BC Geological Survey Assessment Report 30762

NTS104M

<u>ASSESSMENT REPORT FOR THE BIGHORN PROPERTY</u> <u>MINERAL CLAIMS 507085, 522605, 522606, 522635, 522636, 522638, 522641, 528423, 528425, 528426, 528427, 528429, 539666, 543064</u>

Approximate Location: Latitude: 59°30' N Longitude: 134°25' W Approximately 45 Kilometres West of Atlin, B.C. (NTS 104M09) Atlin Mining Division

> Completed By: APEX Geoscience Ltd. #200, 9797 45 Avenue Edmonton, Alberta T6E 5V8

Completed On Behalf Of: Micrex Development Corporation 156 Laurier Drive Edmonton, Alberta T5R 5P9

October 18, 2008

Dean Besserer, B.Sc., P.Geol. David Arsenault, B.Sc., Geol.I.T.

ASSESSMENT REPORT FOR THE BIGHORN PROPERTY Mineral Claims 507085, 522605, 522606, 522635, 522636, 522638, 522641, 528423, 528425, 528426, 528427, 528429, 539666, 543064

TABLE OF CONTENTS

TABLE OF CONTENTS

<u>PAGE</u>

1.0 SUMMARY
2.0 INTRODUCTION
3.0 GEOGRAPHIC AND PHYSIOGRAPHIC LOCATION AND ACCESS
4.0 PROPERTY DEFINITION
5.0 HISTORICAL EXPLORATION7
6.0 TECHNICAL DATA AND INTERPRETATION
7.0 STATEMENT OF AUTHORS QUALIFICATIONS
8.0 GEOLOGICAL SETTING
9.0 DEPOSIT TYPES
10.0 MINERALIZATION
11.0 EXPLORATION
12.0 DRILLING
13.0 SAMPLING METHOD AND APPROACH15
14.0 SAMPLE PREPARATION
15.0 MINERAL RESOURCE AND AND MINERAL RESERVE ESTIMATES17
16.0 OTHER RELEVANT DATA AND INFORMATION
17.0 INTERPRETATIONS AND CONCLUSIONS

<u>PAGE</u>

18.0 RECOMMENDATIONS	24
19.0 REFERENCES	25
20.0 CERTIFICATE OF AUTHOR	27

TABLES

TABLE	PAGE
1. PROPERTY INFORMATION	6
2. DEFINITION OF ANOMALOUS VALUES	
3. ROCK SAMPLE HIGHLIGHTS	

FIGURES

PAGE	IGURE	
3	1. PROPERTY LOCATION	
4	2. PROPERTY MAP	
11	3. PROPERTY GEOLOGY	
14	4. PITT CLAIM GEOLOGY	
19	5. 2007 ROCK SAMPLES	
22	6. 2007 HMC AND SILT SAMPLES	

APPENDICIES

APPENDIX	PAGE
1. 2007 EXPLORATION EXPENDITURES.,	AT END
2. MAN DAYS	AT END
3. ROCK GRAB SAMPLE LOCATIONS AND DESCRIPTIONS	AT END
4. ROCK GRAB SAMPLE ASSAY CERTIFICATES	AT END
5. HMC STREAM SAMPLE LOCATIONS AND DESCRIPTIONS	AT END
6. HMC STREAM SAMPLE ASSAY CERTIFICATES	AT END
7. SILT SAMPLE LOCATIONS AND DESCRIPTIONS	AT END
8. SILT SAMPLE ASSAY CERTIFICATES	AT END
9. LARGER SCALE FIGURES 5 AND 6	AT END

<u>1.0 - SUMMARY</u>

The Bighorn Creek Project is located approximately 45 kilometres west of the town of Atlin, in northwest British Columbia, Canada (Figure 1). This area has been the focus of base and precious metal exploration since the turn of the century. The Bighorn Property is comprised of 28 claims that total 4571 hectares (ha) in the immediate area of Bighorn Creek (Figure 2). The claims are registered to various individuals but are beneficially owned by Micrex Development Corporation of Edmonton, Alberta. The claims surround the auriferous Lawson Vein. The immediate vicinity of the Lawson Vein, located on Bighorn Creek, has been staked in the past under various claim names including Spokane, Mohawk, Edwin, Norm and Sephil.

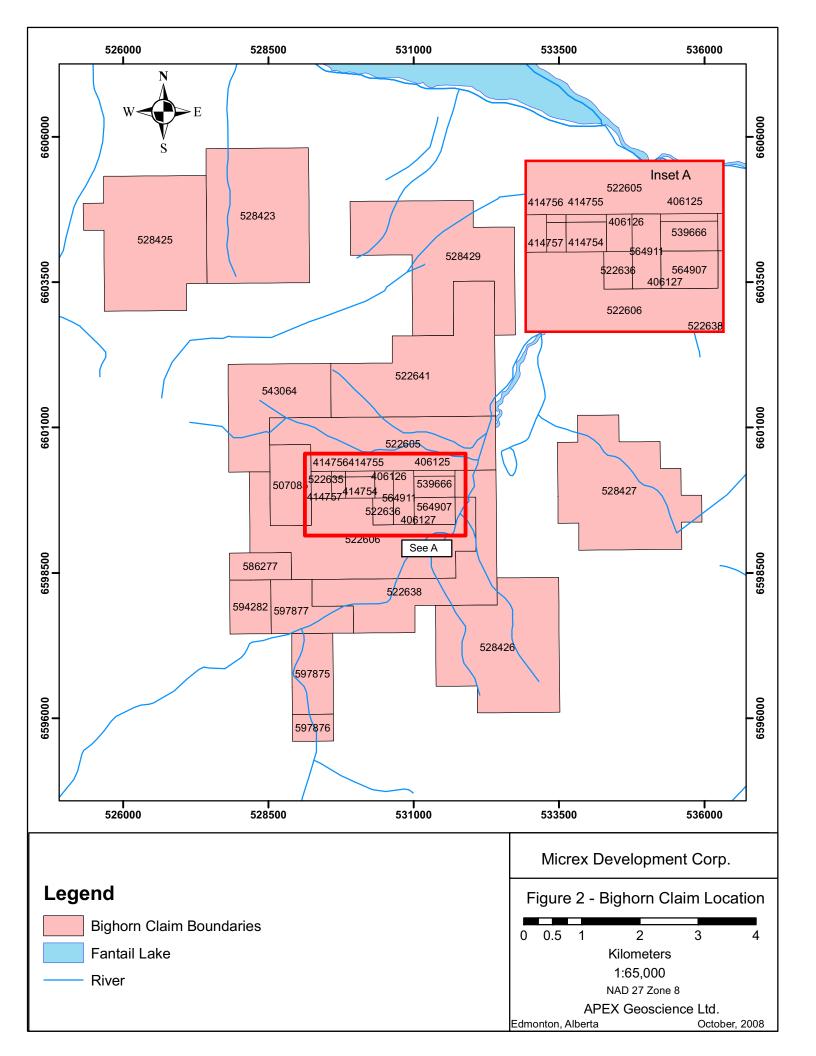
The Bighorn Property is being explored for potential precious metal vein-type mineralization of either mesothermal or epithermal affinity. The Property is underlain by hornblende orthogneiss that has undergone Cordilleran deformation and has been intruded by feldspar porphyry dykes. Quartz veins developed within these rocks that contain significant concentrations of gold, with elevated silver, lead, zinc and copper. No significant production has been achieved on the Property to date; however, a number of adits have been opened along the Lawson Vein, and historical values include 9.4 grams per tonne (g/t) gold (Au) across 0.76 metres and 10.6 g/t Au across 0.91 metres from the "Incline Adit".

In May of 2007, an airborne geophysical survey of the Bighorn Property was carried out by Fugro Airborne Surveys (Turner, 2007). The purpose of the 2007 prospecting and sampling program was to follow up on the geophysical targets resulting from the geophysical survey. The geophysical data proved effective in locating areas of alteration and also useful in targeting structures. From August 8 to August 20, 2007 a prospecting and sampling program was conducted by APEX Geoscience Ltd. A total of 91 rock grab samples, 13 heavy mineral concentrate stream samples, and 5 stream silt samples were collected. The cost of the 2007 exploration program was \$79,345.00 CND. A breakdown of these expenditures can be found in Appendix 1. Based upon the geochemical results from the samples further work is recommended. A drilling program that is focused on the Lawson Vein system located on the PITT claim is recommended. Further prospecting and sampling on all of the claims to follow up on anomalies identified by the 2007 sampling results is also recommended. The proposed exploration budget is approximately \$500,000 CND plus a provision for PST/GST.

2.0 - INTRODUCTION

The Bighorn Property ("The Property") is located within the Atlin Mining Division and comprised of 28 mineral claims that total 4571 hectares (ha). The claims are registered to various individuals (See Table 1) but are beneficially owned by Micrex Development Corporation ("Micrex"). More Specifically Micrex have entered into a joint venture agreement with Mountain Rio Resources Inc. ("Mountain Rio"), giving Micrex seven eighths (7/8) working interest in the Property and Mountain Rio one eighths (1/8) working interest in the Property (News Release found on SEDAR, 2007).

APEX Geoscience Ltd. ("APEX") was retained in the summer of 2007, as consultants, complete a 13 day exploration program that consisted of prospecting, rock sampling, and stream sediment geochemistry. This assessment report documents the results of the 2007 exploration program. The total expenditure for the exploration program was \$79,345.00 CND.


3.0 – GEOGRAPHIC AND PHYSIOGRAPHIC LOCATION AND ACCESS

The Bighorn Property is located on the west side of Bighorn Creek approximately 45 kilometres west of the town of Atlin in northwestern British Columbia, and 48 kilometres east of Skagway, Alaska, U.S.A. (Figure 1). More specifically, the property is located 11 kilometres upstream of the confluence of Bighorn Creek and Fantail River, on the western slope of the Bighorn Creek valley. The Property is located within the Skagway 1:250 000 scale National Topographic System (NTS) map sheet 104M. More specifically, the Property is located within the Fantail Lake 1:50 000 scale NTS map sheet 104 M/9. The claims are located in Atlin Mining District minerals titles reference map sheet M104M058. A legal claim description for the claims is provided in Table 1, and the claims boundaries are shown on Figure 2.

The Bighorn Property is accessed by helicopter from Atlin, British Columbia. For the 2007 work program a Bell 206 Jet Ranger was chartered from Discovery Helicopters of Atlin, BC.

The Property is situated at the boundary of two geomorphological subdivisions, the Boundary Ranges of the Coast Mountains and the Teslin Plateau of the Intermontane Belt (Mihalynuk, 1999). The Bighorn Property claims are located on the eastern edge of the Boundary Ranges on a steep eastern-facing slope along Bighorn Creek. Elevations range from 800 metres to 1300 metres above sea level at the property, and from 700 metres to 2300 metres above sea level regionally. Tree line elevations vary from 1100 to 1400 metres above sea level, with lower slopes timbered by lodgepole pine, spruce, aspen, balsam poplar, black spruce, and hemlock, while near tree line subalpine fir, juniper, and dwarf birch dominate (Mihalynuk, 1999). Bighorn Creek flows to the northeast into the Fantail River, which in turn flows east into Tagish Lake that is part of the extensive headwater reservoir for the Yukon River.

Environment Canada data for Atlin indicates that historical daily mean temperatures range from -16 degrees Celsius (-20 degrees Celsius minimum) in January to +12.5 degrees Celsius (+20 degrees Celsius maximum) in July. The normal work season extends from late May through October (Mihalynuk, 1999).

Provincial government services, accommodations, groceries and supplies are available in the town of Atlin, British Columbia.

4.0 - PROPERTY DEFINITION

The Bighorn Property ("The Property") is located within the Atlin Mining Division and comprised of 28 mineral claims that total 4571 hectares (See Figure 2). Of these 28 claims, this assessment report specifically addresses claims 507085, 522605, 522606, 522635, 522636, 522638, 522641, 528423, 528425, 528426, 528427, 528429, 539666, 543064. These 19 claims total an area of 3958.82 hectares (See Table 1). The claims are registered to various individuals (See Table 1) but are beneficially owned by Micrex Development Corporation ("Micrex").

Pursuant to a joint venture agreement ("The Agreement") with Mountain Rio Resources Inc. ("Mountain Rio"), a private company based in Edmonton, Mountain Rio has purchased one eighth (1/8) working interest in the Bighorn Project for \$300,000 (From News Release found on SEDAR, 2007).

Tenure	Claim Name	Owners Name	Мар	Expiry	Status	Area (ha)
507085	Bowl	Gee Cee Mines Ltd.	104M	2013/feb/14	Active	98.48
522605	Mix 1	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	328.21
522606	Mix 2	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	410.44
522635	Minimix	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	16.41
522636	Micromix	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	16.42
522638	Mix 3	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	295.57
522641	Mix 4	Gee Cee Mines Ltd.	104M	2012/nov/24	Active	410.12
528423	Mixover 1	Gee Cee Mines Ltd.	104M	2012/feb/16	Active	409.83
528425	Mixover 2	Gee Cee Mines Ltd.	104M	2012/feb/16	Active	409.88
528426	Mixcross 1	Gee Cee Mines Ltd.	104M	2012/feb/16	Active	410.65
528427	Mixcross 2	Gee Cee Mines Ltd.	104M	2012/feb/16	Active	410.36
528429	Mix North	Gee Cee Mines Ltd.	104M	2012/feb/16	Active	409.91
539666	Pitt	Gee Cee Mines Ltd.	104M	2012/aug/21	Active	32.83
543064	Mix West Cirque	Gee Cee Mines Ltd.	104M	2012/oct/12	Active	299.71

Table 1: Bighorn Property Claim Information

*claims are beneficially owned by Micrex Development Corporation

5.0 – HISTORICAL EXPLORATION

To facilitate the great influx of gold seekers to the rich gold fields discovered in the Klondike in 1896, a southern rail route was sought from tidewater across the Coast Mountains (Mihalynuk, 1999). Engineers working on this route discovered gold-bearing quartz veins on the east shore of Tagish Lake in 1900. These veins became known as the Engineer Mine, which produced 597,176 grams, or 17,318 ounces (oz), of gold between 1913 and 1932 (Baldys, 1991).

Other gold-bearing quartz veins in the area include the Venus deposit, located north of Tutshi Lake and the Mount Skukum Mine, and northwest of Tagish Lake. The Venus deposit hosts a significant quartz-sulphide vein that averages 0.8 metres to 1.0 metres in width with a resource estimated at 68,300 tons of 11.03 grams (0.32 ounces) per ton of Au, and 306.9 grams (8.9 ounces) per ton silver (Morin, 1989). The Mount Skukum Mine also hosts gold in an epithermal quartz vein which yielded 29,622,270 grams of Au from 201,461 tons of ore before recently closing (Mihalynuk, 1999).

Closer to the currently held Bighorn Property claims, rock samples from the Main and Camp Showings on Teepee Peak, north of Fantail Lake, yielded values up to 10.83 grams (0.31 ounces) gold per ton and 147.4 grams (4.27 ounces) per ton silver (Olson, 1987).

In addition to gold, copper deposits are historically significant in the area. The Whitehorse Copper belt's southern-most extension is located just north of Carcross. This belt comprises 28 separate copper-iron skarn deposits that are hosted within the same geological environment as that found in the northern Tagish Lake area. Roughly 10,250,000 tons of ore were mined from the Whitehorse Copper belt between 1967 and 1982 with 2,850,000 tons grading 1.06 percent copper and 7,400,000 tons grading 1.5 percent Copper (Mihalynuk, 1999).

Fueled by the discovery of gold at the Engineer Mine, many prospectors began exploring the area around Tagish Lake. The first intensive prospecting in the vicinity of the present-day Pit Claim was conducted by Mr. Fred Lawson, and associates, during the early 1900's, which led to the staking of the Spokane Group (Baldys, 1991; and Carlyle, 1993a). This group consisted of the Spokane, Mohawk, and Edwin claims, which were trenched and developed with adits between 1921 and 1932. The North Tunnel (830 metres above sea level), Peter's (at an elevation of 1035 metres above sea level), Blacksmith (1080 metres above sea level.), and Incline (1265 metres above sea level) adits traced a quartz vein, with an average exposed width of 1.1 metres, over a horizontal distance of 920 metres and a vertical distance of 460 metres (Carlyle, 1993a). In 1933, the Spokane Group was bonded to Norgold Mines Limited which later changed its name to Atlin-Pacific Mining Co. Ltd. It was at this time that the quartz vein was channel sampled in six places along underground workings driven from the

Incline Adit. The channel samples averaged 9.4 grams (0.27 ounces) per ton gold over an average width of 0.76 metres (Baldys, 1991). In 1934, an independent engineer obtained assay results of 10.6 grams (0.31 ounces) per ton gold over an average width of 0.91 metres (Baldys, 1991). Also during 1934, Bobjo Mines acquired an interest in the Atlin-Pacific Mining Co. Ltd. and assumed management of the Spokane Group property until relinquishing its interest in 1935 (Carlyle, 1993a).

In 1975, Lobell Mines Ltd. obtained 20 samples from the property, with 8 samples assaying over 3.45 grams (0.1 ounces) per ton gold. The highest value obtained was 17.93 grams (0.52 ounces) per ton gold across 1.52 metres from the Incline Adit drift (Carlyle, 1993a). Further prospecting was undertaken in 1981 by Silver Ice Mining Ltd., which obtained 20 samples, two of which yielded over 3.45 grams (0.1 ounces) per ton gold (Carlyle, 1993a).

In 1985, the British Columbia Ministry of Energy, Mines, and Petroleum Resources sampled the adits on what is currently known as the Pit Claim. These assays returned values as high as 297 grams (8.61 ounces) per ton gold and 120 grams (3.52 ounces) per ton silver (Carlyle, 1993a). Baldys (1991) collected 29 samples from the Pit claim and conducted geological mapping at the request of the directors of 489166 Alberta Limited (see Figure 3). Of these samples, 11 assayed greater than 0.1 ounces per ton gold with the highest assay being 0.48 ounces per ton gold from a 0.8 metre thick section of vein in the Blacksmith Adit (Baldys, 1991). The average length-weighted gold grades for samples collected from three of the adits (drifts) were as follows;

Peter's Drift - 0.06 ounces/ton (2.06 gram per tonne) gold across 1.3 metre vein Blacksmith Drift - 0.13 ounces/ton (4.46 gram per tonne) gold across 0.9 metre vein Incline Drift – 0.20 ounces/ton (6.86 gram per tonne) gold across 1.0 metre vein

Based upon the assay results obtained, Baldys (1991) calculated a resource estimate of 76,000 tons of material averaging 0.17 ounces per ton gold between the Blacksmith and Incline drifts.

In 1993, Larry Carlyle was retained by L. Whelan and Associates to review all available information regarding the Bighorn Creek Property on behalf of Micrex Development Corporation. Upon reviewing the data from Baldys (1991), Carlyle (1993a) concurred with the reserve calculation arrived at of 76,000 tons grading 0.17 ounces per ton gold. In addition to data review, Carlyle (1993b) also conducted geological and geophysical exploration over the Lawson vein, which included chip sampling of the existing adits and grab sampling of the adit dumps. The highest assays obtained for the adits were as follows:

North Tunnel Drift – 1.78 ounces/ton (61.03 grams per tonne) gold Peter's Drift – 0.371 ounces/ton (12.72 grams per tonne) gold Blacksmith Drift – 0.612 ounces/ton (20.98 grams per tonne) gold Incline Drift – 1.375 ounces/ton (47.14 grams per tonne) gold Additionally, Carlyle (1993b) conducted a short (6 line) Very Low Frequency Electromagnetic (VLF-EM) geophysical survey at an approximate strike of 100 degrees over the Incline Drift. In total, 2400 metres of VLF-EM surveying was completed at 10 metre stations and 50 metre line spacing.

In September 2006, APEX was contracted by Micrex Development Corporation to conduct a prospecting program at the Bighorn Property. An early onset of winter conditions forced the termination of the program, which resulted in the collection of 32 rock grab samples and 10 stream silt sediment samples. No significant gold assays were identified by the program but a significant area of alteration (pyrite, chlorite) was identified in the cirques above (west of) the Lawson Vein.

In August of 2007, APEX was contracted by Micrex Development Corporation to conduct a prospecting program at the Bighorn Property. 91 rock grab samples, 13 Heavy mineral concentrate samples, and 5 Silt samples were taken. Samples were taken at the Lawson vein on the Pitt claim to confirm historical results and sampling and prospecting was conducted over the rest of the claims with the aim of discovering new showings. Sampling yielded several anomalous results in gold, silver, arsenic, copper, chromium, molybdenum, nickel, lead, and tungsten. Two new showings were discovered, each having samples with anomalous gold concentrations.

6.0 - TECHNICAL DATA AND INTERPRETATION

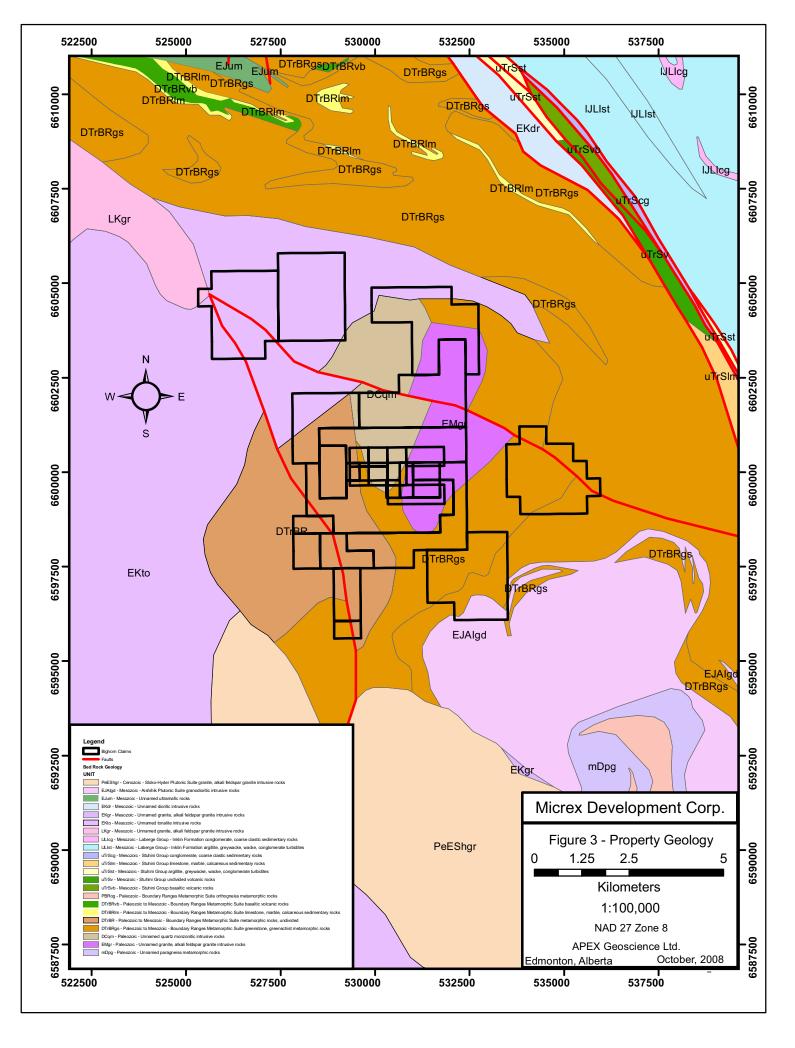
APEX was retained by Micrex Development Corp. during the summer of 2007 as consultants to complete an exploration program consisting of prospecting, rock sampling, and stream sediment sampling. The principal focus of exploration within the Property is to discover a mesothermal or epithermal gold deposit(s).

7.0 – STATEMENT OF THE AUTHORS QUALIFICATIONS

This Report was written by Mr. Dean Besserer and Mr. David Arsenault. Mr. Besserer is a graduate of the University of Western Ontario with a B.Sc. in Geology (1994) and has practiced the profession of geology continuously since 1994. Mr. Besserer is a Professional Geologist registered with APEGGA (Association of Professional Engineers, Geologists, and Geophysicists of Alberta), and NAPEGG (Northwest Territories Association of Professional Engineers, Geologists, and Geophysicists) and a 'Qualified Person' in relation to the subject matter of this report. Mr. Arsenault is a graduate of Memorial University of Newfoundland with a B.Sc. in Geology (2006) and has practiced geology continuously since 2006. Mr. Arsenault is a Geologist-in-Training registered with APEGGA.

8.0 – GEOLOGICAL SETTING

The Taku Arm area of Tagish Lake is underlain by Upper Triassic to Middle Jurassic strata of the Whitehorse Trough, Pre-Permian metamorphic rocks of the Yukon Group, and intrusions of the Mid-Jurassic Coast Plutonic Complex (Baldys, 1991; Carlyle, 1993a; Jackaman and Matysek, 1993). The geological setting of the Bighorn Property claims is illustrated on Figure 3.


There are two major sub-parallel north-northwest-trending faults in the area. The Nahlin Fault marks the western extent of the Cache Creek Terrane, and is a steeply dipping to a vertical fault, or series of faults which have been intermittently active since the Triassic into the Tertiary (Mihalynuk, 1999). The Llewellyn Fault forms the contact between regionally metamorphosed rocks and Mesozoic strata of the Stuhini Group (Mihalynuk, 1999). Similar to the Nahlin Fault, the Llewellyn Fault is believed to have been sporadically active over the Late Triassic into the Tertiary, with displacements being greatest during earlier episodes (Mihalynuk, 1999).

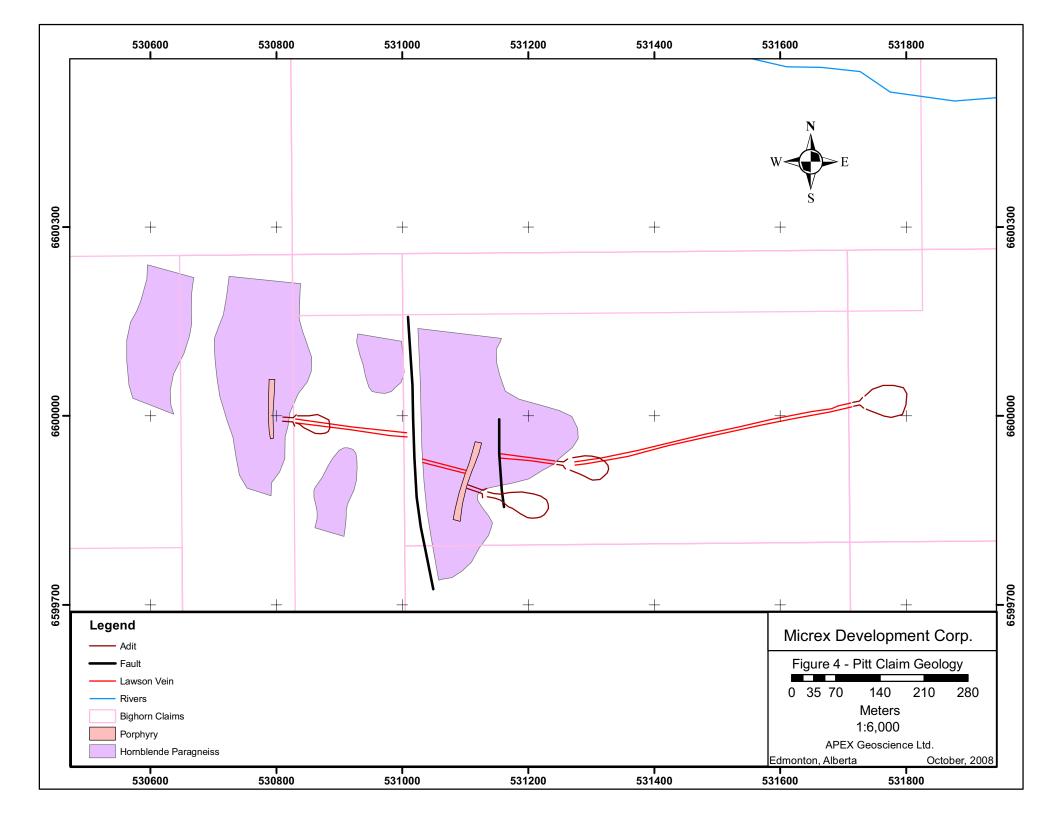
The Bighorn Property is underlain by the meta-intrusive Bighorn Creek Orthogneiss which is found within the Yukon-Tanana Terrane, and contains localized schistose zones (Mihalynuk, 1999). This unit outcrops over an area of about eight square kilometres and is characterized by Mihalynuk (1999) as being a well foliated, medium-grained, leucocratic body containing 50 percent quartz, and 40 percent feldspar with 6 to 7 percent combined muscovite, biotite, hornblende, chlorite, and accessory pyrite. Intruding into the orthogneiss are dykes of andesite and feldspar porphyry (Carlyle, 1993a). The feldspar porphyry is composed of phenocrysts of white feldspar in a fine-grained pyroxene matrix.

The rocks within the property strike north-northeasterly and are generally found to be dipping gently to the east. A large north-south striking fault is recognized at an elevation of 1220 metres with a right-handed, horizontal displacement of roughly 75 metres (Carlyle, 1993a).

9.0 - DEPOSIT TYPES

The goal of exploration efforts at the Bighorn Property is to identify economically viable precious metal-bearing quartz veins. Mesothermal gold deposits can be hosted in a wide variety of lithologies. These deposits often show relationships with regional scale strike slip faults (Olsen et al., 1994). As mentioned earlier in this report, the Llewellyn Fault forms the contact between regionally metamorphosed rocks and Mesozoic strata of the Stuhini Group (Mihalynuk, 1999) and is believed to have been sporadically active over the Late Triassic into the Tertiary, with displacements being greatest during earlier episodes

(Mihalynuk, 1999). A 75 metre right lateral displacement was observed at the Lawson vein system based on geological mapping preformed by M.J. Cooper in 1975 (Baldys, 1991). The veins are observed to be located along second or thirdorder structures related to the regional Llewelyn Fault zone (Armstrong, 2004). The quartz veins found on the Pit Claim most closely resemble mesothermal precious metal vein deposits. Mesothermal quartz veins are known to form at temperatures between 200 and 400 degrees Cesius (Panteleyev, 1991-4). Analysis of fluid inclusions from samples of quartz veins give average temperatures of more than 250 degrees C. These veins are podiform, sheared, and concordant with enclosing schists of a transitional greenschist-amphibolite grade (Mihaynuk, 1999). Gold mineralization is best associated with faults that show evidence of deformation that is transitional between ductile to brittle and associated with greenschist to amphibolite facies metamorphism (Olsen et al., 1994).


Another mineral deposit style that is associated with the geological setting of the Bighorn Property is the epithermal gold type deposit. In an epithermal gold deposit, the gold is deposited within 1 - 2 kilometres of the surface and is deposited from hot fluids. The fluids of epithermal systems range between 50 and 200 degrees Celsius with moderate pressures (Panteleyev, 1991-4). These deposits are typically related to volcanism in continental arc settings. Epithermal type mineralized veins are often spatially and genetically related to porphyry systems (Panteleyev, 1991-4). Epithermal gold deposits are formed by two chemically distinct fluids. The first is low sulphidation fluid, a mixture of meteoric water and magmatic fluid that is of nearly neutral pH. Gold is carried in solution in low sulphidation waters and is deposited when the water rises to shallow low pressure levels in the crust and boils. The second fluid, high sulphidation fluid, which is almost totally derived from a magmatic source is deposited when the fluid cools or is mixed with meteoric water. Gold and other metals can originate either from the magma of be leeched from the host rock as the fluids travel though fractures. Low sulphidation fluids typically form mineralized cavity filling guartz veins. High sulphidation fluids often form mineralization that is penetrative into the host rock often observed as disseminated texture. Low sulphidation systems are known for containing economic quantities of silver with some copper, lead, and zinc. High sulphidation systems often contain economic quantities of gold and copper (Pantelevev, 1991-4).

Another deposit type that is favorable to the geology of the Bighorn Property is the copper +/- molybdenum porphyry deposit type. These deposits are typically low grade and large tonnage. Porphyry deposits are both spatially and genetically to igneous intrusions (McMillan, 1991-4). The intrusive rocks that host these deposits are generally found to be felsic to intermediate. The host rock can be of any lithological type that responds to stress in the brittle realm. There are two processes that are responsible for mineralization in this style. The first is the fracturing that results from the rise of water from magmatic fluids into the shallow crust where lower pressure conditions cause it to boil. This build up of water happens when the intrusion crystallizes and thus leaves a larger relative fraction of water. Since felsic magmas have temperatures of approximately 600 to 700 degrees Celsius, this water boils at shallow depths in the crust and causes fracturing of the host rock. This aqueous fluid can potentially be enriched in gold, copper, or molybdenum. Further mineralization is achieved as the cooling magma chamber provides the heat engine to create hydrothermal convection cells. Metal enriched aqueous fluid circulates thought the stock work and all fractures adding to and re-depositing these metals. These deposits are often found in the Canadian Cordillera. Most porphyry systems are related to shallow emplaced plutons (McMillan, 1991-4). The Coastal Intrusions occur as distinct batholiths that are typically of granodioritic to quartz-dioritic lithologies. The age of the Coastal Plutonic complex has been determined to be post early Jurassic (Baldys, 1991). Granodiorite and grainite have been observed on the upper slopes of the east flank of Mount Lawson (Cooper, 1975).

10.0 - MINERALIZATION

Mineralization at and near the property consists of mesothermal precious metalbearing guartz-sulfide veins, which appear to be located along second or thirdorder structures related to the regional Llewellyn Fault zone. The veins are podiform, sheared, and discordant with enclosing schists of a transitional greenschist-amphibolite grade (Mihaynuk, 1999 and Baldys, 1991). Numerous small guartz veins were observed around the property. The majority of previous exploration efforts have been focused on the Lawson vein around which the Bighorn Property has been staked. The Lawson vein has been traced intermittently along a horizontal distance of 920 metres and a vertical distance of 460 metres (See Figure 4). The vein strikes roughly east-west and dips 85 degrees to the north. The vein averages 1.1 metres in thickness and contains pyrite and minor chalcopyrite, galena, sphalerite and native gold. Baldys (1991) notes that the wall rock does exhibit significant alteration or mineralization and that feldspar porphyrytic dykes were observed underground to cross-cut the vein. Baldys (1991) also notes that gold content appears to correlate well with sulfide (pyrite) content, both of which appear to increase in a vertical direction from the Lower adit to the Incline adit. The most thorough evaluation of the Lawson vein to date was conducted by Baldys (1991), during which a total of 29 chip samples were collected from 3 of the 4 adits. The length-weighted average gold grades are presented below.

Peter's Drift - 0.06 ounces per ton (2.06 grams per tonne) gold across 1.3 metres, (the vein was sampled over a 135 metres horizontal length)
Blacksmith Drift - 0.13 ounces per ton (4.56 grams per tonne) gold across 0.9 metres, (the vein was sampled over a 47 metres horizontal length)
Incline Drift - 0.20 ounces per ton (6.86 grams per tonne) gold across 1.0 metres, (the vein was sampled over a 23 metres horizontal length)

11.0 - EXPLORATION

From August 8 to August 20, 2007, APEX was contracted by Micrex Development Corporation to conduct an exploration program within the Bighorn Claims. Access to the Property was gained by helicopter. Helicopter services were provided by Discovery Helicopters of Atlin, B.C. A total of 91 rock grab samples, 13 Heavy Mineral Concentrate stream samples, and 5 silt stream samples were collected. The objective of the 2007 prospecting/sampling program was to follow up on geophysical anomalies detected from the airborne geophysical survey flown between May 10 to 17 2007 by Fugro Airborne Surveys Inc. (Turner, 2007). Effort was made to cover as much of the Property as possible, although the ruggedness of the terrain prevented helicopter landing access to some particularly steep areas. In these situations effort was made to at least collect altered or mineralized talus from beneath the area. Exploration expenditures within the claims, total \$79,345.00 CND. A summary of all costs relating to the 2007 exploration program can be found in Appendix 1. A total number of 50 man days were spent on the exploration program by APEX personnel. A detailed list of all personnel involved in the 2007 program can be found in Appendix 2. A complete list of rock grab sample locations and descriptions can be found in Appendix 3. The fire assay and multi element ICP-MS results can be found in Appendix 4. Locations of the rock grab samples can be found in Figure 5. A complete list of heavy mineral concentrate sample locations and descriptions can be found in Appendix 5 and the results can be found in Appendix 6. A complete list of silt samples can be found in Appendix 7 and the results can be found in Appendix 8. Locations of the heavy mineral concentrate samples and the stream silt samples are shown in Figure 6.

12.0 - DRILLING

There has been no drilling conducted on this property.

13.0 - SAMPLING METHOD AND APPROACH

The rock grab samples were taken by APEX personnel and all relevant information was recorded in field books and sample cards. Sample sites were located with handheld GPS devices. Rock samples were taken from outcrop, subcrop, talus, and float and were selected based upon mineralization or alteration. Samples were collected with a rock hammer and stored in sealed clear plastic sample bags with the unique sample identifier written on the bag along with a unique sample identifier card inside the sealed bag.

Heavy Mineral concentrate samples were collected using a shovel and a 2 mm mesh and pan. Samples were chosen from topographic maps to sample the major drainages into Bighorn Creek. Due to the steepness of the rugged terrain on the property, helicopter landings were sometimes not possible and in some

cases these sites were not accessible on foot. Fluvial material was collected with a shovel in the most likely areas of heavy mineral / metal sediment traps. An example of such an area would be found on the upstream side of a boulder or anywhere that there is evident deposition of iron oxide minerals. This is the type of place were gold is likely to be deposited. The material is then sieved using the mesh screens, leaving only the -2 mm sized sediment fraction. Approximately 10 Kilograms of this material was collected at each sample site and put into labeled plastic bags with outside poly woven (rice) bags. Sample bags were given a unique sample identifier written on the bag along with a unique sample identifier card inside the sealed bag. Every effort was made to fully clean all sampling tools between sample sites to avoid cross contamination.

Silt samples were taken using a shovel and craft paper bag. These samples were taken in conjunction with the heavy mineral samples. However, they were not taken at every sample site due to the fact that very fine clay material was not present at every sample site. This was in large part due to the steepness of the terrain. Because these samples are analyzed for anions that are attracted to clay particles, sample sites were chosen in the most likely areas of maximum groundwater recharge. Samples of clay were collected with a shovel and put into craft paper bags with a unique sample identifier written on the outside of the bag. Also a unique sample identifier was placed inside the bag. Every effort was made to fully clean all sampling tools between sample sites to avoid cross contamination.

14.0 - SAMPLE PREPARATION AND SECURITY

All of the samples were transported in the custody of APEX personnel from Atlin, B.C. to Smithers B.C. The Rock samples and Silt samples were shipped by Canadian Freight in Smithers B.C. to TSL Laboratories in Saskatoon, Saskatchewan. The Heavy Mineral Concentrate samples were shipped by Canadian Freight in Smithers, B.C. to the Saskatchewan Research Council Laboratories in Saskatoon, Saskatchewan. Once the samples arrived at each respective destination, they remained in the custody of each independent laboratory until the final processing was complete.

One-kilogram of each rock sample was crushed to 70 percent passing a 10 mesh sieve. A homogenized, 250-gram split from the minus 10 mesh sample was pulverized to 95 percent passing a 150 mesh sieve. Gold analysis conducted on the 91 samples comprised a fire assay of a 30-gram aliquot. The samples are mixed with a litharge flux and fused forming a lead button and molten slag. The slag is removed and the lead button containing the precious metals is cupelled, resulting in a precious metal bead. The bead is digested in aqua regia and the solution analyzed by atomic absorption (AA) for gold. Multi-element analysis was conducted on the 91 samples to determine abundances of various base metals and potential pathfinder elements. This comprised a hot 4-acid digestion on a

0.5-gram split of the pulverized sample and analysis by inductively-coupled plasma-emission spectrometry (ICP-ES).

Silt Stream samples were submitted for analysis at TSL Laboratories in Saskatoon, Saskatchewan where they were analyzed for Au and underwent inductively coupled plasma-emission multi element analysis.

TSL Laboratories conforms to the requirements set-out by the ISO 9001:2000 and performed standard QA/QC procedures with respect to the rock samples including an internal standard. The data for this standard analysis was found to be within acceptable limits.

The heavy mineral concentrate samples were placed into sealed poly woven bags for transport. Once they arrived at the Saskatchewan Research Council laboratories they underwent gold grain analysis and multi element analysis.

Saskatchewan Research Council conforms to the requirements set-out by the ISO 9001:2000 and performed standard QA/QC procedures with respect to the rock samples including an internal standard. The data for this standard analysis was found to be within acceptable limits.

The 2007 sampling program was successful in gathering several anomalous results in gold, silver, arsenic, chromium, copper, molybdenum, nickel, lead, and tungsten. All rock grab sample results can be found in Appendix 3 and assay certificates are found in Appendix 4. The highest gold value was 07DAP118 which yielded 32.3 parts per million. All heavy mineral sample results can be found in Appendix 5 and assay certificates can be found in Appendix 6. All silt sample results can be found in Appendix 7 and assay certificates can be found in Appendix 8.

<u>15.0 – MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES</u>

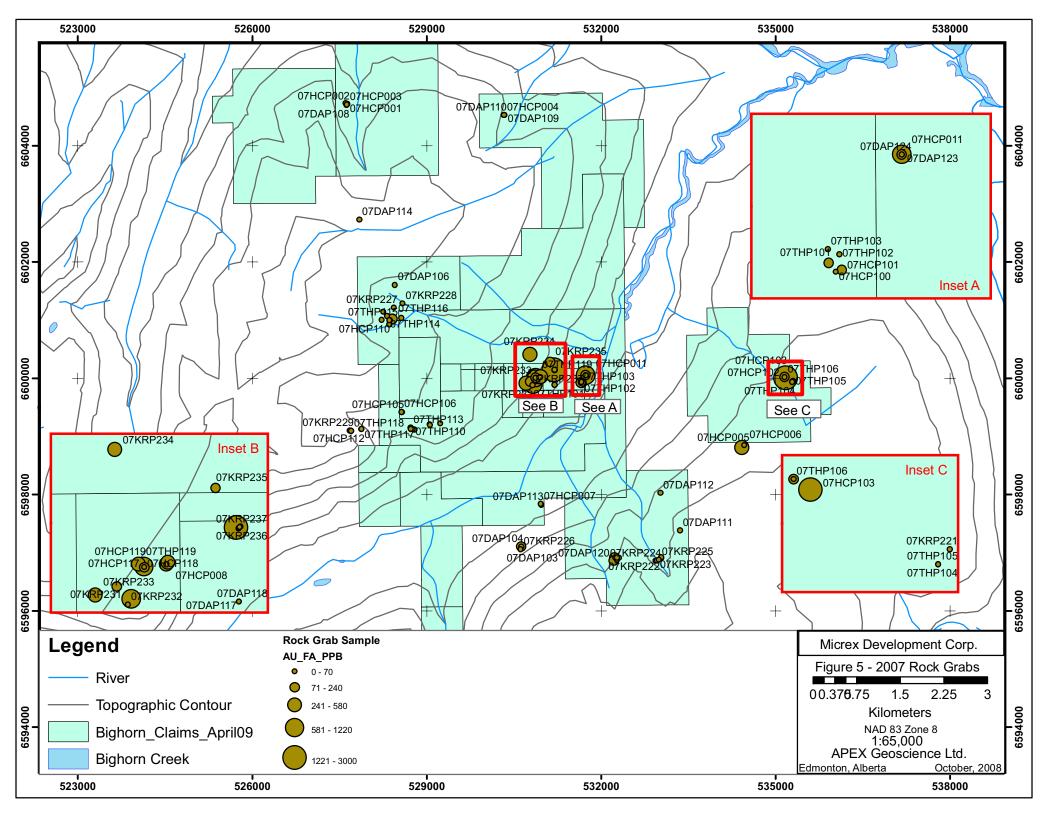
In 1993, Larry Carlyle was retained by L. Whelan and Associates to review all available information regarding the Bighorn Creek Property on behalf of Micrex Development Corporation. Upon reviewing the data from Baldys (1991), Carlyle (1993a) concurred with the reserve calculation arrived at of 76,000 tons grading 0.17 ounce per ton (5.83 grams per tonne) gold. This study was prepared by person(s) holding post-secondary geology or related degrees. The information in these reports is assumed to be accurate.

16.0 – OTHER RELEVANT DATA AND INFORMATION

The Author is not aware of any other relevant data pertaining to the Bighorn property.

<u>17.0 – INTERPREATIONS AND CONCLUSIONS</u>

The 2007 exploration effort was successful in identifying samples that have anomalous concentrations in gold, silver, arsenic, copper, chromium, molybdenum, nickel, lead, and tungsten. Anomalous values were defined by determining the average background concentrations of all of the elements and observing significant deviations. Table 2 defines the concentrations that are referred to as anomalous in this report. Concentrations are reported in parts per million (ppm) and parts per billion (ppb). Please note that the units grams per tonne (g/t) and parts per million (ppm) are equivalent.


Table 2. Deminition of Anomalous values				
Concentration				
> 100 ppb				
> 3 ppm				
> 10 ppm				
> 500 ppm				
> 200 ppm				
> 15 ppm				
> 50 ppm				
> 150 ppm				
> 1 ppm				
> 20 ppm				
> 100 ppm				

A summary of anomalous Gold in rock can be found in Table 3.

sample_id	Au	Au	Ag	As	Cu	Cr	Мо	Ni	Pb	W
	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
07DAP117	>3000	12.69	7.70	54.9	27.1	198	35.3	21.4	333.9	0.2
07DAP118	>3000	32.3	8.20	65.5	16.4	319	39.7	23.3	556.5	<0.1
07HCP110	>3000	5.35	0.90	2.7	116.0	746	62.5	42.7	7.3	1.7
07HCP115	>3000	6.28	2.20	0.6	5.6	269	21.5	6.0	3.3	0.2
07HCP116	>3000	4.12	1.10	<0.5	9.0	301	6.2	6.9	2.0	0.2
07HCP118	>3000	6.31	11.70	5.7	100.2	327	226.6	9.1	4198.6	0.7
07KRP236	>3000	5.11	3.30	0.6	8.1	440	13.0	9.9	4.0	0.2
07KRP237	>3000	8.02	5.30	0.8	11.3	439	11.7	10.2	2.3	0.2

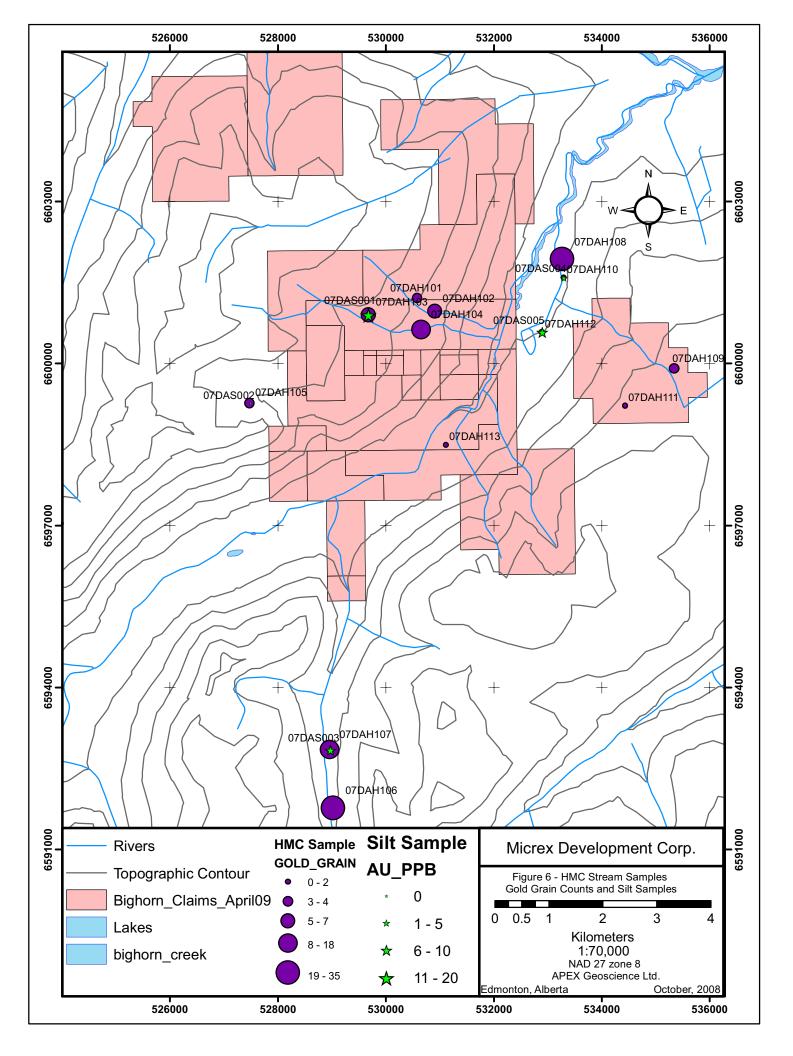
Table 3: Rock Sample Highlights

Of the 91 rock samples submitted for gold by standard fire assay, 8 samples yielded between 4.12 grams per tonne gold up to a high of 32.3 grams per tonne gold (See Figure 5). Significant copper, molybdenum and tungsten anomalies were identified along with a number of anomalous results for arsenic, antimony and mercury.

The samples with the highest qold values were related the epithermal/mesothermal quartz veining at the area know as the Lawson Vein. The mineralization observed at the Lawson Vein is consistent with the mesothermal gold deposit type. The Lawson Vein can be shown to be spatially and genetically related to the regional sized faults, namely the Llewellyn fault and the Nahlin fault. Mesothermal gold deposits are often associated with regional strike slip faults and are often associated with second or third order structures that are related to the regional faults (Olsen et al., 1994). The Lawson Vein was measured to strike approximately east-west. A number of faults were observed to strike north-south. Also the feldspar porphyry unit that is observed to cut the Lawson Vein also strikes north-south. Joints striking north-south (parallel to the Lawson Vein) were observed to be well mineralized with pyrite, chalcopyrite, and galena.

Mineralization in the meta-sedimentary rocks hosting the Lawson Vein is associated with the yellowish Silica-Albite alteration and black manganese staining that is common in a wide area around the adits. The schistose and paragneiss host rocks in the vicinity of the Lawson Vein exhibit metamorphism ranging from greenschist to transitional greenschist to amphibolite facies. The meta-volcanic and meta-sedimentary rocks at the Property were observed to have undergone ductile deformation. This is evidenced by large folds visible in the cliff walls as well podifrom guartz lozenges. These are both characteristics of a mesothermal gold type deposit style. Mineralization of the quartz vein was observed to be pyrite with minor galena, chalcopyrite, and sphalerite. These samples (example 07HCP117, 07HCP119, and 07DAP117) assayed anomalous concentrations in copper, lead, zinc, and molybdenum. Much of the exposed guartz vein had massive to milky texture and did not yield encouraging results. There were some exceptions to this; sample 07DAP118 assayed 32.2 grams per tonne gold. Also sample 07HCP118, a sample of the Lawson Vein yielded 6.31 grams per tonne. Samples of the adjacent wall rock returned anomalous concentrations in a variety of metals. Also, it is apparent that the mineralization is penetrative into the wall rock. Rock sample 07DAP117 was a sample of mica rich schist that was part of the wall rock. It assayed 12.69 g/t Au and was anomalous with respect to silver, arsenic, lead, and molybdenum.

Two new gold occurrences were identified from the 2007 regional sampling program. The first occurrence, sample 07HCP110, with assays of up to 5.35 grams per tonne gold, is associated with a silicified and pyrite bearing muscovite meta quarztite approximately 2.7 kilometres northwest of the Lawson Vein in a recently exposed cirque above the Lawson Vein. The second occurrence, sample 07HCP103, with assays of up to 1.73 g/t Au, 5.3 g/t Ag, 1,152 parts per million (ppm) copper and anomalous antimony and mercury, is associated with a carbonate altered meta-sedimentary unit about 3.5 km due east of the Lawson Vein on the eastern slope of Bighorn creek. Anomalies in these metals are very common in pervasively mineralized wall rock in mesothermal or high sulphidation epithermal systems. In epithermal gold deposits there is usually an elevation in


mercury and arsenic concentrations (Olsen *et al.*, 1994). With new showings of outcrop running promising gold concentrations it gives more credibility to the scenario of a mesothermal or epithermal system with multiple mineralized quartz veins.

Copper concentrations ranged from a low of 3.8 ppm to a high of 6099.1 ppm with 12 of the samples assaying in excess of 200 ppm. Within that group, 6 samples assayed greater than 500 ppm with 4 of this subgroup yielding over 1,100 ppm up to 6099.1 ppm. Sample 07HCP002 assayed 6,099.1 ppm copper and also yielded greater than the detection limit (2,000 ppm) for molybdenum, 3.1 g/t Ag and anomalous arsenic. The sample was collected from altered granodiorite in the northern portions of the Property that is mostly underlain by granodioritic intrusive. Most porphyry systems are related to shallow emplaced plutons (McMillan, 1991-4). The geophysical data from the Fugro airborne survey flown in May 2007 highlights the location of these intrusives very effectively. The intrusive rocks that are associated with porphyry deposits are typically felsic to intermediate. On the Bighorn Property, samples of granodiorite anomalous concentrations in silver, contained arsenic. copper. talus molybdenum, and tungsten. Typically the porphyry deposits associated with felsic intrusives have lower gold concentrations but have higher molybdenum and tungsten. This appears to be the case with sample 07HCP002 (6099.1 ppm) copper and overlimit >2000 ppm Molybdenum). This is characteristic of intrusive related porphyry type mineralization. Samples of granodiorite with pyrite, galena, and molybdenum mineralization were observed in contact with mafic metavolcanic rocks.

Chromium concentrations ranged from 12 ppm to 1219 ppm with 14 samples assaying in excess of 550 ppm. There is no discernable correlation between high chromium values and high gold values. Most of the chromium-rich results were samples of mica-rich schists and para-gneisses.

Nickel concentrations ranged from a low of 3 ppm to a high of 186 ppm. The higher nickel concentrations were typically found in higher mafic rocks with chloritic alteration. This correlation is likely due to substitution of nickel for magnesium.

Of the 13 heavy mineral concentrate stream sediment samples, all but one yielded gold as free mineral grains (See Figure 6). Of the 13 samples collected, 4 contained over 11 gold grains. Highlights include sample 07DAH108 returning 35 gold grains, 07DAH106 returning 27 gold grains, 07DAH107 returning 18 gold grains, and 07DAH104 returning 12 gold grains. From the 13 stream sediment samples collected, 120 grains of gold were recovered. Of these 120 recovered gold grains, 91 were described as having a delicate or irregular texture rather than abraded or rounded. These grains therefore likely under went little to short transport distances and were collected proximal to source. A number of these samples were collected well away from the influence of the known gold bearing

Lawson Vein and give a strong indication of multiple gold sources that are shedding small gold particles into local drainages. This further supports the likelihood that there are multiple gold bearing structures on the Bighorn Property, giving support to the probability of a larger scale gold potential in the area.

The silt sampling was unsuccessful in detecting gold anomalies in streams. All fire assay gold results came back below anomalous levels (See Figure 6). Field crews were only able to collect 5 silt stream samples. This was largely due to the fact that due to the ruggedness of the terrain, there was very little clay sized material in the alpine drainages and there were many limitations to helicopter access. The silt sample with the highest gold value, assayed 20 ppb gold.

18.0 - RECOMENDATIONS

Based on the results of the 2007 exploration program further work is warranted. The samples with the highest gold values were related to the epithermal/mesothermal Lawson guartz veins. It is established though many samples taken at the adits that both the quartz veins and the country rock are enriched in gold, silver, and other precious and base metals. This should be the focus of a 1000 metre drill program. Geologist and drill crew will find accommodation in the town of Atlin. The drill must be helicopter portable as there is no other access to the Property. Helicopter services can be hired through Discovery Helicopters based in Atlin. Additionally, follow up on new gold showings such as samples 07HCP110 and 07HCP103 is necessary to try and explain and expand on these anomalies. The proposed exploration budget is approximately \$500,000 CND plus PST/GST.

BUDGET

Drill Costs	\$260,000
Helicopter Costs	\$130,000
Senior Geologist	
Project Geologist	\$16,800
Junior Geologist/Assistant	\$12,600
Analytical Costs	\$25,000
Accommodation and Food	\$31,500
Fuel (Drill)	\$11,000
Truck (Plus Fuel)	\$4600
Flights	\$2000

TOTAL - (Excluding PST/GST) \$500,000Cnd.

APEX Geoscience Ltd.

Dean Besserer, B.Sc., P. Geol.

David Arsenault, B.Sc., Geol.I.T

19.0 - REFERENCES

Armstrong, J.P. (2004). Report on Activities for the SHERON, STAN, GLEN and PIT Claims, Bighorn Creek Project, Atlin Mining District, British Columbia. NTS 109M/9. Unpublished Assessment Report filed Oct. 2004.

Baldys, C. (1991) Rock geochemistry surveys on Lawson Vein, Sephill and Norm Claims, Atlin Mining Division. Unpublished report prepared for Oro Quest Inc. and 489166 Alberta Ltd.

Carlyle, L.W. (1993a) Summary report on Gold Cord Property and Bighorn Creek Property. Unpublished report prepared for Micrex Development Corp. and Dalton Gold Mine Ltd.

Carlyle, L.W. (1993b) Addendum report on Bighorn Creek Property. Unpublished report prepared for Micrex Development Corp. and Dalton Gold Mine Ltd.

Cooper, M.J. (1975) Geological Report, Lawson Gold Property, Bighorn Creek, Atlin Mining District, B.C. Assessment Report for Department of Mines and Mineral Resources.

Jackaman, W. and Matysek, P.IF. (1993) Stream sediment and water geochemical maps, NTS 104M – Skagway. British Columbia Regional Geochemical Survey MEMPR BCRGS 37.

McMillan, W.J. (1991-4) Porphyry Deposits in the Canadian Codillera. Paper 1991-4 Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera. Province of British Columbia, Ministry of Energy, Mines, and Petroleum Resources.

Micrex Development Corporation News Release, May 15 2007, Found on <u>www.sedar.com</u>

Mihalynuk, M.G. (1999) Geology and mineral resources of the Tagish Lake Area (NTS 104M/8,9,10E,15 and 104N/12W) Northwestern British Columbia. British Columbia Geological Survey Branch, Bulletin 105.

Mihalynuk, M.G. and Smith, M. (1993) Geology compilation of map sheet 104M – Skagway (unpublished).

Morin, J.A. (1989) Yukon gold-silver file; exploration and geological services division, Yukon. Indian and Northern Affairs Canada, Open File 1989-3.

Olson, R.A. (1987) National Hydrocarbons Ltd., Proposed Exploration, TP Mineral Claim, Atlin Mining Division. Unpublished report prepared by Trigg, Woolett, Olson Consulting Ltd. for National Hydrocarbons Ltd.

Olson, R.A., Dufresne, M.B., Freeman, M.E., Richardson, R.J.H., Eccels, D.R. (1994) Regional Metallogenic Evaluation of Alberta. Report prepared by R.A. Olsen Consulting Ltd. and the Alberta Geological Survey.

Panteleyev, A. (1991-4) Gold in the Canadian Cordillera – A Focus On Epithermal and Deeper Enviroments. Paper 1991-4 Ore Deposits, Tectonics and Metalogeny in the Canadian Cordillera, Province of British Columbia, Ministry of Energy, Mines, Petroleum Resources.

Turner, A.J. (2007) Report on the 2007 Airborne Geophysical Survey, At the Bighorn Creek Pjoject, Atlin Mining District, British Columbia. NTS 109 M/9. Unpublished Assessment Report filed Sept. 4 2007.

20.0 – CERTIFICATE OF AUTHOR

CERTIFICATE OF AUTHOR

I, Dean J. Besserer, residing at #517, 23033, Sherwood Park, Alberta, Canada, do hereby certify that:

- 1. I am a principal and Vice President of APEX Geoscience Ltd. ("APEX"), Suite 200, 9797-45 Avenue, Edmonton, Alberta, Canada.
- 2. I am a graduate of the University of Western Ontario, London, Ontario with a B.Sc. in Geology (1994) and have practiced my profession continuously since 1994.
- I am a Professional Geologists registered with APEGGA (Association of Professional Engineers, Geologists, and Geophysicists of Alberta), and NAPEGG (Northwest Territories Association of Professional Engineers, Geologists, and Geophysicists) and a 'Qualified Person' in relation to the subject matter of this report.
- 4. I have not received nor do I expect to receive, any interest, directly or indirectly, in the Bighorn Property and do not hold securities of Micrex Development Corporation.
- 5. I am not aware or any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report of the omission to disclose which makes the Report misleading.

Dean J. Besserer, B.Sc., P.Geol.

Edmonton, Alberta, Canada October 18, 2008

CERTIFICATE OF AUTHOR

I, David Arsenault, residing at #103, 11435-45 Avenue, Edmonton, Alberta, Canada do hereby certify that:

- 1. I am a graduate of Memorial University with a B.Sc. degree in Geology (2006) and have practiced my profession continuously since 2006
- 2. I am a Geologist-in-Training registered with APEGGA (Association of Professional Engineers, Geologists, and Geophysicists of Alberta).
- 3. I am a Geologist-in-Training in the employ of APEX Geoscience Ltd. and have been since 2006.
- 4. I have not received, nor expect to receive, and interest directly or indirectly, in the Bighorn Property.
- 5. I am not aware of any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report of the omission to disclose which makes the Report misleading.
- 6. I have visited the Property that is the subject of this Report in August of 2007.

David Arsenault, B.Sc., Geol.I.T.

Edmonton, Alberta, Canada October 18, 2008

APPENDIX 1 2007 BIGHORN PROPERTY EXPENDITURES

Appendix 1 2007 Bighorn Expenditures

tegory Description	Dete	l lmit	Comment	Cost CND\$
Salaries	Rate	Unit	Comment	
Principal Geologists				
Michael Dufresne - Office	\$650.00	8.68	Principals Directly Involved - Office Michael Dufresne (June 22-July 21/07)	\$1,690
			Principals Directly Involved - Office Michael Dufresne (July 22-Aug 21/07)	\$1,774
			Principals Directly Involved - Office Michael Dufresne (Aug 22-Sept 21/07)	\$1,215
			Principals Directly Involved - Office Michael Dufresne (Sept 22-Oct 21/07)	\$1,644
			Principals Directly Involved - Office Michael Dufresne (Oct 22-Nov 21/07)	\$357
			Principals Directly Involved - Office Michael Dufresne (Jan 1- 22/08)	\$270
			Principals Directly Involved - Office Michael Dufresne (May 22-June 21- 22/08)	\$270
Michael Duference Field	¢050.00	0.5		
Michael Dufresne - Field	\$650.00	2.5	Principals Directly Involved - Field Michael Dufresne (July 22-Aug 21/07)	\$1,625
Dean Besserer - Office Total - Salaries - Principals	\$650.00	0.48923	Principal Directly Involved - Office Dean Besserer (July 22-Aug 21/07)	\$318 \$9,165
Geologists Office				
Rob L'Heureux			Geological Services Performed Office - Rob L'Heureux (May 22-June 21/07)	\$170
Andrew Turner			Geologist Involved Office - Andrew Turner (May 22-June 21/07)	\$630
Kris Raffle			Geological Services Performed Office - Kris Raffle (June 22-July 21/07)	\$29
			Geological Services Performed Office - Kris Raffle (July 22-Aug 21/07)	\$29
Tara Gunson	\$300.00	0.13	Geological Services Performed Office - Tara Gunson (July 22-Aug 21/07)	\$201
			Geological Services Performed Office - Tara Gunson (Aug 22-Sept 21/07)	\$39
Dave Arsenault	\$300.00	9	Geological Services Performed Office - Dave Arsenault (Nov 22-Dec 21/07)	\$2,700
Peter Whyte	\$450.00	2.7	Geological Services Performed Office - Peter Whyte (Aug 22-Sept 21/07)	\$373
			Geological Services Performed Office - Peter Whyte (Sept 22-Oct 21/07)	\$180
			Geological Services Performed Office - Peter Whyte (Oct 22-Nov 21/07)	\$13
			Geological Services Performed Office - Peter Whyte (Nov 22-Dec 21/07)	\$57
Heather Clough	\$250.00	0.27	Geological Services Performed Office - Peter Whyte (June 22-July 21/08)	\$76
Heather Clough	\$250.00	0.27	Geological Services Performed Office - Heather Clough (July 22-Aug 21/07) Geological Services Performed Office - Heather Clough (Jan 1-21/08)	\$432 \$67
Dave Toni	\$250.00	0.07	Geological Services Performed Office - New Toni (June 22-July 21/08) Geological Services Performed Office - Dave Toni (June 22-July 21/08)	\$17
Total - Salaries - Geologists - Office Field	φ200.00	0.07	Geological Services renormed Onice - Dave rom (Sune 22-Suly 2100)	\$5,532
Kris Raffle	\$475.00	4.5	Geological Work Performed Field - Kris Raffle (July 22-Aug 21/07)	\$2,137
Dave Arsenault	\$400.00	13	Geological Services Performed Field - David Arsenault (July 22-Aug 21/07)	\$5,200
Ellie Knight	\$400.00	6	Geological Services Performed Field - Ellie Knight (July 22-Aug 21/07)	\$2,400
Heather Carey	\$400.00	5	Geological Services Performed Field - Heather Carey (July 22-Aug 21/07)	\$2,000
Heather Clough	\$350.00	9	Geological Services Performed Field - Heather Clough (July 22-Aug 21/07)	\$2,925
Tom Hildahl Total - Salaries - Geologists - Field	\$300.00	10	Geological Services Performed Field - Thomas Hildahl (July 22-Aug 21/07)	\$3,000 \$17,662
Secretarial Carol Andrew	\$200.00	0.09	Clerical - Carol Andrews (May 22-June 21/07)	\$6
Gardi Andrew	φ200.00	0.00	Clerical - Carol Andrews (May 22-Jule 21/07) Clerical - Carol Andrews (July 22-Aug 21/07)	\$6
Linda Belanger	\$200.00	0.1	Clerical - Linda Belanger (July 22-Aug 21/07)	\$6
			Clerical - Linda Belanger (Aug 22-Sept 21/07)	\$14
			Clerical - Linda Belanger (Sept 22-Oct 21/07)	\$6
Total - Salaries - Secretarial otal Salaries				\$38 \$32,397.
				<i>~~_,~~</i>
ield Costs Accommodation				\$3,288
Analytical and related costs				
TSL - rock grab and silt assays				\$3,100
SRC - heavey mineral concentrate				\$2,920
Vancouver Petrographic - assay an	alysis			\$583
Communication				\$164
Food				\$1,954
Fuel				
Regular	¢4.00/I	0004.44		\$1,119
Helicopter	\$1.22/L	2234.41		\$2,725
Freight Regular				\$10 ⁻
Samples				\$712
Field Supplies				\$217
Helicopter Flight Costs	\$990.00/hr	19.6		۶۲۲ \$19,404
Travel (Airfares, Taxies, etc.)	2000.00ml	10.0		\$4,775
otal Field Costs - Net (Loaded C	osts)			\$41,067.
Rentals, Repairs, and Micella	aneous Co	onsuma	bles_	
Rentals - Vehicles, Computers, GPS, Co				\$3,550
Consulting Fee and Miscellaneous consulting	imables			\$2,329
otal Rentals, Repairs, and Misce	ellaneous C	Consumat	bles - Net (Loaded Costs)	\$5,879.
tol 2007 Bighorn Evnon	lituraa			¢70 245

Total 2007 Bighorn Expenditures

\$79,345.27

APPENDIX 2 MAN DAYS

<u>Appendix-2</u> <u>Man Days</u>

Name	Time In Field	Man Days
Michael Dufresne	August 8 – August 10	2.5
Kristopher Raffle	August 8 – August 12	4.5
David Arsenault	August 8 – August 20	13
Heather Carey	August 8 – August 12	5
Ellie Knight	August 16 – August 21	6
Heather Clough	August 11 – August 19	9
Tom Hildahl	August 8 – August 17	10

Total Man Days - 50

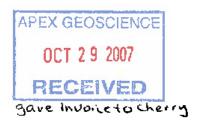
APPENDIX 3 ROCK GRAB SAMPLE LOCATIONS AND DESCRIPTIONS

APPENDIX 3	SAMPLE LOC	ATIONS AND	DESCRIPTIONS			
	Easting	Northing				
sample_id	Nad27z8	Nad27z8	lithology	magnetism	disposition	Desription
07DAP101	533038	6596902	pelitic schist	none	talus	pelitic schist with 40% muscovite, 20% biotite.
			<u>1</u>			sericite and muscovite bands with quartzite bands.
07DAP102	532942	6596856	mica quartzite schist	weak	talus	Very deformed and foliated.
	552542	000000		Weak		
07040400	500004	0507007	and the second second second second			
07DAP103	530634	6597097	rusty quartz vein	none	outcrop	rusty quartz vein with minor pyrite (less than 1 %)
						yellow-dark reddish Fe Oxidized. Wall rock of the
07DAP104	530634	6597097	mica schist	none	outcrop	quartz vein of 07DAP103.
07DAP105	528260	6601136	rusty quartz vein	none	boulder	rusty quartz vein with approx 3 % pyrite
07DAP106	528458	6601601	mica schist	none	outcrop	highly rusted dyke of mica schist. Strike 340.
						40% quartz, 20% feldspars, 20% biotite, 20%
07DAP107	527610	6604728	granodiorite	none	talus	amphiboles. 5 % disseminated pyrite.
	021010	0001120	granoalonio			40% quartz, 20% feldspars, 20% biotite, 20%
						amphiboles. 3 % disseminated pyrite. Also
07040400	507000	0004700				
07DAP108	527629	6604700	granodiorite	none	talus	malachite with trace chalcopyrite.
						20% quartz, 40% biotite, 10% chlorite. Very soft
07DAP109	530347	6604520	mica schist	none	outcrop	rusty mica schist with 20% disseminated pyrite.
						40% quartz, 20 % feldspar, 40% biotite with 5 %
07DAP110	530327	6604525	quartz mica schist	none	outcrop	disseminated pyrite. Some quartz lenses.
						90% qtz, 5% sulphides and 5% ox with 3% pyrite.
						Qtz vein in biotite schist. Pyrite crystals along
						magnetite veins. Strike unclear due to slump
	E00000	6507077	atz voin	otrong	outorer	
07DAP111	533362	6597377	ldr⊼ veiu	strong	outcrop	frcturing on cliff face
						95% qtz and 5% pyrite. Rusty qtz vein with Si alt,
07DAP112	533024	6598020	qtz vein	weak	outcrop	pyrite and ilmenite
						100% qtz, course grain size, low veining and mod
07DAP113	530980	6597820	qtz pod	none	outcrop	relief
						100% quartz, med grain size. Qtz is rusty and vuggy.
						Lots of large pieces of vein ~15cm thick all in one
07DAP114	527845	6600700	ructy yuggy quartz yoin	nono	boulder	
07 DAF 114	527645	0002723	rusty vuggy quartz vein	none	Douidei	pile
						100% qtz,med grain size. Qtz pod at ADIT-
07DAP115	530957	6600013	qtz pod	none	outcrop	blacksmith. Very steeply dipping ADIT. Qtz is rusty
						qtz, muscovite and biotite, fine grained with strong
07DAP116	530957	6600013	altered mica gneiss	none	outcrop	silicious alteration
07DAP117	531205	6599885	mica schist	none	outcrop	
07DAP118	531205	6599885	qtz vein	none	outcrop	guartz vein.
07DAP119	532222	6596855	quartz vein	none	outcrop	quartz vein in chl-bt-gneiss with pyrite
UIDAF I IS	552222	0090000			outcrop	
						30% of each biotite and ampibole, and 20% of
						each feldspars and chlorite. 10% pyrtie. Fine
07DAP120	532235	6596908	chlorite-biotite gneiss	none	boulder	grained chlorite-biotite gneiss with coarse pyrite.
07DAP121	532280	6596874	altered quartzite	none	boulder	altered orange-yellowish with quartz veins
07DAP122	532249	6596909	chl-feldspar porphyritic rock	none	boulder	Boulder in glacier valley with pyrite
						40% quartz, 25% feldspars, 10% biotite, 20%
						amphibole. Silicified gneiss. Chip sample taken at
07040400	504700	0000045				
07DAP123	531739	6600045	silicified gneiss.	none	outcrop	lower adit from vein contact to 0.5 m out from vein.
						Sample taken from roof of adit driven through quartz
07DAP124	531739	6600045	quartz vein	none	outcrop	vein approx 0.6 m wide.
						40% quartz, 20% of each feldspars and biotite, 15%
						amphibolite, and 5% pyrite-found along frct surface
07HCP001	527631	6604706	Granodiorite	none	talus	of 1/2 meter boulder.
						50% quartz, 15% of feldspar, 10% of each biotite
						and amphibolite, and 5% of each pyrite and galena-
	507044	0004740				
07HCP002	527641	6604713	Granodiorite	none	talus	found throughout.
						40% quartz, 20% of each feldspars and biotite, 15%
07HCP003	527631	6604703	Granodiorite	none	talus	amphibolite, and 5% pyrite.
						50% chlorite, 30% quartz, and 5 0f each feldspars,
07HCP004	530334	6604525	Chlorite Schist	none	talus	biotie,amphibolite and pyrite.
				1 -		40% of each quartz and chlorite, 10% biotite and
07HCP005	534469	6598842	Gneiss	none	float	5% of each muscovite and pyrite
	554409	0090042		none	noat	
0711000000					a .	40% chlorite, 20% biotite, 10% quartz and 5% of
07HCP006	534426	6598806		none	float	each muscovite and pyrite
			Mica Quartz Rich			40% of each quartz and biotie. Minor-moderate
07HCP007	530969	6597834	Paragneiss	none	outcrop	silicification. Pod of quartz.
						50% guartz, 40% of biotite and 5% of each
						muscovite and pyrite. Material sampled from tailings
07HCP008	530962	6600000	Quartz Biotie Gneiss	none	tailinga	
	000902	6600020		none	tailings	of audit, dark golden pyrite
						90% quartz, 10% muscovite, 5% chlorite, <1%
						In with O an a late to be a factor of a later strands and an
07HCP009						pyrite. Sample taken from rock in overburden in

APPENDIX 3	SAMPLE LOC	ATIONS AND	DESCRIPTIONS			
	Easting	Northing				
sample_id	Nad27z8	Nad27z8	lithology	magnetism	disposition	Desription
07HCP010	532278	6596910	chlorite quartzite	nono	boulder	80% quartz, 15% chlorite, 5% pyrite. Found in cirque. Large pyrite crystals
	552276	0090910		none	Douidei	40% quartz, 50% feldspars, 10% chlorite. Lowest
						ADIT sample of dyke crosscuttin quartz vein. Small
07HCP011	531739	6600045	Mafic Dyke	none	outcrop	quartz veining in dyke.
						aphanitic chl altered chert metased/quartzite, fine to coarse dissem PY 3%, strong Si alteration, qtz veins
						(irreg, mm-cm), subang bldr, mod rusty with qtz
07HCP100	531663	6599910	chl altered cherty metased	no	boulder	veins, sample taken from talus rubble near adit
						very fine gr, minor Si alteration, aphanitic dark grey
						blk rk, qtz veinlets(mm), subrounded-ang bldr taken from talus rubble near adit, surface weathering
						green-brwn colour, mod dissem PY 2% near rk edges
07HCP101	531670	6599912	meta-argillite with qtz veins	no	boulder	and near FR's, bldrs of same litho in area (5-10%
						fine gr, str Si and Cbn alteration, variations of
						alteration along SHEAR (rk is v friable and
						deformed), chl cherty qtzite nearing an increase in mafics (chl+hbe) and a siderite alteration qtzite, f
			chloritic cherty to sideritic			dissem PY 2%, near contact with aphanitic mafic
07HCP102	535160	6600012	quartzite	no	outcrop	(tufface
						fine gr, str Si and Cbn alteration, MALACHITE minz
			aidoritio quartzita with atz			2-5%, o/c near sample HCP102, SHEAR zone with sideritic alteration, near contact with silicified
07HCP103	535176	6600002	sideritic quartzite with qtz veins	no	outcrop	tuffaceous mafic volcanics
		000002				mod Si alteration, high relief, TR dissem PY, rusty
						subrounded bldr 30x30cm in till downice of glacier,
						likely a intermediate volcanic unit, where mafics
07HCP104	520227	6599218	foliated Bt qtz flds meta-		bouldor	have altered to Bt and stretched into foliation
07HCP104	529237	0099218	volcanic	no	boulder	planes
						f-m gr, 2% PY, mod cbn Si alteration, high relief,
						more felsic than sample HCP104, finely dissem PY
		0500440				along FR, sideritic alteration of qtz/plag bands,
07HCP105	528581	6599410	plag qtz Bt gneiss	no	outcrop	gneissic banding is slightly deformed
						f gr, mnr cbn Si alteration, sideritic alteration,
						possible limonite (?) alteration as well, rusty bldr in
						felsenmeer, subang bldr, immature gneiss with
07HCP106	528571	6500/16	Bt qtz gneiss	0	boulder	aphanitic mafics, TR finely dissem PY, sample taken from till cover along glacier path/downice of cirq
	526571	0399410		no	Douidei	
						f gr, str Si alteration, high relief, TR PY, metased
						(quartzite) with very thin (mm) Bt bands, rusty
						subang bldr in frost breaking parallel to band
07HCP107	528233	6600998	quartzite with Bt bands	no	boulder	structures, trace dissem silvery PY, sample taken from glacier valley/basin (fresh till)
	020200	0000000				
						med gr, 5% PY, high relief, str Si alteration, mod qtz
						veining parallel to bands, f-coarsely dissem PY
07HCP108	528366	6600025	banded quartzite	no	boulder	along grey qtz bands, rusty subang bldr 20x15cm within till/outwash from cirque morraine
	020000	0000920				f gr, TR PY, high relief, str Si alteration, mod qtz
						veining, angular rusty bldr in cirque morraine -
						till/bldr washout, f dissem PY in geniss and within
07HCP109	528366	6600925	qtz vein in intermed. Qtz chl gneiss		boulder	qtz vein (4cm across), sampled gneissic and qtz vein material
	520300	0000923		no		
						f gr, 5% PY mod Si alteration, high relief, rusty o/c
						in vincinity of aphanitic mafic dyke, f dissem PY
						along FR and within rk, sample o/c within glacier
07HCP110	528367	6600996	silicified qtz muscovite gneiss	no	outcrop	basin/valley, o/c surrounding rusty zone = slight-mod deformation, dyke orientation 060 trend 30cm wi
	520307	0000330	9.10100		Jacorop	f gr, TR PY, high relief, str Si alteration, mod qtz
						veining, rusty gneissic o/c with mafic dyke oriented
						at 180 trend 20cm wide, f dissem PY, areas of more
						mafic gneissic foliations with mod-intense
07HCP111	528567	6601033	quartzite gneiss	no	outcrop	deformation, sample taken within glacier basin/valley w
	520307	0001033	And the Anelos	סיין	Juniorop	

APPENDIX 3	SAMPLE LOC	ATIONS AND	DESCRIPTIONS			
	Easting	Northing				
sample_id	Nad27z8	Nad27z8	lithology	magnetism	disposition	Desription
						Deformed gneissic bands, 5% weathered pyrite on rock surface, f-m disseminated pyrite with in rock, rusty sub-ang bldr 40x60cm. In talus from glacier. Qtz augen 3cm w/in smaple w/ py in veinlet beside
07HCP112	527879	6599116	qtz Bt gneiss	no	boulder	and within pressure shadow (post deformation) vuggy He alteration along FR/weakness in RK, TR dissem Py within vuggy rust red alteration, rusty o/c w. qtz vein (cm) v. rust red color to weathered
07HCP113	531195	6600139	rusty quartzite metased	no	outcrop	surfaces/FR's, protolith (?)=metased. Sampled same area as 04JAP213 (8grams Au)
						pink alteration-within crystallaine matrix (?) vuggy hematitic zones/clusters w/ coarsely dissem py, sideritic alteration near He clusters and along FR
07HCP114	531203	6600135	altered quartzite	no	outcrop	surfaces, rusty o/c w/ conjugate jointing coarsely dissem Py, EXTREMELY vuggy, sideritic alteration, sample taken from area of 01CSP418 (82g Au) rusty orange o/c, hematite +/- siderite
07HCP115	531203	6600137	altered vuggy quartzite	no	outcrop	alteration near vugs. samples 07HCP113 to 07HCP116 were taken from S
07HCP116	531210	6600142	siliceous quartzite-cherty	no	outcrop	tp N along o/c (rusty) Au anomaly (82gAu). Each sample has a diff degree of alteration and weathering. Slightly vuggy near surfaces w/ He. Coarsly dissem Py 20%
						sideritic alteration, fine dissem Py=TR, rusty jointed/FR wall rock SOUTH of ADIT entrance (qtz
07HCP117	530881	6600002	quartzite gneiss wall rock	no	outcrop	vein) Chip samplepossible magnetite near center of vein-alteredregion on roof of ADIT, sideritic alteration, yellowpowder (opaque) on FR surfaces of qtz vein(?)coarsly dissemenated Py (5-20%, sample taken 1/2way into ADIT along roof (chip sample) 1.1m-2.3m=
07HCP118	530881		qtz vein in ADIT	weak	outcrop	1.2 m lengf. dissem Py (5%), rusty o/c n orth of ADIT/ qtz vein
07HCP119	530880	6600005	qtz Bt/pyx(?) gneiss	no	outcrop	 w/ Py min, chip sample=2.3-4m=1.7m 80% quartz, and 5% of each felds and biotite, <1% pyrite. Med grain size, low veining and siliceous
07KRP221	535307	6599946	Quartzite gneiss	none		alteration 15% pyrite, medium grain size, 40%qtz, 20% flds,
07KRP222	533039	6596914	Biotite schist			 40% bt, py along sinuous biotite defined shear fabric as < 1-2 mm veinlets, semi massive 10% pyrite, some magnetite, medium grain size, qtz
07KRP223	532966	6596862	quartz muscovite schist		talus	and ms present, moderate veining 15% pyrite, 5% magnetite, medium grain size, 60% qtz, 40% ms, strong siliceous alteration, moderate
07KRP224	532943	6596856	quartz muscovite schist	strong	outcrop	veining, strike/dip: 010/50, schistocity, open folds, crenulations, Fe-oxidized, deformation zone around 5-10 m wide 50% pyrite, medium grain size, qtz and ms present,
07KRP225	532997	6596874	muscovite schist	none	talus	siliceous alteration, high veining, pyrite along crenulated muscovite laminae
07KRP226	530620	6597052	qtz vein	none	outcrop	0.5% pyrite, high veining, sugary ball qtz vein with disseminated pyrite
07KRP227	528440	6601207	qtz vein	none	outcrop	0.5% pyrite, high veining, medium grain size, siliceous alteration, low relief, vein subcrop, disseminated pyrite and mm-scale fracture veinlets, striking around 240
						5% pyrite, medium grain size, laminated qtz bands, recrystallized, sugary texture, disseminated pyrite
07KRP228 07KRP229	528590	6601281 6599093	meta quartzite banded qtz bio gneiss	none	outcrop	along fractures and parallel to laminae 5% pyrite, medium grain size, strong siliceous alteration, low veining, fine grained pyrite disseminated, 50% qtz, 50% biotite/muscovite
07KRP230	530787	6599937	quartz muscovite gneiss (meta sed)	none	outcrop	60% quartz, 20% muscovite and 10% of each felds and biotite, 1% pyrite. K-spar/sericitized vein. Mm scale qtz +/- py stronger
07KRP231	530836	6599895	qtz-felds metased gneiss	none	outcrop	60% qtz, 40% felds, 4% pyrite. Med grain size with mod vein. K-Si altered zone, qtz flooded

APPENDIX 3		1	DESCRIPTIONS			
sample_id	Easting Nad27z8	Northing Nad27z8	lithology	magnetism	disposition	Desription
sample_iu		Nauzizo		magnetism	disposition	gtz and feldspars with <0.5% pyrite. Low-mod
						veining with strong K-Si alteration +/- disseminated
07KRP232	530825	6599876	Qtz meta sed gneiss	none	outcrop	pyrite
07KRP233	530714	6599908	clay altered qtz meta sed	nono	outoron	qtz and felds with <1% pyrite. Med grain size with
07KRP233	530714	00999900	gneiss	none	outcrop	strong clay/argillite alteration. Mode veining med grain size qtz and felds with <1% pyrite. Strong
07KRP234	530781	6600405	qtz vein	none	outcrop	Si and K alteration
						qtz flooded fsp altered to chalky clays limonite
07KRP235	531125	6600273				oxidized after sulphides along mm scale frcts
07KRP236	531207	6600140	atz voin			4" qtz vein, vuggy oxidized py. Repeat of 01CSP418 (82ppm Au)
071111230	551207	0000140				
07KRP237	531207	6600140	qtz vein			qtz vein strike=90 and dip=90. 01CSP418 repeat
						trace pyrite and chalcopyrite, medium grain size,
						strong siliceous alteration, low relief, high iron
						staining, some unkown, euhedral, black mineral, and trace magnetite, finely disseminated pyrite,
						sampled 20 m NW of adit at the botton of bighorn
07THP101	531655	6599920	meta quartzite	weak	outcrop	mountain
						5% pyrite, medium grian size, qtz, flds, bt/amph
						present, strong siliceous, low relief, pyrite can either be rusty oragne due to weathering or cubic crystals,
l						moderately disseminated, unknown black mineral
07THP102	531667	6599930	meta sed gneiss	weak	talus	associated with pyrite, dark greenish colour surr
l						trace pyrite, medium grain size, qtz, flds, bt/amph
						present, strong siliceous alteration, low relief, high iron staining, moderately disseminated pyrite, dark
						greenish colour around pyrite, 35 m NW of adit at
07THP103	531654	6599936	meta sed gneiss	weak	talus	bottom of bighorn mountian
			_			trace pyrite, medium grain size, qtz, ms, cbn(?)
						present, cm size size qtz/carbonate veins, chlorite
07THP104	535296	6599932	qtz vein with qtz, muscovite wall rock	nono	boulder	alteration in wall rock, metamafic units found on either side of bldr area
07111F104	555290	0399932		none	Douidei	medium grain size, qtz, flds, and ms present, strong
						siliceous alteration, moderate veining, rusty, quartz
			qtz veinlets through qtz and			veinlets through meta sed, chlorite alteration,
07THP105	535296	6599932	musco wall rock	none	boulder	located b/w two meta mafic units
						trace pyrite, fine grain size, strong siliceous alteration, high relief, moderately disseminated
			meta volcanic with			pyrite along fractures, sampled above contact at
07THP106	535160	6600012	phenocrysts	moderate	outcrop	shear zone with another unit, very rusty
						trace pyrite, medium grain size, strong siliceous
						alteration, high veining, high relief, high iron
07THP107	529057	6599199	schistosed gneiss	none	outcrop	staining, finely disseminated pyrite, extensive weathering
0/1111 10/	323037	0000100	Schlatosed gheiss		outcrop	weathening
						strong siliceous alteration, high veining, high relief,
• • • • • • • •				1		qtz pods in highly rusty schistosed gneiss at contact
07THP108	529061	6599190	qtz pod	none	outcrop	with mafic gneiss, qtz is milky coloured
						trace pyrite, medium grain size, qtz and ms present, strong siliceous alteration, moderate veining, high
						relief, high iron staining, finely disseminated pyrite,
07THP109	528795	6599113	meta sed gneiss	none	outcrop	some qtz/calcite veins
						medium grain size, strong siliceous alteration, high
				1		veining, high relief, high irong staining, 30 cm thick,
07THP110	528762	6500112	gtz vein/pod	none	outcrop	milky colour, sugarry grain texture, meta sed gneiss wall rock
	520102	0000110				medium grain size, qtz, ms, and possibly cbn
						present, strong siliceous alteration, moderate
						veining, high relief, high iron staining, highly
07THP111	528732	6599123	meta sed gneiss	none	outcrop	weathered
				1		medium grain size, qtz, ms, and cbn present, strong siliceous alteration, high relief, mm size qtz/calcite
						veinlets running perpendicular to foliation, high iron
07THP112	528733	6599145	meta sed gneiss	none	outcrop	staining, extensive weathering
						strong siliceous alteration, qtz and cbn present,
				1		moderate veining, high relief, moderate iron
	E00700	6500447	atz/oglaita nad	nono	outoron	staining, qtz/calcite pod in meta sed gneiss, some
)7THP113	528730	0599147	qtz/calcite pod	none	outcrop	calcite crystals growing in vuggies in pod


APPENDIX 3	SAMPLE LOCATIONS AND DESCRIPTIONS					
	Easting	Northing				
sample_id	Nad27z8	Nad27z8	lithology	magnetism	disposition	Desription
						5% pyrite, medium grain size, qtz and ms present,
						strong siliceous alteration, moderate veining, high
						relief, high iron staining, moderately disseminated
07THP114	528326	6601068	meta sed gneiss	none	outcrop	pyrite
						fine grain size, flds, amp, and pyx present, high
						relief, mafic dyke orientated 060 degrees through a
07THP115	528370	6600996	mafic dyke	weak	outcrop	meta sed gneiss
						10% pyrite, possible trace chalcopyrite, medium
						grain size, qtz and ms present, strong siliceous
						alteration, high relief, minor iron staining, highly
07THP116	528422	6601017	meta sed gneiss	none	talus/boulder	disseminated pyrite, sampled bldr around 40x40 cm
						trace pyrite, medium grain size, qtz and ms present,
						strong siliceous alteration, high relief, high iron
						staining, finely disseminated pyrtie, sampled bldr
07THP117	527885	6599121	meta sed gneiss	none	talus	about 20x20 cm
						strong siliceous alteration, high veining, high relief,
						qtz vein gets cut off by mafic dyke, qtz vein
07THP118	527703	6599090	qtz vein in meta sed gneiss	none	outcrop	orientated 286 degrees
			Quartz vein with metased			Quartz vein with 10 % pyrite. Continuation of the
07THP119	530861	6600013	gneiss wall rock	none	outcrop	main vein, moderatley disseminated pyrite.

APPENDIX 4 ROCK GRAB SAMPLE ASSAY CERTIFICATES

2 - 302 48th Street - Saskatoon, SK - S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@csllabs.com

Company: Geologist: Project: Purchase Order: APEX Geoscience Ltd. D. Arsenault AG-00722

TSL Report:S25017Date Received:Aug 23, 2007Date Reported:Sep 07, 2007Invoice:44541

Remarks:

Sample Type:	Number	Size Fraction	Sample Preparation
Rock	91	Reject ~ 95% at -10 mesh (1.70 mm)	Primary Crush, Rolls Crush
			Riffle Split, Pulverize, Sand Clean
		Puip ~ 95% at –150 mesh (106 μm)	Pulp Size requested ~ 1000 g
Pulp	0		None

Standard Procedure:

Samples for Au Fire Assay/AA (ppb) are weighed at 50 grams. Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

Au ppb Au1 ppb Au g/t, Au1 g/t	 Initial analysis of sample Repeats that accompany initial analysis, usually two every twenty samples Gravimetric repeats on values in either Au ppb column
GS-1P5B G905-6	 Value is based on a 30 gram sample weight Value is based on a 1 AT sample weight

Element Name	Unit	Extraction Technique	Lower Detection Limit	Upper Detection Limit
Au	ppb	Fire Assay/AA	5	3000
Au	g/tonne	Fire Assay/Gravimetric	0.10	6500

Tast reports may be reproduced, in their entirety, without our consent Liability is limited to the analytical cost for analyses.

#2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsilabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM		
	APEX Geoscience Ltd.	REPORT No.
	200 - 9797 - 45th Avenue	KEFORTING.
	Edmonton, AB T6E 5V8	S25017

SAMPLE(S) OF

INVOICE #:44541 P.O.:

D. Arsenault Project: Bighorn

91 Rock/0 Pulp

	Au	Au1	Au	File
	ppb	ppb	g/t	Name
07HCP001	10	5		S25017
07HCP002	15			525017
07HCP003	<5			S25017
07HCP004	5			S25017
07HCP005	<5			S25017
07HCP006	580			S 25017
07HCP007	<5			S25017
07HCP008	300			S25017
07HCP009	<5			\$25017
07HCP010	<5			S25017
07HCP011	910	830		S25017
07HCP100	40			525017
07HCP101	130			S25017
07HCP102	200			S25017
07HCP103	1730			S25017
07HCP104	5			S25017
07HCP105	10			S25017
07HCP106	5			S25017
07HCP107	<5			S25017
07HCP108	<5			S25017
COPIES TO:	M. Dufresne,)			
INVOICE TO:	Apex Geosciend	e – Edmontor	1	

Sep 07/07

SIGNED

Mark Acres - Quality Assurance

#2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsilabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	APEX Geoscience Ltd.
	200 - 9797 - 45th Avenue
	Edmonton, AB T6E 5V8

SAMPLE(S) OF

INVOICE #:44541 P.O.:

D. Arsenault Project: Bighorn

91 Rock/0 Pulp

	Au	Aul	Au	File
	dąą	ppb	g/t	Name
07HCP109	<5	<5		S25017
07HCP110	>3000		5.35	\$25017
07HCP111	15			S25017
07HCP112	5			\$25017
07HCP113	2350			S25017
07HCP114	25			\$25017
07HCP115	>3000		6.28	\$25017
07HCP116	>3000		4.12	S25017
07HCP117	160			S25017
07HCP118	>3000		6.31	S25017
07HCP119	1120	1110		S25017
07THP101	90			S25017
07THP102	10			S25017
07THP103	20			\$25017
07THP104	10			S25017
07THP105	<5			S25017
07THP106	< 5			\$25017
07THP107	<5			S25017
07THP108	<5			\$25017
07THP109	<5			S25017
COPIES TO:	M. Dufresne,	K. Raffle		

INVOICE TO: Apex Geoscience - Edmonton

Sep 07/07

SIGNED

2-2-2

#2 – 302 48th Street · Saskatoon, SK · S7K 6A4 F (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	APEX Geoscience Ltd.	REPORT No.
	200 - 9797 - 45th Avenue Edmonton, AB T6E 5V8	S25017

SAMPLE(S) OF

91 Rock/0 Pulp

INVOICE #:44541 P.O.:

D. Arsenault Project: Bighorn

	Au ppb	Au1 ppb	Au g/t	File Name
			5.	
07THP110	<5	5		\$25017
07THP111	<5			S25017
07THP112	5			S25017
07THP113	5			\$25017
07THP114	10			S25017
07THP115	15			S25017
07THP116	200			S25017
07THP117	5			\$25017
07THP118	5			S25017
07THP119	490			S25017
07KRP221	10	10		S25017
07KRP222	15			S25017
07KRP223	15			S25017
07KRP224	70			S25017
07KRP225	10			S25017
07KRP226	<5			S25017
07KRP227	10			S25017
07KRP228	40			S25017
07KRP229	< 5			S25017
07KRP230	240			S25017

COPIES TO: M. Dufresne, K. Raffle INVOICE TO: Apex Geoscience - Edmonton

Sep 07/07

SIGNED

#2 -- 302 48* Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsilabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	APEX Geoscience Ltd. 200 - 9797 - 45th Avenue	REPORT No.
	Edmonton, AB T6E 5V8	\$25017

SAMPLE(S) OF

INVOICE #:44541 P.O.:

D. Arsenault Project: Bighorn

91 Rock/0 Pulp

	Au	Aul	Au	File
	ppb	dqq	g/t	Name
	-			
07KRP231	1220	1250		S25017
07KRP232	15			S25017
07KRP233	290			S25017
07KRP234	320			S25017
07KRP235	150			S25017
07KRP236	>3000		5.11	S25017
07KRP237	>3000		8.02	92501 7
07DAP101	45			S25017
07DAP102	15			\$25017
07DAP103	160			S25017
07DAP104	15	20		925017
07DAP105	20			S25017
07DAP106	5			S25017
07DAP107	5			S25017
07DAP108	15			S25017
07DAP109	35			S25017
07DAP110	15			S25017
07DAP111	25			\$25017
07DAP112	25			S25017
07DAP113	5			S25017

COPIES TO: M. Dufresne, K. Raffle INVOICE TO: Apex Geoscience - Edmonton

Sep 07/07

SIGNED

Mark Acres - Quality Assurance

#2 – 302 48th Street ⁻ Saskatoon, SK ⁻ S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsilabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	APEX Geoscience Ltd. 200 - 9797 - 45th Avenue Edmonton, AB T6E 5V8	REPORT No. S25017

SAMPLE(S) OF

INVOICE #:44541 P.O.:

D. Arsenault Project: Bighorn

91 Rock/0 Pulp

	Au	Aul	Au	File
	ppb	ppb	g/t	Name
07DAP114	10	15		S25017
07DAP115	50			\$25017
07DAP116	540			S25017
07DAP117	>3000		12.69	\$25017
07DAP118	>3000		32.30	S25017
07DAP119	90			\$25017
07DAP120	100			\$25017
07DAP121	20			S25017
07DAP122	20			S25017
07DAP123	110			S25017
07DAP124	65			S25017
GS-1P5B	1360			S25017
GS-1P5B	1420			\$25017
GS-1P5B	1400			S25017
GS-1P5B	1430			S25017
GS-1P5B	1430			\$25017
G905-6			5.80	S25017
G905-6			5.73	S25017

COPIES TO: M. Dufreane, K. Raffle INVOICE TO: Apex Geoscience - Edmonton

Sep 07/07

SIGNED

Mark Acres - Quality Assurance

2 - 302 48th Street · Saskatoon, SK - S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Geologist: Project: Purchase Order	D. Arse Bighon		TSL Rej Date Re Date Re Invoice:	ceived:	S25017 Aug 23, 2007 Oct 24, 2007 44541
Sample Type: Rock Pulp	Number 91 0	Size Fraction Reject ~ 95% at –10 mesh (* Pulp ~ 95% at –150 mesh		Primary Riffle Sp	Preparation Crush, Rolls Crush lit, Pulverize, Sand Clean e requested ~ 1000 g

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	5 0000 ppm
AI *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
в*	1 ppm	2000 ppm	P*	0.001%	5%
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
BI	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr*	1 ppm	10000 ppm	Sr*	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Те	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	т.*	0.001%	10 %
Hg	0.01 ppm	100 ppm	ТІ	0.1 ppm	1000 ppm
к	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	۷*	2 ppm	10 000 ppm
Mg *	0.01%	30 %	Ŵ*	0.1 ppm	100 ppm
-			Zn	1 ppm	10000 ppm

Test reports may be reproduced, in their entirety, without our consent Liability is limited to the analytical cost for analyses.

TSL	
LABOR	
LATOR	
JES IN	
Ω.	

,

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

APEX Geoscience Ltd. Attention: D. Besserer Project: Bighorn Sample: 91 Rock

> Report No: S2S017 Date: October 24, 2007

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

07HCP113 07HCP114 07HCP115 07HCP116 07HCP117 07HCP118 07HCP118 07HCP118 07HCP118 07HCP119	07HCP108 07HCP109 07HCP110 07HCP111 07HCP112	07HCP104 07HCP105 07HCP108 07HCP108 07HCP107	07HCP111 07HCP100 07HCP101 07HCP102 07HCP102	07HCP006 07HCP007 07HCP008 07HCP009 07HCP010	07HCP001 07HCP002 07HCP003 07HCP004 07HCP004	Element Sample
88001 01280 11223 011218	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	000000	510119 50119	66666	82832	Ag
0.14 0.14 0.28 0.22 0.22 0.22 0.22 0.22	0.64 0.16 0.28 3.77 2.02	1,160 2,49 0,81	0.0.4.0.2 4.5 4.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.11 0.84 0.23 0.18	1.1.28 28 8 8 9	∦≥
88000 N 2008		1000 1287 1287	4 1 1 0 0 5 4 3 8 9 5	- 686. 55555	6.8 17.9 1.7 0.6	As
896.9 50.1 60.58.7 520.5 254.8 20692.3 567.1 36.2 13.3 13.3 101.4	4.3 94.6 5730.7 13.5 6.2	14.3 11.6 3.5	980.7 44.2 92.4 193.0 1452.1	13.7 1.7 137.8 9.2 3.7	-1 5 6 8 8 9 5 5 4 5	Ррb
88688 88688	\$\$\$\$\$\$	888888	*****	****	<u>88888</u> 8	ppm B
888333 <u>3</u> 37999	432 145 130 130	76 823 791 811 420	205 298 298	704728	155 238 228 34	ppm Ba
୪୦୯୯୦ ସ୍ପ୍ରେପ୍ ଏସ୍ଟ୍ରିଡ୍ ମ୍ପ୍ର୍ମ୍			102201	043023	0.0 2 2 2 2 2 2 2 2 2 2 2 2 5 2 5 2 5 2 5	AP m ⊡
0.02 0.02 0.11 0.02 0.12 0.02 0.02 0.02	0.18 0.12 0.58 1.68 0.19	0.82 0.14 0.28 0.29 0.05	11.86 5.61 8.98 1.23 1.84	0.05 0.70 16.14 1.03	0.40 0.89 0.36	* 8
<u> 44452 54444</u>	820 <u>8</u> 0	<u>88988</u>	04404	88888	<u>88888</u>	19 19 19
00023 41010	16,1 25,4 6,7	258 238 238	11.8 8.6 1.8 1.8	19.5 19.2 19.8	13.1 6.3 9.6	B 8
1950 3010 3010 3010 3010 3010 3010 3010 1300 1300 1470 1230	986.0 627.0 748.0 476.0 224.0	408.0 551.0 589.0 695.0	483.0 227.0 206.0 236.0	597.0 267.0 247.0 12.0 451.0	343.0 676.0 304.0 448.0 327.0	pp c
23522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25522 25527 25577 25577 255777 255777 255777 2557777 2557777 2557777 25577777777	57.2 21.0 116.0 151.7 32.9	40.8 55.0 21.7	4.3 5.0 12.3 1152.3	89.5 59.5 59.5	999.0 90393.1 158.1 23.6	
0.30 1.38 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0	2.71 1.27 3.88 3.81	3.58 3.74 4.16 4.16 2.23	3.59 2.65 1.85 0.95	4.89 1.40 2.81 0.43 2.72	2.38 4.05 6.53 5.54	% e
4N4N4 P4444	∞ ద్ చ చ చ	လကထမ	5ิงถึง-	404-1	4 សលា លា ល	Ga ppm
88888 80088 99998 988899		88888 2222	1.0.00 200 200	88088 8928 8928 8938 8938 8938 8938 8938 89	88888 99999	P H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.13 0.13 1.22	0.34 1.22 0.27	2.55 0.36 0.33	0.024 0.024 0.024	0.10 0.11 0.11	ያ አ
88283 827333	40055	๛ๅๅๅ๛	ଅଦ୍ୟା ତ୍ର	<u>√</u> ∞282	202302	ppm La
0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.60 0.41 1.17	0.59 1.83 0.72	0.25 0.26	0.36 5.14 0.20	0.49 0.43 0.78 1.16	* 8
	110 452 983					Pp Mo
2266 215 62 195 24 24 24 24 24 24 24 24 24 24 24 24 24	62.5 1.6 7.5	22 22 22 22	10 15 15	1.5 1.5	2000.0 6.5 3.4	
0.053 0.053 0.058 0.058	0.053 0.037 0.224 0.054	0,126 0,030 0,056 0,056	0.007 0.0117 0.011 0.048 0.024	0.014 0.036 0.003 0.0011	0,138 0,069 0,123 0,193 0,130	* 2
49996 66966 99667 5066	40.3 415.9 8.1	20.6 21.1 36.2 18.5	160.7 9.0 1.0	5.8 5.8 4.4 5.8	13.2 20.8 30.9 8.5	B Z
0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.007 0.007	0.041 0.009 0.054	0.080 0.083 0.061 0.063 0.014	0.070 0.178 0.034	0.018 0.021 0.035 0.005	0.042 0.028 0.060 0.118	ራግ

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

٠

Page 1 of 6

Signed:

hy.

Mark Acres - Quality Assurance

ISI
Z
BOR
TOR
IES]
<u>N</u>

.

Attention: D. Besserer Project: Bighorn

APEX Geoscience Ltd.

Sample: 91 Rock

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Dale: S25017 October 24, 2007

MULTIELEMENT ICP-MS ANALYSIS Aqua Regia Digestion

07KRP234 07KRP235 07KRP236 07KRP237 07KRP237 07KRP237	07KRP229 07KRP230 07KRP231 07KRP232 07KRP232	07KRP224 07KRP225 07KRP226 07KRP226 07KRP228 07KRP228	07THP118 R¢ 07THP119 07KRP221 07KRP222 07KRP223	07THP114 07THP115 07THP116 07THP117 07THP118	077HP109 077HP110 077HP111 077HP112 077HP113	07THP104 07THP105 07THP106 07THP107 07THP107	Element Semple
40.1 5.3 0.4	A0.30 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1	0.4 0.2 0.5	0.2 0.2 0.2	60.4 0.4 0.4	60.5 60.4 1 1 5 5 6 0.4	80088 1222	P∳4
0.26 0.15 0.14	3.95 0.246 0.246 0.24	1000 11 A2 20 20 40	0.24 0.32 0.30 1.87 0.52	0.96 2.36 2.27 2.27	1.25 0.09 1.16 2.62 0.56	0.26 0.26 2.99 2.17 1.56	*≥
1008 1008 1008 1008	80020 25735	3.0 1.8 29.2 22	1.3 1.7 13.8 0.6	24.2 0.8 1.4	40,5 11,5	^0.5 1.22 5.1 2.22 2.3	As
164,4 147,8 16109,5 7619,8 30,8	2.5 161.3 920.7 3.8 534.2	52.5 52.5	289 .2 289.2 10.3 14.2	2.0 4.6 7.3 4.1	40.5 0.5 0.5	40203 99999 99999	Au ppb
****	****	88888	88888	88888	****	88888	B
155 22395 162 19	382 346 163 94	396 351 351	341 0 72 311 04	438 185 194 74	1364 134 471 148	1352 187 901 90	Ва ррт
0 12 8 2 0 1 6 8 5 4	00-120 15-15-120		0-800	022	88080 11010	80088	pipm Bi
0.03 0.02 0.02 0.02 1.28	1.75 0.03 0.03 0.03	0,15 0,11 0,11 0,11	2.77 2.02 0.15 0.22	0.05 1.27 1.48 0.31 2.64	0.32 0.40 5.04 2.97	2.16 3.23 4.65 1.97 0.65	ጽ <mark>ይ</mark>
699999	<u>88888</u>	28888	200000	0.2 0.2 0.2	A0038	8080A	P 20
42 12 12 12 12 12 12 12 12 12 12 12 12 12	17.7 1.8 1.8	1230 26 3.9 5.3	3.2 4.5 7.1 18.8	205.4 1208-1 32	30.9 29.9	52 33.8 10.2 5	ppm Co
479.0 401.0 439.0 366.0	202.0 204.0 271.0 259.0	92.0 162.0 471.0 441.0 412.0	484.0 135.0 106.0 116.0	233.0 301.0 106.0 185.0	228.0 294.0 273.0 106.0 318.0	151.0 124.0 191.0 82.0 233.0	ង ច
12.3 7.1 581.2	15.5 15.5 11.3	1689.5 745.5 78.1 48.1	36.7 5.3 283.3 283.3	16.6 10.8 107.5 174.1 35.6	45.9 7.0 17.1 25.0	5.3 4.5 53.9 17.4	B C
4.85 4.85	4.28 0.90 1.43	10.53 11.80 1.12 1.30 2.12	14.48 14.48	2.62 5.00 1.69	2.27 1.51 1.83	1.21 2.62 3.486 1.85	ጽ <mark>ጉ</mark>
ω 4 4 → N	N44-4	un → <mark>*</mark> → uu	N N - N -	<u>^</u> co ~) ∪i Ui	⊸аа≙а	27444	ppn Ga
0.00 0.00 0.00 0.00 0.00 0.00				88888	88888 99999	88088 99999	Hg Hg
0.13 0.13 0.13	0.05 0.18 0.16 0.14	0.02 0.00 0.00 20	0.04 0.27 0.21 0.21	0.06 0.13 1.32 0.04	<pre><0.31 0.56 0.10</pre>	0.20 0.18 0.38	* x
692247	235321	₽ ₩→→₩	4	N ต พี่ อี 🔺	~∞~ <u>,</u> ∿0	a cu テ 4 œ	L9
0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.000 . 0.000 . 0.000 .	0.22 0.22 0.22 0.22	0.12 0.12 0.12	1.28 1.28 1.28	13,200 I.03 1,220 0,000	0.19 0.407 1467	* 2
360 565 565 565 565 565 565 565 565 565 5	473 961 60	162 131 178 258	321 542 533	241 912 925	1252 750	406 426 197	Mn.
4.0 13.0 11.7 2.8	38.6 3.7 3.6	18.2 4.7 2.8 2.3	70041 66565	1.6 1.6	1.8 3.0 0.7	0.4 0.4 0.6	ppm N
0,100 0,018 0,091 0,086 0,086	0.228 0.017 0.055 0.055 0.052	0.021 0.027 0.013 0.006 0.074	0.005 0.043 0.043 0.016	0.041 0.054 0.0554 0.0554	0.084 0.084 0.004	0,037 0,041 0,135 0,052 0,079	* N.
10.7 53.5 53.5	8.5 6.3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	20.5 24.7 23.7 17.9	8 10 8 15 8 10 8 15 8 10 8 15	186.2 186.2 14.5 14.9	14.9 7.5 22,4	7.0 8.5 20.0 32.5	
0.004 0.005 0.002 0.136	0,060 0,003 0,003 0,003 0,003	0.028 0.024 0.025 0.027 0.097	0.022 0.022 0.040 0.027 0.027	0.017 0.162 0.068 0.054 0.022	40.077 0.158 0.063	0.041 0.028 0.078 0.078 0.078	\$ D

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

1

Page 2 of 6

Signed:

ng h

Mark Acres - Quality Assurance

2
Ë.
•
Ъ.
E .
Ψ.
Ο.
÷.
C .
-
\frown
≚.
2
<u>يم</u>
C
Ż.
Ω

Report No: S25017 Date: October 24, 2007

MULTIELEMENT ICP-MS ANALYSIS

Attention: D. Besserer Project: Bighorn Sample: 91 Rock

APEX Geoscience Ltd.

Aqua Regia Digestion

BLK STD DS7 STD DS7 ELK STD DS7	BLK STODS7 STODS7 BLK STD DS7	07DAP122 07DAP123 07DAP124 STD DS7 STD DS7	07DAP117 07DAP118 07DAP118 07DAP120 07DAP121	07DAP112 07DAP113 07DAP114 07DAP115 07DAP116	07DAP107 07DAP108 07DAP108 07DAP110 07DAP110	07DAP102 07DAP103 07DAP104 07DAP104 07DAP108 07DAP108	Element Sample
	09 09 09 09	0.2	A 0.3 0.3 0.3	024040B	0.5 0.5 0.5		P A
1,14 1,14 1,14		1.01 1.01 1.02 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	0.0046	0.90 0.32 0.20 0.75	0.88 1.37 0.31 2.41 0.06	1.28 0.13 0.70 0.91	\$ E
536495 535 535 535 535 535 535 535 535 535 5	5855 5655 5655	49.7 10.8	54.9 1.4 1.4 2 5 4 1.4 5 2 1.4 5 5 4 1.4 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 5 5	0.5 10.5 15 0.5 10.5 15	0.9 1.4 1.7 1.7	7.6 0.9 7.6	As
805 50 50 50 50 50 50 50 50 50 50 50 50 5	55 2 8 3 4 9 8 9 4 9 8 9 4 9 8 9 4 9 8 9 4 9 9 19	406 5 715 58.2	13271.1 26910.2 47.1 341.3 17.2	15.2 2.8 9.1 391.9	10.0 8.4	7.8 264.8 7.9 7.7 3.1	Au Au
88888	280498	**\$\$\$\$	88888	88888	88888	88888	Ppm B
4 22 4 11 9 4	85 스 ⁴ 88 스	385 385	83 47 302	13 25 25 45	124 193 14 138	68 295 236 236 507	ppom Be
6446	64464 6-46-4	44008 48421	800118 122213	00-100	80400 12511	00000 00105	ppm P2
40.01 1.02 1.06	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.96 0.96	0.06 0.85 5.77	1.02 0.02 0.03 0.03	0.44 0.89 0.51 0.72	0.24 0.13 0.13	* 6
000000 0400-	80880 24834	6600000 6000000	0.000 0.22 22	<u>8888</u> 2	<u> </u>	666666	pp Q
10.6 0.1	92 92 92	9.5 9.5 9.8	9.8 12.5 50.6 12.4	10.5 2.4 2.3 4.8	565 565	52.3 7.3 3.4 3.3	ppm Co
214.0 220.0 227.0	203.0 194.0	139.0 244.0 221.0 203.0 205.0	198.0 319.0 152.0	135.0 383.0 445.0 2779.0 138.0	104.0 500.0 228.0 218.0 422.0	145.0 1219.0 658.0 630.0 400.0	ppm Ը
<0.1 116.3 <0.1 134.6	40.1 111.9 40.1	78.6 9.5 4.4 110.0 122.3	27.1 18.4 215.6 22.1 3.8	448.9 12.7 14.4 18.8	270.4 1697.8 51.1 343.1 176.5	572.6 27.9 56.9 61.1 26.7	ppm CL
22,22,24 20,01 88,01 88,01 88,01 88,01 88,01 88,01 88,01 88,01 88,01 88,01 84,0100000000000000000000000000000000000	2.01 2.25 2.35 2.35	2.73 1.67 1.37 2.42 2.47	2,64,22,98 2,46 2,46	2.57 0,98 1,34 2.72	2.17 2.99 7.23 3.78	6.95 1.79 2.57 2.53 2.53	ъ
თ ბ თ თ ბ	5 4 4 C m	ᇯᇯᅀᇣᇏ	1 N 1 1 N	• 7 7 - M	ᆂᄧᅇᄪᄼ	နင်ကမလ	រ រដ្ឋា
0.21 0.21 0.21	0.22 0.22 22 22 22 22 22 22 22 22 22 22 22 22	0.18 0.18	0,10 40,01 40,01 40,01	0.14 0.01 14		40.01 40.02 40.01	P F
0.000.00 47.046.510 47.046.510	0.000 60.460 60.460	0.10 0.42 0.43	0.02 0.03 0.12	0.09 0.01 0.03	0.19 0.24 0.22 0.22	0.27 0.05 0.08 0.18	* 7
25727	22222	12 6 6 7 1		≓∞≏∾≏	៷៰៷ៜ៹	0~4~N	
1.16 1.16	1.02	1.29 0.59 1.05 1.05	0.05 0.11 0.32 2.42	0.57 0,19 0,01 0.06 0.26	0.61 0.71 1.42 0.05	0.27 0.09 0.73 0.54	* 5
34884 4	593 A 528 A	692 691 693	240 225 730 730	371 233 245 226	315 402 68	143 150 255 218	n de Ma
22.6 25.6 25.6	1997 1997 1997 1997 1997 1997 1997 1997	20.24 0 21.85 1 4	35.3 29.7 5.8 0.5	6.9 6.9 2.3	7.8 11.4 2.6	221-39 258-17	Pp Mo
40.001 0.105 0.104	<pre><0.001 <0.096 <0.092 <0.092 <0.098 </pre>	0.082 0.050 0.066 0.089 0.083	0.002 0.001 0.072 0.119 0.037	0.078 0.040 0.060 0.080	0.055 0.177 0.017 0.001	0.017 0.007 0.087 0.045	* 8
84.3555 1.1.4.5.3	52.5 53.5 54.2	6.6 14.1 58.1 57.8	21.4 23.3 49.2 18.4 73.3	4-1 6-8 10-2	40.1 29.7	12.1 27.0 33.7 16.3	
<pre><0.001 <.084 0.085 0.085</pre>	40.001 0.079 0.082 0.077	0.089 0.006 0.003 0.071 0.075	40.018 0.018 0.032 0.032	0.023 0.005 0.005	0.049 0.045 0.009 0.009	0.050 0.017 0.074 0.029 0.039	ታъ

A 0.5 g sample is digeated with 3 mil 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

•

Paga 3 of 6

Signed:

M

Mark Acres - Quality Assurance

TSL
LABOR
ATOR
TES IN
Ω

MULTIELEMENT ICP-MS ANALYSIS

Sample: 91 Rock

Attention: D. Besserer Project: Bighorn

APEX Geoscience Ltd.

Aqua Regia Digestion

07HCP118 07HCP119 07THP101 07THP102	07HCP113 07HCP114 07HCP115 07HCP116 07HCP116	07HCP108 07HCP108 07HCP110 07HCP111 07HCP111	07HCP104 07HCP105 07HCP106 07HCP106 07HCP107	07HCP011 07HCP100 07HCP101 07HCP102 07HCP102	07HCP006 07HCP007 07HCP008 07HCP009 07HCP010	07HCP001 07HCP002 07HCP003 07HCP004 07HCP005	Element Sample
4198.6 31.9 5.4 7.4	1.2 1.5 2.0 1.5	6 5 7 - 5 5 5 3 - 5 5 5 5 - 5	6.6 10.7 5,9	2.8 11.6 4.9	3712 1.4 2.9	1,4 1,4 1,4	P P
40.05 0.05	0.12 0.13 0.19	011500 812858	0.22 0.32 0.32	80008 88888	1.05 1.44 1.24	0.17 0.15 2.91 1.69	ະທ
6004	<u>885555</u>	<u> </u>	0.1.1.2.2	17.0.4 0.1 17.1	6 <u>69</u> 66	ê <u>2</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b S S
0.4	1.8 0.2	ខ្លាំ 4 លិខ ស្រុសស្ត	4.9 10.2 6.5	12.2 9.8 17.9 0.7	14 14 14	1.5 2.6 4.8 7	88
8884 8886	88888 8888 8888 8888 8888 8888 8888 8888	1480 1588 1588 1588 1588 1588 1588 1588 15	1.9 1.9 2.5	68888 6888 6888 6888 6888 6888 6888 68		4 N 0 5 0 5 5 5 7 5	Se Se
00Ö47	രാലാനം	58871	38529	294 220 55 52	±5658∞	11 8 9 13 8	β β
444-	<u>4</u> 4 N	*****	77777	- 7 7 7 0	22222	77777	Te
4.3 12.2	9.9 9.9	1.2 1.2 7.2	1.1 2.9 1.1	23.6 1.0 9.9	12.7 0.2 0.2	14.2 9.3 5.0 28	100 T
0.002 0.024 0.001 0.004	0.001 0.001 0.042	0.043 0.074 0.235 0.215	0.111 0.089 0.201 0.206 0.040	0.247 0.005 0.252 0.252 0.002	0.084 0.026 0.024 0.005	0.137 0.096 0.134 0.134 0.144	* =
8888	000000	0.02	600 1222 1	<u> </u>	<u> </u>	66666	b D J J
1.5	122222	0.9 0.9 2.0	0.5 0.5	20.3 0.9 0.4	60 0 	02244 22852	D C
100 m 0	≅ &AAA	185 73 7 93 46	107 129 106	2 - 18 8 - 2	2 3 a № 1 ω	85334	ppm <
<u>6</u> 238	302 3.5	0.4 0.4 5 4	0.4 0.4 0.4	44202 44202 44202	0.1225	0 8 4 4 - 2 8 - 6 5	¥ ∉
, ∂∞5 8	178 178	110 110 110	885128	22 23 23 23	17 12 17	2 N 0 2 9 2 2 3 5 2 6	2n Zn

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

٢

07THP103

3.**4**

0.07

<u>6</u>.1

80

6,6

ы

Δ

13.8

0.001

<u>0</u>.1

1. 4

۵

0.2

6

Page 4 of 5

Signed:

AN

ISL
Ľ
BOH
A
DRIE
N
ņ

MULTIELEMENT ICP-MS ANALYSIS

APEX Geoscience Ltd. Attention: D. Besserer Project: Bighorn Sample: 91 Rock

Aqua Regia Digestion

07KRP234 07KRP235 07KRP235 07KRP237 07DAP101	07KRP229 07KRP230 07KRP231 07KRP232 07KRP232	07KRP224 07KRP225 07KRP226 07KRP227 07KRP228	07THP118 Re 07THP119 07KRP221 07KRP222 07KRP223	07THP114 07THP115 07THP116 07THP116 07THP117 07THP18	077HP109 077HP110 077HP111 077HP112 077HP112	07THP104 07THP105 07THP105 07THP105 07THP106	Element Sample
12431 12042	15,8 16,9 1,4	4.5 4.5 4.5	13.9 1.9 7.5 9.2	140684 40684	47507 47505 6755	55984 - 558 - 1658 - 1658	말 문
0.06 0.37 0.37 1.71	40.05 0.18 0.05	6.17 7.83 0.18 0.07	0.11 1.06 210.00 1.60	0,12 0,149 0,12	0.12 0.16 0.11	0.117 0.61	ጽ ለ
	02000	0.000	\$00000 14222	28282	22222	60.0 0.2 0.2	S S
0.7 0.2 2.2	10.8 0.5 0.5	17.1 1.0 5.6	125 7.3	05034 80344	82 180 78	4357 4840 1584	β β
40.5 13.1	6666 A	40.8 3.2 3.2	12.9 12.9 19	11124	A & B & A & A & A & A & A & A & A & A &	8-888 8-888	ррт Se
ယကက္ရွိတ	4 5 3 10 4 5 3 10	55 2005 2005 2005 2005 2005 2005 2005 2	117 18 18	82224	1282443	3554313	pp Se
2~*~7	77777	0 0 0 0 0 0	7 7 7 7 7 7	77777	7777J	<u> </u>	ppm Te
7.0 1.6 1.2	92 92	1.2 1.2 1.2 1.2	5.4 5.4	5.3 5.3 0.8	86496	319 319	Th
40.007 0.001 0.001 0.001	0.257 0.001 0.002 0.001 0.001	0.140 0.194 0.002 0.002 0.052	0.009 0.007 0.148 0.171	0.004 0.116 0.195 0.292 0.010	0,125 0,005 0,003 0,003	<0.001 <0.001 0.052 0.112 0.122	* I
000000	88888	88800	66666	<u> </u>	66666	999999	р н
002 002 002 004	0.3 0.3 0.5	1.1 0.3 1.5	114 194 194	0.1.0 0.4	Å0-009	001004	pan c
50000	N A A A A	និ៍ដឹ _ម តនិ	178 51	83881	ននីនេសទី	ខនដ៍ ដដ	ppn v
40.1 1.4	0.1 0.1 0.3	14.0 0.2 5.1	40,1 3,9 0,5	012 012 012	<u> 22222</u>	0.4 0.4	pp x
a±4∞8	ია აი 110	85058	86458	87 128	² 73488	37 55 57 7 6 37	Zh Ppm

A 0.5 g sample is digested with 3 ml 3:1 HCI-HINO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

Page 5 of 6

Signed:

Å

TSL
LABC
DRAT
ORIES
NO.

MULTIELEMENT ICP-MS ANALYSIS

Project: Bighorn Sample: 91 Rock

APEX Geoscience Ltd. Attention: D. Besserer

Aqua Regia Digestion

PLK STD DS7 PLK STD DS7 STD DS7 STD DS7 STD DS7 STD DS7 STD DS7	070AP122 070AP122 070AP123 070AP124 STD DS7 STD DS7	070AP117 070AP118 070AP118 070AP118 070AP120	07DAP112 07DAP113 07DAP114 07DAP115 07DAP116	07DAP107 07DAP108 07DAP109 07DAP110 07DAP110 07DAP111	07DAP102 07DAP103 07DAP104 07DAP105 07DAP105 07DAP106	Element Sample
	667 67 67 67 67 67 67 67 67 67 67 67 67	333.9 556.5 11.9 6.4	2.8 12 5.7 4.7	3.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.1 3.2 3.0	PP 위
0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.28	4 3 1 0 1 4 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	0.24 0.25 0.24	×10.00 3.45 0.94	3.88 0.97 0.29 0.29	80 ¥
	\$\$\$\$\$\$	66215	<u>88888</u>	0.00000	0.4 0.4	ppm SP
66666 66666	222431 266874	5.1 5.1 5.1	0.8 0.5 0.7	1.7 2.3 1.1 0.3	11.2 5.5 2.6	B 장
363376 263268 35775 85358	22222 22222	A 11 4 22 0 5 7 0 8 9	89999 8999	1.1 21.9 4.1 2.7	41123 56223	bbu S ⁹
25525 22523	27526 44725	รี้ฮ์ฮีงด	5 4 ଫ ଫ ଧ ଦ	52288	14808	nd Burka
		7 7 7 7 N	77777	2 A A A A A	<u></u>	Te
59889 59888	4.4 4.6 4.6		9.0 0.1 0.1	40.7 0.1 0.1	1.5 1.5 2.6	₿≓
40.001 0.120 0.123 0.123 0.123 0.120 0.120 0.146	0,105 0,115 0,114 0,114	0.001	0.025 0.001 0.002	0.124 0.088 0.088 0.170 0.003	0.142 0.003 0.081 0.032	* =I
40440 40440 61610 101010	\$\$ <u>9</u> 243	666666	<u> 66666</u>	66666	86989	PP T
99589 v <u>6</u> 589	44010 489 89 80 127	0.5221	0.5 0.5 0.5	1.8 5.2 0.3 2.1	0.3 0.3 1.0	pbu c
860890 20230	కొర్ గండి :	±8;≠8;=	ដីច្ផរជ	84\$P&	ፚፚቘፚፚ	ppm <
აბცაბ აბცაბ ნანხა განხა	3.7 3.5		020014	53.7 16.3 16.8	>100.0 1.3 0.4 0.1	ppu W
<u>448</u> 44 8484	4120 4150 4150	426 18 12 13	56 N นี้ ปี	54848	81478	udd V2

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.1. H2O.

Page 6 of 6

Signed:

N.

APPENDIX 5 HMC STREAM SAMPLE LOCATIONS

	5 - HMC SAM		PTIONS AND LOC	ATIONS						
sample id		-		Au 10 [^] -6 [*] g estimated	sand %	silt %	clay %	moisture	vegetative	
07DAH101	530585		<u> </u>	29.19			/_	wet	vegetative	
					-		-			
07DAH102	530913	6600966	/	11.49	40		10	wet	sprs grs	
07DAH103	529679	6600901	6	11.66	40	60	0	wet	sprs-mod g	rs and con
07DAH104	530657	6600628	12	46.99	40	50	10	wet	sprs grs	
07DAH105	527482	6599266	3	3.3	80	20	0	wet	sprs grs an	d con
07DAH106	529025	6591763	27	66.37	30	60	10	wet		
07DAH107	528963	6592842	18	50.34	80	20	0	wet		
07DAH108	533270	6601930	35	19.39	60	40	0	wet		
07DAH109	535346	6599903	4	12.01	80	20	0	wet	sprs con ar	nd grs
07DAH110	533302	6601586	1	11.41	80	20	0	wet		
07DAH111	534442	6599217	2	13.1	80	20	0	wet		
07DAH112	532895	6600579	0	0	85	15	0	wet		
07DAH113	531120	6598489	1	1.05	80	20	0	wet	mod con	

[comments							
	07DAH101	stream 10m wide, 10cm deep, high flow rate. 50% gtz, 20% feldspars, 30% mafics-chlorite,biotite.							
[07DAH102	figh energy alpine stream, approx 4m wide and 10-20 cm deep. River organics, not enough clay fro silt sample. Bouldery							
- [07DAH103	stream is 1 m wide 5-10cm deen moderate flow rate. Sample taken at flat sediment trap under small 0.5m waterfall 40% otz 30% feldspars musc							

% qtz, 30% feldspars, muscovite and some mafics 07DAH103 strea is 1 m wide, 5-10cm deep, moderate flow rate. Sample taken at flat sediment trap t

07DAH104 sample taken at narrow braid of stream. Lower flow rate. Less than 10 cm deep. 40% qtz, 30% feldspars, micas

07DAH105 40% qtz, 30% feldspars, 30% lithic fragments, mafic. Stream 10m wide, 30-40cm deep. Very high energy. Not a lot of fine material. Cannot take silt.

07DAH106 20% qtz, 20% feldspars, 60% mafic-chlorite biotite. Stream is 5m wide and 10cm deep. Mod flow rate incirque glacier valley. Sampled FeOx band

07DAH107 stream is 10m wide 0.4m deep. Very high flow rate. 40% quartz, 30% feldspars, 30% biotite. To sandy cannot take silt sample.

07DAH108 stream is 7 m wide 30cm deep. Low flow rate. 20% quartz, 10% feldspars, 70% mafic/ lithic fragments

07DAH109 |narrow 1.5m stream, 10-30cm deep. Mod flow rate. 20% quartz, 40% feldspars, 40% mafics. Bedrock is sheared grey blue porphyritic-fine grained phenocrysts. Plag and bt with quartz pods

07DAH110 20% guartz, 40% feldspars, 40% mafics. Low energy stream 5m wide and 10-50cm deep.

07DAH111 stream is 1m wide, 10cm deep. Low flow rate. 30% quartz, 40% feld, 30% lithic fragments.

07DAH112 very low flow rate. 0.5-1m wide, 10cm deep. 40% quartz, 20% felds, 40% lithic fragments.

07DAH113 20% quartz, 20% felds, 60% lithic fragments and mafics. Mouth of drainage emptying into boghorn creek. 2m wide, 10cm deep, mod flow rate.

APPENDIX 6 HMC STREAM SAMPLE ASSAY CERTIFICATES

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project: Samples: 13

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Knelson Concentrates

Report No: 07-1152

Date of Report: October 01, 2007

Column Header Details

Original Sample Weight in kilograms (SWT) +1.7mm in grams (+1.7mm) Concentrate in grams (Concentrate)

Sample	SWT	+1.7mm	Concentrate
Number	kg	g	g
07-DAH-101	5.3	1.8	54.79
07-DAH-102	7.3	3.0	47.13
07-DAH-103	9.0	2.5	70.39
07-DAH-104	6.6	2.3	54.93
07-DAH-105	7.6	2.6	56.91
07-DAH-106	8.9	8.0	48.09
07-DAH-107	7.6	2.3	41.75
07-DAH-108	9.1	2.0	59.66
07-DAH-109	6.8	2.0	49.67
07-DAH-110	6.5	5.0	58.28
07-DAH-111	7.8	1.2	60.94
07-DAH-112	8.3	3.9	62.59
07-DAH-113	9.8	3.4	60.32

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Report

Apex Geoscience Ltd

October 01, 2007

Attention: Michael Dufresne PO #/Project:

Samples: 13

Sample #	Sample Weight in Kg	Visible Gold Grain Count	Estimated Weight of Gold in μg
07-DAH-101	5.3	4 7	29.19
07-DAH-102	7.3		11.49
07-DAH-103	9.0	6	11.66
07-DAH-104	6.6	12	46.99
07-DAH-105	7.6	3	3.3
07-DAH-106	8.9	27	66.37
07-DAH-107	7.6	18	50.34
07-DAH-108	9.1	35	19.39
07-DAH-109	6.8	4	12.01
07-DAH-110	6.5	1	11.41
07-DAH-111	7.8	2	13.1
07-DAH-112	8.3	0	
07-DAH-113	9.8	1	1.05

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-101

Estimated Weight of Gold in micrograms: 29.19

Length in µm	Width in µm	Description
300	200	D
180	120	I
140	100	А
60	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-102

Estimated Weight of Gold in micrograms: 11.49

Length in µm	Width in µm	Description
140	120	I
140	120	R
120	120	1
120	80	А
100	60	A
60	40	I
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-103

Estimated Weight of Gold in micrograms: 11.66

Length in µm	Width in µm	Description
160	100	I
140	100	A
140	80	А
120	120	А
100	80	A
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Report No: 07-1152

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-104

Estimated Weight of Gold in micrograms: 46.99

Length in µm	Width in µm	Description
400	140	I
160	120	I
140	120	I
140	120	I
140	100	I
120	100	I
120	100	1
120	60	1
100	100	1
80	40	I
80	40	I
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-105

Estimated Weight of Gold in micrograms: 3.3

Length in µm	Width in µm	Description
120	120	I
80	60	I
80	40	I

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-106

Estimated Weight of Gold in micrograms: 66.37

Length in µm	Width in µm	Description
280	220	D
200	120	
180	140	
180	100	
180	100	A
160	120	
140	100	
140	80	
140	80	
120	120	
120	80	A
120	80	I
120	80	A
100	100	I
100	80	I
100	80	
100	60	A
100	60	
80	60	
80	60	
80	60	
60	60	A
60	40	
60	40	
40	20	
40	20	A
20	20	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-107

Estimated Weight of Gold in micrograms: 50.34

Length in µm	Width in µm	Description
300	220	А
220	100	А
140	140	I
140	120	I
140	100	A
140	80	I
120	100	I
120	80	I
100	100	I
100	60	I
100	40	А
100	20	I
80	80	I
80	60	I
80	40	I
80	40	I
60	60	I
60	40	I

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-108

Estimated Weight of Gold in micrograms: 19.39

Length in µm	Width in µm	Description
180	100	A
180	100	
140	140	
100	60	
100	40	
80	80	D
80	60	
80	60	
80	60	
80	60	
80	40	
80	20	D
60	60	
60	60	
60	40	D
60 60 60 60 60	40 40 40 40 40	
60	40	
60	20	A
60	20	
40	40	
40	40	
40 40 40 40 40	40 40 40 30 20	
40 40 40 40 40	20 20 20 20 20 20	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-109

Estimated Weight of Gold in micrograms: 12.01

Length in µm	Width in µm	Description
220	140	А
120	100	I
100	100	I
60	40	I

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-110

Estimated Weight of Gold in micrograms: 11.41

Length in µm	Width in µm	Description
260	140	D

October 01, 2007

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-111

Estimated Weight of Gold in micrograms: 13.1

Length in µm	Width in µm	Description
220	160	I
160	100	I

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Gold Grain Description Detail

Apex Geoscience Ltd

Attention: Michael Dufresne PO #/Project:

Sample Number: 07-DAH-113

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in μm	Description

100 80 I

October 01, 2007

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

APPENDIX 7 SILT SAMPLE LOCATIONS AND DESCRIPTIONS

APPENDIX 7 SILT SAMPLE LOCATIONS AND DESCRIPTIONS

sample_id	x_nad27z8	y_nad27z8	sand_%	silt_%	clay_%	moisture	colour	vegetative_matter
07DAS001	529682	6600902	0	0	100	wet	med brown	sprs grs
07DAS002	527493	6599269	0	0	100	wet		none
07DAS003	528971	6592838	0	0	100	wet		sprs con
07DAS004	533303	6601582				wet		
07DAS005	532898	6600579						

	comments				
07DAS001	silt sample med brown clay with small sand and large silt				
07DAS002	sampled from ridg	e crest			
07DAS003	sampled from ridge crest				
07DAS004	low energy stream, 5m wide, 10-50cm deep. Taken @ 07DAH110 sample site				
07DAS005					

APPENDIX 8 SILT SAMPLE ASSAY CERTIFICATES

2 - 302 48th Street · Saskatoon, SK - S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsilabs.com

Company: Geologist: Project: Purchase Order:	M. Dufre Bighorn		TSL Report: Date Received: Date Reported: Invoice:	S25023 Aug 23, 2007 Nov 07, 2007 44477
Sample Type:	Number	Size Fraction	Sample Preparation	
Silt	5	-80 mesh	Dry, Screen	

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Nam o	Lower Detection Limit	Upper Detection Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	50000 ppm
AI *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	1000 0 рр т	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
в*	1 ppm	2000 ppm	P*	0.001%	5%
Ba *	1 ppm	1000 ppm	РЬ	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ррт	Se	0.5 ppm	1000 ppm
Cr 🖣	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Тө	1 ppm	2000 ppm
Fe "	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	Ti *	0.001%	10 %
Hg	0.01 ppm	100 ppm	TÌ	0.1 ppm	1000 ppm
κř	0.01%	10 %	U*	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V*	2 ppm	10000 ppm
Mg *	0.01%	30 %	Ŵ*	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

A 0.5 g semple is digested with 3 ml 3.1 HCHH03	BLK STO DS7	07DASD01 07DASD02 07DASD03 07DASD04 07DASD05	Element Sample	Sample: 5 Silt	APEX Geoscience Ltd. Attention: M. Dufresne, K. Raffle Project: Bighorn
	0,2 0,2	êeêêe	ppm &	#	. Dufre
	1.08	1,36 0,35 1,10 1,54	* Þ		ce Ltd ane, K. 1
	8 8	5.6 5.6	وير سرط		L. Raffie
	-05 52,3	3.9 1,4 3,6 1,1	Au		
	ŝ 4	88888	ррлл В		
	407	202 36 205 191	pom Ba		
	4 .6	<u>88880</u>	ppin P i		2-3
	-0.01 1.00	0.58 0.81 0.44 0.32	¥ 0	MU	302 48th Te
	<0.1 6,4	02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B g	LTIELI	TSL L Street E I: (306) [•]
	-0.1 10.3	13.2 5.3 13.9	Ppm o	EMEN Aqua Re	.ABOI :ast, Sas 931-103
	<1 207.0	29.0 25.0 7.0 27.0 39.0	PPm Q	EMENT ICP-MS A Aqua Regia Digestion	ATO katoon, 3 Fax:
	<0.1 108.5	38.0 7.5 25.0 48.5	ppm Cu	MULTIELEMENT ICP-MS ANALYSIS Aqua Regia Digestion	TSL LABORATORIES INC. 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K Tel: (306) 931-1033 Fax: (306) 242-4717
	40.01 2.59	2.79 2.45 3.39	* 2	ALYS	NC. 1ewan, 1 12-4717
	ωÂ	ຜພຸດເພ	р G	3	57K 6A4
۵ ۵	0.21	0 40 01 0 01 0 01	₽ J		4
ୟୁ ୬୦ ୧୦ 	<0.01 0.46	0.28 0.06 0.11 0.18	* *		
	12 4	5 7 7 7 7	ррт		
Yy .	-0.01 1.14	1.05 0.52 0.18 1.04	x 6		
	675	431 431 431	ppm M∩		
	21 8 .1	0.5 0.3 3.2	ррт Mo		Report No: Date:
	<0.001 0.110	0.023 0.007 0.015 0.014	8 F		Vo: Nove
	<0,1 60,8	16.4 14.1 19.9	ppm N∷		x S25023 November 07, 2007
1	0.092	0.168 0.233 0.172 0.101 0.099	ט אנ		S250Z3 17, 2007

.

.

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 85C for 1 hour and diluted to 10 ml with D.I. H2O.

Page 1 of 2

Mark Acres - Quality Assurance

NIBIN	
Acres .	
	i
2	
SUBIC	

Signed:

Page 2 of 2

A 0.5 g sample is digested with 3 ml 3:1 HCI-HNO3 at 95C for 1 hour and diluted to 10 ml with D.I. H2O.

APEX Geoscience Ltd. Attention: M. Dufresne, K. Raffle Project: Bighorn Sample: 5 Silt
--

TSL LABORATORIES INC.

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

BLK STD DS7	07DAS001 07DAS002 07DAS003 07DAS004 07DAS005	Élement Sample
72.2	6.6 5.566 6.87966	Pom P
<0,05 0,27	0.05	්ගෙ
4,8 4,8		SP SP
40.1 2.6	4.0 2.0	ppun Sc
3.9 3.9	-9899	se Se
34	82822	bbul S ^L
ΔΔ	2222 <u>2</u>	Te
<0.1 4.2	20.2 20.2 20.2 20.2 20.2	다. 11 mig
<0.001 0.111	0.102 0.041 0.032 0.053 0.083	8 I
4.3 4.3	<u>88888</u>	19 11
4.8 4.8	11741 2006	ppm u
88 ∧	3 4 5 2 3	
~0.1 3.6	0.2 0.6 0.5	Ppm W
4 16 스	865398	ppm Zn

Report No: S25023 Date: November 07, 2007

2 - 302 48th Street • Saskatoon, SK + S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com APEX GEOSCIENCE NOV 1 9 2007 RECEIVED 99105

Company: Geologist: Project: Purchase Order: APEX Geoscience Ltd. D. Arsenault Bighorn AG-00721

TSL Report:S25023Date Received:Aug 23, 2007Date Reported:Sep 04, 2007Invoice:44477

Remarks:

Sample Type:	Number	Size Fraction
Silt	5	-80 mesh

Sample Preparation Dry, Screen

Standard Procedure:

Samples for Au Fire Assay/AA (ppb) are weighed at 30 grams. Samples for Au Fire Assay/Gravimetric (g/lonna) are weighed at 1 AT (29.16 grams).

FI 4			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	ррь	Fire Assay/AA	5	3000
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%

#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	APEX Geoscience Ltd.
	200 - 9797 - 45th Avenue
	Edmonton, AB TEE 5VB

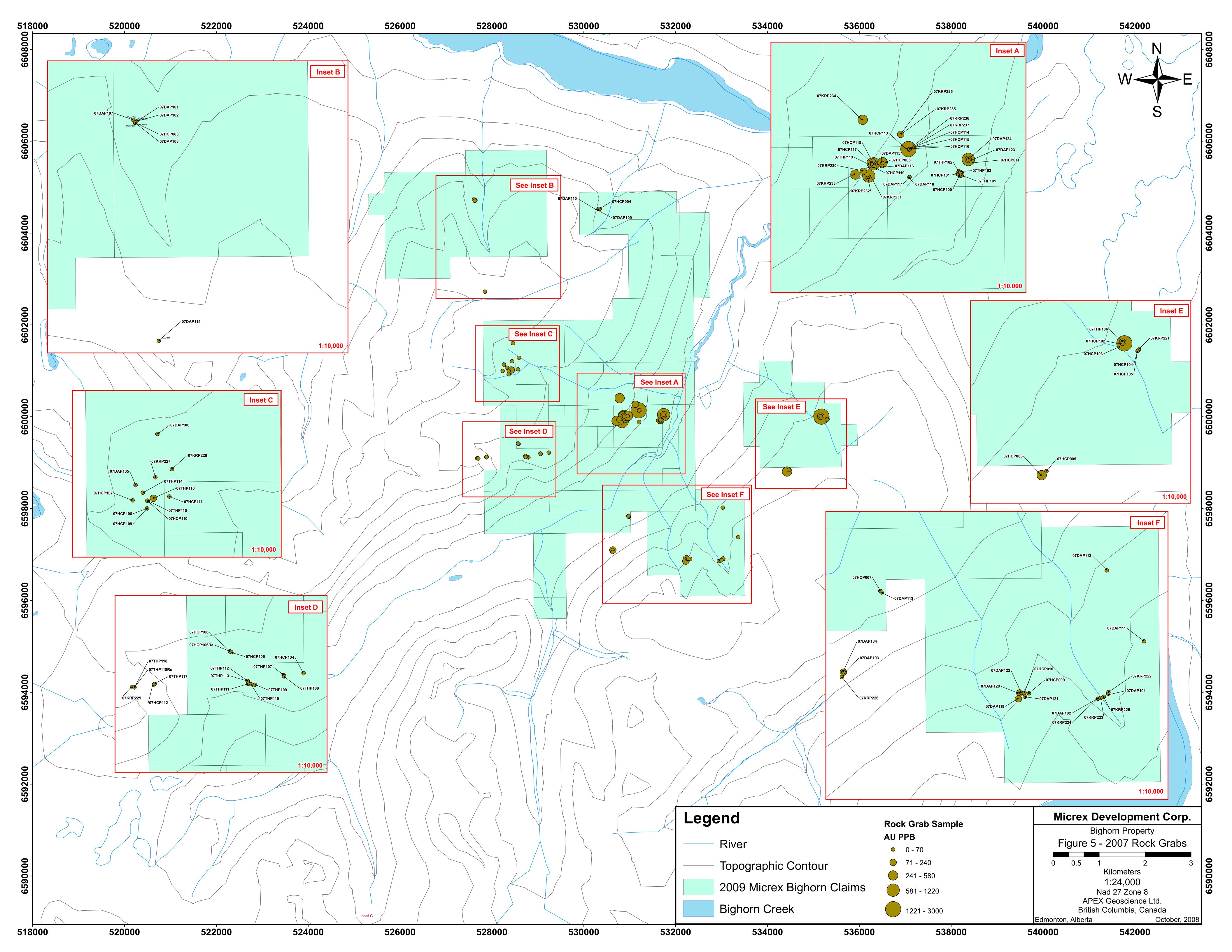
SAMPLE(S) OF

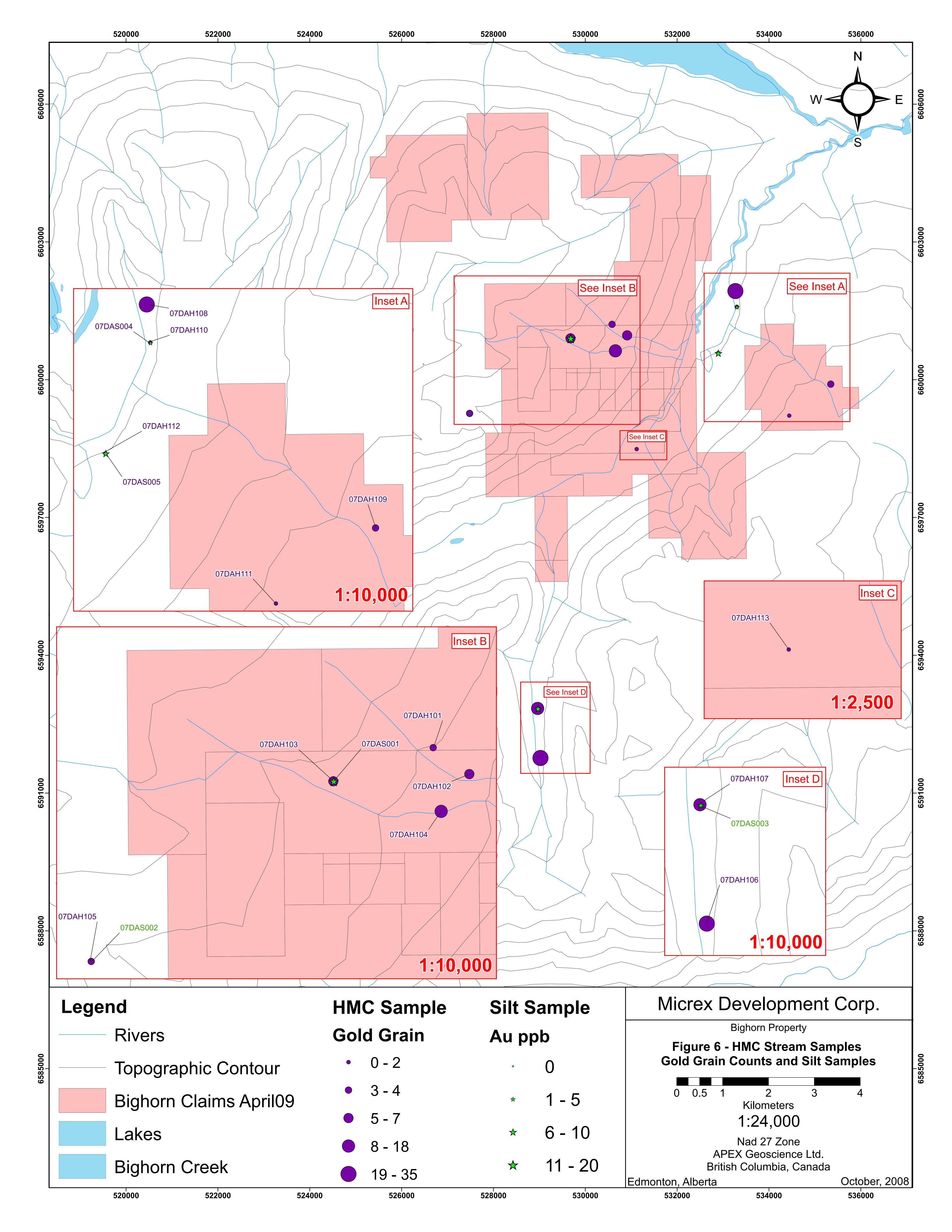
5 Silt/0 Pulp

INVOICE #:44477 P.O.:

D. Arsenault Project: Bighorn

	Au ppb	File Name
07DAS001	20	S25023
07DAS002	<5	S25023
07DAS003	10	S25023
07DAS004	5	S25023
07DAS005	10	S25023
GS-1P5B	1350	S 25023


COPIES TO: M. Dufresne, K. Raffle INVOICE TO: Apex Geoscience - Edmonton


Sep 04/07

SIGNED

Mark Acres - Quality Assurance

APPENDIX 9 LARGER SCALE FIGURES 5 AND 6

