BC Geological Survey Assessment Report 30793

FIELD SEASON 2008 GEOLOGY AND GEOCHEMISTRY, DECAR PROPERTY, BC

(NTS 093/K14)

54° 54' N, 125° 22' W 349,000 E; 6,086,000 N; Zone 10 (NAD 27)

Omineca Mining Division

First Point Minerals Corp.

Suite 906 – 1112 West Pender Street Vancouver, BC, V6E 2S1

By

Ron Britten, Ph.D., P.Eng.

May 4, 2009

EXECUTIVE SUMMARY

The Decar claims cover a portion of Cache Creek Complex that consists of obducted ophiolite ultramafic rocks which have been episodically deformed and serpentinized to produce naturally occurring nickel-iron alloys (awaruite).

The disseminated nickel-iron alloy (awaruite) has been found in wide areas on the Decar Property at Sidney and Baptiste targets that encompass coarser-grained awaruite ranging between 100 to 400 microns and fine grained alloy between the two target areas. Overburden masks several portions or margins of the target areas where additional exploration potential is anticipated.

Petrography and scanning electron microprobe work has confirmed the visual presence of the nickel-iron alloy over wide areas on the property and the awaruite averages 77% nickel with a range of 68 to 85% based on microprobe data.

Near-term future work at Decar will include detailed metallurgy testing using recently collected large samples to determine the recovery of the alloy and which of the three available extraction methods are the most cost effective. Detailed petrography of the rock samples and processed fractions from crushed, magnetic and gravity fractions are planned.

First phase field work in 2009 will include more mapping and sampling in the remaining part of the property and detailed mapping-sampling and magnetic surveys over the target areas in area of the Sidney and Baptiste targets. Large or bulk samples will be taken to provide additional metallurgical testing.

A second phase of late field season drill program would confirm the depth extent of the best indicated mineralization and would provide material for metallurgical testing. The second phase would depend on phase 1 and early stage metallurgical results.

TABLE OF CONTENTS

1.0	INTRO 1.1 1.2 1.3 1.4 1.5	DUCTION Background Location and Access Claim Data History Current Work	5 5 7 7
2.0	REGIO	NAL GEOLOGICAL	7
	PROPE 3.1 3.2 3.3 3.4	RTY GEOLOGY Units Structure Alteration Mineralization	10 10 11 11 12
4.0	GEOC⊦ 4.1 4.2	IEMISTRY Rocks Stream Sediments	13 14 14
5.0	DISCU	SSION & CONCLUSIONS	18
6.0	RECOM	IMENDATIONS FOR FUTURE WORK	19
7.0	EXPEN	DITURES	19
8.0	REFER	ENCES	20
AUTHC	R STAT	EMENT AND QUALIFICATIONS	22
APPEN	DIX I	ROCK SAMPLE DATA	23
APPEN	DIX II	SEDMENT SAMPLE DATA	42
APPEN	DIX III	MEMO: TESTS OF NITON NLP 502 ANALYZER	44
APPEN	DIX IV	SCANNING ELECTRON MICROPROBE REPORT	51
LIST O	F FIGU	RES	
Figure	1	Location map of Decar property	5
Figure	2	Locations of Decar claims	6
Figure	3a	Regional geology map	8
Figure	3b	Regional geology map Legend	9
Figure	4	Property geology map	10
Figure	5	Property alteration map and rock sample locations	12

Figure 6a	Project rock sample awaruite grain size	13
Figure 6b	Baptiste Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size	15
Figure 6c	Sidney Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size	16
Figure 6d	Northeast Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size	17
Figure 7	Stream sediment locations and nickel values	18

LIST OF TABLES

Table 1	Mineral Title Claims for Decar Property	6
Table 2	Expenditures for 2008 Fieldwork	19

1.0 INTRODUCTION

1.1 Background

The Decar property is 100% owned by First Point Minerals Corp. (FPM), a publicly traded company on the TSX Venture (symbol FPX). FPM is exploring for disseminated nickeliron alloy targets in the Decar Property hosted in ultramafics rocks.

1.2 Location and Access

The Decar Property is situated approximately 85 km northwest of the town of Fort St. James in Central British Columbia (Figure 1) north of the Trembleur Lake and south of Takla Lake and west of Middle River. The Decar Property has an area of 63 square kilometers and covers a large part of the Mount Sidney Williams ultramafic complex, approximately 15 kilometers northwest of Trembleur Lake. Access to the property is by road and helicopter and the BC rail is located about 2 km east of the Decar claim boundary on the east bank of Middle River.

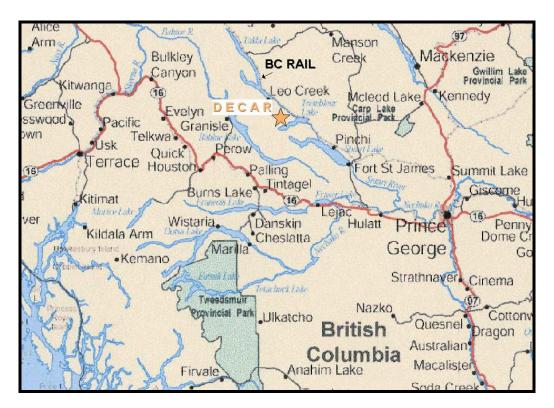


Figure 1. Location of the Decar property in Central British Columbia.

1.3 Claim Data

This assessment report will cover 15 claims listed in Table 1 and total approximately 63 square kilometers. Claims are located in Figure 2 and are centered on coordinates 54° 54' N, 125° 22' W and 349,000 E, 6,086,000 N, UTM map 93K12, Zone 10 (NAD 27).

Tenure	Claim	*Good To	
Number	Name	Date	Area (ha)
559615	WILL 1	2010/may/31	464.76
559616	WILL 2	2010/may/31	464.76
559617	WILL 3	2010/may/31	464.76
559618	WILL 4	2011/may/31	446.35
575674	WILL 5	2010/feb/08	446.49
575675	WILL 6	2011/feb/08	446.63
575677	WILL 7	2011/feb/08	465.19
575678	WILL 8	2010/feb/08	464.95
575679	WILL 9	2010/feb/08	464.72
575680	WILL 10	2010/feb/08	465.19
575681	WILL 11	2010/feb/08	446.38
575682	WILL 12	2010/feb/08	297.65
575683	WILL 13	2010/feb/08	390.40
575684	WILL 14	2010/feb/08	223.37
575686	WILL 15	2010/feb/08	316.24
Total Area			6267.86

Table 1. First Point Mineral Claims for Decar Property

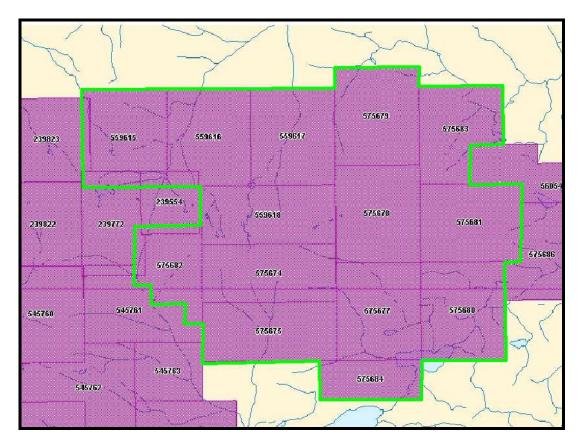


Figure 2 Location of the Decar Claims. Outlined in green are First Point Minerals' 15 claims at Decar and tenure numbers correlate with Table 1.

1.4 History

Since 1949, various individuals (Armstrong, 1949) or groups have examined the area of the Decar Property area for chrome, platinum and gold potential (Mowat, 1988a). Early work located west of the Decar Property, consisted of prospecting and mapping as well as soil, silt and rock geochemical surveys (Mowat, 1988b) close to Mount Sidney Williams. Subsequent work included trenching, geophysical surveys and diamond drilling (Mowat, 1990, 1991, 1994). First Point Minerals investigated the nickel-iron alloy potential of the area (Mowat, 1997) however in the following year the option agreement terminated due to low nickel prices.

1.5 Current Work

First Point Minerals renewed their interest in the area and began evaluating the exploration for disseminated Ni-Fe alloys within the Decar Property in the summers of 2007 and 2008.

During field season of 2008 two programs were completed to map and collect rock and sediment samples. The programs covered July 3-17 and August 24- Sept 1. The field work involved geologists Ron Britten and Peter Bradshaw and field assistants Phil Leseur, Harold John, Paul Bertner and Kelsey Pinch. Hand samples and grab samples of 197 rock samples all taken from outcrop on the Decar Property were analyzed and slabbed using diamond saw. Standard and magnetic fractions of 38 sediment samples (as noted in Appendix II) were collected from the area of the Decar claims and samples sieved to minus 60 mesh fractions and analyzed.

A portable XRF Niton NLp 502 Analyzer was instrumental to guide rock sampling in the field to provide analyses of Ni, Co, Cu, Cr and other base metals (Appendix III). Sample 07PJB019 (analyzed by ACME 1810 ppm nickel) was the standard used to check the Niton with a reading taken about every 20 sample analyses.

Polished thin sections of some rock samples were examined and selective samples were sent for scanning electron microprobe examination (Appendix IV).

Garmin 60 GPS units, using projection NAD 27, Zone 10, were directly downloaded into a computer using "Map Source" Program, copied into excel spreadsheet and matched with rock and silt sample technical data that had been entered into the excel spreadsheet (Appendices I and II). The data was then imported into MapInfo for spatial plotting. All forestry roads were surveyed by GPS and plotted in MapInfo. All other technical outcrop, structural and interpretation was compiled in MapInfo.

2.0 REGIONAL GEOLOGY

The Decar Property covers portion of the Cache Creek Complex which likely represents of an obducted or imbricated sequence of upper Paleozoic and lower Mesozoic oceanic rocks. Four litho-tectonic units have been defined by Schiarizza and MacIntyre (1998) in the Cache Creek Complex and two of these units occur within or adjacent to the Decar claims. The older Trembleur ultramafic units have been thrust over the North Arm Succession and they represent the mantle and crustal portions respectively, of an ophilolite sequence (Figs 3a and b). North Arm Succession includes various cherts, limestones, phyllites and greenstones, basalts, dikes and gabbros whereas the Trembleur ultramafic units are dominated by pyroxene phyric peridotites, lesser fine grained ultramafics, possibly dunites and various overprinting styles of serpentinization and carbonate-talc-listwanite.

Upper Triassic to lower Jurassic sediments mainly phyllites and limestones form part of the Sitlika Assemblage shown in the orange colored unit in the southwest corner of Figure 3a. This assemblage is younger than the Trembleur ulltramafic unit although the sediments are steeply dipping, probably folded and are in fault contact with the ultramafics.

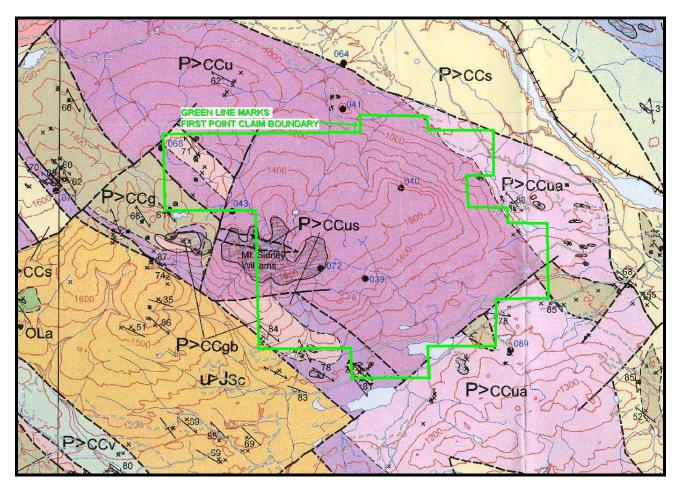
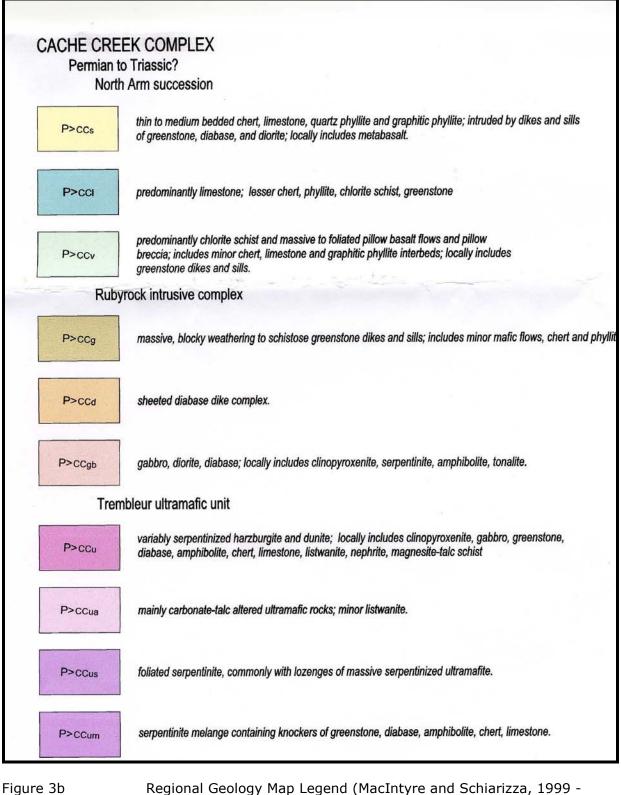



Figure 3a Regional geology map (MacIntyre and Schiarizza, 1999 - Open File 1999-11) and First Point Mineral's claim boundary in green. See Figure 3b for legend. Orange unit=phyllite (u>JSc)

Most geological contacts are faulted or sheared (dashed lines on Fig 3a) and it is a combination of thrust during obduction and later right lateral strike slip shear along northwest regional trending fault (aka Pinchi Fault) which generates structurally complex geological contacts. North of the Decar Property, Schiarizza and MacIntyre (1998) recognized a regional open antiform inclined west as well as minor warps or buckling during imbrication of the Cache Creek Terrane.

Regional Geology Map Legend (MacIntyre and Schiarizza, 1999 - Open File 1999-11).

3.0 PROPERTY GEOLOGY

3.1 Units

Oldest rocks in the Decar property are ultramafic units that consist of dark green-black peridotite, contain 10 to 20%, medium grained pyroxenes in a fine to medium grained, mostly relict (strongly serpentinized) olivine rich matrix. Peridiotites are typically fractured, crackled, sheared, followed by moderate to strong serpentinization or listwanite alteration and later faults or shear zones.

Dikes and stocks of medium to fine grained gabbro stocks, basaltic dikes and altered intrusions occur mainly in the west margin of the ultramafics. Gabbros contain subhedral feldspar and ferromagnesian minerals. Some dikes are controlled by east structures and cause marginal listwanite alteration with carbonate minor stockworks in the host ultramafics. Poorly exposed small intrusions in the southwest end of the ultramafics are pervasively altered to sericite-carbonate alteration with iron oxide stained or disseminated sulphides. Some of these intrusions could be coeval with the emplacement of the ultramafics however some could be younger.

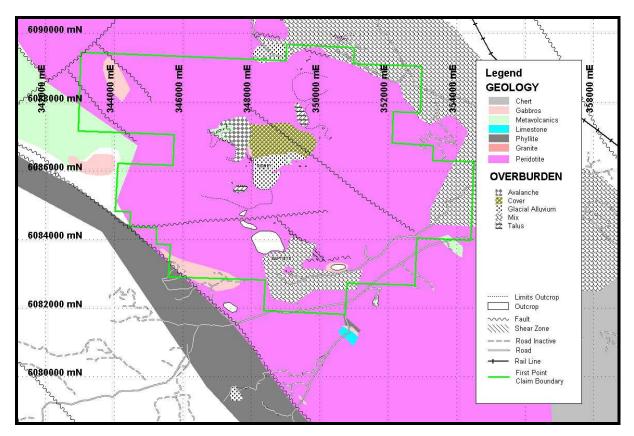


Figure 4 Property geology map

Where observed contacts of panels of green metavolcanics, phyllite and minor limestone occur in the ultramafics and are marked by subvertical faults. Many panels are part of the North Arm Succession and on the east side of the ultramafics the same Succession is dominated by cherts, phyllites, limestone and metavolcanics in a poorly exposed major fault contact.

Overburden covers large sections of the property, include talus, scree (avalanche deposits), glacial till, alluvial and general cover. These units mask the exploration potential near some of the better targets and will described in section 3.4 (Mineralization).

3.2 Structure

Microfractures in hand samples and polished thin sections indicate multiple breakage and brecciation of the ultramafics prior and during serpentinization. Post alteration fault and shear zones are marks by slickensides, gouge, fault breccia and shear fabrics. These zones are dominated by northwest trending subvertical structures and to a lesser extent west to west-northwest trending faults (Fig 4). A northeast trending fault in the south end of Figure 3a (MacIntyre and Schiarizza, 1999) was not observed in the field. The difference between units P>CCu and P>CCua is probably an alteration contact between the two units in Figure 3a not a structural contact.

The most common subvertical foliations in the ultramafics trend northwest and mimic fault or shear zones. Northwest trending faults mark major units on the southwest side of the property are not well exposed although strong foliations or shear fabrics in both phyllites and ultramafics suggest a fault contact. The phyllite beds dip steeply southeast or southwest and could be tightly folded. Meager cumulate layers in the ultramafic units have variable dips, including several subvertical attitudes and azimuths range from north to northeast. If these layers represent beds then serious structural deformation has occurred in the ultramafics and the deformation could be related to northerly trending fold axes.

Uncommon serpentine and magnetite veins measure 0.5 to 3 cm wide, have variable strike and extend several meters long.

No mélange has been recognized on the property.

3.3 Alteration

Two major types of alteration, serpentinization and carbonate-talc-listwanite, occur within or southeast of the property respectively (Fig 5).

Serpentinization is widely found in the peridotites throughout the property were outcrops range from massive and tough verses penetrative structurally foliated exposures. Most olivine has been altered to serpentine and secondary magnetite with minor brucite, awaruite and ferrichromite and ferrimagnesia and very minor pentlandite and heazlwoodite. Many petrographic samples indicate several structural-hydrothermal episodes to include initial pervasive serpentinzation, hydrothermal breccias, several offset generations of microveinlets that contain serpentine-magnetite-awaruite or minor talc. Rare latest discontinuous microveinlets contain carbonate. Pyroxenes are partially to completely altered to serpentine or tremolite and magnetite with minor brucite. Magmatic chromite crystals are several mm size and are commonly embayed caused by hydrothermal alteration. Chromites are partially altered or mantled by magnetite, and perhaps magnesiochromites and ferrichromites. Carbonate-talc alteration occurs off the southeast end the Property where it is spatially associated with small feldspar intrusions altered to sericite and carbonates. Locally listwanite and silicification dominate the alteration zone and have associated pyrite and rare chalcopyrite. Minor zones listwanite, quartz veins and associated pyrite overprint the serpentinized peridotites on the Property. Similar alteration occurs west of the Property where gold exploration has been conducted on listwanite-related targets (Mowatt 1994).

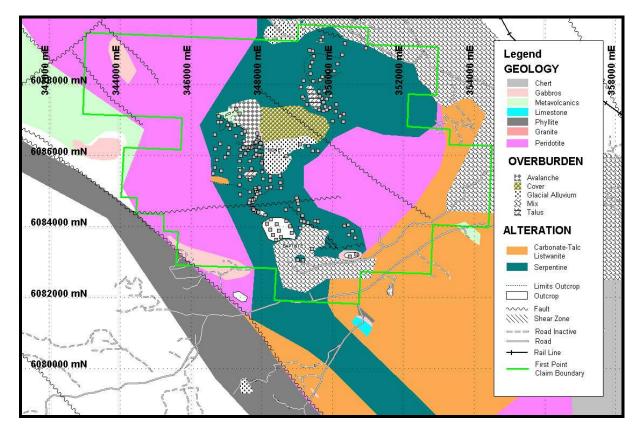
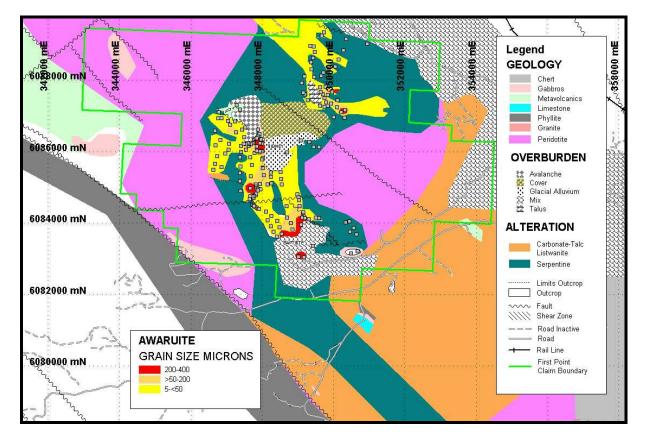
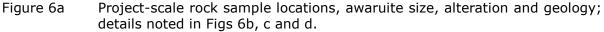


Figure 5 Property alteration map and outcrop rock sample locations (grey boxes).

3.4 Mineralization


Two major zones of relatively coarse-grained (50 to 400 microns size) disseminated awaruite (Ni-Fe alloy) occur in the Sydney and Baptiste areas east and southwest of Mt Sidney Williams, respectively, as shown in red patches in Figure 6. A broader zone of fine-grained (<5 to 50 microns) disseminated awaruite shown as yellow in Figure 6 and encompasses the two main targets are based on visual inspection in both hand samples and confirmed by polished thin section observation and electron microprobe analyses (Appendices I and III). The coarse and fine grained awaruite area measures 4.5 kilometers long and trends northwest.


The awaruite occurs with serpentine and fine-grained magnetite in pervasively altered olivines, microveinlets and altered pyroxenes. Awaruite grains exhibit rod, triangular, serrated or skeletal textures and can be mantled by magnetite. Probe data of the awaruite in numerous polished thin sections indicate an average nickel value of 77%

with a range of 68 to 85% nickel (Appendix IV). The balance of the alloy consists mainly of 20 to 23% iron and combined Co and Cu of 1 to 2%.

Significant overburden masks the north and east side of the Sidney and wide areas of the Baptiste target. Glacial till east of Sidney target blankets the flat ridge and the till consist of subrounded, heterolithic boulder, cobbles and sand and is probably 1 to 5 meters deep. On the east side of the till an outcrop contains coarser grained awaruite indicating good exploration potential below the till. Scree (avalanche deposit) north of Sidney consists mainly of material sourcing from the cliffs in the Sidney Target area. Northeast of Sidney gentle slopes are covered by low growing bush with no outcrop or exposures of unconsolidated material.

In the southern end of the Baptiste Target a mix of overburden which probably consists of talus, scree, alluvial and perhaps till which is covered by dense forest, tree falls and low growing bush. This cover masks exploration potential and the depth of unconsolidated material is unknown but it may be about 20 meters on average.

4.0 GEOCHEMISTRY

Portable XRF Analyzer (Niton) was employed in the field and later in the lab/office. A series of tests were run to determine how to most effectively use this analyzer, to check the precision and accuracy under various conditions and to determine the effect of variables such as: different styles of sample presentation (pulps in mylar holders held in

by thin film support, pulps in baggies, pulps in field bags, hand specimens, cut surfaces); effect of moisture; effect of surface roughness and air gaps among other test (Bradshaw, 2009, Appendix III). These tests focused primarily on Ni, as well as Fe and Cr.

4.1 Rocks

A total of 221 peridotite or ultramafic samples were collected in 2008 (192 samples) and 2007 (34 samples) (Voormeij and Bradshaw, 2008) collected as hand samples or 1 to 2 kilogram samples for mineralogical or microprobe analyses or larger 40 to 120 kilogram samples for later metallurgical work. The distribution of rock sampling taken from only from outcrop ranged from 50 to 300 meter intervals depending on the availability of exposures. Many outcrops and all rock samples were analyzed using the portable Niton XRF and provided analytical data for Ni, Co, Cu and other elements are tabulated in Appendices I and II. The 2008 samples are located in Figures 6a and nickel values are plotted in more detailed in Figures 6b, c and d.

4.2 Sediments

37 stream sediment samples have been collected and 17 have been prepared as standard samples (DASS1-17) and the remaining 20 samples were prepared as heavy-magnetic fractions. Standard preparation involved sieving and followed by analyzing the -80 fractions using the portable XRF (Niton). Heavy-magnetic material was obtained by panning the stream sediment, discarding coarse material and the non-magnetic fraction by placing a strong magnet below the bottom of the pan while panning and retaining the magnetic fraction. This magnetic fraction was analysed using analyzer (Niton). The description and analytical results are tabulated in Appendix III and nickel values are plotted in Figure 7.

Although there are not sufficient samples to provide statistical evaluations of the sampling methods several features are recognizable. Both media indicate strong sediment anomalies ranging up to 812 ppm in standard samples and 2838 ppm Nickel in heavy magnetic fractions but these are not necessarily taken from the same site. In average heavy magnetic fractions close to standard samples contain 2 to 4 times more nickel values compared to the standard sediment samples and heavy magnetic fractions have longer dispersion nickel anomalies than the standard samples.

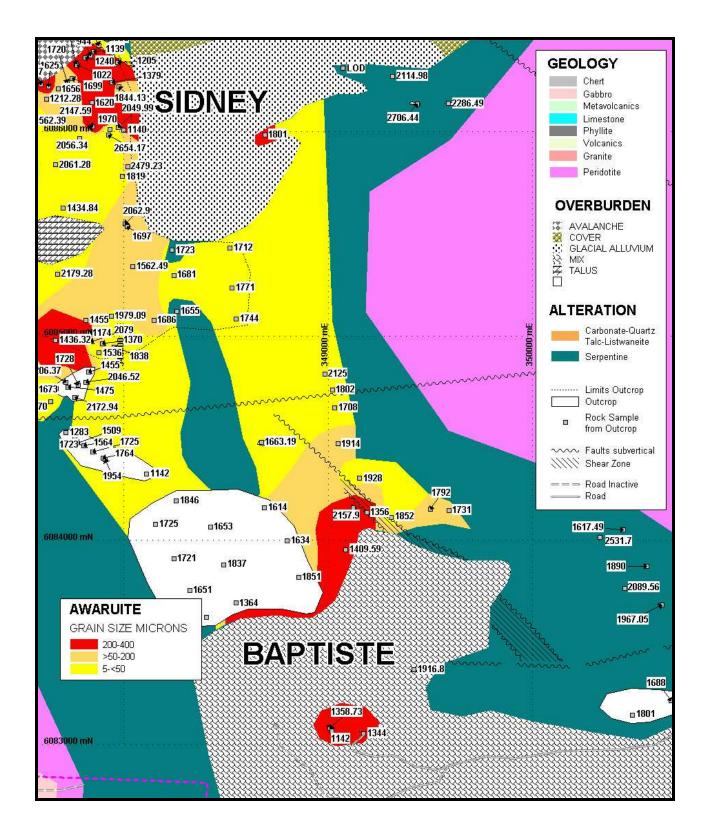


Figure 6b Baptiste Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size.

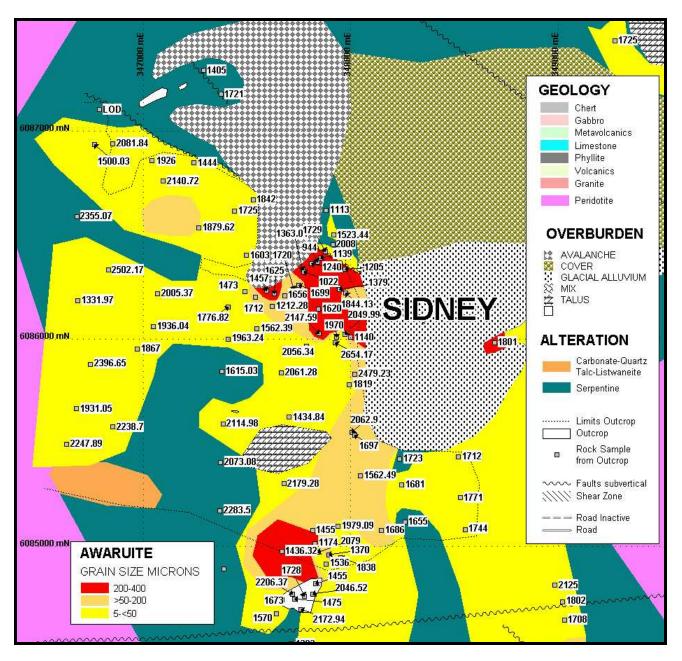


Figure 6c Sidney Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size.

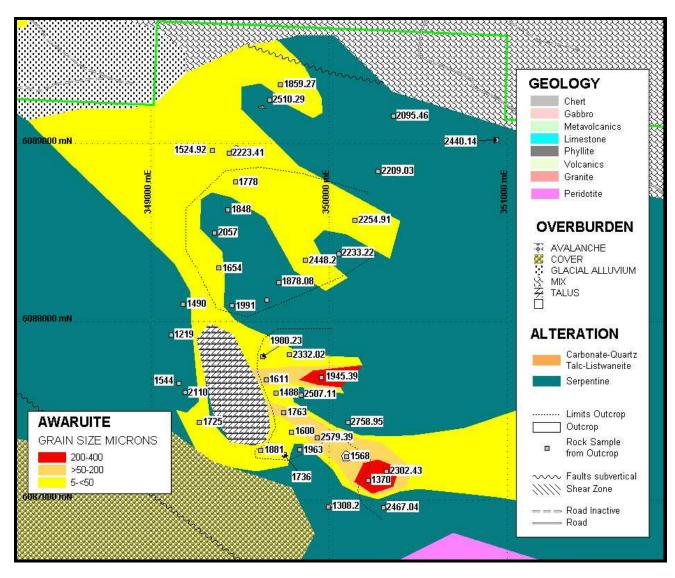


Figure 6d Northeast of Sidney Target area rock sample nickel values (ppm) plotted in relation to awaruite grain size.



Figure 7 Stream sediment locations and nickel values (ppm).

5.0 CONCLUSIONS

The Decar claims cover a portion of Cache Creek Complex that consists of obducted ophiolite ultramafic rocks which have been episodically deformed and serpentinized to produce naturally occurring nickel-iron alloys (awaruite).

The disseminated nickel-iron alloy (awaruite) has been found in wide areas on the Decar Property at Sidney and Baptiste targets that encompass coarser-grained awaruite ranging between 100 to 400 microns and fine grained alloy between the two target area. Overburden masks several portions or margins of the target areas where additional exploration potential is anticipated.

Petrography and microprobe work has confirmed the visual presence of the nickel-iron alloy over wide areas on the property and the awaruite averages 77% nickel with a range of 68 to 85% based on microprobe data.

6.0 RECOMMENDATIONS FOR FUTURE WORK

Near-term future work at Decar will include detailed metallurgy testing using recently collected large samples to determine the recovery of the alloy and which of the three available extraction methods are the most cost effective. Detailed petrography of the rock samples and processed fractions from crushed, magnetic and gravity fractions are planned.

First phase field work in 2009 will include more mapping and sampling in the remaining part of the property and detailed mapping-sampling and magnetic surveys over the target areas in area of the Sidney and Baptiste targets. Large or bulk samples will be taken to provide additional metallurgical testing.

A second phase of late field season drill program would confirm the depth extent of the best indicated mineralization and to provide material metallurgical testing. The second phase would depend on phase 1 and metallurgical results as well as funding.

7.0 EXPENDITURES

Expenditures for the 2008 summer field program at the Decar Property (Table 2) consisted of mapping, rock and sediment sampling, petrography and microprobe analyses and total \$47,293.82.

Exploration Work type	Comment	Days			Totals
Personnel					
(Name)*/Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Ron Britten/Geologist	July 3-10 & 14-17, August 24-Sept 1	20	\$628.00	\$12,560.00	
Peter Bradshaw/Geologist Phil Leseur/2 yr Student	July 3-10 & 14-17	12	\$628.00	\$7,536.00	
Geo	July 3-10 & 14-17	12	\$250.00	\$3,000.00	
Harold John/Field Assistant	August 26-30	5	\$200.00	\$1,000.00	
Paul Bertner/Field Assistant	August 26-30	5	\$200.00	\$1,000.00	
Kelsey Pinch/Field Assistant	August 24-30	7	\$200.00	\$1,400.00	
			\$0.00	\$0.00	
				\$26,496.00	\$26,496.00
Office Studies	List Personnel				
Report preparation	Ron Britten	2	\$628.00	\$1,256.00	
Averaging Niton data	Phil Leseur	1	\$250.00	\$250.00	
				\$1,506.00	\$1,506.00
Ground Exploration Surveys	Area in Hectares/List Personnel				

Table 2Expenditures for 2008 Fieldwork

Geological mapping	2000 hectares/Ron Britten				
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Stream sediment	27		\$0.00	\$0.00	
Rock	192		\$0.00	\$0.00	
Microprobe Analysis	12 samples - multiple analyses on grains		\$0.00	\$2,000.00	
				\$2,000.00	\$2,000.0
Other Operations	Clarify	No.	Rate	Subtotal	
Bulk sampling	Outcrop-4 samples 20-120 kgs-metallurgical te	sting	\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.0
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00	\$0.00	
truck rental	3 weeks total \$1500	1	\$1,500.00	\$1,500.00	
fuel			\$0.00	\$500.00	
Helicopter (hours)		7.5	\$1,022.68	\$7,670.10	
fuel				\$1,351.44	
				\$11,021.54	\$11,021.5
Accommodation & Food	Rates per day	No.	Rate	Subtotal	
Hotel		2	\$80.00	\$160.00	
Camp	Cabin rate	16	\$60.00	\$960.00	
Groceries/Comsumables			\$0.00	1009.28	
				\$2,129.28	\$2,129.2
Miscellaneous		No.	Rate	Subtotal	
Telephone	Satphone - 3 weeks	3	\$75.00	\$225.00	
Radios	4 hand held radios	4	\$100.00	\$400.00	
				\$625.00	\$625.0
Equipment Rentals		No.	Rate	Subtotal	
Niton XRF Analyser	18 days field, 4 days office hand-held field magnetic susceptibility	22	\$150.00	\$3,300.00	
KT-Kappameter meter	meter	18	\$12.00	\$216.00	1
				\$3,516.00	\$3,516.0
TOTAL Expenditures					\$47,293.8

8.0 REFERENCES

Armstrong, J.E. (1949): Fort St James map-area, Cassiar and Coast districts, British Columbia; *Geological Survey of Canada*, Memoir 252, 210 pages.

Le Couter, P (2008): Report on Ni-Fe alloys in 13 samples, this report Appendix IV.

MacIntyre, D. and Schiarizza, P. (1999): Open File 1999-11 Bedrock Geology 1999-11 (1:100,000 scale)

Mowat, U. (1988a): Geochemical sampling on the Van Group, Klone Group, Mid Claim, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, assessment Report 17 173.

Mowat, U. (1988b): Geochemical sampling, prospecting and mapping on the Van Group, Klone Group, Mid Claim, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 19 089.

Mowat, U. (1990): Mapping and drilling program on the Mount Sidney Williams property, Omineac Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 20 541.

Mowat, U. (1991): Drilling program on the Mount Sidney Williams property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 21 870.

Mowat, U. (1994): Drilling program on the Mount Sidney Williams gold property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 23 569.

Mowat, U. (1996): Drilling and sampling program on the Bornite property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 24 277.

Mowat, U. (1997): A geochemical/petrographic report on the Mount Sidney Williams property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 24 906.

Schiarizza, P. and MacIntyre, D. (1998): Geology of the Babine Lake – Takla Lake Area, central British Columbia (93K/11, 12, 13, 14; 93N/3, 4, 5, 6), BC Geological Survey Branch contribution to the Nechako NATMAP Project, *Geological Fieldwork 1998, Paper 1999-1*: 33-68.

Voormeij D, and Bradshaw, P.M.D. (2008) Summer 2007, Geology and Rock Samples, Decar Property, BC; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report, 16 p.

AUTHOR STATEMENT AND QUALIFICATIONS

- I, Ronald M Britten, Ph.D., P.Eng. certifies that:
- 1. I reside at 3525 West 26th Street, Vancouver, British Columbia, Canada.
- 2. I have degrees from the University of British Columbia B.Ap.Sc. 1974 and a Ph.D. 1982 from the Australian National University, Canberra, Australia.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (license #109865).
- 4. I have worked as an exploration geologist for more than 30 years since 1974, only in the mining and mineral exploration industry and I have worked in numerous countries.
- 5. I have spent 23 field days at the Decar Property and have supervised all aspects of the field work.
- 6. I am an officer (VP Exploration) of First Point Minerals Corp. since 1996 and I hold stock and stock options in First Point Minerals Corp.
- 7. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a Qualified Person.
- 8. I consent to the filing and any publication of this Assessment Report.

This report dated 4th of May, 2009

Ron M Britten, Ph.D., P.Eng. "signed and sealed"

APPENDIX I

ROCK SAMPLE DATA

Awaruite Size millimeters	1 2 3 4 5 0	<.00502 0.02 - 0.05 .05 - 0.10 .12 .24 none
Minerals	cpy-ch heaz-h mag-n mill-m py-pyr	ite erpentine
Other	LOD-lo LS-larg MS-mo n-no NS-no oc-out PTS-po tr-trac	olish thin sections
Serp	w-wea m-moo s-stror vs-ver	derate

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
07PXB025	348042	6089228	Peridotite	MS	0	ру						
07PXB026	348598	6089096	Peridotite	MS	1			у				
07PXB027A	348546	6089022	Peridotite	HS	3							
07PXB039	353594	6087066	listwanite	MS	0							
07PXB040	353552	6087005	listwanite	HS	0							
07PXB041	353763	6087495	Peridotite	MS	0							
07PXB042	353458	6086790	Peridotite	MS	2			у				
07PXB043	353527	6086869	Peridotite	MS	0			у				
07PXB044	353249	6086858	Peridotite	MS	0							
07PXB045	352779	6087002	listwanite	MS	0							
07PXB046	352760	6087267	listwanite	MS	2			у				
07PXB047	352578	6086779	Peridotite	MS	1							
07PXB048	352634	6087321	Peridotite	MS	0			у				
07PXB049	352659	6087190	Peridotite	HS	0	сру,ру		у				
07PXB050	352696	6087210	Peridotite	MS	0	sul						
07PXB051	351962	6088484	Peridotite	MS	1							
07PXB052	352177	6088381	Peridotite	MS	1							
07PXB053	352261	6088302	Peridotite	MS	0							
07PXB054	352237	6088153	Peridotite	MS	0							
07PXB055	352315	6088079	Greenstone	MS	0			у				
07PXB056	352416	6088063	Peridotite	MS	0							
07PXB057	352154	6088597	Greenstone	MS	0							
07PXB058	347929	6088874	Peridotite	HS	1			у				
07PXB059	347926	6088875	Intrusive	HS	0							
07PXB060	347125	6087829	intrusive bx	HS	0	сру						
07PXB061	346932	6087712	Peridotite	MS	0							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
07PXB025								ACME	1741	48200		577	9	81
07PXB026								ACME	2037	46500		563	6	86
07PXB027A								ACME	2282	45900		523	9	90
07PXB039								ACME	1157	38900		534	3	55
07PXB040							1446		1589					
07PXB041								ACME	2061	48900		254	2	89
07PXB042		у	n					ACME	2336	39300		221	5	95
07PXB043		у	n					ACME	1815	34600		324	4	81
07PXB044								ACME	1367	33300		828	8	66
07PXB045								ACME	1378	45800		259	3	65
07PXB046								ACME	2358	48100		264	7	94
07PXB047								ACME	2152	47800		243	4	90
07PXB048								ACME	2658	58900		126	2	107
07PXB049							1448		2156					
07PXB050								ACME	1962	47400		371	9	85
07PXB051								ACME	2383	47400		337	5	93
07PXB052								ACME	2000	45200		440	9	80
07PXB053								ACME	2198	49300		303	14	88
07PXB054								ACME	2216	48600		206	8	91
07PXB055								ACME	2698	55400		41	3	106
07PXB056								ACME	2525	51000		83	3	101
07PXB057								ACME	2274	47500		164	2	95
07PXB058							1449		1813					
07PXB059							1550		1119					
07PXB060							1451		LOD					
07PXB061								ACME	1656	37700		937	12	71

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
07PXB062	348216	6088904	Peridotite	MS	0							
07PXB063	351624	6086753	Peridotite	HS	0							
07PXB064	351473	6086890	Peridotite	MS	0			у				
07PXB065	351427	6087064	Peridotite	HS	1							
07PXB066	351469	6087156	Greenstone	MS	0			у				
07PXB067	351493	6087283	Peridotite	HS	1							
07PXB068	351520	6087260	Peridotite	MS			no description or handsample					
07PXB070	352422	6087661	Peridotite	MS	0	ру						
07PXB071	352413	6087677	Peridotite	HS	0							
07PXB072	350534	6087185	Peridotite	LS	1			у				
07PXB073	350908	6087149	Peridotite	HS	1							
07PXB074	350972	6087152	Peridotite	LS	1							
07PXB075	350783	6087318	Peridotite	HS	1							
07PXB076	350452	6087015	Peridotite	LS	0							
07PXB077	350332	6086973	fg chaotic	HS	0	in chromites						
07PXB078	347907	6085753	Peridotite	MS	1		fine silvery specks	у				
07PXB079	347512	6086025	Peridotite	MS	2							
07PXB079B	347512	6086025	Peridotite	LS	2			у	у			
07PXB080	347390	6085995	Peridotite	MS	3			у				
07PXB081	347167	6086372	Peridotite	MS	1			у				
07PXB082	347168	6086372	Peridotite	MS	0							
07PXB083	347258	6086539	Peridotite	HS	3							
07PXB084	347137	6086591	Peridotite	HS	3							
08PCL090	347438	6081895	dunite	MS	0		tr crysotile					
08PCL091	350444	6084050	Peridotite	HS	1							
08PCL096	348019	6085830	Peridotite	MS	3			у	У	10, 50	m	

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
07PXB062								ACME	2074	49800		417	7	90
07PXB063							1452		1717					
07PXB064								ACME	2221	52600		673	22	93
07PXB065							1453		1572					
07PXB066								ACME	2843	52200		35	2	107
07PXB067							1454		1536					
07PXB068								ACME	2073	47900		442	11	88
07PXB070								ACME	2092	49800		358	5	90
07PXB071							1455		2105					
07PXB072								ACME	2294	49700		254	3	94
07PXB073							1456		1749					
07PXB074								ACME	2002	47200		325	10	89
07PXB075							1457		1933					
07PXB076								ACME	2340	49700		271	7	96
07PXB077							1458		LOD					
07PXB078								ACME	2198	46400		672	8	92
07PXB079								ACME	2508	56700		660	13	99
07PXB079B		у	у		у		NS	ACME	2508	56700		660	13	99
07PXB080								ACME	2425	54700		757	11	90
07PXB081								ACME	2477	55000		467	9	98
07PXB082								ACME	2408	57600		388	14	102
07PXB083							1459		1691					
07PXB084								ACME	2328	55800		391	7	95
08PCL090									2176	39479	658	981	104	
08PCL091									1617	28785	705	708		
08PCL096	cube								2479	49410	823	553		

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08PCL097	348005	6085549	Peridotite	MS	1							
08PCL098	348045	6085341	Peridotite	MS	3			у	у	50, >100	m	
08PCL099	347939	6085098	Peridotite	MS	2							
08PCL100	347925	6085983	Peridotite	MS	1							
08PCL101	347972	6086022	Peridotite	MS	2			у	у	5, 30	S	
08PCL102	347976	6086221	Peridotite	MS	2			у	у	<50, >100	s	
08PCL103	347918	6086502	Peridotite	MS	1			у	у	<20, >50	s-vs	
08PCL104	349778	6087816	Peridotite	MS	1							
08PJB009	348917	6083652	Peridotite	HS	4							
08PJB010	348855	6083819	Peridotite	HS	1							
08PJB011	348800	6083997	Peridotite	HS	3							
08PJB012	348689	6084159	Peridotite	HS	3							
08PJB013	348585	6084201	Peridotite	HS	0							
08PJB014	349021	6084736	Peridotite	HS	2							
08PJB015	348985	6084814	Peridotite	HS	1							
08PJB016	349032	6084647	Peridotite	HS	1							
08PJB017	349048	6084471	Peridotite	HS	3		genesis, vlets PTS					
08PJB018	349152	6084303	Peridotite	HS	2							
08PJB019	349191	6084136	Peridotite	HS	5							
08PJB020	349308	6084113	Peridotite	HS	1							
08PJB021	349500	6084153	Peridotite	HS	3							
08PJB022	349591	6084146	Peridotite	HS	3							
08PJB023	348018	6085536	Peridotite	HS	3							
08PJB024	347993	6085780	Peridotite	HS	2							
08PJB025	348000	6086008	Peridotite	HS	5							
08PJB026	347816	6085077	Peridotite	HS	0							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08PCL097									2063	61213	1194	993		
08PCL098		у			у				1562	33058	871	1252		482
08PCL099									1979	59955	1197	2263		
08PCL100									2654	53328	866	733		
08PCL101									2050	65001	909	441		
08PCL102									1844	35258	1357	1030		
08PCL103		у							1523	36362	849	1333		
08PCL104									2332	46676	1042	1010		
08PJB009							NS							
08PJB010							1464		1851					
08PJB011							1465		1634					
08PJB012							1466		1614					
08PJB013							NS							
08PJB014							1467		1802					
08PJB015							1468		2125					
08PJB016							1469		1708					
08PJB017							1471		1914					
08PJB018							1472		1928					
08PJB019							1473		1356					
08PJB020							1474		1852					
08PJB021							1475		1792					
08PJB022							1476		1731					
08PJB023							1477		1697					
08PJB024							1483		1819					
08PJB025							1479		1140					
08PJB026							1481		1455					

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08PJB027	347828	6085015	Peridotite	HS	5							
08PJB028	347839	6084973	Peridotite	HS	2							
08PJB029	347895	6084962	Peridotite	HS	3							
08PJB030	347951	6084946	Perid-hbx	HS	2							
08PJB031	347880	6084917	Peridotite	HS	2							
08PJB032	347829	6084822	Peridotite	HS	4							
08PJB033	347776	6084761	Peridotite	HS	3							
08PJB034	347728	6084748	Peridotite	HS	0	heaz?						
08PJB035	347668	6084743	Peridotite	HS	2							
08PJB036	347641	6084677	Peridotite	HS	2	heaz?						
08PJB037	347717	6084526	Peridotite	HS	0	mill						
08PJB038	347760	6084506	Peridotite	HS	1							
08PJB039	347804	6084462	Peridotite	HS	2	mill						
08PJB040	347848	6084432	Peridotite	HS	1							
08PJB041	347898	6084401	Peridotite	HS	0							
08PJB042	348148	6085077	Peridotite	HS	3							
08PJB043	348236	6085421	Peridotite	HS	0		hs not cut					
08PJB044	348246	6085297	Peridotite	HS	1							
08PJB045	348260	6085120	Peridotite	HS	0	heaz? mill?						
08PJB046	348551	6085083	Peridotite	HS	2							
08PJB047	348529	6085236	Peridotite	HS	2							
08PJB048	348519	6085432	Peridotite	HS	2							
08PJB049	349272	6087436	Peridotite	HS	2							
08PJB050	349191	6087603	Peridotite	HS	0							
08PJB051	349157	6087654	Intrusive	HS	0	ру						
08PJB052	349113	6087927	listwanite?	HS	0	tr py						

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08PJB027							1482		1174					
08PJB028							1484		2079					
08PJB029							1485		1370					
08PJB030							1486		1838					
08PJB031							1487		1536					
08PJB032							1488		1455					
08PJB033							1489		1728					
08PJB034							1490		1475					
08PJB035							1491		1673					
08PJB036							1495		1570					
08PJB037							1496		1283					
08PJB038							1497/1498		1723					
08PJB039							1499/1500		1564					
08PJB040							1501/1502		1725					
08PJB041							1503/1504		1764					
08PJB042							1505/1506		1686					
08PJB043							1507		1723					
08PJB044							1508/1509		1681					
08PJB045							1510/1511		1655					
08PJB046							1512 to 1515		1744					
08PJB047							1517		1771					
08PJB048							1818		1712					
08PJB049							1519		1725					
08PJB050							1520		2110					
08PJB051							1521		1544					
08PJB052							1522		1219					

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08PJB053	349182	6088100	listwanite	HS	0	ру						
08PJB054	349457	6088090	ultramafic	HS	0							
08PJB055	349652	6088122	ultramafic	HS	0							
08PJB056	349382	6088302	Peridotite	HS	2							
08PJB057	349359	6088497	Peridotite	HS	0							
08PJB058	349432	6088629	ultramafic	HS	0							
08PJB059	349476	6088785	ultramafic	HS	1							
08PXB205	350635	6083683	peridotite	HS	0		strongly carbonatized					
08PXB206	350559	6083873	dunite	MS	0	ру, сру						
08PXB208	350452	6083764	dunite	MS	0							
08PXB211	350518	6078133	peridotite	MS	0		secondary mag					
08PXB212	350790	6078249	Peridotite	MS	0							ру
08PXB213	351778	6078191	Peridotite	MS	0							
08PXB219	347379	6085845	Peridotite	MS	0							
08PXB220	347384	6085591	Peridotite	MS	2							
08PXB221	347372	6085404	peridotite	MS	0		oc to felsenmeer					
08PXB222	347369	6085174	Peridotite	MS	0							
08PXB223	347785	6085967	peridotite	MS	1		shiny grain	y	У			
08PXB224	347408	6086000	Peridotite	MS	2			y	y			
08PXB225	347546	6086051	Peridotite	MS	1			y	y			
08PXB226	347409	6086156	Peridotite	MS	2			у	у			
08PXB227	347265	6086537	Peridotite	MS	1				·			
08PXB228	347096	6086761	Peridotite	MS	2		secondary mag					
08PXB229	346787	6087104	Peridotite	MS	0		secondary mag					
08PXB230	346763	6086937	Peridotite	MS	2		secondary mag	у	у	5, 20, +100-150	m	
08PXB231	346851	6086941	Peridotite	MS	2							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08PJB053							1523		1490					
08PJB054							1524		1991					
08PJB055							NS							
08PJB056							1525		1654					
08PJB057							1526		2057					
08PJB058							1527		1848					
08PJB059							1528		1778					
08PXB205									1967	45908	777	881		693
08PXB206									1890	65775	1227	1140		
08PXB208									2090	45638	832	1110		
08PXB211									2158	29535	1419	876		
08PXB212									2778	56172	565	952		
08PXB213							1529		LOD	61080	1220	358		
08PXB219									1615	80796	1414	4363		1072
08PXB220									2115	56636	1207	1321		
08PXB221									2073	55357	708	869		
08PXB222									2284	51024	848	1111		
08PXB223									2056	41122	834	1044		
08PXB224		у	у	heaz					1963	44825	879	440		
08PXB225									1562	44299	800	1265		
08PXB226		у		heaz					1777	48538	875	670		
08PXB227									1880	46305	1100	636		
08PXB228									2141	48221	757	1199		
08PXB229							1530		LOD	107746	1529			
08PXB230		у							1500	102836	1492	1304		
08PXB231									2082	44060	696	407		

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08PXB232	346679	6086590	Peridotite	MS	0							py tr
08PXB233	346830	6086332	Peridotite	MS	1							
08PXB234	346684	6086184	Peridotite	MS	3							
08PXB235	346743	6085879	Peridotite	MS	1							
08PXB236	346676	6085664	Peridotite	MS	1							
08PXB237	346628	6085493	peridotite	MS	1			у	у	<10,50	m	
08PXB238	346852	6085576	Peridotite	MS	1			у	у	<10,50	m	
08PXB239	346971	6085952	Peridotite	MS	1							
08PXB240	347049	6086061	Peridotite	MS	1		narrow discont chrom bands					
08PXB241	347068	6086218	Peridotite	MS	2			у	у	50, >100	S	
08PXB248	350941	6089020	dunite	MS	0		1mm serp stockwork					
08RMB099	349420	6083367	Peridotite	MS	1							
08RMB100	349086	6083953	Peridotite	MS	5			у	у	50, 200	m-s	olive
08RMB101	349122	6084159	Peridotite	MS	5			у	у	50, 200	m-s	
08RMB102	348674	6084479	Peridotite	MS	1							
08RMB103	347759	6084697	Peridotite	MS	1			у	у			tr
08RMB104	347816	6084772	Peridotite	MS	2			у	у			
08RMB105	349009	6083078	Peridotite	MS	5			у	у	50, >400	m-s	
08RMB106	350342	6077896	Peridotite	MS	0							
08RMB107	350293	6077995	Peridotite	MS	0							
08RMB120	349345	6088961	Peridotite	MS	2							
08RMB121	349439	6088946	Peridotite	MS	4			у	у	50, 100	m	
08RMB122	349667	6089242	Peridotite	MS	0							
08RMB123	349727	6089331	Peridotite	MS	1							
08RMB125	347665	6085837	Peridotite	MS	2			у	у			tr
08RMB126	347703	6085625	Peridotite	MS	2							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08PXB232									2355	56042	1092	1519		649
08PXB233									2502	54794	645	1437		
08PXB234									1332	109239	1274	1187		
08PXB235									2397	42455	938	1037		
08PXB236									1931	54764	846	1467		
08PXB237									2248	37878	575	1525		
08PXB238	cube								2239	45940	553	1079		
08PXB239							1531		1867					
08PXB240									1936	50216	1201	1430		
08PXB241		у							2005	40643	1110	420		
08PXB248									2440	40012	855	896		
08RMB099									1917	41010	701	1437		
08RMB100		у			у				1410	26889	370	740		
08RMB101		у			у				2158	56506	745	1543		
08RMB102									1663	39056	729	1106		
08RMB103									2173	72198	1225	998		
08RMB104									2047	54740	1124	1427		
08RMB105		у			у				1359	46364	1126	1556		
08RMB106									2387	56881	640	1182		695
08RMB107									2928	45717	1571	3627		
08RMB120									1525	31453	1242	1433		
08RMB121		у			у				2223	50457	1077	1285		
08RMB122									2510	52011	1205	968		
08RMB123									1859	122104	1787	1974		
08RMB125		у	у						2061	43905	1473	1802	126	
08RMB126									1435	43525	2150	859	262	

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08RMB127	347677	6085303	Peridotite	MS	2							
08RMB128	347667	6084978	Peridotite	MS	5			у	у	50, 100	m	
08RMB129	347717	6084772	Peridotite	MS	1			у	у			
08RMB130	347388	6084893	Peridotite	MS	0							
08RMB132	347621	6086158	Peridotite	MS	3			у	у			
08RMB133	347768	6086332	Peridotite	MS	5			у	у	<50, 400	s-m	
08RMB134	347847	6086025	Peridotite	MS	4			у	у	<50, 100	m-s	
08RMB135	349436	6086134	Peridotite	MS	0							
08RMB136	349589	6086138	Peridotite	MS	0							
08RMB137	349316	6086271	Peridotite	MS	0							
08RMB138	349997	6086962	Peridotite	MS	0							
08RMB139	350305	6086957	Peridotite	MS	0							
08RMB140	350323	6087162	Peridotite	MS	5			у	у	50, 100	s-m	
08RMB141	350108	6087437	Peridotite	MS	1							
08RMB142	349935	6087348	Peridotite	MS	3							
08RMB143	349843	6087590	Peridotite	MS	0							
08RMB144	349959	6087687	Peridotite	MS	0			у	у	5, 50	m-s	
08RMB145	349629	6087805	Peridotite	MS	1			у	у	<5, 50	m-s	
08RMB146	349718	6088221	Peridotite	MS	0							
08RMB147	349866	6088344	Peridotite	MS	1							
08RMB148	350055	6088382	Peridotite	MS	0							
08RMB149	350147	6088571	Peridotite	MS	1							
08RMB150	350277	6088843	Peridotite	MS	0							
08RMB151	350360	6089155	Peridotite	MS	0							
08RMB213	349175	6083053	Peridotite	HS	4							
08RMB214	349019	6083066	Peridotite	LS	5							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08RMB127									2179	51448	2051	1576		728
08RMB128		у			у				1436	60564	1414	1431		
08RMB129		у	у						2206	41918	672	968		
08RMB130							NS							
08RMB132		у	у						1212	38786	2344	1082	161	
08RMB133		у			у				1363	36909	934	565		
08RMB134		у							2148	44633	1296	931		
08RMB135									2706	51184	507	1695		
08RMB136									2286	42406	874	1384		538
08RMB137									2115	56636	1207	1321		
08RMB138									1308	21774	895	525		
08RMB139									2467	41305	789	1487		
08RMB140		у			у				2302	34763	929	768		-
08RMB141									2759	50516	988	1639		
08RMB142					у				2579	49450	980	1164		
08RMB143									2507	43689	836	456		
08RMB144					у				1945	52222	802	1180		
08RMB145					у				1980	44708	624	917		475
08RMB146									1878	50524	795	620		
08RMB147									2448	92502	1173	1200		
08RMB148									2233	51023	801	1533		
08RMB149									2255	52222	1164	1685		
08RMB150									2209	55573	1081			
08RMB151									2095	41838	879	1497		
08RMB213							1532		1344					
08RMB214							1533		1142					

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08RMB214L	349025	6083084	Peridotite	LS	4			у				
08RMB215	348549	6083692	Peridotite	HS	4							
08RMB216	348490	6083880	Peridotite	HS	2							
08RMB217	348424	6084063	Peridotite	HS	1							
08RMB218	348256	6084194	Peridotite	HS	1							
08RMB219	348111	6084323	Peridotite	HS	4							
08RMB220	347908	6084396	Peridotite	HS	1							
08RMB221	347772	6084475	Peridotite	HS	2							
08RMB222	348156	6084079	Peridotite	HS	1							
08RMB223	348246	6083911	Peridotite	HS	2							
08RMB224	348322	6083753	Peridotite	HS	2							
08RMB225	348403	6083621	Peridotite	missing	0							
08RMB226	347931	6086010	Peridotite	LS	2							
08RMB227	347844	6086143	Peridotite	HS	5							
08RMB227L	347848	6086145	Peridotite	LS	4			у				
08RMB228	347771	6086323	Peridotite	LS	4							
08RMB229	347748	6086260	Peridotite	HS	3							
08RMB230	347724	6086239	Peridotite	HS	3							
08RMB231	347680	6086209	Peridotite	HS	3							
08RMB232	347632	6086220	Peridotite	HS	4							
08RMB233	347594	6086231	Peridotite	HS	4							
08RMB234	347541	6086200	Peridotite	HS	3							
08RMB235	347488	6086230	Peridotite	HS	2							
08RMB236	347810	6086363	Peridotite	HS	5							
08RMB237	347853	6086392	Peridotite	HS	5							
08RMB238	347877	6086421	Peridotite	HS	1							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08RMB214L					у		NS							
08RMB215							1534		1364					
08RMB216							1535		1837					
08RMB217							1536		1653					
08RMB218							1537		1846					
08RMB219							1538		1142					
08RMB220							1542		1954					
08RMB221							1543		1509					
08RMB222							1544		1725					
08RMB223							1545		1721					
08RMB224							1546		1651					
08RMB225							NS							
08RMB226							1547-1568 to 1572		1970					
08RMB227							1548		1620					
08RMB227L					у		1560		1445					
08RMB228							1549-1555 to 1559		1022					
08RMB229							1562		1699					
08RMB230							1563		1720					
08RMB231							1564		1656					
08RMB232							1565		1625					
08RMB233							1566		1457					
08RMB234							1567		1712					
08RMB235							1573		1473					
08RMB236							1578		1240					
08RMB237							1574		1139					
08RMB238							1575		1729					

Sample #	Easting	Northing	Rock Type	Sample Size	Awar_size	Sulphide	Comment	PTS	PTS Awar	Awar Size µ	Serp	Sulphides
08RMB239	347914	6086456	Peridotite	HS	0	sul tr						
08RMB240	347970	6086338	Peridotite	HS	4							
08RMB240L	347955	6086325	Peridotite	LS	5			у				
08RMB241	347943	6086239	Peridotite	HS	5							
08RMB241L	347939	6086253	Peridotite	LS	4			у				
08RMB242	347880	6086620	Peridotite	HS	0	sul tr						
08RMB243	347290	6087294	Peridotite	HS	1	sul						
08RMB244	347375	6087180	Peridotite	HS	0	sul						
08RMB245	347042	6086858	Peridotite	HS	2							
08RMB246	347242	6086850	Peridotite	HS	2							
08RMB247	347439	6086617	Peridotite	HS	2							
08RMB248	347531	6086671	Peridotite	HS	1							
08RMB249	347496	6086404	Peridotite	HS	2							
08RMB250	348692	6085984	Peridotite	HS	1							
08RMB251	349071	6086310	Peridotite	HS	5		??check greenstone nearby					
08RMB252	349618	6087279	Peridotite	HS	1							
08RMB253	349748	6087256	Peridotite	HS	1							
08RMB254	349836	6087282	Peridotite	HS	0							
08RMB255	349789	6087382	Peridotite	HS	2							
08RMB256	349747	6087492	Peridotite	HS	3							
08RMB257	349701	6087600	Peridotite	HS	2							
08RMB258	349646	6087673	Peridotite	HS	3							
08RMB259	350220	6087110	Peridotite	HS	4							
08RMB260	350099	6087242	Peridotite	HS	3							
08RMB261L	347839	6086371	Peridotite	LS	5			у				
08RMB262	350677	6083215	gabbro	HS	0							
08RMB263	350490	6083145	gabbro	HS	0							

Sample #	Comment	Probe	Probe Awar	Other	QEM	Comment	Niton #	Lab	Ni	Fe	Mn	Cr	Cu	Co
08RMB239							1576		2008					
08RMB240							1577		1205					
08RMB240L					у		NS							
08RMB241							1579		1379					
08RMB241L					У		NS							
08RMB242							1580		1113					
08RMB243							1581		1405					
08RMB244							1585		1721					
08RMB245							1586		1926					
08RMB246							1587		1444					
08RMB247							1588		1725					
08RMB248							1589		1842					
08RMB249							1590		1603					
08RMB250							1591		1801					
08RMB251							1592-1593		LOD					
08RMB252							1594		1881					
08RMB253							1595		1736					
08RMB254							1596		1963					
08RMB255							1597		1600					
08RMB256							1598		1763					
08RMB257							1599		1488					
08RMB258							1600		1611					
08RMB259							1601		1370					
08RMB260							1602		1568					
08RMB261L					у		1603		944					
08RMB262														
08RMB263														<u> </u>

APPENDIX II

SEDIMENT SAMPLE DATA

DECAR PROPERTY STREAM SEDIMENT SAMPLE RESULTS

Sample No	Easting	Northing	Stream Sediment	Notes	Avg Ni
DASS001	349546	6082839	standard	2x1m, fast, sand-silt	
DASS002	349628	6082972	standard	2x1m, fast, gravel-sand	
DASS003	350817	6083732	standard	2x1m, fast, gravel	812
DASS004	351105	6083122	standard	2x1m sand-gravel. Below 003	
DASS005	351805	6083651	standard	1x1m, pebble-silt	784
DASS006	352434	6084056	standard	1.5x1m	793
DASS007	348068	6089214	standard	sample 07PXB025	331
DASS008	349812	6092151	standard	1x0.1, silt-gravel	
DASS009	349812	6092151	standard		483
DASS010	357392	6085030	standard	3x1.5m, sand-gravel. Baptiste Cr	260
DASS011	358495	6083974	standard	1.5x0.25m sand-gravel;	162
DASS012	359377	6083564	standard	1x0.2m sand-gravel	312
DASS013	357797	6078218	standard	0.5x0.2m, by camp	320
DASS014	356895	6078447	standard	1x0.3m, silt	591
DASS015	352181	6088583	standard	1.5x0.2m;	
DASS016	357906	6070273	standard		
DASS017	352160	6088422	standard	1x0.3m	
08PXB200	349027	6082940	magnetic HM	1X0.4m, mod stream flow, from gravel bar. Minor UM	716
08PBX201	348762	6083147	magnetic HM above PXB 200	.03X0.01m minor UM float	1089
08PXB202	348894	6082811	magnetic HM	1x0.2m low/med flow, v minor UM float	845
08PXB203	349373	6083101	magnetic HM	2x0.10m large boulders serp. & carb. UM	1199
08PXB204	350854	6083617	magnetic HM	2x0.4m. Otc serp fg gry/gn Um, strongly jointed 010/90	2839
08PXB209	350592	6083580	magnetic HM	0.5x0.25m low speed (collected by Phil LeS)	1400
08PXB210	350592	6083590	magnetic HM	2x0.3m mod-fast, main cr just above PXB 209	1377
08PXB214	346492	6081494	magnetic HM	Sydney Cr at rd 3x0.5mod flow, low magnetic content	
08PXB215	346626	6081548	magnetic HM	trib. To Sydney Cr, 1.5x0.3m collected from moss mat	1856
08PXB216	346625	6081557	magnetic HM	as PXB 215 excepted from gravel bar	1227
08PXB217	357378	6085058	magnetic HM	cr. Draining Baptiste L 4x0.5m mod flow	1840
08PXB218	351275	6091098	magnetic HM	1.5x0.3m mod flow	1295
08PXB219	350107	6092950	magnetic HM	Van Decar cr 5x.5m mod flow	992
08PXB242	342133	6100914	magnetic HM	Forfar cr at rd 6x0.5m mod flow, low amount mag material	349
08PXB244	346452	6096506	magnetic HM	trib to O'ne-Ell cr close to rd 2x0.2m	657
08PXB243	346438	6096517	magnetic HM	O'ne-Ell r 5mx0.5cm	805
08PXB245	347473	6095141	magnetic HM	4x0.3m mod flow from down stream end of gravel bar	725
08PXB246	347477	6095146	magnetic HM	same location as PXB 245 except from top end of gravel bar	1024
08PXB247	351060	6089178	magnetic HM	1x0.15m mod flow	1551
08PCL092	347441	6081892	magnetic HM		

APPENDIX III

<u>MEMO</u>

Tests of Niton NLp 502 Analyser

Author Peter Bradshaw - December 2007

A series of test were run to determine how to most effectively use this analyser, to check the precision and accuracy under various conditions and to determine the effect of variables such as: different styles of sample presentation (pulps in mylar holders, pulps in baggies, pulps in field bags, hand specimens, cut surfaces); effect of moisture; effect of surface roughness and air gaps; etc. This work was focused on Ni, with some attention paid to Fe and Cr.

GENERAL CONCLUSIONS

- 1. For *single* measurement of 30 sec of *outcrop or hand samples* in the field for Ni, Fe and Cr can be in the +100% 60% range and can be used for *very general* conclusions only.
- 2. The precision generally improves x2 when the count time is increased by x4 as predicted by the manufacturers, while at the same time the detection limit reduced by approximately x2.
- 3. For *outcrop or hand specimens* a better result is obtained by taking readings from different samples rather than taking several readings from the same sample, and the more readings taken the better the precision. For the same parameters considerably better precision is obtained from Ni and Fe than for Cr (probably due to the course grained nature of the chromite)
- 4. Averaging 3 to 4 or 6 analyses from different parts of an outcrop or hand samples with a 60 sec count is a good compromise between speed and accuracy. To increase the reliability increase the number of different places analysed rather than time.
- 5. Multiple readings *for pulps* in the mylar holders (plastic containers with thin film support on the base with a thickness of 6 microns) all fall with the +/_ range stated by the analyser which is approximately +/- 10% for Ni, 2% for Fe and 12% for Cr at the concentration levels tested and a counting time of 60 seconds used. The improvement in accuracy by averaging 3 readings for homogenized *pulps* samples is very marginal. It would be better to increase the counting time on the *pulps* rather than averaging several readings.
- 6. For Ni and Fe the mean difference between the 3 readings on a single *cut surfaces* on samples (i.e. the variability of reading on one sample) is a bit worse for cut surfaces than pulp and much worse for hand specimens indicating that the roughness of the

surface is a greater cause of poor precision than variable content of metal within the sample.

- 7. The detector resolution is tested by the shutter calibration each time calibration is done and displayed on the screen and should be in the order of 220 keV
- 8. Using the ACME samples as standards the analyser was *recalibrated*.
- 9. The light weight "snack baggies" do not degrade the signal for the 3 elements tested any more than the 6μ thin film support in the mylar holders and therefore can be used in the field with the same reliability as the mylar holders for soil and sediment samples (keeping in mind the need to also homogenize the samples and to dry them see paragraph 12 below). Paper and field plastic bags degrade the signal by ~20% for Ni, ~30% for Fe and ~ 50% for Cr. These figures double with a double thickness of paper. A 2.5mm air gap reduces the value by ~ 5% for Ni, 30% for Fe and Cr; a 5mm gap by ~20%, 50% and 50% and a 10mm gap by ~40%, 60% and 60%. Therefore a 1mm gap, probably a very common occurrence on outcrop samples, can be expected to reduce the value by ~5% for Ni and 10 to 20% for Fe and Cr.
- 10. For wet *sediment samples* the value was reduced by the same % whether the sample was just wet enough to get it damp or if there was free standing water. For Ni this reduction was ~40% at 1,500 ppm Ni dry, ~25% at 1,000 ppm Ni dry and ~20% at 500 ppm Ni dry.

For Fe the reduction was ~ 35% between 3 and 4% Fe dry.

Fe Cr the reduction was ~ 30% between 1,500 and 3,000 ppm Cr.

The same would apply to soil samples.

For soil and sediment samples, if they are dried and sieved the field, with a 60 second count should have an accuracy of 10% and detection limit of \sim 250 ppm.

DETAILS of CONCLUSIONS

1. Field Results vs Acme Lab results

Initially 72 individual hand samples were analysed once in the field camp on Aug 9/07 with a single 30 second reading using the factory calibration, and later analysed by Acme by their standard hot HCl-HNO₃ extraction except using a 15gm sample.

Conclusions

- For a single 30 sec reading on outcrop the Ni field results can be anywhere from +100% to -60% of the analytical result.
- Field results taken in this manner should only be used for broad general conclusions about the Ni level, e.g. to insure all samples >1,500ppm Ni are collected all samples with a single field reading of 30 seconds >750 need to be collected.

2. <u>Multiple Readings of the Same Sample to Check Homogeneity and</u> <u>Reproducibility of the Pulp</u>

Some of the pulps from the 72 samples from 1 above were obtained from Acme and mounted in the mylar holders and held in the Niton stand. A series of tests were run by analysing several pulps 6 times each using the factory calibration and a 60 second count. For the first 3 readings the sample was undisturbed. Between each of the next 3 the sample was shaken and rotated to mix the pulp in the holder.

Conclusions

- Multiple readings for pulps in the mylar holders all fall with the +/_ range stated by the analyser which is approximately +/- 10% for Ni, 2% for Fe and 12% for Cr at the concentration levels tested and a counting time of 60 seconds used.
- The pulps are reasonably homogeneous as they give the same readings on average if they were undisturbed or shaken and rotated between readings.
- A graph of pulps vs Acme results for shows correlations of For Ni y = 1.145 + 262, $R^2 = 0.86$ For Fe y = 0.589 + 2.11, R2 = 0.682For Cr y = 0.719 - 224, R2 = 0.154
- The analyser was recalibrated using these factors from this time on.

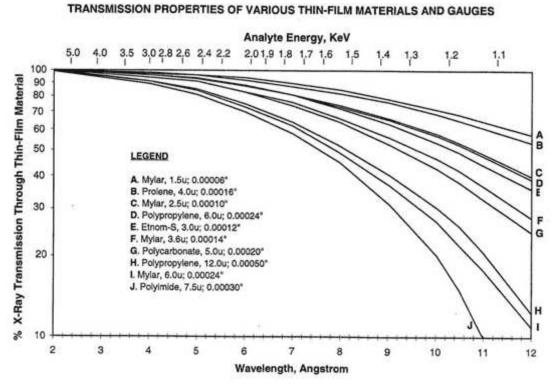
3. Multiple vs Single Readings on Pulps Mylar Mounted

A few samples were examined to see what the improvement would be in the correlation to the Acme results by analysing the mylar mounted pulps 3 times and comparing the average to analyzing them once only. Counting time was 60 sec. The results were as follows:

Element	R^2 with average of 3	R ² against 1 st	R^2 against 2^{nd}
	analysis	analysis only	analysis only
Ni	0.88	0.84	0.84
Fe	0.80	0.80	0.81
Cr	0.19	0.16	

Conclusion

- The improvement in accuracy by averaging 3 readings for homogenized pulp samples is very marginal. It would be better to increase the counting time on the pulps rather than averaging several readings, see item 7 below.


4. Effect of analysing with different coverings and different air gaps

Experiments were run on Ni, Fe and Cr with results, which are average of 4 samples, as follows.

	% differen	nce from Ac	cme value
	Ni ppm	Fe %	Cr ppm
Atomic No	28	26	24

Analyte Energy, Kα, KeV	7.48	6.40	5.41
6µ Mylar - not moved	105	70	97
Snack bag - not moved	108	71	109
snack bag - moved	106	72	103
lab paper bag for pulps - not moved	80	46	43
lab paper bag for pulps - moved	74	47	42
double lab paper bag (at end) - moved	58	29	18
Plastic field bag	81	72	55
6μ Mylar + 2.5 mm air gap - not moved	95	56	72
6µ Mylar + 5 mm air gap - not moved	80	50	50
6µ Mylar + 10 mm air gap - not moved	61	42	38

Data provided by Niton in their Nov 6/05 Applications Update shows the x-ray transmission properties of various thin films. FP is using the 6μ Mylar film provided by Niton, - curve "I" in the figure below.

NOTE, for the elements FP is using the atomic number is >24 and the KeV >5.9

Conclusions

X-ray penetration

- For the 3 elements tested the response to different coverings and air gaps is roughly proportional to their atomic No i.e. the lower the atomic No the greater the effect of thicker coverings and bigger air gaps
- The light weight "snack baggies" do not degrade the signal for the 3 elements tested any more than the 6µ Mylar

- Paper and field plastic bags degrade the signal by ~20% for Ni, ~30% for Fe and ~ 50% for Cr. These figures double with a double thickness of paper
- A 2.5mm air gap reduces the value by ~ 5% for Ni, 30% for Fe and Cr; a 5mm gap by ~20%, 50% and 50% and a 10mm gap by ~40%, 60% and 60%. Therefore a 1mm gap, probably a very common occurrence on outcrop samples, can be expected to reduce the value by ~5% for Ni and 10 to 20% for Fe and C.

5. <u>Outcrop homogeneity</u>

At several locations in the field multiple hand specimen sized samples were collected over several 10's of m^2 and have been retained. For 2 of these multiple specimen samples 8 individual "hand specimens" were analysed 3 times each so the variation within a hand specimen vs multiple samples from a larger outcrop could be assessed. Results were as follows

07PXB074B Acme value (not available yet)			
	Ni	Fe	Cr
"total average" i.e. arithmetic avg of all 3 readings of the 8	2290	3.63	673
samples, i.e. 24 readings			
Diff. between avg of 1 st reading on 1 st 3 samples and "total avg."	170	.14	131
Diff. between avg of 1 st reading on 1 st 4 samples and "total avg."	117	.10	98
Diff. between avg of 1 st reading on 1 st 5 samples and "total avg."	90	.07	72
Diff. between avg of 1 st reading on 1 st 6 samples and "total avg."	31	.03	77
Diff. between avg of 1 st reading on 1 st 7 samples and "total avg."	11	.02	124
Diff. between avg of 1 st reading on all 8 samples and "total avg."	46	.00	124
Diff. between avg of 2 nd reading on all 8 samples and "total avg."	25	.06	53
Diff. between avg of 3 ^{ed} reading on all 8 samples and "total avg."	21	.06	56

07PXB076B Acme value (not available yet)			
	Ni	Fe	Cr
"total average" i.e. arithmetic avg of all 3 readings of the 7	2227	3.62	423
samples, i.e. 21 readings			
Diff. between avg of 1 st reading on 1 st 3 samples and "total avg."	38	.32	427
Diff. between avg of 1 st reading on 1 st 4 samples and "total avg."	39	.15	258
Diff. between avg of 1 st reading on 1 st 5 samples and "total avg."	71	.05	122
Diff. between avg of 1 st reading on 1 st 6 samples and "total avg."	35	.03	111
Diff. between avg of 1 st reading on all 7 samples and "total avg."	69	.04	218
Diff. between avg of 2 nd reading on all 7 samples and "total avg."	42	.06	40
Diff. between avg of 3 ^{ed} reading on all 7 samples and "total avg."	130	.02	101

Conclusions

- A better result is obtained by taking results from different samples rather than taking 2 or more readings from the same sample.
- Obviously the more readings the better but a minimum 3 and preferably 5 to 6 readings appears a reasonable compromise.
- Considerably better precision is obtained from Ni and Fe than Cr

6. <u>Comparison of pulps vs cut surface vs hand specimen/outcrop</u>

Using the 22 samples analyses were completed to judge the effect of analySing different surfaces. Summary below.

	ACME		NITON	
	Avg of	Pulps	Cut	Hand
	all	_	surface	Samples
	samples			-
Number of samples		22	6	22
Ni	<mark>2173</mark>			
Mean difference from the average value of				
the 3 readings (%)		3.3	4.2	9.0
Correlation with Acme - R^2		0.69	0.84	0.49
Difference of average of all samples Acme				
/ Niton		-276	-292	-322
% difference between avg. Acme and avg.				
Niton		-12.7	-13.4	-14.8
Fe	<mark>4.57</mark>			
Mean difference from the average value of				
the 3 readings (%)		1.1	2.7	7.1
Correlation with Acme - R ²		0.73	0.36	0.45
Difference of average of all samples Acme				
/ Niton		1.70	1.92	1.52
% difference between avg. Acme and avg.				
Niton		37.2	42.0	33.2
Cr	<mark>920</mark>			
Mean difference from the average value of				
the 3 readings (%)		7	21.6	20.8
Correlation with Acme - R ²		negative	0.11	negative
Difference of average of all samples Acme				
/ Niton		503	263	661
% difference between avg. Acme and avg.				
Niton		54.7	28.6	71.8
Mean difference from the average value of				
the 3 readings (%)		7	21.6	20.8

Conclusions

These conclusions are based on a very limited sample set and so are preliminary

- For Ni and Fe the mean difference between the 3 readings on a single samples (i.e. the variability of reading on one sample) is a bit worse for cut surfaces than pulp and much worse for hand specimens indicating that the roughness of the surface is a greater cause of poor precision than variable content of metal within the sample
- The cut-surface and pulps have very roughly the same correlation with the Acme samples for the individual readings. The hand specimen surface results are significantly worse.
- The AVERAGE % difference, i.e. the difference between the average Ni in all 22 samples and the same for the 3 surfaces tested are only ~+/-15%. Fe and Cr are quite a bit worse.

7. Effect of Moisture

Three stream sediment samples were analyzed in a baggie. First sample analyzed dry, second sample dampened throughout with water and third totally saturated with water.

Conclusions

- The analytical value was reduced by the same % whether the sample was just enough water to get it damp or if there was free standing water.
- For Ni this reduction was ~40% at 1,500 ppm Ni dry
 - ~25% at 1,000 ppm Ni dry
 - ~20% at 500 ppm Ni dry
- For Fe the reduction was ~ 35% between 3 and 4% Fe dry
- Fe Cr the reduction was ~ 30% between 1,500 and 3,000 ppm Cr

APPENDIX IV

SCANNING ELECTRON MICROPROBE REPORT

REPORT ON Ni-Fe ALLOYS IN 13 SAMPLES

to

First Point Minerals Corp Suite 906-1112 West Pender St. Vancouver, BC, V6E 2S1

by

P.C.Le Couteur, Ph.D, P.Eng

Micron Geological Ltd, 4900 Skyline Dr., North Vancouver, BC, V7R 3J3

> Vancouver, BC, November 24, 2008

INTRODUCTION

Thirteen polished thin sections were studied, principally to determine if any Fe-Ni alloys were present. One or two areas of interest had been circled on each slide by First Point, and in most cases only these areas were examined by the writer. However, P. Bradshaw requested that a number of grains be analyzed outside the circled areas in samples 08RMB133 and 153, and that sizes of grains inside circled areas in all the samples be measured.

Polished thin sections were examined by reflected light microscope and minerals of interest analyzed on an AMRAY 1810 scanning electron microscope equipped with an EDAX "Genesis" energy dispersive X-ray analyzer. As samples were analyzed without reference to standards these analyses ("EDX" analyses) are semi-quantitative. It may also be noted that inclusions and minerals hidden below the surface may contribute to analyses of a selected mineral without the analyst being aware of this, and that the analyses were typically done over short periods (about 15 seconds). In addition, samples were not carbon coated, and electrically resistant samples can sometimes complicate analyses. Despite these possible problems analyses of a sample of "type 304" stainless steel made under the same conditions as the samples, give the reasonably accurate results shown in Table 1. This is obviously not an exhaustive test, but suggests that these "standardless" analyses do give reasonable results for this synthetic Ni-Fe-Cr alloy over the short analysis times used.

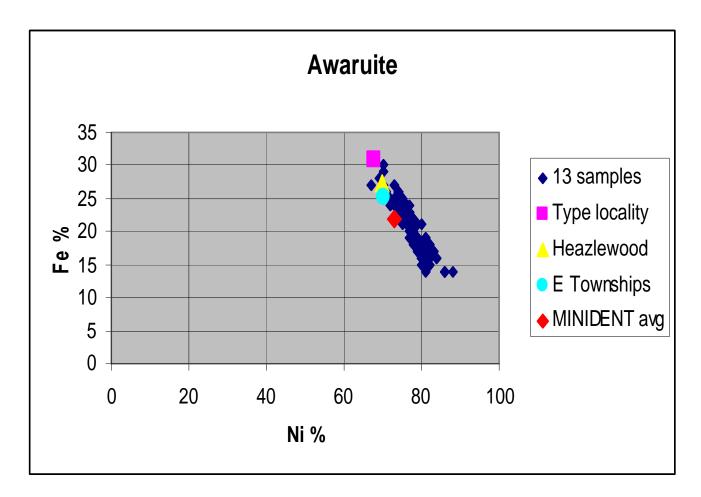

	Si	Cr	Fe	Ni
	%	%	%	%
Max value in alloy	0.8	20	69	10.5
Min value in alloy		18	74	8
Analyzed over 10 sec	<1	19	73	8
Analyzed over 50 sec	1	19	73	8

Table 1 EDX analyses of type 304 stainless steel alloy

An indication of precision is given by repeated analyses of the same area of an awaruite grain under the same conditions as the analyses of other samples.

Table 2 Repeat analyses	of same area	of awaruite

Analysis	Fe	Со	Ni	Cu	Total
no	%	%	%	%	
1	16.6	1.2	79.6	2.6	100.0
2	16.7	1.2	79.5	2.6	100.0
3	16.5	1.1	79.8	2.6	100.0
4	16.1	0.9	80.4	2.6	100.0
5	16.4	1.1	79.8	2.8	100.1
6	16.4	1.1	80.0	2.5	100.0
7	16.3	1.2	80.2	2.3	100.0
8	16.8	1.0	80.1	2.1	100.0
9	16.1	1.4	80.1	2.3	99.9
10	16.0	1.2	80.1	2.7	100.0

Figure 1 Plot of data in Table 3 from 13 samples, compared with awaruite analyses reported from other areas.

Analyses (total 163) are listed in Table 3 and the awaruite analyses are plotted in Figure 1. Nineteen analyses are of Ni-sulphides, including millerite and pentlandite. Of note are the great variety of grain shapes, illustrated in Figures 2 to 7, the analyses for which are shown in Table 3. Also shown in these figures are some composite grains of awaruite with other minerals as well as monomineralic awaruite grains. Some awaruite is mantled by magnetite and less commonly by chromite. Cu and Co are commonly present in small amounts in awaruite and it has previously been noted that the main peaks for these are overlapped by much larger peaks of Ni and Fe, which complicates the analysis when the Cu and Co levels are low .

Following figures 1 to 7 reflected light images of each circled area are shown, with analyzed grains in Table 3 labelled. The field of view in all these images is about 3.5 mm.

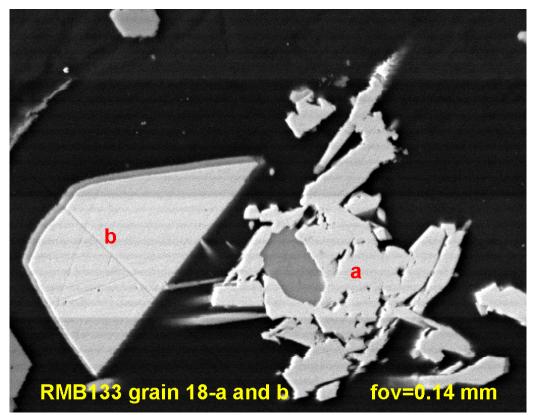


Figure 2 BSE image . Note contrast in shapes of awaruite grains. Analyses listed inTable 3

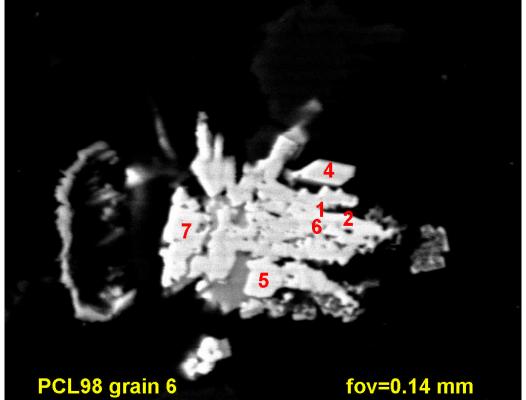


Figure 3 BSE . Awaruite grains with a large range of compositions (seeTable 3)

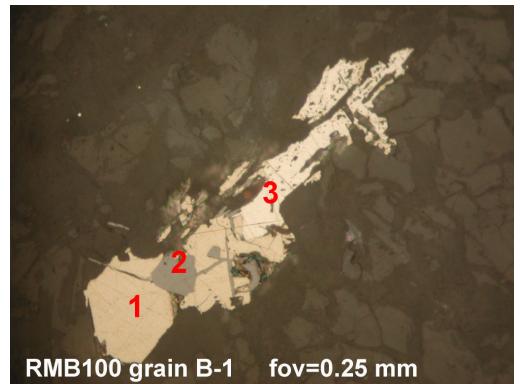
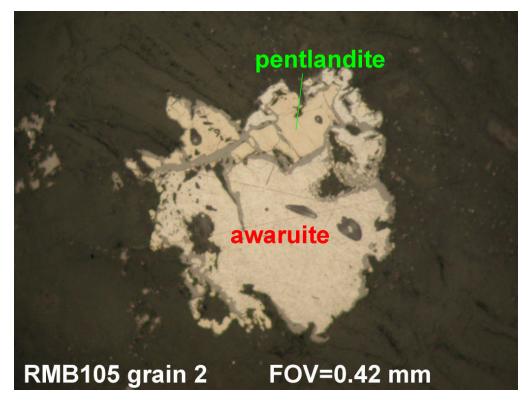
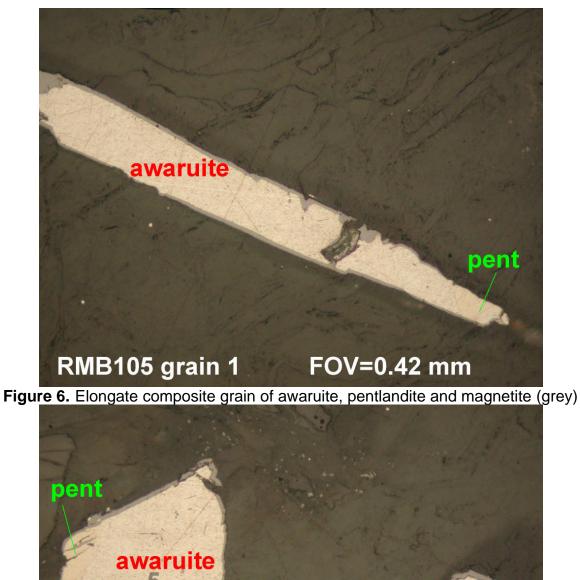


Figure 4 REF. Composite grain of pentlandite (1), magnetite (2), awaruite (3).

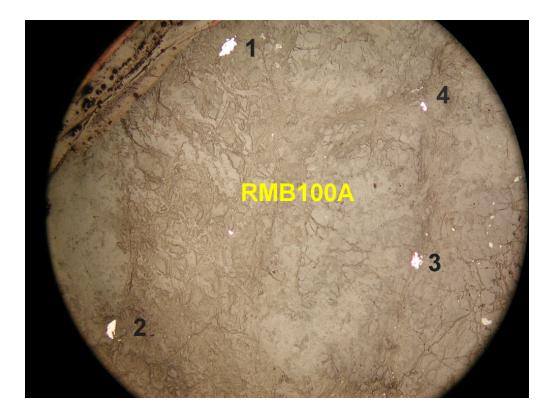
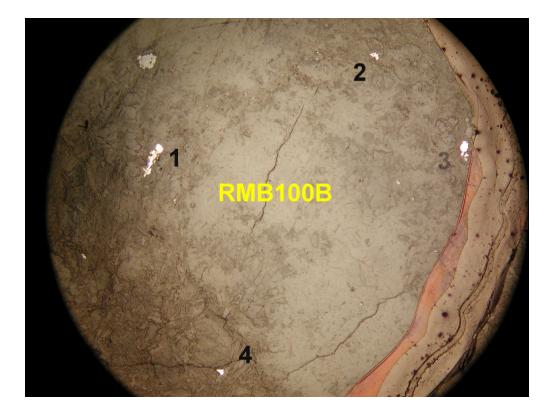
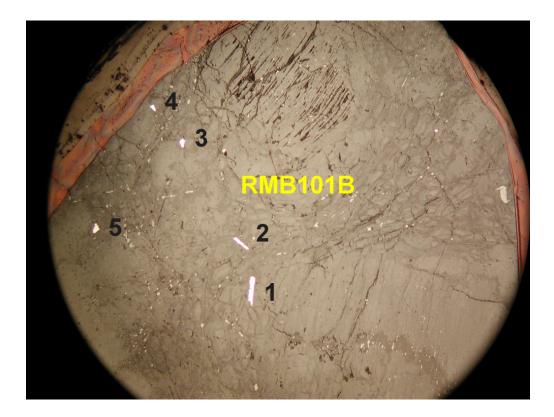
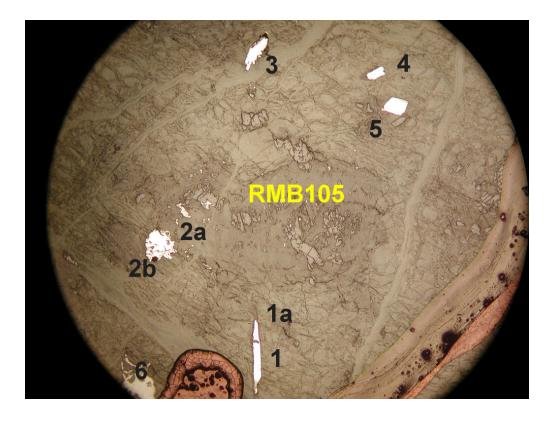
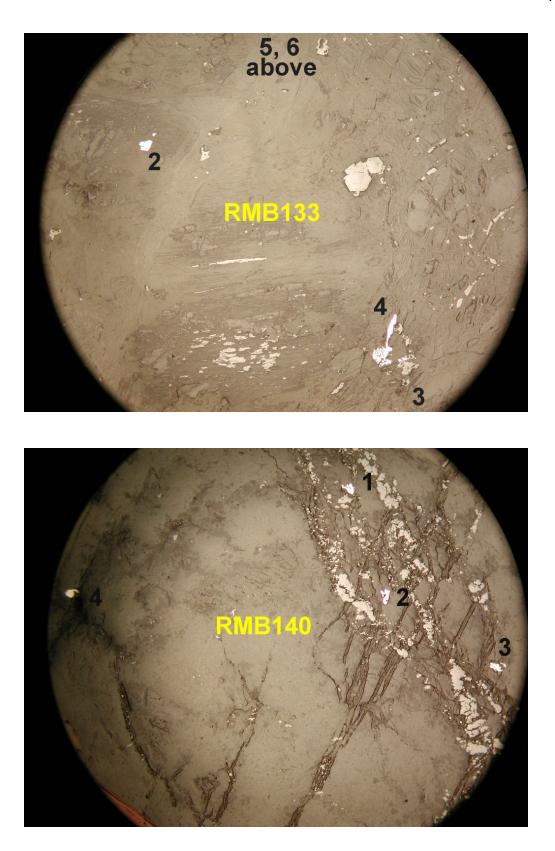



Figure 5 REF. Irregular composite grain.

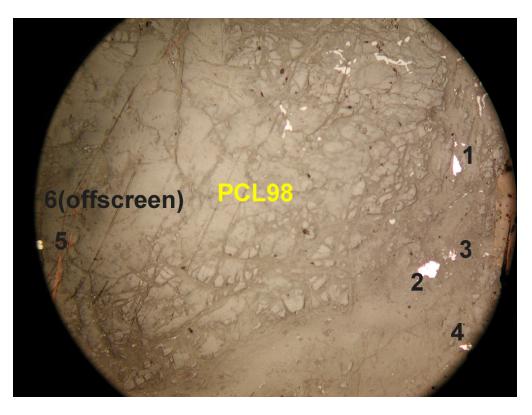


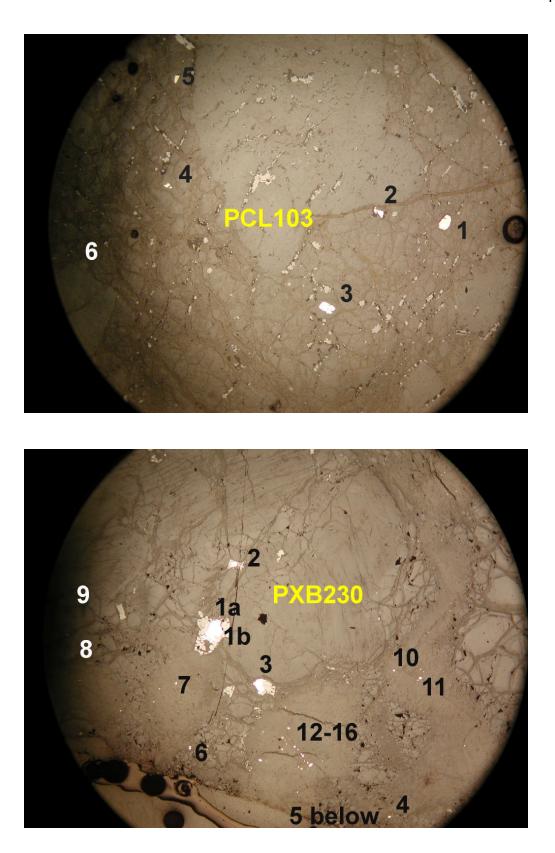












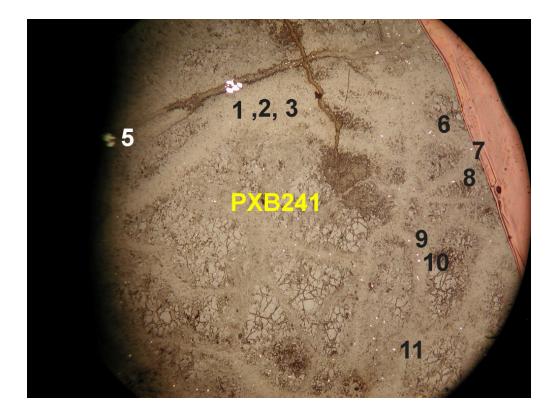


TABLE 3	EDX a	analy	ses o	f sel	ectec	l gra	ins iı	n 13	polis	shed th	nin se	ctione	d san	nples
Sample	Area	Grain	zone	Fe %	Ni %	S %	Co %	Cu %	0 %	Cr2O3 %	SiO2 %	Fe2O3 %	MgO %	Al2O3 %
08RMB100	A	1		23	75		1	2						
08RMB100		2		22	77		1							
08RMB100		3		25	73		3							
08RMB100		4		25	73		2							
08RMB100	В	1	1	28	30	35	7							
08RMB100		1	2	71					28					
08RMB100		1	3	26	74									
08RMB100		2		25	75									
08RMB100		3		14	81			5						
08RMB100		4		15	82			3						
08RMB101	А	1		3	68	28								
08RMB101		2		1	70	29								
08RMB101		3			71	30								
08RMB101		4		15	82			3						
08RMB101		5		2	69	29								
08RMB101		6		16	81			3						
08RMB101	В	1		24	77									
08RMB101		2		24	76									
08RMB101		3		18	78			5						
08RMB101		4		20	78		2							
08RMB101		5		23	77									
08RMB105	А	1	а	23	75			2						
08RMB105		1	b	29	70		2							
08RMB105		2	а	25	73		2							
08RMB105		2	b	33	28	34	5							
08RMB105		3		21	75		1	3						
08RMB105		4		25	73		2							
08RMB105		5		24	77									
08RMB105		6								16	7	70	7	
08RMB128	А	1		25	75									
08RMB128		2		26	74									
08RMB128		3		28	22	48	3							
08RMB128		4		27	73									
08RMB128		5		26	74									
08RMB133	A	1		16	84									
08RMB133		2		25	75									
08RMB133		3		16	84									
08RMB133		4		21	79									
08RMB133		5		17	83									
08RMB133		6		23	77									
08RMB133	genera			19	79		1							
08RMB133		2		16	80		1	2						
08RMB133		3a		22	76			2						
08RMB133		3b		15	81		1	3						
08RMB133		3c		22	76		1	2						
08RMB133		3d		23	76		1							
08RMB133		4a		23	75			2						

Sample	Area	Grain	zone	Fe	Ni	S	Со	Cu	0	Cr2O3	SiO2	Fe2O3	MgO	AI2O3
				%	%	%	%	%	%	%	%	%	%	%
08RMB133		4b		22	78									
08RMB133		4c		23	74		2	2						
08RMB133		5		15	81		1	3						
08RMB133		6a		24	74		1	1						
08RMB133		6b		24	74		2							
08RMB133		7		24	76									
08RMB133		8		16	81		1	2						
08RMB133		10		23	75		2							
08RMB133		11a		16	80		1	3						
08RMB133		11b		17	81			2						
08RMB133		11c		18	80			2						
08RMB133		12a		25	70		3	2						
08RMB133		12b		24	76									
08RMB133		14a		24	72		4							
08RMB133		14b		22	75		2	2						
08RMB133		15a		21	77		2							
08RMB133		15b		24	74		3							
08RMB133		16		16	82		2							
08RMB133		17		16	84		1							
08RMB133		18a		23	75		2							
08RMB133		18b		16	82		2							
08RMB133		18c		23	75		2							
08RMB133		19		22	76		2							
08RMB133		20		23	75		2							
08RMB133		21		17	82		2							
08RMB133		23		23	77		-							
08RMB133		24a		18	81		1							
08RMB133		24b		23	74		1	2						
08RMB133		25		16	80		1	3						
08RMB133		26		22	76		-	2						
08RMB133		27		21	76		1	2						
08RMB133		28		21	79			-						
08RMB140	А	1		24	74		1							
08RMB140		2		25	73		2							
08RMB140		3		24	74		2							
08RMB140		4		- ·	67	44								
08RMB153	А	1		14	86									
08RMB153	· · ·	2		14	86									
08RMB153		3		17	00					34	3	36	11	17
08RMB153		4		70					30		5	50		17
08RMB153		5		14	88				00					
08RMB153	genera	1		22	78									
08RMB153	genere	2		1	67	31								
08RMB153		3		25	73		2							
08RMB153		4		14	86		2							
08RMB153		5		14	65	35								
08RMB153		6		1	67	32								
08RMB153		7		1	67	<u>32</u> 31	1							
08RMB153		8		25	75	51	I							
08RMB153 08RMB153		<u> </u>		25 14	75 86									
		9		14	00									

Sample	Area	Grain	zone	Fe	Ni	S	Со	Cu	0	Cr2O3	SiO2	Fe2O3	MgO	AI2O3
•				%	%	%	%	%	%	%	%	%	%	%
08RMB153		10		26	74									
08RMB153		11		25	73		2							
08RMB153		12		14	86									
08RMB154	А	1		26	74									
08RMB154		3		21	78									
08PCL095	А	1		30	70									
08PCL095		2		24	76									
08PCL095		3		21	80									
08PCL095		4		19	81									
08PCL095		5		23	77									
08PCL095		6		24	76									
08PCL095		7		23	76		1							
08PCL095		8		24	76									
08PCL095		9		24	76									
08PCL095		10		23	77									
08PCL095		11		7	65	28								
08PCL095		12		22	77		1							
08PCL095		13		24	76									
08PCL095		14		21	79									
08PCL095		15		23	77									
08PCL095		16		23	77									
08PCL098	A	1		18	79		1	3						
08PCL098	~	2		21	77		1	2						-
08PCL098		3		27	70		4	~						-
08PCL098		4		15	80		1	4						-
08PCL098		5		20	77		1	3						-
08PCL098		6	1	36	41		23	0						-
08PCL098		6	2	27	67		6							-
08PCL098		6	3	50	10		40							-
08PCL098		6	4	23	74		3							-
08PCL098		6	5	26	71		3							-
08PCL098		6	6	40	34		26							
08PCL098		6	7	24	73		3							
	A			3	45	53	-							
08PCL103	~	1		3	49	49								
08PCL103		3		4	45	51								
08PCL103		4		3	51	46								
08PCL103		5		5	63	37								
08PCL103		6		5	63	32								-
	A	1	а	18	82	02								
08PXB230		1	۵ b		52					27	3	65	4	2
08PXB230		2	U	19	77			4		21	3	00	4	2
08PXB230		3		19	78			3						
08PXB230		4		18	82			3						
08PXB230		5		16	80			4						
08PXB230		6		19	81			7						
08PXB230		7		19	79			2						
08PXB230		8		19	82			۷						
		9		17	02 79		1	3						
08PXB230		9		17	19		1	3		1				

Sample	Area	Grain	zone	Fe	Ni	S	Со	Cu	0	Cr2O3	SiO2	Fe2O3	MgO	AI2O3
				%	%	%	%	%	%	%	%	%	%	%
08PXB230		10		17	79		1	3						
08PXB230		11		25	72		2	2						
08PXB230		12		17	79		1	3						
08PXB230		13		26	74									
08PXB230		14		27	73									
08PXB230		15		26	74									
08PXB241	A	1		23	75			2						
08PXB241		2		24	76									
08PXB241		3		23	75			2						
08PXB241		4		23	76			2						
08PXB241		5		23	75		1	2						
08PXB241		6		22	78									
08PXB241		7		21	77			2						
08PXB241		8		28	69		3							
08PXB241		9		24	75		2							
08PXB241		10		23	77									
08PXB241		11		22	77		1							

Table 4 Long	dimensions	of awaruite grains
--------------	------------	--------------------

0	`	U U		1 ,)					
Sample	Individual gra	ains , ion	g dimension	in mm.							
08RMB100A	0.05	0.09	0.15	0.03	0.17						
08RMB100B	0.07	0.08	0.05	0.01	0.01	0.05	0.25				
08RMB101A	0.02	0.14	0.07	0.1	0.1	0.1	0.09	0.07			
08RMB101B	0.14	0.21	0.08	0.05	0.07	0.02	0.09	0.01	0.02		
08RMB105	0.47	0.2	0.14	0.15	0.3	0.01	0.005				
08RMB128	0.16	0.12	0.12	0.06	0.12	0.16	0.04	0.04	0.06		
08RMB133	0.09	0.05	0.04	0.4	0.2	0.04	0.02	0.1	0.12	0.03	0.09
08RMB140	0.1	0.12	0.1	0.09	0.07	0.03	0.01				
08RMB153	0.1	0.17	0.02	0.1	0.005	0.005					
08RMB154	0.12	0.2	0.4								
08PCL095	(20 grains of 0).01)	0.03	0.02	0.02	0.02	0.05				
08PCL098	0.08	0.04	0.02	0.02	0.15	0.16	0.05	0.02			
08PCL103	0.08	0.12	0.1	0.12	0.05	0.11 al	l Ni S				
08PXB230	(20 grains of 0).01)	(13 grains of C).02)	0.2	0.05	0.1	0.03			
08PXB241	(10 grains of 0).02)	(30 grains of 0).01)	0.1	0.05	0.06	0.05	0.06	0.04	
Measured by	light microscop	e using a	a 1mm scale d	ivided into	100 parts o	f 0.01 mm a	as a length s	tandard.			

(includes some grains of Ni sulphides especially in 101 and 103)