GEOPHYSICAL ASSESSMENT

REPORT

(Event Number 4246287)

Centre of Work: 5,967,200N, 648,000E

BC Geological Survey Assessment Report 30724

on the

RIP CLAIM GROUP

Tenures: 578368,578881,576224,570144,570160,571147,570169, 570107,570105,570138,570142,571151,575740, 571921,571924,571155,571929,573406

> Omineca Mining Division BCGS 093E.087

Dates of Work: September 4-29, 2008

Owner & Operator

Andrew L.R.Sostad

Author & Consultant

Laurence Sookochoff, PEng Sookochoff Consultants Inc.

Date of Report: November 5, 2009 (Revised after March 13, 2009 report)

TABLE OF CONTENTS

Summary
Introduction
Property Description and Location
Accessibility, Climate, Local Resources, Infrastructure and Physiography
Property History
Property Geology
Regional Mineralization
Huckleberry
Poplar
Property Mineralization
2008 Geophysical Program
VLF-EM Survey
a) Instrumentation
b) Theory
c) Survey Procedure
d) Compilation of Data
e) Results
Magnetometer Survey
a) Instrumentation
b) Theory
c) Survey Procedure
d) Compilation of Data
e) Results
Interpretation
Selected References
Statement of Costs
Certificate

Appendices

Appendix I	VLF-EM & Magnetometer Data		26.
------------	----------------------------	--	-----

TABLE OF CONTENTS (cont'd)

Illustrations

following page

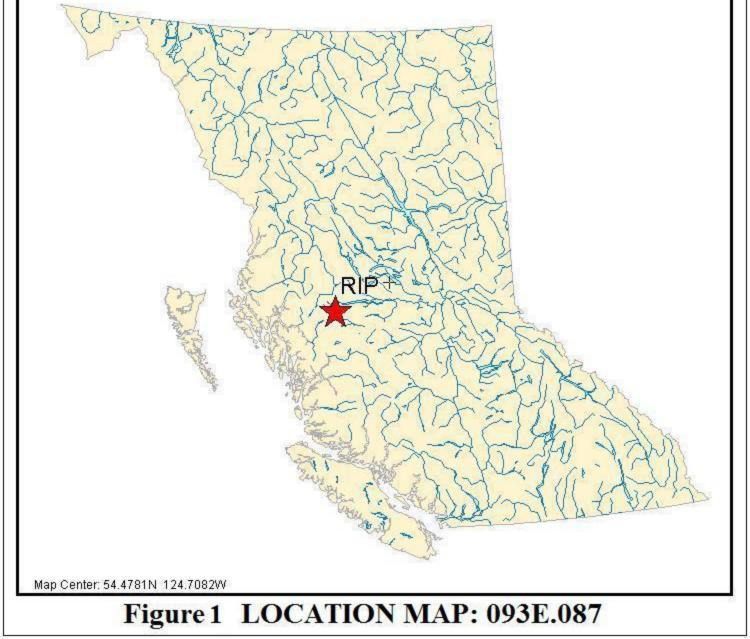
Figure	1. Location Map	4.
Figure	2. Claim Location Map	5.
Figure	3. Claim Map	6.
Figure	4. Index & Topography Map	7
Figure	5. Geology Map	8.
		page
Figure	6. VLF-EM Data: Raw	12.
Figure	7. VLF-EM Data: Fraser Filtered	14.
Figure	8. Fraser Filter Results: Contoured	15.
Figure	9. Magnetometer Data: Raw	17.
Figure	10. Magnetometer Data: Contoured	18.
Figure	11. Geophysical Compilation Map	19.
Figure	12. DDH 1 Section (Gower, 1976) showing Geology & Geochemistry	21.

SUMMARY

The RIP Claim Group, covering an area of 1,965 hectares, is located within an historic mining and mineral exploration area of central British Columbia. The area includes bulk tonnage porphyry mineral deposits such as the .Huckleberry where in 2000 total probable reserves were reported as 56,498,000 tonnes of 0.494% copper and 0.014% molybdenum, or the Poplar deposit where in 1991 unclassified reserves were reported as 144,117,000 tonnes grading 0.368% copper and 0.011% molybdenum. In both porphyry deposits, the mineralization is hosted by an intrusive stock by the peripheral Hazelton Group volcanics and/or tuffs.

At the RIP Claim Group, copper and molybdenum mineralization occur in altered Hazelton volcanics and/or diorite dykes, within outcrops, and in the core of a 1975 diamond drill hole completed adjacent to a quartz-monzonite porphyry stock. Representative surface samples collected reportedly returned assays of 0.44 % Cu, 0.02% Mo and 0.22% Cu, 0.08% Mo. Core samples returned assays of up to 0.09% Cu from a "9 foot" diorite dyke.

The 2008 VLF-EM and magnetometer survey indicates that the dominant VLF-EM anomaly "AB" reflects a significant 1800 metre north trending structure that generally defines the southwesterly limits of two intrusive stocks. Associated low-order complementary northeast trending anomalies reflect typical stress related structures associated with the prime structure. The complementary structures are important conduits for the dissemination of porphyry mineralization.


The magnetometer survey delineated three extensive magnetic low ("LO") areas: central, northwest, and southeast. The central "LO", 650 metres wide, and sub-enveloped by two magnetic highs, reflects an alteration zone as indicated from the 1975 drill hole results where core from the drill hole reveals volcanics and dykes with variable alteration and mineral values and dykes; the variability is reflected in the variable magnetometer variances. The upper portion of the drill hole is within a magnetic "LO" reflected by the higher alteration and mineral values: the central portion of the drill hole occurs within magnetic background values and reflected in the drill hole by lesser alteration and lower mineral values; the lower section occurs within a magnetic "HI" and reflected in the drill hole by light alteration and a predominant "complex intrusive" (Figures 10 & 12).

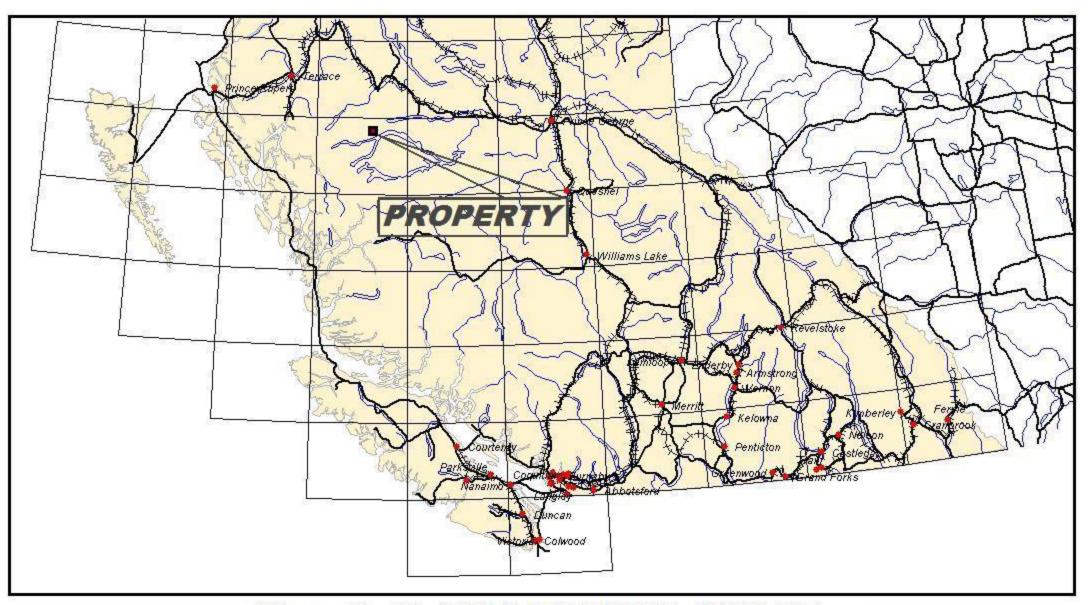
The results of the 2008 geophysical survey should be correlated with all the historical exploration results (Property History section) from the survey area to provide a composite plan as an aid to recognize the significant features leading to the location of potentially economic zones of mineralization.

INTRODUCTION

During the period September 4, 2009 to September 29, 2009 a combined VLF-EM survey and a magnetometer survey were conducted on the Rip Claim Group. The purpose of the surveys was delineate VLF-EM and/or magnetometer anomalies that may be interpreted as potential mineral controlling structures and/or mineralization associated with magnetite.

The information for this report was obtained from sources as cited under the Selected Reference section, and from the information supplied to the author on the results of the field work.

RIP CLAIM GROUP


PROPERTY DESCRIPTION AND LOCATION

The property is comprised of 18 contiguous Tenures covering an area of 1965.474 hectares. Particulars are as follows:

Tenure Number	<u>Type</u>	Claim Name	<u>Good Until</u>	<u>Area</u> (ha)
<u>570105</u>	Mineral	RIP	20110315	114.503
<u>570107</u>	Mineral	RIP 2	20110315	38.162
<u>570138</u>	Mineral	RIPPER	20110315	190.861
<u>570142</u>	Mineral	RIPPER 2	20110315	19.088
<u>570144</u>	Mineral	RIPPER 3	20110315	38.175
<u>570160</u>	Mineral	RIPPED	20110315	152.717
<u>570169</u>	Mineral		20110315	19.081
<u>571147</u>	Mineral	RIP	20110315	248.059
<u>571151</u>	Mineral	RIP	20110315	19.088
<u>571155</u>	Mineral	RIP	20110315	228.964
<u>571921</u>	Mineral		20110315	19.088
<u>571924</u>	Mineral		20110315	38.175
<u>571929</u>	Mineral		20110315	57.261
<u>573406</u>	Mineral		20110315	57.232
<u>575740</u>	Mineral		20110315	57.271
<u>575881</u>	Mineral	RIP 100	20110315	190.805
<u>576224</u>	Mineral		20110315	19.085
<u>578368</u>	Mineral	RIP	20110315	457.859

The Property, located within six kilometres west-northwest of Andrew Bay, a western extension from the northern portion of Ootsa Lake near its western limits, is within BCGS 093E.087 and centred at UTM coordinates 5,967,200N 648,000E.

RIP CLAIM GROUP

Figure 2. CLAIM LOCATION: 093E.087

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Access to the Property is via logging roads from Houston or Burns Lake to Francois Lake and then Ootsa Lake. The distance by road from Houston to the Property is 112 kilometres with Wistaria, the closest community, 35 kilometres east.

Access within the confines of the Property is provided by numerous primary and secondary logging roads.

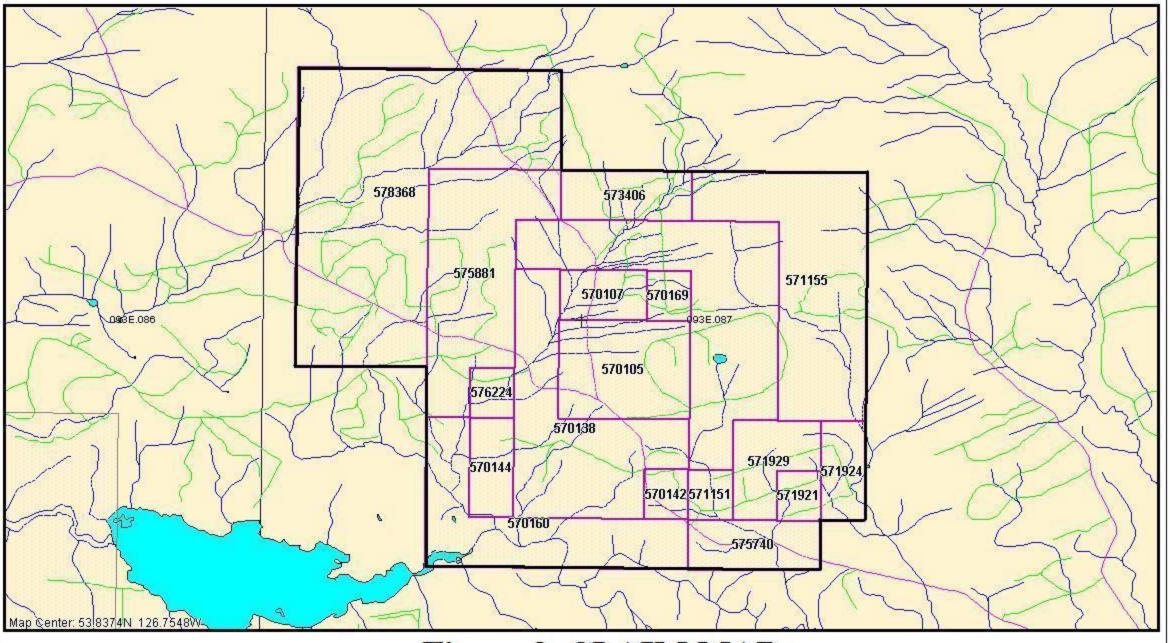
The region is situated within the dry belt of British Columbia with rainfall between 25 and 30 cm per year. Temperatures during the summer months could reach a high of $35^{\circ}C$ and average $20^{\circ}C$ with the winter temperatures reaching a low of -30 °. On the property, snow cover on the ground could be from October to May and would not hamper a year-round exploration program.

Sufficient water for all phases of the exploration program could be available from the lakes and water courses located within the confines of the property.

The Property is favorably located within an historic mining and mineral exploration region. Smithers an historic mining centre 114 km to the northeast, could be a source of experienced and reliable exploration and mining personnel, and a supply for most mining related equipment. Smithers, Prince Rupert and Prince George are serviced daily by commercial airline from Vancouver and are on a major highway route (Highway 16) and a rail route (CNR).

Vancouver, a port city on the southwest comer of, and the largest city in the Province of British Columbia is nine hours distant by road and less than two hours by air from Smithers.

Physiographically, the Property is situated on the west side of the Nechako Plateau in an area of rolling to hilly topography. Maximum elevation is 1225 metres with a maximum relief of 300 metres.


PROPERTY HISTORY

On the ground presently claimed by the RIP Property previous exploration included the following:

1973: Saiwa Resources Ltd. (N.P.L.) completed 24 line kilometres of a magnetometer survey and a geochemical survey on the MIN claims (AR 4728). The results of the surveys are reported on by Allen (1973) as:

- 1) the highest copper content (of up to 170 ppm Cu) are located south and east of the area tested by trenching and stripping;
- 2) Molybdenum results were spotty and mostly 2 parts per million;
- 3) The area of trenching and stripping is located on the south boundary of the largest and strongest magnetometer anomaly.

RIP CLAIM GROUP

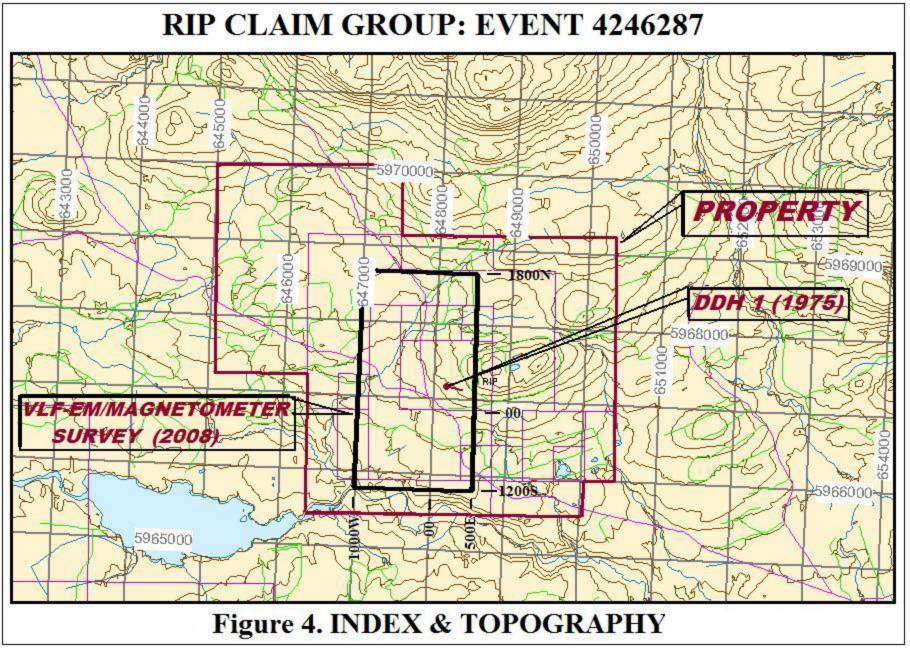
Figure 3. CLAIM MAP

PROPERTY HISTORY (cont'd)

1975: Kennco Explorations completed 21 line kilometres of an IP survey (400 foot/122 metre and 200 foot/61 metre dipole spacing; recording 4 levels) and a magnetometer survey on the RIP claims (AR 5818). The results of the surveys are reported on by Dorval & Stevenson (1976) as:

1) A 214m by up to a 920m anomalous IP-resistivity area appears to be caused by sulfide mineralization in fractured quartz-sericite altered volcanic rock near a quartz-monzonite porphyry stock.

1975: Kennco Explorations completed one 967 foot (295 metre) BQ wireline diamond drill hole on the Andrew 1 mineral claim located 9.5 kilometers west of Andrew Bay (AR 5819). Gower (1976) does not provide any conclusions on the drill hole results, however the information available from the drill logs and maps reveal that:


- 1. The entire drill hole intersected andesitic volcanics with localized diorite and porphyry dykes;
- The upper 550 feet was predominantly of quartz-sericite and pyrite altered volcanics with mineral values of up to 950ppm Cu (from a rehealed quartz diorite) and up to 120ppm Mo (from a quartz diorite dyke);
- 3. The bottom section of the drill hole was predominantly of pyritic altered volcanics with copper values below 250 ppm and molybdenum values below 15ppm;
- 4. The feldspar porphyry dykes were relatively fresh with a minimal pyritic content;
- 5. The two dioritic dykes hosted the highest copper (950ppm; 940ppm) and molybdenum (120ppm) values.

1980: SMD Mining Co. Ltd., as operator in a joint venture with Kennco Explorations (Western) Limited, completed 34.0 kilometres of an IP/resistivity survey (100 metre dipole length; recording 4 levels) and 78.7kilometres of a magnetometer survey on the RIP 1-8 mineral claims (AR 8366). The survey results are reported by Matthews (1980) as:

1) The anomalous IP zone located by Kennco in 1975 was confirmed by the present work, but only marginally extended to the south.

1981: SMD Mining Co. Ltd., as operator in a joint venture with Kennco Explorations (Western) Limited, completed 26 percussion holes located on the RIP 1, 2, 3, and 8 claims and the composite analysis of the cuttings from each percussion hole to determine zoning patterns and possible drill targets (AR 9178). The geochemical zoning and gradients were determined by separation and analysis of a non-magnetic +3.3 specific gravity fraction from composite rock samples which provides large (three to more than ten-fold) enhancements of hydrothermal trace element signatures relative to those of the original rock. The results are reported by Bamford and Cann (1981) as:

- 1) Only one potentially economic porphyry-type ore target is presently inferred from the results: higher grade porphyry Cu-Mo mineralization could be developed at depths of several hundred to more than a thousand metres beneath the sampled area.
- 2) The system could be gold-bearing.

PROPERTY GEOLOGY

MINFILE reports that a quartz-chalcopyrite-molybdenite-magnetite stockwork occurs mainly in hornfels. Pervasive phyllitic (sericitic) alteration occurs in the area of the stockwork.

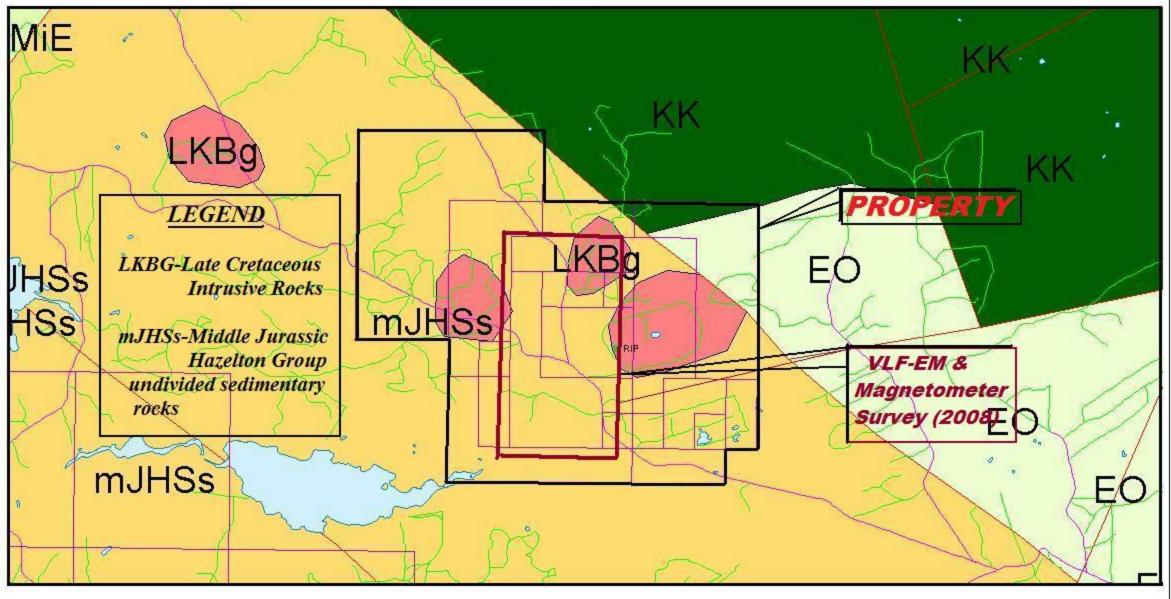
Allen (1973) provides a geological description of the RIP mineral showing area as follows:

"The area is underlain by Jurassic sedimentary and volcanic rocks of the Hazelton Group. Coast Range intrusives occur throughout the region. It is with quartz diorite porphyry intrusives that the copper-molybdenum mineralization is associated on the MIN group.

A partially exposed mineral deposit on the MIN 7 claim includes silicified volcanic rocks and probably altered sediments which have been extremely fractured and penetrated by quartz stringers with associated sulphides and oxides of iron, copper and molybdenum. Dykes or plugs of differentiated granitic rocks, containing similar metallic mineralization, have been intruded into the older volcanic and sedimentary rocks. The exposed area is approximately 300 feet in diameter.

The included minerals, in order of abundance, are pyrite, chalcopyrite, molybdenite, magnetite, and pyrrhotite (?).

Although fracturing and alteration of these rocks on the exposed area is intensive, the general structural trend appears to be northwesterly."


REGIONAL MINERALIZATION

Mineralization at properties classed as porphyry Cu +/- Mo +/-Au producers or past producers by MINFILE within 40 kilometres of the RIP Property include:

Huckleberry: 34 kilometres southeast.

Porphyry copper and molybdenum mineralization is associated with a near elliptical stock of Upper Cretaceous age granodiorite porphyry. The stock intrudes fine-grained crystal tuff of the Lower-Middle Jurassic Hazelton Group. Tuffs adjacent to the intrusion have been hornfelsed. Mineralization consists of chalcopyrite and minor molybdenite in fractures, principally in the hornfelsed volcanics but also in the stock. Minerals accompanying chalcopyrite are quartz, orthoclase and pyrite with probably later calcite, gypsum, and zeolite. Magnetite occasionally accompanies chalcopyrite. Disseminated chalcopyrite also occurs. Molybdenum usually occurs with quartz in hairline fractures. The mineralization generally occurs around the stock contact but the extent outward from the contact and the grade vary. The best mineralization occurs on the east side of the stock. Potassic, pyrite, and chlorite alteration haloes surround the stock. Probable reserves in 2000 were reported as 56,498,000 tonnes of 0.494% copper and 0.014% molybdenum (MINFILE No 093E 037).

RIP CLAIM GROUP

Figure 5. GEOLOGY MAP

REGIONAL MINERALIZATION (cont'd)

Poplar: 26 kilometres northwest.

A stock of the Bulkley Intrusions intrudes Hazelton Group volcanics and is weakly mineralized with chalcopyrite, molybdenite, and pyrite in fracture fillings. As well, the biotite porphyry hosts an estimated 1.5 per cent of disseminated sulphides; mainly pyrite with minor chalcopyrite. There is a well developed hydrothermal alteration facies concentric to the biotite porphyry which includes potassic, phyllic, argillic, and propylitic zones. There is weak hornfelsing throughout the volcanics and is strongest near the contact with the granodioritic stock. Mineralization in the hornfelsed aureole consists mainly of disseminated pyrite with very minor chalcopyrite. In 1991 unclassified reserves were reported as 144,117,000 tonnes grading 0.368% copper and 0.011% molybdenum (MINFILE No 093L 239).

PROPERTY MINERALIZATION

Allen (1973) reports that representative samples collected returned assays of 0.44 % Cu, 0.02% Mo and 0.22% Cu, 0.08% Mo.

Dorval & Stevenson (1976) report, "...sulfide mineralization in fractured quartz-sericite altered volcanic rock near a quartz-monzonite porphyry stock." and "Chalcopyrite and molybdenite mineralization occurs in a small outcrop area within the surveyed (IP) grid and in the drill core from DDH-1."

Rock Type	Interval	Alteration	<u>Cu ppm</u>	<u>Mo ppm</u>
	(feet)	<u>Upper 537 feet</u>		
Andesitic Volcanics	177-187	Quartz-sericite; 2-3% pyrite	750	100
Andesitic Volcanics	187-196	Hily frac'd; rehealed; qtz vnl	900	90
Qtz diorite & margins	197-206	Hily frac'd; rehealed; qtz vnl	750	36
Quartz diorite dyke	206-213.5	Hily frac'd; rehealed; qtz vnl	950	42
Quartz diorite dyke	237-247	Quartz-sericite; pyrite	940	120
Quartz diorite dyke	260.1-267	No info	660	20
		Lower 430 feet		
Complex breccia	857-867	Quartz-feldspar pyrite veinlets	150	31
Complex breccia	867-877	Quartz-feldspar pyrite veinlets	195	29
Quartz diorite dyke & complex breccia	877-887	2% pyrite	240	4
Quartz diorite dyke	887-897	2% pyrite	50	6

DDH 1 Core Information

MINFILE reports that mineralization is associated with a sequence of greywackes, siltstones, volcaniclastics, and horhfelsed equivalents belonging to the Hazelton Group.

PROPERTY MINERALIZATION (cont'd)

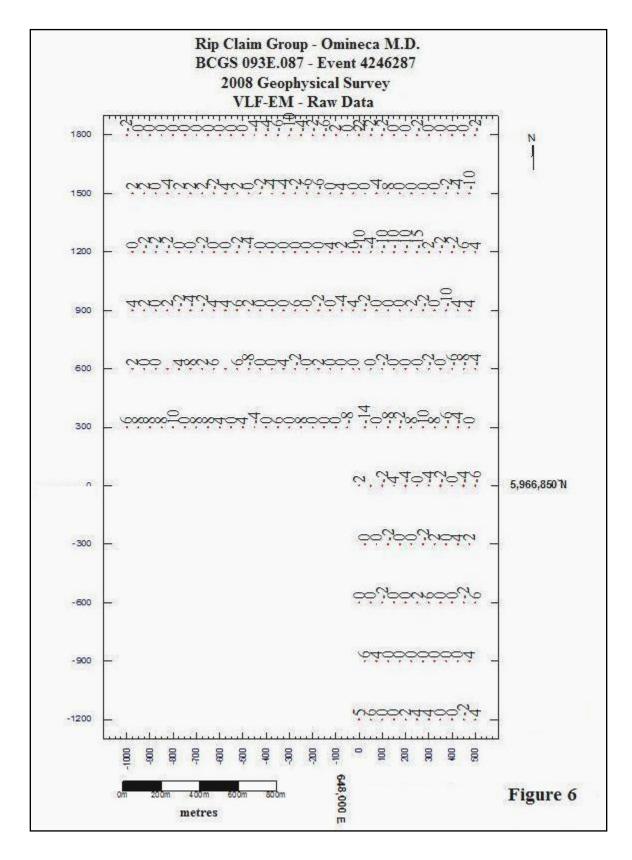
In DDH 1 a significant drop in mineral values occurs at 537 feet. This reason for this change is not evident in the drill logs except for a 21.5 foot fresh (?) feldspar porphyry dyke at 572.1-594 feet (no reported alteration and no assays) which may be a mineral controlling barrier or the heat engine for the development of the mineralization in both the volcanics and moreso, in the diorite dykes above the feldspar porphyry dyke hanging wall.

In reviewing the drill logs and assays for the entire 927 foot (295 metre) length of the drill hole, anomalous copper and molybdenum mineralization appear to occur in the core from the upper 537 feet hosting mineral values of up to 950 ppm Cu and 120 ppm Mo. The core from the bottom 430 feet assayed less than 250 ppm Cu and less than 15 ppm Mo. Although the rock types are predominantly volcanics throughout the drill hole, the upper 550 feet are altered to a greater degree (phyllic) than the bottom portion (propylitic). In addition, the upper volcanic section hosts three quartz diorite dykes which host most of the highest mineral values of the drill hole.

Two quartz diorite dykes in the bottom section of the drill hole contain below background copper values, only pyritic alteration, and no quartz and/or sericite, which is reflected in only background mineral values.

2008 GEOPHYSICAL PROGRAM

The VLF-EM and the magnetometer surveys were carried out from September 4, to September 29, 2008.


VLF-EM Survey

(a) Instrumentation

The VLF-EM survey was carried out utilizing a VLF-EM receiver, Model 27, manufactured by Sabre Electronics Ltd. The instrument is designed to measure the electromagnetic component of a very low frequency field (VLF-EM) which, for this survey, is transmitted at 24.8 kHz from Seattle (Jim Creek), Washington.

(b) Theory

In all electromagnetic prospecting, a transmitter induces an alternating magnetic field (called the primary field) by having a strong alternating current move through a current of wire. This primary field travels through any medium and if a conductive mass, such as a sulphide body is present, the primary field induces a secondary alternating current in the conductor, and this current in turn induces a secondary magnetic field. The receiver picks up the primary field and, if a conductor is present, the secondary field distorts the primary field. The fields are expressed as a vector, which has two components, the "in-phase" (or real) component and the "out-of-phase" (or quadrature) component. For the VLF-EM receiver, the tilt angle in degrees of the distorted electromagnetic field with a conductor is measured from that which it would have been if the fields were not distorted with a conductor.

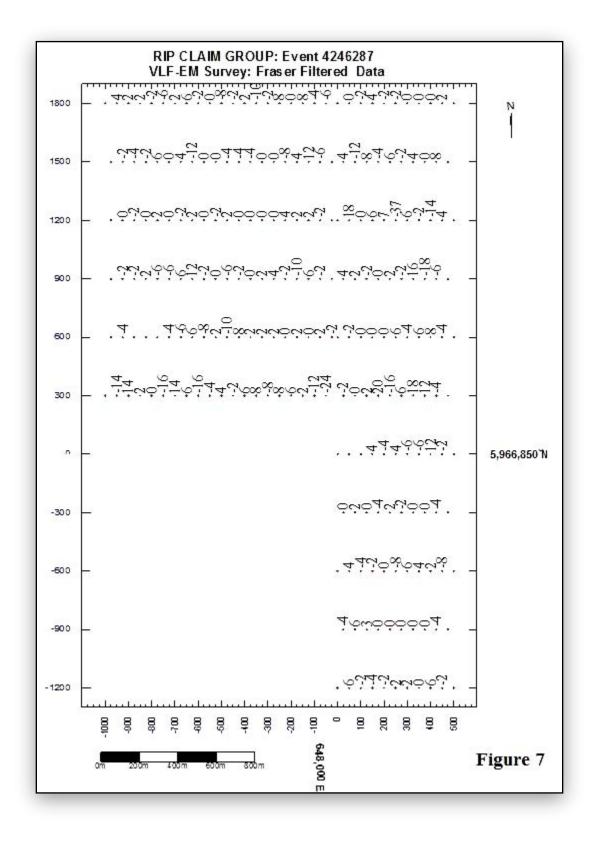
VLF-EM Survey (cont'd)

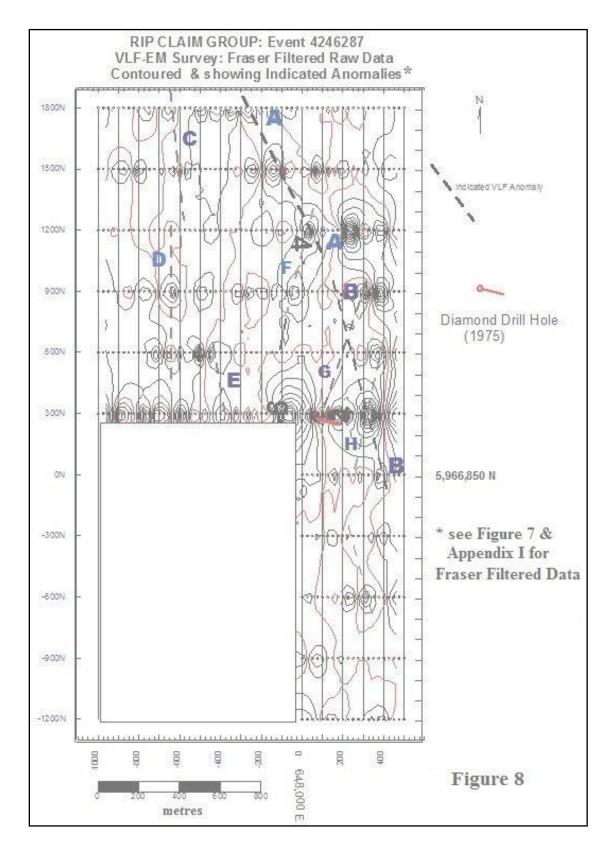
(b) Theory (cont'd)

Since the fields lose strength proportionately with the distance that they travel, a distant conductor has less of an effect than a close conductor. Also, the lower the frequency of the primary field, the further the field can travel and therefore the grater the depth penetration.

The VLF-EM uses a frequency range of from 13 to 30 kHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand kHz. Because of it's relatively high frequency, the VLF-EM can pick up bodies of a much lower conductivity and therefore is more susceptible to clay beds, electrolyte-filled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts, as well as sulphide bodies too low conductivity for other EM methods to pick up.

Consequently, the VLF-EM has additional uses in mapping structure and in picking up sulphide bodies of too low conductivity for conventional EM methods and too small for induced polarization. (In places it can be used instead of IP). However, its susceptibility to lower conductive body's results in a number of anomalies, many of them difficult to explain and, thus, VLF-EM preferably should not be interpreted without a good geological knowledge of the property and/or other geophysical and geochemical surveys.


(c) Survey Procedure


A grid was established utilizing NAD 83 UTM coordinates with central point of the grid designated as 00E, 300N, at 5,967,140N, 648,000E and extending the base line (00E) for 1,800 metres to the north and for 1200 meters to the south. The base line was flagged and blazed with stations marked at 100 metre intervals. From the base line stations, east-west grid lines were established at 300 meter intervals to 1800N and 1200S for a total of 11 lines. Six of the lines from 0E, 300N to 0E, 1200N were extended for 1,000 meters to the west and for 500 meters to the east with five 500 meter lines to the east from the base line at 00E to 1200S. A total of 11.5 kilometers of east-west grid line was established plus 3.0 kilometers of north-south base line.

VLF-EM readings were taken at stations that were established at 25 meter intervals along the 11 east-west lines. The readings were recorded in a field note book and the station was marked with the placement of red flagging with the appropriate station marked thereon.

(d) Compilation of Data

The data (field readings) was transferred to an Exel spreadsheet, thence to a Surfer 8 program which was utilized to plot maps based on the VLF-EM field readings. Two maps were created; VLF-EM Raw Data (Figure 6) and Contoured Fraser Filtered VLF-EM Data (Figure 8). The VLF-EM anomalies are also shown on the Geophysical Compilation Map (Figure 11).

VLF-EM Survey (cont'd)

(e) **Results** (Figures 6, 7, 8, & 11)

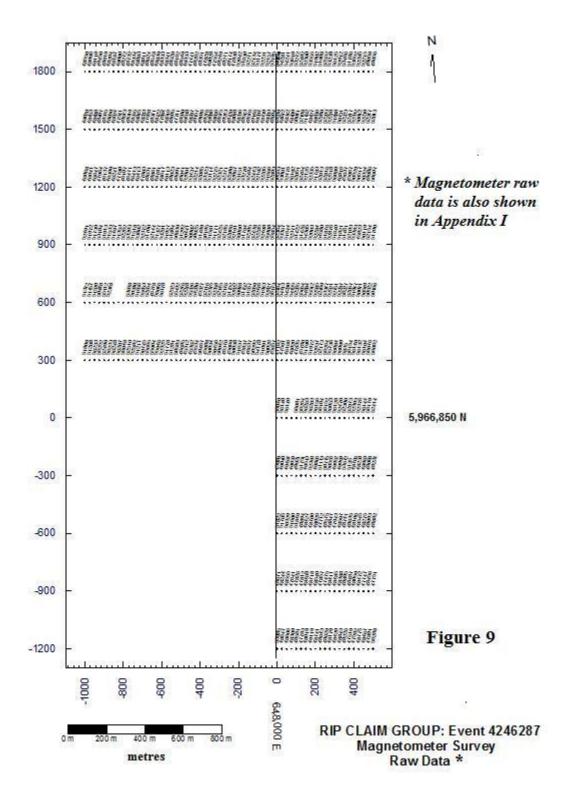
The survey indicated two primary northerly to north-northwest trending anomalies with subordinate complementary north-northeast trending anomalies. The dominant prime northerly trending anomaly, designated by "A" and "B" on the map, is possibly one structure 1800 metres long, closed to the south at 150S, 450E and open to the north at 1800N 400W (the "AB" anomaly). A near parallel subordinate primary northerly trending anomaly which is designated by shorter en-echelon anomalies "C", "D", and "E", between 400E to 600E, possibly indicates one 1800 structure extending to the limits of the survey area from 00N to1800N and open to the north and to the south (the "CDE" anomaly).

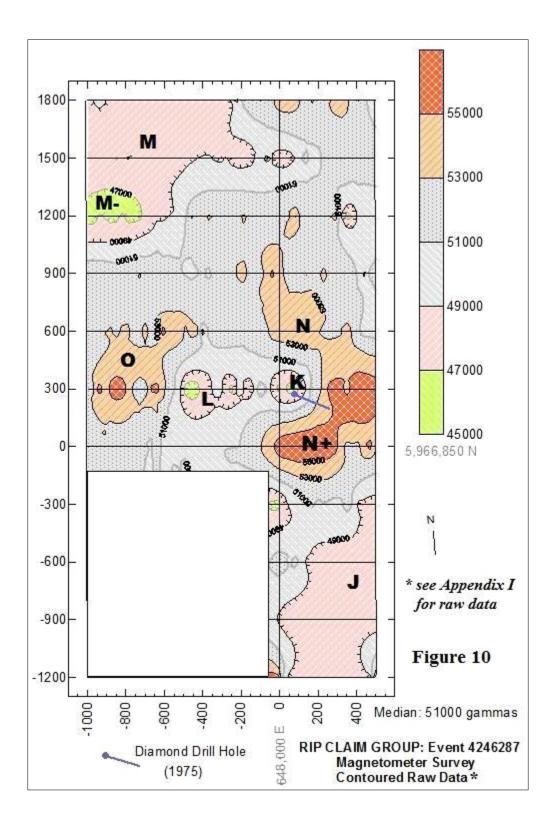
Three parallel northeast trending anomalies 300 to 600 metres apart are designated as "F", "G", and "H" on the map and are indicated as possible complementary structures to the prime "AB" anomaly. All three anomalies are up to 600 metres long with only one anomaly, "G", open ended. Anomaly "G" also extends southwestward to 00N, 100 E, proximal to the DDH-1 collar, and is open to the southwest.

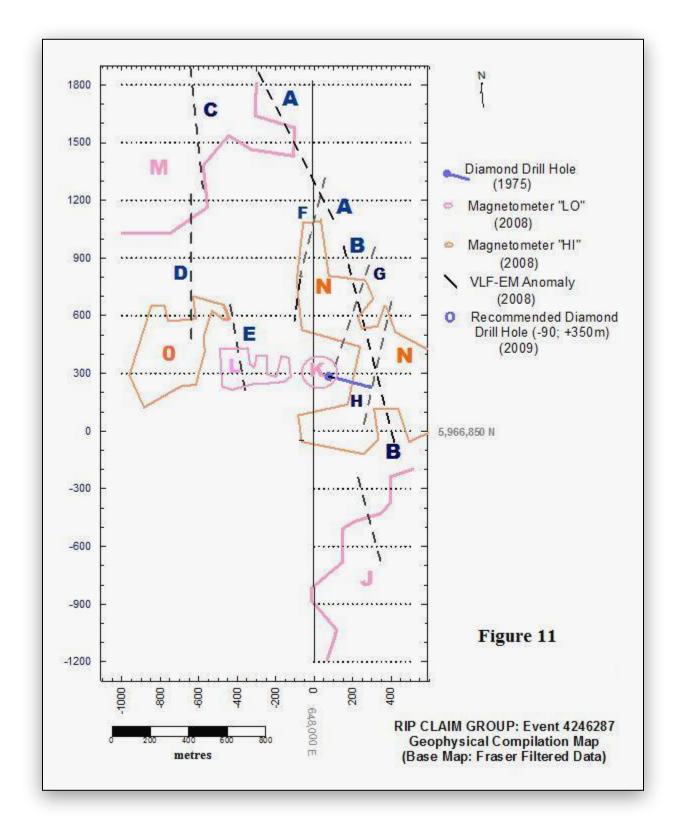
Magnetometer Survey

(a) Instrumentation

The magnetometer used for the survey was a Scintrex MF 2. Daily diurnal checks were made and corrected readings were noted.


Only two commonly occurring minerals are strongly magnetic magnetite and pyrrhotite, Hence, magnetic surveys are used to detect the presence of these minerals in varying concentrations, Magnetic data are also useful as a reconnaissance tool for mapping geological lithology and structure since different rock types have different background amounts of magnetite and/or pyrrhotite.


(c) Survey Procedure


The survey was performed over the established grid for the VLF-EM survey. For diurnal corrections, sub base stations were established every 150 metres on the base-line. The survey was then performed by taking readings every 25 metres on the survey lines and checking for diurnal changes by the closed loop method. A total of 11.5 line kilometres of magnetometer survey was completed

(d) Compilation of Data

The data (field readings) was transferred to an Exel spreadsheet, thence to a Surfer 32 program which was utilized to plot maps based on the field readings. The median for the magnetometer readings was established at 50,884 gammas, however, for the sake of clarity, the median on the maps was at 51,000 gammas. Magnetic HI's were magnetometer readings above 53,000 gammas and magnetometer LO's were magnetometer readings below 49,000 gammas. Two maps were created; Figure 9 shows all 467 corrected field readings of the magnetometer survey; and Figure 10 shows contours at set levels with the magnetometer HI's and LO's showing as patterned and as colours. The magnetometer anomalies are also shown on the Geophysical Compilation Map (Figure 11).

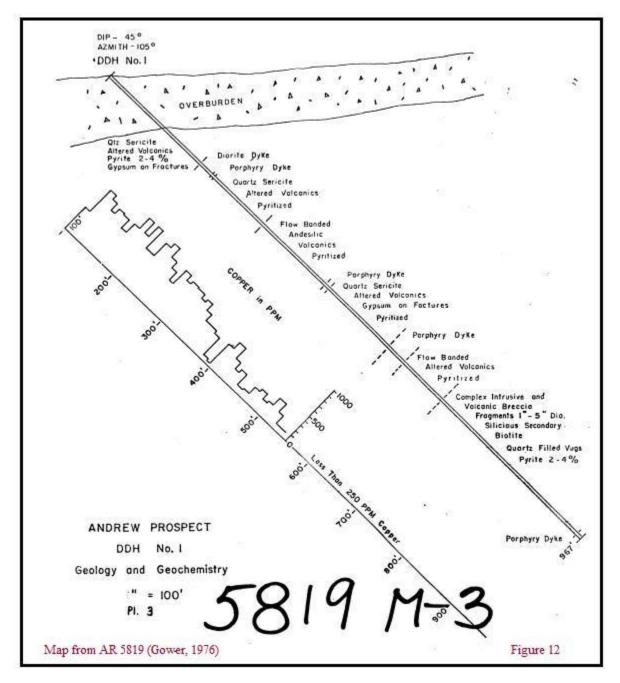
Magnetometer Survey (cont\d)

(e) **Results** (Figures 9, 10, & 11).

The magnetic values ranged from a low of 45,069 gammas to a high of 56,288 gammas for a magnetic relief of 9,219 gammas. This fairly high relief indicates either more than one rock type on the Property or substantial alteration in one or more rock types.

In displaying the results on a map, contouring the results into isopach levels, and determining the magnetic "HI" and the magnetic "LO" anomalies, the general picture of the map showing the magnetometer results (Figure 9) shows a central core, indicated as "K" and "L" ("KL" anomaly) of near continuous magnetic "LO"s over 650 metres which is in a greater part sub-enveloped by two separate magnetic "HI" anomalies, ""O" on the west., 500 by 500 metres, and "N" on the east, 1000 by 300 metres, and The "HI" is open to the east and contains a central magnetic "HI" above 55,000 gammas, designated as "N+", extends southwestward for 500 metres from the indicated intrusive.

The collar of the 1975 diamond drill hole is located on the easternmost portion of the "KL" magnetic "LO" with the drill hole extending eastward through an interval of background magnetic values into the proximal "N" magnetic "HI" to the adjacent "N+" magnetic "HI".


Two other magnetic "LO"'s occur within the southeast ("J") and the northwest ("M") corners of the surveyed areas.

INTERPRETATION

The 2008 geophysical program was successful in that a number of anomalous areas were delineated which provide valuable additional information to correlate with the historical explorative results (Property History section of this report) in the determination of potentially economic mineral zones on the RIP Claim Group.

In the VLF-EM survey, correlating the results with the geology of the survey area and immediate periphery, the strongest VLF-EM anomaly "AB" (Figure 10) is indicated as a north-northeasterly structure that generally defines the southwesterly limits of the two intrusive stocks (Figure 5). The low-order complementary northeast trending anomalies "F", "G", and "H", are typical stress related structures associated with anomaly "AB".

With known mineralization on the Property, these associated structures are prime mineral controlling features. The major structure would be a prime conduit for the transport and dissemination of mineralizing fluids into fractures to create a porphyry product within the intrusive and/or the adjacent volcanics. The porphyry system of economic mineralization that can be thus created is apparent on the nearby Huckleberry property (Regional Mineralization) where mineralization occurs in fractures, principally in the hornfelsed volcanics, but also in the intrusive stock.

INTERPRETATION (cont\d)

The RIP Claim Group mineralization displays the developing characteristics of a porphyry system in the, "...sulfide mineralization in fractured quartz-sericite altered volcanic rock near a quartz-monzonite porphyry stock." (Dorval & Stevenson, 1976) and in the 1975, 295 metre drill hole from which moderate alteration and anomalous values of copper and molybdenum are reported within the volcanics and close to 0.1% copper in the diorite dykes in the upper 537 feet of the drill hole. The diorite dykes in the upper section host increased mineral values probably due to the mineralized quartz veinlets. The two diorite dykes from 537 foot to the end of the drill hole at 936 feet do not host mineralized quartz veinlets and host below background mineral values.

Sookochoff Consultants Inc.

INTERPRETATION (cont\d)

The section of DDH 1 Figure 8, 11 & 12 shows variable alteration, mineral values, and dykes against the variability is reflected in the magnetometer variances. The upper portion of the drill hole is in a magnetic "LO" reflected by the higher alteration and mineral values: the central portion of the drill hole occurs within magnetic background values and reflected in the drill hole by lesser alteration and lower mineral values; the lower section occurs within a magnetic "HI" and reflected in the drill hole by light alteration and a predominant "complex intrusive".

The results of the 2008 geophysical survey should be correlated with all the historical exploration results (Property History section) from the survey area to provide a composite plan as an aid to recognize the significant features leading to the location of potentially economic zones of mineralization.

Respectfully submitted

Laurence Sookochoff, PEng

SELECTED REFERENCES

- Allen, A.R. (1973): Geochemical and Magnetometer Surveys, Min 5-9 Mineral Claims, for Saiwa Resources Ltd. October 15, 1973. AR 4728.
- Bamford, R.W., Cann, R.-(1981): Geochemical Report on the RIP 1, 8; RIP 2, 3, 4; and RIP 5, 6, 7 Mineral Groups. Kennco Explorations, (Western) Ltd. for SMD Mining Company Ltd. May, 1981. AR 9178.
- Cann, R. (1980): Percussion Drilling Report on the RIP 1, 8; RIP 2, 3, 4; and RIP 5, 6, 7 Mineral Groups. Kennco Explorations, (Western) Ltd. for SMD Mining Company Ltd. November, 1980. AR 8366.
- **Dorval, D.P., Stevenson, R.W. (1976):** Report on Induced Polarization-Resistivity and Magnetometer Survey, RIP NOS. 1 and 2 Mineral Claims, January 30, 1976. AR 5818.
- Gower, S.G. (1976): Report on Diamond Drilling, Andrew NO. 1 Claim Group for Kennco Exploration, (Western) Limited. March 15, 1976. AR 5819.
- Gower, S.G., D.P., Stevenson, R.W. (1976): Report on Induced Polarization-Resistivity and Magnetometer Survey, Andrew # 2 Mineral Claims, for Kennco Exploration, (Western) Limited. September 2, 1976. AR 5969.
- Matthews, R.B. (1980): Geophysical Surveys, Andrew Bay Project, RIP 1-8 Mineral Claims for Kennco Exploration, (Western) Limited. August 1980. AR 8366.

MapPlace: Internet downloads.

MINFILE: Internet downloads

STATEMENT OF COSTS

(To fulfill the requirements for Event No 4246287)

The fieldwork on the RIP Claim Group, Omineca M.D. was carried out between September 4, 2008 and September 29, 2008.

VLF-EM & Magnetometer Survey:

Sean Donovan:	20 days @ \$ 250/day	\$ 5,000.00
Cody Van Hullenaar:	20 days @ \$ 250/day	5,000.00
Truck rental:	20 days @ \$ 100/day	2,000.00
Fuel and oil:		430.00
VLF-EM rental:	20 days @ \$ 30/day	600.00
Magnetometer rental:	20 days @ \$ 30/day	600.00
Power saw rental	20 days @ \$ 20/day	400.00
Food and accommodation:	40 man days @ \$ 100/day	4,000.00
Data compilation and report	:	
Laurence Sookochoff, PEn	g	4,500.00
		\$ 22,530.00

CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with an address of 120 125A-1030 Denman Street, Vancouver, BC V6G 2M6.

I, Laurence Sookochoff, further certify that:

1) I am a graduate of the University of British Columbia (1966) and hold a BSc. degree in Geology;

2) I have been practicing my profession for the past forty three years;

3) I am registered and in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.

4) The information for this report is based on information as itemized in the Selected Reference section of this report and from information supplied to the author on the field data from the magnetometer and the VLF-EM surveys carried out on the RIP claim group as reported on herein

5) I have no interest in the Tenures of the RIP claim group.

Laurence Sookochoff, PEng

Appendix I

VLF-EM & Magnetometer Data

Eact	North	EM	FF	Mag	East	North	EM	FF	Mag		East	North	EM	FF	Mag
East	NOTUL	EIVI	ГГ	Mag	EdSL	NULLI	EIVI	FF	Mag		EdSL	NULLI	EIVI	ГГ	Mag
0	-1200	5		55985	0	-600	0		51822		0	0	2		56040
25	-1200	0		48647	25	-600	0	2	51705		25	0	-2		56140
50	-1200	6	6	48606	50	-600	0	4	50329		50	0			56140
75	-1200	0	4	48000	75	-600	-2	4	51600		75	0			50140
100	-1200	0	-2	48581	100	-600	-2	-4	51849		100	0			56082
100	-1200	2	-2	47783	100	-600	0	0	48894		100	0	0	-2	56264
150	-1200	0	-4	48019	123	-600	0	-2	48427		150	0	4	4	5626
175	-1200	4	-2	49119	175	-600	2	2	48700		175	0	-4	8	56203
200	-1200	2	-2	48741	200	-600	0	0	48026		200	0	-4	-4	56150
225	-1200	4	0	48643	225	-600	0	-6	47712		225	0	-4	-4	56104
250	-1200	4	2	48629	250	-600	2	-8	48575		250	0	0	4	56152
275	-1200	2	-2	48179	275	-600	4	-4	48847		275	0	-4	0	56053
300	-1200	4	2	48420	300	-600	6	6	47943		300	0	-4	-6	56128
325	-1200	4	4	48843	325	-600	4	10	48597		325	0	0	2	52470
350	-1200	0	0	48226	350	-600	0	4	48741		350	0	-2	-6	52300
375	-1200	4	4	47519	375	-600	0	0	48635		375	0	4	6	52973
400	-1200	0	6	47582	400	-600	0	2	48106		400	0	0	12	52303
425	-1200	0	6	48775	425	-600	0	2	48545		425	0	-4	0	52376
450	-1200	-2	-2	48467	450	-600	-2	-8	48275		450	0	-4	-2	56144
475	-1200	-4		47891	475	-600	0		48993		475	0	0		5617
500	-1200	4		56288	500	-600	6		48882		500	0	-6		5241
0	-900	-2		48671	0	-300	0		45989		0	300	4		4716
25	-900	6	-4	48244	25	-300	0	0	49040		25	300	-14	-2	47593
50	-900	4	4	48555	50	-300	0	0	49464		50	300	-8	-22	4616
75	-900	4	6	47641	75	-300	0	2	49039		75	300	0	0	46020
100	-900	2	6	47826	100	-300	0	4	49921		100	300	0	16	4783
125	-900	0	3	47812	125	-300	-2	0	51751		125	300	-8	2	45780
150	-900	0	0	48469	150	-300	-2	-6	49513		150	300	-8	-16	51790
175	-900	0	0	48718	175	-300	0	-4	52393		175	300	-2	20	51972
200	-900	0	-4	48540	200	-300	2	0	49806		200	300	2	24	5263
225	-900	0	0	47857	225	-300	0	2	51113		225	300	8	-16	52173
250	-900	0	0	47475	250	-300	2	4	50775		250	300	16	-2	56264
275	-900	0	0	48411	275	-300	-2	-2	50556		275	300	10	6	55736
300	-900	0	0	48485	300	-300	0	2	49952		300	300	10	6	56084
325	-900	0	0	48388	325	-300	2	0	49999		325	300	8	18	56099
350	-900	0	0	48895	350	-300	2	6	53672		350	300	6	28	583
375	-900	0	0	48487	375	-300	0	0	5135		375	300	-6	12	56154
400	-900	0	0	48059	400	-300	-2	-10	48706		400	300	-8	2	56140
425	-900	0	-4	48472	425	-300	4	-4	48239		425	300	-4	-4	56132
450	-900	0	1	47747	450	-300	4	0			450	300	-8	-12	5610
475	-900	4		48456	475	-300	2		48068		475	300	0		56070
500	-900	-5		47751	500	-300	6		48224		500	300	0		56062

Fact	North			Mar -	Fast		Claim Grou		Maa	Faat	North		FF	M
East	North	EM	FF	Mag	East	North	EM	FF	Mag	East	North	EM	FF	Mag
	600					1200	10		50552		1000	2		E 4250
0	600	2		E 4 4 1 2	0		-10	C	50553	0		-2	0	54359
25	600	-2	2	54413	25	1200	2	6	53001	25	1800	0 -2	0	54281
50	600	0	-2	54280	50		-4	18	52476	50			0	54241
75	600	2	4	54425	75	1200	-10	6	56192	75	1800	0	0	53610
100	600	-2	0	52265	100		-10	0	52051	100	1800	-2	-2	53272
125	600	0	-2	55054	125	1200	-10	0	52464	125	1800	0	2	52402
150	600	0	0	54884	150	1200	-10	6	52125	150	1800	0	4	52300
175	600	0	0	55512	175	1200	-16	2	52335	175	1800	-4	-4	53555
200	600	0	0	52585	200		-10	7	51783	200	1800	0	-2	51902
225	600	0	4	52469	225	1200	-18	-13	52013	225	1800	0	2	51908
250	600	0	6	53347	250	1200	-15	-37	52816	250	1800	-2	-2	52552
275	600	-4	0	52521	275	1200	0	-15	52518	275	1800	0	-2	53239
300	600	-2	-4	52751	300	1200	2	6	56089	300	1800	0	0	56125
325	600	-2	-2	52287	325	1200	-2	2	46816	325	1800	0	0	52912
350	600	0	6	56227	350		-2	-2	45637	350	1800	0	0	53466
375	600	-2	12	52057	375	1200	0	-6	45967	375	1800	0	0	51786
400	600	-6	8	51947	400		-2	-14	50529	400	1800	0	0	53652
425	600	-8	2	50071	425	1200	6	-6	50517	425	1800	0	0	52295
450	600	-8	-4	50549	450	1200	6	4	50324	450	1800	0	2	52215
475	600	-8	-8	50522	475	1200	4		48986	475	1800	0		49058
500	600	-4		50166	500	1200	4		50607	500	1800	-2		48956
0	900	4		52364	0	1500	0		48239					
25	900	-2	4	53367	25	1500	0	4	48672					
50	900	-2	0	51644	50	1500	0	4	48342					
75	900	0	2	52371	75	1500	-4	-12	48709					
100	900	-4	-2	51422	100	1500	0	-12	50041					
125	900	0	-2	51426	125	1500	8	8	52198					
150	900	-2	2	54305	150	1500	0	4	51762					
175	900	0	0	52003	175	1500	0	-4	48427					
200	900	-4	-4	52284	200	1500	4	6	48936					
225	900	2	2	54580	225	1500	0	6	52880					
250	900	-2	4	51876	250	1500	-2	-2	52203					
275	900	-2	-2	52876	275	1500	0	-2	52270					
300	900	-2	4	51640	300	1500	0	2	51888					
325	900	0	16	51821	325	1500	0	4	50731					
350	900	-8	6	51461	350		-2	0	52223					
375	900	-10	-18	52103	375	1500	-2	0	52417					
400	900	-4	-20	53383	400	1500	0	4	52332					
425	900	4	-6	45823	425	1500	-4	8	50912					
450	900	2	-2	50119	450	1500	-2	4	52239					
475	900	4		52154	475	1500	-10		52247					
500	900	4		51700	500	1500	0		52013					
						1				l				

14/+	NL a satula	514		N 4	14/		Claim Group		N 4		N	EN4		N 4
West	North	EM	FF	Mag	West	North	EM	FF	Mag	West	North	EM	FF	Mag
-25	300	-16	24	45657	0	600	0		52464	-25	900	4	- 10	55854
-50	300	-8	-24	50026	-25	600	0	-2		-50	900	2	10	55908
-75	300	-12	-20	51091	-50	600	2	2		-75	900	-4	-2	52498
-100	300	0	-12	54178	-75	600	0	2		-100	900	0	0	52285
-125	300	0	2	50292	-100	600	0	2		-125	900	0	6	52438
-150	300	0	2	46637	-125	600	0	0	52059	-150	900	-4	2	52205
-175	300	-2	-2	45837	-150	600	-2	-2		-175	900	-2	-10	51794
-200	300	0	6	51637	-175	600	2	2		-200	900	4	2	56060
-225	300	0	-8	50038	-200	600	-2	0		-225	900	0	-2	52191
-250	300	8	8	45069	-225	600	0	0		-250	900	0	-8	52066
-275	300	0	6	46370	-250	600	0	2		-275	900	6	4	52185
-300	300	0	-8	50042	-275	600	-2	2		-300	900	2	8	52425
-325	300	2	-4	50456	-300	600	0	-8		-325	900	0	2	51171
-350	300	6	8	50034	-325	600	4	2	52358	-350	900	0	0	51581
-375	300	0	8	45988	-350	600	2	6		-375	900	0	0	50195
-400	300	0	6	50467	-375	600	0	2		-400	900	0	0	51489
-425	300	-2	2	45534	-400	600	0	0	45327	-425	900	0	-2	50925
-450	300	-4	-2	45362	-425	600	0	8	54290	-450	900	0	-4	50902
-475	300	0	-8	45312	-450	600	0	12	55326	-475	900	2	-6	50441
-500	300	4	4	46685	-475	600	-8	-10	52248	-500	900	2	-6	51292
-525	300	0	4	50583	-500	600	-4	-18	52276	-525	900	6	0	50839
-550	300	0	-4	51281	-525	600	6	2	55432	-550	900	4	0	51894
-575	300	0	-16	51778	-550	600	0	4	52523	-575	900	4	-2	51927
-600	300	4	-16	52325	-575	600		-8		-600	900	6	6	53291
-625	300	12	2	55946	-600	600	2	-4	56178	-625	900	4	12	51327
-650	300	8	6	55904	-625	600	6	6	56046	-650	900	0	2	52144
-675	300	6	6	55665	-650	600	0	4	46778	-675	900	-2	6	51700
-700	300	8	14	50745	-675	600	2	-6	52654	-700	900	-4	-2	52372
-725	300	0	2	51211	-700	600	0	-14	55953	-725	900	-4	-6	53802
-750	300	0	-16	52582	-725	600	8	-4	51656	-750	900	0	-4	51518
-775	300	6	-12	52510	-750	600	8		50390	-775	900	-2	-6	53203
-800	300	10	0	56048	-775	600	4		53668	-800	900	2	-4	52262
-825	300	8	4	56207	-800	600				-825	900	2	2	51353
-850	300	8	2	56248	-825	600				-850	900	2	2	51497
-875	300	6	14	56233	-850	600				-875	900	0	-2	51533
-900	300	8	14	52499	-875	600	0		52348	-900	900	2	-2	51913
-925	300	-8	-16	56252	-900	600	0	-2		-925	900	2	-2	53104
-950	300	8	-14	56233	-925	600	0	-4		-950	900	2	-4	51739
-975	300	8		51208	-950	600	2	-4	51520	-975	900	4		51972
-1000	300	6		51809	-975	600	2		51457	-1000	900	4		52491
					-1000	600	4		51372	2000				
					1000		•		510.2					

	NI 11						Claim Grou				A			
West	North	EM	FF	Mag	West	North	EM	FF	Mag	West	North	EM	FF	Mag
	4000			50000		4500			40000		4000			
-25	1200	0		52893	-25	1500	0		48804	-				53151
-50	1200	4	-2	51666	-50	1500	4	-2	49203	-25	1800		-2	53195
-75	1200	2	-2	52205	-75	1500	4	-6	48739	-50	1800		-6	52157
-100	1200	4	-4	52192	-100	1500	2	10	49304		1800		-2	52231
-125	1200	4	2	52443	-125	1500	0	12	49146		1800		-4	53174
-150	1200	6	6	52484	-150	1500	-4	10	48576		1800		8	52134
-175	1200	0	2	53270	-175	1500	-6	4	48543	-150	1800		8	52272
-200	1200	4	4	53151	-200	1500	-8	-4	48336		1800		-6	51630
-225	1200	0	4	52067	-225	1500	-6	-8	48070	-200	1800		0	52042
-250	1200	0	0	52500	-250	1500	-4	-6	48720	-225	1800	-6	4	47838
-275	1200	0	0	52371	-275	1500	-2	0	49243	-250	1800	-4	8	49174
-300	1200	0	0	52321	-300	1500	-2	2	48575	-275	1800	-8	8	48271
-325	1200	0	0	52275	-325	1500	-4	0	48666	-300	1800	-10	-2	48249
-350	1200	0	0	53114	-350	1500	-2	-2	48986	-325	1800	-10	-12	47554
-375	1200	0	0	53323	-375	1500	-4	-4	49276	-350	1800	-6	-10	49028
-400	1200	0	-4	52085	-400	1500	0	-4	49096	-375	1800	-2	0	47828
-425	1200	0	0	52214	-425	1500	-2	-4	49157	-400	1800	-4	2	4835
-450	1200	4	-8	53437	-450	1500	2	-4	48297	-425	1800	-4	2	48262
-475	1200	-4	2	52901	-475	1500	0	-4	49538	-450	1800	-4	-2	4744
-500	1200	0	-2	49041	-500	1500	4	0	48500	-475	1800	-6	-12	49333
-525	1200	-2	-2	48991	-525	1500	2	0	47711	-500	1800	0	-8	48549
-550	1200	0	-2	49023	-550	1500	2	-8	48605	-525	1800	2	0	48162
-575	1200	0	0	49113	-575	1500	4	0	48516	-550	1800	0	0	48520
-600	1200	0	0	48617	-600	1500	8	10	47884	-575	1800	2	-2	48343
-625	1200	0	2	48781	-625	1500	-2	-12	48722	-600	1800		-2	48333
-650	1200	0	2	48861	-650	1500	4	0	48371	-625	1800		6	48839
-675	1200	-2	-2	48631	-675	1500	2	4	47968		1800		6	48578
-700	1200	0	-2	47803	-700	1500	0	0	48283	-675	1800	-2	2	48624
-725	1200	0	0	46413	-725	1500	2	0	48845	-700	1800		2	48812
-750	1200	0	0	46413	-750	1500	0	0	48355		1800		-6	48883
-775	1200	0	2	46471	-775	1500	2	6	48519		1800		-6	48334
-800	1200	0	2	46107	-800	1500	0	8	49673	-775	1800	-	-2	48732
-825	1200	-2	0	47780	-825	1500	-4	-2	47541	-800	1800		-2	48272
-850	1200	0	-2	46241	-850	1500	-2	-6	46624	-825	1800		2	49000
-875	1200	-2	-2	46399	-830	1500	0	-4	48050		1800		2	48187
-900	1200	2	2	46137	-900	1500	0	-4	48365		1800		2	48204
-900	1200	-2	0	40137	-900	1500	2	-4	48303	-900	1800		2	4820
-923	1200	0	-2	46647	-923	1500	2	-2	48488		1800	-	-1	4945
-950 -975	1200	0	-2	46047	-930	1500	2	2	48453	-925	1800	-	-1	49450
-975	1200	0		46041	-975	1500	0		48455		1800	-	4	49110
-1000	1200	U		40008	-1000	1200	0		49020	-975	1800	-2		
										-1000	1900	-2		48550