

Claims involved: 389070, 389772, 389773, 389774, 389775, 389776, 389777 and 565006

ATLIN MINING DIVISION

NTS 104N.043

Approximate coordinates of the centre of the property:

Latitude: 59°28'25"N; Longitude: 133°32'55"W UTM: 659550N, 582250E (NAD83, Zone 8)

Owner: John Harvey, Vancouver

Operator: Saturn Minerals Inc., Vancouver

[SOW 4262494]

By

Krzysztof Mastalerz, Ph.D., P.Geo.

Submitted: April 28th, 2009

.

TABLE OF CONTENTS

N

			Page
TAB	LE OF	CONTENTS	2
FIGU	JRES A	AND TABLES	3
1.0	INTI	RODUCTION	4
	1.1	Location and Access	4
	1.2	Physiography, Vegetation and Climate	6
	1.3	Property Definition and Claim Information	6
	1.4	History	9
	1.5	Summary of 2008 Exploration Program	9
2.0	TEC	9	
	2.1	Regional Geology	9
	2.2	Property Geology	11
	2.3	Mineralization Types	12
	2.4	Saturn's 2007 discovery of gold in bedrock	13
	2.5	Complementary Rock Sampling Program	15
	2.6	Results of the 2008 Drilling Program	18
	2.7	Quality control and assurance program	24
3.0	CON	ICLUSIONS and RECOMMENDATIONS	24
4.0	REF	ERENCES	27
5.0	WOI	RK COST STATEMENT	29
6.0	CER	TIFICATE	30
APP	ENDIC	ES	31

FIGURES

- FIGURE 1. Location Map, 1:7,000,000
- FIGURE 2. Claim map, 1:20,000
- FIGURE 3. Regional Geology, 1:85,000
- FIGURE 4a. Rock Sample Location Map, 1: 5,000
- FIGURE 4b. Rock Sample and Drill Hole Location Map, 1: 5,000
- FIGURE 5. Drill Hole MK8-1, Lithology and Gold (Au) Results, 1:750
- FIGURE 6. Drill Hole MK8-1, Lithology and Gold (Au) Results, 1:750
- FIGURE 7. Drill Hole MK8-1, Lithology and Gold (Au) Results, 1:750
- FIGURE 8. Drill Hole MK8-1, Lithology and Gold (Au) Results, 1:500

TABLES in TEXT

- TABLE 1.
 Claim Status of the McKee Creek Property
- TABLE 2.
 Significant Results of the Rock Sampling Program
- TABLE 3.Diamond Drill Hole Locations and Navigation Data
- TABLE 4.Summary of the Drilling Results

APPENDICES

- APPENDIX 1 Rock Sample Locations and Descriptions
- APPENDIX 2 Rock Sample Analyses Certified Results
- APPENDIX 3 Drill Hole Logs
- APPENDIX 4 Core Sample Analyses Certified Results
- APPENDIX 5 Quality Assurance/Control Program

ASSESSMENT REPORT ON DIAMOND DRILLING 2008 PROGRAM AND COMPLEMENTARY ROCK SAMPLING, MCKEE CREEK PROPERTY NORTHWESTERN BRITISH COLUMBIA BCGS 104N.043

1. INTRODUCTION

The McKee Creek property is a lode-gold prospect located in the Atlin placer gold camp, in northwestern British Columbia (Fig. 1). McKee Creek is also one of the most important placer gold producing creeks in the Atlin camp with reported production of approximately 47, 000 ounces of gold. The claim group of the McKee property consists of eight contiguous mineral claims (Fig. 2) located along the middle part of McKee Creek and lower part of Eldorado Creek. The property is owned by John Harvey since December 2006, and held under option by Saturn Minerals Ltd. of Vancouver, British Columbia.

1.1 Location and Access

The McKee Creek property is located 14.5 kilometres southeast of the town of Atlin in northwestern British Columbia (Figs. 1 and 2). The claims cover the middle third of the McKee Creek valley and the lower portion of its left-bank tributary, Eldorado Creek. The property is centered approximately at latitude 59° 28.5' North and 133° 33' West on BCGS map sheet 104N.043. The property is approximately 499 hectares in area (some claims overlap each other).

Access to the property is provided by an all year maintained gravel road (5 km starting at Atlin is paved) from Atlin to O'Donnel River ("Warm Bay Road"). This road crosses McKee Creek over the bridge some 250 metres south-east of the property boundary. A rough, four-wheel-drive dirt road running along the steep north bank of the McKee Creek valley provides direct access to the central and northeastern parts of the property. Some seasonal gravel roads are maintained by placer miners and run along the bottom of the valley which is strongly modified by hydraulic mining. A walk-in trail along the southern bank of McKee Creek provides access to the upper reaches of Eldorado Creek.

1.2 Physiography, Vegetation and Climate

The Atlin area is located on the Teslin Plateau, east of the Coast Mountains in northwestern British Columbia. The town of Atlin lies on the eastern shore of Atlin Lake at an elevation of 690-750 metres a.s.l. Topography of the area varies from moderately rugged to the east, to moderately diversified, including gently rolling hills with some depressions of small lakes, and rather narrow flats along Atlin Lake.

Most of the McKee property is located within the broad valleys of McKee and Eldorado Creeks, which have been shaped by both fluvial and glacial processes and are characterized by moderately diversified relief. McKee Creek is about 12 kilometres long and flows west and southwest into Atlin Lake. Elevations on the property range from 800 metres a.s.l. in its southwestern part, through approximately 900-1200 metres a.s.l. in its central and northern parts, and up to almost 1300 metres a.s.l. in its NW corner. The character of the McKee Creek valley changes from relatively deeply incised along its middle third to a broad saddle area in its upper portion and between drainages of McKee and Spruce Creeks, towards the northeast. Topography of the middle part of the valley floor is very strongly modified by placer mining. Present day slopes of the middle part of the valley are extremely steep and undercut by hydraulic excavation for placer gold. Modern slope processes, especially slumps and slides, have considerably modified various parts of the valley floor and have mostly concealed outcrops of argillaceous rocks.

The tree line in the Atlin vicinity lies at approximately 1400 metres a.s.l. on north facing slopes, and at 1500 metres a.s.l. on southern slopes. The valley floors are forested with lodge-pole pine, black spruce, aspen, scrub birch and willow. Mountain alder grows locally near streams. Buckbrush covers the slopes above the tree line. The lower part of the McKee valley floor is not vegetated due to placer mining activity.

Daily summer temperatures near Atlin average 20-25°C at lower elevations and decline considerably at elevations exceeding 1500-1600 metres a.s.l. Areas directly surrounding Atlin Lake experience little to moderate precipitation during summer seasons. Onset of winter is frequently preceded by relatively short periods of autumn weather conditions, with considerably lowered temperatures, cloudy skies and more frequent precipitation. Winter conditions are expected from the end of October to April with moderate snowfall and temperatures averaging - 15°C to -25°C in January/February. A great part of the McKee valley floor experiences relatively strong winds.

1.3 Property Definition and Claim Information

The McKee property is located in the Atlin Mining Division and presently comprises eight mineral tenures totaling 499.34 hectares (Fig. 2). Seven of these tenures form the core of the property and are owned by Mr. J. Harvey of Vancouver (legacy claims). An additional claim (tenure 565006) was staked in summer, 2007 by Saturn Minerals to fill the gaps existing between legacy claims which formed the original property (compare: Mastalerz, 2007). Claim information is listed in Table 1.

Table 1. Claim state	us of the McKee Creek	property, Atli	n Mining Division, NTS 104N.043
Claim Name	Tenure Number	Area	Good To Date
MOTHER LODE	389070	300.0	2013/mar/31
ANITA-I	389772	25.0	2013/mar/31
ANITA-2	389773	25.0	2013/mar/31
ANITA-3	389774	25.0	2013/mar/31
ANITA-4	389775	25.0	2013/mar/31
ANITA-5	389776	25.0	2013/mar/31
ANITA-6	389777	25.0	2013/mar/31
MCKEE ADDITION	565006	49.339	2013/mar/31

In late 2006 Saturn Minerals Inc. of Vancouver, BC, optioned the property and became the operator. Work done by Saturn in summer 2008 was conducted on the following claims: 389070, 389772, 389774, 389775 and 389777. Expiry dates listed above are contingent upon acceptance of this assessment report, according to event 4262494 filed on February 05th, 2008.

1.4 History

Placer gold near Atlin was first discovered in 1897 by Fritz Miller on Pine Creek. By the end of 1989 more than 3000 people camped in the Atlin area. The most important placer gold production came from 8 creeks – Spruce, Pine, Birch, Boulder, Ruby, Otter, Wright and McKee. Hydraulic mining on McKee Creek began in 1903. Some underground work in the course of exploration and mining for placer gold was completed here in the mid 1930's. From 1898 through 1945, approximately 1,369,123 grams of gold were recovered from McKee Creek making it the 5th largest gold producer in the Atlin Camp (Holland, 1950).

Gold-bearing quartz veins were first discovered in the Atlin area in 1899. Soon after, most of the recently known hard-rock showings, namely: Pictou, Anaconda, Beavis and Golden View were discovered. In 1981, Yukon Revenue Mines Ltd. re-examined the Lakeview property and showed low-grade gold values over a broad zone of a quartz stockwork developed in a listwanite alteration zone developed in serpenitites and ultramafic rocks (Gonzalez and Dandy, 1987). In 1986, Homestake acquired the Yellowjacket property on the Pine Creek, east of Atlin. Preliminary drilling intersected several intervals of considerably high gold grades in a quartz stockwork with 1-2% pyrite, which was hosted by carbonatized to talcose (advanced listwanite alteration) ultramafics. More recently, Muskox reported bonanza gold grades over numerous intervals in a few diamond drill holes on the same property (Prize Mining Corp. News Release, Apr 28, 2004).

The first gold-bearing vein zone on McKee Creek was discovered in 1940 by placer miners while driving an adit to the northwestern valley wall (White, 1941; Carter, 1983). Cominco examined the showing and optioned the ground in 1941. A sampling program resulted in gold values ranging up to 0.36 opt. In 1983, Standard Gold Mines Ltd. announced additional gold vein discovery located approximately six kilometers northeast of the confluence of McKee and Eldorado Creeks (Gonzalez & Dandy, 1987) in a similar geological setting to McKee Creek. However, several exploration programs conducted in 1980's failed to identify a gold system in bedrock on the McKee Creek property (e.g. Wong and Troup, 1983; Gonzalez and Dandy, 1987).

((

In summer 2007, Saturn Minerals completed a rock sampling program which was accompanied by detailed lithological and structural observations on the McKee property. The program of rock sampling resulted in 122 samples which have been ICP analyzed for 30 elements and partly fire assayed. Saturn's 2007 exploration program resulted in the discovery of gold in bedrock on the property (Mastalerz, 2007). Sites containing gold are situated in three distinct areas on the property. In all of these areas gold occurs in association with quartz veins which cut through and run roughly parallel to the distinct zones of shearing and/or tectonic brecciation. Both quartz veins and wall rocks contain some (0.5-2%) of disseminated and/or coarse-crystalline pyrite. Wall rocks are characterized by listwanite alteration (including variable amount of mariposite) and silicification. All discoveries are located at the valley bottom, along main channel of McKee Creek, in a wide, complex zone of strong tectonic deformation. Background rocks of the property are characterized by low to very low contents of precious, base metals and other elements indicative of active hydrothermal systems. Some other, immobile elements, such as nickel and chromium, display relatively high concentrations in this area.

1.5 Summary of the Saturn 2008 Exploration Programs

In 2008 Saturn conducted a complementary rock sampling program on the McKee Creek property. During the late spring a limited number (30 samples) of chip and grab samples were collected from the areas previously sampled in 2007 and known to contain gold in bedrock, as well as from selected adjoining, freshly exposed areas. This set of samples was designed to check if similar results could be reproduced from the same outcrops and to provide additional, complementary data. The other set of samples (24 samples) was collected in summer, before onset of the drilling program. This set was designed to test three distinct areas of an advanced listwanite alteration, which were not sampled satisfactorily during the 2007 field season.

Four diamond drill holes totaling 694.03 metres (2,277 feet) were drilled from 4 pads to test a few selected gold targets located during the Company's 2007 reconnaissance rock sampling program. A total of 171 core samples were collected and shipped to Pioneer Lab in Richmond, B.C. All core samples were analyzed by standard ICP (induced couple plasma) method for 30 elements involving an aqua regia digestion and for gold by geochem method. The core samples were designed to test lithological and mineralogical variability of the host rocks and mineralized.

2. TECHNICAL DATA AND INTERPRETATION

2.1 Regional Geology

The Atlin area is situated in the western portion of the Atlin sub-terrane in northwestern British Columbia. This terrane comprises a package of detached and tectonically deformed remnants of the Late Paleozoic to Late Triassic Tethyan ocean crust and ocean floor deposits. Its allochtonous

origin is proven by exotic fauna of the fusulinind foraminifers and conodonts (Monger 1975). The Atlin sub-terrane represents the northern extension of the Cache Creek Terrane which is interpreted as a subduction ophiolitic complex related to the long lasting ocean crust evolution, volcanic arc development of the Quesnellia and Stikinia, ocean closure, and finally, the Middle Jurassic terrane accretion and localized ocean crust obduction (Monger et al., 1982; see also: Ash, 1994, Ash & Arksey 1990b, c).

The western part of the Cache Creek terrane is highly tectonically disrupted and most units are bounded by faults. Common are mixtures of various lithologies in a form of tectonic mélanges and/or coarse, polymictic, tectonic breccias. The western boundary of the terrane coincides with the Nahlin Fault where the terrane contacts with tectonically deformed strata of the Lower Jurassic Laberge Group. Cache Creek terrane is dominated by basic volcanics and carbonate rocks, but includes also slivers of ultramafics, chert, argillite and coarse clastic rocks of volcanic arc affinity.

Ultramafic bodies known elsewhere as the "Atlin intrusions" and interpreted before as younger intrusions (Aitken, 1959) do not show thermal contacts and have to be considered as Alpine type ultramafics. Such bodies resulted from serpentinite-peridotite diapirism within orogenic belts, due to extremely ductile-type reology/ behavior of these rocks under conditions of extremely high pressure and elevated temperature. Small-scale plugs of tonalite and of related intrusive rocks occur in places, some of them accompanied by molybdenite mineralization.

The lithostratigraphy of the Cache Creek terrane near Atlin is still only simplified in spite of several attempts at its formalization. It is partly due to the complex nature of an overall structure and predominance of tectonic contacts between individual component units. All the lithostratigraphic end-members (frequently of rather lithotectonic character) of the terrane are included into the Cache Creek Group. Basaltic volcanic rocks and associated volcaniclastics are put together into the Nakina Formation, while sedimentary end-members, predominantly chert and argillites, are classified into the Kedahda Formation. However, original, depositional and facies contacts between individual litologies of these two lithostratigraphic units are generally unknown since they form rather consistently individualized tectonic units.

Structural geology is dominated by effects of strong deformation related to development of an accretionary prism and overthrusting of detached units one upon another.

2.2 Property Geology

Bedrock of the predominant part of the McKee property is concealed under a relatively thick layer of loose Quaternary and minor, probably Tertiary, deposits (e.g. Gunn, 1977, Walcott, 1985, Mark 1986). These deposits include alluvial channel gravels, gravelly-to-pebbly sands, minor silts and silty clays, and finally glacial till layers. Extensive exposures of these sediments can be observed along the steep banks of the middle portion of the McKee Creek valley. Seismic surveys and drilling operations conducted so far on the property show that both McKee and Eldorado Creek paleovalleys (pre-Quaternary) are locally very deeply incised. Further downstream, south-west of the bridge on McKee Creek, where the creek reaches its upper alluvial fan-deltaic segment, the thickness of loose deposits still reaches 20-30 metres (Kierans, 1984).

Bedrock outcrops account for a very small fraction of the property area, probably less than 5-8% of its total area. Very long but narrow exposures occur along the present day active channels of McKee and Eldorado Creeks. There are still few small-scale outcrops along some of the abandoned and cut-off channels, and several high, cliffy outcrops located along the steep walls of both valleys.

The property is underlain by dark-gray to gray cherts, minor dark-gray argillites, locally siliceous, and subordinately by other siliciclastic rocks of the Kedahda Formation (Mississippian to Triassic), greenstones, meta-andesites and meta-basalts of the Nakina Formation (Late Paleozoic), and ultramafic rocks of the Atlin Ultramafic Allochton (Ash and Arksey, 1990a). All of these rocks are classified as end members of the Cache Creek Group (Cache Creek terrane; Terry, 1977, Ash and Arksey, 1990).

Cherts and argillites of the Kedahda Formation sometimes display moderately well preserved bedding and/or laminations but they invariably show evidence of a strong tectonic deformation. The property is situated in a broad compressional tectonic belt related to terrane accretion and thrust faulting, and the bedrock shows numerous effects of tectonic deformation. Strong fracturing of the rock, with common development of fracture cleavage and variable attitudes of the original bedding are the most common evidence of tectonic deformation. Numerous fault zones are overprinted by listwanite alteration and frequently accompanied by strongly brecciated protolith rocks. Quartz and carbonate veins of variable widths, sometimes forming sheeted and stockwork-type vein systems, frequently accompany the latter zones.

The listwanite alteration assemblage results from the progressive hydrothermal alteration of ultramafic and adjoining rocks, and includes serpentinization, carbonatization, development of talcose rocks and quartz veining. The zones of the most advanced alteration are characterized by profound carbonate replacement with characteristic systems of magnesite veins, development of talc, the presence of mariposite (a green chrome mica), and a limited pyrite-arsenopyrite mineralization.

The McKee Creek valley is believed to follow a prominent NE-SW trending tectonic zone (McKee Creek Fault Zone) of a second-order thrust fault (or inverse fault) character (Fig 3). There occur locally slivers of strongly serpentinized ultramafics and strong carbonate replacements follows this zone. It expresses its deeply altered character as a broad belt of very low magnetic suspectibility (Gonzalez, 1985). Some smaller, NE-SW elongated magnetic elements, as well as northeast trending VLF-EM conductors were discovered in course of geophysical surveys conducted previously in this area (Gonzalez 1984).

2.3 Mineralization types

The McKee Creek property is located in the area known from four main types of mineral occurrences in hardrock settings (Aitken, 1959; see also Petersen 1985, Ash and Arksey 1990, Ash 2001):

- porphyry type stockwork and quartz-vein molybdenym deposits and showings which are most probably related to the late, post-kinematic alaskite intrusives (e.g. Ruby Creek),
- silver-base metals (sometimes with subordinate gold) vein deposits (e.g. Atlin Ruffner),
- listwanite-type gold deposits and showings (e.g. Yellowjacket, Beavis, Anaconda) and
- wolframite showings in quartz, usually drusy, veins.

However, placer gold which has been mined in several creeks near Atlin was the most important factor of the local economy for a long period of time, starting from its discovery by the end of 19th century (Holland, 1950).

The McKee Creek property is know the best from its placer gold deposit (MTO showing 104 035; Fig. 2) – with almost 50 thousand ounces of gold recovered and reported, the creek is the 5th largest gold producer in the Atlin Camp (Holland, 1950). The property also hosts an MTO bedrock showing (104N 117 – Harvey Showing; Fig. 2) which is located in the central part of the property, just below the confluence of McKee and Eldorado creeks. The mineralization was reported to consist of disseminated pyrite and arsenopyrite, and minor galena and chalcopyrite, which were associated with quartz vein stockwork. It was hosted in a 25-metre wide zone of pervasive carbonate alteration and intense weathering. Abundant blueish-green mariposite (listwanite alteration) was reported to accompany the mineralization zone. A parallel zone was reported to run approximately 150 metres northeast of the first one. Chip samples taken from both zones did not contain significant gold values.

2.4 Saturn's 2007 discovery of gold in bedrock

During the summer field season in 2007 Saturn personnel collected 122 rock samples on the McKee property (Mastalerz, 2007). The program resulted in the discovery of gold in bedrock in three distinct areas on the McKee property. Selected grab samples returned gold values from a few hundreds ppb's to 7.73 gpt. Gold occurs in association with quartz veins which cut through and run roughly parallel to the distinct zones of shearing or tectonic brecciation. Both quartz veins and wall rocks contain some (0.5-2%) of disseminated and/or coarse-crystalline, cubed pyrite. Wall rocks are characterized by localized listwanite alteration and silicification, and include variable amount of mariposite. All discoveries are located at the valley bottom, along main channel of McKee Creek, in a wide, complex zone of strong tectonic deformation (McKee Creek Fault Zone).

The first gold discovered during the Saturn's 2007 program is located approximately 150 metres NE from the confluence of Eldorado Creek to McKee Creek (Mastalerz, 2007 - Fig. 4a). A subordinate zone of carbonate-listwanite alteration and subparralel quartz-carbonate veins here follow a complex shearing/brecciation zone which strikes from WNW to ESE, and display variable, steep to moderate dips, toward the NE. There occur blocks of cherty tuffaceous sediments and chert nearby, but on a large-scale the host rock has to be classified as a tectonic mélange which also contains fragments of strongly altered mafic to ultramafic rock. Sample MK07-KR27 taken here from a strongly fractured quartz-carbonate vein with some accompanied wall rock of listwanized cherty sediment returned 2.96 gpt gold. Chip samples taken from the strongly carbonatized, tectonic breccia at the footwall of the vein also returned elevated values of gold. The zone is characterized by an abundance of mariposite and 1-2% of disseminated and cubed, locally coarse-crystalline, pyrite. Several other samples taken nearby in similar geological settings, but

especially in a wide zone of tectonic breccia strongly overprinted by listwanite alteration, along the lowermost part of Eldorado Creek, have returned from 43 to 666 ppb of gold.

The northeastermost gold discovery is located approximately 600-650 metres NE from the confluence of Eldorado McKee Creeks. Quartz veins carrying gold are hosted in a SW-NE striking, steeply dipping secondary shear zone. The veins attain a few centimeters in widths and run parallel to the shear zone. The zone cut through black cherty sediments and tuffaceous sediments. The host rock displays locally relatively strong silicification. Incipient mariposite occurs along and near the walls of the veins. Quartz veins, as well as the immediate wall rock, contain some 1-2% of disseminated to cubed pyrite. Three samples (MK07-KR46, 47 and 48) returned elevated gold values, including 7.73 gpt Au in MK05-KR47. The latter sample displays additionally distinctly elevated values of silver (48.4 ppm) and copper (442 ppm). This group of samples is also characterized by elevated contents of antimony and slightly elevated arsenic.

The third site is situated some 1300 metres downstream from the confluence of Eldorado and McKee Creeks, on tenure 389774 (Mastalerz, 2007; Fig 4b). The area is underlain by a variety of lithologies including tuffaceous sediments, chert and fragmental metavolcanics, which host irregular diorite intrusion(?). Bedrock shows abundant evidence of strong tectonic deformation, including fracture cleavage, brecciation and shearing, and is frequently overprinted by listwanite alteration with locally abundant mariposite. Shear zones strike predominantly from WNW-ESE to WSW-ENE and their dips vary widely from moderate northward to moderate southward. Quartz veins display variable attitudes but commonly run parallel to shear and/or fracture zones. Sample MK07-KR98Q, taken there from a set of thin parallel quartz veins, returned 1.74 gpt gold. Several other samples taken nearby from quartz veins and tectonic breccias showing listwanite alteration, have returned slightly elevated values of gold. Sample MK07-KR97M taken from meta-andesite to metabasalt with some pyrite following fractures, returned 180 ppb gold. Several samples from this area returned distinctly elevated (110-681 ppm) copper.

As a consequence of the discovery of gold in bedrock on the property an exploration-scale drilling program was recommended (Mastalerz, 2007) to test a few carefully selected targets.

2.5 Complementary Rock Sampling Program

In 2008 Saturn conducted a complementary rock sampling program on the McKee property. During the late spring a limited number (30 samples) of chip and minor grab samples were collected from the areas previously sampled in 2007 and known to contain gold in bedrock, as well as from selected adjoining, freshly exposed areas. This set of samples was designed to check if similar results could be reproduced from the same outcrops and to provide additional, complementary data.

The complete set of sample descriptions and corresponding analytical geochemical results from the sampling program are presented in Appendices 1 and 2, respectively. Appendix 1 provides UTM coordinates of the sample locations. Sample locations are also shown on maps (Figs. 4a and 4b). The most significant results of the 2008 rock sampling are shown in the table below:

<u>U</u>		Z
Rock Sample	Sample Type*	Gold (Au) ppb
MK08-KR27A	125	45
MK08-KR27D	85	92
MK08-KR69	100	144
MK08-KR70	230	513
MK08-MH01	300	93
MK08-MH02	300	56
MK08-MH06	G	83
MK08-MH13	250	278
MK08-MH13A	G	220
MK08-MH17	G	108
MKK8-04	G	295

Table 2. The most significant results of the rock sampling program (for sample locations see Appendix 1 and Figs. 4a and 4b, complete analytical results – Appendix 2).

*Sample types: G – grab, 130 – chip sample (length in cm)

Complementary sampling of the showing areas discovered in 2007 has returned significantly lower concentrations of gold as compared with 2007 results. From the area of the southwestern showing discovered in 2007, only one sample (MK-MH17; Fig. 4a, Appendices 1 and 2) returned significantly elevated gold value (108 ppb). In the showing area near the confluence of McKee and Eldorado creeks (comp. Mastalerz, 2007) only few samples did return elevated gold values with the best of 513 ppb of gold in sample MK08-KR70 (Fig. 4b, Appendices 1 and 2). Few of a series of 3-metre long chip samples collected along the McKee Creek bank, just downstream from the confluence, did display gold values from 33 to 93 ppb – this section was not sampled in 2007. Few samples collected from a freshly excavated placer pit in the southwestern part of the property did not return elevated gold values (Fig. 4a, Appendices 1 and 2).

The other set of samples (24 samples) was collected in summer, before onset of the drilling program. This set was designed to test three distinct areas of an advanced listwanite alteration, which were not sampled satisfactorily during the 2007 field season.

Few samples were taken from a subcrop of a very strongly listwanite altered and silicified protolith rock along McKee Creek approximately 300 metres upstream from the confluence with Eldorado Creek (Fig. 4b). A broad zone of a pervasive listwanite alteration accompanied by quartz veining and silicification was exposed here across the creek during the placer mining operations in early 1980's (J. Harvey; oral information). This zone was also drill-tested during 1986 exploration program (Gonzalez and Dandy, 1987) but the drill-hole location, orientation and core descriptions point to the conclusion that the zone was missed by the drill hole. This site was tested by two float samples during the Saturn's 2007 exploration program. The newly collected samples did not return significantly elevated gold values (Fig.4b, Appendices 1 and 2).

Several samples, representing variable products of an advanced listwanite alteration, were collected predominantly from tailings approximately 800-1000 metres downstream from the confluence of the Eldorado Creek (Fig. 4b). This area was also exposed by placer mining in early 1980 and was probably the thickest and probably the strongest listwanite alteration zone ever known in the area (J. Harvey, 2007; oral communication). This set of samples was complemented by some grab samples coming from the projected southern extension of this zone (so-called

"Blacksmith Hut" area; Fig. 4a), although the rocks do not display much evidence of listwanite alteration there. Some of these samples displayed very slightly elevated gold values; no significant concentrations of gold were discovered.

Several new samples came also from the freshly exposed (due to slump processes) section of a tectonic mélange which include serpentinites, greenstones, talcose rocks and tectonic breccias accompanied by quartz veins and mariposite (Fig. 4b). This section was not sampled during Saturn's 2007 exploration program. However, the sample MKK8-04 was the only one in this group, which returned significant concentrations of gold (295 ppb Au).

2.6 Results of the 2008 Drilling Program

Four diamond drill holes totaling 694.03 metres (2,277 feet) were drilled from 4 pads to test a few selected gold targets located during the Company's 2007 reconnaissance rock sampling program (Fig. 4b, Table 3). Diamond drilling services were provided by Kluane Drilling of Whitehorse, Yukon. The company used thin-wall NTW rods (core diameter 44 milimeters). Drilling started on August 31st and was terminated on September 11th. Few additional days were spent on core logging, marking sample intervals, splitting and/or cutting core, shipping core samples, preparing storage for the core, and on reclamation work on drill sites. The drilling program and sampling were supervised by the author on behalf of Saturn Minerals Inc. The summary of the drilling results are presented in Table. 4. The complete drill logs are presented in Appendix 3 and a set of complete analytical results of core samples in Appendix 4.

Drill	UTM		Eleva -tion	Azimuth	Inclina- tion	TD	Target
Hole	Easting	Northing	[m asl]	[0]	[0]	[m]	
MK8-01	582624	6593901	973	122	-45	177.39	McKee Creek Fault Zone
MK8-02	582723	6593847	990	155	-45	164.59	Lower Eldorado listwante zone
MK8-03	582771	6593992	987	38	-45.2	249.94	Upper McKee Creek zones
MK8-04	582520	6593890	959	273	-45.3	102.11	Northwestern alteration zones

Table 3. Diamond drill holes locations and navigation data.

The core samples were designed to test lithological and mineralogical variability of the host rocks and mineralized zones. The samples were usually collected over intervals considerably shorter than 1.52 metres (Appendix 3 and 4). A total of 171 core samples were collected and shipped, via Air North, to Pioneer Lab in Richmond, B.C. All core samples were analyzed by standard ICP (induced couple plasma) method for 30 elements involving an aqua regia digestion and for gold by geochem method. A complete set of certified laboratory analyses is shown in Appendix 4.

Drill Hole	From	То	Interval	Gold (Au)	Silver (Ag)	Listwanite Alteration (Remarks)
	m	m	m	ppb	ppm	
MK8-1	55.63	63.70	8.07	-	-	Moderate-to-weak
and:	87.53	88.85	1.33	-	-	Weak
and:	88.95	90.50	1.55	-	17.4	Weak
and:	131.37	132.85	1.48	-	36.7	Banded quartz-calcite veins
MK8-2	50.29	56.39	6.10	-		Locally weak
and:	71.63	92.96	21.23	-	-	Locally weak
МК8-3	39.35	74.50	35.15	-	•	Alteration postulated from surface mapping – no continuation found at depth
and:	78.80	80.20	1.40	520	-	•
and:	85.57	86.65	1.08	550	-	•
and:	91.44	92.25	0.81	1130	-	-
and:	208.75	210.88	2.13	-	-	Weak
and:	222.45	227.20	4.75	-	-	Strong-to-moderate
and:	227.20	236.15	8.95	-	-	Moderate-to-weak
MK8-4	42.10	44.90	2.80	-	-	Moderate-to-weak

Table 4. Summary of the diamond drilling results.

Drill hole MK8-1 tested the McKee Creek Fault Zone at depth (Fig. 4b, 5). Drilling demonstrated that the fault zone continues at depth and consists of several wide intervals of strong rock brecciation, clay alteration and oxidation. The zone is apparently developed along the contact of metavolcanics (greenstones) at northwest and predominant chert at southeast. Several zones of quartz-carbonate veining, including some banded veins, locally associated by incipient mariposite were encountered to accompany the zone. However, the drill hole did not intersect any significant gold mineralization (Fig. 5, Appendix 4).

Drill hole MK8-2 was designed to test at depth a zone of strong listwanite alteration, which is locally accompanied by patches of mariposite at surface, along the lowermost interval of Eldorado Creek, just above its confluence with McKee Creek (Fig. 4b). Several rock samples collected in 2007 returned strongly elevated gold values in this area. The hole intersected a wide, complex zone of clay alteration and oxidation which obviously accompany another zone of tectonic/fault character. No significant gold mineralization was encountered (Fig. 6, Appendix 4).

Drill hole MK8-3 was designed to test two distinct targets (Fig. 4b). The listwanite altered zone of quartz veining/silicification with significant gold mineralization discovered in 2007 (Mastalerz, 2007) was planned to be intersected at shallow depth. This zone accompanies a tight, NNW-striking, steep fault. The second target, designed to be intersected at greater depth, was the previously described zone of strong listwanite alteration situated across McKee Creek approximately 300 metres upstream from its confluence with Eldorado Creek (J. Harvey 2007;

· · · · · · · · · · · ·

MS	Meta-acdiments, fine-grained, silty							
- FIR	Chert and/or chert broccia	s	SATURN MINERALS INC.					
DF	Debris flow units, redeposited sediments and fragmental volcanics							
SR	Serpentinite, serpentinized volcanics, and talcose rocks	McKee Creek Property Assessment Report 2009						
UM	Ultramafic (+/- mafic) rocks							
QZ	Quartz and/or carbonate veins, breccias, replacements	NTS Nos.: 104	4N.043 A	tlin Mining Divisior	ı			
BX	Tectonic breccia, rarely cataclasite							
FT	Fault zone, gouge, zone of abearing		Drill Hole MK8-1					
MEL	Tectonic melange; alabs of variable litologies with tectonic contacts	LITHO	OLOGY and SILV	VER (Ag) ASSAY	YS			
		K. Martaher Connetting Galapiet	Scale: 1 : 750	Date: April 2009	Fig. 5			

.....

MS	Meta-sedimenta, fine-grained, silty						
СН	Chart and/or chert broccis	SATURN MINERALS INC.					
DF	Debris flow units, redeposited sediments and fragmental volcanics						
SR	Serpentinite, serpentinized volcanics, and talcose rocks	McKee Creek Property					
UM	Ultramafic (+/- mafic) rocks	Assessment Report 2009					
QZ	Quartz and/or carbonate veins, breccias, replacements	NTS Nos.: 104N.043 Atlin Mining Division					
BX	Tectoric breccia, rarely catalasite						
FT	Fault zone, gouge, zone of ahearing	Drill Hole MK8-2					
MEL	Tectonic melange; slabs of variable litologies with tectonic contacts	LITHOLOGY and GOLD (Au) ASSAYS					
		K. Mastehr Scale: Date: Constitute L: 750 April 2009 Fig. 6					

- ----

	BM	Fragmental volcanics with black matrix of tuffaceous mudstone	0 23 m					
	MS	Meta-sediments, fine-grained, silty						
	СЯ	Chert and/or chert breecis	SATURN MINERALS INC.					
	DF	Debris flow units, redeposited sediments and fragmental volcanics						
	SR	Serpentinite, serpentinized volcanics, and talcose rocks	McKee Creek Property					
	UM	Ultramafic (+/- mafic) rocks	Assessment Report 2009					
QZ Quartz and/or carbonate veins, breccias, replacements			NTS Nos.: 104N.043 Atlin Mining Division					
	BX	Tectonic breccia, rarely cataclasite						
	FT	Fault zone, gouge, zone of shearing	Drill Hole MK8-3					
	MEL.	Tectonic melange; slabs of variable litologies with tectonic contacts	LITHOLOGY and GOLD (Au) ASSAYS					
			K. MaridamScale:Date:Constring Galdpire1:750April 2009					

Azimuth 273°	
Looking North	MK8-4
we w	To LECEND - see Fig. 5
	SATURN MINERALS INC.
	McKee Creek Property Assessment Report 2009
	NTS Nos.: 104N.043 Atlin Mining Division
0 SCALE 25 m	Drill Hole MK8-4 LITHOLOGY and GOLD (Au) ASSAYS
. 1 . : :	K. Marisher Scale: Date: Consulting Galagiest 1:500 April 2009 Fig. 8

oral communication). The hole successfully intersected both zones, although the grades and character of encountered gold mineralization were disappointing – the best intersected interval returned only 1.12gpt Au over 0.81 metre interval (Fig. 7, Appendix 4).

Drill hole MK8-4 tested at depth subordinate zones of listwanite alteration associated with the broad contact zone between metasedimentary/metavolcanic complex of rocks at southeast and serpentinites at northwest (Fig. 4b). This zone is accompanied by localized development of quartz veins and silicification at surface. The drill hole did not intersect significant gold mineralization (Fig. 8, Appendix 4).

Core recovery

The quality of the recovered core material varied considerably. Recovery was satisfactory for reliable assessment of mineralogical character and the expected grade of mineralization in many intervals. However, numerous intervals of tectonic zones, especially the ones characterized by strong brecciation, clay alteration and oxidation (the latter in spite of considerable depth!) display very low recovery. Numerous intersections through strongly fractured chert resulted in a very broken core material

2.7 Quality Control and Assurance Program

Sample preparation procedures used by Saturn personnel follow standard industry practice and professional guidelines. After the logging drill core, the sample intervals were marked with metal tags and the core was split using a core splitter and/or a diamond saw. One half of the core was placed in a labeled plastic bag and send to the lab, while the second half was returned to the core box. The remnant core is stored on the property (Fig. 4b).

A limited quality assurance/control program was implemented by means of appropriate gold standards and blank samples inserted randomly into the sequence of core samples. Some re-check analyses were conducted on selected samples to provide additional control. The results of the quality control were monitored by the author and found to fit satisfactorily within acceptable ranges. Appendix 5 summarizes the results of the quality control program.

3.0 CONCLUSIONS and RECOMMENDATIONS

Some of the most important lode-gold deposits are postulated to have been developed in compressional tectonic settings in association with large-scale bodies of mafic-ultramafic rocks (cf. Ash and Arksey 1990a, Ash, 2001). The association of high-grade gold veins with the zones of listwanite alteration of the ultramafic rocks was first identified by Russian geologists in the Ural Mountains, and since then it has been postulated for several locations in western North America, including the famous Motherlode camp in California, and Cassiar, Bralorne and possibly Barkerville in British Columbia.

McKee Creek Property 2008 Exploration Project

The McKee Creek property is locally underlain by various products of listwanite alteration of a complex of rocks of various compositions, including ultramafics. The listwanite assemblage results from the progressive hydrothermal alteration of ultramafic and adjoining rocks, and includes serpentinization, carbonatization and development of quartz veins. The zones of the most advanced alteration are characterized by profound carbonate replacement with characteristic systems of magnesite veins, development of talc, mariposite (a green chrome mica), and a limited pyrite-arsenopyrite mineralization. The processes of listwanite alteration develop especially well where pre-existing rock was strongly fractured and/or brecciated making easy passages for percolating CO2-rich brines (cf. Hansen et al., 2005). The precious metals, especially gold, are postulated to precipitate predominantly in quartz veins, during the final stage of the progressive listwanite alteration, in areas where solutions underwent effective buffering along distinct lithological contacts (cf. Ash, 2001; Hansen et al., 2005).

Saturn's 2007' gold discoveries in bedrock of the McKee Creek property are located along a prominent zone of strong tectonic brecciation and, most probably, displacement (McKee Creek Fault Zone). The zone is accompanied by localized effects of listwanite alteration and development of quartz and quartz-carbonate veins. The highest concentrations of gold were found in association with quartz and/or quartz-carbonate veins. Significantly elevated gold values have also been documented from the strongly brecciated and directly adjoining wall rocks which are overprinted by listwanite alteration.

Recent identification of gold-bearing quartz-veins in a listwanite setting on the McKee property (Mastalerz, 2007) made the property a promising lode-gold target. The 2008 drill program was designed to test at depth selected zones of known gold mineralization in bedrock. However, the results of both, the 2008 follow-up rock sampling program and exploration drilling program were rather disappointing. The results of the Company's drill program show that the targeted areas in the central part of the McKee Creek property do not carry significant gold mineralization.

The McKee Creek valley is an object of a vigorous action of erosional agents. Spring flood seasons frequently result in localized profound progress of erosion and frequent changes in water courses. Snow thawing also aids in slope processes activity. In few cases, a single-season action of erosional factors may result in a complete change in local exposure conditions. The gold-bearing quartz veins in listwanite zone which were exposed and discovered in 2007 in a McKee Creek channel some 150 metres upstream the confluence with Eldorado Creek (Mastalerz, 2007) have been almost completely eroded by the late spring 2008. The re-sampling resulted in significantly lowered gold values in this zone (Fig. 4b). The results of the follow-up rock sampling of the other zones were also fairly disappointing in spite of the fact that the sampling program was focused on the rocks which underwent various degrees of listwanite alteration (Fig. 4a, 4b, Appendices 1 and 2).

The results of the drilling program generally fail to prove an existence of a significant gold mineralization at depth in the zones known from the surface presence of gold-bearing mineralization in bedrock. Longer intervals of tectonic breccias intersected by drill holes host only subordinate quartz veins and rather limited effects of listwanite alteration. Core samples did not return significant gold values from these intervals and only slightly elevated gold values were encountered.

McKee Creek Property 2008 Exploration Project

Evidence of gold mineralization in bedrock encountered during the recent exploration programs on the McKee Creek property is limited and weakens at depth (comp. Mastalerz, 2007). The results of the first unsuccessful diamond drill campaign on the property (Gonzalez and Dandy, 1987) seem to support this conclusion. The analytical laboratory results from both drilling programs and rock sampling campaigns on the property display overall strong depletion in precious metals (cf. Mastalerz 2007). Base metals and some elements indicative of active hydrothermal systems also show very low contents in bedrock. Numerous effects of the advanced listwanite alteration present on the property prove, in turn, an existence of the alteration system, which frequently resulted in economic gold mineralization in other areas. Additionally, some immobile elements, such as nickel and chromium, display on average relatively high concentrations on the property.

The results of the Saturn 2008 exploration program show a necessity of re-directing future exploration attempts on the property. An overall depletion in precious metals in bedrock on the property is interpreted here as a result of leaching in course of alteration/hydrothermal processes. The mobile elements were in great part removed from the fractured rocks exposed at the present-day level of the McKee Creek valley and transported into higher structural levels of an active alteration system. Precious metals, especially gold, are postulated to precipitate at higher elevations where hydrothermal solutions have been buffered by relatively impermeable, cap-rock formations. Such conditions might be provided by a relatively coherent slab of serpentinized ultramafics and associated volcanic rocks thrust-faulted over the strongly deformed (faulted, fractured, brecciated and folded) rock formations (tectonic mélange) of the present-day valley floor. A corresponding structural interpretation could be suggested by the results of geological mapping of the nearby area (Ash and Arksey, 1990 a, b, c; Ash, 1994) as well as be deduced from the geological map posted by BCGS on the MapPlace website. Further exploration of the property should focus on careful prospecting and structural mapping at higher elevations in the northern and eastern parts of the property.

Textural character of a significant portion of the placer gold on the property (coarse, hackly, common quartz-carbonate inclusions; J. Harvey, 2007, oral communication) points to its very short transport. Accumulations of placer gold of similar character could result in great part from eluvial, almost *in situ*, concentration without significant lateral transport. An irregular, scattered character of the placer gold accumulation encountered in McKee Creek (J. Harvey, 2007; oral communication) is in a favour of a short transport hypothesis and of partly eluvial character of the placer gold concentrations on the property. The lode gold, originally encapsulated in quartz-carbonate veins at the base of the main, flat-bottomed thrust fault is interpreted here as the primary source of placer gold in McKee Creek. Placer gold was in part concentrated gravitationally on the surface of bedrock in course of rock weathering and erosional processes. Part of it was obviously transported at short distances by flowing water.

4.0 **REFERENCES**

Aitken, J.D., 1959. Atlin map area, British Columbia; Geological Survey of Canada, Memoir 307: 89 pages.

Ash, C.H., 1994. Origin and tectonic setting of ophiolitic ultramafic and related rocks in the Atlin area, British Columbia (NTS 104N). B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 94, 48 pages.

Ash, C.H., 2001. Relationship between ophiolites and gold-quartz veins in the North American Cordillera. Ministry of Energy, Mines and Petroleum Resources, Bulletin 108, 140 pages.

Ash, C.H. an Arksey, R.L., 1990a. The Listwanite – Lode Gold Association in British Columbia. B.C. Ministry of Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1: 359-364.

Ash, C.H. an Arksey, R.L., 1990b. The Atlin Ultramafic Allochton: Ophiolitic Basement within the Cache Creek Terrane; Tectonic and Metallogenic Significance. B.C. Ministry of Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1: 365-374.

Ash, C.H. an Arksey, R.L., 1990c. Tectonic Setting of Listwanite-relatedGold Deposits in Northwestern British Columbia (104N/12). B.C. Ministry of Mines and Petroleum Resources, Open File 1990-22.

Carter, N.C., 1983. Summary report, McKee Creek Mineral Claims; Report dated March 23, 1983.

Gonzalez, R.A., 1984. Geological, Geochemical, and Geophysical Assessment Report of the Sylvia Claim Group, Atlin Mining Division, B.C.; Assessment Report dated October, 1984.

Gonzalez, R.A., 1985. Magnetometer Survey Report on the McKee Creek Property, Atlin Mining Division, NTS 104N/5E, 6W. Geological Branch Assessment Report 14336. Gunn, C.B. Report on Exploration Atlin-McKee Project, McKee Creek, Atlin Mining District, British Columbia. Mineral Resources Branch AR 6464.

Gonzalez, R.A., Dandy, L., 1987. Assessment Report on the Geology, Geophysics, Trenching and Diamond Drilling Programmes at McKee Creek – Atlin Mining Division. Revised version of the Report dated February 6, 1987.

Hansen, L.D., Dipple, G.M., Gordon, T.M. and Kallett, D.A., 2005. Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. Canadian Mineralogist, Vol 43: 225-239.

Holland, S.S., 1950. Placer Gold Production of British Columbia: B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 28, 89 pp.

Kierans, M.D., 1984. Mineral Property Evaluation Report (Assessment Report) Becker Hammer Drilling Geological Project (September-October 1984), Royce Johnson Gold Placer Claim Group, Lower McKee Creek, East Shore of Atlin Lake, NTS104N-5E, Northwestern British Columbia. Geological Branch AR 13307

Mark, D.G., 1986. Geophysical Report on a Seismic Refraction Survey on the McKee Creek Property (Placer Leases 3041, 13222, 13223 and 13224), Atlin Area, Atlin Mining Division, British Columbia. Geological Branch AR 14507.

Mastalerz, K., 2007. Reconnaissance Rock Sampling and Preliminary Structural Evaluation of the McKee Creek Property, Northwestern British Columbia. Geological Branch Assessment Report xxxxx. 31 pp.

Monger, J.W.H., 1975. Upper Paleozoic Rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon. Geological Survey of Canada, Paper 74-47, 63 pp.

Monger, J.W.H., Price, R.A. and Tempelman-Kluit, D.J., 1982. Tectonic Accretion and Origin of the Two Major Plutonic Welts in the Canadian Cordillera. Geology, 10: 70-75.

Walcott, P.A. 1985. A Report on a Seismic Refraction Survey, Atlin Area, British Columbia, NTS 104N-12E.

White, M., 1941? Mine Series Section No. 2106 Progress Report #1 (McKee Creek Workings). Consolidated Mining and Smelting Company of Canada Limited.

Wong, C. and Troup, A.G., 1983. Preliminary Geochemical and Geological Report on the McKee Creek Property, Atlin Mining Division, NTS 104N/5E, 6W. Geological Branch Assessment Report 11912.

Respectfully submitted,

Krzysztof Mastalerz

5.0 WORK COST STATEMENT

Item	Cost (\$CAD)
Field Personnel – June 05 to September 24, 2008:	
Geologist (K. Mastalerz) 23 days @ \$650.00 per day	14,950.00
Field assistant (S. Szpila) 5 days @ \$160.00 per day	800.00
Field assistant and core split (R. Radomski) 6 days @ \$200.00 per day	1,200.00
Expediting and labour (Marc Elson) 8 days @ \$250.00 per day	2,000.00
Supervision (Mike Elson) 2 days @ \$400.00 per day	800.00
Core cutting (W. Boyko)	200.00
Cook (D. Poulin) 16 days @ \$267.18 per day	4,290.80
Food	3,308.67
Fuel	4,508.06
Lumber	232.08
Supplies Small equipment	318.55
Drilling (Kluanie Drilling Ltd.) including logistics	107 971 67
Sample shipments and fright	876.21
Laboratory analytical costs (ICP, Assays)	6 274 21
Phone calls	478.08
Satellite phones	298 44
Rentals:	
Pickup 1	3.078.45
Pickup 2	1.863.00
Pickup 3	634.50
ATV	1,188.00
Travel	1.427.29
Hotel (June) BB	670.00
Accomodation (September)	5,476.51
Helicopter support (Discovery)	898.46
Helicopter support (Westland)	3,900.00
Report writing	3,900.00
Dratting for report	750.00
Total cost	173,039.34

Note 1: This report spans a period prior to and post (report preparation, laboratory analyses) the date of filing of the Statement of Work, namely, SOW 4262494 on February 05th, 2009. Note 2: Please credit the excess amount to the PAC account of the Saturn Minerals Inc.

K.Mastalerz

6.0 CERTIFICATE OF PROFFESSIONAL QUALIFICATIONS

I, Krzysztof Mastalerz, do hereby certify that:

- 1. I am a geologist with an office at 2005 Bow Drive, Coquitlam, B.C.
- 2. I am a graduate of the University of Wrocław, Poland, (M.Sc. in Geology in 1981, Ph.D. in 1990).
- 3. I am a Professional Geoscientist registered with the APEG of the province of British Columbia as a member, # 31243.
- 4. I have continually practiced my profession since graduation in 1981 as an academic teacher (University of Wrocław, A. Mickiewicz University of Poznań) through 1997, a research associate for the State Geological Survey of Poland (1993-1995), and independent consulting geologist in Canada and Peru since 1994.
- 5. This report is based upon field work carried on the McKee Creek property, south of Atlin, B.C., in June and August-September 2008.
- 6. I have, personally, conducted and/or supervised field work done on the property in 2008.
- 7. Interpretations and conclusions presented in this report are based on my field observations, analytical results and on previously published and archive literature available for the area.

Dated at Coquitlam, BC, this 28th day of April, 2009.

Krzysztof Mastalerz

۲ م

Sample	UTM (NAD83, 8 Zone)					
Labol	East	North	Elev	Туре	Description	
	[m]	[m]	[m]			
MK08-KR27A	582788	6594004	984	125	Black cherty metaargillite to meta-siltstone (probably	
					tuffaceous) with thin guartz veins	
MK08-KR27B	582789	6594006	984	125	Black cherty metaargillite (probably tuffaceous) with a few	
					thin quartz veins	
MK08-KR27C	582790	6594007	984	125	Black cherty fine meta-sediments	
MK08-KR27D	582790	6594008	984	85	Black metasediments within a shear zone, moderate	
					oxidation and few thin quartz veins	
MK08-KR27E	582791	6594009	984	70	Numerous thin quartz vein cut though a listwanite altered	
					zone, associated chert fragments	
MK08-KR27F	582791	6594010	984	100	Black tuffaceous meta-sediments, partly cherty, thin	
					quartz veins, weak carbonate replacement, 1-3%	
					disseminated pyrite	
MK08-KR69	582706	6593866	980	100	Carbonate-quartz breccia in dark gray tuffaceous meta-	
		· · · · · · · · · · · · · · · · · · ·			sediments	
MK08-KR70	582706	6593866	980	230	Gray tuffaceous meta-sediments with numerous thin	
					sheeted sub-vertical veins of quartz-carbonate; strike E-W	
MK08-MH01	582638	6593893	968	300	Dark gray chert and moderately silicified meta-sediments,	
					thin quartz veins	
MK08-MH02	582630	6593894	968	300	Dark gray chert and moderately silicified meta-sediments,	
					thin quartz veins	
MK08-MH02A	582630	6593894	968	G	Dark gray moderately silicified meta-sediments to meta-	
					volcanics, talcose alteration, tectonic brecciation, thin	
					quartz veins; 1-3% disseminated/cubed pyrite	
MK08-MH03	582632	6593895	968	300	Dark gray chert and moderately silicified meta-sediments,	
					thin quartz veins, locally brownish oxidation along	
					fractures	
MK08-MH04	582634	6593895	968	300	Dark gray chert and moderately silicified meta-sediments,	
					thin quartz veins	
MK08-MH05	582636	6593896	968	300	Dark gray chert and moderately silicified meta-sediments,	
					thin quartz veins; brownish oxidation along fractures	
MK08-MH06	582640	6593897	968	G	12-13 cm thick quartz vein striking W-E in weakly	
					oxidized, carbonate altered meta-volcanics	
MK08-MH07	582641	6593899	969	F	A selection of angular fragments/pebbles at the base of	
					the fluvioglacial deposits overlying an erosional feature in	
					the bedrock	
MK08-MH08	582768	6593979	986	500	Gray, strongly fractured meta-volcanics and chert	
MK08-MH09	582770	6593982	986	500	Gray, moderately fractured meta-volcanics and chert	
МК08-МН10	582773	6593985	986	500	Gray, moderately fractured chert and subordinate meta-	
					volcanics (meta-tuff?)	
MK08-MH11	582775	6593987	986	500	Tectonic (shear?) zone in grayish meta-volcanics and	
		A		L		
MK08-MH12	582779	6593992	986	900	Black tuffaceous meta-sediments and tuff; relics of	
					primary, sedimentary layering	
МК08-МН13	582781	6593995	986	250	Shear/strong fracturing zone in black, cherty meta-argillite,	
					few thin veins of white coarse-crystalline quartz	

MK08-MH13A	582781	6593995	986	G	A selection of thin quartz veins with admixed material of
	500000	0504000	000		meta-argillite wall-rock
MKU8-MH14	582800	6594020	990	G	I nin quartz veins cut through dark-gray metasediments
MKU8-MH15	581241	6592693	809	G	Dark gray, tragmental rock of predominant crystalline,
	504050	0500700			magmatic (ultramatic?) tragments
MKU8-MH16	581250	6592703	809	G	Contact zone between blackish, carbonate altered
					ultramatics(?) and cherty meta-sediments; some
					carbonate veins and quartz/silica pods
MK08-MH17	581680	6593009	850	G	Black slightly tuffaceous meta-sediments, few thin quartz
					veins, weak oxidation along fractures
МК08-МН18	581684	6593028	854	G	dark gray, fine-grained to afanitic volcanic or
					volcaniclastic, andesite/basalt composition(?);
					disseminated pyrite 1%
MK08-MH19	581659	6593000	851	F	Polymictic, fine-grained conglomerate with abundant
					limonite cement (base of Quaternary deposits; Tertiary?)
MK08-MH20	581628	6593028	849	G	Dark gray, strongly fractured (fracture cleavage), fine
					tuffaceous meta-sediments
MK08-D1	582844	6594104	1003	G	Quartz vein, white, coarse-crystalline, rusty (oxidized0
					spots; dips 80deg toward NE
MK08-D2	582844	6594104	1003	G	Quartz veins, white (rusty walls), coarse-crystalline; cut
					through brownish-rusty listwanite alteration zone
MK-8-D3	582844	6594104	1003	G	Quartz veins, white (rusty walls), coarse-crystalline; cut
					through strong listwanite alteration zone with abundant
					mariposite
MK08-D4	582844	6594104	1003	G	Banded guartz-chalcedony vein, whitish to light gray
MK08-D21	581961	6593352	891	G	Strongly sheared (tectonic fabric) part of tectonic
				-	melange(?), includes fragments of chert and taic-
					serpentinite rock: probably black matrix lapilli tuff protolith
MK08-D22	581957	6593338	888	G	Gravish-green serpentinite/talcose rock with some thin
				Ŭ	quartz veins
MK08-D23	581976	6593347	891	G	Vuggy guartz/silica cementation in chert_strong fracture
MINO DEC	001070	0000041		Ŭ	cleavage and few thin quartz veins
MK08-D25	582049	6593354		G	Fragmental rock with predominant chert components: few
NIX00-D20	002040	0000004	016	Ŭ	thin quartz veine incinient marinosite
MK08 D31	5821/7	6503620	020	E	Strongly carbonate-listwapite altered protolith braccia
	502177	0000020	525	1	brownish to rusty
MK09 D22	592147	6502620	020	E	Strengly licturation carbonate altered valcania(2) protalith
WIN00-D32	JOZ 147	0595029	929	Г	Strongry listwalite-carbonate attered voicanic(?) protoitin
MK09 D22	E00000	6502622	010		Provinish strangly listy apits altered valage (2) proteilth
WINU0-D33	302092	0090022	A10	Г	Brownish, strongly instwarine altered voicanic (?) protoinin
					more cut by thin quartz-carbonate veins; abundant
	500000	0500000			
MK08-D34	582092	6593622	918		Brownish, strongly listwanite altered volcanic (?) protolith
	500000	0500000			Irock cut by thin quartz veins; abundant mariposite
MK08-D35	582092	6593622	918	F	Brownish, strongly listwanite altered volcanic (?) protolith
					rock cut by thin quartz veins; abundant mariposite
MK08-D36	582092	6593622	918	F	Very thick, irregular quartz vein (or replacement zone) in
					rusty-brownish, strongly carbonate altered protolith rock

. ... •

MK08-D37	582092	6593622	918	F	Brownish-rusty, strongly oxidized fragment od chert in carbonate altered volcanic rock; numerous thin quartz veins
MK08-D38	582083	6593529	901	F	Dark brownish-rusty andesite(?) with strong carbonate- quartz veins, numerous cubes of pyrite
MKK8-01	582500	6593887	960	G	greenish-brown, oxidized, carbonate altered andesite(?) volcanic rock, few specks of mariposite, few thin quartz- carbonate veins
МКК8-02	582458	6593891	960	G	Brownish, strongly carbonate atered fragmental volcanic rock, , abundant mariposite, incipient quartz-carbonate flooding
MKK8-02A	582458	6593891	960	G	Quartz veins (approx. 12 cm) in brownish carbonate altered fragmental volcanic rock, common mariposite, steep, strong tectonic fabric
MKK8-03	582450	6593870	958	G	Brownish-rusty, strongly carbonate altered fragmental volcanic rock, abundant mariposite
MKK8-03A	582450	6593870	958	G	Brownish, moderately carbonate altered, weakly oxidized, fragental volcanic rock, moderately silicified
МКК8-03В	582450	6593870	958	G	Quartz-carbonate breccia, strong silicification, boundaries of the fragments are strongly blurred, locally incipient chrysoprase, disseminated iron oxides (replaced pyrite?)
MKK8-04	582439	6593870	954	G	Brownish-green, strongly carbonate altered and silicified volcanic protolith rock, moderately abundant mariposite
MKK8-11	582388	6593849	957	G	Brownish, carbonate altered volcanic rock with some quartz-carbonate veins, moderately abundant mariposite

Ĺ

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Certificate	Sample	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Се	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb
Number	Name	ppm	%	ppm	ppm p	opm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
8V2288RZ	MK08-KR27A	0.4	3.07	41	405	1	0.3	0.16	0.4	28	8.2	157	2.5	47.4	1.94	10	<0.1	1.2	0.04	1.3	14	17.6	0.37	148	6.8	0.02	2	75.2	0.045	7.3	53.3
8V2288RZ	MK08-KR27B	0.4	3.42	29.5	351	1	0.1	0.09	0.5	2 9	10.5	161	2.5	60.7	2.05	10	<0.1	0.7	0.03	1.13	14	23.6	0.34	158	4.6	0.02	2.3	80.2	0.023	4.8	49.3
8V2288RZ	MK08-KR27C	0.4	3.6	48.5	371	1	0.2	0.07	0.3	31	14.9	162	2.5	31.5	2.48	12	<0.1	1.2	0.02	1.34	15	20.4	0.31	202	4.7	0.02	1.3	109.5	0.027	9.7	58.3
8V2288RZ	MK08-KR27D	0.5	6.46	200.4	572	1	0.3	0.29	0.7	16	62.7	754	3.4	129.5	6.98	14	<0.1	0.8	0.05	>2.00	9	17.4	0.54	524	7.8	0.47	1.3	371	0.072	3.5	61.9
8V2288RZ	MK08-KR27E	0.3	2.32	525.7	118	1	0.2	9.32	0.3	22	41.7	515	1.9	10.4	4.15	7	0.1	0.7	0.03	0.43	12	14.2	5.75	1166	1.7	0.01	0.5	663.3	0.009	2	21.3
8V2288RZ	MK08-KR27F	0.4	2.45	221.9	53	<1	0.1	5.44	0.3	17	52.7	846	2	64	4.89	8	<0.1	0.6	0.03	0.07	8	23.2	6.61	1156	2.3	0.01	0.5	762.1	0.035	2	4.2
8V2288RZ	MK08-KR69	0.4	3.09	54.5	401	1	0.3	0.23	1	26	15.2	180	1.1	108.6	2.58	8	0.3	0.9	0.03	0.72	13	19.2	0.2	417	12.7	0.01	1	71.9	0.099	10.7	26.1
8V2288RZ	MK08-KR70	0.6	2.24	60.8	880	<1	0.2	0.09	1.6	13	23.8	278	2	126.4	6.45	6	0.2	0.4	0.03	1.25	7	5.9	0.12	250	10.7	0.09	0.6	67.7	0.069	6	33.1
8V2288RZ	MK08-MH01	0.3	>10.00	12.1	616	1	<0.1	0.4	0.4	8	82.8	810	4.6	121.3	>10.00	20	0.3	0.4	0.07	>2.00	9	37	0.45	669	3.8	0.78	2.1	344.5	0.163	<0.1	60.9
8V2288RZ	MK08-MH02	0.3	9.9	19.5	685	1	0.1	0.38	0.4	7	93.5	895	3.8	183	8.06	17	<0.1	0.7	0.07	>2.00	6	26.4	0.83	762	2.9	1.23	1.8	331.7	0.079	0.4	65.7
8V2288RZ	MK08-MH02A	0.3	9.95	46.6	764	1	<0.1	0.18	0.9	8	183.7	977	3.2	224.7	9.3	17	0.1	0.5	0.07	>2.00	5	35.9	0.43	1600	7.8	0.14	1.4	536.5	0.059	0.6	73.2
8V2288RZ	MK08-MH03	0.4	9.68	280	714	1	0.1	0.18	0.3	5	120.7	937	4.3	220.8	6.56	16	0.1	1.2	0.05	>2.00	5	27.1	0.89	450	7.7	0.83	1.7	220.7	0.061	2.8	73.6
8V2288RZ	MK08-MH04	0.5	9.52	69	639	1	0.1	0.17	0.2	5	71.3	1033	4.1	419.7	6.53	17	<0.1	1.1	0.06	>2.00	5	30.8	1.51	368	9	0.73	1.7	211.6	0.057	4.1	70.3
8V2288RZ	MK08-MH05	0.2	8.77	8.2	557	<1	<0.1	1.09	0.2	8	78.3	1185	2.3	295.7	7.63	16	0.1	0.4	0.06	>2.00	7	43.4	2.74	1106	2.1	1.3	3	325.8	0.115	1.1	54
8V2288RZ	MK08-MH06	0.2	1.41	28.7	477	<1	0.2	0.12	0.2	14	20	271	0.7	45.5	1.28	2	<0.1	0.3	0.02	1.38	9	2.3	0.07	222	8.4	0.03	0.6	138. 6	0.05	0.8	28.8
8V2288RZ	MK08-MH07	0.4	7.07	18.4	572	1	0.1	0.79	0.6	40	90.5	650	4.6	161	5.76	17	0.1	1.4	0.07	>2.00	25	31.7	0.91	1038	7.2	0.06	8.2	289.9	0.35	3.8	62.2
8V2288RZ	MK08-MH08	0.6	4.9	7.8	732	1	0.2	0.22	0.2	24	13.7	92	2.8	85.4	3.44	15	1	1.8	0.07	1.49	12	27.1	1.15	554	1.8	0.85	4.6	41.3	0.075	8.2	50.5
8V2288RZ	MK08-MH09	0.5	6.15	11.6	609	1	0.3	0.19	0.4	30	13.9	116	3.5	115.5	4.8	17	1	2.1	0.08	1.81	15	38.1	1.01	498	5.7	0.63	4.7	77.1	0.078	10	66.7
8V2288RZ	MK08-MH10	0.5	4.51	6.2	598	1	0.2	0.09	0.3	35	8.9	118	3	58.7	2.56	14	0.7	1.8	0.05	>2.00	18	26.1	0.43	423	4.9	0.08	6.6	43.4	0.04	12.5	73.7
8V2288RZ	MK08-MH11	0.6	5.02	20.6	541	1	0.4	0.2	0.9	43	13.9	112	4.4	109.1	3.62	16	0.7	1.9	0.06	>2.00	22	23.8	0.5	285	14.7	0.09	6.8	119.7	0.124	18.1	88.4
8V2288RZ	MK08-MH12	0.4	4.63	14.8	609	1	0.2	0.09	0.4	28	9.8	117	2.7	59.2	2.19	14	0.7	1.5	0.05	1.85	13	27	0.38	213	4.2	0.07	5.3	64.5	0.04	9	67.9
8V2288RZ	MK08-MH13	0.6	4.26	73.7	543	1	0.2	0.25	0.9	34	12.1	189	3	54.7	2.73	13	0.7	1.6	0.04	1.55	18	23.4	0.33	264	12.7	0.07	6.3	104.2	0.112	13.2	59.3
8V2288RZ	MK08-MH13A	0.3	2.09	47.8	216	<1	0.2	0.1	0.5	15	8.1	261	1.1	37.3	1.78	5	0.3	0.7	0.02	0.53	8	15.4	0.14	209	11.1	0.03	2.8	76.4	0.039	11.6	20.4
8V2288RZ	MK08-MH14	0.2	1.25	342.1	84	<1	0.1	7.25	0.3	9	42	1396	0.7	13	3.4	4	0.4	0.2	0.02	0.51	4	10.8	6.96	1266	4.4	0.02	0.8	646.3	800.0	13.5	23.5
8V2288RZ	MK08-MH15	1.5	6.58	2	1028	2	0.1	5.75	0.3	180	43.3	227	4.6	69.1	7.44	21	1.4	6	0.08	1.52	80	19.3	3.54	1108	0.8	2.9	105.7	153.5	0.574	37.1	62.2
8V2288RZ	MK08-MH16	0.5	4.62	4.8	933	<1	<0.1	2.86	0.2	14	33.9	128	10.9	110.5	6.93	13	0.7	1.2	0.06	1.5	7	8.5	1.56	1074	5.1	1.95	4.5	58.4	0.102	5.7	59.8
8V2288RZ	MK08-MH17	0.7	7.88	34.1	191	1	0.2	1.33	0.2	34	108	589	1.4	845.5	>10.00	24	1.4	1.3	0.11	0.62	15	35	1.4	4150	3.6	2.91	17.5	195.6	0.51	87.1	18.8
8V2288RZ	MK08-MH18	0.5	9.26	14.5	1219	1	<0.1	1.19	0.4	30	98.4	484	2.4	515.8	>10.00	25	1	1.3	0.11	>2.00	14	26.2	1.44	5383	3.2	2.69	14.5	188.8	0.328	8.2	58.2
8V2288RZ	MK08-MH19	0.4	5.73	3.1	684	1	0.1	2.43	0.2	24	26.5	332	1.5	51.6	6.02	14	1	1.3	0.05	1.12	12	18.8	2.93	1002	2.2	1.56	6.9	183.2	0.085	8.8	37.1
8V2288RZ	MK08-MH20	0.8	8.52	8.9	637	1	<0.1	1.45	0.2	30	67.7	656	6.7	202.6	>10.00	23	1.5	3.4	0.11	>2.00	12	24.5	1.24	1217	1.7	2.02	22.4	166.2	0.182	2.6	87.9

Appendix 2 Rock Sample Analytical Results page 1

		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP		
Certificate	Sample	Re	S	Sb	Sc	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr	Certificate	Sample
Number	Name	ppb	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Number	Name
8V2288RZ	MK08-KR27A	7	<0.05	2.8	7.3	1.4	29	0.1	<0.1	4.7	0.069	0.4	2.9	118	1	7.5	82	41.3	8V2288RG	MK08-KR27A
8V2288RZ	MK08-KR27B	18	<0.05	2.2	7.8	1.3	32	0.1	<0.1	4.7	0.072	0.3	1.4	59	0.6	7.3	80	37.4	8V2288RG	MK08-KR27B
8V2288RZ	MK08-KR27C	7	<0.05	4	9.7	0.9	41	0.1	<0.1	4.5	0.047	0.4	2.2	98	3.7	6.8	93	42.6	8V2288RG	MK08-KR27C
8V2288RZ	MK08-KR27D	7	<0.05	14.3	32.2	0.7	41	0.1	0.1	1.6	0.212	1	1.6	274	2.3	10.2	152	30.2	8V2288RG	MK08-KR27D
8V2288RZ	MK08-KR27E	6	<0.05	9.8	9.9	0.2	496	<0.1	0.1	1.3	0.026	0.2	0.6	66	1.2	9.1	58	26	8V2288RG	MK08-KR27E
8V2288RZ	MK08-KR27F	7	0.21	2.1	13.1	0.2	313	<0.1	0.1	1	0.026	<0.1	0.4	99	0.9	7.3	61	23.2	8V2288RG	MK08-KR27F
8V2288RZ	MK08-KR69	7	<0.05	12.2	6.4	0.8	32	<0.1	0.3	3.6	0.04	0.2	3	166	1.1	12.7	161	34	8V2288RG	MK08-KR69
8V2288RZ	MK08-KR70	6	<0.05	5.9	13	0.5	36	<0.1	0.1	1.1	0.044	0.4	1.1	55	1.2	6.1	134	15.2	8V2288RG	MK08-KR70
8V2288RZ	MK08-MH01	7	<0.05	2.1	54.4	0.7	36	0.1	<0.1	0.1	0.395	1.3	0.6	408	1.5	15.9	218	11.4	8V2288RG	MK08-MH01
8V2288RZ	MK08-MH02	7	<0.05	5.2	48.1	0.6	40	0.1	<0.1	0.2	0.363	1.5	1.2	269	1.4	12.4	172	24	8V2288RG	MK08-MH02
8V2288RZ	MK08-MH02A	7	<0.05	5.4	50.7	0.7	15	0.1	<0.1	0.1	0.3	1.6	1.3	250	1.5	13.9	209	17	8V2288RG	MK08-MH02A
8V2288RZ	MK08-MH03	7	<0.05	5.9	52.1	0.7	32	0.1	0.2	0.2	0.374	2.2	3.4	770	0.9	9.1	176	46.6	8V2288RG	MK08-MH03
8V2288RZ	MK08-MH04	7	<0.05	7	48.1	0.6	30	0.1	0.2	0.2	0.355	2.6	3	617	1.1	8.2	113	39.6	8V2288RG	MK08-MH04
8V2288RZ	MK08-MH05	7	0.25	4.3	49.2	0.6	46	0.1	<0.1	0.2	0.398	1.6	0.3	320	0.7	11.2	142	16.4	8V2288RG	MK08-MH05
8V2288RZ	MK08-MH06	6	<0.05	5	3.9	0.4	9	<0.1	<0.1	1.3	0.03	0.6	1.4	50	0.4	5.8	62	14.7	8V2288RG	MK08-MH06
8V2288RZ	MK08-MH07	7	<0.05	4.5	31.4	1.2	18	0.4	0.1	3.5	0.329	1.1	3.4	272	1.5	22.2	193	52.4	8V2288RG	MK08-MH07
8V2288RZ	MK08-MH08	9	<0.05	1.1	16	1.2	62	0.4	0.1	2.7	0.277	0.5	0.9	110	0.7	12.8	84	61.4	8V2288RG	MK08-MH08
8V2288RZ	MK08-MH09	7	<0.05	2.7	19.5	1.6	49	0.3	<0.1	3.7	0.32	0.6	2.1	154	0.8	12.7	120	73.4	8V2288RG	MK08-MH09
8V2288RZ	MK08-MH10	8	<0.05	2.7	12.5	1.7	42	0.5	<0.1	6.1	0.209	0.6	2	114	0.7	7.5	86	60.6	8V2288RG	MK08-MH10
8V2288RZ	MK08-MH11	8	<0.05	4.6	12.4	2	67	0.4	<0.1	7.8	0.203	0.6	4.2	270	1.1	12.1	160	67.2	8V2288RG	MK08-MH11
8V2288RZ	MK08-MH12	7	<0.05	2.4	13.3	1.5	56	0.3	<0.1	4.3	0.208	0.4	1.4	100	1	8.8	73	52.5	8V2288RG	MK08-MH12
8V2288RZ	MK08-MH13	8	<0.05	5	9.6	1.7	67	0.4	<0.1	6.3	0.168	0.4	3.7	211	2.2	12.3	115	54.3	8V2288RG	MK08-MH13
8V2288RZ	MK08-MH13A	6	<0.05	3.2	4.2	0.7	46	0.1	<0.1	2.7	0.064	0.1	1.4	67	1	5.8	62	23 .1	8V2288RG	MK08-MH13A
8V2288RZ	MK08-MH14	7	< 0.05	60.2	9.9	0.5	582	<0.1	0.1	0.4	0.021	0.2	0.2	82	0.1	4.3	34	10.3	8V2288RG	MK08-MH14
8V2288RZ	MK08-MH15	8	1.16	1.2	22.8	2.4	252	6.2	<0.1	8.6	2.424	0.5	1.1	264	0.7	46.9	188	249	8V2288RG	MK08-MH15
8V2288RZ	MK08-MH16	8	0.16	1.2	33.1	0.8	157	0.1	<0.1	1.1	0.453	0.3	1.4	252	0.4	20	94	40.2	8V2288RG	MK08-MH16
8V2288RZ	MK08-MH17	9	0.06	3.3	40.2	1.3	127	0.9	<0.1	0.6	2.142	0.2	0.5	47 1	3.8	33.1	327	42.3	8V2288RG	MK08-MH17
8V2288RZ	MK08-MH18	8	0.09	1.2	45.6	1	281	0.8	<0.1	0.7	1.531	0.6	0.5	45 1	1.8	26.4	269	43.8	8V2288RG	MK08-MH18
8V2288RZ	MK08-MH19	6	0.05	1	21	1.1	207	0.2	<0.1	2.5	0.403	0.3	1	144	0.6	17.1	81	40.6	8V2288RG	MK08-MH19
8V2288RZ	MK08-MH20	7	0.07	3.4	41	1.6	159	1.3	<0.1	0.8	2.49	0.8	0.5	527	3.7	34.8	244	113	8V2288RG	MK08-MH20
																			8V2288RG	*0218

8V2288RG *0218 8V2288RG *BLANK Appendix 2 Rock Sample Analytical Results page 2 1

Geochem	Geochem	Geochem	Geochem	
Au	Au-Check	Au	Ag	
ppb	ppb	g/tonne	g/tonne	
45				
1				
1				
92				
2				
1				
144				
513				
93				
56				
6				
23	19			
33				
<1				
83				
4				
9	9			
6				
4				
8				
6				
278				
220				
5				
1				
3				
108				
2				
3				
7				
843				
<1				

Report No. 2081921 (ICP)

Certificate	ELEMENT	Ag	Al	As	В	Ba	Bi	Са	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	P P	b S	Sb	Sn	Sr	Te	Ti	TI	V	Zn	Au*
Number	SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	% ppn	າ %	ppm	ppm	ppm	ppm	%	ppm	ppm_	ppm	ppb
2081921	MK08-D1	.1	.10	69	<5	14	<10	3.63	<1	13	174	30	1.23	.04	1.79	770	8	.01	219 <	0.01	.01	43	<2	119	<5	<0.01	<5	8	14	3
2081921	MK08-D2	.1	.07	72	<5	31	<10	1.23	<1	7	148	15	1.07	.04	.70	531	6	.01	126 <	:0.01	.00	15	<2	47	<5	<0.01	<5	9	18	4
2081921	MK-8-D3	.1	.06	413	<5	25	<10	5.36	<1	37	99	22	2.69	.04	7.34	680	3	.01	551 <	0.01	6.05	53	<2	274	<5	<0.01	<5	15	35	12
2081921	MK08-D4	.1	.09	22	<5	39	<10	5.28	<1	3	117	6	1.04	.02	2.17	727	5	.01	45 <	0.01	.01	6	<2	94	<5	<0.01	<5	9	18	10

Report No.	2081962 (ICF	²)																													
Certificate	ELEMENT	Ag	Al	As	В	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn I	Mo Na	Ni	P	P	b S	s s	b Si	n S	Sr 1	е	Ti	TI	V	Zn A	\u*
Number	SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm %	ppn	n %	6	ppr %	6 р	pm p	pm	ppm	ppm	%	ppm	ppm	ppm p	,pb
2081962	MK08-D21	0.847	2.31	25	.3 <5	55	<10	0.5	7 <1	25	262	122	9.54	4 0.09	2.85	2590	13 0.	01 3	70	0.2 1	5.2	0.26	6 <2	2	18	23	0.1	<5	203	92.4	10
2081962	MK08-D22	0.363	3.41	<5	<5	20	<10	0.4	6 <1	171	1113	317	4.56	6 0.13	5.61	651	5 0.	02 293	34	0.08 2	23.8	0.84	10 <2	2	16.8	10	<0.01	<5	127.4	100.8	9
2081962	MK08-D23	0.242	0.49	<5	<5	118	<10	0.0	6 <1	6	146	50.6	1	0.01	0.67	122	8 0.)1 (56	0.02	5.7	0.01 <2	2 <2	2	3.6	6	<0.01	<5	30.8	24	5
2081962	MK08-D25	0.121	0.52	12.6	65 <5	13	<10	0.	1 <1	4	114	20.7	1.21	1 0.07	0.55	185	5 0.	D1 2	27	0.02	3.8	0.01	2 <2	2	3.6	7	0.01	<5	57.4	43.2	7
2081962	MK08-D31	0.242	0.15	25	.3 <5	81	<10	>10	<1	5	72	9.2	2.38	3 0.02	. 6.4	844	2 0.)1 :	37	0.24	1.9	0.01	4 <2	2	123.6 <	<5	<0.01	<5	33.6	19.2	21
2081962	MK08-D32	0.242	0.39	31.0)5 <5	145	<10	6.3	7 <1	49	303	57.5	5.15	5 0.02	2.2	2398	4 0.0	01 6	37	0.05 4	.75	0.09	6 <2	2	104.4	15	<0.01	<5	102.2	91.2	2
2081962	MK08-D33	0.121	0.14	55	.2 <5	48	<10	9.5	i5 <1	67	524	56.4	4.85	5 <0.01	2.94	949	3 0.0	01 10-	45	0.02 <	2	0.1	7 <2	2	164.4	12	<0.01	<5	47.6	44.4	1
2081962	MK08-D34	0.363	0.18	171.3	35 <5	58	<10	7.7	2 <1	34	219	8.05	4.11	1 0.01	3.82	1235	3 0.	01 6	38	0.01 6	6.65	0.01	13 <2	2	232.8	7	<0.01	<5	32.2	75.6	8
2081962	MK08-D35	0.242	0.17	149	.5 <5	39	<10	9.3	6 <1	18	333	4.6	3.27	0.03	4.48	1428	3 0.0	01 30	03 <0	0.01 8	8.55 <	10	16 <2	2	409.2	6	<0.01	<5	58.8	51.6	6
2081962	MK08-D36	0.121	0.12	66	.7 <5	38	<10	4.8	1 </td <td>5</td> <td>103</td> <td>11.5</td> <td>1.44</td> <td>1 0.04</td> <td>2.8</td> <td>647</td> <td>5 0.</td> <td>)1 (</td> <td>60 <0</td> <td>0.01</td> <td>3.8 <</td> <td>10</td> <td>8 <2</td> <td>2</td> <td>409.2 <</td> <td>:5</td> <td><0.01</td> <td><5</td> <td>14</td> <td>16.8</td> <td>20</td>	5	103	11.5	1.44	1 0.04	2.8	647	5 0.)1 (60 <0	0.01	3.8 <	10	8 <2	2	409.2 <	:5	<0.01	<5	14	16.8	20
2081962	MK08-D37	0.242	0.07	37.9	95 <5	22	<10	4.5	8 <1	4	91	19.6	1.11	1 0.02	2.35	204	4 0.0	D1 ·	17 <(0.01 <	2	0.07	6 <2	2	98.4 <	<5	<0.01	<5	9.8	20.4	14
2081962	MK08-D38	0.121	0.34	59	.8 <5	37	<10	7.0	1> 5	37	25	71.3	6.75	5 0.14	2.41	1716	2 0.0	D1 4	56	0.03 2	2.85	0.36 <2	2 <2	2	99.6	18	<0.01	<5	14	97.2	18
2081962	MKK8-01	0.363	0.2	83.9	95 <5	99	<10	8.1	4 <1	32	258	23	3.71	0.03	2.56	1671	8 0.	01 7	54	0.07	5.7	0.01	7 <2	2	97.2	10	<0.01	<5	32.2	43.2	17
2081962	MKK8-02	0.121	0.19	e	69 <5	72	<10	9.6	2 <1	70	570	67.9	4.92	2 0.04	5.3	1172	4 0.0	01 10	76	0.03 2	2.85	0.04 <2	2 <2	2	163.2	10	<0.01	<5	42	48	20
2081962	MKK8-02A	0.242	0.12	32	.2 <5	47	<10	8.4	8 <1	15	167	18.4	3.05	5 <0.01	4.42	905	4 0.0	01 10	65	0.01 <	2	0.01	5 <2	2	391.2	6	<0.01	<5	39.2	21.6	2
2081962	MKK8-03	0.121	0.13	49.4	45 <5	49	<10	6.9	6 <1	26	183	29.9	3.8	3 0.02	6.26	975	3 0.0	01 3	87	0.03	3.8	0.02	4 <2	2	390	9	<0.01	<5	26.6	45.6	1
2081962	MKK8-03A	0.363	0.11	26.4	45 <5	54	<10	>10	<1	5	21	11.5	1.03	3 <0.01	2.19	952	3 0.0	01 (69	0.03 <	2	0.01	7 <2	2	213.6 <	<5	<0.01	<5	25.2	20.4	1
2081962	MKK8-03B	0.121	0.13	2	23 <5	73	<10	>10	<1	8	151	10.4	1.93	3 <0.01	8.12	431	1 0.0	D1 1	18 <(0.01 2	2.85	0.01	6 <2	2	372 <	<5	<0.01	<5	22.4	6	6
2081962	MKK8-04	0.121	0.21	49.4	45 <5	69	<10	11.7	'1 <1	34	491	5.75	4.27	7 0.01	9.18	850	2 0.0	01 50	61 <0	0.01 <	2	0.01	6 <2	2	171.6	9	<0.01	<5	57.4	9.6	295
2081962	MKK8-11	0.242	0.08	41	.4 <5	52	<10	12.3	4 <1	28	444	17.3	3.11	<0.01	10.19	576 ·	<1 0.0	01 39	94 <(0.01 2	2.85	0.04	3 <2	2	604.8 <	<5	<0.01	<5	12.6	32.4	4

Appendix 2 Rock Sample Analytical Results page 3

1

Dip tests:

Method

K. Mastalerz Saturn Minerals Inc.

i.

Assessment Report 2009 McKee Creek 2008 Project

Contractor:

Kluane

Appendix 3 Drill Hole Logs page 1

Diamond Drill Log - ddh MK8-1

Saturn N	linerals Ltd.	
Project	McKeeCre	ek 2008
Drill Hole	MK8-1	Easting:

Drill Hole	e MK8-1	Easting:	582624
Core	NTW	Northing:	6593901
TD	(582ft) 177.39m	Elevation:	973
Claim	389070	Azimuth:	122
NTS	104N.043	Dip:	45

Core		NTW		Northing: 6593901	Started:	31-Aug-08		Method	Depth	Azi	Dip
TD	(582ft) 1	77.39m		Elevation: 973	Finished:	3-Sep-08		Compass	0	122	-45.5
Claim		389070		Azimuth: 122	Logged by:	K. Mastalerz					
NTS	1	04N.043		Dip: 45	Date logged:	5-Sep-08					
						6-Sep-08					
From	То	Length	Grapt	Lithology and Structure	Alteration	Ore	Fracture	Sample	From	То	Length
m	m	m				Minerals	Density	Label	m	m	m
0.00	0.57	0.57	Q/B	Overburden; gravelly till							
0.57	15.24	14.67	VL	Greenish meta-basaltic/andesitic pillow lava, lava flow, locally pillow	Sil-wk		md/w	MK81-01	11.19	12.19	1.00
15.24	22.86	7.62	SR	Weakly to moderately serpentinized meta-basaltic/andesitic	Serp-wk		md/w	MK81-02	22.35	23.06	0.71
				volcanics, locally weakly talcose sections			k				
22.86	23.77	0.91	SR	Serpenitite with some quartz-chalcedony veins and silicification;	Serp-			MK81-03	23.06	24.03	0.97
				moderately oxidized	md/st,						
					Sil, md,						
			-		Oxid						
23.77	27.12	3.35	SR	Serpentinite-talcose rock; protolith of mafic/intermediate volcanics,	Serp-st,		shear				
				moderate shearing at 70-75deg rca	Talc						
27.12	31.55	4.43	VL	Slightly serpentinized-talcose, greenish mafic/intermediate meta-	Serp-wk,						
				volcanic rock, porphyritic texture, few irregular quartz veins and pods	Sil-wk						
31.55	32.00	0.45	BX	Tectonic breccia, ductile/brittle-style deformation			tbx				
32.00	33.80	1.80	FT	Fault zone/gouge, strong oxidation, fragments of quartz-carbonate	Cl-st,		fault	MK81-04	32.00	33.53	1.53
				veins	Oxid						
33.80	38.40	4.60	SR	Serpentinized mafic/intermediate meta-volcanic rock, locally	Serp-wk,						
38.40	39.90	1.50	FT	Fault zone/gouge, strong oxidation	Cl-st,		fault	MK81-05	39.22	40.40	1.18
					Oxid						
39.90	47.55	7.65	٧L	Greenish-creamy, mafic/intermediate fragmental meta-volcanic, few	(Oxid),		wk/m	KM81-06	43.15	44.20	1.05
				thin quartz-carbonate veins, locally brecciation, locally oxidation	Sil-wk		d	MK81-07	44.20	45.72	1.52
								MK81-08	45.72	47.24	1.52
47.55	56.86	9.31	FT	Fault zone, gougy; very strong oxidation; fragments of quartz veins	CI-st,		fault	MK81-09	51.82	53.34	1.52
					Oxid, Sil-			MK81-10	55.63	56.39	0.76
					wk						
56.86	63.70	6.84	VL	Greenish-creamy, mafic/intermediate fragmental meta-volcanic,	Sil-wk	Mariposite		MK81-11	59.44	60.38	0.94
				probably lava flow; in upper part some quartz vein and locally							Ì
				mariposite							
63.70	69.49	5.79	FT	Fault zone, gougy; very strong oxidation	CI-st,		fault	MK81-12	68.90	69.49	0.59
					Oxid						ł

ļ

Assessment Report 2009 McKee Creek 2008 Project

Appendix 3 Drill Hole Logs page 2

2

					-						
69.49	79.75	10.26	SR	Serpentinized mafic volcanic or ultramafic protolith rock, locally	SR-md,			MK81-14	70.33	72.45	2.12
1				faulted/brecciated	Oxid-md			MK81-	72.45	72.85	0.40
								14A			
79.75	82.30	2.55	BM	Slightly serpentinized/talcose black -matrix tuff breccia to fine lapilli	Serp-			MK81-15	79.10	80.00	0.90
				tuff, layering/fabric at 45-65deg rca, some calcite veins	wk,Carb-			MK81-16	80.33	81.30	0.97
					md						
82.30	87.80	5.50	VL	Greenish-to-grayish meta-volcanic(?), slightly serpentinized/talcose,	Carb-st,		md	MK81-17	85.45	86.87	1.42
[locally rusty oxidation, numerous carbonate veins and pods	Serp-wk,			MK81-18	86.87	87.53	0.66
					Oxid						
87.80	90.65	2.85	BM	Slightly serpentinized/talcose black -matrix tuff breccia to lapilli tuff,	Serp-		wk	MK81-19	87.53	88.95	1.42
				layering/fabric poorly developed, some calcite veins	wk,Carb-			MK81-20	88.95	90.50	1.55
					md						
90.65	94.15	3.50	VL	Gray to light greenish, slightly serpentinized, porphyritic meta-	Serp-		md	MK81-21	90.50	91.90	1.40
				volcanic rock, few rusty oxidized intervals, some calcite veins	wk,Carb-			MK81-22	91.90	93.57	1.67
					md						
94.15	95.05	0.90	TF	Black tuff to tuffaceous mudstone, massive, locally fine lapilli	Carb-st,						
				scattered troughout the muddy matric; strong development of	Sil-wk						
95.05	98.05	3.00	AD	Light greenish-gray metavolcanics, probably fragmental protolith -	Cl-wk,			MK81-23	96.78	98.45	1.67
				andesite tuff - lapilli tuff, some relics of layering; common short	Carb wk)					
				brecciated/fractured intervals followed by moderate oxidation							
98.05	101.45	3.40	QZ	Zone of strong development of irregular banded quartz(silica)-	Carb-st,	diss Py tr	bx	MK81-24	98.45	99.78	1.33
				carbonate veins to breccias; protolith rock - tuffaceous mudstone to	Sil-md			MK81-25	99.78	100.93	1.15
				black-matrix lapilli tuff, distinctly silicified				MK81-26	100.93	101.43	0.50
101.50	102.60	1.10	FT	Fault zone(?), strongly broken core of volcanic protolith	Cl-md	ļ	fault?	MK81-27	101.43	102.80	1.37
102.60	105.08	2.48	AD	Light greenish-gray andesite tuff to andesite, crudely layered(?)	Cl-wk			MK81-28	102.80	103.93	1.13
105.08	107.00	1.92	FT	Fault zone; strongly broken core, strong oxidation locally	Cl-st,			MK81-30	105.08	106.65	1.57
					Oxid		L				
107.00	110.90	3.90	СН	Light gray to gray chert, strongly fractured-brecciated, very poor			st				
				muddy matrix - probably package belongs to tectonic melange							
				(includes interval of tuffaceous mudstone, deformed)			ļ				
110.90	111.75	0.85	VL	Strongly deformed greenish-to-yellowish volcanics, almost a	CI-st,						
				fault/shear zone	Oxid-md		ļ				
111.75	114.47	2.72	TM	Black to dark gray, tuffaceous mudstone and black-matrix tuff breccia	CI-md		<u> </u>	MK81-31	113.39	114.47	1.08
114.47	115.60	1.13	VL	Greenish volcanic protolith rock, strongly deformed, sear zone	Cl-md	ļ	Ishear	MK81-32	114.47	115.36	0.89
115.60	128.11	12.51	СН	Gray to light brownish chert, strongly fracture, locally lowered			st	MK81-33	122.52	123.30	0.78
				recovery and brocken core		ļ	L				
128.11	129.75	1.64	ТМ	Blackish tuffaceous mudstone, to black-matrix lapilli tuff, broken							
1				core, mderate recovery	1		1				

N N N N

L

Saturn Minerals Inc.

Assessment Report 2009 McKee Creek 2008 Project

۰,

Appendix 3

page 3

Drill Hole Logs

1 N N

29.75	132.85	3.10	FT	Fault zone developed in volcanic material, strongly broken core, poor recovery	Cl-st/md, Carb	fault	MK81-34	131.37	132.85	1.48
32.85	134.25	1.40	QZ	Zone of strong development of carbonate veins, some of them with banded fill, locally rusty oxidation spots; host rock is a black-matrix lapilli tuff	Carb-st		MK81-35 MK81-36	132.85 133.50	133.50 134.25	0.65 0.75
34.25	139.05	4.80	AD	Light greenish to brownish-rusty, andesite volcanics, locally crudely layered, tuff; few carbonate veins	Cl-md, Carb-md					
39.05	144.15	5.10	VL	Grayish to slightly dirty-green, strongly siliceous meta-volcanics, locally almost cherty afanitic appearance of the rock, relics of crude layering; some quartz veins at 30-45deg rca	Sil-st	st	MK81-38	141.73	143.26	1.53
44.15	144.75	0.60	FT	Brownish-rusty fault zone, very strong oxidation	Cl-st, Oxid-st	fault	MK81-39	143.26	144.78	1.52
44.75	160.93	16.18	СН	Grayish to dark-gray, locally light brownish chert; very strong fracturing, some thin quartz veins; locally strongly broken core and moderate recovery; probably an element of tectonic melange package	Sil	st	MK81-40 MK81-41 MK81-42 MK81-43 MK81-44	144.78 146.30 156.06 157.58 159.11	146.30 147.83 157.58 159.11	1.52 1.53 1.52 1.52 1.52
60.93	163.85	2.92	FT	Fault zone/gouge, brownish rusty, strong oxidation and clay alteration	Cl-st, Oxid-st	fault	MK81-45 MK81- 45A	160.93 162.46	162.46 163.05	1.53 0.59
63.85	171.95	8.10	СН	Dark grayish to brownish chert, very strongly broken core, poor recovery						
71.95	177.09	5.14	FT	Fault zone/gouge, brownish rusty, strong oxidation and clay alteration	CI-st, Oxid-st	fault	MK81-46	174.96	177.09	2.13
77.09	177.39	0.30	СН	Dark grayish to brownish chert, very strongly broken core, extermely						

Abbreviations:

Lithological Code: CH - chert, chert breccia; MS - metasediments (usually fine-grained); TM - tuffaceous mudstone; BM - black-matrix lapilli tuff to tuff breccia; DF - debris flow;

TF - tuff; AD - andesitic volcanic; VL - undifferentiated volcanic rock; UM - ultramafic to mafic rock; SR - serpentinized or talcose rock; QZ - quartz and/or carbonate veins/breccia;

BX - tectonic breccia, FT - fault zone, gouge; MEL - tectonic melange.

EOH @ 177.39 m (582 ft)

Alteration: Sil- silicification, Serp - serpentinization, Talc - talc development, Carb - carbonatization, Listw- listwanite alteration, Cl - clay, Chl - chlorite, Oxid - oxidation;

v - vein, p - pervasive; wk - weak, md - moderate, st - strong

Ore Minerals: Py - pyrite, Cpy - chalcopyrite, Apy - arsenopyrite, Ga - galena, Sph -sphalerite; Po - pyrrhotite; tr - trace; f - fracture/vein controlled

d - disseminated, c - cubed, b - blebs, m - massive

Fracture/vein density (relative): wk - weak, md - moderate, st - strong

K. Mastalerz

i

) 111 N 1 (1 - 1)) 1 ٦. ٦

K. Mastalerz

Saturn Minerals Inc.

Assessment Report 2009 McKee Creek 2008 Project h

N N

Appendix 3 Drill Hole Logs page 4

Dip

-45

_ength

Diamond Drill Log - ddh MK8-2

Satur	n Mine	erals Lto	J.							D	iamond D	rill Log	- ddh
Projec	ct	McKe	e Cre	ek 08								Ū	
Drill Ho	le	MK8-2	2	Easting:	582723			Contractor:	Kluane	1	Dip tests:		_
Core		NTW		Northing:	6593847			Started:	3-Sep-08	i	Method	Depth	Azi
TD	(540ft)	164.59m		Elevation:	: 990			Finished:	6-Sep-08	1	Compass	0	155
Claim		389070		Azimuth:	155			Logged by:	K. Mastalerz	2			
NTS		104N.043		Dip:	-45			Date logged:	5-Sep-08	ł			
									8-Sep-08	;			
From	To	Length	Code			Lithology and Structur	e	Alteration	Ore	Fracture	Sample	From	Τo
m	m	m							Minerals	Density	Label	m	Ē
0.00	0.75	0.75		Overbur	rden								
0.75	3.10	2.35	СН	Light to	dark gray o	chert to chert breccia, few t	hin quartz veins;	Sil-st?		md	MK82-31	0.75	2.35

- 11] 115	151	1			INITICI AIS	pensit	Laver			<u> </u>
0.00	0.75	0.75		Overburden							
0.75	3.10	2.35	СН	Light to dark gray chert to chert breccia, few thin quartz veins;	Sil-st?		md	MK82-31	0.75	2.35	1.60
		_		strongly broken core							
3.10	7.00	3.90	DF	Grayish, debris flow deposit of mixed composition with predominant				MK82-32	3.98	5.43	1.45
				fragments of chert, less common volcanics, abundant muddy matrix	Sil		L	_			
7.00	9.73	2.73	СН	Grayish chert to chert breccia, few thin quartz veins; broken core	Sil		st				
9.73	11.30	1.57	DF	Grayish, debris flow deposit or slumped bed; mixed composition with	Sil?	1					1
		1		predominant fragments of chert, less common volcanics, abundant		1	•				
				muddy matrix			<u> </u>				
11.30	11.88	0.58	FT	Fault/shear zone in debris flow unit; includes some carbonate-quartz	Oxid-st	Lim	Fault	MK82-33	11.30	11.88	0.58
				veins; shear fabric at 10deg rca							
11.88	13.80	1.92	DF	Grayish, debris flow deposit or slumped bed; locally strongly	Oxid-wk		st	-			
				sheared/slickensided							
13.80	15.54	1.74	Сн	Chert breccia to strongly brecciated chert; strongly slickensided lower	Sil?		md				
			Ì	contact at 25 rca							
15.54	21.80	6.26	DF	Dark gray debris flow of mixed composition, numerous chert	Sil-md		1	MK82-34	20.65	21.80	1.15
		1		fragments, in middle-to-upper part abundant matrix of tuffaceous						· ·	
				mudstone; in lower part vuggy silicification zone and incipient quartz	}			1		· 1	
				veins							
21.80	22.36	0.56	FT	Tectonic zone, strong clay alteration and oxidation; moderately	Cl-st, Sil-	Lim	Fault	MK82-35	21.80	22.36	0.56
				common carbonate-quartz veins	md			I			
22.36	23.83	1.47	СН	Grayish chert to chert breccia	Sil?						
23.83	24.70	0.87	FT	Fault gouge	CI-st,	Lim	Fault	MK82-36	23.83	24.70	0.87
					Oxid-md						
24.70	<u>29.4</u> 0	4.70	СН	Grayish chert breccia, broken core							
29.40	39.60	10.20	СН	Light to dark gray chert, locally chert breccia	Sil?	Py-cb,		MK82-37	33.00	33.53	0.53
						Hem,				1	
						Goet					
39.60	41.15	1.55	ICH_	Chert and/or chert breccia: very poor recovery		1		ļ			

K. Mastalerz

ł

Saturn Minerals Inc.

Assessment Report 2009 McKee Creek 2008 Project

Appendix 3 Drill Hole Logs page 5

										3	••
41.15	41.25	0.10	FT	Fault zone/gouge	Cl-st, Oxid-md	Lim	Fault				
41.25	41.98	0.73	СН	Chert breccia, grayish, few thin quartz-carbonate veins	Oxid-wk, Sil/Cb-wk			MK82-38	41.15	41.98	0.83
41.98	43.35	1.37	СН	Grayish chert, locally strongly brecciated; strongly broken core and poor recovery		 					
43.35	44.50	1.15	FT	Fault zone/gouge, orange-brownish; protolith of volcanic rock	Oxid-st, Cl-st	Lim	Fault	MK82-39	43.35	44.50	1.15
44.50	47.25	2.75	СН	Predominantly chert with thin stringers of clay altered material (volcanic protolith?), probably strongly fractured; strongly broken core	CI-wk, Oxid-wk	Lim	st				
47.25	50.29	3.04	VL	Brownish-rusty volcanogenic(?) rock; strongly broken core	Cl-st, Oxid-st	Lim		MK82-41 MK82-42 MK82-43	47.24 48.77 50.29	48.77 50.29 51.15	1.53 1.52 0.86
50.29	51.82	1.53	VL	Brownish-rusty volcanogenic(?) or mafic intrusive(?) rock; strongly broken core; common mariposite	Cl-st, Oxid-st	Lim, Marip		MK82-01	51.15	51.82	0.67
51.82	53.34	1.52	FT ?	Interval of very poor recovery - few chips of quartz vein material, probably also chert?			Fault?	MK82-02	51.82	53.34	1.52
53.34	56.39	3.05	AD	Greenish to rusty andesitic(?) volcanic rock, few thin quartz and chalcedony veins; locally <u>mariposite</u>	Cl-md, Oxid-wk	Lim, Marip		MK82-03 MK82-04	53.34 54.86	54.86 56.39	1.52 1.53
56.39	59.44	3.05	AD	Brownish-rusty, very strongly clay altered volcanic(?) rock, probably partly fault gouged	Cl-st, Oxid-st	Lim	Fault?	MK82-05	56.39 57.91	57.91 59.44	1.52
59.44	61.20	1.76	AD	Greenish-to-yellowish fine-grained andesite, spotty, locally medium- grained	Cl-md/st, Oxid-wk	(Lim)		MK82-44	59.44	60.80	1. 34
61.20	62.70	1.50	AD	Light greenish medium/fine-grained andesite, commonly silicified (vuggy textures), strongly fractured	Cl-wk, Oxid-wk, Sil-wk	(Lim)	st	MK82-45	62.00	62.70	0.70
62.70	69.40	6.70	AD	Light greenish fine-grained andesite, locally with thin quartz- carbonate veins, fractured; broken core	Cl-wk, Oxid-wk,	(Lim)	md				
69.40	70.10	0.70	AD	Yellowish-rusty andesite, strongly clay altered	Cl-st, Oxid-st	Lim					
70.10	70.95	0.85	AD	Greenish, moderately silicified andesite with some thin irregular	Sil-md		st	MK82-46	70.10	70.95	0.85
70.95	71.63	0.68	FT	Fault zone/gouge	CI-st, Oxid-st	Lim	Fault				
71.63	79.37	7.74	AD	Light grayish-to-green andesite, locally thin quartz veins, thin zones of oxidation locally, mariposite	Sil-md, Oxid-wk	Lim, Marip	md	MK82-11 MK82-12	71.63 73.15	73.15 73.50	1.52 0.35

K. Mastalerz

Saturn Minerals Inc.

 $(X \cap X) \cap (X \cap X) \cap (X \cap X) \cap (Y \cap Y)$

Assessment Report 2009 McKee Creek 2008 Project

 $(1,1,\infty) = \sum_{i=1}^{n} (1,1,\infty) = \sum_{i=1}^{n$

1)))))))))))))

Appendix 3 Drill Hole Logs page 6

										page	.0
79.37	81.87	2.50	FT	Fault gouge, brownish-rusty	CI-st, Oxid-st	Lim	Fault	MK82-18	79.37	81.75	2.38
81.87	87.05	5 18		Vellowish-rusty andesite, few guartz-carbonate veins, locally strong	Silmd	/l im)	md	MK82-10	81 57	03.58	1 02
01.07	07.00	0.10		clay alteration (along fractures?) and marinosite	Cl-wk	Morin	ind i	MK82 20	01.07	92.00	1.03
				ciay alteration (along inactures:) and <u>manposite</u>	Ovid wk	Interip		MK02-20	02.00 93.20	94 00	0.00
								MIZO2 21	03.20	04.00	1.24
								MK02-22	04.00	00.04	1.34
								MK02-23	85.34	80.07	0.73
07.05	00.05	0.00	<u>_</u> _	Provide and the second seco		 	E 14	MK82-24	80.07	80.87	0.81
87.05	89.95	2.90		Fault gouge or very strongly altered volcanic rock, prownish-rusty	CI-SI,	Lim	Fault	MK82-25	85.87	87.92	1.05
	00.00						1	MK82-26	87.92	89.92	2.00
89.95	92.96	3.01	BW	Black-matrix lapilli tuff with few thin quartz-silica veins/pods, trace of	CI-st,	Lim,		MK82-27	89.92	91.44	1.52
				mariposite	Oxid-md	Marip	L	MK82-28	91.44	92.96	1.52
92.96	94.67	1.71	BM	Grayish, matrix poor, black-matrix lapilli tuff to silicified tuffaceous	Sil-wk			MK82-29	92.96	94.03	1.07
				mudstone, few thin banded quartz veins at 65deg rca	ļ						
94.67	95.25	0.58	BM	Grayish, layered tuff-to-lapilli tuff, layering at 65-70deg rca, some	Sil-wk			MK82-48	94.03	95.35	1.32
				quartz-carbonate penetrations along sedimentary structures							
95.25	96.01	0.76	AD	Whitish, massive andesite/dacite tuff, few thin quartz veins	Cl-wk						
96.01	96.75	0.74	BM	Brownish-rusty lapilli tuff to tuffaceous mudstone	Cl-st,	Lim					
					Oxid-md						
96.75	97.20	0.45	BM	Dark gray cherty tuff/lapilli tuff							
97.20	119.10	21.90	СН	Grayish chert to chert breccia			st	MK82-49	118.87	119.80	0.93
119.10	121.90	2.80	FT	Tectonic breccia of chert protolith; very strongly broken core			Fault				
121.90	124.80	2.90	СН	Gravish chert, locally chert breccia							
124.80	126.49	1.69	СН	Chert breccia with numerous thick limonite stringers developed due	Oxid-md	Lim,		MK82-50	124.80	125.40	0.60
				to oxidation of pyritic replacements		(Hem)					
126.49	126.65	0.16	FT	Fault gouge	Ci-st,	Lim	Fault				
					Oxid-st						1
126.65	127.85	1.20	AD	Moderately dark gray, andesite/basalt tull and/or fine lapilli tuff.	Cl-md.	(Lim)					
				hvaloclastite type	Oxid-wk	<u>(</u> −,					
127.85	128.03	0.18	TF	Gravish laminated silty tuff, lavering at 70-80deg rca	Sil-wk						
128.03	128.58	0.55	СН	I joht gravish chert breccia, incipient nodular structures: locally	Sil-md	· · ·		MK82-51	128.00	128 52	0.52
		0.00		development of banded quartz veins and breccias				MK82-52	128.52	128 58	0.06
128.58	129.18	0.60	BM	Black-matrix lapilli tuff to matrix-poor lailli tuff vuggy				MK82-53	128.58	129.54	0.96
129.18	131.00	1.82	СН	Chert to chert breccia with sharp lower contact at 40deg rca			+		120.00	120.04	
131.00	131.88	0.88	RM	Gravish Japilli tuff of mixed composition (redeposited?), common thin	Sil-wk	· · · -		MK82-54	130.90	131 74	0.84
		0.00		quartz veins along fractures			st/md	01 02 04	100.00	101.14	0.04
131.88	132.15	0.27	07	Whitish quartz voins to breecia cut through dark-gray labilit tuff	Sil-st		st	MK82-55	131 74	132 15	041
132 15	132.20	0.27	RM	Resk fuffaceous mudstone				1711 102-00	101.14	102.10	
132.20	140.20	8 00		Debrie flow unit of mixed composition, numerous large fragments of	<u> </u>						
1.72.20	1-70.20	0.00	UF	best and falsio(2) valuesion							
						L					

K.	Mastalerz	
----	-----------	--

Saturn Minerals Inc.

 $X_{i} = X_{i} = X_{i} = X_{i} = X_{i} = X_{i}$

Sec. 5. 8. 8.

Assessment Report 2009 McKee Creek 2008 Project

(N - N) = 2

||| = |||

Appendix 3 Drill Hole Logs

Diamond Drill Log - ddh MK8-3

page 7

140.20	145.00	4.80	СН	Grayish chert with some stringers(?) of siltstone					
145.00	148.35	3.35	MS	Grayish silicified siltstone to tuffaceous mudstone, numerous cherty	Γ	ſ			
				lenses	Sil-st				1
148.35	164.59	16.24	СН	Chert, minor chert breccia, locally stringers of silty mudstone					
				composition with cherty nodules	Sil-md				
				EOH @ 164.59 m (540 ft)					

Abbreviations: as to ddh MK8-1

Saturn Minerals Ltd.

McKee Creek 08 Project Drill Hole MK8-3 Dip tests: Easting: 582771 Contractor: Kluane Method Depth Azi Northing: 6593992 6-Sep-08 Dip Core NTW Started: Compass 38 TD (820ft) 249.94m Elevation: 987 Finished: 10-Sep-08 0 -45.3 K. Mastalerz Claim 389070 Azimuth: 038 Logged by: NTS 104N.043 Dip: -45 Date logged: 8-Sep-08 12-Sep-08

						F					
From	То	Length	Graph	Lithology and Structure	Alteration	Ore	Fracture	Sample	From	То	Length
m	m	m				Minerals	Density	Label	m	m	m
0.00	1.00	1.00		Overburden; gravel and boulders (fluvial in-channel deposits)							
1.00	39.35	38.35	MEL	Package of tectonic melange: 1) predominantly gray to dark-gray	Sil-md	cPy 1%	st	MK83-01	5.89	7.62	1.73
				black-matrix lapilli tuff and minor tuff breccia with moderately				MK83-02	14.50	15.95	1.45
				abundant to poor muddy matrix, strongly fractured, silicified, strongly				MK83-03	18.29	19.81	1.52
				tectonically deformed (fracture clevage, small-scale displacements),				MK83-04	31.70	33.10	1.40
				interbedded with less common 2) chert and siliceous siltstone; locally							
				few irregular and thin quartz veins at 65-75deg rca; frequently vuggy							
				textures; locally more regular fractures at 20-30deg and 45 deg rca							
· ·				followed by cubed pyrite							
39.35	39.75	0.40	FT	Fault gouge, rusty sandy-clayey material	Cl-st,						
					Oxid-md		Fault				
39.75	53.35	13.60	MEL	Packege of tectonic melange as before							
53.35	54.10	0.75	BX	Tectonic(?) breccia of light gray chert							
54.10	54.35	0.25	FT	Fault gouge, rusty sandy-clayey material	Cl-st,		Fault				
					Oxid-md						
54.35	55.50	1.15	BX	Tectonic(?) breccia of light gray chert							

K. Mast Saturn	talerz Minerals	inc.		Assessment Report 2009 McKee Creek 2008 Project		Appendix 3 Drill Hole Logs page 8					
55.50	68.12	12.62	MEL	Package of tectonic melange: 1) predominantly gray to dark-gray black-matrix lapilli tuff with poor muddy matrix, strongly fractured, moderately silicified, strongly tectonically deformed (fracture clevage, small-scale displacements), interbedded with less common 2) chert and siliceous siltstone; locally few irregular and thin quartz veins at 30-45deg and less frequently at 65-75deg rca, locally cubed pyrite	Sil-md	сРу 1%	st	MK83-05 MK83-06 MK83-07 MK83-08 MK83-10	55.50 56.39 60.00 62.48 67.45	56.39 58.13 60.96 64.01 68.78	0.89 1.74 0.96 1.53 1.33
68.12	72.85	4.73	BM	Black-matrix lapilli tuff to tuff breccia, matrix-rich, matrix-supported texture, sedimentary(?) fabric at 10-30deg rca, mixed composition of volcanic fragments, incipient quartz-carbonate veins locally; locally pyrite-rich volcanic fragments	Sil-wk	diss/cPy 1 3%, blPy (3%)	-	MK83-11	71.5	72.2	0.7
72.85	74.50	1.65	VL	Light gray fragmental volcanic: tightly packed, matrix-poor lapilli tuff to tuff breccia, steep (10-30deg rca) irregular contacts; few thin discontinous quartz-carbonate veins; locally fracture clevage at 15- 25deg rca; pyrite cubes commonly along fractures		diss/c Py 2-3%	md				
74.50	75.20	0.70	BM	Black tuffaceous mudstone (few lapilli-size fragments), lower contact at 15deg rca, faulted		bl/c Py 3- 7%	wk-st				
75.20	76.85	1.65	BM	Light gray fragmental volcanic: tightly packed, matrix-poor lapilli tuff to tuff breccia with some admixed chert fragments, few thin carbonate veins	Carb- md/wk	bl/c Py 2- 3%					
76.85	85.75	8.90	BM	Interbedded black-matrix lapilli tutt to tuff breccia and black tuffaceous mudstone; locally lenses(?) of laminated mudstone- siltstone material; few thin quartz-carbonate veins and locally shearing at 25-30deg rca; steep depositional layering at 25-35deg rca	Sil/Carb- wk/md	fr/bl Py 3- 8% (locally Marcasite ?)	md	MK83-12 MK83-13	78.80 84.90	80.20 85.57	1.40 0.67
85.75	86.60	0.85	QZ	Numerous thin quartz-carbonate veins at 10-20deg rca in black- matrix lapilli tuff to tuffaceous mudstone	Sil/Carb- st	bl/c/fr Py 2-4%	st/md	MK83-14	85.57	86.65	1.08
86.60	91.46	4.86	BM	Interbedded black-matrix lapilli tutt to tuff breccia and black tuffaceous mudstone; few thin quartz-carbonate veins; steep depositional layering at 25-35deg rca	Sil/Carb- wk	fr/bl Py 3- 5%	md	MK83-15	86.65	87.78	1.13
91.46	92.25	0.79	BM	Same as above but with numerous thin quartz-carbonate veins, pods and incipient breccias	Sil/Carb- st/md	diss/bl Py 3-5%	wk	MK83-16	91.44	92.25	0.81
92.25	95.90	3.65	BM	Same as before but only few thin quartz veins; lowermost part sedimentary layering at 10-15deg rca	Sil-wk	diss/bl Py 3-5%	st/md	MK83-17 MK83-18	92.25 93.67	93.67 95.30	1.42 0.63
95.90	97.03	1.13	BM	Black-matrix tuff breccia to volcanic breccia with admixed chert fragments; distinct tectonic fabric at 55-60deg rca	Sil-st	c/bl Py 2- 3%	md				
97.03	101.85	4.82	BM	Black-matrix lapilli tuff and tuff breccia, interbedded matrix-poor and matrix-rich layers, tectonic/sedimentary(?) fabric at 15-30deg rca, in lower part few thin quartz veins	Sil-wk	diss/bl Py 2-4%		MK83-19	98.88	100.58	1.70

ļ

v v v v

I

Assessment Report 2009 McKee Creek 2008 Project

 $(1,1,1,2,\dots,N_{n}) = \sum_{i=1}^{n} (1,1,2,\dots,N_{n}) = \sum_{i=1}^{n} (1$

 $\gamma \gamma \gamma \gamma \gamma$

Appendix 3 Drill Hole Logs page 9

·					,	1		-		F-3	<u> </u>
101.85	102.15	0.30	BM	Same as above but with numerous thin quartz veins at 45deg and 75deg rca	Sil-st/md	diss/bl Py 2-4%		MK83-20	101.85	102.22	0.37
102.15	104.50	2.35	BM	Black-matrix lapilli tuff and tuffaceous mudstone, strongly sheared and fractured at 10-15deg rca		Py 3-5%	st/sh	MK83-21	102.22	103.63	1.41
104.50	106.55	2.05	AD	Andesitic/dacitic(?) lapilli tuff to tuff breccia, very poor matric -only locally more abundant tuffaceous mudstone between volcanic fragments, slightly sheared at 40deg rca, few thin quartz-carbonate veins	Sil/Carb- wk	c/bl/diss Py 1-3%	wk				
106.55	107.90	1.35	BM	Gray sandy tuff interbedded with black-matrix lapilli tuff, few thin quartz-carbonate veins	Sil/Carb- wk						
107.90	109.00	1.10	BM	Black-matrix lapilli tuff to tuffaceous mudstone, strongly brocken core							
109.00	115.40	6.40	AD	Predominantly andesitic/dacitic(?) lapilli tuff to tuff breccia, locally with more abundant tuffaceous muddy matrix, chaotic texture, few thin quartz-carbonate veins	Sil-wk	fr/c/diss Py 1-3%		MK83-22	113.60	114.17	0.57
115.40	117.20	1.80	TF	Same as above but with numerous thin layers of mudstone, sheared at 40-45deg rca, few thin quartz veins	Sil-wk	Py 2-3%	md	MK83-23	115.40	117.20	1.80
117.20	123.34	6.14	BM	Black-matrix lapilli tuff, amount of muddy matrix increases downhole, sedimentary/tectonic(?) fabric at 40deg rca, thin quartz veins at 80deg rca; lower contact transitional	Sil-wk		wk				
123.34	134.50	11.16	ΤM	Blackish tuffaceous mudstone with scattered volcanic fragments of lapilli size, grain fabric at 40deg rca; some thin quartz-carbonate veins to vuggy silica zones, lower contact transitional	Sil-md	diss/c Py 1-2%	wk	MK83-24 MK83-25	123.15 129.30	123.85 130.23	0.70 0.93
134.50	136.15	1.65	BM	Black-matrix lapilli tuff, matrix-poor, few layers of sandy tuff							
136.15	140.50	4.35	TF	Gray, fine-grained ash-fall tuff, locally tuffaceous mudstone, distinctly layered at 75-80deg, locally 40deg rca, facing downhole (graded bedding, load casts); in lowermost part some quartz veins and pyrite stringers, slightly sheared at 25-30deg rca	Sil-wk	frPy 1-2%	wk	MK83-27	138.98	139.80	0.82
140.50	141.65	1.15	ТМ	Blackish tuffaceous mudstone to blackmatrix lapilli tuff; some thin quartz-carbonate veins	Sil/Carb- wk						
141.65	142.20	0.55	ΤM	Tuffaceous mudstone with numerous thin quartz veins at 65-80deg rca (at least 3 generations of veins)	Sil-wk						
142.20	143.63	1.43	BM	Matrix-rich black-matrix lapilli tuff, chaotic to layered at 55deg rca texture, bottom contact sharp with load cast structures - facing downhole							
143.63	144.78	1.15	TF	Sandy tuff, andesite/dacite composition	Cl-md						
144.78	145.10	0.32	TF	Dark gray, corse sandy tuff, layering at 45-60deg rca, few thin quartz veins	Sil-wk	cPy 2-3%					

K. Mastalerz

I

Saturn Minerals Inc.

.

Assessment Report 2009 McKee Creek 2008 Project

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

Appendix 3 Drill Hole Logs

シリリリリショ

page 10

145.10	145.53	0.43	BM		Sil-wk				1		
				Matrix-rich black-matrix lapilli tuff, some thin quartz veins							
145.53	148.80	3.27	TF	Fine-grained andesitic tuff, locally sandy and rarely includes some							
				lapilli-size fragments, tectonically deformed							
148.80	149.50	0.70	TF	Same as above but with numerous layers of deformed sandy tuff							
149.50	157.05	7.55	TF	Fine-grained andesitic tuff, locally sandy and rarely includes some	Sil-wk	cPy 1-3%					
			•	lapilli-size fragments, tectonically deformed; rarely thin quartz-							
				carbonate veins, some silicification							
157.05	157.55	0.50	BM	Black-matrix lapilli tuff, poorly layered at 55-65deg rca; slumped							
				layers of tuff in tuffaceous mudstone							
157.55	160.10	2.55	TM	Predominantly tuffaceous mudstone with scattered lapilli size		Py-2-4%		MK83-28	158.38	159.75	1.37
				fragments, locally matrix-rich lapilli tuff/tuff breccia; common are							
				volcanic fragments rich in pyrite							
160.10	162.80	2.70	BM	Moderately matrix-rich, black-matrix lapilli tuff/tuff breccia; common		bl Py 2-					
				fragments rich in blebed pyrite		4%					
162.80	168.60	5.80	DF	Grayish lapilli tuff to tuff breccia and slumped fine to sandy tuff,	Sil/Carb-	c/dissPy 1	wk	MK83-29	168.32	168.85	0.55
				incipient tectonic cleavage, chaotic fabric, few quartz-carbonate	wk	3%					
				veins							
168.60	172.40	3.80	DF	Same as before but abundant admixed muddy material, irregular	Sil/Carb-	fr/cPy1-	wk			ľ	
				sandy blebs (redeposited?), load casts - facing downhole	wk	3%					
172.40	173.09	0.69	TF	Two layers of sandy andesitic redeposited tuff (graywacke)							
				interbedded with tuffaceous mudstone, loaded burrows(?) - facing							
				downhole							
173.09	175.85	2.76	ТM	Grayish tuffaceous mudstone with a few scattered fragments of lapilli	Sil/Carb-	cPy 2-3%					
				size, few quartz-carbonate veins at 55-60deg rca	wk						
175.85	177.18	1.33	MS	Black graphitic mudstone, in lower part tuffaceous mudstone,	Sil-wk	c/dissPy 1	1	MK83-30	176.78	177.18	0.40
				commonly slickensided, some thin quartz veins, lower contact		4%					
				transitional							
177.18	182.00	4.82	SR	Light to dark gray talcose rock (protolith tuffaceous mudstone to lapilli	Sil/Carb-	bl/cPy 2-		MK83-31	177.18	178.31	1.13
				tuff); grain fabric at 35-40deg rca, few quartz-carbonate veins at 35	wk; Talc-	5%		MK83-32	178.31	179.83	1.52
				deg	md						
182.00	182.19	0.19	ТМ	Grayish tuffaceous mudstone, slightly tectonically deformed, silicified	Sil-wk						
182.19	183.45	1.26	VL	Fragmental volcanic rock: lapilli tuff to tuff breccia, siliceous in lower	Sil-wk,	blPy 3-5%					
		_		part; upper part talcose	Talc-wk						
183.45	187.38	3.93	СН	Light gray, massive chert, crudely layered in lower part; in upper part							
				admixed fine clastic material - facing downhole(?)							

K. Mastalerz	
Saturn Minerals	lnc.

 $(z_1, \ldots, N_{n-1}) = (z_1, \ldots, z_{n-1}) + (z_1$

Assessment Report 2009 McKee Creek 2008 Project

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

Appendix 3 Drill Hole Logs

page 11

187.38	189.02	1.64	DF	Grayish debris flow, mud supported, chaotic texture, mixed	<u> </u>		l	I		T T	
	i			composition (volcanic and chert fragments); probably multistorey							
				unit, some sandy load casts - facing downhole							
189.02	189.72	0.70	CH	Chert, grayish, massive to crudely layered							
189.72	190.13	0.41	DF	Debris flow as before							
190.13	190.65	0.52	BM	Light gray, silicified sand-grade volcaniclastic rock, admixed muddy						_	
				graphitic matrix	Sil-md						
190.65	197.56	6.91	DF	Grayish debris flow, multistorey unit, mud supported, chaotic texture,		c/blPy 1-		MK83-33	194.00	195.04	1.04
				mixed composition (volcanic and chert fragments); locally incipient		2%					
				silicification	Sil-wk						
197.56	202.42	4.86	SR		Carb-md,	bl Py 1-	sh	MK83-34	199.10	200.20	1.10
				Grayish-to-blueish, strongly talcose tuff to lapilli tuff, moderately	Serp/Talc	3%					
ļ				sheared, locally admixed muddy-graphitic matrix - facing downhole;	st	ļ	ļ	1			
				few irregular carbonate-(quartz) veins							
202.42	202.85	0.43	TM	Gravich tuffaceous mudstone, slightly talcose	Talc-wk						
202.85	205.67	2.82	DF	Slumped bed or tectonic breccia of tuff-to-tuff breccia volcaniclastic	Sil-wk	Py 2-3%		MK83-35	203.95	204.62	0.67
				material; in the middle part of the interval distinct muddy relics of							
				layering at 35-40deg rca; locally weakly silicified and few thin guartz-							
				carbonate veins							
205.67	207.33	1.66	СН	Grayish chert to chert breccia, sharp lower contact at 40deg rca				1			
207.33	207.40	0.07	TM	Tuffaceous mudstone with layering at 40deg rca							
207.40	208.56	1.16	BM	Matrix-poor, black-matrix lapilli tuff, in the upper part finer-grained,	Sil-wk						
				tuffaceous, lower part silicified and few quartz veinlets							
208.56	208.75	0.19	TF	Distinctly layered fine ash tuff to tuffaceous mudstone, layering at 35-				MK83-36	207.98	209.37	1.39
				45deg rca, gradational contact of internal laminae	ļ					ļ	
208.75	210.88	2.13	TM	Gray black matrix lapilli tuff grades downhole into layered tuffaceous	Sil-wk,			MK83-37	209.37	210.13	0.76
	ľ.			mudstone to debris flow at 40deg rca; lowermost 30 cm slightly	Talc-wk,						·
	:			talcose; some thin quartz veins are accompanied by trace of	Marip-tr						
				mariposite	·						
210.88	212.02	1.14	SR	Whitish coarse-grained fragmental volcanic, strongly talcose,	Cl?-st,	blPy 1-2%			_		
				massive	Talc-st					ŀ	
212.02	214.45	2.43	SR	Laminated to layered fine-grained tuff to lapilli tuff, strongly talcose,	Talc-st	blPy 3-4%		MK83-38	211.84	213.36	1.52
				grain fabric at 3deg rca; lower contact transitional to muddy		-					
				volcanics, slightly silicified							
214.45	216.15	1.70	BM	Black-matrix lapilli tuff to tuffaceous mudstone (probably debris flow	Sil-wk,			MK83-39	215.75	216.41	0.66
	-			unit?); locally incipient silicification to guartz veins, locally talcose	Talc-wk						1
	ļ							ļ		1	[
216.15	216.34	0.19	TF	Light-creamy andesitic(?) tuff with some thin quartz-carbonate veins	Sil/Carb-			MK83-40	216.41	217.96	1.55
					md					-	

K. Mastalerz

Saturn Minerals Inc.

 $(x_1, \dots, x_{n-1}) \in \mathbb{R}$

Assessment Report 2009 McKee Creek 2008 Project

· · · · ·

Appendix 3 Drill Hole Logs page 12

đ

216.34	222.30	5.96	TM	Black tuffaceous mudstone, locally matrix-supported lapilli tuff,	Carb/Sil-	Ĭ		MK83-41	217.96	219.46	1.50
				degree of silicification decreases downhole; locally some thin	wk			MK83-42	219.46	220.80	1.34
				carbonate-quartz veins				MK83-43	220.80	222.30	1.50
222.30	222.45	0.15	QZ	Zone of quartz-carbonate veins-breccia	Sil/Carb-			MK83-44	222.30	222.50	0.20
					st						
222.45	224.08	1.63	SR	Strongly talcose altered lapilli tuff to black-matrix lapilli tuff;	Talc-st	Mariposite		MK83-46	222.50	224.08	1.58
				recognizable grain/fragment fabric at 25-35deg rca, few quartz-							
				carbonate veins; common mariposite							
224.08	225.55	1.47	QZ	Whithish, banded quartz-carbonate vein/veins with abundant	Talc-st,	Mariposite		MK83-47	224.08	225.55	1.47
				associated mariposite; subparallel to core axis	Sil/Carb-						
					st						
225.55		1.65	SR	Strongly talcose altered fragmental volcanic(?) with abundant	Talc-st,	Mariposite		MK83-48	225.55	226.88	1.33
				mariposite, few thin banded quartz-carbonate veins	Sil-Carb-						
	227.20				WK	(1 ,					
227.20	228.09	0.89		Distinctly sheared, dark grayish lapilli tuff, fabric at 10-20deg rca	l alc-wk	(Marip)		MK83-49	226.88	228.09	1.21
		8.06	SR	Strongly talcose altered lapilli tuff protolith, commonly schistose at 25	l alc-st,	(Marip)		MK83-50	228.09	228.60	0.51
				Budeg rca, locally quartz-carbonate veins with sparce mariposite	Sil/Carb-			MK83-51	229.85	230.88	1.03
228.09	236.15	0.45	514		WK		ļ				
		3.45	BW	Dark gray black-matrix lapilil turn to turnaceous mudstone, locally	l aic-wk,	1					
				slight silicitication and some thin quartz-carbonate veins in the near-	SII-WK					:	
236.15	239.60	0.00						MI/02.50	000.00	0.40.00	0.00
239.60	239.80	0.20		Fault gouge				MK83-52	239.80	240.68	0.88
		0.88	BIM	Sheared gray black-matrix lapilit turi with some thin quariz-carbonate	SII-WK		ah				
239.80	240.68	0.57	DM	Veins and poos			Sn			-	
	044.05	0.57	DIVI	Same as above with some talcose strongers/zones, strongly broken	Cil sub		[
240.68	241.25	4 4 2	<u>ep</u>	Completely teleses altered protelith reak: sheared febric at 20.25dea	tolo et			- 			
244.25	245 67	4.42	SR	completely tacose altered protoint rock, sheared labite at 20-55deg	lait-si		sh				
241.25	245.07	0.23	TM	Black tuffaceous mudstone, weakly silicified	Sil-wk		511				
240.07	2+3.50	1 80	DE	Debris flow unit of predominantly light-gray cherty fragments							
245 90	247 70	1.00	5	embodied in moderately abundant muddy matrix	-			1			
270.00		2 24	ŪМ	Dark-gray fine-grained spotty ultramatic, almost fresh (not altered):	Sil/Carb-		· · · · · · · · · · · · · · · · · · ·	MK83-53	248 41	249 94	1.53
247 70	249 94	 • - - T	U 111	some irregular silica-carbonate veinlets	wk				L 70.71	L-0.04	
<u></u>				EOH @ 249.94 m (820 ft)	1	L					

Abbreviations: as to ddh MK8-1

K. Mastalerz Assessment Report 2009 McKee Creek 2008 Project Saturn Minerals Inc. Saturn Minerals Ltd. Project McKee Creek 08 MK8-4 Drill Hole Dip tests:

5 S S

Dip:

-45

NTW

389070

104N.043

(335ft) 102.11m

Core

Claim

NTS

TD

1

Easting: 582520 Contractor: Kluane Method Northing: 6593890 10-Sep-08 Started: Elevation: Finished: 11-Sep-08 Compass 959 Azimuth: 273 Logged by: K. Mastalerz

From	То	Length	Code	Lithology and Structure	Alteration	Ore	Fracture	Sample	From	To	Lengtr
m	m	m				Minerals	Density	Label	m	m	m
0.00	4.40	4.40	OB	Overburden, coarse-grained slope(?) deposit							
4.40	10.67	6.27	AD	Light greenish-gray andesite, probably partly fragmental, numerous	Carb-st,			MK84-07	4.40	5.40	1.00
		·	1	irregular thin carbonate veins in a stockwork pattern	Chl-wk,			MK84-08	8.17	9.36	1.19
]				Oxid-wk						
10.67	25.80	15.13	AD	Light greenish-gray andesitic(?) lapilli tuff to tuff, distinct fragmental	Carb-md,			MK84-09	23.85	25.03	1.18
				fabric at 25-30deg rca, some thin carbonate-(quartz) veins at 75-80	Chl-wk,						
				and 30-45deg rca	Oxid-wk						
25.80	26.55	0.75	FT	Verv strongly fractured andesitic volcanic	Oxid-md		st				
26.55	30.35	3.80	AD	Light greenish-gray andesitic(?) fragmental volcanic rock, fabric at 20	Oxid-wk						
				35deg rca							
30.35	30.55	0.20	FT	Strongly sheared in clay altered andesitic volcanics	Cl-st		fault				
30.55	33.82	3.27	AD	Light greenish, fragmental andesitic volcanics, few large-size	Carb-wk						
				fragments, grain fabric at 20-45deg rca, few carbonate veins							
33.82	34.75	0.93	ΓŤ	Fault gouge developed in andesite volcanics	Cl-st		fault	MK84-10	33.70	34.80	1.10
34.75	37.90	3.15	AD	Light gray andesite fragmental volcanics (lapilli tuff to tuff), grain	Carb-md		wk				
				fabric at 20-25deg rca, locally thin carbonate veins and pods							
37.90	39.26	1.36	AD	Same rock type but strongly fractured and weakly oxidized	Carb-md,		st	MK84-11	37.90	39.26	1.36
			:		oxid-wk					1	
39.26	40.15	0.89	AD	Light beige andesite volcanic, probably fragmental, few thin	Carb-wk		<u> </u>				
				carbonate veins							
40.15	40.92	0.77	FT	Fault gouge	Cl-st.		fault				
					Oxid-md						
40.92	41.45	0.53	VL	Gravish fragmental volcanic rock - probably two tectonic slabs							
				contacting along sheared zone at 45-50deg rca							
41.45	41.64	0.19	SR	Light gray fragmenta volcanic protolith strongly altered to talcose	Talc-md						
				rock and gradually passing into slightly talcose tuffaceous mudstone							
					1		1	1			

Appendix 3 **Drill Hole Logs** page 13

Azi

273

Dip

1

-45.3

Diamond Drill Log - ddh MK8-4

Depth

0

12-Sep-08

15-Sep-08

Date logged:

K. Mastalerz	
Saturn Minerals	inc.

ļ

Assessment Report 2009 McKee Creek 2008 Project

× • •

page 14

41.64	42.10	0.46	FT	Fault gouge in fragmental volcanic	Cl-st,		fault	T			
	40.07	0.57	<u>\</u>		Oxid-md		ļ				
42.10	42.67	0.57		Volcanic rock, probably fragmental, grain fabric at 10-30deg rca	Carb-md			MK84-05	40.07		
42.67	44.90	2.23	SR	Gray-to-greenish, strongly talcose volcanic protolith, locally silicified,	l alc-st,	Mariposite		MK84-01	42.67	43.54	0.87
				common mariposite, some quartz veins	Sil-wk			MK84-02	43.54	44.34	0.80
<u> </u>						ļ	ļ	<u>MK84-03</u>	44.34	44.90	0.56
44.90	44.95	0.05	??	Very poor recovery - drilling chips only	ļ		ļ	MK84-04	44.9	44.95	0.05
44.95	46.02	1.07	VL	Medium-to-light gray sand-grade tuff, andesite/dacite, massive	Sil-wk			MK84-05	44.95	46.02	1.07
46.02	54.35	8.33	SR	Strongly to moderately talcose rock of the fragmental volcanic or	Talc-		st/wk				
				debris flow protolith (few chert fragments!), with some intervals of	st/md						
			_	tectonic breccia; grain fabric at 20-30deg rca							
54.35	55.10	0.75	FT	Fault zone in tuffaceous mudstone to lapilli tuff	Carb/Cl-		fault				
					st						
55.10	61.40	6.30	BM	Gray to dark-gray, black-matrix lapilli tuff, numerous thin veins of	Sil/Carb-	1		MK84-12	56.39	58.11	1.72
				carbonate-quartz (up to stockwork pattern); generally weak to	md/st				-		
				moderate silicification							
61.40	61.95	0.55	TM	Transitional zone between black-matrix lapilli tuff and prevailing	Talc-md,						
				tuffaceous mudstone	Carb-md						
61.95	62.58	0.63	TF	Predominantly medium-grained sandy tuff, andesitic/dacitic, locally	Sil-wk,		wk				
				sheared into talcose zones, locally weak silicification	Taic-wk						
62.58	64.80	2.22	DF	Debris flow with abundant-to-poor, muddy-tuffaceous matrix,							
[predominantly volcanic fragments, minor frags of sandy tuff	l]]			
64.80	69.75	4.95	FT	Broad tectonic zone with strong talcose alteration, strong brecciation	Talc-st,		fault	MK84-13	64.80	66.00	1.20
				and numerous zones of silicification, few carbonate veins	Sil-wk,			MK84-14	68.58	69.75	1.17
					Carb-wk			-			
69.75	70.56	0.81	QZ	Strong carbonate alteration/replacement, penetrative	Carb-st			MK84-15	69.75	70.56	0.81
70.56	70.82	0.26	FT	Fault/shear zone, slickensided	Cl-st	:	fault-				
							sh				
70.82	74.62	3.80	BM	Gray black-matrix lapilli tuff to tuff breccia, strong	Carb/Tal						
				sedimentary/tectonic-modified fabric at 15-25deg rca, irregular lower	c-md						
				contact							
74.62	76.35	1.73	AD	Light gray sandy andesite/dacite tuff, massive, penetrative carbonate	Carb-md						
				alteration, few carbonate-quartz veins				1			
76.35	76.55	0.20	FT	Fault to strongly slickensided zone, contact/fabric at 15deg rca	Cl/Talc-st			MK84-16	76.2	77.05	0.85
76.55	77.05	0.50	AD	Light gray andesite/dacite tuff, moderately silicified	Sil-md						
77.05	78.15	1.10	BX	Tectonic breccia developed in light-gray tuff protolith	CI/Talc-st		tbx				

K. Mastalerz

Ì

Assessment Report 2009 McKee Creek 2008 Project

Appendix 3 Drill Hole Logs page 15

2

									page	15
78.15	79.10	0.95	AD	Light-gray andesite/dacite tuff, massive	Carb-md, Sil-wk					
79.10	82.20	3.10	ВM	Gray, matrix-rich black-matrix lapilli tuff, irregular tectonic fabric at 10-15deg rca	Talc-md					
82.20	82.80	0.60	SR	Very strongly talcose altered volcanic protolith	Talc-st					
82.80	83.30	0.50	AD	Light-gray andesite/dacite tuff, contacts at 10-20deg rca, tectonic slab?						
83.30	85.45	2.15	SR	Light greenish talcose volcanics, strongly slickensided	Talc-st					
85.45	85.91	0.46	AD	Light gray sandy andesite/dacite tuff, massive, penetrative carbonate alteration	Carb-st					
85.91	93.40	7.49	BM	Grayish black-matrix lapilli tuff, strongly talcose, numerous slickensides	Talc- st/md		-			
93.40	95.58	2.18	SR	Whithish, very strong talcose alteration in protolith volcanic, probably fragmental, rock	Talc-st					
95.58	96.25	0.67	AD	Greenish andesite volcanic (greenstone), fragmental	Talc- st/wk					
96.25	97.24	0.99	AD	Light gray, fine-sandy andesite/dacite tuff, penetrative carbonate alteration	Carb- md/st		MK84-17	96.01	97.05	1.04
97.24	97.85	0.61	BX	Tectonic breccia(?); blocks of light-gray strongly carbonitized tuff in a slickenside/talcose zone	Talc-md, Carb-md		MK84-18	97.05	98.00	0.95
97.85	99.10	1.25	SR	Whithish, very strong talcose alteration in protolith volcanic, probably fragmental, rock	Talc-st					
99.10	100.06	0.96	FT	Fault gouge/zone - poor recovery: chips of a strongly talcose altered rock	Talc/CI-st	fault				
100.06	100.36	0.30	BX	Tectonic/fault breccia of a talcose rock (volcanic? Protolith)	Talc-st	tbx	MK84-19	100.00	100.70	0.70
100.36	102.11	1.75	SR	Whitish-to-gray, strongly talcose rock, probably volcanic protolith, steep tectonic fabric at 0-15deg rca	Talc-st		MK84-20	100.70	102.11	1.41
				EOH 102.11 m (335 ft)						

Abbreviations: as to ddh MK8-1

Saturn Minerals Inc.

and the second second

Project: MK-08

Sample Type: Core

Assessment Report 2009 McKee Creek 2008 Project

PIONEER LABORATORIES INC.

SATURN MINERALS INC.

GEOCHEMICAL ANALYSIS CERTIFICATE

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

Multi-element ICP Analysis - 0.500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for B, Ba, Cr, Fe, Mg, Mn, Na, P, S, Sn, Ti and limited for Na, K and Al. *Au Analysis- 20 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

ELEMENT	Ag	AI	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	P	Pb S	Sb	Sn	Sr	Те Т	i Tl	V	Zn	Au*
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm %	ppm	ppm	ppm	ppm %	b ppm	ppm	ppm	ppb
MK81-01	0.2	3.06	14	<5	24	<10	4.24	2	33	616	84.7	8.09	0.42	0.97	424	5	0.02	189	0.46	4.4 0.025	10	<2	51.5	<5 0.06	5 <5	128	143	2
MK81-02	0.8	2.76	<5	<5	41	<10	1.09	2	42	462	218.9	9.2	0.36	1.08	723	2	0.01	206	0.23	6.6 0.64	7	<2	16.8	<5 0.04	4 <5	162	159	4
MK81-03	0.1	3.92	12	<5	14	<10	5.08	2	54	1502	309.1	5.56	0.07	4.92	1228	2	0.01	376	0.06	8.8 0.016	5	<2	64.1	<5 <0.0	1 <5	106	137	1
MK81-04	0.4	2.28	15	<5	169	<10	0.99	2	76	610	343.2	7.71	0.27	1.64	2764	6	0.01	434	0.58	7.7 0.01	6	<2	15.8	<5 0.04	4 <5	161	189	1
MK81-05	0.2	2.4	<5	<5	128	<10	1.51	2	68	469	113.3	7.95	0.25	1.48	1960	11	0.01	338	0.89	7.7 0.01	7	<2	18.9	<5 0.0	1 <5	76	188	2
MK81-06	0.5	3.05	<5	<5	80	<10	0.45	2	67	741	143	7.55	0.13	2.32	1793	3	0.01	313	0.22	7.7 0.01	9	<2	8.4	<5 <0.0	1 <5	102	246	1
MK81-07	0.8	2.6	19	<5	105	<10	0.32	2	92	502	977.9	7.59	0.19	1.73	1603	2	0.01	306	0.17	11 0.007	6	<2	6.3	<5 <0.0	1 <5	83	209	1
MK81-08	2.4	1.51	29	<5	146	<10	0.59	1	91	326	671	6.56	0.16	0.9	1515	4	0.01	310	0.35	6.6 0.01	8	<2	9.45	<5 <0.0	1 <5	65	166	5
MK81-09	0.6	0.65	17	<5	224	10	0.47	2	78	323	256.3	8.02	0.1	0.13	2256	5	0.01	358	0.29	<2 0.01	9	<2	14.7	<5 <0.0	1 <5	80	184	3
MK81-10	0.1	1.37	29	<5	49	<10	4.89	2	46	359	103.4	6.4	0.14	3.07	1189	<1	0.01	175	0.1	<2 0.028	7	<2	92.4	<5 <0.0	1 <5	52	229	4
MK81-11	0.3	2.69	<5	<5	39	<10	4.48	2	46	537	57.2	6.01	0.46	3.7	1397	1	0.01	210	0.09	7.7 0.013	9	<2	60.9	<5 0.05	5 <5	125	131	2
MK81-12	1	0.73	15	<5	73	<10	0.2	2	70	229	623.7	6.94	0.24	0.17	546	3	0.01	244	0.09	<2 0.009	5	<2	5.25	<5 <0.0	1 <5	75	143	1
MK81-14	0.5	0.64	23	<5	69	<10	0.38	2	44	342	116.6	10.14	0.22	0.12	575	4	0.01	300	0.2	<2 0.01	6	<2	7.35	<5 0.0	1 <5	133	172	2
MK81-14A	0.9	3.01	<5	<5	130	<10	0.2	2	43	609	36.3	8.52	1.32	0.87	321	<1	0.02	288	0.07	7.7 0.01	<2	<2	7.35	<5 0.24	4 <5	158	144	1
MK81-15	0.3	0.3	17	<5	83	<10	10.2	1	54	617	86.9	3.84	0.02	3.34	935	5	0.01	942	0.03	<2 0.007	10	<2	109	<5 <0.0	1 <5	62	77	2
MK81-16	0.2	0.85	23	<5	16	<10	3.99	<1	25	337	45.1	2.39	0.02	3.99	549	3	0.01	379	0.04	3.3 0.01	6	<2	71.4	<5 <0.0	1 <5	44	37	1
MK81-17	0.1	1.28	9	<5	27	<10	3.79	<1	54	621	19.8	4.05	0.02	5.9	1050	2	0.01	791	0.04	5.5 0.039	6	<2	75.6	<5 <0.0	1 <5	62	67	1
MK81-18	0.2	0.72	21	<5	150	<10	5	1	49	193	152.9	5.87	0.05	3.02	1192	1	0.01	192	0.2	3.3 0.686	6	<2	92.4	<5 <0.0	1 <5	94	127	8
MK81-19	0.3	0.56	28	<5	55	<10	8.43	1	54	446	46.2	4.15	0.05	6.85	954	1	0.01	883	0.04	4.4 0.049	7	<2	156	<5 <0.0	1 <5	56	52	1
MK81-20	17.4	0.95	29	<5	56	<10	6.16	1	45	422	45.1	4.74	0.02	5.57	1140	2	0.01	640	0.09	3.3 0.024	8	<2	137	<5 <0.0	1 <5	62	71	9
MK81-21	0.13	0.63	9.315	<5	89	<10	6.4	2	43	225	19	5.71	0.04	3.99	1452	2	0.01	168	0.15	5 0.056	4	<2	73	<5 <0.0	1 <5	83	149	13
MK81-22	0.26	0.13	22.77	<5	55	<10	5.99	<1	11	133	19	1.43	0.05	1.27	498	4	0.01	91	<0.01	2 0.006	6	<2	41	<5 <0.01	1 <5	15	22	3
MK81-23	5.2	0.65	57.96	<5	110	<10	1.7	<1	17	162	66	3.33	0.08	0.57	693	3	0.01	92	0.03	4 0.009	11	<2	9	<5 <0.0	1 <5	33	66	5
MK81-24	0.13	0.21	30.015	<5	86	<10	14.8	<1	9	63	14	2.66	0.06	5.06	784	1	0.01	58	0.14	<2 0.014	6	<2	94	<5 <0.0	1 <5	25	40	1
MK81-25	0.26	0.18	<5	<5	80	<10	>10	<1	4	80	2	2.61	0.01	7.32	861	<1	0.01	40	0.34	3 0.025	<2	<2	192	<5 <0.0	1 <5	31	18	1
MK81-26	0.13	0.24	33.12	<5	151	<10	7.34	<1	17	134	27	2.11	0.04	1.24	699	3	0.01	184	0.07	5 0.011	5	<2	61	<5 <0.01	1 <5	40	79	1
MK81-27	0.26	0.28	16.56	<5	49	<10	1.12	<1	25	184	81	3.36	0.05	0.21	278	6	0.01	201	0.07	5 0.062	3	<2	16	<5 <0.01	1 <5	63	103	16
MK81-28	0.13	0.33	<5	<5	63	<10	6.14	<1	34	156	98	3.8	0.03	2.76	1100	1	0.01	128	0.03	<2 0.349	6	<2	61	<5 <0.01	1 <5	104	81	12
MK81-29	0.26	0.31	<5	<5	197	<10	0.51	<1	4	64	4	1.09	0.06	0.27	230	2	0.04	8	0.08	2 0.01	<2	<2	28	<5 0.03	3 <5	24	21	1
MK81-30	1.04	2.37	31.05	<5	592	<10	0.22	2	81	338	177	6.78	0.11	2.39	4191	5	0.01	276	0.07	10 0.046	7	<2	9	<5 <0.0	<5	151	186	3
MK81-31	0.52	0.28	<5	<5	95	<10	0.18	<1	4	105	71	1.69	0.11	0.05	44	12	0.01	42	0.11	10 0.026	5	<2	26	<5 <0.01	<5	42	112	1

TELEPHONE (604) 231-8165

Analyst Report No. 2081962 Date: October 10, 2008

Assessment Report 2009 McKee Creek 2008 Project

MK81-32 MK81-33 MK81-34 MK81-35 MK81-36	0.52 0.13 36.66 0.26 0.13	1.77 0.3 0.19 0.09 0.3	<5 <5 21.735 38.295	<5 <5 <5 <5 <5	197 66 227 197 460	<10 <10 <10 <10 <10	0.43 0.09 0.23 8.21 11.3	2 <1 <1 <1 <1	39 4 10 2 11	138 107 208 63 88	128 28 169 61 111	4.79 1.27 1.48 1.16 2.22	0.26 0.08 0.05 0.03 0.07	1.57 0.17 0.11 1.68 3.08	1489 224 735 553 1149	4 6 15 3 1	0.01 0.01 0.01 0.01 0.01	117 28 67 17 61	0.05 <0.01 0.04 0.09 0.46	8 0.1 4 0.1 3 0.0 4 0 6 0.0	56 6 57 4 006 3 .01 6 023 8	<th>7 4 8 71 177</th> <th><5 0.02 <5 <0.01 <5 <0.01 <5 <0.01 <5 <0.01</th> <th><5 <5 <5 <5 <5</th> <th>70 5 10 7 20</th> <th>155 46 27 20 28</th> <th>10 5 7 2 30</th>	7 4 8 71 177	<5 0.02 <5 <0.01 <5 <0.01 <5 <0.01 <5 <0.01	<5 <5 <5 <5 <5	70 5 10 7 20	155 46 27 20 28	10 5 7 2 30
MK81-37	45.1	0.22	9119.4	<5	8	<10	1.95	267	15	13	977	11.17	0.14	0.09	1938	9	0.01	22	0.05 >	>10000 >	10 154	<2	94	<5 < 0.01	<5	8>	10000	510
MK81-38	0.13	0.12	15.525	<5	32	<10	0.94	<1	3	94	60	1.27	0.05	0.46	346	4	0.01	23	< 0.01	20 0	.41 4	<2	21	<5 <0.01	<5	3	47	2
MK81-39	0.26	0.24	19.665	<5	100	<10	3.87	<1	16	101	62	2.3	0.05	0.48	1155	8	0.01	86	0.05	11 0.0	41 4	<2	28	<5 <0.01	<5	28	54	1
MK81-40	0.13	0.2	5.175	<5	374	<10	1.18	<1	5	93	81	1.54	0.07	0.15	490	6	0.01	37	0.24	10 0.0	36 5	i <2	56	<5 <0.01	<5	6	54	3
MK81-41	0.39	0.08	10.35	<5	51	<10	0.03	<1	3	105	41	0.94	0.05	0.02	244	6	0.01	21	<0.01	3 0.0	07 3	<2	2	<5 <0.01	<5	4	30	2
MK81-12	1 82	0.1	<5	<5	70	<10	0.08	<1	2	1/10	31	0.53	0.04	0.04	135	6	0.01	16	0.02	1 0	01 <2	2	5	<5 <0.01	~5	5	10	1
MK81-42	1.02	0.1	15 525	<5	187	<10	0.06	21	7	92	67	1 18	0.04	0.04	646	5	0.01	36	0.02	5 0	01 6	2	. 12	<5 <0.01	~5	11	19	l Q
MK81_44	0.65	0.11	26.01	<5	161	<10	0.00	21	14	124	54	2 14	0.07	0.02	612	5	0.01	80	0.05	1 0	01 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	<5 <0.01	~5	20	40	10
MK81_45	1 60	0.13	84.87	<5	584	<10	0.20	1	71	145	121	5.8	0.09	0.04	2000	5	0.01	330	0.10	4 0	01 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	<5 <0.01	~5	20	106	10
MK81-45	0.13	0.44	26.01	<5	274	<10	>10	1	12	140	54	3.01	0.09	1.2	1778	3	0.01	530	0.00	2 0	01 10		56	<5 <0.01	~5	50	100	2
WINO 1-40	0.15	0.51	20.91		214	10	-10	1	12	100	54	5.91	0.02	1.5	1770	5	0.01	03	0.04	2 0	.01 10	-2	. 50	<5 <0.01	<5	50	45	3
MK82-01	0.78	0.44	60.03	<5	262	<10	0.17	2	58	151	97	7.35	0.18	0.16	2010	4	0.01	175	0.09	5 0	.01 8	3 <2	15	<5 <0.01	<5	62	144	7
MK82-02	1.3	0.47	37.26	<5	233	<10	1.87	<1	22	227	55	4.42	0.23	0.42	828	5	0.01	133	0.05	4 0	.01 6	5 <2	18	<5 <0.01	<5	50	73	5
MK82-03	0.26	0.38	<5	<5	65	<10	>10	1	44	529	43	4.07	< 0.01	4.64	899	<1	0.01	142	0.01	3 0.0	87 7	<2	99	<5 <0.01	<5	127	122	5
MK82-04	0.13	0.42	<5	<5	60	<10	12.1	1	40	397	59	4.39	0.03	4.06	912	1	0.01	183	0.03	3 0.0	72 4	<2	91	<5 <0.01	<5	133	58	3
MK82-05	0.65	2.47	5.175	<5	47	<10	0.42	1	51	674	31	4.84	0.04	2.44	963	1	0.01	273	0.05	7 0	.01 7	<2	7	<5 0.08	<5	73	86	2
MK82-06	13	1 60	22 77	<5	113	<10	0.38	1	66	373	108	6 10	0 1 1	1 31	1733	3	0.01	240	0.1	6 0	01 8	2		<5 <0.01	~5	121	110	1
MK82-10	2 00	1.09	>10000	25	33	162	7.65	3	450	373	704	5.16	0.11	0.31	732	73	0.06	73	0.15	16 1 /	11 11	-2		25 0.05	~5	27	244	800
MK82-11	0.13	1 00	7 245	<5	32	<10	1.00	-1	400	605	38	3.60	0.12	2.61	700	1	0.00	270	0.13	40 1.4	01 3	-2	15	<5 0.05	-5	50	46	030
MK82-12	0.13	1.33	1.245	<5	31	<10	10.2	21	37	588	60	1 17	0.03	1.99	662	-1	0.01	260	0.03	3 0	01 3	-2	10	<5 <0.03	~5	78	50	18
MK82 12	0.13	1.49	<5	~5	15	<10	7.62	~1	20	375	54	4.17	0.04	1.00	670	~1	0.01	200	0.03	-2 0	01 4		. 19	<5 0.01	~5	10	20	7
WIN02-15	0.15	1.55	-5	-5	15	10	1.02	~1	29	575	54	2.00	0.05	1.00	515		0.01	131	0.05	-2 0	01 4	~~2	20	<5 0.05	-5	44	39	1
MK82-14	0.26	1.96	6.21	<5	28	<10	3.15	<1	31	319	78	3.57	0.07	2.21	670	1	0.02	129	0.04	3 0	.01 4	<2	14	<5 0.08	<5	81	46	5
MK82-15	0.13	0.45	<5	<5	40	<10	8.25	1	30	221	80	4.31	0.05	2.92	950	<1	0.01	102	0.03	4 0.0	16 5	<2	42	<5 <0.01	<5	131	48	2
MK82-16	0.13	0.39	11.385	<5	57	<10	7.36	1	55	700	25	4.74	0.02	4.36	1138	1	0.01	493	0.02	4 0.0	22 7	<2	102	<5 <0.01	<5	94	57	12
MK82-17	0.52	0.62	36.225	<5	143	<10	11.7	<1	70	650	24	4.2	0.03	0.87	1560	2	0.01	594	0.03	2 0	.01 10) <2	24	<5 <0.01	<5	78	68	10
MK82-18	3.1	0.83	57	<5	186	<10	3.65	2	51	475	125.4	5.93	0.05	0.53	1584	3	0.01	365	0.06	<2 0	.01 8.1	<2	11	<5 <0.01	<5	119	81	5
MK82-19	0 1	1.32	7	<5	112	<10	11 1	1	37	404	64 9	3 91	0.05	1.56	1304	<1	0.01	174	0.04	22 0	01 6.3	<2	19.8	<5 <0.01	<5	110	48	3
MK82-20	0.3	4 16	17	<5	42	<10	1.39	1	54	718	115.5	5.57	0.11	4.8	929	1	0.01	252	0.05	11 0	01 54	<2	77	<5 <0.01	<5	154	76	1
MK82-21	0.2	2 44	<5	<5	37	<10	3.94	1	44	486	75.9	4 99	0.03	2 84	971	1	0.01	224	0.04	66 0	01 6.3	<2	17.6	<5 <0.01	<5	133	69	1
MK82-22	0.1	3 17	<5	<5	45	<10	4 95	1	49	802	78.1	5 1	0.04	4 07	1113	1	0.01	341	0.04	55 0	01 7 2	<2	9.9	<5 <0.01	<5	128	59	2
MK82-23	0.1	2.83	17	<5	47	<10	6.48	<1	39	683	37.4	4.27	0.04	4.05	993	2	0.01	265	0.04	4.4 <	10 5.4	<2	17.6	<5 <0.01	<5	115	51	1
	0.0		47	-5	50	.10	7 70		07	700	00.0	5.00	0.04	1 10	4407	0	0.04	1011	0.05		04 0.0	-0		-5 -0.04		70	77	0
MK82-24	0.2	1.14	1/	<5	56	<10	1.12	1	87	723	90.2	5.06	0.04	1.42	1167	2	0.01	1214	0.05	2.2 0.	01 6.3	<2	11	<5 <0.01	<5	79	11	2
MK82-25	0.1	0.35	44	<5	114	<10	4	1	58	3/5	37.4	4.94	0.02	0.21	1/20	3	0.01	967	0.07	<2 0.	01 14	<2	9.9	<5 <0.01	<5	/1	102	5
MK82-26	0.5	0.53	50	<5	211	<10	0.34	2	57	174	112.2	8.35	0.08	0.2	2310	4	0.01	476	0.21	4.4 0.	01 9.9	<2	19.8	<5 <0.01	<5	108	173	7
MK82-27	0.7	0.61	206	<5	328	13	0.27	2	101	352	22	8.53	0.11	0.32	3423	5	0.01	1090	0.13	4.4 0	01 39	<2	19.8	<5 <0.01	<5	120	150	5
MK82-28	0.4	0.35	56	<5	76	<10	2.76	<1	19	68	115.5	4.21	0.07	0.45	662	3	0.01	55	0.05	5.5 0.1	58 17	<2	28.6	<5 <0.01	<5	40	97	45
MK82-29	0.7	0.32	255	<5	165	<10	6.77	1	66	265	41.8	5.49	0.11	1.34	1816	2	0.01	853	0.08	3.3 0	01 65	<2	67.1	<5 <0.01	<5	52	94	31
MK82-30	0.3	0.34	6	<5	220	<10	0.33	<1	4	65	2.2	1.09	0.07	0.28	274	3	0.04	10	0.08	2.2 0.0	11 <2	<2	30.8	<5 0.02	<5	23	17	20
MK82-31	0.5	0.2	10	<5	55	<10	0.06	<1	4	83	52.8	0.88	0.09	0.06	41	12	0.01	21	0.04	6.6 0.0	15 4.5	<2	24.2	<5 <0.01	<5	8	59	18
MK82-32	0.6	0.35	5	<5	92	<10	0.1	<1	2	52	24.2	1.11	0.11	0.02	23	26	0.01	27	0.22	14.3 0.0	14 2.7	<2	144	<5 <0.01	<5	29	278	28
MK82-33	0.3	0.45	16	<5	200	<10	0.08	1	6	119	57.2	2.08	0.14	0.03	122	32	0.01	94	0.17	16.5 0.0	05 6.3	<2	156	<5 <0.01	<5	56	336	71

Appendix 4 Core Sample Analyses - Certified Results page 2

7

Assessment Report 2009 McKee Creek 2008 Project

metrics 0.4 0.5 2.6 0.6 0.2 0.12 0.12 0.11 0.01 0.5 0.01 <th< th=""><th>MK82-34</th><th>0.4</th><th>0.3</th><th><5</th><th><5</th><th>79</th><th><10</th><th>0.1</th><th><1</th><th>4</th><th>68</th><th>46.2</th><th>1.22</th><th>0.09</th><th>0.02</th><th>40</th><th>17</th><th>0.01</th><th>19</th><th>0.15</th><th>13.2 0.01</th><th>1.8</th><th><2</th><th>82.5</th><th><5 <0.01</th><th><5</th><th>22</th><th>107</th><th>18</th></th<>	MK82-34	0.4	0.3	<5	<5	79	<10	0.1	<1	4	68	46.2	1.22	0.09	0.02	40	17	0.01	19	0.15	13.2 0.01	1.8	<2	82.5	<5 <0.01	<5	22	107	18
MMR2-39 0.2 3.3 96 5.6 97 10 88 10 6.6 4.6 2.6 2.0 1.0	MK82-35	0.5	0.44	20	<5	196	<10	0.08	1	6	117	56.1	2.06	0.13	0.02	121	31	0.01	91	0.17	16.5 0.01	5.4	<2	154	<5 <0.01	<5	54	331	31
bmcs23 U <td>MK82-36</td> <td>0.4</td> <td>3.5</td> <td>56</td> <td><5</td> <td>341</td> <td><10</td> <td>0.32</td> <td>1</td> <td>37</td> <td>513</td> <td>58.3</td> <td>5</td> <td>0.25</td> <td>4.32</td> <td>2733</td> <td>3</td> <td>0.01</td> <td>275</td> <td>0.12</td> <td>11 0.01</td> <td>6.3</td> <td><2</td> <td>11</td> <td><5 0.02</td> <td><5</td> <td>114</td> <td>127</td> <td>12</td>	MK82-36	0.4	3.5	56	<5	341	<10	0.32	1	37	513	58.3	5	0.25	4.32	2733	3	0.01	275	0.12	11 0.01	6.3	<2	11	<5 0.02	<5	114	127	12
MAR62-30 U.4 0.2 23 45 33 40 0.0 10 10 10 11 0.0 13 0.0	MK82-37	0.2	0.12	<5	<5	102	<10	0.04	<1	5	112	61.6	1.38	0.05	0.03	883	3	0.01	30	0.01	3.3 0.007	2.7	<2	4.4	<5 <0.01	<5	8	49	8
MKR2-9 0.7 0.4 31 <5 1.7 <10 0.16 5.7 0.11 5.5 0.01	MK82-38	0.4	0.2	23	<5	333	<10	0.09	<1	22	77	115.5	2.3	0.08	0.06	2925	5	0.01	112	0.03	8.8 0.01	3.6	<2	12.1	<5 <0.01	<5	19	89	10
MK82-40 04.2 0.2 0.95 0.6 1.0 1.0 1.0	MK82-39	0.7	0.43	31	<5	177	<10	0.18	<1	40	109	95.7	4.5	0.12	0.09	1372	4	0.01	95	0.11	5.5 0.01	5.4	<2	13.2	<5 <0.01	<5	38	99	9
MK824 0.6 <th< td=""><td>MK82-40</td><td>44.2</td><td>0.22</td><td>8950</td><td><5</td><td>6</td><td><10</td><td>1.89</td><td>256</td><td>15</td><td>13</td><td>1048.3</td><td>10.26</td><td>0.13</td><td>0.09</td><td>1920</td><td>9</td><td>0.01</td><td>20</td><td>0.05 ></td><td>10000 >10</td><td>152</td><td><2</td><td>102</td><td><5 <0.01</td><td><5</td><td>7></td><td>10000</td><td>480</td></th<>	MK82-40	44.2	0.22	8950	<5	6	<10	1.89	256	15	13	1048.3	10.26	0.13	0.09	1920	9	0.01	20	0.05 >	10000 >10	152	<2	102	<5 <0.01	<5	7>	10000	480
MK824 0.7 0.56 41 <52 51 0 7.7 1 66 166 </td <td>MK82-41</td> <td>0.6</td> <td>0.54</td> <td>51</td> <td><5</td> <td>183</td> <td><10</td> <td>0.33</td> <td>1</td> <td>50</td> <td>153</td> <td>117.7</td> <td>6.62</td> <td>0.16</td> <td>0.15</td> <td>1764</td> <td>3</td> <td>0.01</td> <td>146</td> <td>0.21</td> <td>13.2 0.005</td> <td>7.2</td> <td><2</td> <td>12.1</td> <td><5 <0.01</td> <td><5</td> <td>63</td> <td>153</td> <td>18</td>	MK82-41	0.6	0.54	51	<5	183	<10	0.33	1	50	153	117.7	6.62	0.16	0.15	1764	3	0.01	146	0.21	13.2 0.005	7.2	<2	12.1	<5 <0.01	<5	63	153	18
MK8244 0.5 0.44 65 25 25 1.0 0.16 1.8 0.16 1.8 0.1 0.00 3.3 0.01 6.2 21 4.4 5.0 1.7 22 MK8244 0.3 3.5 0.01 7.5 4.5 4.4 0.04 4.5 5.5 1.0 4.5 5.5 1.0 7.5 5.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.01 7.5 7.5 0.00 7.7 0.01 3.0 0.01 7.7 0.01 8.5 0.01 7.5 0.5 0.01 0.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.5 0.0	MK82-42	0.7	0.56	41	<5	261	<10	0.27	1	66	196	83.6	7.47	0.18	0.19	1958	4	0.01	167	0.15	5.5 0.01	7.2	<2	20.9	<5 <0.01	<5	72	153	15
MK8244 0.3 3.4 7 -5 4.4 -10 0.4 5 0.01 257 0.04 11 0.10 9 -2 7.7 -5 0.04 -5 5 0.01 273 -5 0.04 -5 5 0.01 273 -5 0.04 -5 5 0.01 27 -5 0.04 -5 5 5 5 10 7 7 7 0.01 25 5 5 0.01 25 5 5 0.01 7 0.11 8 0.01 7 0.11 8 0.01 7 0.01 25 0.01 25 5 5 0.01 5 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 <td>MK82-43</td> <td>0.5</td> <td>0.48</td> <td>65</td> <td><5</td> <td>259</td> <td><10</td> <td>0.16</td> <td>1</td> <td>55</td> <td>137</td> <td>85.8</td> <td>6.66</td> <td>0.18</td> <td>0.16</td> <td>1885</td> <td>3</td> <td>0.01</td> <td>170</td> <td>0.09</td> <td>3.3 0.01</td> <td>6.3</td> <td><2</td> <td>15.4</td> <td><5 <0.01</td> <td><5</td> <td>55</td> <td>137</td> <td>22</td>	MK82-43	0.5	0.48	65	<5	259	<10	0.16	1	55	137	85.8	6.66	0.18	0.16	1885	3	0.01	170	0.09	3.3 0.01	6.3	<2	15.4	<5 <0.01	<5	55	137	22
MK8245 0.3 2.3 <td>MK82-44</td> <td>0.3</td> <td>3.54</td> <td>7</td> <td><5</td> <td>44</td> <td><10</td> <td>0.45</td> <td><1</td> <td>48</td> <td>598</td> <td>127.6</td> <td>4.65</td> <td>0.04</td> <td>4.16</td> <td>1220</td> <td>5</td> <td>0.01</td> <td>257</td> <td>0.04</td> <td>11 0.01</td> <td>9</td> <td><2</td> <td>7.7</td> <td><5 0.04</td> <td><5</td> <td>85</td> <td>68</td> <td>9</td>	MK82-44	0.3	3.54	7	<5	44	<10	0.45	<1	48	598	127.6	4.65	0.04	4.16	1220	5	0.01	257	0.04	11 0.01	9	<2	7.7	<5 0.04	<5	85	68	9
MK82-40 0.2 1.92 -5 65 17 <10 2.08 <1 2.20 0.3 2.26 <10 0.01 2.26 55 0.01 <2.2 2.5 55 0.07 55 84 0.01 2.80 0.33 0.20 4.5 2.00 2.7 7.7 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 4.5 2.00 2.7 2.20 2.5 4.5 0.00 2.20	MK82-45	0.3	2.73	<5	<5	24	<10	0.43	<1	46	555	56.1	4.47	0.04	2.53	761	3	0.01	177	0.11	8.8 <10	3.6	<2	5.5	<5 0.07	<5	62	127	7
MK82-47 0.1 2.04 5 65 84 <10 7.84 <1 1705 39.6 42.5 10.04 238 10.01 288 0.03 4.4 <10 6.3 2 5 2 1.2 c5 163 10 0.07 3.3 0.09 4.4 c10 3.3 0.00 4.4 <10 3.3 0.01 3.5 0.01 3.6 2.2 9.9 5.5 0.01 5.5 5 4.3 3 1 0.01 3.5 0.01 3.5 0.01 3.5 0.01 3.6 2.2 9.9 5.5 0.01 5.5 0.01 1.6 0.03 7.7 0.01 1.6 2.2 7.5 5.01 1.8 5.2 0.01 5.5 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01 3.6 0.01	MK82-46	0.2	1.92	<5	<5	17	<10	2.08	<1	26	333	93.5	2.82	0.03	2.2	626	<1	0.02	127	0.03	5.5 0.01	<2	<2	5.5	<5 0.07	<5	51	36	10
MK82-48 0.1 0.47 30 <5 183 <10 82.2 <1 21 81 891 3.46 0.07 4.48 886 2 0.02 84 0.05 3.3 0.290 4.5 <2 66 <5 63 63 1 MK82-50 0.0 0.11 5 5 13 0.01 7.7 0.01 1.8 <2	MK82-47	0.1	2.04	5	<5	84	<10	7.84	<1	41	705	39.6	4.25	0.04	2.35	1083	1	0.01	288	0.03	4.4 <10	6.3	<2	13.2	<5 0.03	<5	66	43	8
MK82-49 0.7 0.14 39 <5 99 <10 0.00 <1 5 103 858 116 0.08 0.05 0.01 37 0.04 55 0.01 36 2 99 <5 0.01 55 5 13 55 13 50 13 14 14 50 13 14 14 50 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 10 101 120 101 120 100 110 <td>MK82-48</td> <td>0.1</td> <td>0.47</td> <td>30</td> <td><5</td> <td>183</td> <td><10</td> <td>8.22</td> <td><1</td> <td>21</td> <td>81</td> <td>89.1</td> <td>3.46</td> <td>0.07</td> <td>4.48</td> <td>886</td> <td>2</td> <td>0.02</td> <td>84</td> <td>0.05</td> <td>3.3 0.209</td> <td>4.5</td> <td><2</td> <td>66</td> <td><5 <0.01</td> <td><5</td> <td>63</td> <td>63</td> <td>1</td>	MK82-48	0.1	0.47	30	<5	183	<10	8.22	<1	21	81	89.1	3.46	0.07	4.48	886	2	0.02	84	0.05	3.3 0.209	4.5	<2	66	<5 <0.01	<5	63	63	1
KK82-50 0.3 0.17 5 <5 138 <10 0.08 <1 12 100 83.5 2.03 0.01 139 0.03 7.7 0.01 18 -2 7.7 <5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 5 0.01 <5 0.01 30 0.03 7.7 0.01 1.8 2.23 5.5 0.01 <5 2.3 0.5 0.83 0.05 0.83 501 6 0.01 16 0.01 16 0.01 16 0.01 16 0.01 16 0.01 13 0.04 83 0.01 10.01 10 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	MK82-49	0.7	0.14	39	<5	99	<10	0.09	<1	5	103	85.8	1 16	0.08	0.05	366	4	0.01	37	0.04	55 001	36	<2	99	<5 <0.01	<5	5	43	2
MK83-51 0.2 0.19	MK82-50	0.3	0.17	5	<5	138	<10	0.08	<1	12	100	93.5	2 03	0.05	0.04	1633	5	0.01	39	0.03	77 001	1.8	<2	77	<5 <0.01	<5	19	35	1
KK82-52 0.1 0.15 7 -5 149 <10 >10 -1 7 36 33 138 0.04 6.59 501 16 0.01 129 0.04 33 0.213 2.7 -2 285 <5 0.01 -5 5 100 32 0.213 2.7 -2 285 <5 0.01 -5 4 11 161 73.7 42 38.7 2.64 0.09 3.29 120 0.05 6.6 0.018 81.7 -2 6.5 -0.01 -5 5 0.01 77 41 14 58 183.7 2.64 0.09 3.29 1648 2 0.01 122 0.02 4.4 0.016 5.4 2 10 45 56 10 7 88 1 0.01 27 0.02 4.4 0.01 57 7 88 1 0.01 29 0.02 8.8 0.513 4.5 2.7 7 5 0.02 5 5 0.01 57 7 3.8 <th< td=""><td>MK82-51</td><td>0.2</td><td>0.19</td><td><5</td><td><5</td><td>101</td><td><10</td><td>2.93</td><td>1</td><td>17</td><td>83</td><td>88</td><td>1.91</td><td>0.05</td><td>0.98</td><td>360</td><td>13</td><td>0.01</td><td>77</td><td>0.02</td><td>7 7 0 792</td><td>5.4</td><td><2</td><td>31.9</td><td><5 <0.01</td><td><5</td><td>21</td><td>105</td><td></td></th<>	MK82-51	0.2	0.19	<5	<5	101	<10	2.93	1	17	83	88	1.91	0.05	0.98	360	13	0.01	77	0.02	7 7 0 792	5.4	<2	31.9	<5 <0.01	<5	21	105	
MK82-53 0.3 0.46 <5 <5 95 <10 1.24 3 25 133 1342 3.00 0.05 269 16 0.01 136 0.03 132 0.03 2.7 <2 85. <5 0.01 <5 66 0.01 126 0.01 126 0.01 120 0.01 2.0 <th< td=""><td>MK82-52</td><td>0.1</td><td>0.15</td><td>7</td><td><5</td><td>149</td><td><10</td><td>>10</td><td><1</td><td>7</td><td>36</td><td>33</td><td>1.38</td><td>0.04</td><td>5 99</td><td>501</td><td>6</td><td>0.01</td><td>29</td><td>0.04</td><td>33 0 213</td><td>27</td><td><2</td><td>255</td><td><5 <0.01</td><td><5</td><td>23</td><td>55</td><td>2</td></th<>	MK82-52	0.1	0.15	7	<5	149	<10	>10	<1	7	36	33	1.38	0.04	5 99	501	6	0.01	29	0.04	33 0 213	27	<2	255	<5 <0.01	<5	23	55	2
MK82-54 0.2 0.38 34 <5 129 <10 55 <1 31 161 73.7 4.27 0.08 2.24 2443 2 0.01 122 0.05 6.6 0.018 8.1 <2 6.27 <5 <0.01 <5 <5 17 59 5 MK83-01 0.2 0.21 2 55 <10	MK82-53	0.3	0.46	<5	<5	95	<10	1.24	3	25	133	134.2	3.03	0.08	0.35	269	16	0.01	136	0.3	13.2 0.315	2.7	<2	38.5	<5 <0.01	<5	106	324	1
MK82-55 01 0.22 12 <5 220 10 7.74 <1 45 18 13.7 2.64 000 3.29 16.84 2 0.01 41 0.04 44 0.16 5.4 <2 0.01 <5 10 2.7 18 0.13 0.04 82 2 0.01 27 0.02 4.4 0.06 1.8 2 4.4 0.01 2.5 5.5 5.0 0.02 5.5 5.5 0.01 <5 0.02 2.5 5.5 5.5 0.01 <5 0.02 2.5 7.7 5 0.02 5.5 5.5 0.01 <5 0.02 2.5 7.7 7.3 6 0.01 29 0.02 8.8 0.51 9.46 4.5 0.01 29 0.02 8.8 0.51 9.46 4.5 0.01 29 0.02 8.8 0.51 9.46 4.2 2.6 4.5 0.01 59 5.6 0.01 29 0.02 6.88 0.51 4.4 0.65 0.10 9 0.41 <td>MK82-54</td> <td>0.2</td> <td>0.38</td> <td>34</td> <td><5</td> <td>129</td> <td><10</td> <td>5.5</td> <td><1</td> <td>31</td> <td>161</td> <td>73.7</td> <td>4.27</td> <td>0.08</td> <td>2.24</td> <td>2443</td> <td>2</td> <td>0.01</td> <td>122</td> <td>0.05</td> <td>6.6 0.018</td> <td>8.1</td> <td><2</td> <td>62.7</td> <td><5 <0.01</td> <td><5</td> <td>56</td> <td>103</td> <td>18</td>	MK82-54	0.2	0.38	34	<5	129	<10	5.5	<1	31	161	73.7	4.27	0.08	2.24	2443	2	0.01	122	0.05	6.6 0.018	8.1	<2	62.7	<5 <0.01	<5	56	103	18
MK83-01 0.2 0.21 <5 5 5 <10 0.03 <1 5 26 62.7 18 0.13 0.04 82 2 0.01 27 0.02 14 0.046 18 <2 4.4 <5 0.01 <5 7 58 12 MK83-02 0.5 0.61 <5 <5 48 <10 0.07 <1 9 46 7.7 2.1 0.28 0.19 81 2 0.01 27 0.02 11 0.341 2.7 <2 5.5 <5 0.01 <5 7 5.0 2 5.7 5 0.02 <5 5 <5 10 70 6 10 MK83-06 0.33 0.22 <5 <5 48 <10 0.12 11 20 0.16 11 2 0.01 29 0.03 12.1 0.51 3.6 <2 5.5 <5 <0.01 <5 7 7.5 5 MK83-00 3.1 11 14 0.5 0.01 29 <td>MK82-55</td> <td>0.1</td> <td>0.22</td> <td>12</td> <td><5</td> <td>220</td> <td><10</td> <td>7.74</td> <td><1</td> <td>14</td> <td>58</td> <td>183.7</td> <td>2.64</td> <td>0.09</td> <td>3.29</td> <td>1648</td> <td>2</td> <td>0.01</td> <td>41</td> <td>0.04</td> <td>4.4 0.176</td> <td>5.4</td> <td><2</td> <td>130</td> <td><5 <0.01</td> <td><5</td> <td>17</td> <td>59</td> <td>5</td>	MK82-55	0.1	0.22	12	<5	220	<10	7.74	<1	14	58	183.7	2.64	0.09	3.29	1648	2	0.01	41	0.04	4.4 0.176	5.4	<2	130	<5 <0.01	<5	17	59	5
MK83-02 0.5 0.43 <5 <5 48 <10 0.07 <1 10 27 97.9 2.1 0.28 0.19 81 2 0.01 27 0.02 11 0.31 2.7 <2 5.5 <5 0.02 <5 13 67 1 MK83-04 0.3 0.33 <5	MK83-01	0.2	0.21	<5	<5	35	<10	0.03	<1	5	26	62.7	1.8	0.13	0.04	82	2	0.01	22	0.02	4.4 0.046	1.8	<2	4.4	<5 <0.01	<5	7	58	2
MK83-03 0.5 0.61 <5 <5 69 <10 0.07 <1 9 46 70.4 2 0.38 0.27 88 1 0.01 29 0.02 8.8 0.513 4.5 <2 7.7 <5 0.02 <5 16 66 10 MK83-05 0.33 0.22 <5	MK83-02	0.5	0.43	<5	<5	48	<10	0.07	<1	10	27	97.9	2.1	0.28	0.19	81	2	0.01	27	0.02	11 0.341	2.7	<2	5.5	<5 0.02	<5	13	67	1
MK83-04 0.3 0.33 c5 c5 48 c10 0.07 c1 10 40 126.5 1.92 0.14 113 2 0.01 29 0.03 12.1 0.513 3.6 c2 5.5 c5 0.01 c5 c7 c7.5 A MK83-05 0.33 0.22 0.21 c5 c5 c4 c10 1.1 c1 10 25 77 1.88 0.91 2.01 2.001 2.001 2.001 c5 c5 c4.4 c10 1.1 c1 11 2.8 c6.8 1.7 c6 0.01 2.9 c0.01 8 0.607 6 c2 c5 c5 c0.01 c5 c7 c6.7 c7 c6.8 c7.6 c7 c6.8 c1.1 c0.01 c9 c0.01 2.9 c0.01 8 0.805 c3 c2 c6.4 c5 c0.01 c5 c7 c5.0 c7 c5.0 c7 c5.0 c7 c5.0 c7 c5.0 c7 c5.0 c7	MK83-03	0.5	0.61	<5	<5	69	<10	0.07	<1	9	46	70.4	2	0.38	0.27	88	1	0.01	29	0.02	8.8 0.513	4.5	<2	7.7	<5 0.02	<5	16	66	10
MK83-05 0.33 0.22 <5 <5 51 <10 1.12 <1 13 30 96.8 1.83 0.15 0.68 211 2 0.01 30 0.01 9 0.496 4 <2 26.4 <5 0.01 <5 7 73.5 4 MK83-06 0.44 0.3 <5	MK83-04	0.3	0.33	<5	<5	48	<10	0.07	<1	10	40	126.5	1.92	0.19	0.14	113	2	0.01	29	0.03	12.1 0.513	3.6	<2	5.5	<5 <0.01	<5	10	70	6
MK83-06 0.44 0.3 <5 <5 48 <10 0.6 <1 10 25 77 1.88 0.19 0.46 177 6 0.01 29 0.02 6 0.607 8 <2 15.4 <5 0.01 <5 8 75.6 7 73.5 5 MK83-07 0.22 0.21 <5 <5 44 <10 1.2 <1 10 32 61.6 1.94 0.15 0.58 174 2 0.01 29 0.01 9 10.31 6 <2 29.7 <5 <0.01 <5 7 7.35 5 MK83-09 3.1 1.1 > 10 32 63.0 7.0 7.0 9 0.01 10.31 66 11.44 7 2 28.5 5 <0.01 <5 7 7.53 5 7 7.53 5 <0.01 30.33 768 69 0.06 74 0.15 46 1.41.41 7 <2 88 20.01 <5 1.0	MK83-05	0.33	0.22	<5	<5	51	<10	1.12	<1	13	30	96.8	1.83	0.15	0.68	211	2	0.01	30	0.01	9 0.496	4	<2	26.4	<5 < 0.01	<5	7	73.5	4
MK83-07 0.22 0.21 <5 <5 44 <10 1.1 <1 11 28 58.3 1.81 0.14 0.57 186 3 0.01 29 <0.01 8 0.805 3 <2 26.4 <5 0.01 <5 7 73.5 5 MK83-08 0.22 0.21 <5 <5 44 <10 1.22 <1 10 32 61.6 1.94 0.15 0.58 174 2 0.01 27 0.01 9 1.031 6 <2 29.7 <5 <0.01 <5 7 73.5 5 MK83-10 0.33 0.22 2.23 <5 41 <10 1.3 27.6 1.85 0.17 0.57 177 19 0.01 31 0.06 74 0.15 46 1.44 7 2 81.3 3.3 10 10.01 32 0.01 31 0.01 32 0.01 32 0.01 32 0.01 32 0.02 11 1.1 34 <th< td=""><td>MK83-06</td><td>0.44</td><td>0.3</td><td><5</td><td><5</td><td>48</td><td><10</td><td>0.6</td><td><1</td><td>10</td><td>25</td><td>77</td><td>1.88</td><td>0.19</td><td>0.46</td><td>177</td><td>6</td><td>0.01</td><td>29</td><td>0.02</td><td>6 0 607</td><td>8</td><td><2</td><td>15.4</td><td><5 < 0.01</td><td><5</td><td>8</td><td>75.6</td><td>7</td></th<>	MK83-06	0.44	0.3	<5	<5	48	<10	0.6	<1	10	25	77	1.88	0.19	0.46	177	6	0.01	29	0.02	6 0 607	8	<2	15.4	<5 < 0.01	<5	8	75.6	7
MK83-08 0.22 0.21 <5 <5 44 <10 1.22 <1 10 32 61.6 1.94 0.15 0.58 174 2 0.01 27 0.01 9 1.031 6 <2 29.7 <5 <0.01 <5 7 65.1 3 MK83-09 3.1 1.1 >10000 26 35 166 7.6 2 489 32 820 4.96 0.13 0.33 758 69 0.06 74 0.15 46 1.451 42 2 88 28 0.05 <5 29 266.7 905 MK83-10 0.33 0.22 23 <5 45 <10 1.88 <17 9 0.01 31 0.06 74 0.15 46 1.41 47 <2 38.5 <5 <0.01 <5 23 37.7 11 MK83-12 0.11 0.23 41 <5 <10 1.57 1 22 80.3 2.49 0.18 0.01 32 0.09	MK83-07	0.22	0.21	<5	<5	44	<10	1.1	<1	11	28	58.3	1.81	0.14	0.57	186	3	0.01	29	< 0.01	8 0 805	3	<2	26.4	<5 <0.01	<5	7	73.5	5
MK83-09 3.1 1.1 >10000 26 35 166 7.6 2 489 32 820 4.96 0.13 0.33 758 69 0.06 74 0.15 46 1.451 42 <2 88 28 0.05 <5 29 266.7 905 MK83-10 0.33 0.22 23 <5	MK83-08	0.22	0.21	<5	<5	44	<10	1.22	<1	10	32	61.6	1.94	0.15	0.58	174	2	0.01	27	0.01	9 1.031	6	<2	29.7	<5 <0.01	<5	7	65.1	3
MK83-10 0.33 0.22 23 <5 41 <10 1.38 <1 9 42 72.6 1.85 0.17 0.57 177 19 0.01 31 0.06 11 1.434 7 <2 38.5 <5 <0.01 <5 13 131.3 16 MK83-11 0.55 0.23 9 <5	MK83-09	3.1	1.1	>10000	26	35	166	7.6	2	489	32	820	4.96	0.13	0.33	758	69	0.06	74	0.15	46 1.451	42	<2	88	28 0.05	<5	29	266.7	905
MK83-11 0.55 0.23 9 <5 45 <10 1.08 3 9 46 75.9 1.81 0.18 0.29 195 40 0.01 42 0.12 17 1.898 7 <2 31.9 <5 <0.01 <5 25 377 11 MK83-12 0.11 0.23 41 <5	MK83-10	0.33	0.22	23	<5	41	<10	1.38	<1	9	42	72.6	1.85	0.17	0.57	177	19	0.01	31	0.06	11 1.434	7	<2	38.5	<5 <0.01	<5	13	131.3	16
MK83-12 0.11 0.23 41 <5 45 <10 1.57 1 12 28 80.3 2.49 0.18 0.49 198 18 0.01 32 0.09 11 2.673 8 <2 44 <5 <0.01 <5 12 137.6 520 MK83-13 0.11 0.33 30 <5 38 <10 2.15 <1 11 26 71.5 2.63 0.2 0.78 408 16 0.01 35 0.05 11 1.542 5 <2 53.9 9 <0.01 <5 12 164.9 80 MK83-14 0.11 0.24 96 <5 59 <10 3.77 <1 10 58 79.2 2.71 0.14 1.51 346 27 0.01 35 0.13 14 1.993 7 <2 82.5 6 <0.01 <5 16 162.8 560 MK83-16 0.33 0.2 121 <5 47.6 2.7 0.13 1.75 423 </td <td>MK83-11</td> <td>0.55</td> <td>0.23</td> <td>9</td> <td><5</td> <td>45</td> <td><10</td> <td>1.08</td> <td>3</td> <td>9</td> <td>46</td> <td>75.9</td> <td>1.81</td> <td>0.18</td> <td>0.29</td> <td>195</td> <td>40</td> <td>0.01</td> <td>42</td> <td>0.12</td> <td>17 1.898</td> <td>7</td> <td><2</td> <td>31.9</td> <td><5 <0.01</td> <td><5</td> <td>25</td> <td>377</td> <td>11</td>	MK83-11	0.55	0.23	9	<5	45	<10	1.08	3	9	46	75.9	1.81	0.18	0.29	195	40	0.01	42	0.12	17 1.898	7	<2	31.9	<5 <0.01	<5	25	377	11
MK83-13 0.11 0.33 30 <5 38 <10 2.15 <1 11 26 71.5 2.63 0.2 0.78 408 16 0.01 35 0.05 11 1.542 5 <2 5.39 9 <0.01 <5 12 164.9 80 MK83-14 0.11 0.24 96 <5	MK83-12	0.11	0.23	41	<5	45	<10	1.57	1	12	28	80.3	2.49	0.18	0.49	198	18	0.01	32	0.09	11 2.673	8	<2	44	<5 <0.01	<5	12	137.6	520
MK83-14 0.11 0.24 96 <5 59 <10 3.77 <1 10 58 79.2 2.71 0.14 1.51 346 27 0.01 35 0.13 14 1.993 7 <2 82.5 6 <0.01 <5 16 162.8 560 MK83-15 0.22 0.34 14 <5	MK83-13	0.11	0.33	30	<5	38	<10	2.15	<1	11	26	71.5	2.63	0.2	0.78	408	16	0.01	35	0.05	11 1.542	5	<2	53.9	9 <0.01	<5	12	164.9	80
MK83-15 0.22 0.34 14 <5 47 <10 1.91 <1 13 32 79.2 2.57 0.22 0.48 289 39 0.01 37 0.26 12 1.802 4 <2 58.3 9 <0.01 <5 16 164.9 23 MK83-16 0.33 0.2 121 <5 46 <10 4.57 <1 9 54 72.6 2.7 0.13 1.75 423 15 0.01 24 0.05 10 1.773 6 <2 83.6 9 <0.01 <5 8 75.6 1140 MK83-17 0.11 0.15 29 <5 34 <10 1.03 <1 7 55 57.2 1.93 0.11 0.38 157 13 0.01 24 0.05 15 1.949 4 <2 4.14.5 14.5 14.5 14.5 14.5 15 16 1.11 36 77 2.37 0.21 0.66 233 31 0.01 34 0.14 <td>MK83-14</td> <td>0.11</td> <td>0.24</td> <td>96</td> <td><5</td> <td>59</td> <td><10</td> <td>3.77</td> <td><1</td> <td>10</td> <td>58</td> <td>79.2</td> <td>2.71</td> <td>0.14</td> <td>1.51</td> <td>346</td> <td>27</td> <td>0.01</td> <td>35</td> <td>0.13</td> <td>14 1.993</td> <td>7</td> <td><2</td> <td>82.5</td> <td>6 <0.01</td> <td><5</td> <td>16</td> <td>162.8</td> <td>560</td>	MK83-14	0.11	0.24	96	<5	59	<10	3.77	<1	10	58	79.2	2.71	0.14	1.51	346	27	0.01	35	0.13	14 1.993	7	<2	82.5	6 <0.01	<5	16	162.8	560
MK83-16 0.33 0.2 121 <5 46 <10 4.57 <1 9 54 72.6 2.7 0.13 1.75 423 15 0.01 24 0.05 10 1.773 6 <2 83.6 9 <0.01 <5 8 75.6 1140 MK83-17 0.11 0.15 29 <5	MK83-15	0.22	0.34	14	<5	47	<10	1.91	<1	13	32	79.2	2.57	0.22	0.48	289	39	0.01	37	0.26	12 1.802	4	<2	58.3	9 < 0.01	<5	16	164.9	23
MK83-17 0.11 0.15 29 <5 34 <10 1.03 <1 7 55 57.2 1.93 0.11 0.38 157 13 0.01 17 0.04 14 1.426 3 <2 26.4 6 <0.01 <5 3 65.1 110 MK83-18 0.11 0.22 0.33 19 <5	MK83-16	0.33	0.2	121	<5	46	<10	4.57	<1	9	54	72.6	2.7	0.13	1.75	423	15	0.01	24	0.05	10 1.773	6	<2	83.6	9 < 0.01	<5	8	75.6	1140
MK83-18 0.11 0.21 52 <5 40 <10 51 85.8 2.81 0.16 0.52 242 29 0.01 27 0.05 15 1.949 4 <2 42.9 9 <0.01 <5 4 114.5 185 MK83-19 0.22 0.33 19 <5	MK83-17	0.11	0.15	29	<5	34	<10	1.03	<1	7	55	57.2	1.93	0.11	0.38	157	13	0.01	17	0.04	14 1.426	3	<2	26.4	6 < 0.01	<5	3	65.1	110
MK83-19 0.22 0.33 19 <5 54 <10 1.93 <1 11 36 77 2.37 0.21 0.66 233 31 0.01 34 0.14 11 1.559 6 <2 51.7 12 <0.01 <5 15 171.2 18 MK83-20 0.11 0.25 14 <5	MK83-18	0.11	0.21	52	<5	40	<10	1.56	<1	10	51	85.8	2.81	0.16	0.52	242	29	0.01	27	0.05	15 1.949	4	<2	42.9	9 <0.01	<5	4	114.5	185
MK83-20 0.11 0.25 14 <5 109 <10 2.49 <1 8 52 67.1 2.23 0.16 0.95 326 14 0.01 28 0.06 10 1.14 4 <2 86.9 7 <0.01 <5 7 116.6 12 MK83-21 0.22 0.23 13 <5	MK83-19	0.22	0.33	19	<5	54	<10	1.93	<1	11	36	77	2.37	0.21	0.66	233	31	0.01	34	0.14	11 1.559	6	<2	51.7	12 < 0.01	<5	15	171.2	18
MK83-21 0.22 0.23 13 <5 43 <10 1.55 <1 10 39 82.5 2.39 0.14 0.54 218 19 0.01 26 0.1 20 1.746 4 <2 47.3 9 <0.01 <5 5 99.75 10 MK83-22 0.22 0.25 <5	MK83-20	0.11	0.25	14	<5	109	<10	2.49	<1	8	52	67.1	2.23	0.16	0.95	326	14	0.01	28	0.06	10 1.14	4	<2	86.9	7 < 0.01	<5	7	116.6	12
MK83-22 0.22 0.22 0.25 <5 <5 <2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	MK83-21	0.22	0.23	13	<5	43	<10	1.55	<1	10	39	82.5	2.39	0.14	0.54	218	19	0.01	26	0.1	20 1 746	4	<2	47.3	9 < 0.01	<5	5	99.75	10
MK83-23 3.63 0.21 114 <5 48 <10 1.61 <1 10 56 84.7 2.52 0.15 0.81 353 10 0.01 35 0.01 10 1.413 3 <2 59.4 8 <0.01 <5 <1 70.35 305	MK83-22	0.22	0.25	<5	<5	52	<10	0.64	<1	12	26	80.3	2.3	0.16	0.63	215	2	0.01	39	<0.01	10 0 987	<2	<2	28.6	8 < 0.01	<5	<1	80.85	2
	MK83-23	3.63	0.21	114	<5	48	<10	1.61	<1	10	56	84.7	2.52	0.15	0.81	353	10	0.01	35	0.01	10 1.413	3	<2	59.4	8 < 0.01	<5	<1	70.35	305

Appendix 4 Core Sample Analyses - Certified Results page 3

Assessment Report 2009 McKee Creek 2008 Project

MK83-24 MK83-25	0.11 0.22	0.4 1.36	33 <5	<5 <5	114 54	<10 <10	3.03 1.57	<1 <1	14 14	25 34	94.6 75.9	4.14 3.89	0.15	1.79 1.72	787 760	3 1	0.01	29 29	0.03	8 0.198 11 0.317	<2 <2	<2 <2	106 67.1	11 <0.01 10 <0.01	<5 <5	15 26	92.4 89.25	1 2
MK83-20 MK83-27 MK83-28	0.22 0.44	0.38 0.25 0.21	9 11	<5 <5 <5	69 39	<10 <10 <10	1.67 1.56	<1 <1	11 11	51 35	85.8 86.9	2.12 2.97	0.09 0.14 0.14	0.92 0.45	258 273	10 39	0.03 0.01 0.01	45 39	0.00 0.01 0.18	9 0.462 21 2.361	5 6 3	<2 <2 <2	40.2 26.4 50.6	<pre><5 <0.04 <5 <0.01 12 <0.01</pre>	<5 <5 <5	23 6 7	67.2 168	2
MK83-29 MK83-30 MK83-31	0.33 0.33 0.22	0.39 0.23	6 12	<5 <5	48 59	<10 <10	0.6 1.95	<1 <1	11 10 72	32 35	111.1 56.1	2.4 2.39	0.17 0.14	0.72 1.06	217 271	2 28 3	0.01	32 34	0.02	8 0.83 14 1.344 11 1.015	5 4 7	<2 <2	24.2 51.7	6 <0.01 6 <0.01	<5 <5	4 17 32	65.1 118.7 30.0	1 7 2
MK83-32 MK83-33	0.22 0.11 0.22	1.38 1.99	37 29	<5 <5	10 16	<10 <10 <10	4.39 4.27 6.42	<1 <1	58 52	800 696	45.1 72.6	3.84 3.51	0.02 0.11	7.72 4.49	793 805	3	0.01	993 1074	0.03 0.04	10 1.084 12 0.448	7 2	<2 <2 <2	242 175	14 <0.01 <5 <0.01	<5 <5	37 45	33.6 40.95	5 16
MK83-34 MK83-35	0.22 0.11	0.22 1.21	32 7	<5 <5	8 41	<10 <10	4.92 1.97	<1 <1	55 13	512 113	13.2 85.8	2.25 3.47	<0.01 0.19	4.07 1.68	739 1319	<1 3	0.01	987 49	<0.01 0.06	3 1.086 9 0.379	5 2	<2 <2	388 64.9	6 <0.01 9 0.02	<5 <5	4 84	6.3 81.9	17 20
MK83-36 MK83-37 MK83-38	0.33 0.11 0.22	0.18 0.42 0.46	118 210 58	<5 <5 <5	26 20 13	<10 <10 <10	1.94 3.65 4.23	<1 <1 <1	15 28 68	82 774	70.4 35.2 27.5	2.45 5.09 2.31	0.1 0.15 <0.01	1.77 5.08 4.11	855 1316 744	4 4 <1	0.01 0.01 0.01	171 265 1209	0.01 0.1 <0.01	5 0.163 5 0.041 5 0.844	32 36 9	<2 <2 <2	105 223 359	10 <0.01 12 <0.01 7 <0.01	<5 <5 <5	4 7 11	65.1 85.05 7.35	5 4 2
MK83-39 MK83-40	0.88 0.22	2.03 0.67	34 24	<5 <5	105 93	<10 <10	5.93 6.07	<1 <1	39 11	466 77	41.8 64.9	4.44 3.88	0.31 0.4	6.88 4.89	1284 807	3 3	0.01 0.02	468 43	0.04 0.03	15 0.035 4 0.755	3 2	<2 <2	294 330	11 0.02 11 0.05	<5 <5	70 67	58.8 53.55	6 5
MK83-41 MK83-42 MK83-43	0.11 0.33 0.11	1.1 1.65 0.9	15 52 61	<5 <5 <5	160 32 31	<10 <10 <10	2.71 3.62 5.28	<1 <1 <1	24 26 35	99 171 228	127.6 81.4 20.9	5.24 4.52 5.18	0.72 0.1 0.11	2.41 5.18 5.09	1027 793 1154	8 5 4	0.02 0.01 0.01	82 202 472	0.07 0.04 0.12	10 1.527 9 0.05 8 0.105	6 <2 4	<2 <2 <2	123 242 285	16 0.1 13 <0.01 18 <0.01	<5 <5 <5	127 88 52	75.6 60.9 71.4	18 7 18
MK83-44	0.11	0.18	196	<5	89 7	<10	6.06	<1 247	51 13	257	16.5	4.6	0.07	8.3	1014	5	0.01	885	< 0.01	16 0.091	171	<2	385	16 < 0.01	<5	17	70.35	9 510
MK83-46	0.22	0.13	311	<5	21	<10	5.75	<1	70	222	18.7	3.66	0.05	8.04	863	3	0.01	1247	<0.04	8 0 102	131	<2	398	6 < 0.01	<5	9	59.85	6
MK83-47	0.22	0.12	151	<5	51	<10	9 1 1	<1	34	221	5.5	3.1	0.03	8.3	674	6	0.01	647	<0.01	<2 0.048	28	<2	385	8 < 0.01	<5	18	30.45	4
MK83-48	0.11	0.21	201	<5	23	<10	4.31	<1	47	229	4.4	5.04	0.05	9.33	843	2	0.01	802	<0.01	<2 0.057	5	<2	334	15 < 0.01	<5	35	52.5	16
MK83-49	0.11	1.74	131	<5	33	<10	4.28	<1	53	663	23.1	4.66	0.05	8.96	902	3	0.01	804	0.04	9 0.057	9	<2	249	9 < 0.01	<5	57	45.15	4
MK83-50	0.22	2.23	50	<5	10	<10	4.83	<1	38	589	30.8	3.69	0.03	7.72	957	1	0.01	548	0.04	12 0.046	<2	<2	298	5 < 0.01	<5	51	33.6	6
MK83-51	0.363	0.77	251.85	<5	10	<10	2.85	<1	54	893	25.3	2.49	< 0.01	6.55	536	1	0.01	752	< 0.01	3.8 0.098	14	<2	210	9 < 0.01	<5	32.2	19.2	2
MK83-52 MK83-53	0.121 0.242	2.94 2.87	43.7 9.2	<5 <5	13 179	<10 <10	6.83 4.25	<1 <1	42 29	464 254	3.45 5.75	5.3 5.13	0.07 1.15	7.03 5.26	1879 2064	10 2	0.01	455 131	0.14 0.1	18.05 0.023	3 8	<2 <2	280 163	10 <0.01 10 0.1	<5 <5	88.2 151	96 66	1
MK84-01	0.121	2.18	<5	<5	9	<10	2.8	<1	30	515	31.05	4.1	0.01	7.65	793	7	0.01	449	0.09	12.35 0.022	4	<2	99.6	5 < 0.01	<5	70	63.6	3
MK84-02	0.242	1.1	89.7	<5	14	<10	11.1	<1	44	590	48.3	2.34	0.01	4.65	770	4	0.01	709	0.05	5.7 0.064	7	<2	146	8 < 0.01	<5	29.4	36	2
MK84-03	0.121	1.36	35.65	<5	20	<10	4.36	<1	34	376	41.4	4.37	0.05	8.97	1100	3	0.01	539	0.07	8.55 0.028	18	<2	132	6 < 0.01	<5	32.2	61.2	5
MK84-04	1.089	2.05	11.5	<5	308	<10	6.2	<1	22	187	72.45	3.86	0.1	1.78	823	2	0.02	66	0.05	11.4 0.019	<2	<2	98.4	8 0.05	<5	113	54	3
MK84-05	0.121	0.06	<5	<5	17	<10	>10	<1	2	21	8.05	0.16	<0.01	0.18	192	49	0.01	12	0.08	<2 0.02	<2	<2	254	<5 <0.01	<5	5.6	7.2	1
MK84-06	3.1	1.13	>10000	20	33	136	7.69	<1	448	32	810	5.11	0.11	0.3	730	71	0.05	74	0.12	47 1.356	42	<2	91.2	41 0.04	<5	14	258	900
MK84-07	0.242	2.73	23	<5	23	<10	10.7	<1	28	323	29.9	5.17	0.26	2.02	1163	2	0.01	133	0.12	10.45 0.006	<2	<2	163	<5 0.04	<5	154	67.2	10
MK84-08	0.121	2.99	<5	<5	16	<10	11	<1	34	546	88.55	4.69	0.39	2.85	2572	1	0.01	166	0.04	16.15 0.012	8	<2	107	6 0.11	<5	204	58.8	4
MK84-09	0.363	2.61	<5	<5	29	<10	10.3	<1	22	110	55.2	6.18	0.6	1.44	843	2	0.01	49	0.19	13.3 0.011	4	<2	84	13 0.1	<5	133	82.8	2
MK84-10	0.242	2.9	<5	<5	48	<10	6.33	<1	24	97	58.65	6.68	0.72	1.63	723	3	0.01	52	0.19	16.15 0.01	5	<2	51.6	17 0.13	<5	192	69.6	4
MK84-11	0.121	2.53	23	<5	105	<10	6.31	<1	25	147	60.95	7.09	0.67	1.73	625	3	0.01	61	0.21	16.15 1.411	11	<2	81.6	18 0.14	<5	140	80.4	2
MK84-12	0.242	2.15	<5	<5	57	<10	2.98	<1	10	45	159.85	2.62	0.42	2.96	567	3	0.01	24	0.05	13.3 0.025	6	<2	42	<5 0.04	<5	125	69.6	1
MK84-13		0.45	44.05	-	45	10	5 00	- 4	25	220	110 45	1 15	0 50	5 76	696	4	0.01	175	0.06	247 0 025	11	-2	100	10 01	-5	212	50 4	1
	0.363	3.45	14.95	<5	45	<10	5.99	<1	25	320	110.45	4.15	0.59	5.70	000	4	0.01	1/5	0.00	24.7 0.035		~2	109	10 0.1	-5	213	50.4	
MK84-14	0.363 0.121	3.45 2.46	14.95 <5	<5 <5	45 23	<10 <10	5.99 5.99	<1 <1	23	726	73.6	2.81	0.59	4.29	735	4	0.01	265	0.00	15.2 0.013	5	<2	109	<5 0.05	<5	112	34.8	2

Appendix 4 Core Sample Analyses - Certified Results

page 4

MK84-16	0.242	0.06	<5	<5	20	<10	>10	<1	<1	11	1.15	0.11 <0.01	0.18	499	1	0.01	5	<0.01	<2 0.01	3	<2	305	<5 <0.01	<5	2.8	9.6	2
MK84-17	0.121	0.6	5.75	<5	20	<10	16.3	<1	8	155	11.5	1.03 < 0.01	2.04	370	1	0.01	134	0.02	1.9 0.143	7	<2	240	<5 <0.01	<5	23.8	13.2	1
MK84-18	0.242	0.94	20.7	<5	34	<10	17.5	<1	13	251	10.35	1.88 <0.01	3.2	464	3	0.01	218	0.02	9.5 0.636	4	<2	223	<5 <0.01	<5	35	9.6	1
MK84-19	0.121	1.24	<5	<5	3	<10	0.85	<1	44	619	40.25	2.18 < 0.01	3.04	319	<1	0.01	817	0.03	5.7 0.409	9	<2	19.2	6 <0.01	<5	56	9.6	1
MK84-20	0.242	0.54	11.5	<5	3	<10	2.45	<1	42	420	48.3	1.56 < 0.01	2.38	628	<1	0.01	863	0.02	3.8 0.37	4	<2	67.2	8 < 0.01	<5	22.4	6	1

PIONEER LABORATORIES INC.

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

GEOCHEMICAL ANALYSIS CERTIFICATE

SATURN MINERALS INC. Project: MK-08

Sample Type: Core

Multi-element ICP Analysis - 0.500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for B, Ba, Cr, Fe, Mg, Mn, Na, P, S, Sn, Ti and limited for Na, K and Al.

ELEMENT	Ag	Al	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Te	Ti	TI	V	Zn
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm j	ppm	% p	opm	ppm	ppm
MK81-34	32.9	.19	<5	<5	231	<10	.22	<1	10	198	161	1.43	.04	.10	717	17	.01	63	.04	2	.01	4	<2	8	<5 ·	<0.01	<5	10	26
MK82-27	.8	.65	244	<5	353	11	.28	1	102	360	23	9.01	.11	.31	3497	6	.01	1133	.11	3	.02	41	<2	21	7 ·	<0.01	<5	130	158
MK82-29	.5	.36	168	<5	123	<10	4.80	<1	43	168	75	5.04	.09	.90	1245	3	.01	455	.60	4	.09	40	<2	48	<5	<0.01	<5	47	98
MK83-43	.1	.93	79	<5	33	<10	5.38	<1	37	230	20	5.13	.10	5.14	1184	4	.01	483	.12	7	.12	4	<2	293	11 ·	<0.01	<5	65	78
MK83-44	.2	.19	222	<5	96	<10	6.12	<1	52	259	15	4.56	.06	8.37	1039	5	.01	902	.01	10	.09	180	<2	396	12 ·	<0.01	<5	26	62
MK84-11	.1	2.66	27	<5	129	<10	6.46	<1	26	151	59	7.03	.70	1.79	644	2	.01	62	.20	13	1.42	14	<2	81	11	0.15	<5	142	83

Inserted standards and blanks are highlighted

Appendix 4 Core Sample Analyses - Certified Results page 5

TELEPHONE (604) 231-8165

Analyst Report No.2082047 Date: December 17, 2008 PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

GEOCHEMICAL ANALYSIS CERTIFICATE

Au Analysis - 20 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

SATURN MINERALS INC. Project: MK-08 Report No. 2082046 Sample Type: Cores/Rocks Date: December 16, 2008

ELEMENT	Au
SAMPLE	ppb
MK81-11	10
MK81-36	22
MK82-33	80
MK82-35	23
MK82-43	19
MK83-14	540
MK83-16	1120
MK83-23	360
MK84-07	5
MK84-11	1

Appendix 4 Core Sample Analyses - Certified Results page 6 Assessment Report 2009 McKee Creek 2008 Project

McKee Creek 2008 Project - Quality Control/Assurance Data

The quality control/assurance procedure was conducted on a combined set of samples coming from two properties (McKee Creek and Beavis), where Company conducted exploration drilling programs in summer, 2008. Two different comercially available standards have been applied to verify results of the lab analyses of core samples from both properties. The standards were inserted randomly into the core sample sequences from the McKee Creek and Beavis properties for the gold geochem analysis. The standards are characterized by the following certified gold values:

Standard 1	Standard 2
Au [g/t]	Au [g/t]
0.97	0.48
(+/-0.08)	(+/-0.034)

Analyses by Pioneer show relatively little scatter from the recommended values for gold and zinc (both elements assayed). The values for Cu, Pb and Ag are significantly lower than the values suggested by the standard but these values are coming from the ICP method. Some re-checks for Ag and Pb by assaying resulted in values very similar to the standard sample. ICP concentrations of these three elements show also little scatter. The complete results are presented in the following table and diagrams:

	Standard 1	
Sample	Au	
	ppb	
MK82-10	890	
MK83-09	905	
MK84-06	900	
BS81-07	850	
BS81-46	860	
BS82-09	845	
BS83-14	880	
BS84-11	860	
BS86-11	890	
BS87-38	905	
Average	879	
St. dev.	23	

	Standard 2	
Sample	Au	
	ppb	
MK81-37	510	
MK82-40	480	
MK83-45	510	
BS85-08	490	
BS86-44	480	
BS87-08	490	
BS88-06	470	
Average	490	
St. dev.	15	

Label MK - samples from McKee Creek property Label BS - samples from Beavis property Assessment Report 2009 McKee Creek 2008 Project

A field-collected sample of blank weakly weathered granodiorite was also inserted to the core sample sequence for ICP analysis by Pioneer. All the blank samples returned very low values of gold, silver, copper, lead and zinc. The following table represent the results of selected elements of the blank samples.

Sample	Ag	Cu	Pb	Zn	Au
	ppm	ppm	ppm	ppm	ppb
MK81-29	0.3	4	2	21	1
MK82-30	0.3	2.2	2.2	17	20
BS81-27	.2	4	<2	16	2
BS82-23	.2	3	<2	20	7
BS83-26	.3	3	<2	18	1
BS86-26	.1	2	<2	18	2
BS87-26	.5	2	<2	18	1

[

~ ~

1

7

/

/

~

1

~

1

For several core samples Pioneer Laboratories run check analyses on the rejects. The following table and diagram present the results.

	First	Check	
	Analysis	Analysis	
ELEMENT	Au	Au	
SAMPLE	ppb	ppb	
MK8 <u>1-11</u>	2	10	
MK81-36	30	22	
MK82-33	71	80	
MK82-35	31	23	
MK82-43	22	19	
MK83-14	560	540	
MK83-16	1140	1120	
MK83-23	305	360	
MK84-07	10	5	
MK84-11	2	1	

