

File Rec'				S BRANCH
	FEB	1	0	2010

GEOLOGICAL, GEOCHEMICAL AND PREPARATORY SURVEYS

HONEYMOON PROJECT

B2 TARGET AREA

BC Geological Survey Assessment Report 30940

NTS MAPSHEET 82M051 and 92P060

UTM Location: 5714000N and 293000E NAD 83 Zone 11

Owner: Honeymoon Syndicate

1124 – 470 Granville St.

Vancouver, B.C., V6C-1V5

Report Prepared By:

Carl von Einsiedel, P.Geo.

Date Submitted: July 02, 2009

SOW NO.4249221

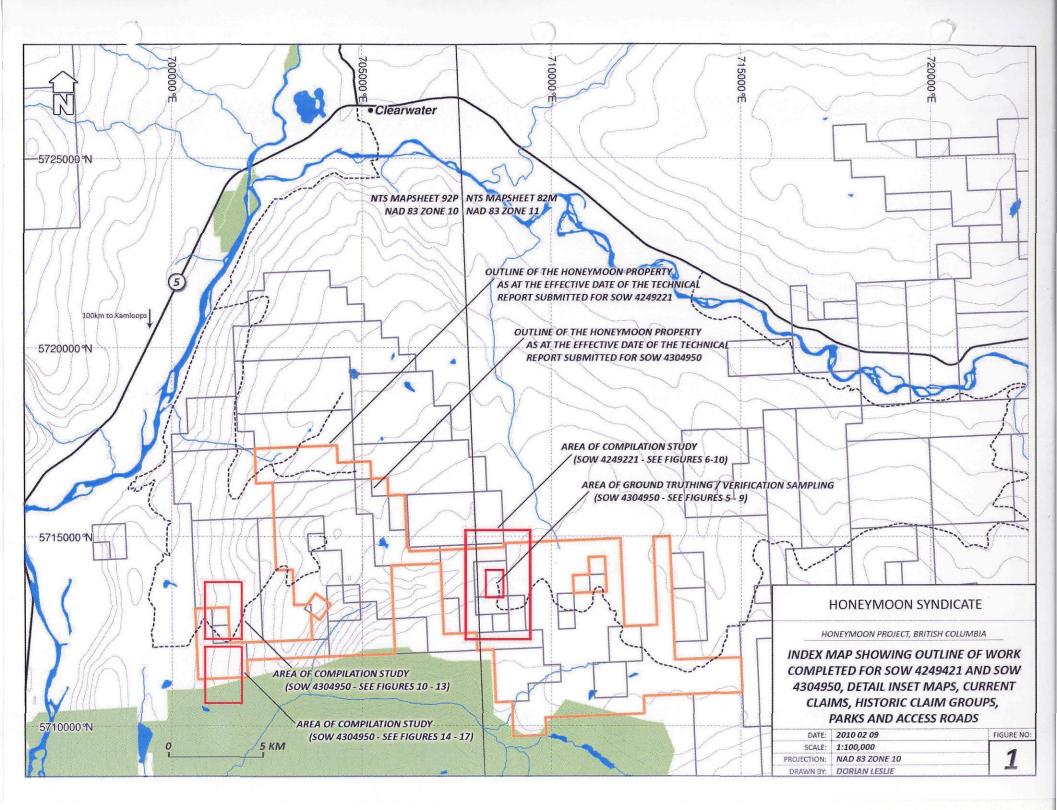
Notice to the reader:

Pursuant to a Section 33 Notice dated December 30, 2009 (see attached copy of BCMEM File No. 13825-03-2052 regarding ARIS Report No.30940) the technical report submitted in support of SOW 4249221 report has been amended to include the results of a follow up ground truthing / verification sampling program which is detailed in a technical report which was submitted by the claim owners in support of SOW 4304950. This amended report includes this introductory note, the technical report originally submitted in support of SOW 4249221 and the technical report submitted in support of SOW 4304950. This introductory section also includes an index map to show the work areas for each SOW and the map reference numbers for the technical drawings included in each of technical reports submitted in support of the SOW 4249221 and SOW 4304950.

The Honeymoon project consists of an irregular shaped claim block located approximately 10 kilometers south of Clearwater in south central BC. (Note: as of the effective date of the subject technical report, July 02, 2009, the property consisted of 22 contiguous mineral claims totaling 4,290 ha.) As of the date of the Section 33 Notice, December 30, 2009, the Honeymoon Property consisted of 17 mineral tenures totaling 2,036 ha.

Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area straddles a north to northwest trending package of Eagle Bay Formation and Fennel Formation volcanic and sedimentary rocks cut by a series of complex thrust faults. BCMEM Minfile database shows multiple mineral occurrences within the boundaries of the claim group however this technical report is restricted to an evaluation of the technical data related to Minfile No.082M 194: referred to as the Joseph Prospect. For this technical report this prospect is referred to as the B2 Grid.

According to Esso Minerals (ARIS Report No.13054) possible stratabound lead-zinc-silver mineralization at the Joseph Prospect (B2 Grid) was identified by drill testing within the central part of an 1,800 meter long and 50 to 100 meter wide soil geochemistry anomaly. Based on the stratabound classification proposed by Esso, the reported presence of barite associated with the mineralized zone and the extensive strike length of the geochemical anomaly the current property owner (Honeymoon Syndicate) concluded that the B2 Grid has potential to host mineralization similar to that developed at the Samatosum Mine, Rea and Homestake deposits located approximately 50 kilometers to the south.


Based on the recommendation of the author the Honeymoon Syndicate funded an initial exploration program of preparatory surveys and geological work (as outlined in SOW 4249221). This work was carried out between November 19 and November 30, 2008 and included compiling a GIS database for the project area including TRIM and BC Map Place databases, geo-referencing the grid locations reported by Esso Minerals in Assessment Report 11381, digitizing the UTM locations of the geochemical samples collected by Esso, entering the geochemical data for zinc, lead, copper, silver and gold into an xls database and geo-referencing the drill hole location maps produced by Esso Minerals in 1984 (Assessment Report No. 13054). The results of this exploration work are summarized in the technical report submitted in support of SOW 4249221 which has been assigned ARIS Report No.30940.

Between June 01 and July 27 the Honeymoon Syndicate funded a second exploration program consisting of verification soil sampling at the B2 Prospect (also referred to as the Joseph Prospect) as well as a compilation of technical data related to a second occurrence within the Honeymoon property referred to as the McCarthy Prospect (Minfile No.92P 187). The results of this exploration program are summarized in a Technical Report dated December 12, 2009 prepared by James Thom, MSc. This report was submitted to the BCMEM in support of SOW 4304950. A copy of this report is included as an appendix to the subject report in order to meet the prescribed requirements in Section 16 and Schedule A of the Mineral Tenure Act which states that: "Compilation reports can only credited when used in conjunction with ground truthing of new information."

In the technical report submitted in support of SOW 4304950 the author, James Thom, notes that the verification sampling program extended beyond the limits of the area sampled by Esso and that the assay results for zinc suggest the zone may be larger and broader than that defined by Esso.

It is important to note that the Honeymoon Property straddles the UTM boundary between Map Sheet 92P on the west side of the property and 82M on the east side of the Property.

The following technical drawing shows the location of the location of the UTM boundary within the Honeymoon property, the boundaries of the Honeymoon Property at the effective date of the technical report submitted in support of SOW 4249221, the boundaries of the Honeymoon Property at the effective date of the technical report submitted in support of SOW 4304950, the locations of the exploration work areas reported in SOW 4249221 and SOW 4304950, the outline of the detail map areas which are included within each of the technical reports detail and the location of access roads and parks.

TABLE OF CONTENTS

Summary	4
Location and Access	9
Property Description	11
History of Property	12
Regional Geology	13
Geochemical Surveys and drilling completed by Esso in the B2 Grid area	14
Details of 2008 Assessment Work	15
Conclusions and Recommendations	21
Statement of Costs	22
References	23
Certificate of Author	24

LIST OF FIGURES

Figure 1:	Project Location Map	6
Figure 2:	Regional geology Map	7
Figure 3:	Project Location Map Showing Minfile Locations	8
Figure 4:	Project Location Map Showing Mineral Tenure	10
Figure 5:	Compilation Map Showing Historic Exploration Grids and B2 Target	12a
Figure 6:	B2 Grid Soil geochemical data thematic by Zn (1:10,000 scale)	16
Figure 7:	B2 Grid Soil geochemical data thematic by Pb (1:10,000 scale)	17
Figure 8:	B2 Grid Soil geochemical data thematic by Cu (1:10,000 scale)	18
Figure 9:	B2 Grid Soil geochemical data thematic by Ag (1:10,000 scale)	19
Figure 10:	B2 Grid Soil geochemical data thematic by Au (1:10,000 scale)	20

Appendices

Appendix 1:	Soil geochemical data for the "B" horizon samples collected by Esso Minerals from the
	B2 Grid area

- Appendix 2: Soil geochemical data for the "C" horizon samples collected by Esso Minerals from the B2 Grid area
- Appendix 3: Drill logs for DDH 84-02 and 84-03 completed by Esso Minerals in the B2 grid area
- Appendix 4: Copies of Minfile Reports for the Joseph, Samatosum and Homestake Occurrences

Large Format Figures (in pocket)

Figure 1:	B2 Grid Soil geochemical data thematic by Zn (1:2,500 scale)
-----------	--

Figure 2: B2 Grid Soil geochemical data thematic by Pb (1:2,500 scale)

Figure 3: B2 Grid Soil geochemical data thematic by Cu (1:2,500 scale)

- Figure 4: B2 Grid Soil geochemical data thematic by Ag (1:2,500 scale)
- Figure 5: B2 Grid Soil geochemical data thematic by Au (1:2,500 scale)
- Figure 6: B2 Grid Soil Geochemical data: Sample reference Numbers (1:2,500 scale)

Summary

The Honeymoon project consists of an irregular shaped claim block comprising 22 contiguous mineral claims (totaling 4,290 ha.) located approximately 10 kilometers south of Clearwater in south central BC.

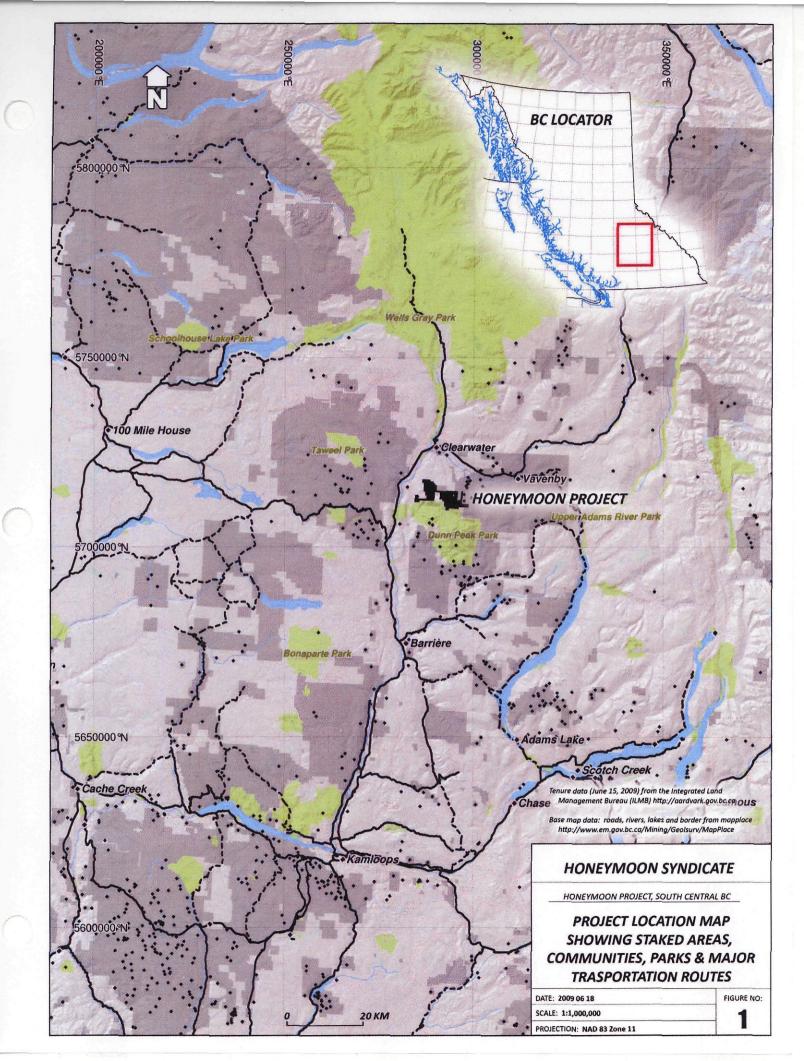
Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area straddles a north to northwest trending package of Eagle Bay Formation and Fennel Formation volcanic and sedimentary rocks cut by a series of complex thrust faults. BCMEM Minfile database shows multiple mineral occurrences within the boundaries of the claim group however this technical report is restricted to an evaluation of the technical data related to Minfile No.082M 194: referred to as the Joseph Prospect. For this technical report this prospect is referred to as the B2 Grid.

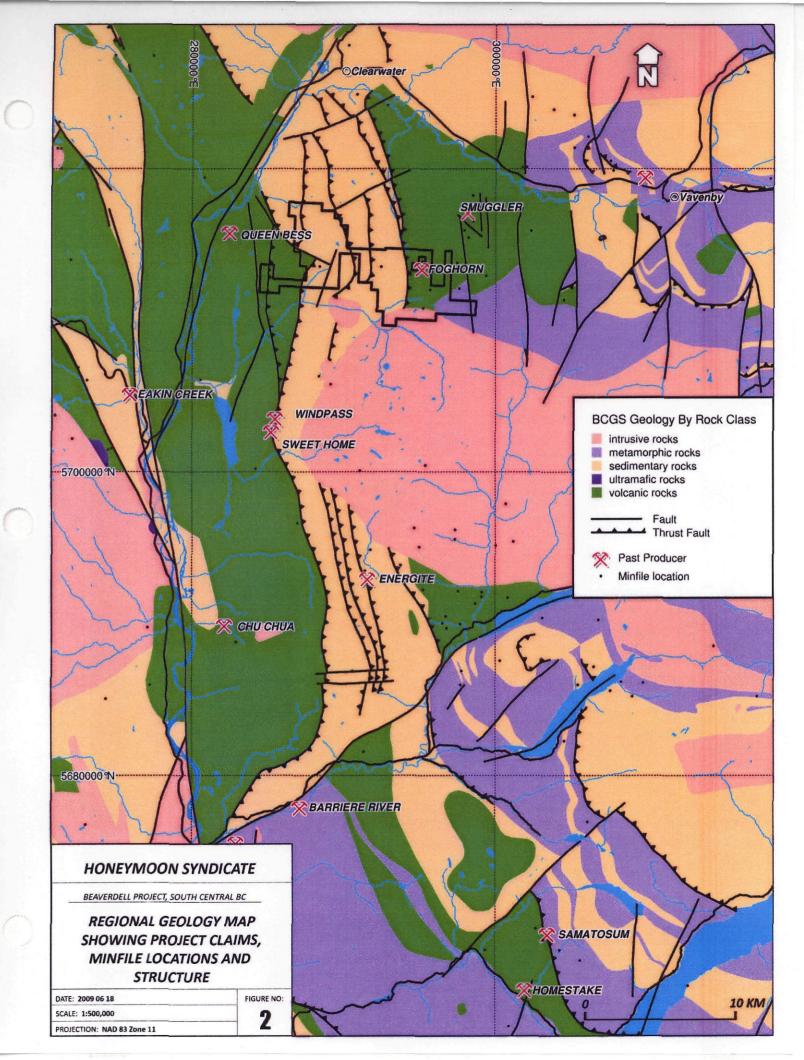
According to the published technical information contained in the Minfile database "stratabound mineralization occurs as irregular veins of galena, pyrite and minor sphalerite. The sulphides are associated with quartz and some carbonate or occur as nearly massive aggregates. The mineralization is fairly widespread but the most significant concentrations occur in an 8 metre wide zone. A drill hole intersected 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium, 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Assessment Report 13045)."

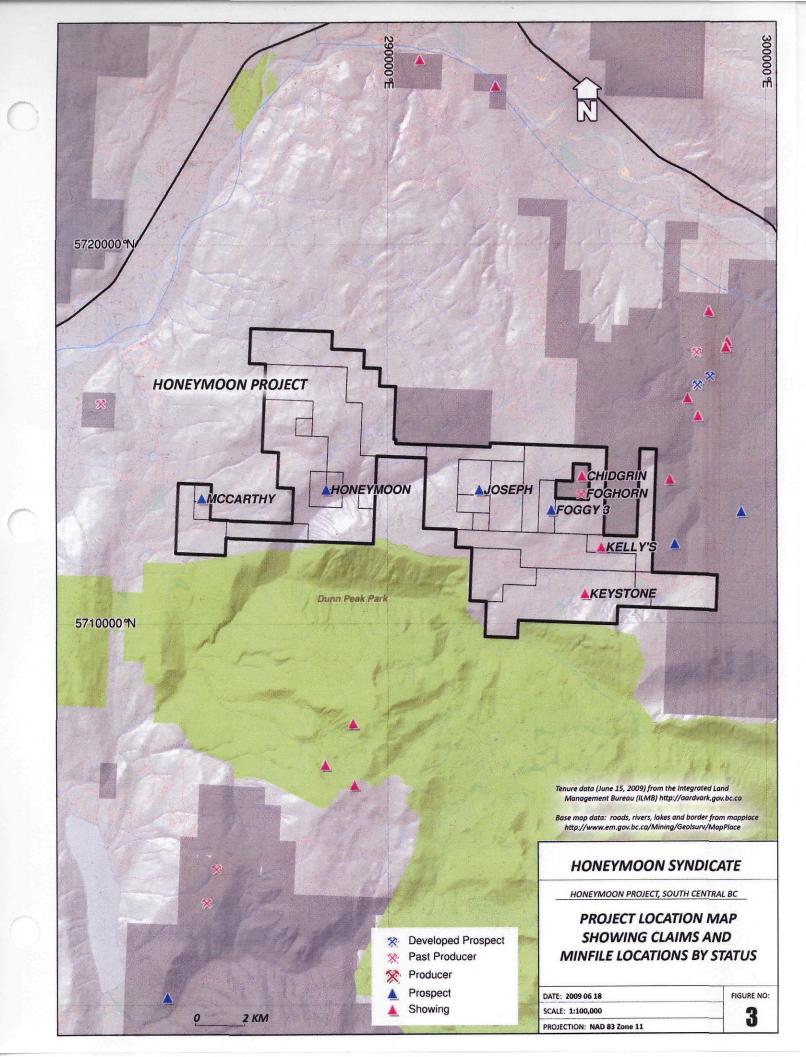
The reported drill hole (Esso DDH 84-02) was completed by Esso Minerals in 1984 (Assessment Report No. 13054) after completion of a series of geochemical surveys that resulted in the delineation of an 1800 meter long, 50 to 100 meter wide geochemical anomaly (Assessment Report No.11381 - also referred to as Anomaly B). This anomaly was defined by a series of 100 to 200 meter spaced profile lines with a sample spacing of 25 meters.

Esso Minerals concluded that the mineralization appears to be stratabound. Based on the stratabound classification proposed by Esso, the reported presence of barite associated with the mineralized zone and the extensive strike length of the geochemical anomaly it is concluded that the B2 Grid has potential to host mineralization similar to that developed at the Samatosum Mine, Rea and Homestake deposits located approximately 50 kilometers to the south (see figure 2).

According to Esso Minerals the strongest geochemical response occurs between lines 26+00N and 31+00N. Extensive glacial cover to the north appears to subdue copper, lead, silver and gold values. Zinc is reportedly the only anomalous element (285 to 3,440 ppm) within (the northern part of) this zone. Anomalous values estimated by Esso for Anomaly B are listed below:


Copper	115-1,085 ppm
Lead	147 – 1,840 ppm (highs to 4,900 ppm)
Zinc	263-5,500 ppm (highs to 9,500 ppm)
Silver	2.0 to 6.9 ppm
Gold	20 – 94 ppb (Note: Esso data shows a value of 410 ppb at the north end of the anomaly)

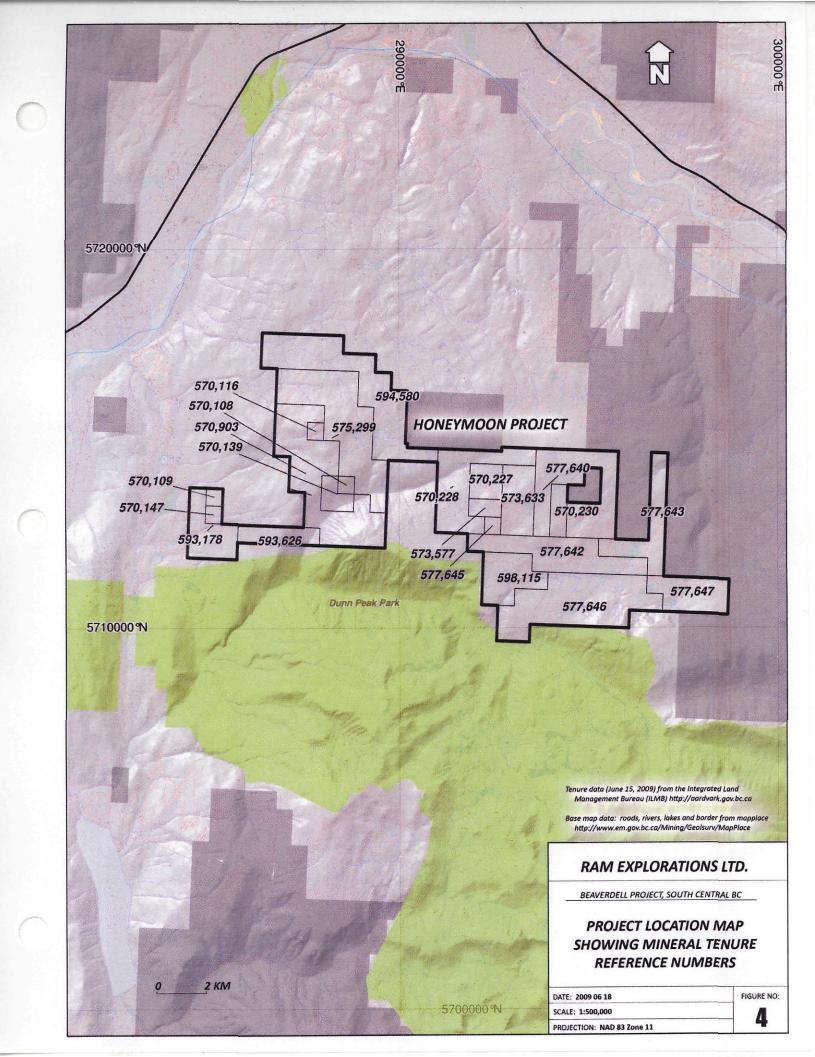

Based on the presence of significant widths of mineralization intersected by the limited drilling completed by Esso Minerals (2 drill holes) and Craigmont Mines (3 shallow holes) within a restricted part of the 1,800 meter strike length of the anomaly and the variable thicknesses of overburden cover reported by Esso it was concluded that a detailed evaluation of the geochemical data reported by Esso Minerals was warranted.


The assessment work carried out between November 19 and November 30, 2008 consisted of compiling a GIS database for the project area including TRIM and BC Map Place databases, geo-referencing the grid locations reported by Esso Minerals in Assessment Report 11381, digitizing the UTM locations of the geochemical samples collected by Esso, entering the geochemical data for zinc, lead, copper, silver and gold into an xls database and geo-referencing the drill hole location maps produced by Esso Minerals in 1984 (Assessment Report No. 13054). Data for the geochemical surveys reported by Esso Minerals included a series of maps which reported sample assays from both "B" and "C" horizon samples. According to the survey description included in Assessment Report 11381 samples were collected from both the "B" and the "C" horizons wherever overburden thickness was believed to be in excess of 5-10 meters. In regards to grid B2 and Anomaly B which is the focus of the present study over 90% of the sample sites included both "B" and "C" horizon samples indicating extensive overburden cover throughout the anomalous area. A database listing for the "B" horizon sample assay data is included as Appendix 1 and a database listing for the "C" horizon data is included as Appendix 2.

Once the data was entered into a database a series of different software applications included in Map Info 8.5 are program was applied to the data in an attempt to compensate for the variable overburden thicknesses which can subdue the geochemical response of a buried mineralized zone. Several attempts were made to utilize different anomaly thresholds for the reported "B" and "C" horizon samples however the highly variable range of anomalous values in the data made it impractical to segregate the two data sets. As an alternative the sample data was from both datasets was combined and anomalous thresholds were developed by utilizing standard deviation methods, a process referred to as natural breaks and by a method referred to as quantile assessment. The quantile assessment method produced a series of maps that utilized lower anomaly thresholds than those proposed by Esso and the resulting maps suggest the presence of a more consistently mineralized zone than that indicated by either the "B" or "C" horizon data individually. Figure no.s 6 to 10 (1:10,000 scale) show the anomalous ranges that were used to re-calculate anomaly thresholds. Large format figures no.1 to 6 (1:2,500 scale) show raw data for both the "B" and "C" horizon datasets and provide reference maps for follow-up geochemical surveys. For reference all sample numbers (see large format figure no.6) above 3E8000 refer to "C" horizon samples. Sample numbers between 3E7000 and 3E8000 refer to "B" horizon samples.

Based on the geological work and computer modeling carried out during 2008 it is recommended that the Honeymoon Syndicate complete a new geochemical survey of the B2 target using a maximum line spacing of 50 meters and a sample spacing of 10 meters. The unusually high sample results (up to 9,500 ppm zinc and 4,900 ppm lead) reported in both "B" and "C" horizon samples combined with the presence of widespread mineralization reported in the two drill holes completed by Esso suggest the presence of an extensive stratabound mineralized zone that is partially masked by overburden.

Property Location and Access


As of the date of this technical report the Honeymoon Property consists of 22 mineral tenures comprising 4,289.85 hectares. At the time of recording SOW 4249221 the property consisted of 21 mineral tenures comprising 4,108.82 hectares.

According to Esso Minerals access to the B2 Grid area is by four wheel drive vehicle, 15 kilometers east from Clearwater along the south side of the North Thompson river and then 20 kilometers south and west along the Jones Creek logging road. Recent aerial photographs suggest that it is still possible to access the B2 grid area using the route suggested by Esso.

Terrain in the B2 grid area varies from heavily timbered slopes in the northern part of the anomalous zone to partially logged areas and partially open alpine meadows at higher elevations in the southern part of the B2grid area.

Claim names, tenure reference numbers and expiry dates are listed in Table 1.

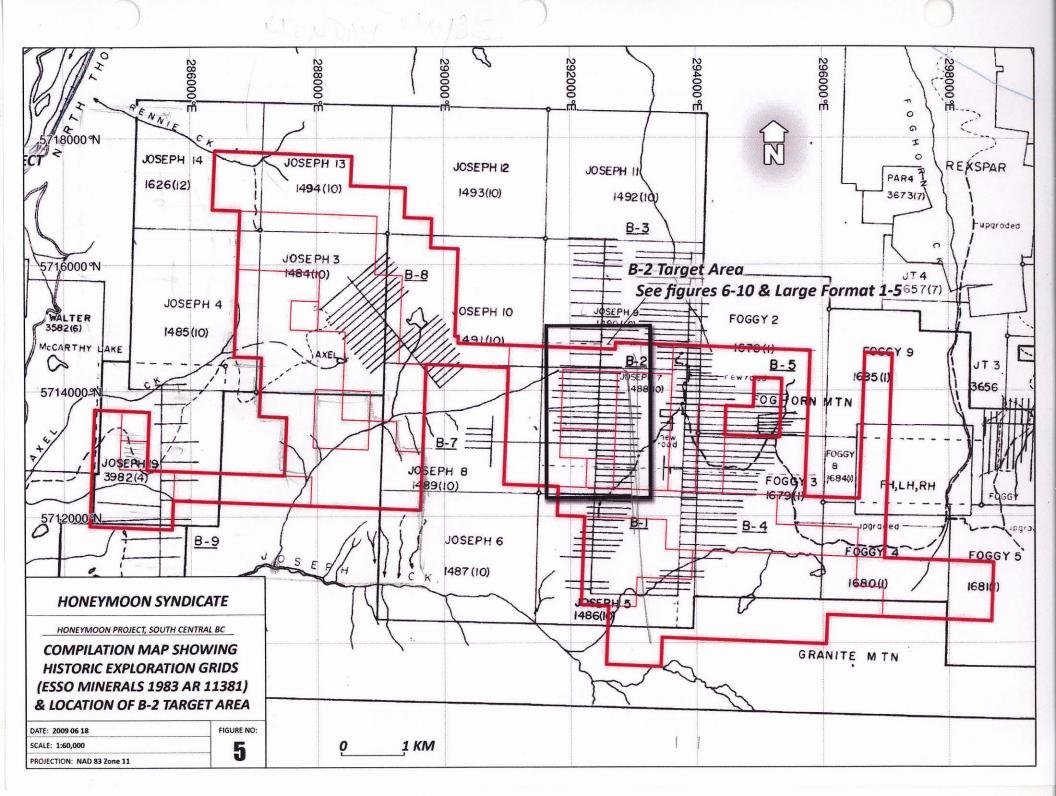
The claims that cover the B2 grid area are tenure no. 570227, 570228, 573577, 573633 and 577642.

Table 1: List of mineral tenures

Tenure Number	Claim Name	Owner	Issue Date	Good To Date	Area (ha)
570227	JO 1	127981 (100%)	2007/nov/18	2009/aug/01	80.42
570228	JOSEPH 2	127981 (100%)	2007/nov/18	2009/aug/01	301.58
570230	FOGGY	127981 (100%)	2007/nov/18	2009/aug/01	60.32
573577		127981 (100%)	2008/jan/12	2009/aug/01	40.22
573633		127981 (100%)	2008/jan/13	2009/aug/01	160.85
577640		127981 (100%)	2008/mar/01	2009/aug/01	382.01
577642		127981 (100%)	2008/mar/01	2009/aug/01	301.68
577643		127981 (100%)	2008/mar/01	2009/aug/01	201.09
577645		127981 (100%)	2008/mar/01	2009/aug/01	20.11
577646	KEYSTONE	127981 (100%)	2008/mar/01	2009/aug/01	489.89
577647	META FELSITE	127981 (100%)	2008/mar/01	2009/aug/01	181.04
598115	HONEYMOON	127981 (100%)	2009/jan/28	2010/jan/28	181.03
570108	PROSPECT	127981 (100%)	2007/nov/15	2009/aug/01	20.11
570109	MCCARTHY PROSPECT	127981 (100%)	2007/nov/15	2009/aug/01	20.11
570116	HONEYMOON 2	127981 (100%)	2007/nov/15	2009/aug/01	20.10
570139		127981 (100%)	2007/nov/16	2009/aug/01	60.32
570147		127981 (100%)	2007/nov/16	2009/aug/01	20.11
570903		127981 (100%)	2007/nov/28	2009/aug/01	502.63
575299		127981 (100%)	2008/feb/04	2009/aug/01	482.39
593178		127981 (100%)	2008/oct/20	2009/oct/21	160.89
593626		127981 (100%)	2008/oct/30	2009/oct/31	100.56
594580		127981 (100%)	2008/nov/19	2009/nov/20	502.39

4,289.84

Property History


According to Esso Minerals the general area that hosts the B2 Grid or Joseph Prospect has undergone several periods of exploration. Historically the earliest exploration work (including limited underground development work) was done in the early 1900's on the Foghorn Prospect located approximately 4 kilometers east of the B2 area. In the 1950's Rexspar Uranium constructed access roads and carried out limited geochemical and geophysical surveys.

In 1979 Craigmont Mines and Barrier Reef Resources completed airborne electromagnetic, resistivity and magnetic surveys in the Foghorn Mountain area. Several bands of conductors, magnetic highs and resistivity lows were delineated. In 1980 and 1981 Craigmont and Barrier Reef initiated ground follow up geophsysical and soil geochemical surveys to cover the airborne anomalies. Craigmont reportedly drilled at least one hole in the area of the Foghorn workings and 3 shallow holes in the western part of the B2 Grid area identified by Esso Minerals. According to Esso the holes drilled by Craigmont in the B2 Grid area in 1979 intersected (despite poor recovery) one 3.3 meter interval that averaged 3.06% Pb, 0.25% Zn and 1.90 oz/ton Ag.

Esso Resources optioned the project area in 1982 and completed extensive grid based soil geochemical surveys in 1983 (as outlined in Assessment Report No.11381 and 13054). The survey grids completed by Esso Minerals and the area referred to as the B2 grid area are shown in figure no.5.

In 1984 Esso completed two drill holes in the B2 grid area reportedly intersecting 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium, 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Assessment Report 13045)." The location of the drill holes reported by Esso Minerals are shown in figure no.6 to 10 and on large format figure no.s 1 to 5.

It is interesting to note that the log for DDH 84-02 indicates that significant barite mineralization was identified over a 23.1 meter interval between 52.8 and 75.9 meters.

Property Geology

According to Esso Minerals the area east of the Foghorn Prospect is underlain by rusty weathering greenish grey feldspathic chlorite schists, chlorite schists, sericite schists, quartz sericite schists and sericitic quartzites of the Eagle Bay formation.

West of the foghorn prospect (the area of the B2 grid) is underlain by rocks of the Lower and Upper fennel formation. The lower Fennel Formation consists of aphanitic to very coarse grained basalt with both extrusive and intrusive phases, chert and cherty mudstone, quartz feldspar porphyry, conglomerate, sandstone, argillite and phyllite and partly crystalline limestone. The Upper Fennel formation consists mainly of aphanitic to to fine grained pillowed basalts with minor discontinuous pods of chert.

Although it is not exposed the contact between the Lower and Upper Fennel formation appears to be stratigraphic rather than tectonic. The Middle Cretaceous Baldy Batholith consisting of mainly of coarse grained biotite quartz monzonite is located immediately south of the B2 Grid area.

According to BC Minfile data the B2 mineralized zone lies within a 75 meter wide sedimentary panel of argillite, chert and minor chert pebble conglomerate. The sediments trend west – northwest, dip steeply west and are contained within an extensive basalt sequence. Deformation is intense shown by gouge and brecciation within broader zones of cleavage and fracturing.

Geochemical Surveys and Drill Testing completed by Esso Minerals in the B2 Grid Area

During 1983 Esso Mineral completed a geochemical survey in the area referred to as the B2 Grid. According to Assessment Report No.11381 a geochemical survey comprising 228 sample assays delineated an 1800 meter long long, 50 to 100 meter wide geochemical anomaly (also referred to as Anomaly B). This anomaly was defined by a series of 100 to 200 meter spaced profile lines with a sample spacing of 25 meters.

According to Esso Minerals the strongest geochemical response occurs in the central part of the anomaly (between lines 26+00N and 31+00N). Extensive glacial cover to the north appears to subdue copper, lead, silver and gold values. Zinc is reportedly the only anomalous element (285 to 3,440 ppm) within (the northern part of) this zone. Anomalous values estimated by Esso for Anomaly B are listed below:

115-1,085 ppm
147 – 1,840 ppm (highs to 4,900 ppm)
263-5,500 ppm (highs to 9,500 ppm)
2.0 to 6.9 ppm

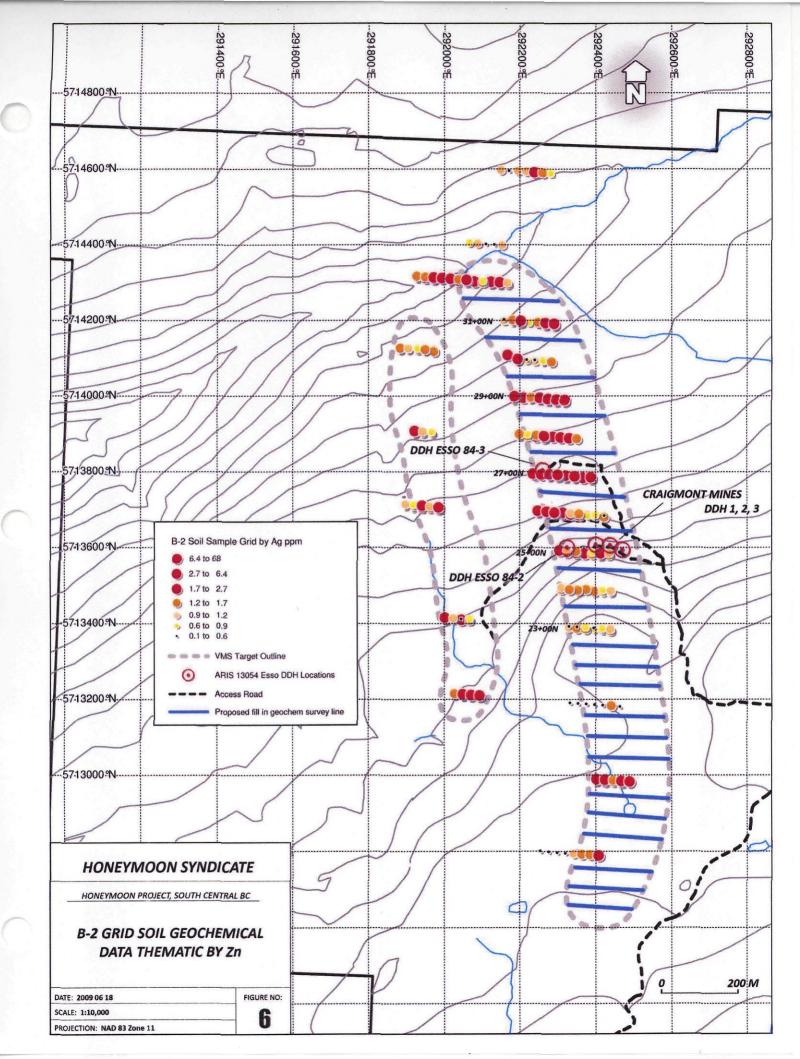
445 4 005

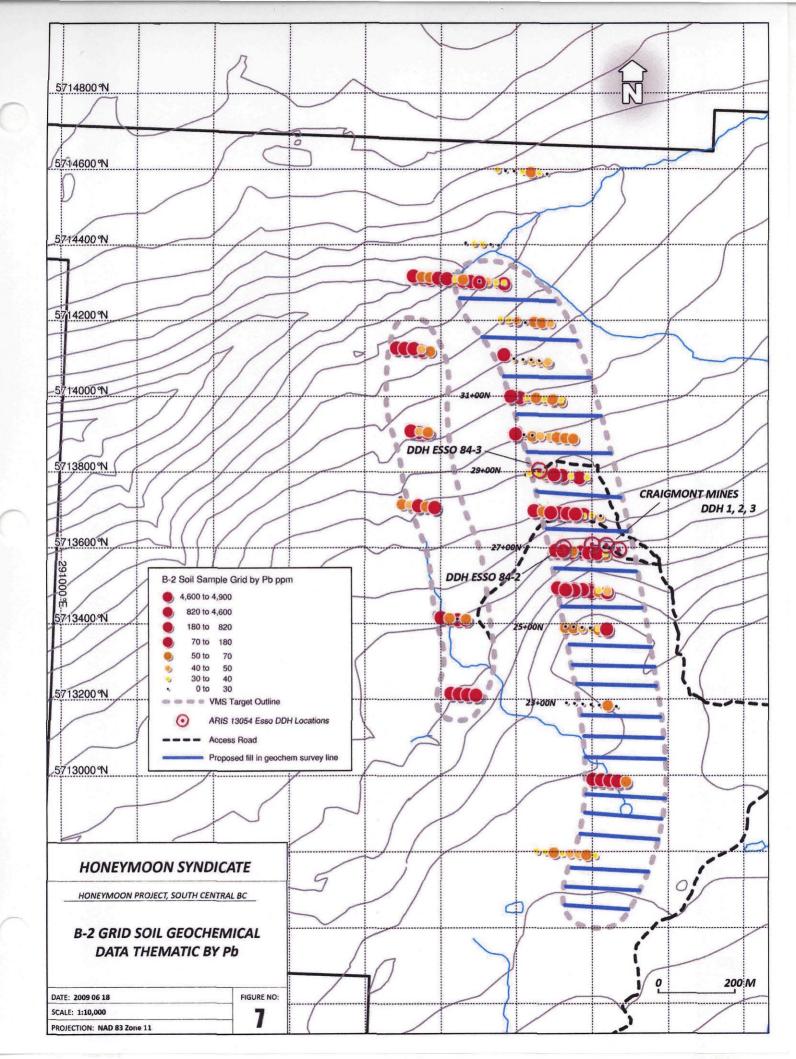
Gold 20 – 94 ppb (Note: Esso data shows a value of 410 ppb at the north end of the anomaly)

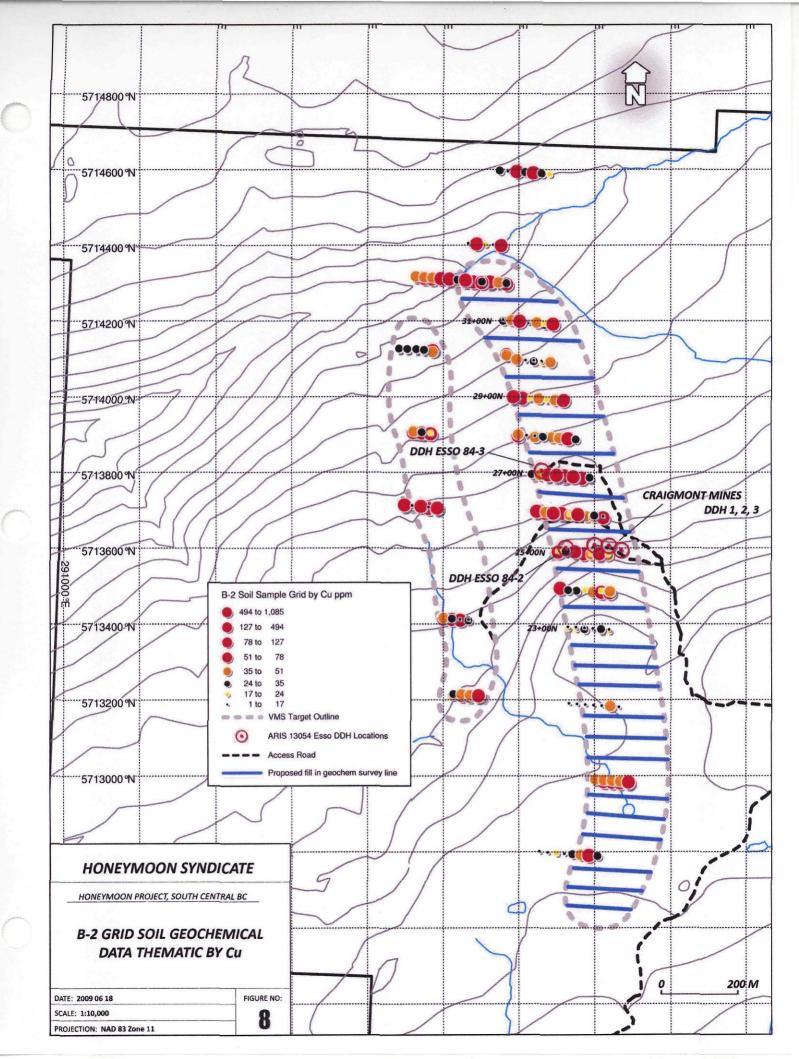
Data for the geochemical surveys reported by Esso Minerals included a series of maps which reported sample assays from both "B" and "C" horizon samples. According to the survey description included in Assessment Report 11381 samples were collected from both the "B" and the "C" horizons wherever overburden thickness was believed to be in excess of 5-10 meters. In regards to grid B2 and Anomaly B which is the focus of the present study over 90% of the sample sites included both "B" and "C" horizon samples indicating extensive overburden cover throughout the anomalous area. A database listing for the "B" horizon sample assay data is included as Appendix 1 and a database listing for the "C" horizon data is included as Appendix 2.

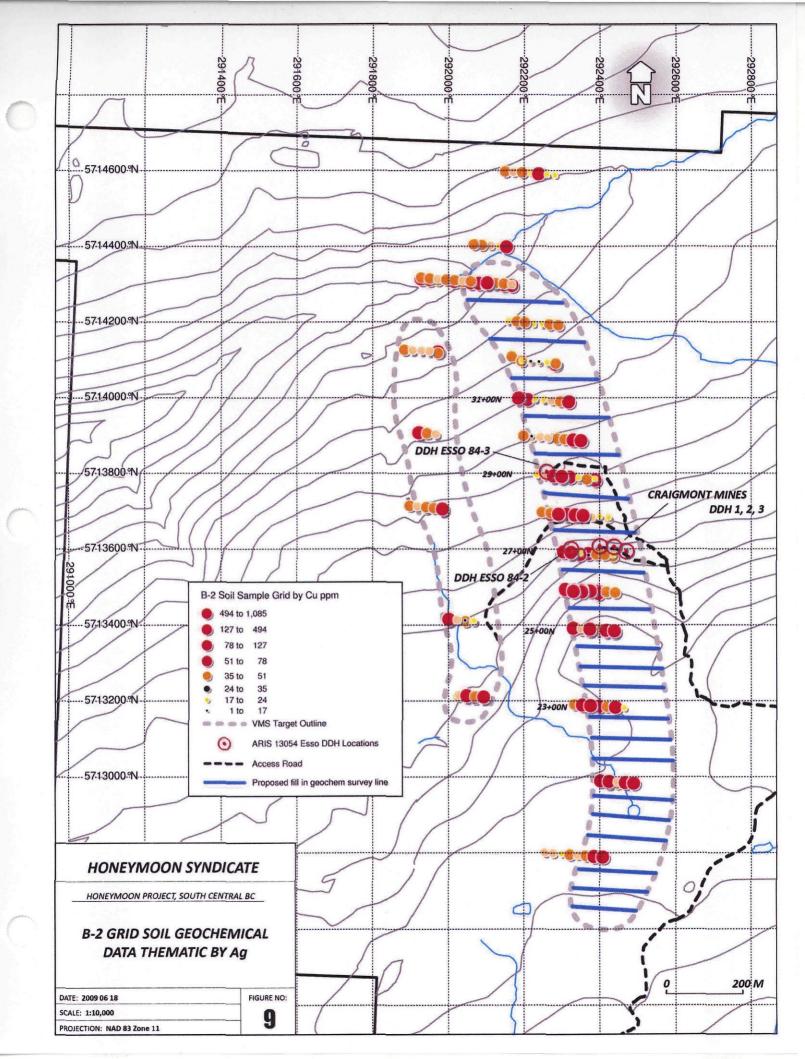
Durinig 1984 Esso completed two drill holes in the central part B2 grid area referred to as DDH 84-02 and 84-03. According to BC Minfile technical data drilling intersected 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium. 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Assessment Report 13045)." It is interesting to note that the log for DDH 84-02 indicates that significant barite mineralization was identified over a 23.1 meter interval between 52.8 and 75.9 meters.

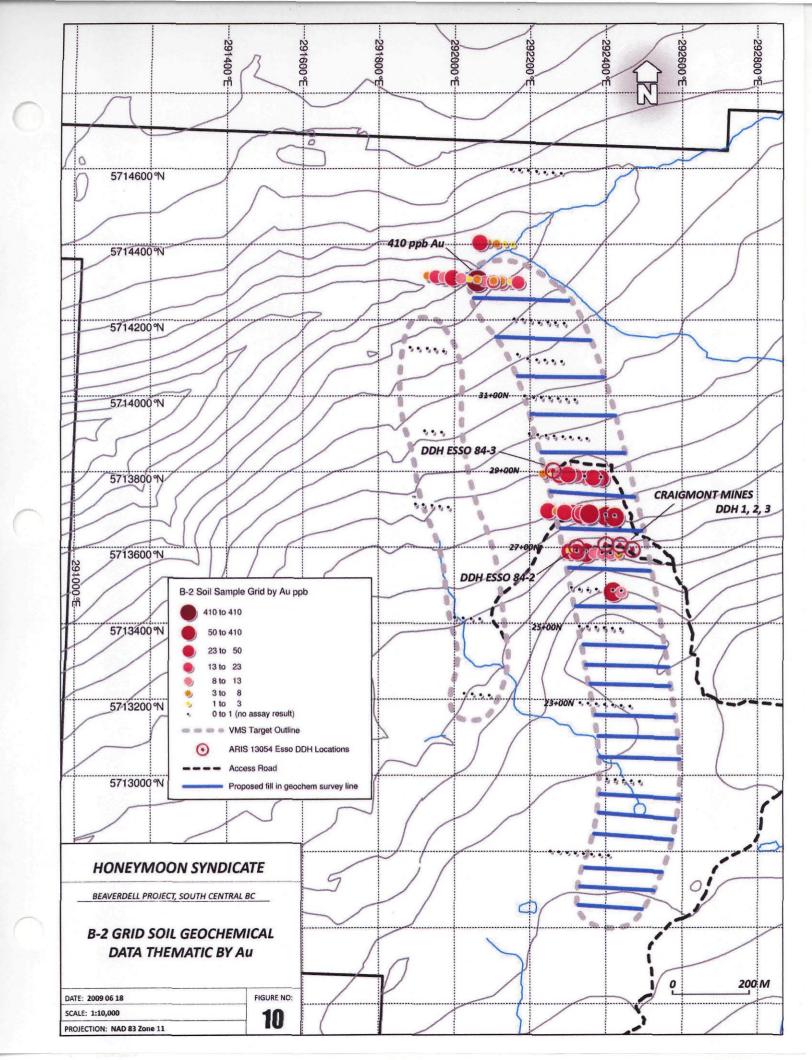
The location of these drill holes and the location of three drill holes completed by Craigmont Mines in 1979 is shown on each of figure no.s 6 to 10 and on large format figures no.1 to 5.


Assessment Work Completed by the Honeymoon Syndicate in 2008


The assessment work carried out between November 19 and November 30, 2008 consisted of compiling a GIS database for the project area including TRIM and BC Map Place databases, geo-referencing the grid locations reported by Esso Minerals in Assessment Report 11381, digitizing the UTM locations of the geochemical samples collected by Esso, entering the geochemical data for zinc, lead, copper, silver and gold into an xls database and geo-referencing the drill hole location maps produced by Esso Minerals in 1984 (Assessment Report No. 13054).


Once the data was entered into a database a series of software applications included in Map Info 8.5 software program was applied to the data in an attempt to compensate for the variable overburden thicknesses which can subdue the geochemical response of a buried mineralized zone. Several attempts were made to utilize different anomaly thresholds for the reported "B" and "C" horizon samples however the highly variable range of anomalous values in the data made it impractical to segregate the two data sets.


As an alternative the sample data was from both datasets was combined and anomalous thresholds were developed by utilizing standard deviation methods, a process referred to as natural breaks and by a method referred to as quantile assessment. The quantile assessment method produced a series of maps that utilized lower anomaly thresholds than those proposed by Esso and the resulting maps suggest the presence of a more consistently mineralized zone than that indicated by either the "B" or "C" horizon data individually. Figure no.s 6 to 10 (1:10,000 scale) show the anomalous ranges that were used to re-calculate anomaly thresholds. Large format figures no.1 to 6 (1:2,500 scale) show raw data for both the "B" and "C" horizon datasets and provide reference maps for follow-up geochemical surveys. For reference all sample numbers (see large format figure no.6) above 3E8000 refer to "C" horizon samples.


Based on the geological work and computer modeling carried out during 2008 it is recommended that the Honeymoon Syndicate complete a new geochemical survey of the B2 target using a maximum line spacing of 50 meters and a sample spacing of 10 meters. The unusually high sample results (up to 9,500 ppm zinc and 4,900 ppm lead) reported by Esso Minerals in both "B" and "C" horizon samples combined with the presence of widespread mineralization reported in the two drill holes completed by Esso suggest the presence of an extensive stratabound mineralized zone that is partially masked by overburden.

Conclusion and Recommendations

Esso Minerals concluded that the mineralization identified in the B2 grid area appears to be stratabound. This is supported by the large areal extent of the soil geochemical anomaly (1,800 meter strike length) and the reported presence of a 23.1 meter wide interval that exhibits extensive barite mineralization as reported in DDH 84-02.

Based on the stratabound classification of the mineralization proposed by Esso, the reported presence of a wide zone of barite mineralization associated with the lead – zinc silver and gold mineralized zone and the extensive strike length of the geochemical anomaly it is concluded that the B2 Grid has potential to host mineralization similar to that developed at the Samatosum Mine, Rea and Homestake deposits located approximately 50 kilometers to the south.

Based on the geological work and computer modeling carried out during 2008 it is recommended that the Honeymoon Syndicate complete a new geochemical survey of the B2 target using a maximum line spacing of 50 meters and a sample spacing of 10 meters. The unusually high sample results (up to 9,500 ppm zinc and 4,900 ppm lead) reported in both "B" and "C" horizon samples combined with the presence of widespread mineralization reported in the two drill holes completed by Esso suggest the presence of an extensive stratabound mineralized zone that is partially masked by overburden. Detailed geochemistry using soil augers should be able to identify any strongly mineralized zones within the main target and should provide enough trace element data to determine if there is any mineral zoning present along the strike of the mineralized zone.

Statement of Costs

Honeymoon Project (B2 prospect) assessment charges for the period November 19 to 30, 2008

Geological consulting fees and charges (including office charges)	
Project supervision, research and review of technical data and preparation of te	echnical report
C. von Einsiedel: 5 days charged at \$500 per day	\$ 2,500.00

GIS database management, Map Info technician (including computer and Map Info charges)

Charges for geo-referencing technical maps, digitizing sample locations, manual entry of soil geochemical data and drill hole locations into a standard database

Dorian Leslie technical mapping services: 31 hours charged at \$65 per hour \$2,015.00

Report preparation and printing charges, large format drawings etc.

-large format printing (12 copies at 6 square feet = 72 square feet at \$4.00	\$ 288.00
-report printing and collating	100.00

Total charges applied for assessment credit:	\$ 4,903.00
--	-------------

References

Assessment Report No.11381: Geochemical and Geophysical Report on the Foogy B, Foggy C, Foggy D and Foggy E Groups. C.C. Evrerett and W.G. Cooper, November 7, 1983 for Esso Minerals Ltd.

Assessment report No.13054: Drilling Assessment Report on Joseph 84 Group. J.M.Marr, November 8, 1994 for Esso Minerals Ltd.

BC Online Database: Minfile and mapplace.bc.ca

CERTIFICATE OF QUALIFICATION

I, Carl von Einsiedel, 8888 Shook Rd., Mission, British Columbia, V2V-7N1, hereby certify that:

- 1) I am a consulting geologist with an office at 1124-470 Granville Street, Vancouver, British Columbia, V6C 1V5
- 2) I am a graduate of Carleton University in Ottawa, Ontario, Canada in 1987 with a BSc. in Geology. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia. I have practiced my profession as a geologist throughout the world continuously since 1987.
- 3) I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of education, experience, independence and affiliation with a professional association, I meet the requirements of an Independent Qualified Person as defined in National Policy 43-101.
- 4) As of the date of this certificate, to my the best of my qualified knowledge, information and belief, this technical report contains all the scientific and technical information that is required to be disclosed to make the report not misleading.

Dated this 2nd day of July, 2009

Ń

Carl von Einsiedel, P.Geo.

Appendix 1: Soil geochemical data for the "B" horizon samples collected by Esso Minerals from the B2 Grid area

Soil geochemical data for the "B" horizon samples collected by Esso Minerals from the B2 Grid area

3E70751430321.029225557128023E70761422311.129227757128003E70771839520.829230057127983E70781435381.429232157127973E70792479451.129234357127953E708038100471.229236457127913E708169147683.129240857127923E708229221343.129240857129903E7083395801344.029240357129913E7084395751523.229242657129863E708549114830.929244757129863E7086474051311.829246857129863E708634941801.129202857132153E708834941801.129202857132153E7089452104802.529204957132153E709035367821.329207257132133E70931126202.029233457131913E70941321251.929237757131893E70951028231.929238557131883E70961126271.32924205713186
3E70771839520.829230057127983E70781435381.429232157127973E70792479451.129234357127953E708038100471.229236457127943E708169147683.129238657127923E708229221343.129240857127913E7083395801344.029240357129913E7084395751523.229242657129883E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132153E709035367821.329207257132153E709159610762.729204457132113E70931126202.029233457131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70781435381.429232157127973E70792479451.129234357127953E708038100471.229236457127943E708169147683.129238657127923E708229221343.129240857129913E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E709035367821.329207257132133E709159610762.729209457132113E70931126202.029233457131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70792479451.129234357127953E708038100471.229236457127943E708169147683.129238657127923E708229221343.129240857127903E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709159610762.72920457132133E70921024231.329233457131913E70931126202.029237757131893E70951028231.929239857131883E70961126271.32924205713186
3E708038100471.229236457127943E708169147683.129238657127923E708229221343.129240857127903E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132123E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E708169147683.129238657127923E708229221343.129240857127903E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70931126202.029235557131913E70941321251.929237757131893E70951028231.92923857131883E70961126271.32924205713186
3E708229221343.129240857127903E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029237757131893E70941321251.92923857131883E70951028231.92923857131883E70961126271.32924205713186
3E7083395801344.029240357129913E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029237757131893E70951028231.929239857131883E70961126271.32924205713186
3E7084395751523.229242657129903E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70951028231.929239857131883E70961126271.32924205713186
3E708549114830.929244757129883E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029237557131893E70951028231.929239857131883E70961126271.32924205713186
3E7086474051311.829246857129863E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E708768211542.029249057129853E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E708834941801.129202857132163E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E7089452104802.529204957132153E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E709035367821.329207257132133E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E709159610762.729209457132113E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70921024231.329233457131923E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70931126202.029235557131913E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70941321251.929237757131893E70951028231.929239857131883E70961126271.32924205713186
3E70951028231.929239857131883E70961126271.32924205713186
3E7096 11 26 27 1.3 292420 5713186
3E7097 39 183 56 2.7 292442 5713184
3E7098 9 26 20 0.6 292464 5713182
3E7099 49 560 380 2.3 292003 5713417
3E7100 30 79 54 1.0 292025 5713415
3E7101 2 12 4 0.2 292046 5713413
3E7102 12 58 57 0.6 292069 5713412
3E7103 7 10 12 1.8 292332 5713394
3E7104 10 33 26 1.1 292353 5713393
3E7105 11 52 28 2.9 292375 5713391
3E7106 9 26 16 1.2 292397 5713390
3E7107 28 45 36 2.0 292419 5713388
3E7108 12 62 138 2.3 292440 5713386
3E7109 81 73 265 5.6 292312 5713495
3E7110 12 26 640 1.9 292333 5713494
3E7111 13 38 270 2.1 292355 5713493
3E7112 18 92 265 68.0 292377 5713491
3E7113 18 71 4600 4.0 292398 5713490
3E7114 18 444 186 2.0 1 292305 5713594
3E7115 24 81 165 2.6 0 292325 5713593
3E7116 54 108 53 0.8 292349 5713591
3E7117 35 95 190 3.8 292371 5713590
3E7118 18 58 87 1.2 292392 5713588

SAMPLE ID	<u>CU_PPM</u>	<u>ZN PPM</u>	<u>PB PPM</u>	<u>AG PPM</u>	<u>AU PPB</u>	<u>EASTING</u>	<u>NORTHING</u>
3E7119	105	68	52	1.2		291899	5713716
3E7120	12	50	44	1.0		291919	5713714
3E7121	64	452	250	1.5		291943	5713712
3E7122	14	82	55	1.2		291963	5713709
3E7123	105	700	370	3.0		291986	5713707
3E7124	196	371	78	1.6	26	292249	5713699
3E7125	40	740	52	1.3	5	292272	5713697
3E7126	53	1300	170	2.4	34	292293	5713694
3E7127 3E7128	54 23	540 86	138 100	2.1 1.9	34 20	292314 292336	5713693 5713692
3E7128 3E7129	23 55	182	395	1.9	20 78	292350	5713692
3E7130	32	454	38	1.0	, 8 5	292236	5713799
3E7130	17	184	31	1.0	8	292258	5713797
3E7132	94	1425	41	2.8	10	292280	5713795
3E7133	1030	5500	4900	6.4	23	292302	5713794
3E7134	494	4265	395	3.1	18	292322	5713792
3E7135	41	234	152	1.9		291924	5713909
3E7136	25	71	47	1.4		291945	5713 9 08
3E7137	20	49	52	1.1		291969	5713905
3E7138	49	136	98	1.3		292201	5713901
3E7144	54	319	60	24.0		292332	5713890
3E7145	31	155	53	1.7		292352	5713889
3E7146	173	335	250	2.3		292187	5714001
3E7147	108	3440	97	1.5		292211	5713999
3E7148	20	97	32	0.6		292231	5713998
3E7149	41	261	55	0.8		292254	5713996
3E7150	19	393	34	0.9		292276	5713994
3E7151	43	540	51	1.3		292298	5713993
3E7152	63	920	37	2.0		292320	5713991
3E7153	31	118	80	1.2		291885	5714128
3E7154	24	72	90	0.9		291906	5714127
3E7155	26	52	76	1.0		291930	5714127
3E7156	28	102	42	0.9		291950	5714125
3E7157	66	151	46	3.2		291973	5714123
3E7164	12	25	31	0.7		292160	5714204
3E7165	36	105	35	1.2		292183	5714202
3E7166	52	1125	43	1.2		292204	5714200
3E7167	12	19 105	16	0.6		292226	5714198
3E7168	39	105	64 C4	0.6		292249	5714196
3E7169	22 70	483 790	64 40	1.4 1.4		292269 292292	5714195 5714193
3E7170	70 36		40 78	1.4 1.2	C	292292	5714193
3E7279 3E7280	36 45	94 165	78 54	1.2	6 15	291929 291951	5714319 5714316
3E7280 3E7281	45 47	271	54 60	1.2	9	291951	5714316
3E7281	47 59	271 249	50 77	1.1	35	291975	5714313
3E7282	65	434	70	1.4	8	292018	5714311
3E/203	05	434	70	1.2	o	232010	2114211

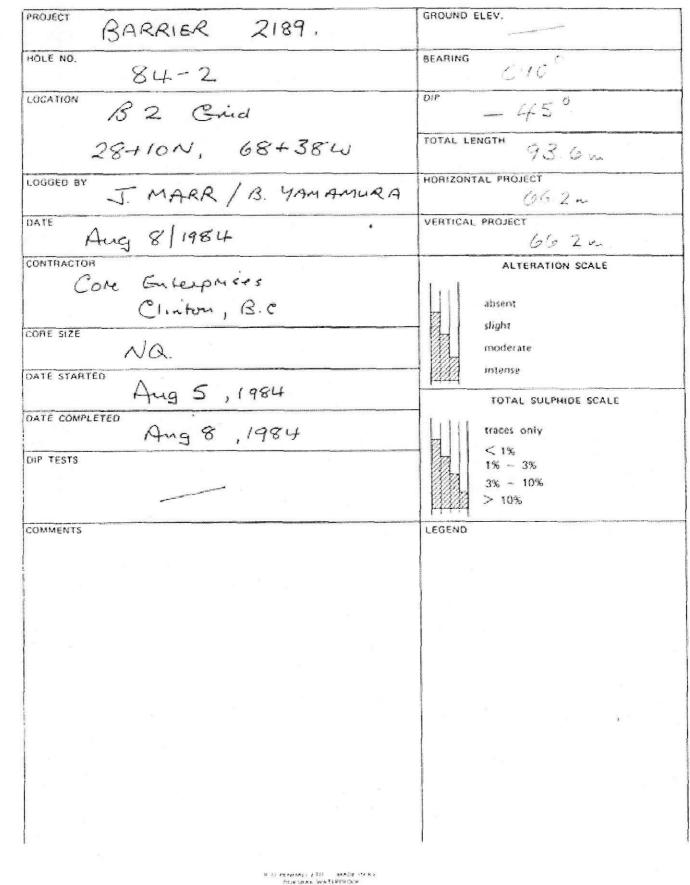
SAMPLE ID	<u>CU_PPM</u>	<u>ZN PPM</u>	<u>PB_PPM</u>	<u>AG PPM</u>	AU PPB	<u>EASTING</u>	<u>NORTHING</u>
3E7284	25	165	38	1.0	1	292039	5714310
3E7285	104	316	56	1.6	6	292060	5714308
3E7286	31	54	29	1.7	4	292104	5714305
3E7287	62	960	40	1.2	4	292125	5714303
3E7288	42	870	37	1.3	2	292148	5714302
3E7289	27	70	30	0.9	19	292169	5714301
3E7290	14	46	19	1.3	28	292068	5714406
3E7291	51	63	32	1.6	5	292090	5714405
3E7292	19	31	34	0.9	4	292112	5714403
3E7293	13	30	25	0.7	1	292134	5714402
3E7294	83	78	27	1.7	2	292155	5714400
3E7325	24	89	37	1.2		292151	5714599
3E7326	15	25	17	0.9		292173	5714597
3E7327	93	72	28	1.4		292196	5714596
3E7328	31	76	32	0.6		292218	5714594
3E7329	89	540	51	2.0		292239	5714592
3E7330	32	97	33	0.6		292261	5714591
3E7331	19	43	26	0.6		292283	5714589
3E7567	52	3880	38	0.6		292346	5713790
3E7568	862	2590	73	1.0		292367	5713789
3E7569	33	867	34	0.6		292389	5713787
3E7570	30	63	100	0.6		292380	5713689
3E7571	30	54	30	0.8		292401	5713687
3E7572	14	32	22	0.8		292424	5713685
3E7573	65	2420	122	1.4		292414	5713586
3E7574	18	73	30	0.8		292436	5713585
3E7575	21	59	38	1.3		292420	5713488
3E7576	46	65	40	1.2		292442	5713487
3E7139	10	41	12	0.4		292223	5713899
3E7140	13	132	25	0.9		292245	5713897
3E7141	26	1350	44	1.0		292266	5713896
3E7142	43	1515	48	1.5		292289	5713894
3E7143	37	825	52	1.2		292309	5713892
3E7158	136	760	34	1.4		292169	5714111
3E7159	37	267	21	0.7		292195	5714100
3E7160	10	29	22	0.5		292220	5714097
3E7161	12	31	28	0.5		292241	5714097
3E7162	14	56	28	0.8		292262	5714095
3E7163	36	113	43	1.2		292285	5714093

Appendix 2: Soil geochemical data for the "C" horizon samples collected by Esso Minerals from the B2 Grid area

....

Soil geochemical data for the "C" horizon samples collected by Esso Minerals from the B2 Grid area

<u>SAMPLE_ID</u>	<u>CU PPM</u>	<u>ZN PPM</u>	<u>PB_PPM</u>	<u>AG PPM</u>	<u>AU PPB</u>	<u>EASTING</u>	<u>NORTHING</u>
3E8144	40	162	255	1.2		292028	5713214
3E8145	145	1390	2700	6.5		292049	5713213
3E8146	71	725	116	4.3		292071	5713211
3E8147	66	970	92	4.5		292094	5713209
3E8148	109	975	240	3.8		292003	5713414
3E8149	68	143	94	1.0		292025	5713413
3E8150	206	289	112	1.2		292046	5713411
3E8151	26	132	124	1.1		292068	5713410
3E8152	17	69	58	1.2		292331	5713390
3E8153	19	97	56	1.5		292352	5713389
3E8154	27	95	41	3.1		292375	5713387
3E8155	14	50	30	1.4		292397	5713386
3E8156	25	72	68	2.3		292418	5713384
3E8157	18	92	153	1.8		292439	5713383
3E8162	68	72	160	1.6	30	292306	5713591
3E8163	25	1150	380	2.6	38	292325	5713590
3E8164	44	365	109	6.9	55	292349	5713587
3E8165	129	263	11	0.1	10	292371	5713586
3E8166	43	160	132	1.0	12	292392	5713584
3E8167	57	63	34	0.6		291898	5713712
3E8168	19	67	33	0.4		291919	5713711
3E8169	45	545	134	1.6		291942	5713708
3E 817 0	53	110	52	1.1		291963	5713706
3E8171	195	750	255	3.1		291985	5713704
3E8172	127	228	445	1.0	13	292248	5713696
3E8173	146	1030	32	12.0	1	292272	5713694
3E8174	131	2620	300	1.8	8	292293	5713692
3E8175	115	1415	320	2.2	5	292315	5713690
3E8176	47	276	138	2.0	55	292336	5713689
3E8177	8	292	820	0.9	50	292357	5713687
3E8178	32	519	33	0.7	6	292236	5713796
3E8179	43	273	34	0.9	1	292258	5713794
3E8180	91	1540	59	1.8	25	292280	5713792
3E8181	215	2250	4650	3.7	3	292302	5713790
3E8182	1020	9500	100	0.8	1	292322	5713788
3E8183	65	422	179	2.0		291923	5713906
3E8184	75	120	76	0.9		291945	5713905
3E8185	63	81	76	0.9		291969	5713903
3E8186	99	97	110	0.8		292200	5713897
3E 8187	15	165	31	0.9		292223	5713896
3E8188	38	434	65	0.7		292245	57138 94 -
3E8189	18	1150	37	0.8		292266	5713892
3E8190	64	164	205	1.1		292187	5713998
3E8191	86	3500	137	2.0		292211	5713996


SAMPLE ID	<u>CU PPM</u>	<u>ZN PPM</u>	<u>PB PPM</u>	AG PPM	<u>AU PPB</u>	<u>EASTING</u>	<u>NORTHING</u>
3E8192	23	140	45	0.7		292231	5713995
3E8193	25	155	48	0.6		292254	5713993
3E8194	19	285	46	0.8		292276	5713991 5713090
3E8195 3E8196	21 24	446 555	51 58	0.7 1.0		292298 292320	5713989 5713988
3E8196 3E8197	24	99	142	1.0		292320	5713988
3E8197	28 30	65	80	0.9		291884	5714125
3E8199	31	67	124	1.1		291930	5714124
3E8200	30	66	81	1.0		291950	5714122
3E8201	36	104	65	1.2		291973	5714119
3E8202	39	640	74	1.3		292169	5714110
3E8203	21	238	36	1.2		292195	5714098
3E8204	1	57	35	0.8		292219	5714096
3E8205	27	64	45	0.7		292241	5714094
3E8206	21	57	42	0.7		292262	5714092
3E8207	20	86	54	3.3		292284	5714090
3E8208	32	69	36	0.8		292160	5714201
3E8209	27	95	42	1.3		292182	5714199
3E8210	37	815	45	1.0		292203	5714197
3E8211	13	43	23	0.6		292226	5714195
3E8212	31	84	46	0.8		292249	5714193
3E8213	29	436	35	0.4		292269	5714191
3E8214	29	371	28	0.3	_	292292	5714190
3E8215	39	101	110	1.8	4	291929	5714315
3E8216	54	240	169	1.8	11	291951	5714314
3E8217	54	306	76	1.5	15	291972	5714311
3E8218	38	53	47	1.0	3	291995	5714310
3E8219	87	820 317	134 60	2.5 1.4	5	292017 292039	5714308 5714306
3E8220 3E8221	36 101	365	70	1.4 2.4	1 410	292039	571430 0 5714305
3E8222	101	384	133	2.4	410 9	292081	5714303
3E8223	113	97	90	2.0	15	292081	5714304
3E8224	80	767	44	1.4	21	292104	5714300
3E8225	47	821	45	1.7	9	292148	5714299
3E8227	87	78	62	1.0	73	292420	5713484
3E8228	87	78	84	1.0	9	292442	5713483
3E8229	52	1695	158	0.3	8	292414	5713583
3E8230	46	160	60	1.4	5	292436	5713582
3E8231	36	50	30	1.1	14	292380	5713685
3E8232	43	84	36	0.4	54	292401	5713684
3E8233	74	116	44	1.0	74	292424	5713681
3E8234	48	4480	46	1.0	16	292345	5713787
3E8235	1085	4010	84	1.5	24	292368	5713786
3E8236	33	455	49	1.8	24	292389	5713784
3E8039	27	448	78	1.6		292403	5712988
3E8040	52	2300	265	2.5		292425	5712986

<u>SAMPLE ID</u>	<u>CU PPM</u>	<u>ZN PPM</u>	<u>PB PPM</u>	<u>AG PPM</u>	<u>AU PPB</u>	<u>EASTING</u>	<u>NORTHING</u>
3E8041	78	190	147	1.3		292447	5712984
3E8042	73	374	215	1.2		292468	5712982
3E8043	58	132	68	1.2		292490	5712981
3E8158	45	116	835	3.0		292311	5713491
3E8159	25	124	1000	3.1		292333	5713491
3E8160	24	122	310	3.1		292355	5713489
3E8161	35	100	1840	3.1		292397	5713485
3E8226	55	97	81	2.2		292169	5714297

Appendix 3: Drill logs for DDH 84-02 and 84-03 completed by Esso Minerals in the B2 grid area

MINERALS SECTION

D	R	1	1	-	1	0	G	
Sec. 1	6 K	×.	See.	-	Ree	- ···		

HOLE NO. 84 -2 BUNNER PAGE 2 OF / PROJECT: SAMPLES ASSAYS SAMPLE E FROM TO MINERALIZATION WIDTH SAMPLE DESCRIPTION NUMBER Munor discontinueted Againte aubres us the basedt (1%) 17.7 m from such on Boutants 12767

BARNIER HOLE NO. 84 - 2 PAGE + OF C PROJECT. SAMPLES ASSAYS SAMPLE MINERALIZATION MICTH NUMBER DESCRIPTION Mass dessen 2-3 % decsemented pyrite .. Stell finie dessemmented Ante, Maron Fricheste Some Wonte Frictives i NOTE2

HOLE NO 8-4-2 ISAR Er PAGE 6 OF 10 PROJECT ASSAYS SAMPLES 07 1. FROM TO ~- % -+~ SAMPLE MINERALIZATION MOR a po Zi leo Da in DESCRIPTION NUMBER func distanceded pyrite (2-3%) 2-30% pyrite as block and premis disconnections and for true fillings 528 58.7 3.8 9781 .009 0.10 507 7.0 6.00 0.005 2% decisemented 53 1 54.2 (1 9232 0 02 0 05 0 05 9.10 0.03 0.001 Rympe throughout and munor galena. 546 55.5 6 9 9238 003 007 010 4.50 0.07 0.00 525 565 1.0 754 045 613 0.05 2.93 6.05 0.03 Dissemulated pyrite 565 575 10 2000 1000 000 400 004 001 57.5 58.5 1.0. 9:3: 0.007 0.02 0.04 604 203 0.001 57.6 some fine supporte toget 58:5 59: 1 2 1 0000 0.02 0.03 5.20 0,02 0.01 59.5 5-6 1.1 7238 000: 004 002 510 002 101 N2/E2

PAGE & OF 10 PROJECT.	$O \sim H$	RA 12							HOL	.e no. 8	4-
	. 8	5	AMPLES				g / 0905 221 80 .	AYS	10) - verselet transfe	03	
MINERALIZATION DESCRIPTION	TOTAL	FROM	то	WDTH M	SAMPLE NUMBER					÷15	A
22 - C 1 - C	***	t: 6	(45	01	Producer	0205	6.03	6.03	12.70	6.03	C.
61.8-62 0 some pyrute stringers		1	· · · · · · · · · · · · · · · · · · ·		Street a	0.02	0.62	Q_{ℓ^2}	1.54	-9-0I	6-0
62-639 3-5%	-	6224	. 2	0.9	-992-i-						
distan py 4 our integrator fractions			64.4			1					
		642	653	1.1	an a	0.00	0.03	0,02	1.94	0.05	00
		65.3	C. S. M.	11	92044	9.227	003	0.03	4.99	0.12	2.0
		- 66.4-	145	09	9245	0.000	0.69	1.0	4.4"	0.7	00
63 9 - 64.8 5-10% pyrite		673	200	09		1-16	6.09	9.12	2.70	6.9	<u>Cal</u>
		- 193	4ª3.	10	2257	0.03	1.20	2.9 <u>2</u>	4.44	1.18	00
pyrute veintets		in the second	1		9248	1	ê			1	
72-76.2, 5-8% pyrate and the golence, sphal		2000 Barrison Constant Constant	<u>.</u>		7200		1				
73.4 m 5 cm vein		71.3	723	2.3	9250	1.008	.03	.04	0.5	0.05	· 0.
whith 50 % galance	•	72.4		19	18000 6-1	1007	0.2	03	<u> </u>	013	000
30% pyrite and quartz Cross moting.	77	- 73.2	74 *	01	1. 1 . 199	103.	8.94	2 56	1.46	4 55	0.0
73.5 - 76.2 high grane	12	74-1			144253						
Med & course growing	5	750	7.*?	17	C. Martin	• 015	22 4 5	197	<i>[.1</i> 0	2 15	0.0
galana with pyrite resourced with integly preceded masers of											
ale qualter and some		ar.								i	
Manor guialents		i				• • • • • • • • • • • • • • • • • • • •					
K. hopeny for 3				·* 2000000							Radausamatery and well "Soc

PAGE / OF / OPROJECT	BA	RRIE	*						HOU	E NO. S	14-
n an	TOTAL	SAMPLES ASSAYS				07/+					
MINERALIZATION DESCRIPTION		FROM	tO	HLOW	SAMPLE NUMBER	C.	- ") Pla	6 — Z.	7 R.		, · А-
issen touts of pyrite											ł
	· · · · · · · · · · · · · · · · · · ·	825	834	0.9	14455	. 11	01	. 2%	.23	0.06	0
					14456						
		84.3	844	1.0	14457	.0/4	.02	.03	.]0	0.06	0.0
										· · · · · · · · · · · · · · · · · · ·	- ar the state
								an a' Arna			
		•								e a la constante	
							т. т. т. т.		and the second second		
py my cubrs											a (200) (222)
ang panganan sang panganan sa		•						1947 - 19 19 - 19 - 18 - 19		n mar a tha a' tha an a' tha an	
2											
		-							pier Synothere i s		
								an girth	, in normal is	ana : n No Ma	
антан и на на так и на 1977 година на 1977 година на н								· · · ·			
		90 90									
											A

14-1-16-21.5.48

INFERIAL OIL LIMITED

MINERALS SECTION

mme		1 AA
DRI	L. L.	LOG

BARRIER 2189	GROUND ELEV.
HOLE NO. 84 - 3	BEARING 090
LOCATION 13-2 Grid	01P 45°.
30+08N 69+16W	TOTAL LENGTH 80.1 m
J. MARRI B. YAMAMURA.	HORIZONTAL PROJECT
28/8/84.	VERTICAL PROJECT
Cone Enterprises Cone Enterprises Clinton, B.C.	ALTERATION SCALE
Clinton, B.C.	absent slight
NQ.	moderate intense
Aug 9, 1984	TOTAL SULPHIDE SCALE
DATE COMPLETED Aug 11 1984	traces only
DIP TESTS	$ \begin{array}{c} < 1\% \\ 1\% - 3\% \\ 3\% - 10\% \\ > 10\% \right) $
COMMENTS	LEGEND
制 注于中部分的人工公主第231 ————————————————————————————————————	

PAGE 2 OF 8 PROJECT:				/	2/80	ł		HO	£ NO. {
		S	AMPLES		- 46- 10100-0000000000000000000000000000000		ASSAYS	-	
MINERALIZATION DESCRIPTION	TOTAL SULPHIDE	FROM	FROM TO		SAMPLE NUMBER		and a second sec		

		•••							
							nar nave nave i ran na na konsta		
				********	9, 10, 00, 00, 10, 10, 10, 10, 10, 10, 10				91515555888 8988888888888888888888888888
		erm.					Adduction of Control Control Control		
		•			U.	10 100 100 100 100 100 100 100 100 100	and the state of t	a nano se de la calencia de la calencia en de calencia en d	
							·		
		•••					45 VO UNIVERSITY OF		
		P.N.#*					n da con e de la constante de la constant	aa fi - 3400 fi a da kontanna finansan ku	
								Ale o Compañía de Julio de Compañía de	
·									
		••••					and a contradict of the state o		
an ny kanadalah kanada kana K									

PAGE (+ OF 7 PROJECT:	< 	$\sim \epsilon$		000000000000000000000000000000000000000	218				Luor	R NU.	84-
	TOTAL	S	AMPLES			£	ASS	AYO			
MINERALIZATION DESCRIPTION		FROM	τo	HLOW	SAMPLE NUMBER						
											2
		-				1				с. л 1 ж.н. — (giá) —	
. (c)		-								9 to - on	
		see)						• • • • • • • •		e a testina	1
	-										*****
268 - heavy pylite		N ANG)						allah) a (Alba		9a	* - a
in breecoted angen											
· · · · · · · · · · · · · · · · · · ·		***									
29 4 Conter pyrils an art galos colate stockworks		-								ana an Al ^{an} a	
understande Alfred Hilbertanden Herendenstellen Lauren Herenden der Prostensen einer Berneren Herenden der Bern Herendenstellen Herende Herende Lauren bereiten der Statistichen der Berneren Herenden der Berneren Herenden der									e: i vecto	944 A. A. A. A.	and the
an energy and the second se		-							in an ann an a	(R	
	_	••••									
How called in the											
qualter vers.		-	1 000 00000 000 000 000 000 000 000 000					· · · · ·		Transfer of the second of	a) - 1. A 1.
			1000 0000 000 000 000 000 000 000 000 0						v (465)	- (250) ((1), (10), (100)	
										i	
							ļ		6		
			200 0000000000000000000000000000000000								
		-									

PAGE 6 OF 8 PROJECT	3~	· 1.	C		218	******			HOL	E NO. 🖇	24 m _
	, w	5	AMPLES	T				AYS			4
MINERALIZATION DESCRIPTION	TOTAL. SULPHIDE	FROM	то	KLOW	SAMPLE NUMBER	1				02 119	S
		- 432	44.1	0.9	14458	0.072	1.38	014	5.5	<i>0.65</i>	61
Her im - be galence in a			U 5 0	0.7	14439	6.010	061	0-12	2.55	6-22	
apple weeks install		<i>€</i> #5 •*	45.9	01	f that is the	ð ele	007	0.04	599	o cu	06
		451	46.8	09	1-3-31	0.06	0 63	6.62	353	0.05	0.0
		495	50-4	09	12 2 2 9	/	0.%	1.2.5	G 65	.0.76	06
49 5 - 50 5 3% gatene + 5-8% pyric		- Se 4	51.3	69	1924	1	013	6.15	0 54	0.24	C t
			- **********************************							€ 147 - a Sadamanin manan	
Fine coolecte windets and fine persistent ~ 370 Rynte parallel to foliation.											

PAGE 8 OF 8 P	ROJECT	Nº 1	17.	NERE		2181	4		74	но	E NO. &	34 - 3
n e e e e e e e e e e e e e e e e e e e		l w	s	AMPLES				ASS	AYS			
MINERALIZATIO	N	TOTAL SULPHIDE	FROM	то	WOTH	SAMPLE NUMBER	æ	1			ог Дз	
na ann an		-	65.6	64.5	0.7	16241	P-0 NORTHER DESIGNATION OF	1			1.05	
612 m - disconter and clumps 1.5 galance new pa	e can					16242		1.59	019	0.54	C 47	ζ. ά
Core and 18	*****		62-4	63.6	1.2	10043		<u>705</u>	20	0.95	0.17	201
n an			636	645	09	14462	.08	007	0.14	0.3	0.15	00
			8	5 3		14463		£ :		5	P	
2 a.	50					14464						
			663	67.2	0.7	14465	.027	6 O2	0 02	0.23	0.07	0.01
persistent f a dissegnmented	y el Duniho		K ana (1999) K ana (1999)						21 (21			
	1917) - 1917 - Salinaro, and an annuar											-
											5 E (2 - 5)	
										e	de la si	
			-			·						
											ž	
						-						

Appendix 4: Copies of Minfile Reports for the Joseph, Samatosum and Homestake Occurrences

SUMMARY

Summary Help

Connection Information: Access denied for [CVONEINSIEDEL]

News | The Premier Online | Ministries & Organizations | Job Opportunities | Main Index

MINFILE Home page ARIS Home page MINFILE Search page Property File Search

MINFILE Record Summary	Print Preview	PDF	SELECT REPORT 📝 New Window
MINFILE No 082M 194	File Created:	10-Jan-87	by Larry Jones(LDJ)
XML Extract/Inventory Report	Last Edit:	10-Jan-87	by Larry Jones(LDJ)

Name	JOSEPH	NMI Mining Division	Kamloops
Name	JOSETT	BCGS Map	082M051
Status	Prospect	NTS Map	082M12W
Latitude	51° 32' 05" N	UTM	11 (NAD 83)
Longitude	119º 59' 34" W	Northing	5713537
	And the second	Easting	292442
Commodities	Silver, Lead, Zinc, Copper, Barite, Gold	Deposit Types	G06 : Noranda/Kuroko massive sulphide Cu-Pb-Zn
Tectonic Belt	Omineca	Terrane	Kootenay

CapsuleThe area is underlain by the Devonian to Permian Fennell Formation. The Lower (eastern) division is a heterogenous assemblage of bedded chert, basalt, quartz-feldsparGeologyporphyry, conglomerate, sandstone, argillite, phyllite and limestone. These units occupy a westerly overturned syncline, which plunges shallowly to the north-northwest.
To the east, separated by an east-dipping thrust fault, are metavolcanics of the Eagle Bay Formation. The Middle Cretaceous Baldy Batholith lies to the south.

The mineralized zone lies within a 75 metre wide sedimentary panel of argillite, chert, minor chert-pebble conglomerate. The sediments trend north-northwest, dip steeply west, and are con- tained within a extensive basalt sequence. Deformation is intense, shown by gouge and brecciation within broader zones of cleavage and fracturing.

Stratabound mineralization occurs as irregular veins of galena, pyrite and minor sphalerite. The sulphides are associated with quartz and some carbonate or occur as nearly massive aggre- gates. The mineralization is fairly widespread but the most significant concentrations occur in an 8 metre wide zone. A drill hole intersected 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium, 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Assessment Report 13045). A drill hole 210 metres to the northwest intersected 1.8 metres of 2.9 per cent lead, 0.45 per cent zinc and 26.06 grams per tonne silver (Assessment Report 13054).

Bibliography EMPR ASS RPT <u>8530</u>, <u>9716</u>, *<u>11381</u>, *<u>13054</u>

EMPR EXPL 1979-200; 1980-144; 1983-168; 1984-130 EMPR MAP 53; 56 EMPR OF 1986-5; 1999-2 GSC MAP 48-1963 GSC OF 290; 637 GSC P 75-1A GCNL #168, 1984 Audit trail list of other versions of this MINFILE occurrence

COPYRIGHT | DISCLAIMER | PRIVACY | ACCESSIBILITY

Í

XML Extract/Production Report

SUMMARY

		NMI	082M4 Aq4
Name	SAMATOSUM, SAMATOSUM MOUNTAIN, SILVER	Mining Division	Kamloops
		BCGS Map	082M011
Status	Past Producer	NTS Map	082M04W
Latitude	51° 08' 40" N	UTM	11 (NAD 83)
Longitude	119º 48' 34" W	Northing	5669641
		Easting	303492
Commodities	Silver, Gold, Zinc, Lead, Copper, Antimony	Deposit Types	G06 : Noranda/Kuroko massive sulphide Cu-Pb-Zn
			105 : Polymetallic veins Ag-Pb-Zn+/-Au
Tectonic Belt	Omineca	Terrane	Kootenay

Capsule Geology

The Samatosum deposit is located in structurally complex metasedimentary and metavolcanic rocks of the Paleozoic (Lower Cambrian and older(?) to Mississippian) Eagle Bay Assemblage (Formation). The assemblage has a complex deformational history involving multiple stages of thrust faulting and folding during the Jura-Cretaceous which produced strongly foliated and overturned rocks trending northwest and dipping northeast. These Paleozoic rocks are intruded by mid-Cretaceous granodiorite and quartz monzonite (such as the Baldy batholith about 30 kilometres to the north of the deposit), and Early Tertiary quartz-feldspar porphyry, basalt and lamprophyre dykes. These are all locally overlain by Miocene plateau lavas, now represented in the area by occasional erosional remnants.

The deposit area can be divided into several northwest trending, northeast dipping units. From northeast to southwest these are: 1) the Tshinikan Limestone which forms steep, massive landforms dominating the area; 2) mixed sediments consisting of interbedded cherts and argillite; 3) mafic volcanics; 4) the "Mine Series" of rocks which consist of a zone of more mixed sediments and mafic volcanics, with minor felsic to intermediate volcanics, which form the host stratigraphy for both the Samatosum and Discovery or Rea Gold zone (082M 191) deposits; and finally 5) a thick unit of argillites and wackes and a package of felsic rocks which lie in the structural footwall of the Mine Series.

The generalized ore stratigraphy reveals the apparent stratabound nature of the orebody within the hanging wall portion of the heavily strained and highly altered Mine Series rocks. The orebody lies near the interface of altered mixed sediments and predominantly altered argillites/wackes. Original terms such as "sericitic tuffs" for the mixed sediments, and "muddy tuffs" for the altered argillite/wackes are now largely out of favour as it is really alteration products that one sees rather than original lithologies (Friesen, 1990).

The mixed sedimentary unit (SERT) is characterized by a strong yellow to white sericitic content, interbedded with up to 30 per cent cherty/quartz lenses. The altered argillites (MUT) are characterized by light silvery grey muscovite and sericite. They may also often locally contain up to 60 per cent very fine-grained pyrite and host low grade values of base and precious metals. Both units represent altered lithologies; their protoliths were probably variations of an original argillite/wacke/tuff sequence.

Both the SERT and MUT lie structurally below a thick unit of chloritic mafic volcanics, which in the deposit area are most commonly tuffaceous to lapilli in texture; but with an occasional pillowed component.

Summary Help

Both the Samatosum and original Discovery zone or Rea Gold zone (082M 191) 500 metres to the southwest are contained in a very similar stratigraphy: within a package of mixed sediments, argillites and their sericitic equivalents of SERT and MUT, and both are structurally overlain by mafic pyroclastics. There is much speculation regarding their structural and genetic associations. There is a strong suggestion of repetition by folding and/or faulting (which supports a long favoured theory of a thrust fault zone located between the deposits). Alternatively, but currently discounted, the two deposits may exist within similar stratigraphic cycles overprinted by a crosscutting alteration package (Friesen, 1990).

The Samatosum deposit is an early, highly deformed quartz vein system containing massive to disseminated components of tetrahedrite, sphalerite, galena and chalcopyrite hosted in structurally complex wallrocks. The upper portion of the orebody is tabular, averages about 5 metres in thickness, has a northwesterly strike length of about 500 metres and dips at an average of 30 degrees northeasterly for 100-150 metres. In the northern half of the deposit the tabular nature of the orebody gives way downdip to an apparent synformal structure, which is currently interpreted to be caused by slicing and imbrication by local overturning and thrust faulting. The northern half of the orebody has a northwesterly plunge of about 20 degrees, whereas the southern half displays a very slight plunge to the southeast (phase 2 folding?).

Tetrahedrite is the most valuable mineral in the ore zone, followed by sphalerite, chalcopyrite and galena. The tetrahedrite contains 36 per cent copper, 25 per cent sulphur, 23 per cent antimony, 5 per cent zinc, 4 per cent silver, 3 per cent arsenic and 2 per cent iron. Tetrahedrite appears to be the most uniformly distributed, while the sphalerite, galena and chalcopyrite often appear more erratically distributed in the northern end of the orebody as semimassive to massive lenses within the quartz vein host; perhaps indicating more than one mineralizing episode. It is important to note to note that whereas chalcopyrite, sphalerite and galena can be present in minor amounts in virtually any quartz vein occurrence throughout the property; tetrahedrite has so far been rarely found outside the immediate ore zone (Friesen, 1990).

The principal ore-related gangue minerals are quartz (30 per cent), dolomite (19 per cent) and pyrite (11 per cent).

Sericite and muscovite are by far the dominant alteration minerals in the Mine Series rocks and are thought to be a deformational product of the original ore-related alteration. All units from the lower portion of the mafics through the entire Mine Series stratigraphy are sericitic. Muscovite/sericite alteration fronts producing MUT commonly crosscut bedding and foliation, often leaving behind unaltered argillite/wacke remnants.

Other significant alteration in the deposit area includes: silicification or silica flooding of portions of wallrock surrounding the orebody (eg. many original "quartzites" and black cherts are now believed to be silicified MUT and argillites); dolomite, much more intense than previously believed, the bulk of which is probably a late-stage fault-related overprint; pyritization, as a replacement feature of lapilli in the mafic pyroclastics; and the green mica fuchsite, so far almost entirely restricted to a several metre thick occurrence associated with the argillites/MUT along the immediate sheared footwall portion of the ore zone.

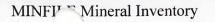
Underground mineable reserves at Samatosum are 80,278 tonnes grading 1.2 per cent copper, 2.9 per cent zinc, 1.7 per cent lead, 1021.5 grams per tonne silver and 1.7 grams per tonne gold (Northern Miner - August 5, 1991). Both open pit and underground reserves are expected to be exhausted by October 1992. The underground reserve is the strike extension of the open pit deposit and extends approximately 198 metres beyond the pit wall before it is structurally terminated.

The Samatosum deposit was discovered in 1986. During 1988 a feasibility study determined the deposit could be mined economically by open pit methods, despite an unusually high 25:1 waste-to-ore stripping ratio. Mine stripping began in March 1989; ore production and milling began in May 1989; shipments began in June 1989.

Mining ceased in July 1992 and milling ceased in September 1992.

Bibliography

EMPR ASS RPT 12737, 14185, 18571, 19199, 19200, 21689
EMPR ENG INSP Annual Report 1989, 1990
EMPR EXPL 1983-xxxii, 157; 1986-B7-B19,C113
EMPR FIELDWORK 1984, pp. 67-83; 1985, pp. 59-68
EMPR MAP 56; 65 (1989)
EMPR MINING 1988
EMPR OF 1992-1; 1998-9; 1998-10; 1999-14; 2000-31
EMPR PF (Friesen, R.G. (1990): Geology of the Samatosum Deposit - Field Trip B2, GAC-MAC Joint Annual Meeting, Vancouver 1990, Mineral Deposits of the Canadian Cordillera; Preliminary Engineering Geology, Hydrogeology and Rock Mechanics Assessments for the Proposed Underground Mine, Samatosum Project - May 1991; Memorandum to Geological Survey Branch, P. Schiarizza - June 14, 1990; Press Release, Rea Gold Corporation, Feb.21, 1991; M.E.G Luncheon Talk notes, Jan. 13, 1988)
GSC MAP 48-1963; 5320G
GSC CMAP 48-1963; 5320G
GSC MAP 48-1963; 5400
H 1987-88, pp. 272,330
GCNL #4,#57,#131,#135,#153,#172,#177,#210, 1986; #8,#76,#96,#108, #111,#112,#116,#117,#118,*#133, 1987; #33,#70,#78,#207, 1988; #1(Jan.3),#56


EM FIELDWORK 1998, pp. 287-306

(Mar.21),#123(June 27),#205(Oct.25), 1989; #19(Jan.26),#52(Mar.14),#90(May 9),#179(Sept.17),#186(Sept.26), 1990; #38(Feb.22),#52(Mar.14),#68 (Apr.9),#127(Jul.3),#147(Jul.31), #200(Oct.17), 1991
IPDM Feb. 1986
N MINER Dec.30, 1985; Jan.13, March 31, July 14,21, Aug.4, 1986; Jan. 26, May 11, 1987; March 7, May 2,23, Oct.24, 1988; June 5,12, Nov.6,13, 1989; Feb.6, Mar.19, Sept.10, 1990; Apr.1,15, May 6, Jul.15, Aug.5, Oct.21, 1991
N MINER MAG *June 1989, pp. 15-18
NAGMIN Jan.15, March 30, July 6, Nov.9, 1984
NW PROSP Jan. 1987
V STOCKWATCH Nov.28, 1986; May 22,28, July 13, Dec.17, 1987
WWW <u>http://www.infomine.com/index/properties/SAMATOSUM_MINE.html</u>
Dickie, G.J., Preto, V.A. and Schiarizza, P. (1986): Mineral Deposits of the Adams Plateau - Clearwater area
Pirie, I. (1988): Geology and Mineralization of the Samatosum (Rea_Gold) Deposit, Adams Plateau, B.C., MEG Talk, January 1988 - Notes taken by T. Schroeter and C. Lund
Preto, V.A. and Schiarizza, P. (1985): Geology and Mineral Deposits of the Adams Plateau - Clearwater Region - GSA Cordilleran Section_Meeting, May 1985, pp. 16-1

to 16-11

Audit trail list of other versions of this MINFILE occurrence

COPYRIGHT DISCLAIMER PRIVACY ACCESSIBILITY

Summary Help

News | The Premier Online | Ministries & Organizations | Job Opportunities | Main Index

MINFILE Home page ARIS Home page MINFILE Search page Property File Search

MINFILE Record Summary	Print Preview PDF SELECT REPORT Vindow
MINFILE No 082M 025	File Created: 24-Jul-85 by BC Geological Survey (BCGS)
XML Extract/Production Report/Inventory Report	Last Edit: 11-Dec-89 by Larry Jones(LDJ)

SUMMARY

		NMI	082M4 Aq1
Name	HOMESTAKE (L.827), HOMESTAKE MINE, KAMAD	Mining Division	Kamloops
	5 80 B	BCGS Map	082M011
Status	Past Producer	NTS Map	082M04W
Latitude	51° 06' 40" N	UTM	11 (NAD 83)
Longitude	119º 49' 44" W	Northing	5665987
		Easting	301989
Commodities	Silver, Lead, Zinc, Gold, Copper, Barite, Mica	Deposit Types	G06 : Noranda/Kuroko massive sulphide Cu-Pb-Zn
Tectonic Belt	Omineca	Terrane	Kootenay

Capsule Geology

The Homestake deposit is hosted by quartz-talc-sericite schists, sericite-quartz phyllite and sericite-chlorite-quartz phyllite derived from felsic to intermediate volcanic rocks (Unit EBA) of the Lower Cambrian and older(?) to Mississippian Eagle Bay Formation. The rocks are overlain by intermediate to felsic volcanic and volcaniclastic rocks (Unit EBF) which hosts the Rea Gold deposit (082M 191), 4 kilometres north. These units are overlain by metasedimentary rocks consisting of argillites, siltstones and grits, which are structurally overlain, to the east by mafic volcanic rocks (Unit EBG) (see Map 56 for unit descriptions).

The deposit lies on the southern limb of a northwest trending, tight, overturned syncline. An east dipping thrust fault is inferred to separate the felsic to intermediate metavolcanics and the more mafic metavolcanics to the east.

Several barite lenses with variable amounts of sulphides occur near the top of a bleached, rusty-yellowish weathered zone of pyritic sericite-quartz schist interpreted to be a highly altered, felsic tuff. The schistosity and compositional layering dip at shallow to moderate angles to the northeast.

The main mineralized areas occur as two tabular horizons separated by 4 to 5 metres of schist. The largest, called the "barite bluff", is 5 to 6 metres wide on surface and contains most of the sulphides. A lower horizon, 1 to 2 metres thick, is banded with only minor sulphides. Underground, the barite-sulphide lenses have been traced several hundred metres.

The main horizon consisting of massive to banded barite, metallic minerals and quartz-sericite are cut by veins and lenses of quartz. The metallic minerals include tetrahedrite, galena, sphalerite, pyrite, chalcopyrite, argentite, native silver and trace ruby silver and native gold. The bayle-basemetal deposit has an extremely large sericite mica envelope.

Several small sulphide lenses, known as the Victory Group, were intersected by old workings at 600, 1700 and 2100 metres respectively, southeast of the Homestake deposit (Property File - Stevenson, 1936b).

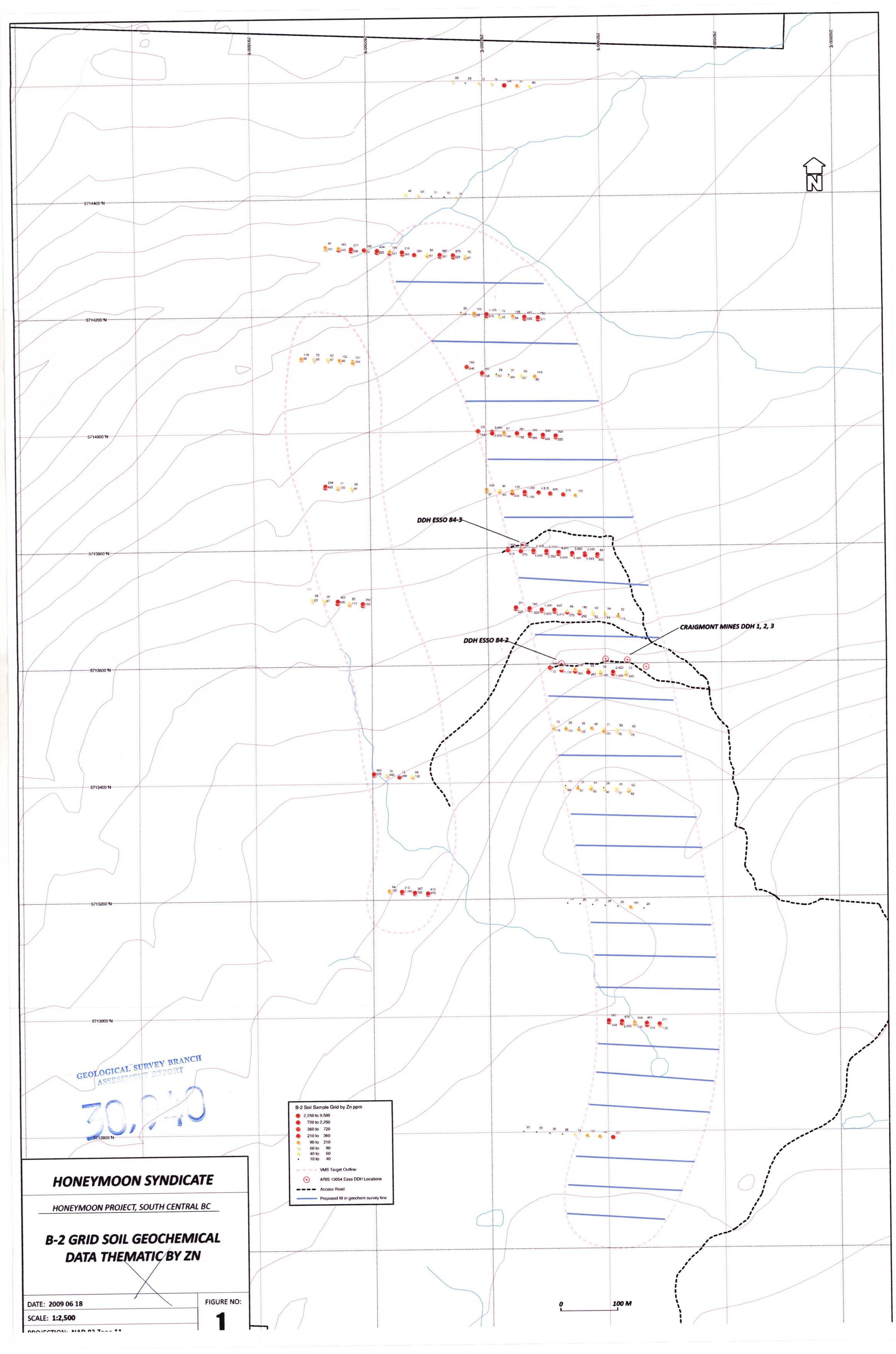
Twelve hundred metres northwest of the Homestake deposit, old workings intersected several conformable quartz lenses with pyrite, chalcopyrite, galena and sphalerite.

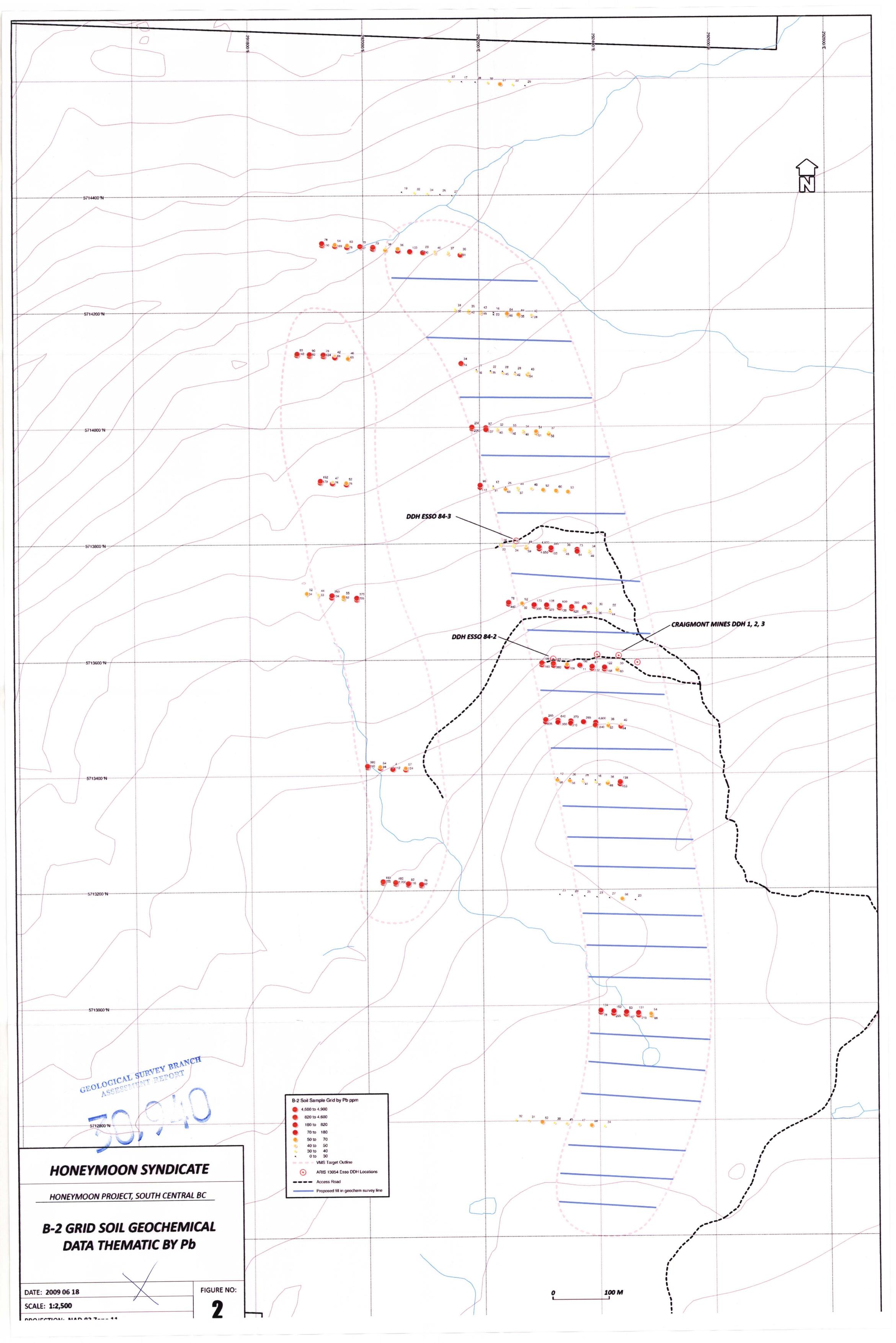
These showings were known as the Silver King and Silver Queen (Minister of Mines Annual Report 1936).

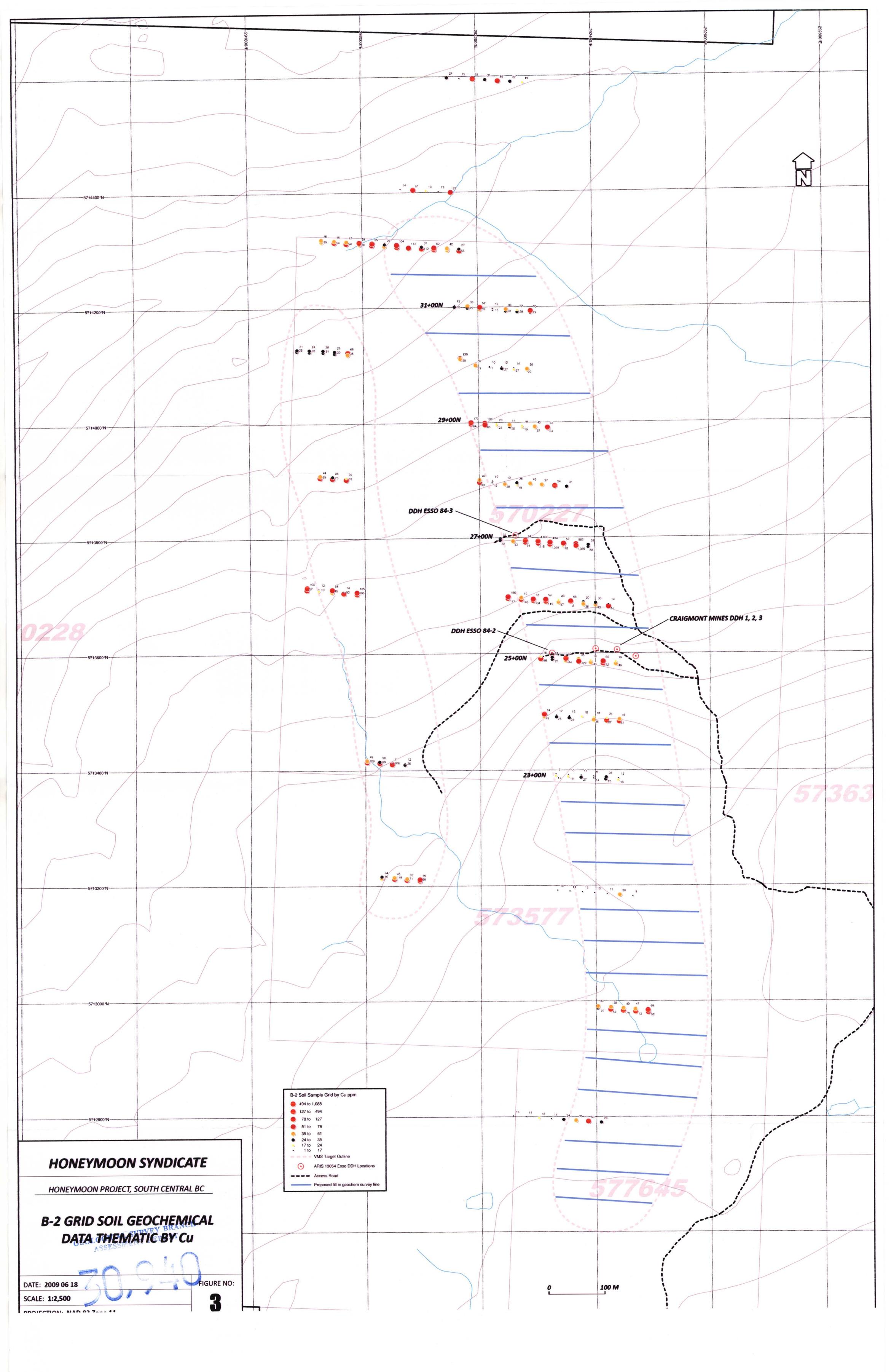
Bands, up to 600 metres wide, of sericite and quartz-sericite extend for up to 7 kilometres from Squaam Bay northwest. The sericite schist is fine-grained, fissile and weathers yellow due to ferric sulphate coating. Nodules of augen-like quartz give the rock a mottled appearance (Z.D. Hora, personal communication, 1990). X-ray diffraction analyses in 1987, by the Ministry of Energy, Mines and Petroleum Resources found talc to be a component in a number of samples of quartz-sericite schist. This deposit is a major potential sericite-mica resource in British Columbia.

Probable reserves are 249,906 tonnes grading 226.6 grams per tonne silver, 36.7 per cent barite, 0.28 per cent copper, 1.24 per cent lead, 2.19 per cent zinc and 0.58 grams per tonne gold (Statement of Material Facts 06/06/86, Kamad Silver Company Ltd.). Caving occurs in unsupported ground. Test milling in 1981 was completed for flow sheet design.

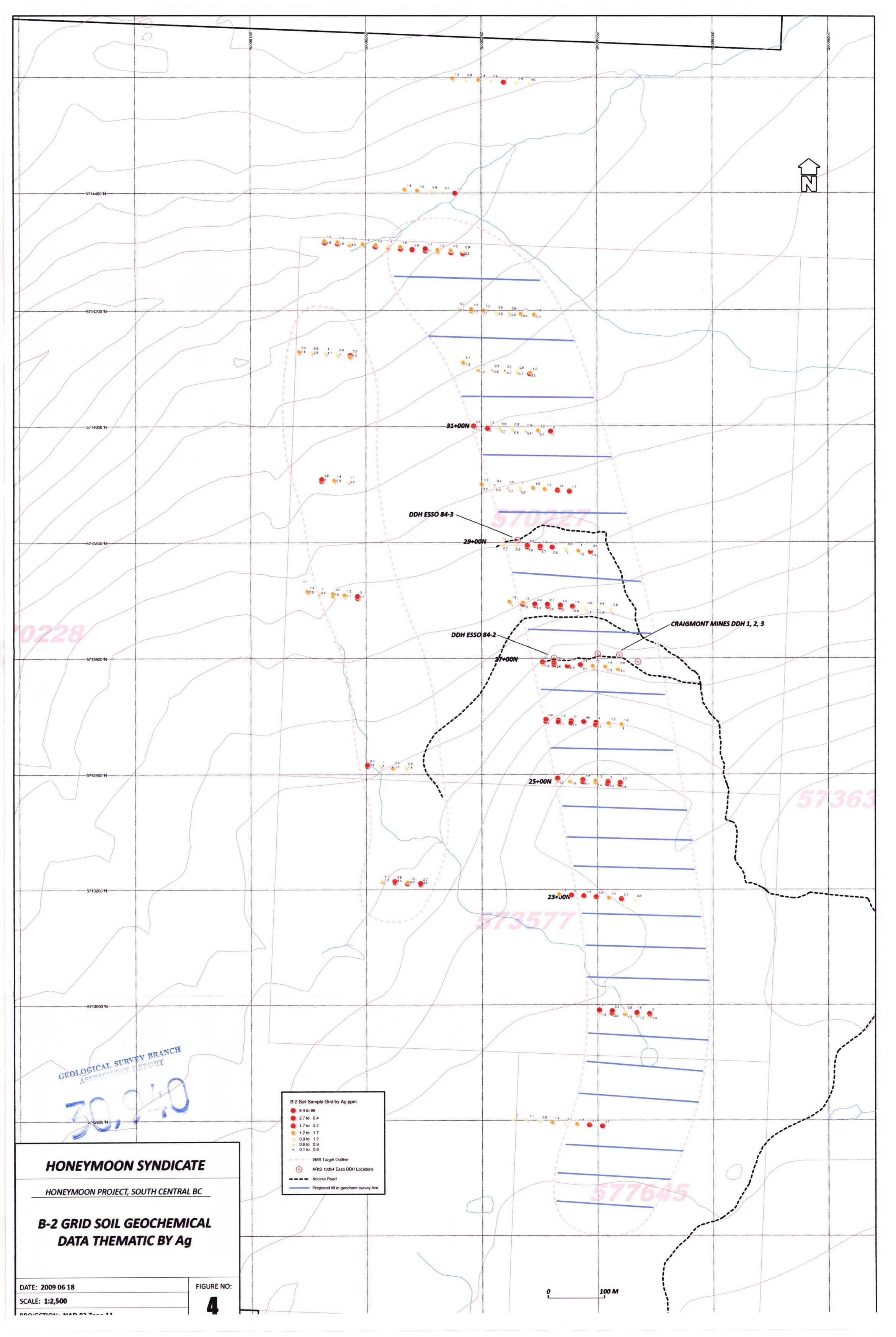
The large sericite envelope of the deposit represents a metamorphosed alteration zone that is of potential interest as a source of mica and may contain substantial reserves of fine-grained muscovite within the sericite schist.

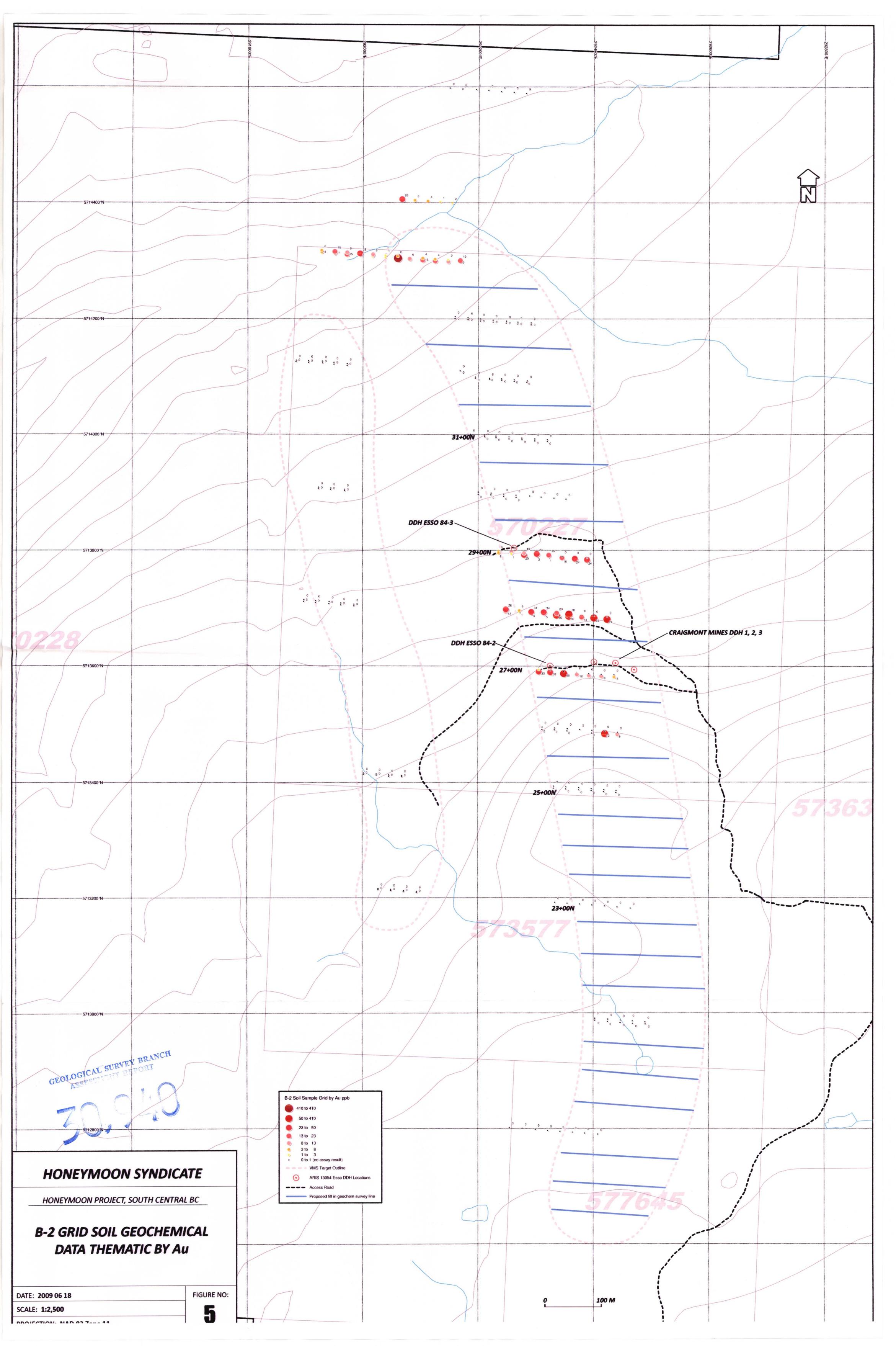

Bibliography EM FIELDWORK 1998, pp. 297-306

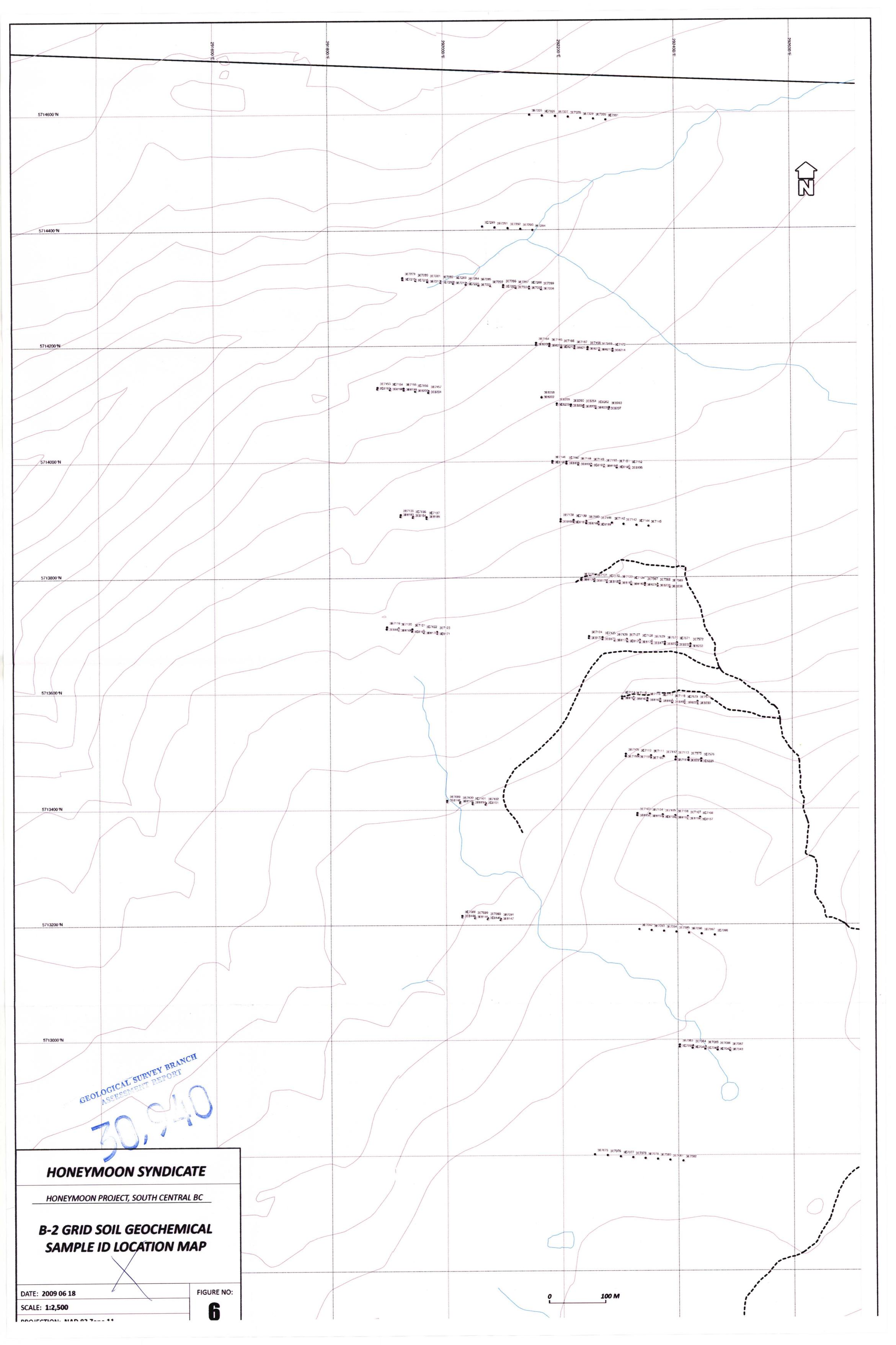

EMPR AR 1893-1068-1069; 1894-751; 1895-696; 1897-575; 1902-191; 1913-208; 1917-221-223,236; 1918-236; 1922-147; 1923-170; *1924-154-157; 1925-171; 1926-185; *1927-201-204,403; 1929- 218; 1935-A24,G46; *1936-D32-36,G48; 1937-A35; 1941-24,58; 1942-57; 1943-61; 1947-203; 1964-99 EMPR ASS RPT *2915 EMPR FIELDWORK 1978, pp. 36-37; 1979, pp. 28-36; 1984, pp. 67-76; 1985, pp. 59-68 EMPR GEM 1969-234; 1970-317; 1971-437; 1972-86; 1973-114; 1974-96 EMPR MAP 56; 65 (1989) EMPR OF 1988-19, p. 69; 1992-1; 1992-9; 1998-9; 1998-10; 1999-2; 1999-14; 2000-31 EMPR PF (Richmond, A.M. (1932): Barite in British Columbia, Non- Metallic Mineral Investigations Report No. 1, pp. 13-14; *Stevenson, J.S. (1936b): Special Report, Victory Group: *Stevenson, J.S. (1936c): Special Report, Silver King and Silver Queen Group; *Goring, A.W. (1974): Private Report on Homestake Mine) EMR MIN BULL 223 B.C. 70 EMR MP CORPFILE (Kamloops Homestake Mines, Limited; Allied Mines Ltd.; Taylor (Bride River) Mines, Limited; Kamad Silver Co. Ltd.; Canadian Reserve Oil and Gas Ltd.) GSC MAP 48-1963; 5320G GSC OF 637 GSC P 91-1A, pp. 27-31 GSC SUM RPT 1894, p. 21A; *1921, Pt. A, pp. 103-104 CANMET IR 493; 711; 774 CMH 1983-84, p. 181 FIN POST Survey of Mines (1963), p. 81 GCNL #271, 1969; July 22, 1971; Nov.29, 1978; #132, 1979; #244, 1985; #206, 1989 N MINER Dec.25, 1980; Dec.9, 1985; Nov.27, 1989 Dickie, G.J., Preto, V.A. and Schiarizza, P. (in preparation 1986): * Mineral Deposits of the Adams Plateau-Clearwater Area Preto, V.A. and Schiarizza, P. (1985): *Geology and Mineral Deposits of the Adams Plateau-Clearwater Region in GSA Cordilleran Section Meeting May 1985, pp. 16-1 to 16-11


Audit trail list of other versions of this MINFILE occurrence

COPYRIGHT DISCLAIMER PRIVACY ACCESSIBILITY


Insert Maps For 30940 HERE





TECHNICAL ASSESMENT REPORT: HONEYMOON PROJECT Verification Geochemical Survey on the JOSEPH (B2) Target GIS Compilation, Geochemical Survey on the McCARTHY Target

KAMLOOPS MINING DIVISION BRITISH COLUMBIA

NTS 082M051 & 092P060

UTM Zone 10, NAD 83 5713600N 705500E

Prepared for:

Honeymoon Syndicate Ltd. & Black Mountain Mining Corp. C/O Maitland and Company

 $\mathbf{B}\mathbf{Y}$

James Thom, M.Sc.

December 12, 2009

Contents

1.0 SUMMARY	4
2.0 INTRODUCTION	7
2.1 Property Description and Location	7
2.2 Access, Climate, Local Resources and Physiography	7
3.0 HISTORY	9
3.1 Regional Exploration History	9
3.2 History of Exploration, Honeymoon Project Claim Group	9
3.2.1 JOSEPH	9
3.2.2 McCARTHY	11
3.2.3 HONEYMOON	14
4.0 GEOLOGY	15
4.1 Regional Geology	15
4.2 Property Geology	15
5.0 2009 EXPLORATION PROGRAM	17
5.1 JOSEPH Soil Geochemical Survey	17
5.2.1 Ag Anomalies (Figure 6)	18
5.2.2 Cu anomalies (Figure 7)	18
5.2.3 Pb anomalies (Figure 8)	19
5.2.4 Zn anomalies (Figure 9)	19
5.2 COMPILATION WORK: Teck – 1992 & 1993	19
6.0 CONCLUSIONS & RECOMENDATIONS	21
7.0 REFERENCES	22
8.0 Statement of Qualifications	24
9.0 STATEMENT OF COSTS	25

LIST OF FIGURES

FIGURE 1: Location map	A1
FIGURE 2: Project area map showing tenure numbers	A1
FIGURE 3: MINFILE / Index Map	
FIGURE 4: Geology Map	A1
FIGURE 5: JOSEPH (B2) Zone 2009 Geochem Location	A1
FIGURE 6: JOSEPH (B2) Zone Ag Thematics	A1
FIGURE 7: JOSEPH (B2) Zone Cu Thematics	A1
FIGURE 8: JOSEPH (B2) Zone Pb Thematics	A1
FIGURE 9: JOSEPH (B2) Zone Zn Thematics	A1
FIGURE 10: McCARTHY North Cu Thematics	A1
FIGURE 11: McCARTHY North Pb Thematics	A1
FIGURE 12: McCARTHY North Zn Thematics	A1
FIGURE 13: McCARTHY North Zn Thematics	A1
FIGURE 14: McCARTHY South Cu Thematics	A1
FIGURE 15: McCARTHY South Pb Thematics	A1
FIGURE 16: McCARTHY South Zn Thematics	A1
FIGURE 17: McCARTHY South Ag Thematics	A1

APPENDIX 1. Figures

.

APPENDIX 2. 2009 JOSEPH detailed-grid soil locations / Analytical Certificates APPENDIX 3. Compilation Work: Soil Location and Geochem

1.0 SUMMARY

This report describes an assessment work undertaken during June 1st – July 29th 2009 on the Honeymoon Property on behalf of Black Mountain Mining Corp.

The property is located in the Adams Plateau – Clearwater exploration area. The property is an irregular shaped claim block comprising 17 contiguous mineral claims approximately 15 kilometres south of Clearwater, south central British Columbia. The property covers an area of 20.36 km², which covers the known mineral occurrences JOSEPH, HONEYMOON and McCARTHY. All mineral occurrences are categorised as MINFILE prospects. However, this technical report is restricted to an evaluation of the technical data related to McCARTHY (Minfile No.082M 194) and a field investigation of the mineral occurrence known as JOSEPH (Minfile No.082M 197) – also referred to as the B2 target.

Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area overlies a north to northwest trending package of Fennell Formation (Slide Mountain Terrane) volcanic and sedimentary rocks cut by a series of complex thrust faults. The Fennell formation has 23 minfile occurrences consisting of Cypress-type massive sulphide Cu (Zn) mineralization, Noranda/Kuroko-type massive sulphide Cu-Pb-Zn mineralization, and Ag-Pb-Zn+/-Au vein mineralization. The Honeymoon property is of interest as a host to all 3 styles of mineralization.

JOSEPH - Noranda/Kuroko-type massive sulphide Cu-Pb-Zn mineralization

According to the Minfile database Esso Minerals identified stratabound Pb-Zn mineralization by following up strong soil geochemical anomalies with a drill program.

In 1983, Esso Minerals completed a series of soil geochemical surveys that resulted in the delineation of an 1800 meter long, 50 to 100 meter wide geochemical anomaly (Everett and Cooper, 1983 - also referred to as Anomaly B). This anomaly was defined by a series of 100 to 200 meter spaced profile lines with a sample spacing of 25 meters.

Esso Minerals carried out a drilling program to follow up the soil geochemical anomalies. The best drill hole intersected 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium, 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Marr. 1984).

Esso Minerals concluded that the mineralization appears to be stratabound. Based on the stratabound classification proposed by Esso, the reported presence of barite associated with the mineralized zone and the extensive strike length of the geochemical anomaly it is concluded that the B2 Grid has potential to host mineralization similar to

that developed at the Samatosum Mine and Homestake deposits located approximately 50 kilometers to the south.

Based on the presence of significant widths of mineralization intersected by the limited drilling completed by Esso Minerals (2 drill holes) and Craigmont Mines (3 shallow holes) within a restricted part of the 1,800 meter strike length of the anomaly and the variable thicknesses of overburden cover reported by Esso and a detailed evaluation of the geochemical data reported by Esso Minerals a verification soil geochemical survey was warranted.

McCARTHY - Cypress-type massive sulphide Cu (Zn) mineralization

According to the Minfile database, exploration work carried out by Martin Peter, in early 1992, identified massive sulphide mineralization in a hand trench, 50 metres north of the original Kerr-Addison showing. Teck Exploration optioned the claim group later that year and carried out a program of magnetometer, soil and geological mapping surveys, and trenching. The best results came from the discovery hand trench and trench C: results from the hand trench were 6.6 metres at 1.1 per cent copper, including 1.0 metre at 2.24 per cent copper and 0.315 gram per tonne gold; and results from trench C were 11.4m at 1.3% Cu (Farmer, 1992).

During Teck explorations' option of the property 8 trenches were dug along the projected strike of mineralization to the north and south of the main showing covering strike length of 200m. Mapping of the old showing as well as in the new trenches determined that massive sulphide mineralization occurs as brecciated fragments within a large fault zone. The massive sulphides are locally very copper-rich and enhanced in gold. The best results from Teck's trenching program were from Trench C which resulted in a 11.4m wide zone with an average Cu grade of 1.3%. Trench C is located ~60m north of Martin Peter's Hand Trench. Teck Explorations' interpretation of the available data suggests that an original syngenetic massive sulphide lens has been brecciated by later faulting.

Teck exploration concluded that potential may exist along the mineralized horizon outside of the fault zone for additional massive sulphide mineralization. Based on the strataform classification proposed by Teck Exploration, the reported presence of magnetic anomalies associated with the mineralized zone it is concluded that the McCARTHY zone has potential to host mineralization similar to that developed at the CHU CHUA deposit located approximately 17 kilometers to the south.

Based on the presence of significant widths of mineralization uncovered by the trenching completed by Teck Exploration (10 trenches and 4 test pits) it was concluded that a detailed GIS compilation of the geochemical data reported by Teck Exploration was warranted.

The assessment work carried out between June 1st and July 29th, 2009 consisted of compiling a GIS database for the McCARTHY area including digitizing the UTM locations of the geochemical samples collected by Teck Exploration (Assessment Report No. 22686) and entering the geochemical data for zinc, lead, copper, silver and gold into an xls database. The assessment work carried out on the JOSEPH area included; collecting 69 soil samples, submitting these samples for chemical analysis, digitizing the UTM locations of these samples, and presenting the geochemical soil samples thematically.

Based on the geological work and computer modeling carried out during 2009 it is recommended that the Honeymoon Syndicate complete a new geochemical survey of the McCARTHY target using a maximum line spacing of 25 meters and a sample spacing of 10 meters. A vertical soil profile geochemical analysis and deep auger based soil surveys are recommended in this area. The geochemical soil survey carried out during 2009 in the JOSEPH area appears to confirm the 1983 Esso Minerals soil anomaly. The mineralized zone was found to be broader than previously recognized. It is recommended that the 2009 soil survey lines be extended to cover an even wider area and add more lines along strike of mineralization. A deep auger based soil survey is recommended in this area.

2.0 INTRODUCTION

This report has been written in order to satisfy assessment requirements. This report describes the geology, a brief exploration history and the program of exploration undertaken during June 1st to July 29th 2009 on the Honeymoon claim group.

The 2009 fieldwork on the JOSEPH (B2) area was carried out by the author of this report and one field assistant. The GIS work on the McCARTHY area was completed by the author and GIS software specialist.

All UTM locations given are from the NAD83 ZONE 10 and 11, projection. The property crosses the zone 10 and zone 11 UTM boundaries and care was taken when crossing the boundary for the GPS to recalibrate to the new zone.

2.1 Property Description and Location

The Honeymoon Syndicates' Honeymoon Project consists of an irregular shaped claim group located in south-central British Columbia near Clearwater, which is approximately 110 km north of Kamloops along provincial highway 5 [Figure 1]. The centre of the property is at approximately UTM Zone 10 (NAD 83) at approximately 5713600m North and 705500m East. The Honeymoon claim group consists of a total of 17 contiguous mineral claims covering 20.36 km²) in the Kamloops Mining Division [Table 1- Figure 2].

2.2 Access, Climate, Local Resources and Physiography

Access to the property is by road on the paved Provincial Highway 5, driving 110 kilometres north from Kamloops, along the north Thompson River to Clearwater. From Clearwater the west side of the property can be accessed by a road on the eastside of the Thompson River heading south along the Dunn Lake FSR. Just before the Queen Bess mine a road heading east to the radio tower near Axel Lake pass through the McCARTHY zone. The east side of the property can be accessed by the Granite Mountain FSR, which is accessed via the Birch Island Lost Creek road 10km east of Clearwater.

Climate in the Clearwater area is typical of the Shushwap Highlands. Climates here range from sub-alpine in the mountains to a semi-arid, more temperate, continental climate. Summer is normally warm and dry and winter is moderate to very cold and dry.

The property is in the Shuswap Highlands physiographic region and encompasses a rugged, hilly upland. The mountain tops range from 1830 to 2130 meters elevation. The slopes are thick with tall, close spaced fir and spruce forest. Open areas are thick with buck brush and similar vegetation. Swamps and small lakes dot the uplands in virtually every depression. The mosquito population is generally very healthy and voracious. Close bush and rough slopes make travel difficult off the logging roads and cut lines.

Table 1. Honeymoon Claim Group

OWNER	OPERATOR	TENURE #	SIZE (Ha)	Issue Date	Good to Date
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.				
Carl Von Einsiendel	Honeymoon Syn.	· · · · · · · · · · · · · · · · · · ·			
Carl Von Einsiendel	Honeymoon Syn.	570147	20.11	2007/nov/16	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	570139	60.32	2007/nov/16	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	573577	40.22	2008/jan/12	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	570228	221.15	2007/nov/18	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	593178	160.89	2008/oct/20	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	570109	20.11	2007/nov/15	2010/aug/01
Carl Von Einsiendel	Honeymoon Syn.	594580	191.4	2008/nov/19	2010/aug/01

í

3.0 HISTORY

Where no specific reference is listed, information has been taken from the British Columbia Minister of Mines Annual reports, ARIS reports or from the BC Geological Survey Branch Mineral Inventory File (MINFILE).

3.1 Regional Exploration History

The Honeymoon Project is located within the Adams Plateau – Clearwater exploration area, an area with numerous known mineral occurrences (183 mineral occurrences) and significant past producers (17 past producers). In the Adams Plateau – Clearwater exploration area copper-lead-zinc and uranium mineralization predominates. Mineralization is composed of galena, sphalerite, pyrrhotite, chalcopyrite, pyrite, argentite, tetrahedrite, and arsenpyrite. Six types of mineralization are common in the area: 1] Noranda/Kuroko-type massive sulphide Cu-Pb-Zn mineralization (62 occurrences); 2] Ag-Pb-Zn+/-Au vein mineralization (58 occurrences); 3] Sedimentary exhalative Zn-Pb-Ag (21 occurrences); 4] Cu-skarn (5 occurrences); 5] Volcanic hosted U (5 occurrences); and 6] Cypress-type massive sulphide Cu (Zn) mineralization (3 occurrences).

A total of 454,500 tonnes were mined intermittently between the early 1900's and 1992 from the Adams Plateau – Clearwater area. Recovery totalled 14116839 ounces of silver, 55411 ounces of gold, 1709105 lbs of copper, 4705276 lbs of lead, and 4860846 lbs of zinc. Grades calculated from reported mined and recovered values range between 3 to 280 oz/tonne Ag, 0.03 to 0.80 oz/tonne Au, 1.8 to 17% Zn, 1.4 to 36% Pb, and 0.1 to 4.4% Cu. The weighted average grades are 20 oz/tonne Ag, 0.12 oz/tonne Au, 2.15% Zn, 1.16% Pb, 0.83% Cu. The top three past producing mines from the Adams Plateau – Clearwater exploration area were the HOMESTAKE (L.827), WINDPASS and SAMATOSUM mines. These past producers are of the first and second type of mineral deposits described above.

3.2 History of Exploration, Honeymoon Project Claim Group

Exploration on the Honeymoon Claim Groups dates back to 1979. There are 3 known mineral occurrences on the property (Figure 3). The modern exploration history that has occurred with each of these occurrences is discussed below.

3.2.1 JOSEPH (Also referred to as the B2) target

In 1979 Craigmont Mines (Fraser and Dvorak, 1979) completed airborne electromagnetic, magnetic, and resistivity surveys covering all of the Fennell formation between Barriere and Clearwater, B.C., including the Honeymoon claims area. Several bands of conductors and magnetic were delineated. In 1980 and 1981 Craigmont Mines followed up EM conductors identified by the 1979 airborne geophysical survey

(Vollo, 1980 and 1981). The 5 holes drilled by Craigmont in 1980 and 1981 intersected (despite poor recovery) one 3.3 meter interval that averaged 3.06% Pb, 0.25% Zn and 1.90 oz/ton Ag.

Esso Resources optioned the project area in 1982. During 1983 Esso Mineral completed a geochemical survey covering various parts of the current Honeymoon claim group. According to Assessment Report No.11381 a geochemical survey comprising 228 sample assays delineated an 1800 meter long long, 50 to 100 meter wide geochemical anomaly (also referred to as Anomaly B or JOSEPH occurrence). This anomaly was defined by a series of 100 to 200 meter spaced profile lines with a sample spacing of 25 meters.

According to Esso Minerals the strongest geochemical response occurs in the central part of the anomaly (between lines 26+00N and 31+00N). Extensive glacial cover to the north appears to subdue copper, lead, silver and gold values. Zinc is reportedly the only anomalous element (285 to 3,440 ppm) within (the northern part of) this zone. Anomalous values estimated by Esso for Anomaly B are listed below:

Copper 115 - 1,085 ppm

Lead 147 - 1,840 ppm (highs to 4,900 ppm)

Zinc 263 - 5,500 ppm (highs to 9,500 ppm)

Silver 2.0 - 6.9 ppm

Gold 20 - 94 ppb (Note: Esso data shows a value of 410 ppb at the north end of the anomaly)

Data for the geochemical surveys reported by Esso Minerals included a series of maps which reported sample assays from both "B" and "C" horizon samples. According to the survey description included in Assessment Report 11381 samples were collected from both the "B" and the "C" horizons wherever overburden thickness was believed to be in excess of 5-10 meters.

During 1984 Esso completed two drill holes in the central part B2 grid area referred to as DDH 84-02 and 84-03. According to BC Minfile technical data drilling intersected 9.2 metres of 2.39 per cent lead, 1.05 per cent zinc, 1.27 per cent barium, 0.014 per cent copper, 30.9 grams per tonne silver and 0.07 grams per tonne gold, within which occurred 2.7 metres of 9.2 per cent lead, 1.56 per cent zinc, 2.45 per cent barium, 0.02 per cent copper, 93.94 grams per tonne silver and 0.17 grams per tonne gold (Marr, 1984). It is interesting to note that the log for DDH 84-02 indicates that significant barite mineralization was identified over a 23.1 meter interval between 52.8 and 75.9 meters.

There are 5 assessment reports on the ARIS database recording exploration work carried out in the Joseph area. This current report will make the 6th modern exploration program carried out in this area. The work carried out by each of these 6 exploration programs is summarized in Table 2.

Operator	Geochemistry	Geophysics	Trench	Drilling	Reference
Craigmont Mines		Air Mag, EM & Res: 2274 km			Fraser & Dvorak (1979) ARIS: 7659
Craigmont Mines	8 rocks			10 holes: 821 m	Vollo (1980) ARIS: 8530
Craigmont Mines	48 rocks			6 holes: 565m	Vollo (1981) ARIS: 9716
Esso Resources Canada	1305 soils	Ground Mag & EM: 76 km			Everett & Cooper (1983) ARIS: 11381
Esso Resources Canada	32 rocks			2 holes: 173m	Marr (1984) ARIS: 13054
Honeymoon Syndicate	69 soils				Thom (2009) Current Report

Table 2. Summary of Joseph Area Exploration History

3.2.2 McCARTHY

Exploration in the McCARTHY area also began with the 1979 Craigmont Mines airborne electromagnetic, magnetic and resistivity surveys (Fraser and Dvorak, 1979). In 1982, Esso Resources Canada carried out a prospecting and soil geochemical survey covering EM and magnetic anomalies from the Craigmont Mine airborne geophysical survey (Everett, 1983).

The 1982, Esso Resources Canada geochemical survey comprised of 223 samples (Everett, 1983). A number of erratically distributed anomalies were identified during Esso Resources Canada 1982 soil geochemical survey. According to Everett (1983) soil geochemistry might have been affected by the deep overburden. Overburden depths are reported to be from 1 to 50 meters.

According to the soil geochemical map produced by Everett (1983) the strongest geochemical response occurs just south of the switch back on the road to the microwave tower. Background values estimated by Everett (1983) are listed below:

Copper 20 - 40 ppm

Lead 15 - 30 ppm

Zinc 60 - 120 ppm

Silver 0.4 – 0.8 ppm

In 1988, Kerr Addison Mines acquired the McCARTHY area by staking. According to Whalen et al. (1988) the impetus for staking this area was the geological similarities between the staked ground and the Windpass mine located 4 kilometres south of their staked claim group. Kerr Addison Mines carried out a exploration program focussed on locating Windpass-type veins and to sample veins, gossans and outcrops with visible mineralization.

The 1988, Kerr Addison Mines prospecting field work resulted in 137 rock samples and 14 panned concentrate samples taken for geochemical analyses. It was during this exploration effort in which the original McCARTHY occurrence was found. The discovery was described by Whalen et al. (1988) as a shear zone mineralized with pyrite-pyrrhotite-chalcopyrite. According to Whalen et al. (1988) about 4 metres of the shear zone was exposed along an old skid road on a ridge but both sides of the shear were under deeper overburden. They also noted that along strike this material has been picked up in outcrop and frost heaved fragments for 100 - 150 metres. Three samples returned 0.19%, 0.21%, and 0.31% Cu.

In 1992, Teck Corporation optioned the McCarthy Claims from Martin Peter. According to Farmer (1992) earlier that year, before Teck optioned the claims, Martin Peter had carried out a prospecting style magnetometer survey centered on the area of the Kerr Addison showing. Martin Peter hand trenched some of the resulting magnetic anomalies and discovered more significant massive sulphide mineralization 50 meters north of the Kerr Addison showing.

The purpose of Tecks exploration program in 1992 was to better define and expose Martin Peter's discovery. Teck accomplished this goal by carrying out grid-based geological mapping, a ground magnetic survey, a geochemical soil survey and, trenching.

The ground magnetic survey completed by Teck was a detailed survey with readings taken every 12.5m and a line spacing of 50m. A total of 8.4 linear kilometres was surveyed by Teck. The survey covered 2 areas; a north grid that is centered on the Kerr Addison and Martin Peter occurrences and a south grid centered on the geochemical anomalous area found by Esso Resources Canada in 1982. Both survey areas registered magnetic anomalies associated with known mineralization. According to Teck detailed ground magnetic surveys can identify mineralization in the McCARTHY area,

however, due to the erratic distribution of mineralization the magnetic surveys produce a complex signature.

The soil geochemical survey consisted of 352 samples, covering both north and south grids. Samples were taken at 25m intervals along the same 50m spaced lines. According to Farmer (1992) the anomalous geochemical signatures from the soil survey are not associated with known mineralization (Kerr Addison and Martin Peters occurrences). Farmer (1992) claims, that the lack of correlation between soil anomalies and known bedrock mineralization is likely resulting from the glacial outwash nature of the soil. Anomalous thresholds determined from a statistical inspection of the soil geochemical values by Farmer (1992) are listed below:

Copper 100 ppm

Gold 20 ppb

Silver 1.0 ppm

The impetus for the Teck 1992 trenching program was the geophysical signatures associated with the known bedrock mineralization and not the soil geochemical survey. According to Farmer (1992), four trenches were dug along the projected strike of mineralization to the north and south of the main showing. Mineralization was observed in three out of four of these trenches. The best results from Teck's trenching program were from Trench C which resulted in a 11.4m wide zone 1.3% Cu. Trench C is located ~60m north of Martin Peter's Hand Trench. Martin Peter's discovery hand trench was also sampled results were 6.6 metres at 1.1 per cent copper.

There are 5 assessment reports on the ARIS database recording exploration work carried out in the McCarthy area. The work carried out by each of these 5 exploration programs is summarized in Table 2.

Table 9, Sulli	nary or mecasur	y Alea Exploi		<u>' y</u>	
Operator	Geochemistry	Geophysics	Trench	Drilling	Reference
Craigmont Mines		Air EM & Mag: 2274km			Fraser and Dvoral (1979) ARIS: 7659
Esso Resources Canada	223 soils				Everett (1983) ARIS: 11968
Kerr Addison Mines	302 rocks				Whalen et al. (1988) ARIS: 18582
Teck Exploration	352 soils 44 rocks	Ground Mag: 8.4km	4 Trenches 1 Test Pit		Farmer (1992) ARIS: 22686
Teck Exploration	8 rocks	Ground Mag: 3.6km	6 Trenches 3 Test Pit		Farmer (1993) ARIS: 22916

Table 3. Summary of McCarthy Area Exploration History

3.2.3 HONEYMOON

Exploration in the McCARTHY area also began with the 1979 Craigmont Mines airborne electromagnetic, magnetic and resistivity surveys (Fraser and Dvorak, 1979). In 1988, Kerr Addison Mines acquired the HONEYMOON area by staking. According to Whalen et al. (1988) the impetus for staking this area was the geological similarities between the staked ground and the Windpass mine located 4 kilometres south of their staked claim group. Kerr Addison Mines carried out a exploration program focussed on locating Windpass-type veins and to sample veins, gossans and outcrops with visible mineralization.

The 1988, Kerr Addison Mines prospecting field work resulted in 137 rock samples and 14 panned concentrate samples taken for geochemical analyses. It was during this exploration effort in which the original HONEYMOON occurrence was found. According to the published technical information contained in the Minfile database "Quartz veins, ranging in thickness from about two centimetres to greater than six metres, contain chalcopyrite, pyrite, galena, sphalerite, some bornite and locally coarse native gold. The veins strike north and have vertical dips. The veins are considered to be mesothermal and are parallel to and controlled by the north trending structural fabric of the enclosing volcanic and sedimentary rocks of the Fennell Formation... The best assay from [HONEYMOON] yielded 0.94 gram per tonne gold, greater than 200 grams per tonne silver, over 1 per cent copper, over 1 per cent lead and 0.8130 per cent zinc."

4.0 GEOLOGY

4.1 Regional Geology

The Honeymoon Project is situated within the Adams Plateau - Clearwater Exploration area which lies near the southern end of the Omineca Crystalline Belt, one of the five morphological belts of the Canadian Cordillera. The Omineca belt refers to variably deformed and metamorphosed rocks of continental affinity, that are exposed east of Mesozoic arc and back-arc sequences (i.e., Intermontane belt) and west of deformed Paleozoic continental margin sedimentary rocks (i.e., Foreland belt).

The Adams Plateau – Clearwater Exploration area includes the Fennel Formation of the Slide Mountain Terrane and the Eagle Bay assemblage of the Kootenay Terrane.

Eagle Bay Assemblage

The Eagle Bay assemblage, as described by Schiarizza and Preto (1987), consists of deformed and metamorphosed (greenschist to lower amphibolite facies) Lower Cambrian to Mississippian sedimentary and volcanic rocks. They are intruded by Upper Devonian-Lower Mississippian foliated granite to diorite sills and dikes and by Middle to Upper Jurassic and Cretaceous hornblendebiotite granite to granodiorite, biotite-muscovite granite and biotite monzogranite of the Raft and Baldy batholiths; and they are overlain by Eocene volcanic rocks of the Kamloops Group.

Fennel Formation

The Fennell Formation, as by Schiarizza and Preto (1987) and Schiarizza (1989) divided it into lower and upper structural divisions. The lower structural division consists of a heterogeneous assemblage of bedded chert, gabbro, diabase, pillow basalt, clastic sedimentary rocks, and rare quartz-feldspar-phyric rhyolite and conglomerate. The upper structural division comprises primarily pillowed and massive basalts with minor amounts of bedded chert and gabbro.

The Hooneymoon Project lies entirely within the Fennel Formation, which is sandwiched between the Quesnelia Terrane, part of the Intermontane Belt, to the west and the Kootenay Terrane to the east (Figure 4).

4.2 Property Geology

The Hooneymoon Project straddles the lower and upper structural divisions of the Fennell Formation. The basalts, of the upper division, are aphanitic to fine-grained medium to dark grey or green in colour, and rarely display a tectonic foliation. Microscopically, they consist of relict clinopyroxene and plagioclase variably altered to an assemblage of chlorite, actinolite, epidote, leucoxene, titanite, and minor carbonates

and quartz (Schiarizza and Preto, 1987). The diabase and gabbro, of the lower division, are coarser grained than the volcanic rocks, but they have the same composition. Unpillowed and pillowed basalt flows of the upper structural division host the stratabound Chu Chua Cu-Zn-Au-Ag sulphide deposit (Paradis et al. 2006).

5.0 2009 EXPLORATION PROGRAM

5.1 JOSEPH Soil Geochemical Survey

A total of 69 soil samples were collected during the 2009 exploration program. Location of the soil sample stations were determined by GPS and are shown in Figures 5 to 9 and listed in the Appendix 2.

The soil sample stations cover an area around Esso Resources Canada's 1984 and Craigmont Mine's 1980 drill holes (Figure 5). Samples were taken approximately every 10m along three lines with line spacing at approximately 50m. Samples were collected with conventional soil augers. Samples were taken from the B horizon from depths between 40 and 90 cm. All samples collected were submitted to ALS Chemex, of Vancouver, for analysis. The -80 mesh sieved fraction of the soil samples was ground and analyzed for a series of elements by ICP-AES, after being digested in an aqua-regia solution, listed in table 4 (Analytical certificates – Appendix 3).

Element	Element	Element	Element
Ag (ppm)	Co (ppm)	Mn (ppm)	Sr (ppm)
AI (%)	Cr (ppm)	Mo (ppm)	Th (ppm)
As (ppm)	Cu (ppm)	Na (%)	Ti (%)
B (ppm)	Fe (%)	Ni (ppm)	TI (ppm)
Ba (ppm)	Ga (ppm)	P (ppm)	U (ppm)
Be (ppm)	Hg (ppm)	Pb (ppm)	V (ppm)
Bi (ppm)	K (%)	S (%)	W (ppm)
Ca (%)	La (ppm)	Sb (ppm)	Zn (ppm)
Cd (ppm)	Mg (ppm)	Sc (ppm)	

Table 4. Elements analyzed by ICP-AES

Statistical values for Ag, As Ba, Cd, Co, Cu, Pb and Zn are presented in Table 5. Background concentrations as well as weak and strong anomaly concentration cutoffs were established using box plots using this data and that from Everett & Cooper (1983). Defining Q1 and Q3 to be the first and third quartile and IQR to be the interquartile range (Q3 – Q1), the background concentration cutoff is defined as: Background < Q3 + (1.5*IQR); A strong anomaly is defined as: Strong anomaly > Q3 + (3*IQR). A weak anomaly is defined as greater than the background but less than a strong anomaly.

	Ag	As	Ba	Cd	Co	Cu	Pb	Zn
Min	<0.2	3	50	<0.5	1	8	18	28
Average	2.3	31.5	405	6	24	104	879	1253
Background	3.45	-	-	-	_	108	155	308

 Table 5. Soil Geochemical Statistics: JOSEPH Zone

Background and anomalous thresholds could not be defined for As, Ba, Cd and, Co due to the small data set. The 2009 geochemical survey was focused in the anomalous zone and the data set has a large number of highly concentrated metals, which make a statistical derivation of background and anomalous thresholds artificially high.

5.1.1 Ag Anomalies (Figure 6)

There are 5 strong Ag anomalies of the 69 samples taken from the JOSPEH area detailed-grid. These strong Ag anomalies range from 7.7 ppm to 41.5 ppm. There is also 1 weak anomaly in the detailed-grid. There are four Ag anomalies spanning approximately 30m near the center of the most southerly of the three lines. The historical geochemical survey carried out by Esso also shows anomalous Ag in this area. The other strong Ag anomaly is just north-northwest and down slope of this 30m wide Ag anomaly. This area of Ag anomalies covered is also strongly anomalous in Cu, Pb, and Zn.

5.1.2 Cu anomalies (Figure 7)

There are 10 strong Cu anomalies of the 69 samples taken from the JOSEPH area detailed-grid. These strong Cu anomalies range from 168 ppm to 948 ppm. There are also 10 weak anomalies in detailed-grid. There are six Cu anomalies spanning approximately 50m near the center of the most southerly of the three lines. This Cu anomaly is in the same location but is wider than the Ag anomaly. This Cu anomaly is not picked up in the historical geochemical survey carried out by Esso. There is another Cu anomaly on the centre line just north north-west and down slope of this 50m Cu anomaly. The Cu anomaly on the centre line is not as strong as the southerly line. There is a similar Cu anomaly in the geochemical survey carried out by Esso. These two Cu anomalies are likely resulting from the same mineralized horizon. The 2009 soil survey extended the historical geochemical soil survey to the east and west and found Cu anomalies on both flanks of known zone of mineralization. These Cu anomalies likely indicate other mineralized horizons in the JOSPEH area.

5.1.3 Pb anomalies (Figure 8)

There are 13 strong Pb anomalies of the 69 samples taken from the JOSEPH area detailed-grid. These strong Pb anomalies range from 236 ppm to 44700 ppm. There are also 6 weak anomalies in detailed-grid. The same north-northwest trending Cu anomaly is also seen in the Pb results. This Pb anomaly also corresponds well with the historical Pb results from the geochemical survey carried out by Esso. There are also a number of Pb anomalies to the west of this north-northwest trending polymetallic soil anomaly. At this stage it is difficult to determine how many different mineralized horizons are present beneath the soil overburden.

5.1.4 Zn anomalies (Figure 9)

There are 28 strong Zn anomalies of the 69 samples taken from the JOSEPH area detailed-grid. These strong Zn anomalies range from 477 ppm to 30700 ppm. There are also 6 weak anomalies in detailed-grid. The Zn anomalies are much larger and broader then the historical geochemical soil survey carried out by Esso. From the Zn anomalies it does not appear that there are a number of different mineralized horizons, but one broad, approximately 200m, mineralized horizon. It appears that Zn is the most peripheral base metal in this VMS target, and can be used to vector towards a Cu core in these mineralized horizons.

5.2 COMPILATION WORK: Teck – 1992 & 1993

The assessment work carried out on the McCARTHY area of the Honeymoon claim group consisted of a brief property visit, compiling a GIS database for the McCARTHY area including digitizing the UTM locations of the geochemical samples collected by Teck Exploration (Assessment Report No. 22686) and entering the geochemical data for zinc, lead, copper, silver and gold into an xIs database (Figure 10-17 and Appendix 3).

Statistical values for Ag, Cu, Pb and Zn are presented in Table 6. Background concentrations as well as weak and strong anomaly concentration cutoffs were established using box plots using this data and that from Everett & Cooper (1983). Defining Q1 and Q3 to be the first and third quartile and IQR to be the interquartile range (Q3 – Q1), the background concentration cutoff is defined as: Background < Q3 + (1.5*IQR); A strong anomaly is defined as: Strong anomaly > Q3 + (3*IQR). A weak anomaly is defined as greater than the background but less than a strong anomaly.

There are 3 clusters of Cu anomalies near the southwest, northwest and northeast corners of the soil grid that were never followed up by Teck.

	Ag	Cu	Pb	Zn
Min	<0.2	5	1	1
Average	0.3	54	13	85
Background	0.9	105	28	144

Table 6. Soil Geochemical Statistics: McCARTHY Zone

6.0 CONCLUSIONS & RECOMENDATIONS

The geochemical soil survey carried out during 2009 in the JOSEPH area appears to confirm the 1983 Esso Minerals soil anomaly. The mineralized zone was found to be broader than previously recognized. It is recommended that the 2009 soil survey lines be extended to cover an even wider area and add more lines along strike of mineralization. A deep auger based soil survey is recommended in this area.

Based on the geological work and computer modeling carried out during 2009 it is recommended that the Honeymoon Syndicate complete a new geochemical survey of the McCARTHY target using a maximum line spacing of 25 meters and a sample spacing of 10 meters. A vertical soil profile geochemical analysis and deep auger based soil surveys are recommended in this area.

7.0 REFERENCES

Dawson, J.M., 1979. Report on diamond drilling. ARIS: 7758

- Dawson, J.M., 1980. Geological, geochemical and geophysical report on the Foghorn showings. ARIS: 7813
- Everett, C.C., 1983. Geological and geochemical report on Foggy F group (Joseph 19 and 20 mineral claims). ARIS: 11968
- Everett, C.C., Cooper, W.G., 1983. Geochemical and geophysical report on Foggy B, Foggy C, Foggy D Foggy E groups. ARIS: 11381
- Farmer, R. 1992. Assessment report geology, geochemistry, geophysics and trenching on the McCarthy property. ARIS: 22686
- Farmer, R. 1993. Assessment report geophysics and trenching on the McCarthy property. ARIS: 22916
- Fraser, D.C., Dvorak, Z., 1979. Airborne geophysical report. ARIS:7659
- Logan, J.M. and Mann, R.K., 2000, Geology and mineralization in the Adams-East Barriere lakes area, south-central British Columbia, 82M/04: British Columbia Ministry of Energy and Mines, Open File 2000-7, 1:100,000.
- Marr, J.M., 1984. Drilling assessment report on Joseph 84 group (Joseph 5, 7, 9, 11) ARIS: 13054
- Paradis, S., Bailey, S.L., Creaser, R.A., Piercey, S.J. and Schiarizza, P., 2006, Paleozoic magmatism and syngenetic massive sulphide deposits of the Eagle Bay assemblage, Kootenay terrane, southern British Columbia, in Colpron, M. and Nelson, J.L., eds., Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 383-414.
- Schiarizza, P. and Preto, V.A., 1987, Geology of the Adams Plateau-Clearwater-Vavenby area: B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 88 p.
- Schiarizza, P., 1989, Structural and stratigraphic relationships between the Fennell Formation and Eagle Bay assemblage, western Omenica belt, south-central British Columbia: Implications for Paleozoic tectonics along the paleocontinental margin of western North America: M.Sc. thesis, University of Calgary, Calgary, Alberta, 343 p.
- Whalen, D., Angus, S., Daley, F., 1988. Assessment report on a prospecting program covering the Honeymoon 1-16 claims. ARIS: 18582

Vollo, N.B., 1980. Diamond drilling report. ARIS: 8530

Vollo, N.B., 1981. Diamond drilling report on the 82M/12 Foggy and Joseph groups. ARIS: 9716

8.0 Statement of Qualifications

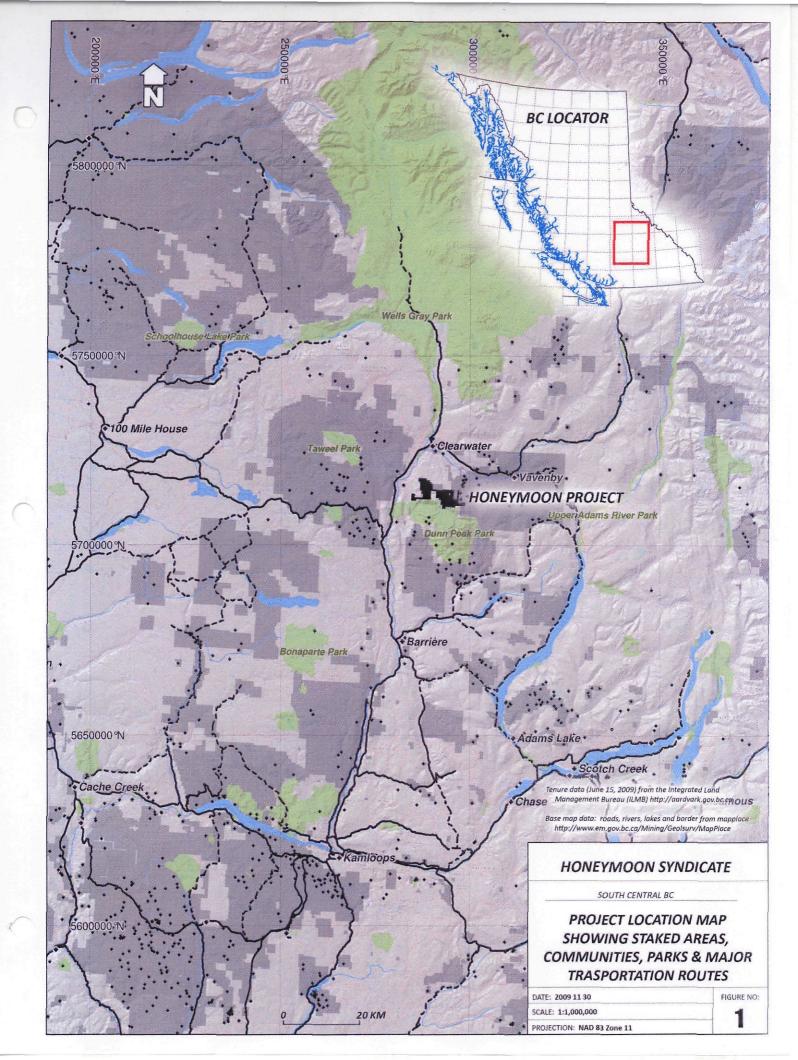
I James G.M. Thom certify that:

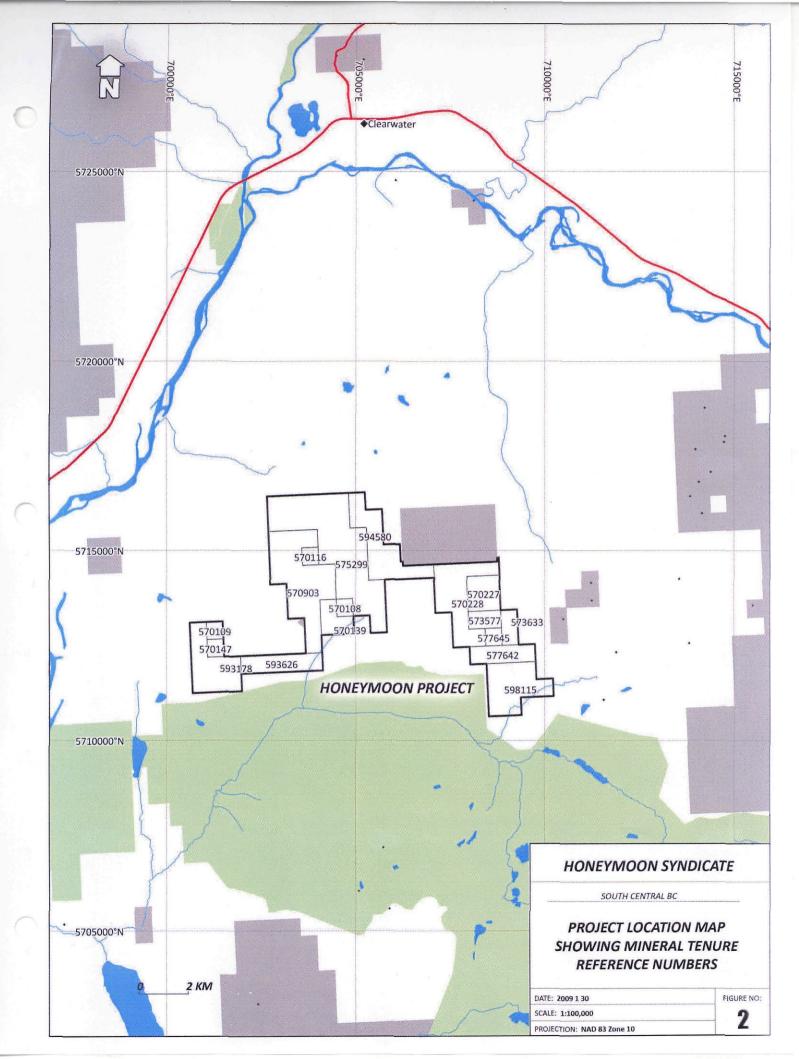
I am an independent consulting geologist residing at 105 -1290 west 11th ave, Vancouver BC, V6H 1K5 and can be contacted at thomjgm@gmail.com

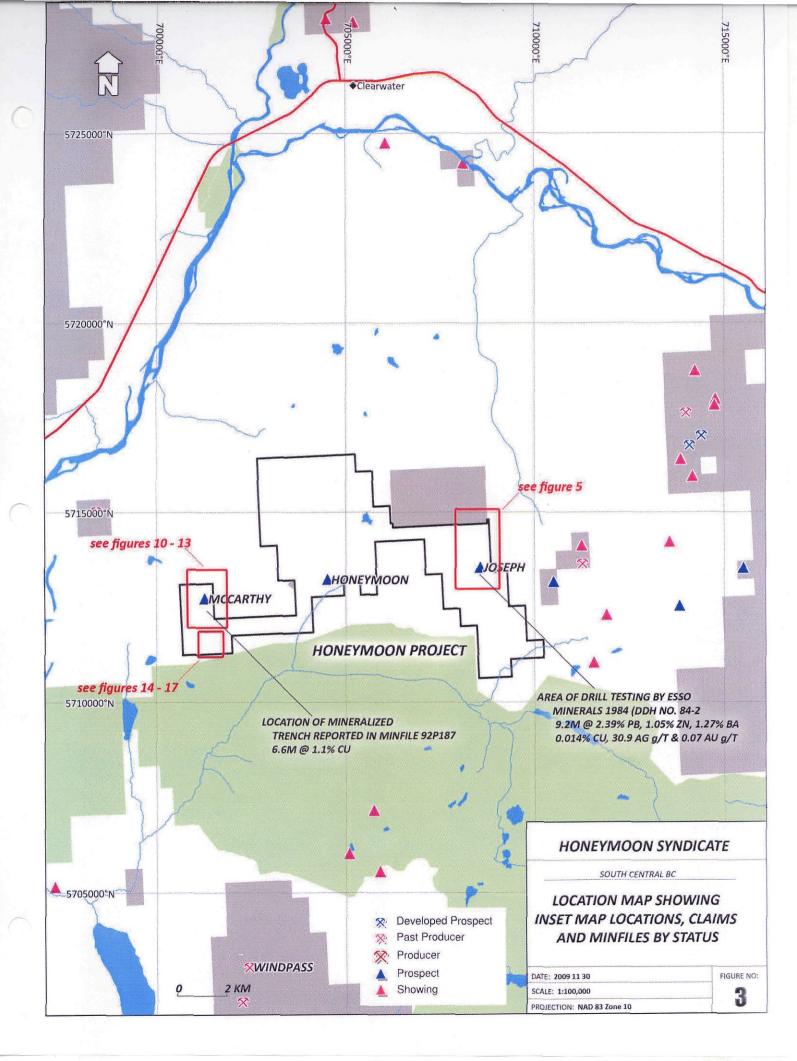
1 obtained a B.Sc. in Earth and Ocean Sciences at the University of Victoria [2002] and graduated with a M.Sc. in Geology from the University of Toronto [2003].

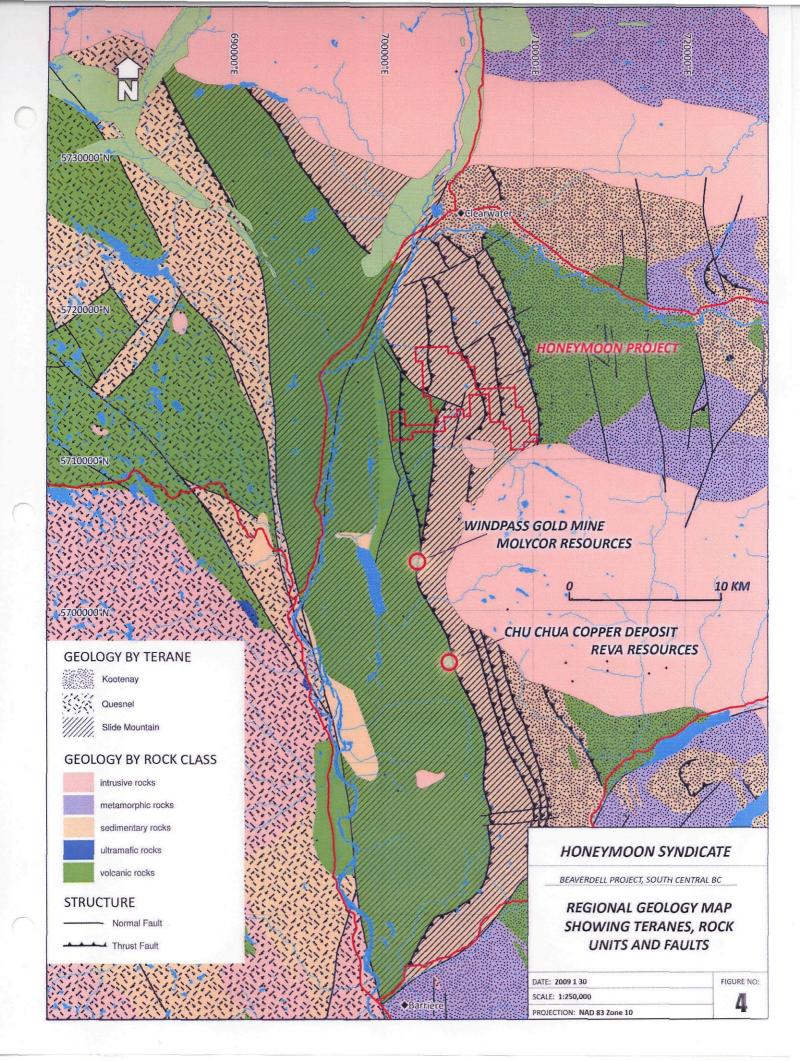
I have worked in the mineral exploration industry since 1999

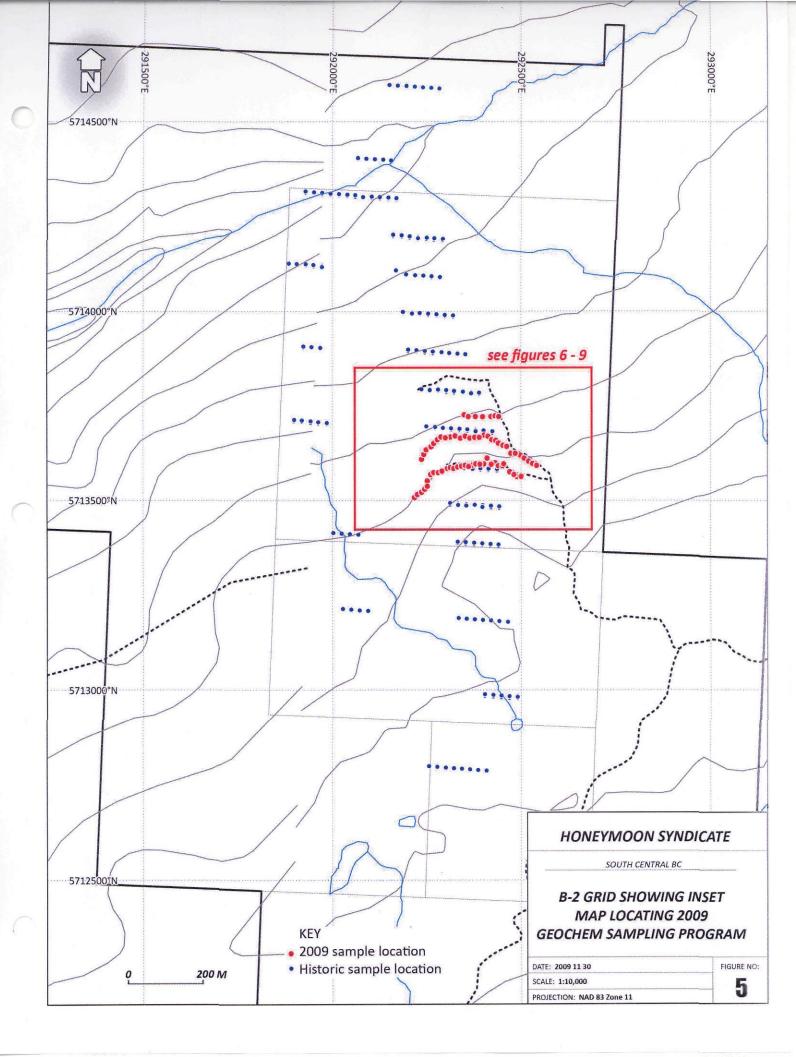
I supervised the 2009 exploration program described in this report

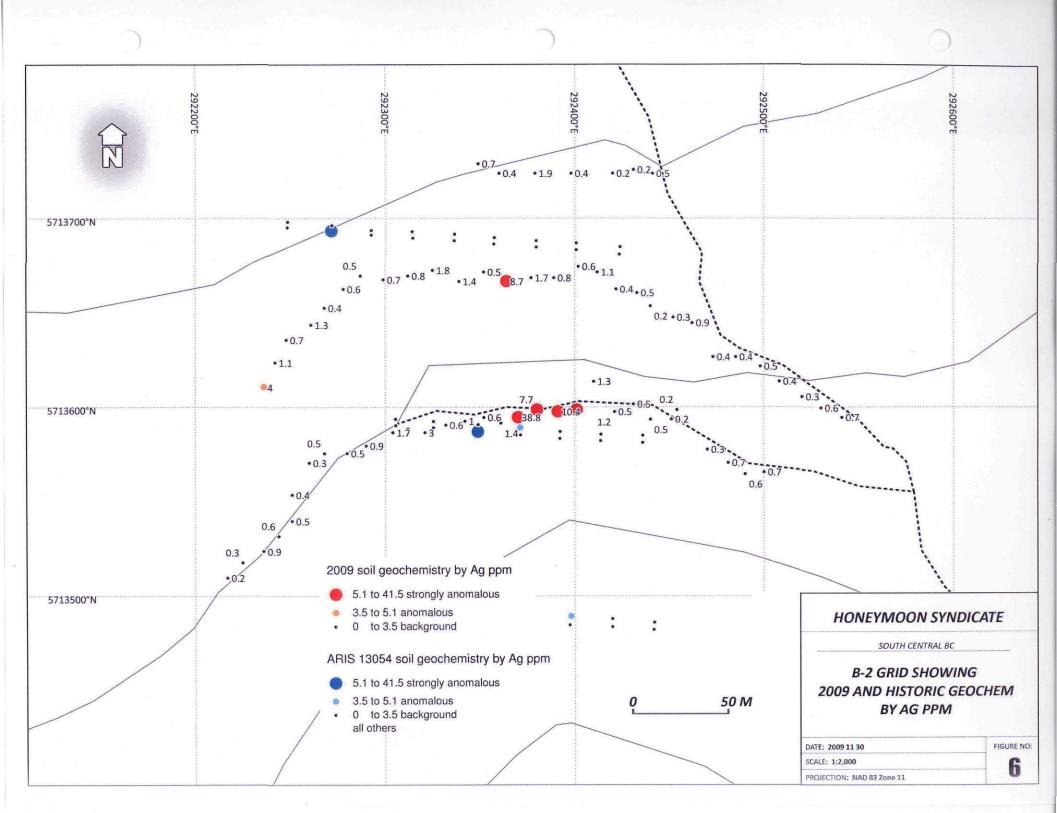

I have no direct or indirect interest in the property herein

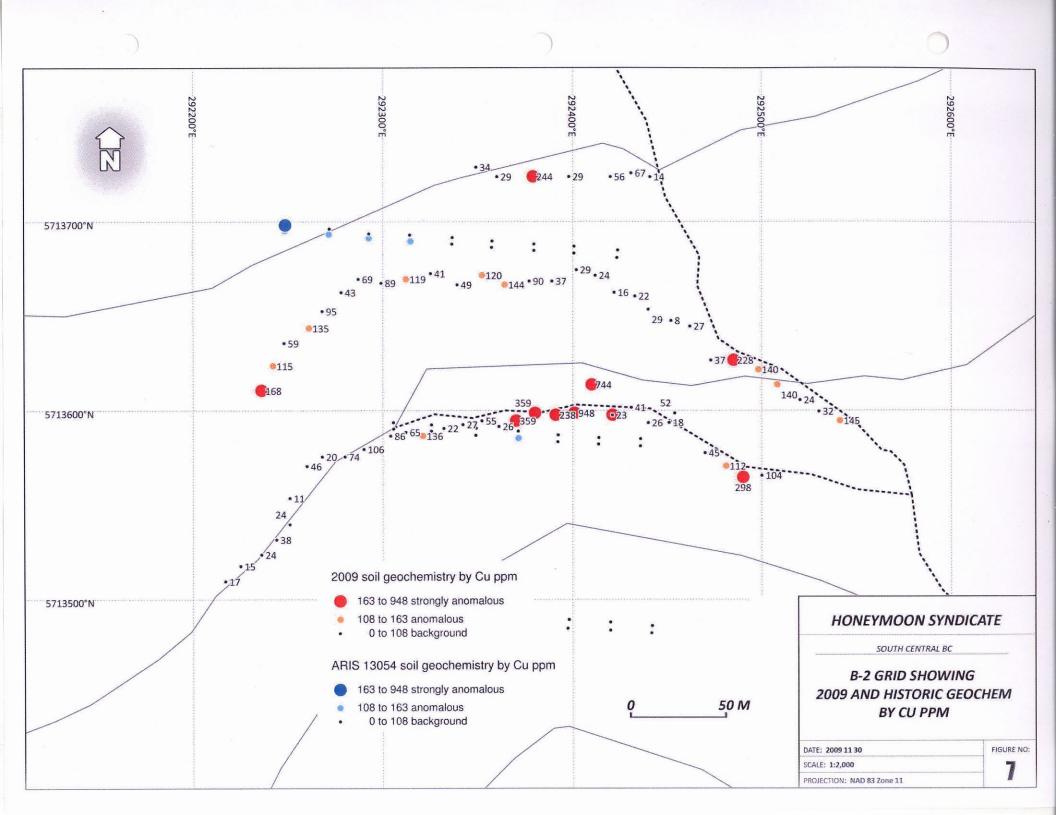

X James Thom Dec 10th 2009

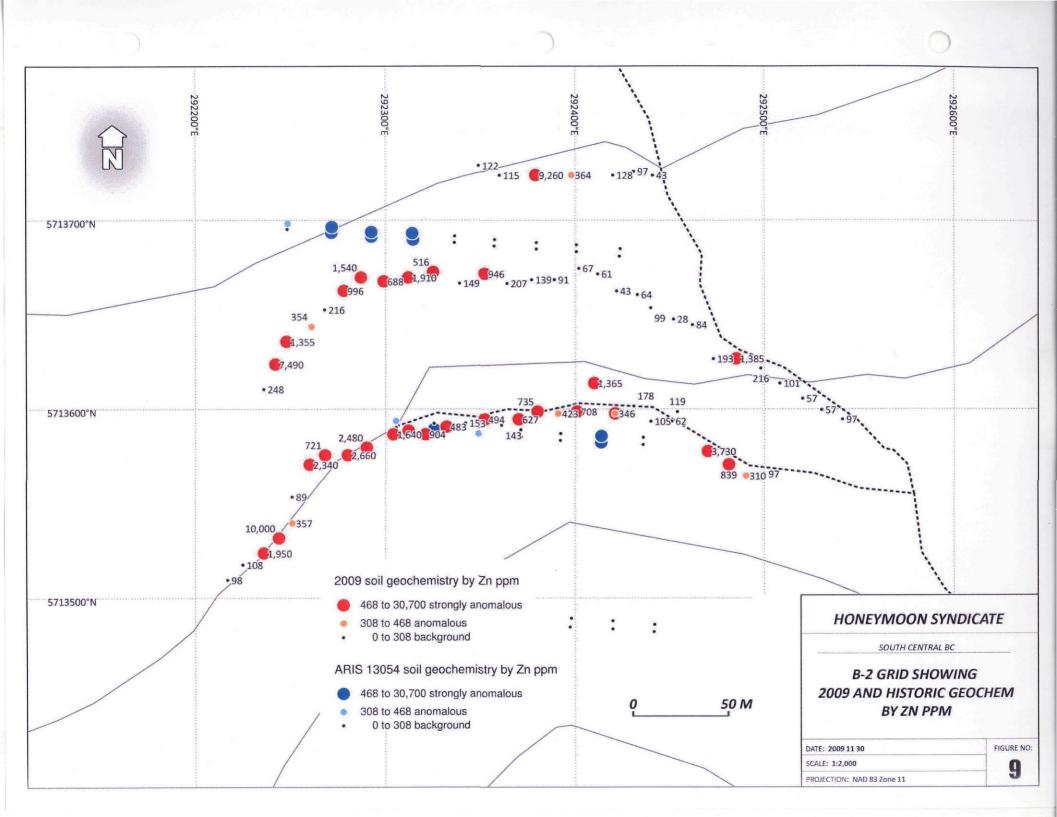

9.0 STATEMENT OF COSTS

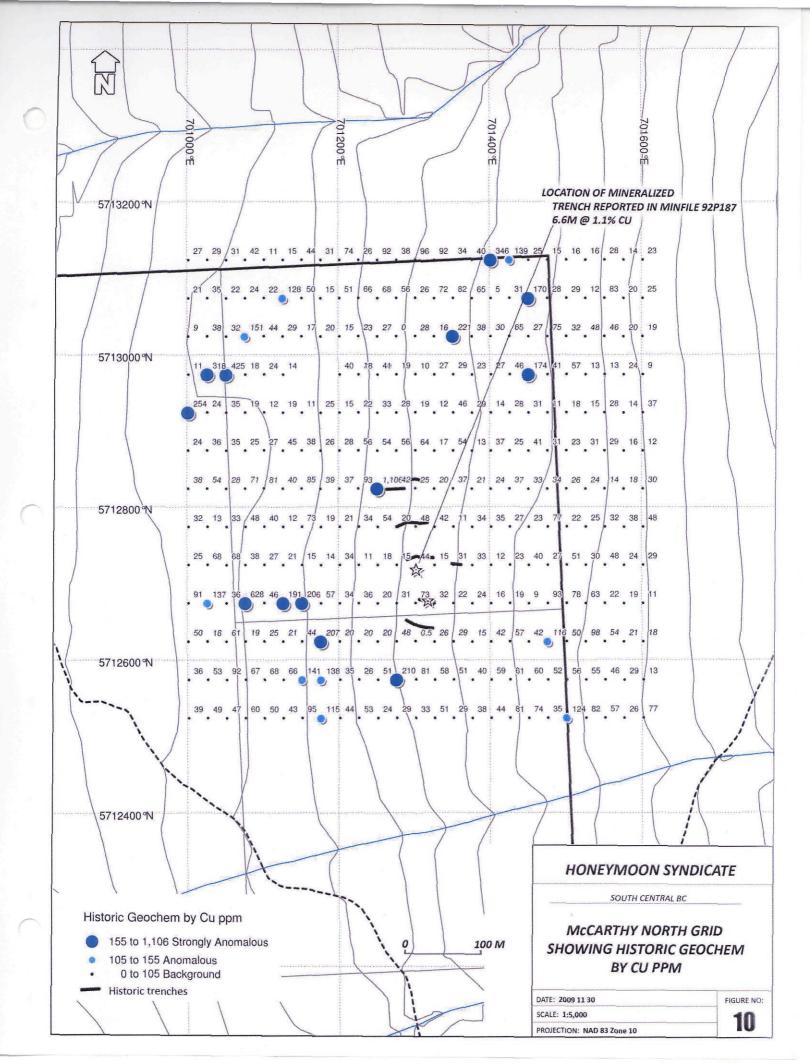

Verification sampling program in the central part of the Joseph (B2)	target)
Mobilization incl. travel expense, meals etc.	\$452.19
Vehicle rentals	\$200.00
Field supplies, equipment rentals (GPS units, satphone, augers etc.)	\$150.00
Field personnel	
-James Thom (July 10-12): 3 man days charged at \$350	\$1,050.00
-Darah Karkairan: 3 man days charged @ \$200	\$600.00
Als Chemex invoice for ICP analysis (69 samples)	\$ 976.95
Sub-total	\$3,429.14
GIS Compilation of soil geochemical data for the McCarthy Prospect Project engineering and supervision	t
-C. von Einsiedel: 1.5 days charged @\$600	\$900.00
-James Thom: 30 hours charged @ \$40.00	\$1,200.00
GIS Compilation and preparation of technical report figures -geo-referencing historic data for the McCarthy Prospect:	
20 hours @ 51.75	\$1,035.00
Sub-total	\$ 3,135.00
Total applied for assessment credit:	\$ 6,564.00
Honeymoon Syndicate. – Assessment Report 2009	Page 25

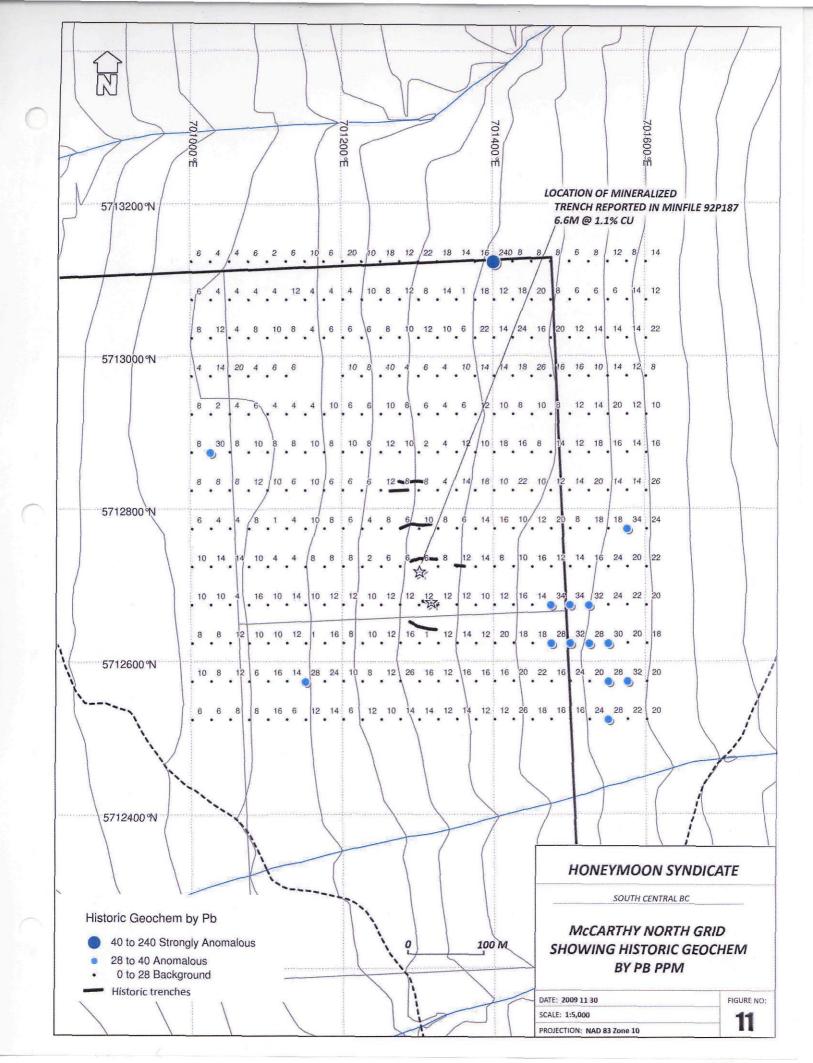

APPENDIX 1 -FIGURES-

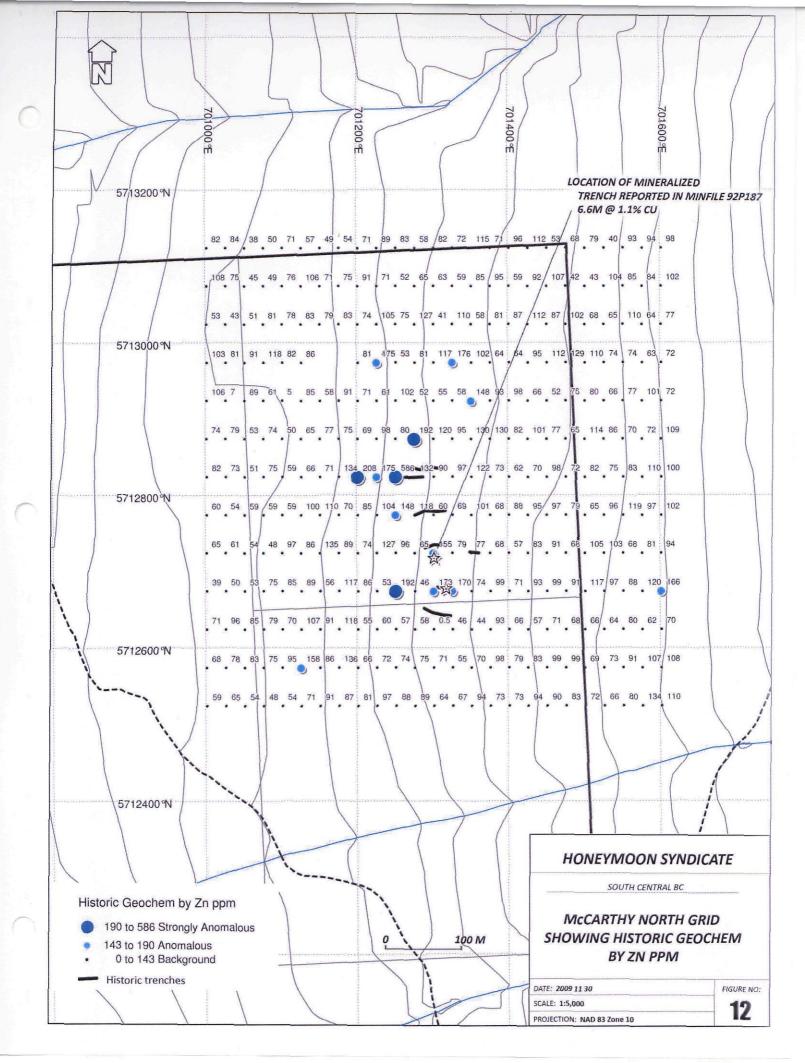


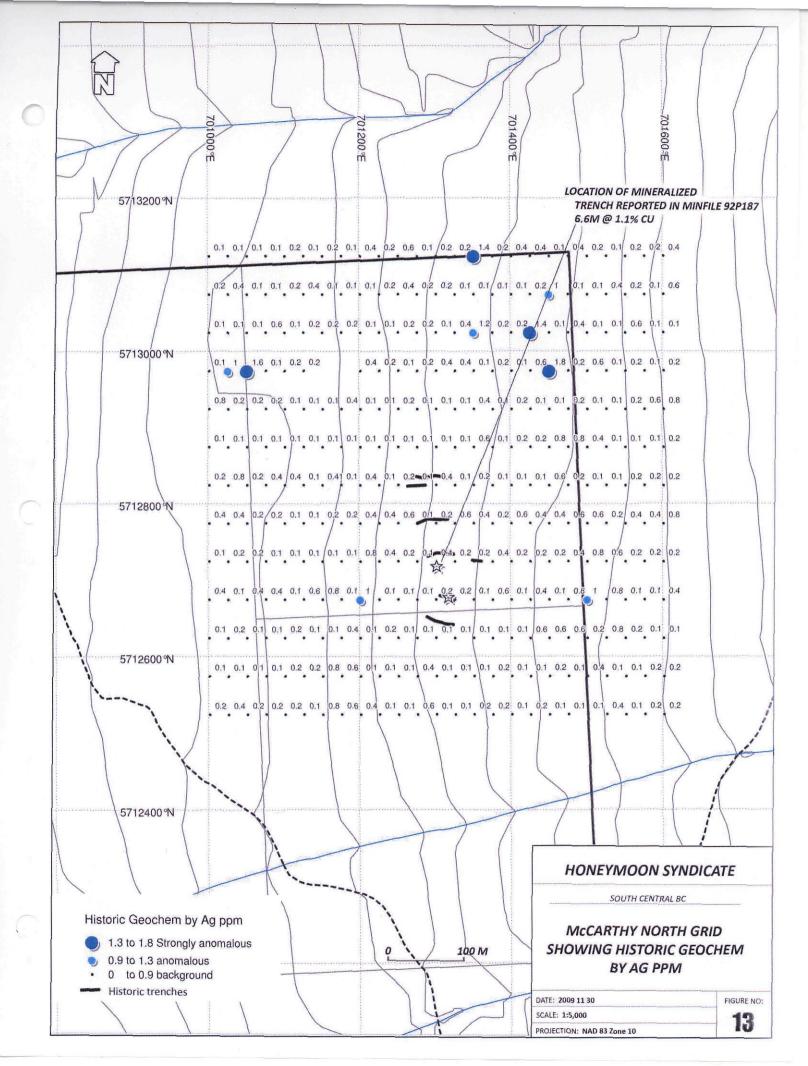


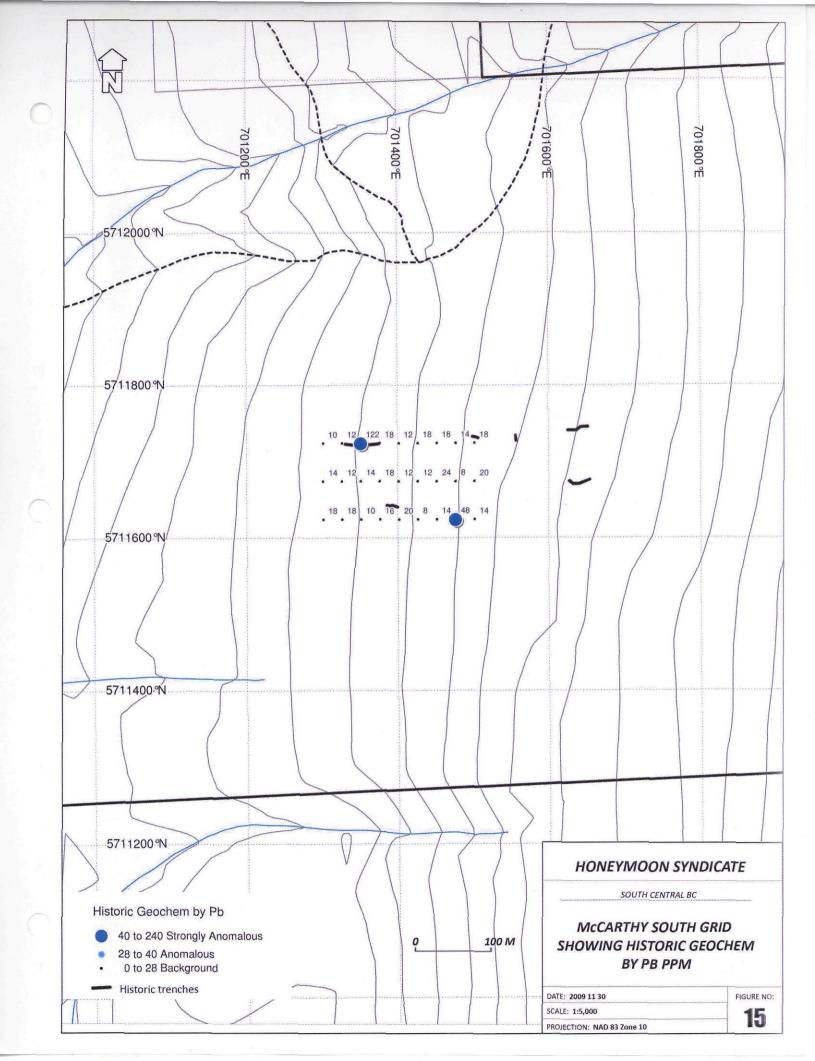


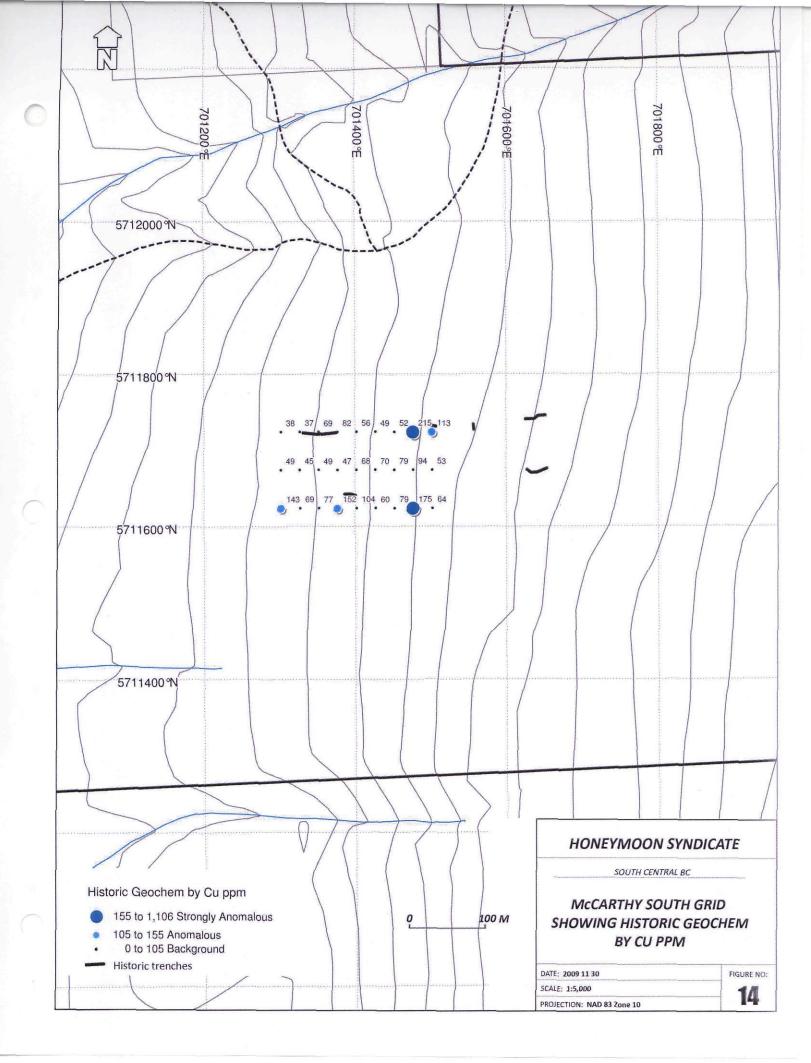


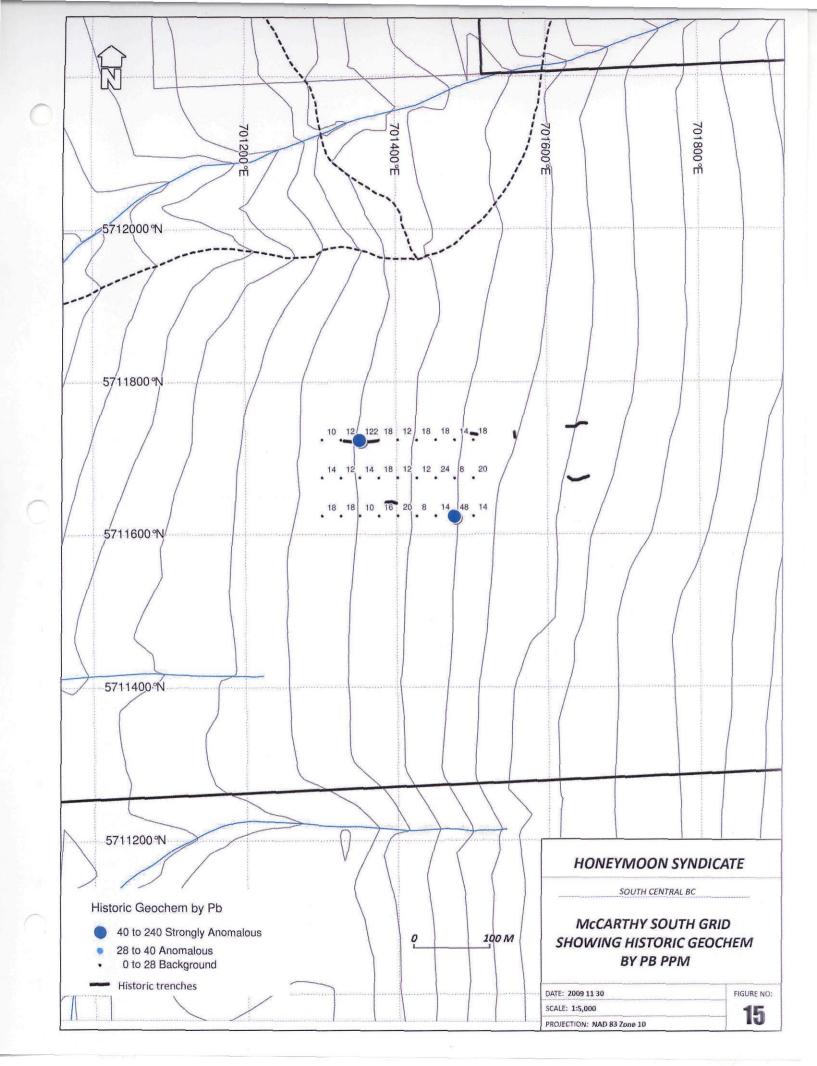


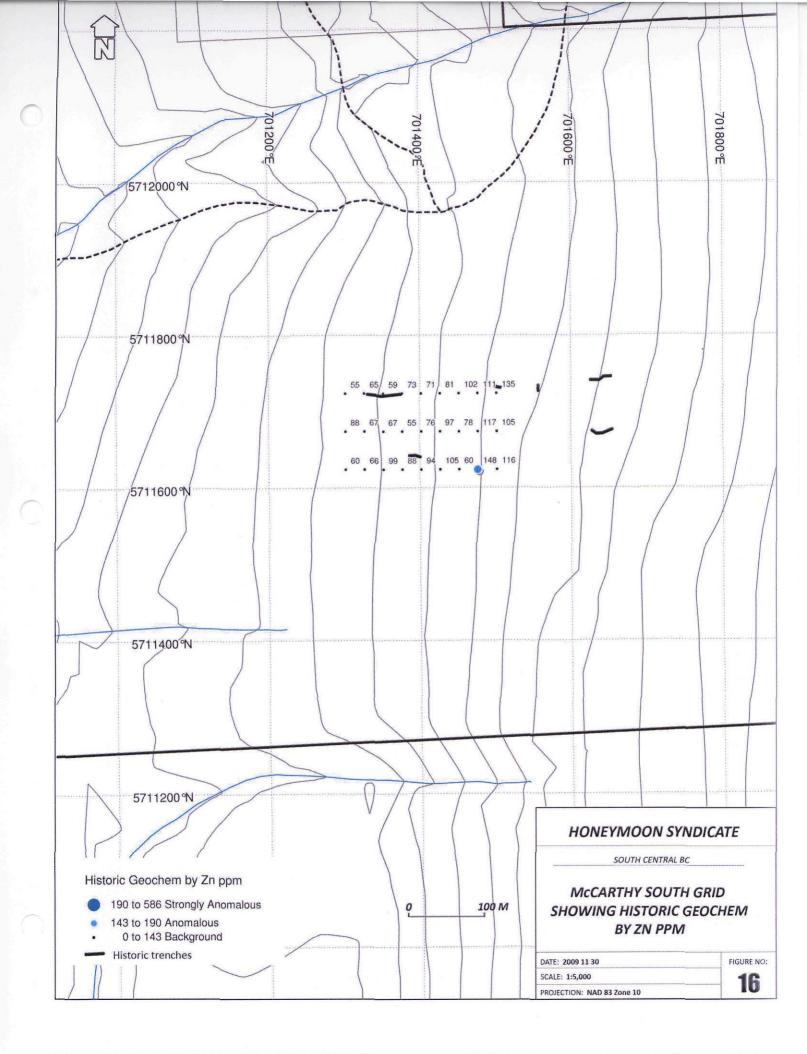


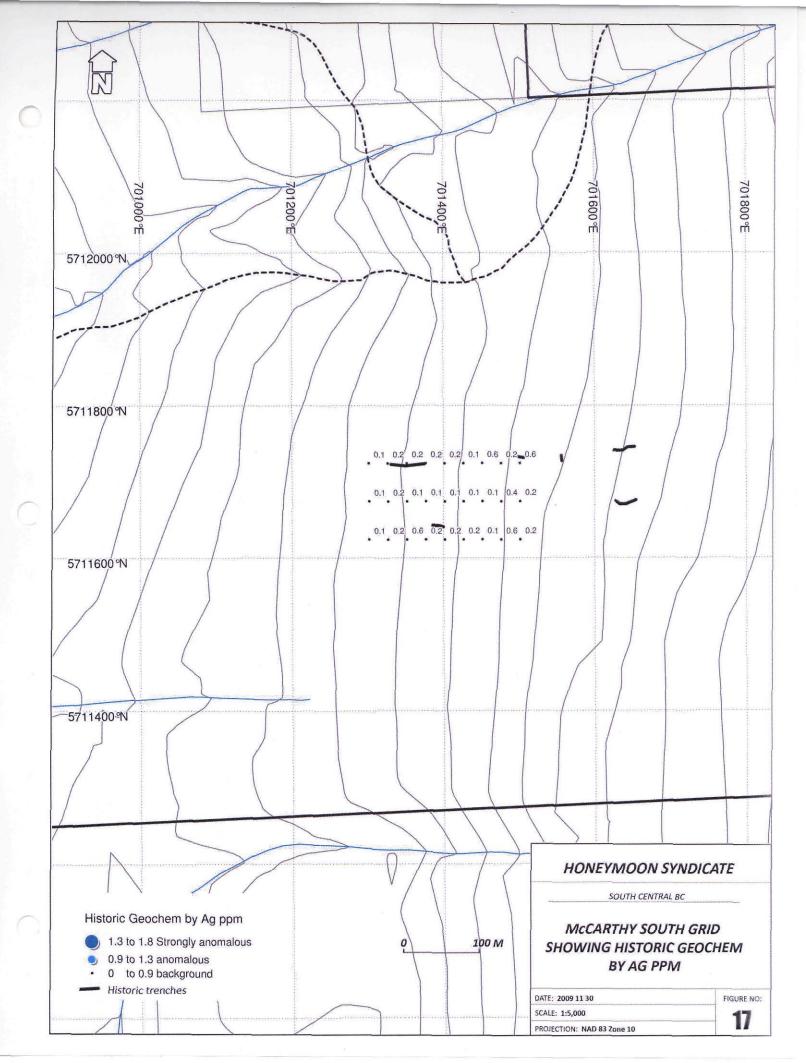












APPENDIX 2 -SOIL STATION LOCATIONS & ANALYTICAL CERTIFICATES-

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP4	I ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd	Со	Cr
DESCRIPTION	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
292217E-5713510N	0.2	1.54	11	<10	160	<0.5	2	2 0.09	0.6	8	30
292225E-5713518N	0.3	2.35	12	<10	130	0	.5 2	2 0.06	0.5	11	33
292236E-5713611N	4	3.92	33	<10	610	1	.6 5	5 0.66	2.6	18	35
292236E-5713524N	0.9	2.91	11	<10	470	0	.9 4	ų 0.13	5.6	13	35
292242E-5713624N	1. 1	3.16	51	<10	670	3	.7 5	5 0.6	17	45	7
292244E-5713532N	0.6	3.43	12	<10	380	1	7 <2	0.77	28.9	29	5
292248E-5713636N	0.7	1.93	15	<10	250	0	.5 <2	0.33	7.2	15	19
292251E-571354N	0.5	2.09	15	<10	150	0	5 <2	0.08	1.1	11	38
292251E-5713554N	0.4	0.89	-	<10	150	<0.5	<2	0.14	0.6	4	21
292260E-5713571N	0.3	2.72	20	<10	380	0	8 <2	0.27	5.5	23	52
292261E-5713644N	1.3		48	<10	310	1	2 <2	0.68	5.1	29	24
292268E-5713576N	0.5	1.95	8	<10	280	0	5 <2	0.15	2.1	8	33
292268E-5713653N	0.4	2.57		<10	180	0	5 2	0.16	0.5	17	50
292278E-5713663N	0.6	2.57	26	<10	300	0	6 <2	0.24	1.3	46	5 9
292280E-5713576N	0.5	2.85	23	<10	420	0	9 <2	0.28	7.2	24	54
292287E-5713670N	0.5	3.24	46	<10	350	0	5 <2	0.3	1.8	35	70
292290E-5713580N	0.9	2.68	13	<10	540	0	8 <2	0.5	17.1	19	41
292299E-5713668N	0.7	0.72	78	<10	80	<0.5	<2	0.04	4.6	20	11
292304E-5713587N	1.7	2.94	22	<10	630	1	1 <2	0.28	7.2	16	36
292312E-5713670N	0.8	1.83	93	<10	220	0	6 <2	0.06	11.6	24	24
292312E-5713589N	0.6	2.37	31	<10	970	0	7 <2	0.25	3.3	23	53
292321E-5713587N	3	2.84	65	<10	1080	0	9 <2	0.3	2.9	30	56
292325E-5713673N	1.8	2.69	71	<10	980	0	5 <2	0.12	3.8	14	40
292332E-5713591N	0.6	2.88	29	<10	150	0	5 <2	0.09	0.8	9	43

- - ME-ICP41 ME-ICP41

	WIE-ICF41	WE-ICF41	ME-ICF41	WE-ICP41	WIE-JCF41	IVIE-ICP		WE-ICP41	IVIE-JUP41	WE-ICP41	IVIE-ICP41	WE-ICP41	
SAMPLE	Ag	Al	As	В	Ba	Ве		Bi	Ca	Cd	Со	Cr	
DESCRIPTION	ppm	%	ppm	ppm	ppm	ppm		ppm	%	ppm	ppm	ppm	
292339E-5713667N	1.4			<10		<0.5		<2	0.06				
292342E-5713593N	1			<10		<0.5		<2	0.08			-	
292349E-5713729N	0.7			<10	9 0	<0.5		<2	0.1	0.7	17	58	
292352E-5713672N	0.5			<10	1220		-	<2	0.08	2.6	39	98	
292352E-5713595N	0.6	2.76	24	<10	740		0.5	<2	0.14	2.5	16	45	
292360E-5713724N	0.4	3.65	10	<10	80		0.5	<2	0.11	0.6	20	70	
292361E-5713592N	1.4	2.32	30	<10	1070	<0.5		<2	0.06	1.1	. 5	33	
292364E-5713667N	8.7	2.22	72	<10	1000		0.5	<2	0.26	1.1	11	40	
292370E-5713595N	38.8	3.4	100	<10	3510		1.5	<2	0.33	11	. 13	67	
292377E-5713669N	1.7	1.67	38	<10	110	<0.5		<2	0.06	0.8	6	30	
292379E-5713724N	1.9	2.35	18	<10	640		1	<2	0.07	193.5	534	34	
292380E-5713599N	7.7	2.03	128	<10	2440		1.4	<2	0.44	17.8	27	35	
292389E-5713669N	0.8	2.57	9	<10	130	<0.5		<2	0.1	0.6	13	56	
292391E-5731722N	0.2	1.89	10	<10	50	<0.5		<2	0.07	0.6	8	32	
292391E-5713598N	10.4	1.63	52	<10	1180	<0.5		<2	0.13	2.4	4	23	
292398E-5713724N	0.4	2.83	72	<10	80	<0.5		<2	0.06	1.4	15	53	
292401E-5713599N	41.5	0.77	329	<10	70		0.7	28	0.01	1.4	1	16	
292402E-5713675N	0.6	1.84	9	<10	90	<0.5		<2	0.07	0.8	11	43	
292410E-5713614N	1.3	1.94	37	<10	790		0.8	<2	0.18	5.1	41	35	
292410E-5713269N	0.5	1.6	11	<10	60	<0.5		<2	0.08	0.9	7	30	
292412E-5713672N	1.1	2.19	6	<10	90		0.5	<2	0.06	0.6	8	35	
292420E-5713724N	0.2	3.48	9	<10	80		0.6	<2	0.1	0.7	31	89	
292421E-5713598N	1.2	1.94	44	<10	440		0.6	<2	0.08	1.4	13	31	
292422E-5713663N	0.4	1.23	6	<10	60	<0.5		<2	0.04	<0.5	6	32	
292431E-5713602N	0.5	2.09	13	<10	190	<0.5		<2	0.06	1	12	31	
292431E-5713726N	<0.2	2.38	17	<10	100		0.7	3	0.2	<0.5	21	48	
292433E-5713661N	0.5	2.08	7	<10	80	<0.5		<2	0.06	<0.5	10	42	
292440E-5713594N	0.5	2.13	11	<10	90	<0.5		<2	0.09	0.6	12	33	
292440E-5713654N	0.2	1.92	12	<10	120	<0.5		<2	0.09	<0.5	13	37	
292441E-5713724N	0.5	2.06	6	<10	60	<0.5		<2	0.12	0.5	7	38	
292451E-5713594N	0.2	1.78	12	<10	80	<0.5		<2	0.08	<0.5	7	25	

1

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd	Со	Cr
DESCRIPTION	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
292452E-5713648N	0.3	B 0.9	3	<10	80	<0.5	<2	0.04	<0.5	4	20
292454E-5713599N	0.2	2.3	18	<10	150) 0.	7 <2	0.11	. 0.5	16	38
292462E-5713645N	0.9	9 1.23	7	/ <10	70	<0.5	<2	0.13	0.7	9	30
292470E-5713578N	0.3	3 2.48	20) <10	280)	1 <2	0.43	11.9	18	35
292473E-5713627N	0.4	1 2.71	. 11	<10	280	0.	8 <2	0.5	1.1	8	25
292481E-5713571N	0.7	3.34	22	2 <10	310)	1 2	2 0.63	4.1	32	57
292485E-5713627N	0.4	1 2.22	14	<10	260) 0.	9 <2	0.56	i 1	18	40
292490E-5713565N	0.6	5 1.71	. 31	. <10	260	0.	9 <2	0.49	0.8	22	33
292498E-5713622N	0.5	5 2.77	' 12	2 <10	250	0.	9 <2	0.51	. 0.8	18	36
292500E-5713566N	0.7	7 2.63	13	s <10	260) 0.	9 <2	0.45	i 0.7	19	33
292508E-5713614N	0.4	2.43	16	5 <10	240) 0.	9 <2	0.49	0.5	19	38
292520E-5713606N	0.3	3 2.3	9) <10	120) 0.	5 <2	0.14	<0.5	10	29
292530E-5713600N	0.6	5 2.7	' 8	8 <10	180) 0.	8 <2	0.44	<0.5	11	26
292541E-5713595N	0.7	2.73	12	! <10	270) 1.	1 <2	0.67	0.5	15	40

.

	ME-ICP41										
SAMPLE	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na	Ni
DESCRIPTION	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm
292217E-5713510N	17	3.63	10	<1	0.05	20	0.61	256	2	0.01	15
292225E-5713518N	15	3.71	10	1	. 0.04	20	0.7	413	1	0.01	15
292236E-5713611N	168	5.47			. 0.06	30	0.55	1370	4	0.02	41
292236E-5713524N	24	3.81	10	1	. 0.06	20	0.65	801	3	0.01	33
292242E-5713624N	115	11.5	10	1	0.44	10	2.41	1240	3	0.01	141
292244E-5713532N	38	9.01	-		0.38	10	2.7	1430		0.01	157
292248E-5713636N	59	3.72		<1	0.05	20	0.8	618	2	<0.01	58
292251E-571354N	24	4.04		<1	0.06	20				0.01	20
292251E-5713554N	11			<1	0.04	10	0.29			0.01	9
292260E-5713571N	46			<1	0.09	20	1.4			0.01	81
292261E-5713644N	135									0.01	47
292268E-5713576N	20			<1	0.05	20	0.63	231		0.01	26
292268E-5713653N	95			<1	0.05	20	1.13	335	2	0.01	38
292278E-5713663N	43	5.89	10	<1	0.03	10	0.91	853	4	0.01	127
292280E-5713576N	74	4.53	10	<1	0.1	30	1.44	842	2	0.01	124
292287E-5713670N	69	5.3	10	<1	0.03	20	1.54	635	2	0.01	165
292290E-5713580N	106	3.88	10	<1	0.07	20	1.02	1190	3	0.01	127
292299E-5713668N	89	4.7	<10	<1	0.01	10	0.03	573	2	<0.01	47
292304E-5713587N	86	3.85	10	<1	0.07	20	0.65	369	3	0.01	81
292312E-57 1 3670N	119	8.47	10	<1	0.04	20	0.35	632	8	0.01	129
292312E-5713589N	65	4.26	10	<1	0.09	30	1.4	866	4	0.01	83
292321E-57 1 3587N	136	5.95	10	<1	0.05	10	1.28	1080	10	0.01	79
292325E-5713673N	41	. 4.97	10	<1	0.04	20	0.83	346	4	0.01	38
292332E-5713591N	22	4.69	10	<1	0.04	20	0.78	212	2	0.01	28

ME-ICP41 ME-ICP41	. ME-ICP41 M	/IE-ICP41 ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
-------------------	--------------	--------------------	----------	----------	----------	----------	----------	----------

SAMPLE	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni
DESCRIPTION	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm
292339E-5713667N	49	3.97	10	<1	0.04	L 20	0.47	162	5	0.01	21
292342E-5713593N	27	4.19	10) <1	0.03	3 20	0.54	163	2	0.01	20
292349E-5713729N	34	4.36	10	<1	0.04	l 10	1.25	414	<1	0.01	34
292352E-5713672N	120	4.17	<10	<1	0.03	3 20	0.52	1620	10	<0.01	174
292352E-5713595N	55	4.83	10) <1	0.06	5 20	0.99	358	5	0.01	46
292360E-5713724N	29	5.46	5 10) <1	0.03	3 10	1.66	470	1	0.01	36
292361E-5713592N	26	i 4.02	: 10) <1	0.0	5 20	0.42	146	5	0.01	22
292364E-5713667N	144	4.34	10) <1	0.04	1 10	0.73	376	6	0.01	27
292370E-5713595N	359	3.78	10) 3	0.09	9 20	0.94	320	9	0.01	59
292377E-5713669N	90) 4.21	. 10) <1	0.03	3 10	0.44	227	5	0.01	20
292379E-5713724N	244	5.61	<10	1	0.04	1 0	0.44	36400	19	0.01	1650
292380E-5713599N	359	3.06	i 10) 1	0.06	5 20	0.28	1170	15	0.01	78
292389E-5713669N	37	4.3	10) 1	0.04	1 10	1.16	332	1	0.01	28
292391E-5731722N	15	3.94			0.03	3 10	0.61	244	1	0.01	16
292391E-5713598N	238								13	0.02	
292398E-5713724N	29) <1	0.03	3 10			1	0.01	33
292401E-5713599N	948		<10	1	-					0.05	33
292402E-5713675N	29) 1	0.04	l 10				0.01	20
292410E-5713614N	744	5.16	i <10	1	0.13	l 30	0.94	1500	4	0.01	126
292410E-5713269N	23) <1	0.04	10			<1	0.01	
292412E-5713672N	24) <1	0.04				1	0.01	
292420E-5713724N	56) <1	0.03	3 10			<1	0.01	
292421E-5713598N	252) <1	0.0	5 20			7	0.01	46
292422E-5713663N	16			<1	0.04				<1	0.01	14
292431E-5713602N	41				0.05				1	0.01	
292431E-5713726N	67) <1	0.13			625		<0.01	32
292433E-5713661N	22		10	<1	0.04	20		259		0.01	19
292440E-5713594N	26) <1	0.08					<0.01	18
292440E-5713654N	29) <1	0.06				<1	0.01	
292441E-5713724N	14) <1	0.03				1	0.01	13
292451E-5713594N	18	3.38	10) <1	0.07	7 30	0.51	178	1	0.01	13

	ME-ICP41										
SAMPLE	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na	Ni
DESCRIPTION	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm
292452E-5713648N	8	1.65	10	1	. 0.04	- 20	0.33	193	<1	0.01	9
292454E-5713599N	52	3.6	10	<1	0.11	. 40	1.08	377	<1	0.01	23
292462E-5713645N	27	5.23	10	<1	0.02	<10	0.4	559	1	0.01	16
292470E-5713578N	45	3.65	10	<1	0.13	40) 1.09	701	<1	0.01	131
292473E-5713627N	37	2.81	. 10	<1	0.06	30	0.51	250	<1	0.01	17
292481E-5713571N	112	5.59	10	<1	0.08	20) 1.91	1370	1	0.01	61
292485E-5713627N	228	3.91	<10	<1	0.15	40	1.07	853	1	0.01	54
292490E-5713565N	298	3.88	10	<1	0.21	. 50) 1	896	1	0.01	28
292498E-5713622N	140	3.72	10	<1	0.11	. 30	0.9	921	1	0.01	30
292500E-5713566N	104	3.8	10	<1	0.12	40	0.81	586	1	0.01	25
292508E-5713614N	140	3.77	10	<1	0.13	30	0.98	625	<1	0.01	28
292520E-5713606N	24	4.04	10	<1	0.05	20	0.56	342	1	0.01	14
292530E-5713600N	32	3.11	. 10	<1	0.05	30	0.42	185	1	0.01	13
292541E-5713595N	145	3.49	10	<1	0.09	40	0.72	403	1	0.01	26

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V
DESCRIPTION	ppm	ррт	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
292217E-5713510N	500	126	0.02	<2	2	22	<20	0.07	<10	<10	73
292225E-5713518N	350	88	<0.01	<2	3	18	<20	0.08	<10	<10	83
292236E-5713611N	1170	552			14		. <20	0.06	<10	<10	103
292236E-5713524N	610		0.02	<2	4	29	<20		<10	<10	83
292242E-5713624N	850	1200	0.04	8	34	52	<20	0.27	<10	<10	659
292244E-5713532N	1000	44	0.01	7	28		<20	0.3	<10	<10	307
292248E-5713636N	560	53			5	37	<20	0.04	<10	<10	84
292251E-57 1 354N	520						<20		<10	<10	92
292251E-5713554N	310				2		<20		<10	<10	75
292260E-5713571N	640		<0.01	2			<20		<10	<10	91
292261E-5713644N	680	-			8	-	<20		<10	<10	120
292268E-5713576N	400				3		<20		<10	<10	82
292268E-5713653N	400						20		<10	<10	100
292278E-5713663N	470) <20		<10	<10	104
292280E-5713576N	6 9 0) <20		<10	<10	93
292287E-5713670N	590	154	0.01	5	6	34	<20		<10	<10	105
292290E-5713580N	840	134	0.03	4	. 4	68	<20		<10	<10	86
292299E-5713668N	600	83	0.01	3		-	<20	0.01	<10	<10	6
292304E-5713587N	650	210	0.03	2	5		5 <20	0.07	<10	<10	81
292312E-5713670N	760						<20		<10	<10	41
292312E-5713589N	1190				7		. <20		<10	<10	86
292321E-5713587N	2190	2590			-		2 <20		<10	<10	122
292325E-5713673N	890	123	0.05	5	3	36	5 <20		<10	<10	82
292332E-5713591N	680	130	0.02	<2	2	19	<20	0.08	<10	<10	96

ME-ICP41 ME-ICP41

	IVIC-ICL41	INIE-ICE41	WIL-ICF41	INF-ICLAT	IVIL-ICE TI	MIL-ICLAT	ME-ICLAT	MIC-ICLAT	IALC-ICLAT	IVIL-ICE 41	IVIL-ICF4	Ŧ
SAMPLE	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	
DESCRIPTION	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
292339E-5713667N	740	119			2	16	5 <20		<10	<10		77
292342E-5713593N	1010	218	0.03	3	2	. 32	2 <20	0.05	<10	<10		72
292349E-5713729N	710	43	0.01	<2	5	13	3 <20	0.06	<10	<10	9	97
292352E-5713672N	9 70	689	0.02	11	9	13	3 <20	<0.01	<10	<10	1	54
292352E-5713595N	1080	132	0.03	<2	3	3:	L <20	0.04	<10	<10	9	92
292360E-5713724N	590	45	0.01	2	. 8	1	i <20	0.1	<10	<10	1	22
292361E-5713592N	1250	98	0.05	<2	2	25	5 <20	0.05	<10	<10	9	99
292364E-5713667N	2060	509	0.03	42	. 2	46	5 <20	0.04	<10	<10		79
292370E-5713595N	>10000	104	0.08	6	8	101	1 <20	0.02	<10	2	0 8	83
292377E-5713669N	990	196	0.02	4	. 2	19	€ <20	0.04	<10	<10		75
292379E-5713724N	1190	34	0.04	36	4	21	1 <20	0.06	<10	<10		57
292380E-5713599N	6320	278	0.08	18	1	. 220) <20	0.01	<10	1	0	87
292389E-5713669N	660	86	0.02	<2	3	13	3 <20	0.05	<10	<10		95
292391E-5731722N	410	18	0.01	<2	2	۶	3 <20	0.11	<10	<10	i	92
292391E-5713598N	1760	2590	0.16	18	: 1	. 74	4 <20	0.02	<10	<10		57
292398E-5713724N	520	38	0.02	2	. 6	i 1:	1 <20	0.08	<10	<10	1	15
292401E-5713599N	4850	>10000	1.79	101	. 3	1 42	1 <20	0.01	<10	<10		26
292402E-5713675N	620	141			2	17	2 <20	0.06	<10	<10	i	93
292410E-5713614N	1150	1125			12	6	5 <20	0.03	<10	<10		44
292410E-5713269N	450	40	0.02	<2	2	17	2 <20	0.06	<10	<10		71
292412E-5713672N	440	74	0.01	<2	3	13	3 <20	0.06	<10	<10		67
292420E-5713724N	410	44	0.01	3	11	. 8	3 <20	0.08	<10	<10	1	47
292421E-5713598N	1210	787	0.05	2	4	38	3 <20	0.04	<10	<10		54
292422E-5713663N	520	32	0.01	<2	1	. 17	2 <20	0.04	<10	<10		65
292431E-5713602N	570	57	0.02	<2	2	! 18	3 <20	0.05	<10	<10		74
292431E-5713726N	880	60	<0.01	<2	e	5 30	5 <20	0.05	<10	<10		67
292433E-5713661N	510	37	0.01	<2	3	1.	5 <20	0.05	<10	<10		70
292440E-5713594N	650	43	0.01	<2	2	2 29	9 <20	0.06	<10	<10		57
292440E-5713654N	660	35			3		3 <20		<10	<10		76
292441E-5713724N	430	22	0.03	<2	2) <20	0.1	<10	<10		82
292451E-5713594N	500	28	0.01	<2	2	2 30) <20	0.07	<10	<10		71

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP4	1 ME-ICP4	1 ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V
DESCRIPTION	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
292452E-5713648N	370	20	0.01	<2	1	L	14 <20	0.04	<10	<10	52
292454E-5713599N	560	56	<0.01	<2	4	Ļ	40 <20	0.05	5 <10	<10	53
292462E-5713645N	530	30	0.02	<2	4	Ļ	11 <20	0.09) <10	<10	126
292470E-5713578N	1060	89	0.01	<2	e	;	77 <20	0.05	5 <10	<10	53
292473E-5713627N	520	40	0.01	<2	2	2	50 <20	0.05	5 <10	<10	45
292481E-5713571N	960	224	0.04	<2	16	5	50 <20	0.04	l <10	<10	119
292485E-5713627N	1130	53	0.02	2	. 5)	67 <20	0.05	5 <10	<10	51
292490E-5713565N	1150	92	0.01	. 2	13	5	69 <20	0.05	5 <10	<10	47
292498E-5713622N	850	53	0.02	<2	£	5	66 <20	0.05	5 <10	<10	52
292500E-5713566N	860	67	0.02	<2	5	5	52 <20	0.05	5 <10	<10	50
292508E-5713614N	780	58	0.01	<2	7	7	61 <20	0.04	↓ <10	<10	51
292520E-5713606N	360	30	0.02	<2	3	3	23 <20	0.07	7 <10	<10	80
292530E-5713600N	550	37	0.03	<2	2	2	40 <20	0.07	7 <10	<10	49
292541E-5713595N	720	51	0.02	2	11	L	56 <20	0.05	5 <10	<10	53

FO MOMBER .				
	ME-ICP41	ME-ICP41	Pb-OG46	Zn-OG46
SAMPLE	W	Zn	Pb	Zn
DESCRIPTION	ppm	ppm	%	%
292217E-5713510N	<10	98		
292225E-5713518N	<10	108		
292236E-5713611N	<10	248		
292236E-5713524N	<10	1950	1	
292242E-5713624N	<10	7490	ł	
292244E-5713532N	<10	>10000		3.07
292248E-5713636N	<10	1355		
292251E-571354N	<10	357		
292251E-5713554N	<10	89	ł	
292260E-5713571N	<10	2340)	
292261E-5713644N	<10	354		
292268E-5713576N	<10	721		
292268E-5713653N	<10	216	•	
292278E-5713663N	<10	996	•	
292280E-5713576N	<10	2660)	
292287E-5713670N	<10	1540	1	
292290E-5713580N	<10	2480	l	
292299E-5713668N	<10	688		
292304E-5713587N	<10	1640)	
292312E-5713670N	<10	1910)	
292312E-5713589N	<10	1355		
292321E-5713587N	<10	904		
292325E-5713673N	<10	516	;	
292332E-5713591N	<10	483		

	ME-ICP41	ME-ICP41	Pb-OG46	Zn-0G46
SAMPLE	W	Zn	Pb	Zn
DESCRIPTION	ppm	ppm	%	%
292339E-5713667N	<10	149		
292342E-5713593N	<10	153		
292349E-5713729N	<10	122		
292352E-5713672N	<10	946		
292352E-5713595N	<10	494		
292360E-5713724N	<10	115		
292361E-5713592N	<10	143		
292364E-5713667N	<10	207		
292370E-5713595N	<10	627		
292377E-5713669N	<10	139		
292379E-5713724N	<10	9260		
292380E-5713599N	<10	735		
292389E-5713669N	<10	91		
292391E-5731722N	<10	143		
292391E-5713598N	<10	423		
292398E-5713724N	<10	364		
292401E-5713599N	<10	708	4.47	,
292402E-5713675N	<10	67		
292410E-5713614N	<10	1365		
292410E-5713269N	<10	346		
292412E-5713672N	<10	61		
292420E-5713724N	<10	128		
292421E-5713598N	<10	477		
292422E-5713663N	<10	43		
292431E-5713602N	<10	178		
292431E-5713726N	<10	97		
292433E-5713661N	<10	64		
292440E-5713594N	<10	105		
292440E-5713654N	<10	99		
292441E-5713724N	<10	43		
292451E-5713594N	<10	62		

	ME-ICP41	ME-ICP41	Pb-OG46	Zn-OG46
SAMPLE	W	Zn	Pb	Zn
DESCRIPTION	ppm	ppm	%	%
292452E-5713648N	<10	28	ł	
292454E-5713599N	<10	119		
292462E-5713645N	<10	84	•	
292470E-5713578N	<10	3730	1	
292473E-5713627N	<10	193		
292481E-5713571N	<10	839	1	
292485E-5713627N	<10	1385		
292490E-5713565N	<10	310)	
292498E-5713622N	<10	216	;	
292500E-5713566N	<10	9 7	,	
292508E-5713614N	<10	101		
292520E-5713606N	<10	57	,	
292530E-5713600N	<10	57	,	
292541E-5713595N	<10	97	,	

APPENDIX 3 -HISTORIC SOIL LOCATIONS-Teck 1992 (ARIS: 22686)

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
8900	10300	5711624	701302	<5	<0.2	143	18	60
8900	10325	5711624	701327	<5	0.2	69	18	66
8900	10350	5711624	701352	5	0.6	77	10	99
8900	10375	5711624	701377	<5	0.2	152	16	88
8900	10400	5711624	701402	<5	0.2	104	20	94
8900	10425	5711624	701427	<5	0.2	60	8	105
8900	10450	5711624	701452	<5	<0.2	79	14	60
8900	10475	5711624	701477	5	0.6	175	48	148
8900	10500	5711624	701502	<5	0.2	64	14	116
8950	10300	5711674	701302	5	<0.2	49	14	88
8950	10325	5711674	701327	<5	0.2	45	12	67
8950	10350	5711674	701352	<5	<0.2	49	14	67
8950	10375	5711674	701377	<5	<0.2	47	18	55
8950	10400	5711674	701402	<5	<0.2	68	12	76
8950	10425	5711674	701427	<5	<0.2	70	12	9 7
8950	10450	5711674	701452	<5	<0.2	79	24	78
8950	10475	5711674	701477	<5	0.4	94	8	117
8950	10500	5711674	701502	<5	0.2	53	20	105
9000	10300	5711724	701302	<5	<0.2	38	10	55
9000	10325	5711 7 24	701327	<5	0.2	37	12	65
9000	10350	5711724	701352	<5	0.2	69	122	59
9000	10375	5711724	701377	<5	0.2	82	18	73
9000	10400	5711724	701402	<5	0.2	56	12	71
9000	10425	5711724	701427	<5	<0.2	49	18	81
9000	10450	5711724	701452	<5	0.6	52	18	102
9000	10475	5711724	701477	<5	0.2	215	14	111
9000	10500	5711724	701502	<5	0.6	113	18	135
9800	10000	5712524	701002	<5	0.2	39	6	59
9800	10025	5712524	701027	15	0.4	49	6	65
9800	10050	5712524	701052	<5	0.2	47	8	54
9800	10075	5712524	701077	<5	0.2	60	8	48
9800	10100	5712524	701102	<5	0.2	50	16	54
9800	10125	5712524	701127	<5	<0.2	43	6	71
9800	10150	5712524	701152	<5	0.8	95	12	91
9800	10175	5712524	701177	<5	0.6	115	14	87
9800	10200	5712524	701202	<5	0.4	44	6	81
9800	10225	5712524	701227	<5	<0.2	53	12	97
9800	10250	5712524	701252	<5	<0.2	24	10	88
9800	10275	5712524	701277	<5	0.6	29	14	89
9800	10300	5712524	701302	<5	<0.2	33	14	64
9800	10325	5712524	701327	<5	<0.2	51	12	67
9800	10350	5712524	701352	<5	0.2	29	14	94
9800	10375	5712524	701377	<5	0.2	38	12	73
9800	10400	5712524	701402	<5	<0.2	44	12	73
9800	10425	5712524	701427	<5	0.2	81	26	94
9800	10450	5712524	701452	<5	<0.2	74	18	90
9800	10475	5712524	701477	<5	<0.2	35	16	83
9800	10500	571 2 524	701502	<5	<0.2	124	16	72
9800	10525	5712524	701527	<5	0.4	82	24	66

F	North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
	9800	10550	5712524	701552	20	<0.2	57	28	80
	9800	10575	5712524	701577	<5	0.2	26	22	134
	9800	10600	5712524	701602	<5	0.2	77	20	110
	9850	10000	5712574	701002	<5	<0.2	36	10	68
	9850	10025	5712574	701027	<5	<0.2	53	8	78
	9850	10050	5712574	701052	<5	<0.2	92	12	83
	9850	10075	5712574	701077	<5	<0.2	67	6	75
	9850	10100	5712574	701102	<5	0.2	68	16	95
	9850	10125	571 2574	701127	<5	0.2	66	14	158
	9850	10150	5712574	701152	<5	0.8	141	28	86
	9850	10175	5712574	701177	<5	0.6	138	24	136
	9 850	10200	5712574	701202	<5	<0.2	35	10	66
	9850	10225	5712574	701227	<5	<0.2	26	8	72
	9850	10250	5712574	701252	<5	<0.2	51	12	74
	9850	10275	5712574	701277	<5	0.4	210	26	75
	9850	10300	5712574	701302	<5	<0.2	81	16	71
	9850	10325	5712574	701327	<5	<0.2	58	12	55
	9850	10350	5712574	701352	<5	<0.2	51	16	70
	9850	10375	5712574	701377	<5	0.2	40	16	98
	9850	10400	5712574	701402	<5	<0.2	59	16	79
	9850	10425	5712574	701427	<5	<0.2	61	20	83
	9850	10450	5712574	701452	<5	0.2	60	22	99
	9850	10475	5712574	701477	<5	<0.2	52	16	99
	9850	10500	5712574	701502	<5	0.4	56	24	69
	9850	10525	5712574	701527	<5	<0.2	55	20	73
	9 850	10550	5712574	701552	10	<0.2	46	28	91
	9850	10575	57125 7 4	701577	<5	0.2	29	32	107
	9850	10600	5712574	701602	<5	0.2	13	20	108
	9900	10000	5712624	701002	<5	<0.2	50	8	71
	9900	10025	5712624	701027	<5	0.2	18	8	96
	9900	10050	571 2624	701052	<5	<0.2	61	12	85
	9900	10075	5712624	701077	<5	<0.2	19	10	79
	9900	10100	5712624	701102	<5	0.2	25	10	70
	9900	10125	5712624	701127	<5	<0.2	21	12	107
	9900	10150	5712624	701152	<5	<0.2	44	1	91
	9900	10175	5712624	701177	<5	0.4	207	16	118
	9900	10200	5712624	701202	<5	<0.2	20	8	55
	9900	10225	5712624	701227	<5	0.2	20	10	60
	9900	10250	5712624	701252	<5	<0.2	20	12	57
	9900	10275	5712624	701277	<5	<0.2	48	16	58
	9900	10300	5712624	701302	<5	<0.2		1	0.5
	9900	10325	5712624	701327	<5	<0.2	26	12	46
	9900	10350	5712624	701352	<5	<0.2	29	14	44
	9900	10375	5712624	701377	<5	<0.2	15	12	93
	9900	10400	5712624	701402	<5	<0.2	42	20	66
	9900	10425	5712624	701427	<5	0.6	57	18	57
	9900	10450	5712624	701452	<5	0.6	42	18	71
	9900	10475	5712624	701477	<5	0.6	116	28	
	99 00	10500	5712624	701502	<5	0.2	50	32	66

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
9900	10525	5712624	701527	<5	0.8	98	28	64
9900	10550	5712624	701552	<5	0.2	54	30	80
9900	10575	5712624	701577	<5	<0.2	21	20	62
9900	10600	5712624	701602	<5	<0.2	18	18	70
9950	10000	5712674	701002	<5	0.4	91	10	39
9950	10025	5712674	701027	<5	<0.2	137	10	50
9950	10050	5712674	701052	<5	0.4	36	4	53
9950	10075	5712674	701077	<5	0.4	628	16	75
9950	10100	5712674	701102	<5	<0.2	46	10	85
9950	10125	5712674	701127	<5	0.6	191	14	89
9950	10150	5712674	701152	<5	0.8	206	10	56
9950	10175	5712674	701177	<5	<0.2	57	12	117
9950	10200	5712674	701202	<5	1	34	12	86
9950	10225	5712674	701227	<5	<0.2	36	10	53
9950	10250	5712674	701252	<5	<0.2	20	12	192
9 950	10275	5712674	701277	<5	<0.2	31	12	46
9950	10300	5712674	701302	<5	0.2	73	12	173
9950	10325	5712674	701327	<5	0.2	32	12	170
9950	10350	5712674	701352	<5	<0.2	22	12	74
9950	10375	5712674	701377	<5	0.6	24	10	99
9950	10400	5712674	701402	<5	<0.2	16	12	71
9950	10425	5712674	701427	<5	0.4	19	16	93
9950	10450	5712674	701452	<5	<0.2	9	14	99
9950	10475	5712674	701477	<5	0.8	93	34	91
9 950	10500	5712674	701502	<5	1	78	34	117
9950	10525	5712674	701527	<5	0.8	63	32	97
9950	10550	5712674	701552	<5	<0.2	22	24	88
9950	10575	5712674	701577	<5	<0.2	19	22	120
9950	10600	5712674	701602	<5	0.4	11	20	166
10000	10000	5712724	701002	<5	<0.2	25	10	65
10000	10025	5712724	701027	<5	0.2	68	14	61
10000	10050	5712724	701052	<5	0.2	68	14	54
10000	10075	5712724	701077	<5	<0.2	38	10	48
10000	10100	5712724	701102	<5	<0.2	27	4	97
10000	10125	5712724	701127	<5	<0.2	21	4	86
10000	10150	5712724	701152	<5	<0.2	15	8	135
10000	10175	5712724	701177	<5	<0.2	14	8	89
10000	10200	5712724	701202	<5	0.8	34	8	74
10000	10225	5712724	701227	<5	0.4	11	2	127
10000	10250	5712724	701252	<5	0.2	18	6	96
10000	10275	5712724	701277	<5	<0.2	15	6	65
10000	10300	5712724	701302	<5	0.4	44	6	155
10000	10325	5712724	701327	<5	0.2	15	8	79
10000	10350	5712724	701352	<5	0.2	31	12	77
10000	10375	5712724	701377	<5	0.4	33	14	68
10000	10400	5712724	701402	<5	0.2	12	8	57
10000	10425	5712724	701427	10	0.2	23	10	83
10000	10450	5712724	701452	15	0.2	40	16	91
10000	10475	5712724	701477	<5	0.4	27	12	68

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
10000	10500			<5	0.8	51	14	105
10000	10525		701527	<5	0.6	30	16	103
10000	10550		701552	<5	0.2	48	24	68
10000	10575	5712724	701577	<5	0.2	24	20	81
10000	10600		701602	<5	0.2	29	22	94
10050	10000	5712774	701002	<5	0.4	32	6	60
10050	10025	5712774	701027	<5	0.4	13	4	54
10050	10050	5712774	701052	45	0.2	33	4	5 9
10050	10075	5712774	701077	<5	0.2	48	8	59
10050	10100	5712774	701102	<5	<0.2	40	1	5 9
10050	10125	5712774	701127	<5	<0.2	12	4	100
10050	10150	5712774	701152	<5	0.2	73	10	110
10050	10175	5712774	701177	<5	0.2	19	8	70
10050	10200	5712774	701202	<5	0.4	21	6	85
10050	10225	5712774	701227	<5	0.4	34	4	104
10050	10250	5712774	701252	<5	0.6	54	8	148
10050	10275	5712774	701277	<5	<0.2	20	6	118
10050	10300	5712774	701302	<5	0.2	48	10	60
10050	10325	5712774	701327	<5	0.6	42	8	69
10050	10350	5712774	701352	<5	0.4	11	6	101
10050	10375	5712774	701377	<5	0.2	34	14	68
10050	10400	5712774	701402	<5	0.6	35	16	88
10050	10425	5712774	701427	<5	0.4	27	10	95
10050	10450	5712774	701452	<5	0.4	23	12	97
10050	10475	5712774	701477	<5	0.6	77	20	79
10050	10500	5712774	701502	<5	0.6	22	8	65
10050	10525	5712774	701527	<5	0.2	25	18	96
10050	10550	5712774	701552	<5	0.4	32	18	119
10050	10575	5712774	701577	<5	0.4	38	34	97
10050	10600	5712774	701602	<5	0.8	48	24	102
10100	10000	5712824	701002	<5	0.2	38	8	82
10100	10025	5712824	701027	<5	0.8	54	8	73
10100	10050	5712824	701052	<5	0.2	28	8	51
10100	10075	5712824	701077	<5	0.4	71	12	75
10100	10100	5712824	701102	<5	0.4	81	10	59
10100	10125	5712824	701127	<5	<0.2	40	6	66
10100	10150	5712824	701152	<5	0.41	85	10	71
10100	10175	5712824	701177	<5	<0.2	39	6	134
10100	10200	5712824	701202	<5	0.4	37	6	208
10100	10225	5712824	701227	<5	<0.2	93	6	175
10100	10250	5712824	701252	<5	0.2	1106	12	586
10100	10275	5712824	701277	<5	<0.2	42	8	132
10100	10300	5712824	701302	<5	0.4	25	8	90
10100	10325	5712824	701327	<5	<0.2	20	4	97
10100	10350	5712824	701352	<5	0.2	37	14	122
10100	10375	5712824	701377	<5	<0.2	21	18	73
10100	10400	5712824	701402	<5	<0.2	24	10	62
10100	10425	5712824	701427	<5	<0.2	37	22	70
10100	10450	5712824	701452	<5	0.6	33	10	98
0	00				0.0			

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
10100	10475	5712824	701477	<5	0.2	34	12	72
10100	10500	5712824	701502	<5	<0.2	26	14	82
10100	10525	5712824	701527	<5	<0.2	24	20	75
10100	10550	5712824	701552	<5	0.2	14	14	83
10100	10575	5712824	701577	<5	0.2	18	14	110
10100	10600	5712824	701602	<5	0.2	30	26	100
10150	10000	5712874	701002	<5	<0.2	24	8	74
10150	10025	5712874	701027	<5	<0.2	36	30	79
10150	10050	5712874	701052	<5	<0.2	35	8	53
10150	10075	5712874	701077	<5	<0.2	25	10	74
10150	10100	5712874	701102	<5	<0.2	27	8	50
10150	10125	5712874	701127	<5	<0.2	45	8	65
10150	10150	5712874	701152	<5	<0.2	38	10	77
10150	10175	5712874	701177	<5	<0.2	26	8	75
10150	10200	5712874	701202	<5	<0.2	28	10	69
10150	10225	5712874	701227	<5	<0.2	56	8	98
10150	10250	5712874	701252	<5	<0.2	54	12	80
10150	10275	5712874	701277	<5	<0.2	56	10	192
10150	10300	5712874	701302	<5	<0.2	64	2	120
10150	10325	5712874	701327	<5	<0.2	17	4	95
10150	10350	5712874	701352	30	0.6	54	12	130
10150	10375	571 2874	701377	<5	<0.2	13	10	130
10150	10400	5712874	701402	<5	0.2	37	18	82
10150	10425	5712874	701427	<5	0.2	25	16	101
10150	10450	5712874	701452	<5	0.8	41	8	77
10150	10475	5712874	701477	<5	0.8	31	14	65
10150	10500	5712874	701502	<5	0.4	23	12	114
10150	10525	5712874	701527	<5	<0.2	31	18	86
10150	10550	5712874	701552	20	<0.2	29	16	70
10150	10575	5712874	70 1577	<5	<0.2	16	14	72
10150	10600	5712874	701602	<5	0.2	12	16	109
10250	10000	5712974	701002	<5	<0.2	11	4	103
10250	10025	5712974	701027	<5	1	318	14	81
10250	10050	5712974	701052	25	1.6	425	20	91
10250	10075	5712974	701077	<5	<0.2	18	4	118
10250	10100	5712974	701102	<5	0.2	24	6	82
10250	10125	5712974	701127	<5	0.2	14	6	86
10250	10200	5712974	701202	<5	0.4	40	10	81
10250	10225	5712974	701227	<5	<0.2	26	8	47
10250	10250	5712974	701252	<5	<0.2	40	4	79
10250	10275	5712974	7 01277	<5	0.2	19	4	81
10300	10000	5713024	701002	<5	<0.2	9	8	53
10300	10025	5713024	701027	<5	<0.2	38	12	43
10300	10050	5713024	701052	<5	<0.2	32	4	51
10300	10075	5713024	701077	<5	0.6	151	8	81
10300	10100	5713024	701102	<5	<0.2	44	10	78
10300	10125	5713024	701127	<5	0.2	29	8	83
10300	10150	5713024	701152	<5	0.2	17	4	79
10300	10175	5713024	701177	<5	0.2	20	6	83

North	East	Northing	Easting	Au_ppb	Ag_ppm		Pb_ppm	Zn_ppm
10300	10200	5713024	701202	<5	<0.2	15	6	
10300		5713024	701227	<5	<0.2	23	6	
10300		5713024	701252	<5	0.2	27	8	75
10300		5713024	701277	<5	0.2		10	
10300	10300	5713024	701302	<5	<0.2	28	12	41
10300	10325	5713024	701327	<5	0.4	16	10	110
10300	10350	5713024	701352	<5	1.2	221	6	58
10300	10375	5713024	7 01377	<5	0.2	38	22	81
10300	10400	5713024	701402	<5	0.2	30	14	87
10300	10425	5713024	701427	<5	1.4	65	24	112
10300	10450	5713024	701452	<5	<0.2	27	16	87
10300	10475	5713024	701477	<5	0.4	75	20	102
10300	10500	5713024	701502	<5	<0.2	32	12	68
10300	10525	5713024	701527	<5	<0.2	48	14	65
10300	10550	5713024	701552	<5	0.6	46	14	110
10300	10575	5713024	701577	<5	<0.2	20	14	64
10300	10600	5713024	701602	<5	<0.2	19	22	77
10350	10000	5713074	701002	<5	0.2	21	6	108
10350	10025	5713074	701027	<5	0.4	35	4	75
10350	10050	5713074	701052	<5	<0.2	22	4	45
10350	10075	5713074	701077	5	<0.2	24	4	49
10350	10100	5713074	701102	<5	0.2	22	4	76
10350	10125	5713074	701127	<5	0.4	128	12	106
10350	10150	5713074	701152	<5	<0.2	50	4	71
10350	10175	5713074	701177	<5	<0.2	15	4	75
10350	10200	5713074	701202	<5	<0.2	51	4	91
10350	10225	5713074	701227	5	0,2	66	10	71
10350	10250	5713074	701252	<5	0.4	68	8	52
10350	10275	5713074	70127 7	<5	0.2	56	12	65
10350	10300	5713074	701302	5	0.2	26	8	63
10350	10325	5713074	701327	<5	<0.2	72	14	59
10350	10350	5713074	701352	25	<0.2	82	1	85
10350	10375	5713074	701377	<5	<0.2	65	18	95
10350	10400	5713074	701402	<5	<0.2	5	12	59
10350	10425	5713074	701427	<5	0.2	31	18	92
10350	10450	5713074	701452	<5	1	170	20	107
10350	10475	5713074	701477	<5	<0.2	28	8	42
10350	10500	5713074	701502	<5	<0.2	29	6	43
10350	10525	5713074	701527	<5	0.4	12	6	104
10350	10550	5713074	701552	<5	0.2	83	6	85
10350	10575	5713074	701577	<5	<0.2	20	14	84
10350	10600	5713074	701602	<5	0.6	25	12	102
10400	10000	5713124	701002	<5	<0.2	27	6	82
10400	10025	5713124	701027	15	<0.2	29	4	84
10400	10050	5713124	701052	<5	<0.2	31	4	38
10400	10075	5713124	7 01077	<5	<0.2	42	6	50
10400	10100	5713124	701102	<5	0.2	11	2	71
10400	10125	5713124	701127	<5	<0.2	15	6	57
10400	10150	5713124	701152	<5	0.2	44	10	49

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
10400	10175	5713124	701177	<5	<0.2	31	6	54
10400	10200	5713124	701202	<5	0.4	74	20	71
10400	10225	5713124	701227	<5	0.2	26	10	89
10400	10250	5713124	701252	<5	0.6	92	18	83
10400	10275	5713124	701277	<5	<0.2	38	12	58
10400	10300	5713124	701302	<5	0.2	96	22	82
10400	10325	5713124	701327	<5	0.2	92	18	72
10400	10350	5713124	701352	<5	1.4	34	14	115
10400	10375	5713124	701377	<5	0.2	40	16	71
10400	10400	5713124	701402	<5	0.4	346	240	96
10400	10425	5713124	701427	<5	0.4	139	8	112
10400	10450	5713124	701452	<5	<0.2	25	8	53
10400	10475	5713124	701477	<5	0.4	15	8	68
10400	10500	5713124	701502	<5	0.2	16	6	

North	East	Northing	Easting	Au_ppb	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
10250	10400	5712974	701402	<5	<0.2	27	14	64
10250	10425	5712974	701427	<5	0.6	46	18	95
10250	10450	5712974	701452	<5	1.8	174	26	112
10250	10475	5712974	701477	<5	0.2	41	16	129
10250	10500	5712974	701502	<5	0.6	57	16	110
10250	10525	5712974	701527	<5	<0.2	13	10	74
10250	10550	5712974	701552	<5	0.2	13	14	74
10250	10575	5712974	701577	<5	<0.2	24	12	63
10250	10600	5712974	701602	<5	0.2	9	8	72