BC Geological Survey Assessment Report 31032

GEOLOGICAL ASSESSMENT REPORT

ON THE

KUTCHO PROJECT: NORTH CENTRAL BRITISH COLUMBIA

LIARD MINING DISTRICT 104I018, 019, 028, 029 58°12'N : 128°22'W

South Fork 1 (586848), South Fork 2 (586849), South Fork 3 (586850), South Fork 4 (586851), Trondhjemite 1 (586852), Trondhjemite 2 (586854), Trondhjemite 3 (586855)

May 24, 2009 to June 4, 2009

KUTCHO COPPER CORPORATION OWNER AND OPERATOR

Prepared by:

Dani Alldrick, Ph.D., P.Geo. Chief Geoscientist, Kutcho Copper Corporation.

Brian Willett, B.Sc. Project Geologist, Minto Explorations Inc.

and

Robert G. Wilson, B.Sc., P.Geo. Senior Geologist, Kutcho Copper Corporation

August 3, 2009

EXECUTIVE SUMMARY

The Kutcho Project is situated within the Cassiar Mountains of northern British Columbia, 100 km east of the town of Dease Lake. Claim holdings total 12,048 hectares (120 km²) and cover the thickest part of the Lower Triassic Kutcho Formation which hosts volcanogenic massive sulphide (VMS) mineralization. Three elongate VMS sulphide deposits have been delineated. These form a linear, shallowly-plunging, west-northwesterly mineralized trend that is 3.6 kilometres long.

Relogging of historic core from the southern area of the claims was carried out in the spring of 2009 in preparation for a surface prospecting and mapping program over the same ground later in the season. Drillholes 90K-05, 90K-07, 90K-09, 90K-13 and 75E-028 were selected because they intersect major felsic volcanic units, minor pyritic horizons and reported chert (exhalite) units. Together with adjacent drillholes 90K-15 and 90K-19, four of these drillholes comprise the only linear fence of drillholes across the southern limb of the main anticline in the Kutcho district. In the area of these drillholes, 7 kilometres southwest of the three Kutcho VMS deposits, the southern limb of this anticline exposes Kutcho Formation strata, part of the same favourable stratigraphy that hosts the VMS deposits on the north limb of the anticline.

The decision to re-log these and other historic drillholes on the southern limb of the anticline was based on substantial advances in the understanding of:

- volcanic rock textures
- characteristic features of VMS sulphide deposits
- local and regional alteration haloes associated with VMS deposits
- key structural controls to the localization of the Kutcho VMS deposits
- pathfinder elements and minerals in the Kutcho VMS camp

since these holes were drilled and logged 20 years ago.

Specific recommendations following from this study are:

- Relogging of the expensively acquired, carefully preserved, historic drillcore on this large property is a valuable exercise that must continue. Relogging historic drillcore is an essential first step before embarking on renewed mineral exploration work on any part of this property.
- Strata on the southern part of the Kutcho Property represent a significantly deeper stratigraphic interval than the mineralized horizons hosting the three VMS deposits, 7 kilometres to the northeast. The overall mineral potential of this southern rock package must be evaluated and prospected as a separate stratigraphic entity.
- The immediate area around DDH 90K-09 requires follow-up drilling.
- The immediate area around DDH 90K-07 requires follow-up drilling.
- A careful reassessment of the geology, showings, geophysics and geochemistry in the vicinity of the DDH 90K-05 is warranted.
- Re-log the remaining four drillholes through the thick mafic volcanic package that extends across the entire southern Kutcho Property so we can `fingerprint' the individual volcanic and exhalative units to aid detailed stratigraphic correlation.

	Pag	e
Execu	ıtive Summary	ii
1.0	Introduction	1
1.1	Property Description and Location	2
1.2	Access, Physiography, & Climate	5
1.3	Exploration History	5
1.4	2009 Exploration Program	7
2.0	Geology	8
2.1	Regional Geology	8
2.2	Property Geology	8
2	2.2.1 Stratigraphy	8
2	2.2.2 Structure	9
3.0	Mineralization and Alteration	12
3.1	Deposit Type	12
3	8.2.1 Main (Kutcho) Deposit	13
3	3.2.2 Sumac Deposit	14
3	3.2.3 Esso Deposit	15
3	8.2.4 Other Mineralization	15
4.0	2009 Drillcore ReloggingError! Bookmark not defi	ned.
4.1	IntroductionError! Bookmark not de	fined.
4.2	DDH 90K-05	16
4.3	DDH 90K-07	16
4.4	DDH 90K-09	20
4.5	DDH 90K-13	20
4.6	DDH KU75-028	24
4.7	Cross-Section through drillholes	24
5.0	Conclusions	27
6.0	Recommendations	28
7.0	References	28

TABLE OF CONTENTS

LIST OF FIGURES

Page
Figure 1.1 Property Location Plan
Figure 1.2 Kutcho Creek Claim Map 4
Figure 2.1 Kutcho Project, Regional Geological Setting10
Figure 2.2 Cross-Section of King Salmon Allochthon through the Kutcho area10
Figure 2.3 Kutcho Property Geological Plan (with historical claim outline and surface
projection of sulphide deposits) 11
Figure 2.4 Reconstructed Stratigraphic Section11
Figure 4.1 Drillhole Location Map17
Figure 4.2 Graphic Log for DDH 90K-0518
Figure 4.3 Graphic Log for DDH 90K-0719
Figure 4.4 Graphic log for DDH 90K-0921
Figure 4.5 Graphic log for DDH 90K-1322
Figure 4.6 Graphic Log for DDH 90K-13 showing stratigraphic fingerprinting23
Figure 4.7 Graphic log for DDH KU75-02825
Figure 4.8 North-south cross-section through drillholes

LIST OF TABLES

Page

Table 3.1	Measured, Indicated and Inferred Resources	. 12	2
-----------	--	------	---

APPENDICES

APPENDIX I	List of Claims for Kutcho Creek Property	31
APPENDIX II	Kutcho Project Resource Table	
APPENDIX III	Diamond Drill Log for 90K-05	34
APPENDIX IV	Diamond Drill Log for 90K-07	47
APPENDIX V	Diamond Drill Log for 90K-09	91
APPENDIX VI	Diamond Drill Log for 90K-13	126
APPENDIX VII	Diamond Drill Log for KU75-028	148
APPENDIX VIII	Itemized Cost Statement	159
APPENDIX IX	Certificates of Qualifications	160

1.0 INTRODUCTION

Kutcho Copper Corporation (KCC) owns 100% of the Kutcho project in north central British Columbia. Exploration of the Kutcho property through the late 1970's and early 1980's defined three volcanogenic massive sulphide (VMS) deposits or lenses that form a gently plunging, east-west oriented, linear trend.

The largest of the deposits, the Main lens, is a near-surface sulphide deposit. The adjacent sulphide lens to the west is the Sumac. The Esso deposit is furthest to the west and lies at a depth of 400m to 500m below surface.

Beyond the immediate area of the known deposits, a regional exploration program was conducted in 1985, consisting of airborne and ground geophysical surveys, regional mapping and prospecting, and geochemical surveys. Targets delineated in this wide-ranging program were drilled in the 1990 field season (B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 20,636). Since the completion of the 1990 drill program, no further exploration work has been conducted on the southern part of the property, despite some encouraging results.

Renewed exploration in the southern part of the KCC Kutcho Creek property is planned for the 2009 field season. In preparation for this fieldwork campaign, it was decided to spend the early spring relogging historic drillcore from this area, with special emphasis on a fence of five drillholes that provides a cross-section through the south limb of the Imperial anticline and through the same stratigraphy that hosts the three VMS deposits on the north limb of the anticline.

The results of the drillcore relogging of four 1990 drillholes and one 1975 drillhole are the subject of this report. These five drillholes are collared within the Mother 1, South Fork 2, South Fork 3, and South Fork 4 claimblocks.

1.1 **PROPERTY DESCRIPTION AND LOCATION**

The Kutcho Project area is situated 100 km east of the town of Dease Lake, and 330 km north of Smithers in northern B.C. (Fig 1.1). The property lies within the NTS map sheet 104I/1. Geographic coordinates for the center of the claim area are 58°12'N and 128°22'W. The KCC claims cover an area of 12,048 hectares. Claims are shown in Figure 1.2 and are listed in Appendix 1.

Capstone, through its wholly-owned subsidiary Kutcho Copper Corporation, owns the claims through two separate purchase agreements and through claim staking. One agreement is with Barrick Gold Inc. (a subsidiary of Barrick Gold Corporation) and AMI Resources Inc., who had 80% and 20% ownership, respectively, in all of the claims except the 16 SMRB claims and the 30KC claims. Ownership of the SMRB and KC claims are covered in an agreement with Sumac Mines Inc., a subsidiary of Sumitomo Metal Mining Co. Ltd. In 2008, Capstone staked 11 additional claims.

Following notice by Capstone that it has completed a feasibility study on the Kutcho Project, Barrick will have 120 days to elect to 'back-in' for a 50% interest by spending, within two years, three times Capstone's expenditures on the property. This applies only to that portion of the property on which Barrick previously held an interest.

Pursuant to the Sumac Agreement, Sumac is entitled to a royalty of 2% of net smelter returns, on the portion of the Kutcho Project it sold to the Company, between the third anniversary and the sixth anniversary of the date of commencement of commercial production, and a royalty of 3% of net smelter returns after the sixth anniversary of the date of commencement of commercial production.

Barrick and AMI are collectively entitled to royalty of 2% of net smelter returns on the portion of the Kutcho Project they sold to the Company, which royalty is shared between Barrick and AMI on an 80/20 basis, respectively.

Kutcho Copper Corporation has formally entered the Kutcho project into the British Columbia Environmental Assessment process as a step toward obtain permitting for a mining operation. Initial consultations with all appropriate government agencies, both provincial and federal, have been held along with First Nations consultations and open houses. Water balance, weather, fish, archeological and wildlife baseline studies have been completed.

Figure 1.1 Property Location Plan

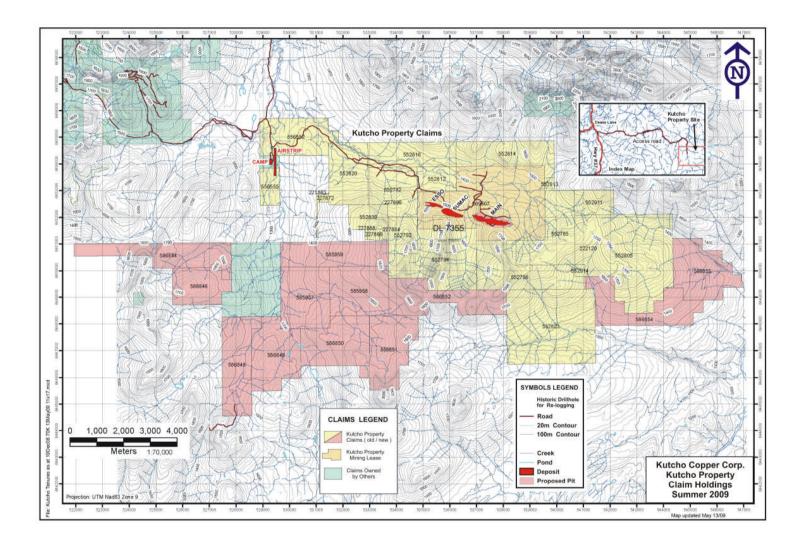


Figure 1.2 Kutcho Creek Claim Map

1.2 ACCESS, PHYSIOGRAPHY AND CLIMATE

Access to the property is by fixed-wing aircraft and helicopter from Smithers or Dease Lake to the 900 metre long gravel airstrip located at the junction of Kutcho and Andrea Creeks. The deposit area of the property is connected to the airstrip by an 8 km road; currently this road has had culverts removed and is only passable to four wheel drive vehicles with good clearance. Land access via the 125 km tote road to Dease Lake is available to four wheel drive vehicles during late summer and early fall but passage is somewhat dependant upon weather due to extensive muddy sections.

The property is located within the Cassiar Mountains, just to the north of the continental divide between the Arctic and Pacific watersheds. The area is moderately rugged with elevations ranging from 1,400 to 2,200 metres. Most of the area is alpine with treeline at approximately 1,500 metres. Structural fabric and two periods of glaciation have produced an intersecting pattern of east-west and north-south ridges and valleys. The major valleys are commonly filled with a deep layer of glacial till and outwash gravels.

Winters are cold and dry, while the summers are cool and moist. Average annual temperature is -1° C with average annual precipitation of 50 cm, approximately half of which occurs as snow. Snow cover can persist for nine months of the year, particularly on north-facing, shaded slopes.

1.3 EXPLORATION HISTORY

Mineralization was first discovered on the Kutcho property in 1968 by an exploration joint venture operated by Imperial Oil Ltd. The discovery was made by prospecting follow-up of stream sediment geochemistry anomalies from samples collected during a regional drainage survey. Twenty claims were staked by W. Melnyk directly over the undiscovered Kutcho Main Lens sulphide deposit. These claims were allowed to lapse when the other partners in the joint venture declined to fund further exploration. Imperial Oil returned to the area in 1972, after the statutes of the joint venture agreement expired, in order to re-stake the area. However, Sumac Mines Ltd. (the Canadian exploration subsidiary of Sumitomo) had conducted their own regional stream sediment sampling program earlier that season and in response to anomalous samples, R. Britten staked 8 'two-post' claims along the anomalous stream, and an additional 8 claims (SMRB claims) along the geological strike direction resulting in the cruciform claim outline overlying the western part of the Kutcho Main Lens sulphide deposit and the whole of the Sumac deposit. Imperial Oil (later Esso Minerals Canada Ltd.) then staked a much larger area surrounding Sumac's claims.

Beginning in 1973, exploration work was carried out by both Sumac and Esso and early success prompted additional staking. Diamond drilling commenced in 1974 and by 1982 approximately 60,000 metres had been drilled by both companies, defining three sulphide lenses. Additionally, Esso had drilled a number of exploration targets in other areas of the property with moderate success. Environmental, metallurgical and engineering studies were begun by both groups in 1980. A partnership agreement on engineering and development work was signed by Esso and Sumac in 1983 but was retroactive to 1981; the year Sumac

began work driving the adit in order to collect a 100-tonne bulk sample. The agreement was a 50:50 joint venture for development work, and culminated in a pre-feasibility study by Wright Engineers Limited in 1985. The pre-feasibility study indicated an 11.3% internal rate of return (IRR) when using a copper price of US\$0.95. Given the risk factors involved and long-term price projections for copper below the 95 cent level, the companies put the project on hold pending further exploration results. Limited exploration on Esso's claims south of the main mineralized trend between 1985 and 1988 and the numerous earlier geophysical surveys suggested limited potential for additional shallow open-pit mineralization.

In 1989, Esso sold most of its mining assets to Homestake Canada Ltd. In 1990, Homestake optioned the Kutcho property to American Reserve Mining Corporation who funded a \$1.1M exploration program (Homestake remained the operator) which included 7,031m of drilling in 28 holes (Holbek *et al*, 1991) mostly in outlying target areas and thereby earned a 20% interest. Exploration was successful in confirming the presence of extensive areas of favourable geology and alteration indicative of hydrothermal activity, but failed to discover zones of potentially economic mineralization. For example, 10 km southwest of the Kutcho deposit, a narrow zone of cryptocrystalline massive pyrite with a strike length in excess of five kilometres was intersected in four widely spaced drill holes but was barren of base or precious metals. American Reserve carried out engineering studies but did no further exploration work and relinquished the option in 1993 but retained a 20% interest in Homestake's property.

The property was optioned to Teck-Cominco Metals Ltd. in 1992. Teck-Cominco carried out deep penetration EM geophysical surveys (UTEM) over the Esso zone with the goal of defining additional conductors along the Kutcho trend. Due to extensive cover of conductive argillaceous units in the hanging wall, the UTEM system was unable to detect the Esso deposit or other conductors at depth, consequently Teck-Cominco dropped the option. Homestake was purchased by Barrick Gold Corp in 2003.

Extensions of the favourable Kutcho stratigraphy to the west have been staked and explored by various companies in the past. Shortly after the discovery of the Kutcho deposits, Noranda staked the Kutcho formation to the west of Kutcho Creek. Noranda conducted geophysical surveys, and completed a small drill program of three drill holes in 1990. The claims were allowed to lapse and were re-staked in 1995 by Gary Belik. Mr. Belik carried out a detailed mapping program and optioned the claims to Atna Resources in 1997. Atna conducted a UTEM geophysical survey and an extensive drill program of nine holes. Results of Atna's work were mixed, and although no deposits were discovered, significant weak to moderately mineralized alteration zones were intersected. Structural complexity and lack of clear geophysical targets prevented additional work and the option was terminated.

Negotiations by Western Keltic Mines Inc. to purchase the property from Barrick and Sumitomo were initiated in 2003 and concluded in early 2004. Western Keltic carried out diamond drilling within the Kutcho and Esso deposits during 2004 to confirm historical results and to obtain material for metallurgical studies (Holbek and Wilson, 2005).

From July to September, 2005, a 31-hole infill diamond drill program totaled 6342m. In the deposits area, sixteen holes extended and delineated the up- and down-dip limits of the Kutcho deposit and the underlying Footwall Zone. Four holes plus four branch holes located the western edge of the Esso deposit, and four holes discovered a higher grade core and the western limit to the Sumac Deposit. Regional exploration holes included one hole at the Jack Target which confirmed a weakly mineralized horizon 5km east of the Kutcho deposit, and one hole at the North Graben Target that aided in the geological understanding of the rhyolite flow-dome complex.

In 2006, Western Keltic Mines Inc. completed an in-fill diamond drilling program on the Kutcho property from mid-September to the end of October. A total of 1,870 metres were drilled in 23 BTW diameter diamond drillholes at a total cost of approximately \$1 million.

In 2007, Western Keltic Mines focused on several aspects of pre-mine development, most of which had a field component. Logistical work involved expansion to a 45 man camp. Baseline environmental studies encompassed acid rock drainage, air quality, archaeology, fisheries, groundwater hydrology and hydrogeology, meteorological data collection, terrain mapping, traditional use characterization, plus vegetation and wildlife inventories. Technical surveys concentrated on road design, layout and survey; geotechnical foundation studies including seismic plus drill and test pit examination of soil and rock depths, composition and stability; surveying of claims, mining lease and drill collar locations; and geological mapping of potential limestone horizons in Andrea Creek. Engineering studies focussed on mine and mill layout, pit stability and design, database verification and resource calculation, geohazards identification, metallurgical studies, and water balance calculations. Non-engineering work included development of safety, environmental and First Nations policies, operational protocols and project scheduling. Local area consultations included discussions toward impact benefits agreements and well as the signing of MOU's regarding ports, and with First Nations regarding project review participation and funding.

In 2008, Sherwood Copper Corporation purchased Western Keltic Mines Inc. and all assets and amalgamated these with Sherwood's wholly-owned subsidiary which was renamed Kutcho Copper Corporation.

Between May and August of 2008, Kutcho Copper Corporation completed a major diamond drill program entirely within the perimeter of the Main lens. 9,905 metres of drilling in 78 holes (plus three abandoned holes) provided core for assay and metallurgical processing. Based on these drill results, a new resource calculation was prepared (Appendix II).

In late 2008 Sherwood Copper Corporation merged with Capstone Gold Corporation, forming Capstone Mining Corporation.

1.4 2009 EXPLORATION PROGRAM

Re-logging historic drillcore from the southern area of the claims was carried out in the spring of 2009 in preparation for a surface prospecting and mapping program over the same ground later in the season. Drillholes 90K-05, 90K-07, 90K-09, 90K-13 and 75E-028 were

selected because they intersect major felsic volcanic units, minor pyritic horizons and reported chert (exhalite) units. Together with adjacent drillholes 90K-15 and 90K-19, four of these drillholes comprise the only linear fence of drillholes across the southern limb of the main anticline in the Kutcho district. In the area of these drillholes, 7 kilometres southwest of the three Kutcho VMS deposits, the southern limb of this anticline exposes Kutcho Formation strata, part of the same favourable stratigraphy that hosts the VMS deposits on the north limb of the anticline.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

The Kutcho property lies within the King Salmon Allochthon (KSA), a narrow belt of Permo-Triassic island-arc volcanic rocks (Kutcho Formation) and Jurassic sedimentary rocks. These strata are sandwiched between two northerly-dipping thrust faults, the Nahlin fault to the north, and the King Salmon fault to the south (Fig. 2.1).

Kutcho Formation is thickest in the area where it hosts the volcanogenic massive sulphide deposits due in part to primary deposition, but also to stratigraphic repetition by folding and, possibly, thrusting. KSA is terminated to the east, near the eastern edge of the property, by the strike-slip Kutcho fault (Gabrielse, 1978) but KSA extends to the west for hundreds of kilometers. However, Kutcho Formation volcanic rocks thin to the west and are poorly exposed from a point 10 km west of Kutcho Creek all the way to Dease Lake.

KSA stratigraphy consists primarily of the Kutcho Formation, overlain by the limestone of the Upper Triassic Sinwa Formation, which in turn is overlain by sediments, predominately argillite, of the Lower Jurassic Inklin Formation. Major folds are clearly delineated by the outcrop trace of the Sinwa limestone or by the contact between the Kutcho and Inklin Formations where Sinwa Formation is absent (Fig. 2.2).

2.2 PROPERTY GEOLOGY

2.2.1 Stratigraphy

Stratigraphy of the Kutcho property has been described by Thorstad (1983), Bridge (1984) and Holbek (1985) and is only be briefly reviewed here. Figure 2.3 shows the property geology map, and a generalized stratigraphic section is presented in Figure 2.4. Stratigraphy is best understood in the upper part of the Kutcho Formation where detailed drill information is available. The footwall stratigraphy, particularly away from the deposit area, is known only from surface mapping.

The lowest rocks in the section include interlayered basalt, basaltic tuff and wacke, rhyolitic lapilli tuff and trondhjemite intrusive. The mafic rocks are fine to very fine grained, chloritic, and equigranular to weakly porphyritic. The lapilli tuffs are pale grey, siliceous and commonly contain very fine quartz phenocrysts and lenticular fragments from 0.5 to 3 cm in length. Textures can only be seen on weathered, lichen-free, surfaces. The trondhjemite is described by Pearson and Panteleyev (1975) and Bridge *et al.* (1983) as fine-grained,

equigranular and plagioclase-rich. A weak but pervasive carbonate-chlorite-pyrite alteration of this unit is discernable.

Rocks overlying the basalt-lapilli tuff package have been termed the "ore-sequence" and consist of lapilli tuffs, crystal-lithic tuffs, quartz and quartz-feldspar crystal tuffs. Away from the deposit area, these units tend to be thin, interbedded, and variably but weakly altered. Fine quartz-crystal ash tuff with silica-rich laminations and rare thin zones of ferroan dolomite typically mark the distal exhalative zone. The sulphide zones occur at, or near to, the contact between footwall lapilli tuff and hangingwall quartz crystal tuff. In general both lapilli fragments and phenocrysts are much coarser grained in the vicinity of the deposits, and become progressively finer grained to the south and west. The quartz-feldspar crystal tuff is quartz-rich near the deposits and to the south becomes more feldspar-rich.

A large zone of feldspar crystal tuff with almost no free quartz occurs a few hundred metres south of the sulphide zones and it is indeterminate whether this unit is footwall, hangingwall, or a facies equivalent to the quartz-feldspar crystal tuff. An interesting feature is the occurrence of a coarse breccia texture within the quartz-feldspar crystal tuff immediately and are identical to crystal tuff matrix except for an increase in the amount of epidote to 10 percent. This feature has been interpreted to be a debris flow of semi-consolidated crystal tuff shed from a flow-dome complex, and trapped in a graben or half-graben structure which hosts the sulphide lenses.

Rocks between the ore sequence and the overlying conglomerate unit are referred to as the Tuff-Argillite Unit (TAU) and consist of gabbroic to basaltic intrusive sills and dikes, greywacke and argillite. In the area of the deposit the gabbroic units are coarse-grained and are commonly referred to as metagabbro. Higher in the section and both to the east and west from the Kutcho deposit this mafic unit becomes much finer grained and an intrusive origin is not so clearly identified. The amount of argillite increases in a westerly direction supporting the concept that this direction is towards the marine basin. The base of the TAU is interpreted to be a thrust fault and there are numerous other fault zones within the unit as noted in drill core and the adit.

Overlying the TAU, and truncating it to the west is the Kutcho Conglomerate. This unit is a heterolithic, fragment-supported conglomerate composed of sub-rounded clasts, ranging in size from 1 to 38 cm (long axis) and derived from all of the underlying lithologies. The conglomerate is conformably overlain and transitional into the Sinwa limestone, which in turn appears to be conformably overlain by Jurassic Inklin Formation argillite.

Kutcho Formation is Permo-Triassic. Thorstad (1983) determined an Upper Triassic age on the basis of Rb-Sr dating of volcanic rocks and regional stratigraphic constraints. Subsequent work by F. Childe at the Mineral Deposit Research Unit of The University of B.C. in 1996 indicates that ages range from uppermost Permian to Lower Triassic.

2.2.2 Structure

Rocks of the Kutcho Formation are characterized by planar foliation that has a relatively constant strike direction of 270 to 290 degrees with northerly dips from 45 to 65 degrees. The dip of foliation decreases with structural depth. This foliation is part of the stress envelope associated with the regional thrusting event that created the King Salmon Allocthon.

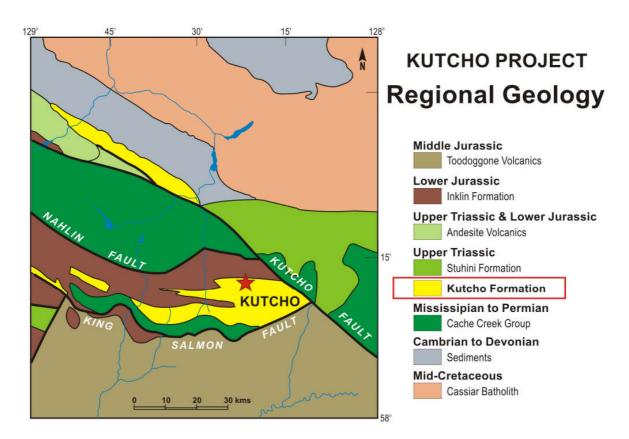


Figure 2.1 Regional Geologic Setting of the Kutcho Project

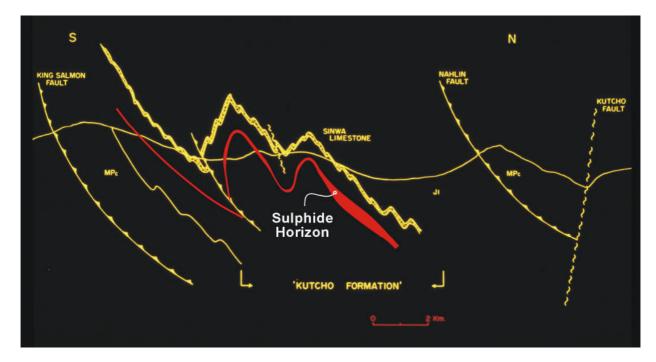


Figure 2.2 Schematic cross-section of the King Salmon Allochthon in the Kutcho deposit area

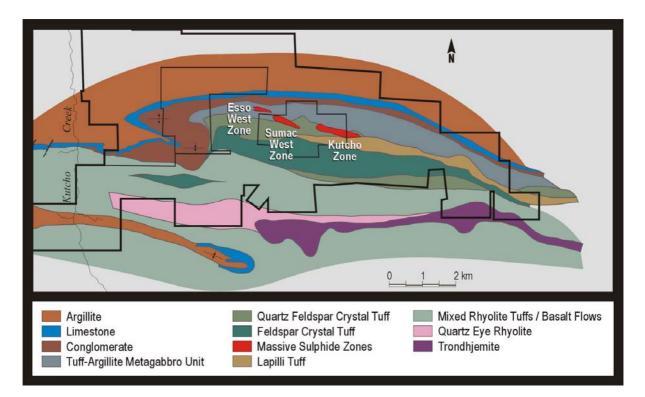


Figure 2.3 Kutcho Property Geological Plan (with historical claim outline and surface projection of sulphide deposits)

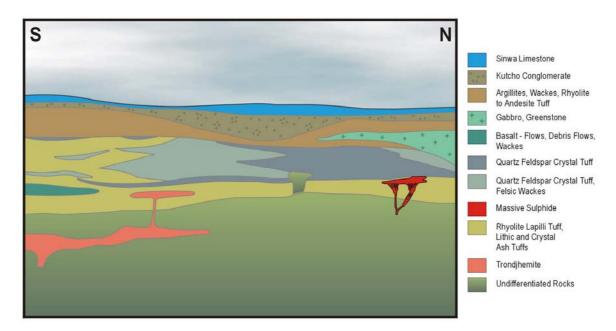


Figure 2.4 Schematic Stratigraphic Section (10x Vertical Exaggeration)

Folds are open to tight, asymmetrical, inclined and verging to the south. Folds plunge from 0 to 30 degrees west. Folds are most evident in well-bedded, competent units; fold data is heavily biased to the western property area, where these units predominate.

Structures that critically affect stratigraphic interpretation are the foliation-parallel thrust faults. These are difficult to detect in outcrop but can be inferred from foliation intensity, missing stratigraphy, contact geometry and topographic evidence. Faults of this type are considered to be present over the entire property.

3.0 MINERALIZATION AND ALTERATION

Three deposits comprise the Kutcho project. These form a west-plunging linear trend (Figure 2.3). From east to west the deposits are the Main, Sumac and Esso deposits (these deposits were previously termed Kutcho, Sumac West and Esso West respectively). The Main deposit crops out at its eastern end. Esso is blind and lies more than 400m below surface. A combined mineral resources for the three deposits is summarized in Table 3.1

CLASSIFICATION	m Tonnes	% Cu	% Zn	g/T Au	g/T Ag
Measured	5.421	2.15	2.86	0.34	31.4
Indicated	4.994	2.14	2.83	0.39	33.5
MEASURED and INDICATED	10.415	2.14	2.85	0.36	32.4
Inferred	1.893	2.09	2.93	0.46	33.6

Table 3.1 Measured, Indicated and Inferred Mineral Resources for the Kutcho Property (Resource updated by KCC on February 9, 2009. Tabulated at a 1.5% copper cut-off for all three deposits.) A detailed resource tabulation is included as Appendix II.

3.1 DEPOSIT TYPE

Mineralization at the Kutcho project is part of the volcanogenic massive sulphide (VMS) family of deposits. These deposits are a major source of copper, zinc, lead, silver and gold around the world. Speculation about the origin of these deposits goes back to mid 1850's when various French and English scientists postulated chemical precipitation from seafloor volcanic activity (Stanton, 1991). In the early 19th century, Japanese workers documented the sulphide textures preserved in the Kuroko deposits of Japan and the association of these deposits with rhyolite domes, developing the "submarine sinter theory". However, this work did not attract much attention and genetic theories or models of ore formation of this deposit type did not really gain international acceptance until similar observations were published by other workers in the 1950's and 1960's. Discovery of the Red Sea brine deposits in 1965 provided substantial impetus for the proponents of the "submarine exhalative" model. A certain amount of controversy between syngenetic and epigenetic theories continued through the 1970's, but with the advent of deep-sea submersibles and the filming of black and white "smokers" or hydrothermal vents in volcanic rift zones on the sea-floor, scientific models could go to a new level of detail.

VMS deposits have been classified into various subtypes depending upon the composition of the host rocks and the mineralization, and the tectonic setting. The Kutcho deposits are VMS deposits of the Kuroko type or Felsic volcanic-Siliciclastic depending upon the classification scheme. In this model, mineralization is related to felsic volcanism in island-arc or back-arc tectonic settings. A significant feature of VMS deposits from an exploration perspective is their tendency to occur in clusters. Larger VMS camps have up to 25 discrete deposits, and extensive mineralized districts are common.

Features of Kutcho deposits suggest that they formed at or near the seafloor in a structurally controlled depression, such as a half-graben. The VMS deposits at Kutcho have some features that are not common to this class of deposits: the absence of lead and barite is likely due to the low potassium content of the volcanic hostrocks (and presumably the associated rhyolite dome) and the presence of abundant carbonate of probable exhalative origin.

Alteration associated with VMS deposits is well documented and provides a valuable exploration tool, since the volume of altered rock is much larger (10 to 100 times greater) than the actual sulphide deposit, providing a larger exploration target. Extensive studies of the alteration around the Main (Kutcho) deposit have been completed and the alteration is chemically well-zoned about the hydrothermal vent area. Applying this known zonation, geochemical analysis of drill core within the alteration zone provides vectors towards a hydrothermal vent area and, hopefully, new sulphide deposits.

Geophysical techniques such as electro-magnetic (EM) and gravity surveys are useful for locating conductors or possible sulphide concentrations. EM methods can be used in airborne and ground surveys but can also be used within drillholes to locate "off-hole" conductors, thereby effectively increasing the search area of a drillhole. Many airborne and ground geophysical surveys have been completed on the Kutcho property and most high-priority targets have been investigated.

3.2.1 Main (Kutcho) Deposit

The Main deposit has an elliptical, lenticular shape with approximate dimensions of 1,500 m length, 260 m width (down-dip) and 20 m thickness (34 m maximum thickness). The long axis of the deposit plunges to the west-northwest at 12 degrees. The deposit is approximately conformable with stratigraphy. There is a gentle warping of the deposit such that the dip of the deposit changes from east to west and north to south. The shallowest dip, about 38°, occurs at the southeastern edge and becomes progressively steeper, to about 63°, at the northwestern edge. In general, the up-dip edge of the sulphide lens is narrow and pinches out, whereas the down-dip edge is thick and interlayered with tuffaceous rock (Fig. 3.1).

Sulphide mineralogy of the deposit is relatively simple and consists of pyrite, chalcopyrite, sphalerite and bornite, with minor chalcocite, tetrahedrite, diginite, galena, idiaite, hessite and electrum. Gangue minerals include quartz, dolomite, ankerite, sericite, gypsum and anhydrite. Fluorite and barite have been observed but do not occur in significant amounts.

Interpretation of the shape of the sulphide zone, taken together with the observed volcanic and depositional textures of the enclosing rocks, suggest that the sulphide mineralization was deposited in a structural depression, likely a half-graben. The internal stratigraphy of the Main deposit was determined by detailed drillcore logging along a single longitudinal section of drill holes (Figure 3.2; Holbek and Heberlein, 1986). The deposit appears to have formed from three hydrothermal-depositional cycles that begin with barren pyrite which grades into a copper-rich middle and zinc-rich top. Depositional cycles are commonly separated by layers of exhalative quartz and/or carbonate and minor volcanic ash. However, post-depositional hydrothermal activity resulted in sulphide replacement mineralization which tends to blur grade and cycle boundaries in some areas. Additional features such as an irregular depositional surface and localized slumping of sulphide mineralization or chimney collapse, and late-stage (post depositional) hydrothermal activity also cause complexity to the internal sulphide stratigraphy. Areas of late overprinting by oxidized copper species, and enrichment in precious metals, are interpreted as indicators of vent areas and occur along a linear trend on the down-dip side of the deposit with two "hot-spots" near each end of the deposit. However, no areas of 'classical' copper-rich footwall stringer mineralization have been encountered by drilling.

The upper contact of the sulphide mineralization is sharp with almost no sulphide minerals occurring in hangingwall rocks with the exception of scattered coarse crystals of porphyroblastic pyrite. However, sericite alteration of feldspar in the hangingwall strata is gradational from very weak at distances of up to 50m above the sulphide contact to intense from 1m to 10m above the sulphide lens. It is common for a shear zone to occur at the sulphide-schist contact which varies from 20cm to a maximum of 200cm in thickness and in many drillholes this hangingwall fault carries some grade. The base of the deposit consists of nearly barren massive pyrite with interstitial quartz. The contact between 'ore' and the footwall pyrite zone can be either gradational or sharp. Below the footwall pyrite zone is quartz-sericite schist with bands of generally barren, massive to semi-massive pyrite. The footwall pyrite content diminishes with depth away from the deposit, but extends to a maximum depth of 200m below the central part of the deposit. Although the footwall material appears to be of low competence in drillcore, it holds up very well in the underground adit.

3.2.2 Sumac Deposit

Sumac deposit has not previously received much attention due to its relatively low grades. It has been intersected in just 14 drillholes. A resource estimate is presented in Section 5.2.

Sumac mineralization is massive to banded pyrite with varying amounts of chalcopyrite and sphalerite, but lacking bornite. The deposit is oval, 300m long, 200m wide and from 20m to 32m thick. Hangingwall alteration is similar to the Main lens, but the footwall contains less pyritic banding, progressing much sooner into chlorite-altered lapilli-ash tuff.

The shape of the deposit is based on contours generated by a Mise à la Masse or downhole chargeability geophysical survey carried out during the early days of exploration. This survey was conducted by putting a transmitter electrode down the drillhole and grounding it against the sulphide zone. Then chargeability is measured from surface by a receiver array run along a grid of stations.

3.2.3 Esso Deposit

Esso deposit was discovered by following the trend in mineralization westward beyond the Main and Sumac areas. The deposit lies between 400m and 520m below surface. Like the others, Esso is an elongate lens with dimensions 680m long, 110m wide and up to 24m thick. The deposit consists of two discrete lenses; a larger lower lens and a smaller upper lens. Drilling results suggest that the two lenses may be connected at some location, rather than displaced by faulting. There is a zonation in thickness and grades from the central area of the larger lens. Mineralization in Esso lens is higher grade than either the Main or Sumac deposits, but displays similar mineral zonation with either copper-rich or zinc-rich layers or zones. Hangingwall and footwall alteration is similar to the Main lens and three-dimensional modeling indicates that these two deposits lie along the same stratigraphic horizon.

Drillholes were spaced approximately 10m to 30m along sections and sections are variably spaced, between 60m and 120m. Mineralization which was located within 30m of a drill hole was classified as indicated, with the remainder classified as inferred. Approximately 50% of the mineralization was within 30m of a drillhole. The resource estimate is based on 43 drill intersections.

3.2.4 Other Mineralization

Other zones of mineralization on the Kutcho Property include the Footwall zone, and the Jenn area. The Footwall zone occurs approximately 100m stratigraphically below the footwall of the Main lens, and extends up-dip to surface in two locations. Footwall zone is 2m to 5m thick, and relatively zinc-rich compared to Main lens. Didur (1979) calculated an inferred resource estimate using a polygonal method, of 230,000 tonnes grading 1.47% Cu, 5.52% Zn, 43.7 g/t Ag and 0.4 g/t Au.

The Jenn claims at the eastern end of the property received a fair amount of exploration attention by Esso. Although significant alteration and some local mineralization were intersected, no resources have been defined in the Jenn area. Folding appears to limit the down-dip potential in this area but revisions to the structural interpretation are likely and detailed geophysical surveys may enhance the area's potential.

* Although the resource estimates described above pre-date the Standards on Mineral Resources and Reserves Definitions and Guidelines adopted by CIM council on August 20th, 2000, the use of the terms: Indicated and Inferred have been used and have the same meanings as the CIM definitions.

4.0 2009 DRILLCORE RELOGGING

4.1 INTRODUCTION

Relogging of historic core from the southern area of the claims was carried out in the spring of 2009 in preparation for a surface prospecting and mapping program over the same ground later in the season (Figure 4.1). Drillholes 90K-05, 90K-07, 90K-09, 90K-13 and 75E-013 were selected because they intersect major felsic volcanic units, minor pyritic horizons and reported chert and carbonate (exhalite) units. Two of these holes also make up the southern part of a line of four drillholes that comprise the only linear fence

of drillholes across the southern limb of the main anticline in the Kutcho district – the Imperial anticline. In the area of these four drillholes, 7 kilometres southwest of the three Kutcho VMS deposits, the southern limb of this anticline exposes the same favourable stratigraphy that hosts the VMS deposits on the north limb of the anticline.

The decision to re-log these and other historic drillholes on the southern limb of the Imperial anticline was based on substantial advances in the understanding of:

- volcanic rock textures
- characteristic features of VMS sulphide deposits
- local and regional alteration haloes associated with VMS deposits
- key structural controls to the localization of the Kutcho VMS deposits
- pathfinder elements and minerals in the Kutcho VMS camp

since these holes were drilled and logged 20 years ago.

Our logging technique incorporates the lithological subdivisions developed and refined at the Kutcho Property through the exploration campaigns of the past 35 years. In addition, during 2008, Kutcho Copper Corporation developed a logging system incorporating geometallurgical best practices for description and classification of sulphide mineralisation. This technique is now applied in logging all new core and all historic core on the Kutcho property.

4.2 GEOLOGY OF DDH 90K-05

This drillhole was collared to test an EM conductor which remains unexplained. The hole also tests a horizon of pyritic chert that is well-exposed in a creek canyon 190 metres WSW of the collar The hole encounters an important sequence of felsic volcanics and thick exhalative chert and lesser carbonate units with minor associated stratabound pyrite. This drill intersection itself does not require direct follow-up, but it reveals a succession of favourable strata and quiescent conditions that should prompt a re-evaluation of existing stream sediment and soil geochemical survey results in this area, geophysical targets and a new detailed mapping and prospecting examination of the surface exposures of the area. The nearest drillhole is DDH 90K-11, 1,100 metres to the WNW. The nearest drillhole to the east lies more than 4km away.

4.3 GEOLOGY OF DDH 90K-07

This drillhole was drilled to test an EM conductor. The anomaly has been attributed to the semi-massive pyrite-pyrrhotite interval at 375.52m to 376.25m, but this is unlikely given the depth to this thin interval. The detailed corelog for this drillhole is included in this report as Appendix IV; the graphic log is displayed as Figure 4.3.

This drillhole intersected approximately equal volumes of felsic and mafic tuff to roughly 200 meters depth. Below this, the core is primarily mafic ash tuff with more frequent, but thin (10cm to 20cm) pyrite \pm pyrrhotite-bearing silica exhalite (chert) horizons. It is significant that, even though the drillhole primarily cuts through mafic tuffs, the pyritic zones are closely associated with the minor felsic volcanic units and exhalite units.

Chalcopyrite mineralization was noted only in one location, 22.20m to 22.40m, as silica exhalite with 15% chalcopyrite and 5% pyrite as crude laminations. Other intervals of interest are: 297.90m to 302.14m, Pyritic ash tuff (PATF) with 8% py; 375.14m to 375.25m, Sulphide-enriched silica exhalite (SESX) with 5% py, 25% po; 375.25m to

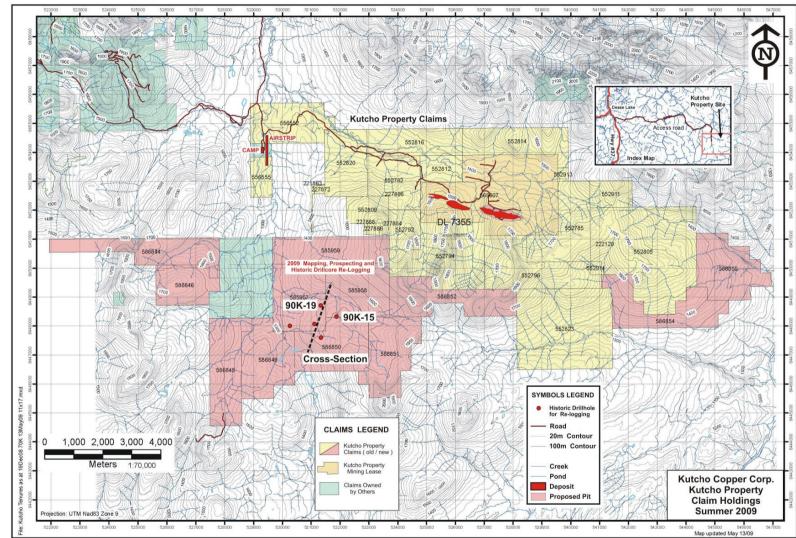


Figure 4.1 Drilhole Location Map

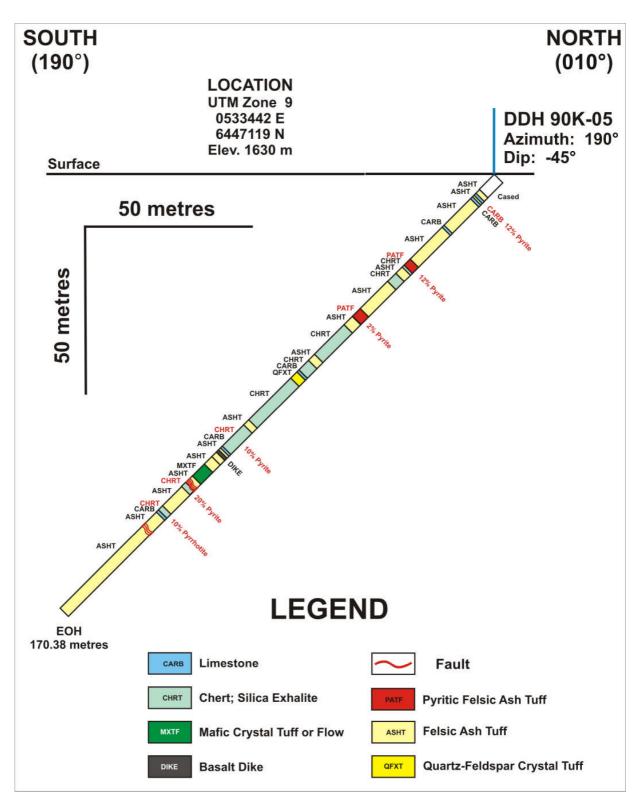


Figure 4.2 Graphic Log for DDH 90K-05

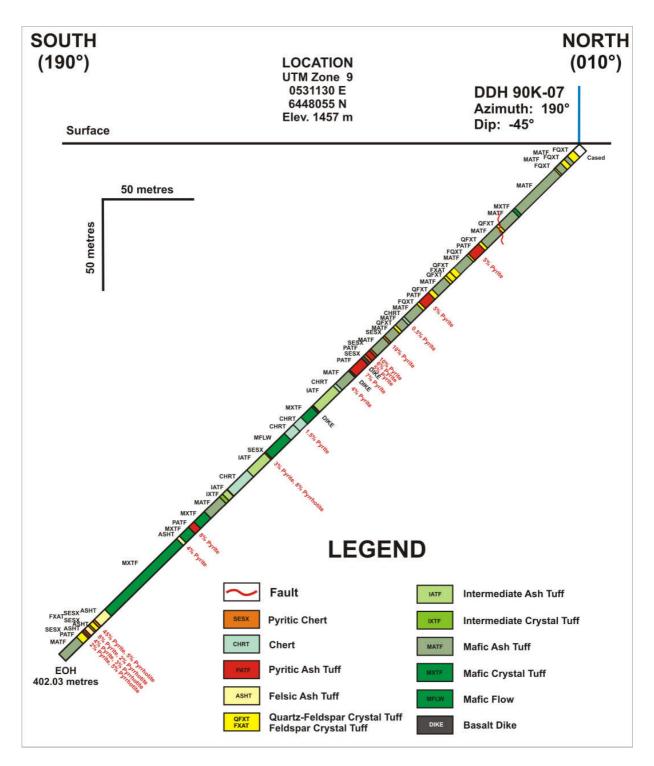


Figure 4.3 Graphic log for DDH 90K-07

375.52m, Felsic lapilli tuff (LLTF) with 3% py, 5% po; and 375.52m to 376.25m, Sulphide-enriched silica exhalite (SESX) with 45% semi-massive py, 5% po.

The thin layers of semi-massive and massive sulphide encountered in the final few metres of this deep drillhole remain an important exploration target on this property. A drillhole located to the south of this collar could test the same horizon with a shorter hole.

4.4 GEOLOGY OF DDH 90K-09

This drillhole tests an EM conductor. It is the only drillhole in this part of the southwest Kutcho Property. The detailed corelog for this drillhole is included in this report as Appendix V; the graphic log is displayed as Figure 4.4.

The hole intersects an impressive amount of stratabound pyritic sulphides that demand drill follow-up. The strata also demonstrate dramatically that in the Kutcho camp, stratabound exhalative sulphides can be associated with (hosted by) felsic volcanic ash, and/or mafic volcanic ash, and/or chert, and/or limestone/carbonate. Another revelation from this intersection is that it is pyritiferous from 44m depth to 370m depth, indicating a hydrothermal system that is both proximal and long-lived.

The distribution of sulphides in this hole emphasizes that in this part of the Kutcho Property, and probably everywhere, mafic volcanic strata are also highly prospective.

A final important point is that this drillhole has succeeded in intersecting four thin, closely-space exhalative layers of massive pyrite between 250m and 259m. The key question following from this is whether this lone drillhole has, by good fortune, cut the thickest, highest-grade interval within this mineralized zone in its first intersection, or whether this intersection is merely the edge of some larger mineralized blanket. The latter scenario is far more probable; many drill intersections that delineate the perimeter of Kutcho Main lens resemble this intersection.

The entire archive of exploration data covering this area of the property needs to be reassessed, but this drill intersection can be followed up by drilling on its own merits.

4.5 GEOLOGY OF DDH 90K-013

This hole was collared to test coincident airborne and ground EM conductors; both anomalies appear to be shallow-sourced. The detailed corelog for this drillhole is included as Appendix VI. The graphic log is displayed as Figure 4.5.

The drillhole intersects mafic ash and crystal tuff over its entire length with minor intercalated pyritic silica and silica-carbonate exhalite layers, pyritic tuff horizons, and one thick porphyritic basalt flow unit. Felsic volcanic units are conspicuously absent although property-scale mapping indicates that rhyolite strata overlie and underlie this thick mafic volcanic package.

Each of the eight pyritic exhalite (chert) horizons and the two unmineralized chert units represent brief quiescent periods during the eruption and accumulation of mafic volcanic flow and ash – evidence that pyritic exhalative hydrothermal activity was ongoing for a prolonged period. Only one pyritic exhalite unit displays minor chalcopyrite.

While this particular target does not require direct follow-up, this intersection confirms the indicators also obtained from geologic mapping, prospecting and from the five other widespaced drillholes in this thick mafic volcanic package - hydrothermal activity and

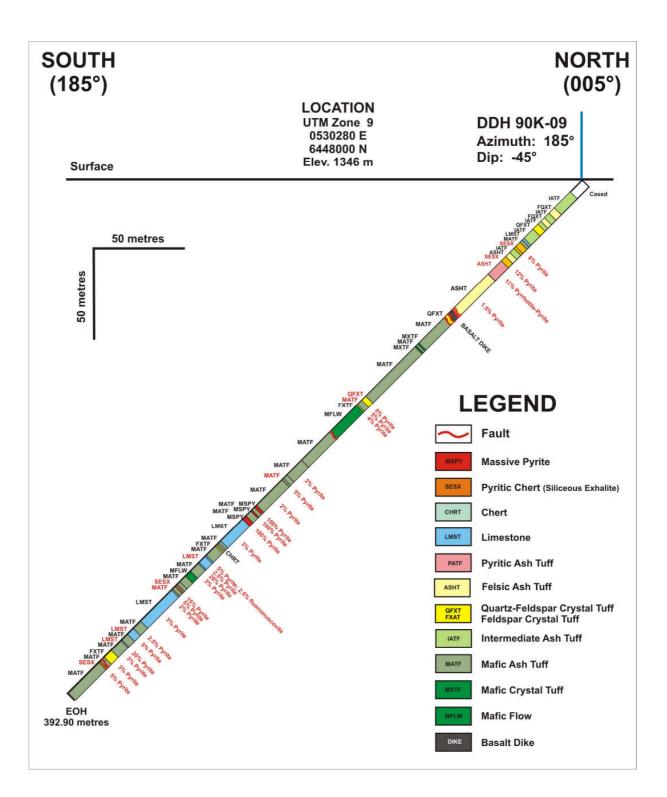


Figure 4.4 Graphic Log for DDH 90K-09

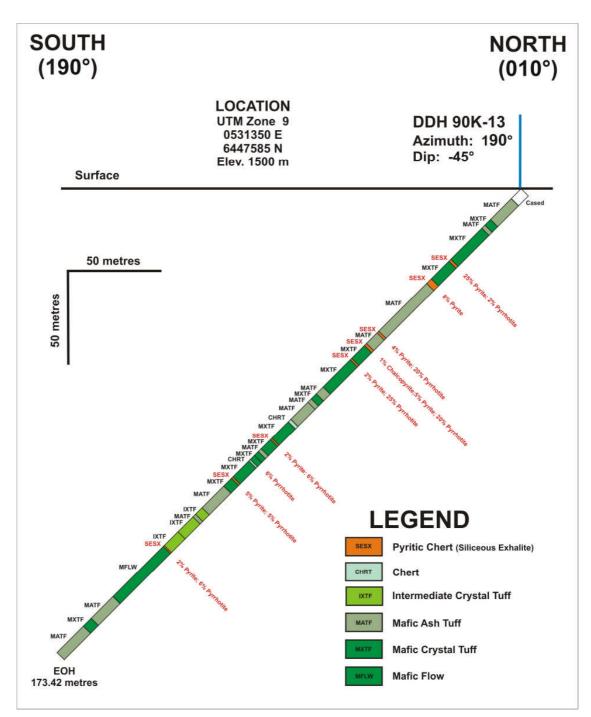


Figure 4.5 Graphic Log for DDH 90K-13

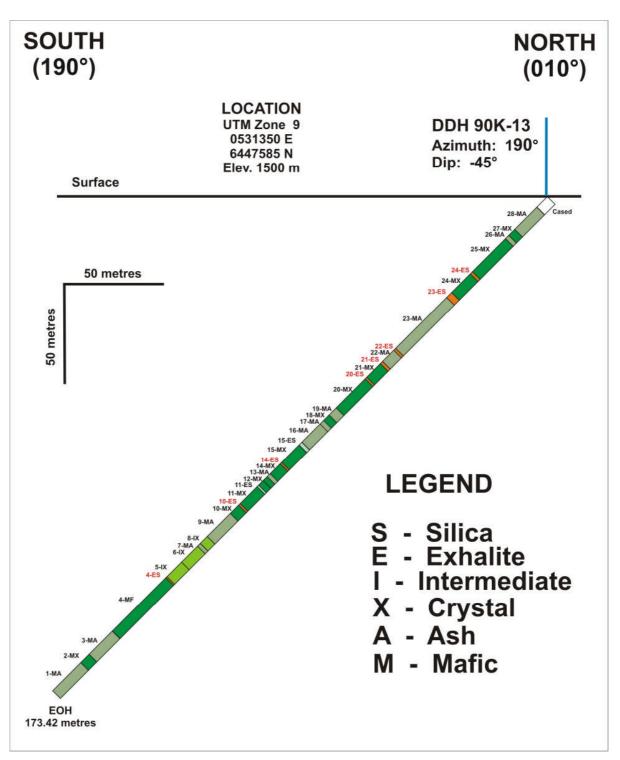


Figure 4.6 Graphic Log for DDH 90K-13 showing stratigraphic fingerprinting.

exhalative-style deposition of silica, carbonate and sulphides was essentially continuous and widespread during the eruption and build-up of this mafic volcanic pile. The challenge is to locate an area where focused fluids concentrated base metals, and where sulphides were able to accumulate in volume.

Our 2009 core-relogging program was completed in advance of renewed geologic mapping and prospecting in this area. Although the mafic pile is thick, it is also finite. It should be possible to break down the mafic and exhalative units into individual eruptive events with unique labels, so that we can attempt to correlate units and pairs of units between existing drillholes and 2009 traverses. An example of this `fingerprinting' concept has been applied to DDH 90K-13 and is shown in Figure 4.6.

4.6 GEOLOGY OF DDH 75E-028

Drillhole 75E-028 (a.k.a. DDH Bow 1) was drilled to test a geophysical anomaly. This is the southwesternmost drillhole on the Kutcho Property, and provides a section through the mafic volcanic section in an area of poor outcrop exposure. The detailed corelog for this drillhole is included as Appendix VII; the graphic log is displayed as Figure 4.7.

This drillhole intersected dominantly well-bedded calcareous mafic to intermediate ash tuff horizons, as well as one hornblende-plagioclase porphyritic mafic flow. The ash tuff units contain variable pyrite-pyrrhotite mineralization. A number of thin (<25cm) pyrite-pyrrhotite-bearing silica-carbonate exhalites were intersected and are summarized below, along with a particularly well-mineralized interval of ash tuff. **16.60m to 18.95m**, Sericite-carbonate altered ash tuff with 5% each laminated pyrite and pyrrhotite, 40% laminated to semi-massive pyrrhotite and 1%-2% pyrite. **57.58m to 57.79m**, Silica-carbonate exhalite, 15% thin-bedded pyrrhotite. **62.13m to 62.28m**, Silica-carbonate exhalite, 15% laminated pyrrhotite.

4.7 CROSS-SECTION THROUGH DRILLHOLES 90K-07, K-13 K-15, AND K-19 A north-south cross-section through four drillholes is presented in Figure 4.8. The northward dip of strata is consistent with the orientation deduced from a 1975 regional mapping campaign, but does not support the interpretation of a simple anticline structure underlying the whole of the Kutcho Property.

Although individual volcanic units may be expected to record thickness changes and textural facies changes over the 1,080-metre distance between the drillhole collars along the line of section, the chemical composition of individual units will be constant and the general relationships within the thicker lithostratigraphic `packages' delineated on the cross-section will also be more consistent over distance. The details of the stratigraphic relationships between the felsic volcanic packages intersected in holes 15 and 19 are discussed in a companion Assessment Report (Alldrick, Willett and Wilson, 2009a).

It was not possible to directly correlate any of the units cut by these drillholes with the hostrock units of the 3 Kutcho property VMS deposit which lie 7 kilometres to the northeast (see Figure 2.3). However, the VMS deposits all lie near the top of the volcanic succession, whereas the `shallowest' of the drillholes investigated in this study lies somewhere down-section from the mineralized strata.

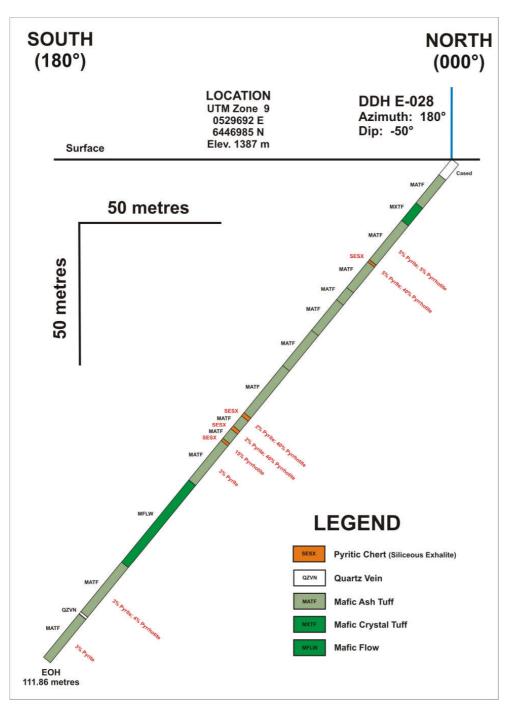
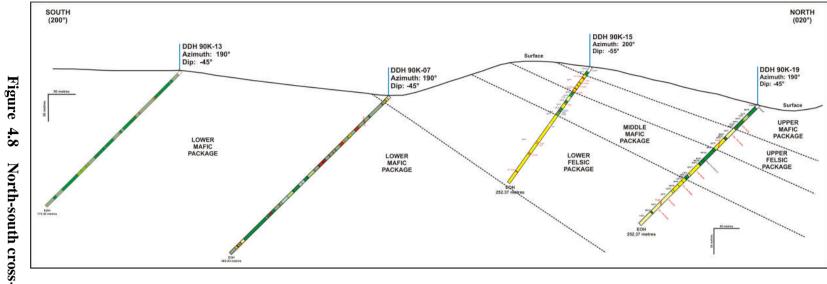



Figure 4.7 Graphic Log for DDH 75E-028

North-south cross-section through four drillholes

The thick succession of mafic volcanics in the Lower Mafic Package and the somewhat thinner overlying Middle Mafic Package and Upper Mafic Package are all unknown in the stratigraphic section immediately surrounding the VMS deposits. Measured from the Kutcho Main lens, the stratigraphically closest mafic volcanic units are identified in outcrop 2 kilometres directly south. This suggests that the entire stratigraphic section cut by the set of drillholes relogged in this study lie well down the stratigraphic column from the horizon where the three deposits lie.

The only preceding geologic study of the southern Kutcho Property was a 1975 regional mapping and prospecting program. This work was unable to resolve whether the mafic volcanic stratigraphy abundantly displayed on the southern part of the property was a lateral facies change of the shallow-level felsic volcanics which host the deposits to the north, or a different, deeper part of the stratigraphic column, although both scenarios were considered. The results from this relogging exercise suggest that the exposed strata on the southern part of the Kutcho property represent a much lower stratigraphic section than the stratigraphic interval exposed near the sulphide deposits.

5.0 CONCLUSIONS

Relogging all available historic drillcore should be an essential first step before embarking on renewed mineral exploration work in any part of this property.

Relogging historic drillcore provides an opportunity to apply insights gained from substantial advances in the understanding of:

- Volcanic rock textures
- Characteristic features of VMS sulphide deposits
- Local and regional alteration haloes associated with VMS deposits
- Key structural controls to the localization of the Kutcho VMS deposits

since the holes were first drilled and logged.

Results from relogging historic drillcore can be expected to:

- Shift exploration priorities within local areas of this property
- Shift exploration between different areas of this large property
- Enhance the overall geologic database

Results will also help support and justify exploration beyond the drilled areas.

A cross-section constructed from relogging historic drillholes from the southern Kutcho Property yields results consistent with the general structural setting determined in an early mapping program. However, the strata intersected in these holes represent a deeper slice through Kutcho Formation stratigraphy than the uppermost stratigraphic section exposed near the three massive sulphide deposits.

Detailed core-logging within felsic volcanic packages in adjacent drillholes clearly distinguishes between proximal and distal volcanic facies, focusing exploration efforts on strata closer to the volcanic vent.

Detailed core-logging within mafic volcanic packages provides data to support a stratigraphic `fingerprint' technique that may allow us to correlate individual extrusive and exhalative units within this thick, extensive, mineralized blanket of mafic volcanics, chert and limestone that stretches across the southern part of the Kutcho Property.

Drillhole 90K-09 intersected four thin units of exhalative massive pyrite-pyrrhotite, and thirteen semi-massive pyrite-pyrrhotite layers. The immediate area around this hole has a high priority for follow-up drilling.

Thin semi-massive and massive sulphide intersections in DDH 90K-07 also require drill follow-up.

The intersection in DDH 90K-05 shows that a thorough reassessment of the geology, showings, geophysics and geochemistry in the vicinity of the drillsite is warranted.

Relogging of the expensively acquired, carefully preserved, historic drillcore on this large property is a valuable exercise that must continue.

6.0 **RECOMMENDATIONS**

Relogging of the expensively acquired, carefully preserved, historic drillcore on this large property is a valuable exercise that must continue. Relogging of all available historic drillcore is an essential first step before embarking on renewed mineral exploration work on any part of this property.

Specific recommendations following from this study are:

- Strata on the southern part of the Kutcho Property represent a significantly deeper stratigraphic interval than the mineralized horizons hosting the three VMS deposits 7 kilometres to the northeast. The overall mineral potential of this southern rock package must be evaluated and prospected as a separate stratigraphic entity.
- The immediate area around DDH 90K-09 requires follow-up drilling.
- The immediate area around DDH 90K-07 requires follow-up drilling.
- A careful reassessment of the geology, showings, geophysics and geochemistry in the vicinity of the DDH 90K-05 is warranted.
- Re-log the remaining four drillholes through the thick mafic volcanic package that extends across the entire southern Kutcho Property, and `fingerprint' the individual volcanic and exhalative units to aid detailed stratigraphic correlation.

7.0 **REFERENCES**

- Alldrick, D.J. (2009): Remodelling the Kutcho Creek VMS deposits; Lecture presented at 2009 Mineral Exploration Roundup, PDF file at <u>http://www.amebc.ca/docs/tues</u>
- Alldrick, D.J., Willett, B.J. and Wilson, R.W. (2009a): Geological Assessment Report on the Mother 1, Mother 2, Mother 3 claims, Kutcho Project, north-central British Columbia; B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report, 78 pages.
- Bridge, D., (1982): 1981 Progress Report on the Kutcho Creek Property, unpublished report for Esso Minerals Canada Limited
- Bridge, D. (1983) 1982 Progress Report on the Kutcho Creek Property, unpublished report for Esso Minerals Canada Limited

- Bridge, D. (1984): 1983 Progress Report on the Kutcho Creek Property, unpublished report for Esso Minerals Canada Limited
- Didur, B. (1979): Kutcho Creek Ore Reserves; unpublished report prepared for Esso Minerals Canada Limited
- Didur, B. (1981): Diamond Drill Results and Ore Reserve Estimates; unpublished text of presentation given in Tokyo, Japan on behalf of Esso Minerals Canada Limited
- Gabrielse, H. (1978): Geology of NTS Map Sheet 104I (Cry Lake); Geological Survey of Canada, Open File 610
- Gasparini, C. (1979): Study of Cu, Zn, and Ag distribution in five samples from the Kutcho Creek; in Summary of 1978 metallurgical testwork for Kutcho Creek, by H.E. Neal
- Holbek, P.M. (1985): 1984 Exploration Report on the Kutcho Creek Project; unpublished report for Esso Minerals Canada
- Holbek, P.M. (1989): 1988 Geochemical and Geophysical report on the Kutcho South Area – Kutcho 89A and 89B Claim Groups; British Columbia Assessment Report
- Holbek, P.M. (1990): 1990 Diamond Drilling Report on the Kutcho Creek Property. British Columbia Assessment Report
- Holbek, P.M. and Heberlein, D. (1986): 1985 Exploration Report on the Kutcho Property; unpublished report for Esso Minerals Canada
- Holbek, P.M. and McPherson, M.D. (1990): The Kutcho Creek Property a summary of exploration status and proposed future work; unpublished report for Homestake Canada Limited
- Holbek, P.M., McPherson, M.D. and Oyie, H. (1991): Report on 1990 Diamond Drilling Program, Kutcho Creek Property; unpublished report for American Reserve Mining Corp. and Homestake Canada Limited
- Holbek, P.M. and Champigny, N. (1992): Geological reserve estimate for the Kutcho lens, Kutcho Creek volcanogenic massive sulphide deposits, northwestern British Columbia; unpublished report for Homestake Canada Limited, American Reserve Mining Corp., and Sumitomo Metal Mining Canada Limited
- Holbek, P.M, and Wilson, R.G. (2005) Diamond Drilling Assessment Report on the Kutcho Creek Project: North Central British Columbia
- Holbek, P.M. (2007): Determination of PAG and NAG host rock at the Kutcho Deposit: North Central British Columbia
- Pearson, D.E., and Panteleyev, A. (1975): Cupiferous Iron Sulphide Deposits, Kutcho Creek Map Area (104I/1W); Geological Fieldwork 1974, British Columbia Ministry of Mines and Petroleum Resources, p.86-93
- Stanton, R.L. (1991) Understanding Volcanic Massive Sulphides Past, Present, and Future. <u>In</u>: Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries, Papers Arising from SEG Symposia, Oct 30 and 31, 1988 Denver, Colorado; Economic Geology Monograph 8, Skinner, B.J., Editor

- Sumitomo Metal Mining Canada Ltd (1984): Explanatory note on the ore reserve calculation of the Kutcho main ore body, B.C., Canada; unpublished report for Sumitomo Metal Mining Canada Ltd.
- Thorstad, L.E. (1983): The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; unpublished M.Sc. thesis, The University of British Columbia
- Thorstad, L.E, and Gabrielse, H. (1986): The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; Geological Survey of Canada, Paper 86-16, 53p
- Wright Engineers Limited (1985): Pre-feasibility study of the Kutcho Creek Project for Esso Minerals Canada Limited and Sumac Mines Limited

APPENDIX I

LIST OF CLAIMS

FOR

KUTCHO PROPERTY

Tenure Number	Tenure Claim	Claim Name	Map Number	Good to Date	Status	Mining Division	Area (ha)	Tag Number
221863	Mineral	LIN NO 1 FR	1041028	2017/Jan/31	GOOD	LIARD	25.0	38345
222120	Mineral	JEFF 114 FR	1041019	2011/Jan/31	GOOD	LIARD	25.0	72858
227872	Mineral	LIN #11	1041028	2017/Jan/31	GOOD	LIARD	25.0	459823M
227884	Mineral	KC 3	1041028	2017/Jan/31	GOOD	LIARD	25.0	248603M
227886	Mineral	KC 5	1041028	2017/Jan/31	GOOD	LIARD	25.0	248605M
227888	Mineral	KC 7	1041028	2017/Jan/31	GOOD	LIARD	25.0	248607M
227896	Mineral	KC 18	1041028	2010/Jan/31	GOOD	LIARD	25.0	248618M
552782	Mineral		104I	2017/Jan/31	GOOD		306.9	
552785	Mineral		104I	2017/Jan/31	GOOD		409.3	
552792	Mineral		104I	2017/Jan/31	GOOD		153.5	
552794	Mineral		104I	2017/Jan/31	GOOD		597.1	
552796	Mineral		104I	2017/Jan/31	GOOD		494.8	
552805	Mineral		104I	2017/Jan/31	GOOD		1074.7	
552809	Mineral		104I	2017/Jan/31	GOOD		136.4	
552812	Mineral		104I	2017/Jan/31	GOOD		136.4	
552814	Mineral		104I	2017/Jan/31	GOOD		357.9	
552816	Mineral		104I	2017/Jan/31	GOOD		306.8	
552820	Mineral		104I	2017/Jan/31	GOOD		340.9	
552823	Mineral		104I	2017/Jan/31	GOOD		921.8	
552911	Mineral	PASS1	104I	2017/Jan/31	GOOD		136.4	
552913	Mineral	ADD1	104I	2017/Jan/31	GOOD		17.0	
552914	Mineral	ADD2	104I	2017/Jan/31	GOOD		17.1	
556552	Mineral	ADD3	104I	2017/Jan/31	GOOD		374.9	
556555	Mineral	ADD4	104I	2017/Jan/31	GOOD		102.3	
569607	Mineral		104I	2009/Nov/07	GOOD		1090.0	
585957	Mineral	MOTHER 1	104I	2010/Jun/07	GOOD		426.6	
585958	Mineral	MOTHER 2	104I	2010/Jun/07	GOOD		409.6	
585959	Mineral	MOTHER 3	104I	2010/Jun/07	GOOD		375.3	
586844	Mineral	ACCENT 1	104I	2009/Oct/31	GOOD		426.5	
586846	Mineral	ACCENT 2	104I	2009/Oct/31	GOOD		273.0	
586848	Mineral	SOUTH FORK 1	104I	2010/Jun/25	GOOD		426.9	
586849	Mineral	SOUTH FORK 2	104I	2010/Jun/25	GOOD		426.9	
586850	Mineral	SOUTH FORK 3	104I	2010/Jun/25	GOOD		426.8	
586851	Mineral	SOUTH FORK 4	104I	2010/Jun/25	GOOD		426.9	
586852	Mineral	TRONDHJEMITE 1	104I	2010/Jun/25	GOOD		426.7	
586854	Mineral	TRONDHJEMITE 2	104I	2010/Jun/25	GOOD		426.7	
586855	Mineral	TRONDHJEMITE 3	104I	2010/Jun/25	GOOD		426.6	
						Total	12,047.6	

TABLE 1.1 KUTCHO PROPERTY CLAIMS (100% OWNED BY 218234)

APPENDIX II

KUTCHO PROJECT RESOURCE TABLE

Summary – Main, Esso and Sumac Deposits¹

CLASSIFICATION	M Tonnes	% Cu	% Zn	g/T Au	g/T Ag
Measured	5.421	2.15	2.86	0.34	31.4
Indicated	4.994	2.14	2.83	0.39	33.5
MEASURED and INDICATED	10.415	2.14	2.85	0.36	32.4
Inferred	1.893	2.09	2.93	0.46	33.6

¹Numbers may not total due to rounding

Main Deposit - Mineral Resource Estimate at a 1.5% Copper Cut-Off¹

CLASSIFICATION	M Tonnes	% Cu	% Zn	g/T Au	g/T Ag
Measured	5.421	2.15	2.86	0.34	31.4
Indicated	4.043	2.04	2.54	0.35	31.2
MEASURED and INDICATED	9.464	2.10	2.72	0.34	31.3
Inferred	0.464	1.84	2.83	0.43	31.6

¹Numbers may not total due to rounding

Esso Deposit - Mineral Resource Estimate at a 1.5% Copper Cut-Off¹

CLASSIFICATION	T Tonnes	% Cu	% Zn	g/T Au	g/T Ag
Measured	-	-	-	-	-
Indicated	951	2.60	4.10	0.56	43.4
MEASURED and INDICATED	951	2.60	4.10	0.56	43.4
Inferred	803	2.57	4.15	0.61	37.6

¹ Numbers may not total due to rounding

Sumac Deposit - NI43-101 Mineral Resource Estimate at a 1.5% Copper Cut-Off¹

CLASSIFICATION	T Tonnes	% Cu	% Zn	g/T Au	g/T Ag
Measured	-	-	-	-	-
Indicated	-	-	-	-	-
MEASURED and INDICATED	-	-	-	-	-
Inferred	626	1.67	1.46	0.29	30.1

¹Numbers may not total due to rounding

Source: Capstone Mining Corp., Press Release 09-04, February 10, 2009; *Capstone Announces Robust Mineral Resource Update for High Grade Kutcho Copper Project.*

APPENDIX III

DIAMOND DRILL LOG for DDH 90K-05

Drill I	Log KU9000	5		Unknown	Sigr	nature:		Initials:
Froi	m To	Litho	Simple Ge					
0.00	0 4.60	CASE	RUBL					
Casing	and minor rubble.							
S7	TRUCTURES	ALTERATION		MINERA	LIZATION		SAMPLES	1
	To Struct CA Strain				Min% Min2 M2% Min3 M3%		Sample	1
0.00 4	4.60 NA							
Froi	т То	Litho	Simple Ge	0				
4.60	0 6.61	ASHT	TUFF					
		ve carbonate-flooded mafic coarse ash tuff. Moderate carbo nd wisps. Possible crude bedding at 80 to 82 TCA. Sharp lo			b fine bright pyrite			
S7	TRUCTURES	ALTERATION			LIZATION		SAMPLES]
	To Struct CA Strain	n From To INT CC DO SR AK SC		From To PY% Style Min	Min% Min2 M2% Min3 M3%	From To	Sample	
	6.60 BD 81							
U	Crude bedding?	4.60 6.61 S M		4.60 6.61 1.5 DIS				
		Moderate carbonate flooding; strong epidote flooding.						
6.60 6	6.61 CT 74							
Sha	arp lower contact.							
Froi	m To	Litho	Simple Ge	0				
6.6	1 6.82	ASHT	TUFF					
	e alteration. 2% pyrite a	ale olive fine ash tuff. Bedding at 72 to 74 TCA; sharp lower as disseminations and thin pyritic carbonate lamellae. Unit l						
· · · · · · · · · · · · · · · · · · ·	TRUCTURES	ALTERATION			LIZATION		SAMPLES	
	To Struct CA Strain	I From To INT CC DO SR AK SC		From To PY% Style Min	Min% Min2 M2% Min3 M3%	From To	Sample	
6.61 6	6.81 BD 71	6.61 6.82 S M		6.61 6.82 2 DIS				
		Strong epidote flooding; moderate carbonate alteration.		0.01 0.02 2 010				
6.81 6	6.82 CT 60							
Sha	arp lower contact nst limestone bed.							

From	То	Litho	Simple Geo
6.82	6.90	CBSX	CBSX

Pyritic limestone layer within thin-bedded fine ash tuffs. 12% pyrite overall as laminae/beds.

STRUCTURES m To Struct CA Strain 6.90 BD 74 From	6.82 6.90 VW VW		MINERALIZATION SAMPLES
6.90 BD 74	6.82 6.90 VW VW		
		L	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
From To			6.82 6.90 12 LB
From To	Pyritic limestone	p	yrite as laminae and beds
	Litho	Simple Geo	
6.90 8.23	ASHT	TUFF	•
		1011	
ale olive green ash tuff; coa	arse-grained and granular. Faintly bedded at 56 TCA.		
STRUCTURES	ALTERATION		MINERALIZATION SAMPLES
m To Struct CA Strain			From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
8.23 BD 56	6.90 8.23 VW VW		6.90 8.23 0 DIS
	weak epidote alteration		
From To	Litho	Simple Geo	
	CARB	CARB	
8.23 8.68	CARD	CARD	
wo intervals of white, crysta	Illine, thin limestone beds within disrupted, `churned', pale c	olive coarse ash tuf	í. No pyrite noted.
STRUCTURES	ALTERATION		MINERALIZATION SAMPLES
n To Struct CA Strain	n From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
8.68 NA	8.23 8.68 VW VW	_	8.23 8.68 0 DIS
	White limestone		
From To	Litho	Simple Geo	
		TUFF	
8.68 20.00	ASHT	TUFF	

Trace fine pyrite dust

From	То	Litho	Simple Geo	
8.68	20.00	ASHT	TUFF	(Continued from previous page)
From To 10.62 17.37		ALTERATION n From To INT CC DO SR AK SC	F	SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample
17.37 20.00 From 20.00	To 20.26	Litho CARB	Simple Geo CARB	
carbonate b	oeds. CTURES Struct CA Strain	mestone and pale olive fine ash tuff. Prominent soft-sedime ALTERATION n From To INT CC DO SR AK SC 20.00 20.26 VW VW - - - - limestone - - - - - -	I	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 20.00 20.26 0 DIS
finer-grained 23.12m to 2	d tuff. 23.40m, thin-bedd	Litho ASHT coarse ash tuff, with minor textural variations. Mostly granula led ash tuff with 50% white and light grey carbonate interber a blotchy, granular to coarse crystalline appearance, likely o	ds - a limy tuff horizo	on. Bedding at 78 TCA.
		ALTERATION n From To INT CC DO SR AK SC		MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 20.26 34.30 0 DIS V </td
23.40 34.30 From 34.30	BD 78 To 36.15	Litho PATF	Simple Geo TUFF	
Pyritic beds	at: 34.63m to 34 here is another 1	f near-massive pyrite scattered throughout this unit of thin-b .74m. Bedding at 76 TCA. 15% pyrite within carbonate-rich 6cm (total) of finely bedded semi-massive pyrite in 9 beds t	thin beds interclated	d with pale yellow-green epidotized fine ash tuff. Non- is unit. Sawn core. Bedding constant. Gradational
	CTURES Struct CA Strain BD 76	ALTERATION n From To INT CC DO SR AK SC 34.30 36.15 W - - - - -		MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 34.30 36.15 12 LB LB Image: Main and Mai

Weak epidote

Fr	от	То	Litho	Simple Geo
36	.15	37.22	ASHT	TUFF

Pale olive-green, granular, coarse ash tuff. Faintly bedded to massive. 5% fine calcite veinlet network overprinted.

STRU	CTURES	ALTERATION	MINERALIZATION SAMPLES	
From To	Struct CA Struct	iin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	е
36.15 37.22	NA	36.15 37.22 W W	36.15 37.22 0 DIS	
		Calcite veinlets		
From	То	Litho	Simple Geo	
37.22	37.60	CHRT	CHRT	
	CTURES	ALTERATION	MINERALIZATION SAMPLES	
	Struct CA Struct		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	0
7.22 37.60				
7.22 37.60			37.22 37.60 0 DIS	
7.22 37.60 <i>From</i>				
	BD 74	37.22 37.60 M W M -	37.22 37.60 0 DIS	
<i>From</i> 37.60	BD 74 To 39.85	37.22 37.60 M W M - Litho ASHT	37.22 37.60 0 DIS Simple Geo TUFF	
<i>From</i> 37.60	BD 74 To 39.85	37.22 37.60 M W M - Litho ASHT	37.22 37.60 0 DIS Simple Geo	
From 37.60 Pale olive g partings.)	BD 74 To 39.85	37.22 37.60 M W M - Litho ASHT	37.22 37.60 0 DIS Simple Geo TUFF	
From 37.60 Pale olive g partings.)	BD 74 To 39.85 green, near-mas	37.22 37.60 M W M -	37.22 37.60 0 DIS Simple Geo TUFF network overprinted. (Intermediate composition - trace chlorite on	

Overprinted thin calcite veinlets.

From	То	Litho	Simple Geo
39.85	43.30	CHRT	CHRT

Dark greenish-grey, thin-bedded, tuffaceous chert (silicified tuff). There are also two buff-brown granular carbonate beds within this unit. Bedding at 76 TCA. Pyrite sub-trace as rare fine crystals.

	STRU	JCTU	RES		ALTERATION				MINERALIZATION										SAMPLES										
From	То	Strue	et CA	Strain	From	То	IN	$T \mid C$	C DO	2 2	R	AK	SC			From	T	o I	PY%	Style	Mir	ı M	1in%	Min2	М2%	Min3 M3%	From	То	Sample
39.85	43.30) Bl	D 76		39.85	43.30	Μ	W	-	-	-	Ν	Λ	-		39.85	43.	30	0.1	DIS									

F "	To	1:44	Simple Or		
From 42.20	<u>То</u> 54.56	Litho ASHT	Simple Geo		
43.30			-	denote contraction Minor this contract	
limestone be	eds with minor	ar coarse ash tuff. Intermediate. Epidote-flooded throughout. pyrite at 45.94m (3cm); 46.63m (1cm), 50.55m (4cm); 63.40r	m (1cm). Faint bed	derate carbonate alteration. Minor thin scattered diding variable, but averages 68 TCA.	
STRUG	CTURES	ALTERATION		MINERALIZATION	SAMPLES
From To	Struct CA Stru		Ĺ	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
3.30 54.56		43.30 54.56 M W		43.30 54.56 1 DIS	
	aint; variable ntation.	Moderate epidote; weak carbonate			
From	То	Litho	Simple Geo		
54.56	57.78	ASHT	TUFF		
moderately	calcareous grou	ermediate, thin-bedded, fine to coarse ash tuff with many thin undmass, Moderate epidote alteration. Bedding at 76 TCA.	fine-grained pyritic		
	CTURES	ALTERATION		MINERALIZATION	SAMPLES
From To 64.56 57.78	Struct CA Struct BD 76	ain From To INT CC DO SR AK SC 54.56 57.78 M W - - -	L	From To PY% Style Min Min% Min2 M2% Min3 M3% 54.56 57.78 2 LB LB </td <td>From To Sample</td>	From To Sample
4.00 07.76	טי עם	Moderate calcite; moderate epidote.		J4.JU J1.TU Z LD	
		······, ·······			
			0'		
From	То	Litho	Simple Geo		
57.78	61.16	ASHT	TUFF	_	
57.78 Massive to fa	61.16		TUFF e bull quartz vein fr	_	
57.78 Massive to facture	61.16	ASHT pale olive, coarse granular ash tuff. Cut by one massive white	TUFF e bull quartz vein fr	_	SAMPLES
57.78 Massive to fachunks along	61.16 aintly bedded, g g the vein marg	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION	TUFF e bull quartz vein fr edding at 72 TCA.	rom 59.96m to 60.26m, which has dark green chlorite	SAMPLES From To Sample
57.78 Massive to fachunks along	61.16 Faintly bedded, j g the vein marg CTURES Struct CA Struct	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW	TUFF e bull quartz vein fr edding at 72 TCA.	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION	
57.78 Massive to factorial chunks along STRUC From To	61.16 Gaintly bedded, y g the vein marg CTURES Struct CA Struct	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; be ALTERATION ain From To INT CC DO SR AK SC	TUFF e bull quartz vein fr edding at 72 TCA.	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	
57.78 Massive to factorial chunks along STRUC From To	61.16 Gaintly bedded, y g the vein marg CTURES Struct CA Struct	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW	TUFF e bull quartz vein fr edding at 72 TCA.	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS	
57.78 Massive to factorial for the factorial for	61.16 Faintly bedded, j g the vein marg CTURES Struct CA Struct BD 72	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote.	TUFF e bull quartz vein fr edding at 72 TCA.	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS	
57.78 Massive to fichunks along STRUC From To 57.78 61.16 From 61.16 Thin-bedded	61.16 aintly bedded, j g the vein marg <u>CTURES</u> <u>Struct</u> <u>CA</u> <u>Struc</u> BD 72 <u>To</u> 73.54 d, finely-bedded	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS DIS<	
57.78 Massive to fachunks along STRUC From To 57.78 61.16 From 61.16 Thin-bedded 61.62m to 65	61.16 aintly bedded, I g the vein marg <u>CTURES</u> <u>Struct</u> <u>CA</u> <u>Struc</u> BD 72 <u>To</u> 73.54 d, finely-bedded 3.20m massive	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying a white bull quartz vein with thick dark green chlorite books in	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho central selvage an	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS DIS DIS DIS	
57.78 Massive to fickness along STRUC From To 57.78 61.16 From 61.16 Thin-beddec 61.62m to 63 Overall color rhythmically	61.16 faintly bedded, I g the vein marge CTURES Struct CA Struct BD 72 TO 73.54 d, finely-bedded 3.20m massive ur pale grey olivi interbedded tu	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying e white bull quartz vein with thick dark green chlorite books in ve. Weak to very weak calcite. Alternating olive and grey thin affaceous chert, with the tuffaceous beds selectively epidotize	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho central selvage an beds. The dark gr	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS DIS DIS DIS	
57.78 Massive to fachunks along STRUC From To 57.78 61.16 From 61.16 Thin-bedded 61.62m to 63 Overall color rhythmically Rare minor f	61.16 aintly bedded, 1 g the vein marg <u>Struct</u> CA Stro BD 72 <u>To</u> 73.54 d, finely-bedded 3.20m massive ur pale grey olivi interbedded tu fine wisps and the strong st	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying e white bull quartz vein with thick dark green chlorite books in ve. Weak to very weak calcite. Alternating olive and grey thin iffaceous chert, with the tuffaceous beds selectively epidotize thin lamellae of pyrite. Pyrite 3% overall.	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho central selvage an beds. The dark gr	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS DIS DIS DIS	
57.78 Massive to fichunks along STRUC From To 57.78 61.16 From 61.16 Thin-bedded 61.62m to 63 Overall color rhythmically Rare minor fi Uppermost 6	61.16 aintly bedded, g g the vein marg CTURES Struct CA Struct BD 72 TO 73.54 d, finely-bedded 3.20m massive ur pale grey olivi interbedded tu fine wisps and the 60cm of this un	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying e white bull quartz vein with thick dark green chlorite books in ve. Weak to very weak calcite. Alternating olive and grey thin affaceous chert, with the tuffaceous beds selectively epidotize thin lamellae of pyrite. Pyrite 3% overall. it is bedded volcanic ash only.	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho central selvage an beds. The dark gr	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS Dut. along vein margins. ey beds are mainly strongly siliceous/hard. This is a	From To Sample
57.78 Massive to fachunks along STRUC From To 57.78 61.16 From 61.16 Thin-bedded 61.62m to 63 Overall color rhythmically Rare minor f Uppermost 6	61.16 aintly bedded, 1 g the vein marg <u>Struct</u> CA Stro BD 72 <u>To</u> 73.54 d, finely-bedded 3.20m massive ur pale grey olivi interbedded tu fine wisps and the strong st	ASHT pale olive, coarse granular ash tuff. Cut by one massive white gins. Local zones of faint bedding and thin carbonate beds; b ALTERATION ain From To INT CC DO SR AK SC 57.78 61.16 VW VW Weak epidote. Litho CHRT d, intermediate ash tuff interbedded with chert. Slighty varying e white bull quartz vein with thick dark green chlorite books in ve. Weak to very weak calcite. Alternating olive and grey thin iffaceous chert, with the tuffaceous beds selectively epidotize thin lamellae of pyrite. Pyrite 3% overall. hit is bedded volcanic ash only. ALTERATION	TUFF e bull quartz vein fr edding at 72 TCA. Simple Geo CHRT g textures througho central selvage an beds. The dark gr	rom 59.96m to 60.26m, which has dark green chlorite MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 57.78 61.16 0 DIS DIS DIS DIS	From To Sample SAMPLES

From	То	Litho	Simple Geo	2				
61.16	73.54	CHRT	CHRT	—				
61.62m to 6 Overall colo rhythmically Rare minor	3.20m massive ur pale grey oli interbedded tu fine wisps and	d, intermediate ash tuff interbedded with chert. Slighty varying e white bull quartz vein with thick dark green chlorite books in ive. Weak to very weak calcite. Alternating olive and grey thir uffaceous chert, with the tuffaceous beds selectively epidotize thin lamellae of pyrite. Pyrite 3% overall. hit is bedded volcanic ash only.	central selvage ar beds. The dark gr	nd along vein margins.				
STRU	CTURES	ALTERATION		MINERALIZATION	İ	SAMPLE	2S	
From To	Struct CA Str			From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
1.16 73.54	NA	61.16 73.54 VW VW M - Weak epidote.		61.16 73.54 3 LB				
From	То	Litho	Simple Geo					
73.54	76.00	ASHT	TUFF					
Faintly-bedo	led, near-mass	sive, medium grey-green, granular coarse ash tuff. Strongly (t	out not completely)	epidotized.				
	CTURES	ALTERATION		MINERALIZATION		SAMPLE		
	Struct CA Str			From To PY% Style Min Min% Min2 M2% Min3 M3%	From	To	Sample	
.54 76.00	NA	73.54 76.00 VW VW Strong epidote		73.54 76.00 0 DIS				
From	То	Litho	Simple Geo					
76.00	80.05	CHRT	CHRT					
Interbedded 3% fine pyri	chert and tuff. te as wisps and	Dark grey and pale green interbeds. Fine ash tuff beds are e d lamellae overall. Bedding undulates but averages 74 TCA.	pidotized to pale o No foliation. Non-m	live. Pyrite concentrated along some siliceous bands; nagnetic. Variable weak to moderate calcite alteration.				
STRU	CTURES	ALTERATION		MINERALIZATION		SAMPLE	ES	
	Struct CA Str			From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
6.00 80.05		76.00 80.05 W W		76.00 80.05 3 LB				
Bedding	g undulates	Moderate epidote						
From	То	Litho	Simple Geo					
80.05	80.45	CARB	CARB	—				
	imestone. Thir se of the limest	h-bedded. Strongly calcareous. Marks the base of the overlyin tone.	ig chert unit. This u	unit includes 15cm of thin-laminated dark grey chert				
STRU	CTURES	ALTERATION		MINERALIZATION		SAMPLE	ES	
		rain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From		Sample	

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
80.05 80.45 NA	30.05 80.45 W W	80.05 80.45 0 DIS	
	Limestone		

From To		Litho	Simple Ge	D		
80.45 83.7	74	QFXT	TUFF			
Medium-green, faintl dacite. Hard but not	ly bedded to massive, coars silicified. Bedding at 80 TC/	se quartz crystal tuff. Crowded with rou A. Tiny aligned hornblende needles in p	nded quartz grains. blaces. Partings as	Feldspars are selectively epidotized. Rock looks like mixed sericite-chlorite. (minor). No pyrite noted.		
STRUCTUREFromToStructC80.4583.74BD8	CA Strain From To 80 80.45 83.74 1	ALTERATION INT CC DO SR AK SC W W - - - - sericiute, chlorite. - - - -		MINERALIZATIONFromToPY%StyleMinMin%Min2M2%Min3M3%80.4583.740DIS	SAMPLESFromToSample	
From To 83.74 101.4		<i>Litho</i> CHRT	Simple Ge CHRT	ο		
with local bands of th calcite only. Bedding	hin laminae of fine pyrite. Up g at 76 TCA. None of this int n Minor fault gouge and roo	p to 8% pyrite over intervals as long as terval has been assayed for metals or p	50cm. This core is	pidotized. 1% fine disseminated bright pyrite overall not split. Core is strongly siliceous throughout - trace		
STRUCTUREFromToStructC3.74101.41BD7	CA Strain From To	ALTERATION INT CC DO SR AK SC		MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 83.74101.42 1 DIS	SAMPLESFromToSample	
	Tuff bands are			03.74101.42 1 010		
01.41 101.42 CT 8	89					
From To 101.42 103.4		Litho ASHT	Simple Ge TUFF	ρ		
	ish tuff. Pale bone colour ov former). Bedding at 81 TC/		e dust. Non-calcare	ous. Siliceous. This is a rhyolite tuff or a tuffaceous		
STRUCTUREFromToStructC101.42103.50BD8	CA Strain From To	ALTERATION INT CC DO SR AK SC M - - M -		MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 101.4203.50 0.5 DIS <td< td=""><td>SAMPLESFromToSample</td><td></td></td<>	SAMPLESFromToSample	
From To 103.50 112.3		Litho SESX	Simple Ge CHRT	0		
disseminatiions, wis	ps and lamellae. to 109.62m; gouge and san	, , G	ark grey bands. Pyri	te 10% overall, with local zones up to 15% as		
STRUCTURE		ALTERATION		MINERALIZATION	SAMPLES	
From To Struct C	CA Strain From To	INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	_

From To Litho Simple Geo	
103.50 112.28 SESX CHRT	
Medium grey well-bedded, thin-bedded pyritic chert (silica exhalite). Variable light to dark grey bands. Pyrite 10% overall, with local zones up to 15% as disseminatiions, wisps and lamellae. Fault from 109.42m to 109.62m; gouge and sand recovered. Lower contact sharp at 83 TCA.	
STRUCTURES ALTERATION MINERALIZATION S	SAMPLES
From To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min3 M3% From To	Sample
103.50 112.28 BD 83 103.50 112.28 103.5012.28 10 LB	
From To Litho Simple Geo	
112.28 112.97 CARB CARB	
Buff-brown limestone to limy tuff. Only weakly calcareous, so maybe this is ferro-dolomite. Core is variably silicified. Bedding at 69 TCA, but there are also buckled beds. 2% fine pyrite as wisps and laminae.	
	SAMPLES
FromToStructCAStrainFromToINTCCDOSRAKSC112.28112.97BD69112.28112.97WW-112.2812.972LB	Sample
112.28 112.97 BD 69 112.28 112.97 W W - 112.2812.97 2 LB Buckled beds	
From Fo Entro Simple Geo 112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA.	
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. Structures MINERALIZATION Structures	SAMPLES
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. STRUCTURES ALTERATION Struct MINERALIZATION Struct From To Struct CA Strain From To INT CC DO SR AK SC From To Min% Min3 M3% From To	SAMPLES Sample
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. Structures MINERALIZATION Structures	
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. <i>MINERALIZATION STRUCTURES ALTERATION Struct CA /i>	
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. Image: Comparison of the table of table	
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. ALTERATION MINERALIZATION See similar unit #24 above. Bedding at 71 TCA. STRUCTURES ALTERATION MINERALIZATION See similar unit #24 above. Bedding at 71 TCA. See similar unit #24 above. Bedding at 71	
112.97 113.53 ASHT TUFF Pale cream/bone, thinly laminated ash tuff. Minor pyrite only (1%). Strongly siliceous, thinly-bedded rhyolite tuff or silicified tuff adjacent to a dike (below). See similar unit #24 above. Bedding at 71 TCA. ALTERATION MINERALIZATION See similar unit #24 above. Bedding at 71 TCA. STRUCTURES ALTERATION MINERALIZATION See similar unit #24 above. Bedding at 71 TCA. See similar unit #24 above. Bedding at 71	

From	То	Litho	Simple Geo
114.65	115.68	ASHT	TUFF

Return to the thin-bedded, bone-coloured siliceous rhyolite ash tuff. Bedding at 73 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
114.65 115.68 BD 73 1	14.65 115.68 W W -	114.6 5 15.68 0 DIS		
	Siliceous			

From	То	Litho	Simple Geo
115.68	119.91	ASHT	TUFF

Dark green-grey, faintly-bedded, intermediate to mafic coarse as tuff. Banding due to selective epidote alteration. Faintly-bedded at 82 TCA. Chlorite on partings. Two narrow, coarse white calcite veins centred at 116.96m and 118.97m. There are also 3 fine-grained ash bands within this unit.

STRUCT	TURES	ALTERATION	MINERALIZATION SAMPLES
From To St	Struct CA Strain	From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
115.68 119.91	BD 82 1	15.68 119.91 W	115.6819.91 0 DIS
		Selective epidotization of layers	
From	То	Litho	Simple Geo
119.91	124.92	XATF	TUFF

Coarse, crystalline, intermediate to mafic ash tuff. Massive 1.5% fine disseminated pyrite. Colour-mottling due to alternating knots of chlorite and epidote alteration. Possibly chloritized relicts of hornblende laths up to 7mm long. Lower contact finer-grained (chilled) over 50cm. Possibly a crystalline flow-rock.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
119.91 124.92 NA 11	9.91 124.92 W	119.9 1 24.92 1.5 DIS	
	Alternating chlorite and epidote knots		

From	То	Litho	Simple Geo
124.92	125.86	ASHT	TUFF

Repeat of the bone-coloured rhyolite tuff above (# 24 & #27) but here it is pale buff-peach colour. Still thin-bedded. Weak reaction to acid. Rock is softer, so perhaps it is ferro-dolomite flooded. Pyrite 3% as abundant fine wisps.Bedding averages 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
124.92 125.86 BD 75 1	24.92 125.86 W - W	124.9 2 25.86 3 LB		

From To	Litho	Simple Geo	1		
125.86 127.50	FLTZ	RUBL	-		
Major fault zone. Large ir for one metre.	nterval of gouge and lesser rubble recovered. Footwall rocks an	re strongly bleached	and buff-orange altered (ankerite or ferro-dolomite)		
STRUCTURES	ALTERATION		MINERALIZATION		SAMPLES
From To Struct CA S			From To PY% Style Min Min% Min2 M2% Min3 M3%	From 7	o Sample
25.86 127.50 FLTZ	125.86 127.50 M - M		125.8 6 27.50 0 DIS		
Fault		0'			
From To	Litho	Simple Geo			
127.50 127.81	ASHT	TUFF			
Altered equivalent of thin	-bedded felsic tuff of unit #32, etc. Ankeritized.				
STRUCTURES	ALTERATION		MINERALIZATION	1	SAMPLES
From To Struct CA S			From To PY% Style Min Min% Min2 M2% Min3 M3% M3	From T	o Sample
127.50 127.81 NA	127.50 127.81 S - S Ankeritized		127.5027.81 0 DIS		
		0'			
From To	Litho	Simple Geo			
127.81 128.26	CHRT	CHRT			
127.81 128.26		CHRT			
127.81128.26Thin-bedded, dark chert	CHRT	CHRT			SAMPLES
127.81128.26Thin-bedded, dark chert was not.STRUCTURESFrom To Struct CA S	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wisponted as the subscript of t	CHRT	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From 1	
127.81 128.26 Thin-bedded, dark chert was not. Thin-bedded, dark chert was not. STRUCTURES Comparison of the second	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wis ALTERATION	CHRT	Half of this core interval was sawn and sampled, half MINERALIZATION	From T	-
127.81 128.26 Thin-bedded, dark chert was not. STRUCTURES From To Struct CA S 127.81 128.26 NA Struct S	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wisponder ALTERATION Strain From To INT CC DO SR AK SC 127.81 128.26 VW - -	CHRT ps and laminations.	Half of this core interval was sawn and sampled, half MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 127.8128.26 20 LB	From 1	-
127.81128.26Thin-bedded, dark chert was not.STRUCTURESFrom To Struct CA S	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wisponted as the sulphides as wisponted by the sulphides as wisponted by the sulphides as wisponted by the subscript strain strain subscript strain strain subscript strain strain strain strain subscript strain subscript strain subscript strain subscript strain subscript strain	CHRT	Half of this core interval was sawn and sampled, half MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 127.8128.26 20 LB	From I	-
127.81 128.26 Thin-bedded, dark chert was not. dark chert was not. STRUCTURES From To Struct CA S 27.81 128.26 NA From To 128.26 128.64	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wis ALTERATION Strain From To INT CC DO SR AK SC 127.81 128.26 VW Litho ASHT	CHRT ps and laminations.	Half of this core interval was sawn and sampled, half MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 127.8128.26 20 LB	From 1	-
127.81 128.26 Thin-bedded, dark chert was not. STRUCTURES From To Struct CA S 27.81 128.26 NA Struct CA S From To 128.26 128.64 Same as unit #34 above Same as unit #34 above	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wis ALTERATION Strain From To INT CC DO SR AK SC 127.81 128.26 VW Litho ASHT chert, but shows fading bleaching-ankeritization overprint.	CHRT ps and laminations.	Half of this core interval was sawn and sampled, half MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 127.8128.26 20 LB	From T	o Sample
127.81 128.26 Thin-bedded, dark chert was not. dark chert was not. STRUCTURES From To Struct CA S 27.81 128.26 NA Image: colspan="2">To 128.26 128.64	CHRT with calcite laminae. Non-magnetic. 20% fine sulphides as wis ALTERATION Strain From To INT CC DO SR AK SC 127.81 128.26 VW Litho ASHT chert, but shows fading bleaching-ankeritization overprint.	CHRT ps and laminations.	Half of this core interval was sawn and sampled, half MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 127.8128.26 20 LB	From 1	o Sample

Ankerite

From	То	Litho	Simple Geo					
128.64	137.75	ASHT	TUFF					
		Light greyish-green. Varying textures throughout this interval, in	ncluding two dark-g	rey limestone-chert beds in upper one metre. Thin-				
bedded to fair	ntly bedded t	o massive texture. Bedding at 78 TCA.						
STRUC		ALTERATION		MINERALIZATION			SAMPLES	
	Struct CA Str			From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
28.64 137.75	BD 78	128.64 137.75 VW		128.6437.75 0 DIS				
From	То	Litho	Simple Geo					
137.75	139.00	ASHT	TUFF	-				
Interbedded r	hyolite tuff ar	nd two thin charcoal chert beds near base. All are thin-bedded.	10% finest pyrrhot	tite lamellae in the black chert beds, and possibly				
some magne	tite as well.							
STRUC		ALTERATION		MINERALIZATION			SAMPLES	
	Struct CA Str			From To PY% Style Min Min% Min2 M2% Min3 M3% A227 ZE20 A0 A10 A11 A11	From	То	Sample	
137.75 139.00	NA	137.75 139.00 VW VW -		137.7 5 39.00 0 DIS % fine pyrrhotite lamellae; and possibly some fine magnetite.				
Бионо	To		Simple Geo					
From		Litho	CARB					
139.00	139.70	CARB	-					
Buff-grey gra	nular well-beo	dded dolomite. Very soft rock. Tuffaceous limestone. Bedding a	at 70 TCA.		-			
STRUC		ALTERATION		MINERALIZATION	-		SAMPLES	
<i>From To S</i> 139.00 139.70	Struct CA Str BD 70	rain From To INT CC DO SR AK SC 139.00 139.70 VW VW -<		From To PY% Style Min Min% Min2 M2% Min3 M3% 139.0039.70 0 DIS	From	То	Sample	
39.00 139.70	BD 10	133.00 133.70 VW - VW		_				
From	То	Litho	Simple Geo					
139.70	170.38	ASHT	TUFF					
		extural variability.						
Light grey-gre	en, thin-bed	ded to faintly-bedded to massive granular coarse ash tuff. ed centred at 142.55m, with 30% finest pyrrhotite laminae. All of	of this interval has	trace pyrrhotite and rare thin pyrrhotite lamellae				
		ng 70 TCA. Weak chlorite on partings		ade pymone and fare thin pymone ianeliae.				
?Intermediate	e compostion	? Perhaps dacite.						
		preaks between 144.40m and 145.40m.						
8 cm of pyrrh	otite-rich fine	e ash tuff bed at 147.33m. ert-calcite beds at 148.75m (4cm); 152.35m (6cm); 154.44m (80	cm): 155 10m (10c	m) strong pyrrhotite in this last interval. Trace				
pyrrhotite con			ciii), 155.1011 (100	ing - strong pyrnotite in this last interval. Trace				
Bedding 76 T	CA at 158.50	Dm.						
Core gets pal	ler down-sect	tion; calcite-flooding is moderate to strong throughout this lowe						
Trace to mind	or pyrrhoitite t	to end of hole. Bedding variable and averages 64 TCA. Beddin	g at EOH is 76 TC	A. Most of lower core is thin-bedded.				
STRUC	TURES	ALTERATION		MINERALIZATION			SAMPLES	
From To S	Struct CA Str	rain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
I	1							

From	То	Litho	Simple Geo
139.70	170.38	ASHT	TUFF

Major tuff unit with some textural variability.

Light grey-green, thin-bedded to faintly-bedded to massive granular coarse ash tuff.

10cm dark grey limy tuff bed centred at 142.55m, with 30% finest pyrrhotite laminae. All of this interval has trace pyrrhotite and rare thin pyrrhotite lamellae.

Bedding variable, averaging 70 TCA. Weak chlorite on partings

?Intermediate compostion? Perhaps dacite.

Two large, adjacent fault breaks between 144.40m and 145.40m.

8 cm of pyrrhotite-rich fine ash tuff bed at 147.33m.

Four thin, black pyritic chert-calcite beds at 148.75m (4cm); 152.35m (6cm); 154.44m (8cm); 155.10m (10cm) - strong pyrrhotite in this last interval. Trace

pyrrhotite common throughout the core.

Bedding 76 TCA at 158.50m.

Core gets paler down-section; calcite-flooding is moderate to strong throughout this lower interval.

Trace to minor pyrrhoitite to end of hole. Bedding variable and averages 64 TCA. Bedding at EOH is 76 TCA. Most of lower core is thin-bedded.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
139.70 170.38 BD 72 1	39.70 170.38 M M	139.7 0 70.38 1 LB	

Calcite flooding; minor chorite on partings

APPENDIX IV

DIAMOND DRILL LOG for DDH 90K-07

Drill Log KU900	07	Unknown	Signature:	Initials:
From To	Litho	Simple Geo		
0.00 4.60	OVBD			
Casing /overburden				
STRUCTURES	ALTERATION	MINERALIZA		
TromToStructCAStr004.60NA	rain From To INT CC DO SR AK SC 0.00 4.60 - - - -	From To PY% Style Min Min 0.00 4.60 0 - -	1% Min2 M2% Min3 M3% From To So	umple
From To	Litho	Simple Geo		
4.60 8.80	LLTF			
Light brown felsic lapilli tuf	f. Beige-brown over the upper 3 metres, moderately chloriti minated medium-grained pyrite; rare chalcopyrite noted.	zed to lower contact. Foliation/lamination at 50 TCA. Milky	y bull qtz vein at	
STRUCTURES				Y
From To Struct CA Str	ALTERATION rain From To INT CC DO SR AK SC	From To PY% Style Min Min) umple
	4.60 7.96 M M			X
	weak to moderate chlorite alteration			
60 8.79 FOL 50 M foliation/lamiination at 50 TCA.	N			
104.		4.60 8.80 2 DIS CP 0.05		
		2% disseminated medium-grained pyri noted very rarely	ite, trace chalcopyrite	
	7.96 8.80 M W			
	weak ankerite and moderate chlorite alteration			
79 8.80 CT 50 N lower contact at 50 TCA	И			
From To	Litho	Simple Geo		
8.80 10.58	QFXT	Simple Geo		
		actives and partiage Ediction/amination at EO TCA 0.25	0/ fine dise	
Pyrite. Lower contact at 50	z-feldspar crystal tuff. Riddled with hairline ankerite-filled fr.) TCA.	actores and partings. Fonation/iammation at 50 TCA. 0.25	/0 11110 0155.	
STRUCTURES	ALTERATION	MINERALIZA		
Trom To Struct CA Str 80 10.57 FOL 50 V		From To PY% Style Min Min	1% Min2 M2% Min3 M3% From To So	umple
Foliation/lamination at 50	v			
TCA				

FromToLithoSimple Geo8.8010.58QFXT

Light blue-grey felsic quartz-feldspar crystal tuff. Riddled with hairline ankerite-filled fractures and partings. Foliation/lamination at 50 TCA. 0.25% fine diss. Pyrite. Lower contact at 50 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain		From To PY% Style Min Min% Min2 M2% Min3 M3% From	To Sample
	8.80 10.58 M M	8.80 10.58 0.25 -	
	Riddled with hairline ankerite-filled fractures and partings	0.25% fine diss. Pyrite.	
0.57 10.58 CT 50 W	,	· · · · · · · · · · · · · · · · · · ·	
Lower contact at 50 TCA.			
From To		Simple Geo	
10.58 11.60	ASHT		
	tuff with interbedded fine pyrite ash tuff (max thickness of 1 cm	a). 2-3% pyrite overall. Foliation/lamination at 30 to 45 TCA. Lower	
contact at 45 TCA.			
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	I From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From	To Sample
0.58 11.59 FOL 45 M			
Foliation/lamination at 30 to 45 TCA			
	10.58 11.60 M	10.58 11.60 2.5 -	
		2-3% pyrite overall	
1.59 11.60 CT 40 W			
1.59 11.60 CT 40 W <i>lower contact at 45 TCA</i>			
lower contact at 45 TCA	Litho	Simple Geo	
lower contact at 45 TCA From To		Simple Geo	
Iower contact at 45 TCAFromTo11.6014.12	QFXT		
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured	QFXT	TCA) representing Paper Schist. And local pyrite-sericite alteration.	
lower contact at 45 TCAFromTo11.6014.12Pale peach and grey coloured 0.5% pyrite overall, locally 5%	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50	TCA) representing Paper Schist. And local pyrite-sericite alteration.	SAMPLES
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey colourer 0.5% pyrite overall, locally 5% STRUCTURES	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION	TCA) representing Paper Schist. And local pyrite-sericite alteration.	SAMPLES To Sample
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured 0.5% pyrite overall, locally 5% STRUCTURES From To Struct CA Strain	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION	TCA) representing Paper Schist. And local pyrite-sericite alteration.	
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured 0.5% pyrite overall, locally 5% STRUCTURES From To Struct CA Strain	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION	TCA) representing Paper Schist. And local pyrite-sericite alteration.	
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured 0.5% pyrite overall, locally 5% STRUCTURES From To Struct CA Strain 1.60 14.11 LM 60 M rhytmic sericitic parting (60 TCA)	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION	TCA) representing Paper Schist. And local pyrite-sericite alteration.	
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured 0.5% pyrite overall, locally 5% STRUCTURES From To Struct CA Strain 1.60 14.11 LM 60 M rhytmic sericitic parting (60 TCA)	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION INT CC DO SR AK SC	TCA) representing Paper Schist. And local pyrite-sericite alteration. TCA. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% From	
lower contact at 45 TCA From To 11.60 14.12 Pale peach and grey coloured 0.5% pyrite overall, locally 5% STRUCTURES From To Struct CA Strain 1.60 14.11 LM 60 M rhytmic sericitic parting (60 TCA)	QFXT d crystal tuff with fine crystals and rythmic sericitic partings (60 6 as at 10 m interval centered at 13.20m. Lower contact at 50 ALTERATION 1 From To INT CC DO SR AK SC 11.60 14.12 S W - S - - -	TCA) representing Paper Schist. And local pyrite-sericite alteration. TCA. MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% From 11.60 14.12 0.5 DIS 0.5% pyrite overall, locally 5% as at 10 cm interval centered at	

Lower contact at 50 TOP

From To	Litho	Simple Geo
14.12 18.65	ASHT	
Green fine-grained moderat dissseminated pyrite. Lower	ely chloritic mafic ash tuff. Well laminated at 45 TCA. Ankeritic r contact at 60 TCA and sharp.	c at upper and lower contact (ankerite spotting). 0.5% fine
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Stra	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
14.12 18.64 LM 45 W		
Well laminated at 45 TCA	14.12 18.65 W	14.12 18.65 0.5 -
	weak chloritic partings	0.5% fine dissseminated pyrite
18.64 18.65 CT 60 W	,	
Lower contact at 60 TCA		
and sharp		
From To	Litho	Simple Geo
18.65 19.70	QFXT	
		at 60 TCA. Heavily ankerite spotted. 0.15% fine disseminated pyrite
overall. Lower contact sharp	Dat 60 TCA.	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Stra		MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample
FromToStructCAStruct18.6519.69NA		
FromToStructCAStruct18.6519.69NA	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
From To Struct CA Struct 18.65 19.69 NA no structure 19.69 19.70 CT 60	in From To INT CC DO SR AK SC 18.65 19.70 W W	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 18.65 19.70 0.15 -
FromToStructCAStrat18.6519.69NAno structure	in From To INT CC DO SR AK SC 18.65 19.70 W W	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 18.65 19.70 0.15 -
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.	in From To INT CC DO SR AK SC 18.65 19.70 W W sericitic partings common	From To PY% Style Min Min% MIn2 M2% Min3 M3% From To Sample 18.65 19.70 0.15 - - 0.15% fine disseminated pyrite overall -
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo	in From To INT CC DO SR AK SC 18.65 19.70 W W sericitic partings common Litho	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 18.65 19.70 0.15 -
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo19.7022.20	in From To INT CC DO SR AK SC 18.65 19.70 W W sericitic partings common Litho ASHT	From To PY% Style Min Min% M2% Min3 M3% From To Sample 18.65 19.70 0.15 - 0.15% fine disseminated pyrite overall 0.15% fine disseminated pyrite overall
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo19.7022.20Mafic ash tuff similar to 14.1	in From To INT CC DO SR AK SC 18.65 19.70 W W sericitic partings common Litho ASHT 12m to 18.65m. Intraformational breccia zone centered at 21.8	From To PY% Style Min Min% M2% Min3 M3% From To Sample 18.65 19.70 0.15 - . <td< td=""></td<>
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo19.7022.20Mafic ash tuff similar to 14.1STRUCTURES	Int To INT CC DO SR AK SC 18.65 19.70 W - W - - - 18.65 19.70 W - W - - - sericitic partings common Litho ASHT ASHT - - - 12m to 18.65m. Intraformational breccia zone centered at 21.8 - - - ALTERATION	From To PY% Style Min Min% M2% Min3 M3% From To Sample 18.65 19.70 0.15 - 0.15% fine disseminated pyrite overall 0.15% fine disseminated pyrite overall Simple Geo Min. Subtrace pyrite. Lower contact at 65 TCA. MINERALIZATION SAMPLES
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo19.7022.20Mafic ash tuff similar to 14.4	Im From To INT CC DO SR AK SC 18.65 19.70 W - - W - - - 18.65 19.70 W - - W - - - sericitic partings common Litho ASHT 12m to 18.65m. Intraformational breccia zone centered at 21.8 ALTERATION transformational breccia zone centered at 21.8 ALTERATION To INT CC DO SR AK SC	From To PY% Style Min Min% M2% Min3 M3% From To Sample 18.65 19.70 0.15 - 0.15% fine disseminated pyrite overall 0.15% fine disseminated pyrite overall Simple Geo Min. Subtrace pyrite. Lower contact at 65 TCA. MINERALIZATION SAMPLES
FromToStructCAStruct18.6519.69NAno structure19.6919.70CT60Lower contact sharp at 60TCA.FromTo19.7022.20Mafic ash tuff similar to 14.1STRUCTURESFromToStructCAStructCAStructCA	Im From To INT CC DO SR AK SC 18.65 19.70 W - - W - - - 18.65 19.70 W - - W - - - sericitic partings common Litho ASHT 12m to 18.65m. Intraformational breccia zone centered at 21.8 ALTERATION tin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 18.65 19.70 0.15 - .
From To Struct CA Struct 18.65 19.69 NA no structure 19.69 19.70 CT 60 Lower contact sharp at 60 TCA. From To 19.70 22.20 Mafic ash tuff similar to 14.1 STRUCTURES From To 19.70 22.19 LM 60	Im From To INT CC DO SR AK SC 18.65 19.70 W - - W - - - 18.65 19.70 W - - W - - - sericitic partings common Litho ASHT 12m to 18.65m. Intraformational breccia zone centered at 21.8 ALTERATION transformational breccia zone centered at 21.8 ALTERATION To INT CC DO SR AK SC	From To PY% Style Min Min% M2% Min3 M3% From To Sample 18.65 19.70 0.15 - 0.15% fine disseminated pyrite overall 0.15% fine disseminated pyrite overall Simple Geo Min. Subtrace pyrite. Lower contact at 65 TCA. MINERALIZATION SAMPLES

From To 19.70 22.20	Litho ASHT	Simple Geo (Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
2.19 22.20 CT 65 Lower contact at 65 TCA		
From To	Litho	Simple Geo
22.20 22.40	SESX	
Sulphide-rich silica exhalite wi	ith 15% chalcopyrite and 5% pyrite. Crudely laminated at ALTERATION	t 60 TCA. Lower contact in fault. MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
22.20 22.39 LM 60 VW		
Crudely laminated at 60 TCA		
TCA	22.20 22.40 W	22.20 22.40 5 BLB CP 15
TCA	22.20 22.40 W	22.20 22.40 5 BLB CP 15 15% chalcopyrite and 5% pyrite
TCA	22.20 22.40 W	

22.40	49.77	ASHT	TUFF

Similar to unit above (19.70m to 22.20m).

Upper contact with siliceous exhalite is a 15cm-20cm fault preserved as light grey clayey gouge.

Unit is dark greyish-green, crudely laminated choritic mafic (basalt) tuff. Strongly epidotized throughout, with overprinted irregular white patches of carbonate. Epidote post-dates carbonate patches. Laminated throughout at 50-60 deg TCA. Local lapilli-like textures.

Scattered coarse blebs and fine disseminations of pyrite throughout averaging 0.75%.

Waterlain tuff/ash.

Overall a thick homageneous unit, with an interval of more crystalline texture from 89.24 to 89.69m (core of a flow? Or a crystal-rich tuff?)

Gradational lower contact over 20cm.

From To Struct CA Strain From To INT CC DO SR AK SC From To Struct CA Strain From To PY% Style Min Min2 M2% Min3 M3% From To Sample	STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
	From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample

22.40 49.76 LM 55 VW

From	То	Litho	Simple Geo
22.40	49.77	ASHT	TUFF

Similar to unit above (19.70m to 22.20m).

Upper contact with siliceous exhalite is a 15cm-20cm fault preserved as light grey clayey gouge.

Unit is dark greyish-green, crudely laminated choritic mafic (basalt) tuff. Strongly epidotized throughout, with overprinted irregular white patches of carbonate. Epidote post-dates carbonate patches. Laminated throughout at 50-60 deg TCA. Local lapilli-like textures.

Scattered coarse blebs and fine disseminations of pyrite throughout averaging 0.75%.

Waterlain tuff/ash.

Overall a thick homageneous unit, with an interval of more crystalline texture from 89.24 to 89.69m (core of a flow? Or a crystal-rich tuff?)

Gradational lower contact over 20cm.

STRUCTURES	ALTERATION		MINERALIZATION		SAMPLES
From To Struct CA Strain	n From To INT CC DO SR AK SC	From To P	Y% Style Min Min% Min2 M2% Min3 M3%	6 From To	o Sample
	22.40 49.77 M M - W	22.40 49.77 0	.75 BLB		
	Chlorite moderate to strong (probably original mai moderate to strong overprinted.	fic tuff); Epidote			
9.76 49.77 CT					
gradational lower contact over 20cm.					
Evon To	Litho	Simple Geo			
From To					

Up to 1.5% coarse (medium-grained) scattered pyrite blebs locallized along hairline fractures.

Colour medium greyish-green. Weak to moderate epidote alteration, rare hairline fractures with minor calcite.

Lower contact sharp at 65 deg TCA.

STRUCTURE	S ALTERATION	MINERALIZATION	SAMPLES
From To Struct C	A Strain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
49.77 51.88 BD 6	5		
	49.77 51.98 W VW - W	49.77 51.98 1.5 BLB	
	Epidote - weak		
51.88 51.98 CT 6	5		

From	То	Litho	Simple Geo
51.98	61.83	ASHT	TUFF

Similar mafic tuff as above, but with several prominent thin pyritic beds, and minor intercalated thin felsic crystal tuff layers.

Well laminated, thin laminated (bedded?) 55 deg TCA.

Very sharp upper and lower contact - lower at 55 deg TCA.

Minor fault from 60.90m-61.83m. Gouge and broken core.

Overall 3-4% pyrite as 1cm-2cm primary banded sulphide layers and as lesser fine disseminations and `stringers' (fractures fills) occassional associated with bedding-parallel carbonate veins.

Alteration - chloritic; weak to moderate carbonate; moderate epidote throughout.

Centered at 57.30m is a 3m felsic crystal tuff.

Centered at 57.50m is a 10cm thick felsic crystal tuff. Conformable. Crudely bedded. Quartz-feldspar crystals. Crystal-crowded, essentially a bed of crystals

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
51.98 60.90 BD 55			
5	1.98 61.83 M W - W	51.98 61.83 4 LB	
	Epidote moderate, ubiquitous; chlorite strong (primary mafic tuff)		
60.90 61.82 FLT M			
Minor fault from 60.90- 61.83m. Gouge and broken core. Minor fault from 60.90- 61.83m. Gouge and broken core. 61.82 61.83 CT 55 lower contact at 55 TCA			
From To	Litho Simple Ge	eo	
61.83 62.53	QFXT TUFF		
Coarse quartz-feldspar crystal	uff. Faintly bedded at 60 deg TCA. Crystal-crowded, with smaller fine ma	afic minerals that have altered to dark chlorite.	

Late coarse blebs of bright pyrite. 0.5%.

Chloritzed mafics (weak); weak epidote.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample

61.83 62.52 BD 60

1							
From	То	Litho	Simple Geo				
61.83	62.53	QFXT	TUFF				
Coarse quar	tz-feldspar cryst	al tuff. Faintly bedded at 60 deg TCA. Crystal-crowded, with	n smaller fine maf				
Late coarse	blebs of bright p	ovrite. 0.5%.					
	afics (weak); we						
STRUG	CTURES	ALTERATION					SAMPLES
From To	Struct CA Strat			Min3 M3%	From	То	Sample
		61.83 62.53 W W - W Weak chlorite; weak epidote					
'	f lower contact hissing To	Litho	Simple Geo				
62.53	74.45	ASHT	TUFF				
Mafic ash tu	ff. Chloritic. We	ell laminated/bedded.					
Pyritic and p	vrrhotite. 1.5%	pyrite and trace fine disseminated pyrrhotite. Pyrite as scatte	ered coarse blebs				
,		e carbonate and weak epidote alteration.					
		horizon, 26cm thick, centred at 73.5m					
Bedding at 6	-						
-	-	are areas suffice and hadding parallal world.	aarbanata baasa				
	m-69.00m, there cm and 5cm thic	are cross-cutting and bedding-parallel, weakly vuggy, quartz k.	c-carbonate brecc	4			

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
62.53 74.44 BD 60			
	62.53 74.45 M M - W	62.53 74.45 1.5 BLB	
	Epidote weak; Strong chlorite (primary mafic tuff)		

74.44 74.45 CT 60

From	То	Litho	Simple Geo	
74.45	76.17	QFXT	TUFF	

Coarse quartz-feldspar crowded crystal tuff similar to above units.

Crude bedding at 65 deg TCS.

Moderate to strong epidote alteration of feldspars.

Very little sulphiude - trace pyrite overall.

Epidote concentrates along crenulated stylolites. Rare coarse calcite veinlets - sometimes pink-coloured.

Bedding, 65 deg TCA. Lower contact sharp at 60 deg TCA.

STRUCTURES	ALTERATION	MINERALIZATION		SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
74.45 76.16 BD 65				
	74.45 76.17 M M - W	74.45 76.17 0.01 DIS		
	Moderate epidote replacing feldspars; weak carbonate; weak chlorite			
76.16 76.17 CT 60				
From To	Litho Simpl	le Geo		
76.17 85.55	ASHT TU	FF		

Dark grey-green, thin-bedded mafic ash tuff.

Many pyritic beds / laminae, ranging up to 8 cm thick. Silica layers within these pyritic intervals plus very fine ash laminae. Also some late, blebby disseminated pyrite. 5.0% pyrite overall.

Bedding at 65 deg TCA.

Four discrete primary sulphide bands from 3 cm to 8 cm thick

Alteration very weak epidote, weak carbonate, moderate chlorite (primary)

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
76.17 85.54 BD 65			
-	76.17 85.55 W W - W	76.17 85.55 5 LB	
	Epidote very weak; chlorite strong (primary mafic tuff)		

85.54 85.55 CT 65

From	То	Litho	Simple Ge	eo
85.55	87.07	FQXT	TUFF	
Feldspar-qu	uartz crystal t	Iff; similar to above units with lesser quartz.		
Crudely be	dded.at 55 de	g TCA. Sharp upper and lower contacts at 60 deg TCA.		
Moderate to	o strong chlor	te alteration; epidote moderate; no carbonate.		
1.0% overa	II disseminate	d blebby pyrite.		
Crush zone	e/fault 5 cm th	ick, centred at 86.97m.		
	CTURES	ALTERATION		MINERALIZATION SAMPLES
	Struct CA	train From To INT CC DO SR AK SC		FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
85.55 86.95	BD 55	85.55 87.07 - W - W Moderate epidote alteration		85.55 87.07 1 DIS
86.95 87.00	FLT	S		
87.00 87.06				
87.06 87.07	CT 60			
From	То	Litho	Simple Ge	
87.07	89.60	ASHT	TUFF	
Mafic ash te	uff. Thin-bed	ded at 60 TCA.		
Bedding-pa	arallel seams	of carbonate, and occassional cross-cutting veinlets. Weak car	rbonate alteration;	; weak epidote alteration.
Sulphides -	pyrite is 1%	as thin, mm-scale laminations and rare blebs.		
Lower conta	act is sharp a	60 TCA		
	CTURES	ALTERATION		MINERALIZATION SAMPLES
From To 87.07 89.59	BD 60	train From To INT CC DO SR AK SC		FromToPY%StyleMinMin%M2%Min3M3%FromToSample
		87.07 89.60 W W - W		87.07 89.60 1 LB
		Epidote is weak. ? Leucoxene.		

89.59 89.60 CT 60

From To	Litho	Simple Geo
89.60 90.65	FQXT	TUFF
Felsic feldspar-quartz cry	stal tuff. Crystal-rich, but not a crowded tuff.	
Very weak epidote chlorit	te alteration.	
Crudely bedded at 60 TC	A.	
Pyrite is trace, dissemina	ited.	
Fine leucoxene.after ilme	enite. (?)	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
89.60 90.64 BD 60		
Crudely bedded at 60 TC	A. 89.60 90.65 VW	89.60 90.65 0.05 DIS
	very weak epidote-chlorite alteration, minor leucoxene	
90.64 90.65 CT 60		
Lower contact at 60 TCA	ł.	
From To	Litho	Simple Geo
90.65 96.81	ASHT	TUFF
Mafic ash tuff. Thin-bedo	ded to fine-bedded throughout. More grey mud/silt beds down-	n-section. Beds up to 5 cm thick but most are a few mm thcik.
Bedding at 65 TCA		
	idote; very weak carbonate.	
But muddy layers are stre	ongly limy. (limy muds).	
Pyrite - fine disseminated	pyrite and minor pyritic laminae. Overall 1.0% pyrite. Lamina	inae from mm to 3 cm thick.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
90.65 96.80 BD 65	90.65 96.81 W W - W	90.65 96.81 1 DIS
	Weak epidoat alteration. Carbonate mud layers.	
96.80 96.81 CT 60		

From	То	Litho	Simple Geo				
96.81	100.30	QFXT	TUFF				
Felsic crystal	I tuff. Coarse b	lue-grey quartz crystals up to 1 cm diam.					
Crude beddir	ng at 70 deg.						
Weak chlorite	e alteration. Su	Iphides - trace pyrite.					
Crush zone a	at basal contact	is 15cm thick.					
	TURES	ALTERATION		MINERALIZATION		SAMPLES	
	Struct CA Strat			From To PY% Style Min Min% Min2 M2% Min3 M3%	From To		
6.81 100.15	BD 70	96.81 100.15 W VW - W			11	1	
		VW chlorite; very weak epidote.					
				96.81100.30 0.01 DIS			
00.15 100.29							
00.15 100.29		100.15 100.30					
		100.15 100.30					
00.29 100.30	CT VS	100.15 100.30 gouge & sericite in fault zone					
00.29 100.30 From	ст vs То	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30	CT VS 70 103.20	100.15 100.30					
00.29 100.30 From 100.30 Feldspar crys	CT VS To 103.20 stal tuff with aph	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated	CT VS To 103.20 stal tuff with aph (late shearing?	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 69	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA.	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 69	CT VS To 103.20 stal tuff with aph (late shearing?	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 69 Pyrite 0.5%	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA. as fine dissemin	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 68 Pyrite 0.5% Weak carbon	CT VS To 103.20 stal tuff with apl (late shearing? 5 TCA. as fine disseminate; very weak	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 68 Pyrite 0.5% Weak carbon Numerous na	CT VS To 103.20 stal tuff with apl (late shearing? 5 TCA. as fine disseminate; very weak arrow (<5cm) fa	100.15 100.30	Simple Geo				
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 68 Pyrite 0.5% Weak carbon Numerous na Lower contac	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA. as fine disseminate; very weak arrow (<5cm) factors of the sharp at 60 do	100.15 100.30	Simple Geo			CAMPLES	
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 69 Pyrite 0.5% Weak carbon Numerous na Lower contact	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA. as fine dissemi nate; very weak arrow (<5cm) fa ct sharp at 60 do CTURES	100.15 100.30	Simple Geo TUFF	MINERALIZATION	From To	SAMPLES Sample	
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 69 Pyrite 0.5% Weak carbon Numerous na Lower contact	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA. as fine disseminate; very weak arrow (<5cm) fa ct sharp at 60 de CTURES Struct CA Strat	100.15 100.30	Simple Geo TUFF	MINERALIZATION	From To		
00.29 100.30 From 100.30 Feldspar crys Well foliated Bedding at 64 Pyrite 0.5% Weak carbon Numerous na Lower contact STRUC From To S	CT VS To 103.20 stal tuff with aph (late shearing? 5 TCA. as fine disseminate; very weak arrow (<5cm) fa ct sharp at 60 de CTURES Struct CA Strat	100.15 100.30	Simple Geo TUFF	MINERALIZATION	From To		

103.19 103.20 CT 60

From To	Litho	Simple Geo
103.20 105.20	ASHT	TUFF
Pale grey-blue ash tuff. I	Probably bleached mafic tuff.	
Thin-bedded at 70 deg T	CA.	
Rare thin pyritic lamination	ons. And 4% finest pyrite dust.	
Sericitic, Minor amount a	s fine partings.	
STRUCTURES	ALTERATION	
From To Struct CA S	train From To INT CC DO SR AK SC	
103.20 105.19 BD 70	103.20 105.20 W VW W -	
	Weak sericite alteration; bleached core. Originally pr tuff.	
105.19 105.20 CT		
core missing		
From To	Litho	Simple Geo
105.20 106.10	QFXT	TUFF
Felsic quartz-feldspar cry	stal tuff, similar to overlying units.	
Very weak chlorite altera	ion.	
Thin bedded at 60 TCA.		
Many tiny buff leucoxene	(or carbonate?) crystal.	
Trace pyrite; basal 20 cr		
STRUCTURES	ALTERATION	
From To Struct CA S	train From To INT CC DO SR AK SC	Ĺ
105.20 106.09 BD 60	105.20 106.10 W VW	
	very weak chlorite alteration.	
100.00.100.10 CT 60	-	

106.09 106.10 CT 60

Sharp lower contact

From	То	Litho	Simple Geo
106.10	114.53	ASHT	TUFF

Medium to dark grey finely laminated ash tuff. Less chlorite. An intermediate to mafic tuff.

Bedding at 70 TCA.

Pitted texture due to leaching fo minor carbonate minerals.

6% fine wispy pyrite as mm-scale laminations and as discrete blebs .

Distinctive yellow discolorations to this core

Very weak calcite alteration as cross-cutting seams/veins; very weak chlorite alteration

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	I From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
106.10 114.52 BD 70			
	106.10 114.53 W W	106.1 0 14.53 6 LB	
	weak chlorite alteration		
114.52 114.53 CT 70			
From To	Litho Simple	Geo	
44450 447.04			

114.53 117.04 QFXT TUFF

Felsic, coarse-grained quartz-feldspar crystal tuff.

Well bedded. Bedding at 60 TCA.

A few % disseminated leucoxene (carbonate?). Weak to moderate epidote. Weak chlorite.

Trace pyrite.

10cm ash tuff unit intercalated near upper contact.

Gradational lower contact as crystal fade out.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
114.53 117.03 BD 60					
1	14.53 117.04 W W	114.5 3 17.04 0.01 DIS			
	Weak to moderate epidote; weak chlorite.				
117.03 117.04 CT					

Gradational lower contact

From	То	Litho	Simple Ge	ο				
117.04	124.00	ASHT	TUFF					
Ash tuff, ma	afic. Medium gre	yish-green. Thinly bedded at 70 TCA.						
Alteration -	moderate carbo	nate; weak epidote; weak chlorite.						
Fault zone f	from 118m-119.4	4m. Highly broken core and several <10cm gouge zones.						
Pyrite 5% as	s coarse blebs d	distributed along carbonate bands and as rare <1mm laminat	tions.					
Lower conta	act sharp at 70 T	-CA.						
STRU	CTURES	ALTERATION		MINERALIZATION			SAMPLES	
<i>From To</i> 117.04 118.00	Struct CA Stra	in From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	5 From	То	Sample	-
117.04 118.00	0 BD 70	117.04 124.00 M M		117.0424.00 5 BLB				
		Weak epidote; weak chlorite						
118.00 119.30								
119.30 123.99								
123.99 124.00 SF	HARP							
From	То	Litho	Simple Ge	0				
124.00	126.68	FQXT	TUFF	-				
Felsic feldsp	par-quartz crysta	al tuff. Plag crystals strongly epidotized						
Thin beddeo	d at 70 TCA.							
Locally crow	vded crystals.							
Single milky	y quartz vein at 1	123.95m is 1 cm thick.						
Weak to mo	oderate chlorite-a	altered groundmass.						
	ne flecks (carbo							
Trace pyrite								
	CTURES	ALTERATION		MINERALIZATION			SAMPLES	1
	Struct CA Stra			MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	5 From	To	SAMPLES Sample	1
124.00 126.67							•	
		104.00 100.00 W		124 0026 69 0.01 DIS				

124.00 126.68 W - - - - - -

124.0026.68 0.01 DIS

weak to moderate chlorite-altered groundmass

126.67 126.68 CT 70

From	То	Litho	Simple Geo
126.68	135.00	ASHT	TUFF

Thin-bedded mafic ash tuff. Light green-grey to medium green-grey downhole.

Bedding at 70 TCA.

Very weak calcite-epidote alteration.

Narrow fault at 127.70m to 127.75m low angle (30 TCA); a thin chloritic gouge zone.

Sand & mud seam - 129.50m to 129.65m - sand, gouge and spun core.

Pyrite 1% overall; content increases downhole.

STRUCTU	U RES	ALTERATION		MINERALIZATION			SAMPLES
	ct CA Strain	From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample
126.68 134.85 BI	D 70			400 CR25 00 4 DIO			
	12	6.68 135.00 W W Weak epidote alteration		126.6 8 35.00 1 DIS			
134.85 134.99 FL	T VS						
134.99 135.00 C	-						
crush zoi	one						
From	То	Litho	Simple Ge	0			
135.00 13	37.00	SEXL	CHRT	_			
Pale green chert	t or strongly sil	cified tuff, with later white quartz interlaminations					
Bedding at 70 TC	CA.						
		anote vision. Dada look discusted undulating					
Locally vuggy, la	ale quariz-carb	onate veins. Beds look disrupted, undulating.					
Pyrite 0.5% along	ig partings and	as rare disseminations.					
Weak chlorite pa	artings;						
Lower contact wi	ithin interval of	broken core.					
STRUCTU		ALTERATION		MINERALIZATION			SAMPLES
	ct CA Strain			MINULKALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	SAMPLES Sample
	D 70						*
	13	5.00 137.00 W		135.0 0 37.00 0.5 LB			
		Weak chlorite partings; silicification?					

136.99 137.00 CT

broken core obscures contact

From To		Simple Geo		
137.00 142.3		TUFF		
Drab green mafic ash	n tuff.			
Superbly bedded. Lo	ocal limy mud beds. At 70 TCA.			
Alteration weak epido	ote, very weak chlorite. Trace fluoromuscovite	within late bull quartz veins.		
5% pyrite as semi-ma	assive beds up to 10 cm thick, and as dissemin	nations.		
Sporadic 1cm-thick g	ouge zones throughout.			
Lower contact sharp.				
STRUCTURES		ATION	MINERALIZATION	SAMPLES
<i>rom To Struct C.</i> 7.00 142.37 BD 7		AK SC From To	PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
	137.00 142.38 W		8 5 LB	
	Very weak epidote; very weak chlo	orite; trace fluoromuscovite		
2.37 142.38 CT 65		Simple Geo		
From To 142.38 145.1		TUFF		
142.30 143.1				
	r crystal tuff. Light greyish-green.			
Felsic quartz-feldspar	r crystal tuff. Light greyish-green.			
Felsic quartz-feldspar Bedding at 65 TCA.	r crystal tuff. Light greyish-green. ystals.			
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry	r crystal tuff. Light greyish-green. ystals. at 65 TCA			
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings.			
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings.			
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p One 2 cm bed of inte	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings. rcalated ash tuff.	RATION	MINERALIZATION	SAMPLES
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p One 2 cm bed of inter Trace pyrite only. STRUCTURES from To Struct C	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings. rcalated ash tuff. S <u>ALTER</u> A <u>Strain From To INT CC DO SR</u>	RATION	MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3%	SAMPLES From To Sample
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p One 2 cm bed of inte Trace pyrite only. STRUCTURE	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings. rcalated ash tuff. S <u>ALTER</u> A <u>Strain From To INT CC DO SR</u>	ATION AK SC From To		
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p One 2 cm bed of inter Trace pyrite only. STRUCTURES from To Struct C	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings. rcalated ash tuff. S <u>ALTER</u> A <u>Strain From To INT CC DO SR</u> 5	ATION AK SC From To 142.3845.1	PY% Style Min Min% Min2 M2% Min3 M3%	
Felsic quartz-feldspar Bedding at 65 TCA. 2% tiny leucoxene cry Lower contact sharp a Weak chlorite along p One 2 cm bed of inter Trace pyrite only. STRUCTURES from To Struct C	r crystal tuff. Light greyish-green. ystals. at 65 TCA partings. rcalated ash tuff. S <u>ALTER</u> A <u>Strain From To INT CC DO SR</u> 5 142.38 145.15 W Weak chlorite along partings; mino	ATION AK SC From To 142.3845.1	PY% Style Min Min% Min2 M2% Min3 M3%	

From To	Litho	Simple Geo
145.15 150.90	ASHT	TUFF
	ash tuff. Well-bedded at 65 TCA.	
30cm interval of spaced for	oliation planes filled by ankerite.	
30cm intercalation of carb	ponate-rich silty sediment centred at 148.00m.	
Pyrite 0.5% as dissemination	tions and rare laminations.	
7cm of fault gouge centre	d on 147.90m.	
STRUCTURESFromToStructCASt145.15150.89BD65	ALTERATION train From To INT CC DO SR AK SC	Image: Minequal problem Minequal problem
	145.15 150.90 W W	145.1 5 50.90 0.5 DIS
150.89 150.90 CT 65		
FromTo150.90151.45	Litho CHRT	Simple Geo CHRT
Thin-bedded palest green	chert. Strings of pyrite blebs along foliation planes.	
Pyrite 10%; trace chalcop	yrite.	
Bedding at 70 TCA. Lowe	er contact is sharp at 70 TCA.	
STRUCTURESFromToStructCASt150.90151.44BD70	ALTERATION train From To INT CC DO SR AK SC 150.90 151.45 - <td>MINERALIZATION SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample 150.9051.45 10 LB LB</td>	MINERALIZATION SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample 150.9051.45 10 LB
151.44 151.45 CT 70		
Sharp		
From To	Litho	Simple Geo
151.45 161.77	ASHT	TUFF
Well-bedded mafic ash tu	-	
	fine pyrite; very weak carbonate.	
Pyrite variable. From 151	.7m to 154.2m pyrite content is 6% as fine-grained lamination	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES From To NVV/ Style Nin Nin
From To Struct CA St	train From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample

From	То	Litho	Simple Geo
151.45	161.77	ASHT	TUFF
Well-bedde	d mafic ash tuff	f. Bedding at 65 TCA.	

Alteration: Limonite after fine pyrite; very weak carbonate.

Pyrite variable. From 151.7m to 154.2m pyrite content is 6% as fine-grained laminations.

STRUCTURES ALTERATION		MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
151.45 161.76 BD 65					
1	51.45 161.77 W W	151.4 5 61.77 6 LB			
	Limonite after pyrite				

161.76 161.77 CT 65

From	То	Litho	Simple Geo
161.77	162.82	CHRT	CHRT

Pale grey, well-bedded pyritic chert.

Upper contact marked by 10cm thick bull quartz vein parallell to bedding.

Bedding at 45-60 TCA (undulating). Lower contact at 50 TCA

Up to 8% fine pyrite aggregate in blebs in quartz vein. Overall 5% pyrite in chert.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
161.77 162.81 BD 60					
16	61.77 162.82	161.7762.82 5 DIS			

162.81 162.82 CT 50

From	То	Litho	Simple Geo
162.82	164.61	ASHT	TUFF

Mafic ash tuff, thin-bedded at 50 TCA.

Alteration - very weak carbonate alteration. Upper and lower contacts are ankerite-rich over 15 cm.

7% pyrite as fine laminae.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
162.82 164.60 BD 50			
1	62.82 164.61 VW	162.8 2 64.61 7 LB	

From 162.82	To 164.61	Litho ASHT	Simple Geo TUFF	(Continued from previous page)
	CTURES	ALTERATION		MINERALIZATION SAMPLES
<i>From To</i> 164.61	Struct CA Struct	nin From To INT CC DO SR AK SC	L	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
	Sharp			
From	То	Litho	Simple Geo	
164.61	165.18	CHRT	CHRT	
Chert, pale	grey-beige. Thi	n-bedded at 65 TCA.		
2% dissemi	inated pyrite.			
STRU	CTURES	ALTERATION		MINERALIZATION SAMPLES
	Struct CA Struct	iin From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
164.61 165.17	7 BD 65	164.61 165.18		164.6165.18 2 DIS
165.17 165.18	3 CT 65	104.01 103.10		
	Sharp			
From	То	Litho	Simple Geo	
165.18	165.28	ASHT	TUFF	
Narrow slice	e of mafic ash tu	uff preserved between chert unit and intrusive basalt dyke.		
Thin-beddeo	d at 70 TCA.			
Strong anke	eritic alteration.			
STRU	CTURES	ALTERATION		MINERALIZATION SAMPLES
From To	Struct CA Stru			From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
165.18 165.27	7 BD 70	165.18 165.28 S		165.1865.28 0 -

165.27 165.28 CT 70

SHARP. Intrusive contact.

From To	Litho	Simple Geo
165.28 167.98	DYKE	DYKE
Basalt feeder dike. Amygdaloidal, w	vith xenoliths. Amygdales are calcite.	
Bleached, baked, flesh-pale beach b	ouff-peach colour.	
Minor scattered euhedral hornblende	e laths. The hornblende and some of the calcite	vesicles are partially weathered out.
Orientation.of contact 45 TCA. Hete	erolitic intrusive breccia along outer margin.	
Rock is entirely dolomite or ankerite	altered.	
Sulphides - none.		
STRUCTURESromToStructCAStrainFrom5.28167.98CT165.28Both contacts are 45TCA	ALTERATION m To INT CC DO SR AK SC 167.98 S - - - S	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 165.2867.98 0 DIS DIS Sample Sample Sample
From To	Litho	Simple Geo
167.98 177.31	ASHT	TUFF
Mafic ash tuff. Medium green-grey.		
Thin-bedded at 55 TCA		
Alteration is weak epidote-carbonate	<i>.</i>	
Pyrite 7% overall - dominantly as mr	n-scale laminations.	
Moderately to strongly ankeritic over	basal 60cm.	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
<i>rom To Struct CA Strain From</i> 7.98 177.30 BD 55	m To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	177.31 W W M	167.9 8 77.31 7 LB
167.98	eak epidote alteration	

FromToLithoSimple Geo177.31177.70DYKE

Basaltic dike simililar to dike from 165.28m-167.98m, except feldspar-phyric with very rare amygdales. Flesh to peach coloured and intensely ankeritic. No visible sulphides. Lower intrusive contact sharp at 30 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
77.31 177.69 NA		
unfoliated		
	177.31 177.70 S S	177.3177.70 0 -
	intensely ankeritic	no visible sulphides
77.69 177.70 CT 30 \	/W	
Lower intrusive contact sharp at 30 TCA.		
From To	Litho	Simple Geo
177.70 189.03	ASHT	

Light green-grey mafic ash tuff. Thin-bedded at 65 TCA. Moderate carbonate as bedding-parallel millimeter (less frequently up to 1 cm thick) scale laminations that are more frequent from 177.70m to to 181.50m. Weak epidote except for rare intense patches. Overall, 2% pyrite dominantly as bedding-parallel millimeter scale laminations associated mostly with carbonate. 2 cm limestone bed with 15% pyrite centered at 188.77m. 177.70 to 181.50m: 4% pyrite.

181.50 to 189.03m: 1.5% pyrite.

Lower contact sharp at 65 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Stra	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
· _ · · · · · · ·	177.70 181.50 M M	177.7 0 81.50 4 LB	
	carbonate occurs as bedding-parallel laminations; very weak epidote alteration	4% pyrite dominantly as bedding-parallel millimeter-scale laminations associated mostly with carbonate.	
177.70 189.02 BD 65			
Thin-bedded at 65 TCA			
	181.50 189.03 W W	181.5089.03 1.5 LB	
	carbonate occurs as bedding-parallel laminations; very weak epidote alteration	1.5% pyrite dominantly as bedding-parallel millimeter-scale laminations associated mostly with carbonate.	
189.02 189.03 CT 65			
sharp lower contact at 65 TCA.			

FromToLithoSimple Geo189.03189.11CARB

Pale grey, faintly bedded pyritic limestone. Bedding at 60 TCA. 10%-12% blebby pytite. Lower contact at 65 TCA.

STRUCTU	RES	ALTERATION			MINERAL			S	SAMPLES
From To Struc	et CA Strain	From To INT CC DO SR AK SC		From To PY	Y% Style Min	Min% Min2 M2% Min3 M	3% From	То	Sample
89.03 189.10 BE	D 60 VW								
Bedding at 6	0 TCA.								
	189	.03 189.11 W W		189.0 3 89.11 1	I1 LB				
			1	0%-12% blebby	pyrite				
89.10 189.11 C ⁻	T 65								
89.10 189.11 C Lower contact a									
		Litho	Simple Geo	1					

sparse millimeter-scale laminations. Minor carbonate vein hydrobreccia over basal 50 cm. Lower contact sharp at 65 TCA.

no discernible alteration

no visible sulphides

FromTo190.79191.19	Litho CHRT	Simple Geo (Continued from previous page)
STRUCTURES		MINERALIZATION SAMPLES
From To Struct CA Strait 191.18 191.19 CT 60	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
Lower contact sharp at 60 TCA.		
From To		Simple Geo
191.19 206.30	FXTF	at 65 TCA. 10% off-white feldsapr crystals overall, with intervals that
are sandy but very crystal po not carbonate altered. Overa	por. Unit becomes progressively coarser (sandy) downhole. Fror	m 191.50m to 198.00m, unit exhibits distinct brownish colour, but is nations; partcularly pronounced from 202.50m to 206.30m. Bull quartz
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strai	191.19 202.50 W W	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	weak carbonate laminations	
191.19 206.29 BD 65 VW Bedding at 65 TCA		
J. J		191.1 2 06.30 1 LB 1% pyrite as millimeter-scale laminations.
	202.50 206.30 M M weak carbonate laminations	
206.29 206.30 CT 40 Sharp lower contact at 40 TCA		
From To		Simple Geo
206.30 208.00	DYKE	
Light peach-coloured, intens Lower contact at 40 TCA.	ely ankerite altered, amygdaloidal hornblende porphyritic mafic	dyke. No visible sulphides. Heterolithic intrusive lower contact.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strait 206.30 207.99 NA unfoliated	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	206.30 208.00 M M VS	206.3208.00 0 -
	very strong ankerite alteration	no visible sulphides

<i>From</i> 206.30	То 208.00	Litho DYKE	Simple Geo (Continued from previous page)
	CTURES	ALTERATION	MINERALIZATION SAMPLES
	Struct CA Strain	I From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
07.99 208.00	CT 40 act at 40 TCA		
From	Το	Litho	Simple Geo
208.00	216.86	FXTF	
pyrite overal	II. Lower contact s		0 TCA, with bedding more well developed in finer grained tuff. Trace MINERALIZATION SAMPLES
	Struct CA Strain		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
8.00 216.85			
unfo	oliated		
	2	208.00 216.86 M W	208.0016.86 0.05 BLB trace blebby pyrite.
	CT 50 act sharp at 50 °CA.		
From	То	Litho	Simple Geo
216.86	220.81	CHRT	
		chert. Bedding at 50 TCA, but locally disrupted by bull qua bs and knots. Lower contact at 65 TCA.	rtz veining and brecciation. Very minor dolomite along fractures. 1-2%
	CTURES	ALTERATION	MINERALIZATION SAMPLES
	Struct CA Strain	n From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
6.86 220.80	BD 50 at 50 TCA		
6.86 220.80	at 50 TCA	216.86 220.81 VW - VW	216.80/20.81 1.5 BLB

220.80 220.81 CT 65

lower contact at 65 TCA

FromToLithoSimple Geo220.81221.73FXTF

Light green fine to medium grained mafic feldspar crystal tuff. Bedded at 65 TCA. Moderately epidote altered. Subtrace pyrite. Lower contact 65 TCA.

	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Str	rain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
20.81 221.72 BD 65				
Bedded at 65 TCA	220.81 221.73 M	220.8221.73 0.01 -		
	moderate epidote alteration	sub-trace pyrite		
21.72 221.73 CT 65				
Lower contact at 65 TCA				
From To	Litho	Simple Geo		
221.73 228.61	CHRT			
Light to medium grey-gree	en thin-bedded chert. Bedding at 55 to 60 TCA. Locally pale brow	vn limonite stained. Riddled with hairline low angle ankerite filled		
fractures which locally exh	ibit cm-scale offset across individual beds. No visible sulphides.	Lower contact brecciated.		
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Str		From To PY% Style Min Min% Min2 M2% Min3 M3%	5 From To Sample	
21.73 228.60 BD 57 V	W			
bedded at 55 to 60 TCA.	221 73 228 61 V/W V/W	221 7328 61 0 -		
bedded al 55 lo 60 TCA.	221.73 228.61 VW VW Riddled with hairline low angle ankerite filled fractures	221.7 3 28.61 0 - no visible sulphides		
28.60 228.61 CT				
	Riddled with hairline low angle ankerite filled fractures			
28.60 228.61 CT	Riddled with hairline low angle ankerite filled fractures			
28.60 228.61 CT lower contact brecciated	Riddled with hairline low angle ankerite filled fractures	no visible sulphides		
28.60 228.61 CT lower contact brecciated From To 228.61 237.90	Riddled with hairline low angle ankerite filled fractures Litho MFLW	no visible sulphides Simple Geo		
28.60 228.61 CT lower contact brecciated From To 228.61 237.90 Pale grey-green, medium-	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve	no visible sulphides Simple Geo		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve s a zone of peperite texture centred on 230.00m.	no visible sulphides Simple Geo		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve	no visible sulphides Simple Geo		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve s a zone of peperite texture centred on 230.00m. httary band centred at 236.10m.	no visible sulphides Simple Geo		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i 6 cm intercalated sedimer 15cm bull quartz vein cent	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve s a zone of peperite texture centred on 230.00m. attary band centred at 236.10m. tereed 237.63m.	no visible sulphides Simple Geo ein injected over upper 60 cm to 229.21m.		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i 6 cm intercalated sedimer 15cm bull quartz vein cent Moerately to well-bedded f	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve is a zone of peperite texture centred on 230.00m. atary band centred at 236.10m. atered 237.63m. from 234.20m to end of unit, at 50-60 TCA. Bedding at lower con	no visible sulphides Simple Geo ein injected over upper 60 cm to 229.21m. htact 50 TCA.		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i 6 cm intercalated sedimer 15cm bull quartz vein cent Moerately to well-bedded f	Riddled with hairline low angle ankerite filled fractures Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz ve s a zone of peperite texture centred on 230.00m. atary band centred at 236.10m. atered 237.63m.	no visible sulphides Simple Geo in injected over upper 60 cm to 229.21m. ntact 50 TCA. eccia contact.		
28.60 228.61 CT <i>lower contact brecciated</i> From To 228.61 237.90 Pale grey-green, medium- Near upper contact there i 6 cm intercalated sedimer 15cm bull quartz vein cent Moerately to well-bedded f	Litho MFLW grained bleached mafic flow. Flow brecciated and bull quartz verses a zone of peperite texture centred on 230.00m. atary band centred at 236.10m. tered 237.63m. from 234.20m to end of unit, at 50-60 TCA. Bedding at lower comes fine disseminations and as clots associated with upper flow breck	no visible sulphides Simple Geo ein injected over upper 60 cm to 229.21m. htact 50 TCA.	SAMPLES From To Sample	

From	То	Litho	Simple Geo
228.61	237.90	MFLW	

Pale grey-green, medium-grained bleached mafic flow. Flow brecciated and bull quartz vein injected over upper 60 cm to 229.21m.

Near upper contact there is a zone of peperite texture centred on 230.00m.

6 cm intercalated sedimentary band centred at 236.10m.

15cm bull quartz vein centered 237.63m.

Moerately to well-bedded from 234.20m to end of unit, at 50-60 TCA. Bedding at lower contact 50 TCA.

3% pyrrhotite; 2% pyrite as fine disseminations and as clots associated with upper flow breccia contact.

STRUG	CTURES	ALTERATION		INERALIZATION			SAMPLES
From To	Struct CA Strain	From To INT CC DO SR AK SC	From To PY% St	yle Min Min% Min2 M2% Min3 M3%	From	То	Sample
228.61 234.20	NA						
	2	28.61 237.90 S M M	228.6 2 37.90 3 L	B PY 2			
		Weak epidote					
234.20 237.89	BD 55						
237.89 237.90	СТ						
From	То	Litho	Simple Geo				
237.90	241.10	ASHT	TUFF				
Well-bedded	d, thin-bedded ash	tuff, plus mudstone plus cherty layers. Bedding at 70 TCA	. Medium buff-grey.				
Attentueted							
Attentuated	along laminations	(sheared). Probably shearing in sed. sequence in footwall	of matic flow above.				
Modorato ca	rhonate alteration	. 3% pyrrhotite and 1.5% pyrite dominantly as laminations.	Lower contact at 50 TCA				

Overall disrupted appearance.

Sulphides 8% fine pyrite and pyrrhotite as laminations. (5 py; 3 po).

Lower contact sharp against underlyiing chert unit at 65 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES			
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample			
237.90 241.09 BD 70						
bedding at 70 TCA						
23	37.90 241.10 M M	237.9041.10 1.5 LB PO 3				
	moderate carbonate alteration	3% pyrrhotite and 1.5% pyrite dominantly as laminations.				

From	То	Litho	Simple Geo		
237.90 2	241.10	ASHT	TUFF	(Continued from previous page)	
STRUCT	URES	ALTERATION		MINERALIZATION SAMPLES	
	uct CA Stra	in From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
41.09 241.10 (
lower contact a					
From	То	Litho	Simple Geo		
241.10 2	242.41	CHRT			
		coloured, thin-bedded tuff with minor cm-scale interbedded a			
15% pyrite as c	onformable r	massive bands between 2 mm and 2 cm thick, often associa	ted with calcite. Lo	ower contact sharp at 60 TCA.	
STRUCT		ALTERATION		MINERALIZATION SAMPLES	
	uct CA Stra	in From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
241.10 242.40 E bedding at 6					
bedding at t	DU TCA	241.10 242.41 M M		241.10242.41 15 MLB	
		moderate calcite as laminations and within ash tuff mat	rix 59	9 pyrite as conformable massive bands between 2 mm and 2 cm thick, often associated with calcite	
242.40 242.41 (CT 60				
lower contact a	at 60 TCA				
From	То	Litho	Simple Geo		
242.41 2	243.02	ASHT			
		sic ash tuff with minor interbedded chert. Bedding at 55 TCA	Weak carbonate	as matrix alteration 1-2% fine grained ovrite as >1	
		long hairline fractures. Lower contact sharp at 55 TCA.	. Weak barbonate		
STRUCT	URES	ALTERATION		MINERALIZATION SAMPLES	
	uct CA Stra			From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
242.41 243.01 E	3D 55		L		
bedding at §					
		242.41 243.02 W M		242.42243.02 1.5 -	
		Weak carbonate as matrix alteration.		-2% fine grained pyrite as >1 mm thick laminations and along pairline fractures	
243.01 243.02 E	3D 55				
lower contact					

lower contact at 55 TCA

From	То	Litho	Simple Geo
243.02	251.80	FXAT	

Pale grey-green, intermediate, moderately-bedded crystal ash tuff. Composed of weakly epidotized diffuse feldspar masses in an ash to locally sandy matrix. Moderate interbedded carbonate; carbonate bands range from 1 mm to cm thick. Very minor interbedded chert/mudstone. Bedding at 60 TCA. Overall, 2% pyrrhotite and 2% pyrite as evenly disseminated flecks and blebs. Lower contact sharp at 55 TCA.

245.19m to 245..87m Interval of interbedded crystal ash tuff, chert and mudstone exhibiting soft-sediment deformation. 7% pyrite, dominantly within single 2 cm band, and 5% pyrhhotite as laminations.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strai	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
		243.0245.19 2 BLB PO 2	
		7% pyrite, dominantly within single 2 cm band, and 5% pyrhhotite as laminations.	
243.02 251.79 BD 60			
bedding at 60 TCA.			
	243.02 251.80 M M		
	moderate carbonate and epidote alteration		
		245.1 2 45.87 7 MLB PO 5	
		7% pyrite, dominantly within single 2 cm band, and 5% pyrhhotite as laminations.	
		245.8 2 51.80 2 BLB PO 2	
		7% pyrite, dominantly within single 2 cm band, and 5% pyrhotite as laminations.	
251.79 251.80 CT 55			
lower contact at 55 TCA			
From To	Litho	Simple Geo	
251.80 251.95	SEXL		

Medium grey, thin-bedded silica exhalite/chert. Bedding at 60 TCA. Moderate carbonate as laminations. 6% po and 4% py as laminations. Lower contact sharp at 60 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES					
From To Struct CA Strain Fr	om To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample					
251.80 251.94 BD 60							
bedding at 60 TCA.							
251.8	0 251.95 M M	251.80251.95 4 LB PO 6					
n	oderate carbonate as laminations	6% po and 4% py as laminations.					
251.94 251.95 CT 60							
lower contact at 60 TCA							

From	То	Litho	Simple Geo	
251.95	253.55	FXAT		

Intermediate crystal ash tuff similar to 243.02m to 251.80m., with minor interbedded limestone. Bedding at 60 TCA. 6% po and 4% py as laminations. Lower contact undulating.

254.10m to 254.55m: bedding warped to undulating over basal 45 cm with minor interbedded limestone.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain Fi	rom To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M39	% From To Sample
251.95 253.54 BD 60			
bedding at 60 TCA			
	95 253.55 W W	251.92253.55 1 DIS PO 2	
M	veak carbonate and epidote alteration	6% po and 4% py as laminations	
253.54 253.55 CT			
undulating lower contact			
From To	Litho	imple Geo	
253.55 254.10	CARB		
Medium grey, thin-bedded limesto laminations. Lower contact irregula		nat warped to locally folded, but generally at 65 TCA. 5% po	
	aı.		
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
	rom To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	% From To Sample
253.55 254.09 BD 65			
Bedding somewhat warped to locally folded, but			
generally at 65 TCA			
253.5	5 254.10 W W	253.5 2 54.10 0 - PO 5	
		5% po laminations	
254.09 254.10 CT			
lower contact irregular			
From To	Litho	imple Geo	
254.10 267.20	FXAT		
234.10 207.20	I ARI		
		grey chert interbeds. Composed of weakly epidotized diffuse and crystal poor. Bedding at 60 to 70 TCA. Moderate carbonate	
		.20m, 0.25% disseminated pyrite. Lower contact sharp at 75 TCA.	
3 cm chert bed centered at 254.38	3m.		
257.69m to 257.83m interbedded	crystal ash tuff and chert.		
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES

254.10 267.20	FXAT	
		a dark grou short interhade. Composed of weakly enidetized diffuse
ale grey-green, intermedi	to locally sandy matrix. Bedding is well developed when ash	or dark grey chert interbeds. Composed of weakly epidotized diffuse is fine and crystal poor. Bedding at 60 to 70 TCA. Moderate carbonate
ind moderate epidote alter	ration. 1-2% disseminated pyrite to 262.00m. From 262.00m	to 267.20m, 0.25% disseminated pyrite. Lower contact sharp at 75 TCA.
3 cm chert bed centered at 257 69m to 257 83m inter	t 254.38m. bedded crystal ash tuff and chert.	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	ain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
		254.1062.00 1.5 DIS
		1-2% disseminated pyrite
54.10 267.19 BD 65 Bedding at 60 to 70 TCA.		
Deduling at 00 to 70 TCA.	254.10 267.20 M W	
	Moderate carbonate and moderate epidote alteration.	
	,	262.0067.20 0.25 DIS
		0.25% disseminated pyrite.
67.19 267.20 CT 75		
Lower contact sharp at 75		
TCA		
From To	Litho	Simple Geo
267.20 267.28	CHRT	
		ICA 15% lamineted purity Lower contact sharp at 75 TCA
5 7	eakly sheared chert with interbedded ash tuff. Bedding at 75 1	
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	ain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
67.20 267.27 BD 75		
Bedding at 75 TCA.	267.20 267.28 M W	267.2067.28 15 LB
	207.20 207.20 101 00	15% laminated pyrite.
		love laninated pyrio.
57 27 267 28 CT 75		
67.27 267.28 CT 75 Lowerr contact at 75 TCA		
Lowerr contact at 75 TCA.		Simple Coo
	<i>Litho</i> FXAT	Simple Geo

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample

FromToLithoSimple Geo267.28270.78FXAT

Light grey-green, intermediate crystal ash tuff. Bedding at 70 TCA. Variable crystal content across lithology. Moderate carbonate and weak epidote alteration. Possible rare lapilli occur as diffuse dark green lensoidal chlorite clots. 0.5% disseminated pyrite. Lower contact gradational.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES			
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample			
267.28 270.77 BD 70						
bedding at 70 TCA						
2	67.28 270.78 M M	267.2870.78 0.5 DIS				
	Moderate carbonate and weak epidote alteration.	0.5% disseminated pyrite.				
270.77 270.78 CT						

lower contact gradational.

From	То	Litho	Simple Geo
270.78	272.35	FXTF	

Light to medium green, medium-grained, poorly bedded feldspar crystal tuff with thin ash tuff interbeds. Bedding at 70 TCA. Weak epidote alteration. 0.1% fine dissemianted pyrite. Lower contact gradational.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
270.78 272.34 BD 70		
bedding at 70 TCA		
	270.78 272.35 W	270.7 2 72.35 0.1 DIS
	weak epidote alteration	0.1% fine disseminated pyrite
272.34 272.35 CT		
lower contact gradational	1	
From To	Litho	Simple Geo
From To 272.35 274.31	FXAT	Simple Geo
272.35 274.31 Pale grey-green, moderate	FXAT	disrupted mudstone beds. Bedding at 75 TCA. Weak epidote alteration. Weak
272.35 274.31 Pale grey-green, moderate	FXAT ely-bedded feldspar crystal-ash tuff with very minor, thin d	disrupted mudstone beds. Bedding at 75 TCA. Weak epidote alteration. Weak
272.35 274.31 Pale grey-green, moderate carbonate as laminations.	FXAT ely-bedded feldspar crystal-ash tuff with very minor, thin di 0.75% streaky conformable and blebby pyrite. Lower cont ALTERATION	disrupted mudstone beds. Bedding at 75 TCA. Weak epidote alteration. Weak ntact at 70 TCA.
272.35274.31Pale grey-green, moderate carbonate as laminations.STRUCTURES	FXAT ely-bedded feldspar crystal-ash tuff with very minor, thin di 0.75% streaky conformable and blebby pyrite. Lower cont ALTERATION	disrupted mudstone beds. Bedding at 75 TCA. Weak epidote alteration. Weak htact at 70 TCA.

272.35 274.31 W W - - - - -

Weak epidote alteration. Weak carbonate as laminations.

272.3274.31 0.75 LB 0.75% streaky conformable and blebby pyrite

274.30 274.31 CT 70

lower contact at 70 TCA

From To	Litho	Simple Geo	
274.31 278.30	ASHT		
	ded mafic ash tuff. Bedding at 80 TCA. Moderate carbonate as lam	inations, weak enidote alteration. Limey ask hads occur from	
274.45m to 274.65m. Ove	rall 1% pyrite as millimeter-thick sporadic laminations. Lower conta	act sharp at 80 TCA.	
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
74.31 278.29 BD 80			
Bedding at 80 TCA			
	274.31 278.30 M M Moderate carbonate as laminations, weak epidote alteration	274.3278.30 1 LB Overall 1% pyrite as millimeter-thick sporadic laminations	
0 00 070 00 OT 00			
78.29 278.30 CT 80 Lower contact sharp at 80			
TCA			
From To	Litho	Simple Geo	
278.30 278.60	CHRT		
		ng at 20 TCA. Cut by bairling law angle and agree avia parallal	
	thin-bedded chert with a single 2 cm thick ash tuff interbed. Beddi res. Trace pyrite. Lower contact at 80 TCA.	ng at 80 TCA. Cut by hamme low-angle and core-axis-parallel	
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
8.30 278.59 BD 80			
bedding at 80 TCA			
	278.30 278.60 M M	278.3078.60 0.05 DIS	
		trace disseminated pyrite	
78.59 278.60 CT 80			
lower contact at 80 TCA			
From To		Simple Geo	
278.60 279.85	ASHT		
		5 TCA. Weak epidote; moderate carbonate alteration. 1-2% pyrite as	
	ns. Lower contact sharp at 85 TCA.		
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
78.60 279.84 BD 85 bedding at 85 TCA			
beduing at 05 TCA	278.60 279.85 M M	278.60279.85 1.5 LB	
	weak epidote, moderate carbonate alteration.	1-2% pyrite as very fine grained laminations	
79.84 279.85 CT 85			
lower contact at 85 TCA			
	-		

From To Litho Simple Geo 279.85 280.00 QXTF

Very light grey quartz crystal rich tuff. Extremely siliceous. Very faint bedding at 85 TCA. Cut by hairline low-angle to core-axis-parallel calcite-filled fractures. Trace pyrite. Lower contact at 85 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES			
From To Struct CA Strai	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample			
279.85 279.99 BD 85						
bedding at 85 TCA.						
	279.85 280.00	279.8280.00 0.05 DIS				
	no visible alteration	trace disseminated pyrite				
279.99 280.00 CT 85						
lower contact at 85 TCA.						

From	То	Litho	Simple Geo
280.00	280.64	ASHT	

Light grey green, thin-bedded, mafic to intermediate ash tuff. Bedding at 85 TCA. Weak to moderate carbonate as laminations. Strongly silicified over upper 10 cm. 0.1% pyrite as rare laminations. Lower contact sharp at 85 TCA.

STRUCTURES		ALTERATION				MINER						SAMPLES
From To Struct CA	Strain From To I	NT CC DO SR AK SC		From	<i>To PY</i> %	6 Style M	in Mins	% Min2 M2% M	Min3 M3%	From	То	Sample
	280.00 280.10 S	W S -										
	strong silicification	on, weak carbonate as laminations.										
280.00 280.63 BD 85 bedding at 85TCA												
				280.008	30.64 0.1	l LB						
			(0.1% pyri	ite as rare	alamination	IS.					
	280.10 280.64 M	I M										
	moderate carbor	nate as laminations										
280.63 280.64 CT 85												
lower contact sharp at	t 85											
TCA												
From To		Litho	Simple Geo	0								
280.64 290.64	4	ASHT										
		sh tuff. Bedding at 85 TCA to 285.00m bserved. Moderate carbonate as lamin							3			

than 10 cm thick) feldsapr crystal ash tuff beds observed. Moderate carbonate as laminations. From 288.70m to 290.64m, moderately to locally intensely epidotized, associated with gradually increasing occurrence of feldspar crystal tuff interbeds. Weakly to moderately chloritic. 3 cm gouge zone noted centered at 284.25m. Overall, 0.25% disseminated pyrite. Lower contact sharp at 85 TCA, demarcated by dominant crystal ash tuff below this.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample

From To		Simple Geo				
80.64 290.64	ASHT					
edium to dark green wel	I (thin) bedded mafic ash tuff. Bedding at 85 TCA to 285.00m. From crystal ash tuff beds observed. Moderate carbonate as laminations	n 285.00m to 290.64m, bedding at 90 TCA. Very rare and thin (less				
idotized, associated wit	h gradually increasing occurrence of feldspar crystal tuff interbeds.	Weakly to moderately chloritic. 3 cm gouge zone noted centered at				
84.25m. Overall, 0.25% o	disseminated pyrite. Lower contact sharp at 85 TCA, demarcated b	y dominant crystal ash tuff below this.				
STRUCTURES	ALTERATION	MINERALIZATION			SAMPLES	
m To Struct CA St	rain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
64 284.23 BD 85						
bedding at 85 TCA.						
	280.64 288.70 M M					
	moderate carbonate as laminations					
		280.62290.64 0.25 DIS				
		0.25% disseminated pyrite.				
3 284.26 FLT 85	S					
chloritic fault gouge						
6 285.00 BD 85						
<i>bedding at 85 TCA.</i> 0 290.63 BD 90						
bedding at 90 TCA.						
	288.70 290.64 S M					
	moderate carbonate as laminations, moderately to locally in epidotized, associated with gradually increasing occurrence feldsapr cryst tuff interbeds					
63 290.64 CT 85						
ower contact at 85 TCA.						
From To	Litho	Simple Geo				
290.64 297.90	FXAT					
		ad at 95 TCA. Databy anidata alteration (madarata) throughout				
edium green, moderater ssociated mainly with cal ontact sharp at 85 TCA.	y bedded, mafic feldspar crystal ash tuff. Bedding variably develope lcite veins/hydrobreccia zones which locally disrupt bedding. 1% py	rite as discreet millimeter-thick and scattered laminations. Lower				
STRUCTURES	ALTERATION	MINERALIZATION			SAMPLES	
n To Struct CA St		From To PY% Style Min Min% Min2 M2% Min3 M3%	From	To	Sample	
4 297.89 BD 85						
bedding at 85 TCA.						
	290.64 297.90 M M	290.6 2 97.90 1 LB				
	Patchy enidote alteration (moderate) throughout associated	mainly 1% pyrite as discreat millimeter-thick and scattered laminations				

Patchy epidote alteration (moderate) throughout associated mainly with calcite veins/hydrobreccia zones 1% pyrite as discreet millimeter-thick and scattered laminations

From To	Litho	Simple Geo
290.64 297.90	FXAT	(Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Stra	ain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
97.89 297.90 CT 85 sharp lower contact at 85		
TCA.		
From To	Litho	Simple Geo
297.90 302.14	PATF	
		Bedding at 65 TCA. Pale green chloritic partings common. Weak to vrite as 1-3 millimeter thick laminations. Lower contact sharp at 70 TCA.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Stra		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
97.90 302.13 BD 65		
bedding at 65 TCA	297.90 302.14 M M	297.9002.14 8 LB
	Pale green chloritic partings common. Weak to mod	
	Fale green chionic partings common. Weak to mot	
	as laminations and as a lesser matrix component	derate carbonate 7% to 9% pyrite as 1-3 millimeter thick laminations
02.13 302.14 CT 70 sharp lower contact at 70 TCA.		
sharp lower contact at 70		Simple Geo
sharp lower contact at 70 TCA.	as laminations and as a lesser matrix component	
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately	as laminations and as a lesser matrix component Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interl	Simple Geo
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration	as laminations and as a lesser matrix component Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interl on to 306.20m; trace pyrite. From 306.20m to 308.19m, a	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff.
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately	As laminations and as a lesser matrix component Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interl on to 306.20m; trace pyrite. From 306.20m to 308.19m, a a carbonate and weak epidote alteration, and 3-5% pyrite	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational.
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteratio Over this interval, moderate	As laminations and as a lesser matrix component Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interl on to 306.20m; trace pyrite. From 306.20m to 308.19m, a e carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff.
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteratio Over this interval, moderate	Litho Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff intert on to 306.20m; trace pyrite. From 306.20m to 308.19m, a e carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION tin From To INT CC DO SR AK SC 302.14 306.20 W	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 302.1 3 06.20 0.05 DIS
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. STRUCTURES From To Struct CA	Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interfor to 306.20m; trace pyrite. From 306.20m to 308.19m, aster carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION ain From To INT CC DO SR AK SC	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. MINERALIZATION SAMPLES From To PY% Style Min Min% Min3 M3% From To Sample
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Struct TURES To Struct CA Struct Yeak epidote alteration over this interval, moderately the struct over this interval, moderately the struct over the str	Litho Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff intert on to 306.20m; trace pyrite. From 306.20m to 308.19m, a e carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION tin From To INT CC DO SR AK SC 302.14 306.20 W	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 302.1 3 06.20 0.05 DIS
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration over this interval, moderately TCA. STRUCTURES From To Struct CA	Litho Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff intert on to 306.20m; trace pyrite. From 306.20m to 308.19m, a e carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION tin From To INT CC DO SR AK SC 302.14 306.20 W	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 302.1 3 06.20 0.05 DIS
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. STRUCTURES From To Struct CA Struct CA Struct Struct 02.14 308.18 BD 65	Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interlon to 306.20m; trace pyrite. From 306.20m to 308.19m, a carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION tin From To INT 302.14 306.20 weak epidote alteration.	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. Image: the state of the state o
sharp lower contact at 70 TCA. From To 302.14 308.19 Medium green, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. Weak epidote alteration Over this interval, moderately TCA. STRUCTURES From To Struct CA Struct CA Struct Struct 02.14 308.18 BD 65	Litho FXAT chloritic, mafic feldsapr crystal ash tuff with ash tuff interfor to 306.20m; trace pyrite. From 306.20m to 308.19m, a carbonate and weak epidote alteration, and 3-5% pyrite ALTERATION tin From To INT CC DO SR AK SC 302.14 306.20 W - - - - - 306.20 308.19 M - - - - -	Simple Geo beds that occur more frequently towards lower contact. Bedding at 60 to 70 approximately 70/30 feldspar crystal ash tuff/fine ash tuff to pyritic ash tuff. as laminations. Lower contact gradational. Image: Style Style Min Min% Min2 M2% Min3 M3% From To Sample 302.1806.20 0.05 DIS trace pyrite 306.2608.19 4 LB

FromToLithoSimple Geo308.19310.90ASHT

Medium grey, well-bedded ash tuff to pyritic ash tuff. Bedding at 70 TCA. Moderate carbonate alteration as laminations. 4%-5% pyrite as laminations. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Struct	uin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
308.19 310.89 BD 70			
bedding at 70 TCA.			
	308.19 310.90 M M	308.1910.90 4.5 LB	
	moderate carbonate alteration as laminations	4% to 5% pyrite as laminations.	
310.89 310.90 CT 75			
Lower contact sharp at 75			
TCA.			
From To	Litho	Simple Geo	
310.90 367.88	FXAT		

Thick sequence of crudely to moderately bedded mafic feldspar crystal ash tuff. Bedding at 70 TCA. Lithology is relatively homogeneous throughout, with the exception of short variably-textured intervals as noted. Patchy moderate epidote alteration throughout, often associated with carbonate veining and carbonate hydraulic breccia. Overall, 2% to 3% pyrite as laminations and along calcite vein margins. Sharp lower contact at 70 TCA.

317.10m to 318.20m : Possible agglomeratic interval composed of pale green diffuse rounded "bombs" in a chloritic ash tuff. 343.00m: center of 8 cm thick very fine grained pale grey carbonate-rich ash tuff interval.

352.80m to 353.00m: interbedded ash tuff and crystal ash tuff.

367.26m to 367.88m: Basal interval composed of coarse mafic feldspar crystal tuff.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Struct	iin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
310.90 367.87 BD 70			
bedding at 70 TCA.			
	310.90 367.88 M W	310.9067.88 2.5 LB	
	Patchy moderate epidote alteration throughout, often associated with carbonate veining and carbonate hydraulic breccia.	Overall, 2% to 3% pyrite as laminations and along calcite vein margins	
367.87 367.88 CT 70			
sharp lower contact at 70			

TCA.

From	То	Litho	Simple Geo	
367.88	375.14	ASHT		

Pale to light grey thin-bedded felsic (?) ash tuff. Bedding at 65 TCA and locally very gently warped to kinked. Very weak carbonate alteration. Very weak chlorite and sericite partings. From 367.88m to 373.75.00m, 1%-2% pyrite as very thin (less than or equal to) 1 mm laminations. From 373.75m to 375.14m 2% pyrrhotite, 1 to 2% pyrite as laminations. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S	Strain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
ł ł ł		367.8873.75 1.5 LB
		1-2% pyrite as very thin (less than or equal to) 1 mm
		laminations
67.88 375.13 BD 65		
bedding at 65 TCA.		
	367.88 375.14 VW VW - VW	
	Very weak carbonate alteration. Very weak chlorite and partings	nd sericite
		373.7 3 75.14 1.5 LB PO 2
		2% pyrrhotite, 1 to 2% pyrite as laminations.
75.13 375.14 CT 70		
	0	
75.13 375.14 CT 70 lower contact sharp at 70 TCA.	0	
lower contact sharp at 70 TCA.		
lower contact sharp at 70 TCA. From To	Litho	Simple Geo
Iower contact sharp at 70 TCA. From To 375.14 375.25	Litho SESX	Simple Geo
Iower contact sharp at 70 TCA. From To 375.14 375.25	Litho	Simple Geo
Iower contact sharp at 70 TCA. From To 375.14 375.25	Litho SESX	Simple Geo
lower contact sharp at 70 TCA.FromTo 375.14375.14375.25Dark grey, pyrite-rich silic	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely the ALTERATION	Simple Geo thin laminations. Lower contact sharp at 65 TCA.
lower contact sharp at 70 TCA.FromTo 375.14375.14375.25Dark grey, pyrite-rich silicSTRUCTURES	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely th ALTERATION	Simple Geo thin laminations. Lower contact sharp at 65 TCA. MINERALIZATION SAMPLES
Iower contact sharp at 70 TCA. From To 375.14 375.25 Dark grey, pyrite-rich silic STRUCTURES From To Struct CA	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely th ALTERATION	Simple Geo thin laminations. Lower contact sharp at 65 TCA. MINERALIZATION SAMPLES
lower contact sharp at 70 TCA.FromTo375.14375.25Dark grey, pyrite-rich silicSTRUCTURESFromToStructCAS75.14375.24BD65	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely th ALTERATION	Simple Geo thin laminations. Lower contact sharp at 65 TCA. MINERALIZATION SAMPLES
lower contact sharp at 70 TCA.FromTo375.14375.25Dark grey, pyrite-rich silicSTRUCTURESFromToStructCAS75.14375.24BD65	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely the second se	Simple Geo thin laminations. Lower contact sharp at 65 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
Iower contact sharp at 70 TCA. From To 375.14 375.25 Dark grey, pyrite-rich silic STRUCTURES From To Struct CA STRUCTURES 57.14 375.24 BD	Litho SESX ca exhalite. Bedding at 65 TCA. Minor carbonate as extremely the second se	Simple Geo thin laminations. Lower contact sharp at 65 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 375.1875.25 5 MLB PO 25

sharp lower contact at 65 TCA.

FromToLithoSimple Geo375.25375.52LLTF

Pale grey to grey-white felsic lapilli tuff with 5% elongate felsic lapilli up to 1.5 cm in length. Laminated to thin-bedded at 70 TCA. No significant alteration. 5% pyrrhotite, 3% pyrite as discontinuous millimeter-thick laminations. Lower contact sharp at 65 TCA.

STRUCTURESFromToStructCAStr375.25375.51BD70	ALTERATIONainFromToINTCCDOSRAKSC	MINERALIZATIONFromToPY%StyleMinMin%Min2M2%Min3M3%	SAMPLESFromToSample
bedding at 70 TCA.	375.25 375.52	375.2 5 75.52 3 LB PO 5 5% pyrrhotite, 3% pyrite as discontinuous millimeter thick laminations.	
375.51 375.52 CT 65 sharp lower contact at 65 Tca			
From To		Simple Geo	
375.52 376.62	SESX		
massive to semi-massive of	ite-pyrrhotite rich silica exhalative. Bedding at 70 to 80 TCA. 50% conformable bands. Very minor calcite along partings/bedding. Lin bed of buff-grey felsic lapilli tuff, silicified at upper contact.	% sulphides (45% pyrite, 5% pyrrhotite) as fine to very fine grained ower contact at 75 TCA.	
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str	ain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
375.52 376.61 BD 75			
Bedding at 70 to 80 TCA	375.52 376.62 VW VW	375.5276.62 45 MLB PO 5	
	Very minor calcite along partings/bedding	50% sulphides (45% pyrite, 5% pyrrhotite) as fine to very fine grained massive to semi-massive conformable bands.	
376.61 376.62 CT 75		, and the second s	
Lower contact at 75 TCA			
From To	Litho	Simple Geo	
376.62 377.65	ASHT		
Pale green-grey intermedia	-	e as laminations. Very weak matrix epidote alteration. 1.5% pyrrhotite, ICA.	
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
376.62 377.64 BD 70			
bedding at 70 TCA			

FromToLithoSimple Geo376.62377.65ASHT

Pale green-grey intermediate (?) ash tuff. Bedding at 70 TCA. Weak to moderate carbonate as laminations. Very weak matrix epidote alteration. 1.5% pyrrhotite, 0.5% pyrite associated mainly with carbonate rich laminations. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strai		From To PY% Style Min Min% Min2 M2% Min3 M3%	
	376.62 377.65 W W	376.6277.65 0.5 LB PO 1.5	Trom To Sumple
	Weak to moderate carbonate as laminations.	1.5% pyrrhotite, 0.5% pyrite associated mainly with carbonate	
		rich laminations	
377.64 377.65 CT 70			
sharp lower contact at 70			
TCA.			
From To	Litho Simple	Geo	
377.65 377.78	SESX		
Medium to dark arey thin-be	dded pyrrhotite-pyrite rich silica exhalite. Bedding at 75 TCA. 6% pyrrho	tite 3% pyrite as laminations. Lower contact sharp at 75	
TCA.			
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strai		From To PY% Style Min Min% Min2 M2% Min3 M3%	
377.65 377.77 BD 75			
bedding at 75 TCA.			
•	377.65 377.78	377.6 3 77.78 3 LB PO 6	
		6% pyrrhotite, 3% pyrite as laminations.	
377.77 377.78 CT 75			
lower contact at 75 TCA.			
From To	Litho Simple	Geo	
377.78 379.02	FXAT		
Very pale green, weakly epic and along margins of rare ca	Iotized intermediate (?) feldspar crystal ash tuff. Generally massive. 5%- licite veinlets. Lower contact sharp at 70 TCA.	7% pyrite and pyrrhotite as regularly disseminated flecks	
STRUCTURES	ALTERATION		SAMPLES
From To Struct CA Strai	n From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%	From To Sample
377.78 379.01 NA			
massive	377.78 379.02 W	377.7879.02 3 DIS PO 3	
	weakly epidote alteration	5%-7% pyrite and pyrrhotite as regularly dissemianted flecks	
	wearing opicion alleration	and along margins of rare calcite veinlets	

From To 377.78 379.02	<i>Litho</i> FXAT	Simple Geo (Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain From	To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
379.01 379.02 CT 70 lower contact sharp at 70 TCA.		
From To	Litho	Simple Geo
379.02 379.26	SESX	
Iaminations. Lower contact sharp at 75 STRUCTURES From To Struct CA Strain From	To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
379.02 379.25 BD 75 bedding at 75 TCA		
	379.26	379.0 2 79.26 8 LB PO 2
	gnificant alteration	8% pyrite and 2% pyrrhotite as semi-massive laminations
379.25 379.26 CT 75		
sharp lower contact at 75 TCA		
sharp lower contact at 75	Litho	Simple Geo
sharp lower contact at 75 TCA	Litho ASHT	Simple Geo
sharp lower contact at 75 TCA From To 379.26 382.68 Pale green intermediate (?) generally w	ASHT	eak epidote and very weak carbonate alteration. Bull milky white quartz vein

SIKUCIUKES	ALIEKAIION	MINEKALIZATION	SAMPLES
From To Struct CA	Strain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
379.26 382.67 BD 75			
bedding at 75 TCA			
	379.26 382.68 W VW	379.2682.68 1.5 DIS PO 2.5	
	Weak epidote and very weak carbonate alteration	2.5% pyrrhotite, 1% pyrite as elongate conformable flecks.	

382.67 382.68 CT

gradational contact

From To Litho Simple Geo 382.68 383.62 FXAT

Light grey, fine-grained intermediate (?) feldspar crystal ash tuff. Bedding locally well developed at 75 TCA. Weak epidote and moderate carbonate alteration. 2% pyrite and 2% pyrrhotite as discontinuous elongate and conformable flecks. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
882.68 383.61 BD 75		
Bedding locally well developed at 75 TCA.		
	382.68 383.62 M M	382.6883.62 2 DIS PO 2
	Weak epidote and moderate carbonate alteration.	2% pyrite and 2% pyrrhotite as discontinuous elongate and conformable flecks.
883.61 383.62 CT 75		
Lower contact sharp at 75 TCA	5	
From To	Litho	Simple Geo
383.62 383.72	SESX	
Dark grey, well-bedded py TCA.	rrite-pyrrhotite-rich silica exhalite. Bedding at 70 TCA. 10% py	pyrite, 3% pyrrhotite as fine to dusty laminations. Sharp lower contact at 70
TCA.		
TCA.	ALTERATION	MINERALIZATION SAMPLES
TCA. STRUCTURES From To Struct CA St 883.62 383.71 BD 70	ALTERATION	
TCA. STRUCTURES From To Struct CA St	ALTERATION rain From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
TCA. STRUCTURES From To Struct CA St 883.62 383.71 BD 70	ALTERATION rain From To INT CC DO SR AK SC 383.62 383.72 - - - - - -	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3
TCA. STRUCTURES From To Struct CA St 883.62 383.71 BD 70 bedding at 70 TCA.	ALTERATION rain From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
TCA. STRUCTURES From To Struct CA St 883.62 383.71 BD 70 bedding at 70 TCA. 883.71 383.72 CT 70	ALTERATION train From To INT CC DO SR AK SC 383.62 383.72 - - - - - - no significant alteration	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3
TCA. STRUCTURES From To Struct CA St 883.62 383.71 BD 70 bedding at 70 TCA.	ALTERATION train From To INT CC DO SR AK SC 383.62 383.72 - - - - - - no significant alteration	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3
TCA. STRUCTURES From To Struct CA St 383.62 383.71 BD 70 bedding at 70 TCA. 383.71 383.72 CT 70 sharp lower contact at 70	ALTERATION train From To INT CC DO SR AK SC 383.62 383.72 - - - - - - no significant alteration	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3
TCA. STRUCTURES From To Struct CA St 383.62 383.71 BD 70 bedding at 70 TCA. 383.71 383.72 CT 70 sharp lower contact at 70 TCA.	ALTERATION rain From To INT CC DO SR AK SC 383.62 383.72 - - - - - no significant alteration	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3 10% pyrite, 3% pyrrhotite as fine to dusty laminations
TCA. STRUCTURES From To Struct CA St 383.62 383.71 BD 70 bedding at 70 TCA. 383.71 383.72 CT 70 sharp lower contact at 70 TCA. From To 383.72 384.45 Light green fine grained in	ALTERATION rain From To INT CC DO SR AK SC 383.62 383.72 - - - - - no significant alteration Litho FXAT	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3 10% pyrite, 3% pyrrhotite as fine to dusty laminations Simple Geo Weak epidote and carbonate alteration. Moderately fractured locally with
TCA. STRUCTURES From To Struct CA St 383.62 383.71 BD 70 bedding at 70 TCA. 383.71 383.72 CT 70 sharp lower contact at 70 TCA. From To 383.72 384.45 Light green fine grained in	ALTERATION rain From To INT CC DO SR AK SC 383.62 383.72 -	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 383.6283.72 10 LB PO 3 10% pyrite, 3% pyrrhotite as fine to dusty laminations Simple Geo Weak epidote and carbonate alteration. Moderately fractured locally with

383.72 384.44 NA

massive

FromToLithoSimple Geo383.72384.45FXAT

Light green fine grained intermediate (?) feldspar crystal ash tuff. Generally massive. Weak epidote and carbonate alteration. Moderately fractured locally with calcite filling fractures. 4% pyrite, 3% pyrrhotite as disseminations. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Struct		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
	383.72 384.45 W W	383.7284.45 4 DIS PO 3
	Weak epidote and carbonate alteration	4% pyrite, 3% pyrrhotite as disseminations
84.44 384.45 CT 70		
lower contact sharp at 70		
TCA		
From To	Litho	Simple Geo
384.45 384.52	SESX	
Dark grey, thin-bedded pyr	rhotite-pyrite-rich silica exhalite. Bedding at 75 TCA. Moder	rate carbonate laminations. 5% pyrrhotite, 2% pyrite as laminations. Sharp
lower contact at 75 TCA.		
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Stru	ain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
4.45 384.51 BD 75		
bedding at 75 TCA		
	384.45 384.52 M M Moderate carbonate laminations	384.4 5 84.52 2 LB PO 5
	Moderate carbonate faminations	5% pyrrhotite, 2% pyrite as laminations.
84.51 384.52 CT 75		
Sharp lower contact at 75 TCA.		
TCA.	Litho	Simple Geo
TCA.	Litho	Simple Geo
TCA. From To 384.52 387.25	FXAT	
TCA. From To 384.52 387.25 Medium green, fine to medi	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff.	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak
TCA.FromTo384.52387.25Medium green, fine to mediepidote alteration. 1% each	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. disseminated pyrite and pyrrhotite. Gradational lower conta	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact.
TCA. From To 384.52 387.25 Medium green, fine to medi epidote alteration. 1% each STRUCTURES	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. in disseminated pyrite and pyrrhotite. Gradational lower conta ALTERATION	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact.
TCA. From To 384.52 387.25 Medium green, fine to mediepidote alteration. 1% each STRUCTURES rom To Struct CA	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. in disseminated pyrite and pyrrhotite. Gradational lower conta ALTERATION	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact.
TCA. From To 384.52 387.25 Medium green, fine to mediepidote alteration. 1% each STRUCTURES From To Struct CA Struct CA Struct NA	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. in disseminated pyrite and pyrrhotite. Gradational lower conta ALTERATION	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact.
TCA. From To 384.52 387.25 Medium green, fine to mediepidote alteration. 1% each STRUCTURES From To Struct CA	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. in disseminated pyrite and pyrrhotite. Gradational lower conta ALTERATION	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact.
From To 384.52 387.25 Medium green, fine to mediepidote alteration. 1% each STRUCTURES From To Struct CA Struct CA Struct CA	FXAT ium-grained, mafic to intermediate feldspar crystal ash tuff. a disseminated pyrite and pyrrhotite. Gradational lower containable ALTERATION ain From To INT CC DO SR AK SC	f. Massive, with very rare thin (< 1 cm) intercalated carbonate beds. Weak ntact. MINERALIZATION SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample

387.24 387.25 CT

gradational lower contact

FromToLithoSimple Geo387.25402.03ASHT

Medium green, massive to well-bedded mafic ash tuff with minor intercalated limestone and silica exhalite as noted. Moderate epidote alteration, weak

carbonate as laminations. 0.5% each disseminated pyrite and pyrrhotite

387.25m to 391.00m: massive mafic ash tuff.

391.00m to 402.03m: moderately to well bedded at 80 TCA.

392.35m: center of 3 cm thick silica exhalite with 10 pyrrhotite and 2% pyrite.

393.87m: center of 5 cm pyrrhotite-pyrite rich silica exhalite with 20% pyrrhotite.

End of Hole.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% M	in3 M3%	From To	Sample
387.25 391.00 NA					
massive					

387.2**5**92.34 0.5 DIS PO 0.5 0.5% each disseminated pyrite and pyrrhotite

387.25 402.03 VW - - - - - -

Moderate epidote alteration, weak carbonate as laminations.

391.00 402.03 BD 80

moderately to well bedded at 80 TCA.

392.3392.372LBPO103 cm thick silica exhalite with 10 pyrrhotite and 2% pyrite.392.3393.850.5DISPO0.50.5% each disseminated pyrite and pyrrhotite393.8593.900-PO205 cm pyrrhotite-pyrite rich silica exhalite with 20% pyrrhotite.393.9002.030.5DISPO0.50.5% each disseminated pyrite and pyrrhotite393.9002.030.5DISPO0.50.5% each disseminated pyrite and pyrrhotite

APPENDIX V

DIAMOND DRILL LOG for DDH 90K-09

Drill Log	y KU9000)9		Unknown	Signature:		Initials:
<i>From</i> 0.00	<u>То</u> 9.10	Litho CASE	Simple Ge CASE				
Cased							
	CTURES	ALTERATION		MINERALIZAT		SAMPLES	
Trom To 00 9.10	Struct CA Stra NA	in From To INT CC DO SR AK SC 0.00 9.10 -		FromToPY%StyleMinMin%0.009.100DIS	Min2 M2% Min3 M3% From	To Sample	
From	То	Litho	Simple Ge	0			
9.10	9.50	RUBL	RUBL				
Broken bedro	ock and ground	l core. Broken along sericitic partings.					
	CTURES	ALTERATION		MINERALIZAT		SAMPLES	
	Struct CA Stra			From To PY% Style Min Min%	Min2 M2% Min3 M3% From	To Sample	
10 9.50	NA	9.10 9.50		9.10 9.50 0 DIS			
From	То	Litho	Simple Ge	0			
9.50	21.28	ASHT	TUFF				
Bedding mar Pyrite 1% fin Alteration - c	rked by sericitic te disseminated	ed, granular, coarse ash tuff with minor crystal and pyritic lar partings. Bedding at 63 to 67 TCA; averages 65 TCA. d euhedral crystals. nundmass and minor calcite laminae; plus sericitic partings. CA.	minations. Interme	diate to felsic composition.			
	CTURES			MINERALIZAT		SAMPLES	
rom To . 50 21.27	Struct CA Stra	in From To INT CC DO SR AK SC		From To PY% Style Min Min%	Min2 M2% Min3 M3% From	To Sample	
	00	9.50 21.28 M M - M		9.50 21.28 1 DIS			
		Moderate carbonate flooding and sericitic partings.					
27 21.28	CT 65						
SH	harn						

Sharp

From To	Litho Simp	ple Geo
21.28 25.00	FQXT TU	JFF
predominantly replaced by No pyrite noted. Bedding is 65 TCA. Alterati	. Intermediate to mafic composition (probably intermediate). Abundant buff-green epidote. Smaller pale-grey, glassy quartz crystals are visible ion is moderate carbonate flooding, and chlorite and sericite on parting 5 TCA, marked by the disappearance of crystals.	e with hand lens only.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Struct	ain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
1.28 24.99 BD 65	21.28 25.00 M M - M - W - Weak chlorite on partings.	21.28 25.00 0 DIS
4.99 25.00 CT 65 Sharp lower contact.		
From To 25.00 28.96		ble Geo JFF
1.5% pyrite as dissemination Sharp lower contact at 69 T STRUCTURES	ICA. ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Struct 25.00 28.95 BD 70	ain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	25.00 28.96 W M - M - W - Weakly silicified; weakly chloritic.	25.00 28.96 1.5 LB
8.95 28.96 CT 69 Sharp lower contact.		
From To 28.96 31.52		ble Geo JFF
predominantly replaced by No pyrite noted.	. Intermediate to mafic composition (probably intermediate). Abundant buff-green epidote. Smaller pale grey glassy quartz crystals are visible er contact is sharp at 65 TCA, marked by the disappearance of crystals	with hand lens only.
STRUCTURESFromToStructCAStruct	ALTERATION ain From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
8.96 31.51 BD 60	28.96 31.52	28.96 31.52 0 DIS

<i>From</i> 28.96	<u>То</u> 31.52	Litho FQXT	Simple Geo TUFF	(Continued from previous page)
From To S 31.51 31.52	CTURES Struct CA Strain CT 65 ver contact.	ALTERATIONFromToINTCCDOSRAKSC		MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
<i>From</i> 31.52	To 33.75	Litho ASHT	Simple Geo TUFF	
Bedding at 6 Rare fine pyr	2 TCA; lower cor	edded, thin-bedded. Weakly silicified in places. ntact sharp at 80 TCA. le (4mm) pyrite bleb overprinted. partings.		
	Struct CA Strain BD 62			MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
		31.52 33.75 W W - W - Minor sericite and chlorite on partings.	R	31.52 33.75 0.01 DIS Rare pyrite dust.
33.74 33.75	CT 80			
From	То	Litho	Simple Geo	
Medium grey Bedding at 6 Pyrite - no fir	-green colour. 8 TCA; lower com ne pyrite noted; c	QFXT Idspar crystal tuff with abundant (crowded) large pale-grey of intact sharp at 68 TCA. Ine large (1cm) pyrite crystal aggregate overprinted. in overlying crystal tuffs, and is wholly altered to epidote.	TUFF quartz crystals. Rł	nyolite. Moderately well-bedded.
	Struct CA Strain	ALTERATIONFromToINTCCDOSRAKSC		From To PY% Style Min Min2 M2% Min3 M3% From To Sample
00.00		33.75 37.63 M W Moderate epidote; strong chlorite.		33.75 37.63 0 DIS

37.62 37.63 CT 68

From	То	Litho	Simple Ge	0
37.63	44.34	ASHT	TUFF	
Bedding at 6 Lower conta Pyrite - trace Partings sho Fault zone fi	64 TCA. act is gradationa e fine pyrite dus ow both chlorite from 41.80m to	ash tuff. Intermediate (dacite?). al into carbonate exhalite at 64 TCA. st only. and sericite. No obvious epidote. Local layers of core are si 42.40m has only minor gouge, but has a long interval of sur fractures coated with black manganese.		
STRU	CTURES	ALTERATION		MINERALIZATION SAMPLES
	Struct CA Stru			From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
7.63 41.80	BD 64			
		37.63 44.34 W W - W -		37.63 44.34 0.01 DIS
		Weak chlorite and sericite on partings.		
.80 42.40	FLT VS	8		
2.40 44.33	BD 64			
44.34	CT 64			
	l lower contact			
into lin	mestone.			
From	То	Litho	Simple Ge	0
44.34	46.12	CARB	CARB	
exhalite) uni	iit.	grey crystalline carbonate within ash tuff forms the upper a	Ũ	· ·
10% fine py	rite as large age	is 1.30m long. This is a good example of a `carbonate exha ggregate blobs / blebs, and as patches along select horizons rages 90 TCA. Lower contact sharp at 78 TCA - marked by	S.	
STRU	CTURES	ALTERATION		MINERALIZATION SAMPLES
		ain From To INT CC DO SP AK SC		From To DV% Style Min Min% Min? M20/ Min2 M20/ From To Sample

STRUCTURES			ALTERATION				MINERALIZATION								SAMPLES				
From	То	Struct CA Strain	From	То	INT CC DO SR AK SC		From	То	PY% S	Style 1	Min	Min% Min	n2 M2%	Min3	M3%	From	То	Sample	Г
44.34	46.11	BD 90																	

Bedding attitudes variable.

44.34 46.12 - - - - - - 44.34 46.12 10 NOD

46.11 46.12 CT 78

FromToLithoSimple Geo46.1247.52ASHTTUFF

Mafic coarse ash tuff. Weakly bedded. Dark grey-green. Tiny grains (crystals) altered to epidote. Faint bedding at 62 TCA; lower contact sharp at 75 TCA. Trace fine disseminated pyrite.

STRUCTURES ALTERATION MINERALIZATION SAMPLES To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% To Struct CA Strain From From То Sample From BD 62 46.12 47.51 46.12 47.52 W - - - - - -46.12 47.52 0.01 DIS Weak epidote relacement of tiny grains or crystals. Strong chlorite (primary mafic tuff). 47.51 47.52 CT 75 Sharp lower contact. Simple Geo Litho From То

EXHL

Classic, thin-bedded, weakly pyritic silica plus carbonate exhalite (chert-carbonate).

Pale to light, warm buff-grey colour of varaible intensity.

Absolutely no foliation.

50.73

47.52

Thin bedded, well-bedded undulatory (wavy) beds. Carbonate occurs as beds and as lenses and nodules; not strongly reactive, so suspect dolomite / ferro-

dolomite - which also explains the light brown colour.

Bedding consistent at 72 TCA throughout. Lower contact sharp at 72 TCA.

Individual beds are variably carbonate and silica-rich. Partings undulate and are marked by bright sericite.

QCSX

Pyrite content is variable from 3% to 10%, averaging 8%. Primarily as fine-grained laminations, with lesser disseminated crystals. No other sulphides noted.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
47.52 50.72 BD 72		
	47.52 50.73 W W	47.52 50.73 8 LB
	Sericitic partings.	
50.72 50.73 CT 72		
Sharp lower contact.		
From To	Litho	Simple Geo
50.73 51.23	QFXT	TUFF

Quartz-feldspar crystal tuff. Pale grey-green. Medium-grained. Crudely bedded. Weak sericite on partings. No pyrite noted. 30% quartz crystals with lesser

feldspar. Tiny buff granules may be trace epidote alteration (?carbonate?).

Bedding at 68 TCA; lower contact sharp at 74 TCA.

Absolutely no foliation.

STRUCTURES			ES	ALTERATION						MINERALIZATION						SAMPLES						
From	То	Struct (CA Strain	From	То	INT	CC D	$O \mid S$	R AK	SC	From	To	PY%	Style	Min	Min%	Min2 M	2%	Min3 M3%	From	То	Sample

From To	Litho	Simple Geo
50.73 51.23	QFXT	TUFF
eldspar.Tiny buff granule	Iff. Pale grey-green. Medium-grained. Crudely bedded. Wea as may be trace epidote alteration (?carbonate?). r contact sharp at 74 TCA.	eak sericite on partings. No pyrite noted. 30% quartz crystals with lesser
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
om To Struct CA S	train From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
73 51.22 BD 68	50.73 51.23 W W Sericite on partings; weak chlorite.	50.73 51.23 0 DIS
22 51.23 CT 74 Sharp lower contact.		
From To	Litho	Simple Geo
51.23 52.05	QCSX	EXHL
STRUCTURES om To Struct CA S	ALTERATION	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
23 52.04 BD 70		
	51.23 52.05 W W Weak sericite and chlorite on partings.	51.23 52.05 0.01 DIS
04 52.05 CT 70		
Sharp lower contact.	Litho	Simple Geo
52.05 55.58	ASHT	TUFF
Pale green-grey coarse a Well-bedded; medium-be Alteration - weak chlorite Absolutely no foliation. Pyrite - trace fine dissem	ash tuff. Intermediate (andesite-dacite). Dacite - because unit added. Bedding ranges from 60 to 72 TCA but averages 70 T on partings; lesser sericite.	nit is more silicieous under lens. I TCA; lower contact sharp at 68 TCA.
	ALTERATION	MINERALIZATION SAMPLES
STRUCTURES om To Struct CA S	ALTERATION train From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample

From	То	Litho	Simple Geo
52.05	55.58	ASHT	TUFF

Pale green-grey coarse ash tuff. Intermediate (andesite-dacite). Dacite - because unit is more silicieous under lens. Well-bedded; medium-bedded. Bedding ranges from 60 to 72 TCA but averages 70 TCA; lower contact sharp at 68 TCA. Alteration - weak chlorite on partings; lesser sericite.

Absolutely no foliation.

Pyrite - trace fine disseminated pyrite dust only.

Lower one metre of unit is more thin-bedded; one bedding surface shows flame structure.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
	52.05 55.58 W VW	52.05 55.58 0.01 DIS	
	Minor chlorite on partings.		
55.57 55.58 CT 68			
Sharp lower contact.			

From	То	Litho	Simple Geo
55.58	58.41	ASHT	TUFF

Intermixed / interbedded tuff and limestone. Light grey-green overall, but unit consists of alternating light grey carbonate and dark green tuff bands. Well-bedded; thin-bedded. Bedding at 68 to 70 TCA, averages 69 TCA. Lower contact gradational over 23cm with bedding at 60 TCA throughout. Alteration - weak chlorite on partings and moderate epidote overprinting on tuffaceous bands and replacing scattered small feldspar crystals. Pyrite - trace fine disseminated pyrite, but several laminations have concentrated webs of fine-grained net-textured pyrrhotite. Overall about 5% of unit is pyrrhotite. No chalcopyrite noted.

Once again, foliation-free core.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES			
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From	To Sample			
55.58 58.40 BD 69						
	55.58 58.41 W VW	55.58 58.41 0.01 DIS PO 5				
	Weak chlorite on partings and moderate epidote patches replacing tuff.	Web-textured pyrrhotite concentrated along thin laminae - thickest band is 3cm.				
58.40 58.41 CT 60						
Gradational lower contact over 23cm.						

From	То	Litho	Simple Geo
58.41	61.70	QCSX	EXHL
Light grey c Alteration - Pyrite - rang	hert dominates moderate sericit ges from 10% to	and 14. Thin-bedded, well-bedded silica and carbonate exha over carbonate beds. Bedding at 63 to 72 TCA; averages 70 te and chlorite on partings. Thin ash laminae between some 15% as abundant fine laminations that have a distinct brigh No chalcopyrite noted; no pyrrhotite noted.	DTCA. Lower contact sharp at 72 TCA.
STRU	CTURES	ALTERATION	MINERALIZATION SAMPLES
rom To	Struct CA Stra	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
1 61.69 9 61.70 <i>Sharp lo</i>	-	58.41 61.70 M S Moderate sericite and chlorite on partings.	58.41 61.70 12 LB 10% to 15% pyritic laminae. No copper minerals.
From	То	Litho	Simple Geo
61.70	71.80	ASHT	TUFF
Medium-bee only. This unit ha chalcopyrite pyrrhotite co	dded, with bedd s fine pyrite-pyri e noted. Semi-m ontent is 12%; o from 64.20m to	rhotite speckling throughout, but has 4 distinct sulphide-rich assive pyrite-pyrrhotite horizons are centred at 61.70m (2cm verall 9% pyrite and 3% pyrrhotite.	cite. Distinctly sulphide-rich. Overall pale buff colour. at 58 TCA. Lower 1.5 metres of unit is thin bedded, with trace sulphides horizons where pyrite > pyrrhotite, but both minerals are present. No n thick); 67.55 (3cm); 68.05 (18cm) and 69.58m (14cm). Average pyrite + pale?) mixed with sericite. Minor sericite on fractures. All rock is
	CTURES	ALTERATION	MINERALIZATION SAMPLES
From To 01.70 71.79	Struct CA Stra BD 60	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
-		61.70 71.80 M M - W	61.70 71.80 9 LB PO 2
		Trace to minor fluoromuscovite (?) on some partings in unit.	n centre of 4 semi-massive layers; 12% sulphides overall.

71.79 71.80 CT 58

From	То	Litho	Simple Geo
71.80	98.70	ASHT	TUFF

Pale to light greenish-grey (pale olive) well-bedded, thin-bedded, coarse ash tuff. Intermediate - probably dacite.

Alteration - carbonate flooded throughout unit (weak to moderate). Moderate epidote flooding of ash tuff obscures original composition and imparts light olive colour to unit.

Sulphides - 0.5% fine pyrrhotite wisps throughout. Thin pyrrhotite-pyrite lamellae are concentrated along carbonate beds. Overall sulphide content of unit is 1.5%.

Minor textural changes through this thick unit include: narrow intervals with abundant fine feldsapr crystals; thin-bedded intervals; near-massive intervals; thin white quartz veins parallel to bedding. Plus the 19 thin intercalated pale grey carbonate (limestone) beds.

Core is weakly ankeritized in the one metre approaching the basal fault, and for a one metre interval surrounding a narrow foliated zone centred on 80.46m. There are 19 thin carbonate beds scattered throughtout the main ash tuff unit. The thickest of these is 15cm. These typically host thin pyrrhotite-pyrite layers. Bedding ranges 57 to 72 TCA, averaging 69 TCA. Faintly bedded near mid-unit. Lower contact is at brittle fault break at 98.70m.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	n From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
71.80 98.69 BD 69		
Bedding ranges from 57 to 72 TCA.		
	71.80 98.70 W W - VW	71.80 98.70 0.5 DIS PO 1
	Carbonate flooding, moderate epidote flooding.	
98.69 98.70 CT VS		
Lower contact is against a		
fault.		
From To	Litho	Simple Geo
98.70 100.40	FLTZ	RUBL

Major fault break marked by 25 cm of weakly cemented sand, gouge and grit, and broad marginal zones of shattered angular ankeritized wallrock. The broken wallrock on the hangingwall side of the gouge shows no fluoromuscovite. The metre-long interval of broken ankeritized bedded coarse ash tuff that lies below the 25 cm interval of cemented fault gouge and grit incorporates sericitic partings and 3% bright teal-green fluoromuscovite. The lower 10cm of this fault zone is a second gouge zone with fractured ash tuff clasts on the hangingwall side and intact basalt porphyry on the footwall side.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
98.70 100.40 FLT VS	98.70 100.40 M M	98.70100.40 0.75 DIS	
Mixed acuse and large	20/ flueromucocyte within the ecriptic portings	Fine wiene of nurite (nearlight, some nurrheite)	

Mixed gouge and large, 3% fluoromuscovite within the sericite partings. angular wallrock fragments.

Fine wisps of pyrite (possibly some pyrrhotite)

From	То	Litho	Simple Geo
100.40	103.33	DYKE	DYKE

Massive, medium-grained, basalt porphyry dike. Weathered surface is medium pinkish-grey due to weak ankerite `paint'. `Crowded' euhedral cream plagioclase crystals and rosettes (glomeroporphyritic) comprise 35% of rock. Minor large (up to 1.5 cm long) acicular hornblende crystals are altered to chlorite and selectively leached. And 8% small, ragged, calcite-filled amygdales. Slightly finer grainsize near contact margins. It looks like this dike has a narrow margin of fault gouge along its contact. No sulphides noted.

Larger Ca-plagioclase crystals are wholly altered to epidote, preserving the euhedral and glomereroporphytic crystal forms. Fresh core surface reveals a second finer white acicular plagioclase phase (Na-plagicoase?) that is not altered to epidote. This finer-grained acicular Na-plagiclase phase displays crystal alignment / flow alignment ('flow foliation').

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
100.40 103.33 DY	100.40 103.33 W W - M	100.4 0 03.33 0 DIS
Dike margins are narrow faults.	Weak to moderate epidote replacement of plagioclase Amygdales are filled with calcite.	crystals. No sulphides noted.
From To	Litho	Simple Geo
103.33 103.98	FLTZ	RUBL
	ct of basalt dike is marked by minor fault gouge and chunks vite associated with some of this sericite.	of fractured wallrock (from subjacent unit) broken along sericitic
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
103.33 103.98 FLT VS	103.33 103.98 M S	103.3 3 03.98 0 DIS
Gouge and broken wallrock.	Minor fluoromuscovite within sericite.	No pyrite noted.
		Simple Coo
From To	Litho	SUDDIE 1580
From To	Litho	Simple Geo
From To 103.98 106.30	QFXT	TUFF
103.98 106.30 Quartz-feldspar crystal tuff. V	QFXT White to pale grey to pale pink (slight ankerite or hematite o	TUFF verprint).
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine dissemination	QFXT White to pale grey to pale pink (slight ankerite or hematite or d with bedding at 60 TCA throughout. Lower contact is a fa ted euhedral crystals.	TUFF verprint). ult.
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine dissemination	QFXT White to pale grey to pale pink (slight ankerite or hematite o ed with bedding at 60 TCA throughout. Lower contact is a fa	TUFF verprint). ult.
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine dissemination	QFXT White to pale grey to pale pink (slight ankerite or hematite or d with bedding at 60 TCA throughout. Lower contact is a fa ted euhedral crystals.	TUFF verprint). ult.
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous e	QFXT White to pale grey to pale pink (slight ankerite or hematite or ed with bedding at 60 TCA throughout. Lower contact is a fa- ted euhedral crystals. everywhere, but upper 50cm is silcified and bleached white ALTERATION	TUFF verprint). ult. No carbonate. Moderate sericite on abundant partings.
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous e STRUCTURES From To Struct CA Strain	QFXT White to pale grey to pale pink (slight ankerite or hematite or ed with bedding at 60 TCA throughout. Lower contact is a fa- ted euhedral crystals. everywhere, but upper 50cm is silcified and bleached white ALTERATION	TUFF verprint). ult. No carbonate. Moderate sericite on abundant partings. MINERALIZATION SAMPLES
103.98106.30Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous eSTRUCTURESFromToStructCAStruitCAStruitCA103.98106.30BD60	QFXT White to pale grey to pale pink (slight ankerite or hematite or dwith bedding at 60 TCA throughout. Lower contact is a fated euhedral crystals. everywhere, but upper 50cm is silcified and bleached white. ALTERATION in From To INT CC DO SR AK SC 103.98 106.30 M M - M -	TUFF verprint). ult. No carbonate. Moderate sericite on abundant partings. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 103.9806.30 1 DIS Ult Ult <t< td=""></t<>
103.98 106.30 Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous e STRUCTURES From To Struct CA Strain	QFXT White to pale grey to pale pink (slight ankerite or hematite or dwith bedding at 60 TCA throughout. Lower contact is a fated euhedral crystals. everywhere, but upper 50cm is silcified and bleached white. ALTERATION in From To INT CC DO SR AK SC	TUFF verprint). ult. No carbonate. Moderate sericite on abundant partings. MINERALIZATION SAMPLES from To PY% Style Min Min2 M2% Min3 M3% From To Sample
103.98106.30Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous eSTRUCTURESFromToStructCAStrain103.98106.30BD60	QFXT White to pale grey to pale pink (slight ankerite or hematite or dwith bedding at 60 TCA throughout. Lower contact is a fated euhedral crystals. everywhere, but upper 50cm is silcified and bleached white. ALTERATION in From To INT CC DO SR AK SC 103.98 106.30 M M - M -	TUFF verprint). ult. No carbonate. Moderate sericite on abundant partings. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 103.9806.30 1 DIS Ult Ult <t< td=""></t<>
103.98106.30Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous etSTRUCTURESFromToStructCAStructCAStructTo103.98106.30BD60	QFXT White to pale grey to pale pink (slight ankerite or hematite of ad with bedding at 60 TCA throughout. Lower contact is a fa- ted euhedral crystals. everywhere, but upper 50cm is silcified and bleached white. <u>ALTERATION</u> in From To INT CC DO SR AK SC 103.98 106.30 M M - M - <u>Litho</u> FLTZ	Ministry Ministry <th< td=""></th<>
103.98106.30Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous etSTRUCTURES From To Struct CA Strain 103.98 106.30 BD 60From To 106.30 ID6.80	QFXT White to pale grey to pale pink (slight ankerite or hematite or dwith bedding at 60 TCA throughout. Lower contact is a facted euhedral crystals. everywhere, but upper 50cm is silcified and bleached white. <u>ALTERATION</u> In From To INT CC DO SR AK SC 103.98 106.30 M M - M - Litho	TUFF verprint). uit. No carbonate. Moderate sericite on abundant partings. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 103.9806.30 1 DIS DIS Simple Geo Sample Simple Geo Sample Sample <t< td=""></t<>
103.98106.30Quartz-feldspar crystal tuff. V Well-bedded and thin-bedded Pyrite as 1% fine disseminate Alteration - rock is siliceous etSTRUCTURESFromToStructCAStructCAStructTo103.98106.30BD60	QFXT White to pale grey to pale pink (slight ankerite or hematite or dwith bedding at 60 TCA throughout. Lower contact is a fact de uhedral crystals. everywhere, but upper 50cm is silcified and bleached white. ALTERATION Int CC DO SR AK SC 103.98 106.30 M M - M - Litho FLTZ y minor gouge and lots of wallrock chips broken along serici ALTERATION ALTERATION M - M - M Litho ALTERATION	Ministry Ministry <th< td=""></th<>

From	То	Litho	Simple Geo
106.30	106.80	FLTZ	RUBL

Narrow fault zone marked by minor gouge and lots of wallrock chips broken along sericitic partings.

STRUCTURES	ALTERATION		MINERAL					SAMPLES
From To Struct CA Strain From To	INT CC DO SR AK SC	From T	o PY% Style Min	Min% Min2 M2% Mi	n3 M3%	From	То	Sample
06.30 106.80 FLT VS 106.30 106.80	М	106.3006	.80 0 DIS					
Strong sericite	on wallrock clasts.	No pyrite no	oted.					
From To	Litho	Simple Geo						
106.80 125.83	ASHT	TUFF						

Mafic ash tuff. Thin-bedded, well-bedded. Dark green overall, with thin (1cm) dark grey intercalations - soft, but no reaction - dolomite? Bedding ranges from 65 to 78 TCA; mainly around 78 TCA. Lower contact sharp at 80 TCA.

Textures range from fine ash tuff, to coarse ash tuff, to local thin crystal tuff intervals (fine feldspars altered to epidote). Medium grey to dark grey intercalations

appear to be non-chloritc intervals of the same ash tuff - not a carbonate interbed.

Upper part of unit is strongly chloritic and very dark green. This grades down into strongly epidotized rock below 112.00m, and rock colour changes to medium olive green.

0.5% pyrite as fine disseminated dust and a few larger (2mm-3mm) scattered euhedral crystals.

Strong epidote alteration from 116.50m to 117.00m and from 117.90m to 118.40m likely represent wholesale replacement of carbonate interbeds.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
106.80 125.82 BD 78					
10	16.80 125.83 S	106.8025.83 0.5 DIS			
	Stong chlorite (primary mafic tuff); strong to very strong epidote replacement.				
125.82 125.83 CT 80					

Sharp lower contact.

From	То	Litho	Simple Geo
125.83	126.28	FXTF	TUFF

Narrow unit of mafic to intermediate, coarse-grained feldspar crystal tuff. Crudely bedded at 77 TCA; sharp lower contact at 80 TCA.

Important thin lamellae that are hornblende-rich. Chloritized acicular hornblende crystals range up to 1cm long.

This feldspar-hornblende crystal tuff can be directly correlated with the feldspar-hornblende porphyritic basalt dikes seen in nearby drillholes (90K-07 and 90K-

15).

0.5% fine bright euhedral pyrite crystals.

Alteration. Minor chlorite on partings. Epidote replacement of large feldspars and some thin laminae. Unaltered fine euhedral white feldspar crystals can also be seen with a handlens - so, similar feldspar phenocyst assemblage as the basalt dike.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	

125.83 126.27 BD 77

From	То	Litho	Simple Geo
125.83	126.28	FXTF	TUFF

Narrow unit of mafic to intermediate, coarse-grained feldspar crystal tuff. Crudely bedded at 77 TCA; sharp lower contact at 80 TCA.

Important thin lamellae that are hornblende-rich. Chloritized acicular hornblende crystals range up to 1cm long.

This feldspar-hornblende crystal tuff can be directly correlated with the feldspar-hornblende porphyritic basalt dikes seen in nearby drillholes (90K-07 and 90K-

15).

0.5% fine bright euhedral pyrite crystals.

Alteration. Minor chlorite on partings. Epidote replacement of large feldspars and some thin laminae. Unaltered fine euhedral white feldspar crystals can also be seen with a handlens - so, similar feldspar phenocyst assemblage as the basalt dike.

STRUCTURES			ALTERATION					MINERALIZATION							SAMPLES															
From	То	Strı	uct (CA	Strain	From	m	То	INT	C	C DC		R	AK	SC		From	То	PY%	Style	Min	ı M	lin%	Min2	M2%	Minŝ	8 M3%	From	То	Sample
	125.83 126.28 M				125.8	326.28	3 0.5	DIS																						

Moderate epidote; weak chlorite

126.27 126.28 CT 80

From	То	Litho	Simple Geo
126.28	127.39	ASHT	TUFF

Mafic ash tuff. Well-bedded, thin-bedded, strongly chloritic, moderate epidote.

Bedding at 78 TCA; lower contact sharp at 80 TCA.

Mainly fine ash tuff, but grading to granular coarse ash tuff in places.

Alteration - Strong chlorite on partings (primary mafic tuff); selective strong epidote replacement of abudant thin carbonate laminae; most (but not all) thin

carbonate beds are strongly epidote altered.

Pyrite - unit is pyrite free. No sulphides noted.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES							
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample							
126.28 127.38 BD 78	26.28 127.38 BD 78									
1:	26.28 127.39 S	126.2827.39 0 DIS								
	Strong chlorite; moderate epidote, weak carbonate.									
127.38 127.39 CT 80										

From To	Litho	Simple Geo		
127.39 128.47	FXTF	TUFF		
Coarse feldspar crystal tuff. Si Crude bedding at 80 TCA; sha Trace fine euhedral pyrite crys No hornblende noted here. Se	arp lower contact at 86 TCA. stals.			
STDUCTUDES	ALTEDATION		MINEDALIZATION	CAMDIES

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		

127.39 128.46 BD 80

From To	Litho	Simple Geo			
127.39 128.4	FXTF	TUFF	-		
Crude bedding at 80 Trace fine euhedral	tal tuff. Similar to nearby overlying unit. TCA; sharp lower contact at 86 TCA. byrite crystals. here. See previous discussion.				
STRUCTURE	S ALTERATIO	DN	MINERALIZATION	SAMPLE	ES
From To Struct C	A Strain From To INT CC DO SR AK	SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To S	Sample
	127.39 128.47 W	-	127.3928.47 0.01 DIS		
	Moderate chlorite; moderate epidote repla phenocrysts.	acing Ca-plagioclase			
128.46 128.47 CT 8	6				
Sharp lower cont	ct.				
From To	Litho	Simple Geo			
128.47 165.	ASHT	TUFF			

Mafic ash tuff. Well-bedded, thin-bedded. Strongly epidotized throughout. Slight textural variations throughout.

Bedding ranges from 56 to 86 TCA, averaging 80 TCA. Lower contact sharp at 75 TCA.

Textures range from fine ash tuff to granular coarse ash tuff, to a few thin intercalations of fine feldspar crystal tuff. Rare dark grey intercalations are non-chloritic ash layers.

Alteration. Strong chlorite (primary mafic tuff); strong epidote alteration; minor carbonate.

Pyrite is rare to 160.00m, occurring as scattered large euhedral crystals and as a few thin fine-grained laminae around 158.50m. Below 160.00m pyrite

concentration increases to 2% as scattered large (8mm) euhdral overprinted crystals.

From 147.78m to 148.90m there are two cherty (silicified) beds, which area light grey, non-pyritic. These could be broken out as a separate chert unit, but it looks more like silicification.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES				
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample				
	128 4760 00 0 01 DIS						

128.4160.00 0.01 DIS

128.47 165.93 BD 80

128.47 165.94 S - - - - - -

Strong chlorite; strong epidote.

160.0065.94 2 DIS

165.93 165.94 CT 75 Sharp lower contact.

From	То	Litho	Simple Geo
165.94	169.58	QFXT	TUFF

Coarse-grained quartz-feldspar crystal tuff - different from above FXTF units. Medium greyish-green. Crudely bedded and faintly bedded. Bedding at 75 TCA; lower contact sharp but ragged at 75 TCA.

Minor fine disseminated pyrite only. Alteration - strong epidote, weak chlorite. Quartz crystals up to 8mm diam. Large feldspars have blurred outlines due to epidotization. Alteration - strong epidote; feldspars wholly replaced by epidote. No hornblende noted. No fine white plagioclase noted, but level of epidotization is higher.

STRUCTURES	ALTERATION	MINERALIZATIO	/	SAMPLES
rom To Struct CA St	rain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min	2 M2% Min3 M3% From T	o Sample
5.94 169.57 BD 75				· · · · · · · · · · · · · · · · · · ·
	165.94 169.58 S	165.9469.58 0.5 DIS		
	Strong epidote flooding; weak chlorite.			
9.57 169.58 CT 75				
Ragged lower contact.				
From To	Litho	imple Geo		
169.58 170.05	ASHT	TUFF		
Strongly epidotized, weak	chlorite-sericite along partings.	MINERALIZATIO	I	SAMPLES
rom To Struct CA St		From To PY% Style Min Min% Min		
			12 112/0 11113 113/0 11011 1	Sample
9.58 170.04 BD 70				
9.58 170.04 BD 70	169.58 170.05 S	169.5 8 70.05 5 LB		
9.58 170.04 BD 70	169.58 170.05 S Strong epidote flooding; weak chlorite and sericite.	169.5 8 70.05 5 LB		
9.58 170.04 BD 70		169.5 8 70.05 5 LB		
		169.5 8 70.05 5 LB		
0.04 170.05 CT 65 Sharp lower contact.	Strong epidote flooding; weak chlorite and sericite.			
0.04 170.05 CT 65 Sharp lower contact. From To	Strong epidote flooding; weak chlorite and sericite.	imple Geo		
0.04 170.05 CT 65 Sharp lower contact. From To 170.05 170.22	Strong epidote flooding; weak chlorite and sericite.	<i>imple Geo</i> TUFF		
0.04 170.05 CT 65 Sharp lower contact. From To 170.05 170.22 Coarse feldspar-quartz cr	Strong epidote flooding; weak chlorite and sericite. Litho FQXT ystal tuff with 4% fine disseminated euhedral pyrite. Similar to on partings. Siliceous rock. Rhyolite. TCA.	<i>imple Geo</i> TUFF	nse epidote	
0.04 170.05 CT 65 <i>Sharp lower contact.</i> <i>From To</i> 170.05 170.22 Coarse feldspar-quartz cr alteration. Weak chlorite of Lower contact sharp at 75	Strong epidote flooding; weak chlorite and sericite. Litho FQXT ystal tuff with 4% fine disseminated euhedral pyrite. Similar to on partings. Siliceous rock. Rhyolite. TCA.	<i>imple Geo</i> TUFF		SAMPLES

	SIKU	CIUK	ES					ALI.	EK	AIIC	JIN				IVIINI	EKAL	JLAII	UN					SAMPLES
From	То	Struct	CA Strain	From	То	INT	CC	D0	SR	AK	SC	From	То	<i>PY%</i>	Style	Min	Min%	Min2	M2%	Min3 M3%	From	То	Sample

170.05 170.21 BD 75

From To	Litho	Simple Geo
170.05 170.22	FQXT	TUFF
Coarse feldspar-quartz cr alteration. Weak chlorite Lower contact sharp at 75 5% fine disseminated pyr	on partings. Siliceous rock. Rhyolite. 5 TCA.	to overlying unit but smaller and fewer quartz crystals. Less intense epidote
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St		FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	170.05 170.22 M M -	170.0 5 70.22 5 DIS
	Siliceous, moderate epidote; weak chlorite	
70.21 170.22 CT 75		
Sharp lower contact		
From To	Litho	Simple Geo
170.22 172.45	ASHT	TUFF
Light greyish-green to wa Pyrite variable 3% to 5% Rock is carbonate-flooded	e, innebedded. ; averaging 75 TCA. Lower contact sharp at 73 TCA. irm buff-green down-section. as fine disseminations and fine-grained laminations along lim d; also abundant thin carbonate beds. Moderate epidote alter ne ash to coarse ash tuffs with a few large strongly epidotized	ration.
STRUCTURES Trom To Struct CA St	ALTERATION train From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample
'0.22 172.44 BD 75	170.22 172.45 M S Moderate epidote flooding.	170.2 2 72.45 4 LB
2.44 172.45 CT 73 Sharp lower contact.		
From To	Litho	Simple Geo
172.45 173.13	FXTF	TUFF
	par crystal tuff. Crowded with crystals - rock looks siliceous - or contact sharp at 82 TCA. only.	dacite? Pale yellow-grey-green overall.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
Trom To Struct CA Struct 12.45 172.12 PD 78	train From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
2.45 173.12 BD 78	172.45 173.13 M M Strong epidote flooding.	172.4 5 73.13 0.01 DIS
Vednesday August 12 200		Page 15

	rom 2.45	7 173	o 3.13						tho (TF				Simple Ge TUFF		Conti	nued	fron	n prev	/ious	page	e)					
	STRU	CTUR	ES						AL	TER	ATI	DN					MIN	ERAL	IZATI	ION						SAMPLES
From	То	Struct	CA	Strain	From	То	INT	CC	DO	SR	AK	SC		From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	From	То	Sample

173.12 173.13 CT 82

Fre

Sharp lower contact.

From	То	Litho	Simple Geo
173.13	193.46	MFLW	UNKN

This `unit' is a major mafic extrusive complex with 6 main sub-units (including one thick, late, bull-quartz vein).

173.13m to 179.63m Massive, epidote flooded, granular rock. Ghosts of large globular forms and local mafic (dark chloritic) selvages - this may be wholly altered pillows. No bedding. No crystals. Locally crackled. Uppermost 15cm is thin-bedded but wholly epidotized. No pyrite noted. Could this be 100% altered hvaloclastite?

179.63m to 184.55m Breccia. Coarse, rounded blocks of mafic volcanic `floating' in dark grev carbonate selvage with minor pyte. This looks like small, intact pillows and broken pillow breccia in carbonate mud. Less epidotized than overlying unit; some chloritic rock survives. 2% pyrite overall, although the grade within the interpillow carbonate patches is relatively higher. Estimate that 12% of this interval is grey carbonate selvage.

184.55m to 188.94m Massive, flow-foliated hornblende-plagioclase porphyritic basalt or diorite. Hornblende is altered to chlorite; plagioclase altered to epidote groundmass looks entirely epidotized. Difficult rock to interpret. Massive, featureless, except for clear flow-foliation at 72 TCA. Upper 80 cm is a progressively finer-grained `chill margin'. Lower contact is sharp against chloritized gouge of a 1-cm-thick shear at 37 TCA. Hornblende laths range up to 1cm long, but most are 8mm. No pyrite noted.

188.94m to 188.95m Fault. 1cm thick, dark green chlorite gouge.

188.95m to 193.13m Fine grained mafic ash tuff. Thick-bedded, well-bedded. Strongly epidotized. A few large globular clasts. Soft sediment structures? Pillow forms? Trace fine disseminated pyrite only. Within this interval from 190.18m to 191.45m, is a massive white bull quartz vein with accessory dark green chlorite. 193.13m to 193.46m Well-bedded, thin-bedded asht tuff with lithic clasts - looks like disrupted sediments just below the floor of the flow. Lithic clasts are black siltstone. Bedding averages 50 TCA; lower contact sharp against fault at 50 TCA. Maroon and olive green colours due to eipdote and hematite alteration. This is a strongly altered mafic ash tuff. No pyrite noted. This rock also contains small quartz grains - could it be a wholly relithified fault breccia (cataclastite to mylonite)?

STRUCTU	URES	ALTERATION				MIN	ERAI	LIZATI	ION					SAMPLES
From To Stru	uct CA Strain H	From To INT CC DO SR AK SC	1	From	То	PY% Style	Min	Min%	Min2	M2%	1in3 M3%	6 From	То	Sample
173.13 188.94 F	B 72													
	173.	13 193.46 S M		173.1 3	93.46	0.05 DIS								
	,	Strong epidote flooding; moderate chlorite.												
188.94 193.45 B	3D 50													
193.45 193.46 C	CT 50													
Sharp lower														
against fa	ault.													
From	То	Litho	Simple Geo											
193.46 1	93.66	FLTZ	RUBL	-										
Narrow fault zor	ne filled with goug	e, sand and rock chips.												
STRUCTU	URES	ALTERATION						LIZATI						SAMPLES
From To Stru	ict CA Strain I	From To INT CC DO SR AK SC	1	From	To	PY% Style	Min	Min%	Min2	M2%	Ain3 M39	6 From	To	Sample

Wednesday, August 12, 2009

From	То	Litho	Simple Geo
193.46	193.66	FLTZ	RUBL

Narrow fault zone filled with gouge, sand and rock chips.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
193.46 193.66 FLT VS 1	93.46 193.66	193.4 6 93.66 0 DIS	
Fault zone			

From	То	Litho	Simple Geo
193.66	215.26	LLAT	TUFF

Well-bedded, medium green to light olive, mafic lithic lapilli ash tuff with rounded quartz grains. This is a large, complex unit with many internal textural divisions. First 2m includes 25cm of well-bedded, thin-bedded coarse ash tuff with bedding at 45 TCA (paleotopography).

195.88m to 196.28m Massive white bull quartz vein cut by fault. 15cm of buff gouge from 195 93m to 196.08m.

197.30m to 199.50m There is an abrupt increase in the number of thin carbonate intercalations - and a similar jump in the pyrite concentration occuring as pyrite laminae along the carbonate beds. 15% pyrite over this interval. Bedding at 44 TCA - rock looks like mafic volcanic clasts in mafic ash tuff with abundant thin intervening carbonate beds.

199.50m to 200.25m Well-bedded, thin-bedded mafic ash tuff. Bedding at 66 to 72 TCA. Mafic fine ash to coarse ash tuff, with scattered rounded small (<1cm diam) lithic clasts throughout. Minor fine pyrite scattered along bedding planes.

200.25m to 200.71m Coarse lithic lapilli tuff - same groundmass as overlying unit but with large rounded volcanic clasts wholly altered to epidote.

200.71m to 201.80m Well-bedded, medium-bedded mafic coarse ash tuff. Medium green to light olive green. Waves of strong epidote alteration. Bedding 65 to 75 TCA - average 70 TCA. Rare fine disseminated pyrite.

201.80m to 206.65m Bedded mafic lithic lapilli tuff. Unit cut by narrow late bull quartz vein with minor dark chlorite patches. Large rounded lithic clasts are strongly epidote-altered and surrounded by thin bands of dark green mafic ash with pyrite concetrations. Estimate 1.5% pyrite overall. Sparse bedding at 55 TCA. 206.65m to 210.70m Complex interval of abundant rounded volcanic lapilli strongly altered to epidote, well-bedded mafic ash tuff groundmass with common thin dark grey carbonate intercalations and several bands (beds) rich in rounded grey quartz grain up to 1.4 cm diam. One 60 cm intreval is about 25% quartz grains. Bedding at 60 TCA. 1% minor fine pyrite as thin laminations.

210.70m to 212.14m Well-bedded, thin-bedded mafic fine ash to coarse ash tuff. Medium grey green to light olive gtreen with moderate epidote alteration. Bedding at 65 to 70 TCA, averaging 65 TCA. Trace fine pyrite dust. Rare, scattered rounded quartz crystals.

212.14m to 215.26m, massive pale olive green, epidote-flooded ash tuff or hyaloclastite(?). A few large scattered rounded grey quartz crystals. Trace fine disseminated pyrite. Lower 80 cm of this interval displays crude bedding at 65 TCA. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION			MIN	ERAL	IZATI	ION					SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From	To PY	Y% Style	Min	Min%	Min2	M2% I	Min3 M3%	From	То	Sample
193.66 193.91 BD 45												
Paleotopographic drape.												
		193.6 6 9	97.30	1 DIS								
19	93.66 200.71 S											
	Strong epidote flooding.											
193.91 195.88 QV												
195.88 199.50 BD 44												
		197.30	99.50 1	15 LB								
199.50 200.25 BD		199.50	00.25	1 DIS								
200.25 201.80 BD 70		200.22	0 01.80).1 DIS								
Wednesday, August 12, 2009												

From	То	Litho	Simple Geo				
193.66	215.26	LLAT	TUFF	(Continued from previous page)			
STRU	CTURES	ALTERATION		MINERALIZATION		SAMPLES	
	Struct CA St		Fi	rom To PY% Style Min Min% Min2 M2% Min3 M3%	From		nple
		200.71 210.70 S					
		Strong epidote flooding.					
201.80 206.65	BD 55		20	01.8206.65 1.5 DIS			
	e bedding.						
206.65 210.70				06.6210.70 1 LB			
210.70 212.14	BD 65	210.70 212.14 M Moderate epidote flooding.	2'	10.7 2 12.14 0.1 DIS			
212.14 215.25	BD 65	, ,					
212.11 210.20	22 00	212.14 215.26 S	2'	12.12/15.26 0.1 DIS			
		Strong epidote flooding.					
215.25 215.26	CT 75						
Sharp lov	wer contact.						
Sharp lov From	wer contact. To	Litho	Simple Geo				
<i>From</i> 215.26	То 225.90	ASHT	TUFF				
From 215.26 Thin-bedded and are pyri carbonate in	To 225.90 d, well-bedded tic. Bedding va hterbeds. Epide	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so the alteration fades out below 221.50m. Partings are weakly of	TUFF to light grey. Carbona sharp at 75 TCA. 2% p	byrite as thin fine-grained laminae. 5% of unit is thin it.		SAMPLES	
From 215.26 Thin-bedded and are pyri carbonate in	To 225.90 d, well-bedded tic. Bedding va	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is tote alteration fades out below 221.50m. Partings are weakly of ALTERATION	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni	pyrite as thin fine-grained laminae. 5% of unit is thin	From	SAMPLES To San	nple
From 215.26 Thin-bedded and are pyri carbonate in STRUC From To	To 225.90 d, well-bedded tic. Bedding va nterbeds. Epide CTURES Struct CA Stri	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so the alteration fades out below 221.50m. Partings are weakly of ALTERATION	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni	byrite as thin fine-grained laminae. 5% of unit is thin it. MINERALIZATION	From		nple
From 215.26 Thin-beddec and are pyri carbonate in STRUC From To	To 225.90 d, well-bedded tic. Bedding va nterbeds. Epide CTURES Struct CA Stri	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so the alteration fades out below 221.50m. Partings are weakly of ALTERATION rain From To INT CC DO SR AK SC 215.26 225.90 M	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni	byrite as thin fine-grained laminae. 5% of unit is thin it. <u>MINERALIZATION</u> rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB	From		nple
From 215.26 Thin-bedded and are pyri carbonate ir STRUC From To 215.26 225.89	To 225.90 d, well-bedded tic. Bedding va nterbeds. Epide CTURES Struct CA Stri BD 70	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so the alteration fades out below 221.50m. Partings are weakly of ALTERATION rain From To INT CC DO SR AK SC	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni	byrite as thin fine-grained laminae. 5% of unit is thin it. MINERALIZATION rom To PY% Style Min Min% Min2 M2% Min3 M3%	From		nple
From 215.26 Thin-bedded and are pyri carbonate ir STRU From To 215.26 225.89	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Struct BD 70 CT 75	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so the alteration fades out below 221.50m. Partings are weakly of ALTERATION rain From To INT CC DO SR AK SC 215.26 225.90 M	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni	byrite as thin fine-grained laminae. 5% of unit is thin it. <u>MINERALIZATION</u> rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB	From		nple
From 215.26 Thin-bedded and are pyri carbonate ir STRUC From To 215.26 225.89 225.89 225.90 Sharp low	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Sta BD 70 CT 75 wer contact.	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is a ote alteration fades out below 221.50m. Partings are weakly of ALTERATION rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite.	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni Fr 2' Pyrit	byrite as thin fine-grained laminae. 5% of unit is thin it. <u>MINERALIZATION</u> rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB	From		nple
From 215.26 Thin-bedded and are pyri carbonate in STRUC From To 215.26 225.89 225.89 225.90 Sharp low From	To 225.90 d, well-bedded tic. Bedding va nterbeds. Epide CTURES Struct CA Str BD 70 CT 75 wer contact.	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is a tote alteration fades out below 221.50m. Partings are weakly of <u>ALTERATION</u> rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite. <u>Litho</u>	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni <i>Fr</i> 2 ^c Pyrin Simple Geo	byrite as thin fine-grained laminae. 5% of unit is thin it. <u>MINERALIZATION</u> rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB	From		nple
From 215.26 Thin-bedded and are pyri carbonate ir STRUC From To 215.26 225.89 225.89 225.90 Sharp low	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Sta BD 70 CT 75 wer contact.	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is a ote alteration fades out below 221.50m. Partings are weakly of ALTERATION rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite.	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni Fr 2' Pyrit	byrite as thin fine-grained laminae. 5% of unit is thin it. <u>MINERALIZATION</u> rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB	From		nple
From 215.26 Thin-bedded and are pyricarbonate in STRUC From To 215.26 225.89 225.89 225.90 Sharp low From 225.90 Massive ma	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Struct BD 70 CT 75 wer contact. To 228.87 fic ash tuff. Pa	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is a tote alteration fades out below 221.50m. Partings are weakly of <u>ALTERATION</u> rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite. <u>Litho</u>	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni <i>Fr</i> 2' Pyrit Simple Geo TUFF gmental texture. Local	byrite as thin fine-grained laminae. 5% of unit is thin it. MINERALIZATION rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB LB tic carbonate interbeds. Ibedding at 60 TCA; sharp lower contact at 65 Ibedding at 60 TCA; sharp lower contact at 65	From		nple
From 215.26 Thin-bedded and are pyri carbonate ir STRU From To 215.26 225.89 225.89 225.90 Sharp low From 225.90 Massive ma TCA. Minor	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Struct BD 70 CT 75 wer contact. To 228.87 fic ash tuff. Pa	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is so to the alteration fades out below 221.50m. Partings are weakly of <u>ALTERATION</u> rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite. <u>Litho</u> ASHT ale grey-olive throughout; moderate epidote flooding. Faint fra	TUFF to light grey. Carbona sharp at 75 TCA. 2% p shloritic throughout uni <i>Fr</i> 2' Pyrit Simple Geo TUFF gmental texture. Local	byrite as thin fine-grained laminae. 5% of unit is thin it. MINERALIZATION rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2025.90 2 LB LB tic carbonate interbeds. Ibedding at 60 TCA; sharp lower contact at 65 Ibedding at 60 TCA; sharp lower contact at 65	From		nple
From 215.26 Thin-beddec and are pyri carbonate ir STRUC From To 215.26 225.89 225.89 225.90 Sharp low From 225.90 Massive ma TCA. Minor	To 225.90 d, well-bedded tic. Bedding vanterbeds. Epide CTURES Struct CA Str BD 70 CT 75 wer contact. To 228.87 fic ash tuff. Pa light grey gran	ASHT mafic ash tuff. Variable colour - light grey-green to light olive aries from 65 to 70 TCA, averages 70 TCA. Lower contact is a tote alteration fades out below 221.50m. Partings are weakly of <u>ALTERATION</u> rain From To INT CC DO SR AK SC 215.26 225.90 M Moderate to weak epidote flooding; weak chlorite. <u>Litho</u> ASHT ale grey-olive throughout; moderate epidote flooding. Faint fra nular carbonate within matrix between these large clasts. Minor <u>ALTERATION</u>	TUFF to light grey. Carbona sharp at 75 TCA. 2% p thloritic throughout uni <i>Fr</i> 2° <i>Pyrit</i> Simple Geo TUFF gmental texture. Local or fine euhedral pyrite a	byrite as thin fine-grained laminae. 5% of unit is thin it. MINERALIZATION rom To PY% Style Min Min% Min2 M2% Min3 M3% 15.2@25.90 2 LB LB tic carbonate interbeds. Ibedding at 60 TCA; sharp lower contact at 65 associated with this carbonate. Page 100 PC PC <td></td> <td>To San</td> <td>nple</td>		To San	nple

FromToLithoSimple Geo225.90228.87ASHTTUFF

Massive mafic ash tuff. Pale grey-olive throughout; moderate epidote flooding. Faint fragmental texture. Local bedding at 60 TCA; sharp lower contact at 65 TCA. Minor light grey granular carbonate within matrix between these large clasts. Minor fine euhedral pyrite associated with this carbonate.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% Fro	rom To Sample	
	25.90 228.87 M	225.9028.87 1 DIS		

Moderate epidote flooding; weak chlorite.

228.86 228.87 CT 65

From	То	Litho	Simple Geo
228.87	249.72	ASHT	TUFF

Major intermediate ash tuff unit with varying textures and sulphide content.

228.87m to 230.26m Thin-bedded, well-bedded felsic ash tuff with abundant thin carbonate intercalations and pyrite laminae. Bedding at 65 TCA. 5% pyrite as

fine-grained laminae. Siliceous in places, pale waxy grey everywhere. Sericitic partings.

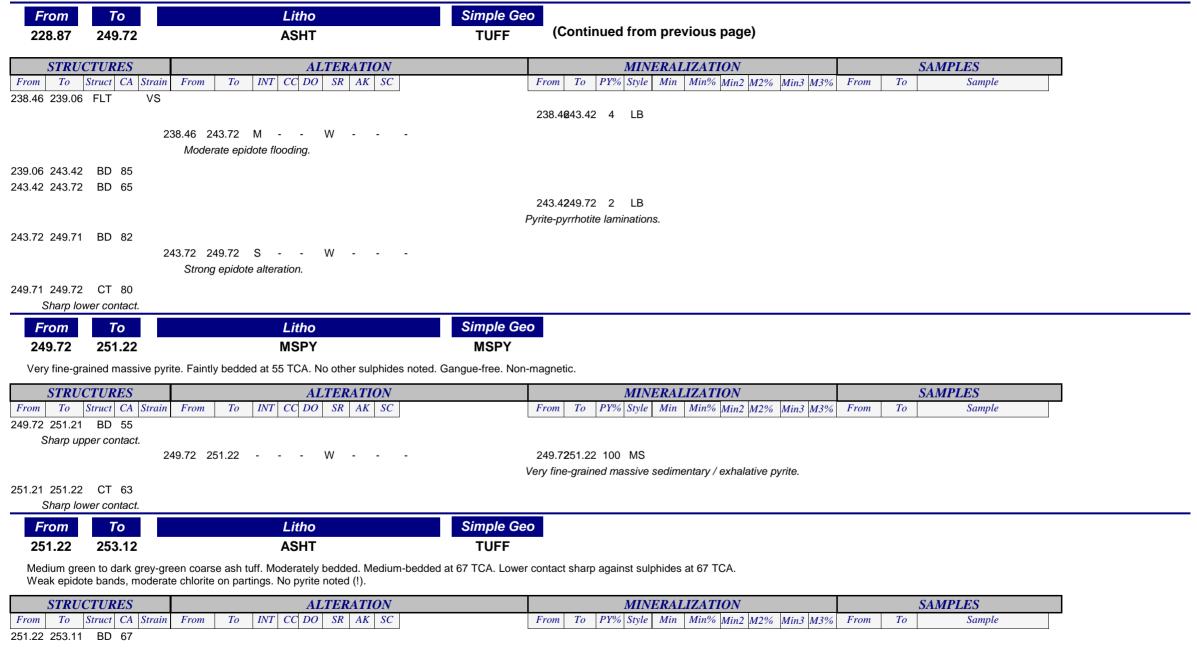
230.26m to 230.76m, 50cm limestone bed with small angular mafic clasts. 2% fine disseminated pyrite.

230.76m to 233.41m Well-bedded, thin-bedded intermediate (or mafic) coarse ash tuff with large rounded volcanic clasts that are wholly epidote-flooded. Pyrite content variable, but averages 4% as wisps and disseminated crystals.

233.41m to 233.50m Narrow fault with a 5cm thick white bull quartz vein along the lower margin.

233.50m to 238.46m Well-bedded, thin-bedded, cherty intermediate to mafic ash tuff. Colour medium grey to light olive. Bedding from 62 to 78 TCA, averages

69 TCA. Irregular epidote flooding. 5% fine pyrite laminae scattered throughout. 235.20m to 235.57m is an epidote-flooded mafic ash tuff zone.


238.46m to 239.06m Fault Zone. Two narrow intervals of gouge plus extensive wallrock chips.

239.06m to 243.42m Well-bedded, thin-bedded, limy, weakly pyritic mafic ash tuff. Carbonate interbeds make up to 40% of this interval. Pyrite as fine-grained laminations and as disseminated crystals averages 4% of rock. Bedding undulates but averages 85 TCA.

243.42m to 243.72m Four thin pyritic bands over this interval in epidotised, bedded mafic ash tuff. Bedding at 65 TCA. Moderate epidote, multiple thin carbonate intercalations.

243.72m to 249.72m Massive to weakly bedded mafic coarse ash tuff, with random large fragments and local thin carbonate beds. Strongly epidotized throughout, and pyrite -pyrrhotite laminations. Crude bedding preserved at 80 to 85 TCA. Chlorite or carbonate on partings. Pyrite content is trace to minor except at laminations. Lower contact is sharp at 80 TCA. 20cm interval of 20% pyrrhotite-pyrite laminations with coase ash centred on 247.15m - a clue to what lies below.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
228.87 230.26 BD 65 2	28.87 230.26 W W - W -	228.8 2 30.26 5 LB	
		230.20230.76 2 DIS	
2	30.26 233.41 M W		
	Moderate epidote flooding.		
230.26 233.50 BD 70			
		230.7@33.41 4 DIS	
2	33.41 238.46 M W	233.4 2 38.46 5 LB	
	Irregular epidote flooding.		
233.50 238.46 BD 78			

From	То	Litho	Simple Geo	
251.22	253.12	ASHT	TUFF	

Medium green to dark grey-green coarse ash tuff. Moderately bedded. Medium-bedded at 67 TCA. Lower contact sharp against sulphides at 67 TCA. Weak epidote bands, moderate chlorite on partings. No pyrite noted (!).

STRUCTURESFromToStructCAStrain	ALTERATION From To INT CC DO SR AK SC	Image: system Image: s
2!	51.22 253.12 W	251.2253.12 0 DIS
	Weak epidote; moderate chlorite.	
3.11 253.12 CT 67 Sharp lower contact.		
Trom To	1.40	
From To	Litho	Simple Geo
253.12 253.60	MSPY	Simple Geo
253.12 253.60 Massive finest grained pyrite-p been removed - only 18cm out	MSPY byrrhotite. Moderate to high pyrrhotite content with concent t of 48 cm is preserved in box. No other sulphides noted.	tration increasing down-section. A great deal of this mineralized core has
253.12 253.60 Massive finest grained pyrite-p	MSPY byrrhotite. Moderate to high pyrrhotite content with concent t of 48 cm is preserved in box. No other sulphides noted.	
253.12 253.60 Massive finest grained pyrite-p been removed - only 18cm out STRUCTURES From To Struct CA Strain	MSPY byrrhotite. Moderate to high pyrrhotite content with concent t of 48 cm is preserved in box. No other sulphides noted.	Atration increasing down-section. A great deal of this mineralized core has MINERALIZATION SAMPLES

From	То	Litho	Simple Geo	
253.60	257.67	ASHT	TUFF	

Mafic coarse ash tuff. Medium grey-green granular appearance. Faintly bedded; medium-bedded. Bedding at 78 to 82 TCA; averages 80 TCA. Upper contact missing; lower contact sharp at sulphides, and slightly undulatory at 80 TCA. Moderate chlorite and minor pyrite on partings. Rare fine disseminated pyrite only. Late thin white carbonate veinlets.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
253.60 257.66 BD 80			
2	53.60 257.67 M	253.6057.67 0.01 DIS	

Moderate chlorite; weak carbonate; no epidote.

Rare fine pyrite only.

257.66 257.67 CT 80 Sharp lower contact.

From	То	Litho	Simple Geo
257.67	7 258.03	MSPY	MSPY

Massive pyrite bed. Very fine grey. Dark grey. Almost looks like bedded pyritic mud. 5cm tuff layer within, divides this unit into two layers. Weak pyrrhotite concentrated at the top of both layers. Sharp upper and lower contacts with lower contact at 68 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA St	train From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From	To Sample
257.67 258.02 BD 75			
	257.67 258.03	257.6 2 58.03 100 MS	
		This rock may be very fine grained pyritic mudstone.	
258.02 258.03 CT 68			
Sharp lower contact.			
	Litho	Simple Geo	
From To			

Felsic ash tuff (or wholly bleached and moderately silcified mafic tuff). Faintly bedded. 8% fine-grained wisps of pyrite and pyrrhotite along foliation. Bedding at 62 TCA; foliation at 76 TCA. Sharp lower contact at 68 TCA. Moderate sericite + pyrite on partings.

STRUCTURES	ALTERATION		MINERALIZATION		SAMPLES
From To Struct CA St	Train From To INT CC DO SR AK SC	From To	PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
258.03 258.57 BD 62				•	
Foliation at 76 TCA.					
	258.03 258.58 W W	- 258.0 2 58.58	4 LB PO 4		
	Sericite and pyrite on partings. Bleached and	moderately silicified. 8% wisps of fine	e pyrrhotite-pyrite.		
258.57 258.58 CT 68 Sharp lower contact.					
From To	Litho	Simple Geo			
258.58 258.68	MSPY	MSPY			
Massive pyrite-pyrrhotite,	, with pyrrhotite > pyrite. Sharp upper and lower contact	ts at 68 TCA. Fine-grained dark grey pyrit	tic mud with bands of medium-grained		

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
258.58 258.67 BD 68			
2	58.58 258.68 W	258.52858.68 50 MS PO 50	
	(Crudely laminated pyrrhotite-pyrite.	
258.67 258.68 CT 68			

Sharp lower contact.

From	То	Litho	Simple Geo
258.68	259.63	ASHT	TUFF

Moderately bedded coarse ash tuff. Faint colour-mottling indicates that this is a bleached intermediate to mafic tuff. Pyrite-pyrrhotite wisps vary from 3% to 8%, so average 5%. Bedding at 67 TCA; sharp lower contact at 72 TCA.. Moderate chlorite-sericite on partings.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	ain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
258.68 259.62 BD 67		
	258.68 259.63 M W	258.62859.63 2.5 LB PO 2.5
	Moderate chlorite-sericite on partings only. Core is colour-mottled due to patchy bleaching	Average 5% wisps of pyrrhotite-pyrite.
259.62 259.63 CT 72		
Sharp lower contact.		

From	То	Litho	Simple Geo
259.63	259.77	SMPY	MSSX

14cm interval of interbedded pyrite and coarse ash tuff. Three separate thin sulphide-rich beds have a cumulative thickness of 7cm. Gangue within these layers is carbonate - this is sulphide-rich carbonate exhalite. Pyrrhotite>pyrite, but both are present - no other sulphides noted. Intevening coarse ash tuff is bleached white, faintly laminated with 8% fine pyrrhotite wisps and thinnest (1-2mm) carbonate lamellae. Moderate sericite on partings. Bedding at 70 TCA; sharp lower contact at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
259.63 259.76 BD 70		
2	59.63 259.77 W W	259.6 2 59.77 10 LB PY 40
	Bleached tuff; sericite on partings.	Semi-massive, banded, pyrrhotite-pyrite.
	Bleached tuff; sericite on partings.	Semi-massive, banded, pyrrhotite-pyrite.

259.76 259.77 CT 70

Sharp lower contact.

From	То	Litho	Simple Geo
259.77	276.93	CARB	CARB

Tuffaceous limestone. Well-bedded, thin-bedded. Light grey limestone interbedded with bright yellow-green (epidotized) to dark green (chloritized) thin mafic tuff

bands. Almost rhythmically layered. This is a major 18m-thick limestone unit, well down in the volcanic pile.

Bedding ranges from 72 to 76 TCA, averaging 74 TCA. Sharp lower contact against narrow fault at 72 TCA.

Strong chlorite on partings; with sericite in some bleached intervals. Weak to moderate epidote flooding.

Pyrite - 3% fine disseminated pyrite throughout, with local more pyritic laminantions up to 6% fine pyrite. This interval resembles the footwall alteration zone at

Kutcho Main Lens, except that the host is carbonate-rich rather than wholly silicified. No oxidation of sulphides due to the ubiquitous carbonate.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	

259.77 276.89 BD 74

From	То	Litho	Simple Geo
259.77	276.93	CARB	CARB

Tuffaceous limestone. Well-bedded, thin-bedded. Light grey limestone interbedded with bright yellow-green (epidotized) to dark green (chloritized) thin mafic tuff bands. Almost rhythmically layered. This is a major 18m-thick limestone unit, well down in the volcanic pile.

Bedding ranges from 72 to 76 TCA, averaging 74 TCA. Sharp lower contact against narrow fault at 72 TCA. Strong chlorite on partings; with sericite in some bleached intervals. Weak to moderate epidote flooding.

Pyrite - 3% fine disseminated pyrite throughout, with local more pyritic laminantions up to 6% fine pyrite. This interval resembles the footwall alteration zone at

Kutcho Main Lens, except that the host is carbonate-rich rather than wholly silicified. No oxidation of sulphides due to the ubiquitous carbonate.

STRUCTURES	ALTERATION		MINERALIZATION		SAMPLES
From To Struct CA St	rain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
	259.77 276.93 M W		259.7 2 76.93 5 LB		
	Moderate chlorite and epidote with local sericitization	ation.	Pyrite laminations and disseminations throughout this unit.		
76.89 276.93 FLT 72 \	/S				
4 cm fault zone filled with chlorite gouge and shreds of mafic tuff.					
From To	Litho	Simple Ge	eo		
276.93 278.33	ASHT	TUFF			
Thin-bedded, well-bedded of layers. Bedding 75 to 8 fine disseminated pyrite of	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly.	very dark green colour-s	sericite, depending on location of altered bands. Rare		SAMDIES
Thin-bedded, well-bedded of layers. Bedding 75 to 8	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are	very dark green colour-s			
Thin-bedded, well-bedded of layers. Bedding 75 to 8 fine disseminated pyrite of	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are	very dark green colour-s		S	SAMPLES
Thin-bedded, well-bedded of layers. Bedding 75 to 8	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly.	very dark green colour-s	sericite, depending on location of altered bands. Rare		SAMPLES Sample
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite of STRUCTURES	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly.	very dark green colour-s	sericite, depending on location of altered bands. Rare MINERALIZATION		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite or STRUCTURES From To Struct CA Struct	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly.	very dark green colour-s	sericite, depending on location of altered bands. Rare MINERALIZATION		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite or STRUCTURES From To Struct CA Struct	granular coarse mafic ash tuff. Medium olive green to ver 3 TCA, with sharp lower contact at 77 TCA. Partings are nly. ALTERATION rain From To INT CC DO SR AK SC	very dark green colour-s e moderately chlorite or	sericite, depending on location of altered bands. Rare MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite or STRUCTURES From To Struct CA Struct	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly. ALTERATION rain From To INT CC DO SR AK SC 276.93 278.33 M - - Strong chlorite (primary mafic ash tuff); moderate	very dark green colour-s e moderately chlorite or	sericite, depending on location of altered bands. Rare MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 276.9278.33 0.01 DIS		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite or STRUCTURES From To Struct CA Str 76.93 278.32 BD 78	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly. ALTERATION rain From To INT CC DO SR AK SC 276.93 278.33 M - - Strong chlorite (primary mafic ash tuff); moderate sericite.	very dark green colour-s e moderately chlorite or	sericite, depending on location of altered bands. Rare MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 276.9278.33 0.01 DIS		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite of STRUCTURES From To Struct CA St. 76.93 278.32 BD 78 78.32 278.33 CT 77 Slightly gradational lower	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly. ALTERATION rain From To INT CC DO SR AK SC 276.93 278.33 M - - Strong chlorite (primary mafic ash tuff); moderate sericite.	very dark green colour-s e moderately chlorite or	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 276.9278.33 0.01 DIS Rare fine disseminated pyrite.		
Thin-bedded, well-bedded of layers. Bedding 75 to 83 fine disseminated pyrite of STRUCTURES From To Struct CA St. 76.93 278.32 BD 78 78.32 278.33 CT 77 Slightly gradational lower contact.	granular coarse mafic ash tuff. Medium olive green to ve 3 TCA, with sharp lower contact at 77 TCA. Partings are nly. <u>ALTERATION</u> rain From To INT CC DO SR AK SC 276.93 278.33 M W Strong chlorite (primary mafic ash tuff); moderate sericite.	very dark green colour-s e moderately chlorite or	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 276.9278.33 0.01 DIS Rare fine disseminated pyrite.		

From To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	STRUCTURES	UCTURES ALTERATION	MINERALIZATION			SAMPLES
	From To Struct CA Strain	Struct CA Strain From To INT CC DO SR AK SC	From To PY% Style Mi	Iin Min% Min2 M2% Min3 M3%	From To	Sample

278.33 279.02 BD 78

From	То	Litho	Simple Geo	
278.33	279.03	CHRT	CHRT	

Thinly bedded chert. Light waxy grey. Fine disseminated pyrite 1.5%. Minor tuffaceous content - usually epidotized. Bedding 76 to 80 TCA, averaging 78 TCA. Lower contact sharp at 76 TCA.

URES ALTERATION MINERALIZATION SAMPLES True CA Strain From To INT CC DO SR AK SC To PY% Style Min Min? Mars Mars </th
Chert: weakly tuffaceous. Weakly pyritic chert. CT 76 roontact. CT 76 10 Litho 280.24 ASHT TOF Simple Geo 280.24 ASHT TUFF mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. TOF ALTERATION VERS ALTERATION Vers ALTERATION Sample BD 74 279.03 280.24 M S - W CT 74 rcontact.
To Litho Simple Geo 280.24 ASHT TUFF mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. NURES VIRES ALTERATION SAMPLES ruct CA Strain From To PD 74 279.03 280.24 M S - W 279.03 280.24 M S - W 279.0380.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. CT 74 rcontact.
To Litho Simple Geo 280.24 ASHT TUFF mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. VIEES ALTERATION MINERALIZATION SAMPLES ruet CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min2 M2% Min3 M3% From To Sample Sample
To Litho Simple Geo 280.24 ASHT TUFF mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. moderate chlorite and weak sericite. VIES ALTERATION SAMPLES ruct CA Strain From To INT CC DO SR AK SC Science From To Sample S
280.24 ASHT TUFF mafic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. with the sericite. VRES ALTERATION MINERALIZATION Turet CA Strain From To INT CC DO SR AK SC From To BD 74 279.03 280.24 M S - 279.0380.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. Trace fine pyrite dust. Trace fine pyrite dust. To Litho Simple Geo
matic coarse ash tuff. Similar to unit #51. Bedding varies between 72 to 80 TCA; sharp lower contact at 74 TCA. Pyrite as trace fine pyrite dust. VURES ALTERATION SAMPLES ruct CA Strain From To INT CC DO SR AK SC BD 74 279.03 280.24 M S - 279.0280.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. CT 74 Simple Geo
Moderate chlorite and weak sericite. ALTERATION MINERALIZATION SAMPLES Tuet_CA_Strain From To INT_CC_DO SR_AK_SC From To PY% Style Min Min2 M2% Min3 M3% From To Sample BD_74 279.03 280.24 M_S W - - 279.0280.24 0.01 DISMin3 M3% From To Sample BD_74 CT_74 Trace fine pyrite dust. Trace fine pyrite dust. Trace fine pyrite dust. Trace fine pyrite dust. To Litho Simple Geo
Moderate chlorite and weak sericite. ALTERATION MINERALIZATION SAMPLES Tuet_CA_Strain From To INT_CC_DO SR_AK_SC From To PY% Style Min Min2 M2% Min3 M3% From To Sample BD_74 279.03 280.24 M_S W - - 279.0280.24 0.01 DISMin3 M3% From To Sample BD_74 CT_74 Trace fine pyrite dust. Trace fine pyrite dust. Trace fine pyrite dust. Trace fine pyrite dust. To Litho Simple Geo
ruct CA Strain From To INT CC DO SR AK SC BD 74 279.03 280.24 M S - - 279.0380.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. Trace fine pyrite dust. - - - - CT 74 - - - - - - - To Litho Simple Geo Simple Geo - - - -
ruct CA Strain From To INT CC DO SR AK SC BD 74 279.03 280.24 M S - - 279.0380.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. Trace fine pyrite dust. - - - - CT 74 - - - - - - - To Litho Simple Geo Simple Geo - - - -
279.03 280.24 M S - W 279.0280.24 0.01 DIS Moderate chlorite alteration. Trace fine pyrite dust. CT 74 r contact. Simple Geo
Moderate chlorite alteration. Trace fine pyrite dust. CT 74 r contact. To Litho Simple Geo
CT 74 r contact. To Litho Simple Geo
To Litho Simple Geo
To Litho Simple Geo
ar crystal tuff. Massive to faintly laminated. Trace fine disseminated pyrite. Groundmass looks siliceous. Dacite crystal tuff(?). Feldspars are large
with buff-colorred fuzzy outlines (epidote? or dolomite?) Glomeroporphyritic feldspar noted. No hornblende. No quartz - a few tiny white unaltered
oundmass. Lower contact 75 TCA and slightly gradational. Not a chilled margin. Fracture surfaces show weak chlorite.
TURES ALTERATION MINERALIZATION SAMPLES
ruct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
NA
280.24 280.71 W S - W - W - 280.2280.71 0.1 DIS
Very weak chlorite.
CT 75
wer contact.

From To	Litho	Simple Geo		
280.71 287.78	ASHT	TUFF		
TCA. Strong carbonate fl rich section also has a m	ooding of lower section. Pyrite 1% as fine disseminations and	. Medium green to dark green as alternating colour bands. Bedding 73 wisps. Strong chorite development on partings. Lower, more carbonate- zones host 3% pyrite. This lower interval is really a limy tuff. Lower contact		
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES		
om To Struct CA S	train From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample		
.71 287.70 BD 73				
	280.71 287.78 S M - W	280.7 2 87.78 2 DIS		
	Weak epidote; stong chlorite (primary mafic ash tuff).	Pyrite increases from 1% to 3% down-section. Occurs as disseminations and wisps.		
7.70 287.78 FLT Chloritic gouge in narrov falt.	VS v			
From To	Litho	Simple Geo		
287.78 288.37				
Well-bedded, thin-bedde when weathered. Rock is	a weakly tuffaceous pyritic exhalite. Partings have strong serie	CBSX inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae.		
Well-bedded, thin-bedde when weathered. Rock is	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi	hinations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES om To Struct CA	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION	inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae.		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC	inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min2 M2% Min3 M3% From To Sample		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES rom To Struct CA S	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION	hinations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES om To Struct CA S 7.78 288.36 BD 75	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC 287.78 288.37 S <th c<="" td=""><td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td><td></td></th>	<td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td> <td></td>	inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB	
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES rom To Struct CA S	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC 287.78 288.37 S <th c<="" td=""><td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td><td></td></th>	<td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td> <td></td>	inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB	
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES rom To Struct CA S 7.78 288.36 BD 75 3.36 288.37 CT 78	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC 287.78 288.37 S <th c<="" td=""><td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td><td></td></th>	<td>inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB</td> <td></td>	inations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain icite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB	
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES rom To Struct CA S 7.78 288.36 BD 75 3.36 288.37 CT 78 Sharp lower contact.	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From To INT CC DO SR AK SC 287.78 288.37 S S S - 2.5% fluoromuscovite wisps / lamellae.	Minerates a greenish-yellow stain MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample 287.7888.37 5 LB Pyrite as disseminations and wisps. No pyrrhotite noted. No pyrrhotite noted.		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA <u>STRUCTURES</u> om <u>To</u> <u>Struct</u> <u>CA</u> <u>S</u> 7.78 288.36 BD 75 3.36 288.37 CT 78 <u>Sharp lower contact.</u> <u>From To</u> 288.37 293.58 Light grey, thin-bedded li as disseminations and w	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. <u>ALTERATION</u> <u>train From To INT CC DO SR AK SC</u> 287.78 288.37 S S - S - S - 2.5% fluoromuscovite wisps / lamellae. <u>Litho</u> CARB mestone with a greenish tint due to interlaminated ash layers.	tinations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain ficite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. <u>MINERALIZATION</u> <u>SAMPLES</u> <u>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample</u> 287.7888.37 5 LB Pyrite as disseminations and wisps. No pyrrhotite noted. <u>Simple Geo</u> <u>CARB</u> Tuffaceous limestone. Well-bedded, thin-bedded. Pyrite averages 2.5 % s along aome tuffaceous bands, giving the bright green colour. Bedding is		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES rom To Struct CA S7.78 288.36 BD 75 3.36 288.37 CT Sharp lower contact. From To 288.37 293.58 Light grey, thin-bedded li as disseminations and w 78 throughout, but the sh STRUCTURES rom To Struct Struct CA S	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC Litho Litho Litho CARB mestone with a greenish tint due to interlaminated ash layers. Tisps, but there are a few thin pyritic lamellae. Epidote develops arp lower contact is at 73 TCA. Moderate chlorite with weak set ALTERATION	tinations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain ficite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. <u>MINERALIZATION</u> <u>SAMPLES</u> <u>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample</u> 287.7888.37 5 LB Pyrite as disseminations and wisps. No pyrrhotite noted. <u>Simple Geo</u> <u>CARB</u> Tuffaceous limestone. Well-bedded, thin-bedded. Pyrite averages 2.5 % s along aome tuffaceous bands, giving the bright green colour. Bedding is		
Well-bedded, thin-bedde when weathered. Rock is Bedding is 72 to 78 TCA STRUCTURES om To Struct CA S 7.78 288.36 BD 75 3.36 288.37 CT 78 Sharp lower contact. From To 288.37 293.58 Light grey, thin-bedded li as disseminations and w 78 throughout, but the sh	d, light grey limy siliceous pyritic ash tuff. 5% pyrite as dissemi a weakly tuffaceous pyritic exhalite. Partings have strong serie averaging 75 TCA. Sharp lower contact at 78 TCA. ALTERATION train From TO INT CC DO SR AK SC Litho Litho Litho CARB mestone with a greenish tint due to interlaminated ash layers. Tisps, but there are a few thin pyritic lamellae. Epidote develops arp lower contact is at 73 TCA. Moderate chlorite with weak set ALTERATION	tinations and wisps. No pyrrhotite. Pyrite generates a greenish-yellow stain incite. Unstained core sections show 2.5% fine fluoromuscovite lamellae. <u>MINERALIZATION</u> <u>SAMPLES</u> <u>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample</u> 287.7888.37 5 LB Pyrite as disseminations and wisps. No pyrrhotite noted. <u>Simple Geo</u> <u>CARB</u> Tuffaceous limestone. Well-bedded, thin-bedded. Pyrite averages 2.5 % s along aome tuffaceous bands, giving the bright green colour. Bedding is terricite on partings. <u>MINERALIZATION</u> <u>SAMPLES</u>		

<i>From</i> 288.37	To 293.58	Litho CARB	Simple Geo CARB	(Continued from previous page)	
STRU	CTURES	ALTERATION		MINERALIZATION	SAMPLES
	Struct CA Struct	ain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From T	o Sample
3.57 293.58	3 CT 73 ower contact.				
			Simple Coo		
<i>From</i> 293.58	To 293.67	Litho CBSX	Simple Geo CBSX		
Lower conta	act marked by a	e exhalite). Weakly tuffaceous. Thin bedded, well-bedded. 20 thin white quartz veinlet. No other sulphides noted. No pyrrho			
	CTURES Struct CA Struct	ALTERATION ain From To INT CC DO SR AK SC		MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% From T	SAMPLES o Sample
3.58 293.66				10 11/0 Siyle Mith Mith/0 Mith2 M2/0 Mith3 M3/0 110m 1	Sumple
		293.58 293.67 VW VW		293.5 2 93.67 20 LB aminations, wisps and disseminated pyrite in limestone.	
	7 QV z veinlet along r contact.				
From	То	Litho	Simple Geo		
293.67	294.24	CARB	CARB	•	
		ny tuff. Well-bedded, thin-bedded. Weakly pyritic. Trace fine o Overall core colour is pale buff. No obvious epidote. Bedding			
STRU	CTURES	ALTERATION		MINERALIZATION	SAMPLES
	Struct CA Struct	ain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From T	o Sample
3.67 294.23	3 BD 81				
		293.67 294.24 W - VW - W - Bleached, but not silicified. Perhaps this is carbonate-fl		293.6 2 94.24 0.1 DIS PO 0.1 race pyrite and pyrrhotite disseminations and wisps.	
		Weak chlorite-sericite on partings.			
1 23 204 24	1 CT 83				

294.23 294.24 CT 83

Sharp lower contact.

From To	Litho	Simple Geo				
294.24 300.27	ASHT	TUFF				
coarse ash tuff, breccia disseminated crystals of	ated coarse ash tuff, and tuffaceous carb overall, but local zones include wisps and	onate. All with a later overprinted carbonate	to 83 TCA, averaging 79 TCA. Moderate epidote			
STRUCTURES	ALT	TERATION	MINERALIZATION		SAMPLES	
rom To Struct CA	Strain From To INT CC DO	SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From 7	Sam	ple
4.24 300.26 BD 79						
	20.12. 00012. 11 11	V	294.2 3 00.27 3 DIS			
	Moderate epidote flooding.	D	isseminations, wisps and lamellae of bright pyrite.			
0.26 300.27 CT 78						
Sharp lower contact						
From To	Litho	Simple Geo				
300.27 303.44	MFLW	UNKN				
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend	, there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced	hite bull quartz with fine-grained chloritic clasts. Might his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation).			
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.5 ^c Rock is carbonate-floor	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey	, there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals / to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation).		CAMDI EC	
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u>	From 7	SAMPLES	ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.56 Rock is carbonate-floor STRUCTURES om To Struct CA	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation).	From 1	SAMPLES	ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey <u>ALT</u> <u>Strain From To INT CC DO</u> 300.27 303.44 M M - W des Carbonate flooding; chlorite-alt	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3%	From T		ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.56 Rock is carbonate-floor STRUCTURES rom To Struct CA 0.27 303.44 FB Flow-foliated hornblend	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey <u>ALT</u> <u>Strain From To INT CC DO</u> 300.27 303.44 M M - W des Carbonate flooding; chlorite-alt	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS	From 1		ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor STRUCTURES from To Struct CA 0.27 303.44 FB Flow-foliated hornblend in lower 1m of this un	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey <u>ALT</u> <u>Strain From To INT CC DO</u> 300.27 303.44 M M - W des Carbonate flooding; chlorite-alt it. <u>Litho</u>	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green.	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS	From T		ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor STRUCTURES rom To Struct CA 0.27 303.44 FB Flow-foliated hornblend in lower 1m of this un From To 303.44 308.11 Fine to coarse ash tuff to minor disseminated 305.96 (2cm); 50% gra	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey ALT Strain From To INT CC DO 300.27 303.44 M M - W des Carbonate flooding; chlorite-ala it. Litho ASHT . Well-bedded, thin-bedded. Light grey to coarse (1-2mm) disseminated pyrite crys nular pyrite crystals and wisps are scatter	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green. TERATION SR AK SC V tered mafic phenocrysts. Simple Geo TUFF light buff colour. Bedding at 80 TCA through stals, plus three thin pyritic laminae centred	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS	From 1		ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor STRUCTURES Tom To Struct CA 0.27 303.44 FB Flow-foliated hornblend in lower 1m of this un From To 303.44 308.11 Fine to coarse ash tuff to minor disseminated 305.96 (2cm); 50% gra chlorite or biotite). Alter	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey ALT Strain From To INT CC DO 300.27 303.44 M M - W des Carbonate flooding; chlorite-alu it. Litho ASHT Well-bedded, thin-bedded. Light grey to coarse (1-2mm) disseminated pyrite crystals and wisps are scatter ration - buff carbonate (ferro-dolomite), b	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green. TERATION SR AK SC V tered mafic phenocrysts. Simple Geo TUFF light buff colour. Bedding at 80 TCA throug stals, plus three thin pyritic laminae centred red within black interlaminated mudstone a ut rock is strongly limy everywhere. Modera TERATION	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS phout; lower contact sharp at 75 TCA. Variable, trace at 305.58m (5 cm thick), 305.77m (1 cm), and at and carbonate (black material could alternately be the sericite on partings. <u>MINERALIZATION</u>			ple
Massive porphyritic bas alternately be a porphy but grain size grows fro lower metre of the unit crowded porphyry. 0.55 Rock is carbonate-floor STRUCTURES rom To Struct CA 0.27 303.44 FB Flow-foliated hornblend in lower 1m of this un From To 303.44 308.11 Fine to coarse ash tuff to minor disseminated 305.96 (2cm); 50% gra chlorite or biotite). Alter	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey ALT Strain From To INT CC DO 300.27 303.44 M M - W des Carbonate flooding; chlorite-alu it. Litho ASHT Well-bedded, thin-bedded. Light grey to coarse (1-2mm) disseminated pyrite crystals and wisps are scatter ration - buff carbonate (ferro-dolomite), b	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green. TERATION SR AK SC V tered mafic phenocrysts. Simple Geo TUFF light buff colour. Bedding at 80 TCA throug stals, plus three thin pyritic laminae centred ared within black interlaminated mudstone a ut rock is strongly limy everywhere. Modera	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS phout; lower contact sharp at 75 TCA. Variable, trace at 305.58m (5 cm thick), 305.77m (1 cm), and at and carbonate (black material could alternately be the sericite on partings.		io Sam,	
Massive porphyritic base alternately be a porphy but grain size grows from lower metre of the unit crowded porphyry. 0.50° Rock is carbonate-floor STRUCTURES rom To Struct CA 0.27 303.44 FB Flow-foliated hornblend in lower 1m of this und STRUCTURES A033.44 S03.44 S03.44 S03.44 S03.44 S03.44 S08.11 Fine to coarse ash tuff. to minor disseminated 305.96 (2cm); 50% grad chlorite or biotite). Alter STRUCTURES rom To Struct CA	ritic gabbroic sill. Although only 3m thick om an aphanitic chill margin to porphyry t the phenocrysts are elongate (hornblend % to 1.0% fine bright disseminated pyrite ded. Overall colour is medium green-grey ALT Strain From To INT CC DO 300.27 303.44 M M - W des Carbonate flooding; chlorite-alu it. Litho ASHT Well-bedded, thin-bedded. Light grey to coarse (1-2mm) disseminated pyrite crystals and wisps are scatter ration - buff carbonate (ferro-dolomite), b	there are several textural changes within t exture over 80cm. Upper porphyry displays e?). All phenocrysts are mafic and replaced crystals. No bedding, but elongate crystals to medium grey-green. TERATION SR AK SC V tered mafic phenocrysts. Simple Geo TUFF light buff colour. Bedding at 80 TCA throug stals, plus three thin pyritic laminae centred red within black interlaminated mudstone a ut rock is strongly limy everywhere. Modera TERATION	his unit. Upper 80 cm is chilled, pale olive in colour stubby mafic phenocrysts (pyroxene?), but in the d by black chlorite. Phenocrysts are ~ 50% of core - near the base of unit show alignment (flow-foliation). <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 300.2303.44 0.75 DIS phout; lower contact sharp at 75 TCA. Variable, trace at 305.58m (5 cm thick), 305.77m (1 cm), and at and carbonate (black material could alternately be the sericite on partings. <u>MINERALIZATION</u>		io Sam,	

<i>From</i> 303.44	<u>То</u> 308.11	Litho ASHT	Simple Geo TUFF	(Continued from previous page)			
STRUC	CTURES	ALTERATION		MINERALIZATION		SAMPLES	
	Struct CA Stru	iin From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample	
08.10 308.11 Sharp low	CT 75 ver contact.						
From	То	Litho	Simple Geo				
308.11	309.90	ASHT	TUFF	-			
(1%) fine dise	seminated pyri	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA.					
(1%) fine dise	seminated pyri	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte					
(1%) fine dise to 85 TCA; sl	seminated pyri	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte				SAMPLES	
(1%) fine disa to 85 TCA; sl STRUC From To S	seminated pyri harp lower con CTURES Struct CA Struct	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA.	ered light-grey carbon	ate bands. Chlorite on partings. Bedding variable 75	From To	SAMPLES Sample	
(1%) fine diss to 85 TCA; sl	seminated pyri harp lower con CTURES Struct CA Struct	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA. <u>ALTERATION</u> <u>tin From To INT CC DO SR AK SC</u>	ered light-grey carbon	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From To		
(1%) fine disa to 85 TCA; sl STRUC From To S	seminated pyri harp lower con CTURES Struct CA Struct	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA.	ered light-grey carbon	MINERALIZATION	From To		
(1%) fine disa to 85 TCA; sl STRUC From To S 08.11 309.89 09.89 309.90	seminated pyri harp lower con CTURES Struct CA Struct BD 80	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA. <u>ALTERATION</u> <u>in From To INT CC DO SR AK SC</u> 308.11 309.90 M S - M Carbonate-flooded mafic tuff with thin carbonate beds	ered light-grey carbon	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From To		
(1%) fine disa to 85 TCA; sl STRUC From To S 08.11 309.89 09.89 309.90	Seminated pyri harp lower con CTURES Struct CA Struc BD 80 CT 80	e ash tuff. Well-bedded, thin-bedded. Medium grey-green. A te crystals. Carbonate-flooded throughout. Many thin scatte tact at 80 TCA. <u>ALTERATION</u> <u>in From To INT CC DO SR AK SC</u> 308.11 309.90 M S - M Carbonate-flooded mafic tuff with thin carbonate beds	ered light-grey carbon	MINERALIZATION MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 308.1309.90 1 DIS	From To		

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		

309.90 310.75 BD 83

309.9010.76 5 DIS

309.90 310.76 S S - M - - -Carbonate-flooded, bleached, pyritized core.

310.75 310.76 CT 80

Gradational lower contact.

	То	Litho	Simple Geo		
310.76	311.45	SESX	EXHL		
wisps, lamel	lae and large f	ith minor carbonate laminae. Buff to pink coloured. We fine-grained ragged overprinted patches. No other sulp ntact at 80 TCA.	ell-bedded, thin-bedded. No phides noted. Rock is abou	o pyrrhotite. Pyrite 15% as bright disseminated grains, It 40% fine intercalated coarse ash tuff. Bedding at 76	
STRUG	CTURES	ALTERATION		MINERALIZATION SAMPLES	
rom To	Struct CA Str	rain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
0.76 311.44	BD 80				
		310.76 311.45 M M - M		310.7611.45 15 LB	
1.44 311.45 Sharp lov	CT 80 wer contact.				
From	То	Litho	Simple Geo		
311.45	313.67	ASHT	TUFF		
		e ash tuff. Well-bedded and thin-bedded. Only upside	of core is rusty coloured u	nderside is pale arev-huff. Pyrite 5% as bright	
		wisps. Bedding at 85 TCA throughout. Foliation-free r			
STRUC	CTURES	ALTERATION		MINERALIZATION SAMPLES	
rom To	Struct CA Str			MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
	Struct CA Str	ain From To INT CC DO SR AK SC	L	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
rom To	Struct CA Str	rain From To INT CC DO SR AK SC			
rom To 1.45 313.66	Struct CA Str BD 85	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - -	Di	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS	
rom To 1.45 313.66 3.66 313.67	Struct CA Str BD 85 CT 85	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - -	Di	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides Image: Sample	
rom To 1.45 313.66 3.66 313.67 Gradational	Struct CA Str BD 85 CT 85 lower contact.	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - Strong ferro-dolomite flooding. Weak sericite.	Di no	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. Source of the sulphides of the sulphi	
rom To 1.45 313.66 3.66 313.67 Gradational From	Struct CA Str BD 85 CT 85 lower contact.	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite.	Di no Simple Geo	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. Source of the sulphides of the sulphi	
rom To 1.45 313.66 3.66 313.67 Gradational	Struct CA Str BD 85 CT 85 lower contact.	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - Strong ferro-dolomite flooding. Weak sericite.	Di no	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. Source of the sulphides of the sulphi	
To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec	Struct CA Str BD 85 CT 85 Jower contact. TO 314.58 d, thin-bedded	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. - - - Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark gree	Di no Simple Geo TUFF een overall. Bedding ranges	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. bits bits <t< td=""><td></td></t<>	
rom To 1.45 313.66 3.66 313.67 <i>Gradational</i> From 313.67 Well-beddec	Struct CA Str BD 85 CT 85 Jower contact. TO 314.58 d, thin-bedded	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Veak sericite.	Di no Simple Geo TUFF een overall. Bedding ranges	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. bits bits <t< td=""><td></td></t<>	
To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part	Struct CA Str BD 85 CT 85 Jower contact. TO 314.58 d, thin-bedded	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. - - - Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark gree	Di no Simple Geo TUFF een overall. Bedding ranges	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. bits bits <t< td=""><td></td></t<>	
To To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part STRUC rom To	Struct CA Str BD 85 CT 85 Jower contact. To 314.58 d, thin-bedded tings. 2% fine I CTURES Struct CA Struct CA	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Veak sericite. - - Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark gree oright diisseminated pyrite crystals. No other sulphides ALTERATION -	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4313.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. solution solution </td <td></td>	
To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part STRUC	Struct CA Str BD 85 CT 85 Jower contact. To 314.58 d, thin-bedded tings. 2% fine I CTURES Struct CA Struct CA	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark greeoright diisseminated pyrite crystals. No other sulphides ALTERATION rain From To INT CC DO SR AK SC	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. isseminated and wisps of bright pyrite. No other sulphides isseminated and wisps of bright pyrite. No other sulphides s 74 to 88 TCA; sharp lower contact at 75 TCA. SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
To To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part STRUC rom To	Struct CA Str BD 85 CT 85 Jower contact. To 314.58 d, thin-bedded tings. 2% fine I CTURES Struct CA Struct CA	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Veak sericite. - - Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark gree oright diisseminated pyrite crystals. No other sulphides ALTERATION -	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 311.4513.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. state s	
To To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part STRUC rom To	Struct CA Str BD 85 CT 85 Jower contact. To 314.58 d, thin-bedded tings. 2% fine I CTURES Struct CA Struct CA Struct CA Struct CA Struct CA	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark greoright diisseminated pyrite crystals. No other sulphides ALTERATION rain From To INT CC DO SR AK SC 313.67 314.58 S S - - - -	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. isseminated and wisps of bright pyrite. No other sulphides isseminated and wisps of bright pyrite. No other sulphides s 74 to 88 TCA; sharp lower contact at 75 TCA. SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
To To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part To 3.67 STRUC rom To 3.67 314.57 4.57 314.58 Sharp low	Struct CA Str BD 85 CT 85 Iower contact. To 314.58 d, thin-bedded tings. 2% fine I CTURES Struct CA Struct CA	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark greoright diisseminated pyrite crystals. No other sulphides ALTERATION rain From To INT CC DO SR AK SC 313.67 314.58 S S - - - - -	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. isseminated and wisps of bright pyrite. No other sulphides isseminated and wisps of bright pyrite. No other sulphides s 74 to 88 TCA; sharp lower contact at 75 TCA. SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	
To To 1.45 313.66 3.66 313.67 Gradational From 313.67 Well-beddec Chlorite part To 3.67 STRUC rom To 3.67 314.57 4.57 314.58 Sharp low against a th	StructCAStrBD85CT85lower contact.To314.58d, thin-beddedditings. 2% fine ICTURESStructCAStructCAStructCAStructCAStruct75	rain From To INT CC DO SR AK SC 311.45 313.67 S M S W - - - Strong ferro-dolomite flooding. Weak sericite. Litho ASHT mafic ash tuff. Carbonate-flooded. Medium to dark greoright diisseminated pyrite crystals. No other sulphides ALTERATION rain From To INT CC DO SR AK SC 313.67 314.58 S S - - - - -	Di no Simple Geo TUFF een overall. Bedding ranges s noted.	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 311.4\$13.67 5 DIS isseminated and wisps of bright pyrite. No other sulphides oted. isseminated and wisps of bright pyrite. No other sulphides isseminated and wisps of bright pyrite. No other sulphides s 74 to 88 TCA; sharp lower contact at 75 TCA. SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample	

From To	Litho	Simple Geo	
314.58 338.02	CARB	CARB	
ash, and the amount varied disseminations and wisps	ell-bedded, thin-bedded. Overall light yellow-green colour du es throughout unit - but is always < 50% of core. Bedding 73 a. Sharp upper and lower contacts are both pyrite-rich carbon on partings. Local strong epidote flooding, weak-to modera	3 to 82 TCA; sharp lower c nate bands (25% pyrite).	Ash component varies from fine ash to coarse ontact at 76 TCA. Pyrite 2% to 5% as fine bright
STRUCTURES	ALTERATION		MINERALIZATION SAMPLES
From To Struct CA St	train From To INT CC DO SR AK SC	From	n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
14.58 338.01 BD 78	244 50 220 02 M C	244	
	314.58 338.02 M S Moderate epidote flooding; weak chlorite-sericite on		.5838.02 3 DIS disseminated wisps and laminae. No other sulphides
	mouraie opiacie noouling, wear chionie-selicite off	noted.	
38.01 338.02 CT 76			
Sharp lower contact.			
From To	Litho	Simple Geo	
338.02 343.45	ASHT	TUFF	
Strong carbonate flooding	and about one-third of core is carbonate intercalations - co	oncentration of carbonate b	local thin pyritic lamellae - trace pyrrhotite. beds varies throughout interval. Overall 20%
Strong carbonate flooding epidote flooding, Moderat	and about one-third of core is carbonate intercalations - co e chlorite on partings.	oncentration of carbonate b	MINERALIZATION SAMPLES
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA Struct	and about one-third of core is carbonate intercalations - co e chlorite on partings.	Entrated throughout, with oncentration of carbonate b	MINERALIZATION SAMPLES
Strong carbonate flooding epidote flooding, Moderat	and about one-third of core is carbonate intercalations - co e chlorite on partings.	Encentration of carbonate b	MINERALIZATION SAMPLES
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA Struct	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - Moderate epidote flooding. Intercent of the second s	Encentration of carbonate b	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA St 38.02 343.44 BD 76 43.44 343.45 CT 77	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - Moderate epidote flooding. Intercent of the second s	Encentration of carbonate b	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA St 38.02 343.44 BD 76 43.44 343.45 CT 77 Gradational lower contact	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - Moderate epidote flooding. t.	Sincentration of carbonate b	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
Strong carbonate flooding epidote flooding, Moderat <u>STRUCTURES</u> From To Struct CA St 38.02 343.44 BD 76 43.44 343.45 CT 77 Gradational lower contact From To 343.45 348.12 Tuffaceous pyritic limesto	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - Moderate epidote flooding. t. Litho Litho Litho Litho	Simple Geo CARB Srystals, blebs, wisps and la	MINERALIZATION SAMPLES n To PY% Style Min Min2 M2% Min3 M3% From To Sample .0243.45 2.5 DIS Aminae. Bedding at 76 to 80 TCA; sharp lower Aminae. Bedding at 76 to 80 TCA; sharp lower
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA St 38.02 343.44 BD 76 43.44 343.45 CT 77 Gradational lower contact From To 343.45 348.12 Tuffaceous pyritic limesto contact at 78 TCA. Strong STRUCTURES	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - 338.02 343.45 S S - - - - Moderate epidote flooding. Litho CARB ene. Well-bedded, thin-bedded. 5% pyrite as disseminated c gepidote flooding. Overall light grey-green with colour ranging ALTERATION	Simple Geo CARB Srystals, blebs, wisps and la	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample .0243.45 2.5 DIS
Strong carbonate flooding epidote flooding, Moderat <u>STRUCTURES</u> From To Struct CA St 38.02 343.44 BD 76 43.44 343.45 CT 77 Gradational lower contact From To 343.45 348.12 Tuffaceous pyritic limesto contact at 78 TCA. Strong	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - 338.02 343.45 S S - - - - Moderate epidote flooding. Litho CARB ene. Well-bedded, thin-bedded. 5% pyrite as disseminated c gepidote flooding. Overall light grey-green with colour ranging ALTERATION	Simple Geo CARB Srystals, blebs, wisps and la	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample .0243.45 2.5 DIS DIS Minas Mainas Mainas
Strong carbonate flooding epidote flooding, Moderat STRUCTURES From To Struct CA St 38.02 343.44 BD 76 38.02 343.44 BD 76 43.44 343.45 CT 77 Gradational lower contact TO 343.45 348.12 Tuffaceous pyritic limesto contact at 78 TCA. Strong STRUCTURES From To Struct CA St	and about one-third of core is carbonate intercalations - co e chlorite on partings. ALTERATION train From To INT CC DO SR AK SC 338.02 343.45 S S - - - - 338.02 343.45 S S - - - - Moderate epidote flooding. Litho CARB ene. Well-bedded, thin-bedded. 5% pyrite as disseminated c gepidote flooding. Overall light grey-green with colour ranging ALTERATION	Simple Geo CARB CARB Crystals, blebs, wisps and lang from pale grey to mediu From	MINERALIZATION SAMPLES n To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample .0243.45 2.5 DIS

From	То	Litho	Simple Geo				
343.45	348.12	CARB	CARB	(Continued from previous page)			
STRUG	CTURES	ALTERATION		MINERALIZATION			SAMPLES
rom To	Struct CA Str	ain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample
3.11 348.12	CT 78						
Sharp lov	ver contact.						
From	То	Litho	Simple Geo				
348.12	360.73	ASHT	TUFF				
intervals. Ov TCA. Pyrite variab pyritic carbo	verall light grey le from 2% to nate bed from	sh tuff, with a thin pyritic carbonate exhalite intercalation. We -yellow-green to medium grey-green. Variable from fine ash 3% fine bright disseminated crystals - plus there are nine thi 352.62m to 352.78m - 20% finest pyrite lamellae within very ng throughout. Partings are chlorite-sericite.	tuff to coarse ash tu n (1cm-4cm) pyrite-	Iff. Bedding 80 to 90 TCA; sharp lower contact at 90 rich carbonate lamellae. Plus there is one 16cm thick			
STRUG	CTURES	ALTERATION		MINERALIZATION			SAMPLES
rom To	Struct CA Str	ain From To INT CC DO SR AK SC		From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample
				348.1 2 52.62 3 DIS			
			P	yrite disseminations and lamellae.			
8.12 360.72	BD 85						
		348.12 360.73 M S - VW Moderate epidote flooding; moderate chlorite on partir sericite.	ngs with lesser				
				352.6 2 52.68 20 LB			
			P	yrite-rich tuffaceous carbonate bed.			
				352.6860.73 3 DIS			
			P	yrite disseminations and lamellae.			
0.72 360.73							
Sharp lov	ver contact.						
From	То	Litho	Simple Geo				
360.73	365.83	FXTF	TUFF				
epidote flood pyrrhotite wit Lower part o	ding. Bedding 7 thin tuffaceous of this unit show	al tuff enveloped above and below by mafic ash tuff and thin 74 to 83 TCA; averaging 78. Lower contact sharp at 70 TCA. chert beds. There are 5 pyritic chert units within this interva vs fuzzy crystal outlines, obscured by strong epidote and chl ende, all < 5mm long - but texture could be colour-mottling d	Pyrite 1% fine diss I - the thickest is 10 orite alteration. Stro	eminations throughout tuff, but up to 10% to 20% fine cm. ng carbonate flooding. Crystals look like crowded			

	STRU	RUCTURES ALTERATION				MINERALIZATION					SAMPLES									
From	То	Struct CA Strain	From	То	INT	CC DO	SR	AK	SC	Fro	n T	o P	Y% Style	Min	Min% Min2 M2%	Min3 M	13%	From	То	Sample

From To	Litho	Simple Geo				
360.73 365.8	B FXTF	TUFF				
epidote flooding. Bedo byrrhotite within tuffac Lower part of this unit feldspar and stubby h	ing 74 to 83 TCA; averaging 78. Lower co cous chert beds. There are 5 pyritic chert shows fuzzy crystal outlines, obscured by	ntact sharp at 70 TCA. Pyrite 1% fine diss units within this interval - the thickest is 10 strong epidote and chlorite alteration. Stro uld be colour-mottling due to strong overpri	beds. Overall light greenish-grey colour. Moderate eminations throughout tuff, but up to 10% to 20% fine cm. ong carbonate flooding. Crystals look like crowded inted alteration. There is no bedding or chert layers			
STRUCTURES	ALT	TERATION	MINERALIZATION	S	AMPLES	
om To Struct CA			From To PY% Style Min Min% Min2 M2% Min3 M3%		Sample	
.73 365.82 BD 78						
		N	360.7365.83 3 DIS			
	Strong carbonate and epidote;	moderate chlorite alteration. 5	pyritic chert intervals within this unit - with up to 20% pyrite.			
5.82 365.83 CT 70 Sharp lower contac against pyritic cher interbed.	t					
From To	Litho	Simple Geo				
	ash tuff, terminated by fault at 367.35m. N		tly bedded, medium-bedded, and granular. But			
Massive mafic coarse textures are obscured dust only.	ash tuff, terminated by fault at 367.35m. M by strong epidote overprinting. Weak carb	Medium green-grey colour. Rock looks fain bonate flooding. Core is well-fractured for o	ne full metre above the fault. Pyrite - trace fine pyrite	S	AMPLES	_
Massive mafic coarse textures are obscured dust only.	ash tuff, terminated by fault at 367.35m. M by strong epidote overprinting. Weak carb	/ledium green-grey colour. Rock looks fain			AMPLES Sample	-
Massive mafic coarse textures are obscured dust only. STRUCTURES om To Struct CA	ash tuff, terminated by fault at 367.35m. M by strong epidote overprinting. Weak carb ALT Strain From To INT CC DO	Medium green-grey colour. Rock looks fain bonate flooding. Core is well-fractured for o	ine full metre above the fault. Pyrite - trace fine pyrite MINERALIZATION			
Massive mafic coarse textures are obscured dust only. STRUCTURES om To Struct CA	ash tuff, terminated by fault at 367.35m. M by strong epidote overprinting. Weak carb ALT Strain From To INT CC DO	Medium green-grey colour. Rock looks fain bonate flooding. Core is well-fractured for o	ine full metre above the fault. Pyrite - trace fine pyrite MINERALIZATION			
Massive mafic coarse textures are obscured dust only. <u>STRUCTURES</u> om To Struct CA	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb ALT Strain From To INT CC DO	Medium green-grey colour. Rock looks fain onate flooding. Core is well-fractured for o ERATION SR AK	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%			
Massive mafic coarse textures are obscured dust only. <u>STRUCTURES</u> om To Struct CA	ash tuff, terminated by fault at 367.35m. M by strong epidote overprinting. Weak carb ALT Strain From To INT CC DO 365.83 367.62 S W	Medium green-grey colour. Rock looks fain onate flooding. Core is well-fractured for o ERATION SR AK	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%			
Massive mafic coarse textures are obscured dust only. <u>STRUCTURES</u> om <u>To</u> <u>Struct</u> <u>CA</u> 5.83 367.35 BD 80 7.35 367.62 FLT Fault zone - weakly ankeritized. Rock chips	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS	Medium green-grey colour. Rock looks fain onate flooding. Core is well-fractured for o ERATION SR AK	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%			
Massive mafic coarse textures are obscured dust only. <u>STRUCTURES</u> om <u>To</u> <u>Struct</u> <u>CA</u> 5.83 367.35 BD 80 C.35 367.62 FLT Fault zone - weakly ankeritized. Rock chips	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS	Medium green-grey colour. Rock looks fain onate flooding. Core is well-fractured for o ERATION SR AK	MINERALIZATION MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS			
Massive mafic coarse textures are obscured dust only. STRUCTURES om <u>To</u> <u>Struct</u> <u>CA</u> .83 367.35 BD 80 .35 367.62 FLT Fault zone - weak! onkeritized. Rock chips muddy brown-olive go	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS and uge. Litho	Medium green-grey colour. Rock looks fain sonate flooding. Core is well-fractured for o ERATION SR AK SC	MINERALIZATION MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS			
Massive mafic coarse textures are obscured dust only. STRUCTURES om To Struct CA 5.83 367.35 BD 80 7.35 367.62 FLT Fault zone - weak! ankeritized. Rock chips muddy brown-olive go From To 367.62 368.7	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS and uge. Litho	Medium green-grey colour. Rock looks fain ponate flooding. Core is well-fractured for or ERATION SR AK SC SR SC Simple Geo TUFF	MINERALIZATION MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS			
Massive mafic coarse textures are obscured dust only. STRUCTURES om <u>To</u> <u>Struct</u> CA 5.83 367.35 BD 80 7.35 367.62 FLT Fault zone - weak! ankeritized. Rock chips muddy brown-olive go From To 367.62 368.7 Granular massive mat	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS and uge. Litho ASHT ic coarse ash tuff. As unit #73 above. Sep	Medium green-grey colour. Rock looks fain sonate flooding. Core is well-fractured for or ERATION SR AK SR AK SC	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS	From To	Sample	
Massive mafic coarse textures are obscured dust only. STRUCTURES om To Struct CA 5.83 367.35 BD 80 7.35 367.62 FLT Fault zone - weak! ankeritized. Rock chips muddy brown-olive go From To 367.62 368.7	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS and uge. Litho ASHT ic coarse ash tuff. As unit #73 above. Sep ALT	Medium green-grey colour. Rock looks fain sonate flooding. Core is well-fractured for or ERATION SR AK SR AK SC Simple Geo TUFF arated by minor fault.	MINERALIZATION MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS	From To SA		
Massive mafic coarse extures are obscured dust only. STRUCTURES m To Struct CA 83 367.35 BD 80 35 367.62 FLT Fault zone - weak! nkeritized. Rock chips muddy brown-olive go From To 367.62 368.7 Granular massive mate STRUCTURES	ash tuff, terminated by fault at 367.35m. N by strong epidote overprinting. Weak carb Strain From To INT CC DO 365.83 367.62 S W Strong epidote overprint. VS and uge. Litho ASHT ic coarse ash tuff. As unit #73 above. Sep ALT	Medium green-grey colour. Rock looks fain sonate flooding. Core is well-fractured for or ERATION SR AK SR AK SC Simple Geo TUFF arated by minor fault.	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 365.8367.62 0.1 DIS	From To SA	Sample AMPLES	

From	То	Litho	Simple Geo
368.78	369.50	SESX	CHRT

Thin-bedded pyritic chert. Contorted and brecciated. Weakly pyritic. 5% very fine pyrite with trace pyrrhotite along contorted thin bedding planes. Unit cut by minor late white bull guartz veins with clots of black chlorite.

STRUCTURES	ALTERATION		MINERALIZATION		5	SAMPLES
From To Struct CA Strain From	rom To INT CC DO SR AK SC	From To	PY% Style Min Min% Min2 M2% Min	in3 M3% From	То	Sample
68.78 369.50 SSF S 368.78	8 369.50	368.7 8 69.50	5 DIS			
Contorted thin-bedded chert.		Trace fine pyrrh	notite.			
From To	Litho	Simple Geo				
369.50 392.89	ASHT	TUFF				
Massive to faintly bedded coarse a intercalations (as in above unit). Bedding ranges from 85 to 75 TCA EOH at 392.89m.	ash tuff to End Of Hole. Variably-textured with local fir A. 75 TCA at EOH.	ie ash tuff, and faint crystal tuff zo	ones, and several pyritic chert			
, , , , , , , , , , , , , , , , , , , ,	tite throughout as disseminations and wisps. 10% to on 380.55m; 5cm centred on 386.81m; 2cm centred	1.2				
Also from 371.17m to 371.28m, th	nere is a massive white bull quartz vein with chunks o	of dark green chlorite. There is a 2	cm carbonate bed centred on 388.48m.			

Overall colour is light gre0green. Alterration - strong epidote flooding. Weak chlorite and very weak sericite on partings. Weak carbonate flooding throughout. Although rock looks massive to faintly bedded in many areas, recurrence of thinly-bedded shorts indicates that probable fine bedding throughout the tuff unit has been obscured by alteration.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S	Strain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
369.50 392.88 BD 80		
	369.50 392.89 S W - VW	369.5092.89 0 DIS PO 1
	Strong epidote flooding; weak carbonate flooding.	10% to 15% pyrrhotite as disseminations, wisps and lamellae within thin-bedded chert units.
392.88 392.89 BD 75		
Bedding at EOH is 75 TC	A.	
From To	Litho	Simple Geo
392.89 392.90	ASHT	TUFF
End Of Hole		

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
392.89 392.90 NA 3	92.89 392.90	392.8 9 92.90 0 DIS			

APPENDIX VI

DIAMOND DRILL LOG for DDH 90K-13

Drill Log k	KU90013		ZONE	Signature:	Initials:
<i>From</i> 0.00	То 3.05	Litho OVBD	Simple Geo		
Casing/overbure	den				
STRUCT	URES	ALTERATION	MINERALIZATIO	ON SAMPLE	\overline{cS}
	uct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% M		Sample
00 3.05 N	NA	0.00 3.05	0.00 3.05 0 -		
From	То	Litho	Simple Geo		
3.05	10.90	ASHT			
bedding at 78 T disseminated py	CA. From 5.40r yrite. Gradation	m to 9.80m, bedding at 65 TCA, and from 9.80m to10.90n al lower contact.	indicating broad folding or broad undulations. From 3.05m to m, bedding at 50 TCA. Moderate carbonate as laminations.	0.25%	
STRUCT		ALTERATION	MINERALIZATIO		
	uct CA Strain 3D 78 78 TCA.	From To INT CC DO SR AK SC	From To PY% Style Min Min% M	Min2 M2% Min3 M3% From To S	Sample
J		3.05 10.90 M M	3.05 10.90 0.25 DIS s. 0.25% disseminated pyrite.		
40 9.80 E bedding at 6 80 10.89 E bedding at 5 0.89 10.90 C gradational low	BD 50 <i>50 TCA</i> CT				
From	To 13.11	Litho FXAT	Simple Geo		
Medium green,	moderately chlo		ident at 65 TCA. Mottled appearance due to faint in situ bre s. Trace disseminated pyrite. Gradational lower contact.	acciation and	
STRUCT	URES	ALTERATION	MINERALIZATIO		2S
	UCT CA Strain BD 65	From To INT CC DO SR AK SC	From To PY% Style Min Min% M	Min2 M2% Min3 M3% From To S	Sample
		0.90 13.11 M M	10.90 13.11 0.05 DIS		
		moderate carbonate flooding, weak to very weak epidote			
3.10 13.11 0	СТ				
gradational low	ver contact				

From	То	Litho	Simple Geo
13.11	14.04	ASHT	

Medium green, moderately chloritic mafic ash tuff. Bedding at 85 TCA. Very fine grained to locally muddy, but with less than 1 cm thick mafic feldspar crystal ash tuff interbeds. Upper 45 cm riddled with carbonate laminations. 1% pyrrhotite, restricted to two conformable less than 2 cm thick calcite seams. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION		SAMPLES
From To Struct CA Stra	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
3.11 14.03 BD 85			•	
bedding at 85 TCA				
	13.11 14.04 M M	13.11 14.04 0 - PO 1		
	moderate carbonate as laminations, moderately chloritic	1% pyrrhotite, restricted to two conformable less than 2 cm thick calcite seams.		
4.03 14.04 CT 75				
Lower contact sharp at 75 TCA.				
From To	Litho Si	mple Geo		
bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval	FXAT akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase cr Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. orite.	ystals are very weakly epidotized. Overall the crystal ash tuff is a		
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval o ash tuff beds. 2%-3% pyrrho	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase or Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	systals are very weakly epidotized. Overall the crystal ash tuff is a Soft sediment deformation evident in the thin disrupted muddy		SAMPIES
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval ash tuff beds. 2%-3% pyrrho STRUCTURES	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase or Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	systals are very weakly epidotized. Overall the crystal ash tuff is a Soft sediment deformation evident in the thin disrupted muddy MINERALIZATION	From To	SAMPLES Sample
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval ash tuff beds. 2%-3% pyrrho	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase or Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	systals are very weakly epidotized. Overall the crystal ash tuff is a Soft sediment deformation evident in the thin disrupted muddy	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase or Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	systals are very weakly epidotized. Overall the crystal ash tuff is a Soft sediment deformation evident in the thin disrupted muddy MINERALIZATION	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra 4.04 25.54 BD 65 Very weakly bedded at 60	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase or Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	systals are very weakly epidotized. Overall the crystal ash tuff is a Soft sediment deformation evident in the thin disrupted muddy MINERALIZATION	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra 4.04 25.54 BD 65 Very weakly bedded at 60	Adding is best determined from the ash tuff interbeds. Plagioclase of Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra 4.04 25.54 BD 65 Very weakly bedded at 60	Adding is best determined from the ash tuff interbeds. Plagioclase of Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% 14.04 25.55 0 - PO 0.05	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra 4.04 25.54 BD 65 Very weakly bedded at 60 to 70 TCA	Adding is best determined from the ash tuff interbeds. Plagioclase of Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite.	MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% 14.04 25.55 0 - PO 0.05	From To	
Light to medium green, wea bedded at 60 to 70 TCA; be rather montonous lithology. 20.05m to 20.07m: interval of ash tuff beds. 2%-3% pyrrho STRUCTURES From To Struct CA Stra 4.04 25.54 BD 65 Very weakly bedded at 60 to 70 TCA	akly to moderately chloritic, mafic feldspar crystal ash tuff with spora adding is best determined from the ash tuff interbeds. Plagioclase of Trace sulphides overall. Sharp lower contact at 62 TCA of interbedded very fine to muddy mafic ash tuff and crstal ash tuff. otite. Image: the start of the	MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% 14.04 25.55 0 - PO 0.05	From To	

contact at 65 TCA.

STRUCTURES						ALT	'ERA	ATI(ON					MIN	ERAL	IZAT	ION					SAMPLES
From To Struct CA	Strain	From	То	INT	CC 1	00		AK	SC	From	n 7	0	PY%	Style	Min	Min%	Min2	M2%	Min3 M3%	From	То	Sample

FromToLithoSimple Geo25.5525.77SESX

Medium to dark grey, thin-bedded pyrite-rich silica exhalite. Bedding at 65 TCA. 25% heavily disseminated and laminated pyrite, 2% pyrrhotite. Sharp lower contact at 65 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
25.55 25.76 BD 65			
bedding at 65 TCA			
	25.55 25.77	25.55 25.77 25 LB PO 2	
		25 % heavily disseminated and laminated pyrite; 2% pyrrhotite	
25.76 25.77 CT 65			
Sharp lower contact at 65			

TCA

From	То	Litho	Simple Geo
25.77	34.23	FXAT	

Light to medium green, weakly to moderately chloritic, mafic feldspar crystal ash tuff with sporadic thin mafic ash tuff interbeds as per 14.04m to 25.55m. Bedding at 65 TCA. Weak epidote alteration. Trace pyrite overall. Sharp lower contact at 60 TCA. 33.49m to 33.58m pyritic silica exhalite with 8% laminated and disseminated pyrite.

	STRU	U C I	TUR	ES							AL	.TEK	AT	ION					MIN	ERAL	IZAT	ION						SAMPLES
From	То	St	truct	CA	Strain	From	n	То	INT	CC		SR	AK		From	1	о	<i>PY</i> %	Style	Min	Min%	Min2	M2%	Min3	M3%	From	То	Sample
															25.7	' 33	.49	0.05	DIS									

trace disseminated pyrite.

25.77 34.22 BD 65 bedding at 65 TCA.

25.77 34.23 W - - - -

weak epidote alteration

33.49 33.58 8 LB pyritic silica exhalite with 8% laminated and disseminated pyrite. 33.58 34.23 0.05 DIS trace disseminated pyrite.

34.22 34.23 CT 60 sharp lower contact at 60 TCA.

From	То	Litho	Simple Geo
34.23	34.53	ASHT	

Light to medium green moderately chloritic mafic ash tuff. Highly deformed as evidenced by wormy "box folded" and very thin (< 4mm) carbonate beds-likely a soft-sediment deformation feature. Moderately epidote altered (pistachio green colour). 3% pyrite and 2% pyrrhotite, associated solely with the carbonate beds. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION		SAMPLES	5
From To Struct CA Strai	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From	To Sa	mple
4.23 34.52 SSF					
small-scale folds due to					
soft-sediment deformatoin.	34.23 34.53 M M	34.23 34.53 3 LB PO 2			
	moderate carbonate as thin beds, moderate epidote alteration.	3% pyrite and 2% pyrrhotite, associated solely with the			
		carbonate beds.			
4.52 34.53 CT 70					
sharp lower contact at 70					
<i>TCA.</i>					
From To	Litho Simple (Geo			
34.53 52.08	FXAT				
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA.	 Weak to moderate epidote alteration and very minor 			
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm	n. Weak to moderate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION		SAMPLES	3
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. STRUCTURES From To Struct CA	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA.	 Weak to moderate epidote alteration and very minor thick), occasionally with minor pyrite and pyrrhotite, cross- 	From		mple
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. <u>STRUCTURES</u> From To Struct CA Strain 4.53 52.07 BD 70	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA.	n. Weak to moderate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. STRUCTURES From To Struct CA	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. <u>STRUCTURES</u> From To Struct CA Strain 4.53 52.07 BD 70	aderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC 34.53 52.08 W VW - - - -	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. <u>STRUCTURES</u> From To Struct CA Strain 4.53 52.07 BD 70	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. <u>STRUCTURES</u> From To Struct CA Strain 4.53 52.07 BD 70	aderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC 34.53 52.08 W VW - - - - very minor carbonate as laminations, weak to moderate epidote, SC - - -	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. STRUCTURES From To Struct CA Strain 4.53 52.07 BD 70 faint bedding at 70 TCA. 2.07 52.08 CT 68 Lower contact sharp at 68	aderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC 34.53 52.08 W VW - - - - very minor carbonate as laminations, weak to moderate epidote, SC - - -	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. <u>STRUCTURES</u> From To Struct CA Strain 4.53 52.07 BD 70 faint bedding at 70 TCA.	aderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC 34.53 52.08 W VW - - - - very minor carbonate as laminations, weak to moderate epidote, SC - - -	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. STRUCTURES From To Struct CA Strain 4.53 52.07 BD 70 faint bedding at 70 TCA. 2.07 52.08 CT 68 Lower contact sharp at 68	aderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n From To INT CC DO SR AK SC 34.53 52.08 W VW - - - - very minor carbonate as laminations, weak to moderate epidote, SC - - -	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS 0.1% disseminated pyrite.	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA. STRUCTURES From To Struct CA Strait 4.53 52.07 BD 70 faint bedding at 70 TCA. 2.07 52.08 CT 68 Lower contact sharp at 68 TCA.	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n To INT CC DO SR AK SC 34.53 52.08 W VW - - - very minor carbonate as laminations, weak to moderate epidote, weakly to moderately chloritic. weakly to moderately chloritic.	Minerate epidote alteration and very minor a thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS 0.1% disseminated pyrite.	From		
Medium green, weakly to mo Faint bedding at 70 TCA. Fla carbonate laminations. Over cut the tuff at 80 to 90 TCA.STRUCTURESFromToStructCAStrain Strain4.5352.07BD70 faint bedding at 70 TCA.2.0752.08CT68 Lower contact sharp at 68 TCA.FromTo52.0852.51	oderately chloritic mafic feldspar crystal ash tuff with minor mafic ash tuff in ame structures (ash tuff into sandy tuff) indicate tops are uphole at 38.94m all 0.1% disseminated pyrite. Sporadic quartz-carbonate veins (up to 3 cm Lower contact sharp at 68 TCA. ALTERATION n To INT CC DO SR AK SC 34.53 52.08 W VW - very minor carbonate as laminations, weak to moderate epidote, weakly to moderately chloritic. Litho	Minerate epidote alteration and very minor thick), occasionally with minor pyrite and pyrrhotite, cross- MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 34.53 52.08 0.1 DIS 0.1% disseminated pyrite.	From		

	ST	RUG	CTURE	S				AI	.TERAT	ION			MINI	ERAL	JZATI	ON						SAMPLES	
Fro	om T	Го	Struct C	'A Strain	From	То	INT	CC DO	SR A	K SC	From	То	PY% Style	Min	Min%	Min2	M2%	Min3 M3	8% Fro	m	То	Sample	

From	То	Litho	Simple Geo
52.08	52.51	SESX	

Dark grey, thin-bedded, pyrite-rich silica exhalite. Bedding at 45 TCA. A thin black mudstone bed incorporated near the upper contact is dismembered along its length. Weak carbonate alteration. 12% laminated pyrrhotite, 4% pyrite. Sharp lower contact at 40 TCA.

STRUCTURES	ALTERATION	MINERALIZATION		SAMPLES
From To Struct CA Stra	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
2.08 52.50 BD 45				
bedding at 45 TCA.				
	52.08 52.51 W W	52.08 52.51 4 LB PO 12		
	weak carbonate alteration.	12% laminated pyrrhotite, 4% pyrite.		
2.50 52.51 CT 40				
Sharp lower contact at 40				
TCA.				
From To	Litho	Simple Geo		
52.51 57.71	ASHT			
Medium green, moderately ich silca exhalite horizons o quite numerous and therefo	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Weapoccur centered at 56.28m and 56.52m. (In fact, although these	ak to moderate carbonate as laminations. Two narrow pyrrhotite-pyrite silica exhalites encountered thus far in this hole are thin, they are tty associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm.		
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides	silica exhalites encountered thus far in this hole are thin, they are htly associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm.		SAMPLES
Medium green, moderately rich silca exhalite horizons of quite numerous and therefo	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. We occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides <u>ALTERATION</u>	silica exhalites encountered thus far in this hole are thin, they are not a sociated with narrow silica exhalites. Minor carbonate veining.	From To	SAMPLES Sample
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. We occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides <u>ALTERATION</u>	silica exhalites encountered thus far in this hole are thin, they are htly associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. MINERALIZATION	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T <u>STRUCTURES</u> From To Struct CA Stra	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC	silica exhalites encountered thus far in this hole are thin, they are htly associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. MINERALIZATION	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES From To Struct CA Struct 2.51 57.70 BD 70	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. We occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides <u>ALTERATION</u>	silica exhalites encountered thus far in this hole are thin, they are htly associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. MINERALIZATION	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES From To Struct CA Struct 2.51 57.70 BD 70	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC	silica exhalites encountered thus far in this hole are thin, they are http://www.silica.exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES From To Struct CA Struct 2.51 57.70 BD 70	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC 52.51 57.71 W W	silica exhalites encountered thus far in this hole are thin, they are htty associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 52.51 57.71 1 LB PO 1 1% pyrite and 1% pyrrhotite, dominantly assocated with thin	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES Trom To Struct CA Struct 2.51 57.70 BD 70 Bedding at 70 TCA 7.70 57.71 CT 60 Sharp lower contact at 60	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC 52.51 57.71 W W	silica exhalites encountered thus far in this hole are thin, they are htty associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 52.51 57.71 1 LB PO 1 1% pyrite and 1% pyrrhotite, dominantly assocated with thin	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T <u>STRUCTURES</u> Tom <u>To</u> <u>Struct</u> <u>CA</u> <u>Strat</u> 2.51 57.70 BD 70 Bedding at 70 TCA	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC 52.51 57.71 W W	silica exhalites encountered thus far in this hole are thin, they are htty associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 52.51 57.71 1 LB PO 1 1% pyrite and 1% pyrrhotite, dominantly assocated with thin	From To	
Medium green, moderately rich silca exhalite horizons of quite numerous and therefor Sharp lower contact at 60 T STRUCTURES Trom To Struct CA Struct 2.51 57.70 BD 70 Bedding at 70 TCA 7.70 57.71 CT 60 Sharp lower contact at 60	chloritized, thin-bedded mafic ash tuff. Bedding at 70 TCA. Wea occur centered at 56.28m and 56.52m. (In fact, although these re encouraging). Overall, 1% pyrite and 1% pyrrhotite, dominan CA, with carbonate laminations and dusty and coarse sulphides ALTERATION in From To INT CC DO SR AK SC 52.51 57.71 W W	silica exhalites encountered thus far in this hole are thin, they are htty associated with narrow silica exhalites. Minor carbonate veining. s concentrated over the basal 4 cm. <u>MINERALIZATION</u> From To PY% Style Min Min% Min2 M2% Min3 M3% 52.51 57.71 1 LB PO 1 1% pyrite and 1% pyrrhotite, dominantly assocated with thin	From To	

Medium to dark grey, pyrrhotite-pyrite rich silica exhalite. Bedding at 65 TCA. 2 cm quartz-carbonate vein (conformable) occurs near upper contact. Overall 20%

po, 5% py and 1% cpy as laminations; cpy as late blebs. Lower contact in broken core.

FromToStructCAStrainFromToINTCCDOSRAKSCFromToPY9	PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample

57.71 57.78 BD 65

bedding at 65 TCA.

FromToLithoSimple Geo57.7157.79SESX

Medium to dark grey, pyrrhotite-pyrite rich silica exhalite. Bedding at 65 TCA. 2 cm quartz-carbonate vein (conformable) occurs near upper contact. Overall 20% po, 5% py and 1% cpy as laminations; cpy as late blebs. Lower contact in broken core.

STRUCTURES ALTERATION MINERALIZATION SAMPLES rom To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min2 M2% Min3 M3% From To Samples	
OM = 10 Struct CA Struct CA Struct From = 10 INT CC DO SK AK SC From = 10 From = 10 From = 10 From = 10 Sample	ple
57.71 57.79 VW VW 57.71 57.79 5 LB CP 1 PO 20	
very weak carbonate alteration. 20% po, 5% py and 1% cpy as laminations; cpy as late blebs.	
78 57.79 CT	
Lower contact in broken	
core.	
From To Litho Simple Geo	
57.79 62.64 FXAT	
Medium green, weakly chloritic, medium-grained, massive mafic feldspar crystal ash tuff. Very weakly epidotized. Very minor carbonate laminations. Sub-trace pyrite. Sharp lower contact at 60 TCA.	
STRUCTURES ALTERATION MINERALIZATION SAMPLES rom To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% From To Samp	nle
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ne
massive	
57.79 62.64 VW VW 57.79 62.64 0.01 DIS	
very weakly epidotized. Very minor carbonate laminations Sub-trace pyrite.	
63 62.64 CT 60	
Sharp lower contact at 60	
TCA.	
From To Litho Simple Geo	
62.64 62.77 SESX	
Dark grey, thin-bedded, pyrrhotite-rich silica exhalite. Bedding at 68 TCA. 25% banded semi-massive pyrrhotite and 2% pyrite as late 2mm subhedral to eubedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA	
euhedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA.	
euhedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA. STRUCTURES ALTERATION SAMPLES	
STRUCTURES ALTERATION SAMPLES To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% From To SampleS	ole
euhedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA. STRUCTURES ALTERATION MINERALIZATION SAMPLES rom To Struct CA Strain From To PY% Style Min Min% Min3 M3% From To Samples 64 62.76 BD 68 From From From From From Min% Min% Min3 M3% From To Samples	ole
euhedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA. STRUCTURES ALTERATION MINERALIZATION SAMPLES rom To Struct CA Strain From To PY% Style Min Min3 M3% From To Samples 64 62.76 BD 68 Bedding at 68 TCA. From To PY% Style Min Min3 M3% From To Samples	ple
euhedral crystals overprinting pyrrhotite. Sharp lower contact at 75 TCA. STRUCTURES ALTERATION MINERALIZATION SAMPLES rom To Struct CA Strain From To PY% Style Min Min% Min3 M3% From To Samples 64 62.76 BD 68 From From From From From Min% Min% Min3 M3% From To Samples	ple

-	-		
From	To 62.77	Litho SESX	Simple Geo (Continued from previous page)
62.64	02.77	5553	
STRUC	TURES	ALTERATION	MINERALIZATION SAMPLES
	Struct CA Stra	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
62.76 62.77			
Sharp lower o TC	Contact at 75 CA.		
From	То	Litho	Simple Geo
62.77	63.22	FXAT	
			200/ matic ach tuff interhade. Dadding at CE TCA Venumerk astherate
		yrite. Sharp lower contact at 65 TCA.	30% mafic ash tuff interbeds. Bedding at 65 TCA. Very weak carbonate
STRUC	TURES	ALTERATION	MINERALIZATION SAMPLES
	Struct CA Stra		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
2.77 63.21	BD 65		
Bedding a	at 65 TCA.		
		62.77 63.22 VW VW	62.77 63.22 0.01 DIS
		very weak carbonate as laminations	Sub-trace pyrite.
63.21 63.22			
Sharp lower o	contact at 65 CA.		
From	То	Litho	Simple Geo
63.22	73.74	FXAT	
Light to medi	um green, wea	kly chloritic and weakly epidotized, medium-grained, faintly prioclase crystals are cloudy white with somewhat diffuse of	-bedded mafic feldspar crystal ash tuff with minor interbedded mafic ash utlines. Minor carbonate lamination. A 2 cm bed of silica exhalite with 5%
pyrrhotite occ	curs centered a		nated pyrite and pyrrhotite. Gradational lower contact, with crystals fading
out downhole).		
STRUC		ALTERATION	MINERALIZATION SAMPLES
	Struct CA Stra	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
3.22 73.73	BD 68		
Bedding a	at 68 TCA.	63.22 73.74 VW VW	63.22 73.74 0.25 DIS PO 0.25
		very weak epidote and carbonate alteration.	0.25% disseminated pyrite and pyrrhotite
0 70 70 74	OT		0.20% dissominated pyrite and pyritolite
3.73 73.74			

gradational lower contact.,

FromToLithoSimple Geo73.7476.66ASHT

Light to medium green, moderately to well-bedded, chloritic mafic ash tuff. Bedding at 70 TCA. Minor carbonate laminations. Weakly epidotized. 1% pyrite as blebby disseminations. Gradational lower contact.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES			
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample			
73.74 76.65 BD 70	73.74 76.65 BD 70				
bedding at 70 TCA.	bedding at 70 TCA.				
	73.74 76.66 W W	73.74 76.66 1 DIS			
	weak carbonate and epidote alteration.	% pyrite as blebby disseminations.			
76.65 76.66 CT					

gradational lower contact.

From	То	Litho	Simple Geo
76.66	78.43	FXAT	

Light green weakly chloritic, weakly epidote altered, massive, medium grained mafic feldspar crystal ash tuff. Minor carbonate laminations and veins. 1% coarse pyrite blebs throughout. Gradational lower contact.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strat	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
76.66 78.42 NA		
massive		
	76.66 78.43 W W	76.66 78.43 1 BLB
	weak epidote, chlorite and carbonate alteration.	1% coarse pyrite blebs throughout.
78.42 78.43 CT		
gradational lower contact.		
From To	Litho	Simple Geo
78.43 79.78	ASHT	

Light green, faintly bedded, moderately chloritic mafic ash tuff with minor intrerbedded mafic feldspar crystal ash tuff. Moderate epidote alteration throughout. Bedding rather faint at 68 TCA. Very minor carbonate within matrix and as very rare laminations. 2%-3% fine pyrrhotite and 2% fine pyrite as bedding-parallel flecks. Gradational lower contact.

STRUCTURES ALTERATION		MINERALIZATION	SAMPLES		
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample		
78.43 79.77 BD 68					
	78.43 79.78 M W	78.43 79.78 2 DIS			
	Moderate epidote alteration throughout. Weakly chloritic. Very minor carbonate within matrix and as very rare laminations.	2%-3% fine pyrrhotite and 2% fine pyrite as bedding parallel flecks.			

From To	Litho	Simple Geo (Continued from previous page)
78.43 79.78	ASHT	(Continued nom previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
79.77 79.78 NA Gradational lower contact	4	
From To	Litho	Simple Geo
79.78 80.42	FXAT	Simple Geo
		tuff with thin ash tuff interbeds. Bedding as discerned in the ash tuff is at
	inated pyrite and pyrrhotite. Lower contact at 70 TCA.	tun with thin ash tun interpeus. Deduing as discerned in the ash tun is at
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
79.78 80.41 BD 70		
Bedding as discerned in the ash tuff is at 70 TCA.		
	79.78 80.42 M	79.78 80.42 2 DIS PO 2
	moderately epidote altered	2% each disseminated pyrite and pyrrhotite.
80.41 80.42 CT 70		
Lower contact at 70 TCA		
From To	Litho	Simple Geo
80.42 85.51	ASHT	
	chloritic and moderately epidote-altered mafic ash tuff with m ations. Overall, 1% disseminated pyrite and pyrrhotite except	inor (<10cm) mafic crystal ash tuff interbeds. Bedding at 70 to 80 TCA. as noted. Lower contact gradational.
	m grey, moderately carbonate-altered ash tuff with 10% pyrrl	0
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA St		FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	80.42 84.01 M W weak carbonate, moderate epidote alteration.	80.42 84.01 1 DIS PO 1 1% disseminated pyrite and pyrrhotite.
80.42 85.50 BD 75	weak carbonale, moderale epidole alteration.	170 disseminated pyrite and pyritolite.
bedding at 70 to 80 TCA.		
J III	84.01 84.39 M M	84.01 84.39 4 LB PO 10
	moderate carbonate, moderate epidote alteration	10% pyrrhotite, 4% pyrite as fine laminations.
	84.39 85.51 M W	84.39 85.51 1 DIS PO 1
	weak carbonate, moderate epidote alteration.	1% disseminated pyrite and pyrrhotite.
85.50 85.51 CT lower contact gradational	!	

FromToLithoSimple Geo85.5188.55FXAT

Light to medium green, medium-grained weakly chloritized and epidotized, weakly-bedded mafic feldspar crystal ash tuff with very minor interbedded ash tuff. Bedding at 75 TCA. Very minor carbonate as laminations. 0.1% disseminated pyrite. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Struct	in From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
85.51 88.54 BD 75		
bedding at 75 TCA.		
	85.51 88.55 W W	85.51 88.55 0.1 DIS
	weak carbonate, chlorite and epidote alteratoin.	0.1% disseminated pyrite.
88.54 88.55 CT 75		
lower contact at 75 TCA.		

From	То	Litho	Simple Geo
88.55	88.67	SEXL	

Dark grey, thin-bedded silica exhalite. Bedding at 75 TCA. trace pyrite. Lower contact sharp at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strai	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
88.55 88.66 BD 75				
Bedding at 75 TCA.				
	88.55 88.67	88.55 88.67 0 -		
	no significant alteration	trace pyrite		
88.66 88.67 CT 75				
Lower contact at 75 TCA.				

From	То	Litho	Simple Geo
88.67	92.00	FXAT	

Light to medium green, medium-grained, weakly chloritized and epidotized, weakly-bedded mafic feldspar crystal ash tuff as per 85.51m to 88.55m. Bedding at 75 TCA. Very minor carbonate laminations. Trace disseminated pyrite. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
88.67 91.99 BD 75		
bedding at 75 TCA.		
	88.67 92.00 W VW	88.67 92.00 0.05 DIS
	very weak carbonate and weak epidote-chlorite alteratoin.	ace disseminated pyrite.
91.99 92.00 CT 70		
Lower contact sharp at 70 TCA.		

Simple Geo То From Litho SEXL 92.00 92.12

Medium grey, well-bedded silica exhalite. Bedding at 70 TCA. Weak to moderate ankerite as partings/laminations. 6% pyrrhotite, 2% pyrite as very fine laminations. Sharp lower contact at 70 TCA.

	ALTERATION	MINERALIZATION		SAMPLES
STRUCTURES From To Struct CA Struct		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	SAMPLES
2.00 92.11 BD 70	an from fo five cc bo sk Ak sc	170m 10 1170 Siyle Min Min/o Min/2 M2/o Min/3 M3/o	110m 10	Sumple
bedding at 70 TCA.				
bodding at ro ron.	92.00 92.12 M M	92.00 92.12 2 LB PO 6		
	Weak to moderate ankerite as partings/laminations	6% pyrrhotite, 2% pyrite as very fine laminations.		
2.11 92.12 CT 70				
sharp lower contact at 70				
TCA				
From To	Litho Simple C	Geo		
92.12 96.53	FXAT			
Medium green, moderately	chloritic, thin-bedded, variably-textured mafic feldspar crystal ash tuff with n	minor ash tuff interbeds. Moderately well-bedded at 75 to		
85 TCA. Very weak carbon	ate alteration as laminations. Weak to moderate epidote alteration. The ash	tuff interbeds contain lenses of coarse-grained feldspar		
crystal ash tuff as from 92.8	50m to 92.95m. 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	Gradational lower contact.		
STRUCTURES	ALTERATION	MINERALIZATION		SAMPLES
				G 1
From To Struct CA Struct	iin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
From To Struct CA Struct 2.12 96.52 BD 80	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
2.12 96.52 BD 80 Moderately well bedded at	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
2.12 96.52 BD 80			From To	Sample
2.12 96.52 BD 80 Moderately well bedded at	92.12 96.53 M VW	92.12 96.53 0.1 DIS PO 0.15	From To	Sample
2.12 96.52 BD 80 Moderately well bedded at			From To	Sample
2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate	92.12 96.53 0.1 DIS PO 0.15	From To	Sample
2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate	92.12 96.53 0.1 DIS PO 0.15	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. 	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. 	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To 96.53 97.70 	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To 96.53 97.70 Medium green, chloritic, modeliantic, model	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To 96.53 97.70 Medium green, chloritic, mo alteration. Approximately 86 	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.	From To	Sample
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To 96.53 97.70 Medium green, chloritic, mod alteration. Approximately 89 each pyrite and pyrrhotite a 	92.12 96.53 M VW	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.		
 2.12 96.52 BD 80 Moderately well bedded at 75 to 85 TCA 6.52 96.53 CT Gradational lower contact. From To 96.53 97.70 Medium green, chloritic, mo alteration. Approximately 86 	92.12 96.53 M VW Very weak carbonate alteration as laminations. Weak to moderate epidote alteration, moderately chloritic. Litho Simple C ASHT Simple alterately well-bedded mafic ash tuff with minor interedded mafic feldspar cr % conformable and cross-cutting carbonate veins overall, with 30% pyrrhotic s disseminations in the ash tuff. Lower contact at 80 TCA.	92.12 96.53 0.1 DIS PO 0.15 0.15% disseminated pyrrhotite, 0.1% disseminated pyrite.		Sample SAMPLES Sample

Bedding at 75 TCA

96.53 97.69 BD 75

FromToLithoSimple Geo96.5397.70ASHT

Medium green, chloritic, moderately well-bedded mafic ash tuff with minor interedded mafic feldspar crystal ash tuff. Bedding at 75 TCA. Weak epidote alteration. Approximately 8% conformable and cross-cutting carbonate veins overall, with 30% pyrrhotite as massive bands and laminations. Otherwise, 1% each pyrite and pyrrhotite as disseminations in the ash tuff. Lower contact at 80 TCA.

STRUC	CTURES	ALTERATION	MINERALIZATION		SAMPLES
From To	Struct CA Strain	1 From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From	To Sample
		96.53 97.70 W W	96.53 97.70 1 DIS PO 3.5		
		weak epidote alteration, moderately chloritic, minor carbonate a laminations.	1% each pyrite and pyrrhotite as disseminations in the ash tuff. Additional 2.5% pyrrhotite as massive bands and laminations in conformable and cross-cutting carbonate veins.		
7.69 97.70	CT 80				
Lower conta	act at 80 TCA.				
From	То	Litho Sim	ple Geo		
97.70	100.08	FXAT			
99.10m to 99	9.53m: brecciate	d mafic crystal ash tuff. Annealed by rusty (pyrite oxidized) carbona			
weakly shea 99.10m to 99			te.		
99.10m to 99			te. MINERALIZATION		SAMPLES
99.10m to 99	9.53m: brecciate	d mafic crystal ash tuff. Annealed by rusty (pyrite oxidized) carbona ALTERATION		From	SAMPLESToSample
99.10m to 99	9.53m: brecciate CTURES Struct CA Strain	d mafic crystal ash tuff. Annealed by rusty (pyrite oxidized) carbona ALTERATION	MINERALIZATION	From	
99.10m to 99 STRUC From To 7.70 99.10	9.53m: brecciate CTURES Struct CA Strain	ALTERATION I From To INT CC DO SR AK SC	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From	
99.10m to 99 STRUC From To 7.70 99.10	9.53m: brecciate CTURES Struct CA Strain BD 70	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5	From	
99.10m to 99 STRUC From To 7.70 99.10	9.53m: brecciate CTURES Struct CA Strain BD 70	ALTERATION I From To INT CC DO SR AK SC	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From	
99.10m to 99 STRUC From To 7.70 99.10	9.53m: brecciate CTURES Struct CA Strain BD 70	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5 Overall, 0.5% pyrite, 1.5% pyrrhotite associated with fracture-	From	
99.10m to 99 STRUC From To 7.70 99.10 Bedding at 0 9.10 99.53 brecciated a annealed m	9.53m: brecciate CTURES Struct CA Strain BD 70 65 to 75 TCA.	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5 Overall, 0.5% pyrite, 1.5% pyrrhotite associated with fracture-	From	
99.10m to 99 STRUC From To 7.70 99.10 Bedding at 0 9.10 99.53 brecciated a annealed m crystal 9.53 100.07	9.53m: brecciate CTURES Struct CA Strain BD 70 65 to 75 TCA. BX and carbonate- nafic feldspar I ash tuff. BD 70	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5 Overall, 0.5% pyrite, 1.5% pyrrhotite associated with fracture-	From	
99.10m to 99 STRUC From To 7.70 99.10 Bedding at 0 9.10 99.53 brecciated a annealed m crystal 9.53 100.07 Bedding at 0	9.53m: brecciate CTURES Struct CA Strain BD 70 65 to 75 TCA. BX and carbonate- nafic feldspar I ash tuff. BD 70 65 to 75 TCA.	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5 Overall, 0.5% pyrite, 1.5% pyrrhotite associated with fracture-	From	
99.10m to 99 STRUC From To 7.70 99.10 Bedding at 0 9.10 99.53 brecciated a annealed m crystal 9.53 100.07 Bedding at 0 9.00.07 100.08	9.53m: brecciate CTURES Struct CA Strain BD 70 65 to 75 TCA. BX and carbonate- nafic feldspar I ash tuff. BD 70 65 to 75 TCA.	ALTERATION I From To INT CC DO SR AK SC 97.70 100.08 W	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 97.70100.08 0.5 FF PO 1.5 Overall, 0.5% pyrite, 1.5% pyrrhotite associated with fracture-	From	

From To Litho Simple Geo 100.08 100.16 SESX

Medium grey, thin-bedded pyrrhotite-rich silica exhalite. Bedding at 80 TCA. 5%-7% pyrrhotite as fine laminations. Sharp lower contact at 80 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str	ain From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
100.08 100.15 BD 80			
Bedding at 80 TCA.			
	100.08 100.16	100.0 8 00.16 0 - PO 6	
	no significant alteration	5%-7% pyrrhotite as fine laminations.	
100.15 100.16 CT 80			
Sharp lower contact at 80			
TCA.			
From To	Litho Simpl	e Geo	
100.16 102.20	FXAT		
	moderately epidote-altered, mafic to intermediate feldspar crystal ash tu	ff Faint hedding at 75 TCA Very minor carbonate as	
laminations. 0.25% each p	yrite and pyrrhotite as disseminations. Weakly sheared lower contact; sh	arp at 70 TCA.	
	· · · ·	·	CAMPLEC
STRUCTURESFromToStructCAStr	ALTERATION ain From To INT CC DO SR AK SC	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	SAMPLESFromToSample
100.16 102.19 BD	and From To INT CC DO SK AK SC	From 10 F176 Sivie Min Min/6 Min2 M2% Min3 M3%	From To Sumple
Faint bedding at 75 TCA.	100.16 102.20	100.1602.20 0.25 DIS PO 0.25	
	Weakly sheared lower contact; sharp at 70 TCA.	0.25% each pyrite and pyrrhotite as disseminations.	
400 40 400 00 OT			
102.19 102.20 CT			
From To	Litho Simpl	e Geo	
102.20 102.63	SEXL		
Modium to dark grove thin	bedded silica exhalite. Bedding at 67 TCA. Moderate carbonate along be	dding partings 0.5% to 1% purito along laminations. Sharp	
lower contact at 75 TCA.	bedded sinca exhance. Dedding at 07 TCA. Moderate carbonate along be	dung partings. 0.5 % to 1 % pyrite along laminations. Shaip	
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Str		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
102.20 102.62 BD 67		110m 10 1170 Siye Min Min/o Winz M2/o Wins M5/o	Trom To Sumple
Bedding at 67 TCA.			
bodding at of TOA.	102.20 102.63 M M	102.2002.63 0.75 LB	
	Moderate carbonate along bedding partings.	0.5% to 1% pyrite along laminations.	
400.00 400.00 OT 75			
102.62 102.63 CT 75			
Sharp lower contact at 75 TCA.			
104.			

Wednesday, August 12, 2009

From To	Litho	Simple Geo
102.63 107.64	FXAT	
Light green weakly-bedd	ed weakly epidote-altered matic to intermediate feldspar crysta	I ash tuff. Bedding at 60 TCA. Weakly to moderately sheared over
upper 20 cm. Weak carb	onate as laminations. 0.5% disseminated pyrite, 1% disseminated	ed pyrrhotite. Sharp lower contact at 70 TCA.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
102.63 107.63 BD 60 bedding at 60 TCA.		
bedding at 00 TCA.	102.63 107.64 W VW	102.6 3 07.64 0.5 DIS PO 1
	weakly epidote altered, very weak carbonate as laminat	
107.63 107.64 CT 70		
Sharp lower contact at 7 TCA.	0	
From To	Litho	Simple Geo
107.64 107.71	QCSX	
	yrite-pyrrhotite rich, silica-carbonate exhalite. Bedding at 70 TCA % pyrrhotite as laminations. Sharp lower contact at 67 TCA.	A, and locally contorted. Moderate carbonate as thin beds and
STDUCTUDES		
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA S		From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
From To Struct CA S 07.64 107.70 BD 70		
From To Struct CA S	train From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
From To Struct CA S 107.64 107.70 BD 70	train From To INT CC DO SR AK SC 107.64 107.71 - </td <td>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5</td>	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5
FromToStructCAS07.64107.70BD70bedding at 70TCA.	train From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
From To Struct CA S 07.64 107.70 BD 70 bedding at 70 TCA. 07.70 107.71 CT 67	trainFromToINTCCDOSRAKSC107.64107.71no significant alteration	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5
From To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA.	trainFromToINTCCDOSRAKSC107.64107.71no significant alteration	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5
From To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6	trainFromToINTCCDOSRAKSC107.64107.71no significant alteration	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5
From To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA.	train From To INT CC DO SR AK SC 107.64 107.71 - - - - - no significant alteration	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations
To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention	train From To INT CC DO SR AK SC 107.64 107.71 - - - - - - no significant alteration Z Litho FXAT	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations
To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. 107.70 107.71 TO 111.34 Very pale green, weakly weak	train From To INT CC DO SR AK SC 107.64 107.71 - - - - - - no significant alteration Z Litho FXAT	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations
To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. Intractional contact at 6 TCA. Intractional contact at 6 TCA. Intractional contact at 6 Intractin contact at 6 In	train From To INT CC DO SR AK SC 107.64 107.71 - <td< td=""><td>From To PY% Style Min Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations</td></td<>	From To PY% Style Min Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations
FromToStructCAS107.64107.70BD70bedding at 70TCA.107.70107.71CT67Sharp lower contact at 6TCA.To107.71111.34Very pale green, weakly Very weak carbonate asSTRUCTURES	train From To INT CC DO SR AK SC 107.64 107.71 - <td< td=""><td>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations</td></td<>	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations
From To Struct CA S 107.64 107.70 BD 70 bedding at 70 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. 107.70 107.71 CT 67 Sharp lower contact at 6 TCA. 107.71 107.71 111.34 Very pale green, weakly of Very weak carbonate as STRUCTURES From To Struct CA S 107.71 111.33 BD 70	train From To INT CC DO SR AK SC 107.64 107.71 - <td< td=""><td>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations 5% pyrite, 5% pyrrhotite as laminations Simple Geo Simple Geo Min2 M2% Min3 M3% From To Sample iate to mafic feldspar crystal ash tuff. Very faint bedding at 70 TCA. eminations. Lower contact sharp at 70 TCA. SAMPLES</td></td<>	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations 5% pyrite, 5% pyrrhotite as laminations Simple Geo Simple Geo Min2 M2% Min3 M3% From To Sample iate to mafic feldspar crystal ash tuff. Very faint bedding at 70 TCA. eminations. Lower contact sharp at 70 TCA. SAMPLES
FromToStructCAS107.64107.70BD70bedding at 70TCA.107.70107.71CT67Sharp lower contact at 6TCA.To107.71111.34Very pale green, weakly Very weak carbonate asSTRUCTURES	train From To INT CC DO SR AK SC 107.64 107.71 - <td< td=""><td>From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations 5% pyrite, 5% pyrrhotite as laminations Simple Geo Simple Geo Min2 M2% Min3 M3% From To Sample iate to mafic feldspar crystal ash tuff. Very faint bedding at 70 TCA. eminations. Lower contact sharp at 70 TCA. SAMPLES</td></td<>	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 107.6407.71 5 LB PO 5 5% pyrite, 5% pyrrhotite as laminations 5% pyrite, 5% pyrrhotite as laminations Simple Geo Simple Geo Min2 M2% Min3 M3% From To Sample iate to mafic feldspar crystal ash tuff. Very faint bedding at 70 TCA. eminations. Lower contact sharp at 70 TCA. SAMPLES

FromToLithoSimple Geo107.71111.34FXAT

Very pale green, weakly epidotized, medium- to coarse-grained, faintly-bedded intermediate to mafic feldspar crystal ash tuff. Very faint bedding at 70 TCA. Very weak carbonate as sporadic ilaminations. 0.25% each pyrite and pyrrhotite as disseminations. Lower contact sharp at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
	107.71 111.34 W VW	107.7111.34 0.25 DIS PO 0.25		
	Very weak carbonate as sporadic laminations, weak epidote alteration	0.25% each pyrite and pyrrhotite as disseminations		
11.33 111.34 CT 70				
Lower contact sharp at 70				
TCA.				
From To	Litho Simple 0	Geo		
111.34 119.28	ASHT			
fine to fine ash. Bedding at 7 dominantly as thin lamination	lote-altered, thin-bedded intermediate (?) to mafic ash tuff. With minor inter 2 TCA. Very minor carbonate as laminations. Interbedded silica exhalite on s. Gradational lower contact. nick, thin-bedded pyrrhotite-rich silica exhalite layer with 8% laminated pyr	ccurs at upper contact as noted. 2% pyrite, 2% pyrrhotite		
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain	n From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
1.34 119.27 BD 72				
Bedding at 72 TCA	444 04 440 00 W W			
	111.34 119.28 W W weak carbonate and epidote alteration	111.3419.28 2 LB PO 2 2% pyrite. 2% pyrrhotite dominantly as thin laminations		
19.27 119.28 CT				
Gradational lower contact				
From To	Litho Simple 0	200		
	FXAT			
119.28 121.67				
	altered, weakly-bedded intermediate feldspar crystal ash tuff. Bedding at ite. Otherwise trace disseminated pyrite and pyrrhotite in the tuff. Lower c			
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES	
From To Struct CA Strain		From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample	
9.28 121.66 BD 75				
faint bedding at 75 TCA.				
	119.28 121.67 M M	119.2821.67 0.05 DIS PY 1		
	moderate carbonate and weak epidote alteration	trace py and po in the tuff; 1% po associated with carbonate laminations.		

21.66 121.67 CT gradational lower contact. From To Litho Simple Geo 121.67 122.68 ASHT Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3% pyrthotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION MINERALIZATION From To INT CC 121.67 122.68 M - - Struct CA Struin From To INT CC 121.67 122.68 M - - 121.672.68 0 - PV% Style Min Min% Min2 M2% Min3 M3% From To Sample 121.67 122.68 M - - 121.672.68 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 - PO 3 Lower contact of the esh tuff sharp at 65 TCA Etho Simple Geo Simple Geo Simple Geo	From To 119.28 121.67	Litho FXAT	Simple Geo (Continued from previous page)
21.66 121.67 CT gradational lower contact. From To Litho Simple Geo 121.67 122.68 ASHT Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3% pyrrhotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION MINERALIZATION From To INT CC DO SR 121.67 122.68 M - - 121.67 Struct Min3 M3% From To Sample 21.67 122.68 M - - 121.67 122.68 - P0 3 121.67 122.68 M - - 121.67 122.68 - P0 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Lower contact of the ash tuff sharp at 65 TCA Itho Simple Geo 3% pyrrhotite associate with carbonate intervals.	STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
gradational lower contact. To Litho Simple Geo 121.67 122.68 ASHT Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3%, pyrrhotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION MINERALIZATION SAMPLES From To INT CC DO SR AK SC From To PY% Style Min Min? Min3 M3% From To Sample 21.67 122.68 M - - 121.67 22.68 To Sample 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Simple Geo 3% pyrrhotite associate with carbonate intervals. Simple Geo From To Litho Simple Geo Simple Geo Simple Geo	om To Struct CA Str	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
From 121.67 To 122.68 Litho Simple Geo Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3% pyrrhotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION SAMPLES From To INT CC DO SR AK SC 21.67 122.68 M To INT CC DO SR AK SC 21.67 122.68 M - - 121.6722.68 0 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Even contact of the ash tuff sharp at 65 TCA. Simple Geo From To Litho Simple Geo Simple Geo			
121.67 122.68 ASHT Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3% pyrrhotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION SAMPLES From To INT CC DO SR AK SC From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample 1.67 122.68 M - - 121.67 Struct chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 22.67 121.67 122.68 M - 0 Sample 22.67 122.68 CT 65 22.67 125 25 22.67 125 25 25 25 25 25 25 </td <td>gradational lower contact.</td> <td></td> <td></td>	gradational lower contact.		
Medium green, moderately chloritic, thin-bedded, intermediate to mafic ash tuff with thin interbedded limestone or carbonate exhalative. Bedding at 65 TCA. 3% pyrrhotite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. STRUCTURES ALTERATION SAMPLES From To INT CC DO SR AK SC 21.67 122.67 BD 65 Bedding at 65 TCA. Min3 M3% From To Sample 21.67 122.68 M - - 121.67 22.68 0 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Lower contact of the ash tuff sharp at 65 TCA. Image: Content of the ash tuff sharp at 65 TCA. Simple Geo Simple Geo	From To	Litho	Simple Geo
synthetite associate with carbonate intervals. 10cm thick bull quartz vein (conformable) from 122.03m to 122.13m. Lower contact of the ash tuff sharp at 65 TCA. MINERALIZATION SAMPLES From To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min3 M3% From To Sample 21.67 122.67 BD 65 Bedding at 65 TCA. 121.67 122.68 0 - PO 3 121.67 122.68 M - - - 121.67 22.68 0 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Lower contact of the ash tuff sharp at 65 TCA Simple Geo From To Litho Simple Geo Simple Geo Simple Geo	121.67 122.68	ASHT	
Bedding at 65 TCA. 121.67 122.68 M 121.6722.68 0 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 2.67 122.68 CT 65 3% pyrrhotite associate with carbonate intervals. Lower contact of the ash tuff sharp at 65 TCA Litho Simple Geo	om To Struct CA Str		
Bedding at 65 TCA. 121.67 122.68 M 121.6722.68 0 - PO 3 Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Simple Geo Lower contact of the ash tuff sharp at 65 TCA Litho Simple Geo		rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
121.67 122.68 M			
Moderate chlorite; weak epidote 3% pyrrhotite associate with carbonate intervals. 22.67 122.68 CT 65 Lower contact of the ash tuff sharp at 65 TCA Image: Comparison of the com	bedding at 00 TOA.	121.67 122.68 M	121.6 7 22.68 0 - PO 3
Lower contact of the ash tuff sharp at 65 TCA From To Litho Simple Geo			
tuff sharp at 65 TCA From To Litho Simple Geo			3% pyrrhotite associate with carbonate intervals.
From To Litho Simple Geo	.67 122.68 CT 65		3% pyrrhotite associate with carbonate intervals.
	Lower contact of the ash		3% pyrrhotite associate with carbonate intervals.
	Lower contact of the ash tuff sharp at 65 TCA	Moderate chlorite; weak epidote	
	Lower contact of the ash tuff sharp at 65 TCA From To	Moderate chlorite; weak epidote	
	Lower contact of the ash tuff sharp at 65 TCA From To 122.68 128.27 Light green, weakly to mod laminations and rare seam	Moderate chlorite; weak epidote Litho FXAT derately epidote-altered, faintly-bedded intermediate(?) felds as up to 3cm thick. Trace pyrite. 2%-3% pyrrhotite as elonga	
	Lower contact of the ash tuff sharp at 65 TCA From To 122.68 128.27 Light green, weakly to mod laminations and rare seam carbonate. Lower contact of	Moderate chlorite; weak epidote Litho FXAT derately epidote-altered, faintly-bedded intermediate(?) felds is up to 3cm thick. Trace pyrite. 2%-3% pyrrhotite as elonga gradational.	Simple Geo spar crystal ash tuff. Bedding at 72 TCA. Moderate carbonate alteration as ate flecks paralleling bedding, and as laminations associated with
Carbonate. Lower contact gradational. STRUCTURES ALTERATION MINERALIZATION SAMPLES From To Struct CA Strain From To INT CC DO SR AK SC From To PY% Style Min Min% Min3 M3% From To Sample	Lower contact of the ash tuff sharp at 65 TCA From To 122.68 128.27 Light green, weakly to mod laminations and rare seam carbonate. Lower contact of STRUCTURES	Moderate chlorite; weak epidote Litho FXAT derately epidote-altered, faintly-bedded intermediate(?) felds us up to 3cm thick. Trace pyrite. 2%-3% pyrrhotite as elonga gradational. ALTERATION	Simple Geo spar crystal ash tuff. Bedding at 72 TCA. Moderate carbonate alteration as ate flecks paralleling bedding, and as laminations associated with MINERALIZATION SAMPLES

122.68 128.26 BD 72

Bedding at 72 TCA.

122.68 128.27 M M - - - - -

moderate carbonate as laminations and rare seams; weak to moderate epidote.

122.6828.27 0.05 DIS PO 2.5

Trace pyrite. 2%-3% pyrrhotite as elongate flecks paralleling bedding, and as laminations associated with carbonate.

128.26 128.27 CT

gradational lower contact.

FromToLithoSimple Geo128.27129.25ASHT

Light green, moderately epidotized, thin-bedded intermediate to mafic ash tuff with interbedded pyrrhotite-rich silica-carbonate exhalite. Maximum thickness of the exhalites is 5 cm. Bedding at 70 TCA. Weak to moderate carbonate alteration as laminations. Sharp lower contact at 70 TCA. Exhalite intervals occur as follows:

128.72m to 128.77m 40% contorted massive pyrrhotite bands.

128.90m to 128.97m Three distinct bands with 10% pyrrhotite.

129.21m to 129.24m 3 cm band with 25% pyrrhotite.

STRUCTURES ALTERATION		MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
		128.2728.72 0.25 DIS PO 0.25	

0.25% each dissemianted pyrite and pyrrhotite.

128.27 129.24 BD 70

bedding at 70 TCA.

128.27 129.25 M W - - - - -

Weak to moderate carbonate alteration as laminations; moderate epidote alteration.

128.7229.25 2 LB PO 7.5

7%-8% pyrrhotite, 2% pyrite over entire interval, as laminations within several thin silica-carbonate exhalite beds.

129.24 129.25 CT 70

sharp lower contact at 70

TCA.

From	То	Litho	Simple Geo
129.25	133.28	LXTF	

Light green, moderately bedded and foliated, weakly to moderately epidote-altered intermediate lithic-crystal tuff. Crystals are diffuse, very weakly epidotealtered plagioclase. Lithics are very dark grey, thin and elongate fragments that are very rarely crystalline. For the most part, the lithics appear to be chloritized and have somewhat diffuse outlines. Bedding-parallel foliation at 75 TCA. Very weak carbonate as laminations, particularly over upper 60 cm. Approximately 0.25% each disseminated pyrite and pyrrhotite. Lower contact sharp, slightly undulose, at 80 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Struct	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
129.25 133.27 BD 75			
Bedding parallels foliation at 75 TCA.			
	129.25 133.28 M VW	129.2533.28 0.25 DIS PO 0.25	
	moderately epidote altered, moderate chloritization. Lithic fragments show weak carbonate as laminations.	0.25% each disseminated pyrite and pyrrhotite	
133.27 133.28 CT 80			
Lower contact sharp, slightly undulose, at 80			
Wednesday, August 12, 2009			

From To 129.25 133.28	<i>Litho</i> LXTF	Simple Geo (Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
Trom To Struct CA Strain	From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
		Simple Coo
From To	Litho	Simple Geo
133.28 133.96	SESX	
TCA. Exhalite bands rythmically		n interbedded and locally silicified intermediate ash tuff. Bedding at 76 Ian 3 cm thick bands. Very weak carbonate as laminations. Overall, 6%
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
rom To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
3.28 133.95 BD 76		
bedding at 76 TCA.		
	.28 133.96 W W	133.2 8 33.96 2 LB PO 6
	weak carbonate as laminations, weak epidote alterati	tion of the tuff. Overall, 6% pyrrhotite and 2% pyrite as laminations
3.95 133.96 CT 70		
sharp lower contact at 70 TCA.		
	Litho	Simple Geo
		Simple Geo
133.96 153.16	MFLW	
margins. Groundmass of the lithe crystals appear to be stubby equ extreme stretching/flattening), ne	ology is essentially plagioclase, epidote and chlorite. ant crystals, 2mm-4mm in size that appear approachi early acicular crystals. On the other hand, these may r This is less likely since the equant crystals occur in m	ate porphyritic flow. Upper and lower contacts have 0.75 meter thick chill The phenocrysts have been completely altered to chlorite, but original ing upper and lower contacts, to be deformed to elongate, and (with represent two different phenocryst phases: stubby equant pyroxene, and nassive flow, whereas the elongate crystals occur in flow-banded to flow- a crysting beyond the above description 0.1% acade discominated pyrite

foliated flow. So, this appears to a pyroxene porphyritic mafic flow. Very little alteration or veining beyond the above description. 0.1% each disseminated pyrite and pyrrhotite. Lower contact coincident with a 2 cm bull quartz vein.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Struct	uin From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
133.96 144.20 FOL 65			
flow foliated at 65 TCA.			
	133.96 153.16 M	133.96653.16 0.1 DIS PO 0.1	
	weak to moderate epidote, moderate to intense chloritization of pyroxene phenocrysts.	0.1% each disseminated pyrite and pyrrhotite.	
144.20 149.00 NA			
massive			

	T -	Litho	Simple Coo
<i>From</i> 133.96	<i>To</i> 153.16	MFLW	Simple Geo (Continued from previous page)
133.90	155.10		(comment non proceed proces)
STRU	CTURES	ALTERATION	MINERALIZATION SAMPLES
	Struct CA Stra	n From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
9.00 153.15			
tlow foliate 3.15 153.16	ed at 65 TCA.		
	act cut by bull		
	rtz vein.		
From	То	Litho	Simple Geo
153.16	153.83	FXAT	
			Madaasta aadaasta aa baalaathaa Alfaas adalta ada faasta - 110
		rately chloritic feldspar crystal ash tuff. Bedding at 80 TCA. .43m. Trace pyrite overall in the tuff. Lower contact gradatic	. Moderate carbonate as laminations. A 5cm calcite vein (conformable)
	CTURES Struct CA Stra	ALTERATION n From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
3.16 153.82		n From To INT CC DO SK AK SC	From 10 11/0 Siyle Min Min/0 Min2 M2% Min3 M3% From 10 Sumple
	at 80 TCA		
bouung		153.16 153.83 M M	153.1 6 53.83 0.05 DIS
		moderately chloritic, moderate carbonate as lamination	ns. trace disseminated pyrite.
53.82 153.83	СТ		
Lower conta	act gradational.		
From	То	Litho	Simple Geo
153.83	160.92	ASHT	
Maaliuma ta a	المحمد متحميته والتحاد	محبر المماجلة المناطق المناطع بالمقصيمات محبر المستعقام المقاطع بالمقصير	via and tuff. Dadding at 75 TCA, where discontable, Wash to madenate
			afic ash tuff. Bedding at 75 TCA, where discernable. Weak to moderate -rich silica+carbonate exhalite. Below 156.30m. fractures are developed
carbonate a in the tuff, a	as laminations. F and brittle deform	om 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or
carbonate a in the tuff, a chlorite?)+/-	as laminations. F and brittle deform carbonate filled.	om 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h From 157.43m to lower contact, unit is essentially weakly b	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate
carbonate a in the tuff, a chlorite?)+/- healing fract	as laminations. F and brittle deform carbonate filled. tures. Very smal	om 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h From 157.43m to lower contact, unit is essentially weakly b -scale (maximum 1-2 cm) offsets noted. Overall trace pyrite	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA.
carbonate a in the tuff, a chlorite?)+/- healing fract	as laminations. F and brittle deform -carbonate filled. tures. Very smal CTURES	om 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h From 157.43m to lower contact, unit is essentially weakly b -scale (maximum 1-2 cm) offsets noted. Overall trace pyrite ALTERATION	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES
carbonate a in the tuff, a chlorite?)+/- healing fract	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra	ation 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h From 157.43m to lower contact, unit is essentially weakly b -scale (maximum 1-2 cm) offsets noted. Overall trace pyrite ALTERATION n From To INT CC DO SR AK SC	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA.
carbonate a in the tuff, a chlorite?)+/- healing fract STRUC From To 53.83 157.43	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra BD 75	intersection 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are here intensity downhole. The fractures are here intensity downhere intensity downhole. The fractures are h	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES
carbonate a in the tuff, a chlorite?)+/- healing fract STRUC From To 53.83 157.43	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra	ation 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are h From 157.43m to lower contact, unit is essentially weakly b -scale (maximum 1-2 cm) offsets noted. Overall trace pyrite ALTERATION n From To INT CC DO SR AK SC	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
carbonate a in the tuff, a chlorite?)+/- healing fract STRUC From To 53.83 157.43	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra BD 75	intersection 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are here intensity downhole. The fractures are here intensity downhere intensity downhole. The fractures are h	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min3 M3% From To Sample 153.8360.92 0.05 DIS
carbonate a in the tuff, a chlorite?)+/- healing fract STRU (From To 53.83 157.43 bedding	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra BD 75 at 75 TCA.	intersection 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are here intensity downhole. The fractures are here intensity downhere intensity downhole. The fractures are h	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
carbonate a in the tuff, a chlorite?)+/- healing fract From To 53.83 157.43 bedding	as laminations. F and brittle deform -carbonate filled. tures. Very small CTURES Struct CA Stra BD 75 at 75 TCA.	intersection 153.99m to 154.01m, 2cm thick interbedded pyrrhotite- ation increases in intensity downhole. These fractures are here intensity downhole. The fractures are here intensity downhere intensity downhole. The fractures are h	-rich silica+carbonate exhalite. Below 156.30m, fractures are developed hairline to several millimeters thick and appear to be biotite (or bleached and in situ brecciated with carbonate and biotite(?)+/-carbonate e. Lower contact sharp at 75 TCA. MINERALIZATION SAMPLES From To PY% Style Min Min% Min3 M3% From To Sample 153.8360.92 0.05 DIS

Wednesday, August 12, 2009

From	То	Litho	Simple Geo			
153.83	160.92	ASHT		(Continued from previous page)		
(TD)						
	CTURES Struct CA Strai	ALTERATION 1 From To INT CC DO SR AK SC	F	MINERALIZATION rom To PY% Style Min Min% Min2 M2% Min3 M3% II	SAMPLES From To Sample	
110111 10		157.43 160.92 M M			Tom To Sumple	
		moderate carbonate matrix to breccia; moderate epidote	e alteration.			
160.91 160.92	2 CT 75					
	r contact at 75 TCA.					
From	То	Litho	Simple Geo			
160.92	161.02	MFLW				
Medium gre	een, weakly chlori	tic porphyritic mafic flow. Upper and lower contacts are shar te plagioclase phenocrysts in a weakly chloritic and epidote-	p, irregular and chille	ed. Composed of 25% chloritized hornblende		
	CTURES	ALTERATION		MINERALIZATION	SAMPLES	
	Struct CA Strai		F		From To Sample	
160.92 161.01					λ.	
m	assive					
		160.92 161.02 M		60.9 2 61.02 0.05 DIS		
		chloritic groundmass, with chloritization of hornblende pl weak epidote alteration.	henocrysts, trac	e disseminated pyrite.		
161.01 161.02	2 BD 75					
	rp, irregular and					
C	hilled.					
From	То	Litho	Simple Geo			
161.02	163.57	FXAT				
Medium gre Unit is weal	een, weakly chlori kly brecciated dov	tic and moderately epidotized, intermediate crystal ash tuff w wn to 162.00m. Minor carbonate laminations and fracture fills	vith interbedded ash s. Trace disseminate	tuff. Bedding is very weakly developed at 75 TCA. d pyrite. Lower contact sharp at 78 TCA.		
STRU	CTURES	ALTERATION		MINERALIZATION	SAMPLES	
	Struct CA Strai		Fi		From To Sample	
161.02 162.00) BX				,	
weakly bre	ecciated down					
		161.02 163.57 M W		61.0 2 63.57 0.05 DIS		
		weakly chloritic, moderately epidotized, minor carbonate laminations and fracture fills	e Trac	e disseminated pyrite.		
162.00 163.56						
weakly bec	dded at 75 TCA					

<i>From</i> 161.02	To 163.57	Litho FXAT	Simple Geo (Continued from previous page)
STRU	CTURES	ALTERATION	MINERALIZATION SAMPLES
rom To	Struct CA Strain Fro	m To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
.56 163.57	CT 78		
	r contact at 78 TCA		
	То	Litho	Simple Geo
From			

contain fine laminated pyrrhotite. Overall 1% pyrrhotite within carbonate bands and laminations, and 0.15% disseminated medium-grained pyrite.

End of Hole

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strai	I From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
163.57 172.00 BD 70		
bedding at 70 TCA.		
	163.57 173.43 M M	163.5 7 73.43 0.15 DIS PO 1
	Moderate carbonate laminations, moderately chloritic and epidote altered.	Overall 1% pyrrhotite within carbonate bands and laminations, and 0.15% disseminated medium grained pyrite.
172.00 173.43 BD 80 bedding at 80 TCA		

APPENDIX VII

DIAMOND DRILL LOG for DDH 75E-028

rill Log	g KU7502	8	ZONE	Signature:	Initials:
From	То	Litho	Simple Geo		
0.00	3.96	OVBD			
Casing/over	rburden				
STRU	CTURES	ALTERATION	MINERALIZAT	TION SAMPLES	
	Struct CA Strain		From To PY% Style Min Min%	% Min2 M2% Min3 M3% From To Sat	nple
0 3.96	NA	0.00 3.96	0.00 3.96 0 -		
From	То	Litho	Simple Geo		
3.96	9.85	ASHT			
tuff interbed	ds. Minor sporadic	to intermediate ash tuff. Bedding is extremely faint at 65 carbonate and carbonate epidote veins, conformable or	at TCA. Moderate epidote alteration. Very rare and thin for cross-cutting. Trace pyrite. Lower contact sharp at 75 TCA	A.	
	CTURES	ALTERATION	MINERALIZAT		
<i>rom To</i> 6 9.84	Struct CA Strain BD 65	From To INT CC DO SR AK SC	From To PY% Style Min Min?	1/2 Min2 M2% Min3 M3% From To Sat	nple
	extremely faint 5 at TCA	3.96 9.85 M VW	3.96 9.85 0.05 DIS y weak trace disseminated pyrite.		
,	CT 75 er contact at 75 TCA.				
From	То	Litho	Simple Geo		
9.85	13.68	XATF			
Medium gre	een to green-grey, hornblende crystal	s. Locally this imparts a very fine "salt and pepper" textur	altered mafic to intermediate thin (1cm to 3cm) beds of when the Riddled with hairline to 1mm-thick, low to moderate and	gle carbonate-	
	?) filled fractures f	rom 10.25m to lower contact. Bedded limestone noted fro	om 13.22m to 13.25m. Overall trace disseminated pyrite. L		
amphibole(? sharp at 65 <i>STRU</i> (?) filled fractures for TCA.	ALTERATION	MINERALIZA		
amphibole(? sharp at 65 STRU(rom To	?) filled fractures for TCA.	ALTERATION			nple
amphibole(2 sharp at 65 <u>STRU(</u> om <u>To</u> 5 13.67 very faint k	?) filled fractures for TCA.	ALTERATION	MINERALIZA		nple
amphibole(2 sharp at 65 som To 5 13.67 very faint k	?) filled fractures fr TCA. CTURES Struct CA Strain BD 67 bedding at 67	ALTERATION	MINERALIZA		nple

	_							
From To		Litho	Simple Geo	(Continued from providuo page)				
9.85 13.	.68	XATF		(Continued from previous page)				
STRUCTUR	ES	ALTERATION		MINERALIZATION			SAMPLES	
From To Struct	CA Strain Fro	m To INT CC DO SR AK SC	1	From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
13.67 13.68 CT	65							
sharp lower contac TCA.	ct at 65							
From T	о	Litho	Simple Geo					
13.68 21.	.92	ASHT		•				
TCA. 16.60m to 18.95m suggests 8% to 109	Interval of extrem % sulphides; fres	ate in the calcareous tuff unit. 0.5% each disseminate mely rusty "burnt" calcareous and schistose ash tuff a sh surface on a single piece of core indicates 5% eac	ash tuff. Sericite cor	nmon on partings. Intensity of the oxidation				
STRUCTUR		ALTERATION		MINERALIZATION			SAMPLES	
From To Struct				From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample	
13.68 16.60 BD				13.68 16.60 0.5 DIS PO 0.5				
faint bedding at 6	5 TCA Ca	alcareous alteration throughout, weak chlorite alteration	on. 0.5	% each disseminated pyrite and pyrrhotite.				
16.60 18.95 FOL	60 16.60	18.95 VS S		16.60 18.95 5 LB PO 5				
moderately to well-i at 60 TCA.		rong carbonate and very strong sericite alteration.	5%	each laminated pyrite and pyrrhotiite				
18.95 21.91 BD	65							
faint bedding at 6								
		21.92 S S		18.95 21.92 0.5 DIS PO 0.5				
	Ca	alcareous alteration throughout, weak chlorite alteration	on. 0.5	% each disseminated pyrite and pyrrhotite.				
21.91 21.92 CT								
sharp lower contac	ct at 55							
TCA.								
From Te		Litho	Simple Geo					
21.92 22.	.01	SESX						
Dark grey, thin-bed	Ided to laminated	l pyrrhotite-rich silica exhalite. Bedding at 60 TCA. Me	oderate carbonate a	as laminations. 40% semi-massive to massive				
pyrrhotite and 5% la	aminated pyrite.	Sharp lower contact at 55 TCA.						

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
21.92 22.00 BD 60			
bedding at 60 TCA.			

FromToLithoSimple Geo21.9222.01SESX

Dark grey, thin-bedded to laminated pyrrhotite-rich silica exhalite. Bedding at 60 TCA. Moderate carbonate as laminations. 40% semi-massive to massive pyrrhotite and 5% laminated pyrite. Sharp lower contact at 55 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Struct		From To PY% Style Min Min% Min2 M2% Min3 M3%	% From To Sample
	21.92 22.01 M M	21.92 22.01 5 LB PO 40	
	moderate carbonate as laminations.	40% semi-massive to massive pyrrhotite and 5% laminated pyrite.	
2.00 22.01 CT 55		pyne.	
Lower contact sharp at 55			
TCA.			
From To	Litho	Simple Geo	
22.01 57.58	ASHT		
39.25m to 47.80m: In situ l 56.70m to 5.76m: Band of	precciated and carbonate flooded from with 25% carbonate. precciated and carbonate flooded from with 30% carbonate. massive carbonate altered pyrrhotite with weakly epidotized inco	orporated clasts	
	e band associated with carbonate breccia. g more developed in finer ash tuff.		
	e band associated with carbonate breccia.	MINERALIZATION	SAMPLES
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC		
55.20m to 57.58m: bedding STRUCTURES To Struct CA Struct COM To Struct CA Struct 0.01 28.90 BD 65 Struct CA Struct	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	
55.20m to 57.58m: bedding STRUCTURES To Struct CA Struct COM To Struct CA Struct 0.01 28.90 BD 65 Struct CA Struct	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% bin tuff. 22.01 56.70 0.1 DIS PO 0.01	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct 2.01 28.90 BD 65 bedding at 65 TCA.	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S strong carbonate as laminations and matrix alteration with	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% nin tuff. Min Min% Min2 M2% Min3 M3%	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struents 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M	aband associated with carbonate breccia. and celebred in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S - - - strong carbonate as laminations and matrix alteration with 1 28.90 31.40 VS VS - - -	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% bin tuff. 22.01 56.70 0.1 DIS PO 0.01	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct 2.01 28.90 BD 65 bedding at 65 TCA.	e band associated with carbonate breccia. g more developed in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S strong carbonate as laminations and matrix alteration with	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% bin tuff. 22.01 56.70 0.1 DIS PO 0.01	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struents 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M in situ brecciated and	aband associated with carbonate breccia. and celebred in finer ash tuff. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S - - - strong carbonate as laminations and matrix alteration with 1 28.90 31.40 VS VS - - -	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% bin tuff. 22.01 56.70 0.1 DIS PO 0.01	
55.20m to 57.58m: bedding STRUCTURES Trom To Struct CA Struents 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M in situ brecciated and carbonate flooded.	and associated with carbonate breccia. and constraints and the second developed in finer ash tuff. ALTERATION and the second developed in finer ash tuff. and the second developed developed in finer ash tuff. and the second developed develo	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% nin tuff. 22.01 56.70 0.1 DIS PO 0.01 0.1% each disseminated pyrite and pyrrhotite.	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M in situ brecciated and carbonate flooded. 1.40 39.25 BD 65 bedding at 65 TCA.	aband associated with carbonate breccia. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S - - - strong carbonate as laminations and matrix alteration with 1 28.90 31.40 VS VS - - - 31.40 39.25 S S - - - -	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% nin tuff. 22.01 56.70 0.1 DIS PO 0.01 0.1% each disseminated pyrite and pyrrhotite.	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M in situ brecciated and carbonate flooded. 1.40 39.25 BD 65 bedding at 65 TCA.	aband associated with carbonate breccia. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S - - - strong carbonate as laminations and matrix alteration with 1 28.90 31.40 VS VS - - - 31.40 39.25 S S - - - - 31.40 39.25 S S - - - -	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% nin tuff. 22.01 56.70 0.1 DIS PO 0.01 0.1% each disseminated pyrite and pyrrhotite.	
55.20m to 57.58m: bedding STRUCTURES From To Struct CA Struct 2.01 28.90 BD 65 bedding at 65 TCA. 3.90 31.40 BX M in situ brecciated and carbonate flooded. 3.40 39.25 BD 65 bedding at 65 TCA. 3.25 47.80 BX M in situ brecciated and	aband associated with carbonate breccia. ALTERATION ain From To INT CC DO SR AK SC 22.01 28.90 S S strong carbonate as laminations and matrix alteration with 1 28.90 31.40 VS VS ain From To INT CC DO SR AK SC 22.01 28.90 S S strong carbonate as laminations and matrix alteration with 1 31.40 VS VS strong carbonate flooded; 25% carbonate 31.40 39.25 S S strong carbonate as laminations and matrix alteration with 1 31.40 VS VS atom carbonate as laminations and matrix alteration with 31.40 VS VS atom carbonate as laminations and matrix alteration with	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% nin tuff. 22.01 56.70 0.1 DIS PO 0.01 0.1% each disseminated pyrite and pyrrhotite.	

FromTo22.0157.58	Litho ASHT	Simple Geo (Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC 47.80 57.58 S S - - - - - -	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	strong carbonate as laminations and matrix alteration	within tuff.
		56.70 56.76 0 - PO 70
		70% massive pyrrhotite
		56.76 57.58 0.1 DIS PO 0.1
		0.1% each disseminated pyrite and pyrrhotite.
57.57 57.58 CT 70		
sharp lower contact at 70		
TCA		
From To	Litho	Simple Geo
57.58 57.79	QCSX	
Very dark grey, thin-bedde 1%-2% pyrite. A piece of c	ed pyrrhotite-enriched silica+carbonate exhalite. Bedding is core appears to be missing at lower contact.	ontorted. Approximately 40% laminated to semi-massive pyrrhotite and
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
57.58 57.78 BD bedding contorted		
bedding contoned	57.58 57.79	57.58 57.79 1.5 LB PO 40
	no significant alteration.	40% laminated to semi-massive pyrrhotite and 1%-2% pyrite
57.78 57.79 CT		
A piece of core appears to		
be missing at lower contact		
From To	Litho	Simple Geo
57.79 60.11	ASHT	
Very light green-blue, well- 59.08m to 59.10m 1.5 cm	-bedded calcareous ash tuff. Bedding at 66 TCA. Overall, 0.1 thick band of pyrrhotite-enriched silica+carbonate exhalite w	1% disseminated pyrite. Sharp lower contact at 76 TCA vith 15% pyrrhotite.
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Str	rain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
		57.79 59.08 0.1 DIS
		0.1% disseminated pyrite.
57.79 60.10 BD 66		
bedding at 66 TCA.		
We day and day Anna 12, 2000		

Wednesday, August 12, 2009

FromToLithoSimple Geo57.7960.11ASHT

Very light green-blue, well-bedded calcareous ash tuff. Bedding at 66 TCA. Overall, 0.1% disseminated pyrite. Sharp lower contact at 76 TCA. 59.08m to 59.10m 1.5 cm thick band of pyrrhotite-enriched silica+carbonate exhalite with 15% pyrrhotite.

STRUCTURES	ALTERATION		MINERALIZATION			SAMPLES
From To Struct CA Struct		F	From To PY% Style Min Min% Min2 M2% Min3 M3%	From	То	Sample
	57.79 60.11 S S					
	strong carbonate alteration					
		5	59.08 59.10 0.1 DIS			
			cm thick band of pyrrhotite-enriched silica+carbonate nalite with 15% pyrrhotite.			
		5	59.10 60.11 0.1 DIS			
		0.19	% disseminated pyrite.			
0.10 60.11 CT 76						
sharp lower contact at 76 TCA.						
		0:				
From To	Litho	Simple Geo				
			-			
60.11 60.24	QCSX	_	-			
60.11 60.24	QCSX pedded, silica+carbonate exhalite with 15% thin-bedded pyr	rrhotite. Bedding at 70	TCA. Sharp lower contact at 67 TCA.			
60.11 60.24 Dark to medium grey, thin-	bedded, silica+carbonate exhalite with 15% thin-bedded pyr	rrhotite. Bedding at 70	TCA. Sharp lower contact at 67 TCA.			SAMPLES
60.11 60.24	bedded, silica+carbonate exhalite with 15% thin-bedded pyr			5 From	То	SAMPLES Sample
60.11 60.24 Dark to medium grey, thin- STRUCTURES	bedded, silica+carbonate exhalite with 15% thin-bedded pyr		MINERALIZATION	From		
60.11 60.24 Dark to medium grey, thin-l STRUCTURES From To Struct CA Struct	ALTERATION ain From To INT CC DO SR AK SC	F	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From		
60.11 60.24 Dark to medium grey, thin-l STRUCTURES From To Struct CA Struct 60.11 60.23 BD 70	ALTERATION ALTERATION ain From To INT CC DO SR AK SC 60.11 60.24 - <	<i>F</i>	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15	From		
60.11 60.24 Dark to medium grey, thin-l STRUCTURES From To Struct CA Struct 60.11 60.23 BD 70	ALTERATION ain From To INT CC DO SR AK SC	<i>F</i>	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%	From		
60.11 60.24 Dark to medium grey, thin-l STRUCTURES From To Struct CA Struct 60.11 60.23 BD 70	ALTERATION ALTERATION ain From To INT CC DO SR AK SC 60.11 60.24 - <	<i>F</i>	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15	From		
60.1160.24Dark to medium grey, thin-STRUCTURESFromToStructCAStruct50.1160.23BD70thin bedded at 70 TCA.	ALTERATION ALTERATION ain From To INT CC DO SR AK SC 60.11 60.24 - <	<i>F</i>	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15	From		
60.1160.24Dark to medium grey, thin-STRUCTURESFromToStructCAStruct50.1160.23BD70thin bedded at 70 TCA.50.2360.24CT67sharp lower contact at 67	ALTERATION ALTERATION ain From To INT CC DO SR AK SC 60.11 60.24 - <	<i>F</i>	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15	From		
60.1160.24Dark to medium grey, thin-STRUCTURESFromToStructCAStruct50.1160.23BD70thin bedded at 70 TCA.50.2360.24CT67sharp lower contact at 67TCA	Decided, silica+carbonate exhalite with 15% thin-bedded pyr ALTERATION tin From To INT CC DO SR AK SC 60.11 60.24 - <td< td=""><td>6 159</td><td>MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15</td><td>From</td><td></td><td></td></td<>	6 159	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 60.11 60.24 0 - PO 15	From		
60.1160.24Dark to medium grey, thin-STRUCTURESFromToStructCAStruct50.1160.23BD70thin bedded at 70 TCA.50.2360.24CT67sharp lower contact at 67TCAFromTo60.24CT6760.24CT62.13	ALTERATION ALTERATION inin From To INT CC DO SR AK SC 60.11 60.24 -	6 159 Simple Geo	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 50.11 60.24 0 - PO 15 % thin-bedded pyrrhotite	From		

 STRUCTURES
 Struct
 CA
 Struct
 60.24 62.12 BD 75

Bedding at 75 TCA.

FromToLithoSimple Geo60.2462.13ASHT

Very pale green-blue, weakly-bedded intermediate(?) calcareous ash tuff. Bedding at 75 TCA. 0.5% disseminated pyrite flecks. Sharp lower contact at 75 TCA.

STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Struct	ain From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
	60.24 62.13 S S	60.24 62.13 0.5 DIS
	strong carbonate alteration	0.5% disseminated pyrite flecks.
62.12 62.13 CT 75		
Sharp lower contact at 75		
TCA.		
From To	Litho	Simple Geo
62.13 62.28	QCSX	
Thin-bedded, dark grev pyr	rhotite-enriched silica+carbonate exhalite. Bedding at 70 TC	A. 15% laminated pyrrhotite. Sharp lower contact at 70 TCA.
	ç	
STRUCTURES From To Struct CA Struct	ain From To INT CC DO SR AK SC	MINERALIZATION SAMPLES From To PY% Style Min Min% M2% Min3 M3% From To Sample
62.13 62.27 BD 70	an From To INT CC DO SK AK SC	From 10 F1/0 Siyle with Min/0 Min/2 M2% Min/5 M5% From 10 Sample
bedding at 70 TCA.		
	62.13 62.28	62.13 62.28 0 - PO 15
	no significant alteratoin	15% laminated pyrrhotite.
62.27 62.28 CT 70	-	
Sharp lower contact at 70		
TCA.		
From To	Litho	Simple Geo
62.28 72.45	ASHT	
		Bedding at 72 TCA. Two intervals, at 62.28m to 62.54m and 65.52m to ly weathered out but was likely around 5%, given the intense and discreet
oxidized laminations. Other	wise, approximately 0.15% disseminated pyrite through res	of the unit. From 66.20m to 72.45m, the tuff becomes somewhat
coorcor, and hadding is an	ly faintly developed. Lower contact very slightly gradational.	
coarser, and bedding is on		

	STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
	From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
			62.28 62.54 5 LB	
		ł	5% pyrite as laminations	
6	2.28 72.44 BD 72			
	well bedded to faintly bedded at 72 TCA.			
		62.28 72.45 S S		
		strong carbonate alteration		
J	Wednesday, August 12, 2009			

From To 62.28 72.45	Litho ASHT	Simple Geo (Continued from previous page)
STRUCTURES	ALTERATION	MINERALIZATION SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3% From To Sample
		62.54 65.52 0.15 DIS
		0.15% disseminated pyrite
		65.52 65.67 5 LB
		5% pyrite as laminations
		65.67 72.45 0.15 DIS
		0.15% disseminated pyrite
72.44 72.45 CT		
Lower contact very slightly		

Lower contact very slightly gradational.

91.27

72.45

From	То	Litho

Litho	Simple Geo
MFLW	

- ----

Very pale green, weakly foliated, mafic to intermediate porphyritic flow. Foliation at 72 TCA. Composed of 15% to 20% completely chloritized, 2mm to 6mm elongate amphibole crystals and rare (approx. 1%) anhedral altered feldspar crystals in a bleached epidote+/-chlorite altered groundmass. The amphibole crystals generally have diffuse crystal outlines due to alteration. Cut by minor carbonate and carbonate+chlorite filled fractures throughout. The flow is chilled from approximately 78.00m to 79.00m. From 79.00m to 79.07, sliver of bedded ash tuff separating this upper flow from a lower flow (and therefore a chill margin). Bedding in the tuff is at 70 TCA. 0.1% disseminated pyrite.

80.75m to 80. 86m: interval of massive mafic to intermediate flow with randomly oriented amphibole phenocrysts.

87.00m to 88.25m: Generally massive, more crystalline mafic to intermediate flow. Groundmass is more chloritized and less epidotized.

90.39m to 91.27m: Chill margin down to the lower contact. Lower contact is subtle and irregular.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample

72.45 79.00 FOL 72

moderately well developed

foliation at 72 TCA.

72.45 87.00 M - - - - -

moderate epidote and weak chlorite alteration.

72.45 91.27 0.1 DIS 0.1% disseminated pyrite.

79.00 79.07 BD 70 Bedding at 70 TCA, in a

sliver of ash tuff.

79.07 80.75 FOL 72 moderately well developed

foliation at 72 TCA.

From To 72.45 91.27	Litho MFLW	Simple Geo (Continued from previous page)	
			CANDER .
STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strai	in From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
80.75 80.86 NA			
core of massive mafic to intermediate flow			
80.86 87.00 FOL 72			
moderately well developed foliation at 72 TCA.			
87.00 88.25 NA	87.00 88.25 M		
interval of relative massive crystalline mafic to intermediate flow.	moderate chlorite and weak epidote alteration.		
88.25 91.26 FOL 72			
moderately well developed foliation at 72 TCA.			
	88.25 91.27 M		
	moderate epidote and weak chlorite alteration.		
91.26 91.27 CT			
Lower contact is subtle and irregular.			
From To	Litho	Simple Geo	
91.27 93.67	FXAT		
51.27 50.07	I AAI		

0.25% each disseminated and carbonate-associated pyrite and pyrrhotite. Sharp lower contact at 70 TCA.

STRUCTURES	ALTERATION	MINERALIZATION	SAMPLES
From To Struct CA Strain	From To INT CC DO SR AK SC	From To PY% Style Min Min% Min2 M2% Min3 M3%	From To Sample
91.27 93.66 BD 66			
very weakly bedded at 66 TCA.			
	91.27 93.67 M	91.27 93.67 0.25 DIS PO 0.25	
		0.25% each disseminated and carbonate-associated pyrite and pyrrhotite.	
93.66 93.67 CT 70 sharp lower contact at 70 TCA.			

	From	То	Litho	Simple Geo
1	93.67	102.25	ASHT	

Medium green, moderately chloritic, moderately calcareous, weakly-bedded, mafic ash tuff with feldspar crystal ash tuff interbeds. Weakly bedding at 68 TCA from 93.67m to 96.48m, and finer grained and well-bedded at 70 TCA from 97.25m to 102.25m. Very weakly calcareous to 96.48m, and moderately to intensely calcareous from 96.48m to lower contact. Overall, 2%-3% pyrite and 3%-4% pyrrhotite as laminations (particularly associated with carbonate), and as bedding-parallel elongate flecks and disseminations. Sharp lower contact at 55 TCA.

96.48m to 97.25m: warm brownish-grey, brecciated and intensely carbonate flooded ash tuff; approximately 60% carbonate.

97.25m to 102.25m: medium green moderately epidote-chlorite altered well bedded mafic ash tuff with strong carbonate alteration as laminations and alteration within the tuff matrix. Bull quartz vein at at 101.96m to 102.07m.

STRUCTURES	ALTERATIO	N	MINERALIZATION	SAM	IPLES
From To Struct CA Strai	n From To INT CC DO SR AK	SC From To	PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
3.67 96.48 BD 68	93.67 96.48 M VW				
very weakly bedded at 68 TCA	moderate chlorite and epidote alteration;	very weakly calcareous			
		93.67102.2	5 2.5 LB PO 3.5		
		(particularly as	and 3%-4% pyrrhotite as laminations sociated with carbonate), and as bedding te flecks and disseminations.		
6.48 97.25 BX	96.48 97.25 VS VS	-			
brecciated and carbonate flooded.	brecciated and intensely carbonate floode	d.			
7.25 102.24 BD 70					
well bedded at 70 TCA.					
	97.25 102.25 S S	-			
	moderatey epidote-chlorite altered with st as laminations and alteration within the tu				
02.24 102.25 CT 55 Sharp lower contact at 55 TCA.					
From To	Litho	Simple Geo			
102.25 102.64	MFLW				
Medium green, well chloritize tuff occur at the upper and lo	ad and moderately epiodtized, fine to medium wer contacts. Numerous xenoliths of chloritize moderately epidotized. Trace disseminated py	d mafic ash tuff occur within upper and lowe			
STRUCTURES	ALTERATIO	N	MINERALIZATION	SAN	IPLES
From To Struct CA Strai	n From To INT CC DO SR AK	SC From To	PY% Style Min Min% Min2 M2% Min3 M3%	From To	Sample
	• • • • • • • • •				
02.25 102.63 NA					

102.2**5**02.64 0.05 DIS Trace disseminated pyrite.

From	То	Litho	Simple Geo
102.25	102.64	MFLW	(Continued from previous page)
STRUCT	TURES	ALTERATION	MINERALIZATION SAMPLES
	ruct CA Strain	1 From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
2.63 102.64			
Lower contac irregu	,		
From	То	Litho	Simple Geo
102.64	102.86	QZVN	
		ein with inclusions of chloritized mafic ash tuff. No visible m he center of the vein. Lower contact sharp and irregular.	ineralization. A cluster of 1cm to 1.5 cm long euhedral peach-coloured
STRUCI		ALTERATION	MINERALIZATION SAMPLES
	ruct CA Strain	<i>i</i> From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample
2.64 102.85			
mass		102.64 102.86 W	102.6402.86 0 -
		cluster of 1cm to 1.5 cm long euhedral peach-coloured crystals occur within the center of the vein.	
2.85 102.86	СТ		
Lower contact irregu	'		
From	То	Litho	Simple Geo
	111.86	ASHT	
tuff interbeds. crystals within	Bedding well d the feldspar cr	eveloped at 70 TCA. Strong carbonate alteration as lamina	c ash tuff with rare and sporadic thin (<4cm) mafic feldspar crystal ash tions and matrix alteration. Epidote occurs as alteration of feldspar the ash tuff, and as crystal growths overprinting carbonate thin beds and
STRUC1	· · · · ·	ALTERATION	MINERALIZATION SAMPLES
From To Str	ruct CA Strain	1 From To INT CC DO SR AK SC	FromToPY%StyleMinMin%Min2M2%Min3M3%FromToSample

102.86 111.86 BD 70 102.86 111.86 S S - - - - - 102.8611.86 3 LB

well developed bedding at 70 TCA. well chloritized and moderately epidotized, strong carbonate alteration as laminations and matrix alteration.

3% pyrite associated with carbonate laminations.

APPENDIX VIII

ITEMIZED COST STATEMENT

(May 20 to June 4, 2009)

Wages:					
D.J. Alldrick	May 24 to June 2: 10 days at \$400/day	\$ 4,000.00			
B.J. Willett	May 24 to June 2: 10 days at \$400/day	\$ 4,000.00			
Travel (one-way):					
Air Canada	DJA & BJW	\$ 848.00			
Meals and Camp Accommodation (DJA & BJW):					
Meals	10 days at \$30 per man/day	\$ 600.00			
Camp Operation	10 days at \$30 per man/day	\$ 600.00			
Report Preparation:					
Text & map product	\$ 800.00				
Total Costs:		\$ 10,848.00			

APPENDIX IX

CERTIFICATES OF QUALIFICATION

Certificate of Qualifications

I, Dani Alldrick, of 1661 Hovey Road, Saanichton, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT, I am a geologist residing in the District of Central Saanich, B.C, currently employed by Kutcho Copper Corporation, a wholly-owned subsidiary of Capstone Mining Corporation, 900-999 West Hastings St., Vancouver BC V6C 2W2.
- THAT, I obtained a Bachelor of Science degree in Geophysics in 1971 and a Bachelor of Science degree in Geology in 1974 from The University of Western Ontario, London, Canada; a Master of Science degree in Mineral Exploration in 1978 from The Royal School of Mines, London, England; and a Ph.D in Economic Geology in 1991 from The University of British Columbia, Vancouver, Canada.
- THAT, I have been continuously practicing my profession as a geologist since 1974 for Kutcho Copper Corporation, the Province of British Columbia, and Cominco Exploration Ltd.
- 4. THAT, I am Registered Professional Geoscientist (License # 109351) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- THAT, this report is based upon my knowledge of the project gained from working on the project seasonally in 2008 and work conducted on the property from May 21st through June 18th, 2009.

Dated at Kutcho Creek camp, British Columbia this 3rd of August, 2009.

Signed By:

reat

Dani James Alldrick, Ph.D., P.Geo. Registered Professional Geoscientist

Certificate of Qualifications

I, Brian J. Willett, of the town of Kippens, Province of Newfoundland, do hereby certify that:

- (1) I am Senior Project Geologist employed by Minto Explorations Ltd., a subsidiary of Capstone Mining Corporation, of P.O. Box 33174, Whitehorse, Yukon.
- (2) I reside at 15 Fir Avenue, Kippens, NL, A2N 0A6.
- (3) I am a graduate of Memorial University of Newfoundland with a Bachelor of Science degree in Earth Sciences (1985).
- (4) I have been practicing my profession since 1985.
- (5) That this report is based in part on property work I personally completed and/or directly supervised between May 21, 2009 and June 4, 2009.

Signed in the town of Kippens, this 7th day of July, 2009.

Bria hellet

Brian J. Willett

Certificate of Qualifications

I, Robert G. Wilson, of 20216 8th Ave. Langley, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am employed by Capstone Mining Corp. of 900 999 West Hastings Street., Vancouver B.C. V6C 2W2
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
- 3. THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. THAT historical sections of this report are based in part on property work I personally completed and/or directly supervised between March 2004 and October 2008.

DATED at Vancouver, British Columbia, this 20th day of August, 2009.

Robert G. Wilson, P.Geo.