REPORT ON THE

QUEENS COFFEE MINERAL CLAIM GROUP

AINSWORTH AREA

BRITISH COLUMBIA

BC Geological Survey Assessment Report 31035

MINERAL TITLES ON-LINE NUMBERS 534025, 534039, 534162, 538553

N. Lat. 49d 41'

W. Long. 116d 56'

NTS 82F/10W

COVERING WORK PERFORMED IN THE YEAR 2008

By

Barry Turner, C. Tech., 1901 Lakeside Drive P.O. Box 533, Stn. Main. Nelson, B.C. V1L 5R3

June 2008

TABLE OF CONTENTS

INTRODUCTION PROPERTY – LOCATION, ACCESS AND PHYSIOGRAPHY OF THE CLAIMS HISTORY – PREVIOUS DEVELOPMENT AND MINERALIZATION REGIONAL AND LOCAL GEOLOGICAL SETTING 2008 WORK PROGRAM WORK – DATES & TIMES MINERALIZATION – ASSAYS NOTATIONS EXPENSES RECOMMENDATIONS STATEMENT OF QUALIFICATIONS

MAPS & ATTACHMENTS

- Figure 1: Location Map
- Figure 2: Claims Map
- Figure 3: Claims Map2
- Figure 4: QueensCoffee Sample Map 2008 Sampling Locations
- Figure 5: Queens Coffee Assay Data

Location of Queens Coffee Claims

Location of Queens Coffee Claims

INTRODUCTION

The purpose of this report is to review the previous work done in 2008 on the Queens Coffee Mineral Claims. The work was done over a period from June 1, 2008 to November 15, 2008.

PROPERTY - LOCATION, ACCESS AND PHYSIOGRAPHY OF THE CLAIMS

The Queens Coffee property is a silver-lead-zinc prospect, consisting of four claims covering an area of approximately 820 hectares located four kilometers south of Ainsworth Hot Springs on the west shore of Kootenay Lake, B.C. (Figure 1, Figure 2, Figure 3)

Several gravel logging and mining roads of varying quality pass over the property. The Madden Creek Forest Service Road enters the claims from Queens Bay to the south. The Coffee Creek Forest Service Road enters from the northeast. The two logging roads have recently (Dec 08) been connected by a logging road with two new side spur roads.. Prior to this, most spur roads were accessible with motorcycle only. Most roads progress to old logging landings and then continue as skid trails throughout several generations of clear-cut and selective cut logging areas. This new construction has opened up more mineralized rock during the blasting process.

The topography of the claim area is mountainous, ranging from 530 meters to 1100 meters above sea level. It is divided by Coffee Creek, which flows west to east and drains into Kootenay Lake. Krao Creek, Leake Creek and Mosquito Creek and many small streamlets also drain into Coffee Creek.

The major portion of the claims is on a relatively low relief ledge approximately 1000 meters wide. One large swamp exists in the southern portion of the claims and numerous small swamps dot the area south of Coffee Creek, evidence of limestone that has dissolved and subsided over time

HISTORY

The history of the property dates back to the 1890's when the Ainsworth mining camp was receiving much interest.

The Queens Coffee claims include four historical veins, the Neosho, the Norman, the Eden and the Crescent. Two of the veins are connected by a tunnel, and are refered to as the Eden-Crescent. The Eden-Crescent and the Neosho are past producers. All four of these veins are quartz associated mineralized veins with a strike that lays roughly north-south with the general geology. They all dip moderately to steeply to the west.

1892 – 1896 - Work on the Neosho Claim – No production records available.

1916 - Prospecting work recorded on the Eden-Crescent Claim– No production records available.

1890 – 1930 – Prospecting work on the Norman Vein – several exploratory pits dug.

1937 – Eden-Crescent Claim ships 50 tons of ore, yielding 1308 oz. of silver and 46281 lb. of lead. No zinc was recovered. This was mostly from a surface outcroppings and a small glory hole pit. It is assumed that this ore was hand sorted before it was shipped.

1922, 1949, and 1950 - Neosho Claim ships 149 tons of ore, yielding 3369 oz of silver, 7733 lb. of lead and 17213 lb. of zinc. Workings consist of a tunnel and two shafts.

1950 – 1955 – Eden-Crescent Claim ships 10,723 tons of ore to the Yale mill, production and recovery records have been lost, the ore was probably blended with production from the Highlander-Albion-Banker mine. The workings consist of a 400' adit, 120' winze and a large single stope.

1992, 1998 and 1999 – Jackhammer Claim, south of Coffee Creek – a total of 17 shallow diamond drill holes were placed to explore an area of carbonaceous quartz mineralization that transects the general north-south foliation.

Production of ore in the Ainsworth area has totaled close to 800,000 tons from about 50 different properties

In the period from 1950 to 1960 much prospecting, diamond drilling, mine development and production work was done by the Yale Lead and Zinc Mines, Western Mines Ltd. and Cominco Ltd. in the Ainsworth area. Some information regarding the exploration and development work is available, some is lost and some is considered confidential. As the Ainsworth geology is similar to the Riondel geology, it was studied to compare and find a replacement ore body for the Bluebell mine 5 km. east across Kootenay Lake. Extensive diamond drilling was done at the time, but most or all of the drilling was north of Ainsworth towards Woodbury Creek. The area of the Queens Coffee claims was not drilled and was under-explored.

REGIONAL AND LOCAL GEOLOGICAL SETTING

The geology of the Ainsworth area has been studied extensively by many learned and professional persons in the past. Extensive sampling, drilling and tunneling to the north of the Queens Coffee claims have concluded that the entire area contains a complexly deformed group of sedimentary and volcanic rocks in various grades of regional metamorphism. They comprise part of the Kootenay Arc, signified by limestone occurrences, forming a major structural belt extending from Revelstoke in the north to Metaline Falls, Washington in the south. Within the Ainsworth area the sedimentary and volcanic rocks are truncated on the west by the Nelson batholith, a large granitic intrusive.

Because of the complexities of the structure and vagaries of the metamorphism, it has not been possible to establish a stratigraphic succession within the area. Detailed studies of tunneling and drill logs in the area have shown formations to be repeated many times by folding and faulting, and that many of the lithological units, because of the structure, are discontinuous. The geological picture presented is a compilation of years of analysis and interpretation. The latest paradym is that explained in

In the Ainsworth area the formations strike to the north and south dip at moderate and steep angles to the west and are split by strike faults parallel to the regional foliation. Three of these faults thought to be more significant than others have been named from east to west, the Lakeshore, Josephine and Gallagher faults.

The Neosho and Norman veins are located on rocks of the Josephine fault. These rocks consist of mainly fine-grained grey mica schists and micaceous quartzites interlayered with hornblende schists and gneisses. The hornblende schists and gneisses are intrusive sills. The area has thin but semi- continuous layers of Kootenay Arc limestone, medium to coarsely crystalline and banded in shades of grey or white. The are interlayered with grey fine-grained mica schists and micaceous quartzites. The Norman vein is located on the eastern flank of the Josephine fault, where it contacts grey to brown micaceous quartzite, fine-grained mica schists and limestone bands.

The Eden and Crescent vein is located on one predominate band of limestone called the Krao limestone. The Krao, the Crow Fledgling and Last Chance mines are also located on this geological plane.

Due to the high degree of fracturing and shearing resulting from folding and faulting and the very strong leaching of the many limestone bands that are evident, the formations of the area have an unusually large volume of voids that have allowed access for intrusive mineralization. To the north about 2 km. exists the Cody Cave system, a large system of limestone voids that has been explored and is now a provincial park.

2008 WORK PROGRAM

The focus of the 2008 work program was to do more geochemical sampling and prospecting in a few key locations, where previous sampling had revealed interesting mineralized anomalies. During the winter of 07-08 the Ministry of Forests has constructed several new roads within the claim group. The road construction required rock hammering, or drilling and blasting of ~1500 cubic meters of bedrock. These rock cuts provided plenty of new faces rocks to prospect. The new roads accessed large portions of the claim area that I had never prospected, I studied and prospected interesting segments of these areas.

I worked alone sometimes and other days I was accompanied by various volunteer consultants. (Retired prospectors)

The entire area is high in potential, with numerous mineralized zones and a multitude of quartz stringers, limestone layers and other good mineralization indicators. All of the geology that produced the large volumes of the Highlander-Albion-Banker vein and the richer Krao vein continues south through the entire Queens Coffee claims

March, April, – Research & Investigation – Internet (Minfile, ARIS & more) March, April, May, – Research & Investigation – Chamber of Mines

Total Manhours - Date - Description

- 6 hrs. May 17, 18, 2008 General Reconnaissance new Madden Creek Rd.
- 6 hrs. June 15, 2008 Prospecting new Madden Creeek Rd.
- 7 hrs July 15, 2008 Prospecting west of Jackhammer Vein
- 7 hrs August 10, 2008 General Reconnaissance Leake Creek
- 4 hrs August 24 2008 Prospecting Eden Mine Adit & Dump
- 7 hrs September 12, 2008 General Reconnaissance South West Corner of Claims
- 8 hrs September 14, 2008 Digging Jackhammer and Queens Coffee Veins
- 4.5 hrs September 21, 2008 Prospecting Neosho & Norman Mines, from north-west
- 6 hrs September 23, 2008 Prospecting Neosho Mine Adit, Shafts & Dumps Approach from southwest,
- 6.5 hrs September 28, 29, 2008 Prospecting between Norman and Eden veins
- 7 hrs October 11, 2008 Digging Southern benches

SAMPLE LOCATIONS

A summary of sample numbers and their respective latitudes, longitudes and elevations is on the following page.

Sample #	GPS#	Location	Elevation
523565	60	N49 41.190 W116 55.961	929 m
523566	61	N49 41.230 W116 55.961	918 m
523567	62	N49 41.229 W116 55.961	916 m
523568	63	N49 41.246 W116 55.961	926 m
523569	64	N49 42.201 W116 56.039	1002 m
523570	65	N49 41.016 W116 56.023	951 m
523572	66	N49 41.035 W116 55.997	948 m
523573	67	N49 41.033 W116 55.996	941 m
523574	68	N49 41.112 W116 56.002	939 m
523575	69	N49 41.142 W116 55.994	943 m
523576	70	N49 41.265 W116 55.971	905 m
523577	71	N49 41.285 W116 55.970	880 m
523578	72	N49 41.403 W116 55.900	843 m
523579	73	N49 41.452 W116 56.132	893 m
523580	74	N49 41.336 W116 56.105	922 m
523581	75	N49 41.305 W116 56.116	920 m
523582	78	N49 41.101 W116 56.146	941 m
523583	79	N49 41.137 W116 56.116	929 m
523584	80	N49 41.227 W116 56.026	909 m
523585	81	N49 41.167 W116 56.118	941 m
523586	82	N49 42.021 W116 55.770	908 m
523587	83	N49 42.046 W116 55.745	885 m
523588	84	N49 42.068 W116 55.708	922 m
523589	85	N49 42.088 W116 55.690	926 m
523590	86	N49 42.114 W116 55.594	932 m
523591	87	N49 42.071 W116 55.648	924 m
523592	88	N49 42.029 W116 55.649	
523593	89	N49 41.975 W116 55.639	
523594	90	N49 41.956 W116 55.479	
523596	91	N49 41.948 W116 55.494	
523597	92	N49 41.506 W116 56.053	873 m

©2003 DMTI Spatial Inc. © Garmin Ltd. or its subsidiaries 1995-2004 CanMap®, DMTI Spatial and the DMTI Spatial logo are trademarks of DMTI Spatial Inc., Markham, Ontario

ASSAY RESULTS

In 2007- 2008 I assayed 33 samples for 37 minerals. The sample statistics are displayed on the following

AcmeLabs 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

ACME ANALYTICAL LABORATORIES LTD.

www.acmelab.com

Method

Code

SS80

1DX

Split Reject

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716 Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Submitted By:
Receiving Lab:
Received:
Report Date:
Page:

Dry at 60C sieve 100g to -80 mesh

1:1:1 Aqua Regia digestion ICP-MS analysis

Reject sample split/packet

Barry Turner

Acme Analytical Laboratories (Vancouver) Ltd. December 06, 2007 February 08, 2008 1 of 3

Test

0.5

Wgt (g)

Report

Status

Completed

CLIENT JOB INFORMATION

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Number of

Samples

33

33

33

ADDITIONAL COMMENTS

one Given

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Queens Coffee Mining Co. P.O. Box 533 Nelson BC V1L 5R3 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

AcmeLabs ACME ANALYTICAL LABORATORIES LTD. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

Queens Coffee Mining Co.

1DX

Р

%

0.001 0.063

0.077

0.064

0.185

0.038

0.081

0,155

0.161

0.102

0.050

0.200

0.108

0.032

0.060

0.028

0.063

0.145

0,090

0.058

0.052

0.087 0.096

0.141

0.071

0.057

0.080

0.076 0.075

0.212

0.170

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project: Report Date:

February 08, 2008

None Given

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

2 of 3 Part 1

CERTIFIC	ATE OF AN	JALY	7818) Jaile zauten												Sector Sector	VAR	1080)033	HT.
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
523565	Sediment	2.9	220.6	5.7	71	0.7	572.8	63.5	1042	8.97	1.6	0.3	18.1	0.2	59	0.2	0.2	7.7	111	0.16
523566	Sediment	0.7	25.9	29,8	190	1.1	47.9	11.4	288	2.41	4.2	0.6	0.7	2.8	11	1.0	0.3	0.5	45	0.14
523567	Sediment	0.6	28.4	59.2	229	2.2	42.2	12.3	197	2.37	6.5	0.6	1.5	3.9	11	1.4	0.6	0.5	44	0.17
523568	Sediment	1.2	63.8	49.6	319	5.7	70.1	13.3	453	4.12	13.3	5.8	4.0	9.1	28	1.5	0.4	0.8	51	0.41
523569	Sediment	0.8	28.6	36.9	184	0.5	43.4	12.7	290	2.46	5.5	1.9	0.5	5.4	15	0.8	0.3	0.4	39	0.22
523570	Sediment	0.7	29.5	39.1	231	0.9	35.6	13.5	257	2.58	7.1	1.1	0.7	3.8	16	1.5	0.3	0.5	45	0.17
523571	Sediment	4.2	170.6	5085	>10000	>100	34.6	13.3	2991	9.47	17.3	2.7	15.4	9.2	75	77.1	43.2	1.6	20	0.38
523572	Sediment	1.8	89.2	771.7	2304	2.0	88.6	16.9	1867	7.26	47.0	1.0	4.4	8.1	50	12.7	3.1	0.6	34	0.67
523573	Sediment	0.7	16.5	35.6	140	0.8	33.2	9.7	314	2.59	6.4	0.4	0.8	2.5	7	0.7	0.7	0.5	53	0.08
523574	Sediment	1.1	15.8	21.8	119	1.1	23.7	7.2	763	2.09	2.9	0.3	<0.5	1.7	10	0.7	0.4	0.4	39	0.14
523575	Sediment	0,3	63.3	18,5	154	0.5	42.6	30.9	550	6.31	2.1	0.6	<0.5	1.8	17	0.4	0.1	0.2	183	0.39
523576	Sediment	0.9	18.2	37.6	147	1.4	29,5	10.7	189	2.56	50.4	0.8	2.5	3.0	12	0.8	0.5	0.4	46	0.14
523577	Sediment	1.5	55.7	64.9	255	0.5	64.8	14.8	861	3.26	9.5	2.5	1.8	4.3	11	1.1	0.4	1.5	61	0.15
523578	Sediment	1.1	23.9	31.0	142	0.6	29.5	9.8	223	2.38	5.3	0.7	0.7	3.3	15	0.7	0.4	0.5	42	0.15
523579	Sediment	0.8	24.8	50.3	366	0.8	42.1	17.1	222	2.81	4.3	1.4	1.9	5.0	16	1.4	0.2	0.6	54	0.15
523580	Sediment	0.5	53.5	50,3	172	0.2	45.7	15.4	589	2.31	7.8	0.4	<0.5	2.4	10	0.5	0.9	0.5	47	0.13
523581	Sediment	0.7	33.7	36.6	169	0.9	38.2	12.4	337	2.54	6,7	1.0	1.8	3.7	14	0.9	0.5	0.5	46	0.12
523582	Sediment	0.9	57.9	62.4	174	0.8	59.4	15.9	631	2.97	9,8	1.0	1.9	3.1	15	0.8	0.4	0.6	58	0.21
523583	Sediment	1.0	71.4	23.6	124	0.3	74.4	27.0	523	5.23	7.4	1.1	2.8	2.5	13	0.4	5.8	0.3	92	0.25
523584	Sediment	1.1	17.0	30.0	140	0.7	27.6	9.2	433	2.40	6.0	0.5	1.5	2.4	9	0.7	1.0	0.4	48	0.11
523585	Sediment	0.8	31.5	52.1	274	1.3	44.0	12.5	331	2.66	6.4	1.5	1.2	4.9	10	1.6	0.3	0.5	47	0.09
523586	Sediment	1.2	43.7	40.5	. 236	1.1	50.8	16.3	345	3.31	8.1	0.5	1.0	3.0	13	1.0	0.7	0.6	68	0.13
523587	Sediment	0.8	30.2	56.9	336	0.8	53.7	14.1	633	2.80	6.2	0.9	0.8	4.2	22	1.6	0.6	0.6	50	0.24
523588	Sediment	0.6	35.0	38.5	185	0.4	52.2	15.8	553	3.16	7.3	0.6	2.4	3.8	22	0.7	0.5	0.6	59	0.30
523589	Sediment	0.5	42.8	33.6	427	1.0	117.3	17.4	326	3.07	7.9	1.4	1.1	2.8	32	0.9	0.3	0.4	53	0.45
523590	Sediment	0.4	47.9	34.8	167	0.4	85.7	18.2	354	3.45	8,5	0.5	<0.5	2.1	16	0.4	0.5	0.4	55	0.19
523591	Sediment	0.5	90.2	15.8	126	1.3	69.2	34.0	746	4.91	4.5	0.3	0.9	1.5	8	0.5	0.3	0.4	133	0.13
523592	Sediment	0.7	71.9	54.1	242	1.1	70.4	17.9	1545	3.64	18.5	1.2	4.3	3.5	25	0.9	0.8	0,8	67	0.33
523593	Sediment	0.9	72.8	31.8	213	0.6	62.4	21.0	753	3.55	7.4	0.7	1.5	3.3	8	0.7	0.4	0.6	102	0.12
523594	Sediment	0.4	75.5	47.3	194	0.4	45.8	29.9	1451	3.30	6.4	0,7	1.3	2.4	22	1.7	0.9	0.6	59	0.47

AcmeLabs Acme Analytical Laboratories Ltd. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project: Report Date:

February 08, 2008

None Given

Phone (604) 253-3158 Fax (604) 253-1716

						ww	w.acme	ab.co	m									
												Page:			2 of 3	Pai	t 2	
			ക്രിക				K CITA	die die s										୳୶ଡ଼୶୶୶୬୬୬୪
	ja ne of an	KALY	212						all shares at								W/AN	10000331
<u> </u>	Method	1DX	101	102	101	102	101	102	101	101	108	1DX	10X	1DX	1DX	1DX	1DX	<u></u>
	Analvte	i a	Cr	Ma	Ва	Ті	B	AI	Na	ĸ	w	На	т	S	Sc	Se	Ga	
	Unit	- maa	ppm	%	naa	%	ppm	%	%	%	maa	maa	ppm	%	ppm	ppm	mag	
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	
523565	Sediment	1	297	1.64	398	0.116	<20	1.93	0.009	0.38	0.7	0.01	1.0	0.22	12.5	1.1	6	
523566	Sediment	9	50	0.65	284	0.116	<20	2.64	0.014	0.08	0.3	0.03	0.2	<0.05	3.1	0.5	7	
523567	Sediment	9	46	0.57	152	0.090	<20	2.31	0.011	0.07	0.5	0.06	0.2	<0.05	2.8	<0.5	6	
523568	Sediment	19	50	0.38	354	0.224	<20	7.74	0.029	0.11	0.5	0.27	0.4	<0.05	6,9	1.7	15	
523569	Sediment	16	43	0.64	165	0.077	<20	1.65	0.007	0.08	0.3	0.03	0.2	<0.05	3.1	<0.5	5	
523570	Sediment	1 1	41	0.49	199	0.115	<20	2.89	0.012	0.06	0.4	0.05	0.2	<0.05	3,2	<0.5	8	
523571	Sediment	· 23	19	0.22	59	0.006	<20	0.69	0.003	0,14	0.3	1.03	3.5	0.43	3.8	3.3	5	
523572	Sediment	23	26	0.27	237	0.027	<20	1.71	0.006	0,09	0.3	0.05	0.3	0.05	6.5	1.6	5	
523573	Sediment	5	49	0.42	118	0.126	<20	2.73	0.010	0.07	0.2	0.04	0.2	<0.05	1.8	<0.5	8	
523574	Sediment	4	37	0.51	132	0.095	<20	1.69	0.008	0.04	0.3	0.03	0.2	<0.05	1.3	<0.5	7	
523575	Sediment	5	110	2.63	674	0.383	<20	4.55	0.012	0.98	0.2	0.02	0.6	<0.05	10.0	<0.5	15	
523576	Sediment	6	33	0.32	136	0.156	<20	4.16	0.021	0.05	0.3	0.09	0.2	<0.05	2,6	0.7	10	
523577	Sediment	18	52	0.51	225	0.115	<20	2.19	0.010	0.08	0.3	0.06	0.3	<0.05	4,5	1.0	8	
523578	Sediment	8	30	0.30	103	0.095	<20	2.34	0.007	0.06	0.3	0.05	0.2	<0.05	2.3	<0.5	7	
523579	Sediment	15	103	0.65	238	0.144	<20	2.99	0.014	0.07	0.3	0.06	0.2	<0.05	4.0	0.8	8	
523580	Sediment	6	44	0.59	100	0.092	<20	2.21	0.008	0.09	0.3	0.03	0.2	<0.05	2.5	<0.5	6	
523581	Sediment	10	33	0.46	139	0.144	<20	3.45	0.014	0.10	0.3	0.07	0.2	<0.05	3.2	<0.5	10	
523582	Sediment	12	55	0.79	254	0.102	-<20	2.16	0.011	0.18	0.4	0.03	0.3	<0.05	3.8	0.6	6	
523583	Sediment	11	58	0.30	82	0.025	<20	0.99	0.003	0.08	0.4	0.20	3.3	<0.05	11.3	0.6	3	
523584	Sediment	6	33	0.29	114	0.094	<20	2.01	0.010	0.06	0.2	0.04	0.3	<0.05	2.0	0.5	7	
523585	Sediment	14	35	0.41	149	0.151	<20	4.58	0.018	0.06	0.3	0.08	. 0.2	<0.05	4.7	0.7	11	
523586	Sediment	8	52	0.67	170	0.111	<20	2.70	0.010	0.09	0.4	0.05	0.2	<0.05	3.1	0.7	8	
523587	Sediment	14	67	0.59	261	0.129	<20	3.05	0.017	0.13	0.3	0.04	0.3	<0.05	3.9	<0.5	9	
523588	Sediment	10	58	0.66	177	0.106	<20	2.18	0.009	0.15	0.4	0.02	0.3	<0.05	3.9	<0.5	6	
523589	Sediment	7	192	0.95	204	0.129	<20	3.80	0.015	0.09	0.2	0.03	0.3	<0.05	4.5	0.8	7	
523590	Sediment	6	100	0.51	169	0.025	<20	1.96	0.006	0.13	0.2	0.03	0.3	<0.05	9.3	0.5	5	
523591	Sediment	3	57	0,91	136	0.146	<20	2.71	0.009	0.07	1.6	0.03	0.2	<0.05	6.3	0.6	9	
523592	Sediment	11	61	0.70	212	0.100	<20	2.64	0.013	0.12	0.3	0.05	0.3	<0.05	7.3	0.8	7	
523593	Sediment	9	60	0.77	254	0.123	<20	2.43	0.008	0.15	0.7	0.03	0.3	<0.05	6.0	<0.5	9	
523594	Sediment	7	31	0.65	334	0.173	<20	3.25	0.015	0.24	0.3	0.03	0.4	<0.05)3.2	<0.5	10	

AcmeLabs ACME ANALYTICAL LABORATORIES LTD.

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project:

Report Date:

February 08, 2008

None Given

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

												Page:			3 of 3	Par	t 1				
CERTIFIC	CATE OF AN	VALY	/SIS												North Register		VAR	1080	033	11 .	1
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
523595	Sediment	1.6	96.5	>10000	>10000	12.3	76.6	30.1	3120	5.04	31.0	0.9	12.1	2.4	17	94.2	8.3	0.6	106	0.50	0.098
523596	Sediment	0.9	71.6	430.5	879	3.5	68.7	24.4	739	4.29	9.2	0.7	2.9	2.9	11	5.0	0.6	0.7	115	0.28	0.069
523597	Sediment	3.5	71.6 430.5 879 3.5 68.7 24.4 739 4.29 9.2 0.7 2.9 2.9 11 5.0 0.6 0.7 115 89.8 19.6 86 0.2 14.1 14.2 389 3.79 <0.5		0.15	0.043															

Acmelabs Acmelabs Acme Analytical Laboratories Ltd. 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project: Report Date:

t Date:

0.7 < 0.05

None Given February 08, 2008

20.7

852 E. Hastings St. Vancouver BC V6A 1R6 Canac Phone (604) 253-3158 Fax (604) 253-1716

Sediment

7

4

0.10

64 < 0.001

www.acmelab.com

<20

Page:

3 of 3 Part 2

<0.5

2

	CERTIFICATE O	f An	IALY	'SIS			Cu (al 2 ¹¹		971610									VAD	NO8003311.1
		Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	
		Analyte	La	Cr	Mg	Ba	Ti	в	Al	Na	к	w	Hg	TI	S	Sc	Se	Ga	
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	,
_		MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	
Г	523595 Sedime	ent	9	87	1.41	611	0.172	<20	2.16	0.009	0.53	0.3	0.36	0.4	0.09	7.5	1.9	8	
Г	523596 Sedime	ent	9	112	1.57	644	0.159	<20	2.09	0.008	0.52	0.4	0.02	0.4	<0.05	7.5	0.8	6	

0.83

0.001

0,18

<0.1

< 0.01

201

523597

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project:

Report Date:

February 08, 2008

None Given

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

.

Page:

1 of 1 Part 1

QUALITY	CONTROL	REF	ØR	ľ											HERKT		VAN	080	033	14.1	C 403(M 2)F
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm -	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.1	0.1	· 0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Pulp Duplicates																					
523574	Sediment	1.1	15.8	21.8	119	1.1	23.7	7.2	763	2.09	2.9	0.3	<0.5	1.7	10	0.7	0.4	0.4	39	0.14	0.050
REP 523574	QC	1.1	14.0	21.2	117	1.0	24.3	7.8	749	2.09	2.9	0.4	0.6	1.8	9	0.9	0.4	0.4	39	0,13	0.051
523592	Sediment	0.7	71.9	54.1	242	1.1	70.4	17.9	1545	3.64	18.5	1.2	4.3	3.5	25	0.9	0.8	0.8	67	0,33	0.075
REP 523592	QC	0.6	69.2	53.7	238	1.1	65.9	17.7	1568	3.62	19.1	1.2	4.0	3.4	26	0,8	0,8	0,8	66	0.34	0.073
Reference Materials																					
STD DS7	Standard	21.2	106.6	70.9	416	0.9	55.2	9.5	616	2.42	56.9	5.4	60.8	5.0	78	6.2	6.2	4.9	86	0,95	0.080
STD DS7	Standard	19.6	98.2	70,2	380	0.8	49.1	9,0	591	2.29	47.0	4.6	51.9	4.5	69	6.1	5.6	4.4	82	0.89	0.076
STD DS7	Standard	19.7	102.5	68.3	400	0.9	57.1	9.4	605	2,38	49.4	4.9	54.2	4.3	72	6.0	5.2	4.7	81	0.87	0.074
STD DS7 Expected		20.92	109	70,6	411	0,89	56	9.7	627	2.39	48.2	4.9	70	4.4	68.7	6.38	5.86	4.51	86	0.93	0.08
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001

Acmelabs Acmelabs Acme ANALYTICAL LABORATORIES LTD.

Client:

Queens Coffee Mining Co.

Part 2

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project:

Report Date:

None Given February 08, 2008

852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

1 of 1

ONTRO QUAI R TSD Method 1DX w τI s Se Ga Analyte La Cr Mq Ва Τi в AI Na κ Hg Sc

	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm
C C	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1
Pulp Duplicates																	
523574	Sediment	4	37	0.51	132	0.095	<20	1.69	0.008	0.04	0.3	0.03	0.2	<0.05	1.3	<0.5	7
REP 523574	QC	5	36	0.50	139	0.095	<20	1.71	0.008	0.04	0.3	0.03	0.2	<0.05	1.3	<0.5	7
523592	Sediment	11	61	0.70	212	0.100	<20	2.64	0.013	0.12	0.3	0.05	0.3	<0.05	7.3	0.8	7
REP 523592	QC	10	60	0.70	221	0.100	<20	2.62	0.014	0.13	0.3	0.06	0.4	<0.05	7.4	0.7	7
Reference Materials																	
STD DS7	Standard	13	194	1.08	381	0.128	38	1.03	0.094	0.46	3.6	0.19	4.1	0.18	2.4	3.8	5
STD DS7	Standard	11	184	0.99	377	0.115	31	0.97	0.080	0.43	3.6	0.20	4.0	0.18	2.1	3.7	4
STD DS7	Standard	12	208	1.00	398	0.108	33	0.94	0.089	0.44	3.7	0.20	4.2	0.19	2.2	3.8	4
STD DS7 Expected		12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	0.2	4.19	0.21	2.5	3.5	4.6
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	<0.1	<0.5	<1
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	<0.1	<0.5	<1
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	<0.1	<0.5	<1

Acmelabs 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project: Report Date: None Given January 21, 2008

Phone (604) 253-3158 Fax (604) 253-1716

GEDIE CATE GEAN MAXSIS

www.acmelab.com

Page:

2 of 3 Part 1

V/ANIA8AA32

		關係的時	Sec. 1994		建制器制制	ele (rennes) en
	Method	1DX	1DX	1DX	1DX	1DX
	Analyte	Мо	Pb	Zn	Ag	Au
	Unit	ppm	ppm	ppm	ppm	ppb
-	MDL	0.1	0.1	1	0.1	0.5
523565	Sediment	2.9	5.7	71	0.7	18.1
523566	Sediment	0.7	29.8	190	1.1	0.7
523567	Sediment	0.6	59.2	229	2.2	1.5
523568	Sediment	1.2	49.6	319	5.7	4.0
523569	Sediment	0.8	36.9	184	0.5	0.5
523570	Sediment	0.7	39.1	231	0.9	0.7
523571	Sediment	4.2	5085	>10000	>100	15.4
523572	Sediment	1.8	771.7	2304	2.0	4.4
523573	Sediment	0.7	35.6	140	0.8	0.8
523574	Sediment	1.1	21.8	119	1.1	<0.5
523575	Sediment	0.3	18.5	154	0.5	<0.5
523576	Sediment	0.9	37.6	147	1.4	2.5
523577	Sediment	1.5	64.9	255	0.5	1.8
523578	Sediment	1.1	31.0	142	0.6	0.7
523579	Sediment	0.8	50.3	366	0.8	1.9
523580	Sediment	0.5	50.3	172	0.2	<0.5
523581	Sediment	0.7	36.6	169	0.9	1.8
523582	Sediment	0.9	62.4	174	0.8	1.9
523583	Sediment	1.0	23.6	124	0.3	2.8
523584	Sediment	1.1	30.0	140	0.7	1.5
523585	Sediment	0.8	52.1	274	1.3	1.2
523586	Sediment	1.2	40.5	236	1.1	1.0
523587	Sediment	0.8	56.9	336	0.8	0.8
523588	Sediment	0.6	38.5	185	0.4	2.4
523589	Sediment	0.5	33.6	427	1.0	1.1
523590	Sediment	0.4	34.8	167	0.4	<0.5
523591	Sediment	0.5	15.8	126	1.3	0.9
523592	Sediment	0.7	54.1	242	1.1	4.3
523593	Sediment	0.9	31.8	213	0.6	1.5
523594	Sediment	0.4	47.3	194	0.4	1.3

AcmeLabs 852 E. Hastings St. Vancouver BC V6A 1R6 Canada

ACME ANALYTICAL LABORATORIES LTD.

Client:

Queens Coffee Mining Co.

P.O. Box 533 Nelson BC V1L 5R3 Canada

Project: Report Date:

January 21, 2008

3 of 3

None Given

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part 1

- **\ // /\ /**

CERTIFICATE OF ANALYSIS

	Method	1DX	1DX	1DX	1DX	1DX
	Analyte	Мо	Pb	Zn	Ag	Au
	Unit	ppm	ppm	ppm	ppm	ppb
	MDL	0.1	0.1	1	0.1	0.5
523595	Sediment	1.6	>10000	>10000	12.3	12.1
523596	Sediment	0.9	430.5	879	3.5	2.9
523597	Sediment	3.5	19.6	86	0.2	2.7

Sheet1

Final Report ACME ANALYTICAL LABORATORIES LTD.

Client: File Created: Job Number: Number of Samples: Project: Shipment ID: P.O. Number:

Received:

		1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX ^	IDX 1DX	1DX	1	DX (1DX 1	DX '	1DX 1DX	1DX	1DX	1DX
		Mo	Cu	Pb	Zn	Ag	Au	lh	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва		3 Al	Na	K		W F	lg	II S	Sc	Se	Ga
		РРМ	РРМ	РРМ	РРМ	РРМ	PPB	РРМ	РРМ	РРМ	РРМ	РРМ	РРМ	%	%	РРМ .	РРМ.	%	РРМ	% I	PPM %	%	%	6 I	PPM F	PM I	PPM %	PPM	PPM	РРМ .
		0.1	0.1	0.1	1 1	I 0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20 0	01 0.0	J01	0.01	0.1	0.01	0.1 0.	05 0	.1 0.5	1
Sample #	QC#																													
523565	60	2.9	220.6	5.7	7 71	I 0.7	7 18.1	0.2	59	0.2	0.2	7.7	111	0.16	0.063	1	297	1.64	1 398	0.116 •	<20 1	93 0.0	009	0.38	0.7	0.01	1 0.	22 12	5 1.1	6
523566	61	0.7	25.9	29.8	3 190) 1.1	0.7	2.8	11	1	0.3	0.5	45	0.14	0.077	9	50	0.65	5 284	0.116 •	<20 2	64 0.0	014	0.08	0.3	0.03	0.2 <0.0	53	.1 0.5	7
523567	62	0.6	28.4	59.2	2 229	9 2.2	2 1.5	3.9	11	1.4	0.6	0.5	44	0.17	0.064	9	46	0.57	7 152	0.09 •	<20 2	31 0.0	011	0.07	0.5	0.06	0.2 < 0.0	52	.8 <0.5	6
523568	63	1.2	63.8	49.6	5 319	9 5.7	4	9.1	28	1.5	0.4	0.8	51	0.41	0.185	19	50	0.38	3 354	0.224 •	<20 7	74 0.0)29	0.11	0.5	0.27	0.4 <0.0	56	.9 1.7	15
523569	64	0.8	28.6	36.9	9 184	4 0.5	5 0.5	5.4	15	0.8	0.3	0.4	39	0.22	0.038	16	43	0.64	165	0.077 •	<20 1	65 0.0	007	0.08	0.3	0.03	0.2 < 0.0	53	1 <0.5	5
523570	65	0.7	29.5	39.1	I 231	I 0.9	0.7	3.8	16	1.5	0.3	0.5	45	0.17	0.081	11	41	0.49	9 199	0.115 •	<20 2	89 0.0	012	0.06	0.4	0.05	0.2 < 0.0	53	2 < 0.5	8
523571	66	4.2	170.6	5085	5 >10000	>100.0	15.4	9.2	75	77.1	43.2	1.6	20	0.38	0.155	23	19	0.22	2 59	0.006 <	<20 0	69 0.0	003	0.14	0.3	1.03	3.5 0.	43 3	8 3.3	5
523572	67	1.8	89.2	771.7	7 2304	1 2	2 4.4	8.1	50	12.7	3.1	0.6	34	0.67	0.161	23	26	0.27	237	0.027 <	<20 1	71 0.0	006	0.09	0.3	0.05	0.3 0.	05 6	.5 1.6	5
523573	68	0.7	16.5	35.6	6 140	0.0	8 0.8	2.5	7	0.7	0.7	0.5	53	0.08	0.102	5	49	0.42	2 118	0.126 •	<20 2	73 0	.01	0.07	0.2	0.04	0.2 < 0.0	51	8 < 0.5	8
523574	69	1.1	15.8	21.8	3 119	9 1.1	<0.5	1.7	10	0.7	0.4	0.4	39	0.14	0.05	4	37	0.51	132	0.095 <	<20 1	69 0.0	008	0.04	0.3	0.03	0.2 < 0.0	51	3 < 0.5	7
523575	70	0.3	63.3	18.5	5 154	1 0.5	5 < 0.5	1.8	17	0.4	0.1	0.2	183	0.39	0.2	5	110	2.63	674	0.383 <	<20 4	55 0.0	012	0.98	0.2	0.02	0.6 < 0.0	5 1	0 < 0.5	15
523576	71	0.9	18.2	37.6	6 147	7 1.4	2.5	3	12	0.8	0.5	0.4	46	0.14	0.108	6	33	0.32	2 136	0.156	<20 4	16 0.0)21	0.05	0.3	0.09	0.2 < 0.0	5 2	6 0.7	10
523577	72	1.5	55.7	64.9	255	5 0.5	5 1.8	4.3	11	1.1	0.4	1.5	61	0.15	0.032	18	52	0.51	225	0.115	<20 2	19 0	.01	0.08	0.3	0.06	0.3 < 0.0	5 4	5 1	8
523578	73	11	23.9	31	142	2 06	5 07	3.3	15	0.7	0.4	0.5	42	0.15	0.06	8	30	0.3	3 103	0.095	20 2	34 0 0	07	0.06	0.3	0.05	0.2 < 0.0	5 2	3<05	7
523579	74	0.8	24.8	50 3	3 366	- 0.0	3 19	5	16	14	0.2	0.6	54	0.15	0.028	15	103	0.65	5 238	0 144	-20 2	99 01	114	0.07	0.3	0.06	0.2 < 0.0	5 _	4 0.8	8
523580	75	0.5	53.5	50.3	3 172		2 < 0 5	24	10	0.5	0.2	0.5	47	0.10	0.020	6	44	0.50) <u>200</u>) 100	0.092	-20 2	21 01	108	0.07	0.0	0.00	0.2 <0.0	5 2	5 < 0.5	6
523581	76	0.7	33.7	36.6	160	- 0. <u>-</u>	18	37	14	0.9	0.5	0.5	46	0.12	0 145	10	33	0.46	3 139	0 144	-20 3	45 0 0	114	0.00	0.3	0.07	0.2 < 0.0	5 3	2 < 0.5	10
523582	77	0.1	57.0	62 /	1 17/	1 0.0	2 10	3.1	15	0.0	0.0	0.0	58	0.12	0.140	12	55	0.40	25/	0.144	-20 2	16 0.0	111	0.18	0.0	0.07	0.2 <0.0	5 3	8 06	6
523582	79	0.5	71 /	22.5	10/ 10/	1 0.0	2 2 2	2.5	12	0.0	5.9	0.0	02	0.21	0.059	11	59	0.73	207	0.102	~20 2		102	0.10	0.4	0.00	3.3 <0.0	5 J.	2 0.6	3
525505	70	1 1	11.4	23.0) 140	+ 0.0	7 1 5	2.5	13	0.4	3.0	0.3	32	0.23	0.050	6	20	0.0) 111	0.023	20 0	01 0	01	0.00	0.4	0.2	0.2 -0.0	5 II. E	2 0.0	7
525504	00	0.0	21 6	E2 1	1 27/	1 1 5	1.0	2.4	10	1.6	0.2	0.4	40	0.11	0.052	14	35	0.23	140	0.054 4	-20 2		10	0.00	0.2	0.04	0.3 <0.0	5	2 0.5	11
523565	00	1.0	31.0	32.1	214	+ 1.0	0 1.2	4.9	10	1.0	0.3	0.5	41	0.09	0.007	14	50	0.41	149	0.151 4	-20 4	30 0.0	01	0.00	0.3	0.06	0.2 <0.0	54. E2	1 0.7	0
523560	01	1.2	43.7	40.0	230			10	13	1 0	0.7	0.0	50	0.13	0.090	0	52	0.07	001	0.111 4	.20 .	2.7 0	.01	0.09	0.4	0.05	0.2 <0.0	53. E2	0.05	0
523587	82	0.8	30.2	50.5	330	- 0.0	0.0	4.2	22	1.0	0.6	0.6	50	0.24	0.141	14	67	0.59	201	0.129 4	<20 3	10 0.0		0.13	0.3	0.04	0.3 < 0.0	53. 50.	9 < 0.5	9
523588	03	0.6	30	38.0	0 100	0.4	+ 2.4	3.0	22	0.7	0.5	0.6	59	0.3	0.071	10	50	0.00		0.100 4	<20 Z	10 0.0	109	0.15	0.4	0.02	0.3 < 0.0	53. 54	9 < 0.5	0
523589	84	0.5	42.8	33.6	b 427		1.1	2.8	32	0.9	0.3	0.4	53	0.45	0.057	/	192	0.95	204	0.129 4	<20	3.8 0.0	J15	0.09	0.2	0.03	0.3 < 0.0	5 4.	5 0.8	
523590	85	0.4	47.9	34.8	3 167	0.4	1 < 0.5	2.1	16	0.4	0.5	0.4	55	0.19	80.0	6	100	0.51	169	0.025 <	<20 1	96 0.0	006	0.13	0.2	0.03	0.3 < 0.0	5 9.	.3 0.5	5
523591	86	0.5	90.2	15.8	3 126	5 1.3	3 0.9	1.5	8	0.5	0.3	0.4	133	0.13	0.076	3	57	0.91	136	0.146 •	<20 2	71 0.0	09	0.07	1.6	0.03	0.2 < 0.0	5 6.	.3 0.6	9
523592	87	0.7	71.9	54.1	242	2 1.1	4.3	3.5	25	0.9	0.8	0.8	67	0.33	0.075	11	61	0.7	212	0.1 <	<20 2	64 0.0)13	0.12	0.3	0.05	0.3 < 0.0	57.	.3 0.8	7
523593	88	0.9	72.8	31.8	3 213	3 0.6	5 1.5	3.3	8	0.7	0.4	0.6	102	0.12	0.212	9	60	0.77	254	0.123 <	<20 2	43 0.0	008	0.15	0.7	0.03	0.3 < 0.0	5	6 < 0.5	9
523594	89	0.4	75.5	47.3	3 194	1 0.4	1.3	2.4	22	1.7	0.9	0.6	59	0.47	0.17	7	31	0.65	5 334	0.173 •	<20 3	25 0.0)15	0.24	0.3	0.03	0.4 < 0.0	5 3	2 < 0.5	10
523595	90	1.6	96.5	>10000.0	>10000	12.3	3 12.1	2.4	17	94.2	8.3	0.6	106	0.5	0.098	9	87	1.41	611	0.172 •	<20 2	16 0.0	009	0.53	0.3	0.36	0.4 0.	09 7.	5 1.9	8
523596	91	0.9	71.6	430.5	5 879	9 3.5	5 2.9	2.9	11	5	0.6	0.7	115	0.28	0.069	9	112	1.57	644	0.159 •	<20 2	09 0.0	008	0.52	0.4	0.02	0.4 <0.0	5 7.	5 0.8	6
523597	92	3.5	89.8	19.6	6 86	6 0.2	2 2.7	0.3	24	0.3	<0.1	<0.1	64	0.15	0.043	7	4	0.1	64	<0.001 •	<20 0	83 0.0	001	0.18 •	<0.1 <	:0.01	0.7 <0.0	5 20	7 <0.5	2
Pulp Duplicates																														
523574		1.1	15.8	21.8	3 119	9 1.1	<0.5	1.7	10	0.7	0.4	0.4	39	0.14	0.05	4	37	0.51	132	0.095 <	<20 1	69 0.0	008	0.04	0.3	0.03	0.2 <0.0	5 1	.3 <0.5	7
523574		1.1	14	21.2	2 117	7 1	0.6	1.8	9	0.9	0.4	0.4	39	0.13	0.051	5	36	0.5	5 139	0.095 <	<20 1	71 0.0	008	0.04	0.3	0.03	0.2 < 0.0	5 1.	.3 <0.5	7
523592		0.7	71.9	54.1	I 242	2 1.1	4.3	3.5	25	0.9	0.8	0.8	67	0.33	0.075	11	61	0.7	212	0.1 •	<20 2	64 0.0	013	0.12	0.3	0.05	0.3 <0.0	5 7	.3 0.8	7
523592		0.6	69.2	53.7	7 238	3 1.1	4	3.4	26	0.8	0.8	0.8	66	0.34	0.073	10	60	0.7	221	0.1 •	<20 2	62 0.0	014	0.13	0.3	0.06	0.4 < 0.0	5 7	4 0.7	7
Reference Materials																														
STD DS7		21.2	106.6	70.9	9 416	6 0.9	60.8	5	78	6.2	6.2	4.9	86	0.95	0.08	13	194	1.08	3 381	0.128	38 1	03 0.0)94	0.46	3.6	0.19	4.1 0.	18 2	4 3.8	5
STD DS7		19.6	98.2	70.2	2 380	0.8	51.9	4.5	69	6.1	5.6	4.4	82	0.89	0.076	11	184	0.99	377	0.115	31 0	97 0	.08	0.43	3.6	0.2	4 0.	18 2	1 3.7	4
STD DS7		19.7	102.5	68.3	3 400	0.9	54.2	4.3	72	6	5.2	4.7	81	0.87	0.074	12	208	1	398	0.108	33 0	94 0.0	089	0.44	3.7	0.2	4.2 0.	19 2	2 3.8	4
BLK		<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001 •	<20 <0.0	1 < 0.00)1 <	.0.01	<0.1 <	.0.01	<0.1 <0.0	5 <0.1	<0.5	<1
BLK		<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001 <	<20 <0.0	1 < 0.00)1 <	.0.01	<0.1 <	.0.01	<0.1 <0.0	5 <0.1	<0.5	<1
BLK		<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	< 0.01	<0.001	<1	<1	< 0.01	<1	<0.001 <	<20 <0.0	1 < 0.00)1 <	0.01	<0.1 <	0.01	<0.1 <0.0	5 < 0.1	< 0.5	<1
									•				-								,									

Queens Coffee

GPS #

```
60 - 220 ppm in copper, 572 nickel, 1042 manganese
61
62 top layer of subsoil– 229 zinc
63 lower layer of subsoil – 319 zinc
64
65
Near Neosho vein - 66 -170 copper, 5085 lead, off the scale zinc,>100 silver,3000 manganese, 15.4ppb gold
67 - 771 lead, 2300 zinc, 2 silver, 1800 manganese, 4.4ppb gold
68 –
69
70
-71
72
73
74
75
76
77
78
79
80
81
82
83
84 – 427 zinc
85
86
87 – 4.3ppb gold
88
89
90 - high grade, 12.3 silver, 3000 manganese, 12.1ppb gold
91 - high grade, 430 lead, 3.5 silver, 739 manganese,
92
```

Sheet1

Copper Results

Zinc Results

Silver Results

Gold Results

EXPENSES

I am claiming the following expenses.

Cost of Food for lunches

Queens Coffee Mining Company Cost Statement of Food - 2008

Rate Per Day	Number of lunches	Specific Date	Total Food Costs		
\$18.00	1	May 17, 2008	\$18.00		
\$18.00	1	May 18, 2008	\$18.00		
\$18.00	1	August 10, 2008	\$18.00		
\$18.00	1	September 12, 2008	\$18.00		
\$18.00	2	September 28, 2008	\$36.00		
Total Lunches	6	Total	\$108.00		

Cost of Truck

Queens Coffee Mining Company

Cost Statement of Transportation Costs – 2007 – Page 1

2001 GMC Sierra Four Wheel Drive pickup

Number of Days	Rate Per Day	Specific Date	Total Transportation Costs
23	\$40.00	May 17, 2008	\$40.00
		May 18, 2008	\$40.00
		June 15, 2008	\$40.00
		July 15, 2008	\$40.00
		August 10, 2008	\$40.00
		August 24, 2008	\$40.00
		September 12, 2008	\$40.00
		September 14, 2008	\$40.00
		September 21, 2008	\$40.00
		September 23, 2008	\$40.00
		September 28, 2008	\$40.00
		October 11, 2008	\$40.00
		Total	\$480.00

Queens Coffee Mining Company

Cost Statement of Analyses Performed – 2008

Sample Lot	Rate Per Assay	Code	# of Assays	Total Paid
1	\$1.95	5 SS80	33	\$64.35
2	\$2.00) RJSV	33	\$66.00
3	\$12.40) G1DX	33	\$409.20
1a	\$14.00) G7AR	2	\$28.00
			Sub-Total	\$567.55
			G.S.T.	\$28.38
			Sub-Total	\$595.93
Shipping				\$28.64
			Total	\$624.57

Other Business Expenses

Queens Coffee Mining Company

Cost Statement of Other Business Expenses – 2007

ltem #	Detail of Cost	Cost		
1	Advertising – web page			
	15.86 per month x 12 months	\$190.32		

RECOMMENDATIONS

Much of the claim area has large cliffs and exposures of bedrock. I am certain that these areas have been thoroughly searched and prospected, and I did not sample these.

Very recent (1 to 40 years ago) logging activity has exposed new potential by the construction of skid roads, landings, and slash pile burns. These expose rocks and minerals that the old time prospectors could not see or detect. More prospecting and sampling has been done in these areas in 2008.

Because of previous glacial and erosion activity, some of the claim areas are covered with either glacial till or washed rocks and gravels from Coffee Creek. Glacial erosion occurred in a north to south motion, most physical (float) and geochemical anomalies would migrate south of an outcropping or area of mineralization.

In 2008 I did more digging, prospecting and sampling on areas that have good mineralization indicators. There are some good indicators and a geochemical anomaly in an area 360 meters north of the Jackhammer Drill Site. The Josephine faults has multiple quartz layers, cuts and intersections of varying age and structure.

Samples #27, #28, #57 were taken from this area. (QueensCoffee07). There is also a layered zone of mineralization about 200 meters to the west. Sample #78 showed some promise there. Many quartz stringers transect the layers randomly. The Krao limstone twists and bends through intertwined with the Josephine and Lakeshore faults.

In 2010, I am proposing to conduct trenching in the QueensCoffee07 area to do further sampling. I am also interested in sampling several limestone voids that are filled with swamp and pondwater.

In 2012, I am proposing to diamond drill 8 holes to a depth of 50 to 150 meters. These holes would intersect along the two mineralized zones south and north of Coffee Creek.

STATEMENT OF QUALIFICATIONS

I, Barry K. Turner, of the City of Nelson, B.C. hereby certify as follows

- 1. I studied Mining Engineering at the British Columbia Institute of Technology in 1970 and 1971.
- 2. I worked for several months as a junior geologist during parts of the 1970s.
- 3. In 1995 I became a Certified Technician in the Civil Engineering discipline.
- 4. I have maintained an interest in prospecting for the past 26 years.
- 5. I have a direct interest in the shares and interests of Queens Coffee Mining Company, as I am the sole proprietor.