BC Geological Survey Assessment Report 30680

GEOLOGICAL and GEOCHEMICAL REPORT on the

CASSIAR PROJECT

CASSIAR, British Columbia

(Chiera, Zone, Bev, Alta, Pit, Ever, Ready and Volt claims)

NTS: 104P/4 and 5

Latitude: 59º16' N

Longitude: 129°50' W

Liard Mining Division, British Columbia

Work performed between August 8 and 16, 2008

Owner/Operator Eveready Resources Corporation 2616 - 126 Avenue SW Calgary, Alberta T2W 3V6

By Jean Pautler, P. Geo. JP Exploration Services Inc. 103-108 Elliott St. Whitehorse, Yukon

Y1A 6C4

February 9, 2009

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT Geological and geochemical report on the Cassiar Project

TOTAL COST \$32,548.40

AUTHOR(S) Jean Pautler

SIGNATURE(S) "jean pautler"

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) Mines Act Permit MX-1-542, work approval number 08-0101204-0714 / July 15, 2008

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S) 4249191, Nov. 30, 2008

YEAR OF WORK 2008

PROPERTY NAME Cassiar Project

CLAIM NAME(S) (on which work was done) Ready, Ever 1- Ever 3

(tenure numbers 395420, 395423-25)

COMMODITIES SOUGHT Mo

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN Minfile 104P 040 MINING DIVISION Liard

NTS/BCGS / 104P/5 / 104P/021

LATITUDE ____59____° ___16____' __00_____" LONGITUDE _____129____° __50_____' ___00____" (at centre of work)

UTM Zone 9 EASTING 450750m NORTHING 6569500m

OWNER(S) Eveready Resources Corporation

MAILING ADDRESS 2616 - 126 Ave. Calgary, AB., T2W3V6

OPERATOR(S) [who paid for the work] **Eveready Resources Corporation**

MAILING ADDRESS 2616 - 126 Ave. Calgary, AB., T2W3V6

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude **do not use abbreviations or codes**)

The Cassiar Project area is centrally underlain by carbonate and fine clastic strata of the Precambrian to Paleozoic Cassiar Terrane, overlain by the Paleozoic Sylvester Allochthon in the southeastern property area and intruded by the late Cretaceous aged Cassiar Stock in the western property area. The Cassiar Project covers two known deposits with published resources and six additional Minfile occurrences as well as numerous showings. In addition, the project area is contiguous to the north and northeast of the Storie porphyry molybdenum deposit. The Cassiar Stock continues northerly on to the Cassiar Project where it hosts the Ray Minfile showing and the newly discovered Marie (2004) and Gossan (2008) molybdenum showings. Molybdenum mineralization (maximum 0.63% Mo) has now been found over a northeasterly trending 1 km by 500m area incorporating the Marie-Ray-Gossan showings, indicating potential for a the discovery of a molybdenum deposit in this area. In addition a strong open ended molybdenum soil anomaly was outlined on the southern Ready claim in an area of medium grained quartz monzonite and quartz feldspar porphyry phases of the Cassiar Stock, which are associated with mineralization at the Storie deposit. This suggests that the Storie deposit, 400m to the south, may continue to the north on to the Ready claim.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS #28052 Diamond drill report on the Cassiar Project (Pautler, 2006).

#27337 2003 geological, geochemical and trenching report on the Cassiar Project (Pautler, 2004).

#27203 2002 geological and geochemical report on the Cassiar Project (Pautler, 2003).

#09548 Cassiar Project – geological, drilling and geochemical report (Bloomer, 1981).

#01962 Air magnetic survey (Crosby, 1969) includes soil geochemistry by Sevensma, 1968 on Ray showing

SUMMARY:

The 2,300 ha Cassiar Project, NTS map sheets 104 P/4 and 5, is located in the Liard Mining Division immediately south of the former Cassiar townsite in northwestern British Columbia, 480 km by road north of the port at Stewart. The property is situated with a latitude and longitude of 59°16' N and 129°50' W. Good infrastructure exists to and on the property, with highway access, an airstrip and a network of roads and trails. The property is owned and the 2008 program funded by Eveready Resources Corporation Calgary, Alberta.

Geologically the Cassiar Project area is centrally underlain by carbonate and fine clastic strata of the Precambrian to Paleozoic Cassiar Terrane, overlain by the Paleozoic Sylvester Allochthon in the southeastern property area and intruded by the late Cretaceous aged Cassiar Stock in the western property area.

The Cassiar Project covers two known deposits with published resources and six additional Minfile occurrences as well as numerous showings. In addition, the project area is contiguous to the north and northeast of the Storie or Casmo Moly deposit, a porphyry molybdenum deposit optioned by Eveready to Columbia Yukon Explorations Inc. in 2006. The Storie deposit contains a NI 43-101 compliant indicated mineral resource of 98 million tonnes grading 0.064% Mo mineable by open pit using a cut-off grade of 0.030% Mo, with an additional inferred mineral resource of 31 million tonnes grading 0.059% Mo, open to the north, west and east.

The Cassiar Stock, which hosts the Storie Moly deposit, continues northerly on to the Cassiar Project where it hosts the Ray molybdenum Minfile showing and the Marie molybdenum showing; the latter discovered by Eveready in 2004, 3 km north of the Storie Moly deposit. Recent work by Eveready has focused on the porphyry molybdenum potential in this area. At the Marie and Ray showings significant anomalous molybdenum geochemical results were obtained over a 1 km by 700m area, including significant anomalous molybdenum in rock samples over a 250m by 100m area incorporating the Marie showing, which contains up to 0.63% Mo in a similar geological environment to that of the Storie deposit.

The 2008 program by Eveready consisted of rock, soil and stream geochemical sampling with concurrent geological mapping between the Ray molybdenum showing and the Storie Moly property of Columbia Yukon Explorations Inc. Three drill pads were prepared in the Marie showing area, and access improved to the Marie and Ray showings to facilitate drilling.

Molybdenum mineralization, returning 0.37% Mo in a grab sample, was discovered in 2008 in a slide area downslope of gossanous cliffs on the Ready claim, 500m southwest of the Ray showing and 2 km north of the Storie deposit. The mineralization is hosted by medium grained quartz monzonite, the main host of mineralization at the Storie deposit. Molybdenum mineralization has now been found over a 1 km by 500m area incorporating the Marie-Ray-Gossan showings, indicating potential for the discovery of a molybdenum deposit in this area. In addition a strong molybdenum soil anomaly was outlined on the southern Ready claim in an area of medium grained quartz monzonite and quartz feldspar porphyry phases of the Cassiar Stock, which are associated with mineralization at the Storie deposit. This suggests that the Storie deposit, 400m to the south, may continue to the north on to the Ready claim.

A 750m diamond drill program is recommended in the Marie-Ray showing area to test coincident anomalous soil geochemistry and favourable induced polarization response. Drill pads have been established and access upgraded to facilitate drilling. The new molybdenum mineralization discovered in a slide area downslope of gossanous cliffs, 500m southwest of the Ray showing also requires follow up to confirm the source area of the angular float and to determine the extent and grade of mineralization. Additional soil sampling is recommended in the southern Ready claim and infill soil sampling in the Marie-Ray area to define the extent of the molybdenum in soil anomalies. The above program is expected to cost approximately \$200,000

Significant grades reported by Columbia Yukon Explorations Inc. 100m north of their indicated resource indicates excellent potential for the continuity of the deposit on to the southern Ready claim, particularly the boomerang shaped fraction portion, which lies less than 100-300m north of the Storie deposit. A program of four holes would adequately test the resource here and is expected to cost approximately \$250,000 to \$300,000.

In addition to the molybdenum potential, the Cassiar Project covers two silver-lead-zinc-gold replacement deposits which include the Magno deposit with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the Middle D deposit containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn. Most of the work was carried out between 1968 and 1978 by Consolidated Coast Silver Ltd. Gold is present and was calculated in the Magno East resource estimate as 1 g/t. Higher values up to 9 g/t Au were obtained from the D Zones. Geologically and geochemically the deposits are similar to the Silvertip deposit, which contains a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au and lies 120 km north-northwest along trend of the Cassiar Project.

To date, fifteen significant silver-lead-zinc-gold replacement showings have been located and/or discovered over a 1.5 km wide by 4 km strike extent on the Cassiar Project indicating excellent potential to significantly increase the resource on the Magno and Middle D deposits. Additional potential also exists within the deposits, especially at depth.

The Cassiar Project also includes the Lang Creek Cyprus type volcanogenic massive sulphide prospect where a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined by Cominco in 1961. Subsequent sampling indicated significant precious metal enrichment with results of 1.8% Cu, 0.8% Zn, 36 g/t Ag and 1.7 g/t Au over 1m reported from the surface showing. The Troutline Creek copper occurrence, also located on the Cassiar Project, lies 2 km along strike to the north of Lang Creek in a similar geological setting. Chip sampling returned results of 1.74% Cu with 3.0 g/t Ag and 0.11 g/t Au over 1m. Several untested conductive zones are also reported northeast of the Lang Creek prospect from previous work.

Exploration involving geological mapping, geochemical and HLEM geophysical surveys along strike between the Lang Creek prospect and the Troutline Creek showing is recommended to evaluate the volcanogenic massive sulphide potential in the southeastern project area.

TABLE OF CONTENTS

SUMMARY		i
1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	2
3.0	LEGAL DESCRIPTION	3
4.0	PHYSIOGRAPHY	4
5.0	HISTORY	4
6.0	2008 WORK	6
7.0	GEOLOGY 7.1 Regional 7.2 Property 7.3 Mineralization	6 8
8.0	GEOCHEMISTRY 8.1 Procedure 8.2 Results and Interpretation	
9.0	PREVIOUS TRENCHING	
10.0	PREVIOUS GEOPHYSICS 10.1 Procedure 10.2 Results and Interpretation	21
11.0	CONCLUSIONS	22
12.0	RECOMMENDATIONS	

APPENDICES

Appendix I	Selected References
Appendix II	Statement of Claims
Appendix III	Sample Descriptions with Select Results
Appendix IV	Geochemical Procedure and Results
Appendix V	Statement of Expenditures
Appendix VI	Statement of Qualifications

LIST OF FIGURES

Page

Figure 1	Location Map	2
Figure 2	Claim Map	3
Figure 3	Regional Setting	7
Figure 4	Regional Geology	8
Figure 5	Property Geology	
Figure 6	Mineralization	
Figure 7	Marie & Ray Showings	17
Legend	Legend for Figures 7 and 8	
Figure 8	Ready Claim Detail	
Figure 8a	2008 Sample Locations & Results	following page 19
Figure 9	IP Apparent Chargeability N=5	21
Figure 10	IP Stacked Chargeability Profiles	following page 21
Figure 11	IP Stacked Resistivity Profiles	following page 21

LIST OF TABLES

Summary of claims	3
Summary of occurrences	12
2007 trench specifications	20
Old "RA" trench locations	20
Old "UUD" trench locations	21
Proposed drill hole specifications	23
	Summary of occurrences

LIST OF PHOTOGRAPHS

Photo 1	View of Marie showing area from south	13
Photo 2	View of rusty cliffs from north	14
Photo 3	Ray showing	14
Photo 4	Gossanous cliffs, view from east	15

1.0 INTRODUCTION (Figure 2)

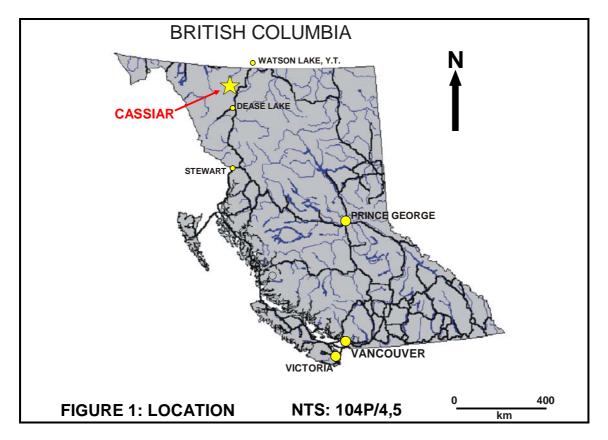
The Cassiar Project covers two known deposits with published resources and six additional Minfile occurrences as well as numerous showings. The project area is contiguous to the north and northeast of the Storie or Casmo Moly deposit, a porphyry molybdenum deposit optioned by Eveready to Columbia Yukon Explorations Inc. (CYU) in 2006. The Storie Moly deposit contains a NI 43-101 compliant indicated mineral resource of 98 million tonnes grading 0.064% Mo and an inferred mineral resource of 31 million tonnes grading 0.059% Mo mineable by open pit using a cutoff of 0.030% Mo *(Kuehnbaum and Arik, 2008)*. Following this estimate, an additional 49 holes were drilled in 2008 which are being reviewed and analyzed in connection with the preparation of a further updated NI 43-101 report *(CYU website, 2009)*. The deposit is open to the east, north and west with at least one untested molybdenum occurrence, the M zone, that warrants further work *(Kuehnbaum and Arik, 2008)*.

The Cassiar Stock, which hosts the Storie Moly deposit, continues northerly on to the Cassiar Project where it hosts the Ray molybdenum Minfile showing and the Marie molybdenum showing; the latter discovered by Eveready in 2004, 3 km north of the Storie Moly deposit. Recent work by Eveready has focused on the porphyry molybdenum potential in this area. At the Marie and Ray showings significant anomalous molybdenum geochemical results were obtained over a 1 km by 700m area, including significant anomalous molybdenum in rock samples over a 250m by 100m area incorporating the Marie showing, which contains up to 0.63% Mo in a similar geological environment to that of the Storie deposit.

The remaining two deposits on the Cassiar Project are silver-lead-zinc replacements that include the Magno deposit (Minfile 104P 006) with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the Middle D deposit (Minfile 104P 080) containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn (*BC Minfile, 2005*). Most of the work was carried out between 1968 and 1978 by Consolidated Coast Silver Ltd.

The Cassiar Project also includes the Lang Creek Cyprus type volcanogenic massive sulphide showing (Minfile 104P 008) where a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined by Cominco in 1961 (*BC Minfile, 2005*). Subsequent sampling indicated significant precious metal enrichment, returning 1.8% Cu, 0.8% Zn, 36 g/t Ag, 1.7 g/t Au over 1m (*Panteleyev, 1978*).

Eveready Resources Corporation acquired the property between 1997 and 2002 and has concentrated on compilation of the available data, location and evaluation of the known showings, road and adit rehabilitation to ensure access, and the delineation of new zones of mineralization that could significantly increase the known resources.

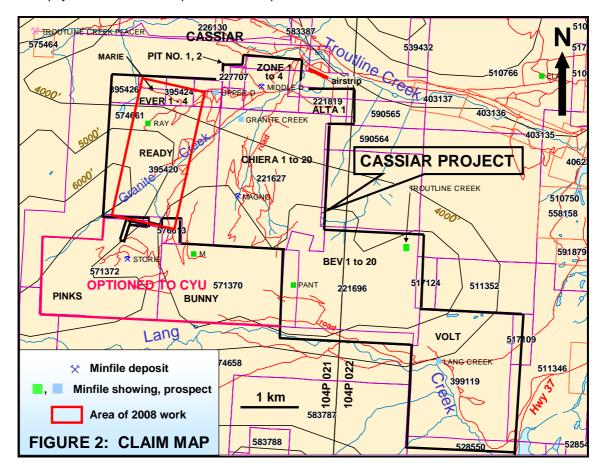

New zones of molybdenum mineralization were located up to 1 km to the east and 3 km to the north of the Storie Moly deposit, fifteen significant silver-lead-zinc-gold replacement showings were located and/or discovered over a 1.5 km wide by 4 km strike extent (indicating excellent potential to significantly increase the resource on the Magno and Middle D replacement zones) and the Lang Creek showing was located, significant base and precious metal results verified and potential along strike demonstrated.

This report documents the results of the 2008 work program consisting of rock, soil and stream geochemical sampling with concurrent geological mapping between the Ray molybdenum showing and the Storie Moly property of Columbia Yukon Explorations Inc. Three drill pads were prepared in the Marie showing area, and access improved to the Marie and Ray showings to facilitate drilling. The Marie showing was discovered by Eveready Resources Corporation in 2004 approximately 700m north of the Ray molybdenum showing.

2.0 LOCATION AND ACCESS (Figure 1)

The Cassiar Project, NTS map sheets 104P/4 and 5 and BCGS maps 104P 021 and 022, is located immediately south of the Cassiar townsite, 125 km north of Dease Lake, British Columbia, 145 km south of Watson Lake, Yukon Territory and 480 km from the port at Stewart, British Columbia (*Figure 1*). The property is situated in the Liard Mining Division with a latitude and longitude of 59°16' N and 129°50' W.

The property is accessible by paved highway to the townsite of Cassiar, which is equipped with an airstrip. Room and board is available. A network of roads and trails crosses the property (refer to Figure 2).


3.0 LEGAL DESCRIPTION (Figure 2)

The Cassiar Project claim group consists of 92 contiguous units in 12 claims (4 - 2 post and 8 modified grid) covering an area of 2,300 hectares. The property is 100% owned, subject to net smelter returns, and operated by Eveready Resources Corporation of Calgary, Alberta, client number 140972. The Pinks and Bunny claims, covering the Storie Moly deposit and M Zone, formerly part of the Cassiar Project have now been 100% acquired by Columbia Yukon Explorations Inc., subject to a 2.5% net smelter return to Eveready Resources Corp. A detailed statement of claims is shown in Appendix II with pertinent claim data summarized in Table 1 below:

Claim Name	Tenure	Units	Issue Date	Expiry Date	New Expiry Date
CHIERA 1 TO 20	221627	20	March 31, 1975	November 30, 2012	November 30, 2015*
ZONE 1 TO 4	221628	4	April 4, 1975	November 30, 2012	November 30, 2015*
BEV 1 TO 20	221696	20	February 28, 1977	November 30, 2012	November 30, 2015*
ALTA 1	221819	2	May 31, 1979	November 30, 2015	November 30, 2015
PIT NO. 1	227706	1	April 9, 1973	November 30, 2012	November 30, 2015*
PIT NO. 2	227707	1	April 9, 1973	November 30, 2012	November 30, 2015*
READY	395420	20	August 5, 2002	August 5, 2014	August 5, 2014
EVER 1 - EVER 4	395423-	4	August 5, 2002	August 5, 2014	August 5, 2014
VOLT	399119	20	December 31, 2002	December 31, 2011	December 31, 2011
TOTAL	12 claims	92			

Table 1: Summary of Claims

* new expiry date based on acceptance of this report for assessment

4.0 PHYSIOGRAPHY

The Cassiar property is situated south of Troutline Creek and just east of the 1981m Limestone Peak within the rugged Stikine Ranges of the Cassiar Mountains. The area was affected by both continental and alpine glaciation with northwesterly trending ice flow directions. Elevations on the property range from less than 1000m on the Volt claims, in the southeastern property area, to 2060m on the western Ready claim. Most of the property lies above treeline with dwarf balsam at moderate elevations and thick spruce, alder and willow at the lower elevations. There is good bedrock exposure above treeline, which lies at approximately 1400 to 1500m. Due to high snowfall the optimum months for field exploration are late July to mid September.

5.0 HISTORY

. . . .

1922	Discovery of Pb, Zn, Ag mineralization on the property.
1050	Chinesent of 04 town on from the Manuar Dh. Zo. An norder

- 1953 Shipment of 21 tonnes from the Magno Pb, Zn, Ag replacement zone.
- 1955 Silver Standard trenched and drilled 9 holes on replacement mineralization.
- 1959-61 Geophysics and 671m of diamond drilling in 12 holes by Cominco on Lang Creek outlining a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn.
- 1964-8 Diamond drilling of 6799m in 48 holes and 100m in 10 RC holes by Casmo Mining (New Jersey Zinc) on Storie Moly delineating a resource.
- 1968-9? Mapping and soil geochemistry on Ray showing (0.39% Mo over 2.1m) area by Chapparel Mines Ltd. with subsequent trenching and one diamond drill hole under showing.
- 1971 Levana completed 964m of diamond drilling in 4 holes on Storie Moly.
- 1968-75,8 Cons. Coast Silver completed airborne and ground magnetic surveys, 666m of underground development (2 adits on Magno West), 621m of underground drilling, 50 surface holes on Magno, D and M zones and in 1971 produced 12 tonnes of 132 g/t Ag, 4.5% Pb and 5.6% Zn from the Magno zone.
- 1976 Geophysics, 1638m of diamond drilling and trenching by Balfour Mining Ltd. on the Magno zone.
- 1979-81 Shell completed mapping, geophysics, geochemistry and 895m of diamond drilling in 8 holes (Pant-2, Granite Creek-2, Tremolite-1) and 8094m of diamond drilling on Storie Moly, outlining an open pittable resource of 100.5 mt of 0.129% MoS₂.
- 1995 Pacific Bay Minerals completed geochemistry and 1 RC drill hole (Lower D zone).
- 1997-2002 Acquisition by Eveready Resources Corporation.
- 1998 Mapping, trenching and 1817m of diamond drilling in 8 holes on Magno zone, with no significant drill results. Chip sampling from the Lower Adit returned 818 g/t Ag, 27.7% Pb, 2.5% Zn over 5.7m, including 2025 g/t Ag, 67.6% Pb over 1m. Discovery of Magno South Zone.

- 2002 Compilation of available data, evaluation of known showings, geological mapping, prospecting and geochemical sampling, which confirmed significant potential with discovery of new zones (Magno New, Magno North, Magno Extra).
- Evaluation of Lang Creek, Pant and Ray showings, reconnaissance magnetic survey over Magno North, Hill 1818, Waterfall, Granite Creek zones, follow-up excavator trenching, road and adit rehabilitation. Trench results include 263 g/t Ag, 6.2% Pb, 6.2% Zn, 0.5 g/t Au over 2m from Granite Creek, 1.3 % Pb, 16% Zn, 19 g/t Ag, 0.9 g/t Au /4.3m from Magno North. Pant North zone was discovered.
- 2004 Reconnaissance geological and geochemical work resulted in the discovery of significant precious metal values of 8.97 g/t Au and 462 g/t Ag from the Lower D replacement zone, tracing of the Pant North zone 300m along strike to the north, confirmation of significant results from the Lang Creek volcanogenic massive sulphide showing (2.6% Cu, 1.5% Zn, 31 g/t Ag and 0.8 g/t Au over 2.1m) and the discovery of the Marie molybdenum showing 3 km north and additional molybdenum mineralization found localized along the X Fault 400m south of the Storie deposit. Access was gained into the upper adit of the Magno zone with results of 221 g/t Ag, 17.5% Pb, 5.6% Zn and 0.2 g/t Au over 14.7m.
- 2005 Diamond drilling of 927m in seven holes, intersecting significant proximal dolomite alteration on Magno North and extending the Granite Creek prospect 40m to the southeast. No significant mineralization was intersected in a reconnaissance step out hole at Lang Creek. Minor reconnaissance was undertaken on the D Zone with results of 1.08 g/t Au, 1100 g/t Ag, 1.7% Zn and 25.4% Pb.
- 2006 Option of Pinks and Bunny claims covering the Storie Moly deposit and M zone to Columbia Yukon Explorations Inc. (CYU). Geological mapping with concurrent geochemical sampling was conducted on the Marie molybdenum showing, returning significant anomalous molybdenum results (up to 0.63% Mo) over a 1 km by 700m area, in a similar geological environment to that of the Storie deposit, and on the Troutline copper occurrence with results of 1.74% Cu with 3.0 g/t Ag and 0.11 g/t Au over 1m in a volcanogenic massive sulphide setting similar to that at Lang Creek.
- 2007 Grid establishment, soil geochemical sampling and induced polarization geophysical surveys over the Marie-Ray areas, and trenching on the Marie showing, outlining a moderate molybdenum soil anomaly between the Ray and Marie showings generally over a 500m by 250m area coincident with an irregular, moderate chargeability response from the induced polarization geophysical survey, similar to that over the Storie Moly deposit. Easterly trending faults were delineated with a similar induced polarization signature to the Crone Fault, the controlling structure at the Storie deposit.

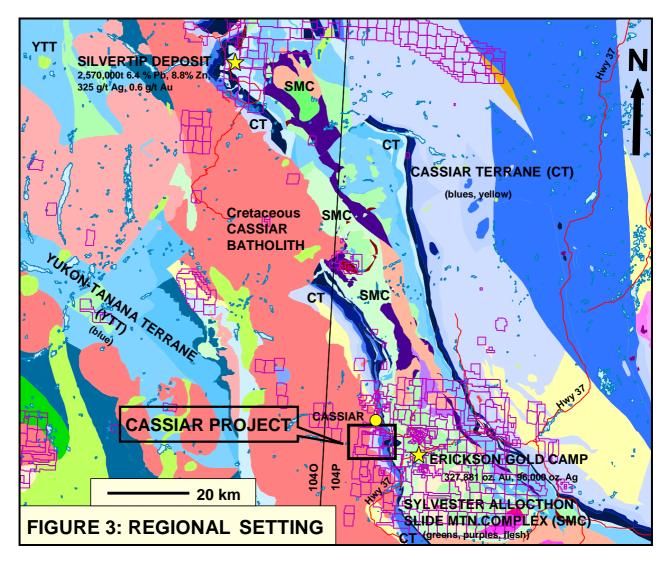
6.0 2008 WORK

A total of 13 man-days were spent on the Cassiar Project between August 8 and 16, 2008. Work consisted of rock, soil and stream geochemical sampling with concurrent geological mapping between the Ray molybdenum showing (Minfile 104P 040) and the Storie Moly property (Minfile 104P 069) of Columbia Yukon Explorations Inc. Three drill pads were prepared in the Marie showing area (700m north of the Ray Minfile occurrence), and access improved to the Marie and Ray showings to facilitate drilling. Work was completed under the authorization of amended Mines Act Permit MX-1-542, work approval number 08-0101204-0714.

Control was provided by enlarged 1:20,000 based TRIM topographic maps, compass, altimeter and GPS. Old trench locations were recorded by GPS.

7.0 GEOLOGY

7.1 Regional (Figures 3 and 4)


The Cassiar Project area is underlain by platformal carbonate and clastic metasedimentary rocks of the Precambrian to Paleozoic Cassiar Terrane, intruded in the west by the mid Cretaceous Cassiar Batholith and flanked to the east by the Paleozoic to Mesozoic Sylvester Allochthon, a klippe of Slide Mountain Terrane marine volcano-sedimentary and ultramafic rocks preserved within the core of the McDame anticlinorium.

The oldest rocks on the property are those of the Cassiar Terrane, displaced North American continental margin carbonate and clastic stratigraphy of Proterozoic to Early Mississippian age. The Cassiar Terrane hosts several lead-zinc-silver±gold replacement and tungsten-molybdenum-copper-lead-zinc skarn occurrences, both on the property and along trend. Most notably, the Silvertip (Midway) lead-zinc-silver-gold replacement deposit, with a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au, lies 120 km north-northwest of Cassiar along trend (see Figure 3).

To the east, the Cassiar Terrane is structurally overlain by Early Mississippian to Late Triassic rocks of the Sylvester Allochthon, which consist of marginal basin and arc volcano-sedimentary sequences and ultramafite-gabbro complexes, *(Nelson and Bradford, 1989)*. The Sylvester Allochthon hosts the gold-bearing quartz veins of the Erickson Gold Camp (approximately 7 km east of the Cassiar Project area), which produced 327,881 ounces of gold and 96,045 ounces of silver from 1939 to 1999 (see *Figure 3)*. The Cassiar asbestos deposits are hosted by ultramafic rocks within the Sylvester Allochthon.

There is also excellent potential for volcanogenic massive sulphide deposits within the Sylvester Allochthon. A volcanogenic massive sulphide (VMS) Minfile occurrence (104P 008) is known in the southeast property area (*Figures 4 and 5*) and a small, apparently

strataform, massive sulphide occurrence was discovered by the British Columbia Geological Survey within the Cassiar Asbestos pit (104P 005) approximately 13 km to the north (*Nelson and Bradford, 1989*). A Minfile copper showing (Troutline Creek), originally misplotted, also occurs within the Sylvester Allochthon on the property (*Figure 5*). Very little work, and virtually no recent work, has been undertaken in this highly prospective VMS environment.

In the property area the Cassiar Terrane is intruded by a 7 km by 30 km long stock referred to as the Cassiar or Troutline Creek Stock, a Late Cretaceous aged (73 Ma) quartz monzonite stock that intrudes along the eastern margin of the mid Cretaceous aged (102 Ma) Cassiar Batholith (*Panteleyev, 1978 - see Figure 4*).

Porphyry molybdenum, \pm tin-tungsten, mineralization appears to be associated with the Cassiar Stock, and associated quartz feldspar porphyry bodies, in a 10 km long northerly trending belt from Cassiar Moly (south of Lang Creek) past the Storie molybdenum deposit to the Ray showing and beyond to the Marie showing (*Figure 4*).

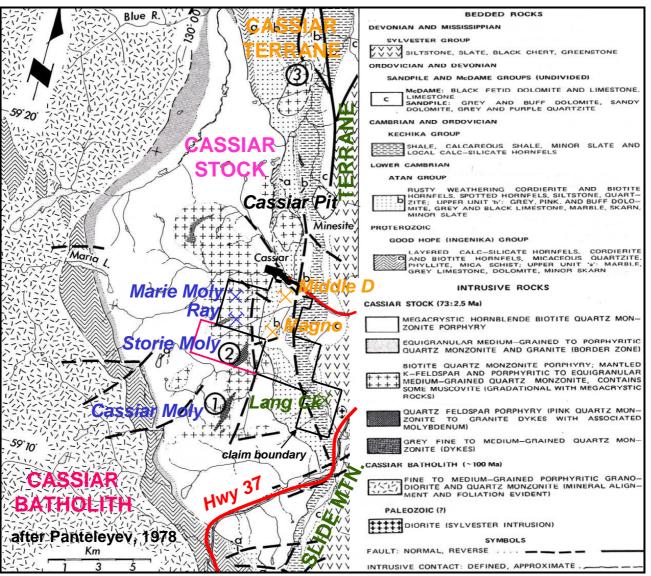


FIGURE 4: REGIONAL GEOLOGY

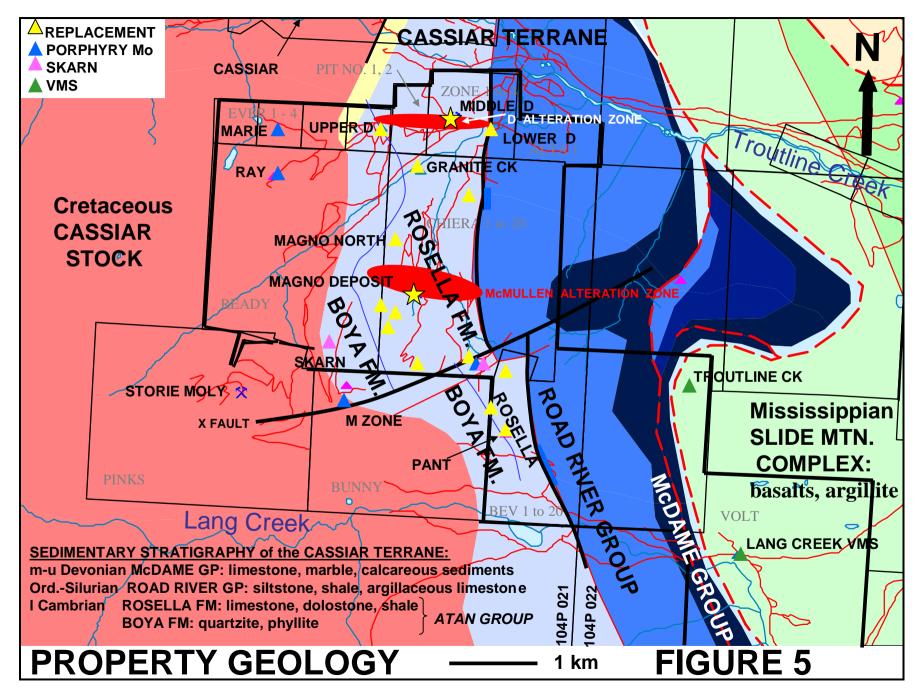
7.2 Property (Figures 4 and 5)

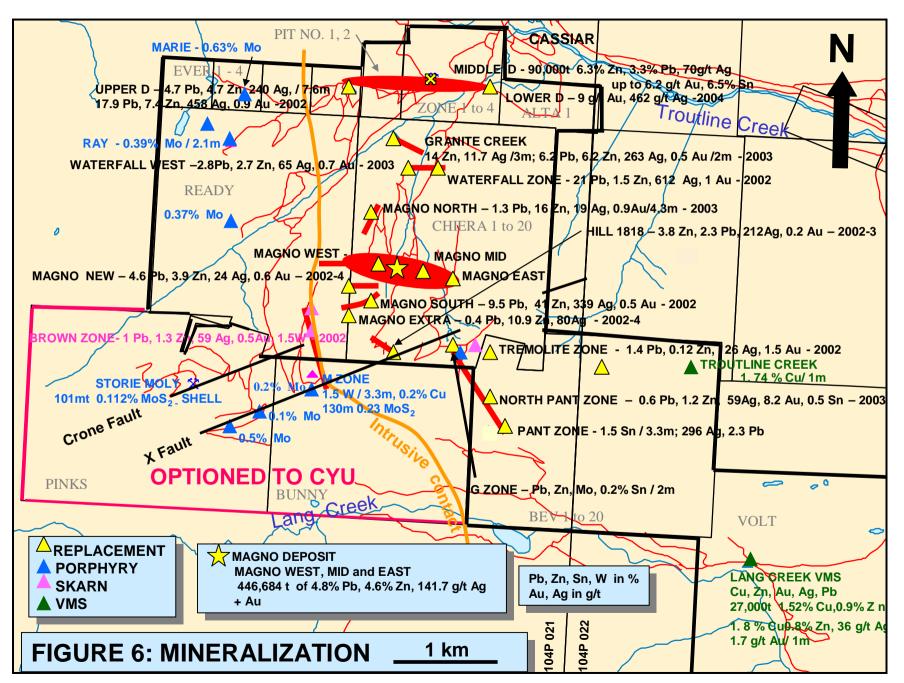
The central portion of the property is underlain by carbonate and clastic stratigraphy of the Cassiar Terrane. The major units are summarized as follows:

mid Devonian	M ^c Dame Group	limestone and dolostone	
Ordovician – SilurianRoad River Group		siltstone, graphitic slate, argillaceous limestone	
Cambrian	Rosella Formation Boya Formation	limestone, dolostone and shale quartzite and phyllite	

8

The replacement mineralization on the property is hosted by carbonate strata of the Cambrian aged Rosella Formation (the carbonate member of the Atan Group), which represents the lowermost carbonate member of the Cassiar Terrane (*Figure 5 on page 9*). Mineralization at the Silvertip Deposit is hosted by the Devonian aged McDame Limestone, higher up within the Cassiar Terrane stratigraphy (*Figure 3*).


The Rosella Formation is underlain by interbedded quartzite and phyllite of the Boya Formation, also of Cambrian age, to the west and lies in fault contact (along the Marble Creek Fault) with siltstone, graphitic slate and argillaceous limestone of the younger, Ordovician to Silurian, Road River Group to the east. The McDame Limestone overlies the Road River Group in the eastern property area (*Figure 5*).


In the southeastern property area the Mississippian to Triassic Sylvester Allochthon structurally overlies the Cassiar Terrane where it hosts Cyprus type copper-zinc-silver-gold volcanogenic massive sulphide style mineralization, identified at the Lang Creek and Troutline Creek showings (*Figures 4 and 5*). The rocks primarily consist of northwest trending, southeast dipping basaltic volcanic rocks, fine clastic sedimentary rocks and chert. Pillow basalts have been identified in the Troutline Creek area. The contact with the Cassiar Terrane stratigraphy is defined by a major thrust fault.

In the western property area the Cassiar Terrane is intruded by the multiphase Cassiar Stock of quartz monzonite composition (*Figure 4*). At least four discrete phases have been recognized including a quartz feldspar porphyry phase. At the Storie molybdenum deposit the quartz feldspar porphyry occurs as a number of up to 60m wide sheet-like intrusions (*Panteleyev, 1979*). Porphyry molybdenum, \pm tin-tungsten, mineralization appears to be associated with late phases of the Cassiar Stock, a medium grained quartz monzonite and associated quartz feldspar porphyry core (*Saydam, 1983*).

At the Marie molybdenum showing and surrounding area (*Figure 7*) a medium grained quartz monzonite has been identified and occurs in contact with a late stage quartz feldspar porphyry phase, suggesting a setting similar to the Storie deposit. Northeast trending faults have been inferred along the northwest side of Ray Ridge and along Boat Creek (*see Figure 7*) and northeast trending (050°/75°SE) sheeting is evident that may be suggestive of a northeast trending structural control, similar to the Crone Fault at the Storie deposit. Other more easterly structures were identified in the 2007 trenching program in the Marie showing area. An 085° trending fault was partially exposed in MA Trench 07-2 which would trend through the Marie showing.

All the above units are intruded by mafic and felsic dykes. Basalt dykes appear to have a spatial association and possible genetic relationship to the replacement mineralization on the property.

7.3 Mineralization (Figures 6-8)

Four distinct types of mineralization are exposed on the property, porphyry molybdenum, silver-lead-zinc-(gold) replacement, Cyprus type precious metal enriched volcanogenic massive sulphide and skarn. All mineralization types except for the skarn have significant economic potential. The known deposits, mineralized zones and previous significant results have been plotted on Figure 6 on page 11 and are summarized in Table 2 below. The porphyry molybdenum mineralization, which is the focus of this report, will be discussed following Table 2. For a more thorough description of the remaining showings refer to Pautler, 2005 and 2007 and Bloomer, 1980a.

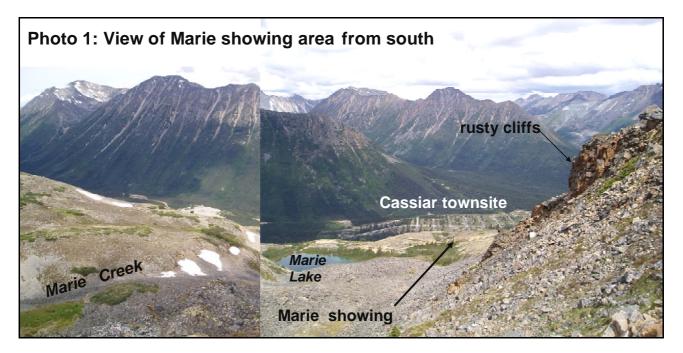
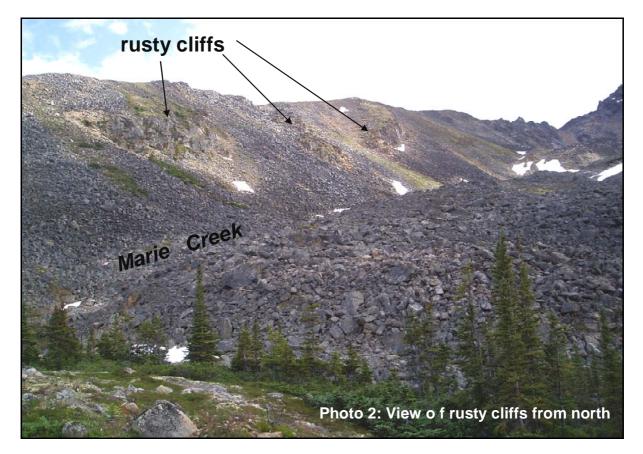

Name	Minfile No.	Class	Summary	
Porphyry Mo				
RAY	104P 040	showing	0.39% Mo over 2.1m from pegmatite (confirmed in 2003); 2.5 km N of STORIE, 1 DDH	
MARIE		showing	0.63% Mo from local float in 2004, 700m N of RAY	
Replacement	Ag-Pb-Zn	(Au-Cu)	(listed from north to south)	
MIDDLE D	104P 080	deposit	90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn (blind discovery targeting float; 6.5% Sn /0.9m (Shell); 6.2 g/t Au (2002)	
UPPER D	104P 044	prospect	240 g/t Ag, 4.7% Pb and 4.7% Zn over 7.6m from drilling; 5 holes drilled by Coast Silver	
Lower D		showing	pyrrhotite lenses intersected in drilling and Au associated with pyrrhotite at Middle D zone; 6 drill holes; no exposure; 9 g/t Au, 462 g/t Ag in float 2004	
GRANITE CREEK	104P 081	prospect	263 g/t Ag, 6.2% Pb, 6.2% Zn, 0.5 g/t Au over 2m (2003 trenching); trends 135°/70°NE 2 DDH by Shell in wrong direction - 1 returned 14% Zn, 11.7 g/t Ag over 3m; traced 40m along strike to SE in 2005; open to NW and at depth	
Waterfall		showing	65 g/t Ag, 2.8 % Pb, 2.7% Zn and 0.7 g/t Au in ferricrete (Trench 03-5, 2003), local up ice source, possible 200m+ strike extent	
Magno North		showing	450m N of MAGNO, traced 100m NE along strike, open to NE and at depth; 2003 trenching 1.3 % Pb, 16% Zn, 19 g/t Ag, 0.9 g/t Au /4.3m; 820 g/t Ag, 28% Pb, 6.2% Zn /1.2m	
MAGNO	104P 006	deposit	446,684t of 141.7 g/t Ag, 4.84% Pb, 4.59% Zn from 3 zones (West, Mid, East); 2 adits Upper Adit – 554 g/t Ag, 18% Pb, 5.8% Zn, 0.2 g/t Au/ 14.5m (2004)	
Magno New		showing	24 g/t Ag, 4.6% Pb, 3.9% Zn, 0.6 g/t Au (2002); traced 300m along WSW strike	
Magno South		showing	300m south of MAGNO, traced 400m; 339 g/t Ag, 9.5% Pb, 41% Zn, 0.5 g/t Au (1998, 2004)	
Magno Extra		showing	80 g/t Ag, 0.4% Pb, 10.9% Zn, 0.3 g/t Au (2003-4)	
Hill 1818		showing	trends 120°, traced 230m; values up to 212 g/t Ag, 2.3% Pb, 3.8% Zn, 0.2 g/t Au from oxidized felsenmeer (2003)	
Tremolite		showing	26 g/t Ag, 1.4% Pb, 0.12% Zn and 1.5 g/t Au; felsenmeer over 150X100m (2002)	
G Zone		showing	pyrrhotite-pyrite-magnetite body, trace sphalerite intersected in drilling (total 4 DDH-Shell)	
Pant North		showing	surface samples up to 8.2 g/t Au, 91 g/t Ag, 1.24% Zn, 0.6% Pb, 0.5% Sn (2003-2004) NNW trending zone traced for 300m, avg. width 2m	
PANT	104P 082	showing	2 DDH by Shell, 1980 - 296 g/t Ag, 2.3% Pb over 0.4m in DH80-6; 1.5% Sn over 3.3m (1978)	
Cyprus VMS	Cu-Zn	(Au-Ag)		
LANG CREEK	104P 008	prospect	27,000t of 1.52% Cu, 0.9 % Zn (12 DDH - Cominco 1961) 1.8% Cu, 0.1% Pb, 0.8% Zn, 36 g/t Ag, 1.7 g/t Au / 1m (Panteleyev, 1978)	
TROUTLINE CREEK	104P 050	showing	probable location of GSC Cu showing; identified in 2004 in similar setting to LANG CREEK, 2 km to NNW of LANG CREEK. Results of 1.74% Cu/1m in 2006	
Skarn				
Brown Zone		showing	probable 700m long, 5m+ wide NNW trending zone, continues to skarn at M ZONE; max: 1.5% W, 0.05% Sn, 0.5 g/t Au, 59 g/t Ag, 1 % Pb, 1.3% Zn, 0.2% Cu in 2002	

Table 2: Summary of occurrences

BCGS Minfile occurrences are capitalized.


Mineralization at the Storie deposit occurs as molybdenite in fractures ±quartz, ±pyrite and as disseminations associated with a 100m wide, 060°/70° N trending structural zone, referred to as the Crone Fault (*Saydam, 1983*). The molybdenum mineralization is primarily hosted by the two youngest and finer grained phases of the Cassiar Stock, a medium grained quartz monzonite and quartz feldspar porphyry that dip to the north. Alteration consists of sericite, clay, K-feldspar alteration (with the destruction of biotite) and quartz veinlets (*Smitheringale, 1980*). Leaching of molybdenite is common down to a depth of approximately 30m (*Sevensma, 1968*). A comparison of the deposit has been made to the Adanac Moly (Ruby Creek) deposit, Atlin British Columbia (*Pantleyev, 1979*), but the molybdenum at the Storie deposit occurs as abundant disseminations with lesser molybdenum in fracture fillings and quartz veins in contrast to Ruby Creek where the molybdenum is primarily hosted by quartz veins.

The Marie showing, discovered in 2004, 3 km north of the Storie Moly deposit, consists of molybdenum mineralization returning 0.63% Mo from float within a 500m by 250m zone of anomalous molybdenum and tungsten mineralization in rocks and soils, 700m north of the Ray showing (*Figure 7 and Photo 1*)). The mineralization is hosted by a medium grained phase of the Cassiar Stock, similar to the phase that hosts the majority of the molybdenum mineralization at Storie. Other similarities to the Storie deposit are evident that include the presence of the quartz feldspar porphyry phase of the Cassiar Stock and the presence of east-northeast trending structural elements (Crone Fault Zone at Storie Moly), both of which are genetically linked to mineralization at the Storie Moly deposit.

A rusty cliff area, 500m south of the Marie showing and approximately 200m northwest of the Ray showing exhibits extensive fracturing with minor molybdenum flakes noted in fractures (Photo 2). However, limited samples collected in 2006 (hampered by unstable slopes) did not contain significant molybdenum values. The rusty cliff area is drained by Marie Creek within which flakes of molybdenite have been reported *(Sevensma, 1968)*. Soil samples from the Marie Ridge area, including above the rusty cliffs, which were

collected in 2006 along reconnaissance lines (*Pautler, 2008*) and as reconnaissance soils from 1968 (*Sevensma, 1968*) returned numerous anomalous values greater than 15 ppm Mo up to a maximum of 42 ppm Mo (*Figure 7*).

At the Ray showing high grade molybdenum mineralization is restricted to a 2.1m 280°/80°N trending pegmatite pod (Photo 3) that carries 0.39% Mo over 2.1m (Sevensma, 1968). This was confirmed by sampling the pod in 2003 returning 3812 ppm Mo over 2m (Pautler, 2004). The discovery of the Marie showing indicates potential within the surrounding Cassiar Stock.

One old diamond drill hole was located on the Ray showing, trending 115°/-50°, at 6570934m N, 450797m E, 1744m, Nad 83 Zone 9 projection. The hole, possibly drilled in 1969, targeted the area beneath the showing. There is no record of the program and the core could not be located.

Ray Ridge (ridge extending northeast from the Ray occurrence) covers an area of leached intrusive rock identified by Sevensma in 1968 but sampling in 2006 did not return significant molybdenum values. Better molybdenum values are evident at lower elevations in the Marie showing area, an area of rusty cliffs 250m northwest of the Ray showing, and downslope (east) of the Ray showing. The Ray Ridge did contain silver-lead-arsenic-bismuth stockwork quartz vein mineralization and soils with anomalous copper-zinc that may represent a peripheral signature to porphyry molybdenum mineralization. In 2006 two anomalous soil samples (45 and 38 ppm Mo) were obtained 200m east of the Ray showing below Ray Ridge. The samples do not directly lie downslope and may indicate potential molybdenum mineralization in this area, again at lower elevations than the Ray showing. Previous reconnaissance soil samples collected below the Ray showing returned highly anomalous values up to 80 ppm Mo (*Sevensma*, *1968*).

In 2008 an angular cobble of rusty weathering medium grained quartz monzonite with molybdenite flakes and rosettes and limonite on fractures, cut by pegmatite and aplite veins, was discovered in a slide area downslope of gossanous cliffs, 500m southwest of the Ray showing (Sample 54574). There is no previous documentation of work in this area.

8.0 GEOCHEMISTRY (Figures 7 and 8)

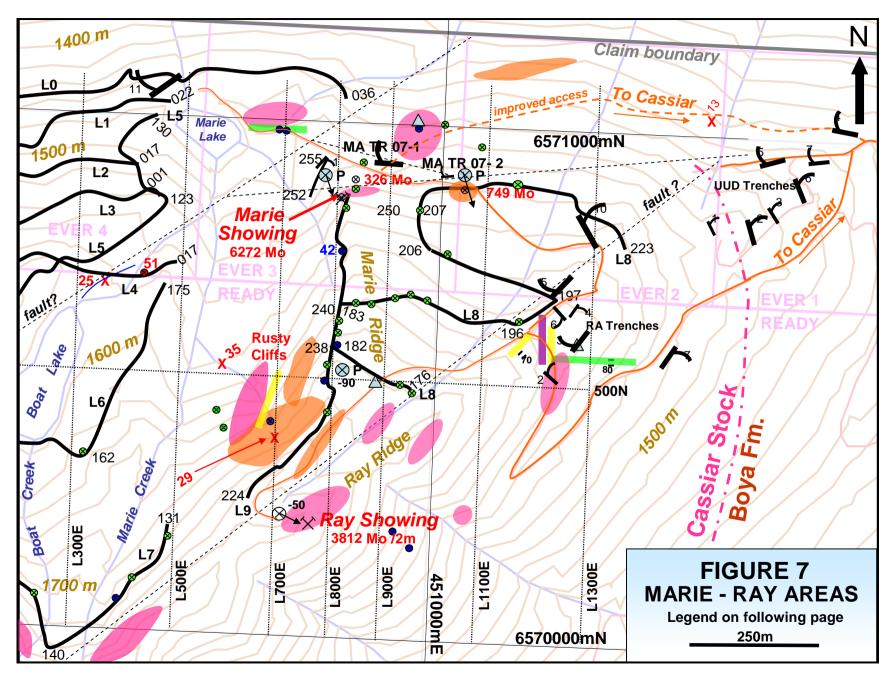
8.1 Procedure

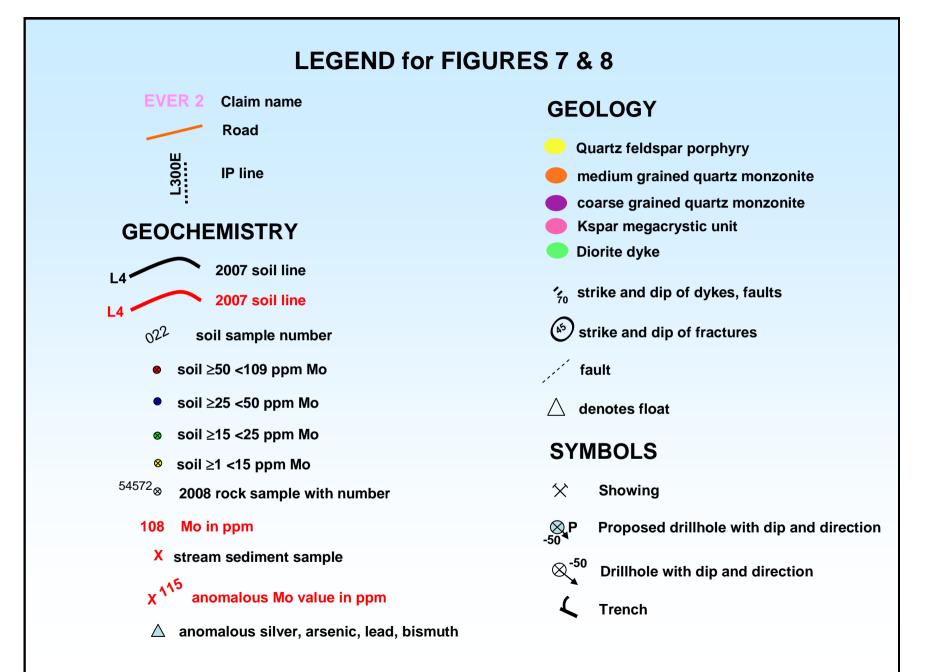
A total of 2 rock, 1 moss mat and 72 soil samples were collected in 2008 from the Ready claim in 2008. Sample locations with molybdenum results are plotted in Figure 8a.

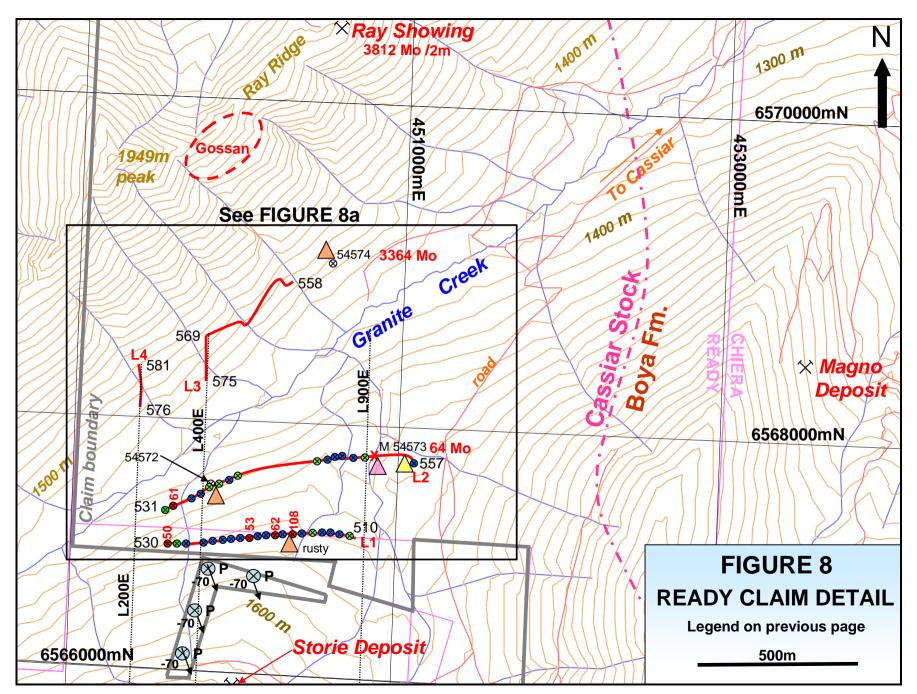
The samples were personally delivered to Greyhound in Smithers and sent to Eco Tech Lab (Alex Stewart Geochemical), Kamloops, B.C. and analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V, Y and Zn using a 28 element ICP package which involves a nitric-aqua regia digestion. Gold was analyzed by fire assay with an atomic absorption finish. Lab procedures and results are outlined in Appendix IV.

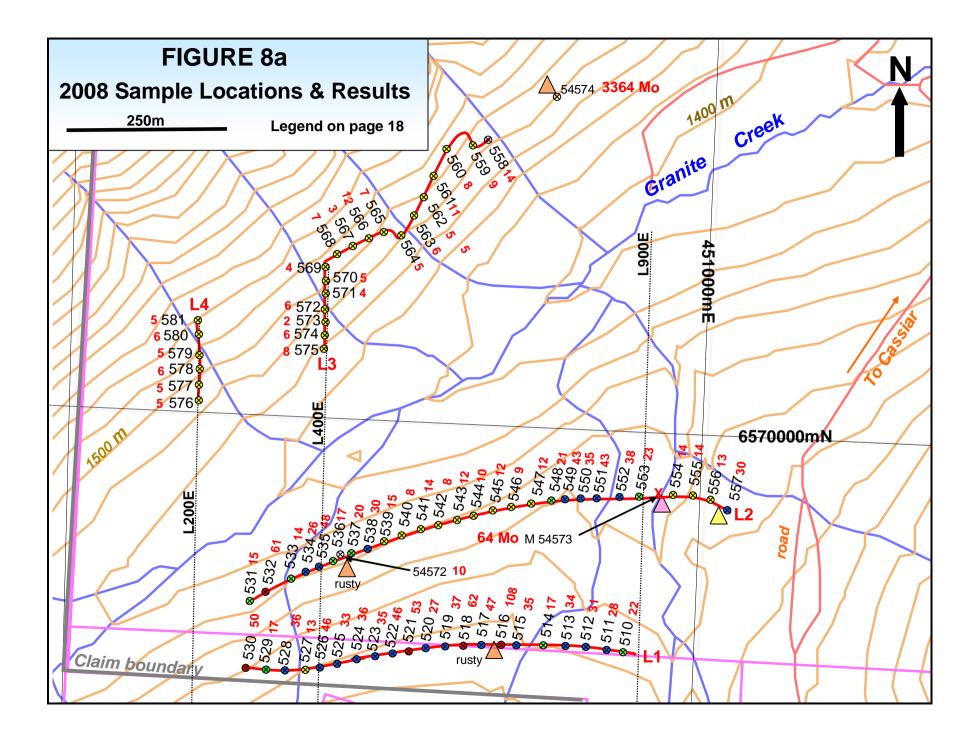
The rock samples consisted of grab samples of visible mineralization and alteration, exposed as felsenmere. The moss mat sample (denoted with an "M") was collected from the leeward side of boulders within the creek, and placed in waterproof Kraft bags.

The soil samples were collected generally at 25m spacings where possible along four lines that were run generally along contour and along previously cut grid lines. GPS coordinates were collected for each sample. Samples were primarily collected from the B horizon with a soil auger, placed in waterproof Kraft bags, labelled with a line and sample number and sent to the lab. C horizon talus fines were collected on steep slopes where the B horizon was not developed. Previous contour and ridge and spur soil samples collected along ten lines in 2006 were collected in the same manner (*Figure 7*). Reconnaissance soil samples (collected in 2004 to 2006) were collected from the B or C horizon with a hammer, with anomalous samples plotted on Figure 7.


Rock sample locations with molybdenum results and soil lines with anomalous molybdenum results from 2008 are plotted on Figure 8. Rock sample descriptions with molybdenum, gold, silver, lead and zinc results are listed in Appendix III.


8.2 Results and Interpretation


The angular molybdenite bearing cobble of rusty weathering medium grained quartz monzonite from the slide downslope of gossanous cliffs, 500m southwest of the Ray showing (Sample 54574) returned a high grade value of 3384 ppm Mo by ICP, and 0.369% Mo by assay procedure. Similar rusty medium grained quartz monzonite without visible molybdenum mineralization was observed along soil Line 1 near sample sites S-516 and S-517 (which returned 108 and 47 ppm Mo, respectively) but was not sampled.


The best results from the soil survey were returned from Line 1 on the southern Ready claim just north of the Storie property of Columbia Yukon Explorations Inc. *(Figures 8 and 8a)*. The anomaly covers 550m and is open ended, with all except one sample returning greater than 15 ppm Mo to a maximum of 108 ppm Mo (S-510 to S 528, S-530). Line 2, 100 to 230m north of Line 1, returned anomalous values to a maximum of 61 ppm Mo from 8 out of 9 samples over 250m from the western end of the line (S-531 to S 539), remaining open to the west, and a 6 sample, 160m long anomaly near the eastern end (S-548 to S-553). Sample S-557 at the east end of the line was also anomalous (30 ppm Mo).

A moss mat stream sediment sample from eastern Line 2 on the Ready claim returned anomalous values of 64 ppm Mo, 72 ppm Pb and 189 ppm Zn (Sample M 54573). The creek also drains the Storie deposit, so additional sampling is required upstream to define the anomalous drainage basin. The lead and zinc may be related to skarn mineralization to the southeast along the Cassiar Stock/Boya Formation contact. In 2006 a moss mat sample from the western Ever 4 claim returned 115 ppm Mo, from the western portion of Line 0.

9.0 PREVIOUS TRENCHING (Figure 7)

Locations of the 2007 trenches from the Marie showing area, prefixed with "MA", are documented below. All were reclaimed at the end of the program. Trench 1 was previously trenched with a cat and is recorded as Trench 8 in Table 4. No significant molybdenum results were obtained.

Trench	GPS Nad 83,	Zone 9	Elev.	Azimuth	Length	Sample	No. of
No.	Northing	Easting	(m)	(°)	(m)	Numbers	Samples
TR 07-1S	6570914	450913	1512	275	start	22708-23	16
TR 07-1E	6570925	450851	1506	end	63m		
TR 07-2S	6570897	451001	1518	080	start	22705-07	8
TR 07-2E	6570901	451029	1519	end	24m	22724-25, 33-35	
TR 07-3	6570906	450902	1510	pit	2m		0
TR 07-4	6570905	450910	1513	110	5m	22727-28	2
TR 07-5	6570908	450916	1516	090	9m	22726	1
TR 07-6	6570907	450909	1513	160	8m	22729	1
TR 07-7	6570928	450916	1509	pit	2m	22730	1
TR 07-8	6570927	450923	1514	pit	2m	22731-32	2
TOTAL:					120m		31

Table 3:	2007	trench	specifications

The following old trench locations, prefixed with "RA", were recorded by the author from the Marie showing and north end of Ray Ridge areas (*Figure 7*). There is no record of the work, but it may have been completed in 1969, following the initial evaluation by Sevensma in 1968. No significant molybdenum mineralization was noted in the trenches.

Trench	UTM NAD83	Zone 9
No.	Northing	Easting
T-TR1 start	6570934	450797
T-TR1 end	6570928	450787
T-TR2 start	6570546	451213
T-TR2 end	6570533	451231
T-TR3 start	6570546	451233
T-TR3 end	6570610	451276
T-TR4 start	6570645	451271
T-TR4 end	6570675	451290
T-TR5 start	6570691	451303
T-TR5 end	6570641	451217
T-TR6 start	6570627	451247
T-TR6 end	6570613	451267
T-TR7 start	6570616	451467
T-TR7 end	6570551	451422
T-TR8 start	6570927	450826
T-TR8 end	6570905	450931
T-TR9 end	6570893	450959
T-TR10 start	6570872	451076
T-TR10 end	6570787	451310
T-TR11 start	6570976	450329
T-TR11 end	6571072	450481

Table 4: Old "RA" trench locations

The following old trench locations, prefixed with "UDD", were recorded by the author from above the Upper D zone within the Boya Formation near the contact with the Cassiar Stock (*Figure 7*). There is no record of the work, but it may have been completed between 1968 and 1975, by Consolidated Coast Silver. The sedimentary rocks are strongly hornfelsed but no significant molybdenum or lead-zinc-silver mineralization was observed.

Trench	UTM NAD83	Zone 9
No.	Northing	Easting
T-TR1 start	6570831	451537
T-TR1 end	6570872	451486
T-TR2 start	6570888	451593
T-TR2 end	6570831	451537
T-TR3 start	6570887	451627
T-TR3 end	6570854	451661
T-TR4 start	6571011	451725
T-TR4 end	6570997	451790
T-TR5 start	6570968	451675
T-TR5 end	6570952	451571
T-TR6 start	6570968	451675
T-TR6 end	6570878	451702
T-TR7 start	6570945	451691
T-TR7 end	6570959	451741

10.0 PREVIOUS GEOPHYSICS

10.1 Procedure

In 2007 a 10.1 line km induced polarization survey was completed by Peter E. Walcott and Associates of Vancouver, British Columbia over the Marie and Ray showing areas. The survey was hampered by rugged terrain and poor ground conductivity. Readings were taken at 25m stations with control provided by GPS. Lines were spaced 200m apart with an extra line at 800E to provide infill coverage over the Marie and Ray showings. Line 800E was extended an additional 400m to the south to join up with the grid at the Storie deposit. The geophysical data is shown as an apparent chargeability plan and chargeability and resistivity stacked profiles in Figures 9 to 11, shown on the following pages.

10.2 Results and Interpretation

The induced polarization geophysical surveying outlined an irregular, moderate chargeability response similar to that over the Storie Moly deposit coincident with a moderate molybdenum soil anomaly between the Ray and Marie showings. The similar chargeability response is most evident on lines 700 to 900E between stations 300 and 800N. However, the resistivity response differs from the Storie deposit with high resistivity between stations 400 and 800N on lines 800 to 900E, which contrasts with low resistivity over most of the Storie deposit.

The surrounding sedimentary rocks of the Boya Formation show up as a chargeability high due to the abundance of disseminated graphite and pyrite in these rocks. Hornfels and skarn mineralization have also been noted along the Cassiar Stock/Boya Formation contact.

The chargeability also shows a break in the moderate chargeability signature along the 085° trending fault exposed in Trench MA-TR 07-2, with continuity of the fault across the grid indicated. A parallel fault is evident 450m to the south. The chargeability signatures for the faults are similar to that of the Crone Fault at the Storie deposit.

11.0 CONCLUSIONS

Soil sampling in 2008 outlined a strong molybdenum anomaly on the southern Ready claim, 550m wide at its south end and open to the west and east, with a maximum value of 108 ppm Mo. This suggests that the Storie deposit, 400m to the south, may continue to the north on to the Ready claim. Medium grained quartz monzonite and quartz feldspar porphyry phases of the Cassiar Stock, associated with mineralization at the Storie deposit, were identified along the soil lines.

A boomerang shaped fraction, part of the Ready claim, lies less than 100-300m north of the Storie deposit (*Figure 8*) with significant grades of 276m of 0.065% Mo in hole ST08-143 reported by Columbia Yukon Explorations Inc. 100m north of their indicated resource (*CYU website, Jan. 21, 2009*). The Storie deposit dips to the north and the elevation decreases to the north, further indicating potential on the Ready claim.

Molybdenum mineralization, returning 0.37% Mo in a grab sample, was discovered in a slide area downslope of gossanous cliffs, 500m southwest of the Ray showing and 2 km north of the Storie deposit. The mineralization is hosted by medium grained quartz monzonite, the main host of mineralization at the Storie deposit. Molybdenum mineralization has now been found over a 1 km by 500m area incorporating the Marie-Ray-Gossan showings, indicating potential for a the discovery of a molybdenum deposit in this area.

12.0 RECOMMENDATIONS

A 750m diamond drill program is recommended in the Marie-Ray showing area to test coincident anomalous soil geochemistry and favourable induced polarization response. Drill pads have been established and access upgraded to facilitate drilling. Specifications of the proposed drill holes are tabulated below and pad locations are shown on Figure 7.

Hole	UTM Nad 83,	Zone 9	Elev.	Az.	Dip	Depth	Target
No.	Northing	Easting	(m)	(°)	(°)	(m)	
CA P-A	6570897	450781	1516	160	-70	250	Marie Showing; 0.63% Mo source
CA P-B	6570902	451033	1511	160	-70	200	0.075% Mo source
CA P-C	6570514	450823	1682	-	-90	300	Mo in soil anomaly above rusty cliffs
TOTAL:						750	

 Table 5: Proposed drill hole specifications

Significant grades reported by Columbia Yukon Explorations Inc. 100m north of their indicated resource indicates excellent potential for the continuity of the deposit on to the southern Ready claim, particularly the boomerang shaped fraction portion, which lies less than 100-300m north of the Storie deposit. Four holes at 100m spacings within the boomerang at an azimuth of 170° and dip of -70° (main drill direction and dip on the Storie deposit) should adequately test the resource here (*Figure 8*).

The new molybdenum mineralization discovered in a slide area downslope of gossanous cliffs, 500m southwest of the Ray showing also requires follow up to confirm the source area of the angular float and to determine the extent and grade of mineralization.

Additional soil sampling is recommended in the southern Ready claim and infill soil sampling in the Marie-Ray area to define the extent of the molybdenum in soil anomalies.

The above program to test the molybdenum potential on the Ever and Ready claims is expected to cost approximately \$200,000 (excluding boomerang drilling). An additional \$250,000 to \$300,000 would be required to test the boomerang.

In addition to the molybdenum potential, the Cassiar Project covers two silver-lead-zincgold replacement deposits which include the Magno deposit with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the Middle D deposit containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn. Most of the work was carried out between 1968 and 1978 by Consolidated Coast Silver Ltd. Gold is present and was calculated in the Magno East resource estimate as 1 g/t. Higher values up to 9 g/t Au have been obtained from the D Zones. Geologically and geochemically the deposits are similar to the Silvertip deposit, which contains a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au and lies 120 km north-northwest along trend of the Cassiar Project. To date, fifteen significant silver-lead-zinc-gold replacement showings have been located and/or discovered over a 1.5 km wide by 4 km strike extent indicating excellent potential to significantly increase the resource on the Magno and Middle D deposits. Additional potential also exists within the deposits, especially at depth.

The Cassiar Project also includes the Lang Creek Cyprus type volcanogenic massive sulphide prospect where a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined by Cominco in 1961. Subsequent sampling indicated significant precious metal enrichment with results of 1.8% Cu, 0.8% Zn, 36 g/t Ag and 1.7 g/t Au over 1m reported from the surface showing. The Troutline Creek copper occurrence, located on the Cassiar Project, lies 2 km along strike to the north of Lang Creek in a similar geological setting. Chip sampling returned results of 1.74% Cu with 3.0 g/t Ag and 0.11 g/t Au over 1m in 2006. Several untested conductive zones are also reported northeast of the Lang Creek prospect from historical work.

The confirmation of VMS style mineralization at the Cassiar Pit in 2004 within the same geological environment as the Lang Creek showing and 13 km along strike to the north, further demonstrates the potential for additional lenses along strike of Lang Creek.

Exploration involving geological mapping, geochemical and HLEM geophysical surveys along strike between the Lang Creek prospect and the Troutline Creek showing is recommended to evaluate the volcanogenic massive sulphide potential in the southeastern project area.

APPENDIX I: Selected References

- Abbott, G. (1983): Silver-bearing veins and replacement deposits of the Rancheria District. In Yukon Geology and Exploration 1983, p34-44. DIAND.
- Allen, E. J. and Iliffe, M.J. (1998): Geology and resources of the Cassiar Project areas, Cassiar, British Columbia. Report for Eveready Resources Corp.
- Bloomer, C.J. (1981): Cassiar Project 3191P. Geological, drilling and geochemical assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9548.

(1980b): Cassiar Project, 1980 - assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9262.

(1980a): Cassiar Project – 3991P, 1979 report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 7912.

Bloomer, C.J. and Gourlay (1980): 1980 Casmo Project, 3091T, assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9215.

British Columbia Minfile, (2004): 104P/4, 5. Ministry of Energy and Mines.

Columbia Yukon Explorations Inc. (2009): Website at www.columbiayukon.com .

Cukor, V. (1976): Magno, Jean Group. Report on diamond drilling; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 6084, for Balfour Mining Ltd.

(1975): Magno Group; report on geological survey. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5578, for Balfour Mining Ltd.

(1975): Magno Group; progress report underground drilling program. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5713, for Balfour Mining Ltd.

- Gabrielse, H. (1963): McDame Map-Area, Cassiar District, British Columbia. Geological Survey of Canada, Memoir 319.
- Knutson, R.A. (1959): A report on the airborne electromagnetic, magnetic and ground geological surveys on the Vines Claim Groups, Liard Mining Division, Cassiar, British Columbia. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 285. *(Lang Ck).*
- Kuehnbaum, R.M. and Lindinger J.E.L., (2007): Technical report on the Storie molybdenum deposit, Liard Mining Division, British Columbia for Columbia Yukon Explorations Inc. Report prepared by Watts, Griffis and McOuat Limited.
- Kuehnbaum, R.M. and Arik, A. (2008): Technical report on the Storie molybdenum deposit, Liard Mining Division, British Columbia for Columbia Yukon Explorations Inc. Report prepared by Watts, Griffis and McOuat Limited.
- Minister of Mines (1961): Annual Report of the Ministry of Mines, British Columbia 1961, p 7. (Lang Ck).

- Moyle, F. (1996): Geological, geochemical and diamond drilling report on the Storie Silver Property. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 24707, for Pacific Bay Minerals Ltd.
- Nelson, J.L. and Bradford, J.A. (1993). Geology of the Midway-Cassiar Area, northern British Columbia (104O, 104P). British Columbia Geological Survey Branch, Bulletin 83.

(1989): Geology and mineral deposits of the Cassiar and McDame Map Areas, British Columbia (104P/3, 5). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.

- Nikols, D. and Hoffman, G. L. (1999): 1998 Cassiar exploration report: southern block. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.
- Panteleyev, A. (1979): Cassiar Map Area (104/P). In Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1979-1, pp 80-88.

(1978): Cassiar Map Area (104/P). In Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1978-1, pp 51-60.

Pautler, J.M. (2008): Geological, geochemical and trenching report on the Cassiar Project. In house report on 2007 program for Eveready Resources Corp.

(2007): Geological and geochemical report on the Cassiar Project. In house report on 2006 program for Eveready Resources Corp.

(2006): Diamond drill report on the Cassiar Project. In house report for Eveready Resources Corp.

(2005): 2004 geological and geochemical report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

(2004): 2003 geological, geochemical and trenching report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

(2003): 2002 geological and geochemical report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

- Saydam, A.S. (1983) Ground geophysical investigations over the Casmo molybdenum deposit. CIMM V76, N.852, pp 80-88.
- Sevensma, P. H. (1968): Ray Group, Chapparel Mines Ltd. British Columbia Energy, Mines and Petroleum Resources Paper.
- Smitheringale, W. G. (1980): Preliminary report on the 1980 Casmo geological mapping program. Private report for Shell Canada, in British Columbia MEMPR Assessment Report 9215.

(1980): 1979 exploration program, Casmo Property, Cassiar, British Columbia. British Columbia MEMPR Assessment Report 7978.

APPENDIX II

Statement of Claims

(http://www.mtonline.gov.bc.ca)

Tenure	Claim	BCGS Map	Issue	Good To	Area	
Number	Name	Number	Date	Date	(ha)	
221627	CHIERA 1 TO 20	104P021	1975/mar/31	2015/nov/30	500.0	
221628	ZONE 1 TO 4	104P021	1975/apr/04	2015/nov/30	100.0	
221696	BEV 1 TO 20	104P021	1977/feb/28	2015/nov/30	500.0	
221819	ALTA 1	104P021	1979/may/31	2015/nov/30	50.0	
227706	PIT NO. 1	104P021	1973/apr/09	2015/nov/30	25.0	
227707	PIT NO. 2	104P021	1973/apr/09	2015/nov/30	25.0	
395420	READY	104P021	2002/aug/05	2015/aug/05	500.0	
395423	EVER 1	104P021	2002/aug/05	2014/aug/05	25.0	
395424	EVER 2	104P021	2002/aug/05	2014/aug/05	25.0	
395425	EVER 3	104P021	2002/aug/05	2014/aug/05	25.0	
395426	EVER 4	104P021	2002/aug/05	2014/aug/05	25.0	
399119	VOLT	104P022	2002/dec/31	2011/dec/31	500.0	
TOTAL:	12 claims				2,300.0	

Owner Number 140972: Eveready Resources Corporation

APPENDIX III

Sample Descriptions

VAD 83 Zone 9 2008 SAMPLE DESCRIPTIONS AND RESULTS											
SAMPLE	LE GENERAL EASTING		NORTHING ELEV.				Au	Ag	Mo	Pb	Zn
No.	LOCATION	m E	m N	(m)	TYPE	DESCRIPTION	ppb	ppm	ppm	ppm	ppm
54572	South Ready Line 2	450425	6568774	1463	grab	felsenmere boulders of medium grained quartz monzonite, limonite on fractures, some Mn, weak sericite and chlorite alteration, at S-536	<5	0.7	10	12	11
M 54573	South Ready Line 1	450917	6568885	1477	moss mat	from cobbles to boulders in 1m wide creek, fast flow, good silt, Ksp megacrystic quartz monzonite boulders	10	0.8	64	72	189
54574	Ready, N of Granite Creek	450783	6569498	1444	grab	angular cobble in slide of rusty weathering medium grained quartz monzonite, limonite on fractures with molybdenite flakes and rosettes, some pegmatite and aplite with no molybdenite	<5	0.7	3384 0.369%	<2	6
S-510	South Ready Line 1	450858	6568650	1528	soil	medium brown B, gentle slope	<5	<0.2	22	22	25
S-511	South Ready Line 1	450840	6568657	1525	soil	medium brown B, gentle slope	<5	<0.2	28	22	26
S-512	South Ready Line 1	450809	6568651	1526	soil	medium brown B, gentle slope	<5	<0.2	31	26	30
S-513	South Ready Line 1	450782	6568651	1534	soil	medium brown B, gentle slope	<5	<0.2	34	22	23
S-514	South Ready Line 1	450757	6568651	1535	soil	medium brown, weak red B, gentle slope	<5	<0.2	17	26	44
S-515	South Ready Line 1	450734	6568645	1537	soil	medium brown B, gentle slope	<5	<0.2	35	34	37
S-516	South Ready Line 1	450710	6568644	1540	soil	medium brown, weak red B, gentle slope, rusty quartz monzonite float, some quartz	<5	<0.2	108	22	20
S-517	South Ready Line 1	450678	6568643	1541	soil	medium hrown weak red B gentle slone, rusty quartz monzonite float	<5	<0.2	47	18	18
S-518	South Ready Line 1	450651	6568643	15							
S-519	South Ready Line 1	450628	6568646	16							
S-520	South Ready Line 1	450598	6568644	15							
S-521	South Ready Line 1	450573	6568643	15							
S-522	South Ready Line 1	450544	6568628	15							
S-523	South Ready Line 1	450516	6568622	15							
S-524	South Ready Line 1	450485	6568619	15							
S-525	South Ready Line 1	450451	6568611	15							
S-526	South Ready Line 1	450424	6568611	15							
S-527	South Ready Line 1	450399	6568607	15							
S-528	South Ready Line 1	450370	6568610	15							
S-529	South Ready Line 1	450343	6568605	15							
S-530	South Ready Line 1	450314	6568611	15							
S-531	South Ready Line 2	450295	6568711	14							

CASSIAR PROJECT, British Columbia NAD 83 Zone 9 2008 SAMPLE DESCRIPTIONS AND RESULTS												
SAMPLE	GENERAL	EASTING	NORTHING	ELEV.			Au	Ag	Мо	Pb	Zn	
No.	LOCATION	m E	m N	(m)	TYPE	DESCRIPTION	ppb	ppm	ppm	ppm	ppm	
S-532	South Ready Line 2	450320	6568721	1476	soil	medium brown B, bit till-like, moderate slope	<5	<0.2	61	24	25	
S-533	South Ready Line 2	450344	6568733	1474	soil	medium brown B, bit till-like, moderate slope	<5	<0.2	14	18	20	
S-534	South Ready Line 2	450372	6568743	1469	soil	medium red-brown B, moderate slope	<5	<0.2	26	24	34	
S-535	South Ready Line 2	450402	6568748	1463	soil	medium brown B, moderate slope	<5	<0.2	48	32	20	
S-536	South Ready Line 2	450425	6568774	1463	soil	medium weak orange-brown B, moderate slope	<5	<0.2	17	36	41	
S-537	South Ready Line 2	450456	6568796	1472	soil	medium red-brown B, moderate slope	<5	<0.2	20	46	51	
S-538	South Ready Line 2	450480	6568807	1481	soil	medium brown B, moderate slope	<5	<0.2	30	24	25	
S-539	South Ready Line 2	450506	6568819	1466	soil	medium red-brown B, moderate slope	<5	<0.2	15	16	16	
S-540	South Ready Line 2	450535	6568829	1471	soil	medium weak orange-brown B, bit till-like, moderate slope	<5	<0.2	8	18	16	
S-541	South Ready Line 2	450559	6568832	1465	soil	medium brown B, moderate slope	<5	<0.2	14	22	19	
S-542	South Ready Line 2	450590	6568846	1475	soil	medium brown B, moderate slope	<5	<0.2	8	20	20	
S-543	South Ready Line 2	450621	6568855	14								
S-544	South Ready Line 2	450646	6568863	14								
S-545	South Ready Line 2	450673	6568869	14								
S-546	South Ready Line 2	450703	6568875	14								
S-547	South Ready Line 2	450728	6568876	14								
S-548	South Ready Line 2	450755	6568880	14								
S-549	South Ready Line 2	450783	6568882	14								
S-550	South Ready Line 2	450809	6568896	15								
S-551	South Ready Line 2	450836	6568892	14								
S-552	South Ready Line 2	450877	6568888	14								
S-553	South Ready Line 2	450902	6568895	14								
S-554	South Ready Line 2	450956	6568896	14								
S-555	South Ready Line 2	450994	6568899	14								
S-556	South Ready Line 2	451021	6568903	14								

CASSIAR PROJECT, British Columbia NAD 83 Zone 9 2008 SAMPLE DESCRIPTIONS AND RESULTS													
SAMPLE	GENERAL	EASTING	NORTHING	ELEV.			Au	Ag	Мо	Pb	Zn		
No.	LOCATION	m E	m N	(m)	TYPE	DESCRIPTION	ppb	ppm	ppm	ppm	ppm		
S-557	South Ready Line 2	451052	6568881	1502	soil	medium brown B, moderate slope	<5	<0.2	30	22	36		
S-558	Granite Creek Line 3	450652	6569432	1463	soil	medium brown B, brush	<5	<0.2	14	22	41		
S-559	Granite Creek Line 3	450627	6569422	1468	soil	medium orange-brown B, grass, overgrown slide area	<5	<0.2	9	32	56		
S-560	Granite Creek Line 3	450597	6569432	1478	soil	medium brown B-C, talus fines, no vegetation	<5	<0.2	8	28	54		
S-561	Granite Creek Line 3	450582	6569404	1482	soil	light brown B, dwarf willow	<5	<0.2	11	22	34		
S-562	Granite Creek Line 3	450547	6569351	1484	soil	medium brown B-C, talus fines, dwarf willow	<5	<0.2	5	22	45		
S-563	Granite Creek Line 3	450527	6569323	1482	soil	medium orange-brown B, dwarf willow, good soil	<5	<0.2	6	24	24		
S-564	Granite Creek Line 3	450511	6569304	1481	soil	medium brown B-C, talus fines, no vegetation	<5	<0.2	5	24	30		
S-565	Granite Creek Line 3	450488	6569301	1491	soil	medium brown B-C, talus fines, lichen	<5	<0.2	7	20	25		
S-566	Granite Creek Line 3	450459	6569285	1499	soil	medium brown B-C, talus fines, lichen	<5	<0.2	12	44	61		
S-567	Granite Creek Line 3	450447	6569286	1496	soil	medium brown B-C, talus fines, heather	<5	<0.2	3	22	26		
S-568	Granite Creek Line 3	450427	6569282	15									
S-569	Granite Creek Line 3	450397	6569276	15									
S-570	Granite Creek Line 3	450398	6569248	15									
S-571	Granite Creek Line 3	450404	6569242	Syr									
S-572	Granite Creek Line 3	450396	6569209	14									
S-573	Granite Creek Line 3	450396	6569186	14									
S-574	Granite Creek Line 3	450392	6569160	14									
S-575	Granite Creek Line 3	450396	6569123	14									
S-576	Granite Creek Line 4	450197	6569040	14									
S-577	Granite Creek Line 4	450197	6569055	14									
S-578	Granite Creek Line 4	450197	6569078	15									
S-579	Granite Creek Line 4	450208	6569105	15									
S-580	Granite Creek Line 4	450196	6569135	15									
S-581	Granite Creek Line 4	450187	6569161	15									

APPENDIX IV

Geochemical Procedure and Results

Analytical Procedure - Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

ANALYTICAL METHOD FOR GOLD ASSAY

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or roll crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram subsample is achieved. The subsample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 1/2 or 1.0 A.T. sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control components) accompany the samples on the data sheet.

K:methods/methauas K:Methods/geoauana

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contains beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

BASE METAL ASSAYS (Ag,Cu,Pb,Zn)

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram subsample. The subsample is rolled and homogenized and bagged in a prenumbered bag.

A suitable sample weight is digested with aqua regia. The sample is allowed to cool, bulked up to a suitable volume and analyzed by an atomic absorption instrument, to .01 % detection limit.

Appropriate certified reference materials accompany the samples through the process providing accurate quality control.

Result data is entered along with standards and repeat values and are faxed and/or mailed to the client.

K:Methods/methicp

	CERTIFICA	TE OF ASSAY	AK 2008-1429
Eveready Res	-		30-Oct-08
2616-126th Av	/e		
Calgary,Ab			
T2W 3V6			
Sample Type: F Project: Cassi			
	Мо		
ET #. Ta	g # (%)		
	4574 0.369		
<u>QC DATA:</u>			
Repeat:			
2 7R5	4574 0.377		
Standard: MP2	0.281		
JJ/nw		ECO TECI Jutta Jealo	
XLS/07			ied Assayer
			· · , -

	28-Oct-08																													
Alex Ste	ewart Geoch	emical																												
ECO TE	CH LABORAT	FORY LTD).		ICP	CERT	IFICA	TE OF	ANA	LYSIS	S AK	2008-	1429								Εv	erea	dy R	es (Corp					
10041 D:	allas Drive																					2616	-126t	th Av	/e					
KAMLO	OPS, B.C.																					Ca	lgary	,Ab						
V2C 6T4																						Т	2VV 3	V6						
www.ale:	<u>xstewart.com</u>																													
Phone: 2	250-573-5700																													
	250-573-4557																													
																					No. d	of sar	nples	rece	ived: 2	2				
																							э Туре							
																							ct C							
Values I	in ppm unles	s otherwi	se rep	orted																	Subr	nitted	by: J	ean i	Pautie	er 🗌				
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	7R54572	<5		0.42		40		0.08		1	105	3	1.12		0.13	82	10	0.04	6	340		<5				<10	8	<10		11
2	7R54574	<5	0.7	0.25	<5	15	<5	0.15	<1	<1	129	23	2.46	50	0.05	119	3384	0.04	16	540	<2	<5	<20	9	0.04	<10	38	<10	5	6
QC DAT	A:																													
Repeat:																														
1	7R54572	<5	0.7	0.43	<5	40	25	0.08	<1	1	109	3	1.09	10	0.12	85	12	0.04	6	340	12	<5	<20	11	0.02	<10	9	<10	4	11
Resplit:																														
1	7R54572	<5	1.4	0.42	<5	35	20	0.07	<1	1	92	4	1.09	10	0.12	78	10	0.04	6	330	12	<5	<20	11	0.02	<10	8	<10	4	12
Standar	d:																													
Pb129a			11.3	0.82	15	65	<5	0.63	58	6	5	1567	1.74	<10	0.71	367	3	0.03	5	460	6250	10	<20	31	0.06	<10	17	<10	2	9893
SF30		825																												
																													-	
JJ/ndw/n	W																	E	со т	ECH L	ABOF	RATO	RY LT	FD.						
df/N1401s																					a Jeal									
XLS/08																			B	.C. Ce	rtified	Assa	yer							

Alex St	ewart Geoc	hemic	al																										
ECO TE	CH LABORA	TORY	LTD.						ICP C	ERTI	FICA	TE OF	ANAL	ysis A	AK 20	08-14	31						Eve	ready	Res.	Corp	,		
10041 D	allas Drive												30-0	ct-08									2616	-126tł	n Aver	nue			
KAMLO	OPS, B.C.																						Calg	ary, A	lbert	a			
V2C 6T4																													
www.ale	xstewart.con	<u>n</u>																					No. c	f samp	les rei	ceived	: 72		
Phone: 2	250-573-5700)																					Sam	ole Typ	e:Soik	s			
Fax :2	250-573-4557	'																					Proje	ect: Ca	ssiar				
																								ment ♯					
Values i	in ppm unle		erwise repo	rted																			Subn	nitted k	y: Jea	in Pau	itler		
F 4 <i>H</i>	T = #	Au	A AL 0/			- D1	C N	C 1	<u> </u>	6	C	F = <i>N</i>		B.B A/			N 0/			п	CL.	6	6	T ! <i>N</i>				V	7
Et #.	Tag #	ppb	Ag Al %	As	Ba		Ca %	Cd		Cr		Fe %		Mg %	Mn 4CO		Na %	Ni	P	Pb	Sb	Sn	Sr		<u>U</u>	V		Y	_
1	S510 S511	<5 <5	<0.2 0.98 <0.2 0.91	<5 10	35 40	15 5	0.07	<1 <1	6	12 14	7		20 <10	0.23	160		<0.01 <0.01	5	450 300	22	<5 <5	<20 <20	<1 2	0.10	<10 <10	48 58			
3	S511	<5	<0.2 0.91	<5	40 35	5 10	0.03	<1	ю 8	14	10		10	0.16	149 347	20 31		10		22 26	<5 <5	<20	<1	0.09	<10	 45		<1 2	
4	S512	<5	<0.2 1.20	10	40	10	0.12	<1	5	8	8		20	0.27	212		< 0.01	4	610	20	<5	<20	<1	0.05	<10	- 40			
5	S514	<5	<0.2 1.02	<5	55	15	0.06	<1	10	21	7		<10				0.01	6	620	26	<5	<20	<1	0.16	<10	72		<1	
-							2.22							00															
6	S515	<5	<0.2 1.71	5	50	10	0.08	<1	7	21	12	3.51	<10	0.29	296	35	<0.01	11	760	34	<5	<20	<1	0.09	<10	45	<10	<1	37
7	S516	<5	<0.2 1.00	- 5	40	- 5	0.05	<1	5	6	11	2.51	10	0.24	148	108	< 0.01	2	420	- 22	<5	<20	8	0.07	<10	43	<10	<1	20
8	S517	<5	<0.2 0.82	5	30	- 5	0.12	<1	5	- 7	8		30	0.20	200	47	< 0.01	4	740	18	<5	<20	<1	0.05	<10	28	<10	3	
9	S518	<5	<0.2 1.40	10	45	15	0.12	<1	- 7	9	12		20	0.31	354		<0.01	6	840	- 30	<5	<20	<1	0.06	<10	- 36	<10	3	
10	S519	<5	<0.2 1.09	<5	40	10	0.07	<1	7	19	9	3.07	<10	0.27	305	37	0.01	10	630	26	<5	<20	<1	0.12	<10	56	<10	<1	32
11	S520	<5	<0.2 1.06	<5	35	5	0.05	<1	5	9	7	2.42	10	0.23			<0.01	5	700	22	<5	<20	<1	0.06	<10	36	<10	1	
12	S521	<5	<0.2 1.09	<5	45	10	0.12	<1	9	18	8		10	0.27	342			10	590	20	<5	<20	<1	0.12	<10	49		1	
13	S522	<5	<0.2 0.77	<5	45	25	0.06	<1	5	8	6		<10	0.27	238		<0.01	4	380	18	<5	<20	<1	0.08	<10	42		<1	24
14	S523	<5	<0.2 1.35	<5	50	15	0.08	<1	11	25	10		<10	0.28	481	35	0.01	9	610	30	<5	<20	<1	0.19	<10	76		<1	46
15	S524	<5	0.2 0.45	<5	30	10	0.03	<1	3	5	4	1.80	<10	0.15	113	36	<0.01	2	130	10	<5	<20	<1	0.06	<10	31	<10	<1	14
16	S525	<5	<0.2 0.72	<5	25	<5	0.06	<1	5	4	5	2.09	10	0.22	181	33	<0.01	2	330	16	<5	<20	<1	0.06	<10	29	<10	<1	19
17	S526	<5	<0.2 1.42	<5	50	15	0.13	<1	7	7	9	2.90	20	0.46	319	46	<0.01	4	700	26	<5	<20	<1	0.08	<10	38	<10	<1	36
18	S527	<5	<0.2 1.40	<5	60	10	0.15	<1	9	10	10	3.18	20	0.43	570	13	0.01	4	790	26	<5	<20	<1	0.13	<10	49	<10	<1	37
19	S528	<5	<0.2 0.78	<5	25	10	0.10	<1	4	4	5	1.98	20	0.19	228	- 36	< 0.01	2	790	18	<5	<20	<1	0.03	<10	26	i <10	3	
20	S529	<5	<0.2 0.93	<5	35	5	0.10	<1	5	5	6	2.60	20	0.27	214	17	<0.01	2	810	22	<5	<20	<1	0.05	<10	32	<10	2	25
21	S530	<5	<0.2 1.24	<5	40	10	0.11	<1	6	9	6		20	0.32	274	50	<0.01	3	630	26	<5	<20	<1	0.08	<10	40	<10	<1	34
22	S531	<5	<0.2 1.32	<5	35	10	0.08	<1	- 7	15	- 7	3.28	10	0.27	256	15	< 0.01	9	590	26	<5	<20	<1	0.11	<10	43	<10	<1	34
23	S532	<5	<0.2 0.85	<5	40	10	0.09	<1	6	8	9		20	0.17	417	61	< 0.01	4	590	- 24	<5	<20	<1	0.06	<10	32	<10	4	
24	S533	<5	<0.2 0.77	<5	25	5	0.05	<1	5	- 7	5		<10	0.19	194		<0.01	3	400	18	<5	<20	<1	0.07	<10	31		<1	20
25	S534	<5	<0.2 1.11	<5	40	10	0.10	<1	9	15	7	3.58	<10	0.21	328	26	<0.01	5	1010	24	<5	<20	<1	0.12	<10	53	<10	<1	34
26	S535	<5	<0.2 0.74	<5	25	15	0.03	<1	5	7	5	2.14	<10	0.14	195	48	<0.01	3	510	32	<5	<20	<1	0.06	<10	33	<10	<1	20
27	S536	<5	<0.2 1.92	<5	40	20	0.09	<1	8	18	7	3.75	10	0.24	281	17	0.01	8	600	36	<5	<20	<1	0.14	<10	46	<10	<1	41
28	S537	<5	<0.2 2.84	20	60	- 5	0.24	<1	12	18	10	4.03	- 30	0.51	436	20	0.02	16	890	46	<5	<20	<1	0.15	<10	49	<10	2	
29	S538	<5	<0.2 1.21	<5	40	10	0.12	<1	5	5	5		30	0.31	290	30	< 0.01	3	490	24	<5	<20	<1	0.05	<10	26		2	
30	S539	<5	<0.2 0.68	<5	30	5	0.02	<1	4	4	4	1.98	10	0.23	141	15	< 0.01	2	180	16	<5	<20	<1	0.06	<10	32	<10	1	16

ECO TEO	H LABOR		LTD.						ICP C	ERTI	FICATE 0	F ANAL	ysis <i>i</i>	AK 20	08- 1431				Eveready Res. Corp								
F • #	T = = 4	Au	A AL 9/		B		C- N	C 1	<u> </u>	~	Cu Eu	0/ L	N N/		M - N - 9/			БЬ	C L	6	C -	T: <i>N</i>					7.
Et #.	Tag #	ppb	Ag Al %	+	+		Ca %	Cd	Co	Cr	Cu Fe	_	Mg %		Mo Na %	Ni	P	Pb	Sb		Sr		U	V	W	Y	Zn
31	S540	<5	<0.2 0.88			5		<1	3	4	3 1.8			132	8 < 0.01	1	590	18	<5		<1	0.04		24	<10	2	16
32	S541	<5	<0.2 0.83	_		- 5		<1	5	9	6 2.1				14 < 0.01	4	410	22	<5		<1	0.09	<10	39	<10	<1	19
33	S542	<5	<0.2 0.74			10		<1	5	11	5 2.5			163	8 < 0.01	3	380	20	<5		<1	0.12	<10	49	<10	<1	20
34 35	S543	<5	<0.2 0.89			<5		<1	5	9 7	6 2.6			237	12 < 0.01	3	570	22	<5		<1	0.07	<10	42	<10	2	23 22
	S544	<5	<0.2 0.90			10		<1	4		4 2.2				10 < 0.01	-	830	22	<5		<1	0.06	<10	33	<10		
36	S545	<5	<0.2 0.87	5		5		<1	5	9	5 2.5			179	12 < 0.01	3	620	20	<5		<1	0.07	<10	42	<10	<1	22
37	S546	<5	<0.2 0.79			<5		<1	4	5	4 1.8			271	9 < 0.01	2	650	24	<5		<1	0.04	<10	25	<10	2	14
38	S547	<5	<0.2 0.71			10		<1	5	12	6 2.8			210	12 < 0.01	5	810	20	<5		<1		<10	46	<10	2	22
39	S548	<5	<0.2 0.61			5		<1	4	7	5 2.2				21 < 0.01	3	260	16	<5		<1	0.06	<10	45	<10	<1	20
40	S549	<5	<0.2 0.87	<	35	10	0.04	<1	4	6	5 2.2	1 20	0.18	200	43 <0.01	2	340	20	<5	<20	<1	0.04	<10	33	<10	2	20
41	S550	<5	<0.2 0.67	<	35	10	0.02	<1	4	- 5	5 1.8	2 <10	0.18	130	35 < 0.01	2	280	16	<5	<20	<1	0.08	<10	37	<10	<1	18
42	S551	<5	<0.2 1.02	: 5	45	15	0.07	<1	6	13	15 3.4	2 <10	0.30	373	43 < 0.01	5	1050	36	<5	<20	<1	0.09	<10	61	<10	1	48
43	S552	<5	<0.2 0.91	<5	40	15	0.05	<1	6	13	10 2.2	8 20	0.30	177	38 < 0.01	6	370	28	<5	<20	<1	0.13	<10	56	<10	<1	36
44	S553	<5	<0.2 0.73	<	30	15	0.03	<1	5	9	10 2.3	2 <10	0.17	180	23 < 0.01	3	220	26	<5	<20	<1	0.11	<10	54	<10	<1	40
45	S554	<5	<0.2 0.79	<	25	5		<1	5	9	6 2.0	9 20	0.19	171	14 < 0.01	5	570	18	<5	<20	<1	0.05	<10	35	<10	2	20
46	S555	<5	<0.2 1.09	- <	25	10	0.07	<1	4	8	5 2.3	0 20	0.16	120	14 < 0.01	3	630	20	<5	<20	<1	0.05	<10	30	<10	1	16
47	S556	<5	<0.2 1.35			15		<1	6	15	16 3.7			319	13 < 0.01	8	690	48	<5		<1	0.09	<10	50	<10	1	57
48	S557	<5	<0.2 1.16			10		<1	6	10	6 2.3			279	30 < 0.01	5	460	22	<5		<1	0.08	<10	40	<10	<1	36
49	S558	<5	<0.2 0.84			10		<1	6	9	4 2.1			463	14 < 0.01	9	760	22	<5		<1	0.06	<10	33	<10	3	41
50	S559	10	<0.2 1.16			10		<1	8	11	6 2.7			451	9 <0.01	10	900	32	<5		<1	0.07	<10	40	<10	4	56
51	S560	<5	<0.2 1.40	і <u></u>	60	15	0.12	<1	11	19	10 3.5	5 20	0.42	909	8 0.01	12	1420	28	<5	<20	<1	0.13	<10	56	<10	2	54
52	S561	<5	<0.2 0.93	_		10		<1	6	8	7 2.4	-		224	11 < 0.01	6	420	22	<5		<1	0.09	<10	37	<10	2	34
53	S562	<5	<0.2 0.95			<5		<1	8	10	9 2.2			429	5 < 0.01	10	860	22	<5	<20	<1	0.08	<10	33	<10	6	45
54	S563	<5	<0.2 0.87			15		<1	7	12	5 3.0			162	6 < 0.01	4	430	24	<5		<1	0.17	<10	56	<10	<1	24
55	S564	<5	<0.2 1.12			10		<1	5	7	4 1.8			324	5 < 0.01	7	430	24	<5	<20	<1	0.06	<10	26	<10	3	30
56	S565	<5	<0.2 0.82	<	55	10	0.06	<1	7	6	8 2.8	9 <10	0.29	211	7 <0.01	4	440	20	<5	<20	<1	0.13	<10	47	<10	<1	25
57	S566	<5	<0.2 1.07	10		10		<1	7	10	6 2.5			456	12 < 0.01	9	960	44	<5		<1	0.06	<10	35	<10	7	61
58	S567	<5	<0.2 1.04			10		<1	4	10	5 1.7				3 < 0.01	5	530	22	<5		<1	0.06	<10	32	<10	1	26
59	S568	<5	<0.2 1.04	1		10		<1	6	10	5 2.3			249	7 < 0.01	5	550	22	<5		<1	0.06	<10	38	<10	2	30
60	S569	<5	<0.2 0.75			10		<1	5	7	5 2.2			225	4 < 0.01	3	360	20	<5		<1	0.09	<10	43	<10	<1	27
61	S570	<5	<0.2 0.46		30	5		<1	3	5	4 1.5	_		363	5 < 0.01	3	420	12	<5	<20	<1	0.03	<10	29	<10	<1	21
62	S571	<5	<0.2 0.40			5		<1	7	8	5 2.1			263	4 < 0.01	5	600	20	<5	<20	<1	0.03	<10	35	<10	2	21
62 63		<5	<0.2 0.87			10		<1	7	11	7 2.5				6 < 0.01	с 8	500	20	<5		<1	0.07		39	<10	2	- 29 - 36
63		<5	<0.2 1.18			<5		<1	2	4	2 1.0			182	2 < 0.01	1	250	24 10	<5		<1	0.07	<10	23	<10	<1	17
65		<5	<0.2 0.40			 5		<1	- 2	10	6 2.0			329	6 < 0.01	10	850	22	<5		<1	0.05	<10	31	<10	7	35
66	S575	<5	<0.2 0.64	-		10		<1	4	15	3 1.6			129	8 < 0.01	4	310	12	<5		<1	0.05	<10	33	<10	1	20
67	S576	<5	<0.2 1.32			10		<1	8	15	7 2.5			444	5 < 0.01	12	790	26	<5		<1	0.08	<10	37	<10	4	44
68	S577	<5	<0.2 1.30			<5		<1	8	14	7 2.5				5 < 0.01	12	710	24	<5		<1	0.07	<10	37	<10	3	44
69 70	S578	<5	<0.2 0.89			5		<1	4	11	4 1.7			259	6 < 0.01	6	630	20	<5		<1	0.05	<10	29	<10	<1	28
70	S579	<5	<0.2 1.31			<5		<1	6	11	5 2.2			263	5 <0.01	8	450	28	<5		<1	0.06	<10	33	<10	3	33
71	S580	<5	<0.2 1.37	<		5		<1	8	16	6 3.1			266	6 < 0.01	8	520	26	<5	<20	<1	0.11	<10	47	<10	1	36
72	S581	<5	<0.2 1.50	<5	i 45	10	0.08	<1	8	15	6 3.0	13 10	0.32	292	5 <0.01	11	610	32	<5	<20	<1	0.11	<10	44	<10	2	- 38

ECO TEO	H LABOR	ATORY	LTD.							ICP C	ERTI	FICA	TE OF	ANAL	ysis <i>i</i>	AK 20	08- 14	431						Eve	ready	Res.	Corp			
		Au																												
Et #.	Tag #	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
QC DATA	<i>l</i> :																													
Repeat:	_																													
1	S510	<5	<0.2	0.99	<5	35	10	0.06	<1	6	12	7	2.94	10	0.24	163	- 25	<0.01	5	460	- 24	<5	<20	<1	0.10	<10	49	<10	<1	26
10	S519	<5	<0.2	1.05	<5	45	5	0.07	<1	7	17	9	2.91	<10	0.27	307	35	0.01	8	620	24	<5	<20	<1	0.12	<10	53	<10	<1	30
19	S528	<5	<0.2	0.83	<5	30	10	0.12	<1	4	5	6	2.09	20	0.19	223	38	< 0.01	2	840	20	<5	<20	<1	0.03	<10	29	<10	3	18
28	S537	<5	<0.2	3.00	10	60	5	0.25	<1	12	18	11	4.19	30	0.54	445	19	0.02	17	960	50	<5	<20	<1	0.15	<10	51	<10	3	53
36	S545	<5		0.85	<5	30	10		<1	5	9	5	2.56	20		174		<0.01	3	550	20	<5	<20	<1	0.07	<10	40		<1	21
45	S554	<5		0.78	<5	25	<5		<1	4	8	5		10				< 0.01	5	550	20		<20	<1	0.05		31		1	20
54	S572	15		0.85	<5	30	15		<1	7	12	5		10		165		< 0.01	3	440	24		<20	<1	0.16		58	<10	<1	24
63	S580	<5		1.14	<5	45	15		<1	6	10	6		<10		367		< 0.01	- 7	490	24	-	<20	<1	0.07		39	<10	2	34
71		<5	<0.2	1.38	<5	45	10		<1	8	16	6		10		266		<0.01	10	530	28	<5	<20	<1	0.11	<10	46		1	37
Standard	l:																													
Till-3			15	1.06	90	40	5	0.49	<1	12	59	21	2.34	10	0.53	279	1	0.02	31	450	20	<5	<20	9	0.06	<10	37	<10	3	40
Till-3				1.06	90	45	5	0.49	<1	12	58	21		<10		283		0.02	30	460	20	-	<20	9			37	<10	3	39
Till-3				1.11	90	45	5	0.52	<1	12	60		2.41	10			1		31	460	20	-	<20	10		<10	39		3	40
Se29		595					-																						-	
Se29		615																												
Se29		600																												
										ICP C	ERTI	FICA	TE OF	ANAL	ysis <i>i</i>	AK 20	08- 14	130						A1	,		· ,	_		
																									of samp					
																									ple Typ					
																									ect: Ca					
values li	n ppm-unl	1	erwis	e repo	πea																			Supi	nitted k	by: Jea	in Pau	iter		
Et #.	Tag #	Au (ppb)	Δa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
5	54573	10		1.35	15	50		0.61	<1	9	16		2.59	30		853		0.01	13	820	72			11		<10	-	<10		189
Standard	l:																													
SF30		810																												
Till-3			1.5	1.05	80	45	<5	0.51	<1	11	60	19	2.04	<10	0.54	283	2	0.02	32	440	18	10	<20	16	0.04	<10	38	<10	3	38
JJ/ndw/nv	٧																								ORAT	DRY L	TD.			
df/1431s																						Jutta								
XLS/08																						B.C.	Certifi	ed As	sayer					

APPENDIX V - Statement of Expenditures

Wages:	J. Pautler btw. Aug. 8-16 6 days @ 750.00/day \$4,50	0.00
	Total: 6 man-days	\$4,500.00
Trail/Drill p	ad construction: Cassiar Jade Contracting	18,000.00
Room and	Board for Operator: Velocity Resource Corp. 150/manday	1,000.00
Geochemis	stry: 2 rocks @ 33./ea. Au, ICP 66.00 72 soils @ 30./ea. Au, ICP 2,160.00 1 moss mat @ 33./ea. Au, ICP 33.00 Shipping 64.40	
	Total:	2,323.40
Equipment	Rental: Truck 5 days @ 100./day 500.00 ATV 5 days @ 75./day 375.00	
	Total:	875.00
Meals and	Accommodation: 6 man-days @ 80.00/md	480.00
Field Supp	lies: (sample bags, flagging, batteries)	120.00
Gas:		200.00
Maps, Print	ts & Copies:	50.00
Report & D	Prafting:	<u>5,000.00</u>
GRAND TO	DTAL:	\$32,548.40

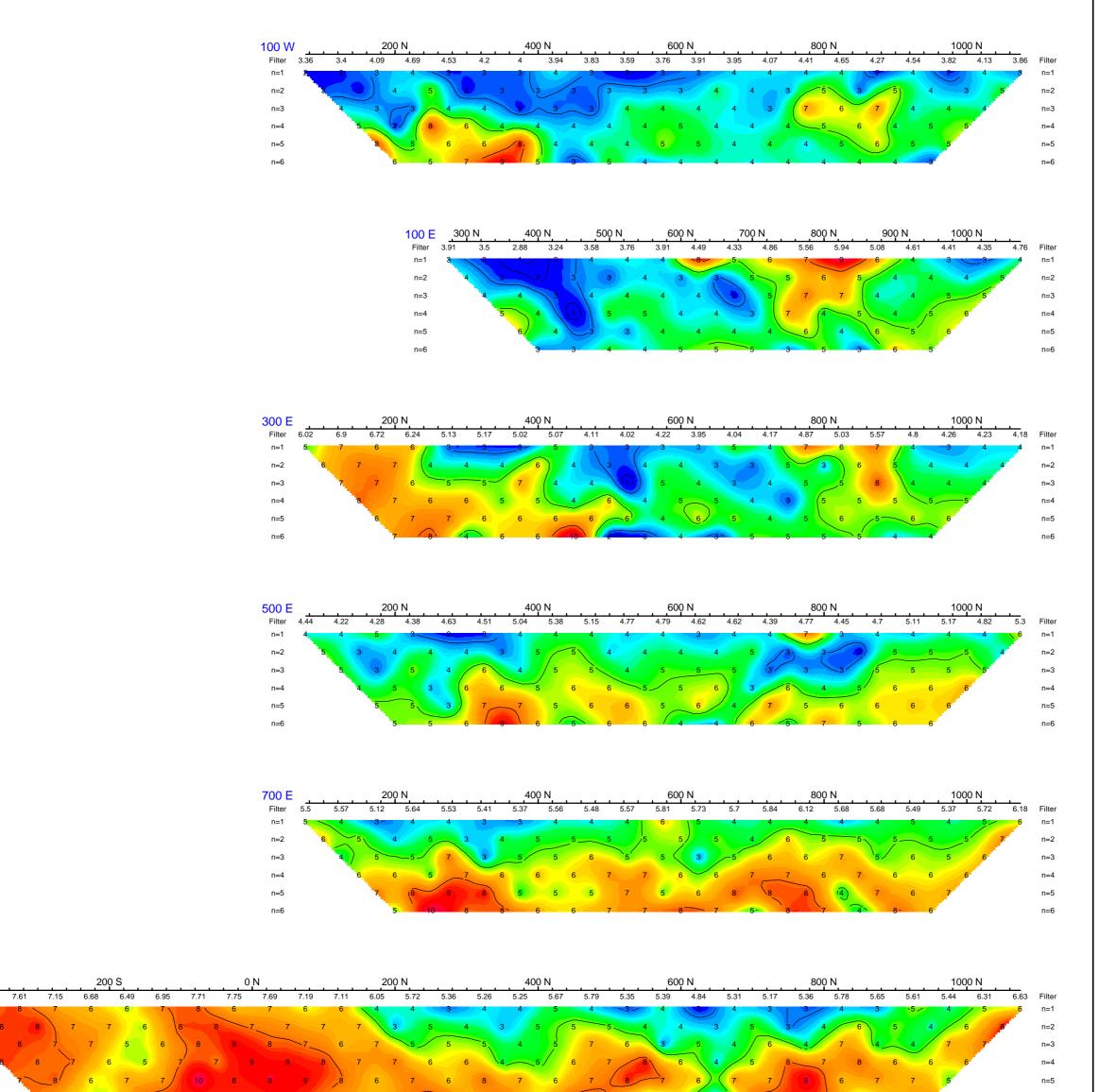
APPENDIX VI

STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

I am a geologist with more than twenty-five years of experience in the Canadian Cordillera.

I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).


I am a Professional Geoscientist, registered in the province of British Columbia, registration number 19804.

I supervised the 2008 program on the Cassiar Project between August 8 and 16, 2008.

I have no direct or indirect interest in the Cassiar Project, which is the subject of this report.

Jean Pautler, P.Geo. JP Exploration Services Inc.

STACKED IP AVERAGE

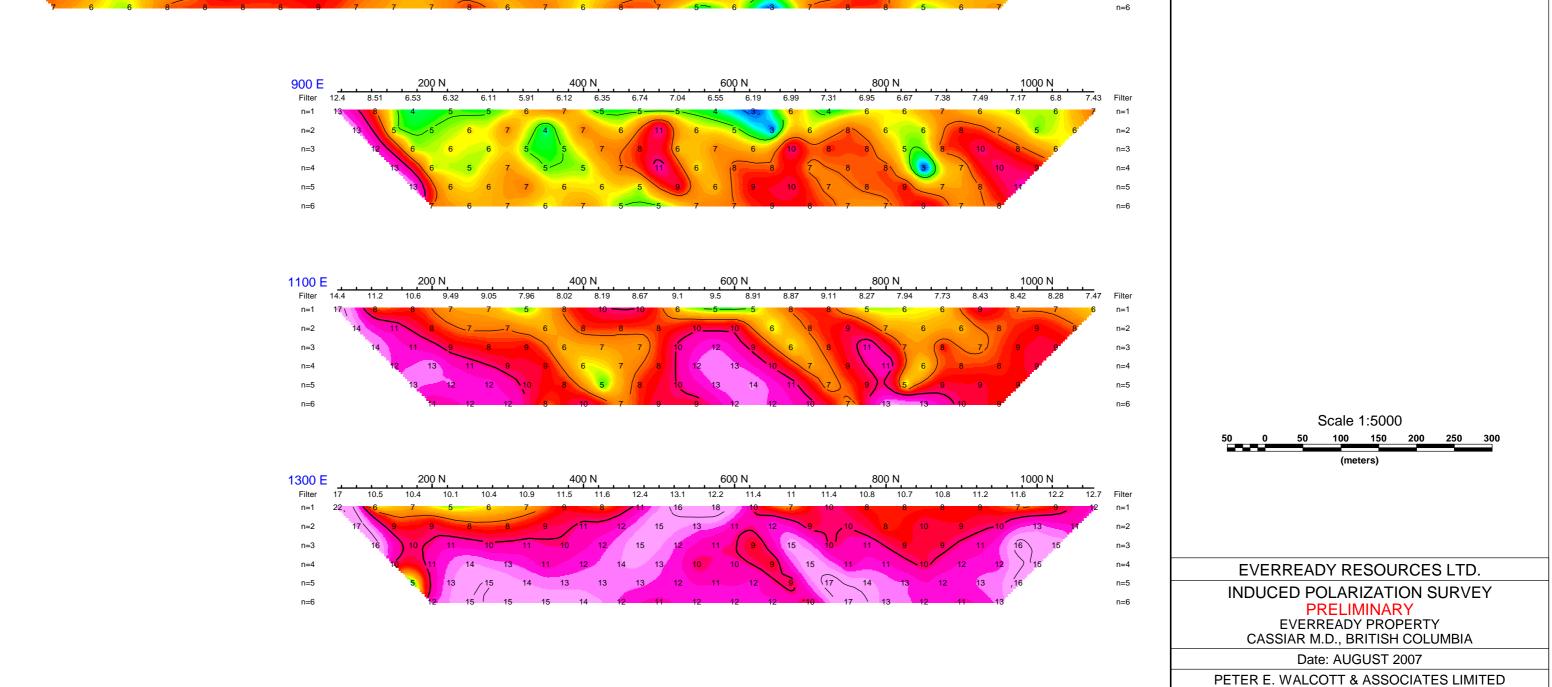
n=3 n=4 n=5

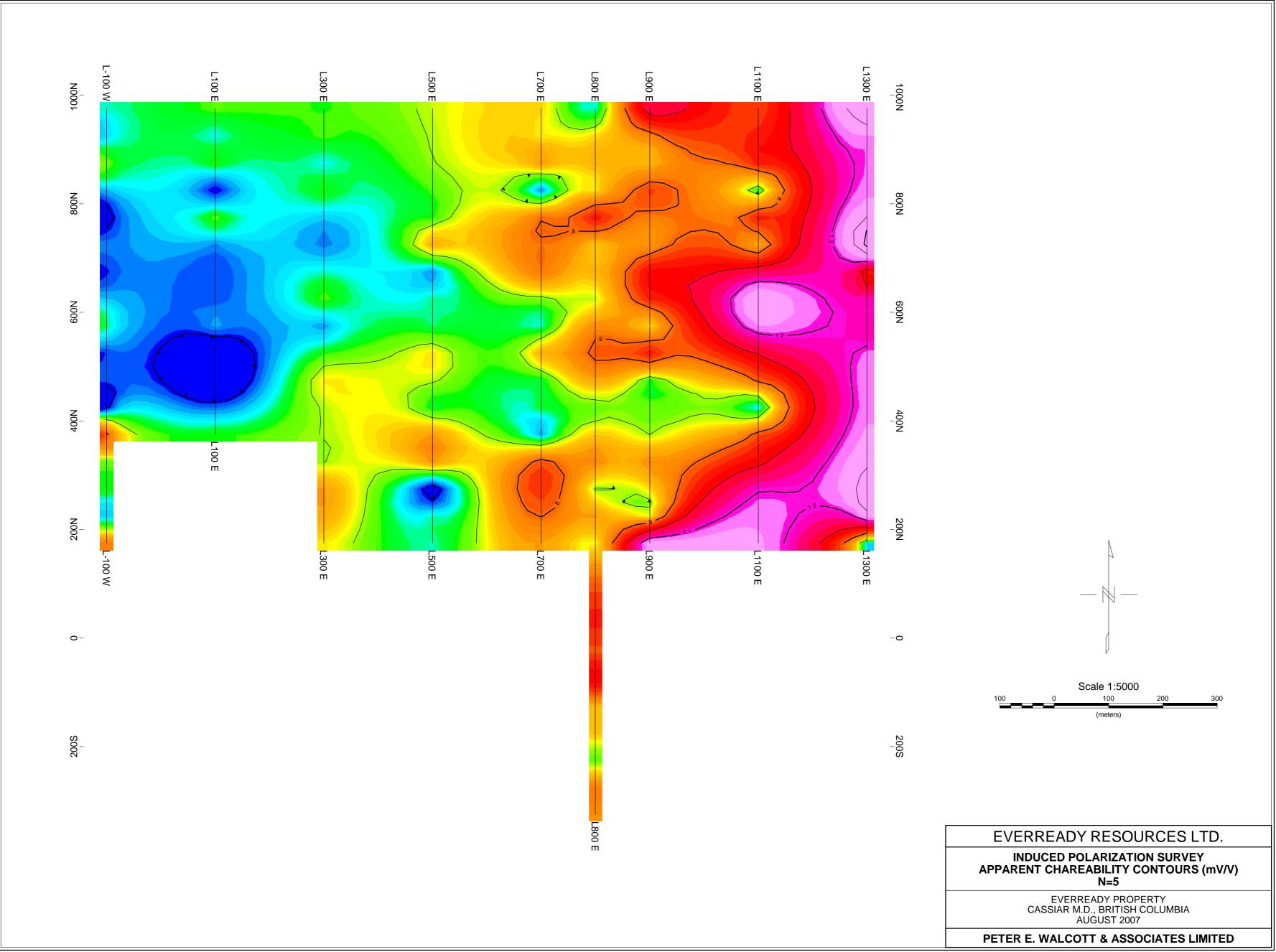
800 E

Filter

n=1

n=2


400 S


7.79

7.68

200 S

6

