Geological Evaluations of Natural Rhyolite Pozzolan Twin Lakes Area

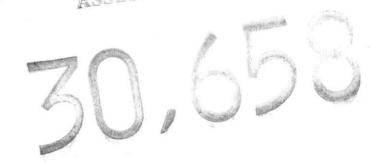
BC Geological Survey Assessment Report 30658

MAR 2 5 2009

Gold Commissioner's Office VANCOUVER, B.C.

Osoyoos Mining Division British Columbia

Mineral Titles Reference Map M082E032 Lat. 49° 19.1' N, Long. 119° 45.4' W


> -forowners/operators B.N. Church and D.R. Haughton

> > Prepared by
> > B. Neil Church, P.Eng.
> > Victoria, B.C.
> > December 31<sup>st</sup>, 2008

TITLES DIVISION, MINERAL TITLES VICTORIA, BC

MAR 2 4 2009

FILE NO. \_\_\_\_\_



### **Table of Contents**

|                                                 | Page                 |
|-------------------------------------------------|----------------------|
| Summary                                         | 2                    |
| Introduction                                    |                      |
| The Property                                    |                      |
| Location and Access                             | . 6                  |
| Physiography and Climate                        |                      |
| Background Cools giot Setting                   | 9                    |
| Geological Setting Work Done                    | 7 .<br>/0            |
| Conclusions and Recommendations                 | 17                   |
| References                                      | 19                   |
| •                                               |                      |
| Illustrations                                   | _                    |
| Figure 1 Location Map Figure 2 Claim Map        | 3<br>4               |
| Figure 3 Geology of the Twin Lakes Area         | 12                   |
| Figure 4 Survey Stations                        | , <del>.</del><br>15 |
| Figure 5 Pozzolanic Activity and Strength Tests | 18                   |
| , , , , , , , , , , , , , , , , , , , ,         |                      |
| Tables                                          |                      |
| Table 1 The Twin Lakes Property                 | 5                    |
| Table 2 Notes to Accompany Figure 4             | 16                   |
| Photos                                          |                      |
| Photo 1 Panorama of Twin Lakes Volcanic Centre  | 7                    |
| Photo 2 Tuff Breccia, Olalla Formation          | 8                    |
| Photo 3A Scallop weathering                     | It                   |
| Photo 3B Massive ash flow                       |                      |
| Photo 3C Graded tuff breccia                    |                      |
| Appendix A Statement of Costs                   | 20                   |
| Appendix B Analytical Results                   | 22                   |
| B-1 Dates, K/Ar                                 | ~~                   |
| B-2 Geochemistry                                |                      |
| B-3 Mineralogy                                  | 39                   |
| B-4 XRD & CEC Analyses                          |                      |
| B-5 Petrography                                 | 55                   |
| B-6 Pozzolan Testing                            | 61                   |
| Appendix C                                      | 6 <i>5</i>           |
| Statement of Qualifications                     | -4                   |

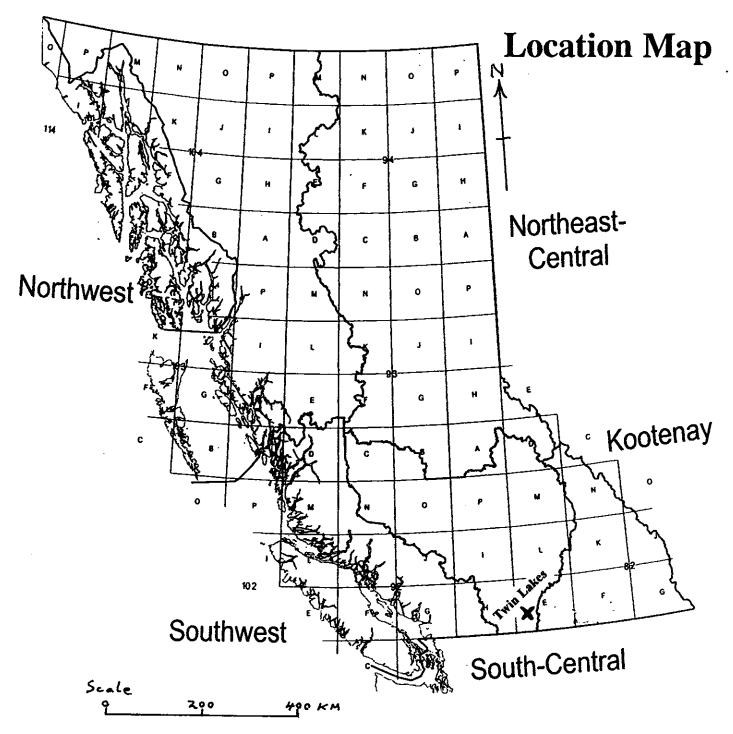
### Summary

This is part of a continuing investigation of the industrial mineral potential of the Olalla Formation in the western part of the Penticton Tertiary outlier.

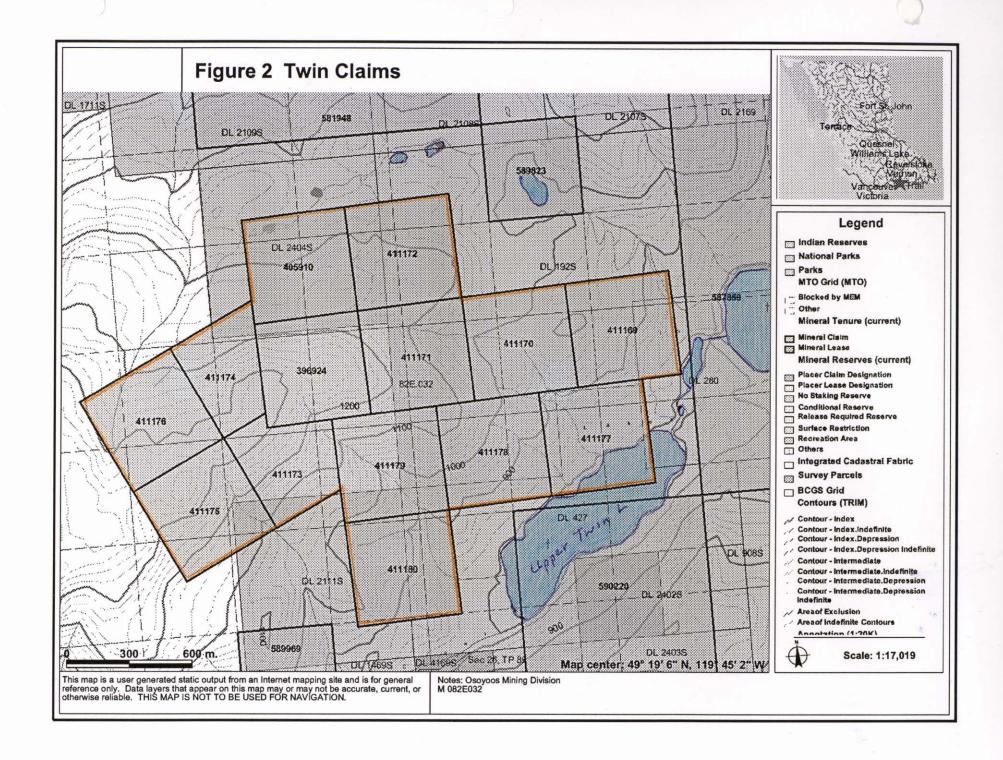
The Olalla Formation is mostly altered rhyolite lava and tuff breccia capped by an obsidian dome. When these rocks are crushed and mixed with lime, the glassy fragments and rock powder react, when water is added, to form cementing calcilicate minerals. Tests for pozzolanic activity and compressive strength produce values well within ASTM standards for pozzolanic cement.

### Introduction

The Twin Lakes property is located in the central part of the Okanagan-Similkameen Regional District that extends from Osoyoos at the US border, north to Summerland and west to Manning Park. Penticton is the major center - Oliver, Princeton, Keremeos, Cawston and Hedley are other notable communities in the district. The regional economy is varied and includes agriculture, tourism, light manufacturing, forestry and mining.


This report is an update of previous research with the focus on the industrial mineral potential of rhyolite and dacitic rocks of the Penticton Tertiary outlier. In particular, several zeolite (clinoptilolite) localities were identified in a 5-km-long belt of Eocene dacitic tuff by Manuel Creek northeast of Keremeos (Church, 2002a). This was followed by examination of an area of rhyolite obsidian, previously dated as Miocene age, in the Twin Lakes area. Chemical analyses of the glassy rocks indicated a possible perlite resource (Church, 2003). The surrounding area is underlain by large thickness of breccia and tuff petrographically similar to the Manuel Creek deposit.

The current study is a survey of the Twin Lakes volcanic complex (Olalla Formation) with a view to further evaluation the perlite, zeolite and pozzolan potential of these rocks. This was achieved by chemical analyses, petrography, X-ray diffraction analysis, cation exchange capacity (CEC) estimates and pozzolanic activity- and strength-curing time testing.


### The Property

The property, owned jointly by B.N. Church and D.R. Haughton consists of 14 two-post claims (Table 1) of 25 hectares each located about 14 km west of the town of Okanagan Falls in the Osoyoos Mining Divison of the southern interior of British Columbia (Figs. 1 and 2).

Figure 1



~ 3 ~



### **Table 1 The Twin Lakes Property**

| <u>Tenure</u><br>Number | <u>Claim</u><br>Name | <u>Map</u><br>Number | Good To<br>Date | Area | Registered Owner                     |
|-------------------------|----------------------|----------------------|-----------------|------|--------------------------------------|
| 396924                  | Twin1                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 405910                  | Twin2                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411169                  | Twin3                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411170                  | Twin4                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411171                  | Twin5                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411172                  | Twin6                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411173                  | Twin7                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411174                  | Twin8                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411175                  | Twin9                | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411176                  | Twin10               | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411177                  | Twin11               | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411178                  | Twin12               | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411179                  | Twin13               | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |
| 411180                  | Twin14               | 082E032              | 2016/June/06    | 25.0 | B.N. Church 50%<br>D.R. Haughton 50% |

#### Location and Access

The property is centered 1.5 km northwest of Upper Twin Lake (elev. 1,200 to 1,300 m) at Lat. 49° 19.1', Long. 119° 45.4'. Access to the property is approximately 5 km by paved road southwest from Highway 3A to the public wharf/parking site at the west end of Lower Twin Lake, then another 3 km proceeding westerly by dirt road to the property (Figs. 2, 3 and 4).

### Physiography and Climate

The region is characterized by low mountainous terrain that is bounded by the Okanagan valley on the east (elev. ~530m), and the Similkameen and tributary valleys on the west (elev. ~550). The concordant summits surrounding Twin Lakes, rising to more than 1,300 m elev. ('The Ridge'area on Fig. 4), are remnants of a once continuous upland surface that comprises the southern extremity of the Thompson Plateau (Photo 1).

The low parts of the region and south-facing slopes are generally open ranch lands with plentiful grasses, sagebrush and cactus. The summits and north-facing slopes include rocky outcrops interspersed with pine, spruce and fir trees of sufficient density to support intermittent logging operations (Photo 2).

Climatic conditions are generally warm and dry during the summer months; freezing conditions may occur anytime from November to April. Total annual precipitation of combined rain and snowfall water equivalent is about 30 cm.

### Background

Natural pozzolan is a siliceous or siliceous and aluminous geological resource, which, in a finely divided form, reacts with lime and water, at ordinary temperatures, to form cement (ACI Committee, 2002; Meheta, 1987). The ancient Greeks between 600 and 700 BC used pozzolan for construction purposes and their techniques were later passed on to the Romans (Mumpton, 1999). Glassy volcanic ash or tuff is the principal resource. The glassy nature and/or fine grain size of this material promotes reaction with calcium hydroxide to form interlocking aluminum-rich and calculate mineral phases in the cementation process. Alternative pozzolanic source materials include shale, diatomite and the cinders or fly ash produced from coal burning.

According to the Canadian Minerals Yearbook annual cement production in British Columbia is approximately 2 million tonnes, most of which is Portland cement. Pozzolanic cement has special benefits but currently has found use mostly as an additive. Wider use is constrained by the limited availability of this resource.



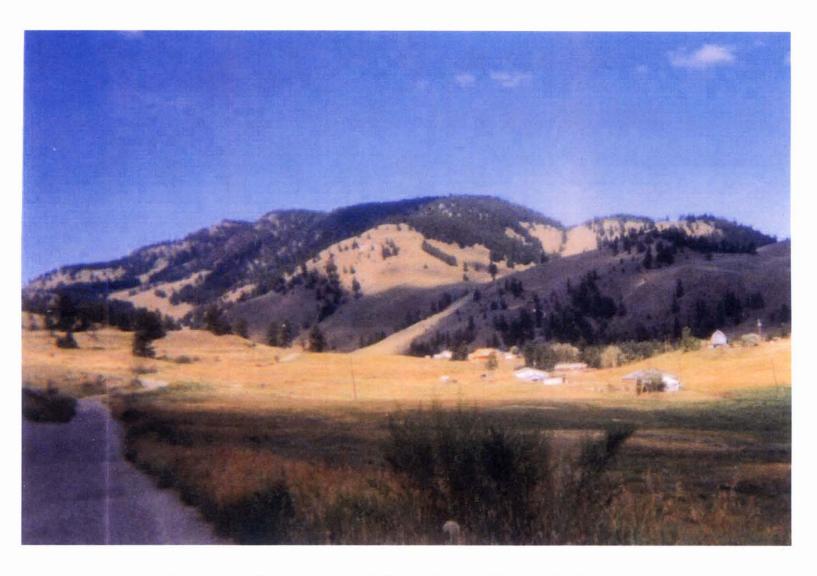



Photo 1 Panorama of Twin Lakes Volcanic Centre



Photo 2 Tuff Breccia, Olalla Formation

The benefits of using pozzolan as a replacement or partial replacement of Portland cement includes enhanced strength and textural quality of the concrete. For example, the high fines content of pozzolan reduces the permeability of the concrete lining of waterways (flumes) and water reservoirs. Also pozzolan has the advantage that it can be used to reduce the rate of heat produced during the hydration of cement while constructing massive concrete structures such as dams. Excess heat of hydration can cause cracks in concrete leading to leaking and structural failure. In addition, pozzolan is resistant to acid attack and undesirable alkali-aggregate reactions that can cause fissuring, spalling and ablation of the concrete.

There are cost and environmental benefits achievable by replacing a portion of the Portland cement with natural pozzolan. To make Portland cement the key process is the production of lime (CaO) by calcination of limestone (CaCO<sub>3</sub>) and, by this process, each tonne of limestone yields approximately 0.78 tonnes of carbon dioxide (CO<sub>2</sub>) - a major greenhouse gas. The energy consumption is equivalent to about six million British Thermal Units (BTUs).

Natural pozzolan has cementing properties, complementary to Portland cement, and requires no energy consumption for calcination and there is no carbon dioxide byproduct.

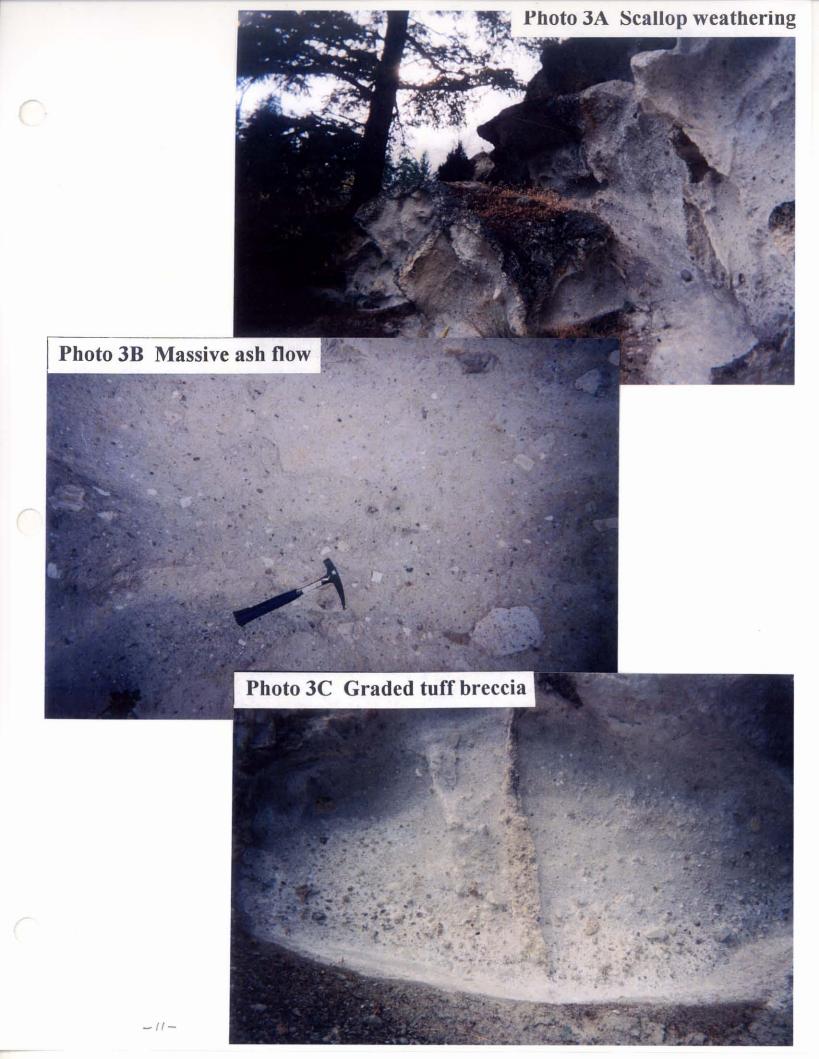
### **Geological Setting**

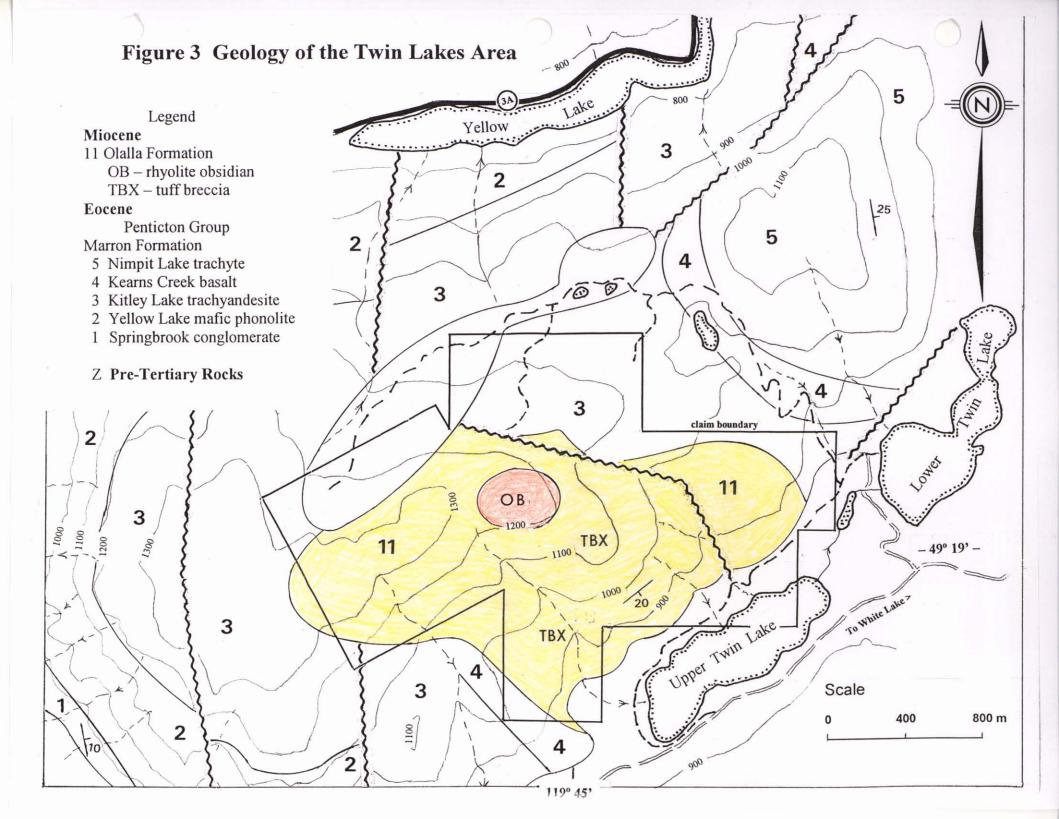
Glassy volcanic rocks and zeolites are commonly preserved in the Tertiary formations owing to the usual low metamorphism of these young rocks (Simandl et al., 1996). The interior plateau area of British Columbia is underlain by deeply dissected early Tertiary lava, associated pyroclastic rocks and interbedded sedimentary units. These units occur within a northwesterly-trending belt about 150 km wide, extending 800 km from the Republic Mining District in Washington State to the Babine Lake area of central British Columbia. The thickness of these rocks ranges from less than 100 m to more than 1,200 m. The base of the Tertiary succession, where fully developed, is composed of fluvial sandstone and conglomerate. The upper boundary is generally coincident with an upland surface that locally marks an unconformity with Miocene volcanics of the Chilcotin Gp.

The Penticton Tertiary outlier, type area of the (Eocene) Penticton Group, covers approximately 430 km² between the town of Penticton and Okanagan Falls in the Okanagan Valley and village of Keremeos in the Similkameen Valley (Church, 2002b). The Springbrook Formation, at the base of the group, is a polymictic conglomerate containing clasts derived by stream erosion of a geologically diverse pre-Tertiary metamorphic terrane. In the Twin Lakes area this unit is overlain by the Marron Formation (1,700 m thick) consisting of phonolite, trachyte, andesite, and basalt lava flows, tuff and breccia deposits. Above this sequence, the Marama Formation comprises an array of dacitic lava domes that are scattered across the area. In the east part of the Penticton outlier the White Lake Formation (1000 m thick) is a succession of fluvial, lacustrine, lahar and volcanic breccias developed unconformably on the Marron and Marama Formations. Completing the Penticton Group, the Skaha Formation is a mainly chaotic landslide breccia at the top of the Eocene succession.

The Olalla Formation is a rhyolite volcanic complex resting unconformably on inclined and deeply eroded Marron F. – in particular, the Yellow Lake phonolite, Kitley trachyandesite, Kearns Creek basalt and Nimpit trachyte lava members (Fig. 3). The formation covers an area of about two square kilometres on the slopes northwest of Upper Twin Lake. These rocks include massive chalky-white lava, obsidian, altered tuff and tuff-breccia (Photos 3A, B, C) with accessory quartz, feldspar and fine-grained biotite. Chemical analyses of the fresh obsidian (sta. 2 on Fig. 4) gives a typical rhyolite composition: SiO<sub>2</sub> 68.94 %, TiO<sub>2</sub> 0.103, Al<sub>2</sub>O<sub>3</sub> 13.36, Fe<sub>2</sub>O<sub>3</sub> 0.34, FeO 0.23, MnO 0.164, MgO 0.17, Ca 1.50, Na<sub>2</sub>O 2.934, K<sub>2</sub>O 3.705, +H<sub>2</sub>O 4.28, -H<sub>2</sub>O 3.34, CO<sub>2</sub> <0.11, SO<sub>3</sub> <0.005, P<sub>2</sub>O<sub>5</sub> <0.15, BaO 0.14, SrO 0.04 (Church, 2003).

Obsidian occurs in young volcanic assemblages. Natural glass slowly crystallizes to fine grained rock or it may decompose while absorbing moisture. No obsidian is very old.


Two K/Ar dates are available for the Olalla F. – both Miocene age (Appendix B-1). The best date, based on analyses of fine biotite from the obsidian, yields  $24.1 \pm 0.7$  Ma. A second sample of somewhat altered obsidian yields a whole rock date of  $13.0 \pm 1.8$  Ma.


Structural control of these rocks is a north-south stress scheme related to the oblique subduction of the Pacific plate under the North American craton (Dostal et al. 2003). This stress engine was active throughout the Cordillera during the early Tertiary. The result is a complex inter-relationship of shears, tension faults and folds and the simultaneous development of grabens, folding and thrusting. In overall scheme the rocks of the Penticton Tertiary outlier dip easterly towards major gravity faulting in the Okanagan Valley to form a trap-door-like half graben structure. The Twin Lakes area is at the west end of the easterly plunging White Lake syncline. The plunging syncline is the result of a combination north-south compression and easterly downward rotation (~25°) during the development of the half graben. Field evidence showing easterly dip of the Olalla F. suggests that an important component of the down faulting was Miocene or post-Miocene

### Work Done

The present study, completed July 29-31, 2008, is a response to an earlier program of prospecting in the Twin Lakes area at which time a Miocene felsic volcanic center (Olalla F.) was outlined (Church, 2003 and 2006). What at first appeared to be alteration related to epithermal vein mineralization, became manifest as a young obsidian dome complete with altered rhyolite lava and tuff breccia substructure with industrial mineral (pozzolan/zeolite) potential - the tuffaceous rocks of this complex being similar to the nearby Manuel Creek zeolite occurrence (Church, 2002a).

For this study 22 stations were established to further delineate and quantify the Ollala Formation (Fig. 4, Table 2).





### Geochemistry

Two rock samples from the Olalla F. were submitted to Acme Laboratories Ltd. for silicate analyses. These are TL-04-0 and TW-13 that correspond to survey stations 1 and 3 on Fig. 4 and Table 2.

At Acme the samples were analysed for the 10 major oxides SiO<sub>2</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO, CaO, Na<sub>2</sub>O, K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub> plus LOI, C and S and the 45 minor elements Au, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Hg, Ho, La, Lu, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Ta, Tb, Th, Tl, Tm, U, V, W, Y, Yb, Zn, Zr. Details on the methods of whole rock silicate analyses are provided in Acme's brochure entitled 'Services & Fees 2008', pages 16 and 17 (Appendix B-2).

The results for TW-13, the rhyolite from sta. 3 on 'The Ridge', are similar to the previously analysed obsidian from sta. 2 at 'Glass Hill'. For example, the important ratios and sums are very similar comparing stas. 2 and 3 respectively, i.e.  $Al_2O_3/SiO_2 = 0.19 \text{ vs. } 0.18$ ;  $Na_2O + K_2O = 6.64 \text{ vs. } 7.13$ ;  $Fe_2O_3 + \frac{1}{2}(MgO + CaO) = 1.41 \text{ vs. } 1.42$ . Another characteristic of the rhyolite is the low carbon and sulphur (less than 0.02 %) and very low levels of many other elements (near or below detection levels) including As (0.5 ppm), Be (1 ppm), Bi (0.1 ppm), Cd (0.1 ppm), Co (0.2 ppm), Hg (0.04 ppm), Mo (0.4 ppm), Sb (0.1 ppm), Se (0.5 ppm), Sn (1 ppm), Tl (0.1 ppm), V (8 ppm). The single major difference between the rhyolite TW-13 and the obsidian is the amount LOI ( $H_2O + CO_2$ ) that is 1.2 % and 7.62 %, respectively.

The results for sample TL-04-0, the tuff breccia from sta. 1 at the base of 'The Ridge', show anomalously high iron content and generally moderate minor element levels suggesting rhyodacite composition. This apparent increase in basicity, compared to the rhyolite, is probably due to the inclusion of accidental fragments from the underlying Marron volcanic rocks during explosive eruption of the Olalla rhyolite.

### Mineralogy

Mineral analyses of rhyolite TW-13 and the tuff breccia samples TL-04-0 and T-160 (survey stas. 3, 1 and 4 respectively on Fig. 4, Table 2) was completed by Global Discovery Labs of Teck Cominco Ltd. using X-ray diffraction methods (Appendix B-3). A review of the diffraction patterns for all samples indicate a simple mineralogy – a strong set of lines suggesting abundant quartz and distinct but weaker albite lines accompanied by accessory clay minerals (kaolinite and montmorillanite?). The rhyolite sample has some mica and the tuff breccia, minor carbonate minerals (calcite and dolomite).

Miles Industrial Minerals Research provides a comparison of tuffaceous samples from the Twin Lakes area (Olalla F.) and the Manuel Creek deposit (results courtesy of Liz Butler-Henderson, Appendix B-4). By this study, using X-ray diffraction analyses, the Twin Lake sample is estimated to contain 35 % quartz, ~35 % feldspar, ~20 % clinoptilolite (zeolite) and 10 % kaolinite. The Manuel Creek tuff contains <5 % quartz, ~20 % feldspar, ~30 % clinoptilolite and ~45 % montmorillonite (smectite clay).

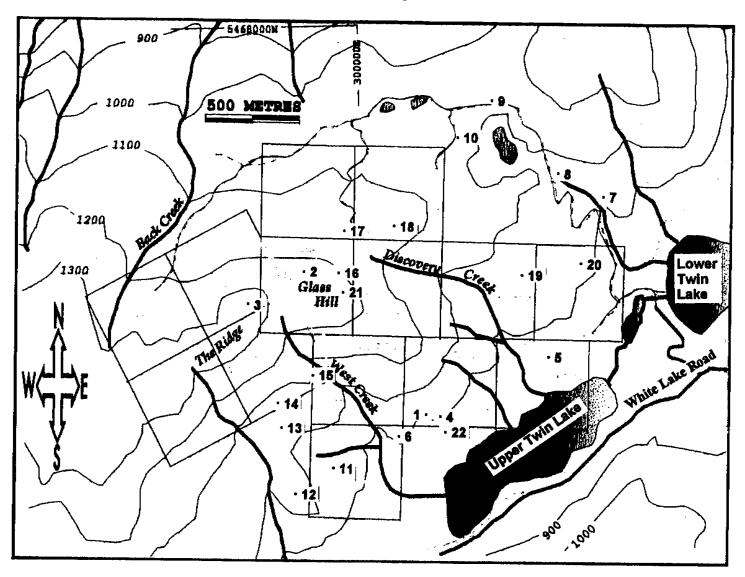
From these data an estimate of the cation exchange capacity (CEC) can be calculated based on the values of 200 meq/100g for pure clinoptilolite and about 100 meq/100g for pure montmorillonite. Accordingly, the CEC for the Twin Lakes and Manuel Creek samples are ~40 meq/100g and ~105 meq/100g, respectively.

It is noted that the CEC result for the Manuel Creek sample is keeping with previous findings (Church, 2002a), however, the CEC of 40 meq/100g for the Twin Lakes sample is new and unexpected, as is the presence of clinoptilolite in these rocks.

### **Petrographic Descriptions**

Obsidian is found on 'Glass Hill' east of 'The Ridge' and northeast of Upper Twin Lake (stas. 2, 16 and 21 on Fig. 4). The area of exposure is an elliptical zone (300 x 500 m) of about 12 hectares, mostly above 1200 m elevation. This is believed to be the remnant of a rhyolite dome that occupies the central vent of the Twin Lakes volcanic complex (Olalla F.).

Hand specimens of the obsidian are characterized by conchoidal fractures and radial splintering when hammered. The fresh glass is normally speckled and mottled greenish gray with a vitreous greasy luster. Where weathered, the rock is waxy cream coloured with a dull gleam.


Vancouver Petrographics Ltd. reports the composition as 10 % minerals and 90 % glass and glass alteration products (courtesy of Liz, Butler-Henderson; Appendix B-5). Under the microscope the rock has a patchy fabric that consists of roughly (2/3) pinkish gray isotropic glass and (1/3) light coloured alteration patches developed around cracks and some phenocrysts. The phenocrysts consist of plagioclase 5-7 %, quartz 2-3 %, biotite 1-2 %, plus minor opaque grains and dust. Plagioclase occurs as clusters of phenocrysts and randomly oriented solitary laths up to 2 mm in length. Rounded quartz grains, 0.5 to 1.5 mm across, are scattered throughout. Biotite is present as pleochroic dark brown, corroded books, 0.3 to 0.8 mm across, often associated with granular opaque minerals.

The rock has the right composition (69 % SiO<sub>2</sub>), shows perlitic arcuate fractures and contains sufficient water (> 1 %) to apply the name 'perlite'. However, unlike perlite, tests show no 'pop-corn' expansion properties when samples are heated.

#### **Pozzolan Tests**

Two samples of rock from the Twin Lake property were submitted to AMEC Earth & Environmental Laboratories to determine pozzolanic activity and compressive strength variation with time of curing. Tests for natural pozzolan are listed in 'Supplementary Cementing Materials' (CSA, 1998). The two samples submitted were designated Twin 49-18-47 (tuff breccia) and TW-112 (rhyolite obsidian). The results of testing (replacing 20 % of the cement with these pozzolanic materials) are listed in Appendix B-6 of this report. These results are illustrated in Figure 5 that shows (1) percent pozzolanic activity versus curing time (days) and (2) compressive strength versus days.

Figure 4 Survey Stations



5

Table 2 Notes to Accompany Figure 4

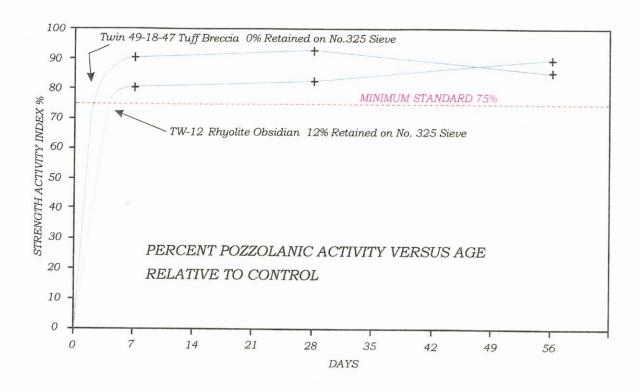
| Map          | Field   | Co-ordinates        | Descriptions                            |
|--------------|---------|---------------------|-----------------------------------------|
| Sta.         | No.     | Lat. Long.          |                                         |
| - 1-         | TL-04-0 | 49^18.81' 119^44.86 | o' tuff breccia                         |
| <b>- 2</b> - | TW-12   | 49^19.14' 119^45.4  | 5' obsidian                             |
| - 3-         | TW-13   | 49^19.13' 119^45.69 | bone white rhyolite lava                |
| -4-          | T-160   | 49^18.82 119^44.80  | r tuff breccia                          |
| - 5-         | OK-163  | 49^19.01' 119^44.23 | d' quartz-eye rhyolite, small biotite   |
| - 6-         | OK-164  | 49^18.72" 119^44.84 | l' tuff breccia                         |
| - 7-         | OK-165  | 49^19.43' 119^44.09 | brown vesicular basalt                  |
| - 8-         | OK-166  | 49^19.50' 119^44.20 | 5' basalt                               |
| - 9-         | OK-167  | 49^19.70" 119^44.50 | )' basalt                               |
| -10-         | OK-169  | 49^19.60° 119^44.70 | )' trachyte                             |
| -11-         | OK-173  | 49^18.64' 119^45.19 | o' slightly rusted rhyolite             |
| -12-         | OK-174  | 49^18.58' 119^45.36 | feldspathic trachyandesite              |
| -13-         | OK-175  | 49^18.73' 119^45.42 | ' vesicular basalt                      |
| -14-         | OK-176  | 49^18.78" 119^45.40 | quartz-eye rhyolite with feldspar laths |
| -15-         | OK-177  | 49^18.89' 119^45.30 | tuff breccia                            |
| -16-         | OK-178  | 49^19.16' 119^45.40 | rhyolite obsidian                       |
| -17-         | OK-179  | 49^19.34" 119^45.14 | ' obsidian                              |
| -18-         | OK-180  | 49^19.38' 119^44.94 | rubble, trachytic tuff                  |
| -19-         | OK-181  | 49^19.21' 119^44.34 | ' rhyolite                              |
| -20-         | OK-182  | 49^19.80' 119^44.14 | ine grained light brown trachyte        |
| -21-         |         | 49^19.13' 119^45.69 | obsidian                                |
| -22-         |         | 49^18.74 119^44.80  | r tuff breccia                          |

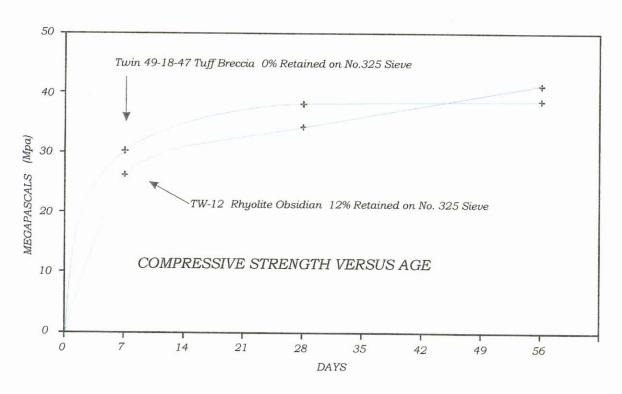
Pozzolanic Activity: This is a measure of a sample's cementing properties relative to standard Portland cement. It is well established that pozzolanic materials normally gain strength up to the limit of the usual 28 day testing period. In the present case, testing the pozzolanic activity of the obsidian and tuff breccia samples, from 7 to 56 days, shows that both samples exceed the minimum 75% ASTM strength activity standard at all the tested curing time intervals including and beyond 7 days. Indeed, the measured pozzolanic activity is at 92.9 % (compared to a control sample) for the tuff breccia at 28 days and at 89.6 % for the rhyolite obsidian at 56 days.

Compressive Strength: The results for the compressive strength tests for the concrete mixtures are also shown in Fig. 5. The graphs show a gain in concrete strength for both pozzolanic mixtures at all intervals in the curing period. It is noted that at 28 days the concrete prepared using the tuff breccia pozzolanic mixture acquired the strength of 38.1 Mpa; the concrete prepared using the rhyolite obsidian attained a slightly lower strength of 34.3 Mpa at 28 days. However, at 56 days the concrete made with rhyolite obsidian attained higher 41.2 Mpa compressive strength, showing a more rapid rise in strength compared to the concrete made using the tuff breccia that had acquired a somewhat lower figure of 38.6 Mpa.

#### Conclusions and Recommendations

The project investigates the industrial mineral potential of the Miocene age Ollala volcanic complex, Twin Lakes area, Penticton Tertiary outlier (Church, 2002b). The Olalla Formation consists of massive rhyolite lava, a central obsidian dome and crudely stratified tuff breccia. The glassy dome (~12 hectares) overlies a much larger deposit (~200 m thick) of tuff breccia of similar chemical composition (Photo 2).


Chemical and X-ray diffraction analyses of the rhyolite shows low minor elements and simple mineralogy.


The chemical data also shows that the glassy rocks contain 4 % structural water - this is somewhat higher than the average water content of obsidian but within the usual range for perlite (although additional testing is required to prove the expansion properties, typical of perlite, when samples are heated).

Further analyses indicate the obsidian and tuff breccia hold promise as a significant pozzolan resource. When these rocks are mechanically crushed and mixed with lime, the glassy fragments and rock powder react, when water is added, to form cementing minerals - tests for pozzolanic activity and compressive strength produce values within ASTM standards for pozzolanic cement.

Other suggested tests needed to prove full use of the pozzolan as a replacement-addition to Portland cement include the effect of fineness of grind on strength gain, determination of optimal water content, optimal slump or flow values and drying shrinkage properties. Both physical and compositional tests for specific concrete design may be considered as standard practice in order to obtain best performance and economy of the concrete mix.

# Figure 5 Pozzolanic Activity and Strength Tests





#### References

ACI Committee 232, (2000): Use of raw or processed natural pozzolans in concrete; Report AC1232.IR-00, American Concrete Institute.

Canadian Standards Association (1998): Supplementary Cementing Materials in Cementitious Materials Compendium CAN/CSA-A3000-98; CSA A23.5-98, 8 pages.

Church, B.N., (2002a): Zeolite Occurrences on the Tom and Kitty Claims, Manuel Creek Area, Osoyoos Mining Division; B.C. Ministry of Energy and Mines, Assessment Report No. 26889.

Church, B.N., (2002b): Geology of the Penticton Tertiary Outlier, B.C. Ministry of Energy and Mines, Geoscience Map 2002-5, (scale 1:50,000), <a href="https://www.em.gov.bc.ca/Mining/Geolsury/Publications">www.em.gov.bc.ca/Mining/Geolsury/Publications</a>.

Church, B.N., (2003): Rhyolite Obsidian on the Twin-1 Claim, Osoyoos Mining Division; B.C. Ministry of Energy and Mines, Assessment Report No. 27222, 14 pages.

Church, B.N., (2006): Geological Reconnaissance of the Zeolite Deposits on the Tom and Kitty Claims, Manuel Creek area, Osoyoos Mining Division; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report No. 28576, 40 pages.

Dostal, J., Breitsprecher, K., Church, B.N., Thorkelson, D. and Hamilton, T.S. (2003): Eocene melting of Precambrian lithospheric mantle: Analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia; Journal of Volcanology and Geothermal Research, Vol. 126, pages 303-326.

Haughton, D.R. and Church, B.N., (2003): A Proposed Evaluation of Zeolitic Ash and Pozzolanic Deposits in the Thompson/ Okanagan Area of Southern British Columbia; Rocks to Riches Program, B.C. Chamber of Mines, 21 pages.

Meheta, P.K., (1987): Natural Pozzolans in Supplementary Cementing Materials for Concrete, V.M. Malhotra Editor; Canadian Government Publishing Center, Supply and Services Canada.

Mumpton, F.A., (1999): La Roca Magica; Uses of Natural Zeolites in Agriculture and Industry Proceedings; National Acad. Sci. USA, Vol. 96, pages 3463-3470.

Simandl, G.J., Church, B.N. and Hodgson, W., (1996): "Perlite" from Terrace Mountain, Vernon Area: Possible Industrial Applications; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1995; Paper 1996-1, pages 223 – 226.

# Appendix A Statement of Costs

| July 29-31              | engineer, B.N. Church, P.Eng.  st, 2008; 3 days @ 500/day  thton & E. Butler-Henderson @ 500/day | \$1,500.00<br>\$3,000.00 |
|-------------------------|--------------------------------------------------------------------------------------------------|--------------------------|
| Accomodation/Meals:     | geologist and assistant (6x100/day)                                                              | 600.00                   |
| Vehicle costs:          | @ 0.45/km<br>Fuel                                                                                | 445.05<br>114.42         |
| Ferry costs:            |                                                                                                  | 86.00                    |
| Chemical analyses: (Ad  | eme Analytical Laboratories Ltd.)                                                                | 152.64                   |
| Petrographic analyses:  | (Vancouver Petrographics Ltd.)                                                                   | 209.00                   |
| X-ray analyses: (Teck ( | Cominco Ltd.)                                                                                    | 262.35                   |
| Cation Exchange Capa    | city: (Miles Industrial Minerals Research)                                                       | 200.00                   |
| Pozzolan Testing: (AM   | IEC Earth & Environmental Laboratories Ltd.)                                                     | 300.00                   |
| Report preparation:     |                                                                                                  | 2,500.00                 |
|                         | Total                                                                                            | \$ 9,369.46              |

# Received Fab 12/08

Acme Analytical Laboratories (Vancouver)

852 East Hastings St. Vancouver, BC V6A 1R6 Canada

CUSTOMER NO.: PAGE:

DATE:

CHU100

CUSTOMER NO .:

PAGE:

DATE:

CHU100

11/01/2008

11/01/2008

SOLD TO:

Church, B. Neil 600 Parkridge St. Victoria, BC V8Z 6N7 Canada REMIT TO ADDRESS:

Acme Analytical Laboratories (Vancouver) Ltd 852 East Hastings St. Vancouver, BC V6A 1R6

VANI001971

29/11/2007

IN CHURCH, B. NEIL

152.64

VANI001971

152.64

10 A4079023 STORE 1171

\$152.64

Credit Limit: Credit Available:

400.00 247.36 TO ENSURE PROPER CREDIT, PLEASE CHECK THE ITEMS YOU ARE PAYING IN THE / COLUMN.

5 - Dept Note R - Credit Note

PY - Applied Receipt ED - Earned Discount AD - Adjustment UC - Unapplied Cash RF - Refund

riuna Tot

Total ⇒

152.64

Total ⇒

152.64

1 - 30 DAYS O/DUE 0.00

31 - 60 DAYS O/DUE 152.64 61 - 90 DAYS O/DUE 0.00

OVER 90 DAYS O/DUE 0.00

Acme Analytical Laboratories (Vancouver) Ltd.

### Appendix B-1 K/Ar Dates

-24 -

| ) | į  |
|---|----|
|   | _) |

| ,                                               | K-                           | Ar           |             | _                      |             |                                          |
|-------------------------------------------------|------------------------------|--------------|-------------|------------------------|-------------|------------------------------------------|
| Sample Number(s) and Refe                       | erence(s)                    |              |             | terial                 |             | lgerror                                  |
| Lab No: TWIN LAKE                               | cs dec                       |              |             | (Biotite)              | 20.0        | ±0.7 Ma R                                |
|                                                 | □ 4.7                        | 2/.584/1     | . 19        | (Bintite)              | 24.1        | ± 0.7 Ma Re                              |
| Ref:                                            |                              | 2/.584/1     | 10          |                        |             | •                                        |
|                                                 | <del></del>                  |              |             | ( )                    | <del></del> | <u>± Ma</u>                              |
|                                                 | 4.9                          | 6/.581/1     | .167        | ( )                    |             | ± Ma                                     |
| Record No:                                      | <del></del>                  |              | -           |                        | <del></del> | z Ha                                     |
| Suite No:                                       | n not                        | reported     | Ē           |                        |             |                                          |
| Sample Name:                                    |                              | -            |             |                        | •           |                                          |
|                                                 |                              |              | 4           |                        |             |                                          |
| Latitude:                                       | Longitude:                   | (X - Y       | Z' Z'' 01   | r X° Y.Y')             |             |                                          |
| (49° 19' "N, 119°                               | 44.2 W                       | ( ±          | );          |                        |             |                                          |
| UTM Zone                                        |                              |              |             |                        |             |                                          |
|                                                 |                              |              |             |                        |             |                                          |
| Sec, T,                                         | R;                           |              |             | <u> </u>               | state       | ·                                        |
| (NITEC )                                        |                              |              | Man A       | roa Soal               | _           |                                          |
| (NTS)                                           | <del></del>                  | <del> </del> | Map A.      | rea, Scal              | e           | <del></del>                              |
| Location:                                       | •                            |              |             |                        |             |                                          |
| Source Type:                                    |                              |              |             |                        | <del></del> |                                          |
| Rock: Light cream-co                            | loved devi                   | itriffed     | rhuolit     | e                      |             | <del></del>                              |
| Geologic Unit:                                  |                              |              | - 11 J · 11 |                        |             |                                          |
| Coologic Ace:                                   |                              |              |             |                        |             |                                          |
| Material Analyzed: B:                           | otite qua                    | lity Fir     | e.          |                        |             |                                          |
|                                                 |                              | 7,           |             |                        |             |                                          |
|                                                 | <del> </del>                 |              |             |                        |             |                                          |
| Analytical Data: (lis                           | t duplicate ar               | alyses or    | indica      | te $n = 2$ , r         | n = 3, etc  | 2.)                                      |
| <del>-</del>                                    | _                            | -            |             |                        | •           |                                          |
| $K = \vec{X} = 6.79 \pm 0.01$                   | %: (Ar <sup>40*</sup> =      | 5.317        | x10         | cc/gm )                |             | 40 -                                     |
| $K_2 0 = n = 2$                                 | %; (Ar <sup>40*</sup> =      | 2.373        | $x10^{-1}$  | LO <sub>mol/am</sub> ) | 52.0        | $\Re \Sigma \operatorname{Ar}^{20}) R_0$ |
| $K = \bar{X} = 6.79 \pm 0.01$                   |                              |              |             |                        |             |                                          |
|                                                 | %; (Ar <sup>40*</sup> =      | 6.377        | XIO -       | ce/gm )                | ( 54.6      | $%\Sigma Ar^{40})R_{0}$                  |
| $K_2^{0} = n = 2$                               | *                            | 2.854        | $x10^{-1}$  | "mol/gm)               |             |                                          |
| K =                                             | * 40*                        |              | v10-6       | cc/gm )                |             | 40                                       |
| K <sub>2</sub> 0=                               | %; (Ar <sup>40*</sup> =      |              |             | 0                      | ; (         | %Σ Ar <sup>40</sup> )                    |
| <b>*2</b> • • • • • • • • • • • • • • • • • • • | J                            |              |             | $^{10}$ mol/gm)        |             |                                          |
| K =                                             | ${}_{2}^{8}$ ; (Ar $^{40*=}$ |              | $x10^{-6}$  | cc/gm )                |             |                                          |
| K <sub>2</sub> 0=                               | g; (Ar                       |              | ]           | $0_{\text{mol/gm}}$    | ; (         | %ΣAr <sup>40</sup> )                     |
|                                                 |                              |              | XIU         | mo1/gm)                |             | •                                        |
| Comment on Analyses:                            |                              | ,            |             |                        |             |                                          |
| Ru                                              | n   result                   | ted in a     | in int      | complete               | Fusion      |                                          |
|                                                 |                              | <del> </del> |             |                        | <u>-</u>    | <del></del>                              |
| Interpretation:                                 |                              |              |             |                        |             |                                          |
|                                                 |                              |              | •           |                        |             |                                          |
|                                                 |                              |              |             |                        |             |                                          |
|                                                 |                              |              |             |                        |             | <del></del>                              |
|                                                 |                              |              |             |                        |             | <del></del>                              |
|                                                 |                              |              |             |                        |             |                                          |
|                                                 |                              |              |             |                        | <del></del> | <del></del>                              |
| Collected by: W.A                               | 1. Mathews                   |              | •           |                        |             |                                          |
| Dated by: J. H                                  | larabal                      |              |             |                        |             |                                          |
|                                                 | M/ H V H I                   |              |             | . 11 4 1               | 01          |                                          |
| Listed by: (name, instit                        | ution                        |              | Date        | : <u>//. 26</u>        | .81         | <del></del>                              |
| (name, mistre                                   | ~                            | 25-          |             |                        |             |                                          |

\*\*\*\*\*\*\*

## Appendix B-2 Geochemistry

www.acmelab.com

Method

Code

R150

4A&4B

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7 Canada

Submitted By:

B. Neil Church

Receiving Lab:

Acme Analytical Laboratories (Vancouver) Ltd.

Received:

September 06, 2007

Report Date:

November 27, 2007

Page:

1 of 2

### CERTIFICATE OF ANALYSIS

### VAN07001029.1

### CLIENT JOB INFORMATION

Project:

None Given

Shipment ID:

P.O. Number

Number of Samples:

2

### SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Number of Samples

**Code Description** 

Crush, split and pulverize rock to 150 mesh

LiBO2/Li2B4O7 fusion ICP-ES analysis

Test Wgt (g) Report

Status

0.2

Completed

### SAMPLE DISPOSAL

#### **ADDITIONAL COMMENTS**

2

2

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7

Canada

CC:



This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.



ACME ANALYTICAL LABORATORIES LTD

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V6Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

Page:

2 of 2

| CERTIFICATI | E OF AI           | VAL)          | YSIS           |                |              |              |               |              |               |       |              |         |             |             |       |              | VAN         | V070        | 0010        | )29.        | 1         |
|-------------|-------------------|---------------|----------------|----------------|--------------|--------------|---------------|--------------|---------------|-------|--------------|---------|-------------|-------------|-------|--------------|-------------|-------------|-------------|-------------|-----------|
|             | Method<br>Analyte | 4A&4B<br>SiO2 | 4A&4B<br>Al2O3 | 4A&4B<br>Fe2O3 | 4A&4B<br>MgO | 4A&4B<br>CaO | 4A&4B<br>Na2O | 4A&4B<br>K2O | 4A&4B<br>TIO2 |       | 4A&4B<br>MnO |         | 4A&4B<br>Ni | 4A&4B<br>Sc | 4A&4B | 4A&4B<br>Sum | 4A&4B<br>Ba | 4A&4B<br>Be | 4A£4B<br>Co | 4A&4B<br>Cs | _         |
|             | Unit<br>MDL       |               | %<br>0.01      | %<br>0.04      | %<br>0.01    | %            | %             | %            | %             | %     | %            | %       | ppm         | ppm         | %     | %            | ppm         | bban        | ppm         | ppm         | G:<br>ppr |
| TWIN-13     |                   |               |                |                |              | 0.01         | 0.01          | 0.01         | 0.01          | 0.001 | 0.01         | 0.002   | 20          | 1           | -5    | 0.01         | 1           | 1           | 0.2         | 0.1         | 0.5       |
|             | Rock              | 75.65         | 13.58          | 0.98           | 0.28         | 0.78         | 3.79          | 3.34         | 0.14          | 0.033 | 0.04         | < 0.002 | <20         | 3           | 1.2   | 99.81        | 1279        | <1          | <0.2        | 1.8         | 14.7      |
| TL-04-0     | Rock              | 65.61         | 13.03          | 2.38           | 1.74         | 3.40         | 2.20          | 4.13         | 0.30          | 0.149 | 0.23         | 0.004   | <20         | 8           | 6.4   | 99.77        | 1331        | 3           | 4.3         | 2.6         | 14.6      |



www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

Page:

2 of 2

| CERTIFIC | CATE OF A | ANA    | YS     | IS       |       |       |       |       |       |       |       |       |       |       |       |       | VAI   | V07   | 0010  | 029.  | 1     |
|----------|-----------|--------|--------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Meti      | od 4A& | IB 4A& | IB 4A&4E | 4A&4B | 4A84B | 4A&4B | 4A&4B | 48.48 | 4A&4B | 4A&48 | 4A&4B | 4A&4B | 4A£4B | 4AL4B |
|          | Anai      | yte    | Hf I   | to Rb    | Sn    | Sr    | Ta    | Th    | U     | V     | w     | Zr    | Y     | La    | Ce    | Pr    | Nd    | Sm    | Eu    | Gd    | Dy    |
|          | ŧ         | nit p  | u bt   | m ppm    | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   |
|          | N         | Dr (   | .1 (   | .1 0.1   | 1     | 0.5   | 0.1   | 0.2   | 0.1   | B     | 0.5   | 0.1   | 0.1   | 9.1   | 0.1   | 0.02  | 0.3   | 0.05  | 0.02  | 0.05  | 0.05  |
| TWIN-13  | Rock      |        | .9 (   | .3 74.5  | i 1   | 100.8 | 0.6   | 7.3   | 2.4   | <8    | 1.1   | 82.8  | 21.3  | 13.1  | 26.1  | 3.22  | 13.2  | 2.35  | 0.43  | 2.37  | 3.08  |
| TL-04-0  | Rock      |        | .5 17  | .8 96.8  | 2     | 515.0 | 1.1   | 10.8  | 3.7   | 57    | 1.4   | 106.7 | 24.5  | 30.1  | 55.1  | 6.29  | 22.7  | 4.38  | 0.97  | 3.72  | 4.28  |



ACME ANALYTICAL LABORATORIES LTD

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V6Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

Page:

2 of 2

| CERTIFI | CATE OF A | NAL)        | YSIS  | 3     |       |       |       |        |        |     |      |      |            |      |      |      | VAN  | 1070 | 010  | 29.1 |      |
|---------|-----------|-------------|-------|-------|-------|-------|-------|--------|--------|-----|------|------|------------|------|------|------|------|------|------|------|------|
|         | Metho     | d 4A&4B     | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 2A C/S | 2A C/S | 1DX | 1DX  | 1DX  | 1DX        | 1DX  | 1DX  | 1DX  | 1DX  | 1DX  | 1DX  | 1DX  | 1DX  |
|         | Analy     | <b>∌</b> Тъ | Ho    | Er    | Tm    | Yb    | Lu    | С/ТОТ  | S/TOT  | Mo  | Cu   | Pb   | <b>Z</b> n | Ni   | As   | Cd   | Sb   | Bi   | Ag   | Au   | Hg   |
|         | Ut        | it ppm      | ppm   | ppm   | ppm   | ppm   | ppm   | %      | %      | ppm | ppm  | ppm  | ppm        | ppm  | ppm  | ppm  | ppm  | ppm  | ppm  | ppb  | ppm  |
|         | MC        | L 0.01      | 0.02  | 0.03  | 0.01  | 0.05  | 8.01  | 0.02   | 0.02   | 0.1 | Q.1  | 0.1  | 1          | 0.1  | 0.5  | 0.1  | 0.1  | 0.1  | 0.1  | 0.5  | 0.01 |
| TWIN-13 | Rock      | 0.46        | 0.66  | 2.27  | 0.37  | 2.51  | 0.40  | <0.02  | <0.02  | 0.4 | 2.2  | 8.0  | 23         | 1.5  | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.5 | 0.04 |
| TL-04-0 | Rock      | 0.69        | 0.87  | 2.51  | 0.47  | 2.84  | 0.43  | 1.34   | 0.06   | 3.1 | 10.9 | 21.6 | 102        | 13.3 | 4.6  | 1.4  | 0.1  | D.3  | 0.1  | <0.5 | 0.04 |

www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V6Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

Page:

2 of 2

Part 4

### CERTIFICATE OF ANALYSIS

VAN07001029.1

|         | Method  | 1DX  | 1DX  |
|---------|---------|------|------|
|         | Analyte | П    | Se   |
|         | Unit    | ppm  | ppm  |
|         | MDL     | 0.1  | 0.5  |
| TWIN-13 | Rock    | <0.1 | <0.5 |
| TL-04-0 | Rock    | <0.1 | 1.0  |



Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

www.acmelab.com

Page:

1 of 1

| QUALITY CO          | ONTROL     | REF   | POR   | T     |       |       |       |       |       |        |       |        |       |       |       |       | VAN   | 1070    | 010   | 29.1  |      |
|---------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-------|---------|-------|-------|------|
|                     | Method     | 4A&4B | 4A&4B | 4A44B | 4A&4B | 4A44B | 4A&4B | 4A&4B | 4A44B | 4A&4B  | 4AL4B | 4A&4B  | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B   | 4A&4B | 4A&4B | 4884 |
|                     | Analyte    | \$i02 | AI203 | Fe203 | MgO   | CaO   | Na2O  | K20   | TIO2  | P205   | MnO   | Cr2O3  | Ni    | Sc    | LOI   | Sum   | Ba    | Be      | Co    | Cs    | G    |
|                     | Unit       | *     | %     | %     | %     | %     | %     | %     | %     | %      | *     | *      | ppm   | ppm   | %     | %     | ppm   | ppm     | ppm   | ppm   | ррп  |
|                     | MDL        | 0.01  | 0.01  | 0.04  | 0.01  | 0.01  | 0.01  | 6.01  | 0.01  | 0.001  | 0.01  | 8.002  | 20    | 1     | -5    | 0.01  | 1     | 1       | 0.2   | 0.1   | 0.4  |
| Reference Materials |            |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| STD CSC             | Standard   |       |       |       | -     |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       | * *  |
| STD CSC             | Standard   |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| STD DS7             | Standard   |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| STD DS7             | Standard   |       |       |       |       |       |       |       |       |        |       | · ·· · | ·     |       |       |       |       |         |       |       |      |
| STD SO-18           | Standard   | 58.11 | 14.12 | 7.63  | 3.33  | 6.38  | 3.69  | 2.15  | 0.69  | 0.805  | 0.39  | 0.548  | 31    | 26    | 1.9   | 99.75 | 495   | <1      | 26.0  | 6.7   | 17.  |
| STD SO-18           | Standard   | 58.10 | 14.13 | 7.63  | 3.34  | 6.38  | 3.69  | 2.15  | 0.69  | 0.802  | D.39  | 0.548  | 44    | 26    | 1.9   | 99.75 | 501   | <1      | 25.8  | 6.8   |      |
| STD CSC Expected    |            |       |       |       | ·     |       |       | -     |       |        |       |        |       |       |       |       |       |         |       |       |      |
| STD DS7 Expected    |            |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| STD SO-18 Expected  |            | 58.47 | 14.23 | 7.67  | 3.35  | 6.42  | 3.71  | 2.17  | 0.69  | 0.83   | 0.39  | 0.55   | 44    | 25    |       |       | 514   |         | 26.2  | 7.1   | 17.6 |
| BLK                 | Blank      |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| BLK                 | Blank      |       |       |       |       |       |       |       |       |        |       |        |       |       |       |       |       |         |       |       |      |
| BLK                 | Blank      | <0.01 | <0.01 | <0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.001 | <0.01 | <0.002 | <20   | <1    | 0.0   |       | <1    | <u></u> | <0.2  | <0.1  | <0.5 |
| Prep Wash           |            |       |       |       |       |       |       |       | _     |        |       |        |       |       |       |       |       |         |       |       | -0   |
| G1                  | Prep Blank | 67.49 | 15.74 | 3.53  | 1.06  | 3.43  | 3.57  | 3.73  | 0.35  | 0.148  | 0.09  | <0.002 | <20   | 5     | 0.6   | 99.75 | 889   |         | 3.4   | 4.7   | 17.7 |
| G1                  | Prep Blank | 67.44 | 15.65 | 3.57  | 1.15  | 3.47  | 3.71  | 3.60  | 0.38  | 0.175  | 0.09  | <0.002 | <20   | 5     | 0.3   | 99.75 | 860   | <1      | 3.6   | 4.5   |      |



Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7 Canada

Project:

Client:

None Given

Report Date:

November 27, 2007

www.acmelab.com

Page:

1 of 1

| QUALITY CO          | ONTROL         | REF   | POR   | Τ     |       |        |       |       |       |       |       |       |       |       |       | ,     | /AN   | 1070                                    | 010   | 29.1  |        |
|---------------------|----------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------|-------|-------|--------|
|                     | <b>Metho</b> d | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B  | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B                                   | 4A&4B | 4A&4B | 4A&4B  |
|                     | Analyte        | Hf    | Nb    | RЬ    | \$n   | Sr     | Ta    | Th    | IJ    | V     | W     | Zr    | Y     | La    | Ce    | Pr    | Nd    | Sm                                      | Eu    | Gd    | Dy     |
|                     | Unit           | ppm   | ppm   | ppm   | ppm   | bbw    | ppm   | ppm   | ppm   | ppm   | bbu   | ppm                                     | ppm   | ppm   | ppm    |
|                     | MDL            | 0.1   | 0.1   | 0.1   | 1     | 0.5    | 0.1   | 0.2   | 0.1   | 8     | 0.5   | 0.1   | 0.1   | 0.1   | 0.1   | 0.02  | 0.3   | 0.05                                    | 0.02  | 0.05  | 0.05   |
| Reference Materials |                |       |       |       |       |        |       |       |       |       |       |       | •     |       |       |       |       |                                         |       |       |        |
| STD CSC             | Standard       | I     |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         |       |       |        |
| STD CSC             | Standard       | i     |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         |       |       |        |
| STD DS7             | Standard       |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       | * * * * * * * * * * * * * * * * * * * * |       |       |        |
| STD DS7             | Standard       |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         |       | :     |        |
| STD SO-18           | Standard       | 9.6   | 19.9  | 27.6  | 15    | 399.7  | 7.1   | 9.8   | 16.2  | 200   | 14.7  | 269.9 | 31.5  | 11.9  | 26.6  | 3.40  | 13.7  | 2.87                                    | 0.65  | 2.84  | 2.83   |
| STD SO-18           | Standard       | 9.5   | 20.1  | 28.1  | 15    | 403.2  | 7.0   | 10.9  | 16.4  | 202   | 14.9  | 273.5 | 31.8  | 12.4  | 26.1  | 3.42  | 13.6  | 2.93                                    | 0.86  | 2.77  | 2.91   |
| STD CSC Expected    |                |       |       |       |       | * * *. |       |       | ···   | •     |       |       |       |       |       |       |       |                                         |       |       |        |
| STD DS7 Expected    |                |       |       |       |       |        |       |       | ,     |       |       |       |       |       |       |       |       |                                         |       |       |        |
| STD SO-18 Expected  |                | 9.8   | 20.9  | 28.7  | 15    | 407.4  | 7.4   | 9.9   | 16.4  | 200   | 15.1  | 280   | 33    | 12.3  | 27.1  | 3.45  | 14    | 3                                       | 0.89  | 2.93  | 3      |
| BLK                 | Blank          |       | -     |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         |       |       |        |
| BLK                 | Blank          |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         | • • • |       |        |
| BLK                 | Blank          | <0.1  | <0.1  | <0.1  | <1    | <0.5   | <0.1  | <0.2  | <0.1  | <8    | <0.5  | <0.1  | <0.1  | <0.1  | <0.1  | <0.02 | <0.3  | <0.05                                   | <0.02 | <0.05 | < 0.05 |
| Prep Wash           |                | t     |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |                                         |       |       |        |
| G1                  | Prep Blank     | 3.7   | 19.3  | 127.3 | <1    | 730.1  | 1.2   | 10.4  | 7.2   | 50    | <0.5  | 112.3 | 14.8  | 28.7  | 54.1  | 6.12  | 21.9  | 3.57                                    | 0.91  | 2.35  | 2.68   |
| G1                  | Prep Blank     | 4.4   | 20.8  | 126.3 | 2     | 736.2  | 1.4   | 9.2   | 3.8   | 52    | <0.5  | 128.9 | 16.0  | 32.5  | 61.7  | 7.09  | 25.7  | 4.07                                    | 1.15  | 2.65  | 2.63   |

STD DS7 Expected

BLK

BLK

BLK

G1

Prep Wash Ğ1

STD SO-18 Expected



852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

0.53

< 0.01

0.46

0.47

Blank

Blank

Biank

Prep Blank

Prep Blank

0.62

<0.02

0.51

0.55

1.84

< 0.03

1.45

1.83

0.29

< 0.01

0.25

0.29

1.79

< 0.05

1.63

1.67

0.27

<0.01

0.28

0.29

www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

48.2

<0.5

<0.5

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

0.2

0.08

0.06

<0.5 <0.01

< 0.5

0.8

BC V8Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

|                     |          |         |       |       |       |       |       |        |        |      |       | Page: |     | 1    | of 1 | Part | 3   |              |      |      |      |
|---------------------|----------|---------|-------|-------|-------|-------|-------|--------|--------|------|-------|-------|-----|------|------|------|-----|--------------|------|------|------|
| QUALITY (           | CONTROL  | REF     | POR   | T     |       |       |       |        |        |      |       |       |     |      |      | \    | /AN | 070          | 0102 | 29.1 |      |
|                     | Method   | 4A&4B   | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 4A&4B | 2A C/S | 2A C/S | 1DX  | 1DX   | 1DX   | 1DX | 1DX  | 1DX  | 1DX  | 1DX | 1DX          | 1DX  | 1DX  | 1DX  |
|                     | Analyte  | Тъ      | Ho    | Er    | Tm    | Υъ    | Lu    | С/ТОТ  | S/TOT  | Mo   | Cu    | РЬ    | Zn  | Ni   | As   | Cd   | Sb  | Bi           | Ap   | Au   | Ha   |
|                     | Unit     | ppm     | ppm   | ppm   | ppm   | ppm   | ppm   | %      | %      | ppm  | ppm   | ppm   | ppm | ppm  | ppm  | ppm  | ppm | ppm          | ppm  | ppb  | ppm  |
|                     | MOL      | 0.01    | 0.02  | 0.03  | 0.01  | 0.05  | 0.01  | 0.02   | 0.02   | 0.1  | 0.1   | 9.1   | 1   | 0.1  | 0.5  | 0.1  | 0.1 | 0.1          | 0.1  | 0.5  | 0.01 |
| Reference Materials |          |         |       | _     |       |       |       |        |        |      |       |       |     |      |      |      |     |              |      | -    |      |
| STD CSC             | Standard |         |       |       |       |       |       | 3.11   | 4.16   |      |       |       |     |      |      |      |     |              |      |      |      |
| STD CSC             | Standard |         |       |       |       |       | •     | 3.19   | 4.19   |      |       |       |     |      |      |      |     | <del>.</del> |      |      |      |
| STD DS7             | Standard | i —     |       |       |       |       |       |        |        | 19.3 | 103.7 | 65.0  | 382 | 54.3 | 48.6 | 6.0  | 5.0 | 4.5          | 0.5  | 55.7 | 0.25 |
| STD DS7             | Standard |         |       |       |       |       |       |        |        | 19.0 | 102.0 | 65.9  | 397 | 58.1 | 49.6 | 6.4  | 4.9 | 4.5          | 0.6  | 49.2 | 0.21 |
| STD SO-18           | Standard | 0.51    | 0.60  | 1.75  | 0.29  | 1.65  | 0.26  |        |        |      |       |       |     |      |      |      |     |              |      |      |      |
| STD SO-18           | Standard | 0.52    | 0.62  | 1.76  | 0.29  | 1.75  | 0.27  |        |        |      |       |       |     |      |      |      |     |              |      |      | · ·- |
| STD CSC Expected    |          | <b></b> |       |       |       |       |       | 3.13   | 4.19   |      |       |       |     |      |      |      |     |              |      |      |      |

<0.02 <0.02

<0.02

< 0.02

< 0.02

< 0.02

20.92

< 0.1

0.2

0.2

109

<0.1

2.0

2.1

70.6

<0.1

2.9

2.4

411

<1

53

52

<0.1

4.2

4.3



www.acmelab.com

Client:

Church, B. Neil

600 Parkridge St.

Victoria

BC V8Z 6N7 Canada

Project:

None Given

Report Date:

November 27, 2007

Page:

1 of 1

Part 4

VAN07001029.1

### ITY CONTROL REPORT

|                     | Method     | 1DX  | 1DX  |
|---------------------|------------|------|------|
|                     | Analyta    | TI   | Se   |
|                     | Unit       | ppm  | ppm  |
|                     | MOL        | 0.1  | 0.5  |
| Reference Materials |            |      |      |
| STD CSC             | Standard   |      |      |
| STD CSC             | Standard   |      |      |
| STD DS7             | Standard   | 4.1  | 4.2  |
| STD DS7             | Standard   | 4.1  | 4.3  |
| STD SO-18           | Standard   |      |      |
| STD SO-18           | Standard   |      |      |
| STD CSC Expected    |            |      | -    |
| STD DS7 Expected    |            | 4.19 | 3.5  |
| STD SO-18 Expected  |            |      | 1    |
| BLK                 | Biank      |      |      |
| BLK                 | Blank      | <0.1 | <0.5 |
| BLK                 | Blank      |      |      |
| Prep Wash           |            |      |      |
| G1                  | Prep Blank | 0.4  | <0.5 |
| G1                  | Prep Blank | 0.4  | 0.6  |





# Geochemical Whole Rock Major & Trace Element Analyses

#### Group 4A Whole Rock by ICP

A cost-effective rock characterization package comprising four separate analytical tests.

Total abundances of the major oxides and several minor elements are reported on a 0.1 g sample analysed by ICP-emission spectrometry following a Lithium metaborate/tetrabortate fusion and dilute nitric digestion. Loss on ignition (LOI) is by weigh difference after ignition at 1000°C.

Unique to our lab is the addition of total carbon and sulphur analysis by Leco.

| Group 4A                                           | Cdn     |
|----------------------------------------------------|---------|
| Any 1 element                                      | \$14.60 |
| Full Suite (20 parameters)                         | \$26.70 |
| Extended Package*<br>(Full Suite + Ce Co Cu Ta Zn) | \$30,40 |

#### Group 4B Total Trace Elements by ICP-MS

This is the perfect addition to Group 4A. This package comprises two separate analyses. Rare earth and refractory elements are determined by ICP mass spectrometry following a Lithium metaborate / tetrabortate fusion and nitric acid digestion of a 0.1 g sample (same decomposition as Group 4A). In addition a separate 0.5 g split is digested in Aqua Regia and analysed by ICP Mass Spectrometry to report the precious and base metals (in highlight). This is the same method as Group 1DX.

Prices are for routine geological samples. Acme may refuse to analyse or charge extra for non-geological materials.

Group 4A and 4B each require 5 g for analysis, 10 g for combined package (Group 4A-4B).

| Group 4B                 | Cdn     |
|--------------------------|---------|
| Any 1 element            | \$17.00 |
| Full Suite (45 elements) | \$36.40 |
| Refractory and REEs only | \$26.70 |
| Group 4A – 4B            | \$53.30 |

|                                | Group<br>Det. L |   | Upp |   |
|--------------------------------|-----------------|---|-----|---|
| SiO,                           | 0.01            | % | 100 | % |
| Al <sub>2</sub> O <sub>3</sub> | 0.01            | % | 100 | % |
| Fe <sub>2</sub> O <sub>3</sub> | 0.04            | % | 100 | % |
| CaO                            | 0.01            | % | 100 | % |
| MgO                            | 0.01            | % | 100 | % |
| Na <sub>2</sub> O              | 0.01            | % | 100 | % |
| K,O                            | 0.01            | % | 100 | % |
| MnO                            | 0.01            | % | 100 | % |
| TiO,                           | 0.01            | % | 100 | % |
| P,O,                           | 0.01            | % | 100 | % |
| Cr,O,                          | 0.002           | % | 100 | % |
| LOI                            | 0.1             | % | 100 | % |
| c                              | 0.01            | % | 100 | % |
| 5                              | 0.01            | % | 100 | % |

|    | Group 4A<br>Det. Lim. | Group 4B<br>Det. Lim. | Upper<br>Limit       |
|----|-----------------------|-----------------------|----------------------|
| Au | +                     | 0.5 ppb               | 100 ppm              |
| Ag | -                     | 0.1 ppm               | 100 ppm              |
| As | -                     | 1 ppm                 | 10000 ppm            |
| Ba | 5 ppm                 | 1 ppm                 | 50000 ppm            |
| Be | _                     | 1 ppm                 | 10000 ppm            |
| Bi | -                     | 0.1 ppm               | 2000 ppm             |
| Cd | _                     | 0.1 ppm               | 2000 ppm             |
| Co | 20 ppm*               | 0.2 ppm               | 10000 ppm            |
| Cs | -                     | 0.1 ppm               | 10000 ppm            |
| Cu | 5 ppm*                | 0.1 ppm               | 10000 ppm            |
| Ga | -                     | 0.5 ppm               | 10000 ppm            |
| Hf | -                     | 0.1 ppm               | 10000 ppm            |
| Hg | -                     | 0.1 ppm               | 100 ppm              |
| Mo | -                     | 0.1 ppm               | 2000 ppm             |
| Nb | 5 ppm                 | 0.1 ppm               | 50000 ppm            |
| Ni | 20 ppm                | 0,1 ppm               | 10000 ppm            |
| Pb |                       | 0.1 ppm               | 10000 ppm            |
| Rb | -                     | 0.1 ppm               | 10000 ppm            |
| Sb | *                     | 0.1 ppm               | 2000 ppm             |
| Sc | 1 ppm                 | _                     | 10000 ppm            |
| Se |                       | 0.5 ppm               | 100 ppm              |
| Sn | _                     | 1 ppm                 | 10000 ppm            |
| Sr | 2 ppm                 | 0.5 ppm               | 50000 ppm            |
| Ta | 20 ppm*               | 0.1 ppm               |                      |
| Th | zo ppiii              |                       | - 6767676367         |
| TI | <del>-</del>          |                       |                      |
| U  |                       |                       |                      |
| v  |                       |                       | Power and the second |
| w  |                       |                       | 10000 ppm            |
| Y  | 3                     |                       | 10000 ppm            |
|    | 3 ppm                 | 0.1 ppm               | 50000 ppm            |
| Zn | S ppm*                | 1 ppm                 | 10000 ppm            |
| Zr | 5 ppm                 | 0.1 ppm               | 50000 ppm            |
| La |                       | 0.1 ppm               | 50000 ppm            |
| Ce | 30 ppm*               | 0.1 ppm               | 50000 ppm            |
| Pr |                       | 0.02 ppm              | 10000 ppm            |
| Nd | -                     | 0.3 ppm               | 10000 ppm            |
| Sm |                       | 0.05 ppm              | 10000 ppm            |
| Eu |                       | 0.02 ppm              | 10000 ppm            |
| Gd |                       | 0.05 ppm              | 10000 ppm            |
| Tb | -                     | 0.01 ppm              | 10000 ppm            |
| Dy |                       | 0.05 ppm              | 10000 ppm            |
| Но | -                     | 0.02 ppm              | 10000 ppm            |
| Er | -                     | 0.03 ppm              | 10000 ppm            |
| Tm | _                     | 0.01 ppm              | 10000 ppm            |
| Yb | -                     | 0.05 ppm              | 10000 ppm            |
| Lu | -                     | 0.01 ppm              | 10000 ppm            |

Note: Highlighted elements by Aqua Regia/ICP-MS analysis in 4B package.

# Appendix B-3 Mineralogy



J.A. McLeod Manager, Global Discovery Labs

Neil Church 600 Parkridge Street Victoria, B.C. V8Z 6N7

4 September, 2007

Dear Neil:

RE: XRD (T160,TW13,TL04-0) / G.D.L. Job V07-0848R

Three samples were submitted for x-ray diffraction. They are labeled as follows:

| FIELD NO |
|----------|
| T-160    |
| TW-13    |
| TL-40-0  |
|          |

The results are as follows:

# **SAMPLE R07:56515 (T-160)** contains:

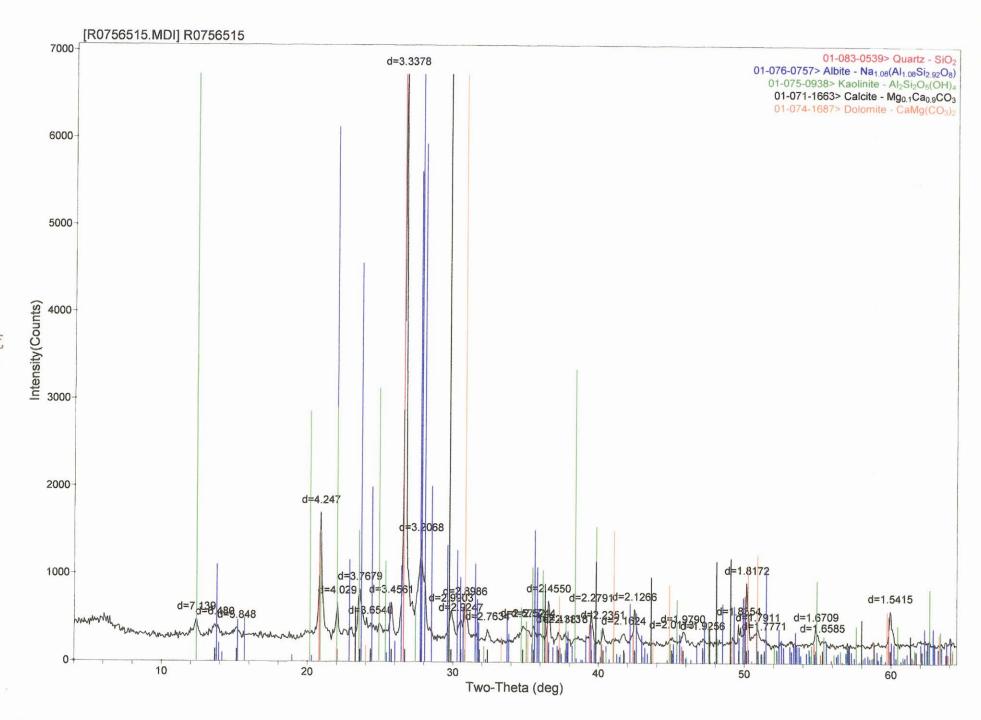
| 1) | Quartz    | Abundant          |
|----|-----------|-------------------|
| 2) | Albite    | Minor to moderate |
|    | Kaolinite |                   |
|    | Calcite   |                   |
|    | Dolomite  |                   |

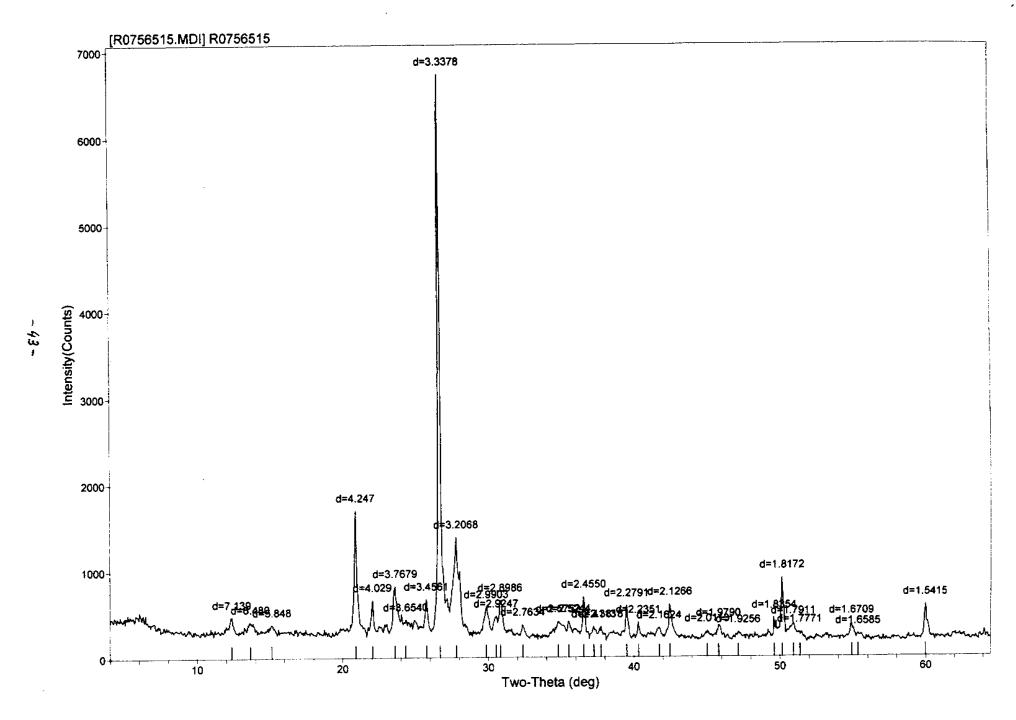
### **SAMPLE R07:56516 (TW-13)** contains:

- 1) Quartz ..... Abundant
- 2) Albite ...... Moderate
- 3) Mica ...... Minor (muscovite?)
- 4) Kaolinite ...... Possible but trace based on a small peak at d = 7.16

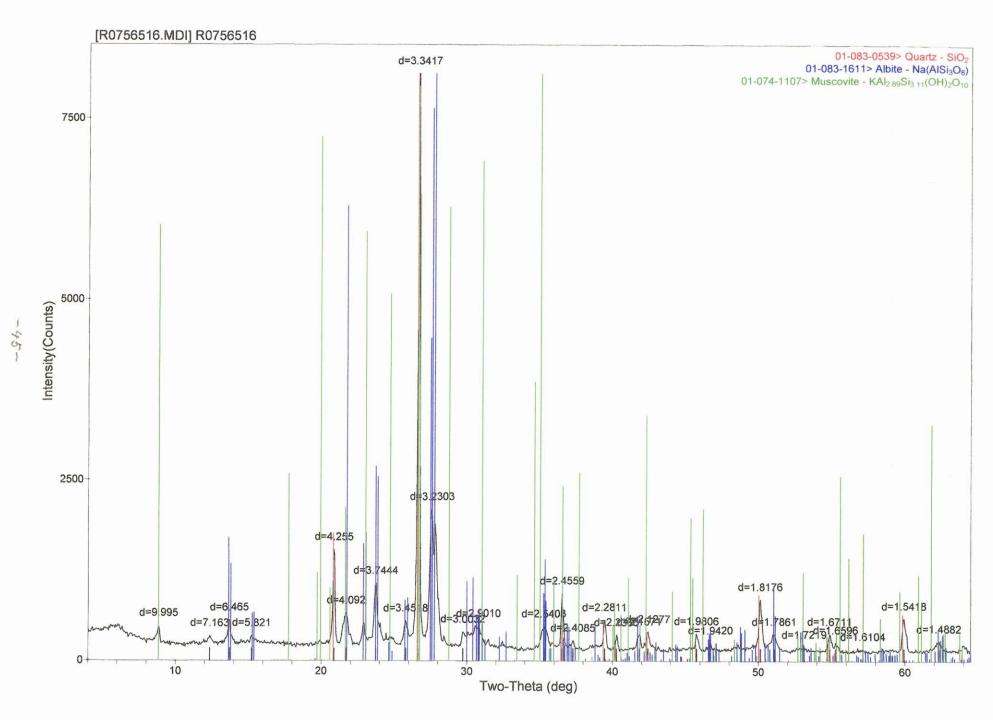
### SAMPLE R07:56517 (TL-40-0) contains:

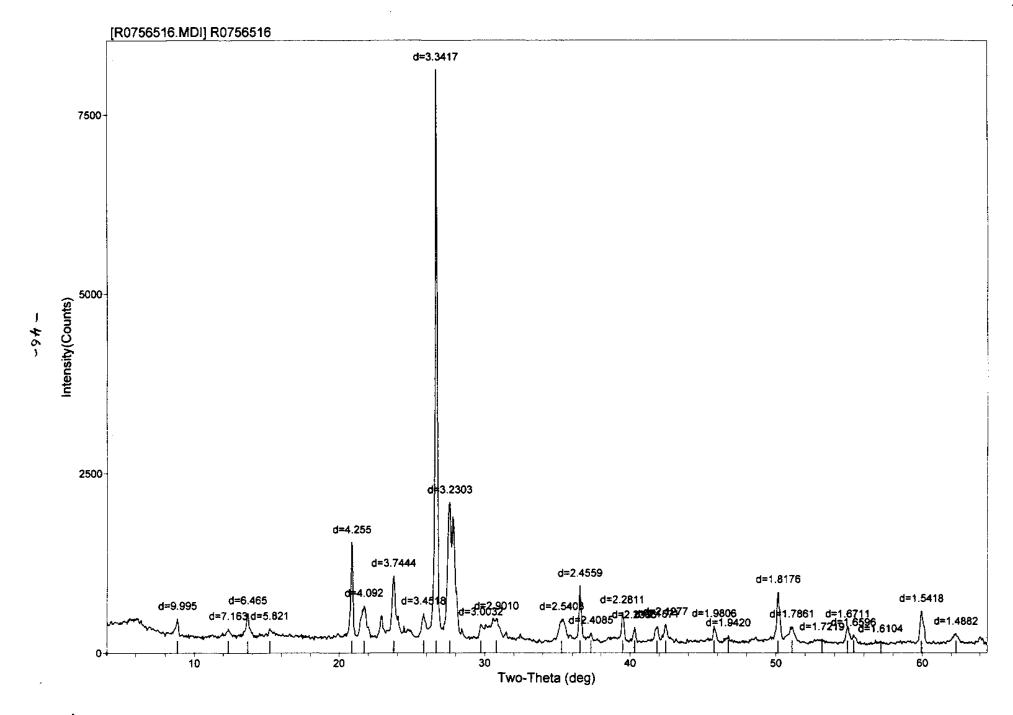
- 1) Quartz ..... Abundant
- 2) Albite ...... Minor to moderate
- 3) Dolomite ...... Moderate
- 4) Kaolinite ...... Very minor
- 5) Montmorillonite ...... Unlikely


Attached are the x-ray traces and the mineral matches.

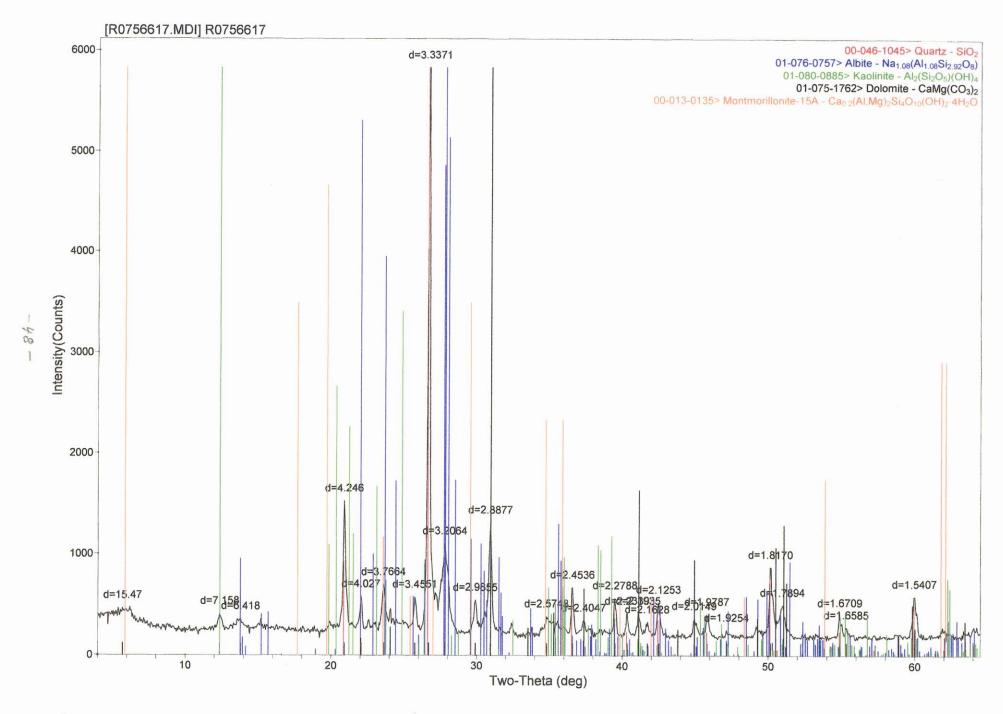

Regards,

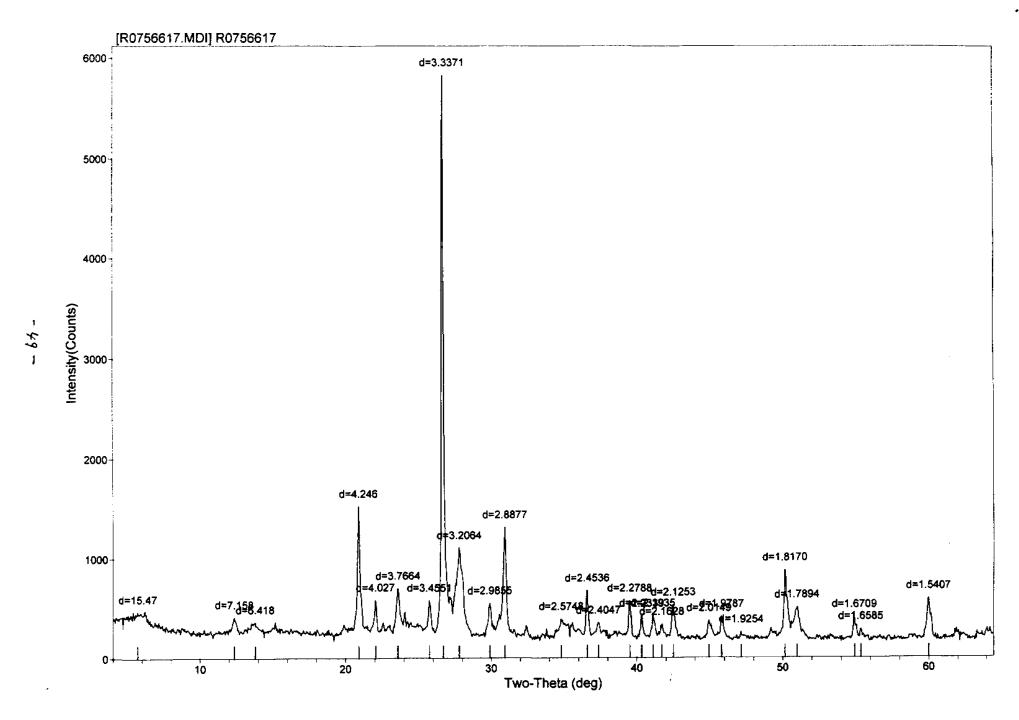
J.A. McLeod, M.A.Sc., P.Eng. Manager, G.D.L.


JAM/skw


App. (x-ray diffractograms)







| SCAN: 4.0/64.5/0.05/1(sec), Cu, I(max)=6730, 08/30/07 01:23p  PEAK: 11(pts)/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit  NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1)  # 2-Theta d(Å) BG Height H% Area A% FWHM  1 2.388 7.1391 295 181 2.8 1224 4.5 0.287  2 13.683 6.4805 301 118 1.8 1141 4.2 0.412  3 15.138 5.8478 307 77 1.2 429 1.6 0.237  4 20.898 4.2473 328 1371 21.4 5986 21.8 0.186  5 22.042 4.0294 325 341 5.3 1013 3.7 0.126  6 23.593 3.7679 344 481 7.5 3390 12.3 0.299  7 24.339 3.6540 361 78 1.2 1049 3.8 0.574  8 25.757 3.4561 346 329 5.1 1169 4.3 0.151  9 26.886 3.3378 333 6397 100.0 27469 100.0 0.182  10 27.797 3.2068 290 1095 17.1 11119 40.5 0.432  11 29.855 2.9903 332 249 3.9 1119 4.1 0.191  12 30.541 2.9247 329 146 2.3 1239 4.5 0.361  13 30.823 2.8986 323 336 5.2 2446 8.9 0.310  14 32.371 2.7634 265 110 1.7 200 0.7 0.077  15 34.809 2.5752 274 140 2.2 1549 5.6 0.470  16 35.534 2.5244 306 108 1.7 839 3.1 0.329  17 36.573 2.4550 283 413 6.5 1383 5.0 0.142  18 37.259 2.4113 256 93 1.4 749 2.7 0.343  19 37.738 2.3818 246 104 1.6 749 2.7 0.305  10 3.708 2.291 248 344 5.4 1215 4.4 0.150  21 40.319 2.2351 241 158 2.5 329 1.2 0.088  22 41.736 2.1624 253 82 1.3 425 1.5 0.221  23 4.474 2.1266 247 360 5.6 1869 6.8 0.221  24 4.475 1.9266 247 360 5.6 1869 6.8 0.221  24 4.476 1.9256 215 66 1.0 396 1.4 0.257  25 45.813 1.9790 220 138 2.2 1340 4.9 0.413  26 47.160 1.9256 215 66 1.0 396 1.4 0.257  27 49.629 1.8354 225 225 3.5 1479 5.4 0.279  28 50.943 1.7911 195 186 2.9 2604 9.5 0.595  29 50.943 1.7911 195 186 2.9 2604 9.5 0.595  20 51.375 1.7771 195 87 1.4 491 1.8 0.240  21 55.349 1.6585 205 56 0.9 595 2.2 0.450  20 51.375 1.7771 195 87 1.4 491 1.8 0.240  21 55.349 1.6585 205 56 0.9 595 2.2 0.450  23 59.961 1.5415 219 377 5.9 1748 0.4019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AK: 11(pts)/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit  OTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1)  2-Theta d(Å) BG Height H% Area A% FVVHM  12.388 7.1391 295 181 2.8 1224 4.5 0.287  13.663 6.4805 301 118 1.8 1141 4.2 0.412  15.138 5.8478 307 77 1.2 429 1.6 0.237  20.888 4.2473 328 1371 21.4 5986 21.8 0.186  22.042 4.0294 325 341 5.3 1013 3.7 0.126  23.593 3.7679 344 481 7.5 3390 12.3 0.299  24.339 3.6540 361 78 1.2 1049 3.8 0.574  25.757 3.4561 346 329 5.1 1169 4.3 0.151  26.686 3.3378 333 6397 100.0 27469 100.0 0.182  27.797 3.2068 290 1095 17.1 11119 40.5 0.432  29.855 2.9903 332 249 3.9 1119 4.1 0.191  30.541 2.9247 329 146 2.3 1239 4.5 0.361  30.823 2.8986 323 336 5.2 2446 8.9 0.310  32.371 2.7634 265 110 1.7 200 0.7 0.077  34.809 2.5752 274 140 2.2 1549 5.6 0.470  35.534 2.5244 306 108 1.7 839 3.1 0.329  36.573 2.4550 283 413 6.5 1383 5.0 0.142  37.259 2.4113 256 93 1.4 749 2.7 0.305  39.508 2.2791 248 344 5.4 1215 4.4 0.150  40.319 2.2351 241 158 2.5 329 1.2 0.088  41.736 2.1624 253 82 1.3 425 1.5 0.221  42.749 2.2 1549 5.6 0.470  37.758 2.3818 246 104 1.6 749 2.7 0.305  39.508 2.2791 248 344 5.4 1215 4.4 0.150  40.319 2.2351 241 158 2.5 329 1.2 0.088  41.736 2.1624 253 82 1.3 425 1.5 0.221  42.747 2.1266 247 360 5.6 1869 6.8 0.221  42.74 2.1266 247 360 5.6 1869 6.8 0.221  42.74 2.1266 247 360 5.6 1869 6.8 0.221  42.74 2.1266 247 360 5.6 1869 6.8 0.221  42.74 2.1266 247 360 5.6 1869 6.8 0.221  45.813 1.9790 220 138 2.2 1340 4.9 0.413  47.160 1.9256 215 660 10.3 3190 11.6 0.205  50.943 1.7911 195 87 1.4 491 1.8 0.240  54.969 1.6709 211 174 2.7 1272 4.6 0.310  55.349 1.6855 205 56 0.9 595 2.2 0.450                                                                                                        | NV  | 756515.MD    | IJ KU75651             | 0         |                 |            |                |                            |                                                  | Peak Search R               | epo      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|------------------------|-----------|-----------------|------------|----------------|----------------------------|--------------------------------------------------|-----------------------------|----------|
| Note                                                                                                                                                                                                                                                                                                                                                                                 | TE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1)    2-Theta   d(Å)   BG   Height   H%   Area   A%   FWHM     12.388   7.1391   295   181   2.8   1224   4.5   0.287     13.653   6.4805   301   118   1.8   1141   4.2   0.412     15.138   5.8478   307   77   1.2   429   1.6   0.237     20.898   4.2473   328   1371   21.4   5986   21.8   0.186     22.042   4.0294   325   341   5.3   1013   3.7   0.126     23.593   3.7679   344   481   7.5   3390   12.3   0.299     24.339   3.6540   361   78   1.2   1049   3.8   0.574     25.757   3.4561   346   329   5.1   1169   4.3   0.151     26.686   3.3378   333   6397   100.0   27469   100.0   0.182     27.797   3.2068   290   1095   17.1   11119   40.5   0.432     29.855   2.9903   332   249   3.9   1119   4.1   0.191     30.541   2.9247   329   146   2.3   1239   4.5   0.361     30.823   2.8986   323   336   5.2   2446   8.9   0.310     32.371   2.7634   265   110   1.7   200   0.7   0.077     34.809   2.5752   274   140   2.2   1549   5.6   0.470     35.534   2.5244   306   108   1.7   839   3.1   0.329     36.573   2.4550   283   413   6.5   1383   5.0   0.142     37.259   2.4113   256   93   1.4   749   2.7   0.305     39.508   2.2791   248   344   5.4   1215   4.4   0.150     40.319   2.2351   241   158   2.5   329   1.2   0.068     41.736   2.1624   253   82   1.3   425   1.5   0.221     42.474   2.1266   247   360   5.6   1869   6.8   0.221     45.813   1.9790   220   138   2.2   1340   4.9   0.413     47.160   1.9256   215   66   1.0   396   1.4   0.257     49.629   1.8354   225   225   3.5   1479   5.4   0.257     49.629   1.8354   225   225   3.5   1479   5.4   0.225     59.961   1.5415   219   377   5.9   1748   6.4   0.197                                                                       | CA  | N: 4.0/64.5  | /0.05/1(se             | c), Cu,   | I(max)=6        | 730, 08/3  | 0/07 01:2      | 23p                        |                                                  |                             |          |
| OTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1)    2-Theta   d(Å)   BG   Height   H%   Area   A%   FWHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1)    2-Theta   d(Å)   BG   Height   H%   Area   A%   FWHM     12.388   7.1391   295   181   2.8   1224   4.5   0.287     13.653   6.4805   301   118   1.8   1141   4.2   0.412     15.138   5.8478   307   77   1.2   429   1.6   0.237     20.898   4.2473   328   1371   21.4   5986   21.8   0.186     22.042   4.0294   325   341   5.3   1013   3.7   0.126     23.593   3.7679   344   481   7.5   3390   12.3   0.299     24.339   3.6540   361   78   1.2   1049   3.8   0.574     25.757   3.4561   346   329   5.1   1169   4.3   0.151     26.686   3.3378   333   6397   100.0   27469   100.0   0.182     27.797   3.2068   290   1095   17.1   11119   40.5   0.432     29.855   2.9903   332   249   3.9   1119   4.1   0.191     30.541   2.9247   329   146   2.3   1239   4.5   0.361     30.823   2.8986   323   336   5.2   2446   8.9   0.310     32.371   2.7634   265   110   1.7   200   0.7   0.077     34.809   2.5752   274   140   2.2   1549   5.6   0.470     35.534   2.5244   306   108   1.7   839   3.1   0.329     36.573   2.4550   283   413   6.5   1383   5.0   0.142     37.259   2.4113   256   93   1.4   749   2.7   0.305     39.508   2.2791   248   344   5.4   1215   4.4   0.150     40.319   2.2351   241   158   2.5   329   1.2   0.068     41.736   2.1624   253   82   1.3   425   1.5   0.221     42.474   2.1266   247   360   5.6   1869   6.8   0.221     45.813   1.9790   220   138   2.2   1340   4.9   0.413     47.160   1.9256   215   66   1.0   396   1.4   0.257     49.629   1.8354   225   225   3.5   1479   5.4   0.257     49.629   1.8354   225   225   3.5   1479   5.4   0.225     59.961   1.5415   219   377   5.9   1748   6.4   0.197                                                                       | EΑ  | K: 11(pts)/F | Parabolic F            | ilter, Ti | reshold:        | =3.0, Cuto | off=0.1%,      | BG=3/1.                    | 0, Peak-Top=Sum                                  | nmit                        |          |
| 12.388 7.1391 295 181 2.8 1224 4.5 0.287 13.653 6.4805 301 118 1.8 1141 4.2 0.412 15.138 5.8478 307 77 1.2 429 1.6 0.237 20.898 4.2473 328 1371 21.4 5986 21.8 0.186 22.042 4.0294 325 341 5.3 1013 3.7 0.126 23.593 3.7679 344 481 7.5 3390 12.3 0.299 24.339 3.6540 361 78 1.2 1049 3.8 0.574 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 2 30.541 2.9247 329 146 2.3 1239 4.5 0.361 3 30.823 2.8986 323 336 5.2 2446 8.9 0.310 3 32.371 2.7634 265 110 1.7 200 0.7 0.077 3 4.809 2.5752 274 140 2.2 1549 5.6 0.470 3 3.5534 2.5244 306 108 1.7 839 3.1 0.329 3 3.573 2.4550 283 413 6.5 1383 5.0 0.142 3 3.7259 2.4113 256 93 1.4 749 2.7 0.343 3 37.738 2.3818 246 104 1.6 749 2.7 0.345 3 37.738 2.3818 246 104 1.6 749 2.7 0.305 3 39.508 2.2791 248 344 5.4 1215 4.4 0.150 3 39.508 2.2791 248 344 5.4 1215 4.4 0.150 3 40.319 2.2351 241 158 2.5 329 1.2 0.088 4 45.036 2.0113 228 67 1.0 359 1.3 0.229 4 45.036 2.0113 228 67 1.0 359 1.3 0.229 4 58.813 1.9790 220 138 2.2 1340 4.9 0.413 4 45.036 2.0113 228 67 1.0 359 1.3 0.229 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.6865 205 56 0.9 595 2.2 0.450 5 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.388         7.1391         295         181         2.8         1224         4.5         0.287           13.653         6.4805         301         118         1.8         1141         4.2         0.412           15.138         5.8478         307         77         1.2         429         1.6         0.237           20.898         4.2473         328         1371         21.4         5986         21.8         0.186           22.042         4.0294         325         341         5.3         1013         3.7         0.126           23.593         3.7679         344         481         7.5         3390         12.3         0.299           24.339         3.6540         361         78         1.2         1049         3.8         0.574           25.757         3.4561         346         329         5.1         1169         4.3         0.151           26.886         3.3378         333         6397         100.0         27469         100.0         0.482           27.797         3.2068         290         1095         17.1         11119         4.1         0.191           30.511         2.2947         329 </th <th></th> <th>** :</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | ** :         |                        |           |                 |            |                |                            | · · · · · · · · · · · · · · · · · · ·            |                             |          |
| 13.653 6.4805 301 118 1.8 1141 4.2 0.412 15.138 5.8478 307 77 1.2 429 1.6 0.237 15.138 5.8478 307 77 1.2 429 1.6 0.237 15.20.898 4.2473 328 1371 21.4 5986 21.8 0.186 15.20.898 4.2473 328 1371 21.4 5986 21.8 0.186 15.20.893 3.7679 344 481 7.5 3390 12.3 0.299 17 24.339 3.6540 361 78 1.2 1049 3.8 0.574 18 25.757 3.4561 346 329 5.1 1169 4.3 0.151 18 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 18 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 19 28.55 2.9903 332 249 3.9 1119 4.1 0.191 19 30.541 2.9247 329 146 2.3 1239 4.5 0.361 13 30.823 2.8986 323 336 5.2 2446 8.9 0.310 13 30.823 2.8986 323 336 5.2 2446 8.9 0.310 13 33.809 2.5752 274 140 2.2 1549 5.6 0.470 13 35.534 2.5244 306 108 1.7 809 3.1 0.329 17 36.573 2.4550 283 413 6.5 1383 5.0 0.142 18 37.259 2.4113 256 93 1.4 749 2.7 0.305 19 37.738 2.3818 246 104 1.6 749 2.7 0.305 19 39.508 2.2791 248 344 5.4 1215 4.4 0.150 10 39.508 2.2791 248 344 5.4 1215 4.4 0.150 11 40.319 2.2351 241 158 2.5 329 1.2 0.088 12 41.736 2.1624 253 82 1.3 425 1.5 0.221 14 45.036 2.0113 228 67 1.0 359 1.3 0.229 15 45.813 1.9790 220 138 2.2 1340 4.9 0.413 16 45.036 2.0113 228 67 1.0 359 1.3 0.229 17 45.636 2.1624 253 82 1.3 425 1.5 0.221 17 49.629 1.8364 225 225 3.5 1479 5.4 0.279 18 50.61 1.8172 251 660 10.3 3190 11.6 0.205 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 2604 9.5 0.595 18 50.943 1.7911 195 186 2.9 260                                                                                                                                                                                                                                                                                                                                                                            | 13.653   6.4805   301   118   1.8   1141   4.2   0.412   15.138   5.8478   307   77   1.2   429   1.6   0.237   20.898   4.2473   328   1371   21.4   5986   21.8   0.186   22.042   4.0294   325   341   5.3   1013   3.7   0.126   23.593   3.7679   344   481   7.5   3390   12.3   0.299   24.339   3.6540   361   78   1.2   1049   3.8   0.574   25.757   3.4561   346   329   5.1   1169   4.3   0.151   26.686   3.3378   333   6397   100.0   27469   100.0   0.182   27.797   3.2068   290   1095   17.1   11119   40.5   0.432   29.855   2.9903   332   249   3.9   1119   4.1   0.191   30.541   2.9247   329   146   2.3   1239   4.5   0.361   30.823   2.8986   323   336   5.2   2446   8.9   0.310   32.371   2.7634   265   110   1.7   200   0.7   0.077   34.809   2.5752   274   140   2.2   1549   5.6   0.470   35.534   2.5244   306   108   1.7   839   3.1   0.329   36.573   2.4550   283   413   6.5   1383   5.0   0.142   37.259   2.4113   256   93   1.4   749   2.7   0.305   39.508   2.2791   248   344   5.4   1215   4.4   0.150   40.319   2.2351   241   158   2.5   329   1.2   0.008   41.736   2.1624   253   82   1.3   425   1.5   0.221   42.474   2.1266   247   360   5.6   1869   6.8   0.221   45.036   2.0113   228   67   1.0   359   1.3   0.229   45.813   1.9790   220   138   2.2   1340   4.9   0.413   47.160   1.9256   215   66   1.0   396   1.4   0.257   49.629   1.8354   225   225   3.5   1479   5.4   0.257   49.629   1.8354   225   225   3.5   1479   5.4   0.257   49.629   1.8354   225   225   3.5   1479   5.4   0.257   49.629   1.8354   225   225   3.5   1479   5.4   0.257   50.943   1.7911   195   186   2.9   2604   9.5   0.595   51.375   1.7771   195   87   1.4   491   1.8   0.240   55.349   1.6585   205   56   0.9   595   2.2   0.450   59.961   1.5415   219   377   5.9   1748   6.4   0.197 | ŧ   | 2-Theta      | d(Å)                   | BG        | Height          | Н%         | Area           | Α%                         | FWHM                                             |                             |          |
| 15.138         5.8478         307         77         1.2         429         1.6         0.237           20.898         4.2473         328         1371         21.4         5986         21.8         0.186           22.042         4.0294         325         341         5.3         1013         3.7         0.126           23.593         3.7679         344         481         7.5         3390         12.3         0.299           24.339         3.6540         361         78         1.2         1049         3.8         0.574           25.757         3.4561         346         329         5.1         1169         4.3         0.151           26.686         3.3378         333         6397         100.0         27469         100.0         0.182           27.797         3.2068         290         1095         17.1         11119         4.5         0.432           29.855         2.9903         332         249         3.9         1119         4.1         0.191           20         3.5544         2.9247         329         146         2.3         1239         4.5         0.361           30.823         2.8966 <td>15.138 5.8478 307 77 1.2 429 1.6 0.237 20.898 4.2473 328 1371 21.4 5986 21.8 0.186 22.042 4.0294 325 341 5.3 1013 3.7 0.126 23.593 3.7679 344 481 7.5 3390 12.3 0.299 24.339 3.6540 361 78 1.2 1049 3.8 0.574 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 29.855 2.9903 332 249 3.9 1119 4.1 0.191 30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.257 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197</td> <td>Ī</td> <td>12.388</td> <td>7.1391</td> <td>295</td> <td>181</td> <td>2.8</td> <td>1224</td> <td>4.5</td> <td>0.287</td> <td></td> <td></td> | 15.138 5.8478 307 77 1.2 429 1.6 0.237 20.898 4.2473 328 1371 21.4 5986 21.8 0.186 22.042 4.0294 325 341 5.3 1013 3.7 0.126 23.593 3.7679 344 481 7.5 3390 12.3 0.299 24.339 3.6540 361 78 1.2 1049 3.8 0.574 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 29.855 2.9903 332 249 3.9 1119 4.1 0.191 30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.257 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ī   | 12.388       | 7.1391                 | 295       | 181             | 2.8        | 1224           | 4.5                        | 0.287                                            |                             |          |
| 20.898       4.2473       328       1371       21.4       5986       21.8       0.186         22.042       4.0294       325       341       5.3       1013       3.7       0.126         23.593       3.7679       344       481       7.5       3390       12.3       0.299         24.339       3.6540       361       78       1.2       1049       3.8       0.574         25.757       3.4561       346       329       5.1       1169       4.3       0.151         26.686       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       4.0       5.4         2 9.855       2.9903       332       249       3.9       1119       4.1       0.191         2 30.541       2.9247       329       146       2.3       1239       4.5       0.361         3 30.823       2.8986       323       336       5.2       2446       8.9       0.310         3 34.09       2.5752       274       140       2.2       1549       5.6       0.470         3 45.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.898         4.2473         328         1371         21.4         5986         21.8         0.186           22.042         4.0294         325         341         5.3         1013         3.7         0.126           23.593         3.6769         344         481         7.5         3390         12.3         0.299           24.339         3.6540         361         78         1.2         1049         3.8         0.574           25.757         3.4581         346         329         5.1         1169         4.3         0.151           26.866         3.3378         333         6397         100.0         27469         100.0         0.182           27.797         3.2068         290         1095         17.1         11119         4.0         0.432           29.855         2.9903         332         249         3.9         1119         4.1         0.191           30.541         2.9247         329         146         2.3         1239         4.5         0.361           30.823         2.8986         323         336         5.2         2446         8.9         0.310           32.371         2.7652         274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 13.653       | 6.4805                 | 301       | 118             | 1.8        | 1141           | 4.2                        | 0.412                                            |                             |          |
| 22.042 4.0294 325 341 5.3 1013 3.7 0.126 23.593 3.7679 344 481 7.5 3390 12.3 0.299 24.339 3.6540 361 78 12 1049 3.8 0.574 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 129.855 2.9903 332 249 3.9 1119 4.1 0.191 20.541 2.9247 329 146 2.3 1239 4.5 0.361 23.0541 2.9247 329 146 2.3 1239 4.5 0.361 23.371 2.7634 265 110 1.7 200 0.7 0.077 24.4809 2.5752 274 140 2.2 1549 5.6 0.470 25.5534 2.5244 306 108 1.7 839 3.1 0.329 26.573 2.4550 283 413 6.5 1383 5.0 0.142 27.793 2.3818 246 104 1.6 749 2.7 0.343 27.738 2.3818 246 104 1.6 749 2.7 0.305 28.7738 2.3818 246 104 1.6 749 2.7 0.305 29.508 2.2791 248 344 5.4 1215 4.4 0.150 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.474 2.1266 247 360 5.6 1869 6.8 0.221 20.4710 1.9256 215 66 1.0 396 1.4 0.257 20.4710 1.9256 215 66 1.0 396 1.4 0.257 20.4710 1.9256 215 66 1.0 396 1.4 0.257 20.4710 1.9256 215 66 1.0 396 1.4 0.257 20.4711 1.95 186 2.9 2604 9.5 0.595 20.5349 1.6585 205 56 0.9 595 2.2 0.450 20.5359 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.042       4.0294       325       341       5.3       1013       3.7       0.126         23.593       3.7679       344       481       7.5       3390       12.3       0.299         24.339       3.6540       361       78       1.2       1049       3.8       0.574         25.757       3.4561       346       329       5.1       1169       4.3       0.151         26.868       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.6244       306       108       1.7       839       3.1       0.329         36.573       2.4550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ; ] | 15.138       | 5.8478                 | 307       | 77              | 1.2        | 429            | 1.6                        | 0.237                                            |                             |          |
| 23.593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.593       3.7679       344       481       7.5       3390       12.3       0.299         24.339       3.6540       361       78       1.2       1049       3.8       0.574         25.757       3.4561       346       329       5.1       1169       4.3       0.151         26.686       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       4.0       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4513       256       93       1.4       749       2.7       0.343         37.738       2.3818 </td <td></td> <td>20.898</td> <td>4.2473</td> <td>328</td> <td>1371</td> <td>21.4</td> <td>5986</td> <td>21.8</td> <td>0.186</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 20.898       | 4.2473                 | 328       | 1371            | 21.4       | 5986           | 21.8                       | 0.186                                            |                             |          |
| 24.339       3.6540       361       78       1.2       1049       3.8       0.574         25.757       3.4561       346       329       5.1       1169       4.3       0.151         26.686       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       40.5       0.432         29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.339       3.6540       361       78       1.2       1049       3.8       0.574         25.757       3.4561       346       329       5.1       1169       4.3       0.151         26.886       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       40.5       0.432         29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 22.042       | 4.0294                 | 325       | 341             | 5.3        | 1013           | 3.7                        | 0.126                                            |                             |          |
| 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 29.855 2.9903 332 249 3.9 1119 4.1 0.191 2 30.541 2.9247 329 146 2.3 1239 4.5 0.361 3 30.823 2.8986 323 336 5.2 2446 8.9 0.310 3 32.371 2.7634 265 110 1.7 200 0.7 0.077 3 34.809 2.5752 274 140 2.2 1549 5.6 0.470 3 35.534 2.5244 306 108 1.7 839 3.1 0.329 3 36.573 2.4550 283 413 6.5 1383 5.0 0.142 3 37.259 2.4113 256 93 1.4 749 2.7 0.343 3 37.738 2.3818 246 104 1.6 749 2.7 0.305 3 39.508 2.2791 248 344 5.4 1215 4.4 0.150 4 0.319 2.2351 241 158 2.5 329 1.2 0.088 4 1.736 2.1624 253 82 1.3 425 1.5 0.221 4 45.036 2.0113 228 67 1.0 359 1.3 0.229 4 55.813 1.9790 220 138 2.2 1340 4.9 0.413 4 7.160 1.9256 215 66 1.0 396 1.4 0.257 4 9.629 1.8354 225 225 3.5 1479 5.4 0.279 5 50.43 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.7911 195 186 2.9 2604 9.5 0.595 5 50.943 1.6585 205 56 0.9 595 2.2 0.450 5 9.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.757 3.4561 346 329 5.1 1169 4.3 0.151 26.886 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 29.855 2.9903 332 249 3.9 1119 4.1 0.191 30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.6244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 55.349 1.6565 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 23.593       | 3.7679                 | 344       | 481             | 7.5        | 3390           | 12.3                       | 0.299                                            |                             |          |
| 26.686 3.3378 333 6397 100.0 27469 100.0 0.182 27.797 3.2068 290 1095 17.1 11119 40.5 0.432 29.855 2.9903 332 249 3.9 1119 4.1 0.191 30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6685 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.886       3.3378       333       6397       100.0       27469       100.0       0.182         27.797       3.2068       290       1095       17.1       11119       40.5       0.432         29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 24.339       | 3.6540                 | 361       | 78              | 1.2        | 1049           | 3.8                        | 0.574                                            |                             |          |
| 27.797       3.2068       290       1095       17.1       11119       40.5       0.432         29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         4       32.371       2.7634       265       110       1.7       200       0.7       0.077         5       34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818       246       104       1.6       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.343         41.736       2.1624       253       82       1.3       425       1.5       0.221         45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.797       3.2068       290       1095       17.1       11119       40.5       0.432         29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818       246       104       1.6       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 25.757       | 3.4561                 | 346       | 329             | 5.1        | 1169           | 4.3                        | 0.151                                            |                             |          |
| 1       29.855       2.9903       332       249       3.9       1119       4.1       0.191         2       30.541       2.9247       329       146       2.3       1239       4.5       0.361         3       30.823       2.8986       323       336       5.2       2446       8.9       0.310         3       32.371       2.7634       265       110       1.7       200       0.7       0.077         3       34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266 <t< td=""><td></td><td>26.686</td><td>3.3378</td><td>333</td><td>6397</td><td>100.0</td><td>27469</td><td>100.0</td><td>0.182</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 26.686       | 3.3378                 | 333       | 6397            | 100.0      | 27469          | 100.0                      | 0.182                                            |                             |          |
| 1       29.855       2.9903       332       249       3.9       1119       4.1       0.191         2       30.541       2.9247       329       146       2.3       1239       4.5       0.361         3       30.823       2.8986       323       336       5.2       2446       8.9       0.310         3       32.371       2.7634       265       110       1.7       200       0.7       0.077         3       34.809       2.5752       274       140       2.2       1549       5.6       0.470         3       35.534       2.5244       306       108       1.7       839       3.1       0.329         3       36.573       2.4550       283       413       6.5       1383       5.0       0.142         3       37.738       2.3818       246       104       1.6       749       2.7       0.305         3       39.508       2.2791       248       344       5.4       1215       4.4       0.150         4       40.319       2.2351       241       158       2.5       329       1.2       0.088         2       41.736       2.1624 <td>29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         45.036       2.0113       <t< td=""><td>)</td><td>27.797</td><td></td><td>290</td><td>1095</td><td></td><td>11119</td><td>40.5</td><td>0.432</td><td></td><td></td></t<></td>                                                                                                                                                                                                                                 | 29.855       2.9903       332       249       3.9       1119       4.1       0.191         30.541       2.9247       329       146       2.3       1239       4.5       0.361         30.823       2.8986       323       336       5.2       2446       8.9       0.310         32.371       2.7634       265       110       1.7       200       0.7       0.077         34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         45.036       2.0113 <t< td=""><td>)</td><td>27.797</td><td></td><td>290</td><td>1095</td><td></td><td>11119</td><td>40.5</td><td>0.432</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )   | 27.797       |                        | 290       | 1095            |            | 11119          | 40.5                       | 0.432                                            |                             |          |
| 2       30.541       2.9247       329       146       2.3       1239       4.5       0.361         3       30.823       2.8986       323       336       5.2       2446       8.9       0.310         3       32.371       2.7634       265       110       1.7       200       0.7       0.077         3       34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         2       41.736       2.1624       253       82       1.3       425       1.5 <t< td=""><td>30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197</td><td>ı</td><td>29.855</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                            | 30.541 2.9247 329 146 2.3 1239 4.5 0.361 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı   | 29.855       |                        |           |                 |            |                |                            |                                                  |                             |          |
| 30.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.823 2.8986 323 336 5.2 2446 8.9 0.310 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.371 2.7634 265 110 1.7 200 0.7 0.077 34.809 2.5752 274 140 2.2 1549 5.6 0.470 35.534 2.5244 306 108 1.7 839 3.1 0.329 36.573 2.4550 283 413 6.5 1383 5.0 0.142 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - i |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.738       2.3818       246       104       1.6       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256 <td< td=""><td>34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354</td><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                  | 34.809       2.5752       274       140       2.2       1549       5.6       0.470         35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.534       2.5244       306       108       1.7       839       3.1       0.329         36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 7       36.573       2.4550       283       413       6.5       1383       5.0       0.142         3       37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.573       2.4550       283       413       6.5       1383       5.0       0.142         37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 37.259 2.4113 256 93 1.4 749 2.7 0.343 37.738 2.3818 246 104 1.6 749 2.7 0.305 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.259       2.4113       256       93       1.4       749       2.7       0.343         37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911 <td< td=""><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 37.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.738       2.3818       246       104       1.6       749       2.7       0.305         39.508       2.2791       248       344       5.4       1215       4.4       0.150         40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       87       1.4       491       1.8       0.240         54.905       1.6709 <td< td=""><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.508 2.2791 248 344 5.4 1215 4.4 0.150 40.319 2.2351 241 158 2.5 329 1.2 0.088 41.736 2.1624 253 82 1.3 425 1.5 0.221 42.474 2.1266 247 360 5.6 1869 6.8 0.221 45.036 2.0113 228 67 1.0 359 1.3 0.229 45.813 1.9790 220 138 2.2 1340 4.9 0.413 47.160 1.9256 215 66 1.0 396 1.4 0.257 49.629 1.8354 225 225 3.5 1479 5.4 0.279 50.161 1.8172 251 660 10.3 3190 11.6 0.205 50.943 1.7911 195 186 2.9 2604 9.5 0.595 51.375 1.7771 195 87 1.4 491 1.8 0.240 54.905 1.6709 211 174 2.7 1272 4.6 0.310 55.349 1.6585 205 56 0.9 595 2.2 0.450 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6865 <t< td=""><td>40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415</td><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                   | 40.319       2.2351       241       158       2.5       329       1.2       0.088         41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 2       41.736       2.1624       253       82       1.3       425       1.5       0.221         3       42.474       2.1266       247       360       5.6       1869       6.8       0.221         4       45.036       2.0113       228       67       1.0       359       1.3       0.229         4       45.813       1.9790       220       138       2.2       1340       4.9       0.413         3       47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.736       2.1624       253       82       1.3       425       1.5       0.221         42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ł   |              | -                      |           |                 |            |                |                            |                                                  |                             |          |
| 3       42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         3       47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         3       50.161       1.8172       251       660       10.3       3190       11.6       0.205         5       50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         25.349       1.6585       205       56       0.9       595       2.2       0.450         35       59.961       1.5415       219       377       5.9       1748       6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42.474       2.1266       247       360       5.6       1869       6.8       0.221         45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         3       47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         25.349       1.6585       205       56       0.9       595       2.2       0.450         35       59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.036       2.0113       228       67       1.0       359       1.3       0.229         45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 3       45.813       1.9790       220       138       2.2       1340       4.9       0.413         3       47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         3       50.161       1.8172       251       660       10.3       3190       11.6       0.205         5       50.943       1.7911       195       186       2.9       2604       9.5       0.595         5       51.375       1.7771       195       87       1.4       491       1.8       0.240         5       54.905       1.6709       211       174       2.7       1272       4.6       0.310         2       55.349       1.6585       205       56       0.9       595       2.2       0.450         3       59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.813       1.9790       220       138       2.2       1340       4.9       0.413         47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 3     47.160     1.9256     215     66     1.0     396     1.4     0.257       49.629     1.8354     225     225     3.5     1479     5.4     0.279       3     50.161     1.8172     251     660     10.3     3190     11.6     0.205       5     50.943     1.7911     195     186     2.9     2604     9.5     0.595       5     51.375     1.7771     195     87     1.4     491     1.8     0.240       5     54.905     1.6709     211     174     2.7     1272     4.6     0.310       2     55.349     1.6585     205     56     0.9     595     2.2     0.450       3     59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47.160       1.9256       215       66       1.0       396       1.4       0.257         49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 | *** *        | -                      |           |                 |            |                |                            |                                                  |                             |          |
| 7     49.629     1.8354     225     225     3.5     1479     5.4     0.279       8     50.161     1.8172     251     660     10.3     3190     11.6     0.205       9     50.943     1.7911     195     186     2.9     2604     9.5     0.595       9     51.375     1.7771     195     87     1.4     491     1.8     0.240       1     54.905     1.6709     211     174     2.7     1272     4.6     0.310       2     55.349     1.6585     205     56     0.9     595     2.2     0.450       3     59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.629       1.8354       225       225       3.5       1479       5.4       0.279         50.161       1.8172       251       660       10.3       3190       11.6       0.205         50.943       1.7911       195       186       2.9       2604       9.5       0.595         51.375       1.7771       195       87       1.4       491       1.8       0.240         54.905       1.6709       211       174       2.7       1272       4.6       0.310         55.349       1.6585       205       56       0.9       595       2.2       0.450         59.961       1.5415       219       377       5.9       1748       6.4       0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 3     50.161     1.8172     251     660     10.3     3190     11.6     0.205       5     50.943     1.7911     195     186     2.9     2604     9.5     0.595       5     51.375     1.7771     195     87     1.4     491     1.8     0.240       5     54.905     1.6709     211     174     2.7     1272     4.6     0.310       2     55.349     1.6585     205     56     0.9     595     2.2     0.450       3     59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.161     1.8172     251     660     10.3     3190     11.6     0.205       50.943     1.7911     195     186     2.9     2604     9.5     0.595       51.375     1.7771     195     87     1.4     491     1.8     0.240       54.905     1.6709     211     174     2.7     1272     4.6     0.310       55.349     1.6585     205     56     0.9     595     2.2     0.450       59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 50.943 1.7911 195 186 2.9 2604 9.5 0.595<br>51.375 1.7771 195 87 1.4 491 1.8 0.240<br>54.905 1.6709 211 174 2.7 1272 4.6 0.310<br>255.349 1.6585 205 56 0.9 595 2.2 0.450<br>59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.943     1.7911     195     186     2.9     2604     9.5     0.595       51.375     1.7771     195     87     1.4     491     1.8     0.240       54.905     1.6709     211     174     2.7     1272     4.6     0.310       55.349     1.6585     205     56     0.9     595     2.2     0.450       59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - L |              |                        |           | —— <del>-</del> |            |                |                            |                                                  |                             |          |
| 51.375 1.7771 195 87 1.4 491 1.8 0.240<br>54.905 1.6709 211 174 2.7 1272 4.6 0.310<br>555.349 1.6585 205 56 0.9 595 2.2 0.450<br>595.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.375     1.7771     195     87     1.4     491     1.8     0.240       54.905     1.6709     211     174     2.7     1272     4.6     0.310       55.349     1.6585     205     56     0.9     595     2.2     0.450       59.961     1.5415     219     377     5.9     1748     6.4     0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 54.905 1.6709 211 174 2.7 1272 4.6 0.310<br>2 55.349 1.6585 205 56 0.9 595 2.2 0.450<br>3 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.905 1.6709 211 174 2.7 1272 4.6 0.310<br>55.349 1.6585 205 56 0.9 595 2.2 0.450<br>59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - [ |              | 4.00                   |           |                 |            |                |                            |                                                  |                             |          |
| 55.349 1.6585 205 56 0.9 595 2.2 0.450<br>59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.349 1.6585 205 56 0.9 595 2.2 0.450<br>59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
| 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.961 1.5415 219 377 5.9 1748 6.4 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1 |              |                        |           |                 |            |                |                            |                                                  |                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 00.001       | 1.5415                 | 213       | 377             |            | 1740           | 0.4                        | 0.107                                            |                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |              |                        |           |                 |            |                |                            |                                                  |                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |              |                        |           | d=4.247         | 3.206      | 8              |                            |                                                  |                             |          |
| 3.2068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-3.2068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |              | 6-7. <b>328.46</b> 5.8 | 48        |                 | 25500      | 627 02.783<br> | d=2.4550<br>d=867.5346_2.0 | d=2.2701 d=2.1200<br>000002-2000-1524 d=244-9390 | d=1.8172<br>2256=1.84179171 | <b>i</b> |





| <b>R07</b> | 56516.MDI       | ] R075651                | 6       |                            |                               |                                    |                                           |                                 |                                          | Peak Searc                   | h Repor     |
|------------|-----------------|--------------------------|---------|----------------------------|-------------------------------|------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------|------------------------------|-------------|
| CA         | N: 4.0/64.5/    | 0.05/1(sec               | ;), Cu, | I(max)=8                   | 124, 08/3                     | 0/07 02:1                          | 5p                                        |                                 |                                          |                              |             |
|            | K: 13(pts)/P    |                          |         |                            |                               |                                    |                                           | 0 Peak-To                       | no=Summit                                |                              |             |
|            |                 |                          |         |                            |                               |                                    |                                           |                                 |                                          | Code alabati                 |             |
| OI         | E: Intensity    |                          |         |                            |                               |                                    |                                           |                                 | = 1.54U59A (                             | Cu/K-alpha1)                 |             |
| ۱          | 2-Theta         | d(Å)                     | BG      |                            | Н%                            | Area                               | A%                                        | FWHM                            |                                          |                              |             |
|            | 8.840           | 9.9952                   | 258     | 227                        | 2.9                           | 1000                               | 3.8                                       | 0.187                           |                                          |                              |             |
| :          | 12.348          | 7.1625                   | 236     | 109                        | 1.4                           | 703                                | 2.7                                       | 0.274                           |                                          |                              |             |
| 1          | 13.687          | 6.4647                   | 240     | 322                        | 4.2                           | 1732                               | 6.5                                       | 0.228                           |                                          |                              |             |
| .          | 15.208          | 5.8211                   | 242     | 106                        | 1.4                           | 887                                | 3.3                                       | 0.357                           |                                          |                              |             |
| ;          | 20.861          | 4.2547                   | 262     | 1279                       | 16.5                          | 4466                               | 16.9                                      | 0.148                           |                                          |                              |             |
| 1          | 21.700          | 4.0921                   | 263     | 399                        | 5.1                           | 3065                               | 11.6                                      | 0.327                           |                                          |                              |             |
| ·          | 23.743          | 3.7444                   | 309     | 764                        | 9.9                           | 4303                               | 16.2                                      | 0.240                           |                                          |                              |             |
| :          | 25.789          | 3.4518                   | 323     | 230                        | 3.0                           | 972                                | 3.7                                       | 0.180                           |                                          |                              |             |
| 1          | 26.654          | 3.3417                   | 374     | 7750                       | 100.0                         | 26500                              | 100.0                                     | 0.145                           |                                          |                              |             |
| ן מ        | 27.592          | 3.2303                   | 231     | 1863                       | 24.0                          | 24354                              | 91.9                                      | 0.556                           |                                          |                              |             |
| 1          | 29.724          | 3.0032                   | 211     | 192                        | 2.5                           | 1088                               | 4.1                                       | 0.241                           |                                          |                              |             |
| 2          | 30.797          | 2.9010                   | 206     | 276                        | 3.6                           | 4955                               | 18.7                                      | 0.764                           |                                          |                              |             |
| 3          | 35.303          | 2.5403                   | 187     | 291                        | 3.7                           | 3046                               | 11.5                                      | 0.446                           |                                          |                              |             |
| 4          | 36.559          | 2.4559                   | 204     | 731                        | 9.4                           | 2636                               | 9.9                                       | 0.153                           |                                          |                              |             |
| 5          | 37.305          | 2.4085                   | 193     | 91                         | 1.2                           | 281                                | 1.1                                       | 0.131                           |                                          |                              |             |
| 3          | 39.472          | 2.2811                   | 192     | 377                        | 4.9                           | 1629                               | 6.1                                       | 0.184                           |                                          |                              |             |
| 7          | 40.291          | 2.2366                   | 187     | 176                        | 2.3                           | 450                                | 1.7                                       | 0.109                           |                                          |                              |             |
| 3          | 41.844          | 2.1571                   | 159     | 212                        | 2.7                           | 1420                               | 5.4                                       | 0.284                           |                                          |                              |             |
| 9          | 42.449          | 2.1277                   | 163     | 244                        | 3.1                           | 1815                               | 6.9                                       | 0.316                           |                                          |                              |             |
| o [        | 45.775          | 1.9806                   | 159     | 220                        | 2.8                           | 1135                               | 4.3                                       | 0.219                           |                                          |                              |             |
| 1          | 46.739          | 1.9420                   | 154     | 97                         | 1.2                           | 462                                | 1.7                                       | 0.203                           |                                          |                              |             |
| 2          | 50.150          | 1.8176                   | 215     | 638                        | 8.2                           | 2946                               | 11.1                                      | 0.196                           |                                          |                              |             |
| 3          | 51.096          | 1.7861                   | 139     | 234                        | 3.0                           | 2657                               | 10.0                                      | 0.482                           |                                          |                              |             |
| 4          | 53.147          | 1.7219                   | 139     | 57                         | 0.7                           | 734                                | 2.8                                       | 0.546                           |                                          |                              |             |
| 5          | 54.899          | 1.6711                   | 139     | 236                        | 3.0                           | 1927                               | 7.3                                       | 0.347                           |                                          |                              |             |
| 6          | 55.309          | 1.6596                   | 133     | 125                        | 1.6                           | 1302                               | 4.9                                       | 0.442                           |                                          |                              |             |
| 7          | 57.151          | 1.6104                   | 126     | 44                         | 0.6                           | 366                                | 1.4                                       | 0.353                           |                                          |                              |             |
| в          | 59.949          | 1.5418                   | 145     | 446                        | 5.8                           | 2468                               | 9.3                                       | 0.235                           |                                          |                              |             |
| 9          | 62.344          | 1.4882                   | 145     | 130                        | 1.7                           | 1238                               | 4.7                                       | 0.403                           |                                          |                              |             |
| -          |                 |                          |         |                            | d=3.3417                      |                                    |                                           |                                 |                                          |                              |             |
|            |                 |                          |         |                            |                               | ,                                  |                                           |                                 |                                          |                              |             |
|            | <b>d=9.99</b> 5 | d=6,485<br>d=7,163,d=5,6 | 321     | d=4.255<br>d=3.<br>d=4.092 | d 3.230<br>7444<br>d=3.4516 d | o3<br><b>=1<del>1582</del>01</b> 0 | d=2.455<br>d=2.54 <u>0</u> 8 <sub>A</sub> | 9<br>d=2.2811<br>ned=2.28668555 |                                          | .8176<br>\$1.7881, d=1.8721a | =1.5418<br> |
| ŀ          |                 | بتكسب                    |         | ~~\\\\                     | www r                         | سيسرسي                             | ــالبرــــ                                | I MAN                           | - ۱. <b>۱.۱۶۹</b> ۲۵۱<br>میمبیبیبر\میسیب | d=1.72491.0844.6104          | _\\\\       |





**Peak Search Report** [R0756617.MDI] R0756617 SCAN: 4.0/64.5/0.05/1(sec), Cu, I(max)=5828, 08/30/07 05:05p PEAK: 11(pts)/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit NOTE: Intensity = Counts, 2T(0)=0.0(deg), Wavelength to Compute d-Spacing = 1.54059Å (Cu/K-alpha1) **FWHM** # 2-Theta d(Å) BG Height H% Area Α% 1 5.709 15.4665 397 69 1.3 537 2.2 0.329 2 12.355 7.1583 273 138 2.5 695 2.9 0.215 3 269 92 1.7 936 3.9 0.434 13.787 6.4180 22.3 22.9 4 20.906 4.2456 290 1236 5500 0.1895 22.055 285 295 5.3 4.1 4.0270 996 0.144 389 7.0 0.221 6 23.602 3.7664 309 2025 8.4 7 286 1076 25.764 3.4551 289 5.2 4.5 0.160 8 26.691 282 5546 100.0 24018 100.0 0.1843.3371 9 857 15.5 40.1 27.801 3.2064 249 9621 0.477 4.8 10 29.904 2.9855 279 267 1088 4.5 0.173 0.227 11 30.942 2.8877 276 1037 18.7 5536 23.0 12 34.816 2.5748 263 124 2.2 735 3.1 0.252 13 36.594 2.4536 259 412 7.4 1313 5.5 0.135 14 37.366 2.4047 247 101 1.8 426 1.8 0.179 15 39.513 2.2788 220 347 6.3 1251 5.2 0.153 16 40.342 2.2339 216 200 3.6 624 2.6 0.133 17 2.1935 198 4.7 0.240 41.117 220 3.6 1119 18 41.728 2.1628 227 106 1.9 460 1.9 0.184 19 42.500 2.1253 212 314 5.7 1570 6.5 0.213 44.952 20 2.0149 212 155 2.8 762 3.2 0.209 21 45.821 1.9787 212 197 3.6 898 3.7 0.194 22 47.166 1.9254 188 66 1.2 318 1.3 0.206 23 50.166 1.8170 230 643 11.6 3493 14.5 0.231 24 50.995 186 312 5.6 3332 0.454 1.7894 13.9 25 54.904 1.6709 182 219 4.0 1573 6.5 0.305 718 26 55.351 1.6585 183 98 1.8 3.0 0.310 27 59.995 189 394 7.1 2524 10.5 0.272 1.5407 d=3.3371 d=4.246 d=2 8877 3.2064 d=1.8170 d=1.5407 d=15.47 d=7.458.418 d=1.6709 d=1.6585 Two-Theta (deg)

50-

# Appendix B-4 XRD & CEC Analyses

## Miles Industrial Mineral Research 1244 Columbine Street Denver, CO 80206 Tel: (303) 355-5568 Fax: (303) 355-0422

w miles@hotmail.com

February 14, 2007

Liz Butler-Henderson
Princeton Energy Resources Inc.
Box 53
Parson, B.C.
Canada VOA 1L0
Tel: 250-348-2132
rockhound@xplornet.com

Re: Zeolite XRD analysis – 2 samples

Liz:

I received two rock samples, Manual Creek and Twin Lakes, for x-ray diffraction analysis and determination of mineral composition. Both samples have been evaluated and the results are summarized in this letter. Based on the mineral composition, an approximate CEC is provided. However, CEC analysis will give a more reliable value.

### X-ray Diffraction Analysis:

Each rock sample was ground to less than 200 mesh with a ceramic mortar and pestle. Each was mounted as a randomly oriented powder for x-ray diffraction analysis. A portion of each sample was then sifted into the back of a sample holder to provide a randomly oriented sample for analysis. This randomly oriented sample was used for identification and quantification of the crystalline mineral components. External standards for quartz, feldspar and illite/mica were used for quantification.

Because clay minerals may be present in each rock sample, another portion of each sample was slurried in water and coated on a glass slide. As a slurry dries, any dispersed layer silicate clay minerals orient parallel to the glass slide increasing the layer spacing for identification of the clay minerals by x-ray diffraction analysis. In order to identify expandable clay minerals, the oriented slide was then exposed to ethylene glycol vapor at 50°C. X-ray diffraction analysis shows expansion of the layer spacing of smectite clay minerals (including montmorillonite) to 17 Angstroms. Each sample XRD pattern has an overlay of the oriented film before and after exposure to ethylene glycol to demonstrate the presence of montmorillonite or other expandable clay minerals. The x-ray diffraction analysis results are listed in Table 1. X-ray diffraction patterns are included for reference.

The Manual Creek sample is composed of zeolite, and smectite clay, with minor concentrations of feldspar, and quartz. The zeolite is heulandite/clinoptilolite. Calcium montmorillonite (smectite) in the Manual Creek sample shows the (0,0,1) layer spacing at 14.5Å and the (0,6,0) peak at 1.50Å. The plagioclase feldspar has its major peak at 3.18Å.

The Twin Lakes rock sample is composed of clinoptilolite, quartz and feldspar in similar concentrations. It does not contain any montmorillonite (smectite).

Table 2 contains an approximation of the cation exchange cation concentration, based on the mineral composition. In high purity, clinoptilolite has a CEC value of about 200 meq/100g, while montmorillonite has a CEC value of about 100 meq/100g.

Thank you for your business.

William Miles, Ph.D.

Table 1
Semi-quantitative XRD Mineral Composition of Two rock Samples

| Sample       | %Clinoptilolite | %Smectite | %Feldspar | %Quartz_ | % Kaolin |
|--------------|-----------------|-----------|-----------|----------|----------|
| Manual Creek | ~30%            | ~45%      | ~20%      | <5%      | 0%       |
| Twin Lakes   | ~20%            | 0%        | ~35%      | 35%      | 10%      |

Table 2
Approximate Cation Exchange Capacity Calculated From Mineral Composition

| Manual Creek | ~105 meq/100g |
|--------------|---------------|
| Twin Lakes   | ~40 meq/100g  |

Payment should be made to:

### Miles Industrial Mineral Research

1244 Columbine Street Denver, Colorado 80206 Tel: (303) 355-5568

Fax: (303) 355-0422

Persons or entity liable for payment of this Invoice:

February 14, 2007

Liz Butler-Henderson Princeton Energy Resources Inc. Box 53 Parson, B.C. Canada VOA 1L0

Tel: 250-348-2132

Invoice # 7235

Persons or Entity Ordering Service: Liz Butler-Henderson

Service/Cost Description

**Balance Due** 

XRD evaluation of Manual Creek ands Twin Lakes rock samples:

1. XRD Analysis, 2 at \$100

\$200.00

**USA** 

\$200.00

Net 15 days, 1.5% interest per month

**Total Due:** 

prepaid

# Appendix B-5 Petrography

Report 070105 for Liz Butler-Henderson, P.O. Box 53, Parsons, B.C., VOA 1L0

February 2007

Sample:

Volcanic Glass

Summary:

#### Sample Volcanic Glass

Scattered phenocrysts and clusters of phenocrysts of plagioclase, and lesser rounded ones of quartz and subhedral ones of biotite (altered slightly towards muscovite) are enclosed in volcanic glass that shows two textural varieties, one encompassing the phenocrysts (Glass A) and containing abundant small feldspar crystals, and a more abundant variety away from the phenocrysts (Glass B) that contains only minor tiny feldspar crystals. Perlitic fractures and irregular patches in Glass B consist of Glass A. An irregular veinlet is of quartz (cryptocrystalline to very fine grained) and minor cryptocrystalline sericite.

Some of the cryptocrystalline quartz could be deleterious to the use of this material in concrete. Field studies should be done to make certain that the abundance of this type of veinlet is small.

### Photographic Notes:

The scanned section shows gross textural features; these features are seen much better on the digital image than on the printed image. Sample numbers are shown in or near the top left of the photos and photo numbers at or near the lower left. The letter in the lower right-hand corner indicates the lighting conditions: P = plane light, X = plane light in crossed nicols, R = reflected light, RP = reflected light and plane light, RX = reflected light (partly crossed nicols) and transmitted light in crossed nicols. Locations of digital photographs (by photo number) are shown on the scanned section. Descriptions of individual photographs are given at the end of the report.

John G. Payne, Ph.D., P.Geol.

Tel: (604)-597-1080

Fax: (604)-597-1080 (call first) email: jgpayne@telus.net

#### Sample Volcanic Glass

Scattered phenocrysts and clusters of phenocrysts of plagioclase, and lesser rounded ones of quartz and subhedral ones of biotite (altered slightly towards muscovite) are enclosed in volcanic glass that shows two textural varieties, one encompassing the phenocrysts (Glass A) and containing abundant small feldspar crystals, and a more abundant variety away from the phenocrysts (Glass B) that contains only minor tiny feldspar crystals. Perlitic fractures and irregular patches in Glass B consist of Glass A. An irregular veinlet is of quartz (cryptocrystalline to very fine grained) and minor cryptocrystalline sericite. Some of the cryptocrystalline quartz could be deleterious to the use of this material in concrete. Field studies should be done to make certain that the abundance of this type of veinlet is small.

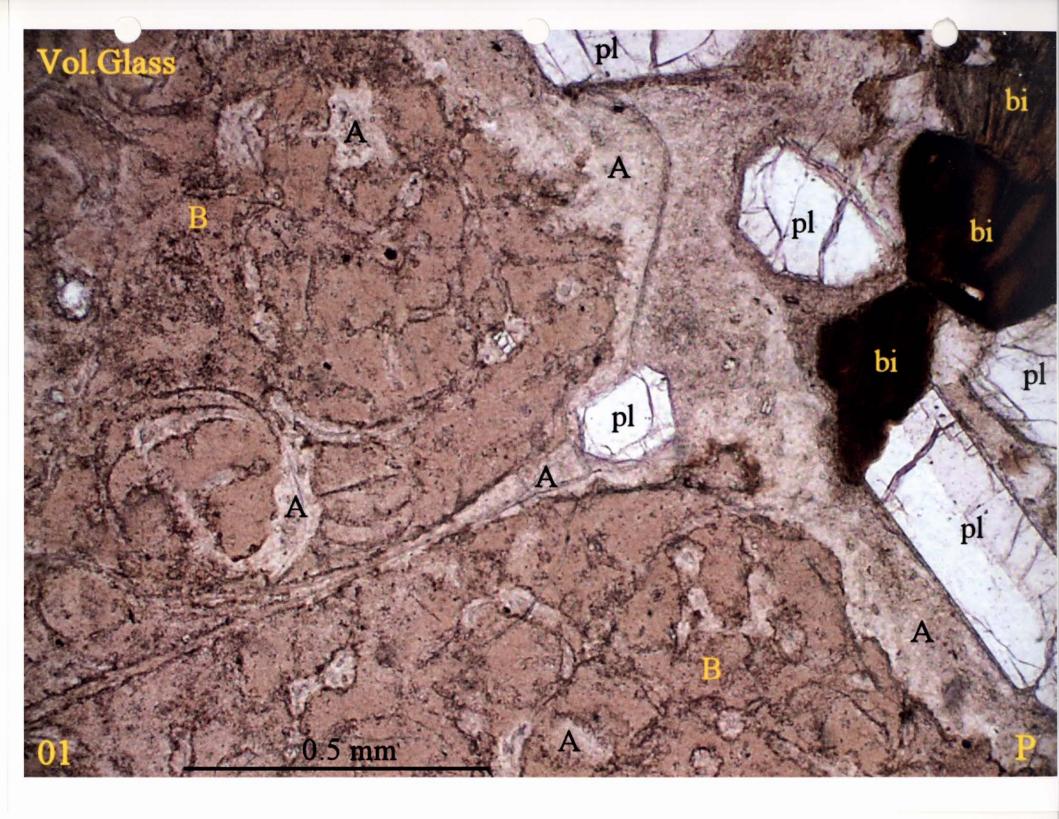
| mineral<br>phenocrysts | percentage | main grain | size range (mm)           |
|------------------------|------------|------------|---------------------------|
| plagioclase            | 5- 7%      | 0.2-1      | (a few up to 1.2 mm long) |
| quartz                 | 2-3        | 0.5-1.5    | •                         |
| biotite                | 1-2        | 0.3-0.81   |                           |
| opaque                 | minor      | 0.07-0.1   |                           |
| groundmass             |            |            |                           |
| Glass A                | 17-20      | amorphous  |                           |
| Glass B                | 65-70      | amorphous  |                           |
| crystallites           | 1-2        | 0.01-0.02  | (mainly in Glass A)       |

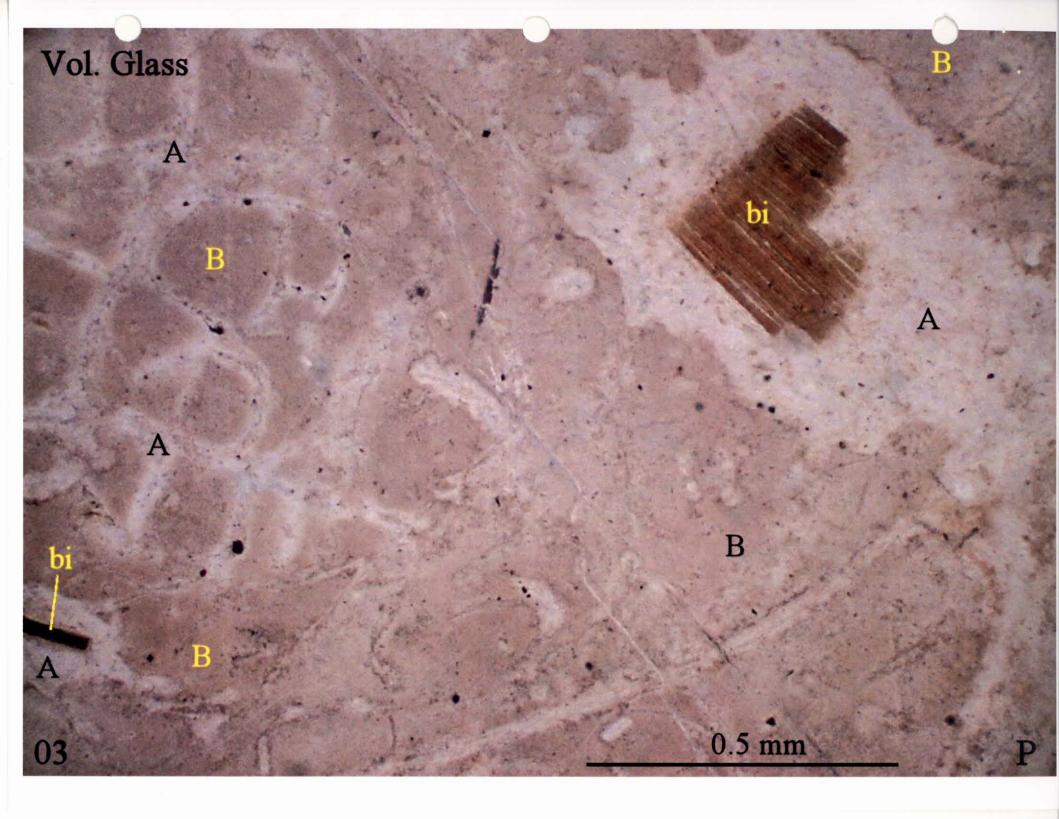
Plagioclase forms euhedral phenocrysts and clusters up to 2 mm across of a few to several phenocrysts. Some phenocrysts were fractured coarsely and fractures were filled with Glass A.

Quartz forms equant phenocrysts and clusters of equant grains and one pear-shaped phenocryst.

Biotite forms disseminated phenocrysts and clusters of up to a few phenocrysts, in part adjacent to plagioclase phenocrysts or clusters thereof. Pleochroism is from light/medium brown to dark brown to semi-opaque. Some phenocrysts were altered slightly to thin plates of muscovite along cleavage planes.

Opaque forms small disseminated euhedral to subhedral equant phenocrysts commonly associated with biotite.


Most phenocrysts and clusters are rimmed by one type of volcanic glass (Glass A) that is paler in colour than Glass B and contains 5-10% ragged crystallites of feldspar, probably including K-feldspar. Glass A has a moderate yellow stain on the offcut block, indicating the presence of moderately abundant K-feldspar.


Glass B is slightly darker grey in colour than Glass A. It contains perlitic fractures and irregular lensy patches of Glass A (with crystallite inclusions as in the main patches of Glass A adjacent to the phenocrysts). Glass B has a pale yellow stain on the offcut block, indicating the presence of minor K-feldspar.

An irregular, partly vuggy vein up to 1 mm wide and offshooting veinlet up to 0.06 mm wide are of quartz with minor patches of sericite.

# List of Photographs

| Photo | Sample     | Description                                                                                                                                                                                                                                                                |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01    | Vol. Glass | cluster of phenocrysts of plagioclase and biotite and a small plagioclase phenocryst enclosed in Glass A; adjacent to Glass B that contains perlitic and other fractures that are filled with Glass B.                                                                     |
| 02    | Vol. Glass | nearly same view as Photo 1 with crossed nicols. Note the crystallites (possibly some of K-feldspar) in Glass A, both bordering the phenocrysts and in perlitic and other fractures in Glass B.                                                                            |
| 03    | Vol. Glass | small biotite phenocrysts enclosed in Glass A; remainder of section is Glass B with perlitic and other cracks filled with Glass A.                                                                                                                                         |
| 04    | Vol. Glass | same view as Photo 1 with crossed nicols. Note the crystallites (possibly some of K-feldspar) in Glass A, both bordering the phenocrysts and in perlitic and other fractures in Glass B.                                                                                   |
| 05    | Vol. Glass | plagioclase phenocryst (with minor overgrowth and fracture-filling of sericite) surrounded by Glass A; Glass B with patches and seams of Glass A; late vuggy vein and veinlet of quartz with minor sericite. In places the contact between Glass A and Glass B is diffuse. |





# Appendix B-6 Pozzolan Testing



**TECHNICAL REPORT** 

CERTIFIED CONCRETE TESTING LABORATORY IN ACCORDANCE WITH CSA STD. A283

TO:

Elizabeth Butler Henderson

P.O. Box 53

Parson, BC V0A 1L0

FILE NO:

CA17177

DATE:

28 March 2007

PROJECT: Pozzolan Sample Testing

SUBJECT: Fineness, Amount Retained When Wet - Sieved on a 45 µm (No.325) Sieve

Following is the result for a sample of Pozzolan received at our Calgary laboratory for testing March 6, 2007.

# Sample Identification

No. 325 Sieve Fineness % Retained

# TW-12 Twin Lake Obsidian Dome "Glass Hill"

12.0

#### Note

- Test sample submitted by client, crushed and screened through #325 screen prior to test.
- Test performed in accordance with ASTM Standard C311, Part 20.

Yours truly,
AMEC Earth & Environmental
a Division of AMEC Americas Limited

K.W. (Kent) Gillingwater, C.E.T. Senior Technical Supervisor

AMEC Earth & Environmental, A Division of AMEC Americas Limited 221 – 18<sup>th</sup> Street S.E. Calgary, Alberta CANADA T2E 6J5 Tel + 1 (403) 248-4331 Fax + 1 (403) 248-2188 www.amec.com



**TECHNICAL REPORT** 

CERTIFIED CONCRETE TESTING LABORATORY IN ACCORDANCE WITH CSA STD. A283

TO:

Elizabeth Butler Henderson

P.O. Box 53

Parson, BC V0A 1L0

FILE NO: CA17177

DATE:

03 May 2007

PROJECT: Pozzolan Sample Testing

SUBJECT: Strength Activity Index with Portland Cement

Following is a summary of test results for a sample of Pozzolan, received at our Calgary laboratory for testing March 6, 2007.

| SAMPLE TE<br><u>IDENTIFICATION</u> NO                                  |     |              | GTH ACTI     |               | EX — COMP.STR. (MPa)<br>TEST MIXTURE |               |               |
|------------------------------------------------------------------------|-----|--------------|--------------|---------------|--------------------------------------|---------------|---------------|
|                                                                        |     | 7 Day        | 28 Day       | <u>56 Day</u> | 7 Day                                | <u>28 Day</u> | <u>56 Day</u> |
| # TW-12 1<br>Twin Lake<br>Obsidian Dome<br>"Glass Hill"                |     | 32.3<br>33.1 | 41.8<br>41.7 | 45.9<br>46.0  | 26.6<br>25.8                         | 34.1<br>34.5  | 40.9<br>41.4  |
| Compressive Strength Averages:<br>Strength Activity Index-% of Control | ol: | 32.7         | 41.8         | 46.0<br>-     | 26.2<br>80.1                         | 34.3<br>82.1  | 41.2<br>89.6  |

#### Notes:

- Tests performed in accordance with the ASTM Standard C311-05 (27).
- Cement Replacement=20% Pozzolan in test mix.
- Referenced Standard / ASTM C618-05 (Table 2 Type N Pozzolan)=75% (Min.)
- Physical Requirements:

Water Requirement (% control) = 98.3 (Max.115%)

Flows (%) = 98 (Control mix) 97 (Test mix)

(FINAL REPORT)

AMEC Earth & Environmental a Division of AMEC Americas Limited

K.W. (Kent) Gillingwater, C.E.T. Senior Technical Supervisor Materials Testing Division

AMEC Earth & Environmental, A Division of AMEC Americas Limited 221 – 18<sup>th</sup> Street S.E. Calgary, Alberta CANADA T2E 6J5 Tel + 1 (403) 248-4331 Fax + 1 (403) 248-2188 www.amec.com



# TECHNICAL REPORT CERTIFIED CONCRETE TESTING LABORATORY IN ACCORDANCE WITH CSA STD. A283

TO:

Elizabeth Butler Henderson

P.O. Box 53

Parson, BC V0A 1L0

FILE NO:

CA17177

DATE:

18 May 2007

PROJECT: Pozzolan Sample Testing

SUBJECT: Fineness, Amount Retained When Wet - Sieved on a 45 µm (No.325) Sieve

Following is the result for a sample of Pozzolan received at our Calgary laboratory for testing April 16, 2007.

Sample Identification No. 325 Sieve Fineness <u>% Retained</u>

TWIN 49-18-47 119-94-44 NIL (100% Passing)

#### Note

- · Test sample submitted by client, crushed and screened through #325 screen prior to test.
- Test performed in accordance with ASTM Standard C311, Part 20.

Yours truly,
AMEC Earth & Environmental
a Division of AMEC Americas Limited

K.W. (Kent) Gillingwater, C.E.T. Senior Technical Supervisor Materials Engineering Division

AMEC Earth & Environmental, A Division of AMEC Americas Limited 221 – 18<sup>th</sup> Street S.E. Calgary, Alberta CANADA T2E 6J5 Tel + 1 (403) 248-4331 Fax + 1 (403) 248-2188 www.ameg.com



#### **TECHNICAL REPORT**

CERTIFIED CONCRETE TESTING LABORATORY IN ACCORDANCE WITH CSA STD. A283

TO:

Elizabeth Butler Henderson

P.O. Box 53

Parson, BC V0A 1L0

FILE NO: CA17177

DATE:

13 June 2007

PROJECT: Pozzolan Sample Testing

SUBJECT: Strength Activity Index with Portland Cement

Following is a summary of test results for a sample of Pozzolan, received at our Calgary laboratory for testing April 16, 2007.

| <del>-</del>                                                    | TEST<br><u>NO.</u> | STRENGTH ACTIVITY INDEX – COMP.STR. (MP. CONTROL MIXTURE TEST MIXTURE |              |               |              |              | •             |
|-----------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|--------------|---------------|--------------|--------------|---------------|
|                                                                 |                    | 7 Day                                                                 | 28 Day       | <u>56 Day</u> | 7 Day        | 28 Day       | <u>56 Day</u> |
| TWIN<br>49-18-47<br>119-94-44                                   | 2                  | 33.7<br>33.4                                                          | 41.2<br>40.8 | 45.1<br>44.9  | 30.2<br>30.4 | 38.2<br>37.9 | 38.7<br>38.5  |
| Compressive Strength Average<br>Strength Activity Index-% of Co |                    | 33.6                                                                  | 41.0         | 45.0<br>-     | 30.3<br>90.2 | 38.1<br>92.9 | 38.6<br>85.8  |

#### Notes:

- Tests performed in accordance with the ASTM Standard C311-05 (27).
- Cement Replacement=20% Pozzolan in test mix.
- Referenced Standard / ASTM C618-05 (Table 2 Type N Pozzolan)=75% (Min.)
- · Physical Requirements:

Water Requirement (% control) = 98.8 (Max.115%)

Flows (%) = 100 (Control mix) 96 (Test mix)

(FINAL REPORT)

AMEC Earth & Environmental a Division of AMEC Americas Limited

K.W. (Kent) Gillingwater, C.E.T. Senior Technical Supervisor Materials Testing Division

AMEC Earth & Environmental, A Division of AMEC Americas Limited 221 – 18<sup>th</sup> Street S.E. Calgary, Alberta CANADA T2E 6J5 Tel + 1 (403) 248-4331 Fax + 1 (403) 248-2188 www.amec.com

# Appendix C Statement of Qualifications

### I, Barry Neil Church, do hereby certify that:

- 1. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (membership number #8172) with offices at 600 Parkridge St., Victoria, B.C.
- 2. I am a graduate of the University of British Columbia (1967) with a Ph.D. in geology. I have practiced my profession continuously since graduation.
- 3. I am familiar with the district and this report is based on my personal examination of the property intermittently from October 6<sup>th</sup> 2006 to July 31st, 2008. I am the author of this report and verify the costs as reported to be true.
- 4. D.R. Haughton (Brentwood Bay, B.C.) and myself are the co-owners of the property.

Dated at Victoria, B.C., the 31st day of December, 2008.

Submitted by:

B. Neil Church, P. Eng. December 31st, 2008

#### N. Church

From:

<MT.Online@gov.bc.ca>

To:

<drhaughton@shaw.ca>; <bnchurch@shaw.ca>
Wednesday, December 31, 2008 9:38 PM

Sent:

Subject:

SOW-M (4253803) 2008/DEC/31 21:38:34 Mineral Titles Online, Transaction event, Email

Event Number: 4253803

Event Type: Exploration and Development Work / Expiry Date Change

Work Type Code: T

Required Work Amount: 8690.23

Total Work Amount: 9351,00

Total Amount Paid: 434.99

PAC Name: 141786

PAC Debit: 0.00

Tenure Number: 396924

Tenure Type: M Tenure Subtype: C Claim Name: TWIN 1

Old Good To Date: 2014/oct/06 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 333.33

Tenure Submission Fee: 16.68

Tenure Number: 405910

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-2

Old Good To Date: 2014/oct/15 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 328,42

Tenure Submission Fee: 16.44

Tenure Number: 411169

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-3

Old Good To Date: 2010/jun/01 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 1202.74

Tenure Submission Fee: 60.19

Tenure Number: 411170

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-4

Old Good To Date: 2014/jun/01 New Good To Date: 2016/jun/06 Tenure Required Work Amount: 48

Tenure Required Work Amount: 402.74

Tenure Submission Fee: 20.16

Tenure Number: 411171

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-5

Old Good To Date: 2014/jun/01 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.74

Tenure Submission Fee: 20.16

Tenure Number: 411172

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-6

Old Good To Date: 2014/jun/01 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.74

Tenure Submission Fee: 20.16

Tenure Number: 411173

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-7

Old Good To Date: 2014/jun/02 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.19

Tenure Submission Fee: 20.14

Tenure Number: 411174

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-8

Old Good To Date: 2014/jun/02 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.19

Tenure Submission Fee: 20.14

Tenure Number: 411175

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-9

Old Good To Date: 2010/jun/02 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 1202.19

Tenure Submission Fee: 60.16

Tenure Number: 411176

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-10

Old Good To Date: 2010/jun/02 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 1202.19

Tenure Submission Fee: 60.16

Tenure Number: 411177

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-11

Old Good To Date: 2014/jun/01 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.74

Tenure Submission Fee: 20.16

Tenure Number: 411178

Tenure Type: M Tenure Subtype: C Claim Name: TWIN-12

Old Good To Date: 2014/jun/01 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 402.74

Tenure Submission Fee: 20.16

Tenure Number: 411179

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-13

Old Good To Date: 2014/jun/03 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 401.64

Tenure Submission Fee: 20.11

Tenure Number: 411180

Tenure Type: M
Tenure Subtype: C
Claim Name: TWIN-14

Old Good To Date: 2010/jun/03 New Good To Date: 2016/jun/06

Tenure Required Work Amount: 1201.64

Tenure Submission Fee: 60.14

Your technical work report is due in 90 days as per Section 33 of the Mineral Tenure Act and Section 16 and Schedule A of the Mineral Tenure Act Regulation. Please attach a copy of your confirmation page to the front of your report.

If you have questions concerning the registration of exploration and development work/expiry date change or the filing of physical/technical reports, please make inquires to <a href="mailto:MT.Online@gov.bc.ca">MT.Online@gov.bc.ca</a> or call 1-866-616-4999 (toll free).

Server Name: PRODUCTION