). Figure KNW-CS-08 includes the relative location of the central samples, which are detailed on Figure KC-CS-08. The available Chemex analytical results are provided in Table K-RSA-08 and are generally characterized by low to weakly anomalous gold values (up to 0.4 g/t) often correlating with mainly weakly anomalous silver values (but up to 54.4 g/t), anomalous arsenic values (up to 0.17%) and weakly anomalous to strongly anomalous copper values (up to 0.06%). Some generally weakly anomalous lead and zinc values are associated with some of the anomalous gold values and some weakly anomalous zinc values are associated with some of the anomalous copper values. Most of the signatures of interest are located on the NW and Central

Figures (KNW-CS-08, KC-CS-08) and include an anomalous gold-copper-arsenic component that may be associated with the gold-copper-arsenic plumbing system in the Fall Creek area that was postulated as the result of the 2007 exploration program (Molloy, 2007). In addition to the anomalous values referenced above, channel sampling on Knob East returned copper values ranging between 0.16% to 0.38% in 0.5 m samples 430842-47 (Figure KE-CS-08). These samples are located about 160 m south of the chip samples shown on Figure KN-CHS-08 (samples 429451-429457) as referenced below. MS scans of the channel samples generally revealed the presence of illite, along with some goethite and jarosite.

The chip samples were taken in three areas of the Knob Zone: the Central, North and South (Figures KC-CHS-08, KN-CHS-08, KS-CHS-08, respectively). The available Chemex analytical results are provided in Table K-RSA-08. The results for those chip samples taken in the Knob North Area (Figure KN-CHS-08) in proximity to the Knob NW channel samples (Figure KNW-CS-08) are also generally characterized by low to weakly anomalous gold values (up to 0.3 g/t) often correlating with some weakly anomalous silver values (up to 2.1 g/t), weakly anomalous arsenic values (up to 0.03%) and some weakly anomalous copper values (up to 0.01%). These samples have multielement element signatures somewhat similar to the channel samples. Additional chip samples taken about 350 m to the south (Figure KN-CHS-08) have a weak gold and arsenic signature, with some anomalous copper and silver values (Table K-RSA-08); and are indicative of a more extensive target area.

A second area of interest is shown on the Knob North Figure KN-CHS-08 (chip samples 429451-429457). The sample area is located on the east side of the Knob Creek and hosts narrow (2-10 cm) discontinuous sulfide veins that trend 320 deg. and that comprise quartz-sericite-carbonate-sulfide+/-pyrite-chalcopyrite-malachite-barite-carbonate-hematite-chlorite hosted by shear zones in crystal tuff breccia. The chip samples are characterized by a multielement signature that includes some anomalous gold values (up to 0.07 g Au/t, anomalous silver values (up to 38.5 g Ag/t), anomalous arsenic values (up to 0.21%), some anomalous copper values (up to 0.06%), strong lead values (up to 1.6%) and strong Zn values up to 5.42%. The sample widths range between 0.05 to 5 m and individual sample contents include 38.5 g Ag/t, 1.6% Pb, 5.42% Zn over 30cm (sample 429451) and 2.4 g Ag/t, 0.04% Pb and 1.1% Zn over 5 m (sample 429453). Three MS scans reveal the presence of some illite, goethite, siderite and montmorillite.

In addition to the results from the chip samples from the Knob North Area referenced above, three other specific areas with signatures of interest are apparent:

1. An area of anomalous gold and copper values in chip samples (429541-50; with widths ranging up to 6 m) is located on the Knob Central Figure KC-CHS-08. The values range up to 2.37 g Au/t, 3.4 g/t Ag and 3.35% Cu in sample 429541 over 0.76 m. Sample 429543 contains 1.68 g Au/t and 1.04 % Cu over 1.88 m. Anomalous lead and zinc values correlate with the gold and copper values. The anomalous values are associated with a persistent but narrow zone of copper bearing veinlets with malachite and disseminated chalcopyrite coincident with a sharp IP chargeability anomaly. The zone trends 320 deg. and dips 85 deg to the east. The chargeability anomaly is associated with the contact of a magnetic high and low anomaly and with a resistivity low. Four MS scans indicate the presence of some chlorite, illite, pyrite and malachite.

2. The "Mini Knob", is shown on the Knob South about 300 m southwest of drill hole DDHTC08-05 (Figures KS-CS-08, KS-CHS-08) located on the west side of Todd Creek, south of the Central Knob Area. Some of the chip samples (429458-60) are characterized by some anomalous gold (up to 0.11 g), silver (up to 9.6 g), arsenic (up to 0.04%) and copper values (up to 0.07%; Table K-RSA-08). The samples comprise altered tuff with fracture fillings of quartz, sericite and pyrite. A number of channel samples (429601-13) were cut about 25 m to the northeast of the above referenced chip samples. The one meter contiguous samples returned some anomalous copper and values ranging up to 0.054% Cu and 0.047% Zn. Three MS scans indicate the presence of some illite, garnet, chlorite and pyrite.

3. A third area of interest is located about 1.2 km south of the Mini Knob (Figure KS-CHS-08) on the west side of Todd Creek. The chip samples 429463-465 are characterized by a copper-lead-zinc signature with values ranging up to 0.039% Cu, 0.134% Pb and 0.048% Zn. Individual samples e.g. 429464 contain 0.04% Cu, 0.115% Pb and 0.048% Zn over 3 m. The samples are from altered (silica-chlorite-sericite) and fractured fine grained volcanic or intrusive rocks. The base metal signature is of particular interest since it is located in the area of the historic Geonics Aerodat airborne EM conductor set C3 as interpreted by JVX (Figure 11A; Appendix H).

ii) <u>GEOPHYSICAL SURVEYS:</u>

The 2008 geophysical surveys included the re-interpretation of the 1994 Aerodat EM anomalies by Dr. Ian Johnson of JVX (Appendix H). Two anomalies are of interest in the area of the Knob Zone:

C2: line 10340

This is a one line EM anomaly on a ridge north of the Knob Zone on the eastern side of a north northwest trending magnetic high (peaks to +400 nT). This magnetic high is 100 to 200 m wide, extends from line 10321 to 10410 (1600 m strike length) and is open to the southeast. High potassium count rates add interest to this magnetic unit and its contacts with the host rock. The EM anomaly suggests a weak bedrock conductor with a shallow to intermediate dip to the east. The location in table 1 is its leading or upper edge. High quadrature amplitudes suggest the conductor is shallow. The EM sensor terrain clearance is good (32 m).

C3 : lines 10450 to 10480

This is a set of 4 EM anomalies that define a 600 m long conductive trend near Todd Creek. The geophysical maps have C3 50 to 100 m east of Todd Creek. The topographic map has C3 on or just west of Todd Creek. Coaxial and coplanar EM anomalies are the same shape and there is no evidence of a near vertical thin sheet type conductor. At best, these anomalies represent a very weak horizontal ribbon type conductor. High mid frequency quadrature amplitudes suggest the conductor is shallow. Many would discount C3 as conductive overburden related to Todd Creek. The radar altimeter shows C3 over a local topographic high however and this argues against sediments under Todd Creek. The middle frequency inphase anomalies that make up C3 are unusual for this survey and this may add interest. C3 is in a magnetic low of similar shape. Potassium count rates are moderate. Without much

effort, C3 might be extended north 600 m to the Knob Zone showing (MF 109).

The 2008 IP and magnetometer surveys at the Knob Zone were carried out by JVX Ltd. from July 10-26. The work defined a number of anomalies, some of which appear to correlate with the favorable alteration including sericitization and sulfidization. The gradient array chargeability defines a broad zone of elevated responses and a linear north-northwest-trending anomaly that remains open to the northwest towards the structural junction of the Fall, Todd and Knob Faults (Figure KG-6). A comparison between the chargeability and resistivity results (Figure KG-8) indicate close correlation between high chargeability and high resistivity that is tentatively interpreted as the geophysical signature of a zone of disseminated to massive sulfides hosted by silicified and/or felsic volcanic stratigraphy. Coincident chargeability/resistivity responses in the Knob Zone are accompanied by a low magnetic response (Figures GMAGINDEX-08, G1, KG2-4) suggesting destruction of the magnetic mineral components of the host lithologies by a hydrothermal mineralizing event. The 2008 ground magnetic data on the Todd Creek Property is integrated with the historic data in Figure KG3. Patterns of response indicate the presence of both elevated and depleted magnetic response suggesting the presence of magnetically depleted lithologies in part due to alteration and mineralization as well as magnetically-enhanced areas that are attributable to the presence of magnetically-active or enhanced mineralized zones such as the South Zone (Photo 4B).

iii) **DIAMOND DRILLING:**

Follow-up drilling on the Knob Zone in 2008 comprised 4 holes (DDH TC08-04-07; Photos10A-D; Figures 13, KG4, 6, 8, 13; Table D1; Drill Logs DDH TC08-04-07; Drill Sections 6235580N (DDHTC08-04, -06), 6235000N (DDHTC08-05, -07) that comprised about 1446 m. A total of 1048 drill core and check samples were sent to Chemex (Table W1) but all assays are on hold at the lab. The holes tested a number of the geophysical and geochemical anomalies described above.

DDHTC08-04 (Photo 10A; Figure 13; Table D1) was collared in the northwest area of the Knob Zone and drilled to the east to test the magnetic low associated with the chargeability and resistivity highs described above. The hole was also designed to test the favorably altered felsic stratigraphy (Drill Log DDHTC08-04) and encountered four sulfide zones of interest:

Zone 1: 3.05-43.87 m with 4% pyrite in altered dacite

Zone 2: 117-159.25 m with 5% pyrite in volcanic breccia

Zone 3: 312.3-325.75 m with 3% pyrite in reddish purplish dacite with layered sulfide/quartz bands Zone 4: 330.85-333.35 m with 6% pyrite in reddish purplish dacite with layered sulfide bands

The intersections explain the IP chargeability and resistivity anomalies. Assay results are on hold at Chemex.

DDHTC08-05 (Photo 10B; Figures 13, KG6; Table D1) was collared approximately 700 m south of DDHTD08-04 and approximately 400 m west of the anomalous gold and copper values in chip samples 429541-50 described above and located on the Knob Central Figure KC-CHS-08. The

values in the chip samples range up to 2.37 g Au/t, 3.4 g/t Ag and 3.35% Cu in sample 429541 over 0.76 m. Sample 429543 contains 1.68 g Au/t and 1.04 % Cu over 1.88 m. Anomalous lead and zinc values correlate with the gold and copper values.

The hole intersected mainly dacite interbedded with pillow basalt (Drill Log DDHTC08-05). Only sparse sulfides were encountered in the generally weakly propylitically altered rocks and the IP anomaly was not explained. Assay results are pending.

DDHTC08-06 (Photos 10C, 10F; Figures 13, KG6; Table D1) was collared about 65 m to the east of DDHTC08-04. It was drilled for 487 m at an azimuth of 270 deg. to further evaluate the magnetic low and chargeability and resistivity highs that were tested by DDHTC08-04. The hole was also designed to provide a cross section of the favorable geological environment (Photo 10C; Section 6235580N DDHTC08-04, -06) and to test the northern extension of the 1994 Geonics Aerodat EM anomalies located in proximity to the Todd Creek Fault (Photos 2B, 5A; Figure 11A). The hole intersected mainly altered porphyritic dacite and number of sulfide zones (Drill Log DDHTC08-06):

- Zone 1: 104.6-121.05 m with 4% pyrite in altered crackled porphyritic dacite.
- Zone 2: 121.05-126.50 m with 8% pyrite in altered crackled porphyritic dacite.
- Zone 3: 126.50-276.45 m with 3% pyrite in altered dacite.
- Zone 4: 327.35-329.75 with 3% pyrite in altered, crackled dacite.
- Zone 5: 329.75-343.00 with 12% pyrite, chalcopyrite, and VMS style mineralization in altered sediment.
- Zone 6: 343-375 m with 4-6% pyrite in altered sediment.

Below Zone 6 (413.92-432.6 m) the hole intersected approximately 19 m of sandstone with soft sediment deformation and averaging 4% pyrite with local pyrite replacement to 8%. The sulfidization including some semi massive sulfide veins and green cherty quartz continues to the end of the hole. The Todd Creek Fault was apparently intersected at 426.5-430.38 m (Photo 10F). The sulfide intersections explain the IP chargeability and resistivity anomalies. Assays are on hold at Chemex.

DDHTC08-07 (Photo 10D; Figures 13, KG4, 6, 8; Table D1) was collared about 500 m northeast of DDHTC08-05 and drilled to the west to test the area of anomalous chip samples referenced above with regard to DDHTC08-05. The anomalies are associated with a persistent zone of copper bearing veinlets coincident with a sharp IP chargeability anomaly. The zone trends 320 deg. and dips 85 deg to the east. The chargeability anomaly is associated with the contact of a magnetic high and low anomaly and with a resistivity low. The hole intersected mainly dacite interbedded with pillow basalt and basalt interbedded with sediments (Drill Log DDHTC08-07). Only sparse amounts of pyrite were intersected and assays are on hold at Chemex.

iv) <u>INTERPRETATION:</u>

The Knob Zone continues to be interpreted as one of the main target areas on the property, with its apparent potential for VMS mineralization. The favorable geological and structural environment extends to the west, north and south, with the area of the structural junction of the Knob, Fall and

Todd Creek Faults being of particular interest. The historic and 2008 geological and geochemical surveys delineated a number of areas with interesting multielement signatures in rock samples including the Cu-Pb-Zn signature in samples collected south of the Mini Knob as described in Section i) above. The samples are located in the area of the C3 airbore EM anomalies interpreted by JVX in 2008 and are thought to be additional evidence of an extensive VMS environment. The subtle Au-Cu-As signature in rock samples collected from the Knob Zone are of interest since they often are associated with gold-copper and base metal deposits in the Stewart Gold Camp. The signatures are of particular interest since they may be associated with the strong Au-Cu-As plumbing system in the Fall Creek area to the west (Molloy, 2007). DDHTC08-04 and -06 evaluated the area of the signatures in the rock and intersected the most prospective mineralization in the 2008 Knob holes. The significance of the mineralized zones will be determined when the analytical results are released from Chemex.

As suggested by Dr Ian Johnson (Appendix H), it is recommended that the Knob Zone be evaluated with a deep penetrating VTEM airborne survey, as part of the proposed airborne geophysical reevaluation of the rest of the property. Any VTEM anomalies associated with the prospective geological and structural setting would be of significant interest, particularly in view of the VMS stratigraphy in DDHTC08-06 and the proximal C3 airborne EM anomalies. The C3 conductor set of EM anomalies appears to be located to south of the 2008 drill holes.

9.3.A.vi. <u>YELLOW BOWL ZONE:</u>

a) EXPLORATION STATUS, JANUARY 2008:

The Yellow Bowl South Target Area (YBS; Photos 5A, B; Figures 12-14) was located by helicopter reconnaissance surveys as snow waned on the upper levels of the Yellow Bowl Zone in July 2007. The follow-up of the favorable structural fabric and alteration in the small part of an extensive gossan zone was immediately indicative of a significant Au-Cu target associated with intensely sulfidized pyroclastic rocks and possible felsic flows, thought to be underlain by a large intrusive.

The initial 13 samples of sub crop and in situ mineralization averaged 293 ppb gold and 0.53% copper. Individual composite outcrop samples with malachite staining returned up 60 ppb Au and 1.96% Cu over 1 m; composite samples of the gossan zone hosted by pyritized and silicified volcanic breccia with some malachite staining returned up to 339 ppb Au and 0.87% Cu over 3 m. Individual angular mineralized boulders returned up to 1.63 g Au/t and 0.58% Cu.

As revealed in heliphotos e.g., Photo 5A, the Yellow Bowl Zone is a much more extensive target then previously thought. Historic surveys in the north-central area had indicated an environment with considerable exploration potential based on alteration, sulfidization and felsic interbeds (Molloy, 1999). The YBS gossan widens considerably to the west, above the cliff exposure that was sampled in 2007. Based on the initial results from a small part of the southern area of the zone and subject to snow conditions, a comprehensive follow-up exploration program, including 1500 m of diamond drilling, was proposed for 2008. The program would include additional geological and geochemical surveys to outline the extent of the favorable multielement signature and to prioritize drill set-ups.

The drill program would comprise 3 or 4 deep holes to test the postulated Cu-Au porphyry system at depth. As a general yardstick to the target depth, the feldspar porphyry intrusive at the Knob Zone is located at a vertical depth of about 370 m below the YBS Zone.

b) 2008 EXPLORATION PROGRAM:

The 2008 Todd Creek exploration program included the carrying out of geological and geochemical surveys with the collection of 119 rock samples; 6 boulder/representative samples; 5 stream sediment samples; and, 2.2 km of magnetic surveying by JVX Ltd. (Figure GMAGINDEX-08; Table W1).

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The rock samples (Table RINDEX-08) comprise 23 channel samples and 96 chip samples (Table SC1; Figure T-CHSINDEX-08; Figure T-CSINDEX-08). The samples were collected from extensive areas of oxidized, silicified, carbonatized, chloritized crystal tuff breccia with fracture fillings of quartz-calcite-hematite-chlorite-pyrite with traces of chalcopyrite, sphalerite and galena (Photo 5B).

The geological surveys located an apparent exhalite horizon (Photos 5C, 11A-2) about 75 m east of the 2007 YBS discovery. An outcrop of feldspar porphyry (Photo 5D) was also located about 25 m east of the exhalite. Representative samples of the exhalite, porphyry, sericitic alteration and soft sediment deformation in a float boulder were also collected (samples 427019-24; Table RBINDEX-08). The samples are currently awaiting shipment to Chemex.

The channel samples were generally taken over widths of about 1 to 1.4 m in two areas, mainly in the Yellow Bowl South and North Areas (Figure YB-CS-08). The available sample descriptions are shown in Table YB-RSD-08 and the locations and widths are provided in Table RINDEX-08. The samples are generally from gossans zones and mainly comprise altered crystal tuff breccias that show various degrees of oxidization, sulfidization (pyrite with traces of sphalerite, galena and chalcopyrite) silicification (often blue grey silica matrix), carbonatization (as replacement patches and microfracture fillings), chloritization as replacements and fracture fillings, with local hematization and well developed macro and micro sulfide matrix breccia. The analytical are on hold at Chemex.

The chip samples were taken in two areas, mainly north and northwest of the YBS Zone and in an area about 350 m southwest of the YBS Zone (Figures YBN-CHS-08 and YBS-CHS-08). The samples are described in Table YB-RSD-08 and in Table RINDEX-08, along with locations and field notes. The analytical results are available for 70 of the chip samples and are shown in Table YB-RSA-08. The samples of interest are generally characterized by a multielement signature that includes high sulphur values, sodium and barium depletion, weakly anomalous gold values (up to 0.56 g), weak to strong arsenic anomalies (up to 0.09%), some weakly anomalous to strong copper values (up to 1.46%) and some weakly anomalous lead values (up to 62 ppm) correlating with some of the anomalous gold values. Many of the samples of interest are located to the southwest of the YBS Zone discovered in 2007 and represent the apparent expansion of the YBS target area. MS scans were carried out on most of the chip samples (Table MS-1). The alteration products identified include muscovite, illite, goethite, limonite and garnet.

Five stream sediment samples were collected from drainages on the east and west side of Todd Creek in the Yellow Bowl Target Area (Figure T-SS-08; Table T-SSA-08). The streams drain prominent gossan zones that suggest the favorable Yellow Bowl environment extents east to Todd Creek.

ii) <u>GEOPHYSICAL SURVEYS:</u>

The planned 2008 geophysical surveys on the Yellow Bowl Zone were limited by poor weather and snow conditions. They comprise 2.2 km of magnetometer surveying west and northwest of the 2007 YBS discovery (Figures GMAGINDEX-08, KG3). Magnetic surveying was also extended north from the NEXT Zone along the east side of the upper Yellow Bowl Zone (Figure KG3). The integrated 2007 and 2008 ground magnetic data is interpreted to have partially outlined the northern extension of the magnetic anomaly associated with the auriferous oxide target on the MEXT Zone (Photos 4A, B; Figure KG3).

iii) **INTERPRETATION:**

Fedikow (2006) has interpreted the mineralizing systems on the Todd Creek Property as immense and noted the possibility of associated Au-Cu porphyry and/or VMS mineralization at depth. The multielement signatures in the historic and 2008 rock samples from the Yellow Bowl Zone are considered indicative of the potential for such target types at depth. For example, the gold contents available from the 2008 chip and channel samples on the Todd Creek Property are shown on Figure T-RSCOMPAU08; and, the gold, silver, copper and zinc contents of the historic rock samples and those contents available from the 2008 chip and channel samples are shown on Figures T-RSCOMPAU, AG, CU, ZN, respectively.

The favorable geological attributes including the VMS stratigraphy (Photo 5C) and a possible felsic dome to the south of the YBS Zone (Photo 4C-3); intrusive rocks (Photo 5D); and the extensive alteration and amenable structural fabric (Photo 5B) are warrantous of a persistent exploration effort. Favorable attributes have also been discovered in 2008 in the area about 350 m southwest of the 2007 YBS discovery where some of the 2008 chip samples were taken (Figure YBS-CHS-08; Photos 5E-G).

It is recommended that the Yellow Bowl Zone be evaluated with a deep penetrating VTEM airborne survey, as part of the recommended airborne geophysical re-evaluation of the entire Todd Creek Property (Section 9.4A.) Any VTEM anomalies associated with the prospective geological and structural setting would be of significant interest, particularly in view of the VMS stratigraphy in situ at YBS, to the north at the Knob Zone and to the south at the South Zone and beyond. The airborne survey is considered to be particularly relevant in view of the extent of the favorable alteration down slope to Todd Creek on the east, to Ice Creek on the west and to Fall Creek on the north (Figure 5A). All of these areas have significant gold-copper signatures associated with numerous showings that could be surface expressions of more important mineralization at depth.

9.3.A.vii. SOUTH ZONE:

a) <u>EXPLORATION STATUS, JANUARY 2008:</u>

i) South Zone Deposit (SZD):

In the follow-up of the 2004 South Zone hole DDHSZD04-04 (Photo 4), undercut hole DDHSZD07-01A intersected Zone A SZD mineralization (Molloy, 2007) ~75 m down dip of the 04-04 intersection (3.09 g Au/t and 0.29% Cu over a 10 m core length). However, the mineralization in 07-01A was weak (0.3 g Au/t and 0.19% Cu over a core length of 0.79 m; Table SR-07). DDHSZD07-01 did intersect the Zone B SZD mineralization (3.12 g Au/t over a 2.52 m core length).

Borehole IP surveying of the holes apparently located stronger A Zone mineralization about 25 to 50 m south of DDHSZD07-01A, suggesting a southerly plunge to the target as previously interpreted on vertical long sections (Molloy, 2006). Detailed follow-up drilling is proposed with at least 2 drill holes totaling about 800 m in proximity to the postulated plunge axes. The rationale for the holes includes following the axes of shoot morphologies down plunge to stronger mineralization. As envisioned by the Fedikow (2006) exploration strategy, the large and intense epithermal multiphase breccia vein systems may be associated with a porphyry or VMS/oxide system at depth. As the roots of these systems are approached with deeper drilling, it is anticipated that the widths and grades of the mineralization will increase.

ii) MEXT Zone (Middle Extension of SZD):

As a follow-up of the oxide zone intersected in 2006 MEXT hole DDHMZ06-02 (1.06 g Au/t and 0.09% Cu over a core length of 13.59 m; Photos 4B, 4B-1), DDHMZ07-01 intersected the target at a vertical depth of 305 m and \sim 75 m down dip of the DDHMEXT06-02 intersection. Although the hole did return interesting values (2.07 g Au/t and 0.15% Cu over a 9.12 m core length including 12.25 g Au/t and 0.66% Cu over 1.13 m), the bore hole IP survey indicated a stronger target located about 25-50 m to the north.

As a prerequisite for 2008 follow-up drilling, was is recommended that the 2007 magnetometer survey be expanded on the SZD and MEXT Grids to further delineate/interpret oxide or intrusive bodies that may be associated with the auriferous target.

b) <u>2008 EXPLORATION PROGRAM:</u>

The 2008 activities on the South Zone (Photos 4, 4A; Tables W1, S1, SC1, D1) comprised geological and geochemical surveys including the collection of 67 rock chip, channel and representative samples (Figures SZ-CS-08, SC-CHS-08; Tables RINDEX-08, RBINDEX-08, SZ-RSA-08, SZ-RSD-08), and 4 stream sediment samples (Figure T-SS-08; Table T-SSD-08). The geophysical work included 38.8 km of magnetic surveying on the South, MEXT and NEXT Zones and their northern extension

along Todd Creek, including the area east of Yellow Bowl (Figures GMAGINDEX-08, KG3). Follow-up drilling comprised 3 holes (DDHTC08-01-03) totalling 616.3 m from which 452 samples were processed (Tables D1, S1).

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The geological surveys delineated VMS stratigraphy i.e., an exhalite horizon in the vicinity of the By Glacier (Figure SZ-CHS-08; Photos 4C, 11A) and air photo interpretation of a possible felsic dome west of the Todd Creek Camp (4C-3). The rock samples comprised 35 chip, 30 channel and 2 representative samples. The principal elements of the structural fabric and important junction have also been interpreted from the heli photos (Photos 4C-2, -3).

The chip samples were taken in the area of the By Glacier on the South Zone (Frontspiece Photo 1; Photos 4, 4C, 4C-1, 4C-2, 5A) and on the MEXT Zone (Photos 4, 4B-1; Figure SZ-CHS-08). The 20 chip samples taken in the area of the By Glacier comprise maroon siltstone with sulfide veins including pyrite, sphalerite, bornite, chalcopyrite (sample 430646), crystal tuff breccia, massive sulfide boulders (samples 430158, 430159), quartz veins and cherty exhalite (sample 430644) with sulfide contents up to about 35% (SZ-RSD-08; RINDEX-08). All the analytical results are on hold.

The 15 chip samples collected in the MEXT Zone comprise altered crystal tuff breccia (carbonated, fractured with quartz-carb and sulfide fracture fillings), and quartz, oxidized and hematized material with sulfide and oxide contents up to 7% pyrite and 20% specularite (Tables SZ-RSD-08, RINDEX-08). All assays are pending except for sample 430501, which contained specularite and was collected from below the MEXT Waterfall. The sample returned 0.50 g Au/t and 0.02% Cu and the result is being checked base on much higher historic results returned from such minerlization.

One of the representative samples (426025) of altered rhyolite (silicified, sulfidized with 2-6% pyrite and trace chalcopyrite) was collected in the vicinity of the drill pad constructed for DDHTC08-09 (undrilled in 2008; Photo 4C). The second representative sample (427026) comprised well hematized and limonitized, silicified crystal tuff breccia with 15-35% disseminated to semi-massive specularite. The samples await shipment to the lab.

ii) <u>GEOPHYSICAL SURVEYS:</u>

The 2008 surveys on the South Zone comprised 38.8 km of magnetometer surveying (Table W1, GMAGINDEX-08; Figure KG3). Magnetic surveying was also extended north from the NEXT Zone along the east side of the upper Yellow Bowl Zone (Figure KG3). The survey is interpreted to have partially outlined the northern extension of the magnetic anomaly associated with the auriferous oxide target on the MEXT Zone (Photos 4A, B, B1).

iii) **<u>DIAMOND DRILLING:</u>**

The 2008 diamond drilling program on the South Zone comprised about 616 m of confirmation

drilling (DDHTC08-01) and step down drilling (DDHTC08-02, 03; Photos 4, 4D, 4E; Figure 13; Tables D 1, DR1, DR1A; Drill Logs DDHTC08-01-03). The three 2008 holes are projected on Sections 6231150N with a plan map and on 6231200N DDHTC08-01-03 without a plan map. The holes were drilled into the centre of the South Zone gold-copper deposit (non compliant NI 43-101 resource of 207,000 t grading 5.48 g Au/t with significant Cu credits, Hemlo Gold Mines Annual Report, 1988).

The 2008 holes were drilled to also test anomalous geophysical and geochemical responses obtained in 2007 (Molloy, 2007). The holes intersected potassic and hematite-altered dacite and silicified breccias with up to 25% pyrite as disseminations and fracture fillings and lesser amounts of chalcopyrite, hematite and specularite. The mineralization is mainly associated with a series of multiphase breccia veins, which often contain up to 5% specularite as disseminations and veinlets. This style of alteration is associated with the destruction of primary feldspars and the formation of sericite as well as the replacement of mafic minerals with chlorite and fuchsite. There are abundant quartzcalcite-ankerite veins in this mineralized interval that has maximum widths of up to 42 m.

DDHTC08-01 was drilled to intersect the SZD in the vicinity of NTC88-18 and 19, which returned 2.26 g Au/t over 4.25 m and 3.6 g Au/t over 29.75 m respectively (Sections 6231145N, 6231150N, 6231200N). The hole intersected the SZD mineralization from 59.15-76.51 m over a core length of 17.26 m that averages 1.73 g Au/t and 0.26% Cu including 5.45 g Au/t and 1.87% Cu over 2.01 m (Photo 4F; Table DR1A). The zone is hosted by altered crystal tuff and interbedded dacite. The assays for the lower half of the hole remain on hold at Chemex.

DDHTC08-02 (Sections 6231087N, 6231150N, 6231200N) was an offset hole to DDHSZD07-01A to test the down plunge extension of the strong mineralization intersected in DDHSZD04-04 and indicated by the BHIP survey in DDHSZD07-01A. DDHTC08-02 intersected the SZD stratigraphy from 156.4-178.52 m, which included a number of zones hosted by altered (potassic. chlorite, silica) and fractured dacite (Photo 4G):

Sulfide Lead-in (156.4-167.0 m) with 4% sulfides with hematite and specularite. Oxide/sulfide Lead-in (167-171.7 m) with 3% hematite and 3% specularite. SZD (171.7-178.52 m) with 5% pyrite, 1% hematite, \leq 1 specularite (Photo 4H).

All assays are on hold at Chemex.

DDHTC08-03 is projected onto Section 6231087N and was drilled as an angled under cut of DDHTC08-02 to follow the depth/plunge projection of the SZD mineralization encountered in DDHTC08-02. The hole intersected the SZD stratigraphy from 240.2-273 m, which included a number of components hosted by altered and fractured dacite and pillow basalt (Sections 6231200N,

6231150N and, 62310870N :

Minor Sulfide Zone (240.2-262.18 m) with 3% sulfides in altered, fractured dacite. Major Sulfide Horizon (VMS Style Mineralization; 262.18-267 m) with 15% pyrite and up to 5% hematite hosted by altered tuff (Photo 4I).

Minor Sulfide Zone (SZD mineralization; 267-273 m with 2% pyrite in altered dacite with quartz-hematite/specularite/pyrite breccia veins (Photo 4J).

All assays are on hold at Chemex.

iv) <u>INTERPRETATION:</u>

The multielement signatures in the historic rock and drill core samples and in the 2008 rock samples from the South Zone continue, as those from the Yellow Bowl Zone, to be considered indicative of the potential for VMS and Au-Cu porphyry mineralization at depth (Fedikow, 2006; Figures T-RSCOMPAU08, T-RSCOMPAU, AG, CU, ZN).

The waning of the glaciers e.g., By and VMS, on the Todd Creek Property has recently exposed some important evidence of a significant VMS environment centred in the area of the South Zone. For example, an exhalite horizon has been recently exposed to the west of the SZD by the receding of the By Glacier. Felsic stratigraphy is also present in the hanging wall rocks of the SZD and a felsic dome, subject to ground truthing, has been interpreted from heliphotos to the west of the exhalite. The favorable attributes of the South Zone include the SZD, which remains open at depth where it appears to have been a possible feeder zone associated with the VMS stratigraphy intersected in DDHTC08-03. The transition from a sulfide phase to an oxide phase (auriferous specularite) along the SZD at the MEXT Zone appears to entail a high priority drill target based on the delineation of the northern extension of the associated magnetic signature in 2008. As a result of these attributes, a 2009 follow-up drill program could now be formulated to evaluate the important intersection of the VMS stratigraphy in DDHTC08-03, including it's along strike projection in the area of the oxide target on the MEXT Zone.

In view of the apparent extent of the VMS environment over a 7 km strike length from the Mylonite Zone in the south to beyond the Knob Zone to the north, it is recommended that, as a prerequisite for focusing further follow-up work on the Todd Property, that the South Zone be evaluated with a deep penetrating VTEM airborne survey, as part of the airborne geophysical re-evaluation proposed for the entire Todd Creek Property (Section 9.4.A.). The recently digitized historic data base should be integrated with the airborne survey results such that a 3D model can be constructed to illustrate the structural and geological controls in order to optimize 2009 follow-up activities, including detailed mapping and diamond drilling.

9.3.A.viii. VMS TARGET AREA:

a) <u>EXPLORATION STATUS, JANUARY 2008:</u>

The VMS Target Area is located about 2 km southeast of the area of the SZD or about one km to the northeast of the Mylonite Zone (Photos 11A, 11A-1, 11A-2; Figures 12, 13). The VMS and Mylonite Zones are located near a prominent structural junction of the Todd Creek, Mylonite and VMS Faults (Photo 11A-1). Other than heliphoto interpretations, the VMS Zone appears to have never been scrutinized by historic exploration activities.

b) <u>2008 EXPLORATION PROGRAM:</u>

The area first became of interest in 2008 with the exposure of a number of gossan zones due to the waning of the VMS Glacier (Photo 11C). The 2008 geological surveys discovered the important VMS Zone that provides the most direct evidence of the VMS potential of the property that has been postulated for a number of years. The significance of the target was confirmed by geologists from the BCMEMPR. The VMS environment includes the VMS Feeder Zone, which strikes about 320 degrees, has a steep northeast dip and has been traced for about 450 m. The Feeder Zone is up to about 5 m in width and remains open to the southeast; and, the main VMS depositional target area remains open to the southeast and north (Photos 11D-Au, -Ag, -Cu, -Zn). The north area (Photo 11B) is characterized by a large train of oxidized, sulfidized boulders with soft sediment features that are thought to be derived from the main VMS depositional environment.

The 2008 activities on the VMS Zone (Photo 11A; Tables W1, S1, SC1) comprised geological and geochemical surveys including the collection of 104 rock chip, channel and representative samples (Figures T-CSINDEX-08, T-CHSINDEX-08, VMS-CS-08, VMS -CHS-08; Tables RINDEX-08, RBINDEX-08, VMS-RSA-08, VMS-RSD-08); and, 5 stream sediment samples (Figure T-SS-08; Table T-SSD-08). MS scanning was carried on 32 of the rock samples (Table MS1).

i) **GEOLOGICAL, GEOCHEMICAL SURVEYS:**

The rock samples comprise 38 chips, 48 channels and 18 representative and boulder samples. Analytical results are available for 66 of the chip and channel samples (Table VMS-RSA-08.) The rock samples were collected over an area of about 0.8 by 1.2 km in the vicinity of the VMS Głacier (Figure VMS-CHS-08, VMS-CS-08) that encompasses the Feeder Zone and the area of the oxidized boulder train to the north (Photo 11B). The samples were taken over widths generally ranging between 0.1 - 2.5 m and are mainly composed of VMS mineralization, which occurs as disseminations and blebs to narrow, deformed sulfide bands to massive sulfides composed of pyrite +/- chalcopyrite, bornite, sphalerite and galena; and, of the altered (carbonated, chloritized, sericitized) host felsic volcanic stratigraphy and interbeds of altered tuff (Tables VMS-RSD-08, RINDEX-08).
The available results for individual chip samples range up to 0.47 g Au/t, 45.3 g Ag/t, 1.69% Cu, 0.26% Pb and 7.11% Zn over 2 m in sample 429505 (Table VMS-RSA-08); and those for the channels samples, up to 0.28 g Au/t, 27.9 g Ag/t, 1.5% Cu, 0.055% Pb, 1.22% Zn over 0.76 m in sample 430964. MS scans of the channel samples generally revealed the presence of illite, along with some goethite and jarosite.

The available results from the rock samples from the southeast area of the Feeder Zone (Photos11B, C, F-H; Figures VMS-CS-08, VMS-CHS-08; Tables VMS-RSA-08; VMS-RSD-08, RINDEX-08) include 0.62 g Au/t, 3.1 g Ag/t and 0.43% Cu in chip sample 429407. The sample was taken about 200 m southeast of the main Feeder Zone over a width of 0.68 m and is comprised of narrow sulfide bands. The results along with the mineralization in a second sample (429441, assay on hold) are interpreted to evidence the southeast extension of the Feeder Zone.

The available results for the channel samples from the main Feeder Zone include:

0.28 g Au/t, 27.9 g Ag/t, 1.05% Cu, 0.05% Pb, 1.22% Zn over 0.76 m in sample 430964 0.22 g Au/t, 16.0 g Ag/t, 0.50% Cu, 0.28% Pb, 3.03% Zn over 1.09 m in sample 430974 0.13 g Au/t, 16.3 g Ag/t, 0.52% Cu, 0.28% Pb, 1.80% Zn over 1.2 m in sample 430980

The channel samples are characterized by a weak Au and an interesting As, Ag, Cu, Pb and Zn signature.

The main Feeder Zone has been traced to the northwest via rock sampling. The available results for the chips samples from the northwest extension of the main Feeder Zone (Photos 11B, C, F-H, Figure VMS-CHS-08; Table VMS-RSA-08) include:

0.19 g Au/t, 6.3 g Ag/t and 1.35% Cu with minor Pb and Zn in sample 429503 over 2 m in oxidized, silicified breccia;

0.33 g Au/t, 15 g Ag/t, 0.92% Cu with minor Pb and Zn in sample 429504 over 0.6 m in a zone of quartz veins in felsic breccia;

0.47 g Au/t, 45.3 g Ag/t, 1.7% Cu, 0.26% Pb and 7.11% Zn in sample 429505 over 2 m in altered felsic volcanics with py, cpy in sulfide-quartz-chlorite veins;

0.36 g Au/t, 38.7 g Ag/t, 0.94% Cu, 0.42% Pb, 3.4% Zn in sample 429506

0.18 g Au/t, 57.6 g Ag/t, 0.76% Cu, 0.1 Pb, 0.89% Zn in sample 429507

The As, Au, Ag, Cu signatures for the chip samples are similar to those in the channel samples from the main Feeder Zone, although some zoning is apparent with a number of the chip samples lacking higher Pb and Zn values. The available results for the channel samples from the same northwest extension (Photos11B, C, F-H; Figure VMS-CS-08; Table VMS-RSA-08) include:

0.07 g Au/t, 14.9 g Ag/t, 0.04% Cu, 0.52% Pb, 6.09% Zn over 0.3 m in sample 430944 in the core pyrite zone in bleached volcanics; contiguous with footwall sample 430943 that returned 2.89 % Zn over 0.85 m; and with hanging wall sample 430945 that returned 0.8 % Zn over 1 m;

0.24 g Au/t, 5.5 g Ag/t, 0.06% Cu, 0.04% Pb, 6.75% Zn over 0.8 m in sample 430951 from a weak pyrite zone in altered felsic volcanics.

0.03 g Au/t, 6.6 g Ag/t, 0.02% Cu, 0.08% Pb, 3.8% Zn over 0.7 m in sample 430954 in a pyrite zone in bleached volcanics.

The channel samples have signatures somewhat similar to the chip samples from the northwest extension and are mainly characterized by weaker As, Au, Ag, Cu, Pb values and strong Zn values, which are stronger than the currently available Zn values for the main Feeder Zone channel samples. Four channel samples (430958-961) were cut from a large oxidized sulfide boulder (Photo 11G) located in the area of the northwest extension of the main Feeder Zone. The samples comprise VMS type mineralization with narrow sulfide bands showing soft sediment deformation. The samples have mainly an As-Zn signature, with the 4 samples averaging 0.27% As and 0.31% Zn.

In addition, channel samples 430955-57 (Figure VMS-CS-08) provide evidence that the northwest extension continues for at least another 80 m. The samples have anomalous to strongly anomalous lead contents ranging up to 0.54% and strong zinc contents ranging up to 4.07%

Fourteen chip samples were also collected in the north area over a 200 by 300 m area north of the toe of the VMS Glacier (Figure VM-CHS-08). The samples comprise altered basalt, andesite and pyroclastics, sulfide vein and stockwork material in shear zones (Table RINDEX-08). Results for five samples are available and include:

0.39 g Au/t, 54.3 g Ag/t, 0.65% Cu, 0.28% Pb, 1.47% Zn in sample 429412 over 35 cm from altered tuff with pyrite and chalcopyrite bands.

0.14 g Au/t, 3.1 g Ag/t, 0.35% Cu with minor Pb and Zn in sample 429413 from a sulfide band in 5 m wide alteration zone.

MS scans were carried out on 32 samples including 12 channels and 20 chips. Alteration types detected in chips include illite, montmorillite, muscovite and goethite. The channel samples often contain illite, muscovite and chlorite.

A total of 18 representative and boulders samples (Figure T-CHSINDEX-08; Table VMS-RSD-08) were collected from the banded boulder train area (Photo 11B); from the VMS Feeder Zone; and, from the VMS Island (Photos 11A-1; 11B, 11I). The sample locations and descriptions are provided in Table RBINDEX-08. The samples await shipment to the lab.

A total of 5 sediment samples were collected from streams on the east side of Todd Creek in the area of the VMS Zone (Figure T-SS-08; Table T-SSD-08). The samples await shipment to the lab.

Since the VMS Feeder Zone trends to the southeast off the Todd Tenures (Photo 11A), the Funk Tenures (Figures P, P2) were optioned. The Funk ground is thought to host the easterm extension of the VMS environment.

ii) <u>INTERPRETATION:</u>

The VMS Zone constitutes the discovery of the most direct evidence of a significant VMS environment on the Todd Creek Property. The environment includes the main Feeder Zone and its apparent extensions to the northwest and southeast. A large VMS depositional environment is indicated by the extensive banded, sulfidized boulder train to the north of the Feeder Zone and by in situ exposures of altered and mineralized volcanic rocks and interbedded sediments. The mineralization comprises delicately layered pyritic chemical sedimentary exhalite (Photo 11G) in association with crosscutting pyritic veinlets (Photo 11E) and veins of black chlorite (Photo 11G-1). In addition "fish-scale" black chlorite flecks are present as 0.1 cm to 0.5 cm ovoid and irregularly shaped domains of black chlorite dispersed through the altered volcanic rocks. This "fish-scale" black chlorite veins are characteristics of proximal depositional environments in which base metal VMS type mineralization is formed (Fedikow, 2008). These characteristics are those of an extensive hydrothermal exhalative system that typically accompanies individual base metal and precious metal deposits and districts worldwide. Accordingly, the recognition of this hydrothermal signature confirms the potential of the Todd land position for VMS-type mineralization.

This potential is further evidenced by the VMS stratigraphy in outcrops and/or drill core on the South, Yellow Bowl, Knob and Fall Creek Zones referenced above and the Mylonite Zone referenced below. It is recommended that this favorable target area that extends over a 7 km strike length and that includes Eskay Creek type felsic stratigraphy e.g. rhyolite flow breccias and massive sulfide mineralization be evaluated with a VTEM airborne survey and follow-up ground geophysical and geological surveys and 3D modeling, along with diamond drilling. The airborne survey would be part of the proposed Phase 1, 2009 Todd Creek exploration program (Section 9.4.A., Table E2). The release and integration of the 2008 analytical data and the analysis of the remaining 2008 samples are prerequisites for the recommended Phase 1 work.

9.3.A.ix. MYLONITE TARGET AREA:

a) EXPLORATION STATUS, JANUARY 2008:

The Mylonite Zone is located about 2.8 km south of the South Zone and could represent the southwest extension of the fault splay that hosts the SZD (Frontspiece Photo 1; Photo 11A-1, -2; Figures 12-14). The ground between the South Zone and the Mylonite Zone is covered by glacial-fluvial deposits of the Todd Valley, and the Mylonite Zone is the only substantial evidence of the along strike extension of the SZD mineralization. The zone is located immediately west of the Todd Glacier and is hosted by recently exposed, altered crystal tuff, the same rock that hosts the South Zone deposit. A prominent color anomaly (jarosite/alunite, limonite) is associated with the tuff, which is strongly silicified and has undergone varying degrees of pyritization, sericitization, hematization, along with fracturing, brecciation and mylonitization. Pyrite lenses, stringers, veins and stockworks occur in sulfidized zones that are up to over 50 m in width. The Mylonite West Zone is located about 2 km west of the Mylonite Zone and is evidenced by a conspicuous color anomaly (limonite,

jarosite/alunite). The geology is rather similar to the Mylonite Zone, but the alteration is generally weaker. Since the main area of outcrop is located somewhat above the traverse line, mainly limonitized float and talus were utilized for the initial sampling.

The evaluation of the favorable areas of intense alteration included the collection of a total of 11 stream and 12 rock samples on the Mylonite Zone and 6 rock samples on the Mylonite West Zone. Other than two weak gold values (10 and 15 ppb, in rock sample 598707 and stream sediment sample 598909, respectively), the analytical data was not deemed to be indicative of any immediate follow-up targets (Molloy, 1997).

b) <u>2008 EXPLORATION PROGRAM:</u>

The 2008 program on the Mylonite Zone (Tables D1, W1, S1, SC1) was the first exploration work carried out on the zone since 1997, during which time the Todd and Exit Glaciers have waned significantly. The 2008 work included geological and geochemical surveys with the collection of 143 rock samples; the MS scanning of 57 samples; and, the drilling of one stratigraphic hole (DDHTC08-08) comprising about 523 m, with 391 core and check samples analyzed. The results of the historic and 2008 NTE rock sampling were compiled on Photos 3-AU, -AG, -CU, -ZN and on Figures T-RSCOMPAU, AG, CU, ZN. The 2008 rock samples with Au values are shown on Figure T-RSCOMPAU08. The importance of the stratigpahy at the VMS and Mylonite Zones, as described below, was confirmed during the field visits by BCMEMPR geologists in 2008.

i) <u>GEOLOGICAL, GEOCHEMICAL SURVEYS:</u>

The geological and geochemical surveys included the discovery of the main Mylonite exhalite horizon (Photos 3A, B) on the west side of the Mylonite Zone (Frontspiece Photo 1) and additional outcrops of exhalite, possibly stacked exhalite horizons above and on the west side of the Mylonite Zone (Photos 3D, E, E-1, F). An important outcrop of rhyolite flow breccia (Photo 3C), similar to that at the Eskay Creek deposit, was located on the east side of the main exhalite horizon. The 143 rock samples (Figures T-CSINDEX-08, T-CHSINDEX-08; Tables RINDEX-08) comprised 39 chip and 104 channel samples.

The locations of the chip samples are shown on Figure MYL-CHS-08 and the available descriptions are shown in Tables RINDEX-08 and MYL-RSD-08. The samples generally comprise altered (oxidized, silicified, chloritized, sericitized, sulfidized) tuffs interbedded with felsic horizons and locally, exhalite units. The available analytical results are provided in Table MYL-RSA-08. The chip samples are generally characterized by higher S values except for those collected in the Exit Valley area, which have low S values; by Na and Ba depletion with some weakly anomalous Pb (to 32 ppm), Zn (to 94 ppm); and, by low Au and Cu values but with one interesting Au value (361 ppb) in sample 430505 along with 664 ppm Cu. Another interesting Cu value (1600 ppm) was returned from sample 430848. Five chips samples (429416, 429417, 430545-47) were taken in the area of the upper exhalite and the results for 2 of the samples (429416, 429417) received to date lack significant values. The results for samples 430508-511 from the main exhalite horizon remain on hold at Chemex.

The locations of the channel samples are shown on Figures MYLN-CS-08 and MYLS-CS-08 and the available descriptions are shown in Tables RINDEX-08. All of the analytical results are provided in Table MYL-RSA-08. The chip samples of interest referenced above (430505, 430848) are located near the border of the north and south channel sample areas i.e., near channel samples 430849-866. The north area samples are generally characterized by higher S values, Na, Ba depletion, a few weakly anomalous Pb (to 49 ppm) and Zn (to 149 ppm); and, by a number of weakly anomalous Cu values to 281 ppm. The samples with anomalous Cu values have only a Cu signature and are located about 200 m northeast of the anomalous chip samples referenced above. Gold values are generally low but with one anomalous value of 165 ppb in sample 429442.

The channel samples were also taken in the south area (Table MYLS-CS-08), which was not subject to chip sampling. These sample are generally characterized by higher sulfur values, Na, Ba depletion and by a number of weakly anomalous Cu values (to 246 ppm), with some weakly corresponding Zn anomalies (up to 129 ppm).

MS scans were utilized on 57 samples, with the chip samples characterized by muscovite, illite, goethite, and montmorillite. Some pyrophylite and pyrite were also detected. Muscovite, montmorillite, pyrophyllite and goethite were detected in the channel samples with lesser amounts of illite, pyrite and chlorite.

ii) **DIAMOND DRILLING;**

One initial stratigraphic drill hole (DDHTC08-08; Photo 3A; Tables D1, Drill Log DDHTC08-08; Section 6228100N) was drilled at -51 degrees for 523.34 m to the east across the Mylonite Zone and through the Todd Creek Fault. The hole was collared just west of the newly discovered main exhalite horizon (Photos 3A, B) and was used to evaluate the VMS stratigraphy and the interpreted massive sulfide target. The stratigraphy is characterized by silica exhalite interlayered with subaqueous pyroclastic rocks, magnetite-bearing basalt, siliceous mudstones and felsic volcanic rocks. In the drill core a strongly altered tuffaceous pyroclastic lithology was intersected with up to 15% disseminated and laminae of pyrite. This unit has been chloritized and argillically altered, although lithic fragments and flow textures are still visible. This unit is flanked on one side by advanced argillic alteration in a silicified pyroclastic unit with disseminated pyrophyllite and laminae of microcrystalline sericite. The footwall is marked by a strongly altered dacite that has had all primary textures destroyed by alteration and mineralization. Pyrite is the main sulfide along with minor chalcopyrite and sphalerite.

The lithologies of interest (Drill Log DDHTC08-08), some with indications of VMS style mineralization, are described below:

- 3.25-24.17 m: tan tuff with pink chert and rhyolite bands with interbeds of purple hematized siltstone and lenses of green sericite (Photo 3B-1
- 24.17-26.60 m: VMS style mineralization with 15% pyrite (Photo 3B-1)
- 26.6-66.15 m: footwall sulfide mineralization in altered dacite with 6% pyrite as veins, stringers, rim and bands

- 462.8-466 m: basalt with VMS style mineralization with up to 5% pyrite mainly in wavy bands (Photo 3B-2)
- 466-475.82 m VMS style mineralization in tuffaceous pyroclastic with 3-50% sulfides mainly pyrite in sulfide bands (Photo 3B-2)
- 469.25-472.35 m Todd Creek Fault (Photo 3B-2)
- 475.82-493.4 m pillow basalt with VMS style mineralization with 2%-50% pyrite mainly in sulfide bands (Photo 3B-2)

All assays for the 391 core and check samples are on hold at Chemex.

iii) **INTERPRETATION:**

The Mylonite Zone is characterized by classic components of a VMS system, such as stacked exhalite horizons, rhyolite flow breccias, a favorable structural fabric, banded sulfides in DDHTC08-08 and an obvious relationship with other key elements of the recently discovered VMS environment at the VMS Zone, on the South Zone and at the Knob Zone. The assay results for DDHTC08-08 remain pending but the lack of strong metal values in the Mylonite Gossan Zone is suggestive of pyritic halo that might be proximal to the main massive sulfide target. As suggested for most of the other zones, an airborne VTEM survey is recommended to evaluate the key areas of the VMS environment i.e., the Mylonite, VMS and South Zone Deposit, which have never been flown historically.

9.4. CONCLUSIONS, RECOMMENDATIONS:

9.4.A. <u>CONCLUSIONS:</u>

In view of NTE's corporate re-organization in the fall of 2008, many of the results from the 2008 program remain outstanding and need to be referenced to adequately interpret the exploration status of various exploration targets on the property. Not withstanding the above, based on the historic data base and the available information from the 2008 program, it is concluded that the overall status of the property has been significantly advanced to the stage where it is now readily apparent that the property does have potential for a large VMS precious-base metal deposit and/or a Au-Cu porphyry deposit, as postulated by Dr. Fedikow in 2006. For example, the 2008 exploration activities have discovered a large volcanogenic base metal massive sulfide type depositional environment with all of the classic components of VMS systems (Fedikow, 2008).

With this discovery and the rationale provided by the numerous historic showings and mineralized drill intersections, which include the South Zone gold-copper deposit (NI 43-101 non compliant resource of 207,000 t grading 5.48 g Au/t with significant copper credits, Hemlo Gold Mines Annual Report, 1988) it is now also evident that much of the mineralizing activity on the property is closely related. For example, the current data base defines an extensive target area in the favorable setting of the Eastern Volcanic Belt with evidence of various closely related deposits types (epithermal-mesothermal veins, auriferous oxide, Au-Cu porphyry and VMS). That information now suggests that the various target areas are associated, with the Todd Creek Fault and subsidiary fabric and structural junctions, which provide the essential structural controls and plumbing system.

For example, the exhalite and stacked exhalite horizons and associated felsic stratigraphy constitute an apparent marker horizon that apparently extends north from the Mylonite Zone through the South and Yellow Bowl Zones and through Fall Creek to the west of the Knob Zone. The felsic units include rhyolite flow breccias similar to those at the Eskay Creek deposit and a possible felsic dome located to the west of the South Zone gold-copper deposit. The presence of stratiform and/or shallow-sub-seafloor replacement banded/layered pyritic mineralization in the vicinity of this horizon is interpreted to be exhalative chemical sediment. This style of mineralization is apparent in DDH TC08-03 on the South Zone, -06 on the Knob Zone and -08 on the Mylonite Zone (assays on hold). Moreover, the integrated data suggests a further genetic link between the South Zone, Mylonite, Yellow Bowl and VMS Zones. The South Zone sulphide/oxide disseminated and multiphase vein-type gold-copper mineralization could be the footwall plumbing system or feeder zone for the VMS-style mineralization postulated to exist on the Yellow Bowl Zone. The newly discovered VMS Zone on the east side of the Todd Creek Fault between the Mylonite and the South Zone with its prominent feeder zone suggest the possibility of a number of VMS depositional environments.

By extrapolation, the multiphase gold-copper vein systems in the Fall Creek area and associated felsic stratigraphy are suggestive of a setting similar to the South Zone: possible gold-copper feeder zones related to proximal VMS mineralization as postulated by Dr. Fedikow. The zoning from the gold-

copper environment in the Fall Creek area to the base metal environment of the large Orange Mountain Target area is suggestive of an immense plumbing system that is also linked to the Yellow Bowl Zone to the south and to the Knob Zone to the east. The rocks from latter zones have a subtle yet persistent multielement signature that includes Au-Cu-As and that is often indicative of the exploration potential at depth as referenced by Dr.Fedikow. The VMS exploration rationale is further enhanced with reference to the airborne EM anomalies interpreted in 2008 on the west side of the Todd Fault south of the Knob Zone and base metal signature in initial rock samples taken proximal to them; the auriferous pyritic zone and possible exhalite horizon intersected in deeper drilling on the North A Zone in 2007; the delineation of the 197 IP Zone in 2007 with its gold-copper and base metal signature and apparent stratigraphic control; and, the further delineation of the magnetic anomaly in 2008 associated with the auriferous oxide phase of mineralization on the northern extension of the South Zone deposit.

The interpretation of the multitude of priority targets on the Todd Creek Property and the formulation of a detailed follow-up exploration strategy will be greatly facilitated by the outstanding analytical results that are yet to be received for the 2311 rock, stream and core samples, including the results for 1843 core samples from 7.5 of the 8 2008 drill holes. The partial results from the first hole, DDHTC08-03 have returned 1.73 g Au/t and 0.26% Cu over a 17.26 m core length from the South Zone deposit.

9.4.B. <u>RECOMMENDATIONS:</u>

Based on the attributes of the Todd Creek Property and their apparent association referenced above, a two phase 2009 exploration program is recommended. The budget would total about \$3.4 M and is summarized in Table E2.

9.4.B.i. PHASE 1, 2009 PROGRAM :

The Phase 1 activities would total about \$400,000 and would include obtaining the 1860 assays currently on hold at Chemex for the rock, stream and core samples; and, the analysis of the 451 additional rock and stream sediment samples stored in a secure Geofine facility in Stewart. 2 The results would be compiled and integrated with the historic data base.

In order to thoroughly evaluate the large VMS environment discovered in 2008 and the related deposits types referenced in Section 9.4.A. above and to conduct a re-evaluation of the rest of the favorable geological setting of the Todd portion of the Eastern Volcanic Belt, a 1000 line km VTEM airborne electromagnetic/magnetic survey is proposed to be flown in the spring of 2009. The proposed Phase 1 program would be supplemented by the initiation of 3D modeling to further delineate and interpret geological and structural controls, particularly in the area of the Fall Creek-Knob-South-VMS-Mylonite Zones. Phase 1 activities would also include additional property acquisitions; and, the permitting process and contract letting for the 2009 program.

9.4.B.ii. <u>PHASE 2, 2009 PROGRAM :</u>

Phase 2 activities would include the follow-up ground geophysical surveys, detailed mapping/sampling, thin section studies and oriented diamond drilling as directed by the results of the Phase 1 program. Priority VTEM anomalies would constitute important follow up target, particularly when located in the interpreted VMS environment. The recommended Phase 2 program would total about \$3 M and would include at least 4000 m of diamond drilling (Table E2). The program would be initiated in early June, as snow conditions allow.

TABLE E2: PROPOSED BUDGET*:

2009 TODD CREEK EXPLORATION PROGRAM:

Option payments Geofund, Funk=	\$90,000
Staging area, permitting/contracts/logistics =	15,000
Additional Reclamation Bond =	10,000
Compilations, 3D Modelling=	25,000
Mobs/demobs/vehicle/crew changes=	40,000
Subsistence, accommodation=	75,000
Rentals, equipment (blades, boxes, pad material) =	60,000
Shipping=	15,000
Communications=	20,000
Total VTEM Airborne: 1000 km @ 200/km	
including mob & standby=	200,000
Total ground geophysics: terraTEM, mag, IP =	100,000
Total oriented diamond drilling:	
4000 m @ \$150/m =	600,000**
Total core, rock samples: 5000@ \$40/sample =	200,000
Core and sample storage=	12,000
Total grid @ 30 km @ \$2000/km =	60,000
Salaries incl geologists, data, splitter, samplers	
(90 days @ \$4000/day)=	360,000
Workman's comp=	10,000
Camp/mob/demob/cook, helper/padbuilders=	360,000
(90 days @ \$4000/day)	
Helicopter support:	
407: 90 days charter, eng, accom @ \$6700/day=	603,000
Reporting, filing fees:	80,000
Geophysics, Geology, Drilling Support Fees incl fue	1 150,000
Contingency=	75,000
SUB TOTAL PROPOSED BUDGET:	3,018,000
OVERHEAD @ 3%	95,000
GST	165,000
TOTAL PROPOSED BUDGET	\$3,420,000*

* Subject to contractor bids and a timely execution of heli, camp and drill contracts, and permitting process

REFERENCES:

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A, B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BAERG, R, J., BRADISH, L., PELLETIER, B. (1991): Geological, Geochemical, Geophysical and Drilling Report on the Todd Creek Property; for Noranda Exploration Company, Limited.

BAERG, R, J., BRADISH, L. (1989): Geological, Geochemical, Geophysical and Drilling Report on the Todd Creek Property; for Noranda Exploration Company, Limited.

BAERG, R, J. (1988): Geological, Geochemical, Geophysical and Drilling Report on the Todd Creek Property; for Noranda Exploration Company, Limited, Assessment Work Report 17423.

BAERG, R, J. (1987): Geological, Geochemical, Geophysical and Drilling Report on the Todd Creek Property; for Noranda Exploration Company, Limited, Assessment Work Report 15988.

BARRETT, T. J., SHERLOCK, R. L. (1996): Geology, Lithogeochemistry and Volcanic Setting of the Eskay Creek Au-Ag-Cu-Zn Deposit, Northwestern British Columbia; in: Explor. Mining Geol., Vol. 5, No. 4, p 339-368, 1996.

10.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

FEDIKOW, M., (2006): Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Orange Mountain/Todd Creek/Amarillo Grid, Stewart, B.C. Area: Interpretations and Recommendations); prepared for Geofine Exploration Consultants Ltd. by Mount Morgan Resources Ltd.

FEDIKOW, M., (2006): Interpretation of Rock (Drill Core) Geochemical Data From the Todd Property, Stewart Area, British Columbia and Recommendations For Further Exploration; prepared for Geofine Exploration Consultants Ltd. by Mount Morgan Resources Ltd.

FEDIKOW, M., (2008): NI 43-101 Technical Report: Geology, Mineralization and Exploration of the Todd Creek Property, Northwestern British Columbia prepared for Datinvest International Ltd.,

GREIG, C. J., McNICOLL, V. J., ANDERSON, P. H., DAUBENY, P. H., HARAKAL, J. E., RUNKLE, D. (1995): New K-Ar and U-Pb dates for the Cambria Icefield area, northwestern British Columbia; in: Current Research, 1995-A; Geological Survey of Canada, p. 97-103.

GREIG, C. J., ANDERSON, P. H., DAUBENY, BULL, K. F., HINDERMAND, T. K. (1995): Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia; in: Current Research, 1994-A; Geological Survey of Canada, p. 45-46.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

JVX Ltd, (2008): JVX Report on EM Anomalies, 1994 HEM Survey, Todd Creek Property (appended hereto).

KRUCHKOWSKI, E. R., KONKIN, K., SINDEN, R.E.T. (1988): Geochemical Report on the Bow Claims, Stewart, British Columbia; Assessment Work Report 17477.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MOLLOY, D. E. (1994): Report on the Exploration Potential of the Vista De Oro Property, Skeena Mining Division, Northwestern British Columbia; for Geofund.

MOLLOY, D. E. (1994): Report On The Phase 1, 1994 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for: Oracle Resources Ltd., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (1997): Report On The 1997 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for: Island-Arc Resources Ltd., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (1999): Report On The 1999 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for: Okak Bay Resources Ltd., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2000): Report On The 1999 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for: Island-Arc Resources Ltd., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2004): Report On The 2004 Diamond Drill Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for Lateegra Resources Corp., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2006): Report On The 2006 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for Goldeye Explorations Limited, BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2007): Report On The 2007 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for Goldeye Explorations Limited and Polar Star Mining Corporation, BCMEMPR Assessment Work Report.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak-Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous West-vergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

SEABRIDGE GOLD INC. (2003): News Release, Seabridge Completes Independent Engineering Study on Red Mountain Gold Project, Seabridge Website.

SEABRIDGE GOLD INC. (2009): Kerr-Sulphurets-Mitchell Project, Seabridge Website.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

WOODCOCK, J. R. (1982): Todd Creek Property; for Riocanex Incorporated, Assessment Report 10404.

WOODCOCK, J. R. (1948): Todd Creek Property, Assessment Work Report 10404.

WOOLHAM, R. W. (1994): Report on a Combined Helicopter-Borne Magnetic and Radiometric Survey, Vista de Oro Property, Todd Creek Area, British Columbia, NTS 104A/4,5 for Geofine Exploration Consultants Limited, 49 Normandale Road, Unionville, Ontario by Geonex Aerodat Inc.

STATEMENT OF QUALIFICATIONS:

11.

I, David E. Molloy P. Geo. of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am President of Geofine Exploration Consultants Ltd. with a business address at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practiced my profession in mineral exploration continuously for the past 36 years, including 17 years as a consultant; 10 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager, Vice President and as Senior Vice President, Canadian Exploration; and, 9 years with Beth-Canada Mining Company and Gold Fields Mining Corporation as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy, the Association of Exploration Geochemists, the Prospectors and Developers Association; and, the Association for Mineral Exploration BC;
- vi. I am a member of the Association of Professional Geoscientists of Ontario and the Association of Professional Engineers and Geoscientists of BC;
- vii. I have participated in the fieldwork and the supervised preparation of this report entitled "Report on the 2008 Exploration Program Carried Out on the Todd Property, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia", by Geofine Exploration Consultants Ltd. for Intuitive Exploration Inc.
- viii. The recommendations herein are solely the responsibility of Geofine Exploration Consultants Ltd.

APPENDIX A

ALS CHEMEX ANALYTICAL CERTIFICATES

i i i i i i i i

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

33 element four acid ICP-AES

Page: 1 Finalized Date: 19-JUL-2008 This copy reported on 20-JUL-2008 Account: KIV

ICP-AES

CERTIFICATE TR08092256		SAMPLE PREPARATI	ON
	ALS CODE	DESCRIPTION	
Project: Geofine/NTX Exploration-NW BC P.O. No.: Rock 1 This report is for 82 Rock samples submitted to our lab in Terrace, BC, Canada on 9-JUL-2008. The following have access to data associated with this certificate: DAVID MOLLOY	WEI-21 LOG-22 CRU-QC CRU-31 SPL-21 PUL-32	Received Sample Weight Sample login - Rcd w/o BarCode Crushing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize 1000g to 85% < 75 um	
ll]	ANALYTICAL PROCEDU	URES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Au-ICP22	Au 50g FA ICP-AES finish	ICP-AES

ME-ICP61

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092256

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H430512 H430513 H430514 H430515 H430516		1.44 1.35 1.52 0.98 1.87	0.005 0.102 0.018 0.013 0.011	<0.5 0.6 <0.5 2.9 75 7	6.41 7.03 3.97 6.27 0.07	18 22 31 113 6	7460 770 1800 1220 4360	1.1 0.9 0.8 0.9 3.0	<2 3 <2 <2 <2 <2	8.94 4.60 10.20 0.15 0.02	0.6 <0.5 0.7 0.6 5.0	16 19 14 4 1	12 7 5 23 6	83 123 82 5 44	4.86 6.54 6.08 2.00 0.65	10 10 10 10 <10
H430517 H430518 H430601 H430602 H430603		1.76 1.95 1.32 1.34 1.27	0.013 0.219 0.007 0.019 0.010	34.6 52.7 0.5 0.8 2.0	5.64 2.72 6.91 3.50 6.42	213 106 13 168 18	1170 540 260 170 1530	1.3 2.0 0.8 0.7 0.8	<2 <2 <2 <2 <2 <2 <2	0.14 0.05 0.17 12.00 0.09	1.4 18.0 1.3 1.3 <0.5	6 4 5 19 3	17 16 8 5 19	18 28 11 128 4	2.70 2.48 2.91 7.73 1.59	10 10 10 10 10
H430604 H430715 H430716 H430717 H430717 H430718		0.62 1.52 1.53 1.87 1.85	0.023 0.065 0.043 0.009 0.009	3.6 0.5 <0.5 <0.5 <0.5 <0.5	4.19 6.74 6.19 7.20 7.07	466 118 188 35 40	830 790 450 1470 1830	0.5 0.6 <0.5 1.1 1.4	<2 <2 <2 <2 <2 <2 <2	0.04 0.19 0.20 0.86 1.14	0.9 <0.5 <0.5 0.8 0.5	1 6 5 6 7	7 21 22 17 18	5 38 24 13 19	1.60 3.80 3.51 1.87 2.19	10 10 10 20 20
H430719 H430720 H430721 H430722 H430722 H430723		1.69 1.17 1.79 2.12 1.82	0.008 0.011 0.022 0.022 0.024	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.01 7.39 6.81 7.52 7.37	47 82 69 86 66	1620 1400 2180 2300 2150	1.4 1.4 09 1.2 1.4	<2 2 3 5 13	1.22 1.04 0.99 0.98 1.16	0.5 0.8 0.9 0.5 0.9	8 10 8 7 7 7	20 20 18 20 21	32 32 62 13 17	2.56 3.23 3.23 2.93 2.66	20 10 10 20 10
H430724 H430725 H430726 H430727 H430727 H430728		2.45 1.89 1.63 1.83 1.69	0.029 0.020 0.017 0.111 0.337	<0.5 <0.5 <0.5 0.8 0.8	7.85 7.69 7.09 6.72 6.55	58 41 83 111 126	2740 2270 2150 690 820	1.0 1.2 1.1 0.7 0.6	9 9 <2 5 5	1.36 1.33 0.47 0.79 1.16	<0.6 0.7 0.7 1.5 0.6	7 7 7 6 6	19 21 20 16 18	48 75 144 212 550	4.32 3.30 2.55 3.56 4.57	10 20 10 10 10
H430729 H430730 H430731 H430732 H430732 H430733		0.99 1.80 1.18 1.34 1.40	0.051 0.015 0.008 0.009 0.013	<0.5 <0.5 <0.5 <0.5 <0.5	6.62 7.20 7.43 7.49 7.15	97 73 70 84 88	1000 2180 2120 1810 1700	0.5 1.1 0.9 1.0 0.8	2 <2 <2 2 2 2	0.79 1.24 1.14 1.08 0.59	1.1 1.0 <0.5 <0.5 <0.5	6 8 9 7 7 7	23 18 20 18 19	481 193 11 157 182	2.96 2.21 2.83 2.72 2.59	10 10 10 10 10
H430734 H430735 H430736 H430737 H430737 H430738		1.36 1.58 1.85 3.02 2.61	0.396 0.013 0.014 0.007 0.007	54.4 0.8 1.0 <0.5 <0.5	6.23 7.58 7.73 7.97 6.70	155 69 36 26 36	400 1820 1740 1880 1740	0.6 0.9 1.2 1.3 1.0	10 4 <2 <2 <2 <2	2.43 0.91 0.79 0.66 2.21	<0.5 <0.5 <0.5 <0.5 <0.5	7 8 5 9 10	17 21 16 17 18	125 177 73 95 120	4.53 3.23 2.74 2.51 2.51	10 10 10 20 10
H430739 H430740 H430741 H430742 H430743		2.45 2.48 2.14 2.12 1.59	0.033 0.021 0.017 0.011 0.021	1.6 1.1 0.7 0.5 1.2	6.66 6.98 6.91 7.32 6.70	175 147 132 89 71	1030 710 1540 2380 380	0.7 0.5 0.7 0.7 0.7	4 <2 2 <2 3	2 02 0.49 2.40 0.48 4.06	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7 6 9 9 8	19 23 17 18 19	222 289 364 427 170	3.77 3.18 2.75 2.36 4.44	10 10 10 10 10 10

. .

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

TR08092256

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS

ME-ICP61 Method Mg М'n Мо Na Ni Ρ Рb s Sb Sc Sr ĸ La Th Tì Ansivte % % % % Units ppm ppm mag mqq ppm ppm pom ppm ppm ppm % Sample Description LOR 0.01 10 0.01 5 1 0.01 10 2 0.01 5 1 20 0.01 1 1 2330 H430512 2.93 20 1.24 0.39 Δ 1110 16 0.32 5 17 519 <20 1 0.38 H430513 3.03 10 272 1625 0.47 1210 8 16 295 <20 1 Δ 171 5 0.40 H430514 1.98 10 3.32 2780 1 0.02 1 760 9 0.80 14 11 463 <20 0.23 <1 23 10 126 <20 H430515 5 41 20 0.04 90 0.16 2 610 1.30 4 0.22 H430516 0.03 10 0.01 602 < 0.01 2 10 845 0.07 47 1695 <20 <0.01 1 1 478 0.78 23 5 1180 <20 0.21 H430517 5.86 10 0.06 2 0.08 3 610 611 4120 664 <20 2 190 1.86 42 3 0.08 H430518 2.93 <10 0.04 117 З 0.06 H430601 3.09 20 0.34 113 6 0.84 550 42 2.37 <5 5 216 <20 0.19 1 3.22 3840 2 0.03 550 55 3.10 11 703 <20 0.20 H430602 1.41 10 1 6 <20 0.03 440 34 0.80 9 5 512 0.21 H430603 5.24 10 68 1 0.10 Δ <20 0.16 H430604 4,75 <10 0.04 66 3 0.07 140 141 0.60 21 3 1105 1 470 6 95 <20 0.20 96 32 2.39 6 5.12 0.08 6 1 34 4 H430715 10 5 <5 5 75 <20 0.17 65 5 440 23 2.70 H430716 3.73 <10 0.06 1.72 H430717 4.35 30 0.21 272 3 1.47 6 540 7 0.53 5 7 104 20 0.21 4.74 30 0.33 373 3 1.55 6 570 9 0.73 <5 7 158 20 0.21 H430718 5 550 10 20 3.95 20 0.39 356 3 1.81 1.17 9 8 150 0.21 H430719 H430720 4.36 30 0.36 304 3 1.93 6 610 28 2 31 <5 9 141 <20 0.22 145 <20 0.18 30 0.52 434 3 1.60 540 42 1.32 <5 7 H430721 4.68 5 560 20 <20 0.20 30 0.37 375 4 1.59 5 1 15 <5 8 153 H430722 5.12 H430723 5.23 30 0.43 417 4 1.39 3 560 28 0.76 <5 7 163 20 0.20 30 0.84 529 3 1.50 2 620 20 0.91 <5 8 178 20 0.22 H430724 5.32 30 0.49 428 3 1.62 580 24 1 17 <5 8 169 20 0.21 H430725 5.06 7 20 H430726 4.99 20 0.17 167 3 1.44 10 570 31 1.58 <5 7 119 0.20 H430727 4.98 10 0.14 267 5 1.13 12 420 95 2.42 <5 7 113 <20 018 0.27 5 0.65 26 420 100 7 <20 H430728 5.11 10 461 2.21 6 124 0.18 7 H430729 4 84 20 0.13 267 Δ 1.21 26 580 36 1.99 7 111 <20 0.19 3 1.67 12 570 22 1.07 7 176 20 0 21 4.60 30 0.36 304 6 H430730 20 0.23 640 2 1 44 7 600 10 1.44 8 134 5.13 30 0.41 H430731 5 H430732 5.21 30 0.39 591 2 1.08 13 580 9 1.62 7 8 151 20 0.21 H430733 5 08 30 0.31 316 2 1.11 14 590 9 1.66 7 7 122 20 0.21 520 <20 20 2 0.70 10 199 3 60 8 9 245 0.18 H430734 A 47 0.97 1580 H430735 5.17 30 0,37 472 2 1.19 15 640 14 1.74 7 9 145 20 0.23 30 544 2 0.71 8 640 6 0.23 <5 9 124 20 0.24 H430736 5.31 0.41 H430737 5.82 30 0.51 473 2 0.09 8 620 4 0.51 14 10 74 20 0.24 H430738 5.11 30 1.04 1480 2 0.07 9 550 5 0.79 6 11 109 <20 0.20 5.52 20 0.89 1090 2 0.63 14 500 11 2.91 <5 8 203 <20 0.18 H430739 20 0.28 302 0.89 19 470 10 2.63 <5 6 97 <20 0.19 H430740 6.16 3 H430741 5.78 20 0.71 1195 З 0.84 20 530 8 1.73 <5 8 136 20 0.19 30 356 2 1.08 25 550 8 1.22 <5 7 92 20 0.20 H430742 5 42 0.38 5.05 20 30 0.86 1725 2 0.93 14 510 10 3 42 5 10 142 0.19 H430743

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092256

1	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	
	Analyte	T 1	U	v	w	Zn	
	Units	ppm	ppm	ppm	ppm	ppm	
aetuhia nazotibnou	LOR	10	10	1	10	2	
H430512		<10	<10	167	<10	109	
H430513		<10	<10	179	<10	123	
H430514		<10	<10	119	<10	141	
H430515		<10	<10	49	10	71	
H430516		<10	<10	10	<10	240	
H430517		<10	<10	71	10	136	
H430518]	<10	<10	26	<10	1420	
H430601		<10	<10	48	<10	64	
H430602		<10	<10	137	<10	223	
H430603		<10	<10	57	10	26	
H430604		<10	<10	46	10	134	
H430715		<10	<10	48	<10	34	
H430716		<10	10	38	<10	31	
H430717		<10	<10	62	<10	104	
H430718		<10	<10	64	<10	88	
H430719		<10	<10	60	<10	84	
H430720	ł	<10	<10	64	10	95	
H430721		<10	<10	47	<10	171	
H430722		10	<10	62	<10	122	
H430723		10	<10	62	<10	155	
H430724		<10	<10	64	<10	186	
H430725		<10	<10	67	<10	162	
H430726		<10	10	58	<10	147	
H430727		<10	10	52	<10	176	
H430728	ĺ	<10	10	48	<10	210	
H430729		<10	<10	46	<10	228	
H430730	1	<10	<10	63	<10	224	
H430731		<10	<10	67	<10	31	
H430732		<10	<10	64	<10	36	
H430733		<10	<10	62	<10	25	
H430734		10	<10	61	<10	45	
H430735		<10	<10	69	<10	40	
H430736	1	<10	<10	74	<10	48	
H430737		10	<10	72	<10	42	
H430738		<10	<10	64	<10	40	
H430739		10	<10	57	<10	27	
H430740		<10	<10	55	<10	13	
H430741		<10	<10	61	<10	36	
H430742		<10	<10	58	<10	47	
H430743		10	<10	65	<10	39	

3

Υ.

:

1

H430744

H430745

H430746

H430747

H430748

H4:30749

H430750

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

: **4** 1

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. **49 NORMANDALE RD** UNIONVILLE ON L5L 3B9

CERTIFICATE OF ANALYSIS

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

Ga

ppm

10

10

10

10

<10

10

10

20

10

TR08092256

Project: Geofine/NTX Exploration-NW BC

WEI-21 Au-ICP22 ME-ICP61 Method Recvd Wt Au AI As Ba Be 8i Ca Cđ Co Cr Cu Fe Ag Analyte % % % Units kg ppm ppm opm ppm ppm ppm ppm ppm ppm ppm Sample Description LOR 0.62 0.001 0.01 10 0.5 0.01 0.5 0.5 5 2 1 1 1 0.01 1.36 0.021 0.9 6.57 62 600 0.7 <2 1.86 < 0.5 6 16 71 3.62 4.41 6.85 21 1.82 0.043 2.0 141 260 0.6 3 1.07 <0.5 8 94 2.13 0.025 0.9 6.79 120 310 0.6 <2 0.80 <0.5 7 24 53 3.92 2.38 0.043 1.2 5.95 205 420 <05 <2 3.00 < 0.5 7 20 178 5.15 1.54 0.219 3.0 6.55 442 150 14 0.53 < 0.5 5 15 156 7.87 10 17 2.45 0.013 <0.5 7.36 33 1640 1.1 <2 1.56 <0.5 8 86 2.48 63 2.59 1.20 0.021 0.6 7.75 41 1220 1.2 4 0.70 <0.5 7 16 1.35 0.016 <0.5 7.20 130 340 0.6 <2 0.19 <0.5 7 20 64 3.35

H430751	1.35	0.016	<0.5	7.20	130	340	0.6	<2	0.19	<0.5	7	20	64	3.35	10
H430752	1.95	0.010	<0.5	7.51	105	1660	1.0	<2	0.48	<0.5	8	18	62	2.90	10
H430753	1.97	0.028	<0.5	4.33	116	740	0.5	<2	0.39	<0.5	7	19	106	4.84	10
H430754	1.80	0.023	<0.5	7.12	147	500	0.7	2	0.10	<0.5	7	20	44	3.10	10
H430755	1.28	0.026	0.6	5.11	153	240	0.5	3	0.09	<0.5	8	19	116	4.96	10
H430756	2.54	0.039	0.5	6.56	108	200	0.6	<2	0.12	<0.5	5	16	147	4.21	10
H430757	1.93	0.065	1.5	7.21	199	170	<0.5	<2	0.56	<0.5	10	15	118	5.26	10
H430758	2.07	0.011	<0.5	7.28	81	1090	0.8	<2	0.22	<0.5	8	20	112	2.93	10
H430759	2.03	0.023	0.7	6,56	134	260	0.5	<2	0.23	<0.5	9	22	143	3.85	10
H430760	3.08	0.007	<0.5	7.46	35	2140	1.1	<2	0.34	<0.5	8	29	72	2.51	10
H430761	1.56	0.030	0.8	6.96	142	230	0.5	<2	0.27	<0.5	8	21	142	4.00	10
H430762	1.69	0.024	<0.5	6.81	138	340	<0.5	<2	0.15	<0.5	7	25	115	3.69	10
H430763	1.62	0.045	1.2	6.35	211	250	<0.5	<2	0.21	<0.5	8	27	200	4.21	10
H430764	1.23	0.034	0.7	6.59	209	290	<0.5	<2	0.49	<0.5	6	27	242	4.15	10
H430765	1.80	0.038	<0.5	6.61	197	250	<0.5	<2	0.14	<0.5	6	25	233	3.77	10
H430766	1.42	0.030	<0.5	6.63	193	180	<0.5	3	0.06	<0.5	7	30	239	4.20	10
H430767	1.19	0.042	1.0	6.49	161	250	0.5	2	0.12	<0.5	7	48	265	4.04	10
H430768	1.38	0.041	0.9	6.65	170	280	0.5	<2	0.07	<0.5	7	29	177	3.85	10
H430769	1.33	0.017	<0.5	6.87	160	560	0.5	<2	0.05	<0.5	6	17	249	3.07	10
H430770	1.27	0.017	0.5	6.83	175	500	0.5	<2	0.09	<0.5	6	23	148	3.13	10
H430771	1.26	0.014	0.5	6.60	183	360	<0.5	<2	0.10	<0.5	6	27	172	3.35	10
H430772	1.59	0.036	0.7	6.52	309	290	0.5	<2	0.08	<0.5	6	24	69	4.15	10
H430773	1.23	0.020	1.0	6 81	235	290	<0.5	<2	0.17	<0.5	7	22	190	4.14	10
H430774	1.16	0.017	0.6	6.90	127	540	<0.5	2	0.11	<0.5	5	25	229	3.06	10
H430775	1.80	0.043	1.1	6.21	194	270	<0.5	2	0.16	<0.5	7	22	145	4.57	10
H430776	1.68	0.030	07	6.46	138	310	0.5	2	0.15	<0.5	7	31	311	3.81	10
H430777	2.20	0.014	<0.5	6.76	133	320	0.5	<2	0.27	<0.5	8	26	98	3.18	10
H430778	1.93	0.018	0.5	6.72	165	280	0.5	<2	0.22	<0.5	7	25	82	3.58	10
H430779	1.76	0.028	08	6.48	174	240	0.5	<2	1.03	<0.5	9	25	120	4.30	10
H430780	1.82	0.010	<0.5	6.99	109	800	0.5	<2	0.21	<0.5	7	25	196	2.83	20
H430781	1.71	0.006	<0.5	7.01	23	1410	0.6	<2	0.42	<0.5	7	29	369	2.35	10
H430782	1.99	0.011	<0.5	7.26	69	2470	0.6	<2	0 58	<0.5	8	21	85	2.52	20
H430783	2.15	0.012	<0.5	6.57	99	1140	0.5	<2	0.31	<0.5	7	27	85	3.15	10

r

-----X EYOF ANALY IICAL CHEMISTRY ALS Canaga Ltd. 212 Brooksbank Avenue 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. UNIONVILLE ON L5L 3B9

<5

8 7

107

102

20

<20

Page: 3 - B Total # Pages: 4 (A - C) Finalized p 8(V

0.20

0.20

0.18

i

Sample Descut	Method Analyte Unit-	ME-ICP61 K	ME-ICP61 La	ME-ICP61	ME-ICP61			Proj	ect: Geofir		ploration-N	W BC			A Date:	19-JUL-20 Account: K
H430744	LOR	% 0.01	Ррт 10	Mg % 0.01	Mn Ppm	ME-ICP61 Mo PPm	ME-ICP61 Na	ME-ICP61 Ni	ME-ICP61	ME-ICP61		OF ANA	ALYSIS	TR08	092256	
H430745 H430746 H430747		5.10 5.36	20 20	0.79	5 1080	1	% 0.01	Ppm 1	9 mqq 10	Pb Ppm	ME-ICP61 S %	ME-ICP61 Sb	ME-ICP61	ME-ICP61	ME-ICPet	
H430748		5.78 4.87	20	0.58	756	2	1.07	9		2	0.01	ppm 5	Ppm	Sr	Th	ME-ICP61
H430749	[4.09	20	1.29	445	2	0.98	10	510	15	2.70		1	1	ppm	%
H4:30750		4.79	10	0.37	267	2	0.97	7	520	10	3.70	9	6	-	20	0.01
H430751		4.54	30	0.54	207	3	0.32	12	500	8	3.46	<5	7	109	<20	
H430752	1	5.28	30	0.31	693	2	1.102	10	370	11	4.05	<5	6	99	<20	0 18
H430753		5.66	30	0.08	220	3	1.10 -	8	600	19	7.07	<5	7	95	<20	0.19
H430754	_	3.49	30	0.22	124	2	0.95	7	620	8	1.00	<5	8	151	<20	0.20
H430755		5.77	10	0.14 🕺	200 200	2	1.03	7	330	13	1.03	<5	8		<20	0.17
H430756		4 50	30 (100		3	0.05	6	560	14	2.06	5	9	183	20	0.19
H430757		4 87	20 0	11	1	2	0.20	10	230	10	1.76	<5	6	93	20	0.21
H4:30758	1	4.95	20 0	16	57	3	0.90	6	~~~	13	4 18	<5	7	109	<20	0.22
1430759		5 51	³⁰ 0.	16 8	9	2	0.45	10	370	10	0.05	5	6	114	20	0.21
1430760			³⁰ 0.	17 42	5	3	0.36	12	2/0	9	2.67	<5		69	<20	0.21
1430761		3	0 0/	13	8	2	.10	12	10	13	4.16	<5		103	20	0.14
430762		.66 3	0 0.0	11:			.90	12 ⁴	20	12	0.42	<5	0	76	∠0 0</td <td>0.20</td>	0.20
430763		4/ 50		248	;	2 1	.27		·0 .	11 1	07	<5	5	103	<20	0.16
42070	5	90 40) 0.0	¹⁹ 143		2 O.	92 1	ິດ 58	10 1	4	. 37	7	7 1	19	20	0.18
130764		30	0.0	o 71		1	20 1	62	σ,	· · · · · · · · · · · · · · · · · · ·	51	5	·	99 .	20	0.18
30765	6,-	6 50	0.10	156	2	1.	12 1	53	0 1	2 1.	04 <	- :5	5 10	06		0.20
30767	5.1	5 40	0.24	316		1.0	2 15	46) 1	- 3.1	71 <	5	9 9	8 2	20 0	0.19
30769	5.2	4 30	0.07	77	1	0.9	1	37() 16	3.4	¹¹ 6	3	6 11	7 2	0 0	.23
101 08	5.2	5 40	0.05	42	2	1.1.	4 15	460	10	3.7	8 <	5	4 10	2 2	0 0	18
0769	5.68	40	0.10	55	1	1.17	, 13	410	10	3.7	8	4	10;	3 20	, <u>0</u>	18
0/70	5.23	20	0.10	77	3	0.82	10	220	10	3.57	7 ~5	4	110	~2	00	17
J/71	5.07	30	0.11	57		0.77	10	420	15	4.12	-5	4	107	<20	0 0	17
1//2	4.83	30	0.11	46	3	0.66		260	14	3.97	<5	4	.0,	20	0 1	18
773	4.78	40	0.09	42	3	0.63	14	120		3.66	<5	4	92	20	0.1	8
774	5.34	40	0.13	54	3	0.88	12	320	7	2.66		4	107	<20	0,1	ă I
/75	4.96		0.10	81	3	0.61	12	410	5	2.87	<5	5		<20	0.1	9
76	5.24	40	0.11	40	3	1.00	5	340	10	3.12	<5	5	98	<20	0.40	
77	4.91	50	0.12	48	3	0.80	12	380	12	3.73	<5	4	90	<20	0.19	
78	4.97	40	0.13	95	3	0.83	13	320	12	3.97	 <0 	5	90 10c	<20	0.19	'
79	5.28	30	0.16	151	4	0.93	9	340	12	2.85	< 3	5	100	<20	0.19	1
30	5.15		0.13	101	3	0.78	19	480	15	431	<5	5	708	<20	0.19	1
1	5.71	30	0.26	102	3	0.37	9	570	13	3.56	5	5	98	<20	0.19	
2	5 00	30	0.17	542	3	0.70	7	480	11	2 75	<5	5	90	<20	0.19	7
3	5 57	30	0.28	93	3	0.58	8		10	3.38	<5	6	95	<20	0.17	
	5.12	30	0.45	231	3	0.72	12	460	14	2.00	<5	4	111	<20	U.18	1
		30	0.28	476	2	0.91	22	540	7	3.86	<5	c	104	<20	0.21	1
				303	2	0.98	8	360 570	5	2.33	<5	5	110	< 20	U.19	1
						0.92	8	570	4	1.47	<5	Э ¢	93	~20	0.18	
						the second se		510	•	1.22	-5	¢	100	4 0	0.00	ł

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brocksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

.

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

•

,

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092256

1

	Method Analyte	ME-ICP61 TI	ME-ICP61 U	ME-ICP61 V	ME-ICP61 W	ME-ICP61 Zn	
Sample Description	LOR	10 10	ррт 10	1	10	2	
H430744		<10	<10	55	<10	39	
H430745		<10	<10	55	<10	26	
H430746		<10	<10	58	<10	18	
H430747		<10	<10	48	<10	21	
H430748		<10	<10	76	<10	22	
H430749		<10	<10	68	<10	36	
H430750	1	<10	<10	73	<10	40	
H430751		<10	10	50	<10	9	
H430752		<10	<10	59	<10	35	
H430753		<10	10	44	<10	31	
H430754		<10	<10	49	<10	11	
H430755		<10	10	51	<10	12	
H430756		<10	<10	48	<10	11	
H430757	i	10	10	52	<10	18	
H430758		<10	<10	57	<10	27	
H430759		<10	<10	49	<10	6	
H430760		<10	<10	74	<10	41	
H430761		<10	<10	48	<10	9	
H430762		<10	<10	44	<10	6	
H430763		<10	10	43	<10	13	
H430764		<10	<10	41	<10	14	
H430765	1	<10	<10	40	<10	6	
H430766		<10	<10	36	<10	6	
H430767		<10	10	47	<10	12	
H430768		<10	10	46	<10	7	
H430769		<10	<10	50	<10	7	
H430770		<10	<10	52	<10	7	
H430771		<10	<10	46	<10	5	
H430772		<10	<10	55	<10	8	
H430773		<10	10	44	<10	7	
H430774		<10	<10	55	<10	7	
H430775		<10	<10	42	<10	8	
H430776		<10	<10	52	<10	10	
H4:30777		<10	10	63	<10	12	
H430778		<10	10	52	<10	9	
H430779		<10	<10	51	<10	15	
H430780		<10	10	58	<10	12	
H430781		<10	<10	63	<10	25	
H430782		<10	<10	61	<10	34	
H430783		<10	<10	49	<10	19	

.

١.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

,

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

.

Project: Geofine/NTX Exploration-NW BC

										CERTIF	ICATE	OF ANA	LYSIS	TR080	092256	
Sample Description	Method Anniyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H430784 H430785		2.11 1.75	0.025 0.021	0.8	6.52 6.52	135 129	430 570	<0.5 0.5	2 <2	0.22 0.37	<0.5 <0.5	7 7	24 35	150 60	3.64 2.89	10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

										CERTIF	ICATE	OF ANA	LYSIS	TR080	92256	
Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
н430784 Н430785	LOR	0.01 5.17 4.86	10 30 30	0.01	5 141 235	1	0.01	977	10 450 520	9	0.01	5 <5	55	1	20 <20 <20	0.01

`

7

،

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 19-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092256

Sample Description	Method Analyte Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2			
H430784 H430785		<10 <10	<10 10	48 46	<10 <10	9 11	 	 	

۰**،**

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 1 Finalized Date: 22-JUL-2008 Account: KIV

7

CERTIFICATE TR08092257		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Geofine/NTX Exploration-NW BC	WEI-21	Received Sample Weight	
P.O. No : Rock 1	LOG-22	Sample login - Rcd w/o BarCode	
This second is for 74 Deals consults as the its data as the in Terrara BO October	CRU-QC	Crushing QC Test	
I his report is for 71 Rock samples submitted to our lab in Terrace, BC, Canada on	PUL-QC	Pulverizing QC Test	
9-JOL-2008.	CRU-31	Fine crushing - 70% <2mm	
The following have access to data associated with this certificate:	SPL-21	Split sample - riffle splitter	
DAVID MOLLOY	PUL-32	Pulverize 1000g to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	VARIABLE
Au-ICP22	Au 50g FA ICP-AES finish	ICP-AES
Au-GRA22	Au 50 g FA-GRAV finish	WST-SIM
ME-ICP61	33 element four acid ICP-AES	ICP-AES

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Signature: Colin Ramshaw, Vancouver Laboratory Manager

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092257

								L								
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-GRA22 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-JCP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
		0.02	0.001	0.05	0.0	0.01			0.0		0.01	0.5	•	· · ·	·	0.01
H430501		2.14	0.496		<0.5	4.95	12	980	05	4	0.56	<0.5	3	7	189	14.80
H430502		1.86	2.89		13.7	1.68	189	80	0.5	<2	5.79	13.6	9	5	>10000	12.20
H430503		2.23	>10.0	35.6	10.0	3.82	550	170	0.6	8	0.89	3.9	13	12	>10000	13.70
H430504		1.61	1.015		6.7	2.15	380	120	<0.5	<2	3 38	33.4	19	6	5900	8.38
H430505		1.72	0.361		<0.5	6.21	14	360	1.3	<2	0.35	0.8	8	9	664	4.04
H430506		2.46	0.021		<0.5	5.08	10	430	0.9	<2	0.10	<0.5	5	16	77	4.66
H430507		2.31	0.006		<0.5	5.37	14	600	0.6	<2	0.13	<0.5	13	14	20	2.62
H430551		2.13	0.043		1.4	6.09	92	210	0.6	3	0.19	<0.5	7	16	10	4.16
H430552		1.88	0.018		<0.5	6.61	72	550	0.6	<2	0.08	<0.5	4	21	13	3.19
H430553		2.10	0.021		0.7	6.52	69	650	0.6	<2	0.10	<0.5	5	16	6	2.65
H430554		1.39	0.014		0.5	6.76	62	830	0.6	2	0.13	<0.5	4	19	6	2.67
H430555		1.63	0.084		0.8	6.21	91	340	0.6	2	0.03	1.9	6	17	10	6.85
H430656		1.41	0.009		0.7	7.10	33	2530	0.8	<2	0 11	<0.5	4	16	37	1.48
H430557	j	1.94	0.009		<0.5	7.32	26	2340	0.8	<2	0.11	<0.5	2	13	6	1.75
H430558		1.45	0.041		2.1	6.23	76	860	0.6	<2	0.25	<0.5	5	13	5	2.98
H430559		1.83	0.030		0.8	7.62	72	2110	0.8	<2	1.25	<0.5	13	12	15	3.57
H430560		1.55	0.034		1.3	5.93	72	1050	0.7	<2	1.91	<0.5	7	12	6	2.94
H430561		1.67	0.010		<0.5	7.04	48	2620	0.7	<2	0.11	<0.5	4	14	5	1 46
H430562		1.58	0.016		<0.5	6.82	112	350	0.8	3	0.36	<0.5	4	13	5	3.54
H430563		1.91	0.033		<0.5	6.46	157	290	0.5	5	0.18	<0.5	8	15	10	4.95
H430564		1.64	0.025		0.5	6.71	91	380	0.6	2	0.21	<0.5	7	20	6	3.09
H430565		1.77	0.019		<0.5	7.28	57	2250	0.9	<2	0.17	<0.5	4	17	5	2.19
H430566		0.78	0.013		<0.5	6.86	49	970	0.7	<2	0.51	<0.5	5	15	5	2.47
H430567		1.95	0.005		<0.5	7.52	33	1770	1.1	<2	0.40	<0.5	6	34	5	2.95
H430568		1.06	0.007		<0.5	7.16	56	2530	0.9	<2	0.33	<0.5	5	11	6	2.18
H430569		2.09	0.017		<0.5	7 15	156	390	0.7	<2	0.26	<0.5	7	19	12	3.14
H430570		2.01	0.021		<0.5	6.79	147	310	0.5	<2	0.43	<0.5	8	25	5	4.00
H430571		2.13	0.023		0.6	6.85	68	1590	0.9	<2	2.49	<0.5	8	12	4	3.29
H430572	1	2.06	0.025		0.5	6.19	154	640	0.6	4	1.72	<0.5	8	11	8	4.25
H430573		1.99	0.010		<0.5	6.63	57	1220	0.7	3	1.04	0.5	6	12	7	2.45
H430574		1.23	0.014		<0.5	7.17	88	910	0.7	<2	0.61	0.7	7	15	5	2.73
H430575		0.96	0.014		<0.5	7.26	53	2230	0.7	<2	0.14	<0.5	5	13	3	1.99
H430576		1.35	0.007		<0.5	7.26	40	2340	0.8	<2	0.14	<0.5	5	10	9	1.88
H430577		1.48	0.006		<0.5	7.21	29	1830	1.0	<2	0.40	<0.5	7	19	30	3.20
H430578		1.93	0.025		1.8	5.98	173	940	0.6	<2	4.20	<0.5	6	11	3	3.88
H430579		1.78	0.020		0.7	6.86	162	360	0.6	2	0.21	<0.5	6	18	3	3 39
H430580		0.54	0.010		0.6	7.20	103	1740	0.8	<2	0.22	<0.5	4	16	3	2 07
H430581		1.83	0.040		1.7	6.82	94	300	0.7	2	0.84	<0.5	7	17	4	3.38
H430582		0.90	0.007		<0.5	8.16	30	910	1.9	<2	4.94	<0.5	25	9	14	6 66
H430583		1.20	0.006		<0.5	8.40	31	840	1.6	2	4.81	<0.5	22	10	15	6.63

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Y .

1

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092257

		ME-ICP61	MF-ICP61	MF-ICP61	MF-ICP61	ME-ICP61	MF-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	MF-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
1	Analyte	Ga	ĸ	La	Ma	Мл	Mo	Na	Ni	P	Pb	5	Sb	Sc	Sr	Th
	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	mqq	ppm
Sample Description	LOR	10	0.01	10	0.01	5	1	0,01	1	10	2	0.01	5	1	1	20
H430501	فكرهية التفاكر ا	10	2.93	40	0.53	1015	4	0.04	<1	310	5	0.29	<5	4	36	<20
H430502		<10	0.39	10	1.74	5170	16	0.01	<1	210	76	5.73	13	6	132	<20
H430503		10	0.46	10	1.87	906	71	0.15	<1	440	70	8.00	7	8	51	<20
H430504		<10	0.34	10	0.48	2150	42	0.02	<1	230	379	3.98	10	4	152	<20
H430505		20	2.26	20	1.02	545	4	1.07	<1	580	21	2.49	<5	10	162	<20
H430506		10	2.09	20	0.40	181	3	0.05	<1	480	21	3.62	<5	8	156	<20
H4305D7		10	2.13	20	0.04	30	3	0.05	1	660	14	2.57	5	11	135	<20
H430551		10	4.74	20	0.17	89	3	0.60	1	430	8	4.14	<5	6	80	<20
H430552		10	5.11	20	0.14	59	2	0.43	3	360	d d	2.92	<0	5	81	<20
R430553	_	10	4.84	10	0.14	40	1	0,11	1	480	8	2.41	<0	4	01	<20
H430554		10	5.07	20	0.18	83	3	0.10	4	420	7	2.16	<5	5	75	<20
H430555		20	5.31	20	0.16	41	2	0.22	1	170	66	7.32	<5	5	61	<20
H430556		10	5.72	30	0.20	62	2	0.17	З	430	11	0.85	<5	5	77	<20
H430557		20	6.05	30	0.31	81	2	0.20	3	580	8	0.42	<5	6	69	20
H430558		10	5.31	30	0.28	177	3	0.18	3	550	9	2.17	<5	5	70	<20
H430559		20	5.74	40	0.46	326	2	0.47	4	750	6	1.26	<5	11	109	<20
H430560		10	5.06	30	1.07	1105	1	0.10	<1	430	6	1.80	<5	5	86	<20
H430561		10	6.25	30	0.20	61	3	0.10	3	470	6	0.85	<5	5	82	<20
H430562		20	4.81	30	0.23	155	3	1.50	1	440	9	3.15	<5	5	88	<20
H430563		10	4.70	20	0.12	74	3	1.51	3	360	9	4.94	<5	4	83	<20
H430564		10	5.03	60	0.09	75	3	1.48	3	480	11	3.03	<5	3	90 70	<20
H430565		10	5.30	30	0.17	83	3	1.09	4	500	8	1.54	<5	5	/6	<20
H430566		10	5.28	40	0.20	334	2	1.45	1	470	9	1.86	<5	6	99	<20
H430567		20	4.62	40	0.44	347	1	1.35	b	69U	5	1.01	<0	10	09	20
H450506		10	5,47		0.20	237		1.00					< <u>-</u>			20
H430569		10	5.53	50	0.15	84	2	1.29	2	570	9	3.00	<0	4	101	20
H430570		10	5.27	30	0.14	1000	1	1.53	3	510		3.98	<5 #	4	101	<20
H430571		10	4.73	30	1.01	054	2	0.53	1	440	0	1.40	5	9	09	<20
H430573		10	5.02	20	0.36	904 448	2	0.33	2	440	62	1.49	5	5	90 81	<20
H430574		10	5.54	40	0.37	364	2	0.70	3	510	97	2.17	<5	6	74	<20
H430575		10	5.25	40	0.18	63	3	1.10	4	500	9	1.43	<5	5	70	<20
H430576		10	5.46	30	0.24	89	3	0.75	2	560	5	0.78	<5	5	62	20
H430577		10	4.19	30	0.46	305	3	0.96	4	670	6	1.45	<5	6	80	20
H430578		10	4.99	30	1.45	2460	2	0.55	4	490	6	3.17	<5	7	134	<20
H430579		10	5.36	30	0.20	121	2	0.73	1	490	8	3.06	<5	5	101	<20
H430580		10	5.12	30	0.22	84	2	0.88	2	540	6	1.57	<5	6	94	20
H430581		10	5.47	20	0.42	411	3	0.77	3	520	7	3.31	<5	6	99	<20
H430582		20	3.10	10	2.03	1595	1	1.48	4	1500	8	0.82	<5	24	323	<20
H430583		20	2.71	20	1.77	1560	1	1.66	4	1610	12	0.83	7	25	292	<20

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092257

Sample Description	Method Anziyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001		
H430501 H430502 H430503 H430504 H430505		0.11 0.07 0.17 0.07 0.24	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	48 52 82 32 105	350 <10 <10 <10 <10	56 929 324 1835 80	3.23 3.30		
H430506 H430507 H430551 H430552 H430553		0.16 0.19 0.17 0.17 0.18	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	77 91 54 39 39	<10 <10 <10 <10 <10 <10	41 18 7 6 5		 	
H430554 H430555 H430556 H430557 H430557 H430558		0,18 0,16 0,18 0,18 0,18	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	49 52 51 48 49	<10 <10 <10 <10 <10	7 44 12 27 14	<u>,</u>	<u></u>	
H430559 H430560 H430561 H430562 H430563		0.27 0.15 0.18 0.17 0.16	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	121 49 47 43 35	<10 <10 <10 <10 <10	44 33 11 13 10			
H430564 H430565 H430566 H430566 H430567 H430568		0.18 0.19 0.17 0.25 0.18	<10 <10 <10 <10 <10 10	<10 <10 <10 <10 <10 <10	38 47 39 72 47	<10 <10 <10 <10 <10	8 22 22 64 33			
H430569 H430570 H430571 H430571 H430572 H430573		0.20 0.17 0.24 0.15 0.17	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 10	42 30 90 46 45	<10 <10 <10 <10 <10	19 19 53 33 37			
H430574 H430575 H430576 H430576 H430577 H430578		0.19 0.18 0.18 0.25 0.16	<10 <10 <10 <10 <10	10 <10 <10 <10 10	48 42 48 67 52	<10 <10 <10 10 <10	52 18 26 44 21			
H430579 H430580 H430581 H430582 H430583		0.18 0.19 0.18 0.57 0.60	<10 <10 <10 <10 <10 <10	<10 10 10 <10 <10	51 58 51 278 277	<10 <10 <10 <10 <10 10	11 13 9 67 79			

.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

· · · ·

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

									CERTIFICATE OF ANALYS					S TR08092257			
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-GRA22 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 A! % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	
H430584		1.96	0.005		<0.5	7.91	19	790	1.7	<2	7.36	<0.5	15	9	5	6.10	-
H430585		1.32	0.006		<0.5	8.64	18	780	1.7	<2	4.32	<0.5	23	12	3	6.00	
H430586		1.40	0.009		<0.5	7.30	41	1500	1.1	<2	3.87	<0.5	1/	9	4	6.65	
H430587		1.15	0.011		<0.5	7.39	128	2570	1.1	<2	3.02	<0.5	9	9	02	3.51	
H4:30588		1.56	0.044		<0.5	6.34	205	290	07	<2	0.80	<0.5	/	10	84	4.47	
H430589		1.54	0.025		<0.5	6.82	94	580	1.0	<2	0.67	<0.5	6	16	164	3.13	
H430590		1.30	0.024		<0.5	6.88	74	1020	1.1	<2	0.74	<0.5	7	13	197	3.00	
H430591		1.84	0.038		<0.5	6.93	194	310	1.1	<2	0.53	<0.5	7	14	98	4.37	
H430592		1.49	0.023		<0.5	7 1 9	159	430	1.0	3	0.95	<0.5	8	16	65	4.11	
H430593		1.54	0.368		<0.5	5.70	1730	190	0.5	13	0.45	<0.5	11	13	231	14.00	
H430594		2 11	0.019		<0.5	7.28	115	660	1.1	2	0.52	<0.5	7	18	62	3.01	-
H430595		1.64	0.012		<0.5	7 21	43	1900	1.3	<2	1.31	<0.5	5	14	38	2.48	
H430596		1.14	0.013		<0.5	7 19	64	1460	1.2	<2	0.67	<0,5	8	12	53	2.46	
H430597		1.53	0.019		<0.5	7 18	103	550	10	2	0.69	<0.5	7	15	65	3.39	
H430598		1 39	0.013		<0.5	7.26	91	440	1.1	2	0.89	<0.5	7	13	49	3.39	
11100500		4.00	0.000		40 E	7 1 4	15	1770	1.4		1 66	<0.5	6		42	2.40	-
H430599		1.39	0.003		<0.5	7 (1	10	1800	1.4	<2	1.00	<0.5	8	10	42	2.40	
1430600		1,30	0.004		<0.0	7.40	27	1610	1.0	<2	2.12	<0.5 <0.5	2	22		2.78	
H430701		1.90	0.008		-0.5	7.00	20	1810	1.0		2.12	<0.5	6	1/	59	2.70	
H450702		2.10	0.002		<0.5	7.50	15	1720	1.0	<2	1.21	<0.5	7	21	63	2.37	
H450705		1.00	0.003		~0.5	7.00		1720	1.0	~2	1.00	-0.0		21		2.70	
H430704		0.51	0.003		<0.5	7.30	15	1430	1.6	<2	2,15	<0.5	8	25	121	3.05	
H430705		1.14	0.004		<0.5	6.66	12	1630	1.4	<2	2.26	<0.5	9	20	75	2.36	
H4:30706		1.14	0.001		<0.5	6.78	6	2060	1.2	2	1.87	<0.5	6	14	14	2.12	
H430707		3.22	0.032		1.7	5.13	80	990	0.8	3	4.65	<0.5	7	8	227	3.08	
H430708		0,96	0.017		0.9	6.58	102	740	0.8	3	1.77	<0.5	7	16	272	2.51	
H4:30709		1.41	0.020		<0.5	7.09	99	540	0.6	3	0.27	<0.5	6	20	254	2.80	-
H430710		2.36	0.027		<0.5	6.75	150	220	0.5	2	0.50	<0.5	7	19	275	4.52	
H430711		2.54	0.009		<0.5	6.99	106	400	0.6	<2	0.27	<0.5	7	16	141	3.08	
H430712		2.06	0.021		0.5	6.81	119	330	0.6	<2	0.26	<0.5	8	15	133	3.33	
H430713		1,93	0.046		1.3	6.35	209	270	0.5	2	0.24	<0.5	8	15	112	4.70	
4430714		2.73	0.025	.	0.6	6 71	113	240	0.6	<2	0.49	<0.5	7	14	112	4 55	
		2.79	0.020			0.71		2.10	2.0				·				

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092257

		MF-ICP61	ME-ICP61	MF-ICP61	ME-ICP61											
	Ansixte	Ga	к	La	Ma	Mn	Мо	Na	Ni	Р	PÞ	S	Sb	Sc	Sr	Th
	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	10	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20
H430584		20	2.58	20	1.54	1990	1	1.40	3	1520	13	0.55	6	31	516	<20
H430585		20	2.80	20	1.60	1280	1	1.99	3	1690	16	1.32	<5	26	259	<20
H430586	i	20	2.70	20	1.46	1420	<1	1.32	3	1290	9	1.45	<5	19	267	<20
H430587		20	5.20	10	0.61	706	1	0.91	5	1150	6	1.40	<5	13	223	<20
H430588		10	4.57	30	0.17	255	3	1.53	5	480	12	4.23	7	6	151	<20
H430589		10	4.89	30	0.17	226	4	1.31	7	510	11	2.48	<5	7	114	<20
H430590		10	4.57	50	0.24	302	15	1.36	12	510	7	1.96	<5	7	123	20
H430591		10	4.51	30	0.23	197	3	1.35	5	510	13	3.40	<5	7	108	<20
H430592		10	4.95	30	0.26	303	З	1.51	8	630	13	3.10	5	8	150	<20
H430593		10	4.41	20	0.08	125	26	1.31	6	420	24	>10.0	<5	6	103	<20
H430594		10	5.01	40	0.14	161	2	1.45	9	550	17	2.12	<5	7	120	20
H430595		10	4,49	70	0.21	371	2	1.61	7	540	16	1.19	5	7	142	20
H430596		10	4.81	40	0.24	242	2	1.69	7	510	10	1.47	5	6	140	20
H430597		10	5.17	30	0.16	256	2	1.73	7	510	18	2.41	<5	6	145	20
H430598		10	5.07	30	0.21	260	2	1.75	5	550	16	2.50	<5	7	148	20
H430599		10	4.18	20	0.47	505	- 1	2.04	11	570	8	0.67	<5	7	209	<20
H430600		10	4.00	30	0.60	547	1	1.98	7	630	9	0.95	<5	9	202	20
H430701		10	3.76	20	0.45	587	1	2.08	7	640	7	1.10	<5	8	200	20
H430702		10	4.41	30	0.46	494	<1	1.83	6	580	8	0.63	<5	8	182	20
H430703		10	4.39	30	0.58	622	1	1.91	10	670	10	0.57	<5	10	192	20
H430704		10	3.99	20	0.67	721	1	1.86	11	720	220	0.53	<5	11	172	<20
H430705	i	10	4.23	20	0.42	665	<1	1.62	8	620	9	0.44	<5	9	174	<20
H430706		10	4.86	20	0.42	679	<1	1.68	3	530	4	0.09	<5	6	221	20
H430707		10	4.09	30	2.45	2630	6	0.08	14	370	19	1.64	5	7	131	<20
H430708		10	5.80	40	0.76	1095	1	0.34	17	530	5	2.00	<5	6	100	<20
H430709		10	5.77	50	0.18	152	1	1.06	16	520	12	2.53	<5	4	83	20
H430710		10	5.16	70	0.20	274	1	1.65	18	470	18	4.10	<5	4	99	20
H430711		10	5.14	40	0.16	126	1	1.31	8	480	10	2.81	<5	5	90	20
H430712		10	5.36	50	0.20	148	1	1.11	11	410	10	3.02	<5	5	92	20
H430713		10	5.08	70	0.14	111	1	1.39	9	380	9	4.61	<5	4	92	20
H430714		10	5.20	50	0.45	256	1	1.19	8	450	10	3.93	<5	6	87	<20

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

. .

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 22-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08092257

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001			
H430584 H430585 H430586 H430587 H430588		0.55 0.64 0.47 0.41 0.17	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	290 309 242 161 48	<10 <10 <10 <10 <10	71 79 85 33 14				
H430589 H430590 H430591 H430592 H430593		0.18 0.18 0.19 0.22 0.19	<10 <10 <10 <10 <10	<10 <10 <10 <10 10	53 57 54 70 63	<10 <10 <10 <10 <10	18 27 32 27 18				
H430594 H430595 H430596 H430597 H430598		0.20 0.21 0.19 0.20 0.20	<10 10 <10 10 <10	<10 <10 <10 <10 <10 10	58 75 56 52 56	<10 <10 <10 <10 <10 <10	47 45 27 29 36				
H430599 H430600 H430701 H430702 H430703		0.21 0.24 0.24 0.21 0.25	<10 <10 <10 <10 <10	<10 10 <10 10 <10	60 72 71 60 78	<10 <10 <10 <10 <10	67 15 15 22 22				
H430704 H430705 H430706 H430707 H430708		0.27 0.23 0.19 0.13 0.19	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	89 74 51 63 51	<10 <10 <10 <10 <10	30 85 26 67 27				
H430709 H430710 H430711 H430712 H430713		0.19 0.19 0.18 0.18 0.18 0.17	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	43 36 39 43 32	<10 <10 <10 <10 <10 <10	17 23 12 9 6				
H430714		0.18	<10	<10	39	<10	18				

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

.

1

Page: 1 Finalized Date: 25-JUL-2008 Account: KIV

CERTIFICATE TR08094681		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Geofine/NTX Exploration-NW BC	WEI-21	Received Sample Weight	
	LOG-24	Pulp Login - Rcd w/o Barcode	
rud. No This sector of the constant of the data constant in Terrary DO. Or and the	LOG-22	Sample login - Rcd w/o BarCode	
i his report is for 90 Rock samples submitted to our lab in Terrace, BC, Canada on	CRU-QC	Crushing QC Test	
14-JUL-2000.	PUL-QC	Pulverizing QC Test	
The following have access to data associated with this certificate:	CRU-31	Fine crushing - 70% <2mm	
DAVID MOLLOY ROBERT PERRY	SPL-21	Split sample - riffle splitter	
	PUL-32	Pulverize 1000g to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	VARIABLE
Au-ICP22	Au 50g FA ICP-AES finish	ICP-AES
ME-ICP61	33 element four acid ICP-AES	ICP-AES

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY **49 NORMANDALE RD UNIONVILLE ON L5L 3B9**

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

and the second second

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

1

Project: Geofine/NTX Exploration-NW BC

Method angle Osciffabion WEI:31 bit Method bit M											CERTIF	ICATE	LYSIS	TR08094681				
H4070F61 200 0.637 0.6 6.6 72 0.15 6.6 77 1.1 3.38 H4070F87 306 0.060 1.6 6.67 2.49 480 0.5 2 2.74 1.3 1.1 5.2 5.9 4.13 H4070F87 306 0.050 1.6 6.67 2.49 480 0.5 <2 0.54 4.05 1.4 2.23 1.13 6.62 3.49 630 0.5 <2 0.54 4.05 1.4 2.23 1.13 6.64 3.49 630 0.5 <2 0.54 4.05 1.4 2.23 1.13 6.64 3.43 1.470 0.6 <2 0.23 4.05 1.1 2.7 1.18 3.22 1.44 3.02 1.13 0.15 <2 0.54 <0.5 1.2 2.9 4.44 3.04 1.05 1.2 2.9 1.44 3.22 1.44 3.03 1.85 0.05 5.05	ample Description	Method Anniyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	
H430768A 0.21 0.03 2.9 6.66 12 490 0.7 -2 2.74 1.3 11 62 59 4.19 H430787 1.86 0.077 2.3 6.75 3.46 630 0.5 -2 0.38 <0.5	H430786		2.09	0.037	0.9	6.95	103	390	0.6	<2	0.13	<0.5	8	27	11	3.39	10	
H490787 3.08 0.080 1.6 6.67 2.49 480 0.5 4.2 0.88 4.05 9 2.7 2.5 5.24 H430789 2.33 0.113 2.3 6.62 3.49 280 0.5 2 0.54 4.05 14 2.3 13.7 6.67 H430780 2.28 0.026 0.7 7.29 9.4 940 0.8 -2 0.53 4.05 11 31 16.4 3.09 H430791 2.48 0.006 0.8 6.28 3.4 1470 0.6 -2 0.55 5 9 2.4 2.46 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.5 7.5 3.00 1.3 6.05 1.4 2.5 1.75 8.06 H430794 2.26 0.126 0.55 5.7 7.3 9.00 0.7 -2 0.64 -0.5 1.0 2.5 1.0	H430786A		0.21	0.003	2.9	6.66	12	490	0.7	<2	2.74	1.3	11	62	59	4.19	20	
H430789 188 0.077 2.3 6.76 349 630 0.5 4.2 0.39 <0.5 12 29 103 6.46 H430790 2.33 0.113 2.3 6.62 349 280 0.5 2 0.54 <0.5 14 23 137 6.67 H430790 2.26 0.030 0.38 6.28 34 1470 0.8 <2 0.53 <0.5 1 31 164 3.56 H430791 2.26 0.010 0.5 6.28 370 150 0.5 <2 0.45 <12 2 143 164 3.66 H430794 2.16 0.115 1.3 6.28 377 670 0.5 3 113 <0.5 14 25 175 895 H430796 1.46 0.18 5.7 73 900 0.7 2 110 <0.5 15 20 65 32 46 <t< td=""><td>H430787</td><td></td><td>3.08</td><td>0.080</td><td>1.6</td><td>6.67</td><td>249</td><td>480</td><td>0.5</td><td><2</td><td>0.68</td><td><0.5</td><td>9</td><td>27</td><td>25</td><td>5.24</td><td>10</td><td></td></t<>	H430787		3.08	0.080	1.6	6.67	249	480	0.5	<2	0.68	<0.5	9	27	25	5.24	10	
H430789 2.3 0.13 2.3 6.62 3.49 200 0.5 2 0.54 -0.5 14 2.3 137 6.67 H430750 2.26 0.032 0.7 7.72 5.4 980 0.5 -2 0.53 -0.5 11 21 116 5.24 H430751 2.23 0.010 -0.5 6.95 5.72 1560 0.5 -2 0.54 -0.5 12 3.2 12.2 6.26 H430763 2.16 0.115 1.3 6.25 3.76 670 0.5 -2 0.54 -0.5 14 2.5 17 0.69 H430765 1.46 0.766 2.2 6.40 5.57 7.3 960 0.7 -2 0.65 1.0 2.6 1.0 2.6 3.3 2.6 1.0 2.6 1.0 2.6 1.0 2.6 1.0 2.6 1.0 2.6 1.0 2.6 1.0 1.0	H430788		1.88	0.077	2.3	6.76	349	630	0.5	<2	0.39	<0.5	12	29	103	6.46	10	
H430790 2.29 0.029 0.7 7.29 94 980 0.9 <2 0.38 <0.65 11 27 118 3.29 H430791 2.26 0.036 0.28 5.33 30 1450 0.9 <2	H430789		2.33	0.113	2.3	6.52	349	280	0.5	2	0.54	<0.5	14	23	137	6.67	10	
H440791 2.46 0.036 0.8 6.28 3.4 1470 0.8 <2 0.20 <0.5 11 31 164 3.09 H430792 2.23 0.010 <0.5 6.03 30 1650 0.9 <2 0.53 <0.55 <0.5 12 32 94 2.6 H430793 2.51 0.115 1.3 6.25 379 670 0.5 <2 0.54 <0.55 14 2.5 175 8.09 H430796 2.26 0.026 <0.5 5.57 7.73 960 0.7 <2 0.69 <0.5 14 2.5 1.5 2.0 6.3 2.110 <0.5 15 2.0 6.3 2.3 1.0 0.5 1.4 2.5 0.5 3.2 1.3 4.5 1.0 0.6 2.2 0.6 3.3 0.11 0.5 1.1 2.3 8.5 3.23 1.43 1.40 0.6 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	H430790		2.29	0.029	0.7	7.29	94	980	0.9	<2	0.38	<0.5	11	27	118	3.22	10	
H430792 223 0 0 10 <0.5	H430791		2.46	0.036	0.8	6.28	34	1470	0.8	<2	0.20	<0.5	11	31	164	3.09	10	
H430793 2 19 0 121 2.5 6 56 572 310 0.5 <2	H430792		2.23	0.010	<0.5	6.03	30	1950	0.9	<2	0.53	<0.5	9	32	94	2.46	20	
H430794 2.51 0.15 1.3 6.25 379 670 0.5 <2 0.54 <0.5 12 32 122 6.35 H430795 1.48 0.156 2.2 6.0026 <0.5 5.57 73 980 <0.7 <2 0.69 <0.5 10 26 55 30 H430797 2.04 0.186 3.0 5.75 895 1290 <0.5 3 0.81 <0.5 15 20 63 946 H430798 3.09 0.166 1.6 6.32 813 140 0.6 2 1.10 <0.5 12 20 130 7.34 H430800 2.39 0.46 <0.5 5.71 377 670 0.9 3 1.68 <0.5 12 22 23 2.43 3.44 H430802 2.67 0.014 <0.5 7.77 56 1900 92 2.072 <0.5 14 26 77 4.40 H430806 1.83 0.029 6.61 166 420	H430793		2.19	0.121	2.5	6.95	572	310	0.5	<2	0.46	<0.5	16	27	125	7.55	10	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H430794		2.51	0.115	1.3	6.25	379	670	0.5	<2	0.54	<0.5	12	32	122	6.35	10	
H430796 2.26 0.026 <0.5 5.57 73 990 0.7 <22 0.69 <0.5 10 26 55 322 H430797 2.04 0.186 3.0 5.75 895 120 <0.65	-1430795		1.48	0.156	2.2	6.40	591	480	<0.5	3	1.13	<0.5	14	25	175	8.09	10	-
H430797 2.04 D.186 3.0 5.75 885 1290 <0.65 3 0.81 <0.55 15 20 63 9.46 H430798 1.50 D.099 1.0 6.45 486 160 0.8 <2 1.10 <0.55 15 23 65 560 H430799 2.39 D.046 <0.5 5.37 302 510 0.7 <2 1.13 <0.55 12 26 37.6 43.4 H430801 2.39 D.046 <0.5 5.73 167 170 1.2 <2 D.96 <0.5 8 24 12 207 H430802 2.87 D.006 <0.5 7.07 56 1900 0.9 <2 D.72 <0.5 14 26 27 3.40 H430804 2.267 D.008 <0.5 7.11 27 1800 0.9 2.0 0.6 2.2 D.91 <0.5 8 19 102 4.00 H430806 1.83 D.029 <0.5 6.43 <	430796		2.26	0.026	<0.5	5.57	73	990	0.7	<2	0.69	<0.5	10	26	55	3 22	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	430797		2.04	D.186	3.0	5.75	895	1290	<0.5	3	0.81	<0.5	15	20	63	9.46	10	
H430799 3.09 0.166 1.6 6.32 813 140 0.6 2 1.10 <0.5 12 20 130 7.34 H430800 2.39 0.046 <0.5	430798		1.50	0.099	1.0	6.45	486	180	0.8	<2	1.10	< 0.5	15	23	85	5.80	10	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	430799		3.09	0.166	1.6	6.32	813	140	0.6	2	1.10	<0.5	12	20	130	7.34	10	
H430801 2.36 0.030 0.5 6.57 137 670 0.9 3 1.63 <0.5 12 23 29 3.34 H430802 2.89 0.006 <0.5	-1430800		2.39	0.046	<0.5	5.37	302	510	0.7	<2	1.13	<0.5	12	26	376	4.34	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	430801		2.36	0.030	0.5	6.57	137	670	0.9	3	1.63	<0.5	12	23	29	3.34	10	
H430803 2 67 0 014 <0.5	430802		2.89	0.006	<0.5	6.73	16	1770	1.2	<2	0.96	<0.5	8	24	12	2.07	10	
H430804 2.25 0.008 <0.5 7.11 27 1960 1.2 <2 0.91 <0.5 10 24 15 2.57 H430805 1.83 0.029 0.9 6.91 156 420 0.6 <2 0.20 <0.5 11 29 124 4.08 H430806 2.49 0.029 <0.5 6.62 1161 330 0.6 <2 3.19 <0.5 8 19 102 4.00 H430807 2.31 0.013 <0.5 6.43 75 450 0.6 2 0.78 <0.5 6 25 13 2.66 H430808 1.96 0.008 <0.5 6.43 75 450 0.6 2 0.78 <0.5 3 27 6 2.10 H430810 1.69 0.021 <0.5 6.41 76 630 0.6 3 0.11 0.8 4 19 22 2.49 H430810 1.69 0.021 <0.5 6.86 61 1660 0.5 2 0.04 <0.5 6 17 63 1.96 H430812 1.67 0.016 <0.5 6.86 50 2940 <0.5 2 0.02 <0.5 1 24 26 1.32 H430813 2.29 0.011 <0.5 6.74 72 2200 <0.5 <2 0.02 <0.5 <2 1 4 453 H430816 $1.$	430803		2.67	0.014	<0.5	7.07	56	1900	0.9	<2	0.72	<0.5	14	26	27	3.40	10	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1430804		2.25	0.008	<0.5	7.11	27	1960	1.2	<2	0.91	<0.5	10	24	15	2.57	20	
H338062.490.029<0.56.621613300.6<23.19<0.58191024.00H4308072.310.013<0.5	430805		1.83	0.029	0.9	6.91	156	420	0.6	<2	0.20	<0.5	11	29	124	4.08	10	<u> </u>
H430807 2.31 0.013 <0.5 6.43 75 450 0.6 2 0.78 <0.5 6 25 13 2.66 H430808 1.98 0.008 <0.5 6.59 48 1000 0.7 <2 0.49 <0.5 3 27 6 2.10 H430809 1.84 0.024 <0.5 6.41 76 630 0.6 3 0.11 0.8 4 19 22 2.49 H430810 1.69 0.021 <0.5 6.88 61 1660 0.5 2 0.04 <0.5 6 17 63 1.96 H430811 1.81 0.016 <0.5 6.86 50 2940 <0.5 2 0.02 <0.5 1 24 26 1.32 H430813 2.29 0.011 <0.5 6.74 72 2200 <0.5 <2 0.02 <0.5 2 1.24 26 1.32 H430815 1.71 0.174 1.7 5.42 162 280 0.5	-430806		2.49	0.029	<0.5	6.62	161	330	0.6	<2	3.19	<0.5	8	19	102	4.00	10	
H430808 1.98 0.008 <0.5 6.59 48 1000 0.7 <2 0.49 <0.5 3 27 6 210 H430809 1.64 0.024 <0.5 6.41 76 630 0.6 3 0.11 0.8 4 19 22 2.49 H430810 1.69 0.021 <0.5 6.88 61 1660 0.5 2 0.04 <0.5 6 17 63 1.96 H430811 1.81 0.015 <0.5 7.24 82 2890 0.6 3 0.04 <0.5 6 17 63 1.96 H430812 1.67 0.016 <0.5 6.88 50 2940 <0.5 2 0.02 <0.5 1 24 26 1.32 H430813 2.29 0.011 <0.5 6.74 72 2200 <0.5 <2 0.02 <0.5 2 2.5 12 1.78 H430814 1.88 0.110 <0.5 6.16 62 520 0.6 3 0.13 <0.5 6 11 4 453 H430815 1.71 0.174 1.7 5.42 162 280 <0.5 6 0.17 <0.5 8 11 8 60.5 H430816 1.68 0.025 0.5 6.67 52 750 0.7 3 0.15 <0.5 7 11 2 3.68 H430818 2.07 <	-1430807		2.31	0.013	<0.5	6.43	75	450	0.6	2	0.78	<0.5	6	25	13	2.66	10	
H430809 1.84 0.024 <0.5 6.41 76 630 0.6 3 0.11 0.8 4 19 22 2.49 H430810 1.69 0.021 <0.5	-1430808		1.98	0.008	<0.5	6.59	48	1000	0.7	<2	0.49	<0.5	3	27	6	2.10	10	
H430810 1.69 0.021 <0.5 6.88 61 1660 0.5 2 0.04 <0.5 6 17 63 1.96 H430811 1.81 0.015 <0.5	430809		1.84	0.024	<0.5	6.41	76	630	0.6	3	0.11	0.8	4	19	22	2.49	10	
H4308111.810.015<0.57.248228900.630.04<0.5319421.63H4308121.670.016<0.5	-1430810		1.69	0.021	<0.5	6.88	61	1660	0.5	2	0.04	<0.5	6	17	63	1.96	10	_
H4308121.670.016<0.56.86502940<0.520.02<0.5124261.32H4308132.290.011<0.5	430811		1.81	0.015	<0.5	7.24	82	2890	0.6	3	0.04	<0.5	3	19	42	1.63	10	
H4308132.290.011<0.56.74722200<0.5<20.02<0.5225121.78H4308141.880.110<0.5	430812		1.67	0.016	<0.5	6.86	50	2940	<0.5	2	0.02	<0.5	1	24	26	1.32	10	
H4308141.880.110<0.56.16625200.630.13<0.561144.53H4308151.710.1741.75.42162280<0.5	430813		2.29	0.011	<0.5	6.74	72	2200	<0.5	<2	0.02	<0.5	2	25	12	1.78	10	
H4308151.710.1741.75.42162280<0.560.17<0.581186.05H4308161.680.0250.56.67527500.730.15<0.5	430814		1.88	0.110	<0.5	6.16	62	520	0.6	3	0.13	<0.5	6	11	4	4.53	20	
H4308161.680.0250.56.67527500.730.15<0.571123.68H4308171.690.135<0.5	-1430815		1.71	0.174	1.7	5.42	162	280	<0.5	6	0.17	<0.5	8	11	8	6.05	10	-
H430817 1.69 0.135 <0.5 5.86 66 350 0.7 6 0.19 <0.5 6 8 5 4.90 H430818 2.07 0.141 <0.5	430816		1.68	0.025	0.5	6.67	52	750	0.7	3	0.15	<0.5	7	11	2	3.68	10	
H430818 2.07 0.141 <0.5 5.29 179 290 <0.5 7 0.38 <0.5 9 17 15 5.49 H430818A 0.22 1.630 16.2 5.04 26 170 <0.5	430817		1.69	0.135	<0.5	5.86	66	350	0.7	6	0.19	<0.5	6	8	5	4.90	20	
H430818A0.221.63016.25.0426170<0.5<21.8612.876110>1000017.80H4308191.560.1870.74.90223280<0.5	430818		2.07	0.141	<0.5	5.29	179	290	<0.5	7	0.38	<0.5	9	17	15	5.49	10	
H430819 1.56 0.187 0.7 4.90 223 280 <0.5 8 0.11 <0.5 8 17 29 6.00 H430820 1.90 0.040 <0.5	H430818A		0.22	1.630	16.2	5.04	26	170	<0.5	<2	1.86	12.8	76	110	>10000	17.80	10	
H430820 1.90 0.040 <0.5 6.79 23 720 0.5 3 0.24 <0.5 5 13 22 3.55 H430821 1.84 0.322 3.0 4.71 336 550 <0.5	430819		1.56	0.187	0.7	4.90	223	280	<0.5	8	0.11	<0.5	8	17	29	6.00	10	-
H430821 1.84 0.322 3.0 4.71 336 550 <0.5 7 0.04 <0.5 3 17 11 5.02	1430820		1.90	0.040	<0.5	6.79	23	720	0.5	3	0.24	<0.5	5	13	22	3.55	10	
	430821		1.84	0.322	3.0	4.71	336	550	<0.5	7	0.04	<0.5	3	17	11	5.02	10	
H430822 1.50 0.021 0.7 6.79 92 1970 0.5 2 0.13 <0.5 5 12 9 3.15	H430822		1.50	0.021	0.7	6.79	92	1970	0.5	2	0.13	<0.5	5	12	9	3.15	10	
H430823 1.79 0.016 <0.5 6.52 73 1980 0.5 <2 0.08 <0.5 3 16 7 2.75	430823		1.79	0.016	<0.5	6.52	73	1980	0.5	<2	80.0	<0.5	3	16	7	2.75	10	

i

1

ALS

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

۲

,

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

'Project: Geofine/NTX Exploration-NW BC

•

									CERTIFICATE OF ANALYSIS TR0809468								
Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 TI % 0.01	
420786		5.29	. 20	0.10	01	6	1.05	2	470	14			a	173	<20	0.22	-
H430786A		- 0.36 - 0.98	20 10	1.32	764	5	2.29	29	600	45	2.57	~J 8	15	79t	<20	0.25	
H430787		5.26	20	0.50	446	5	1.04	3	420	13	4.08	<5	9	121	<20	0.23	
H430788		5.85	20	0.21	226	4	1.12	g	600	12	6.37	<5	6	114	<20	0.23	
H430789		5.40	20	0.52	381	5	0.97	10	590	13	6.16	<5	8	108	<20	0.22	
H430790		5,99	30	0.41	260	3	1.06	11	670	8	1.97	<5	10	123	<20	0.25	-
H430791		5.47	20	0.44	203	4	0.68	12	560	7	1.49	<5	8	100	<20	0.20	
H430792		5.24	30	0.70	505	3	0.44	8	530	8	0.62	5	7	88	<20	0.19	
H430793		5.44	20	0.36	327	5	1.09	9	670	12	7.25	<5	8	103	<20	0.24	
H430794		5.78	20	0.38	394	14	1.08	10	530	24	5.95	<5	8	97	<20	0.21	
H430795		5.55	10	0.67	798	19	0.99	10	550	24	8.01	<5	9	110	<20	0.22	
H430796		4.97	20	0.59	553	11	0.49	6	500	12	1.78	<5	9	84	<20	0.18	
H430797		5.50	10	0.78	545	15	0.52	4	510	18	9.02	<5	8	93	<20	0.19	
H430798		4.78	20	0.87	678	2	0.29	7	590	14	4.86	<5	9	98	<20	0.22	
H430799		5.01	20	0.78	646	3	0.59	5	580	10	7.20	<5		100	<20	0.21	
H430800		4.80	20	0.83	781	2	0.13	22	550	9	3.20	<5	8	89	<20	0.20	
H430801		5.18	30	1.05	870	2	0.28	7	580	9	2.15	<5	10	107	<20	0.22	
H430802		5.34	30	0.89	534	<1	0.11	5	640	6	0.43	<5	9	108	<20	0.24	
H430803		5.29	30	0.94	565	1	0.69	7	650	9	1.37	<5	11	104	<20	0.24	
H430804		4.89	20	0.99	716	<1	0.21	5	670	5	0.53	<5	11	108	<20	0.25	
H430805		5.15	30	0.19	72	1	0.96	12	690	11	3.75	<5	7	100	<20	0.26	
H430806		5.40	30	1.21	1730	4	D.89	6	590	10	3.33	<5	8	152	<20	0.22	
H430807		4.72	40	0.09	204	1	1.81	3	480	7	2.52	<5	6	133	20	0.17	
H430808		5.12	50	0.07	122	2	1.52	3	440	3	1.91	<5	5	137	20	0.17	
H430809		4.49	20	0.07	49	2	1.13	2	220	11	2.31	<5	5	94	<20	0.16	
H430810		4.89	10	0.07	26	3	1.12	4	250	12	1.84	<5	5	92	20	0.19	
H430811		5.41	30	0.07	40	2	1.11	5	260	14	1.18	<5	6	115	20	0.19	
H430812		5.24	10	0.05	26	1	1.30	4	110	9	0.94	<5	5	98	<20	0.19	
H430813		5.04	<10	0.05	27	<1	1.26	2	140	7	1.51	<5	5	93	<20	0.17	
H430814		5.10	40	0.22	55	<1	0.42	2	480	13	3.14	<5		/6	<20	0.22	
H430815		4.52	40	0.24	135	<1	0.37	<1	400	13	4.94	<5	7	65	<20	0.18	
H430816		4.48	30	0.36	83	<1	0.99	<1	570	15	2.04	<5	7	67	<20	0.23	
H430817		4.37	40	0.28	96	1	0.26	1	510	13	3.24	<5	10	61	<20	0.22	
H430818		4.60	30	0.14	116	<1	0.52	<1 57	350	13	5.35	<5 26	6	83	<20	0.18	
H430818A		0.59	<10	2.62	100	318	0.89	וכ		4320	210.0	20	23	02	×20	0.41	
H430819		4.04	20	0.16	68	1	0.45	<1	200	23	5.27	<5	5	63	<20	0.18	
H430820		5.37	30	0.14	()	<7	0.79	1	520	11	2.54	<5 45	9	99	<20 <20	0.23	
H430821		4.73	10	0.06	00 65	<1	0.65	1	290	13	2.92	<0 <5	4	01	<20	0.32	
H430822		0.1Z	40	0.13	00	<1	1.01	1	360 430	4	1.40	<0	5	90 03	~20	0.20	
H40020		4,90	30	U.14	00	~ 1	1.01	'	430		1.37	~5	J	- -	20	0,10	
٠

. .

•

1

•

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV Ì

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08094681

Sample Description	Method Analyte Units LOR	ME-ICP61 Tl ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	
H430786 H430786A H430787 H430788 H430788 H430789		<10 <10 <10 <10 <10	10 10 10 <10 10	77 115 83 69 76	<10 <10 <10 <10 <10	17 171 28 17 34		
H430790 H430791 H430792 H430793 H430793 H430794		<10 <10 <10 <10 <10 <10	<10 <10 <10 10 10	87 87 85 78 72	<10 <10 <10 <10 <10	35 36 45 25 22		
H430795 H430796 H430797 H430798 H430799		<10 <10 <10 <10 <10	20 <10 10 <10 <10	66 73 69 77 70	<10 <10 <10 <10 <10 <10	32 37 41 44 30		
H430800 H430801 H430802 H430803 H430803 H430804		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	79 82 83 93 93	<10 <10 <10 <10 <10	32 35 44 54 55		
H430805 H430806 H430807 H430808 H430808 H430809		<10 <10 <10 <10 <10 <10	10 10 10 <10 10	78 72 44 44 40	<10 <10 <10 <10 <10	7 21 6 32 132		
H430810 H430811 H430812 H430813 H430814		<10 <10 <10 <10 <10	10 10 <10 10 <10	43 47 40 34 85	<10 <10 <10 <10 <10 <10	19 9 <2 <2 8		
H430815 H430816 H430817 H430818 H430818A		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	67 69 107 66 173	<10 <10 <10 <10 20	8 14 13 2 2450	4.67	
H430819 H430820 H430821 H430822 H430823		<10 <10 <10 <10 <10 <10	<10 <10 10 <10 <10	60 68 30 69 52	<10 <10 <10 <10 <10	3 5 2 5 4		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

٠

Project: Geofine/NTX Exploration-NW BC

									1	CERTIF	ICATE	OF ANA	LYSIS	TR080	94681	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	MÉ-ICP61 Ai % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H430824 H430825		1.89 1.78	0.145 0.336	0.8 1.1	5.42 2.82	238 762	750 160	<0.5 <0.5	6 12	0.03 0.01	<0.5 <0.5	2 6	10 10	5 161	3.46 17.25	10 <10
H430826 H430827 H430828		2.37 2.09 1.51	0.019 0.014 0.021	<0.5 <0.5 <0.5	7.07 7.18 6.86	113 81 96	750 600 200	0.8 0.8 1.0	<2 <2 2	0.18 0.83 0.37	<0.5 <0.5 <0.5	5 7 7	9 10 11	5 4 4	3.63 4.24 4.61	10 10 10
H430829 H430830 H430831		1.44 1.95	0.015	<0.5 <0.5	6.87 6.63	87 57	410 420 570	0.8 0.6 0.6	<2 5 2	0.80 0.89 1.49	<0.5 <0.5 <0.5	6 6 5	10 12 11	2 3 2	4.30 3.91 3.77	10 10 10
H430832 H430833		1.93 1.38 1.97	0.014 0.156	<0.5 <0.5 0.6	7.02 6.17	72 193	1130 200	0.6 <0.5	<2 4	0.70	<0.5 <0.5 <0.5	5 7	8 10	1 9	3.51 5.70	10 10 10
H430834 H430835 H430836		1.88 2.28 1.74	0.025 0.022 0.018	<0.5 <0.5 <0.5	6.39 6.66 6.58	118 61 46	350 490 440	0.5 0.5 0.6	2 <2 2	0.20 0.65 0.82	<0.5 <0.5 <0.5	5 6 7	9 8 9	5 4 5	4.15 4.45 4.01	10 10 10
H430837 H430838		1.81 2.01	0.020 0.031	<0.5 <0.5	6.59 5.96	46 94	730 710	0.7 <0.5	<2 <2	0.83 0.07	<0.5 <0.5	7 4	11 17	5 4	3.36 3.17	10 10
H430839 H430840 H430841		1.96 1.84 1.62	0.065 0.198 0.084	<0.5 0.7 <0.5	5.91 5.62 5.97	82 109 47	420 1180	<0.5 <0.5 0.5	6 19 4	0.05 0.70 0.03	<0.5 <0.5 <0.5	3 8 2	17 13 9	3 7 2	2.97 4.36 2.21	10 10 10
H430842 H430843		1.85 2.17	0.008	<0.5	7.32 7.18	9 6 422	2290 2280	1.2	<2	1.03 1.11 	<0.5 <0.5	8 8 11	13 13 116	3420 3390	3.32 2.57	20 10
H430845A H430844 H430845	:	2.69 1.75	0.008	<0.5 <0.5	4.53 6.20 6.51	<5 <5	1980 1990	10 10	<2 <2 <2	3.03 1.40	<0.5 <0.5 <0.5	9 10	14 12	2270 1620	2.43 3.11	10 10 10
H430846 H430847 H430848		1.57 1.51 1.79	0.006	<0.5	7.39	-5 	1450 1400	1.0 1.0 1.0	<2 <2 <2	0.75 1.16 1.19	<0.5	8		2580	3.88	10
H430849 H430850 H430851		2.42 2.70 1.02	0.001 0.002 0.002	<0.5 <0.5 <0.5	7.91 7.84 7.44	11 13 9	940 1370 1000	1.3 1.1 1.1	<2 2 <2	0.19 0.13 0.09	<0.5 <0.5 <0.5	9 7 8	5 6 5	67 60 103	3.98 3.74 3.86	10 20 10
H430852 H430853 H430854		2.30 2.33 2.44	0.004	<0.5 <0.5 <0.5	7.40	7 8	460 370	1.3	<2 <2 <2	0.37	<0.5 <0.5 <0.5	13	6	113 122	4.44 4.29 4.37	10
H430855 H430856 H430857		1.84 2.47 2.71	0.002 0.002 0.002	<0.5 <0.5 <0.5	7.52 7.39 8.18	7 8 11	390 450 370	1.3 1.4 1.2	<2 <2 <2	0.40 0.37 0.21	2.3 2.7 1.6	14 9 8	6 6 5	246 88 99	4.15 3.67 3.65	10 10 20
H430858 H430859 H430860 H430861 H430862		3.17 3.45 2.32 2.13	0.003 0.001 0.002 0.001	<0.5 <0.5 <0.5 <0.5	8.32 7.69 8.06 8.10	- 7 9 12 9	1180 510 420 980	1.7 1.7 2.1 2.0	<2 <2 <2 <2 <2	0.54 2.16 0.87 0.72	1.2 <0.5 <0.5 <0.5	8 10 11 9	6 5 7 5	40 60 131 116	3.34 3.80 4.61 4.05	20 20 20 20
m400002		2.52	0.003	<0.0	0.93	Ð	2030	1.3	<۷	U.20	<u.0< td=""><td>a</td><td>Ö</td><td>49</td><td>2.48</td><td>10</td></u.0<>	a	Ö	49	2.48	10

1

Т

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

٠. ·

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08094681

								· · · · · · · · · · · · · · · · · · ·				······································					-
Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 TI % 0.01	
H430824 H430825 H430826 H430827 H430828		4.91 2.68 4.56 5.09 4.81	20 <10 20 30 20	0.07 0.10 0.16 0.27 0.23	49 45 118 326 156	<1 <1 <1 <1 <1 <1	0.77 0.04 1.07 1.45 1.18	1 <1 1 <1 1	210 30 510 710 470	16 5 7 5 7	2.11 >10.0 2.20 2.36 3.80	<5 <5 <5 <5 <5	5 2 7 9 9	87 26 98 118 126	<20 <20 <20 <20 <20	0.14 0.05 0.25 0.28 0.25	
H430829 H430830 H430831 H430832 H430833		4.79 5.09 5.19 4.90 4.89	30 30 20 30 20	0.16 0.13 0.12 0.16 0.19	288 257 397 302 118	<1 <1 <1 <1 <1 <1	1.36 1.14 1.10 1.26 1.10	1 2 1 <1 <1	550 520 550 550 360	4 10 6 5 13	3.05 2.96 2.76 1.97 4.97	<5 <5 <5 <5 <5	9 8 8 8 6	133 122 182 118 87	<20 <20 <20 <20 <20 <20	0.25 0.23 0.23 0.24 0.21	
H430834 H430835 H430836 H430837 H430838		4.47 5.10 4.54 4.73 4.53	30 30 20 30 40	0.20 0.29 0.24 0.26 0.11	86 195 271 304 47	<1 <1 <1 <1 <1 3	0.98 0.98 1.03 1.12 1.11	1 <1 <1 1 2	460 570 610 480 350	7 9 9 7 8	2.98 3.26 2.66 2.24 2.21		7 11 7 5 5	78 88 117 116 80	<20 <20 <20 <20 <20 <20	0.23 0.22 0.24 0.18 0.18	
H430839 H430840 H430841 H430842 H430843		4.84 5.08 4.37 4.84 4.85	30 20 30 20 20	0.10 0.10 0.14 0.42 0.38	38 181 37 484 492	<1 <1 <1 <1 <1 <1	0.81 0.38 0.80 1.17 0.99	2 4 1 3 2	270 490 100 530 550	7 16 11 5 4	2.06 3.39 1.57 0.60 0.39	<5 <5 <5 <5 <5 <5	6 9 6 7 7	89 103 85 90 84	<20 <20 <20 20 <20	0.20 0.21 0.22 0.20 0.20	
H430843A H430844 H430845 H430846 H430847		0.94 4.78 4.73 4.96 4.27	20 20 10 20 10	1.05 0.75 0.26 0.27 0.40	451 1275 540 353 439	15 <1 <1 <1 <1 <1	1.20 0.88 0.64 0.96 0.69	49 2 3 4 1	790 460 490 550 550	22 8 6 4 10	0.90 0.38 0.37 0.41 1.20	61 <5 <5 <5 <5	10 5 4 10 10	177 134 83 63 84	<20 <20 <20 <20 <20 <20	0.26 0.18 0.18 0.20 0.25	
H430848 H430849 H430850 H430851 H430852		4.16 4.00 3.92 3.65 3.24	20 20 10 20 30	0.42 0.49 0.50 0.47 0.45	470 113 116 98 180	<1 <1 <1 <1 <1 <1	0.67 0.32 0.25 0.43 0.93	1 4 2 5 3	590 790 640 700 690	10 7 7 13 13	0.93 2.17 1.64 2.24 3.25	<5 <5 <5 <5 <5	11 14 14 13 13	86 108 48 52 110	<20 <20 <20 <20 <20 <20	0.27 0.31 0.31 0.28 0.29	
H430853 H430854 H430855 H430856 H430856 H430857		3.57 3.53 3.29 3.21 3.48	20 20 20 30 20	0.47 0.47 0.48 0.48 0.56	184 122 178 132 122	<1 <1 <1 <1 <1 1	0.54 0.68 1.21 1.27 1.55	7 6 13 4 5	720 730 710 710 730	11 14 13 15 13	2.69 3.29 3.28 3.15 2.80	<5 <5 <5 <5 <5	13 13 14 13 14	84 93 144 128 183	<20 <20 <20 <20 <20	0.29 0.30 0.30 0.30 0.30 0.34	
H430858 H430859 H430860 H430861 H430862		3.84 3.62 4.17 4.10 3.17	30 20 20 20 20 20	0.69 0.66 0.75 0.90 0.21	240 546 367 480 93	<1 1 <1 <1 <1	1.03 1.06 0.56 0.69 0.04	3 3 8 5 3	690 740 830 710 670	13 16 18 12 4	2.32 3.09 3.86 2.70 0.23	<5 <5 <5 <5 <5 <5	15 13 14 14 12	108 125 84 72 109	<20 <20 <20 <20 <20 <20	0.33 0 32 0.33 0.33 0.25	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08094681

Sample Description	Method Analyte Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001		
H430824 H430825 H430826 H430827 H430828		<10 <10 <10 <10 <10	10 <10 10 <10 <10	33 24 85 102 90	<10 <10 <10 <10 <10	<2 <2 12 13 5			
H430829 H430830 H430831 H430832 H430832 H430833		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	90 80 76 76 67	<10 <10 <10 <10 <10	5 5 7 8 8			
H430834 H430835 H430836 H430836 H430837 H430838		<10 <10 <10 <10 <10	<10 10 <10 <10 <10	73 78 68 47 43	<10 <10 <10 <10 <10 <10	8 14 16 14 3			
H430839 H430840 H430841 H430842 H430843		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	49 60 76 57 58	<10 <10 <10 <10 <10 <10	3 6 3 44 37		· · · · · · · · · · · · · · · · · · ·	
H430843A H430844 H430845 H430846 H430846 H430847		10 <10 <10 <10 <10	<10 <10 <10 10 10 <10	125 49 50 64 97	10 <10 <10 <10 <10	242 33 79 73 68			
H430848 H430849 H430850 H430851 H430852		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	102 121 132 132 119	<10 <10 <10 <10 <10 <10	65 32 52 56 231			
H430853 H430854 H430855 H430856 H430857		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	116 124 133 111 151	<10 <10 <10 <10 <10 <10	49 55 125 129 93			
H430858 H430859 H430860 H430861 H430862		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	131 127 135 137 95	<10 <10 <10 <10 <10 <10	88 58 45 42 29			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

· · · · · ·

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - A Totai # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08094681 WEI-21 Au-ICP22 ME-ICP61 Method Fe Recvd Wt. Au Aq Al As Ва Ве BI Са Cd Co Cr Cu Ga Analyte kg % ppm % ppm ppm ppm ppm % Units ppm mag ppm ppm ppm ppm Sample Description LOR 0.02 0.001 0.5 0.01 5 10 0.5 2 0.01 0.5 1 1 1 0.01 10 30 4.47 H430863 1.91 0.002 <0.5 8.25 <5 2510 1.3 2 0.18 <0.5 10 9 10 26 2.06 0.004 <0.5 8.41 6 1.4 <2 0.18 <0.5 7 7 3.96 H430864 1430 10 H430865 2.92 0.003 < 0.5 8.87 7 2010 1.3 <2 0.14 < 0.5 6 6 28 3.00 20 2.22 0.002 <0.5 8.39 <5 760 1.4 <2 0.22 <0.5 5 6 34 2.74 10 H4:30866 78 <2 0.16 < 0.5 7 5 5.33 10 <0.5 6 420 2.2 H4:30867 3.23 0.001 7.27 <2 <0.5 14 11 52 4,21 20 10 280 0.6 0.05 3.59 0.001 <0.5 9.08 H430868 4720 H430868A 0.13 0.627 2.8 8.08 79 1300 0.9 <2 4.68 2.3 19 36 6.06 20 7 50 5.97 20 0.001 22 160 < 0.5 <2 0.02 < 0.5 21 H430869 2.59 < 0.5 8.47 < 0.5 8 92 2.64 20 2.93 0.001 < 0.5 10.30 11 360 0.8 <2 0.04 13 H430870 8 630 <0.5 <2 0.02 <0.5 15 13 18 2.76 20 H430519 1,20 0.001 < 0.5 9.75

1

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CEDTIEICATE OF ANALVEIS TRANDAGOA

														11(000	34001	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	K	La	Mg	Mn	Ma	Na	NI	P	Pb	S	Sb	Sc	Sr	Th	Ti
	Units	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOR	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01
H430863 H430864 H430865 H430866 H430866 H430867		3.63 3.79 4.07 3.78 2.88	20 30 20 30 20	0.31 0.24 0.22 0.24 0.96	196 143 105 117 378	<1 <1 <1 <1 1	0.04 0.04 0.05 0.05 0.08	2 3 2 1 4	660 680 680 930 710	<2 5 4 3 12	0.38 0.16 0.43 0.18 3.00	<5 <5 <5 <5 <5	16 15 17 15 12	77 46 67 65 45	<20 <20 <20 <20 <20 <20	0.30 0.30 0.33 0.30 0.28
H430868		3.69	20	0.02	21	3	0.09	4	450	15	4.79	<5	9	399	<20	0.32
H430868A		2.42	10	1.49	759	47	1.66	21	1170	34	2.36	20	13	310	<20	0.34
H430869		1.34	20	0.01	25	8	0.07	6	610	21	6.75	<5	8	1050	<20	0.29
H430870		1.42	30	0.01	16	2	0.10	4	680	11	2.90	7	19	974	20	0.41
H430519		0.09	30	0.01	27	1	0.04	2	920	16	3.15	<5	16	1690	20	0.43

1

Г

EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancourk

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

т <u>т</u> т

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 25-JUL-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08094681

Sample Description	Method Analyte Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001			
H430863 H430864 H430865 H430866 H430866 H430867		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	141 145 155 149 117	<10 <10 <10 <10 <10	66 39 28 31 136				
H430868 H430868A H430869 H430870 H430519		10 <10 10 <10 10	<10 10 <10 <10 <10	127 168 123 175 159	<10 <10 <10 <10 <10	8 227 2 <2 <2 <2		 - 	 	
	, 									

?

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 1 Finalized Date: 12-AUG-2008 Account: KIV

CEI	RTIFICATE TR080963	801		SAMPLE PREPARATION	
	· · · · · · · · · · · · · · · ·		ALS CODE	DESCRIPTION	
Project: Geofine/NTX Explorati	on-NW BC		WEI-21	Received Sample Weight	
P.O. No : Pook 1			LOG-24	Pulp Login - Rcd w/o Barcode	
F.O. NO., ROCK I		T	LOG-22	Sample login - Rcd w/o BarCode	
This report is for 131 Drill Core	samples submitted to our lab i	n Terrace, BC, Canada on	CRU-QC	Crushing QC Test	
16-JUL-2008.			PUL-QC	Pulverizing QC Test	
The following have access	o data associated with this	certificate:	CRU-31	Fine crushing - 70% <2mm	
MATTHEW BIDWELL	DAVID MOLLOY	ROBERT PERRY	SPL-21	Split sample - riffle splitter	
		<u> </u>	PUL-32	Pulverize 1000g to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-0G62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	VARIABLE
Zn-OG62	Ore Grade Zn - Four Acid	VARIABLE
Pb-OG62	Ore Grade Pb - Four Acid	VARIABLE
Au-ICP22	Au 50g FA ICP-AES finish	ICP-AES
ME-ICP61	33 element four acid ICP-AES	ICP-AES

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Y

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

										CERTIF		OF ANA	LYSIS	TR080	96301	
Sample Description	Nethod Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-ICP22 Au Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Ai % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
H430871 H430872 H430873 H430874	·	3.07 2.71 2.77 1.89	0.001 0.001 0.001 0.001		<0.5 <0.5 <0.5	8.90 8.81 9.52 8.18	38 17 24 14	1230 570 850 1020	0.5 0.5 0.8 0.7	<2 <2 <2 <2	0.02 0.01 0.02 0.02	<0.5 <0.5 <0.5 . <0.5 .	<1 <1 3 9	8 8 6 6	2 7 28 62	0.27 0.21 0.64 1.67
H430875 H430876 H430877		2.60 3.01 2.91	0.001		<0.5 <0.5 <0.5	6.23 8.46 8.07	7 8 7	230 340 770	0.6 0.6 0.6	<2 <2 <2 <2	0.04 0.02 0.03	<0.5 <0.5 <0.5	7 18 8	8 7 7	9 40 49	1.36 3.15 1.42
H430878 H430879 H430880		2.41 1.93 2.31	0.001 <0.001 0.001		<0.5 <0.5 <0.5	8.44 9.29 8.61	11 11 11	490 300 340	0.6 0.6 0.6	<2 <2 <2	0.02 0.02 0.02	<0.5 <0.5 <0.5	16 29 17	4 5 7	37 59 111	2.61 5.12 2.65
H430881 H430882 H430883 H430884		2.34 2.73 2.60 2.60	<0.001 0.001 0.001 0.001		<0.5 <0.5 <0.5 <0.5	8,86 8,99 8,67 7,99	10 5 14 11	240 330 210 250	0.6 0.6 0.5 0.5	<2 <2 <2 <2	0.02 0.02 0.01 0.02	<0.5 <0.5 <0.5 : <0.5	20 11 14	5 4 4 5	41 37 98	4.35 2.25 3.13
H430885 H430886 H430887 H430888		3.05 2.79 3.27 3.08	0.001 0.001 0.001 0.001		<0.5 <0.5 <0.5 <0.5	9.11 8.64 9.29 9.28	10 17 7 9	200 120 250 200	0.5 <0.5 0.5 0.5	<2 <2 <2 <2 <2	0.02	<0.5 <0.5 <0.5 <0.5	18 21 25 27	3 4 3 3	86 35 29 51	4.70 5.16 4.16 2.80
H430889 H430890 H430891		2.86 3.09 3.20	0.001 0.004 <0.001		<0.5 <0.5 <0.5	9.08 9.28 8.80	9 7 5	170 210 1180	0.5 0.5 1.4	<2 <2 <2	0.01 0.03 0.44	<0.5 <0.5 <0.5	20 28 10	5 4 4	51 59 24	3.55 3.53 3.66
H430892 H430893 H430893A H430893A H430894		2.55 3.47 0.12 2.58	0.001 0.001 1.565 0.002		<0.5 <0.5 15.2 <0.5	8.54 7.72 5.15 7.81	8 9 15 9	2800 830 350 520	1.2 1.1 <0.5 1.3	<2 <2 8 <2	0.37 0.13 1.94 0.15	<0.5 <0.5 13.1 <0.5	10 10 76 10	4 4 113 6	42 47 >10000 141	3.66 3.76 18.20 3.78
H430895 H430896 H430897 H430898		2.10 2.11 1.27 1.87	0.001 0.001 0.001 0.001	- <u></u>	0.6 0.7 <0.5 <0.5	7.58 7.87 7.34 7.72	6 6 10 6	1180 670 370 820	1.2 1.0 0.9 0.9	<2 <2 <2 <2 <2 <2	0.07 0.06 0.13 0.05	<0.5 0.5 <0.5 <0.5	3 5 6 5	4 5 2 4	103 142 129 56	2.56 2.82 3.11 2.78
H430899 H430900 H430901		2.88 3.07 2.74	0.001 0.001 0.001		<0.5 <0.5 0.5	8.04 8.86 8.35	8 8 12	820 910 520	1.0 1.1 0.8	<2 <2 <2	0.10 0.14 0.14	<0.5 <0.5 <0.5	5 4 5	5 3 5	80 43 71	2.71 2.44 2.81
H430902 H430903 H430904		2.13 2.27 2.37	<0.001 0.001 0.003		<0.5 <0.5 <0.5	8.54 7.66 8.24	7 5 8 	400 390 920	1.0 1.0 1.1	<2 <2 <2	0.20 0.13 0.15	<0.5 <0.5 <0.5	6 6 5	3 3 4	49 101 72	2.73 3.49 2.91
H430906 H430906 H430907 H430908 H430909		2.56 2.87 2.84 2.67	0.001 0.001 <0.001 <0.001		<0.5 <0.5 <0.5 <0.5	7.73 8.01 7.77 8.55	, 11 5 6 10	620 430 650	1.3 1.3 1.6	<2 <2 <2 <2	0.14 0.13 0.06 0.51 0.03	<0.5 <0.5 <0.5 <0.5	5 6 6	2 3 3 4	51 36 48 42	3.00 4.07 2.98 1.65
		,				2.00				-						

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

· ·

.

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

. .

										CERTIF	ICATE (OF ANA	LYSIS	TR080	96301	
Sample Description	Method Analyte Units LOR	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 NI ppm 1	ME-ICP61 P [°] ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20
H430871 H430872		20 10	0.14 0.15	30 30	0.01 <0.01	6 <5	1 <1	0.08 0.09	<1 <1	1140 1090	5 4	0.16 0.11	<5 <5	7 6	2220 2070	<20 <20
H430873 H430874 H430875		20 20 10	0.22 0.14 0.08	30 30 20	<0.01 <0.01 <0.01	5 10 15	3 8 4	0.15 0.10 0.07	<1 3 <1	1100 980 820	5 10 7	0.55 1.76 1.41	<5 <5 <5	12 11 6	2030 1860 2190	<20 <20 <20
H430876 H430877	· • • • • • • • • • •	10 10	0.12 0.14	30 20	<0.01 <0.01	7 12	8	0.10 0.11	3	1020 830 780	22 9	3.55 1.37	<5 <5	8 10	1830 1350	20 <20
H430878 H430879 H430880		10 20 10	0.13 0.24 0.19	20 20 30	<0.01 0.01 0.01	15 16 8	4 2 5	0.10 0.14 0.12	4 4 4	710 820	12 22 11	2.77 5.75 2.89	<0 <5 <5	14 11	1120 1470	<20 <20 <20
H430881 H430882 H430883		20 10 20	0.35 0.39 0.47	20 20 30	0.01 0.01 0.01	12 8 12	1 2 1	0.14 0.16 0.13	5 2 <1	580 770 400	20 18 9	4.62 4.84 2.40	<5 <5 <5	1 6 16 19	981 1100 589	<20 20 20
H430884 H430885	-	20 20	0.47 0.32	20 20	0.01 0.01	16 16	1	0.11 0.12	5 4	450 560	10 14	3.34 5.27	<5 <5	16 12	670 913	20 <20
H430886 H430887 H430888		10 20 10	0.37 0.38 0.21	20 20 20	0.01 0.01 <0.01	16 13 6	4 2 4	0.10 0.15 0.12	3 2 5	450 510 590	11 17 20	5.68 4.67 3.12	<5 <5 <5	13 13 18	697 773 896	<20 <20 <20
H430889 H430890		10 10	0.23 0.29	20 20	<0.01 0.01	18 10	2 4	0.13 0.16	2 6	520 630	14 14	3.87 3.91	<5 <5	16 17	826 736	<20 <20
H430891 H430892 H430893	i	10 10 10	4.15 4.15 3.77	20 20 10	0.76 0.65 0.57	401 293 161	<1 <1 1	0.30 0.19 0.09	<1 1 3	840 750 710	3 _18 _41	0.18 1.17 2.06	<5 <5 <5	15 14 14	37 174 62	<20 <20 <20
H430893A H430894		20 20	0.60 3.80	<10 10	2.73 0.54	574 158	312 1	0.90	59 2	350 710	4440 78	>10.0 1.80	8 <5	23 14	57 337	<20 <20
H430895 H430896 H430897		10 10 10	3.72 3.61 3.30	10 10 10	0.64 0.59 0.51	150 144 125	2 2 1	0.52 1.23 1.24	4 4 6	410 480 550	12 14 11	1.69 2.03 2.59	<0 <5 <5	8 10 8	65 133 110	<20 <20 <20
H430898 H430899		20 10	3.69 3.84	10 20	0.52	103 107	2	0.40 0.09	1	420 580	11 13	2.35	<5 <5	10 10	46 42	<20 <20
H430900 H430901 H430902		20 10 20	4.08 3.88 4.22	20 20	0.31 0.44	94 106	5	0.04	2	640 850	, 13 13	2.56 2.39	<5 <5	9	120 271	<20 <20 <20
H430903 H430904 H430905		10 20	3.83 3.95	20 30 20	0.46 0.44	126 119 148	3 2 2	0.28 0.15	3 · 1	590 720 780	15 12 	2.98 2.29 2.30	<5 <5 <5	10 10 	84 70 	<20 <20 <20
H430906 H430907		20 20	4.08 4.38	20 20 10	0.49	132 170	25	0.24	1 <1	490 210	15 23	2.64 3.76	<5 <5	9	53 34	<20 <20
H430908 H430909		20 20	4.32 0.30	20 20	0.54 0.02	217 68	2	0.59 0.07	<1 2	560 710	- 4	2.68 0.78	<5 <5	10 16	73 1150	<20 <20

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08096301

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	Pb-OG62 Pb % 0.01			· · · · · · · · · · · · · · · · · · ·	
H430871 H430872 H430873 H430874 H430875		0.25 0.20 0.25 0.19 0.20	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	214 217 187 179 113	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2							
H430876 H430877 H430878 H430878 H430879 H430879		0.23 0.18 0.29 0.35 0.26	10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	137 127 129 177 165	<10 <10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2	<u> </u>	,					
H430881 H430882 H430883 H430884 H430884 H430885		0.31 0.31 0.33 0.32 0.28	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	147 174 171 151 195	<10 <10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2		<u> </u>		<u> </u>			
H430886 H430887 H430888 H430888 H430889 H430890		0.28 0.32 0.32 0.32 0.32 0.34	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	158 169 140 185 160	<10 <10 <10 <10 10	<2 <2 <2 <2 <2 <2						<u> </u>	
H430891 H430892 H430893 H430893 H430893A H430894		0.31 0.32 0.29 0.41 0.30	<10 <10 <10 10 <10	<10 <10 <10 <10 <10 <10	160 125 99 172 111	<10 <10 <10 10 <10	85 67 48 2450 45	4.83		, 				
H430895 H430896 H430897 H430898 H430898 H430899		0.23 0.27 0.23 0.25 0.25	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	89 98 83 99 99	<10 <10 <10 <10 <10 <10	31 41 46 36 24	- <u></u>			,			
H430900 H430901 H430902 H430903 H430903 H430904		0.30 0.25 0.26 0.24 0.25	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	118 101 122 97 99	<10 <10 <10 <10 10	27 16 28 26 27				<u></u>	, <u></u> , <u></u> ,		
H430905 H430906 H430907 H430908 H430908 H430909		0.24 0.23 0.24 0.25 0.31	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	85 85 90 94 138	<10 <10 <10 <10 <10	40 30 28 20 3	,				<u></u>		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

,

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

•

1

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

										CERTIF		OF ANA	LYSIS	TR080	96301	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-ICP22 Au Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
H430910 H430911 H430912 H430913		3.61 3.98 3.71 2.57	0.001 <0.001 <0.001 <0.001		<0.5 <0.5 <0.5 <0.5	8.61 8.95 8.72 8.48	5 5 15 6	2950 1610 1690 3050	0.5 0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.03 0.03 0.03 0.03	<0.5 <0.5 <0.5 <0.5 <0.5	3 2 3 <1	5 5 8 13	40 24 25 50	2.01 2.86 1.26 0.63
H430914 H430915 H430916		2.91 3.90 3.45	0.001 0.001 <0.001		<0.5 <0.5 <0.5	9.79 10.05 10.65	18 33 37	1970 1030 4580	<0.5 <0.5 <0.5	<2 <2 <2 <2	0.02 0.03 0.04	<0.5 <0.5 <0.5	2 8 2	12 6 6	36 31 12	0.70 1.69 0.88
H430917 H430918 H430918A		3.19 3.33 0.13	0.001 0.001 5.19		<0.5 <0.5 1.3	9.14 9.43 5.04	19 6 362	150 390 1180	<0.5 <0.5 0.7	<2 <2 <2 <2	0.02 0.01 2.62	<0.5 <0.5 0.8	10 11 10	7 5 118	35 16 80	2.89 3.08 3.57
H430919 H430920 H430921 H430922		2.96 3.17 3.36 3.05	<0.001 0.003 <0.001 0.001		<0.5 <0.5 <0.5 <0.5	8.09 8.06 9.47 8.44	23 15 10 <5	130 320 180	<0.5 <0.5 <0.5 <0.5	4 5 3	0.03 0.02 0.02 0.03	<0.5 <0.5 <0.5 <0.5	18 14 16	7 6 8	41 24 40	2.84 2.69 2.60
H430923 H430924 H430925 H430926		1.65 1.16 1.14 1.49	0.094 0.279 0.172 0.056		<0.5 <0.5 <0.5 <0.5	7.83 8.53 7.96 8.36	78 31 58 34	310 380 340 340	0.9	5 8 5 5	1.92 0.97 0.79 1.04	<0.5 <0.5 <0.5 <0.5	16 18 14 20	6 6 7 8	43 10 7 13	7.62 7.50 7.11
H430927 H430928 H430929		0.85 1.23 1.19	0.244 0.006 0.114		1.5 <0.5	2.88 6.97 4.75	113 32 110	200 430 780	0.5 0.6 <0.5	13 <2 <2	1.11 1.67 2.76	0.6 <0.5 <0.5	25 16 14	3 5 4	9320 15 32	10.80 6.60 7.67
H430930 H430931 H430932 H430933		1.07 1.30 1.13 1.29	0.004 0.002 0.001 0.001		<0.5 <0.5 0.6 <0.5	8.15 7.87 7.54 8.16	47 9 7 17	780 2850 2470 950	0.9 0.9 0.9 0.7	<2 <2 <2 <2	3.97 0.06 0.04 2.20	<0.5 <0.5 <0.5 <0.5	27 3 1 17	6 2 2 3	42 9 9 28	8.36 2.65 3.42 6.28
H430934 H430935 H430936		1.31 1.48 1.36	0.001 0.076 0.173		<0.5 <0.5 <0.5	9.08 8.08 9.45	47 31 115	1070 150 1300	0.6 0.9 0.9	<2 <2 <2 <2	0.04 1.88 0.71	<0.5 <0.5 <0.5	5 19 7	6 3 4	18 4 14	6.45 8.36 5.07
H430937 H430938 H430939 H430940		1.39 1.50 1.57 1.48	0.253 0.083 0.015 0.004		1.6 <0.5 <0.5 <0.5	1.59 7.20 7.11 6.47	249 49 29 27	110 450 590 810	<0.5 0.6 0.7 0.6	12 <2 <2 <2 <2	1.43 1.65 1.92 1.28	<0.5 <0.5 <0.5 <0.5	99 12 9 7	1 13 13 10	129 9 19 4	30.1 4.56 <u>3.</u> 91 2.76
H430941 H430941A H430520		1.63 0.12 2.16	0.009 0.002 0.006		<0.5 3.1 0.7	7 55 6 66 5 71	87 9 10	850 490 180	0.8 0.7 <0.5	<2 <2 <2 <2	0.61 2.71 0.03	<0.5 1.0 <0.5	, 7 11 2	17 62 9	7 54 6	4.90 4.16 0.76
H430521 H430522 H430523 H430524		2.24 2.58 1.32 2.03	0.022 0.012 0.170 0.074		<0.5 <0.5 1.1 <0.5	7 76 7 69 6 53 6 39	26 11 102 111	590 400 280 1400	1.1 1.3 0.6 0.6	<2 <2 5 <2	0.15 0.35 0.28 0.67	<0.5 <0.5 <0.5 <0.5	16 14 26 7	3 7 7 3	46 12 172 308	6.33 6.10 9.11 5.48
H430525		2.20	0.004		<0.5	6.35	23	1360	0.6	<2	0.23	<0.5	3	4	4	2.29

3

.

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

1

CERTIFICATE OF ANALYSIS TR08096301

Sample Description	Method Analyte Units LOR	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mm ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 NI ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20
H430910 H430911 H430912 H430913 H430914		20 20 10 20 10	0.36 0.44 0.38 0.63 0.43	30 20 20 20 20 20	0.02 0.03 0.01 0.01 0.01	92 133 45 48 21	<1 <1 ≮1 1 <1	0.07 0.06 0.09 0.11 0.08	1 <1 <1 2 2	870 740 830 700 1080	5 3 6 <2 <2 <2	0.36 0.16 0.46 0.13 0.31	<5 <5 <5 <5 <5 <5	15 16 10 5 9	1430 1300 1530 1440 2160	20 <20 <20 <20 <20 <20
H430915 H430916 H430917 H430918 H430918A		20 10 10 10 10	0.37 0.11 0.06 0.25 0.93	30 20 10 20 10	0.02 0.01 0.01 <0.01 1.08	41 14 12 7 444	<1 <1 4 3 15	0.09 0.06 0.05 0.05 1.25	1 <1 <1 <1 47	1080 1120 960 1260 790	<2 <2 2 8 21	1.46 1.00 3.23 3.55 0.88	<5 <5 <5 <5 55	11 8 10 13 10	2090 2540 2020 2460 178	<20 <20 <20 <20 <20
H430919 H430920 H430921 H430922 H430922 H430923		10 10 10 20 20	0.67 0.18 0.93 0.59 1.92	20 30 30 30 30 10	0.01 <0.01 <0.01 0.01 0.87	7 12 23 23 620	3 1 2 1 <1	0.06 0.04 0.07 0.06 2.74	9 7 5 8 4	970 990 1310 1130 1700	9 10 6 9 7	2.20 3.31 3.07 2.89 5.90	<5 <5 <5 <5 <5	11 11 12 13 15	1870 1820 2470 2090 260	<20 <20 <20 <20 <20
H430924 H430925 H430926 H430927 H430928		20 20 20 20 20 20	1.89 1.69 2.10 1.19 2.12	20 50 20 10 20	0.45 0.38 0.64 0.54 0.87	520 371 399 1225 840	1 <1 . <1 .8 <1	3.44 3.46 3.11 0.07 1.54	4 5 6 <1 <1	1730 1340 1670 380 1240	9 5 5 30 9	4.66 4.85 5.55 7.14 3.76	<5 <5 <5 <5 <5 <5	18 14 18 10 17	218 187 211 86 143	<20 <20 <20 <20 <20 <20
H430929 H430930 H430931 H430932 H430933		10 20 20 20 20	1.36 1.68 5.74 5.16 4.46	10 30 30 30 10	1.25 2.95 0.21 0.22 0.65	824 1635 121 95 1375	1 <1 5 2 <1	1,15 2.02 0.13 0.12 1.54	<1 6 <1 <1 <1	730 1510 610 820 1430	9 9 12 17 12	4.20 2.86 0.55 0.88 3.04	<5 <5 <5 <5 <5	10 27 9 11 17	201 249 64 64 160	<20 <20 <20 <20 <20 <20
H430934 H430935 H430936 H430937 H430938		20 20 20 20 10	4.61 1.35 3.00 0.40 1.90	10 10 10 <10 20	0.82 1.29 0.39 0.80 0.52	138 691 216 603 333	1 1 1 <1 13	1.28 3.31 2.53 0.26 2.04	<1 <1 <1 <1 <1 2	1520 1640 1000 230 710	14 10 10 23 13	0.52 6.02 2.17 >10.0 3.58	<5 <5 <5 7 <5	21 16 14 8 11	79 263 184 72 99	<20 <20 <20 <20 <20 <20
H430939 H430940 H430941 H430941A H430941A H430520		20 10 20 20 10	1.91 2.54 2.47 0.91 2.29	20 20 20 10 20	0.68 0.49 0.46 1.31 0.04	412 281 195 775 39	9 1 4 5 6	2.14 0.12 1.19 2.25 0.04	1 1 <1 33 <1	750 630 750 600 510	20 10 12 46 6	2.89 1.55 2.55 0.09 0.10	<5 <5 <5 <5 <5 <5	10 8 13 15 8	102 43 45 289 789	<20 <20 <20 <20 <20 <20
H430521 H430522 H430523 H430523 H430524 H430525		50 20 20 10 10	3.73 3.55 3.09 3.43 3.13	10 10 20 20 20	0.40 0.60 0.29 0.37 0.24	86 617 272 365 112	2 2 2 5 2	0.05 0.03 0.03 0.04 0.05	<1 1 3 <1 <1	910 980 850 480 390	6 8 16 14 9	3.61 2.46 7.28 3.46 1.44	<5 <5 <5 <5 <5 <5	17 17 14 5 4	21 16 14 73 28	<20 <20 <20 <20 <20 <20

•

1

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

a second s

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

3

1

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08096301

ŧ

Sample Description	Method Analyte Units LOR	ME-ICP61 TI % 0.01	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	Pb-OG62 Pb % 0.01	
H430910 H430911 H430912 H430913 H430914		0.36 0.35 0.34 0.21 0.39	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	199 189 168 209 185	<10 <10 <10 <10 <10	8 14 2 2 <2				
H430915 H430916 H430917 H430918 H430918A		0.31 0.26 0.30 0.38 0.25	<10 <10 <10 <10 <10 10	<10 <10 <10 <10 <10 <10	211 178 127 175 124	<10 <10 <10 <10 <10 10	2 <2 <2 <2 <2 230				
H430919 H430920 H430921 H430922 H430922 H430923		0.29 0.35 0.33 0.36 0.51	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	154 145 159 153 209	<10 <10 <10 <10 <10	2 <2 2 <2 33				
H430924 H430925 H430926 H430927 H430927 H430928		0.52 0.46 0.50 0.14 0.37	<10 <10 <10 10 <10	<10 <10 <10 <10 <10	226 172 200 98 162	<10 <10 <10 <10 <10	28 27 29 124 42				
H430929 H430930 H430931 H430932 H430932 H430933		0.25 0.55 0.29 0.29 0.55	<10 10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	122 254 108 111 232	<10 <10 <10 <10 <10 <10	76 100 22 26 28	· · · · · ·			
H430934 H430935 H430936 H430937 H430938		0.65 0.50 0.60 0.09 0.27	<10 <10 <10 10 <10	<10 10 10 <10 10	286 213 223 81 94	<10 <10 <10 <10 <10	33 29 14 28 11				
H430939 H430940 H430941 H430941A H430941A H430520		0.28 0.22 0.29 0.34 0.32	<10 <10 <10 <10 <10	10 <10 <10 <10 <10	95 71 105 112 137	<10 <10 <10 <10 <10 <10	12 11 13 165 2				
H430521 H430522 H430523 H430524 H430525		0.31 0.33 0.29 0.17 0.14	10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	150 133 134 52 39	<10 <10 <10 <10 <10 <10	17 30 16 29 19				

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

1 · · · ·

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

1

۲

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

*

									1	CERTIF	ICATE (OF ANA	LYSIS	TR080	96301		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-ICP22 Au Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01]
H430526		0.91	0.224		0.7	5.95	61	2600	0.6	<2	1.80	<0.5	7	4	324	4.50	7
H430527		1.32	0.064		0.9	5.11	151	870	0.5	<2	0.63	<0.5	12	4	18	8.33	
H430528		0.93	0.276		1.6	1.18	591	190	<0.5	9	0.03	<0.5	17	<1	229	32.9	
H430529		1.02	0.001		<0.5	2.13	15	520	<0.5	<2	0.14	<0.5	1	10	3	1.92	
H430530		0.97	0.002		0.5	2.12	13	340	<0.5	<2	0.06	<0.5	1	8	6	1.27	
H430531		1.76	0.004		<0.5	5.49	15	4390	0.9	<2	7.29	<0.5	9	5	9	5.10	1
H430532		1.43	0.005		<0.5	7.32	66	940	0.5	<2	0.15	<0.5	3	5	14	2.66	
H430533		1.64	0.010		<0.5	7.12	52	1220	0.6	<2	0.07	<0.5	4	3	9	3.78	
H430534		1.61	0.017		<0.5	5.79	89	880	<0.5	<2	0.04	<0.5	4	5	13	2.92	
H430535		1.60	0.005		<0.5	6.95	29	2170	0.5	<2	0.05	<0.5	2	5	4	2.45	
H430536		1.82	0.009		<0.5	6.58	41	1680	0.6	<2	0.16	<0.5	2	4	5	2.55	
H430537		1.72	0.005		<0.5	6.77	22	1440	0.7	<2	0.62	<0.5	5	16	3	2.74	
H430538		1.87	0.007		<0.5	6.95	24	2350	0.5	<2	0.05	<0.5	3	5	3	2.34	
H430539		1.43	0.615		0.6	4.27	185	480	<0.5	3	0.67	<0.5	14	4	61	5.78	
H430605		1,33	0.003		<0.5	7.68	47	1130	0.8	<2	0.39	<0.5	5	4	33	3.29	
H430605A		0.12	0.002		3.3	6.71	9	490	0.7	<2	2.71	1.2	11	63	55	4.17	
H430606		1.71	0.155		1.0	4.38	217	1840	<0.5	<2	0.52	<0.5	38	3	945	12.20	
H430607		1.32	0.063		<0.5	7.32	51	760	0.7	<2	0.31	<0.5	6	4	19	4.14	
H430608		1.56	0.009		<0.5	7.83	18	370	0.7	<2	0.43	<0.5	6	4	14	3.87	
H430609		1.44	0.002		< 0.5	5.93	36	1110	0.5	<2	0.67	<0.5	4	5	9	2.46	_
H430610		1.27	0.013		<0.5	5.88	103	260	0.5	<2	0.24	<0.5	11	5	7	6.53	
H429451		2.09	0.012		38.5	2.91	725	1770	0.5	<2	3.97	461	26	6	588	11.60	
H429452		2.18	0.073		11.5	5.50	449	150	0.8	<2	4.38	356	28	14	605	8.98	
H429453		1.72	0.004		2.4	7.50	214	1090	0.9	<2	2.37	99.1	25	14	96	9.60	
H429454		2.38	0.009		3.6	4.74	173	420	0.8	<2	3.60	27.7	16	10	113	9.22	
H429455		2.19	0.052		10.5	5.66	2070	600	1.0	<2	2.67	158.5	16	1	85	10.45	
H429456		2.75	0.047		6.4	5.96	476	360	0.8	4	0.76	<0.5	18	4	398	26.7	
H429457		1.80	0.043		4.1	4.71	1420	390	0.9	<2	5.81	21.6	14	4	72	5.51	
H429458		1.45	0.081		9.6	6.74	425	430	1.1	<2	1.88	<0.5	15	33	83	6.50	
H429459		0.72	0.037		0.7	6.49	155	630	1.1	<2	0.36	0.5	13	26	171	4.26	_
H4:29460		1.74	0.109		3.1	4.46	256	420	0.8	<2	2.21	0.9	21	5	704	8.44	
H429461		1.40	0.001		<0.5	4.77	15	2080	0.5	<2	10.25	0.8	19	12	2	4.79	
H429462		1.51	0.001		<0.5	3.00	10	2230	05	<2	18.80	0.6	8	4	13	2.64	
H429463		1.83	0.001		<0.5	4.83	13	9700	0.7	<2	12.05	1.0	48	12	357	4.51	
H429464		2.17	0.016		0.5	4.44	116	370	0.7	<2	15.00	17.5	33	6	386	5.18	_
H429465		1.55	0.015		<0.5	7.36	113	240	0.7	<2	1.47	0.5	19	21	21	9.81	
H4:29465A		1.55	0.006		<0.5	7.97	73	400	0.9	<2	1.63	<0.5	20	21	42	8.38	
H4:29401		1.46	0.009		<0.5	7.63	84	330	0.9	<2	1.18	<0.5	17	20	16	8.06	
H429402		1.80	0.004		<0.5	8.11	104	1500	1.3	<2	0.69	<0.5	8	17	11	8.48	
H429403		1.41	0.003		<0.5	7.91	51	830	1.0	<2	0.60	<0.5	5	16	6	7.26	
														· · · · · · · · · · · · · · · · · · ·			-

۴

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

Marting Sample Dascrigtion ME-GP61 (spm ME-GP61 (spm <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(</th><th>CERTIF</th><th>ICATE</th><th>OF ANA</th><th>LYSIS</th><th>TR080</th><th>96301</th><th></th><th>_</th></th<>										(CERTIF	ICATE	OF ANA	LYSIS	TR080	96301		_
H43652 10 3.00 B2 37 1 0.04 41 470 8 2.57 6 1.1	Sample Description	Method Analyte Units LOR	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	-
H436227 20 253 10 0.02 387 1 0.04 <1 270 14 7.44 <55 141 <200 H436523 <10 0.05 134 <10 0.06 134 <10 0.06 13 0.06 13 280 5 0.62 <5 2 33 <20 H436530 <10 2.49 2.00 11 65 1 2.80 4 0.27 <5 2 33 <20 H436531 10 2.24 0.01 170 2.5 1.6 173 1 0.22 1.7 1.83 <5 6 4.7 2.70 H436533 10 2.22 2.0 0.13 38 3 0.30 <1 4.70 2.7 2.5 5 6 6.7 2.3 2.7 2.30 H436535 10 2.81 2.00 0.62 2.80 3.8 0.15 2.40 10.7	H430526		10	3.00	20	0.72	716	1	0.04	<1	470	8	2.57	<5	6	191	<20) and the second
H430528 20 0.69 +10 0.09 144 +1 0.06 +1 30 24 +10 -2 5 20 34 -20 H430530 +10 0.99 +10 0.40 112 1 0.71 2 340 4 0.27 2 39 -20 H430531 10 2.27 2.0 0.11 65 1 2.26 1 480 10 1.70 -5 4 70 +20 H430531 10 2.28 10 0.15 65 1 2.20 1.6 6 97 1.3 -5 6 0.9 -7 1.33 -5 6 0.9 -7 5 7 6.2 -7 6 9 -7 6 -7 6 -7 6 9 7 1.0 2.4 7 1.0 1.0 -7 6 -2 4.0 1.0 1.0 1.0 1.0	H430527	1	20	2.53	10	0.32	367	1	0.04	<1	270	14	7.44	<5	5	41	<20	
H436530 10 10 0.09 1.49 1 0.06 1 360 5 0.62 -5 2 39 -20 H436530 10 2.49 20 2.15 230 2 0.03 -1 860 5 0.22 -5 12 39 -20 2.7 20 0.11 65 1 2.26 1 480 5 0.22 -5 12 0.7 -20 -207 20 0.15 73 1 0.22 -1 480 7 183 -5 4 -200 H430533 10 2.25 10 0.13 35 0.30 -1 400 6 0.97 -5 3 6 -200 H430535 10 2.81 20 0.82 280 4 0.75 5 650 14 104 45 7 63 -200 -200 347 400 21 17 -5 65 5 20 -200 347 450 400 14 104 10 </td <td>H430528</td> <td></td> <td>20</td> <td>0.59</td> <td><10</td> <td>0.05</td> <td>134</td> <td><1</td> <td>0.04</td> <td><1</td> <td>30</td> <td>24</td> <td>>10.0</td> <td><5</td> <td>2</td> <td>5</td> <td><20</td> <td></td>	H430528		20	0.59	<10	0.05	134	<1	0.04	<1	30	24	>10.0	<5	2	5	<20	
H430530 <10 0.99 <10 0.12 1 0.7 2 340 4 0.27 <5 2 39 <20 H430531 20 207 20 0.11 65 1 2.26 1 840 10 170 <5 14 70 <20 H430533 10 3.22 20 0.13 54 3 0.33 1 270 26 1.81 <5 4 4.52 <20 H430535 10 3.28 10 0.13 54 3 0.33 1 270 26 1.81 <5 4 52 2.2 <th2.2< th=""> 2.2 2.2 <</th2.2<>	H430529		<10	1.01	10	0.09	149	1	0.06	1	360	5	0.62	<5	2	31	<20	
H430531 10 2.49 20 2.15 2.33 2 0.03 <1 880 5 0.23 <13 112 161 <20 H430552 20 2.07 2.00 0.11 65 1 2.26 1 4.30 10 1.70 <5 4 70 <20 H430553 10 3.22 2.00 0.15 7.3 1 0.22 <1 10 2.26 10 0.14 33 0.30 <1 270 2.6 11 1.5 4 4.5 4 6.2 2.20 H430535 10 3.25 10 0.14 33 0.30 <1 470 6 0.97 <5 5 5 7 <53 <2.0 2.2 2.0 0.30 <1 1.07 <5 5 2.7 <53 <2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <th2.2< th=""> 2.2 2.2<td>H430530</td><td></td><td><10</td><td>0.59</td><td><10</td><td>0 04</td><td>112</td><td>1</td><td>0.71</td><td>2</td><td>340</td><td>4</td><td>0.27</td><td><5</td><td>2</td><td>39</td><td><20</td><td></td></th2.2<>	H430530		<10	0.59	<10	0 04	112	1	0.71	2	340	4	0.27	<5	2	39	<20	
H436522 20 20 20 011 65 1 225 1 430 10 170 45 4 70 420 H430533 10 222 10 013 58 3 0.03 1 270 26 181 45 5 6 44 62 420 H430533 10 232 10 0.14 33 5 0.44 471 470 6 0.97 45 3 63 620 H430536 10 232 20 0.62 280 4 0.05 4 400 21 127 45 5 6 66 620 H430533 10 344 10 0.14 33 3 0.15 2 430 10 118 45 5 5 66 62 27 220 H430505 20 374 10 0.16 131 776 5 226 61 910 45 4 54 64 64 62 66	H430531		10	2.49	20	2.15	2330	2	0.03	<1	880	5	0.23	<5	12	181	<20	_
H430533 10 3.22 20 0.15 73 1 0.22 <1 510 7 1.83 <5 5 4.44 <20 H430553 10 0.22 10 0.14 33 5 0.44 <1 470 6 0.97 <5 3 75 <20 H430553 10 2.02 0.62 2.80 4 0.02 14 1.04 <5 5 5.6 6.7 93 <20 H430537 10 2.84 10 0.62 2.80 3 0.05 2 4.30 10 1.16 -5 3.6 6 6.7 93 <20 H430505 20 3.74 10 0.25 3.79 11 0.05 <1 280 10 2.11 2.11 2.6 9 2.6 2.7 2.00 H4305050 10 2.43 10 0.27 311 4 0.06 <1 250 13 2.04 4 50 2.6 6 6 8.6 2.02 <td>H430532</td> <td></td> <td>20</td> <td>2.07</td> <td>20</td> <td>0.11</td> <td>65</td> <td>1</td> <td>2.25</td> <td>1</td> <td>430</td> <td>10</td> <td>1.70</td> <td><5</td> <td>4</td> <td>70</td> <td><20</td> <td></td>	H430532		20	2.07	20	0.11	65	1	2.25	1	430	10	1.70	<5	4	70	<20	
H430534 10 2 28 10 0 13 58 3 0 39 1 270 26 1.81	H430533		10	3.22	20	0.15	73	1	0.22	<1	510	7	1.93	<5	5	44	<20	
H430536 10 3.2.5 10 0.1.4 33 5 0.4.4 470 6 9.97 <5 3 75 <20 H430537 10 2.92 0.0.2 2.95 3 0.0.75 5 650 14 104 <5 7 83 <20 H430537 10 2.91 0.0 0.2 2.90 4 0.75 5 650 14 104 <5 7 93 <20 H430538 10 1.74 10 0.25 3.79 11 0.15 2 2430 10 1.41 1.5 5 2.77 11 2.11 4.5 9 5.6 2.7 4.30 H430505 20 0.91 1.10 1.31 776 5 2.24 30 610 45 0.09 4.5 4 54 4.50 4.64 4.20 H430506 10 2.84 2.0 0.22 18 2.00 1 2.60 15 2.84 4.5 6 4.7 4.20	H430534		10	2.26	10	0.13	58	3	0.39	1	270	26	1.81	<5	4	52	<20	
H430537 10 2.92 20 0.22 95 3 0.30 <1 400 21 1.27 <5 5 55 <20 H430537 10 3.94 10 0.14 33 3 0.15 2 430 10 1.18 <5 7 93 <20 H430537 10 1.74 10 0.25 37 11 0.15 2 430 10 1.18 <5 5 27 <20 H430605 20 3.74 20 0.30 211 3 1.17 2 770 11 2.11 <5 5 6 6 <20 H430605 20 3.74 20 0.30 2.11 3 1.17 2 770 11 2.11 2.5 4 5 5 4 6 2.20 H430607 20 2.43 2.0 0.22 18 3 2.05 1 580 13 2.64 <5 6 6 7 2.20 4 167	H430535		10	3.25	10	0.14	33	5	0.44	<1	470	6	0.97	<5	3	75	<20	
H430537 10 2 81 20 0 62 2 80 4 0.75 5 650 14 1 04 <5 7 63 <20 H430538 10 0.13 0.14 33 0.15 2 430 10 1.14 10 0.25 379 11 0.05 <1	H430536		10	2.92	20	0.22	95	3	0.30	<1	400	21	1.27	<5	5	55	<20	
H430538 10 3.94 10 0.14 33 3 0.15 2 430 10 118 <5 5 3 46 <20 H430539 10 1.74 20 0.30 211 31 1.17 2 770 11 2.11 -5 9 56 <20	H430537		10	2.81	20	0.62	280	4	0.75	5	650	14	1.04	<5	7	93	<20	
H430639 10 1.74 10 0.25 379 11 0.05 <1 280 20 387 <5 5 27 <20 H430605 20 374 20 0.30 211 3 117 2 770 11 211 <5 5 5 27 <20 H430605 10 243 10 0.27 311 4 0.06 <1 250 16 ×100 <5 4 54 <20 H430607 20 244 20 0.27 311 2.08 11 0.29 <1 590 13 2.64 <5 6 147 <20 H430606 10 2.89 2.0 0.37 30 11 0.29 <1 590 13 2.64 <5 6 147 <20 H430607 10 184 10 0.17 100 3 130 <1 650 >12 6.29 <5 6 37 <20 H423452 20 3.78	H430538		10	3.94	10	0.14	33	3	0.15	2	430	10	1.18	<5	3	46	<20	
H430605 20 374 20 0.30 211 3 1.17 2 770 11 2.11 <5 9 56 <20 H430605A 20 0.91 10 1.31 776 5 2.24 30 610 46 0.09 <5 16 2.40 <29 <20 H430606 10 2.43 20 0.22 185 3 2.05 1 590 13 2.64 <5 6 86 <20 H430606 20 2.84 20 0.22 185 3 2.05 1 590 13 2.64 <5 6 86 <20 H430605 10 1.84 10 0.17 100 3 130 <1 360 >12 6.29 <5 6 37 <20 H429451 10 1.60 0.17 100 2.3 130 <12 2.77 10 2.4 163 0.2 2.7 100 2.4 17 81 <20 H429452<	H430539		10	1.74	10	0.25	379	11	0.05	<1	280	20	3.87	<5	5	27	<20	
H430605A 20 0.91 10 1.31 776 5 2.24 30 610 45 0.09 <5 15 2.89 <20 H430606 10 2.43 10 0.27 311 4 0.66 <1 250 15 100 <55 4 56 4 56 4 56 4 56 4 56 4 56 4 56 4 57 1 50 13 2.64 <5 6 86 <20 H430606 10 1.84 10 0.17 100 3 130 <1 350 12 6.29 <5 6 37 <20 H430610 10 1.64 00 0.56 138 60 0.20 8 500 900 907 >10.0 61 7 181 <20 H429452 20 2.87 10 0.56 1635 12 0.05 7 990 907 >10.0 24 54 40 40 40 40	H430605		20	3.74	20	0.30	211	3	1.17	2.	770	11	2.11	<5	9	58	<20	
H43060C 10 2.43 10 0.27 311 4 0.06 <1 250 16 >100 <55 4 564 <20 H430607 20 2.84 20 0.21 186 3 2.05 1 580 13 2.64 <55 6 H47 <20 H430608 20 2.89 20 0.27 379 1 0.14 1 680 9 2.64 <55 6 H47 <20 H430601 10 1.84 10 0.17 100 3 1.30 <1 650 9 0.96 <55 6 6 37 <20 H429451 10 1.40 10 0.58 3860 26 0.02 8 500 >1000 51 7 181 <20 H429452 20 2.37 10 2.46 6 0.02 7 990 907 >100 24 54 <20 H429457 10 2.37 20 0.59 150 24	H430605A		20	0.91	10	1.31	776	5	2.24	30	610	45	0.09	<5	15	289	<20	
H430607 20 2.84 20 0.22 186 3 2.05 1 590 13 2.64 <5 6 86 <20 H430608 20 3.8 20 0.31 2.08 11 0.79 <1 580 9 2.69 <5 6 147 <20 H430609 10 2.89 20 0.27 3.79 1 0.14 1 690 9 0.96 <5 6 17 <20 H430610 10 1.84 10 0.17 100 3 130 <1 350 12 6.29 <5 6 37 <20 H429452 20 2.97 10 0.58 3660 26 0.02 7 990 907 >10.0 24 17 81 <20 H429453 20 3.78 10 2.06 2.40 0.3 <1 720 4570 >10.0 29 7 99 <20 H429455 10 3.21 2.0 0.59 1	H430606		10	2.43	10	0.27	311	4	0.06	<1	250	16	>10.0	<5	4	54	<20	
H430609 20 3.98 20 0.31 208 11 0.29 <1 580 9 2.69 <5 6 147 <20 H430609 10 2.89 20 0.27 379 1 0.14 1 690 9 0.96 <5	H430607		20	2.84	20	0.22	185	3	2.05	1	590	13	2.64	<5	6	86	<20	
H430609 10 2.89 20 0.27 379 1 0.14 1 690 9 0.96 <5 4 59 <20 H430610 10 1.84 10 0.17 100 3 1.30 <1	H430608		20	3.98	20	0.31	208	11	0.29	<1	580	9	2.69	<5	6	147	<20	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H430609		10	2.89	20	0.27	379	1	0.14	1	690	9	0.96	<5	4	59	<20	
H429451101.40100.583860260.028500>10000 10.0 617181<20H429452202.97100.561635120.057990907>10.0241781<20	H430610		10	1.84	10	0.17	100	3	1.30	<1	350	12	6.29	<5	6	37	<20	_
H429452202.97100.561635120.057990907>10.0241781<20H429453203.78102.06246060.27513404122.77102454<20H429454102.37200.79759030.0217406594111713109<20H429456303.01300.3931340.13<1650146>10.011847<20H429456303.01300.3931340.13<1650146>10.011847<20H429457102.43200.501515260.0234906554.65<56379<20H429458203.28101.70112020.035820215.46<52342<20H429460202.07101.5710/4040.021620607.11<51140<20H429462101.73201.10330020.146700190.07<519937<20H429463101.73200.694050<10.052600140.07<59937<20H429463	H429451		10	1.40	10	0.58	3860	26	0.02	8	500	>10000	>10.0	51	7	181	<20	
H42945320 3.78 102.06246060.27513404122.77102454<20H429454102.37200.79759030.0217406094.111713109<20	H429452		20	2.97	10	0.56	1635	12	0.05	7	990	907	>10.0	24	17	81	<20	
H429454102.37200.79759030.0217406094.111713109<20H429455103.21200.891500240.03<1	H429453		20	3.78	10	2.06	2460	6	0.27	5	1340	412	2.77	10	24	54	<20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H429454		10	2.37	20	0.79	7590	3	0.02	1	740	609	4.11	17	13	109	<20	
H429456303 01300.3931340 13<1650146>10.011847<20H429457102.43200.501515260.0234906554.65<5	H429455		10	3.21	20	0.89	1500	24	0.03	<1	720	4570	>10.0	29	7	99	<20	
H429457102.43200.501515260.0234906554.65<56379<20H429458203.28101.70112020.035820215.46<5	H429456		30	3.01	30	0.39	313	4	0.13	<1	650	146	>10.0	11	8	47	<20	
H429458203.28101.70112020.035820215.46<52342<20H429459204.38300.4627840.464760912.55<5	H429457		10	2.43	20	0.50	1515	26	0.02	3	490	655	4.65	<5	6	379	<20	
H429469204.38300.4627840.464760912.55<51157<20H429460202.07101.57104040.021620607.11<5	H429458		20	3.28	10	1.70	1120	2	0.03	5	820	21	5.46	<5	23	42	<20	
H42946020 2.07 10 1.57 1040 4 0.02 1 620 60 7.11 <5 11 40 <20 H42946110 1.73 20 1.10 3300 2 0.14 6 700 19 0.07 <5 17 493 <20 H42946210 1.30 20 0.69 4050 <1 0.05 2 600 14 0.07 <5 9 937 <20 H42946310 1.89 10 1.76 2450 3 0.34 13 790 1345 0.31 <5 10 663 <20 H42946410 1.69 20 0.81 3690 5 0.16 4 1200 1145 2.02 <5 15 768 <20 H42946520 2.48 10 2.23 1245 1 2.02 4 1370 38 5.26 <5 23 262 <20 H429465A20 3.05 20 2.49 1455 1 1.92 4 1460 21 3.31 <5 25 311 <20 H42940120 3.66 10 2.15 1200 1 1.58 5 1410 25 3.42 <5 24 299 <20 H429402 20 2.63 20 2.30 1055 1 1.58 <1 1490 28 2.11 <5 23 235 <t< td=""><td>H429459</td><td></td><td>20</td><td>4.38</td><td>30</td><td>0.46</td><td>278</td><td>4</td><td>0.46</td><td>4</td><td>760</td><td>91</td><td>2.55</td><td><5</td><td>11</td><td>57</td><td><20</td><td>_</td></t<>	H429459		20	4.38	30	0.46	278	4	0.46	4	760	91	2.55	<5	11	57	<20	_
H42946110 1.73 20 1.10 3300 2 0.14 6 700 19 0.07 <5 17 493 <20 H42946210 1.30 20 0.69 4050 <1 0.05 2 600 14 0.07 <5 9 937 <20 H42946310 1.89 10 1.76 2450 3 0.34 13 790 1345 0.31 <5 10 663 <20 H42946410 1.69 20 0.81 3690 5 0.16 4 1200 1145 2.02 <5 15 768 <20 H42946520 2.48 10 2.23 1245 1 2.02 4 1370 38 5.26 <5 23 262 <20 H429465A20 3.05 20 2.49 1455 1 1.92 4 1460 21 3.31 <5 25 311 <20 H42940120 3.66 10 2.15 1200 1 1.58 5 1410 25 3.42 <5 24 299 <20 H429402 20 2.63 20 2.30 1055 1 1.58 <1 1490 28 2.11 <5 23 235 <20 H429403 20 1.92 10 2.09 952 1 2.05 2 1310 24 1.32 <5 22 221 <2	H429460		20	2.07	10	1.57	1040	4	0.02	1	620	60	7.11	<5	11	40	<20	
H429462101.30200.694050<10.052600140.07<59937<20H429463101.89101.76245030.341379013450.31<5	H429461		10	1.73	20	1.10	3300	2	0.14	6	700	19	0.07	<5	17	493	<20	
H429463101.89101.76245030.341379013450.31<510663<20H429464101.69200.81369050.164120011452.02<5	H4:29462		10	1.30	20	0.69	4050	<1	0.05	2	600	14	0.07	<5	9	937	<20	
H429464101.69200.81369050.164120011452.02<515768<20H429465202.48102.23124512.0241370385.26<5	H429463		10	1.89	10	1.76	2450	з	0.34	13	790	1345	0.31	<5	10	663	<20	
H429465202.48102.23124512.0241370385.26<523262<20H429465A203.05202.49145511.9241460213.31<5	H429464		10	1.69	20	0.81	3690	5	0.16	4	1200	1145	2.02	<5	15	768	<20	_
H429465A203.05202.49145511.9241460213.31<525311<20H429401203.66102.15120011.5851410253.42<5	H429465		20	2.48	10	2.23	1245	1	2.02	4	1370	38	5.26	<5	23	262	<20	
H429401203.66102.15120011.5851410253.42<524299<20H429402202.63202.30105511.58<1	H429465A		20	3.05	20	2.49	1455	1	1.92	4	1460	21	3.31	<5	25	311	<20	
H429402 20 2.63 20 2.30 1055 1 1.58 <1 1490 28 2.11 <5 23 235 <20 H429403 20 1.92 10 2.09 952 1 2.05 2 1310 24 1.32 <5	H429401		20	3.66	10	2.15	1200	1	1.58	5	1410	25	3.42	<5	24	299	<20	
H429403 20 1.92 10 2.09 952 1 2.05 2 1310 24 1.32 <5 22 221 <20	H429402		20	2.63	20	2.30	1055	1	1.58	<1	1490	28	2.11	<5	23	235	<20	
	H429403		20	1.92	10	2.09	952	1	2.05	2	1310	24	1.32	<5	22	221	<20	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

,

۲

1

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08096301

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	Pb-OG62 Pb % 0.01	
H430526 H430527 H430528 H430529 H430530		0.18 0.12 0.03 0.05 0.05	10 10 10 <10 <10	<10 <10 <10 <10 <10	61 45 18 17 12	<10 <10 <10 <10 <10	38 25 22 7 7 7				
H430531 H430532 H430533 H430533 H430534 H430535		0.28 0.19 0.18 0.14 0.16	<10 <10 <10 <10 <10	<10 10 <10 <10 <10	130 49 48 36 51	<10 <10 <10 <10 <10	75 11 17 13 15				
H430536 H430537 H430538 H430539 H430605		0.16 0.20 0.17 0.12 0.24	<10 <10 <10 10 10	<10 <10 <10 <10 <10	47 64 36 54 80	<10 <10 <10 <10 <10	15 18 14 46 29				
H430605A H430606 H430607 H430608 H430609		0.34 0.11 0.19 0.21 0.15	<10 10 <10 <10 <10	10 <10 10 <10 <10	113 35 49 66 50	<10 <10 <10 <10 <10 <10	177 21 32 18 17				
H430610 H429451 H429452 H429452 H429453 H429454		0.24 0.16 0.36 0.53 0.24	<10 10 <10 <10 <10	<10 <10 <10 <10 <10	69 82 173 254 121	<10 <10 <10 10 <10	11 >10000 >10000 >10000 3360		5.42 4.58 1.09	1.60	
H429455 H429456 H429457 H429457 H429458 H429459		0.24 0.24 0.18 0.41 0.31	10 10 <10 <10 10	<10 <10 <10 <10 10	35 72 28 219 82	10 <10 <10 <10 <10	>10000 79 2950 67 90	· · · · · · · · · · · · · · · · · · ·	1.73		
H429460 H429461 H429462 H429463 H429463 H429464		0.24 0.25 0.20 0.30 0.26	<10 <10 <10 <10 10	<10 <10 <10 <10 <10	128 117 94 125 145	<10 <10 <10 <10 <10	100 168 61 179 479				
H429465 H429465A H429401 H429402 H429403		0.58 0.59 0.59 0.59 0.59 0.57	<10 10 <10 10 <10	<10 <10 <10 <10 <10	252 278 267 263 256	<10 <10 <10 <10 <10 <10	211 168 121 76 68				

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

CERTIFICATE OF ANALYSIS TR08096301

Sample Description	Method Ansiyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	Au-ICP22 Au Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Ał % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
H429404		1.72	0.002		<0.5	8.20	14	1050	0.9	<2	3.21	<0.5	13	4	24	5.58
H429405		2.00	0.001		<0.5	8.14	12	1030	1.0	<2	4.65	<0.5	11	4	29	5.37
H4:29406		1.82	0.001		<0.5	8.79	7	430	1.0	<2	1.55	<0.5	14	4	28	5.75
H429407		0.12	0.615		3.1	7.23	62	1330	0.8	<2	4.38	2.0	18	32	4310	5.53
H429501		1.88	0.002		<0.5	8.61	12	5210	1.4	<2	3.81	<0.5	20	16	38	5.84
H429502		1.99	0.004		<0.5	3.11	10	4900	<0.5	<2	2.16	<0.5	9	8	7	3.58
H4:29503		2.24	0.190		6.3	3.97	775	730	0.6	<2	1.47	<0.5	38	8	>10000	9.53
H4:29504		2.11	0.326		15.0	1.15	2900	640	<0.5	5	4.64	05	62	<1	9220	28.4
H4:29505		3.05	0.287	0.470	45.3	2.52	861	190	<0.5	<2	5.23	541	38	4	>10000	15.20
H4:29506		2.39	0.364		38.7	3.47	729	250	0.6	<2	5.53	313	55	6	9350	12.75
H4:29507		1.75	0.182		57.6	3.11	380	1820	0.7	<2	1.86	78.1	36	3	7610	11.55

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

the second se

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Geofine/NTX Exploration-NW BC

										CERTIF	ICATE	OF ANA	LYSIS	TR080	96301	
Sample Description	Method Analyte Units LOR	ME-ICP61 Ga ppm 10	ME-JCP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-JCP61 Na % 0.01	ME-ICP61 NI ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20
H429404 H429405 H429406 H429407 H429501		20 20 20 20 20 20	1.81 1.76 4.50 2.20 3.54	20 20 20 10 20	1.63 1.72 1.98 1.35 1.87	1030 1145 1185 744 1875	<1 4 <1 40 <1	3.60 3.09 2.32 1.56 0.06	<1 2 <1 19 5	1970 1910 2090 1120 1900	10 10 11 34 8	3.28 3.51 3.58 2.06 0.77	<5 <5 <5 10 <5	13 13 15 13 26	931 692 774 295 102	<20 <20 <20 <20 <20 <20
H429502 H429503 H429504 H429505 H429505 H429506		10 10 10 20 10	1.20 1.69 0.48 1.17 1.62	10 <10 <10 10 10	0.81 0.63 1.68 1.03 0.90	1120 1070 1805 3660 5000	<1 11 5 8 16	0.46 0.03 0.02 0.01 0.02	1 2 <1 3 1	490 640 180 310 490	5 100 494 2640 4220	0.15 7.26 >10.0 >10.0 >10.0	<5 16 76 25 22	6 11 4 6 9	563 84 83 112 189	<20 <20 <20 <20 <20 <20
H429507		10	1.56	<10	0.39	5140	7	0.03	1	450	1010	8.11	36	7	204	<20

1

CERTIFICATE OF ANALYSIS TR08096301

1 1

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

ALS)

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Geofine/NTX Exploration-NW BC

										· · ·	 	 	
Sample Description	Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm t	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	Pb-OG62 Pb % 0.01			
H429404 H429405 H429406 H429407 H429501		0.47 0.46 0.50 0.31 0.53	<10 10 10 <10 10	10 <10 <10 <10 <10	206 205 196 158 259	<10 <10 <10 <10 <10	102 121 85 207 78						
H4:29502 H4:29503 H4:29504 H4:29505 H4:29506		0.17 0.23 0.06 0.10 0.17	<10 <10 10 10 10	<10 <10 <10 <10 <10	72 122 36 54 91	<10 <10 <10 10 <10	43 63 92 >10000 >10000	1.345 1.690	7.11 3.40	·	 		
H429507		0.14	<10	<10	70	<10	8940						

ANALYTICAL CHEMISTRY

:

ALS

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

1

1

ME-ICP61

33 element four acid ICP-AES

Page: 1 Finalized Date: 3-AUG-2008 Account: KIV

ICP-AES

2

CE	RTIFICATE TR08100382			SAMPLE PREPARATION	N
			ALS CODE	DESCRIPTION	
Project: Todd Creek P.O. No.: This report is for 21 Rock san 24-JUL-2008. The following have access	to data associated with this certifi	BC, Canada on icate:	WEI-21 LOG-22 CRU-QC PUL-QC CRU-31 SPL-21	Received Sample Weight Sample login - Rcd w/o BarCode Crushing QC Test Pulverizing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter	
ROBERT PERRY			PUL-32	Pulverize 1000g to 85% < 75 um	
			ALS CODE	DESCRIPTION	INSTRUMENT
			ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
			Cu-OG62	Ore Grade Cu - Four Acid	VARIABLE
			Zn-OG62	Ore Grade Zn - Four Acid	VARIABLE
			Au-ICP22	Au 50a FA ICP-AES finish	ICP-AES

.

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

1

1

CERTIFICATE OF ANALYSIS TR08100382

``**!**

1

Project: Todd Creek

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 3-AUG-2008 Account: KIV 1

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

· · · · · · ·

· ····	Method	WEI-21 Recyd Wt	Au-ICP22	ME-ICP61 Ad	ME-ICP61	ME-ICP61 As	ME-ICP61 Ba	ME-ICP61 Be	ME-ICP61 Bi	ME-ICP61 Ca	ME-ICP61 Cd	ME-ICP61 Co	ME-ICP61 Cr	ME-ICP61 Cu	ME-ICP61 Fe	ME-ICP61
	linite	kσ	התמ	ດດຫ	%	ppm	opm	naa	opm	%	maa	mog	naa	ppm	%	00m
Sample Description	LOR	0.02	0.901	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
H430958		1.47	0.002	0.8	0.34	1490	360	0.5	<2	3.35	5.9	1	25	47	9.92	<10
H430959	-	2.09	0.004	3.7	1.04	4090	560	1.4	6	5.30	20.6	7	9	40	16.45	<10
H430960		0.94	0.001	2.1	0.63	2310	420	1.1	<2	3.77	13.7	6	45	25	10.75	<10
H430961		1.13	0.001	2.0	0.32	3040	80	0.8	<2	14.00	11.4	10	16	25	10.85	<10
H430962		3.41	0.002	2.2	7.51	45	1340	0.9	4	6.54	8.9	19	27	69	4.80	20
H430963		2.71	0.075	5.1	6.21	180	270	1.0	4	2.75	<0.5	28	33	280	10.80	10
H430964		2.54	0.275	27.9	3.41	2030	150	0.6	8	1.20	91.5	24	7	>10000	12.40	10
H430965		3.49	0.046	3.7	6.23	112	310	0.9	2	3.82	3.4	19	7	262	12.55	10
H430966		3.17	0.006	0.7	8.01	43	900	1.1	8	5.41	<0.5	16	9	71	6.61	20
H430967		3.12	0.005	<0.5	8.24	37	890	1.2	5	5.72	<0.5	15	11	23	5.87	20
H430968		3.36	0.018	2.9	7.75	92	1020	1.1	<2	6.74	21.0	23	10	280	6.10	10
H430969		3.35	0.003	<0.5	8.43	38	1130	1.2	5	5.59	0.5	17	7	19	5.26	20
H430970		2.83	0.018	12.8	6.87	90	830	0.8	2	4.61	104.5	22	9	319	4.60	10
H430971	i	3.20	0.001	<0.5	7.76	29	850	0.9	2	4.77	<0.5	16	32	32	4.95	10
H430972		3.36	0.006	0.6	7.99	77	820	0.9	4	6.73	1.2	22	39	40	5.98	20
H430973		3.53	0.002	<0.5	7.71	46	790	1.0	4	6.24	<0.5	18	38	40	5.39	20
H430974		2.15	0.215	16.0	4.81	328	310	0.7	7	3.80	225	22	12	5040	9.68	10
H430975		2.41	0.024	0.8	8.28	67	1010	1.2	<2	5.29	5.2	20	14	150	5.41	10
H430976		3.26	0.009	07	8.07	45	1030	1.3	4	5.61	1.1	13	13	88	5.82	20
H430977		3.09	0.010	1.4	8.00	61	1010	1,3	7	4.04	2.1	20	14	103	9.32	20
H430978		3.50	0.102	9.0	6.77	138	290	0.9	6	3.05	30.7	27	11	1300	13.25	20

1

1

CERTIFICATE OF ANALYSIS TR08100382

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 3-AUG-2008 Account: KIV

ME-ICP61

Th

ppm

20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

ME-ICP61

Ti

%

0.01

0.01

0.04

0.03

0.01

0.39

0.31

0.16

0.32

0.42

0.46

0.40

0.44

0.37

0.41

0.42

0.42

0.22

0.49

0.50

0.49

0.37

ME-ICP61

Sr

ppm

1

293

381

249

674

226

102

48

95

139

130

218

218

190

115

190

192

98

167

184

124

91

Project:	Todd	Creek	
----------	------	-------	--

ample Description	Method Anniyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1
H430958		0.13	<10	0.02	1860	67	0.01	<1	60	104	>10.0	86	<1
H430959		0.42	<10	0.05	4080	135	0.01	<1	510	431	>10.0	254	1
H430960		0.24	<10	0.03	2800	114	0.01	<1	260	272	>10.0	136	1
H430961		0.12	<10	0.02	9260	124	0.01	<1	140	281	>10.0	129	1
H430962		3.36	20	1.27	2720	2	0.22	15	1250	814	0.34	<5	19
H430963		2.73	10	0.91	8620	4	0.03	11	1110	292	4.14	8	17
H430964		1.55	<10	0.41	6940	13	0.02	4	490	451	8.90	28	8
H430965		2.71	10	1.11	11250	4	0.03	3	990	45	4.28	7	13
H430966		3.50	10	1.12	4690	1	0.03	1	1450	13	0.72	5	20
H430967		3.87	10	1.04	3780	2	0.04	2	1560	10	0.80	<5	21
H430968		3.48	20	1.02	3500	7	0.04	6	1410	513	2.22	8	19
H430969		4.16	10	0.76	3390	2	0.05	1	1670	20	0.79	7	17
H430970		3.59	10	0.41	2070	34	0.06	2	1410	4460	2.86	17	13
H430971		3.47	10	1,29	1670	<1	0.12	15	1330	10	0.06	6	19
H430972		3.37	10	1.40	2760	1	0.04	19	1520	33	0.55	6	20
H430973		3.68	10	1.26	3190	1	0.06	21	1490	15	0.29	<5	19
H430974		2.11	10	1.04	2950	8	0.03	6	770	2800	8.88	15	10
H430975		3.90	10	0.88	3590	2	0.04	7	1540	73	0.95	5	17
H430976		3.93	10	0.85	4450	2	0.04	4	1470	75	0.58	<5	17
H430977	1	3.85	10	1.03	6540	3	0.04	3	1460	149	2.71	7	18
H430978		3.02	10	1.14	4180	7	0.03	4	1090	3310	6.60	10	16

EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

1

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 3-AUG-2008 Account: KIV 1

Project: Todd Creek

ľ

CERTIFICATE OF ANALYSIS TR08100382

Sample Description	Method Analyte Units LOR	ME-ICP61 Tl ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01			_	
H430958 H430959 H430960 H430961 H430962		130 220 150 210 <10	10 20 10 10 <10	5 29 19 13 199	<10 <10 <10 <10 <10	1260 4810 3130 3050 1170						
H430963 H430964 H430966 H430966 H430967		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	165 80 150 209 232	<10 <10 10 <10 <10 <10	121 >10000 451 81 65	1.050	1.22	 		· ·	
H430968 H430969 H430970 H430971 H430972		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	201 191 154 203 208	<10 <10 <10 <10 <10 <10	2740 129 >10000 99 229	<u> </u>	1.32	 			
H430973 H430974 H430975 H430976 H430977		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	207 98 221 226 235	<10 <10 <10 <10 <10	84 >10000 659 184 307		3.03			··········	
H430978		10	<10	182	<10	3440			 	<u> </u>		

•

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

,

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9 Page: 1 Finalized Date: 21-AUG-2008 Account: KIV

CE	RTIFICATE TR08100383			SAMPLE PREPARATION	N		
			ALS CODE	DESCRIPTION			
Project: Todd Creek			WEI-21	Received Sample Weight			
P.O. No BOCK 3			LOG-22	Sample login - Rcd w/o BarCode			
This second is for 70 Back com	when automitted to our lab in Torrage	BC Conodo on	CRU-QC	Crushing QC Test			
24 JUL 2008	BC, Canada on	PUL-QC	Pulverizing QC Test				
24-JUE-2008.	- .	CRU-31	Fine crushing - 70% <2mm				
The following have access	to data associated with this certil	ficate:	SPL-21	Split sample - riffle splitter			
MATTHEW BIDWELL ROBERT PERRY	JANINE CALDER	DAVID MOLLOY	PUL-32	Pulverize 1000g to 85% < 75 um	<u></u>		
<u></u>	<u> </u>	····	-J [ANALYTICAL PROCEDUR	ES		
			ALS CODE	DESCRIPTION	INSTRUMENT		
			ME-OG62	Ore Grade Elements - Four Acid	ICP-AES		
			Cu-OG62	Ore Grade Cu - Four Acid	VARIABLE		
			Zn-OG62	Ore Grade Zn - Four Acid	VARIABLE		
			Au-ICP22	Au 50g FA ICP-AES finish	ICP-AES		
			ME-ICP61	33 element four acid ICP-AES	ICP-AES		

To: GEOFINE EXPLORATION CONSULTANTS LTD. ATTN: DAVID MOLLOY 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

The second se

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

Project: Todd Creek

CERTIFICATE OF ANALYSIS TR08100383

Sample Description	Method Ansiyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H430942 H430943 H430944 H430945 H430946		0.85 2.57 3.45 3.03 3.32	0.001 0.021 0.069 0.008 0.005	0.9 5.6 14.9 2.3 0.7	7.38 5.03 4.52 7.53 7.32	<5 324 584 103 42	1700 130 90 840 840	0.7 0.7 0.6 1.0 0.7	<2 <2 <2 <2 <2 <2	2.42 4.39 3.64 5.03 5.11	<0.5 209 438 68.0 11.5	11 21 28 21 23	9 14 14 20 22	28 148 471 61 24	4.06 7.88 11.65 5.91 6.90	10 10 10 10 10
H430947 H430948 H430949 H430950 H430951		3.46 3.07 2.84 3.08 2.19	0.004 0.010 0.029 0.004 0.024	2.5 1.7 4.3 0.5 5.5	4.78 7.32 6.49 7.53 5.00	33 113 230 38 178	920 570 450 600 110	0.7 1.0 1.0 0.9 0.6	<2 <2 <2 <2 <2 <2 <2	9.58 4.23 4.68 4.46 3.35	14.7 41.1 150.5 16.6 556	8 25 24 23 26	5 14 19 19 12	23 59 243 42 98	2.59 7.76 6.72 6.25 8.22	10 10 10 10 10
H430952 H430953 H430954 H430955 H430955 H430956		3.21 2.81 2.69 2.86 3.35	0.003 0.006 0.027 0.018 0.034	0.7 1.2 6.6 1.9 4.2	7.39 7.08 5.64 6.91 6.07	23 53 339 183 486	2620 640 110 680 220	0.9 0.9 0.6 0.9 0.9	<2 2 <2 <2 <2 <2 <2	4.93 5 37 3.75 6.34 4.74	2.7 21.8 288 130.0 245	13 18 28 28 30	10 10 10 13 11	48 38 227 163 156	5.66 6.24 10.80 5.25 9.22	10 10 10 10 20
H430957 H430979 H430980 H430981 H430982		2.85 1.61 2.42 2.79 3.19	0.025 0.056 0.129 0.064 0.003	6.5 4.9 16.3 3.0 <0.5	6.04 5 32 4.36 5.34 7.63	556 155 2200 453 29	70 240 130 280 1020	0.8 0.8 0.7 0.9 1.2	<2 3 <2 <2 <2 <2	2.94 1.87 2.30 3.57 5.72	309 78.3 134.0 38.4 <0.5	23 15 24 23 15	11 7 9 7 11	323 359 5240 644 30	10.95 10.65 11.70 7.71 5.71	20 10 10 10 20
H430983 H430984 H430991 H430992 H430993		2.29 2.99 3.51 1.55 2.86	0.003 0.003 0.003 0.004 0.003	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.21 7.88 8.12 6.71 6.47	17 15 12 10 15	1140 710 400 780 320	0.8 1.1 1.3 1.2 1.0	3 <2 4 4 <2	8.96 4.60 0.21 0.23 0.60	<0.5 <0.5 <0.5 <0.5 1.6	15 16 12 8 9	11 28 14 11 15	16 69 47 40 47	5.85 5.09 3.72 2.64 3.61	10 10 10 20 10
H430994 H430995 H430996 H430997 H430998		2.33 1.61 3.14 1.93 2.97	0.004 0.003 0.002 0.003 0.003	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.18 6.58 7.70 7.33 7.59	16 16 9 18 22	390 240 290 580 280	1.1 1.0 0.7 0.6 0.6	<2 <2 4 <2 <2 <2	1.56 0.45 0.17 0.21 0.19	0.9 0.6 <0.5 <0.5 <0.5	8 8 11 12 15	11 6 12 14 15	27 9 64 43 81	2.88 3.36 3.08 3.09 4.32	20 10 10 10 10 10
H430999 H431000 H429442 H429443 H429444		2.73 1.70 2.42 2.40 2.24	0.018 0.002 0.002 0.002 0.003	<0.5 <0.5 <0.5 <0.5 <0.5	6.76 8.60 8.02 7.31 8.36	<5 <5 22 10 9	190 590 610 360 1250	1.1 1.2 1.2 1.3 1.5	<2 <2 <2 <2 <2 4	0.23 0.15 0.28 1.11 0.22	1.0 <0.5 0.9 <0.5 <0.5	10 6 7 8 10	10 12 9 11 11	52 15 15 15 15 16	3.24 4.08 4.24 3.41 4.40	10 20 20 10 20
H429445 H429446 H429447 H429448 H429449		2.58 1.95 2.11 1.79 1.99	0.002 0.004 0.002 0.003 0.002	<0.5 <0.5 <0.6 <0.5 <0.5	6.48 8.04 7.77 7.03 8.02	15 13 6 7 12	910 640 900 890 1060	1.3 1.4 1.4 1.4 1.3	<2 <2 <2 <2 <2 <2 <2	0.23 0.58 0.50 0.49 0.16	<0.5 <0.5 <0.5 <0.5 <0.5	7 13 10 8 7	13 10 8 11 10	11 25 13 12 11	3.51 5.36 4.08 3.47 3.52	20 20 20 10 20

Comments: H429442 to H429450 we received in addition to the listed samples.

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

ME-ICP61

Th

ME-ICP61

Tì

1

Project: Todd Creek

ME-ICP61

Ρ

į

1

ME-ICP61

Ni

CERTIFICATE OF ANALYSIS TR08100383

ME-ICP61

Pb

ME-ICP61

Ş

ME-ICP61

Sb

٦

ample Description	LOR	% 0.01	ppm 10	% 0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2	% 0.01	ppm 5	ppm 1	ppm 1	ppm 20	% 0.01
H430942		1.82	10	1.47	1085	<1	3.49	4	610	10	0.02	<5	12	398	<20	0.29
H430943		2.50	10	0.60	1735	10	0.06	6	830	599	7.33	16	14	81	<20	0.31
H430944		2.21	10	0.53	1445	15	0.01	9	820	5200	>10.0	33	14	72	<20	0.30
H430945		3.43	20	1.34	1995	3	0.17	10	1420	722	1.83	9	22	108	<20	0.48
H430946		2.73	20	2.21	2070	1	0.40	11	1210	30	0.84	5	24	132	<20	0.46
H430947		2.40	20	0.46	3040	2	0.19	3	550	180	0.89	<5	8	1945	<20	0.20
H430948		3.10	20	1.30	1870	2	0.17	8	1260	136	2.82	9	22	86	<20	0.46
H430949	:	3.44	10	0.89	1805	6	0.06	10	1270	447	5.01	14	21	99	<20	0.47
H430950	:	3.19	20	1.97	1950	<1	0.09	10	1300	23	0.43	<5	25	105	<20	0.49
H430951		2.32	10	0.82	1425	9	0.01	9	850	363	8.97	11	16	85	<20	0.32
H430952		3.35	20	1.40	1975	1	0.43	6	1160	31	0.35	6	17	239	<20	0.42
H430953		3.31	20	1.29	2020	2	0.51	6	1250	40	1.23	5	18	122	<20	0.43
H430954		2.70	10	1.00	1575	14	0.04	7	990	792	>10.0	19	16	92	<20	0.36
H430955		3.98	10	1.24	2120	8	0.45	11	1270	354	3.43	15	20	119	<20	0.46
H430956		2.72	10	1.47	2080	17	0.23	8	1040	708	6.90	30	20	62	<20	0.38
H430957		3.19	10	1.16	1605	7	0.33	8	1150	5370	9.39	24	19	64	<20	0.41
H430979		2.37	10	0.87	5730	7	0.02	3	770	1545	6.01	17	10	45	<20	0.26
H430980		1.92	10	0.84	3190	9	0.02	8	690	2840	9.49	25	10	51	<20	0.24
H430981		2.52	10	0.91	3300	4	0.03	3	880	589	3.93	12	13	97	<20	0.29
H430982		4.07	10	0.75	1850	<1	0.07	5	1540	11	0.05	11	21	196	<20	0.55
H430983		3.53	10	1.42	3010	<1	0.05	5	1310	22	0.14	8	22	279	<20	0.43
H430984		3.59	20	1.63	1480	<1	0.67	10	1130	7	0.03	5	20	156	<20	0.41
H430991		4.49	30	0.45	104	1	0.04	5	630	11	3.50	5	11	66	<20	0.28
H430992		3.57	30	0.35	105	2	0.03	2	630	12	2.26	5	8	56	<20	0.22
H430993	:	4.00	10	0.31	242	6	0.04	4	550	21	3.55	10	8	236	<20	0.22
H430994		4.41	20	0.33	563	9	0.05	2	560	22	2.64	9	10	153	<20	0.25
H430995		3.61	10	0.34	177	5	0.03	1	370	22	3.07	5	8	231	<20	0.22
H430996	:	3.36	20	0.12	51	5	0.04	3	610	15	3.00	<5	11	133	<20	0.25
H430997		3.18	20	0.08	53	5	0.04	3	760	24	3.03	<5	9	127	<20	0.21
H430998		3.30	_20	0.08	41	6	0.04	6	690	49	4.66	7	8	107	<20	0.16
H430999		3.13	20	0.23	68	1	0.03	4	840	8	3.07	5	10	104	<20	0.20
H431000		4.08	20	0.63	77	2	1.20	1	740	17	3.41	8	15	171	<20	0.32
H429442		3.99	20	0.60	104	8	0.82	1	600	23	3.31	<5	14	149	<20	0.29
H429443		3.91	20	0.60	349	1	1.43	<1	670	7	2.57	<5	11	204	<20	0.27
H429444		4.17	20	1.30	377	1	0.96	1	830	11	2.82	<5	13	112	<20	0.33
H429445		3.75	20	0.83	229	1	0.48	1	980	7	2.44	7	9	78	<20	0.25
H429446		3.23	20	1.64	725	<1	1.83	<1	820	7	2.82	<5	13	228	<20	0.32
H429447		3.98	20	0.76	250	1	1.25	<1	770	7	2.94	7	12	123	<20	0.30
H429448	:	3.74	20	0.74	341	1	0 75	<1	640	13	2.65	<5	11	65	<20	0.26
H429449		4.06	20	0.60	118	1	0.82	1	740	9	2.69	6	12	42	<20	0.30

· · · ·

ME-ICP61

Мn

ME-ICP61

Мо

ME-ICP61

Na

2

ME-ICP61

La

ALS Canada Ltd.

ME-ICP61

κ

Method

Analyte

212 Brooksbank Avenue North Vancouver BC V7J 2C1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ME-ICP61

Mg

Comments: H429442 to H429450 we received in addition to the listed samples.

ME-ICP61

Sc

٦

ME-ICP61

Sr

١.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

,

CERTIFICATE OF ANALYSIS TR08100383

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

Project: Todd Creek

-									
		ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	MF-ICP61	01-0662	7n-0G62	
	Method	TI		V	W	7n	Cu	7n	
	Linite	npm	000	ppm	nom	500	%	%	
Sample Description	LOR	10	10	1	10	2	0.001	0.01	
H430942		<10	<10	121	<10	88			
H430943		<10	<10	154	<10	>10000		2.89	
H430944		<10	<10	146	<10	>10000		6.09	
H430945		<10	<10	246	10	7950			
H430946		<10	<10	229	<10	1350			
H430947		<10	<10	90	<10	1665	·		
H430948		<10	<10	233	10	4740			
H430949		<10	<10	236	20	>10000		2.02	
H430950		<10	<10	246	<10	1715			
H430951		<10	<10	163	<10	>10000		6.75	
H430952		<10	<10	195	<10	629			
H430953		<10	<10	204	<10	2490			
H430954		<10	<10	177	<10	>10000		3.80	
H430955		<10	<10	199	20	>10000		1.56	
H430956		<10	<10	189	<10	>10000		2.93	
H430957		<10	<10	202	<10	>10000		4.07	
H430979		<10	<10	107	10	9390			
H430980	:	<10	<10	101	20	>10000		1.80	
H430981		<10	<10	134	<10	3420			
H430982		<10	<10	287	10	140			
H430983		<10	<10	237	<10	123			
H430984		<10	<10	219	<10	105			
H430991		<10	<10	107	<10	53			
H430992		<10	<10	84	10	51			
H430993		10	<10	84	<10	149			
H430994		10	<10	98	<10	90			
H430995		<10	<10	79	10	76			
H430996		<10	<10	123	<10	16			
H430997		<10	<10	85	<10	18			
H430998		10	<10	118	<10		<u> </u>		
H430999		10	<10	94	<10	67			
H431000		10	<10	153	<10	54			
H429442		<10	<10	133	<10	67			
H429443		<10	<10	117	<10	38			
H429444		<10	<10	14/	<10	92			
H429445		<10	<10	103	10	41			
F1428440		×10	10	100	بن ح10	65			
m42944/		< IU 40	<10	102	<10	42			
H429440		10	<10	117	<10	-43			
11423443		< iu	~10	141	< 10 	24			

Comments: H429442 to H429450 we received in addition to the listed samples.

ALS

1

1

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

1

٦

Project: Todd Creek

		_	
CERTIFICATI	E OF ANALYSI	S	TR08100383

Ţ

	Method Analyte	WEI-21 Recvd Wt.	Au-ICP22 Au	ME-ICP61 Ag	ME-ICP61 Al	ME-ICP61 As	ME-ICP61 Ba	ME-ICP61 Be	ME-ICP61 Bi	ME-ICP61 Ca	ME-ICP61 Cd	ME-ICP61 Co	ME-ICP61 Cr	ME-ICP61 Cu	ME-ICP61 Fe	ME-ICP61 Ga
Sample Description	LOR	Kg 0.02	0.001	ррт 0.5	% 0.01	5	10	0.5	2	% 0.01	0.5	1	ppm 1	ррт 1	% 0.01	ppm 10
H429450		2.00	0.002	<0.5	6.77	14	990	1.0	<2	0.23	<0.5	5	15	45	3.32	10
H429541		3.55	2.37	3.4	3.77	1615	220	<0.5	19	0.11	1.3	45	1	>10000	29.2	20
H429542		1.41	0.237	<0.5	6.73	339	350	0.9	2	0.48	<0.5	14	6	~10000	12.85	20
H429043		1.93	0.675	0.5	4.71	1430	120	0.5	5	0.04	0.5	32	5	2120	20.5	20
H429545		2.00	1 105	2.7	4.67	1235	80	<0.5	7	0.25	0.7	29	8	6920	20.5	20
H429546		1.99	0.040	<0.5	7.53	254	210	0.7	3	0.99	<0.5	22	8	116	10.70	20
H429547		2.30	0.209	0.5	6.09	1010	70	0.5	<2	0.29	1.3	24	13	115	19.25	30
H429548		2.32	0.029	<0.5	7.77	127	2010	1.0	<2	0.69	1.2	14	10	1500	7.08	20
H429549		0.82	2.71	1.6	7.00	220	1000	1.3	5	0.81	<0.5	29	31	4540	7.85	20
H429550		0.72	0.401	<0.5	6.85	154	1160	0.8	<2	1.42	0.5	14	4	1500	7.49	20
H429551		2.23	0.004	<0.5	9.18	14	190	0.6	<2	0.02	<0.5	2	7	15	0.72	20
H429552		2.32	0.003	<0.5	11.10	17	250	0.5	<2	0.15	<0.5	21	10	20	5.14	40
H429553		2.04	0.014	<0.5	11.05	15	190	0.6	<2	0.06	<u.0< th=""><th>15</th><th>9</th><th>17</th><th>3.19</th><th>20</th></u.0<>	15	9	17	3.19	20
		2.28	0.003	<0.5	1.10		970	1.5		0.13	~0.0				4.00	20
H429555		2.07	0.002	<0.5	4.94	14	220	<0.5	<2	0.05	<0.5	1	0	13	4.69	10
H429000	1	2.30	0.002	<0.5	5.07	9 10	420	0.8	<2	0.10	<0.5	6	9 8	13	3.76	10
H429558		2.10	0.007	<0.5	6.45	15	580	0.9	<2	0.14	<0.5	6	6	12	4.85	20
H429559		2.03	0.003	<0.5	5.84	10	1070	<0.5	2	0.07	<0.5	6	13	14	1.88	10
H429560		2.54	0.003	<0.5	7.01	10	360	1.2	<2	1.24	<0.5	10	7	79	3.74	10
H429561		2.71	0.003	<0.5	6.39	9	290	1.0	<2	0.59	<0.5	8	8	114	3.22	10
H429562		3.50	0.002	<0.5	7.99	10	640	1.2	<2	0.20	<0.5	9	7	37	3.64	20
H429563		3.13	0.002	<0.5	6.07	14	300	10	<2	0.25	<0.5	8	9	215	3.26	10
H429004		2.64	0.003	<0.5	6.96	5	390	1.1		0.21	<0.5		0	2/	3.33	10
H429565		3.28	0.002	<0.5	6.86	10	480	1.1	<2	0.56	<0.5	9	7	261	3.57	10
H429060 H429567		3.25	0.002	<0.5	7.30	9 13	260	1.2	<2	0.21	<0.5	9	8	163	3.89	10
H429568		3.29	0.002	<0.5	7.62	12	790	15	<2	0.94	<0.5	ģ	6	60	3.76	20
H429569		1.91	0.002	<0.5	7.42	10	680	1.5	<2	1.10	<0.5	10	6	74	4.10	20
H429570		3.25	0.002	<0.5	6.95	9	240	1.6	<2	1.20	<0.5	10	7	70	5.46	10
H429571		1.86	0.002	<0.5	6.73	14	330	1.3	<2	0.67	<0.5	10	4	114	4.74	10
H429572		2.68	0.003	<0.5	6.75	18	410	1.2	<2	0.57	<0.5	8	4	126	4.14	10
H429573		3.78	0.002	<0.5	7.52	40	850	1.5	<2	1.06	<0.5	10	4	100	4.01	20
F1429074		2.61	0.002	<u>~0.5</u>	0.97	12		1.0	~	0.00			4	00		10
H429575		3.77	0.003	<0.5	6.93	14	350	1.3	<2	0.88	<0.5	9	5	69 31	4.55	10 20
H429577		2.20	0.000	<0.5	0.44	6	920 400	12	<2	0.29	14	7	3	21 19	4.00	20 10
H429578		2.15	0.002	<0.5	6.45	16	370	10	<2	0.63	1.7	, q	8	18	3.30	10
		<u>e</u> . ' '	0.000	-0.0	vv		0,0		-2	0.00	•••	v	v		0.00	

1

١

Comments: H429442 to H429450 we received in addition to the listed samples.

1

Ì

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

1

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

1

1

1

1 1 5

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

n.

ALS Canada Ltd.

· •

Project	:: Todd	Creek
---------	---------	-------

CERTIFICATE OF ANALYSIS TR08100383

	Method Analyte	ME-ICP61 K	ME-ICP61 La	ME-ICP61 Mg	ME-ICP61 Mn	ME-ICP61 Mo	ME-ICP61 Na	ME-ICP61 Ni	ME-ICP61 P	ME-ICP61 Pb	ME-ICP61 S	ME-ICP61 Sb	ME-ICP61 Sc	ME-ICP61 Sr	ME-ICP61 Th	ME-ICP61 TI
ļ	Units	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample Description	LOR	0.01	10	0.01	5	i	0.01	1	10	2	0.01	5	1	1	20	0.01
H429450		3.39	20	0.56	180	3	0.52	<1	700	10	2.32	<5	13	65	<20	0.31
H429541		0.48	10	2.06	1915	10	0.01	<1	220	90	>10.0	24	8	7	<20	0.07
H429542		2.12	10	2.60	1375	1	0.03	<1	800	14	5.32	10	12	26	<20	0.25
H429543		0.54	10	3.92	1890	5	0.02	<1	530	39	>10.0	16	8	32	<20	0.18
H429544		0.50	<10	2.29	953	4	0.01	<1	420	112	>10.0	31	8	11	<20	0.14
H429545		0.22	<10	3.12	1300	11	0.01	<1	450	82	>10.0	25	9	8	<20	0.16
H429546		1.79	<10	3.06	1160	6	1.05	1	1250	48	4.79	12	21	64	<20	0.51
H429547		1.16	<10	4.00	1500	20	0.09	<1	1170	197	9.26	38	17	29	<20	0.52
H429548		3.94	20	2.14	934	1	0.84	1	970	23	1.57	<5	13	95	<20	0.31
H429549		2.94	10	1.37	580	12	0.67	21	820	52	2.38	<5	10	82	<20	0.27
H429550		3.24	10	2.04	961	3	0.64	1	860	18	2.00	16	10	100	<20	0.29
H429551		0.31	20	0.01	16	2	0.15	<1	1210	10	0.27	<5	12	2240	<20	0.29
H429552		0.56	30	0.01	14	8	0.15	3	1320	15	5.57	8	11	890	<20	0.29
H429553		0.34	30	0.02	15	5	0.19	3	1010	16	3.28	<5	10	1305	<20	0.30
H429554		3.42	20	0.79	251	1	0.05	<1	730	17	2.22	<5	13	41	<20	0.31
H429555		2.00	10	0.07	44	2	0.04	3	220	23	4.62	<5	8	128	<20	0.14
H429556		2.44	10	0.36	131	1	0.38	1	440	13	1.48	<5	8	229	<20	0.19
H429557		2.77	10	0.23	141	1	0.05	2	660	7	1.40	<5	12	217	<20	0.25
H429558		2.67	10	0.34	197	<1	0.04	1	630	7	1.59	<5	12	74	<20	0.25
H429559		2.31	10	0.05	48	7	0.05	3	470	10	1.38	<5	7	344	<20	0.27
H429560		3.35	20	0.50	376	2	0.71	4	650	14	3.00	<5	12	70	<20	0.28
H429561		3.09	20	0.44	243	2	0.61	6	640	16	2.48	<0	9	64	<20	0.24
H429562		3.69	20	0.59	92	2	0.98	3	770	10	2.90	<0	13	38	-20	0.32
1 H429563		2.70	20	0.43	125	3	U.78	13	540	14	2.41	<0	10	107	<20	0.24
H429564		3.41	20	0.50	104		0.88	2	860	22	2.00			41	~20	0.20
H429565		3.40	20	0.60	209	2	0.76	15	660	13	2.73	<5	12	47	<20	0.28
H429566		3.79	20	0.67	119	2	0.73	12	720	13	2.74	<5	13	37	<20	0.31
H429567		3.39	20	0.62	510	3	0.60	9	620	22	2.78	<0	12	76	<20	0.27
H429568		3.75	10	0.81	392	2	0.75	3	750	14	2.74	<0	13	40	<20	0.32
H429069		3.79	20	0.78	534		0.35	4	730	10	3.01	<>	14	4/	<20	0.31
H429570		3.48	20	0.82	584	4	0.13	3	720	19	4.41	5	15	46	<20	0.31
H429571		3.79	20	0.67	339	4	0.03	6	610	15	3.43	<5	9	41	<20	0.24
H429572		3.75	20	0.67	279	6	0.03	6	490	15	2.85	<5	11	72	<20	0.24
H429573		3.99	10	0.96	567	1	0.09	3	/40	14	2.57	<5	12	48	<20	0.30
H429574		3.59	20	0.85	455	3	0.16		630	1/	3.85	<5	11	52	<20	0.26
H429575		3.58	20	0.75	525	2	0.36	6	730	20	3.21	<5	10	67	<20	0.26
H429576	:	4.48	20	0.70	155	2	0.88	2	800	32	3.37	<0	14	02	<20	0.34
H429077		3.75	20	0.56	242	1	0.00	2	090	19	2.40	1	13	110	< <u>∠</u> 0	0.20
H429578		3.25	20	0.38	337	2	U.U4	ు	600	19	2.59	<0	12	52	<20	U.20

Comments: H429442 to H429450 we received in addition to the listed samples.

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 21-AUG-2008 Account: KIV

t

1

Project: Todd Creek

I UUU CIEEK		
CERTIFICATE OF	ANALYSIS	TR08100383

١

,

Sample Description	Method Analyte Units LOR	ME-ICP61 Tl ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01				<u></u>		
H429450		<10	<10	139	<10	26	0.05							. –
H429041		<10	<10	04 102	10	132	3,35							
H429543		<10	<10	95	10	148	1.035							
H429544		<10	<10	84	<10	155								
H429545		<10	<10	87	10	120					 •••••			
H429546		<10	<10	250	10	93								
H429547		<10	<10	270	<10	170								
H429548		<10	<10	135	10	145								
H429549		10	<10	13/	<10	95				· · ·			 	
H429550		<10	<10	119	<10	112								
H429001		<10	<10	202	<10	-2 -2								
H423002 H429553		<10	<10	295	<10	<2								
H429554		<10	<10	130	<10	38		-						
H429555		<10	<10	95	<10	3						· · · · ·	 	
H429556		<10	<10	88	<10	28								ł
H429557		<10	<10	93	<10	37								
H429558		<10	<10	96	<10	72								
H429559		<10	<10	99	<10	3					 		 	
H429560	1	<10	<10	117	<10	34								
H429001		<10	<10	90 138	<10	25								
H429563		<10	<10	97	<10	23								·
H429564		<10	<10	115	<10	39								}
H429565		<10	<10	123	<10	23			·····				 	
H429566		<10	<10	135	<10	26								1
H429567		<10	<10	118	<10	31								
H429568		<10	<10	135	<10	39								:
H429569		<10	<10	138	<10	39					 		 	
H429570		<10	<10	141	<10	47								
H429071		<10	<10	89	<10	70								
H429573		<10	<10	123	<10	96								
H429574		10	<10	104	<10	81								
H429575		<10	<10	96	<10	58				··· ·· ·· ·· ·· ·· ··	 		 	
H429576		<10	<10	182	<10	29								
H429577		10	<10	123	<10	94								
H429578	1	<10	<10	106	<10	62								

Comments: H429442 to H429450 we received in addition to the listed samples.

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Ore Grade Elements - Four Acid

Ore Grade Cu - Four Acid

Ore Grade Zn - Four Acid

Au 50g FA ICP-AES finish

33 element four acid ICP-AES Ore Grade Ag - Four Acid

1

Page: 1 Finalized Date: 12-AUG-2008 Account: KIV

ICP-AES

ICP-AES ICP-AES

VARIABLE

VARIABLE VARIABLE

CI	ERTIFICATE TR081003	384		SAMPLE PREPARA	ATION
			ALS CODE	DESCRIPTION	
Project: Todd Creek P.O. No.: ROCK 1 This report is for 122 Rock st 25-JUL-2008. The following have access MATTHEW BIDWELL ROBERT PERRY	amples submitted to our lab in Te s to data associated with this JANINE CALDER	errace, BC, Canada on certificate: DAVID MOLLOY	WEI-21 LOG-24 LOG-22 PUL-QC CRU-31 SPL-21 PUL-32	Received Sample Weight Pulp Login - Rcd w/o Barcode Sample iogin - Rcd w/o BarCode Pulverizing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize 1000g to 85% < 75 um	
				ANALYTICAL PROCE	EDURES
			ALS CODE	DESCRIPTION	INSTRUMENT

۴

7

ΠΓ

ME-OG62

Cu-OG62

Zn-OG62

Au-ICP22

ME-ICP61

Ag-OG62

3

٦

ALS Chemex

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1

EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To:	GEOFINE EXPLORATION CONSULTANTS LTD.
	ATTN: DAVID MOLLOY
	49 NORMANDALE RD
	UNIONVILLE ON L5L 3B9

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

1

,

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

.

•

Ţ

Project: Todd Creek

•

1

.

CERTIFICATE OF ANALYSIS TR08100384 ME ICORT ME ICPAL NE ICOSI ME ICOSI NE ICDEL ME ICR61

,

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bl ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H429508		1.64	0.007	<0.5	6.66	102	340	0.6	4	0.17	<0.5	5	23	20	3.81	10
H429509		1.97	0.002	0,6	6.64	43	560	0.9	6	1.06	<0.5	10	18	11	4.05	10
H429510		2.02	0.002	<0.5	6.50	83	420	0.8	7	1.26	<0.5	8	15	21	6.28	10
H429511		2.22	<0.001	<0.5	6.56	25	220	0.9	2	2.05	<0.5	6	18	19	4.69	10
H429512		2.52	0.011	0.6	5.35	97	120	0.7	10	1.84	<0.5	4/	27	419	10.46	10
H429513		2.06	< 0.001	<0.5	7.19	16	890	1.2	2	1.38	<0.5	10	25	452	4.51	20
H429514		1.41	<0.001	1.6	1.30	207	50	1.9	<2	9.15	0.5	49	9	681	13.65	10
H429515		2.34	0.010	0.5	6.93	115	160	0.7	6	0.86	<0.5	9	18	23	6.24	10
H429516		2.07	< 0.001	<0.5	7.01	11	660	1.3	2	4.06	<0.5	11	23	6	4.73	20
H429517		2.54	<0.001	0.7	6.46	107	600	1.0	<2	0.97	<0.5		20		5.23	
H429518		2.27	0.006	<0.5	6.73	79	360	0.9	4	1.19	<0.5	16	16	16	5.57	10
H429519		2.45	0.018	<0.5	6.54	138	220	0.9	5	1.20	<0.5	18	16	536	7.17	10
H429520		1.90	0.006	<0.5	7.22	39	550	1.2	4	0.56	<0.5	6	14	79	8.75	20
H429521		2.47	0.015	<0.5	6.35	61	210	0.7	5	0.81	<0.5	23	15	22	9.09	20
H429522		2.28	0.078	0.5	4.87	170	/0	U.8	10	1.53	<0.5	30	12		2.35	20
H429523		1.95	0.029	1.4	4.02	205	190	0.5	11	1,51	<0.5	33	9	98	9.27	10
H429524		2.33	0.048	0,6	4.90	206	180	0.7	6	2.13	<0.5	32	9	92	10.75	10
H429525		2.10	0.006	<0.5	7.02	32	920	1.0	2	1.99	<0.5	15	15	7	5.13	20
H429525A		0.12	4.05	0.9	4.81	414	1520	0.7	<2	2.54	1.2	11	114	79	3.08	10
H429526		1.47	0.037	<0.5	6.17	14	630	0.9		4.60	<0.5	0	0		4.00	10
H429527		1.93	0.037	1.1	4.36	192	310	0.5	9	1.89	<0.5	23	6	208	7.15	10
H429528		0.97	0.004	<0.5	5.29	35	580	0.8	<2	0.99	<0.5	22	8	11	3.62	10
H429529		2.47	0.056	<0.5	4.82	312	240	0.7	15	1.88	<0.5	46	9	86	12.10	10
H429530		1.66	0.116	2.0	3.76	918	430	<0.5	15	0.78	0.6	107	5	931	17.50	10
H429531		1.84	0.559	3.5	2.70	100	120	0.0	07	0.70	0.0	103		/10000	17.55	10
H429532		1.70	0.053	0.5	3.10	328	310	0.5	7	1.89	<0.5	35	8	204	10.40	<10
H429533		2.48	0.027	<0.5	5.20	110	390	0.6	5	1.49	<0.5	17	8	57	6.41	10
H429534		1.56	0.013	<0.5	6.37	48	810	0.9	2	2.13	<0.5	18	10	244	5.81	10
H429535		2.10	0.011	<0.5	5.80	64	450	0.8	4	2.03	<0.0	16	y 5	41	0.80	-10
H429000		2.01	0.108	1.4	2.01	558	720	×0.0	10	1.32	<0.5		5	3100	23.4	-10
H429537		1.81	0.066	<0.5	4.69	329	860	0.6	9	1.63	<0.5	41	8	68	13.45	10
H429538		2.07	0.077	<0.5	5.02	361	370	0.8	(2.94	<0.5	29	8	46	13.75	10
H429539		2.06	0.072	0.8	5.05	323	330	0.6	8	1.97	<0.5	53	10	449	11.65	10
H429540		1.78	0.076	U.7 10 F	4.11	417	430	U.5	5	1.68	<0.5	37	7	307	10.80	10
H429406		1.00	0.047	10.0	4.01	034		U.O	<u>``</u>	3.99	4.0	20	1	2930	11.20	
H429409		1.48	0.017	1.3	4.36	270	200	0.7	2	6.16	1.0	27	5	87	8.10	10
H429410		1.73	0.008	<0.5	0.23	85	70	2.7	<2	4.38	<0.5	2	16	16	16.75	<10
H429411		1.41	0.008	1.5	5.55	87	580	0.9	<2	4.29	24.6	16	13	63	3.90	10
H429412		2.33	0.385	54.3	1.81	620	330	<0.5	<2	3.71	160.0	29	3	6520 2480	20.5	<10
H-29410		2.14	0.145	J. I	1.72	4040	100	×0.0	~2	2.97	0.9		4	3400	20.3	\$10

T

1

1

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project:	Todd	Creek		
			_	

,

CERTIFICA	TE OF ANALYSIS	TR08100384

•

	Method Ansiyte Units	ME-ICP61 K %	ME-ICP61 La opm	ME-ICP61 Mg %	ME-ICP61 Min ppm	ME-ICP61 Mo ppm	ME-ICP51 Na %	ME-ICP61 Ni ppm	ME-ICP61 P ppm	ME-ICP61 Pb ppm	ME-ICP61 S %	ME-ICP61 Sb ppm	ME-ICP61 Sc ppm	ME-ICP61 Sr ppm	ME-ICP61 Th ppm	ME-ICP61 Ti %
Sample Description	LOR	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01
H429508		1.71	10	0.16	74	5	2.58	4	310	15	1.86	5	6	68	<20	0.26
H429509		2.08	20	0.36	394	3	2.03	4	670	21	2.32	7	9	74	<20	0.25
H429510		2.12	10	0.54	419	2	1.55	6	620	14	3.30	<5	9	67	<20	0.23
H429511		2.14	20	0.63	618 555	1	1.53	4	640 540	11	2.67	<0	9	98	<20	0.24
H429512		1.42	10	0.00	000	1	1.75	· · · · · · · · · · · · · · · · · · ·	040	9	9.10	<\$ 	<u> </u>		-20	0.20
H429513		2.73	20	0.74	584	1	3.14	3	690	<2	1.01	<0	11	202	<20	0.27
H429014		0.14	<10	2.30	2000	20	0.01	<u>~</u>	300	64 10	4.08	22	2	202	<20	0.05
H429015		4.05	10	0.50	441	2	0.35	2	520	19	4.60	o <5	16	00 89	<20	0.27
H429517		2.44	20	0.37	522	2	1.24	4	670	17	1.45	5	9	51	<20	0.25
H420519		2.33	20	0.58	588	~	1.62		660	11	3.46	5	9	117	<20	0.26
H429510		2.35	20	0.50	469	3	1.02	2	650	5	4.51	<5	9	109	<20	0.25
H429520		2 41	20	0.48	286	1	1.45	2	700	10	2.32	<5	10	83	<20	0.25
H429521		1.50	20	1.21	399	4	1.39	<1	610	4	4.10	5	9	70	<20	0.23
H429522		1.85	10	0.67	448	3	0.06	2	490	11	9.51	5	8	43	<20	0.19
H429523		1.79	10	0.50	562	7	0.03	1	400	32	7.31	10	6	27	<20	0.16
H429524		1.81	10	0.94	633	5	0.07	1	410	9	7.61	<5	7	50	<20	0.16
H429525		3.00	20	0.95	641	1	0.26	1	660	4	1.89	<5	10	55	<20	0.26
H429525A		0.93	10	1.06	447	15	1.20	50	790	24	0.89	61	10	175	<20	0.25
H429526		2.69	20	1.87	2090	1	0.03	<1	520	4	0.71	<5	8	54	<20	0.20
H429527		1.98	10	0.73	551	4	0.03	<1	340	26	5.70	8	6	40	<20	0.14
H429528		2.26	10	0.48	328	1	0.04	1	470	5	1.32	<5	7	22	<20	0.17
H429529		2.13	20	0.76	618	4	0.05	1	420	12	>10.0	<5	8	103	<20	0.17
H429530		1.72	10	0.43	426	141	0.04	<1	260	62 42	>10.0	13	4 5	32	<20	0.11
1429531		0.48		0.00	407		0.01				210.0		5	70	<20	0.04
H429032		1.53	10	0.65	400	5	0.03	< I 1	290	20	0.94	-5	5	68	<20	018
H429000 H429534		2.45	20	0.07	716	2	0.20	1	600	Я	1.95	~5 6	11	56	<20	0.74
H429535		2.56	20	0.96	1025	3	0.06	<1	540	11	3.00	<5	8	47	<20	0.21
H429536		0.92	<10	0.50	358	4	0.03	<1	140	40	>10.0	12	3	35	<20	0.05
H429537		2.02	10	0.67	708	4	0.03	1	400	24	>10.0	6	8	66	<20	0.16
H429538		2.16	20	1 23	868	4	0.05	<1	460	20	>10.0	<5	8	79	<20	0.17
H429539		2.06	20	0.85	585	3	0.40	<1	450	20	>10.0	8	8	78	<20	D.17
H429540		1.93	10	0.51	460	3	0.03	<1	330	18	9.83	<5	5	70	<20	0.13
H429408		2.05	<10	0 19	1090	11	0.03	4	300	174	>10.0	14	4	150	<20	0.10
H429409		2.13	10	1.57	2010	7	0.03	8	380	53	7.06	9	7	116	<20	0.16
H429410		0.02	<10	0.12	8980	14	<0.01	<1	300	50	>10.0	41	1	328	<20	0.01
H429411		2.56	10	0.00	1000	4	0.02	4	970	27	1.07	12	16	04U 165	<20	0.30
H429412		0.00	<10	0.24	2090 7 <i>4</i> 5	<1 <1	0.01	3 8	210	2030	>10.0	31 33	4	71	<20	0.07
11723410		0.04	~10	0.20	/ +\v	<u> </u>		<u> </u>	210		- 10.0			71	-20	0.00

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

Ŧ

212 Brooksbank Avenue North Vancouver BC V7J 2C1 ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

۴.

)

1

1

1

1

1

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

١

1

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

1

Project: Todd Creek

1

CERTIFICATE OF ANALYSIS TR08100384

1

1

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	
H429508		10	10	85	<10	6				
H429509		<10	10	94	10	12				
H429510		<10	<10	93	<10	9				
H429011 H420512		<10	10	60 64	<10	8				
H429J12		<10	10	04	<u> </u>					
H429513		<10	10	97	10	10				
H429014		<10	<10	95	<10	16				
H429516		<10	<10	173	<10	44				
H429517		<10	10	72	<10	60				
H429518		<10	10	87	10	13	····-			
H429519		<10	10	75	10	21				
H429520		<10	10	87	10	11				
H429521		<10	10	92	<10	18				
H429522		<10	<10	69	10	19				
H429523		<10	<10	49	<10	24			-	
H429524		<10	<10	71	<10	30				
H429525		<10	<10	86	<10	23				
H429525A		10	10	124	10	237				
H429526		<10	<10	69	<10	25				
H429527		<10	<10	53	<10	22				
H429528		<10	<10	54	<10	22				
H429529		<10	<10	70	<10	21				
H429530	1	10	<10	47 5.4	<10	97 186		1.460		
11429001		10	10		×10				·····	
H429532		10	<10	46	<10	23				
H429533		<10	<10	08	<10 10	35				
H429034 H429535		<10	<10	90 74	<10	33				
H429536	-	10	<10	28	<10	25				
H429537		<10	<10	72	<10	30				
H429538		<10	<10	70	<10	36				
H429539		<10	<10	66	<10	28	-			
H429540		<10	<10	50	<10	17				
H429408		<10	<10	39	<10	752				
H429409		<10	<10	77	<10	132				
H429410		<10	<10	4	<10	74				
H429411		<10	<10	183	<10	3490				
H429412		<10	<10	29	10	>10000			1.47	
H429413		<10	<10	60	<10	68				

1

Ť

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

1

1

CERTIFICATE OF ANALYSIS TR08100384

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H429414 H429415 H429416 H429417 H429418		1.98 1.54 1.55 1.40 1.50	0.004 0.025 <0.001 <0.001 <0.001	1.4 1.1 <0.5 <0.5 <0.5	3.23 3.01 7.79 9.33 6.94	359 161 <5 11 5	100 550 1260 1790 1270	0 5 0.6 0.7 1.0 1.3	<2 <2 3 <2 <2 <2	0.82 0.11 3.10 1.22 5.83	1.2 <0.5 <0.5 <0.5 0.8	13 7 16 20 5	10 65 8 26 2	174 23 21 54 8	8.03 3.43 5.80 6.98 2.66	10 10 20 20 10
H429419 H429420 H429421 H429422 H429423		1.25 1.37 1.84 1.53 1.40	<0.001 <0.001 <0.001 <0.001 0.001	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.22 7.19 4.31 7.54 6.54	<5 6 5 9 <5	1000 1750 930 1060 1870	1.3 1.2 0.7 1.2 0.8	4 2 5 <2 <2	0.44 1.82 4.77 1.69 7.82	<0.5 <0.5 <0.5 <0.5 2.0	5 7 2 6 7	3 4 7 4 2	7 9 4 9 3	2.09 2.54 1.40 2.44 3.66	20 10 10 10 10 10
H429424 H429425 H429425A H429426 H429426 H429427		1.25 1.46 0.12 1.25 2.05	0.002 0.001 0.651 0.003 0.002	<0.5 <0.5 1.8 <0.5 <0.5	7.45 3.20 6.63 6.94 6.67	9 9 70 <5 7	1830 720 1190 3020 810	1.2 0.5 0.7 1.0 0.6	<2 <2 <2 <2 <2 2	2.12 19.75 4.11 4.76 0.13	<0.5 0.7 1.7 0.8 <0.5	9 2 16 10 3	5 1 29 4 6	12 9 4070 9 2	3.50 2.20 5.11 4.63 3.42	10 <10 10 10 10
H429428 H429429 H429430 H429431 H429431 H429432		2.02 1.77 2.22 1.79 1.72	0.004 0.047 0.018 0.034 0.008	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5.92 4.02 5.82 4.74 7.29	25 181 168 203 240	160 210 630 180 990	0.6 <0.5 0.6 0.7 0.9	2 10 3 6 <2	0.28 0.59 1.72 1.28 0.47	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 37 13 24 12	4 6 7 11 10	3 40 7 31 80	4.03 14.50 5.56 15.55 5.49	10 10 10 20 20
H429433 H429434 H429435 H429436 H429436 H429437		1.40 1.32 2.06 2.06 2.45	0.081 0.009 0.248 0.044 0.004	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6.31 6.17 6.24 7.00	348 357 286 401 10	390 290 200 110 510	0.7 0.5 0.5 0.7 1.0	<2 <2 4 <2 <2 <2	0.74 0.06 0.34 1.74 6.21	<0.5 <0.5 <0.5 <0.5 <0.5	13 17 18 18 18	7 7 8 15 2	56 77 104 1210 21	6.41 9.09 8.76 9.10 5.89	10 10 10 10 20
H429438 H429601 H429602 H429603 H429604		1.95 3.16 2.02 2.11 2.57	0.020 0.005 0.007 0.004 0.005	<0.5 <0.5 <0.5 <0.5 <0.5	7.84 7.44 7.66 8.09 7.78	43 55 64 48 62	180 220 440 1070 430	0.7 0.6 0.9 1.0 0.9	5 <2 <2 <2 <2 4	0.50 1.64 1.47 1.71 1.43	<0.5 <0.5 3.2 <0.5 <0.5	19 17 17 14 15	4 14 14 15 14	15 70 542 149 24	10.15 7.06 7.15 6.57 7.23	20 20 20 20 20 20
H429605 H429606 H429607 H429608 H429608 H429609		2.19 1.98 2.28 1.64 1.27	0.004 0.006 0.005 0.003 0.003	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.49 7.27 7.57 7.51 8.19	54 98 61 28 32	410 160 310 800 2340	1.0 1.0 0.9 0.9 1.1	<2 <2 <2 <2 <2 <2 <2	1.86 2.84 2.13 2.53 3.15	<0.5 <0.5 <0.5 <0.5 0.7	17 19 17 17 17 16	14 12 15 14 16	24 199 35 35 33	7.13 7.81 6.99 6.06 6.01	20 20 20 20 20 20
H429610 H429611 H429612 H429613 H429614		1.59 2.09 1.60 1.76 1.70	0.008 0.003 0.009 0.008 0.008	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7.42 8.40 8.04 7.60 7.70	114 45 97 79 89	610 2150 390 250 600	1.0 1.3 0.8 0.9 0.7	<2 <2 <2 <2 <2 <2 <2 <2	2.34 2.66 1.72 1.43 1.18	2.0 1.6 <0.5 <0.5 2.1	15 17 16 15 12	13 15 15 13 14	129 42 298 273 19	6.72 6.34 7.09 6.75 6.56	20 20 20 20 20 20

ALS Chemex

.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

r ~ 1
1

٦

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

1

|--|

1

CERTIFICATE OF ANALYSIS TR08100384

Ţ

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 TI % 0.01
H429414		1.58	<10	0.66	593 146	<1 3	0.06	2	470	50 85	6.64	41 21	8	324 886	<20 <20	0.17
H429416		2 15	20	2.74	1235	<1	0.10	3	1830	<2	1.25	<5	20	211	<20	0.10
H429417		3.92	10	0.90	599	3	0.19	10	1700	9	1.72	<5	30	57	<20	0.72
H429418		3.03	10	0 37	1355	<1	1.54	<1	520	9	0.04	6	5	401	<20	0.20
H429419		3.67	20	0.42	618	<1	1.17	<1	550	18	0.01	9	5	86	<20	0.21
H429420		4.01	10	0.42	685	1	1.67	<1	560	17	0.01	<5	6	182	<20	0.21
H429421		2.05	10	0.20	1335	1	0.77	<1	380	<2	0.03	8	5	140	<20	0.14
H429422		3.17	10	0.30	510	1	2.13	<1	630	6	0.05	<5	7	177	<20	0.24
H429423		2.43	10	0.81	1535	1	1.53	<1	500	5	0.05	11	6	670	<20	0.17
H429424		3.85	10	1.12	812	1	2.04	<1	860	5	0.63	7	10	240	<20	0.30
H429425		1.42	10	0.79	6970	1	0.47	<1	270	9	0.06	5	3	469	<20	0.09
H429425A		2.02	10	1.24	678	39	1.40	16	1040	26	1.99	19	12	274	<20	0.29
H429420 H429427		3.59	20	0.25	65	1	0.14	<1	420	3	2.69	6	9 4	40	<20	0.18
H429428		3.17	10	0.25	123	2	0.10	<1	400	13	3.38	<5	4	50	<20	0.15
H429429		1.46	10	0.28	354	<1	0.64	<1	270	8	>10.0	<5	6	35	<20	0.14
H429430	:	2.46	20	0.71	658	9	0.13	<1	490	7	2.75	6	7	61	<20	0.19
H429431		1.73	10	0.56	567	2	0.39	<1	420	27	>10.0	9	8	31	<20	0.16
H429432		4.12	20	0.44	299	3	0.08	2	650	102	2.22	17	10	54	20	0.26
H429433		2.92	10	0.42	441	2	0.22	<1	540	9	3.78	12	8	36	<20	0.22
H429434		1.79	10	0.10	81	ь 4	1.73	1	300	41	7.23	17	ь	83	<20	0.21
H429430		0.19 2.50	10	0.26	200	4	0.01	4	620	149	7.49	7	9 10	44	<20	0.22
H429437		2.13	20	2.26	1850	<1	0.36	<1	1360	6	3.41	8	15	87	<20	0.39
H429438		1.31	<10	1.31	338	<1	2.47	2	1320	3	4.75	8	17	96	<20	0.47
H429601		4.28	10	1.76	1335	<1	1.14	5	1480	18	3.95	7	19	283	<20	0.56
H429602		4.33	10	1.76	1575	<1	1 24	8	1500	16	3.37	6	21	327	<20	0.56
H429603		4.79	10	1.97	1990	<1	1.37	7	1590	9	2.56	6	21	365	<20	0.60
H429604		4.25	10	1.74	1780	<1	1.23	5	1500	22	3.42	18	21	320	<20	0.57
H429605		4.06	10	1.76	1880	<1	1.15	5	1500	16	3.77	6	20	307	<20	0.57
H429606		4.27	10	1.54	1825	<1	0.96	3	1390	26	5.44	9	19	289	<20	0.51
H429607		4 44	10	1.69	1/50	<1	1.31	5	1530	20	3.93	<0	20	320	<20	0.57
H429000		3,97	10	2.14	2240	-1	1.62	5	1570	4	1.56	6	21	454	<20	0.50
11420000		4.40		4.50	4050		1.92	·····		۲ ۸۵	0.50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		246	-20	0.00
H429610		4.45	10 20	1.53	1950 2460	<1 21	1.09	4	1430	18 8	2.08	9	19 22	346 460	<20	0.53
H429612		3.04 4.56	10	1.00	1785	<1	1.50	5	1520	13	3.54	10	22	392	<20	0.52
H429613		3.97	10	1.81	1540	<1	1.59	5	1490	13	4.00	5	20	421	<20	0.56
H429614		3.61	10	1.84	888	<1	1.65	4	1700	16	2.78	14	22	306	<20	0.57

Y

1

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

1

Project: Todd Creek

1

1

CERTIFICATE OF ANALYSIS TR08100384

1 1

1

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	2
H429414 H429415 H429416 H429417 H429418		<10 10 <10 <10 10	<10 <10 <10 <10 <10	97 161 233 323 64	<10 <10 10 <10 <10	97 79 122 69 74				
H429419 H429420 H429421 H429422 H429422 H429423		<10 <10 <10 <10 <10 <10	10 10 <10 10 <10	65 70 45 81 53	<10 <10 <10 <10 10	46 43 16 66 64				
H429424 H429425 H429425A H429425A H429426 H429427		<10 <10 <10 <10 <10	10 <10 <10 <10 <10	122 28 149 94 43	<10 <10 10 <10 <10	69 34 189 88 6				
H429428 H429429 H429430 H429431 H429431 H429432		<10 <10 <10 <10 10	<10 <10 <10 <10 <10	45 52 68 81 97	<10 <10 <10 <10 <10	14 7 14 22 29				
H429433 H429434 H429435 H429436 H429436 H429437		<10 <10 <10 <10 <10	<10 10 <10 <10 <10	79 72 78 90 169	10 <10 <10 10 <10	20 12 144 57 91				
H429438 H429601 H429602 H429603 H429603 H429604		<10 <10 <10 <10 <10	10 <10 <10 <10 <10	215 233 252 258 247	10 10 <10 10 <10	24 162 468 171 150				
H429605 H429606 H429607 H429608 H429608 H429609		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	243 220 242 238 251	10 <10 <10 <10 10	173 163 151 166 278				
H429610 H429611 H429612 H429613 H429614		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	223 252 237 236 242	10 <10 <10 10 10	366 440 147 121 420				

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ň

CERTIFICATE OF ANALYSIS TR08100384

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

1 <u>1</u> 1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	
H429615 H429616 H429617		3.02 1.90 1.55	0.019 0.002 0.003	<0.5 <0.5 <0.5	6.46 7.38 7.77	120 65 54	330 990 1330	<0.5 1.0 1.2	2 <2 <2	0.44 1.60 1.83	<0.5 <0.5 <0.5	5 16 20	11 16 25	2 21 21	3.89 7.28 7.67	10 20 20	
H429618 H429619		1,66 1,52	0.003	<0.5 <0.5	7.31 8.61	59 <5	1080	1.3 0.8	<2 <2	0.88	<0.5 <0.5	17	2	24 165	7.48 6.07	20 20	
H429620 H429621 H429622 H429623 H429623		1.95 2.16 2.41 2.33 2.05	0.002 0.001 0.001 0.002 0.002	<0.5 <0.5 <0.5 <0.5	8.50 8.10 8.98 8.53 8.20	8 7 <5 5	1200 1080 1290 1010 1000	0.9 0.8 0.9 0.9	<2 <2 <2 <2 <2	1,29 1,57 1,34 1,15 0,99	<0.5 <0.5 <0.5 <0.5 <0.5	7 9 7 8 7	3 3 1 1 2	86 86 75 52 39	6.03 5.66 5.82 5.57 5.56	20 20 20 20 20 20	
H429625 H429625A H429625A H429626 H429627 H429627 H429628		2.09 2.78 0.12 2.65 2.31 2.22	0.002 4.37 0.006 0.003 0.002	<0.5 0.8 <0.5 <0.5 <0.5 <0.5	8.68 4.83 8.63 8.84 8.41	11 406 6 11 23	1100 1540 1140 1080 1140	0.9 0.7 0.9 0.9 0.9 0.9	2 3 <2 <2 <2 <2 <2	0.80 2.54 0.69 0.88 0.85	<0.5 1.0 <0.5 <0.5 <0.5 <0.5	6 11 6 7 7 7	3 116 3 3 5	50 50 79 19 16 14	5.71 3.55 5.69 5.57 5.61	20 10 20 10 20 20	
H429629 H429630 H429631 H429632 H429632 H429633		1.61 2.21 2.98 2.31 3.36	0.005 0.005 0.003 0.008 0.030	7.0 4.2 74.5 11.7 62.3	6.16 6.06 0.12 5.67 0.22	130 80 14 169 14	1570 490 1190 650 410	1.1 1.0 2.3 1.0 1.4	<2 2 <2 2 2 2 <2	0.13 0.15 0.02 0.10 0.05	2.8 2.7 9.8 1.1 63.6	4 7 3 5 5	10 16 4 17 4	33 53 111 56 119	2.19 2.51 1.59 1.94 2.10	20 10 <10 10 <10	
H429634 H429635 H429636 H429636 H429637 H429638		2.50 3.70 1.07 2.75 1.55	0.011 0.256 0.009 0.008 0.158	3.7 50.5 4.0 4.2 53.7	6.08 0.89 6.05 5.65 3.39	57 35 25 26 50	1220 780 5250 1850 830	1.0 1.2 0.9 1.1 1.1	<2 2 <2 <2 <2 <2	0.10 0.03 0.05 0.02 0.04	0.8 12.1 <0.5 <0.5 37.1	4 5 2 2 3	13 6 14 20 7	19 179 6 5 26	2.19 2.26 1.53 1.66 1.88	10 <10 10 10 10	
H429639 H429640 H429641 H429642 H429643		2.78 1.59 1.99 2.88 1.90	0.019 0.012 0.010 0.007 0.010	1.6 2.0 1.8 1.7 2.4	5.42 6.54 6.53 6.38 6.32	30 47 64 17 41	1180 1570 1470 1420 820	0.6 0.8 0.7 0.8 0.9	<2 <2 <2 <2 <2 <2 <2 <2	0.11 0.04 0.06 0.10 0.16	0.7 <0.5 0.5 0.7 0.6	6 4 5 6 6	15 12 9 13 12	37 50 47 73 8	3.03 1.84 2.10 2.76 2.48	10 10 10 10 10	
H429644 H429645 H429646 H429646 H429647 H429648		1.37 1.95 2.89 1.91 1.70	0.045 0.009 0.017 0.005 0.004	>100 4.7 97.2 1.7 84.6	2.92 6.43 0.13 6.51 1.34	33 31 17 40 20	660 1300 650 1440 1190	2.0 1.3 1.5 1.1 1.5	<2 <2 <2 <2 <2 <2 <2	0.08 0.17 0.09 0.15 0.04	1.7 0.7 17.6 <0.5 11.9	6 6 2 7 3	8 16 4 18 5	130 8 58 54 39	2.68 2.81 0.73 2.62 1.20	10 10 <10 10 <10	
H429649 H429650 H429650A H429651 H429651 H429653		1.92 2.47 0.12 3.20 2.22	0.003 0.147 0.006 0.006 0.110	1.3 >100 3.3 5.3 >100	6.19 1.43 6.14 5.16 0.66	10 28 8 207 19	5280 910 600 940 840	1.0 2.2 0.7 0.8 0.7	<2 <2 <2 <2 2 2 <2	0.12 0.02 2.53 0.04 0.02	<0.5 20.5 1.4 1.5 41.9	6 2 11 4 2	12 8 61 12 4	9 81 50 163 75	2.43 1.62 3.96 1.93 0.97	10 <10 10 10 <10	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

:

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

1

!

CERTIFICATE OF ANALYSIS TR08100384

Sample Description	Mathod Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm t	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 Р ррт 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
H429615 H429616 H429617		3.53 1.79 2.07	30 10 10	0.10 2.22 2.72	221 1175 1570	4 <1 <1	2.18 2.24 2.14	<1 5 10 7	330 1420 1640	<2 21 10	2.93 2.65 2.63	<5 10 8	7 20 23	107 321 358	<20 <20 <20	0.23 0.57 0.59
H429619		2.06	10	1.22	741	<1	3.01	7	2040	9	0.61	<5 <5	21 17	349 375	<20	0.59
H429620 H429621 H429622 H429623 H429623 H429624		1.84 1.66 1.92 1.70 1.82	20 10 20 20 20	1.56 1.47 1.54 1.58 1.36	1065 1140 1085 1115 892	<1 <1 <1 <1 <1	2.97 3.12 3.11 3.03 2.94	3 2 2 2 <1	2020 1920 2080 1900 1880	12 15 11 16 14	0.86 0.98 0.86 0.86 0.86 0.96	9 <5 <5 <5 <5	16 15 17 15 15	397 405 430 391 343	<20 <20 <20 <20 <20 <20	0.57 0.54 0.58 0.52 0.53
H429625 H429625A H429626 H429626 H429627 H429628		2.03 0.92 2.40 2.01 1.96	10 10 10 20 20	1.55 1.05 1.25 1.48 1.43	847 446 626 852 836	<1 16 <1 <1 <1	2.97 1.24 2.78 3.03 2.82	1 52 <1 <1 <1	2020 810 1870 1860 1850	11 19 16 15 13	0.87 0.90 0.56 0.67 0.73	9 68 <5 9 14	16 10 17 17 17	324 172 296 326 337	<20 <20 <20 <20 <20 <20	0.56 0.25 0.57 0.55 0.54
H429629 H429630 H429631 H429632 H429633		3.80 3.91 0.06 4.03 0.15	20 20 10 10 10	0.06 0.05 0.03 0.03 0.03	257 204 1350 92 1900	<1 2 <1 1 2	0.12 0.14 0.01 0.11 <0.01	1 3 1 2 <1	610 620 20 490 20	224 425 1725 114 3010	0.82 1.73 0.17 1.35 0.39	15 20 51 27 27	5 5 2 3 3	385 343 1770 396 1550	<20 <20 <20 <20 <20	0.22 0.22 <0.01 0.19 0.01
H429634 H429635 H429636 H429637 H429638		4.36 0.79 4.94 4.26 3.78	10 10 10 10 <10	0.05 0.03 0.03 0.02 0.03	107 1500 65 70 271	1 2 5 3 5	0.11 0.02 0.20 0.13 0.06	2 1 1 2 1	520 90 360 230 260	462 3910 79 105 4440	1.10 0.51 0.86 0.82 0.88	16 62 7 11 30	6 4 5 5 4	501 1765 97 192 1155	<20 <20 <20 <20 <20	0.23 0.03 0.22 0.23 0.12
H429639 H429640 H429641 H429642 H429643		4.17 4.16 4.52 4.88 4.28	10 20 20 20 20 20	0.03 0.05 0.04 0.06 0.02	955 55 39 371 128	1 1 2 2 1	0.11 0.12 0.12 0.11 0.15	4 3 3 3 2	490 410 580 610 680	34 98 57 1380 21	1.37 1.06 1.33 1.26 1.75	<5 7 7 11 6	5 5 6 7 3	69 211 135 262 103	<20 <20 <20 <20 <20 <20	0.18 0.25 0.24 0.22 0.24
H429644 H429645 H429646 H429647 H429648		3.01 4.59 0.11 4.56 1.41	<10 20 10 20 10	0.05 0.04 0.02 0.05 0.01	1335 339 435 342 608	1 1 1 1 1	0.07 0.15 0.01 0.12 0.03	2 1 2 4 1	270 650 10 660 140	824 27 4130 30 1430	0.92 1.35 0.36 1.25 0.29	37 8 45 10 34	4 7 1 6 2	1055 151 1720 145 2250	<20 <20 <20 <20 <20	0.10 0.24 <0.01 0.25 0.05
H429649 H429650 H429650A H429651 H429653		4.21 1.59 0.88 4.33 0.61	20 10 10 10 10	0.04 0.01 1.22 0.02 0.01	704 453 715 125 429	<1 3 5 1 2	0.20 0.05 2.07 0.15 0.02	1 1 29 9 3	610 140 570 310 80	20 4880 46 86 1260	0.64 0.39 0.09 1.07 0.35	9 64 5 13 42	6 3 13 3 1	105 1680 276 680 1660	<20 <20 <20 <20 <20 <20	0.22 0.05 0.32 0.19 0.02

١

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

1

CERTIFICATE OF ANALYSIS TR08100384

•

•

Sample Description	Method Analyte Units LOR	ME-ICP61 ⊤I ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	
H429615 H429616 H429617 H429618		<10 <10 <10 <10	10 <10 <10 <10	65 248 261 242	<10 <10 <10 <10	13 66 120 179				
H429619 H429620		<10 <10	10	189	<10	54 70				·
H429621 H429622 H429623 H429624	:	<10 10 <10 <10	10 10 10 <10	192 199 184 184	<10 <10 <10 <10 <10	62 59 59 61				
H429625 H429625A H429626 H429626 H429627 H429628		<10 10 <10 <10 <10	10 <10 <10 <10 10	205 123 211 202 204	<10 10 <10 <10 <10	69 232 49 58 52			<u> </u>	
H429629 H429630 H429631 H429632 H429633		<10 <10 <10 10 <10	<10 <10 <10 <10 <10	60 55 21 40 28	20 10 <10 20 <10	264 276 760 99 3170				
H429634 H429635 H429636 H429636 H429637 H429638		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	75 36 64 45 44	20 <10 10 10 10	71 894 30 30 2720				
H429639 H429640 H429641 H429642 H429643		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	57 76 66 68 51	10 10 10 10 10	94 45 50 74 60				
H429644 H429645 H429646 H429646 H429647 H429648		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	56 68 6 81 22	<10 10 <10 20 <10	189 102 1060 45 755	127			
H429649 H429650 H429650A H429651 H429653		<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	69 31 109 42 18	10 10 <10 10 <10	80 913 162 130 2650	141			

۲

1

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

1

212 Brooksbank Avenue North Vancouver BC V7J 2C1

1 1

1

١

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

1

Ŧ

٩.

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

(ALS)

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Todd Creek

т т

							:			CERTIF	ICATE (OF ANA	LYSIS	TR081	00384	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bl ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
Sampie Description H429654 H340540	LOR	0.02 4.02 2.76	0.001	0.5 >100 7.3	0.01 0.24 4.52	5 531	10 4070 460	0.5 1.8 0.9	2 <2 7	0.01	0.5 6.7 0.5	1 2 57	1 4 13	1 76 9850	0.01 1.13 16.60	10 <10 10

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada LW.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

.

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

1

CERTIFICATE OF ANALYSIS TR08100384 ME-ICP61 ME-JCP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 Method к Мо Na Ni ρ Pb s Sb Sc Sr Th Ti La Mg Mn Analyte % % % ppm nqq pom % Units ppm % ppm ppm ppm ppm ppm ppm Sample Description LOR 20 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 1 1 0.01 1 1560 <20 <10 0.01 684 30 472 0.07 49 0.01 H429654 0.17 <1 0.08 1 H340540 1.22 10 1.25 953 5 0.05 7 890 77 >10.0 15 14 55 <20 0.26

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L5L 3B9

;

CERTIFICATE OF ANALYSIS TR08100384

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2008 Account: KIV

Project: Todd Creek

Sample Description	Method Analyte Units LOR	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	Cu-OG62 Cu % 0.001	Zn-OG62 Zn % 0.01	
H429654 H340540		<10 <10	<10 <10	19 157	<10 <10	544 81	109			
-										
	:									

APPENDIX B:

PHOTOS

TITLE:

LIST OF PHOTOS:

APPENDIX B LOCATION:

FRONTSPIECE 1: VMS TARGET AREA, SOUTH ZONE TO MYLONITEiFRONTSPIECE 2: VMS TARGET AREA, SOUTH ZONE TO OMTAiiFRONTSPIECE 3: VMS FEEDER ZONE OUTCROPiiiFRONTSPIECE 4: VMS FEEDER ZONE MINERALIZATIONiv
1A. AMERICAN CREEK GRAVEL PIT STAGING AREA
2A. KNOB ZONE GOSSAN
3-AU. HISTORIC & 2008 NTE ROCK SAMPLES-GOLD
3A. MYLONITE ZONE WITH DDHTC08-08 ON EXHALITE HORIZON
 4. AERIAL VIEW OF SOUTH ZONE DEPOSIT AREA
MAG SIGNATURE

APPENDIX B: LIST OF PHOTOS (CON'T):

TITLE:

APPENDIX B LOCATION:

45.1. MEAL LONE DRIDE HOLES AND AUXIPERCOUS ORIDE TANGET AXIA
4C. BY GLACIER EXHALITE AND DDHDDHTC08-08 SET-UPxxx
4C-1.ALTERED VOLCANICS & BY FAULT NEAR BY GLACIER
4C-2. BY, TODD CREEK & VMS FAULTS
4C-3. FELSIC DOME? ABOVE BY GLACIER EXHALITE
4D. SET-UP DDHTC08-01, SOUTH ZONE
4E. SET-UP DDHTC08-02, -03, SOUTH ZONE
4F. OXIDE DRILL CORE, SOUTH ZONE DEPOSIT, DDHTCO8-01xxxvi
4G. SULFIDE CRACKLE, SOUTH ZONE DEPOSIT, DDHTC08-02xxxvii
4H. QUARTZ PYRITE MINERALIZATION, DDHTC08-02xxxviii
41. VMS MINERALIZATION ABOVE SZD, DDHTC08-03xxxix
4J. SOUTH ZONE DEPOSIT MINERALIZATION, DDHTC08-03
5A. YELLOW BOWL ZONE WITH STRUCTURAL FABRIC
5B. YELLOW BOWL ALTERATION, YBS ZONE AND
EXHALITE HORIZONxlii
5C. YELLOW BOWL YBS EXHALITE HORIZON
5D. YELLOW BOWL YBS FELDSPAR PORPHYRY OUTCROP
5E. SOUTH OF YBS, CRACKLE TEXTURE
5F. SOUTH OF YBS, BANDED SULFIDE BOULDERxlvi
5G. SOUTH OF YBS, FOLD NOSE AND LADDER VEINS
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA1
 6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
 6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
 6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONING
 6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
 6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlix 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA
6A. ORANGE MOUNTAIN VMS TARGET AREA WITH ZONINGxlviii 6B. ORANGE MOUNTAIN TARGET AREA ALTERATIONxlix 6C. MINERALIZATION, AMARILLO GRID, ORANGE MOUNTAIN TARGET AREA

APPENDIX B:

LIST OF PHOTOS (CON'T):

TITLE:

.

.

APPENDIX B LOCATION:

10D.	KNOB ZONE,	DDHTC08-07 SET-UP	lxii
10E.	KNOB ZONE,	DDHTC08-04, 06, RECI	LAIMEDlxiii
10F.	DDHTC08-04	SULFIDE ZONE	l x iv
10G.	DDHTCO8-06	TODD CREEK FAULT	lxv

11A. VMS ENVIRONMENT SZD-YELLOW BOWL-KNOB

TARGET AREAS WITH 1994 AIRBORNE ANOMALIESlxvi
11A-1.VMS ENVIRONMENT MYLONITE-VMS-SZD TARGET AREASlxvii
11A-2.VMS ENVIRONMENT MYLONITE-VMS-SZD-YELLOW BOWL-KNOB
TARGET AREAS WITH HISTORIC & 2008 DRILL COLLARSlxviii
11B. VMS FEEDER ZONE AREA & BOULDER TRAINlxix
11C. SOUTHEAST AREA OF VMS FEEDER ZONElxx
11D. SAMPLES, SOUTHEAST AREA OF VMS FEEDER ZONElxxi
11D-AU. 2008 NTE ROCK SAMPLING-GOLDlxxii
11D-AG 2008 NTE ROCK SAMPLING-SILVERlxxiii
11D-CU. 2008 NTE ROCK SAMPLING-COPPERlxxiv
11D-ZN. 2008 NTE ROCK SAMPLING-ZINClxxv
11E. PYRITIC VEINLETS, VMS FEEDER ZONElxxvi
11E-1 BLACK CHLORITE VEINLETS, AREA OF VMS FEEDER ZONE.lxxvii
11F. LARGE SULFIDE BOULDER, VMS FEEDER ZONElxxviii
11G. LAMINATED EXHALIE BOULDERlxxix
11H. BANDED BOULDER, FROM VMS BOULDER TRAINlxxx
111. OUTCROP ISLAND IN TODD CREEK VALLEY NW ALONG
STRIKE OF VMS FEEDER ZONElxxxi