

MF

1

Blind Creek Resources Ltd Como Lake Project, covering Tenures 521602, 561603, 521604, 525456, 525458, Centered North and East of Atlin, BC.

> Centred at 59° 36.470' N and 133° 41.63' W, Atlin Mining Division, British Columbia Canada By

Clive Aspinall, M.Sc., P.Eng

Blind Creek Resources Ltd, 15th Floor, 675 W. Hastings Street, Vancouver, BC, Canada, V6B 1N2.Tel. (604) 669-6463; Fax (604) 669-3041.

For

27th September-19 October 2008 Date Report: 23rd February 2009 <u>NTS 104N/12</u> Type of Work: Non-Mechanical

BRITISH COLUMBIA
The Best Place on Earth

Ministry of Energy, Mines & Petroleum Resources	
Mining & Minerals Division	
KVENT # 4248761; BLind Creek Resource	C LTD
ROND LAVE PROJECT COVERING TENDRES	TOTAL COST 12,240.00
AUTHOR(S) Clive ASPINAL SIGNATURE(S) Qui	e ppint
NOTICE OF WORK PERMIT NUMBER(SYDATE(S) Non-Mechanical	YEAR OF WORK 2008
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S)	
PROPERTY NAME COMOLAKE	
CLAIM NAME(S) (on which work was done) 521602 , 561603	
COMMODITIES SOUGHT AU-A9	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION ATLING NTS	
LATITUDE 59 0 36 471 LONGITUDE 133 0 41.63	" (at centre of work)
OWNER(S) 1) BLIND CREEK RESOURCES 2)	
Mailing address 15th Floor, 675 W. Hastings VANCOUVER, BC. Canada	
OPERATOR(S) [who paid for the work] V6BINZ 1) AS ADDVL. 2)	
MAILING ADDRESS	
PROPERTY GEOLOGY, KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and ATLIN ACCRETIOMARY COMPLEX,	ATLIN OPHIOLITE
ASSEMBLAGE ATLIN ULTRAMARK	ALLOCHTHON
MUNITELY MOUNTAIN HEUSE HINE	CREEK
AU- AG- CU- AS-SU- PJ RITES PUER HOTIZ ATTA REFERENCES D PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS	TE, FUCHSITE
41 R ASPINALL (2002-04-05-06-07-08); 2	28,933,15,686;
17,495;	(OVER)

The second way to be an

TYPE OF WORK IN THIS REPORT		EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, are	a)	TY OTITNE		# 10,470
Bhotacinterreturation	Ar Poin	is a Significan	nu 521602/03	
GEOPHYSICAL (line-kilor	netres)			
Ground	10000			
Magnetic				
Electromagnetic	· · · · · · · · · · · · · · · · · · ·			
Induced Polarizati	on			
Radiometric				
Seismic	•			
Other				
Airborne				
GEOCHEMICAL				
(number of samples analy	sed for)	1 llanar-		Auren
soil 40	- yuin	IM AUTTEP 28EI		150
siit		<u> </u>		<u> </u>
Rock	~		v , , , n	3330
Other		<u> </u>		
DRILLING (total matres: pumber of b	oles size)			
Core	0163, 3126)			
Non-core				
RELATED TECHNICAL	· · · ·			
Sampling/assaving				
Petrographic	· · · · · · · · · · · · · · · · · · ·			
Mineralographic				
Metallurgic				
PROSPECTING (scale, a	·ea)			
PREPARATORY/PHYSIC	AL			,
Line/grid (kilometres)	·			
Topographic/Photogr	ammetric			1
(scale, area)				<u> </u>
Legal surveys (scale,	area)	·····		
Road, local access (I	alometres)/trail			
Trench (metres)		· · · · · · · · · · · · · · · · · · ·		
Underground dev. (m	etres)			<u> </u>
Other		····		1000
			TOTAL CC	ST TH 12, 24V

r

obji "!!!!

Summary	page4
Introduction	5
Reliance on Other Experts	5
Location, Accessibility, Climate, Infrastructure and Physiography	5
Property Description and Local Culture	6
History	7
Regional Geological Setting	8
Exploration Program 2008	9
Objectives and Economic Significance	10
Property Geology	10
Mineral Deposit Type	13
Geochemistry Soil/Silt and Rock sampling with Outcrop Observations Program 2008	15
Sampling Preparation, Analysis and Security	18
Drilling	18
Geophysics	18
Data Verification	18
Adjacent Properties	18
Mineral Processing and Metallurgical Testing	19
Mineral Resource and Mineral Reserve Estimates	19
Other Relevant Data	19
Interpretation and Conclusions	19
Recommendations	20
References	21

Accompanying Figures,

Blind Creek Resources Ltd Engineer-Mt Switzer Claim Block

Location Man Figure 1

Location Map, Figure 1	between P. 5-6
Location Map, Como Lake Claim Block, Figure 2	between P. 5-6
Location Map, Detail, Como Lake Claim Block Figure 2B	between P. 5-6
Location Map Placer Creeks Figure 2C	between P. 7-8
Location Map, Atlin Placer Gold Holdings, Figure 2D	between P. 7-8
Geochemistry Soil/Silt Returns 2008 Figure 3	between P.10-11
Geochemistry, Rock Returns 2008 Figure 4	between P.10-11
Geology Notes and Interpretive Structural and Prospective	
Fault and Thrust Fault Lineaments, Figure 5	between P. 11-12
Interpretive Prospective Zones For Listwanite Gold	between P. 16-17

Tables

Status Blind Creek Resources Mineral Claims Table 1	P. 7
Gold Production from Atlin Creek, Table 2	P.8
T.O. Connolly Random Samples, Pictou Occurrence, Atlin, B.C 1968. Table 3	P.15
Re-Sampling by Sharp, 1967 Bulk Sample sent to Trail, BC Table 4.	C. P.15
Anomalous Soil/Silt Gold Returns and Selected Associated Anomalous Elements. Blind Creek Resources Ltd Como Lake Project, 2008. Table 5.	P.15
Anomalous Gold Samples, and Associated Anomalous Elements, Blind Creek Resources Ltd, Como Lake Project, 2008	P.16
Appendices Photographs Original Eco Tech Laboratory Geochemical analyses, assays	Pages 22-25
Cost of Work Certificate of Author	

Summary

This report covers assessment work carried out in 2008 on the Blind Creek Resources Ltd (BCR) claims, near Atlin British Columbia, in search for lode gold. For the past 110 years Atlin has been an important source of placer gold, but as yet no bedrock source of economic gold has yet been found.

An estimated 65% of the Como Lake block is covered by glaciofluvial sediments, and 30 % outcrops of Jurassic 4th July Batholith megacrystic feldspar monzonites which themselves are not prospective for listwanite gold while the remaining 5 % of the claim area consists of scattered outcrops of listwanite and associated rocks.

Although bonanza grade gold and traces of gold have been found within Atlin listwanite rocks, (i.e. Yellow Jacket property, and the Pictou Property respectively) prospective areas for gold are also in rocks adjacent to listwanites. These are rocks have been carbonatized, host quartz veins, have been subject to quartz flooding, and are adjacent to faulting or thrusting. These rocks host traces to disseminations of sulphides.

Rocks adjacent to listwanites may range from carbonatized-quartz veined meta andesite basalts to carbonatized felsic dike rock. These dikes are assumed to be Jurassic and coeval with 4th July Batholith megacrystic feldspar porphyry monzonites.

The 2008 BCR Como Lake claim project involved geological observations and the collection of 45 soils, 3 silts and 11 rocks, primarily around the outside borders of the claims. Work was carried out by the writer over 8 days between 27th September to 19 October 2008.

This work was successful in concluded the Atlin Accretionary Complex, the Atlin Ophiolite Assemblage, and associated allochthon rocks, including the Monarch Mountain Thrust and associated faults are key factors in the make-up as source rocks for Atlin placer gold.

Introduction

In the year 2004, prior to mineral title on-line staking, Blind Creek Resources Ltd, (BCR) physically staked 5 mineral claims immediately north and east of Atlin, including Como Lake area, located in the Atlin Mining Division, NW-British Columbia. In 2005 these claims were up-graded to electronically staked mineral claims. Location of this claim block is centred at 59° 36.470' N and 133° 41.63' W, total area is 2,261.17 hectares.

The purpose of this staking was to retain the area for listwanite style gold exploration, and hopefully later development.

This report covers assessment work carried out in 2008. Objectives were to project known gold listwanite outcrops and geology located outside the claims onto the BCR Como Lake claim block. Work was carried out by the writer over 8 days between 27th September to 19 October 2008.

At least 65% of the Como Lake block is covered by glaciofluvial sediments, and 30 % outcrops of Jurassic 4th July Batholith granites which themselves are not prospective for gold, while the remaining 5 % consist of scattered outcrops of Palaeozoic Atlin Intrusions, Cache Creek group and listwanite rocks.

The objective during this assessment survey was an attempt, both geologically and geochemically, to understand what geology may underlie the glaciofluvial sediments.

It is significant that there are three historic gold working/showings that lie just outside the BCR Como Lake holdings: 1) Beavis Shaft, 2) Imperial past producer; 3) Pictou prospect. All are categorized as listwanite style gold prospects.

Reliance on Other Experts

Reliance of J.D Aitkin's, geological map of Atlin, 1959 edition, as always, proved an essential foundation for this work.

Chris H Ash, P.Geo, formally of BC. Geological Survey, provided consultation and unpublished digital data on the Atlin area. Papers by Mihalynuk and Sacks of the BC Geological Survey were also referenced, including others.

Thanks to Shirley Connolly of Atlin, who allowed me to review archive mining reports and memos in her mining files.

Eco Tech Laboratory Of 10041 Drive, Kamloops, BC provided the analyses and assays included with this report.

Location, Accessibility, Climate, Infrastructure and Physiography

Location of the Como Lake Claims lies immediately north and east of the community of Atlin, BC. All claims can be serviced by local roads leading to or from Atlin, Ref: figure 1, 2, 2B.

The Como Lake claims are centered at: 59° 36.470' N and 133° 41.63' W

Atlin is accessible by road some 90 kilometres south of the Alaska Highway from Jakes Corner in the Yukon Territory. Atlin, population 450, is the most northerly community in British Columbia. The community of Atlin is situating on the east Shore of Atlin Lake, at an elevation of 2,190 feet, (670m) ASL.

The climate of the Atlin area has witnessed some changes over the past ten years. Snows usually have been coming late, arriving to stay in December and last until April. Atlin Lake freezes over for shorter periods than previously, starting from early January and breaks up in early May.

Spring weather is fine, and is by far the best weather during the year, with temperatures warm and sky visibility unlimited.

The Atlin region lies east of the Coast Range Mountains approximately 140 kilometres east of Juneau, Alaska.

The topography on the east side of Atlin Lake is significantly different from the coastal ranges, and consists of gentler glaciated mountains with a relief in the Atlin region approximating 1,000 meters ASL.

Relief on the Como Lake claims ranges up to 300 feet, or about 91 meters above Atlin Lake, and is generally gentle rolling terrain.

Property Description and Local Culture, Ref: Figure 2, 2B.

In keeping with the newly inaugurated mineral title on line system in British Columbia, in 2005 Blind Creek Resources Ltd converted its 2,261.17 hectares Como Lake legacy claims to new Mineral Title Online (MTO) claims.

Due to a fault in the new MTO system, during the late fall of 2005, it was necessary to convert the newly converted claims a second time, and this was done with the help of the Mineral titles office in Vancouver.

The Como Lake claims are now held by converted tenures, and work applied by this report should keep them in good standing until 15th December 2009. These claims are listed in Table 1.

	BLIND CR SHADE CO APPLIED	EEK RESOUI	RCES Ltd COI ATES TO WH	NO LAKE	CLAIM GROU IS 2008 WOF	JP JANUARY RK	2009.	
ITEM	Tenure Number	Claim Name	Blind Creek Resources Ltd/Owner	Map Number	Issue Date	Good To Date	Status	CLAIMS AREA (HECTARES)
1	521602		203166 (100%) 203166	104 N	2005/oct/28	2009/dec/15	GOOD	819.427
2	521603		(100%)	104 N	2005/oct/28	2009/dec/15	GOOD	950.34
3	521604		203166 (100%) 203166	104 N	2005/oct/28	2009/dec/15	GOOD	409.495
4	525456	COMO #1	(100%)	104 N	2006/jan/14	2009/dec/15	GOOD	65.517
5	525458	COMO #2	(100%)	104 N	2006/jan/14	2011/dec/15	GOOD	16.386
1.5	Total							2,261.17

The Atlin area is traditionally territory of the Taku River Tlingit First Nations tribe. There are a reported 500 Taku River Tlingit people who call Atlin home, however only about 250 presently live in the Atlin area. The other 250 are reported to be "outside" this traditional territory in order to find work.

Other Tlingit communities are Carcross and Teslin in the Yukon Territory. Members of the Taku River Tlingit have worked for the writer in mineral exploration in the past, and make excellent field personnel.

Non-aboriginals in Atlin also make excellent field workers, many of whom have advanced first aid training, heavy equipment expertise, and a good knowledge of mineral exploration and mining.

History, Ref Figure 2C.

Atlin became known as a productive Canadian placer gold camp in the year 1898, after the discoveries of Miller and McLaren, who first found gold in paying quantities¹. Placer gold was found initially on Pine Creek and later its tributaries, Spruce, Otter, Ruby, Boulder and Birch creeks east of Atlin. Production of placer gold, as determined by Holland² between 1898 to 1945 is tabulated in Table 2, Ref: Figures 2C and 2D.

Table 2. Gold I founction from Atim Creeks, 1070-1745					
Creek Name	Ounces of Gold Produced 1898-1945				
Spruce Creek	262,603				
Pine Creek	138,144				
Boulder Creek	67,811				
Ruby Creek	55,272				
McKee Creek	46,953				
Otter Creek	20,113				
Wright Creek	14,729				
Birch Creek	12,898				
All others, (21 Creeks)	15,624				
Total	634,147				

Table 2. Gold Production from Atlin Creeks. 1898-1945

¹ Geological Survey Branch, Paper No. 26, 1910.

² Holland, S.S., 1950

On all the above creeks in the Atlin region, as well as others, mining operations grew in scale during the 1970's to 1880's due to heavy equipment available, and total gold production from the Atlin camp could now be easily be in 2 to 3 million ounces range. Significantly, the major creek producers mentioned above, flow over or adjacent to ultramafic dunites and serpentinites of the Atlin Ultramafic Assemblage, (see below) some of which have listwanite styles of alteration.

Atlin placer gold is notorious for its large size gold nuggets, specimens ranging from quarter ounce up to 35 ounces. The majority of nuggets are however fines to match-head size. The fact that lode gold found in Atlin outcrops is generally hand lens to microscopic in size, leads the writer to believe biologic-chemical action has taken place in Atlin placer creeks, allowing for accretion of Atlin gold nuggets over time under a warmer climate. This accretion action is known to take place in the tropics, countries like Venezuela and Indonesia, where cyanide action from tropical trees has naturally dissolved placer fine gold in streams to allow it to accrete elsewhere. Growth rings seen in Southern Kalimantan gold has been reported by Indonesian workers, and wire gold coiled to tree roots in Venezuelan swamps is also reported.³

In the Atlin Camp, the writer speculates the formation of many Atlin nuggets have experienced some kind of cyanide or biological dissolving situation combined with natural carbon-and-pulp action when associated with Permian Cache Creek shales and argillites, perhaps under a warmer pre-Wisconsin climate.

The attached placer claim online-print-out attests to the fact that Atlin in present times, is still a mining placer destination, even though over the past few years placer mining has been in decline, Figure 2D.

Regional Geological Setting

The general geology described herein is taken in part from Patrick J. Sack, Mihalynuk⁴, and Ash⁵, in addition to other workers. Geology in the region of Atlin is complex.

Mesothermal gold bearing quartz veins throughout the Atlin placer camp are contained within or marginal to ultramafic slice segments of an ophiolitic assemblage, known as the 'Atlin Ophiolitic Assemblage'.

Some of these ultramafic slice segments have been carbonate-altered, (listwanite)⁶.

This assemblage has been thrust or obducted, over pelagic meta-sedimentary rocks referred to as the "Atlin Accretionary Complex".

³ Aspinall, and Dawson, J.M. (pers. Com. 2008).

⁴ Sacks and Mihalynuk, and others, 2003?

⁵ Ash,1994

⁶ Ash, 1994

This obduction is recognized as taking place during the Middle Jurassic collision of Stikinia with North America.

This is the dominated geology to the east of Atlin. The assemblage has been partially dismembered, and intruded by Fourth of July Batholith (172 Ma) and, farther to the northeast, by the Surprise Lake Batholith, (84-80 Ma; Mihalynuk et al, 1992; 2003a).

The listwanite rocks are hydrothermally altered ultramafic rocks recognized in the field by their carbonated light tan color, the presence of mariposite, (fuchsite-Cr-mica) and quartz veins and veinlets, and are part of ultramafic segments of the assemblage.

Where they host lode gold, rocks have been silicified. Often, where quartz veins exist in the ultramafics no gold or sulphides are present. However, at the Yellow Jacket property, bonanza grade gold occurs in silicified carbonated listwanite, ⁷ and where quartz veins are present gold is also reported as present, yet do not extend to depth. Generally lode gold grades are erratic, analytically ranging from trace amounts to half ounce range, and finding continuity over viable areas is elusive. In general, visible gold in rock is extremely rare.

Adjacent or in the proximal geological terrane, meta-andesite basalt rocks of the accretionary complex are locally carbonatized, host quartz veins and also gold as well as traces of sulphides. It is the writers experience these proximal environments are equally important as the listwanites.

Within the Atlin region low angle thrusts or obduction zones, such as the Monarch Mountain Thrust at the Yellow Jacket property, Figure 2C, are associated with listwanites.

Central to the BCR Claim block is an easterly north easterly fault extending from Surprise Lake, follows Pine Creek until 8 kilometres east of Atlin, and is not recognized under glaciofluvial sediments east of Atlin until it outcrops just north of the Atlin village. The Pine Creek Fault would appear to post-date the Monarch Mountain Thrust. Therefore would appear to post-date the gold mineralization. However, the trace of the Pine Creek Fault may have acted as a focus before the fault actually formed, and by default a focus for gold mineralization within Pine Creek bedrocks and subsequent gold placers.

Exploration Program 2008

Between 27th September 2008 to 19th October 2008, working alone the writer spent eight days carrying out work on the BCR Como Lake Project. Base of operations was Atlin, BC.

The program consisted of soil/silt-rock sampling and geological observations. A total of 45 soil, 3 silt samples and 11 rocks were collected.

⁷ Prize Mining Web site.

Objectives and Economic Significance, Figures 3 & 4.

At least 65% of the Como Lake block is covered by glaciofluvial sediments considered of variable thickness, and 30 % outcrops of Jurassic 4th July Batholith granites which themselves are not prospective for listwanite gold, while the remaining 5 % area consist of very scattered outcrops of Atlin Ophiolitic Assemblage.

This assemblage predominantly represents an allochthon or nappe, which as been thrusted over the so called Atlin Accretionary Complex. In the region of Atlin this complex consists of pelagic sediments and meta andesite basalts of the Cache Creek Group.

Prospective ground is believed by the writer to be where the following combination of geological situations occur.

- 1. serpentinization of ultramafic rock
- 2. faulting and/or thrusting
- 3. carbonatization plus silicification
- 4. formation of listwanites
- 5. carbonatization and quartz veining of meta-andesite basalts
- 6. carbonatization of felsic dike rocks
- 7. presence of variable combinations traces or disseminations of pyrite-pyrrhotitechalcopyrite-arsenopyrite-antinomy-galena
- 8. mariposite, or fuchsite.

Structurally, because outcrops associated with Monarch Mountain Thrusts and Pine Creek Faults do not outcrop within the BCR Como Lake claims, sampling was concentrated just outside the claim boundaries where such outcrops exist, with the objective of defining potential prospective ground within the BCR Como Lake claims.

Property Geology, Ref: Figure 5

Surface Geology⁸

Mountainous areas east of Atlin are characterized by bedrock exposures on the upper slopes, with lower slopes exhibiting a thin veneer of colluvium. Colluvium generally consists of reworked glacial debris mixed with angular local materials. These are commonly inter-bedded with lenses of sorted gravel, sand and silt. However lower slopes are generally covered by morainal deposits.

Glaciofluvial sediments are common within the Como Lake Claim Block, trending NE-SW across the property. These are marginal to Pine Creek and Spruce Creek, and form a relatively flat plain 1.5 to 2 kilometres wide. These deposits consist of sands and gravels.

⁸ Levson, 2003., and others

BLINC	CREEK RES	OURCES	S LTD COM	O LAKE SOIL	SILT RETURNS, OCTOBE	R 2008							
Datum	Nad 27 Cana	da		Results in p	opm unless indicated.								
Item	Wpt	Sector	Easting	Northing	Date time	Elevation M	SAMPLE ID	Au(ppb)	Ag	As	Cu	Pb	Zn
1	8BcrS 23	8V	573386	6606220	01/10/2008 14:15	805	8BCRS23	<5	<0.2	90	15	<2	97
2	8Bcrs 24	8V	573494	6606237	01/10/2008 14:31	779.7	8BCRS24	10	<0.2	285	58	<2	65
3	8Bcrs 25	8V	573514	6605735	01/10/2008 14:50	722.7	8BCRS25	<5	<0.2	630	23	<2	87
4	8Bcrs 26	8V	573824	6605839	01/10/2008 15:11	727.9	8BCRS26	105	1.9	1445	406	10	81
5	8Bcrs 27	8V	574057	6605984	01/10/2008 15:26	732.1	8BCRS27	<5	0.5	90	31	<2	57
6	8Bcrs 28	8V	574470	6606684	01/10/2008 15:56	757.1	8BCRS28	<5	<0.2	40	59	<2	72
7	8Bcrs 29	8V	574758	6607054	01/10/2008 16:15	777.8	8BCRS29	<5	<0.2	75	25	<2	41
8	8BCRS30	8v	571883	6605872	02/10/2008 16:15	777.8	8BCRS30	4500	3.8	470	65	<2	120
9	8Bcrs 31	8V	571932	6605842	02/10/2008 13:27	707.1	8BCRS31	45	0.5	280	84	<2	104
10	8Bcrs 32	8V	571987	6605762	02/10/2008 13:40	709	8BCRS32	5	<0.2	55	108	2	161
11	8Bcrs 33	8V	572132	6605875	02/10/2008 13:58	744	8BCRS33	30	2.4	1025	69	42	117
12	8Bcrs 34	8V	572816	6605667	02/10/2008 14:45	742.5	8BCRS34	90	0.2	25	67	4	99
13	8Bcrs 35	8V	573170	6606129	02/10/2008 15:13	777.2	8BCRS35	<5	0.2	60	71	18	239
14	8Bcrs 36	8V	574874	6607123	03/10/2008 10:57	772.4	8BCRS36	<5	<0.2	<5	95	16	46
15	8Bcrs 37	8V	574286	6606538	03/10/2008 11:27	747.7	8BCRS37	<5	<0.2	10	34	14	58
16	8Bcrs 38	8V	574125	6606414	03/10/2008 11:37	764.7	8BCRS38	<5	<0.2	<5	51	38	66
17	8Bcrs 39	8V	574070	6606390	03/10/2008 11:42	763.5	8BCRS39	40	<0.2	625	39	<2	64
18	8Bcrs 40	8V	574088	6605985	03-Oct-08		8BCRT40	40	<0.2	60	40	<2	67
19	8Bcrs 41	8V	577066	6604867	03-Oct-08		8BCRT41	25	<0.2	<5	28	18	41
20	8Bcrs 42	8V	576713	6605692	03-Oct-08		8BCRT42	10	<0.2	25	20	4	33
21	8Bcrs 43	8V	576471	6605462	03-Oct-08		8BCRS43	125	<0.2	35	29	<2	43
22	8Bcrs 44	8V	575351	6608686	04/10/2008 10:33	792.5	8BCRS44	185	<0.2	<5	9	20	46
23	8Bcrs 45	8V	575494	6608660	04/10/2008 10:51	805.6	8BCRS45	<5	<0.2	30	<1	<2	37
24	8Bcrs 46	8V	576136	6608678	04/10/2008 11:10	791	8BCRS46	<5	<0.2	20	<1	<2	16
25	8Bcrs 47	8V	576351	6608612	04/10/2008 11:22	788.8	8BCRS47	<5	<0.2	<5	14	22	55
26	8Bcrs 48	8V	576633	6608612	04/10/2008 11:34		8BCRS48	<5	<0.2	<5	7	20	35
27	8Bcrs 49	8V	576875	6608108	04/10/2008 11:46		8BCRS49	<5	<0.2	<5	6	18	27
28	8Bcrs 50	8V	577841	6608440	04/10/2008 12:09	847.3	8BCRS50	5	<0.2	15	29	18	43
29	8Bcrs 53	8V	576738	6608906	08/10/2008 10:57	878.7	8BCRS-53	5	<0.2	<5	21	10	47
30	8Bcrs 54	8V	576689	6608823	08/10/2008 10:45	838.8	8BCRS-54	<5	<0.2	<5	17	8	49
31	8Bcrs 55	8V	576817	6608978	08/10/2008 11:09	916.8	8BCRS-55	<5	<0.2	15	22	10	37
32	8Bcrs 56	8V	576916	6609181	08/10/2008 11:38	982.7	8BCRS-56	<5	<0.2	<5	63	12	66

Datun	n Nad 27 Cana	da		Results in p	opm unless indicated.								
tem	Wpt	Sector	Easting	Northing	Date time	Elevation M	SAMPLE ID	Au(ppb)	Ag	As	Cu	Pb	Zn
33	8Bcrs 57	8V	577092	6609518	08/10/2008 12:14	1047	8BCRS-57	5	<0.2	40	35	10	67
34	8Bcrs 75	8V	578357	6608394	16/10/2008 12:35	876.9	8BCRS-75	<5	<0.2	10	10	6	27
35	BCRS 76	8V	573526	6605545			8BCRS-76	<5	<0.2	<5	6	16	50
36	8Bcrs 77	8V	573451	6605620	16/10/2008 14:37	720.9	8BCRS-77	10	<0.2	70	23	12	62
37	8Bcrs 78	8V	573625	6605072	16/10/2008 14:48	699.8	8BCRS-78	20	<0.2	<5	10	6	116
38	8Bcrs 79	8V	575037	6604481	16/10/2008 15:42	712.3	8BCRS-79	<5	<0.2	120	79	10	34
39	8Bcrs 80	8V	575088	6604343	16/10/2008 15:56	711.4	8BCRS-80	<5	<0.2	45	21	8	95
40	8Bcrs 81	8V	574994	6604202	16/10/2008 16:12	717.8	8BCRS-81	<5	<0.2	<5	24	12	40
41	8Bcrs 82	8V	575240	6604389	16/10/2008 16:30	719.3	8BCRS-82	<5	<0.2	280	94	6	25
42	8Bcrs 83	8V	575341	6604324	16/10/2008 16:46	710.2	8BCRS-83	5	<0.2	15	19	16	43
43	8Bcrs 84	8V	575176	6604643	16/10/2008 17:11	726.3	8BCRS-84	10	<0.2	15	33	16	54
44	8Bcrs 85	8V	575167	6604900	17/10/2008 11:45	730	8BCRS-85	5	<0.2	<5	218	14	33
45	8Bcrs 86	8V	575224	6604827	17/10/2008 12:13	718.1	8BCRS-86	<5	<0.2	<5	256	12	46
46	8Bcrs 87	8V	575219	6605051	18/10/2008 12:13	714.1	8BCRS-87	<5	<0.2	<5	61	14	53
47	8BCRS 88	8V	575574	6605349	19/10/2008 12:13	714.1	8BCRS-88	<5	<0.2	5	12	8	32

~

1

- Monarch Mountain Thrust

BLIND CREEK RESOURCES LTD COMO LAKE CLAIM BLOCK GEOCHEMISTRY SOIL/SILT RETURNS 2008 OCTOBER 2008 FIGURE 3

				1							11.111		
BLIN	ND CREEK	RESOU	RCES LTD	COMO LA	KE ROCK RETURN	S, OCTOBE	R 2008						
Datu	im Nad 27	Canada		Results in	ppm unless indica	ated.							and the second se
Item	Wpt	Sector	Easting	Northing	Date time	Elevation	SAMPLE ID	Au(ppb)	Ag	As	Cu	Pb	Zn
1	7R 63501	8V	571877	6605865	02/10/2008 12:51	701.6	7R63501	>1000	27.9	225	113	34	55
2	7R 63502	8V	571877	6605865	02/10/2008 13:03	703.2	7R63502	>1000	>30	50	135	12	49
3	7R 63503	8V	571952	6605906	02/10/2008 13:15	721.2	7R63503	5	0.2	10	38	6	26
4	7R 63504	8V	574892	6607140	03/10/2008 10:50	776.9	7R63504	60	1.1	<5	1179	24	52
5	7R 63505	8V	574893	6607132	03/10/2008 11:08	772.7	7R63505	5	0.2	25	8	8	22
6	7R 63506	8V	574285	6606538	03/10/2008 11:27	743.1	7R63506	<5	<0.2	30	36	8	58
	7R 63507	8V	577007	6604954	03/10/2008 0:00		7R63507	<5	<0.2	10	11	4	3
8	7R 63510	8V	575146	6604689	03/10/2008 10:50	704.8	7R63510	>1000	10.2	1795	313	68	55
9	7R 63511	8V	575147	6604942	03/10/2008 10:50	698	7R63511	50	3.4	<5	1179	12	20
10	7R3 63512	8V	575147	6604942	03/10/2008 10:50	698	7R63512	5	0.6	<5	303	6	11
11	7R 63513	8V	575147	6604942	03/10/2008 10:50	699	7R63513	<5	0.2	<5	310	16	35
	CE	RTIFIC	CATES	OF ASS/	AY AW 2008-	8527	AND	A	< 200	8-859	90		
BLIN	ND CREEK	RESOU	RCES LTD	COMO LA	KE ROCK ASSAYS	OCTOBER	2008						
Datu	um Nad 27	Canada						Au	Au	Ag	Ag		
Item	Wpt	Sector	Easting	Northing	Date time	Elevation	SAMPLE ID	(g/t)	(oz/t)	(g/t)	(oz/t)		
1	7R 63501	8V	573397	6606247	02/10/2008 12:51	701.6	7R63501	1.90	0.055	44.0	1.283		÷
2	7R 63502	8V	571877	6605865	02/10/2008 13:03	703.2	7R63502	12.4	0.360	48.0	1.400		
3	7R 63510	8V	575146	6604689	03/10/2008 10:50	704.8	7R 63510	4.9	0.143	-	10 m		

FAULT Lineament

~

Monarch Moontain

Thrust

BLIND CREEK RESOURCES LTD COMO LAKE CLAIM BLOCK GEOCHEMISTRY ROCK RETURNS 2008 OCTOBER 2008 FIGURE 4 Glaciolacustrine sediments are not common, but are marginal to the glaciolacustrine deposits. They consist of a thin discontinuous veneer over the glaciolacustrine gravel, sands, silts and clays.

At least one peat bog with organic muds occurs within the BCR Como Lake claims.

Bedrock Geology, Figure 5.

Rock types surrounding the Como Claim Block consist of:

- 1. Atlin Accretionary Complex rocks consisting of Permian Cache Creek greenstone, (after Aitkin) or metamorphosed andesite-basalts, volcanic greywacke, and argillites. These rocks are greenish to dark grey, fine grained and massive, and basically non- descriptive. Locally these rocks are carbonatized. No limestone and limestone breccia was observed associated Permian Cached Creek rocks are noted in the area.
- 2. Atlin Ophiolitic Assemblage and associated allochthon rocks consisting of Permian altered dunite, peridotite and harzburgite⁹ are present. In some cases these rocks have been altered by serpentinization, carbonatization and silicification where proximal to faulting and or thrusting. Other rocks in this group are pyroxinite dikes as well as gabbro stocks and dikes.
- 3. Jurassic 4th of July Batholith rocks, are mainly quartz megacrystic feldspar monzonites, but also include quartz monzonites to granodiorite. The 4th of July Batholith is often intruded with dark green lamprophyre dike. These dike display needles of pyroxene and or amphibole and biotite is present in almost every specimen. Plagioclase is present but altered. These dikes display chill boundaries against the granitic rocks, as well as textural zoning with coarser crystals in the centre. Rare felsic dikes and diorite dikes occur distal to the batholith, but may be coeval.

Structure

Atlin Ultramafic Allochthon¹⁰, basically comprising the entire Monarch Mountain and area northwards to Atlin, is a compositionally uniform structural slice of oceanic mantle material which comprises the hanging wall of the Monarch Mountain thrust.

Specifically, Monarch Mountain Thrust¹¹ defines the structural base of the Atlin Ultramafic Assemblage in this region and the contact between the upper Atlin Ophiolite Assemblage and the underlying Atlin Accretionary Complex. Based on the annular surface trace of the thrust, combined with drill-hole information, it is interpreted to be relatively flat lying, undulating fault zone.

⁹ Ash, 1994

¹⁰ Ibid

¹¹ Ibid

FAULT LINEAMENT MONARCH THRUST LINEAMENT BLIND CREEK RESOURCES LTD COMO LAKE CLAIM BLOCK GEOLOGY NOTES AND INTERPETATIVE STRUCTURAL AND PROSPECTIVE FAULT AND THRUST FAULT LINEAMENTS REFERENCE TO HANSEN AND OTHERS, 2006, ASH AND OTHERS, 1994, 2006, ASH AND OTHERS, 2006, ASH AND OTHERS, 2006, ASH

FIGURE 5

This basal thrust fault is characterized by a zone of tectonic brecciation and carbonatization¹², from several metres to tens of metres in width that affects both upper and lower walls of the thrust. Within this zone slices of ophiolite and the accretionary rocks intermix, and also the zone of alteration and listwanite formation.

Therefore this basal thrust and associated listwanite is therefore a focus for hard rock gold prospecting.

A major fault zone passes through the central part of Como Lake Claim Block. This is the Pine Creek Fault.

The Pine Creek Fault¹³ is a high angle west-southwest trending structure from Surprise Lake, and parallels Pine Creek until the Yellow Jacket Claims. Just after this point Pine Creek flows more south westerly, but the fault continues along the same trace and is exposed just north of Atlin town site, along Atlin Lake shore.

The width of the fault ranges from 50 metres across to 70 metres across. At Yellow Jacket the fault occurs along the southern margin of an ultra-mafic belt.

North of Atlin the fault outcrops are characterized by serpentinite fish scale clast structures. These fish scale clast structures are range from 5 to 60 centimetres across and are aligned easterly¹⁴.

Ash's interpretation is that the fault post-dates the Atlin thrusts and other fault structures, within the Atlin Camp, including gold mineralization. However, at Yellow Jacket, bonanza style gold values occur within the Pine Creek Fault zone, giving reason for some workers to believe the fault is important to gold mineralization. However, at Yellow Jacket gold mineralization is neither laterally or vertically continuous, while the fault certainly is laterally extensive.

Mineral Deposit Type

Three adjacent properties to the Como Lake Claim Block have an important bearing on exploration strategy. These are not mineral deposits, but historic underground showings which have been worked in the past. They do give a deposit model for exploration purposes within the BCR Como Lake claims. They are, Ref: Figure 5.

- 1. The Beavis
- 2. The Imperial
- 3. The Pictou

The Beavis property¹⁵ is located on the eastern shore of Atlin Lake about 2 kilometres north of the town of Atlin.

¹² Ibid

¹³ Ash, 1994 ¹⁴ ibid

¹⁵ MinFiles

According to MinFiles¹⁶ the occurrence consists of a well-defined quartz vein hosted within rocks of the Pennsylvanian to Permian Atlin Ultramafic Allochthon. In the area of the vein, the ultramafic rock can be both silicified and carbonate altered to a listwanitetype alteration assemblage with some chromium micas identified as fuchsite or mariposite.

The main vein¹⁷ at the Beavis property is 45 centimetres wide and strikes at 155 degrees with a dip of 85 degrees to the northeast. Associated with the vein is a light coloured felsic dike. The exact relationship of the vein and dike is not documented, although a similar dike/vein assemblage occurs on the Anaconda property (104N 046) about 3 These dikes on both properties are mineralized with kilometres to the south. disseminated pyrite, and may be coeval with 4th July Batholith rocks. The quartz veins of the Beavis carry variable amounts of disseminated pyrite and reported visible gold. Some breccia textures are present.

Underground work¹⁸ on the property occurred from 1902 to 1908 with the most work in 1908 by the Gold Group Mining Company. Then three levels were developed from a shaft sunk to 60 meters. A sample taken by Tom Schroeter (Energy, Mines and Petroleum Resources) on July 13, 1985 from a silicified breccia zone contained 63 grams per tonne gold and 235 grams per tonne silver.

The Imperial¹⁹ property is located on the southwest flank of Mt. Munro southwest of Surprise Lake. The property is about 7 kilometres northeast of Atlin. The property was developed from 1899 to 1902. The Imperial occurrence is associated with a body of ultramafic and meta-andesite basalt rocks associated with the Permian Atlin Ultramafic Allochthon and the Atlin Accretionary Complex Cache Creek Group respectively. Associated rocks include peridotite, dunites, diorites, and gabbros under variable degrees of shearing and alteration.

The peridotite where locally serpentinized have undergone carbonatization and quartz veining. On the hanging wall of the Imperial Fault, carbonatization-silicification of Permian meta andesite basalts with guartz veinlets host traces of pyrite-chalcopyritemarcasite and analyze trace gold/silver. Following the footwall is a narrow diabase/diorite dike. According to MinFiles, been traced for a distance of over 150 meters, but the writer has failed to confirm this length. The vein strikes at 135 degrees with a dip of 55 degrees to the south- west.

Other showings of carbonatized Meta andesite basalts host electrum in composite sulphide bearing quartz veins elsewhere on the property.

¹⁸ ibid

¹⁶ ibid ¹⁷ ibid

¹⁹ MinFiles

Another hard rock showing is the one known as Pictou. This showing²⁰ is located on the west side of Pine Creek, about one kilometre east of the present-day airstrip and 2 to 3 kilometres northeast of Atlin.

The occurrence consists of an extensive alteration zone hosted within ultramafic rocks of the Atlin Ultramafic Allochthon. The rocks around the Pictou of the showings are highly altered, and are related to the Monarch Mountain Thrust. As pointed out, the thrust is very flat lying, and the Pictou occurrence is actually a window through overlying peridotite, termed by Ash and others as harzburgite.

Specifically the Pictou occurrence is a wide alteration/fracture zone that has pervasive silicification, brecciation, and iron and magnesium-carbonate (listwanite?) alteration.

The zone can be up to 5 meters wide but its thickness is inconsistent. Some bull quartz and narrow radiating quartz veinlets are present although distinct quartz veins are not abundant in the alteration zone.

Breccia textures are common. Pyrite is minor with trace amounts of tetrahedrite, chalcopyrite, and fuchsite. Zoning of iron and magnesium in the carbonate alteration is common. Magnesite is present. Quartz veins are vuggy; open space textures in the zone are common.

Sampling suggests that the breccia zones are anomalous in gold and the quartz veins also anomalous in gold, silver, arsenic, and antimony.

Work on the property began in 1899 with open cuts. In 1925-27 more open cuts and a short tunnel and shaft were emplaced.

In 1938 a resident mining engineer visited the property and collected samples, which gave returns of 0.03 oz/t Au to 0.7 oz/t Au, and 0.2 oz/t Ag to 13.2 oz /t Ag. Similar results were obtained by the assistant resident mine engineer in 1933.

In 1966 T.O. "Tom" Connolly of Atlin developed more surface workings and obtained much higher gold and silver assays, ranging over 2 oz/t Au and over 200 oz/t Ag. In 1967 Connolly shipped a .91 tonne bulk sample (to Trail) but grades showed much lower values²¹.

In 1968 Connolly using a bull dozer with ripper, exposed a vein on either side of the shaft for 60 feet. Random sample returns are listed in Table 3.

²⁰ MinFiles

²¹ William M. Sharp, P.Eng, 1973. Shirley Connolly Archives.

Table 5. 1.0. Connony Random Samples, Fictou Occurrence, Athn, DC.1908									
Sample ID	Au, oz/ton	Ag, oz/ton	Cu %						
A#2	1.40	57.4	0.39						
B#2	1.54	78.3	0.42						
#2R	1.52	52.3	0.27						

Table 3. T.O. Connolly Random Sam	ples, Pictou	Occurrence.	Atlin.	BC.1968 ²²
-----------------------------------	--------------	-------------	--------	-----------------------

Table 4 shows on-site re-sampling of the Trail bulk sample.²³

Table 4. Ite Sal	upung oy onarp,	1)07 Dunk Sum	pie sent to riang	DCI
Sample ID	Sample Type	Length, ft	Au, oz/t	Ag, oz/t
40330	Continued-chip	15	0.18	0.54
40331	67	15	0.14	0.32
40332	67	15	0.08	0.39
40333	67	20	0.22	6.0
40334	67	18	0.20	1.3
Weighted Ave:		16.6	0.169	1.95

Table 4. Re-Sampling by Sharp, 1967 Bulk Sample sent to Trail, BC.

Geochemistry Soil/Silt and Rock sampling, with Outcrop Observations, Program 2008, and Ref: Figures 3 and 4.

Soil/Silt Sampling Figures 3

A total of 44 soil and 3 silt samples were collected.

Soil and silt samples with a threshold of 20 ppb Au plus are considered anomalous, given the widespread glaciofluvial in this area.

Anomalous and threshold Au soil/silt samples collected within and around BCR Como Lake Claim Block are tabulated in Table 5 below:

Table 5.	Anomalous	Soil/Silt	Gold	Returns	and	Selected	Associated	Anomalous
Elements.	Blind Creel	k Resourc	es Ltd	Como I	lake l	Project, 2	008. Ref: Fig	gure 3.

Sample ID	Soil/Silt	Au, ppb	Ag, ppm	As, ppm	Cu, ppm	Pb, ppm	Zn, ppm	Description
8BCRS 26	SOIL	105	1.9	1445	406		81	Rusty meta-andesite basalts/Proximal to Monarch Mountain Thrust
8BCRS 30	SOIL	4500	3.8	470			120	Tailings/Beavis prop/Proximal to Monarch Mountain Thrust
8BCRS 31	SOIL	45		280			104	Tailings/Beavis prop/Proximal to Monarch Mountain Thrust
8BCRS 33	SOIL	30	2.4	1025			117	Tailings/Beavis prop/Proximal to Monarch Mountain Thrust rocks
8BCRS 34	SOIL	90					99	Meta andesite basalt/proximal to Monarch Mountain Thrust rocks
8BCRS 39	SOIL	40		625				Rusty meta andesite basalt/Proximal to Pine Creek Fault
8BCRS 40	SOIL	40						Rusty meta-andesite basalts/within

²² Ibid

²³ Ibid

	1 1 2			window Monarch Mountain Thrust
8BCRS 41	SILT	25		Spruce Creek; Re-mobilized glacial sediments
8BCRS 43	SILT	125		Pine Creek; remobilized glacial sediments
BCRS 44	SOIL	185		Outcrops of 4 th July Batholith megacrystic feldspar monzonite
BCRS 78	SOIL	20	116	Carbonatized ultra-mafic rocks/proximal to Monarch Mountain Thrust rocks

Rocks Sampling, Ref: Figure 4.

Anomalous gold rock samples are regarded as threshold and over 100 ppb Au. Anomalous gold samples and associated anomalous elements are summarized and tabulated in Table 6. A total of 11 rock samples were collected.

Table 6. Anomalous Gold Samples, and Associated Anomalous Elements, Blind Creek Resources Ltd, Como Lake Project, 2009. Ref: Figure 4

Sample ID	Au, g/t	Ag, g/t	As ppm	Cu ppm	Pb ppm	Zn, ppm	Description
7R 63501	1.90	44.0	225	113			Beavis Shaft/tailings/feldspar porphyry dike/Coeval with 4 th July Batholith/window between splay extensions Monarch Mountain Thrust
7R 63502	12.4	48.00	50	135			Beavis Shaft/tailings/quartz with trace pyrite/window between splay extensions Monarch Mountain Thrust
7R 63510	4.9	10.2 ppm	1795	313			Atlin airport showing/outcrop/carbonatized meta andesite basalt

Outcrop Observations, Ref: Figures 5 and 6

The objective was to come up with a favourable prospective target area for gold within the BCR Como Lake claims.

Outcrop observations were made primarily outside the BCR Como Lake claims, except for the Atlin airport showing, Figure 5. Reference was also made to Hansen and Ash²⁴ to trace interpretations of the Pine Creek Fault and Monarch Mountain Thrust, in order to plot revised trace fault locations, Figure 5.

The writer's observations on the Imperial²⁵ claims to the north of the BCR Como Lake claims, reports on the Beavis²⁶ and Pictou²⁷ properties were also referenced. This was tied into present 2008 work.

²⁴ Hansen, L and others 2006, Ash and others 1994, 2004,

 ²⁵ Aspinall, 2007
²⁶ Ash, pers.com. 2008

²⁷ Shirley Connolly Archives.

Sampling Preparation, Analysis and Security

After the sampling program, on 19th October 2008 all samples were packed and driven in the writer's vehicle to Whitehorse, Yukon Territory, and deposited with the senior technician at the Eco-Tech Laboratory Sample Preparation Laboratory.

Samples were processed into pulps and rejects at this laboratory before the pulps being shipped to the main Eco Tech Laboratory at 10041 Dallas, Drive Kamloops, British Columbia, V2C 6T4.

Samples were then analyzed/assayed according to the following methods.

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl: HN03:H20) solution which contains beryllium and acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit. Detection limits are given below.

Detecti	on Limit		Detection Limit		
	<u>Low</u>	Upper		Low	Upper
Ag	0.2ppm	30.0ppm	Fe	0.01%	10.00%
Aİ	0.01%	10.0%	La	10ppm	10,000ppm
As	5ppm	10,000ppm	Mg	0.01%	10.00%
Ba	5ppm	10,000ppm	Mn	lppm	10,000ppm
Bi	Sppm	10,000ppm	Mo	1ppm	10,000ppm
Ca	0.01%	10.00%	Na	0.01%	10.00%
Cd	lppm	10,000ppm	Ni	1ppm	10,000ppm
Со	1ppm	10,000ppm	Р	10ppm	10,000ppm
Cr	lppm	10,000ppm	Pb	2ppm	10,000ppm
Cu	1ppm	10,000ppm	Sb	5ppm	10,000ppm
Sn	20ppm	10,000ppm			
Sr	1ppm	10,000ppm			
Ti	0.01%	10.00%			
U	10ppm	10,000рр			
V	lppm	10,000ppm			
Y	Ippm	10,000ppm			
Zn	lppm	10,000ppm			

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stages crushed to minus 10 meshes and a 250 gram subsample is pulverized on a ring mill pulveriser to -140 meshes. The subsample is rolled, homogenized and bagged in a pre-numbered bag.

The sample is weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

Samples over 1000 ppb Au and 30 ppm Ag are assayed.

Drilling

No drilling was carried on these claims during 2008, and no records of previous drilling are available within the BCR Como Lake claims.

In 2008, Saturn Minerals Inc. completed an 8 hole 855 meter drill program at the Beavis property. This was the first diamond drill program ever conducted on the property. Results have not been released at the time of writing.

Geophysics

No geophysics was done within the project area in 2008.

Data Verification

The geochemical analyses carried out on this project in 2008 were done by qualified and respected professionals in the industry. Analysis results compare favourably with MinFiles results and those from previous years.²⁸

Adjacent Properties

- Yellow Jacket
- Anaconda
- Lake View-White Star
- Atlin Ruffner Silver
- The Adanac Molybdenum Property, (Ruby Creek Molybdenum)
- Magnesite Deposits

Mineral Processing and Metallurgical Testing

During 2008 there was no metallurgical work done on mineralized material from the project.

Mineral Resource and Mineral Reserve Estimates

No mineral resource and mineral reserve estimates were made in 2008, since this survey is in pre-discovery status.

²⁸ Aspinall, A/R: 2002, 2004, 2005, 2006, 2007, 2008

Other Relevant Data

To the best of my knowledge there are no important recognized mineral showings or relevant geological/analytical data within or immediately adjacent the BCR Como Lake Project, other than those already mentioned in this report.

Interpretation and Conclusions

The objective to searching for lode gold in the Atlin Camp is to discover bonanza style gold, similar to what is known on the Yellow Jacket property, but in viable economic amounts.

The Atlin Accretionary Complex, the Atlin Ophiolite Assemblage, and associated allochthon rocks, including the Monarch Mountain Thrust and associated faults are believed to be key factors in the make-up as source rocks for Atlin placer gold.

Although bonanza grade gold and traces of gold has been found within Atlin listwanite rocks, (i.e. Yellow Jacket property, and the Pictou Property respectively) prospective areas for gold are also in rocks adjacent to listwanites. These are rocks which have been carbonatized, host quartz veins or have been subject to quartz flooding, and are adjacent to faulting or thrusting. These rocks host traces to disseminations of sulphides. Identification of chalcopyrite, galena, arsenopyrite, antimony and the proximity of chrome mica mineral mariposite are key to finding gold in bedrock.

Rocks adjacent to listwanites may range from carbonatized-quartz veined Meta andesite basalts as on the Imperial claim, to carbonatized felsic dike rock. These dikes are assumed to be Jurassic and coeval with 4th July Batholith megacrystic feldspar porphyry monzonites.

The Pine Creek fault, as pointed out by Ash, appears to be a late stage event. It does however appear to be of major importance for gold on the Yellow Jacket property, and so any exploration along this fault system have to maintain vigilance. On the Imperial Property, faulting is key, as well as on the Lake View-Whitestar. However, at the Beavis and Pictou, the Monarch Mountain Thrust Fault is key prospecting factors.

It is concluded the BCR Como Lake claims are prime prospective-exploration ground. This is not just because the ground may host gold deposits, but it because the claims are easily accessible by roads and trials to and within the property itself, and relatively accessible to water, and a historic gold camp community with an existing work force Atlin is also a good base for accommodations, communications and supplies.

Given the location and accessibility of the Como Lake claims, exploration can be all year round.

Recommendations

It is recommended the next stage of BCR work on the Como Lake claims be concentrated within the prospective zones outlined on Figure 6.

Work should include the following;

- 1. Acquire more mineral claims around present BCR claims at every opportunity
- 2. Detailed geological mapping and rock sampling
- 3. Geochemical soil sampling over outcrop or where soils have matured, but not over thick glacial sediments of any type.
- 4. Magnetic surveys
- 5. Electro magnetic surveys
- 6. IP surveys
- 7. Drill testing of specific targets, outlined after above work.

<u>Clive Aspinall, M.Sc., P.Eng</u> Geologist.

23rd February 2009

References

Aitkin, J. D., (1958) Atlin Map Area, BC. Geological Survey of Canada, Memoir 307

Ash, Chris. (1994). Origin and Tectonic Setting of Ophiolite Ultramafic and Related Rocks in the Atlin Area, British Columbia (NTS 104N). BCMM

Ash, C.H., (1994). Geology of the Atlin Area, Northwest British Columbia, Geoscience Map 2004-4, accompanies Bulletin 94. Scale 1: 25,000.

Aspinall, NC. (2002) Assessment Report Covering preliminary geological investigations for jade and serpentines on and around the Imperial mineral claim, (12 Units), tenure number 379554, Monroe Mt., Located in the Atlin Mining Division, British Columbia, Canada.

Aspinall, NC. (2004). Assessment Report Covering Preliminary Geological Investigations on Altered Ultramafic and Volcanic Rocks on the Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada.

Aspinall, NC. (2005). Geological Reconnaissance of the Lake View Mineral Claims, Tenure Nos. 408341 and 408342, Located 59 deg. 38' N, 133 deg 27' W, NTS 104N063, Atlin MD., BC.

Aspinall, N.Clive (2006) Assessment Report Covering Geological-Geochemical Investigations on Rocks and soils on the Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada. Mineral Claim Tag#209661; Field work Date: 3rd July 2006 Report Dated: 6th November 2006

Aspinall, N.C. (2007). Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada. By N. Clive Aspinall, M.Sc., P.Eng-(FMC#101024) Petrological work and rock descriptions by John G. Payne, Ph.D., P.Geo. Field work Date 3rd October 2007 Report Dated: 1^a December 2007

Aspinall, N.Clive., (2008) Event 4241763. Assessment Report on Continued Geochemical and Petrology Investigations of The Imperial Claim, (12 unites) Tenure 379554, Munro Mountain in the Atlin Mining Division, British Columbia, Canada.

Aspinall, Clive., (2005) The 2005 Geochemical Orientation Survey on Blind Creek Resources Ltd Como Lake Claim Block, North of Atlin, BC. Centred at 59° 36.470' N and 133° 41.63' W. Atlin Mining Division, British Columbia Canada

Aspinall, N. Clive (2008) Event Number 4241763, Assessment Report on Continued Geochemical Investigations of the Imperial Mineral Claim, (12 Units), Tenure Number 379554. Munro Mountain in the Atlin Mining Division, British Columbia, Canada.

BC MinFiles Master Report, CD-ROM, December 1998.

Bloodgood, Mary Anne., Bellefontaine, Kim A., (1990). Geology of the Atlin Area, (Dixie Lake and Teresa Island, 104N/6 and parts of 104N/54).

Cairnes, D.D. (1910). Portions of the Atlin District, B.C.Sessional Paper No 26.Geological Survey Branch. Department of Mines, Ottawa.

Dandy, Linda, (1987). Diamond Drilling Report on the Lakeview Property, Atlin Mining Division, NTS 104 N/11W. Mark Management. Assessment Report 15,686.

Dandy, Linda., (2005). Technical Report On the Atlin Gold Property, Atlin Mining Division, BC. For Muskox Mineral Corp., Suite 120, 3442-118 Ave SE, Calgary, Alberta, T2Z 3X1.

Davies, Brad., Justason, Angelique., (2007) ARIS 28,933. Technical Report, 2006 Exploration Program on the Como Lake claim Group, Atlin Mining Division, NTS 104N 12, Tenures 521602, 521603, 521604, and 525456.

Hansen, L., Williams, S., Anderson, R.G., and Dipple, G.M (2006). Bedrock Geology, Monarch Mountain area (NTS 104N 12), British Columbia, Geological survey of Canada, Open file 5268, Scale 1:10,000.

Holland, S.S., (1950). Placer Gold Production of British Columbia. B.C Ministry of Energy, Petroleum Resources, Bulletin 28, pp.89.

Robertson, W.F. (1899). Cassia district; In Annual Report of the Minister of Mines, 1898, BC Department of Mines, pp 985-991.

Robinson, Paul. T., Maples, John, Mei-Fu Zhu., Ash, Chris, Jing-Sui Yang, Sen-i Bay. (2005). Geochemistry and Origin of Listwanites in the Sartohay and Luobusa Ophiolites, China.

Levson, V.M., Kerr, D.E., Lowe, C., and Blyth, H. (2003). Quaternary Geology of the Atlin area, British Columbia Geological Survey Branch, Geoscience Map 2003-1 and Geological Survey of Canada, Open File 1562, Scale 1:50,000.

McIvor, Duncan (1988) Summary Report: geological mapping and lithological sampling Programs on the Lear Property, (West Claim Group). Atlin Mining Division, British Columbia. Assessment Report # 17,495.

Monger J.W.H. (1975). The Upper Palaeozoic rocks of the Atlin Terrane, northwest British Columbia and South Central Yukon, GSC Paper 74-7.

Sack, Patrick, J and Mihalynuk, Mitchell, G., (2003?). Proximal gold-cassiterite nuggets and composition of Feather Creek placer gravels; clues to a lode source near Atlin, B.C.

Souther, J.G., (1971). Geology and mineral Deposits of Tulsequah Map Area, British Columbia. Geological Survey of Canada, Memoir 362. GSC Memoir 37, 1913.

Appendices

Photographs

Looking SW from Mt. Munro and Imperial claim, towards Como Lake Block Claims, Atlin airstrip, and Lake Atlin. Atlin airstrip showing lies central area of Atlin airstrip; Beavis shaft lies on east lake shore extreme right side of photograph. The community of Atlin lies along lake shore inland from islands. Torres channel separates Atlin Mountain to right, Teresa Island to Left, of photograph.

Airport showing, Atlin, BC.

Beavis Shaft, Atlin, BC.

Copies original Eco Tech Laboratory Data sheets, Analytical and Assays

Alex Stewart Geochemical ECO TECH LABC ORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.alexstewart.com

ICP CERTIFICATE OF ANALY: \ \K 2008- 1708

Clive Aspinall 3A Diamond Way Whitehorse, YT Y1A 6G4

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 30 Sample Type: Soil **Project: Como Lake Blk** Submitted by: Clive Apsinall

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Au(ppb)	Ag A	1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	<u>Na %</u>	Ni	P	Pb	Sb	Sn	Şr	<u>Ti %</u>	<u> </u>	<u>v</u>	<u></u>	Y	Zņ
1	8BCRS23	<5	<0.2 1	.58	90	640	<5	1.12	4	6	74	15	3.18	30	1.73	1054	19	0.03	129	1390	<2	115	<20	18	< 0.01	<10	100	<10	<1	97
2	8BCRS24	10	<0.2 1	.67	285	760	<5	1.56	2	8	27	58	5.74	50	1.21	1265	27	0.06	95	340	<2	130	<20	27	<0.01	<10	131	<10	<1	65
3	8BCRS25	<5	<0.2 1	1.11	630	175	<5	0.59	2	111	394	23	7.21	<10	1.38	1417	28	0.01	1168	250	<2	185	<20	56	<0.01	<10	58	<10	<1	87
4	8BCRS26	105	1.9 1	.84 1	445	220	<5	2.15	3	123	56	406	>10	<10	1.22	1884	46	0.04	157	710	10	245	<20	146	<0.01	<10	142	<10	4	81
5	8BCRS27	<5	0,5 1	.48	90	175	<5	0.50	7	28	75	31	5.51	10	0.94	809	29	0.01	97	60	<2	150	<20	24	<0.01	<10	114	<10	<1	57
~	000000	-5	-0.0.4	04	40	00F	~5	0.00	•	22	10	50	E 95	-10	0.70	4 4 77	20	0.00	07	440	-0		-00		-0.04	-40	400	.40		-
<u>o</u>	88CR528	<5 -E	<0.2 1	1.94	40	205	50 25	0.09		42	40	28	5.35	< 10 00	0.79	11//	30	0.02	07	110	~2	145	<20	39	<0.01	<10	139	<10	<1	12
	88CK529	<5 4500	<0.2 1	00.00	10	120	<0 ∠E	0.31	-1	12	90	20	4.11	20	1.30	400	27	10.01	142	<10	~2	135	<20	31	<0.01	<10	135	<10	<1	41
ð	8BCK530	4000	3.8 0	1.00	470	<0 200	50 -5	3.57	<1 E	13	39	00	3.33	30	1.00	710	19	<0.01	110	900	< <u><</u>	115	<20	168	<0.01	<10	09	<10	<1	120
9	8BCR531	40	0.5 1	.20	280	320	<0	1.03	5	22	109	400	4.70	30	1.20	100	33	0.02	160	000	<2	105	<20	50	<0.01	<10	87	<10	<1	104
10	8BCRS32	5	<0.2 2	2.18	55	245	<5	0.80	9	40	120	108	J .//	30	1.92	1503	42	0.02	155	1330	2	165	<20	25	<0.01	<10	143	<10	2	161
11	8BCRS33	30	2.4 1	1.23 1	025	460	<5	1.21	1	35	56	69	6.89	30	0.69	2652	28	0.01	224	1080	42	145	<20	60	<0.01	<10	122	<10	10	117
12	8BCRS34	90	0.2 1	.34	25	245	<5	1.26	5	18	20	67	3.55	<10	0.57	1356	18	<0.01	44	1800	4	90	<20	72	< 0.01	<10	70	<10	<1	99
13	8BCRS35	<5	0.2 2	2.06	60	400	<5	1.15	8	40	35	71	5.44	<10	0.62	2400	30	0.02	68	2200	18	130	<20	69	< 0.01	<10	102	<10	<1	239
14	8BCRS36	<5	<0.2 1	.15	<5	175	<5	2.39	9	44	44	95	6.17	<10	1.24	1015	24	0.01	105	730	16	135	<20	79	< 0.01	<10	103	<10	17	46
15	8BCRS37	<5	<0.2 0).78	10	95	<5	1.50	6	22	129	34	2.73	<10	2.38	461	17	0.02	220	520	14	110	<20	32	<0.01	<10	56	<10	<1	58
16	8BCRS38	<5	<0.2 2	2.48	<5	125	<5	0.44	9	34	79	51	6.58	<10	1.13	760	35	0.02	88	440	38	165	<20	25	<0.01	<10	194	<10	10	66
17	8BCRS39	40	<0.2 0).85	625	215	<5	1.14	4	24	25	39	>10	10	0.51	1436	35	<0.01	124	440	<2	200	<20	53	<0.01	<10	112	<10	20	64
18	8BCRT40	40	<0.2 2	2.73	60	720	<5	0.85	9	22	132	40	5.46	10	3.04	504	36	0.07	110	11 60	<2	205	<20	52	<0.01	<10	187	<10	<1	67
19	8BCRT41	25	<0.2 0).84	<5	85	<5	1.08	6	23	175	28	3.04	<10	2.26	413	16	0.02	226	440	18	95	<20	30	0.01	<10	59	<10	<1	41
20	8BCRT42	10	<0.2 0).95	25	70	<5	0.50	6	20	183	20	2.54	10	2.83	346	19	0.02	275	380	4	125	<20	22	<0.01	<10	61	<10	<1	33
									_														~ ~							
21	8BCRS43	125	<0.2 1	1.07	35	95	<5	0.70	8	22	1/4	29	3.30	20	2.34	406	25	0.02	285	430	<2	155	<20	19	< 0.01	<10	78	<10	<1	43
22	8BCRS44	185	<0.2 0).85	<5	225	5	0.28	4	14	98	9	2.49	<10	0.68	654	12	0.01	85	880	20	65	<20	13	0.02	<10	53	<10	<1	46
23	BCRS45	<5	<0.2 0).94	30	305	<5	0.40	5	9	/6	<1	2.49	20	0.87	592	17	0.01	98	850	<2	100	<20	4	< 0.01	<10	66	<10	<1	37
24	8BCRS46	<5	<0.2 0).26	20	50	<5	0.11	2	<1	13	<1	1.86	10	0.08	54	9	0.01	17	230	<2	30	<20	<1	< 0.01	<10	60	<10	<1	16
25	8BCRS47	<5	<0.2 1	00.1	<5	120	<5	0.25	5	18	134	14	2.84	<10	1.23	405	16	0.01	155	420	22	85	<20	17	0.02	<10	54	<10	<1	55

Et #.	Tag #	Au(ppb)	Ag /	<u> </u>	As	Ba	Bl	Ca %	Cd	Co	Сг	Cu	<u>Fe %</u>	<u>La</u>	<u>Mg %</u>	Mn	Mo	<u>Na %</u>	<u>Ni</u>	<u> </u>	Pb	Sb		<u>Sr</u>	<u> </u>	<u> </u>	<u> </u>		<u>Y</u>	<u>_Zn</u>
26	8BCRS48	5	<0.2 (0.87	<5	295	10	0.29	4	20	97	7	2.52	<10		1060	14	0.01	93	590	20	70	<20	23	0.01	<10	53	< 1	<1	35
27	8BCRS49	,Ĵ	<0.2	0.87	<5	125	<5	0.29	4	14	104	6	2.45	<10		295	16	0.01	105	130	18	75	<20	24	<0.01	<10	59	<	<1	27
28	8BCRS50	5	<0.2	1.27	15	120	<5	0.40	8	25	171	29	3.14	10	2.12	478	23	0.02	300	390	18	130	<20	17	<0.01	<10	73	<10	<1	43
29	8BCRS51	5	<0.2	1.44	10	125	<5	0.33	7	29	196	29	3.51	<10	2.13	470	22	0.02	304	360	28	125	<20	18	<0.01	<10	78	<10	<1	39
30	8BCRS52	<5	<0.2	0.93	<5	65	<5	0.35	6	32	157	38	2.95	<10	3.41	362	18	0.02	460	450	18	120	<20	12	<0.01	<10	60	<10	<1	27
<u>00 г</u>	DATA:																													
' өрөа	t:																													
1	8BCRS23	<5	<0.2	1.56	75	670	<5	1.12	5	10	80	20	3.16	30	1.79	1018	19	0.03	129	1430	<2	115	<20	20	<0.01	<10	93	<10	<1	100
4	8BCRS26	150																												
10	8BCRS32	5	<0.2	2.16	60	225	<5	0.80	9	32	116	100	5.81	30	1.92	1516	41	0.02	161	1310	<2	175	<20	21	<0.01	<10	151	<10	1	156
19	8BCRT41	20	<0.2	0.84	<5	80	<5	1.13	6	21	171	28	3.04	<10	2.29	397	16	0.01	228	440	18	100	<20	28	0.02	<10	59	<10	<1	40
28	8BCRS50		<0.2	1.23	10	120	<5	0.39	6	26	170	28	3.08	<10	2.03	465	19	0.02	287	420	22	125	<20	12	<0.01	<10	69	<10	<1	43
Stan	dard:																													
SF30)	830																												
Till3			1.5	1.00	90	50	<5	0.55	2	12	59	18	1. 96	10	0.60	315	10	0.02	38	440	20	50	<20	14	0.02	<10	38	<10	2	39

JJ/sa df/1708 XLS/08 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 12-Jan-09 Alex Stewart Gentemical ECO TECH LAL TORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF LYSIS AK 2008- 1788

Clive Aspinall GgicatPillman Hill, Box 22Attin, BCVOW 1A0

No. of samples received: 19 Sample Type:Soil **Project: Como Lake Shipment #:5** Submitted by: Clive Aspinall

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Au(ppb)	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr_	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
1	8BCRS-53	5	<0.2 1.04	<5	250	<5	0.61	<1	20	137	21	2.88	10	1.30	645	1	0.02	195	1010	10	10	<20	32	0.07	<10	56	<10	5	47
2	8BCRS-54	<5	<0.2 0.92	<5	295	<5	0.62	<1	17	104	17	2.28	<10	1.02	649	<1	0.02	127	840	8	<5	<20	40	0.08	<10	42	<10	3	49
3	8BCRS-55	<5	<0.2 1.11	15	160	<5	0.40	<1	24	149	22	2.9 1	<10	1.50	518	1	0.02	215	390	10	10	<20	15	0.10	<10	60	<10	5	37
4	8BCRS-56	<5	<0.2 1.91	<5	170	<5	1.22	<1	29	73	63	4.72	20	0.77	1938	3	0.02	56	1180	12	<5	<20	53	0.06	<10	138	<10	19	66
5	8BCRS-57	5	<0.2 1.42	40	240	5	2.33	<1	31	151	35	4.44	<10	1.54	1139	2	0.03	107	990	10	10	<20	102	0.06	<10	86	<10	9	67
6	8BCRS-75	<5	<0.2 0.81	10	140	<5	0.30	<1	19	106	10	2.08	<10	0.94	576	1	0.02	96	300	6	10	<20	14	0.09	<10	41	<10	2	27
7	8BCRS-76	<5	<0.2 0.50	<5	470	<5	0.53	<1	12	8	6	3.52	10	0.15	995	1	0.01	45	1100	16	<5	<20	26	0.03	<10	53	<10	12	50
8	8BCRS-77	10	<0.2 1.87	70	295	<5	0.87	<1	44	149	23	6.50	<10	1.78	1386	2	0.02	244	710	12	5	<20	67	0.05	<10	153	<10	6	62
9	8BCRS-78	20	<0.2 0.76	<5	360	15	0.78	1	158	884	10	9.06	<10	1.50	1691	1	0.02	1763	1190	6	<5	<20	55	0.07	<10	63	<10	<1	116
10	8BCRS-79	<5	<0.2 1.33	120	275	<5	5.57	<1	9 7	165	7 9	5.73	30	5.70	480	2	0.02	2524	4440	10	25	<20	345	0.06	<10	154	<10	7	34
11	8BCRS-80	<5	<0.2 0.75	45	335	5	0.60	<1	68	483	21	5.52	<10	1.36	888	1	0.02	855	900	8	15	<20	49	0.05	<10	47	<10	<1	95
12	8BCRS-81	<5	<0.2 1.14	<5	135	<5	0.45	<1	25	113	24	2.77	<10	2.08	504	<1	0.02	294	550	12	15	<20	29	0.09	<10	58	<10	6	40
13	8BCRS-82	<5	<0.2 0.57	280	120	10	4.19	1	108	383	9 4	7.11	<10	6.44	1001	4	0.01	2105	350	6	45	<20	254	0.05	<10	50	<10	<1	25
14	8BCRS-83	5	<0.2 1.68	15	170	<5	0.46	<1	23	161	19	3.40	<10	1.53	440	1	0.02	139	250	16	5	<20	26	0.12	<10	87	<10	3	43
15	8BCRS-84	10	<0.2 2.19	15	170	5	0.36	<1	27	77	33	4.47	<10	0.69	880	2	0.02	96	570	16	<5	<20	20	0.07	<10	8 9	<10	2	54
16	8BCRS-85	5	<0.2 0.77	<5	140	15	0.17	3	36	52	218	>10	10	0.74	197	8	0.04	85	1150	14	<5	<20	31	0.16	<10	69	<10	<1	33
17	8BCRS-86	<5	<0.2 1.48	<5	100	<5	0.28	1	135	102	256	7.77	<10	2.75	347	4	0.02	522	740	12	5	<20	16	0.10	<10	106	<10	<1	46
18	8BCRS-87	<5	<0.2 2.08	<5	110	10	0.48	<1	36	117	61	6.37	<10	0.96	430	5	0.02	81	370	14	<5	<20	32	0.12	<10	148	<10	7	53
19	8BCRS-88	<5	<0.2 1.07	5	135	<5	0.51	<1	12	64	12	2.23	<10	0.65	400	<1	0.02	63	280	8	5	<20	27	0.08	<10	60	<10	2	32
	[A:																												
Hepeat		-		-	0.05	-	0.00		~~	407						•	0.00			4.0			~~	0.00	10		4.0	~	10
1	BBCHS-53	<5	<0.2 1.08	<5	265	<5	0.62	<1	22	137	22	2.98	10	1.38	668	2	0.02	202	1030	10	10	<20	36	0.08	<10	59	<10	5	48
10	AHCHS-79	5	<02.138	115	- 270	<5	5.69	<1	9/	167	80	5.85	- 30	5.84	482	~ ~	0.02	2541	4500	ĸ	- (A)	<20	-156	0.06	< 1()	158	<10	6	- 33

INF VERTIFICATE OF ANALTSIS AN 2000- 1034

оние Азринан

<u>Et #.</u>	Tag #	<u>vpb)</u>	Ag Al ?	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>M</u>	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	<u> </u>	¥	<u>Y</u>	Zn
OC D/ Repea 1 10 19	ATA: #: 8BCRT-89 8BCRS-99 8BCRS-108	25 15 <5	<0.2 0.7 <0.2 1.0 <0.2 1.2	5 15 2 15 9 25	80 100 130	<5 <5 <5	1.44 0.40 0.26	<1 <1 <1	15 21 18	98 109 103	42 35 44	2.48 2.24 2.69	<10 <10 <10	1.48 1.13 1.34	373 537 261	2 <1 <1	0.01 0.02 0.02	128 171 131	470 290 410	4 4 <2	<5 <5 <5	<20 <20 <20	28 15 15	0.05 0.05 0.09	<10 <10 <10	32 42 60	<10 <10 <10	4 5 2	53 42 44
Stand Till-3 SF30	ard:	835	1.4 1.0	3 90	40	<5	0.52	<1	12	55	19	1.98	10	0.59	300	<1	0.03	30	440	16	<5	<20	19	0.06	<10	33	<10	6	39

JJ/ap df/n1834s XLS/08

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ECO TEC	H LAB ⁷) .						ICP C	ERTI	FICA'	TE OF	<u>۸۰، ۱</u>	LYSIS	AK 20	08- 1	788						Clive	Aspir	nall G	enio	gical		
Et #.	Tag #	Au(ppb)	Ag Ai%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
Standard:																													_
Till-3			1.5 1.01	70	40	<5	0.51	<1	12	60	21	1.95	<10	0.58	306	2	0.03	- 32	460	24	<5	<20	10	0.08	<10	37	<10	8	39
SF30		830																											
JJ/nw																					(
dt/1770s																					FCO	TECH		PATC		n			
XL3/00																					Jutta.	ieslou		UNAIC		υ.			
																					B.C. (Certifie	d Ass	sayer					

.

ICP CERTIFICATE OF ANALYS N 2008- 8527

Alex Stewart Geochemical ECO TECH LABC ORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.alexstewart.com

Clive Aspinall 3A Diamond Way Whitehorse, YT Y1A 6G4

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 7 Sample Type:Rock Project: Como Lake Blk Shipment #:4 Submitted by:Clive Aspinall

Values in ppm unless otherwise reported

<u>Et #</u>	Tag #	Au(ppb)	Ag /	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	Y	Zn
1	7R63501	>1000	27.9	0.62	225	45	5	9.67	<1	30	148	113	4.24	10	4.18	1003	5 < 0.01	58	2940	34	30	<20	852	0.05	<10	63	<10	6	55
2	7R63502	>1000	>30	0.06	50	10	<5	1.20	<1	5	184	135	0.85	<10	0.50	123	6 <0.01	20	50	12	30	<20	123	<0.01	<10	6	<10	<1	49
3	7R63503	5	0.2	0.03	10	25	<5	0.71	<1	54	313	38	3.39	<10	>10	610	6 <0.01	808	<10	6	25	<20	57	0.03	<10	11	<10	<1	26
4	7R63504	60	1.1	1.22	<5	165	<5	0.14	6	195	48	1179	>10	<10	0.35	357	23 < 0.01	181	<10	24	<5	<20	21	0.26	<10	117	<10	<1	52
5	7R63505	5	0.2	0.11	25	10	5	8.29	1	5	114	8	3.22	<10	3.52	1397	3 <0.01	9	80	8	20	<20	551	0.04	<10	23	<10	1	22
6	7R63506	<5	<0.2	0.35	30	35	<5	>10	2	15	91	36	4.06	<10	6.06	932	8 <0.01	22	1380	8	25	<20	414	0.04	<10	93	<10	18	58
7	7R63507	<5	<0.2	0.03	10	45	<5	0.05	<1	2	199	11	0.43	<10	0.02	31	<1 <0.01	11	20	4	<5	<20	5	<0.01	<10	3	<10	<1	3
QC <i>Rep</i> 1 4	DATA: 7R63501 7R63504	>1000 60	27.9	0.64	220	50	<5	9.68	<1	29	155	113	4.27	20	4.23	1009	5 <0.01	58	2950	30	25	<20	862	0.05	<10	65	<10	6	52
Res j 1	o <i>lit:</i> 7R63501	>1000	28.6	0.63	220	50	<5	9.70	<1	29	151	119	4.25	20	4.23	1022	5 <0.01	56	2930	28	25	<20	862	0.05	<10	64	<10	6	50
Stan Pb12 Se29	d ard: 29a 9	605	11.9	0.87	10	65	<5	0.49	55	7	12	1411	1.59	<10	0.65	357	28 0.03	6	410	##	25	<20	29	0.04	<10	20	<10	<1 9	908

JJ/ap df/8528s XLS/08

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AF 8-8590

Alex Stewart Georbemical ECO TECH LABC ORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557 Clive Aspinall 317 Diamond Way Whitehorse, YT Y1A 6G4

No. of samples received: 4 Sample Type:Rock **Project: Como Lake Shipment #:8** Submitted by:Clive Aspinall

Values in ppm unless otherwise reported

Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cų	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
7R63510	>1000	10.2	0.15	1795	60	<5	7.36	10	66	81	313	7.36	<10	4.10	700	5	0.01	80	20	68	15	<20	162	0.03	<10	27	<10	<1	55
7R63511	50	3.4	0.04	<5	205	<5	0.15	7	213	3	1179	>10	30	0.01	87	11	<0.01	127	120	12	<5	<20	8	0.08	<10	2	<10	<1	20
7R63512	5	0.6	0.15	<5	65	<5	0.38	2	115	115	303	9.17	20	0.07	90	6	<0.01	55	1210	6	<5	<20	<1	0.02	<10	14	<10	<1	11
7R63513	<5	0.2	3.69	<5	115	<5	7.67	2	198	58	310	8.51	10	4.00	575	4	0.09	548	1210	16	5	<20	95	0.12	<10	176	<10	3	35
7R63510	QC DATA Repeat: >1000	10.5	0.17	1780	60	<5	7.29	11	68	79	303	7.31	<10	3.98	690	6	0.01	82	40	68	15	<20	153	0.03	<10	27	<10	<1	55
7R63510	>1000	10.9	0.15	1835	60	<5	7.38	11	74	88	342	7.87	<10	4.07	718	5	0.01	87	20	76	15	<20	149	0.03	<10	26	<10	<1	62
	600	11.3	0.83	10	70	<5	0.51	59	7	11	1459	1.70	<10	0.71	377	5	0.03	7	420	6117	10	<20	30	0.04	<10	20	<10	<1 9	909

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AW 2008-8527

Clive Aspinali 3A Diamond Way Whitehorse, YT

Y1A 6G4

10-Dec-08

No. of samples received: 7 Sample Type:Rock **Project: Como Lake Blk Shipment #:4** Submitted by:Clive Aspinall

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
1	7R63501	1.90	0.055	44.0	1.283
2	7R63502	12.4	0.360	48.0	1.400
<u>uC DAT/</u> Resplit:	<u>A:</u>				
1	7R63501	2.01	0.059		
Standard	1:				
OX167		1.80	0.052		
SK43		4.03	0.118		
Pb129				24.1	0.703

ECO TECH LABORATORY LTD.

JJ/nw XLS/08 Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2008-8590

20-Nov-08

Clive Aspinall 317 Diamond Way **Whitehorse, YT** Y1A 6G4

No. of samples received: 4 Sample Type:Rock **Project: Como Lake Shipment #:8** Submitted by:Clive Aspinall

ET #.	Tag #		Au (g/t)	Au (oz/t)
1	7R63510	······································	4.90	0.143
<u>) DAT</u>	<u>A:</u>			
Resplit:				
1	7R63510		5.30	0.155
Standar HiSilk2	d:		3.50	0.102

JJ/ap XLS/07 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Cost of Field Work, 27TH September-17th October 2008, From Atlin, B.C. and Reporting, 14-23rd February 2009, in Whitehorse, YT.

Field work, 8 days at \$800.00 per day	\$6,400.00
Report& Maps Preparation, 8 days/\$450 per da	ıy\$ 3,600.0 0
Analyses 47 soil/silts at \$30 per sample	\$1,410.00
Analyses, 11 rocks at \$30 per sample	\$330.00
Transportation and fuel, 8 days/\$50 per day	\$400.00
Report Reproduction	\$100.00
Total	\$ <u>12,240.00</u>

Qualifications of writer

I, N. Clive ASPINALL, of Pillman Hill, the community of Atlin, British Columbia, and the City of Whitehorse Y.T do hereby certify that:

- I am a geologist with private offices within the above community and City
- I am a graduate of McGill University, Montreal, Quebec, with B.Sc degree in Geology (1964), and a Masters degree (1987) from the Camborne School of Mines, Cornwall, England, in Mining Geology.
- I am registered member of the Associations of Professional Engineers in the province of British Columbia.
- I have no material interest in present Blind Creek Resources Ltd claims covered by this report.
- I have practiced mineral exploration for 52 years, in countries such as Libya, Saudi Arabia, North Yemen, Morocco, Indonesia, Mexico, Peru, Argentina, USA, Newfoundland, Ontario, Quebec, British Columbia and Yukon Territory, Canada.

I am author of: Event Number 4248761

Blind Creek Resources Ltd Como Lake Project, covering Tenures 521602, 561603, 521604, 525456, 525458, Centered North and East of Atlin, BC. Centred at 59° 36.470' N and 133° 41.63' W Atlin Mining Division, British Columbia Canada, By Clive Aspinall, M.Sc., P.Eng For Blind Creek Resources Ltd, 15th Floor, 675 W. Hastings Street, Vancouver, BC, Canada, V6B 1N2.

Signed in Whitehorse, YT, 23rd February 2009.

Respectfully submitted,

<u>N. CLIVE ASPINALL, M.Sc. P.Eng.</u>