BC Geological Survey Assessment Report 31059

CHRISTOPHER JAMES GOLD CORP.

A REPORT ON A ROCK & SOIL GEOCHEMICAL SURVEY ON THE TILLICUM LAKE PROPERTY

LAC LA HACHE, BRITISH COLUMBIA

NTS: 093A/3W BCGS: 093A003

by

Tim Nillos, B.Sc. and Brian May, B.Sc.

September 11, 2009

Cariboo Mining Division Work Area UTM Coordinates: NAD 83/10U 606300E, 5769800N Work Area Latitude/Longitude: 121°27'W, 52°04'N

Claim Owner: Candorado Operating Company Ltd. Project Operator: Christopher James Gold Corp. Project Consultants: Hendex Exploration Services Ltd. Mineral Titles: 526768, 527403, 527404, 527406, 540526

Table of Contents

IST OF FIGURES	III
LIST OF TABLES	
IST OF APPENDICES	III
SUMMARY OF WORK DONE	. 1
NTRODUCTION	. 2
TERMS OF REFERENCE	. 2
PROPERTY DESCRIPTION AND CLAIM STATUS	. 2
-OCATION, ACCESS AND PHYSIOGRAPHY	. 2
HISTORICAL BACKGROUND	. 5
GEOLOGICAL SETTING	. 6
REGIONAL GEOLOGY	. 6
Property Geology	. 6
MINFILES	. 6
GEOCHEMISTRY	. 8
	. 8
SAMPLING AND ANALYTICAL PROCEDURES	. 8
QUALITY CONTROL MEASURES	. 9
NTERPRETATION AND ANALYSES OF GEOCHEMICAL RESULTS	10
ROCK GEOCHEMICAL SURVEY	10
SOIL GEOCHEMICAL SURVEY	10
CONCLUSIONS AND RECOMMENDATIONS	10
REFERENCES	13

List of Figures

Figure 1Tillicum Lake Location Map (Scale 1:400,000)Figure 2Tillicum Lake Claims Map (Scale 1:50,000)Figure 3Tillicum Lake Geology Map with MINFILE occurrences (Scale 100,000)Figure 4Tillicum Lake Rock & Soil Sample Location Map (Scale 1:25,000)Figure 5Rock Sample Results (Sample ID, Cu ppm) (Scale 1:10,000) (End ofdocument)Soil Sample Results (Sample ID, Au ppb, Cu ppm) (Scale 1:10,000) (End of

List of tables

- Table 1Tillicum Lake Mineral Claim Tenures
- Table 2Statement of Costs

List of Appendices

- Appendix I Authors Certificates and Statements of Qualifications
- Appendix II Eco-Tech Laboratory Ltd. Laboratory Assay Certificates
- Appendix III Summary of Silt and Rock Sample Locations and Results
- Appendix IV Rock Sample Descriptions

SUMMARY OF WORK DONE

The Tillicum Lake Property consists of five mineral titles comprising a total area of approximately 1,920 hectares. The property is currently 100% owned by Candorado Operating Company Limited (Candorado). Christopher James Gold Corp has an option to acquire 60% interest in the property (Christopher James Gold Corp News Release, July 2008).

In the fall of 2008, Christopher James Gold Corp completed a soil and rock geochemical program on the Tillicum Lake mineral tenures to meet assessment requirements. A total of 18 rock samples and 201 soil samples were obtained. Of the 18 rock samples, 14 were located on Tillicum Lake tenures. The objectives of the surveys were:

- 1. To locate prospective showings on the property and determine if the geology on the Tillicum Lake property shows similar characteristics to GWR's prospective Lac La Hache Property.
- 2. To attempt to cover the entire property with a soil geochemical survey in the hope of defining geochemical anomalies.

INTRODUCTION

Terms of Reference

This report has been prepared on behalf of the management of Christopher James Gold Corp. (CJGC) of 1620 – 1140 W. Pender Street, Vancouver B.C. in support of an application for registration of exploration and development work on the mineral claims constituting the Tillicum Lake property. Christopher James Gold Corp currently has the option of earning a 60% interest in the property, which is currently owned 100% by Candorado Operating Company Ltd. The report is intended as an account of a soil and rock geochemical survey performed over the property by the co-author, Tim Nillos, and Hendex Exploration Ltd. and is submitted in compliance with reporting regulations set forth in Schedule A of the B.C. Mineral Tenure Act Regulations. The field work discussed was conducted between September 23, 2008 and October 10, 2008.

Property Description and Claim Status

The Tillicum Lake property is located on NTS map sheet 093A/3 in the Cariboo region of British Columbia (Figure 1). The Tillicum Lake Property consists of five contiguous mineral claims for a total size of 1920 hectares (Table 1, Figure 2).

Location, Access and Physiography

The claims are located about 30 kilometers north of the village of Lac La Hache, in the Cariboo region of British Columbia. Excellent gravel roads lead into the claim block from Highway 97: from Lac La Hache, 150 Mile House and Horsefly. Secondary logging roads provide limited access to the remainder of the property.

The NTS coordinates of the claim block are 93A/3W. The approximate geographical coordinates are 52 04' N and 121 27' W. The claim group is located in the Interior Plateau of British Columbia: an area of relatively low relief at approximately 3500 feet elevation.

Ridge pole pine, spruce and fir with a minimum of underbrush and clean logging slashes give facile working conditions except in swampy areas.

Tenure	Claim		Good to	Area in
Number	Name/Property	Issue Date	Date	Hectares
526768		2006/jan/30	2012/aug/14	298.17
527403		2006/feb/10	2012/aug/15	397.56
527404		2006/feb/10	2012/aug/15	496.72
527406		2006/feb/10	2012/aug/14	437.13
540526	SPOUT NW 2	2006/sep/06	2012/aug/14	297.91
			TOTAL AREA	1927.49

Table 1: Mineral Claim Title Tenures

Historical Background

The history listed below has mainly been summarized after Seyward (1989). There has been relatively little mineral exploration in the general vicinity of the claim group. Quartz vein gold occurrences were discovered in the 1930's at Frasergold and Spanish Mountain to the north and east. The discovery of the Cariboo-Bell porphyry copper deposit in the mid 1960's contributed to the start of significant exploration in the region.

Minor work in the 1960's by Coranex included reconnaissance geochemical soil sampling south of Tillicum Lake in the Spout Lake area (Janes, 1967). The results of this survey led to the eventual discovery of the WC, Peach, Tim and Miracle showings. Coranex carried out follow-up magnetic and IP surveys and defined a number of anomalous IP zones in the vicinity of Peach Lake. Amax Potash Limited outlined the Tim showings with follow-up geological mapping and discovered the WC magnetite-copper skarn deposit south of Spout Lake (Hodgson and DePaoli, 1972). Percussion drilling by Amax intersected160 feet of 1.63% copper with one 80 foot section running 2.28% copper (Hodgson and DePaoli, 1973). Additional diamond drilling on the WC deposit by Craigmont Mines returned good copper values in a number of holes; the best giving 20 feet of 2.47% copper (Vollo, 1975). No assays were done for gold.

Gold exploration in the region began in the 1980's with BP-Selco conducting a broad scale soil sampling program, which located several strong copper-gold geochemical anomalies that were not explored (Gamble and Hoffman, 1984).

In the fall of 1983 work on the Tim showings by Stallion Resources Ltd. and a zone of 10.7 meters assayed 4.6% copper, 1.7 oz/ton silver and a 1.5 m section with 0.119 oz/ton gold (Butler, 1984). The Miracle showing was discovered by prospectors Neils Kriberg and Don Fuller through reconnaissance work by Guichon Explorco (Gamble, 1983). In the late 1980's, GWR Resources Inc. outlined a zone of copper-gold mineralization coincident with a magnetic high and a strong IP anomaly (White, 1987). In 1988, Western Geophysical Aero Data Ltd. completed an airborne magnetic and VLF-EM survey over the general Tillicum Lake area. An interpretation of the survey by Armstrong Mountain Gold Corp. resulted in the discovery of numerous VLF-EM conductors over the area.

GWR Resources acquired the Ben-Abbey Group (a portion of the claims covered by Tide Resources) in 1994 and completed a comprehensive geological, rock geochemical and induced polarization survey over the property. High chargeability zones were observed from the IP survey and a recommendation to determine if the zones were lithological or due to sulphide mineralization was made. The current claim configuration was staked by Candorado in 2006.

GEOLOGICAL SETTING

Regional Geology

The regional geology of the area is defined by the Quesnel Terrane of the Intermontane Belt. The Intermontane Belt in this area is dominated by basaltic rocks of the Upper Triassic to Lower Jurassic Nicola Group. The Nicola Group has been intruded by the Lower Jurassic Takomkane batholith of granodioritic composition. Small syenitic to monzonitic stocks and dikes have intruded the volcanic rocks but appear to be cut by the Takomkane batholith. These alkalic felsic intrusions commonly have associated copper mineralization within the intrusions or within propylitized volcanics near the intrusions. This mineralization can be either of porphyry or skarn-type. GWR Resources is currently exploring the Lac La Hache property which hosts several prospective showings (Figure 3).

Property Geology

The property is dominantly underlain by Nicola Group basalts, with the southern portion of the property underlain by Eocene-aged Kamloops Group calc-alkaline volcanics, and a small fraction of the western portion of the property underlain by Miocene to Pleistocene Chilcotin Group basalts. The property thus far has no known outcrop of the intrusive rocks of the Takomkane batholiths.

Minfiles

There are currently no listed MINFILES within the Tillicum Lake claims. MINFILE showings located to the south and east of the property are shown in Figure 3.

GEOCHEMISTRY

Introduction

During the 2008 field season, a total of 201 soil, and 18 rock samples were collected throughout the property (Figure 4). The samples were collected throughout the mineral tenures, with all 201 soil samples and 14 rock samples located on Christopher James Gold Corp tenure.

Sampling and Analytical Procedures

Soil samples were collected along NE-SW trending survey lines. A total of 9 survey lines were completed along this trend. Sample stations were spaced approximately 100 m apart along the survey lines. The 5 most northwesterly survey lines were spaced 200 m apart, while the four southeasterly survey lines were spaced 400 m apart. An additional 4 random ridge-spur soil survey lines were completed in the southern half of the survey (83331-87335, 83371-37385, 87483-87490, and 87494-87498). Samples were taken from two points to represent one sample station. Each sample point was distanced about 10 to 20 metres from the station.

The material sampled was dominantly B horizon. Approximately 2 kilograms of the B horizon were collected from each sample site into clean rice bags, combined at the second site to be quartered, and about 500 grams was taken as a representative sample at each station. The samples were collected with a hand shovel into a large prelabeled poly ore bag. Sample ID tags were inserted in each bag prior to being taped and sealed. Each sample station is marked with flagging tape bearing a set number defined by the sample ID cards wherein the last three digits corresponds to the pre-defined sample station number. The sample ID cards were provided by Eco-Tech Laboratory Ltd.

A rock geochemical survey involved collecting both float and outcrop samples that displayed alteration and/or mineralization. The primary area of interest was an exposed quarry on the eastern portion of the property, where a total of nine rock samples were collected. All rock samples were collected from road accessible areas.

Rock samples were carefully cleaned to avoid weathered surfaces or organic material and best represent the mineralization and alteration for that location. Whenever possible the fresh face of the samples was collected. Sample types were recorded on the sample booklet and field book indicating the extent of weathering if fresh samples were unattainable.

Approximately 4 to 5 kilograms of fist-size rock samples were taken and collected into a large poly ore bag. The bags were labeled on both sides with the corresponding sample ID numbers from the sample booklets. The sample ID tag was also inserted into the sample bag prior to sealing. Sample locations for rocks were indicated with a representative sample, which was wrapped with flagging tape and labeled with a

sample ID number. Carefully detailed descriptions of each rock sample were recorded in the sample booklets (Appendix III). Corresponding photos were also taken at each sample site. For the sample locations that were chip channeled, specific intervals were defined across the well exposed outcrop. Sample intervals were marked on the outcrop using fluorescent pink spray. Sample ID numbers were provided by Eco-Tech Laboratory Ltd.

Quality Control Measures

All soil and rock samples were submitted to the Eco-Tech Laboratory Ltd. in Kamloops, B.C. for the 2008 exploration program. The 28 element ICP package (Eco-Tech code BICP-11) was used for both soil and rock samples, while the Au Fire Assay package (Eco-Tech code BAUFG-13) was used solely for the soil samples. The ICP package involved Aqua-Regia Digestion, while the Au Fire Assay package was by atomic absorption. A 50 gram sample was used for the Au Fire Assay package, with a detection limit of 5 ppb.

Surface rock samples were cleaned of vegetation, moss and soil prior to analysis. After each soil sample was taken, the shovel blade, rice sacks, sieves, brushes and gloves were thoroughly cleaned. Cleaning was done with water whenever possible.

Eco-Tech was not responsible for sample preparation for the soil samples. These samples were dried and sieved in the field. Eco-Tech prepared each of the 4 to 5 kg rock samples by drying and crushing the entire sample to -10-mesh with 70% of the material passing. The material passing through the -10 mesh was then ring pulverized to a 250 gram split to 150 mesh with 90% of the material passing through the mesh. Soil and rock samples were then analyzed using 28-element ICP. Atomic Absorption Au Fire Assay was used solely for the soil samples.

Due to the grassroots nature of the work done, no quality assurance/quality control measures were performed by CJGC to check the laboratory procedures. However, Eco-Tech Laboratory Ltd. performs their own QA/QC measures by Eco-Tech Laboratory Ltd. by adding their own duplicates and standards and performing rechecks

Interpretation and Analyses of Geochemical Results

Rock Geochemical Survey

The rock geochemical survey involved the collection of 18 samples, of which 14 were located on Tillicum Lake claims. Nine of the samples were collected from a rock quarry, which is located off of a logging road that runs east-west through the claim block. The samples were not assayed for gold. Anomalous copper values in andesite were obtained from the quarry that ranged from 138 ppm to 235 ppm. Samples outside of the quarry area generally recorded low copper values, with only two samples recording values greater than 100 ppm Cu, but neither are located on the Tillicum Lake claim block. At this current time, the Nicola group andesite (basalt) contains the highest copper values. Figure 5 shows copper results from the rock geochemical survey

Soil Geochemical Survey

No major anomalies were delineated from the 201 samples collected for the 2008 soil geochemical survey. Anomalous values were located randomly and show no distinct pattern. The highest gold values were very modest (2 samples - 25 ppb and 30 ppb) obtained on the survey within the unit described as Nicola Group basaltic (andesite) rocks. The majority of soil samples on the survey assayed <5 ppb gold. There were a total of ten soil samples with copper values greater than 100 ppm, with the highest sample assaying 154 ppm copper. Five of the anomalous copper soil samples were located within Nicola Group rocks and five of the soil samples were located within the Kamloops Group calc-alkaline rocks. At this current time, there does not appear to be any distinct trends for follow-up soil sampling. Figure 6 shows copper and gold results from the rock geochemical survey

CONCLUSIONS AND RECOMMENDATIONS

The 2008 rock and soil geochemical survey involved the collection of 201 soil samples and 18 rock samples. The most anomalous rock samples obtained were located within a quarry in the central portion of the property.

The objectives of the 2008 survey were

1) To locate prospective showings on the property and determine if the geology on the Tillicum Lake property shows similar characteristics to GWR's prospective Lac La Hache Property.

It does not appear at this current time that showings equivalent in nature to those found on GWR's Lac La Hache Property exist on the Tillicum Lake claims. No outcrop or float of the Jurassic aged syenitic to monzonitic intrusive rocks or granodioritic rocks have been located on the claims. Chalcopyrite and pyrite mineralization was very minor as disseminations and low in concentration in the rock samples collected (dominantly andesite). No vein style or stockwork mineralization was encountered in the survey.

2) To attempt to cover the entire property with a soil geochemical survey with the hope of defining geochemical anomalies.

The soil geochemical survey over the Tillicum Lake claims resulted in the collection of 201 soil samples over the central portion of the property. Soil sampling in the southern and northern portion of the property was not achieved in this program due to time constraints and inclement weather. Sporadic anomalous copper values greater than 100 ppm were located at 10 sample sites. No definitive geochemical anomalies were delineated on the property.

Additional rock sampling is suggested on the property, as the 2008 program was limited in time and scale. While overburden hinders outcrop, there is the potential for float mapping over the property, as well as float assaying. Thus far, rock samples have only been collected from road accessible areas.

The Tillicum Lake claims do not show desirable anomalous soil trends and the rock samples that have been obtained thus far are not encouraging. However, if the property is to be pursued in the future, additional work should include completing the soil survey over the entire property, specifically in tenure blocks 540526 (northern part of the property), as well as 526768 and 527403 (southern part of the property). The southern part of the property may be challenging for typical survey lines due to higher terrain and may require sampling in a ridge-spur orientation.

TABLE 2: STATEMENT OF COSTS

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Tim Nillos/Project Supervisor	09/25/2008-10/10/2008	16	\$525.00	\$8,400.00	
Hendex Exploration/Soil Sampler	09/30/2008-10/10/2008	10.5	\$375.00	\$3,937.50	
Hendex Exploration/Soil Sampler	09/30/2008-10/10/2008	10.5	\$340.00	\$3,570.00	
Frank Walcher/Labourer	10/10/2008	1	\$160.00	\$160.00	
				\$16,067.50	\$16,067.50
Office Studies	Personnel				
Literature search	Tim Nillos	1.0	\$525.00	\$525.00	
Database compilation	Tim Nillos	1.0	\$525.00	\$525.00	
Database compilation	Chris Pennimpede	5.0	\$200.00	\$1,000.00	
Reprocessing of data	Tim Nillos	1.0	\$525.00	\$525.00	
Report preparation	Brian May	10.0	\$400.00	\$4000.00	
				\$6,600.00	\$6,600.00
Geochemical Surveying	Number of Samples			Subtotal	
Soil	201			\$3,889.46	
Rock	18			\$313.74	
				\$4,203.20	\$4,203.20
Transportation	Date	No.	Rate	Subtotal	
Hendex Exploration Services - Truck Rental	10/13/2008	1.00	\$200.00	\$200.00	
Christopher James Gold Corp - fuel				\$821.83	
Antle Towing Services				\$259.87	
				\$1,281.70	\$1,281.70
Accommodation & Food	Rates per day				
Christopher James Gold Corp - Hotel	Actual Costs			\$1,383.46	
Christopher James Gold Corp - Meals	Actual Costs			\$1,451.35	
				\$2,834.81	\$2,834.81
Equipment Rentals/Purchases					
Walkie Talkie Rentals - Canada Wide Communications	09/23/08-10/07/08			\$118.00	
Hendex Exploration Services - Soil Sampling Supplies				\$273.57	
Eco-Tech Laboratory - Sample Bags				\$107.00	
CJGC - Soil Sampling Supplies (brushes, shovels, field gear)				\$167.48	
Aeromagnetic Map of Murphy Lake (NTS 093A/03)				\$17.12	
CJGC - Office Supplies (toner for printer used for maps in field)				\$46.99	
				\$730.16	\$730.16
TOTAL Expenditures					\$31,692.37

REFERENCES

Butler, P. (1984). Diamond Drilling Report on the Tim 2 Claim, Stallion Resources Ltd., Clinton Mining Division, April 1984. *Assessment Report 12192.*

Gamble, A.P.D. (1983). Geochemical Survey of the Core Claims, Guichon Explorco Ltd., Clinton Mining Division, August 1983. *Assessment Report 11692.*

Gamble, A.P.D. and Hoffman, S.J. (1984). Soil Geochemical Survey on the Core 8 to 13 Claims, Selco Division, BP Resources Canada Ltd., Clinton Mining Division, October 1984. *Assessment Report 13119.*

Hodgson, C.J. and DePaoli, G.M. (1972). 1971 Property Report on the Spout Lake Copper Property Amax Potash Ltd., Clinton Mining Division, January 1972.

Hodgson, C.J., and DePaoli, G.M. (1973). Final 1973 Property Report on the Spout Lake Copper Property, Amax Potash Ltd., Clinton Mining Division, November 1973.

Janes, R. H. (1967). A Report on the Geochemistry of the Peach North and South Groups, Coranex Ltd., Clinton Mining Division, August 1967. *Assessment Report 1038.*

Seyward, M.B. (1989). Geophysical Report on an Airborne Magnetic Data Enhancement Project, Tom 1-4, Jake 1-4, Terry 1-4, and Vanna 1-4 Claims, Cariboo Mining Division, November 10, 1989. *Assessment Report 19575*.

Vollo, N.B. (1975). Diamond Drilling Report on the WC Group, Craigmont Mines Ltd., Clinton Mining Division, May 1975. *Assessment Report 5488.*

White, G.E. (1987). Geological, Geochemical, and Geophysical Report on the Miracle 2, 3, 4, and 5 Mineral Claim, Timothy Mountain Area, B.C., G. W. R. Resources Inc., Clinton Mining Division, October 1987. *Assessment Report 16586.*

Appendix I

Author's Certificates and Statements of Qualifications

I, Timoteo E. P. Nillos, of the City of Richmond, British Columbia, hereby certify that:

- I am a registered professional geologist (No. 1235) of the Republic of the Philippines
- I am a graduate of the Mapua Institute of Technology, Manila, Philippines, with a Bachelor of Science degree in Geology (1990).
- I am an independent consulting geologist.
- I have practiced continuously as an exploration geologist since 1991.
- I have visited the Tillicum Lake property on numerous occasions and am familiar with the geology, mineral deposits and recent works.

Dated at Richmond, British Columbia on August 12, 2009.

Timoteo Nillos, B. Sc

Assessment Report September, 2009 Appendix I

Christopher James Gold Corp. Tillicum Lake Property

Appendix I

Author's Certificates and Statements of Qualifications

I, Brian D. May, of 1620 - 1140 West Pender Street, Vancouver, BC, V6E 4G1, hereby certify that:

- I am a graduate of Simon Fraser University, Burnaby, B.C., with a B.Sc., in Earth Sciences (2006).
- I am a Geoscientist in Training registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- I am currently employed with Christopher James Gold Corp. of 1620 1140 West Pender Street, Vancouver, BC.
- I have been continuously employed as a geologist in Canada and Mexico since 2006.
- I have not visited the Tillicum Lake property, but I am familiar with the geology of the area and the Tillicum Lake dataset.

Dated at Vancouver, British Columbia on September 11, 2009.

Brian May, B. Sc

APPENDIX II

Eco-Tech Laboratory Ltd. Laboratory Assay Certificates 20-Nov-08 Alex Stewart Geochemical ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2008- 1722

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 18 Sample Type:Rock **Project: Tillicum Lake** Submitted by:Tim Nillos

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni P	Ph	Sh	Sn	Sr	Ti %	ΞŪ.	v		v	7.
1	8R202572	0.4 1.94	<5	70	<5	>10	<1	18	59	108	3.63	<10	1.40	714	2	0.18	19 1700	16	5	-20	400	0.10	10	154		Y	Zn
2	8R202573	0.4 2.43	<5	60	<5	3.83	<1	22	38	115	4.63	<10	1.17	722	2	0.06	15 1550	10	-5	<20	422	0.12	<10	154	<10	(81
3	8R202574	0.2 2.26	<5	65	<5	2.28	<1	23	56	75	4.07	<10	1.72	620	2	0.04	22 1400	10	10	<20	101	0.14	<10	192	<10	8	81
4	8R202575	<0.2 2.00	<5	60	5	1.22	<1	21	38	33	3.38	<10	1.29	594	1	0.05	9 10/0	12	10	<20	125	0.12	<10	122	<10	5	67
5	8R202576	<0.2 2.09	<5	50	<5	2.00	1	27	54	235	4.81	<10	1.40	624	. 2	0.05	17 2060	20	5	<20	110	0.19	<10	104	<10	11	66
															-	0.00	17 2000	20	5	20	115	0.11	<10	101	<10	3	86
6	8R202577	<0.2 2.06	<5	45	<5	3.82	<1	25	27	165	4.70	<10	1.31	628	1	0.05	14 2070	12	~5	~20	137	0 12	-10	107	.10		70
7	8R202578	<0.2 2.03	<5	55	<5	2.56	<1	25	44	217	4.68	<10	1.26	578	2	0.07	15 2200	14	-5	~20	13/	0.12	<10	107	<10	4	78
8	8R202579	<0.2 1.40	15	<5	<5	>10	<1	11	24	46	1.92	<10	0.85	882	<1	0.02	10 2840	6	10	~20	255	0.12	<10	190	<10	4	12
9	8R202580	<0.2 1.80	<5	40	<5	6.27	<1	23	37	146	4.01	<10	1.17	643	1	0.06	15 2140	8	-5	<20	152	0.00	<10	150	<10	<1	18
10	8R202581	<0.2 2.12	<5	45	<5	3.11	<1	27	31	193	4.75	<10	1.45	654	1	0.06	16 2290	22	~5	~20	130	0.12	<10	170	<10	3	52
																0.00	10 2200	22	-0	\2 0	130	0.11	<10	170	<10	3	84
11	8R202582	<0.2 2.03	<5	45	<5	1.72	<1	26	31	227	4.77	<10	1.30	543	2	0.05	15 2180	14	5	-20	115	0 10	-10	170	.10		00
12	8R202583	<0.2 1.98	<5	40	<5	4.64	<1	23	53	138	4.22	<10	1.06	544	2	0.06	12 2300	10	-5	~20	244	0.10	<10	173	<10	4	62
13	8R202584	<0.2 2.09	<5	55	<5	1.73	<1	25	30	199	5.06	<10	1.14	530	2	0.07	13 2100	14	~5	~20	105	0.10	<10	1/5	<10	4	54
14	8R202585	<0.2 1.76	<5	50	<5	2.62	<1	19	47	35	2.69	<10	1.17	779	<1	0.06	6 830	8	5	<20	57	0.10	<10	220	<10	4	73
15	8R202586	<0.2 1.60	<5	55	<5	1.39	<1	19	74	17	2.27	<10	1.04	751	1	0.05	9 880	6	5	<20	57	0.17	<10	83	<10	9	55
												1000			-	0.00	5 000	U	5	<20	54	0.15	<10	5/	<10	6	67
16	8R202587	0.2 2.08	15	55	<5	7.51	<1	11	40	55	2.53	<10	1.01	775	2	0.19	10 1160	14	F	-20	100	0.00	10	00	40	~	
17	8R202588	<0.2 1.49	<5	60	5	2.66	<1	21	50	78	4.64	<10	1 15	631	5	0.07	16 1240	20	-5	<20	499	0.08	<10	90	<10	6	12
18	8R202589	<0.2 3.03	<5	50	<5	7.18	<1	35	38	89	4.70	<10	1.23	752	<1	0.19	117 960	12	<0	<20	19	0.17	<10	167	<10	11	112
									1000000	5071755				, OL		0.10	117 300	12	<0	<20	100	0.19	<10	199	<10	8	62
QC DATA:																											
Repeat:																											
1	8R202572	<0.2 1.98	<5	75	<5	>10	<1	18	56	108	3.62	<10	1.41	715	3	0.18	19 1700	16	5	-20	107	0.10	.10	150	10		70
10	8R202581	<0.2 2.14	<5	50	<5	3.07	1	27	31	192	4.74	<10	1.45	655	2	0.06	18 2260	20	10	<20	427	0.12	<10	150	<10	8	78
										10.505				000	-	0.00	10 2200	20	10	420	130	0.11	<10	176	<10	3	84
Resplit:																											
1	8R202572	0.2 2.14	<5	85	<5	9.90	<1	20	65	118	3.95	<10	1.44	667	3	0.16	22 1850	16	-5	-20	064	0.10	.10	107	10		
														007	Ŭ	0.10	22 1000	10	<0	<20	304	0.13	<10	10/	<10	8	88
Standard:																											
Pb129a		12.2 0.81	15	35	<5	0.43	57	6	10	1375	1.49	<10	0.67	347	3	0.02	5 120	6162	20	-20	21	0.00	10	47	10	1.2	
													0.01	047	0	0.02	5 450	0102	20	<20	31	0.03	<10	1/	<10	<1 9	980

ECO TECHLABORATORY LTD.

ECO TECHILABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/ap \$25

CERTIFICATE OF ANALYSIS AK 2008-1746

20-Jan-09

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 64 Sample Type:Soil **Project: Tillicum Lake** Submitted by:Tim Nillos

		Au
<u> </u>	Tag #	ppb
1	E87202	5
2	E87203	<5
3	E87204	<5
4	E87205	5
5	E87206	5
6	E87207	<5
7	E87208	<5
8	E87209	<5
9	E87210	5
10	E87211	5
11	E87212	<5
12	E87213	5
13	E87214	<5
14	E87215	<5
15	E87216	<5
16	E87217	<5
17	E87218	5
18	E87219	5
19	E87220	5
20	E87221	<5
21	E87223	10
22	E87243	<5
23	E87244	<5
24	E87311	<5
25	E87312	<5
26	E87313	<5
27	E87314	<5
28	E87315	<5
29	E87316	5
30	E87317	10

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H IS9 Canada Page 1

CHRISTOPHER JAMES AK8-1746

CHRIST	OPHER JAMES AK8-1746	20-Jan-09	
		Au	
<u>ET #.</u>	Tag #	ppb	
31	E87318	<5	
32	E87319	<5	
33	E87320	<5	
34	E87321	<5	
35	E87322	<5	
36	E87323	<5	
37	E87324	<5	
38	E87341	<5	
39	E87342	<5	
40	E87343	<5	
41	E87344	<5	
42	E87345	<5	
43	E87346	<5	
44	E87347	<5	
45	E87272	<5	
46	E87273	<5	
47	E87274	<5	
48	E87275	<5	
49	E87276	<5	
50	E87277	<5	
51	E87278	<5	
52	E87279	<5	
53	E87280	<5	
54	E87281	<5	
55	E87282	<5	
56	E87283	<5	
57	E87303	<5	
58	E87304	<5	
59	E87305	<5	
60	E87306	<5	
61	E87307	<5	
62	E87308	<5	
63	E87309	<5	
64	E87310	<5	
QC DATA	λ:		
Repeat:			
2	E87203	<5	
17	E87218	<5	
27	E87314	<5	
32	E87319	<5	
44	E87347	<5	

50

54

63

E87277

E87281

E87309

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada Page 2

<5

<5

<5

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CHRISTOPHER JAMES AK8-1746

20-Jan-09

ET #.	Tag #	Au ppb	
Standard	•		
SF30		840	
SF30		830	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/nw XLS/08 26-1 8

Alex Stewart Geochemical ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2008- 1746

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 73 Sample Type:Soil **Project: Tillicum Lake** Submitted by:Tim Nillos

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	E87202	<0.2 1.05	<5	90	<5	0.31	<1	9	35	14	2.07	<10	0.35	184	<1	0.02	18	1200	12	<5	<20	38	0.07	<10	58	<10	1	46
2	E87203	<0.2 0.87	<5	75	5	0.30	<1	8	30	15	1.83	<10	0.31	269	1	0.02	18	430	8	<5	<20	33	0.07	<10	55	<10	З	33
3	E87204	<0.2 1.01	<5	95	<5	0.44	<1	11	37	25	2.28	<10	0.46	347	<1	0.02	23	670	10	<5	<20	53	0.08	<10	71	<10	4	36
4	E87205	<0.2 0.72	<5	55	<5	0.24	<1	8	35	13	1.79	<10	0.32	163	<1	0.02	17	320	6	<5	<20	29	0.06	<10	60	<10	2	27
5	E87206	0.2 1.03	<5	90	10	0.36	<1	12	52	28	2.75	<10	0.42	340	<1	0.02	21	600	10	<5	<20	42	0.09	<10	96	<10	2	58
6	E87207	0.2 1.74	15	105	<5	3.56	<1	17	52	143	3.01	<10	0.80	1510	2	0.02	37	650	12	<5	<20	131	0.10	<10	84	<10	8	133
7	E87208	0.3 1.57	<5	90	<5	0.55	<1	15	56	36	2.94	<10	0.64	377	1	0.02	22	570	16	<5	<20	54	0.10	<10	89	<10	1	133
8	E87209	0.2 1.44	20	80	5	0.49	<1	14	51	28	2.56	<10	0.45	542	<1	0.02	21	540	18	<5	<20	48	0.09	<10	78	<10	1	102
9	E87210	0.3 1.49	85	75	5	0.62	<1	14	44	26	2.83	<10	0.40	571	1	0.02	22	1190	16	<5	<20	47	0.08	<10	74	<10	<1	133
10	E87211	0.2 1.56	125	85	<5	0.80	<1	21	51	58	3.64	<10	0.53	465	<1	0.02	27	510	38	<5	<20	74	0.08	<10	98	<10	4	264
11	E87212	0.3 1.58	10	125	<5	0.55	<1	12	47	26	2.71	<10	0.44	405	1	0.02	24	790	14	<5	<20	51	0.08	<10	74	<10	1	68
12	E87213	0.3 1.44	10	110	<5	1.55	1	14	59	77	2.85	<10	0.62	549	1	0.02	34	1060	14	<5	<20	135	0.07	<10	86	<10	5	70
13	E87214	0.2 1.15	<5	85	5	0.58	<1	12	43	31	2.30	<10	0.49	427	1	0.02	23	420	12	<5	<20	68	0.09	<10	78	<10	4	35
14	E87215	0.2 1.00	<5	75	<5	0.39	<1	10	45	23	2.04	<10	0.43	296	<1	0.02	20	230	10	<5	<20	53	0.09	<10	66	<10	3	38
15	E87216	<0.2 0.82	<5	60	<5	0.28	<1	9	39	20	1.76	<10	0.39	186	<1	0.02	16	290	8	<5	<20	36	0.09	<10	62	<10	2	26
10	E07017	0.0.000	-	00	~	0.00	7327		10	4.0	4.50	4.0	0.00	040	S.					2	1212	25105	1000000	0.02				
10	E8/21/	<0.2 0.83	<5	60	<5	0.26	<	8	40	18	1.59	<10	0.36	219	<1	0.02	16	280	8	<5	<20	29	0.08	<10	52	<10	2	29
17	E87218	<0.2 0.71	<5	55	<5	0.22	<1	/	29	13	1.29	<10	0.29	164	<1	0.02	14	260	8	<5	<20	27	0.07	<10	42	<10	2	23
18	E87219	<0.2 0.84	<5	60	<5	0.29	<1	8	34	16	1.50	<10	0.36	225	<1	0.02	16	530	10	<5	<20	33	0.08	<10	46	<10	3	24
19	E87220	<0.2 0.71	<5	55	<5	0.23	<1	15	34	11	1.55	<10	0.30	165	<1	0.02	15	400	8	<5	<20	27	0.08	<10	50	<10	<1	26
20	E8/221	<0.2 1.12	<5	/5	<5	0.37	<1	15	49	30	2.18	<10	0,42	325	<1	0.02	21	960	10	<5	<20	41	0.08	<10	63	<10	1	45
21	E87003	02 151	~5	85	-5	0.42	~1	1.1	40	22	0.04	~10	0.56	520	-3	0.00	10	700	16	F	.00	E 4	0.11	10	04	10		140
22	E87243	<0.2 1.31	~5	75	~5	0.42	<1	14	60	12	2.04	<10	0.00	040	5	0.02	19	600	10	<0	<20	54	0.11	<10	94	<10	1	116
22	E87243	<0.2 0.02	~5	150	~5	2 02	<1	22	97	147	2.10	<10	0.30	243	< 1	0.02	10	1510	10	<0	<20	30	0.08	<10	170	<10	<1	33
20	E87311	<0.2 1.70	~5	65	-0	0.32	~1	11	22	10	0.90	<10	0.71	201		0.02	11	720	20	<5	<20	100	0.08	<10	170	<10	2	72
24	E97310	<0.2 1.31	<0	00	5	0.32	~1	0	02	19	1.02	<10	0.29	291	1	0.02	14	730	14	<5	<20	84	0.09	<10	86	<10	<]	52
20	C0/312	<0.2 0.90	<0	80	D	0.32	<1	Э	28	15	1.93	<10	0.32	233		0.02	17	800	10	<5	<20	47	0.07	<10	64	<10		36

Alex Stewart C hemical ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2008- 1746

CHRISTOPHER JAMES

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	р	Ph	Sh	Sn	Sr	Ti 0/		v		10	
26	E87313	<0.2 0.86	<5	60	5	0.23	<1	7	20	11	1.73	<10	0.27	203		0.02	12	520	0	50	-00	31	11 %	0	V	V	Y	Zn
27	E87314	<0.2 1.01	<5	80	<5	0.31	<1	g	27	15	1 74	~10	0.38	255		0.02	10	530	10	<5	<20	32	0.06	<10	67	<10	2	23
28	E87315	< 0.2 0.97	<5	55	5	0.21	<1	Ř	39	14	1 72	~10	0.30	126	~ 1	0.02	15	670	10	<5	<20	45	0.07	<10	58	<10	1	29
29	E87316	<0.2 1.05	<5	65	<5	0.27	~1	8	30	16	1.72	~10	0.37	170	<1	0.02	10	460	10	<5	<20	27	0.07	<10	57	<10	<1	35
30	E87317	<0.2 0.55	-5	40	~5	0.18	_1	4	20	10	1.00	<10	0.30	170	<1	0.02	17	520	10	<5	<20	35	0.07	<10	58	<10	2	24
	20/01/	SOLE 0.00	~5	40	10	0.10		4	20	1	1.10	<10	0.14	132	<1	0.02	8	320	8	<5	<20	20	0.06	<10	44	<10	<1	24
31	E87219	-0.0.0.00	ΞĒ	66	.c	0.04	89 4	0	00				123237															
30	E97310	<0.2 0.02	<0	55	<5	0.24	<1	9	32	15	1.72	<10	0.34	263	1	0.02	13	290	10	<5	<20	39	0.07	<10	65	<10	1	27
32	E07319	<0.2 0.70	<5	55	<5	0.27	<]	1	32	12	1.61	<10	0.26	208	<1	0.02	13	410	10	<5	<20	33	0.07	<10	58	<10	2	25
24	E07320	<0.2 0.76	<0	60	<5	0.25	<	(25	11	1.50	<10	0.24	166	<1	0.02	13	310	8	<5	<20	41	0.06	<10	48	<10	1	22
34	E67321	<0.2 0.67	<5	60	<5	0.21	<1	6	24	7	1.37	<10	0.19	127	<1	0.02	10	200	10	<5	<20	30	0.06	<10	49	<10	1	23
35	E87322	<0.2 1.11	<5	60	<5	0.25	<1	10	41	23	2.28	<10	0.32	168	<1	0.02	14	540	12	<5	<20	35	0.08	<10	74	<10	<1	44
00	F 07000		0.23		53																				(A) (A)		24	
36	E87323	<0.2 1.36	<5	125	10	0.34	<1	15	87	28	3.54	<10	0.57	245	1	0.02	26	1930	16	<5	<20	50	0.09	<10	112	<10	~1	101
37	E87324	<0.2 0.79	<5	55	<5	0.25	<1	6	23	10	1.50	<10	0.20	217	<1	0.02	11	430	10	<5	<20	30	0.06	<10	52	<10	1	49
38	E87341	<0.2 0.58	<5	50	<5	7.15	<1	5	16	38	1.01	<10	0.27	182	<1	0.02	12	850	8	5	<20	279	0.03	~10	36	<10	2	40
39	E87342	0.3 0.50	10	85	<5	>10	1	3	11	137	0.62	<10	0.33	285	<1	0.03	19	1650	10	10	<20	651	0.00	<10	31	<10	2	20
40	E87343	0.4 0.49	5	90	<5	>10	1	4	11	126	0.72	<10	0.28	430	<1	0.02	22	1810	10	5	<20	545	0.02	<10	38	<10	4	30
																22010202023	100000			U		040	0.02	~10	00	<10	3	25
41	E87344	<0.2 1.01	<5	130	5	0.57	<1	11	50	23	2.59	<10	0.30	443	<1	0.02	18	1260	12	~5	-20	50	0.00	.10	05	10	1.00	~~
42	E87345	0.2 1.28	<5	70	5	0.40	<1	13	65	27	2.95	<10	0 44	327	1	0.02	22	530	16	-5	-20	59	0.08	<10	60	<10	<1	69
43	E87346	<0.2 0.91	<5	60	5	0.29	<1	10	54	18	2 49	<10	0.37	199	ં	0.02	19	500	10	<0	<20	50	0.10	<10	106	<10	1	55
44	E87347	<0.2 0.82	<5	55	<5	0.30	<1	9	31	18	1.94	<10	0.37	101	-1	0.02	16	450	10	<0	<20	50	0.08	<10	87	<10	<1	62
45	E87272	<0.2 0.80	<5	90	5	0.23	<1	5	20	6	1 72	<10	0.14	101	-1	0.02	11	1760	10	<5 5	<20	38	0.08	<10	72	<10	2	35
						10.000	107515	U	20	0	1+1.5	~10	0.14	101	<1	0.02	11	1760	10	<5	<20	33	0.05	<10	53	<10	<1	24
46	E87273	<0.2 1.85	<5	75	10	0.43	<1	25	122	77	3 25	~10	0 90	305	-1	0.00	61	1100	0.4	-				1923	5.63			
47	E87274	<0.2 1.21	<5	85	10	0.35	-1	16	38	22	2.81	-10	0.90	417	1	0.02	51	1160	24	<5	<20	56	0.14	<10	101	<10	<1	72
48	E87275	< 0.2 1.02	<5	65	10	0.26	-1	11	48	15	2.70	-10	0.04	417		0.02	10	1250	16	<5	<20	51	0.09	<10	88	<10	<1	97
49	E87276	< 0.2 0.77	<5	55	<5	0.24	-1	8	24	14	1.66	-10	0.02	323	< 1	0.02	17	660	14	<5	<20	38	0.09	<10	101	<10	<1	100
50	E87277	< 0.2 0.78	<5	60	<5	0.25	21	a	32	14	1.00	<10	0.20	250	< 1	0.02	12	320	10	<5	<20	32	0.06	<10	57	<10	2	32
				00	~0	0.20	~!	5	52	14	1.95	<10	0.28	245	<1	0.02	14	410	12	<5	<20	36	0.07	<10	72	<10	1	27
51	E87278	< 0.2 1.03	<5	75	5	0.36	-1	11	12	17	212	-10	0.46	050	4	0.00	0.1	700										
52	E87279	0.2 1.08	<5	105	10	0.20	~1	12	57	16	2.40	<10	0.46	200		0.02	21	780	14	<5	<20	53	0.08	<10	87	<10	2	39
53	E87280	<02 0.99	<5	65	-5	0.22	-1	7	21	0	1.07	<10	0.44	485		0.02	19	1280	14	<5	<20	45	0.08	<10	106	<10	<1	62
54	E87281	<0.2 0.78	<5	50	5	0.24	21	e e	05	11	1.07	<10	0.23	174	<]	0.02	15	880	10	<5	<20	30	0.06	<10	60	<10	<1	35
55	E87282	<0.2 0.81	~5	55	~5	0.24	~1	6	20	10	1.43	<10	0.28	121	<1	0.02	13	480	10	<5	<20	30	0.07	<10	55	<10	1	22
	201202	40.L 0.01	-5	55	-5	0.20	<1	0	23	10	1.29	<10	0.24	137	<1	0.02	12	310	12	<5	<20	27	0.06	<10	47	<10	2	20
56	E87283	<0.2 1 11	-5	80	5	0.25	-1	0	10	10	0.10		0.05		192	12112121	125501422											
57	E87303	<0.2 1.17	-5	05	10	0.25	<1	10	40	15	2.18	<10	0.35	211	<1	0.02	18 1	1910	14	<5	<20	30	0.07	<10	74	<10	<1	44
58	E87304	<0.2 0.01	~5	115	10	0.27	<1	10	53	15	2.75	<10	0.36	208	<1	0.02	19	890	14	<5	<20	41	0.08	<10	95	<10	<1	63
50	E87205	<0.2 0.91	<0	115	5	0.25	<1	11	37	13	2.44	<10	0.26	398	1	0.02	16 1	1540	12	<5	<20	33	0.06	<10	82	<10	<1	71
60	E87306	<0.2 1.29	<5	105	5	0.30	<1	13	50	17	3.00	<10	0,42	483	<1	0.02	21 1	1150	16	<5	<20	45	0.09	<10	101	<10	<1	115
00	E07300	<0.2 1.39	<0	100	10	0.26	<1	11	46	14	2.50	<10	0.40	327	<1	0.02	21 1	1140	16	<5	<20	36	0.08	<10	81	<10	<1	122
61	E07007	.0.0.4.00	-	100	-			10,943																			1.53	
60	E07307	<0.2 1.02	<5	100	5	0.28	<1	10	40	9	2.22	<10	0.29	452	<1	0.02	17	750	14	<5	<20	38	0.08	<10	76	<10	<1	109
62	E8/308	<0.2 0.59	<5	50	<5	0.21	<1	6	24	6	1.49	<10	0.17	157	<1	0.02	10	340	10	<5	<20	27	0.07	<10	54	<10	<1	34
63	E87309	<0.2 1.00	<5	60	<5	0.35	<1	11	31	22	2.59	<10	0.32	265	<1	0.02	13	570	14	<5	<20	33	0.09	<10	84	<10	<1	55
04	E87310	<0.2 1.00	5	100	<5	0.50	<1	8	29	29	1.94	<10	0.28	342	<1	0.02	21	580	16	<5	<20	45	0.08	<10	63	<10	4	42
																									~ ~		- T	

Alex Stewart (Renemical ECO TECH LABORATORY LTD.

'IS

ICP CERTIFICATE OF ANALYSIS AK 2008- 1746

CHRISTOPHER JAMES

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
QC DATA	:																												
Repeat:																													
1	E87202	<0.2	1.01	<5	85	5	0.31	<1	9	35	13	2.13	<10	0.33	190	<1	0.02	17	1180	10	<5	<20	38	0.07	<10	63	<10	1	45
10	E87211	0.3	1.46	120	80	<5	0.78	<1	20	50	57	3.56	<10	0.50	482	<1	0.02	25	500	38	<5	<20	63	0.08	<10	96	<10	4	264
19	E87220	<0.2	0.70	<5	50	<5	0.23	<1	7	32	11	1.49	<10	0.30	157	<1	0.02	15	390	8	<5	<20	32	0.08	<10	48	<10	1	25
28	E87315	<0.2	0.97	<5	55	<5	0.20	<1	14	40	14	1.71	<10	0.35	123	<1	0.02	16	410	10	<5	<20	26	0.07	<10	57	<10	- i	34
36	E87323	<0.2	1.31	<5	115	5	0.33	<1	15	84	27	3.48	<10	0.56	239	<1	0.02	24	1850	16	<5	<20	47	0.10	<10	110	<10	-1	90
45	E87272	<0.2	0.85	<5	95	5	0.22	<1	6	20	6	1.78	<10	0.13	101	<1	0.02	12	1810	10	<5	<20	36	0.05	<10	53	<10	<1	25
54	E87281	<0.2	0.79	<5	45	<5	0.24	<1	6	26	11	1.50	<10	0.29	131	<1	0.02	13	500	12	<5	<20	29	0.07	<10	57	<10	<1	23
Standard:																													
Till-3		1.4	0.97	80	35	<5	0.53	<1	11	55	19	1.89	<10	0.52	309	<1	0.03	30	460	24	<5	~20	16	0.06	~10	34	-10	4	20
Till-3		1.5	0.96	90	35	<5	0.55	<1	12	61	20	1.96	10	0.54	298	<1	0.03	32	450	28	<5	<20	16	0.06	<10	37	<10	4	40

JJ/ap df/1746s

XLS/08

ECO TECH/ABORATORY LTD. Jutta Jealouse B.C. Certified Assayer Eco Tech Laboratory Ltd. 10041 Dallas Drive, Kamloops, British Columbia, V2C 6T4, Canada Tel + 250 573 5700 Fax + 250 573 4557 www.alexstewart.com

19-Dec-08

CERTIFICATE OF ANALYSIS AK 2008-1747

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 73 Sample Type:Soil **Project: Tillicum Lake** Submitted by:Tim Nillos

1

			Au
	ET #.	Tag #	ppb
0	1	E87348	5
	2	E87349	5
	3	E87350	20
	4	E87351	<5
	5	E87352	5
	6	E87353	5
	7	E87354	<5
	8	E87355	<5
	9	E87356	<5
	10	E87357	<5
	11	E87358	<5
	12	E87359	15
	13	E87360	<5
	14	E87361	<5
	15	E87362	<5
	16	E87363	<5
	17	E87451	5
	18	E87452	<5
	19	E87453	<5
	20	E87454	<5
	21	E87455	10
	22	E87456	<5
	23	E87457	<5
	24	E87458	<5
_	25	E87459	<5
	26	E87460	30
	27	E87461	5
	28	E87462	<5
	29	E87463	<5
	30	E87464	<5
	31	E87465	<5
	32	E87466	<5

Eco Tech Laboratory Ltd. 10041 Dallas Drive, Kamloops, British Columbia, V2C 6T4, Canada Tel + 250 573 5700 Fax + 250 573 4557 www.alexstewart.com

CHRISTOPHER JAMES AK8-1747

19-Dec-08

			Au
į.	ET #.	Tag #	ррь
	33	E87467	<5
	34	E87468	<5
	35	E87469	<5
	36	E87470	<5
	37	E87471	<5
	38	E87472	<5
	39	E87473	<5
	40	E87474	<5
	41	E87475	<5
	42	E87476	25
	43	E87477	<5
	44	E87224	20
	45	E87225	<5
	46	E87226	<5
	47	E87227	<5
	48	E87228	<5
	49	E87229	<5
	50	E87230	<5
	51	E87231	<5
	52	E87232	<5
	53	E87233	<5
	54	E87234	<5
	55	E87235	<5
	56	E87236	<5
	57	E87237	<5
	58	E87238	<5
	59	E87239	<5
	60	E87240	<5
	61	E87241	<5
	62	E87242	<5
	63	E87245	<5
	64	E87246	<5
	65	E87247	<5
	66	E87248	<5
	67	E87249	<5
	68	E87250	<5
	69	E87251	<5
	70	E87252	<5
	71	E87253	<5
	72	E87254	<5
	73	E87255	<5

Eco Tech Laboratory Ltd. 10041 Dallas Drive, Kamloops, British Columbia, V2C 6T4, Canada Tel + 250 573 5700 Fax + 250 573 4557 www.alexstewart.com

CHRISTOPHER JAMES AK8-1747

19-Dec-08

		Au	10-000-
ET #.	Tag #	ddd	
QC DAT	<u>A:</u>		
Repeat:			
3	E87350	<5	
11	E87358	<5	
27	E87461	<5	
34	E87468	<5	
36	E87470	<5	
51	E87231	<5	
55	E87235	<5	
63	E87245	<5	
71	E87253	<5	
Standard	1:		
SF30		825	
SF30		835	
SF30		835	
			Am //

JJ/nw XLS/08 Allen

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 19 Nov-08

C

Alex Stewart Geochemical

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2008- 1747

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 73 Sample Type:Soil **Project: Tillicum Lake** Submitted by:Tim Nillos

Values in ppm unless otherwise reported

Et #	Tag #	An Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
	E87348	<0.2 1.23	<5	90	<5	0.32	<1	9	32	19	2.21	<10	0.31	199	<1	0.02	17	900	10	<5	<20	30	0.09	<10	69	<10	1	47
2	E97340	<0.2 1.20	5	85	~5	0.44	<1	12	37	30	2.76	<10	0.36	263	<1	0.02	19	820	26	<5	<20	25	0.11	<10	85	<10	2	79
2	E07349	0.2 1.50	-5	75	-5	0.30	<1	9	37	19	2.24	<10	0.32	197	<1	0.02	17	660	12	<5	<20	38	0.09	<10	72	<10	1	48
3	E07350	0.2 1.10	~5	á0	<5	0.46	<1	11	38	19	2.58	<10	0.32	334	1	0.02	19	490	14	<5	<20	44	0.10	<10	78	<10	<1	70
4	E0/301	0.2 1.74	~5	90	~5	0.40	~1	11	37	18	2.39	<10	0.30	260	<1	0.02	15	290	16	<5	<20	26	0.11	<10	79	<10	1	43
5	E0/302	<0.2 1.10	<0	05	20	0.07	-1	0.045	0,	.0	2.00		0.00	200														
~	507050	.0.2.2.54	- 5	115	~5	0.50	-1	20	39	40	4 03	<10	0.80	428	1	0.02	22	1110	16	<5	<20	41	0.15	<10	117	<10	2	80
0	E07353	<0.2 2.54	<5	60	~5	0.00	~1	q	36	16	1.61	<10	0.32	247	<1	0.02	14	420	10	<5	<20	24	0.09	<10	53	<10	2	48
/	E07354	<0.2 0.90	~5	70	~5	0.20	~1	8	35	15	1 98	<10	0.25	142	<1	0.02	12	780	10	<5	<20	24	0.09	<10	67	<10	1	43
0	E07355	<0.2 0.99	~5	70	~5	0.37	-1	10	38	24	2 11	<10	0.33	199	<1	0.02	15	500	10	<5	<20	41	0.10	<10	71	<10	2	39
9	E87300	<0.2 0.90	<0	105	-5	0.37	-1	11	48	35	2 73	<10	0.53	204	2	0.01	19	800	12	<5	<20	138	0.08	<10	89	<10	<1	47
10	E8/35/	<0.2 1.01	<0	125	<0	0.45			40	00	2.70	10	0.00		-	100	0.00	15,15,151										
404	E07250	-0.2 0.07	-5	75	~5	0.37	-1	q	33	18	2.22	<10	0.29	187	1	0.02	15	830	6	<5	<20	40	0.09	<10	74	<10	1	28
10	E07350	<0.2 0.97	~5	70	~5	0.26	~1	7	27	12	1.80	<10	0.20	121	<1	0.02	13	460	8	<5	<20	24	0.07	<10	62	<10	1	24
12	E07339	<0.2 0.00	~5	90	~5	0.31	-1	q	35	19	2 10	<10	0.32	170	<1	0.02	19	910	10	<5	<20	25	0.09	<10	64	<10	2	35
13	E07300	<0.2 1.17	<5	65	~5	0.36	-1	14	52	32	2.85	<10	0.47	224	<1	0.02	19	710	10	<5	<20	29	0.11	<10	88	<10	1	52
14	E07301	<0.2 1.45	~5	60	-5	0.32	21	12	48	21	2 42	<10	0.34	225	1	0.02	18	550	12	<5	<20	23	0.11	<10	70	<10	<1	147
15	E0/302	<0.2 1.27	<5	00	-0	0.02	~ 1		10				1909-11	200000		05005269												
16	E97363	02 258	-5	95	<5	0 47	<1	24	109	76	4.10	<10	1.21	367	2	0.02	47	1690	16	<5	<20	78	0.11	<10	119	<10	<1	54
17	E87451	<0.2 1.46	<5	200	<5	0.39	<1	12	47	17	2.60	<10	0.31	512	1	0.02	17	2410	18	<5	<20	38	0.10	<10	74	<10	<1	183
19	E87452	02 120	<5	120	<5	0.31	<1	11	43	15	2.22	<10	0.29	541	1	0.02	16	1190	10	<5	<20	31	0.09	<10	71	<10	<1	129
10	E87453	<0.2 1.20	~5	165	<5	0.44	<1	14	48	23	2.79	<10	0.42	439	1	0.02	23	1950	12	<5	<20	42	0.10	<10	84	<10	<1	185
19	E07450	<0.2 1.30	~5	100	<5	0.55	<1	11	43	18	2.22	<10	0.27	348	<1	0.02	17	530	12	<5	<20	44	0.10	<10	76	<10	<1	54
20	L0/404	XU.2 1.14	40	100		0.00		202	2018	53275	101014																	
21	E87455	02206	<5	80	<5	0.59	<1	20	63	101	3.66	<10	0.54	754	2	0.02	41	1240	14	<5	<20	35	0.12	<10	120	<10	<1	201
22	E87456	<0.2 0.58	<5	75	<5	0.30	<1	6	19	11	1.26	<10	0.12	422	<1	0.01	7	590	8	<5	<20	24	0.07	<10	42	<10	<1	39
22	E87457	<0.2 1.51	<5	85	<5	0.55	<1	12	56	30	3.00	<10	0.35	246	1	0.02	19	1800	14	<5	<20	29	0.10	<10	95	<10	<1	155
20	E87458	<0.2 1.68	<5	135	<5	0.70	<1	19	58	33	3.27	<10	0.55	326	2	0.02	23	970	18	<5	<20	66	0.11	<10	92	<10	<1	317
24	E87450	<0.2 0.92	<5	65	<5	0.29	<1	9	42	14	2.20	<10	0.28	209	<1	0.02	14	420	10	<5	<20	31	0.09	<10	78	<10	1	47
20	207433	QU.2 0.02		00		0.20			100																			
26	F87460	<02 2 79	<5	120	<5	0.40	<1	22	33	54	4.44	<10	0.81	414	2	0.02	19	1040	18	<5	<20	34	0.18	<10	128	<10	<1	160
20	E87461	<0.2 0.77	<5	55	<5	0.25	<1	6	22	9	1.21	<10	0.21	152	<1	0.02	9	330	8	<5	<20	21	0.07	<10	40	<10	2	27
28	E87462	<0.2 0.78	<5	45	<5	0.20	<1	6	24	10	1.35	<10	0.18	107	<1	0.01	10	350	10	<5	<20	16	0.06	<10	46	<10	1	23
20	E87463	<0.2 1.23	<5	160	<5	0.33	<1	12	50	14	3.64	<10	0.25	319	1	0.02	17	2420	10	<5	<20	26	0.09	<10	121	<10	<1	68
20	E87464	<0.2 1.57	<5	120	5	0.30	<1	12	48	18	3.30	<10	0.31	329	1	0.01	18	1250	12	<5	<20	25	0.10	<10	106	<10	<1	100
50	207404																										1	

e ·

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2008- 1747

CHRISTOPHER JAMES

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Υ	Zn
31	E87465	< 0.2 1.14	<5	140	<5	0.27	<1	9	39	10	2.61	<10	0.24	276	<1	0.02	17 1250	10	<5	<20	27	0.08	<10	85	<10	<1	49
32	E87466	<0.2 1.78	<5	150	<5	0.38	<1	14	58	19	3.47	<10	0.41	356	2	0.02	27 1950	16	<5	<20	40	0.10	÷10	113	<10	<1	121
33	E87467	<0.2 1.13	<5	65	<5	0.41	<1	11	38	29	2.20	<10	0.44	260	<1	0.02	19 680	8	<5	<20	33	0.10	<10	77	<10	3	39
34	E87468	<0.2 1.24	<5	70	<5	0.39	- <1	12	41	31	2.41	<10	0.41	316	<1	0.02	18 330	10	<5	<20	30	0.11	<10	82	<10	3	46
35	E87469	< 0.2 1.63	<5	100	<5	0.39	<1	13	43	34	3.00	<10	0.41	407	1	0.02	19 1250	14	<5	<20	34	0.12	<10	86	<10	<1	96
			200707	1.0000000				1000	1000000	(Contraction)	0.000	10101017-0	0000000	Contraction of the				1. S. S. S.						00	- 10		00
36	E87470	0.2 1.15	<5	105	<5	0.41	<1	8	32	14	2.02	<10	0.25	259	<1	0.02	14 1020	14	<5	<20	33	0.09	<10	59	<10	1	74
37	E87471	< 0.2 1.22	<5	80	<5	0.33	<1	10	39	13	2.37	<10	0.32	249	<1	0.02	15 390	12	<5	<20	40	0.10	<10	77	-10	i	64
38	E87472	<0.2 1.35	<5	95	5	0.31	<1	10	34	14	2.35	<10	0.25	336	1	0.02	17 990	12	~5	~20	24	0.10	~10	67	~10	-1	83
39	E87473	<0.2 2.69	10	95	<5	0.87	1	28	24	45	5 76	<10	1 48	481	2	0.02	14 760	16	~5	~20	52	0.03	~10	146	<10	3	72
40	E87474	<0.2 1.14	<5	50	<5	0.31	-1	13	48	21	2 70	<10	0.49	187	1	0.02	18 190	10	~5	<20	26	0.12	<10	102	~10	1	27
	201111	-0.2 1.14	~~	00		0.01	~1	10	40	6. 1	2.70	~10	0.45	107		0.02	10 150	10	-0	120	20	0.12	~10	102	-10	14	21
41	E87475	<0.2 1.35	<5	70	<5	0.29	<1	9	33	15	2 28	<10	0.23	144	1	0.02	19 1440	10	<5	<20	24	0.08	~10	65	<10	1	76
42	E87476	02 213	<5	90	5	0.40	<1	20	54	62	3.87	<10	0.90	336	2	0.02	30 1720	16	~5	<20	31	0.13	-10	119	~10	-1	75
43	E87477	0.2 1 90	<5	100	<5	0.33	<1	11	39	25	2 38	<10	0.32	242	1	0.02	22 2190	16	<5	<20	31	0.09	<10	63	~10	1	125
44	E87224	<0.2 1.90	<5	100	<5	0.64	<1	15	49	40	2 92	<10	0.42	578	2	0.02	24 1340	18	5	~20	36	0.11	<10	84	<10	-1	108
45	E87225	0.5 1.92	10	110	<5	0.01	1	14	51	40	3.06	~10	0.42	555	1	0.02	22 1170	18	-5	~20	40	0.10	~10	82	~10	1	220
.0	LUTLLU	0.0 1.02	10	110	-0	0.00		1.4	91	40	0.00	10	0.42	555	8	0.02	22 11/0	10	-0	120	40	0.10	~10	02	10	12	200
46	E87226	0.5 2.08	10	110	<5	1 12	<1	18	61	68	3 34	<10	0.72	543	1	0.02	26 460	16	<5	<20	59	0.11	~10	97	<10	3	120
47	E87227	04 198	15	130	<5	1.27	-1	18	49	86	3.08	<10	0.64	1150	-1	0.02	39 340	18	<5	~20	56	0.10	<10	87	<10	6	80
48	E87228	0.2 1.56	5	135	5	0.77	-1	11	43	36	2.36	<10	0.38	762	1	0.02	20 920	14	~5	<20	16	0.10	<10	66	<10	2	00
49	E87229	04 1 59	-5	105	-5	1.48	1	13	46	90	2.50	<10	0.58	749	1	0.02	30 330	14	~5	<20	61	0.03	<10	68	~10	5	70
50	E87230	03 1 52	~5	95	~5	0.81	-1	11	45	36	2 30	~10	0.37	305	-	0.02	18 520	14	~5	~20	34	0.07	<10	64	~10	2	54
00	201200	0.0 1.02	20	00	~0	0.01	- 1	1.1	40	00	2.00	~10	0.07	000		0.01	10 520	1.4	-0	120	04	0.00	~10	04	10	2	54
51	E87231	<0.2 1.35	<5	85	<5	0.44	<1	15	55	28	3.00	<10	0.48	273	1	0.02	16 740	18	~5	<20	37	0.16	<10	100	<10	2	116
52	E87232	<0.2 1.51	<5	100	<5	0.57	<1	13	50	34	2 75	<10	0.56	398	<1	0.02	22 370	12	<5	<20	60	0.10	<10	82	<10	3	41
53	E87233	0.3 1.91	<5	140	<5	0.91	<1	13	44	51	2 63	<10	0.48	534	1	0.02	33 440	18	<5	<20	82	0.09	<10	70	<10	5	65
54	E87234	<0.2 1.18	<5	70	<5	0.57	<1	11	55	33	2.16	<10	0.52	289	<1	0.02	22 270	10	<5	<20	55	0.10	<10	64	<10	3	38
55	E87235	<0.2 1.06	<5	70	<5	0.32	<1	10	47	22	2.06	<10	0.36	231	-1	0.02	18 370	14	-5	~20	26	0.09	~10	66	~10	2	38
			<u>ः </u>			0.02			0.64%		2.00	210	0.00	201		0.02	10 0/0	Alson.		10	20	0.00	10	00	10		00
56	E87236	< 0.2 0.84	<5	90	<5	0.31	<1	7	35	11	1.93	<10	0.20	159	<1	0.01	11 1190	10	<5	<20	31	0.09	<10	63	<10	<1	43
57	E87237	<0.2 0.91	<5	50	<5	0.34	<1	8	39	20	1.47	<10	0.42	146	<1	0.02	14 540	8	<5	<20	26	0.09	<10	50	<10	2	25
58	E87238	<0.2 1.04	<5	60	<5	0.33	<1	10	60	25	1.88	<10	0.48	198	<1	0.02	22 380	10	<5	<20	24	0.10	<10	63	<10	2	36
59	E87239	<0.2 0.79	<5	65	<5	0.33	<1	8	45	18	1 74	<10	0.33	189	<1	0.02	16 290	8	<5	<20	30	0.09	<10	59	<10	4	27
60	E87240	<0.2 0.80	<5	60	<5	0.28	<1	7	29	12	1.58	<10	0.23	122	~1	0.02	12 480	10	<5	~20	25	0.00	<10	51	<10	2	23
00	20/2/0	40.2 0.00	-0	00		0.20		53) -		11-	1.00	210	0.20	124	-	0.02	12 100	10	-0	~20	20	0.00	~10	51	-10	-	20
61	F87241	<0.2 0.68	5	60	<5	0.24	<1	5	23	8	1 26	<10	0.18	93	<1	0.02	8 150	8	<5	<20	19	0.08	<10	41	<10	2	23
62	E87242	<0.2 0.50	~5	50	-5	0.23	-1	6	29	7	1 41	~10	0.15	130	-1	0.01	6 180	6	-5	~20	22	0.00	~10	51	~10	1	21
63	E87245	<0.2 0.00	~5	80	~5	0.20	~1	23	89	87	3 90	~10	0.10	340	1	0.02	37 1180	18	~5	<20	38	0.14	<10	122	<10	1	80
64	E87246	<0.2 1.47	<5	75	<5	0.46	-1	13	43	27	2 77	<10	0.39	242	1	0.02	19 890	14	~5	<20	31	0.10	<10	86	<10	<1	71
65	E87247	<0.2 1.17	~5	90	5	0.45	-1	12	50	25	2 70	~10	0.44	207	2	0.02	23 740	16	~5	~20	32	0.10	~10	75	~10	-1	117
00	LOTETT	CO.L 1.0)	-0	50	0	0.40		12	00	20	2.70	-10	0.44	201	4	0.02	20 740	10	-0	~20	02	0.10	-10	10	~10	- 1	4,14
66	E87248	<0.2 1.23	<5	90	<5	0.35	<1	10	44	25	2 16	<10	0.43	265	-1	0.02	20 550	10	~5	<20	36	0.09	<10	70	<10	З	46
67	E87249	0.2 1.52	<5	85	<5	0.40	<1	q	34	16	2 43	<10	0.24	208	1	0.02	21 310	14	25	<20	24	0.00	~10	75	<10	1	33
68	E87250	<0.2 0.86	<5	65	<5	0.31	<1	q	40	17	1 97	<10	0.32	171	-1	0.02	15 360	10	25	-20	31	0.10	-10	71	~10	2	33
69	E87251	<0.2 0.81	<5	60	<5	0.31	<1	a	30	15	1 02	<10	0.02	102	~1	0.02	13 340	10	~5	<20	20	0.10	-10	70	~10	2	27
70	E87252	<0.2 0.91	<5	70	<5	0.31	<1	q	37	14	1 90	<10	0.23	201	-1	0.02	15 360	10	~5	~20	25	0.10	-10	69	~10	4	26
10	LUIZJE	~U.L U.DI	-0	.0		0.01	~ 1	0	07	14	1.50	~10	0.04	201	< 1	0.02	10 000	10	10	×20	00	0.11	<10	00	<10	2	20

e 2

ECO TECH	LABORAT	ORY LTD.					3	ICP CI	ERTIF	ICAT	EOF	ANAL	YSIS A	AK 200	08- 17	47						CHRI	STOP	HER,	JAME	ES		
Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
71	E87253	<0.2 0.81	<5	65	<5	0.30	<1	7	30	14	1.60	<10	0.31	159	< 1	0.02	14	600	10	<5	<20	29	0.08	<10	57	<10	2	22
72	E87254	<0.2 0.78	<5	65	<5	0.25	<1	7	31	12	1.64	<10	0.25	128	<1	0.02	14	320	8	<5	<20	24	0.08	<10	57	<10	2	23
73	E87255	<0.2 1.24	<5	80	<5	0.42	- <1	13	51	21	2.59	<10	0.55	303	<1	0.02	22	800	12	<5	<20	36	0.10	<10	91	<10	1	34
<u>QC DATA:</u> <i>Repeat:</i>																												
1	E87348	<0.2 1.25	<5	90	<5	0.32	<1	9	32	19	2.25	<10	0.31	190	<1	0.02	16	860	12	<5	<20	28	0.09	<10	71	<10	1	47
10	E87357	<0.2 1.61	5	125	<5	0.43	<1	11	48	34	2.71	<10	0.52	205	<1	0.01	18	800	12	<5	<20	130	0.09	<10	89	<10	<1	47
19	E87453	<0.2 1.55	<5	165	<5	0.43	<1	14	50	22	2.82	<10	0.42	441	2	0.02	22	1900	14	<5	<20	40	0.11	<10	87	<10	<1	184
28	E87462	<0.2 0.81	<5	45	<5	0.21	<1	6	23	10	1.34	<10	0.19	108	<1	0.02	10	340	10	<5	<20	17	0.07	<10	45	<10	1	22
36	E87470	<0.2 1.21	<5	110	<5	0.43	<1	8	33	14	2.02	<10	0.26	273	<1	0.02	15	1030	12	<5	<20	32	0.09	<10	58	<10	1	77
45	E87225	0.4 1.92	5	105	<5	0.92	1	14	52	48	3.10	<10	0.43	552	2	0.02	23	1130	18	<5	<20	38	0.10	<10	85	<10	1	228
54	E87234	0.2 1.17	<5	70	<5	0.57	<1	12	55	33	2.15	<10	0.52	287	<1	0.02	22	280	10	<5	<20	54	0.10	<10	65	<10	3	37
63	E87245	0.2 2.15	<5	80	<5	0.60	<1	23	97	87	4.01	<10	0.79	341	2	0.02	37	1160	18	<5	<20	40	0.14	<10	125	<10	1	80
71	E87253	0.2 0.82	<5	60	<5	0.31	<1	7	31	13	1.60	<10	0.31	162	<1	0.02	15	580	8	<5	<20	29	0.08	<10	58	<10	2	22
Standard:																												
Till-3		1.3 1.06	90	45	<5	0.47	<1	12	58	22	1.92	<10	0.50	290	1	0.03	30	470	22	<5	<20	14	0.06	<10	34	<10	4	42
Till-3		1.4 1.06	90	40	<5	0.48	<1	12	59	22	1.95	<10	0.50	292	1	0.03	31	480	24	<5	<20	14	0.07	<10	34	<10	4	43
Till-3		1.4 1.02	90	40	<5	0.47	<1	12	58	21	1.93	<10	0.48	298	1	0.03	31	480	24	<5	<20	13	0.07	<10	34	<10	4	41

JJ/ap df/1747 XLS/08 C

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Je 3

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755

CHRISTOPHER JAMES

16-Dec-08

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 64 Sample Type:Soil Project: Tillicum Lake Submitted by:Tim Nillos

		Au
<u>ET #.</u>	Tag #	ppb
1	E87256	
2	E87257	5
3	E87259	5
4	E87260	5
5	E87261	10
6	E87262	5
7	E87263	5
8	E87264	15
9	E87265	5
10	E87284	5
11	E87285	5
12	E87286	10
13	E87287	5
14	E87288	5
15	E87289	5
16	E87290	5
17	E87291	5
18	E87292	10
19	E87293	5
20	E87481	5
21	E87483	5
22	E87484	5
23	E87485	5
24	E87486	5
25	E87487	5
26	E87488	5
27	E87489	<5

-

All business is undertaken subject to the Company's General Conditions of Business which are available on All business is undertaken subject to the Company's General Conditions or Business Winch dre available on request, Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada, Page 1 Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

E87401

16-Dec-08

CHRISTOPHER JAMES AK8-1749

Au ET #. Tag # ppb E87490 <5 E87494 <5 E87495 <5 E87496 5 E87497 <5 E87498 <5 E87371 <5 E87372 <5 E87373 5 E87374 5 E87375 <5 E87376 5 E87377 10 E87378 5 E87379 5 E87380 <5 E87381 <5 E87382 <5 E87383 <5 E87384 <5 E87385 5 E87331 <5 E87332 <5 E87333 <5 E87334 <5 E87335 <5 E87391 <5 E87392 <5 E87393 <5 E87394 <5 E87395 <5 E87396 <5 E87397 20 E87398 5 E87399 <5 E87400 <5

<5

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CHRISTOPHER JAMES AK8-1749

16-Dec-08

		Au	
ET #.	Tag #	ppb	
QC DAT	<u>A:</u>		
Repeat:			
1	E87256	5	
10	E87284	5	
20	E87481	<5	
28	E87490	<5	
36	E87373	<5	
46	E87383	<5	
62	E87399	<5	
64	E87401	<5	
Standard	d.		
Stanuart	2.		
SF30		840	
SF30		830	

JJ/nw XLS/08 Stral _

ECO TECH CABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 20-N Alex Stewart Geochemical ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.alexstewart.com

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2008- 1749

CHRISTOPHER JAMES

Suite 410 1111 Melville St. Vancouver, BC V6E 3V6

No. of samples received: 64 Sample Type:Soil **Project: Tillicum Lake** Submitted by:Tim Nillos

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	11	V	w	v	70
1	E87256	<0.2 0.92	<5	70	<5	0.33	<1	8	32	19	1.67	<10	0.39	216	<1	0.02	15	740	14	<5	<20	36	0.08	<10	60	-10		211
2	E87257	<0.2 0.82	5	60	<5	0.26	<1	8	35	18	1.93	<10	0.31	178	<1	0.02	14	460	12	<5	~20	27	0.00	<10	00	<10	3	23
3	E87259	<0.2 0.80	<5	55	<5	0.25	<1	7	37	17	1.56	<10	0.34	192	<1	0.02	14	370	10	~5	~20	27	0.00	-10	02	<10	2	21
4	E87260	<0.2 0.94	10	75	<5	0.32	<1	8	31	23	1.75	<10	0.38	299	<1	0.02	15	400	12	~5	~20	20	0.00	<10	03	<10	3	20
5	E87261	<0.2 0.84	<5	75	<5	0.28	<1	9	34	17	1.71	<10	0.36	295	<1	0.02	12	380	12	~5	<20	30	0.08	<10	/1	<10	4	23
												100000000				U.UL	16	000	12	45	520	30	0.09	<10	65	<10	4	27
6	E87262	<0.2 0.76	5	65	<5	0.23	<1	6	22	11	1.25	<10	0.28	235	<1	0.02	10	270	10	-5	~20	20	0.07	10	40	10		
7	E87263	<0.2 0.90	5	70	<5	0.22	<1	7	28	13	1.51	<10	0.29	259	<1	0.02	13	360	10	~5	<20	20	0.07	<10	40	<10	3	22
8	E87264	<0.2 0.95	<5	90	<5	0.26	<1	9	26	16	1.45	<10	0.30	417	<1	0.02	13	360	12	~5	<20	22	0.07	<10	5/	<10	3	23
9	E87265	<0.2 0.65	<5	45	<5	0.22	<1	7	31	10	1.90	<10	0.24	146	<1	0.02	10	440	10	<5	~20	33	0.06	<10	47	<10	5	24
10	E87284	<0.2 0.95	<5	60	5	0.18	<1	7	31	9	1.93	<10	0.19	132	1	0.02	12	930	10	-5	~20	20	0.07	<10	68	<10	2	19
											111000	100	0.10	TOL		0.02	12	300	12	<0	<20	20	0.08	<10	64	<10	2	54
11	E87285	<0.2 1.11	<5	120	<5	0.46	<1	9	46	21	2.32	<10	0.37	133	Ĩ.	0.02	10	1060	14	-5	-20	50	0.00	10	00	10		201
12	E87286	<0.2 0.66	10	40	<5	0.24	<1	6	31	13	1.65	<10	0.23	114	- 1	0.02	9	530	12	<5	<20	20	0.08	<10	80	<10	2	51
13	E87287	<0.2 1.01	<5	80	5	0.24	<1	8	32	10	1.91	<10	0.25	119		0.02	14	970	12	<5	<20	29	0.07	<10	68	<10	1	16
14	E87288	<0.2 0.92	<5	60	<5	0.25	<1	6	25	13	1.31	<10	0.31	147	<1	0.02	11	460	12	<5	~20	27	0.07	<10	66	<10	2	25
15	E87289	<0.2 0.85	10	65	<5	0.24	<1	6	21	11	1.29	<10	0.27	132	<1	0.02	10	540	10	<5	<20	27	0.08	<10	49	<10	3	21
														IUL		0.02	10	540	10	<0	<20	25	0.08	<10	54	<10	3	16
16	E87290	<0.2 0.81	10	65	<5	0.21	<1	6	21	11	1.21	<10	0.26	176	<1	0.02	10	360	10	~F	-20	04	0.07	10	10		-	-
17	E87291	<0.2 0.78	5	60	<5	0.25	<1	6	25	11	1.31	<10	0.30	178	<1	0.02	11	430	10	-5	<20	24	0.07	<10	49	<10	3	20
18	E87292	<0.2 1.36	5	90	<5	0.71	<1	12	52	83	2.24	<10	0.63	457	<1	0.02	29	450	14	<0	<20	20	0.08	<10	48	<10	3	21
19	E87293	0.2 3.17	25	200	<5	1.21	<1	16	70	148	3.75	10	0.93	625	1	0.02	59	890	20	~5	~20	05 05	0.09	<10	79	<10	5	28
20	E87481	<0.2 1.47	10	85	<5	0.49	<1	13	49	28	2.97	<10	0.61	406	2	0.02	18	640	16	<5	~20	95	0.10	<10	94	<10	11	39
												2001 A 19 0 9		100	-	0.02	10	040	10	<0	<20	31	0.12	<10	102	<10	2	102
21	E87483	<0.2 1.41	<5	80	5	0.45	<1	15	57	35	3.22	<10	0.61	390	1	0.02	19	580	20	-F	-20	c c	0.14	10	445			
22	E87484	<0.2 1.39	<5	85	10	0.50	<1	15	56	38	2.96	<10	0.53	698	1	0.02	22	570	16	<5	<20	20	0.14	<10	115	<10	3	66
23	E87485	<0.2 1.82	10	75	<5	0.82	<1	18	65	126	3.37	<10	0.57	737	1	0.02	31	280	20	<0	<20	39	0.12	<10	94	<10	2	109
24	E87486	<0.2 1.64	10	90	10	0.50	<1	17	60	44	3.30	<10	0.56	521	2	0.02	22	680	18	<0	<20	43	0.12	<10	9/	<10	6	96
25	E87487	<0.2 1.08	<5	65	<5	0.40	<1	13	63	28	2.54	<10	0.49	291	1	0.02	20	420	10	<0	<20	45	0.14	<10	114	<10	3	92
								12.54	2.2				5.45	231	10	0.02	20	420	4	<0	<20	38	0.12	<10	90	<10	3	53

Alex Stewart hemical

ICP CERTIFICATE OF ANALYSIS AK 2008- 1749

CHRISTOPHER JAMES

ECO TECH LABORATORY LTD.

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	E87488	<0.2 1.27	10	85	<5	2.07	<1	20	38	52	4.19	<10	0.47	516	12	0.03	32	1680	16	<5	<20	73	0.07	<10	82	<10	10	96
27	E87489	<0.2 1.39	10	75	<5	0.58	<1	14	51	32	2.83	<10	0.55	399	2	0.02	21	580	16	<5	<20	38	0.11	<10	93	<10	2	63
28	E87490	<0.2 1.25	5	85	<5	0.39	<1	13	56	21	2.68	<10	0.45	351	<1	0.02	20	650	14	<5	<20	38	0.11	<10	90	<10	2	77
29	E87494	<0.2 2.15	5	115	5	0.62	<1	17	35	28	3.85	<10	0.87	876	2	0.02	18	1020	16	<5	<20	69	0.14	<10	83	<10	3	95
30	E87495	<0.2 1.22	<5	95	<5	0.31	<1	10	42	13	2.70	<10	0.38	350	1	0.02	17	790	10	<5	<20	33	0.09	<10	95	-10	1	60
	201100					0.01	22742.4		0.00		20.0		0.00	000		0.01		100	10		-20	00	0.00	~10	50	~10	-	00
31	F87496	<0.2 0.88	5	65	<5	0.32	<1	q	38	14	2 13	~10	0 32	251	1	0.02	14	270	12	-5	-20	20	0 10	-10	75	~10	2	22
32	E87407	<0.2 0.00	-5	80	5	0.36	-1	11	46	18	2.56	~10	0.02	205	1	0.02	10	570	10	-5	-20	20	0.10	10	10	-10	0	00
33	E87408	<0.2 1.20	5	70	5	0.37	-1	12	19	20	2.50	-10	0.43	211	2	0.02	10	740	16	-5	-20	32	0.10	<10	00	<10	2	05
24	E07971	<0.2 1.10	10	100	-5	0.37	-1	14	55	25	2.01	~10	0.47	220	2	0.02	20	1260	00	<5	~20	45	0.10	<10	102	<10	2	54
25	E07371	<0.2 2.09	10	70	<0	0.40	~1	14	55	10	0.00	<10	0.59	005	4	0.02	20	1300	11	<0	<20	45	0.10	<10	103	<10	2	96
35	E0/3/2	<0.2 1.03	<0	70	5	0.30	<	12	01	19	2.40	<10	0.43	385	1	0.02	18	430	14	<5	<20	34	0.12	<10	89	<10	2	66
26	E07070	.0.0.0.60		00	F	0.00		7	20	10	1 70	.10	0.04	005		0.00	0	070	10	-	00	00	0.00	4.0		10	~	
30	E0/3/3	<0.2 0.02	<0	90	<0	0.28	<1	1	33	10	1.70	<10	0.24	285	<	0.02	9	370	12	<5	<20	32	0.09	<10	63	<10	2	39
37	E8/3/4	<0.2 0.77	10	90	<5	0.21	<1	6	27	8	1.73	<10	0.19	1/5		0.01	13	1080	12	<5	<20	24	0.07	<10	54	<10	1	31
38	E8/3/5	<0.2 0.74	10	70	<5	0.21	<1	/	29	9	1.71	<10	0.21	237	<1	0.02	11	400	12	<5	<20	28	0.08	<10	60	<10	2	40
39	E8/3/6	<0.2 0.64	5	60	<5	0.25	<1	7	31	11	1.88	<10	0.23	169	<1	0.02	12	500	10	<5	<20	27	0.08	<10	68	<10	2	26
40	E87377	<0.2 0.85	5	70	<5	0.30	<1	8	32	18	1.93	<10	0.27	362	<1	0.02	17	440	14	<5	<20	27	0.08	<10	71	<10	4	37
0400							Po 404 1							17-2020		1727-02727												
41	E8/3/8	<0.2 0.98	<5	80	5	0.28	<1	9	37	15	2.26	<10	0.29	169	1	0.02	16	780	14	<5	<20	30	0.09	<10	81	<10	2	48
42	E87379	<0.2 0.59	<5	70	<5	0.20	<1	6	26	7	1.59	<10	0.15	334	<1	0.02	7	360	10	<5	<20	25	0.08	<10	58	<10	2	32
43	E87380	<0.2 0.77	5	60	<5	0.29	<1	8	35	15	1.92	<10	0.29	251	<1	0.02	14	490	12	<5	<20	32	0.09	<10	75	<10	3	27
44	E87381	<0.2 0.76	<5	65	<5	0.23	<1	7	26	8	1.64	<10	0.21	195	<1	0.02	12	420	12	<5	<20	27	0.08	<10	57	<10	2	29
45	E87382	<0.2 0.59	<5	55	<5	0.26	<1	6	18	8	1.33	<10	0.17	195	<1	0.02	9	360	10	<5	<20	30	0.06	<10	48	<10	3	18
46	E87383	<0.2 0.56	<5	45	<5	0.17	<1	5	16	6	1.34	<10	0.13	104	<1	0.02	8	300	10	<5	<20	21	0.06	<10	49	<10	2	19
47	E87384	<0.2 0.56	5	45	<5	0.18	<1	5	19	6	1.44	<10	0.16	116	<1	0.02	7	210	12	<5	<20	19	0.07	<10	55	<10	2	18
48	E87385	<0.2 0.54	5	55	<5	0.18	<1	5	17	7	1.26	<10	0.16	112	<1	0.02	7	240	10	<5	<20	21	0.06	<10	46	<10	2	18
49	E87331	0.3 2.81	5	95	10	0.34	<1	18	65	86	4.38	<10	0.82	308	3	0.02	27	1350	28	<5	<20	39	0.13	<10	153	<10	<1	102
50	E87332	0.2 3.02	10	120	<5	0.40	<1	28	67	130	4.73	<10	0.98	547	2	0.02	34	1900	26	<5	<20	45	0.17	<10	159	<10	2	148
51	E87333	<0.2 2.12	25	70	<5	0.59	<1	21	55	99	3.71	<10	0.79	335	2	0.02	26	1290	24	<5	<20	59	0.13	<10	121	<10	2	96
52	E87334	<0.2 2.21	10	115	5	0.44	<1	18	60	86	4.02	<10	0.84	390	2	0.02	25	1350	26	<5	<20	62	0.13	<10	144	<10	2	84
53	E87335	<0.2 1.51	10	80	<5	0.51	<1	17	58	71	3.51	<10	0.65	252	2	0.02	21	590	22	<5	<20	67	0.16	<10	130	<10	3	55
54	E87391	<0.2 3.13	15	95	<5	0.42	<1	24	43	136	4.47	<10	0.98	251	2	0.02	30	1270	24	<5	<20	39	0.15	<10	152	< 10	3	96
55	E87392	<0.2 1.87	5	105	<5	0.52	<1	17	47	154	3.41	<10	0.68	553	2	0.02	17	540	22	<5	<20	75	0.14	<10	111	<10	3	69
																							0.11					00
56	E87393	<0.2 1.09	10	60	<5	0.33	<1	11	42	22	2.39	<10	0.41	230	<1	0.02	14	530	20	<5	<20	33	0.11	<10	81	<10	2	61
57	E87394	<0.2 0.92	10	55	<5	0.31	<1	10	37	19	2.14	<10	0.36	232	1	0.02	14	510	14	<5	<20	27	0.11	<10	70	<10	2	71
58	E87395	<0.2 1.63	10	75	<5	0.31	<1	14	40	29	2.63	<10	0.47	310	1	0.02	18	680	22	<5	<20	29	0.11	<10	87	<10	2	86
59	E87396	<0.2 1.80	20	100	<5	0.65	<1	14	59	51	3.13	<10	0.56	614	2	0.02	32	550	22	<5	<20	35	0.12	<10	Q1	<10	6	203
60	E87397	<0.2 1.21	10	110	<5	0.34	<1	10	34	16	2 30	<10	0.42	395	2	0.02	17	080	16	~5	~20	20	0.12	<10	70	-10	0	100
	201001	1.L1	10	110		0.01	- 1	10	04	10	2.00	-10	0.42	090	2	0.02	17	900	10	<0	<20	20	0.10	<10	70	<10	2	180
61	E87398	< 0.2 1.83	35	105	5	0.80	1	12	42	30	3 79	<10	0.57	865	3	0.02	22	890	36	-5	~20	26	0.12	~10	106	~10	2	647
62	E87399	<0.2 0.82	15	80	<5	0.26	<1	8	23	10	1.68	<10	0.07	305	1	0.02	20	700	10	-5	~20	20	0.12	<10	100	<10	0	047
63	E87400	<0.2 0.62	10	50	-E	0.20	~1	7	25	11	1 56	~10	0.23	220		0.01	10	100	10	<0	<20	23	0.08	<10	51	<10	2	80
64	E87400	04 1 37	15	75	~5	0.20	21	11	20	61	0.00	<10	0.21	209		0.01	10	430	12	<5	<20	20	0.07	<10	50	<10	2	24
04	L0/401	0.4 1.57	15	15	<0	0.02	< 1	11	29	01	2.20	<10	0.35	020	1	0.02	23	250	16	<5	<20	31	0.08	<10	51	<10	5	45

Alex Stewart chemical

df/1749s XLS/08

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2008- 1749

CHRISTOPHER JAMES

1

Et #.	Tag #	Ag A	M %	As	Ba	Bi	Ca %	24	~	-	-	1227 - 4545											Снк	ISTOP	HER	JAM	ES		
				110	Da	DI	Ud 70	Ca	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	v	-
<u>QC DAT.</u> Repeat:	<u>A:</u>																											1	<u></u>
1 10 19 28 36 45 54	E87256 E87284 E87293 E87490 E87373 E87382 E87391	<0.2 0 <0.2 0 0.2 3 <0.2 1 <0.2 0 <0.2 0 <0.2 0 <0.2 3	0.93 0.97 0.21 0.23 0.64 0.61 0.17	10 <5 20 <5 5 5 10	65 60 205 80 90 55 95	<5 <5 <5 <5 <5 <5 <5 <5	0.30 0.18 1.22 0.38 0.30 0.26 0.43	<1 <1 <1 <1 <1 <1 <1	9 7 16 13 7 6 24	32 29 71 55 32 19 47	19 9 150 20 10 8 137	1.70 1.94 3.78 2.62 1.65 1.46 4.66	<10 <10 <10 <10 <10 <10 <10	0.40 0.20 0.95 0.44 0.24 0.17 0.99	239 135 625 378 283 211 255	<1 1 2 1 <1 <1 3	0.02 0.02 0.03 0.02 0.02 0.02	16 12 59 20 9 10	680 950 880 650 380 350	14 14 18 14 12 10	<5 <5 <5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20 <20 <20	31 21 95 37 33 31	0.08 0.08 0.10 0.11 0.09 0.06	<10 <10 <10 <10 <10 <10	62 64 95 88 60 55	<10 <10 <10 <10 <10 <10	3 2 11 2 3	22 55 39 77 40 19
<i>Standard</i> Till-3 Till-3	2	1.4 1. 1.3 0.	02 96	85 80	45 40	<5 <5	0.45 0.43	<1 <1	11 11	58 57	21 20	1.99 1.92	<10 <10	0.55 0.52	300 291	3 2	0.02 0.03 0.03	29 29	460 460	24 26 28	<5 <5 <5	<20 <20 <20	39 14 14	0.16 0.06 0.06	<10 , <10 <10	161 37 36	<10 <10 <10	3 5 5	97 39 38
JJ/ap																												Ĩ.,	00

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Appendix III

Summary of Rock and Soil Sample Locations and Results

*(NA = not assayed)

Sample_ID	Sample_Type	Datum	Easting_m	Northing_m	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm
202572	Rock	NAD83Z10	604268	5771608	NA	0.4	108	2	16	81
202573	Rock	NAD83Z10	605252	5771503	NA	0.4	115	2	18	81
202574	Rock	NAD83Z10	605477	5771414	NA	0.2	75	2	12	67
202575	Rock	NAD83Z10	603525	5770937	NA	<0.2	33	1	12	66
202576	Rock	NAD83Z10	605426.35	5770237.5	NA	<0.2	235	2	20	86
202577	Rock	NAD83Z10	605423.09	5770234.34	NA	<0.2	165	1	12	78
202578	Rock	NAD83Z10	605420.49	5770235.66	NA	<0.2	217	2	14	72
202579	Rock	NAD83Z10	605418.76	5770236.66	NA	<0.2	46	<1	6	18
202580	Rock	NAD83Z10	605411.12	5770232.2	NA	<0.2	146	1	8	52
202581	Rock	NAD83Z10	605409.36	5770229.58	NA	<0.2	193	1	22	84
202582	Rock	NAD83Z10	605407.6	5770225.62	NA	<0.2	227	2	14	62
202583	Rock	NAD83Z10	605403.11	5770225.88	NA	<0.2	138	2	10	54
202584	Rock	NAD83Z10	605399.56	5770229.38	NA	<0.2	199	2	14	73
202585	Rock	NAD83Z10	605177.48	5769169.29	NA	<0.2	35	<1	8	55
202586	Rock	NAD83Z10	605173.91	5769163.59	NA	<0.2	17	1	6	67
202587	Rock	NAD83Z10	605724	5770321	NA	0.2	55	2	14	72
202588	Rock	NAD83Z10	605001	5771237	NA	<0.2	78	5	20	112
202589	Rock	NAD83Z10	603891	5770598	NA	<0.2	89	<1	12	62
87202	Soil	NAD83Z10	607507	5769275	5	<0.2	14	<1	12	46
87203	Soil	NAD83Z10	607581	5769343	<5	<0.2	15	1	8	33
87204	Soil	NAD83Z10	607656	5769409	<5	<0.2	25	<1	10	36
87205	Soil	NAD83Z10	607730	5769476	5	<0.2	13	<1	6	27
87206	Soil	NAD83Z10	607804	5769543	5	0.2	28	<1	10	58
87207	Soil	NAD83Z10	606794	5769171	<5	0.2	143	2	12	133
87208	Soil	NAD83Z10	606868	5769238	<5	0.3	36	1	16	133
87209	Soil	NAD83Z10	606942	5769304	<5	0.2	28	<1	18	102
87210	Soil	NAD83Z10	607016	5769372	5	0.3	26	1	16	133
87211	Soil	NAD83Z10	607091	5769439	5	0.2	58	<1	38	264
87212	Soil	NAD83Z10	607165	5769506	<5	0.3	26	1	14	68
87213	Soil	NAD83Z10	607240	5769572	5	0.3	77	1	14	70
87214	Soil	NAD83Z10	607314	5769640	<5	0.2	31	1	12	35
87215	Soil	NAD83Z10	607388	5769707	<5	0.2	23	<1	10	38
87216	Soil	NAD83Z10	607462	5769773	<5	<0.2	20	<1	8	26
87217	Soil	NAD83Z10	607537	5769840	<5	<0.2	18	<1	8	29
87218	Soil	NAD83Z10	607611	5769907	5	<0.2	13	<1	8	23
87219	Soil	NAD83Z10	607686	5769974	5	<0.2	16	<1	10	24
87220	Soil	NAD83Z10	607760	5770041	5	<0.2	11	<1	8	26
87221	Soil	NAD83Z10	607834	5770108	<5	<0.2	30	<1	10	45
87223	Soil	NAD83Z10	606229	5769200	10	0.2	33	<1	16	116
87224	Soil	NAD83Z10	606303	5769267	20	<0.2	40	2	18	198
87225	Soil	NAD83Z10	606377	5769335	<5	0.5	49	1	18	230
87226	Soil	NAD83Z10	606451	5769402	<5	0.5	68	1	16	120
87227	Soil	NAD83Z10	606526	5769468	<5	0.4	86	<1	18	80
87228	Soil	NAD83Z10	606600	5769535	<5	0.2	36	1	14	94
87229	Soil	NAD83Z10	606675	5769602	<5	0.4	90	1	14	72
87230	Soil	NAD83Z10	606749	5769669	<5	0.3	36	1	14	54
87231	Soil	NAD83Z10	606823	5769736	<5	<0.2	28	1	18	116

Sample_ID	Sample_Type	Datum	Easting_m	Northing_m	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	mqq_d9	mqq_nZ
87232	Soil	NAD83Z10	606897	5769803	<5	<0.2	34	<1	12	41
87233	Soil	NAD83Z10	606972	5769870	<5	0.3	51	1	18	65
87234	Soil	NAD83Z10	607046	5769936	<5	<0.2	33	<1	10	38
87235	Soil	NAD83Z10	607121	5770004	<5	<0.2	22	<1	14	38
87236	Soil	NAD83Z10	607195	5770071	<5	<0.2	11	<1	10	43
87237	Soil	NAD83Z10	607269	5770137	<5	<0.2	20	<1	8	25
87238	Soil	NAD83Z10	607343	5770204	<5	<0.2	25	<1	10	36
87239	Soil	NAD83Z10	607418	5770272	<5	<0.2	18	<1	8	27
87240	Soil	NAD83Z10	607492	5770338	<5	<0.2	12	<1	10	23
87241	Soil	NAD83Z10	607567	5770405	<5	<0.2	8	<1	8	23
87242	Soil	NAD83Z10	607641	5770472	<5	<0.2	7	<1	6	21
87243	Soil	NAD83Z10	607715	5770539	<5	<0.2	13	<1	10	33
87244	Soil	NAD83Z10	607789	5770606	<5	<0.2	147	1	20	72
87245	Soil	NAD83Z10	605887	5769431	<5	<0.2	87	1	18	80
87246	Soil	NAD83Z10	605961	5769498	<5	<0.2	27	1	14	71
87247	Soil	NAD83Z10	606035	5769564	<5	<0.2	25	2	16	117
87248	Soil	NAD83Z10	606110	5769632	<5	<0.2	25	<1	10	46
87249	Soil	NAD83Z10	606184	5769699	<5	0.2	16	1	14	33
87250	Soil	NAD83Z10	606258	5769766	<5	<0.2	17	<1	10	33
87251	Soil	NAD83Z10	606333	5769832	<5	<0.2	15	<1	10	27
87252	Soil	NAD83Z10	606407	5769899	<5	<0.2	14	<1	10	26
87253	Soil	NAD83Z10	606481	5769967	<5	<0.2	14	<1	10	22
87254	Soil	NAD83Z10	606556	5770033	<5	<0.2	12	<1	8	23
87255	Soil	NAD83Z10	606630	5770100	<5	<0.2	21	<1	12	34
87256	Soil	NAD83Z10	606705	5770167	5	<0.2	19	<1	14	22
87257	Soil	NAD83Z10	606778	5770234	5	<0.2	18	<1	12	21
87259	Soil	NAD83Z10	606927	5770368	5	<0.2	17	<1	10	20
87260	Soil	NAD83Z10	607002	5770435	5	<0.2	23	<1	12	23
87261	Soil	NAD83Z10	607076	5770501	10	<0.2	17	<1	12	27
87262	Soil	NAD83Z10	607150	5770568	5	<0.2	11	<1	10	22
87263	Soil	NAD83Z10	607224	5770636	5	<0.2	13	<1	12	23
87264	Soil	NAD83Z10	607298	5770702	15	<0.2	16	<1	12	24
87265	Soil	NAD83Z10	607373	5770769	5	<0.2	10	<1	10	19
87272	Soil	NAD83Z10	605545	5769661	<5	<0.2	6	<1	10	24
87273	Soil	NAD83Z10	605620	5769728	<5	<0.2	77	<1	24	72
87274	Soil	NAD83Z10	605694	5769795	<5	<0.2	23	1	16	97
87275	Soil	NAD83Z10	605768	5769862	<5	<0.2	15	<1	14	100
87276	Soil	NAD83Z10	605842	5769928	<5	<0.2	14	<1	10	32
87277	Soil	NAD83Z10	605916	5769996	<5	<0.2	14	<1	12	27
87278	Soil	NAD83Z10	605991	5770063	<5	<0.2	17	1	14	39
87279	Soil	NAD83Z10	606065	5770130	<5	0.2	16	1	14	62
87280	Soil	NAD83710	606140	5770196	<5	<0.2	9	<1	10	35
87281	Soil	NAD83Z10	606214	5770264	<5	<0.2	11	<1	10	22
87282	Soil	NAD83710	606288	5770331	<5	<0.2	10	<1	12	20
87283	Soil	NAD83710	606362	5770397	<5	<0.2	15	<1	14	44
87284	Soil	NAD83710	606437	5770464	5	<0.2	9	1	14	55
87285	Soil	NAD83710	606511	5770531	5	<0.2	21	1	14	51
87286	Soil	NAD83710	606585	5770599	10	<0.2	13	1	12	16
87287	Soil	NAD83Z10	606660	5770665	5	<0.2	10	1	12	25

Sample_ID	Sample_Type	Datum	Easting_m	Northing_m	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	mqq_nZ
87288	Soil	NAD83Z10	606734	5770732	5	<0.2	13	<1	12	21
87289	Soil	NAD83Z10	606808	5770799	5	<0.2	11	<1	10	16
87290	Soil	NAD83Z10	606882	5770865	5	<0.2	11	<1	10	20
87291	Soil	NAD83Z10	606957	5770933	5	<0.2	11	<1	12	21
87292	Soil	NAD83Z10	607031	5771000	10	<0.2	83	<1	14	28
87293	Soil	NAD83Z10	607105	5771067	5	0.2	150	2	18	39
87303	Soil	NAD83Z10	605055	5769758	<5	<0.2	15	<1	14	63
87304	Soil	NAD83Z10	605129	5769824	<5	<0.2	13	1	12	71
87305	Soil	NAD83Z10	605203	5769892	<5	<0.2	17	<1	16	115
87306	Soil	NAD83Z10	605277	5769959	<5	<0.2	14	<1	16	122
87307	Soil	NAD83Z10	605351	5770026	<5	<0.2	9	<1	14	109
87308	Soil	NAD83Z10	605426	5770092	<5	<0.2	6	<1	10	34
87309	Soil	NAD83Z10	605500	5770159	<5	<0.2	22	<1	14	55
87310	Soil	NAD83Z10	605575	5770227	<5	<0.2	29	<1	16	42
87311	Soil	NAD83Z10	605649	5770293	<5	<0.2	19	1	14	52
87312	Soil	NAD83Z10	605723	5770360	<5	<0.2	15	1	10	36
87313	Soil	NAD83Z10	605797	5770427	<5	<0.2	11	<1	8	23
87314	Soil	NAD83Z10	605871	5770494	<5	<0.2	15	<1	10	29
87315	Soil	NAD83Z10	605946	5770560	<5	<0.2	14	<1	10	35
87316	Soil	NAD83Z10	606021	5770628	5	<0.2	16	<1	10	24
87317	Soil	NAD83Z10	606095	5770695	10	<0.2	7	<1	8	24
87318	Soil	NAD83Z10	606169	5770761	<5	<0.2	15	1	10	27
87319	Soil	NAD83Z10	606243	5770828	<5	<0.2	12	<1	10	25
87320	Soil	NAD83Z10	606317	5770895	<5	<0.2	11	<1	8	22
87321	Soil	NAD83Z10	606392	5770963	<5	<0.2	7	<1	10	23
87322	Soil	NAD83Z10	606466	5771029	<5	<0.2	23	<1	12	44
87323	Soil	NAD83Z10	606541	5771096	<5	<0.2	28	1	16	101
87324	Soil	NAD83Z10	606615	5771163	<5	<0.2	10	<1	10	48
87331	Soil	NAD83Z10	606280	5768841	<5	0.3	86	3	28	102
87332	Soil	NAD83Z10	606348	5768770	<5	0.2	130	2	26	148
87333	Soil	NAD83Z10	606409	5768697	<5	<0.2	99	2	24	96
87334	Soil	NAD83Z10	606482	5768621	<5	<0.2	86	2	26	84
87335	Soil	NAD83Z10	606500	5768522	<5	<0.2	71	2	22	55
87341	Soil	NAD83Z10	604638.47	5769921.73	<5	<0.2	38	<1	8	26
87342	Soil	NAD83Z10	604712.79	5769988.65	<5	0.3	137	<1	10	36
87343	Soil	NAD83Z10	604787.1	5770055.56	<5	0.4	126	<1	10	25
87344	Soil	NAD83Z10	604861.42	5770122.47	<5	<0.2	23	<1	12	69
87345	Soil	NAD83Z10	604935.73	5770189.39	<5	0.2	27	1	16	55
87346	Soil	NAD83Z10	605010.05	5770256.3	<5	<0.2	18	1	12	62
87347	Soil	NAD83Z10	605084.36	5770323.21	<5	<0.2	18	<1	10	35
87348	Soil	NAD83Z10	605158	5770390	5	<0.2	19	<1	10	47
87349	Soil	NAD83710	605232	5770456	5	< 0.2	30	<1	26	79
87350	Soil	NAD83Z10	605307	5770524	20	0.2	19	<1	12	48
87351	Soil	NAD83710	605381	5770591	<5	0.2	19	1	14	70
87352	Soil	NAD83710	605455	5770657	5	<0.2	18	<1	16	43
87353	Soil	NAD83710	605530	5770724	5	<0.2	40	1	16	80
87354	Soil	NAD83710	605604	5770791	<5	<0.2	16	<1	10	48
87355	Soil	NAD83710	605678	5770859	<5	<0.2	15	<1	10	43
87356	Soil	NAD83Z10	605752	5770925	<5	<0.2	24	<1	10	39

Sample_ID	Sample_Type	Datum	Easting_m	Northing_m	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	mqq_nZ
87357	Soil	NAD83Z10	605827	5770992	<5	<0.2	35	2	12	47
87358	Soil	NAD83Z10	605901	5771059	<5	<0.2	18	1	6	28
87359	Soil	NAD83Z10	605976	5771125	15	<0.2	12	<1	8	24
87360	Soil	NAD83Z10	606050	5771192	<5	<0.2	19	<1	10	35
87361	Soil	NAD83Z10	606124	5771260	<5	<0.2	32	<1	10	52
87362	Soil	NAD83Z10	606198	5771327	<5	<0.2	21	1	12	147
87363	Soil	NAD83Z10	606273	5771393	<5	0.2	76	2	16	54
87371	Soil	NAD83Z10	606021	5769282	<5	<0.2	35	2	22	96
87372	Soil	NAD83Z10	605947	5769215	<5	<0.2	19	1	14	66
87373	Soil	NAD83Z10	605845	5769195	5	<0.2	10	<1	12	40
87374	Soil	NAD83Z10	605748	5769159	5	<0.2	8	1	12	31
87375	Soil	NAD83Z10	605659	5769110	<5	<0.2	9	<1	12	40
87376	Soil	NAD83Z10	605560	5769096	5	<0.2	11	<1	10	26
87377	Soil	NAD83Z10	605455	5769100	10	<0.2	18	<1	14	37
87378	Soil	NAD83710	605353	5769098	5	<0.2	15	1	14	48
87379	Soil	NAD83710	605254	5769102	5	<0.2	7	<1	10	32
87380	Soil	NAD83710	605155	5769106	<5	<0.2	15	<1	12	27
87381	Soil	NAD83710	605054	5769112	<5	<0.2	8	<1	12	29
87382	Soil	NAD83710	604951	5769126	<5	<0.2	8	<1	10	19
87383	Soil	NAD83710	604853	5769124	~5	<0.2	6	~1	10	10
87384	Soil	NAD83710	604755	5760100	<5	<0.2	6	~1	12	18
87385	Soil	NAD83710	604665	5769066	5	<0.2	7	<1	10	18
87301	Soil	NAD83710	606690	5768539	-5	<0.2	137	3	24	97
97202	Soil	NAD92710	606764	5768606	<5	<0.2	157	2	24	60
87303	Soil	NAD83710	606839	5768674	<5	<0.2	22	-1	20	61
97204	Soil	NAD83210	606013	5769740	<5	<0.2	10	1	20	71
07394	Soil	NAD03210	6060973	5769907	<5	<0.2	20	1	14	06
07395	Soil	NAD03210	607061	5700007	<0	<0.2	29	1 2	22	202
07390	Soil	NAD03210	607125	5769040	<0	<0.2	16	2	16	100
07397	Soli	NAD03210	607010	5766940	20	<0.2	10	2	10	100
07390	Soli	NAD63210	607210	5769008	о .г	<0.2	30	3	30	047
07399	Soli	NAD83Z10	607264	5769075	<5	<0.2	10	1	12	00
07400	Soli	NAD03210	607359	5769141	<0	<0.2	61	1	12	24 45
07401	Soli	NAD83Z10	607458	5769156	<5 5	0.4	47	1	10	40
07401	Soil	NAD83Z10	605262	5769676	С 2	<0.2	17	1	10	100
07452	Soli	NAD63Z10	605337	5769743	<5	0.2	15	1	10	129
87453	Soli	NAD83Z10	605411	5769810	<5	<0.2	23	1	12	185
87454	Soli	NAD83Z10	605485	5769876	<5	<0.2	18	<1	12	54
87455	Soli	NAD83Z10	605559	5769944	10	0.2	101	2	14	201
87456	Soli	NAD83210	605634	5770011	<5	<0.2	11	<1	8	39
87457	Soli	NAD83210	605708	5770077	<5	<0.2	30	1	14	155
87458	Soli	NAD83Z10	605782	5770144	<5	<0.2	33	2	18	317
87459	Soil		605857	5770211	<5	< 0.2	14	<1	10	47
87460	Soil		605931	5770279	30	<0.2	54	2	18	160
8/461	Soil		606005	5770345	5	<0.2	9	<1	8	27
87462	Soil	NAD83Z10	606079	5770412	<5	<0.2	10	<1	10	23
87463	Soil	NAD83Z10	604920	5769907	<5	<0.2	14	1	10	68
87464	Soil	NAD83Z10	604994	5769973	<5	<0.2	18	1	12	100
87465	Soil	NAD83Z10	605069	5770040	<5	<0.2	10	<1	10	49
87466	Soil	NAD83Z10	605143	5770107	<5	<0.2	19	2	16	121

Sample_ID	Sample_Type	Datum	Easting_m	Northing_m	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm
87467	Soil	NAD83Z10	605218	5770173	<5	<0.2	29	<1	8	39
87468	Soil	NAD83Z10	605292	5770241	<5	<0.2	31	<1	10	46
87469	Soil	NAD83Z10	605366	5770308	<5	<0.2	34	1	14	96
87470	Soil	NAD83Z10	605441	5770375	<5	0.2	14	<1	14	74
87471	Soil	NAD83Z10	605515	5770441	<5	<0.2	13	<1	12	64
87472	Soil	NAD83Z10	605589	5770508	<5	<0.2	14	1	12	83
87473	Soil	NAD83Z10	605663	5770576	<5	<0.2	45	2	16	72
87474	Soil	NAD83Z10	605738	5770643	<5	<0.2	21	1	10	27
87475	Soil	NAD83Z10	605812	5770709	<5	<0.2	15	1	10	76
87476	Soil	NAD83Z10	605887	5770776	25	0.2	62	2	16	75
87477	Soil	NAD83Z10	605961	5770843	<5	0.2	25	1	16	125
87481	Soil	NAD83Z10	606155	5769134	5	<0.2	28	2	16	102
87483	Soil	NAD83Z10	606094	5768945	5	<0.2	35	1	20	66
87484	Soil	NAD83Z10	606054	5768855	5	<0.2	38	1	16	109
87485	Soil	NAD83Z10	605961	5768807	5	<0.2	126	1	20	96
87486	Soil	NAD83Z10	605883	5768745	5	<0.2	44	2	18	92
87487	Soil	NAD83Z10	605809	5768669	5	<0.2	28	1	14	53
87488	Soil	NAD83Z10	605761	5768578	5	<0.2	52	12	16	96
87489	Soil	NAD83Z10	605710	5768488	<5	<0.2	32	2	16	63
87490	Soil	NAD83Z10	605675	5768389	<5	<0.2	21	<1	14	77
87494	Soil	NAD83Z10	605385	5768268	<5	<0.2	28	2	16	95
87495	Soil	NAD83Z10	605284	5768257	<5	<0.2	13	1	10	60
87496	Soil	NAD83Z10	605192	5768213	5	<0.2	14	1	12	33
87497	Soil	NAD83Z10	605111	5768156	<5	<0.2	18	1	12	65
87498	Soil	NAD83Z10	605042	5768088	<5	<0.2	20	2	16	54

Appendix IV

Rock Sample Descriptions

LEGEND									
Code	Description								
Waypoint_ID	Waypoint as entered in the GPS by Tim Nillos								
Lith	Dominant Lithology								
Altn1	Primary Alteration								
Altn2	Secondary Alteration								
Altn3	Tertiary Alteration								
Min1	Primary Mineralization								
MStyle1	Primary Mineralization Style								
MPer1	Primary Mineralization Percentage								
Min2	Secondary Mineralization								
MStyle2	Secondary Mineralization Style								
MPer2	Secondary Mineralization Percentage								
Struct1	Primary Structure								
S1Dip	Primary Structure Dip								
S1Str	Primary Structure Strike								
S1DipDirn	Primary Structure Dip Direction								
Struct2	Primary Structure								
S2Dip	Primary Structure Dip								
S2DipDirn	Primary Structure Dip Direction								

Waypoint_ID	Sample_ID	Type	Description	Lith	Altn1	Altn2	Altn3	Min1	MStyle1	MPer1	Min2	MStyle2	MPer2	Struct1	S1Dip	S1Str	S1DipDirn	Struct2	S2Dip	S2DipDirn
257	202572	Float	Blk lst w/ lam's + diss'd flky wh py? (asp?). Magnetic	Limestone						0			0		0	0	0		0	0
258	202573	Outcrop	Dk-gy to blk arg, slt'ly car's w/ vf flky wh py diss's =1%, 46/80NW jnting	Argillite	carb			ру	dissd	1			0	joint	80	46	46		0	0
259	202574	Outcrop	slt'ly cly-altd dia'c text'd vol'c rk, gy to lt-gy w/ vf to flky tr of cpy? (<1%), 4m dia.	Diamicton				сру	dissd	1			0		0	0	0		0	0
263	202575	Float	Cly-chl altd dia to bxd volc w/ tr to vf flky wh- py. Also the end of gravel from road jnxn.	Diamicton	clay	chl		ру	dissd	1			0		0	0	0		0	0
269	202576	Outcrop	6.5m cchnl on 40cm thk ande pory flow (315/35NE). Some (10%) of plag partly repld by epi w grndmass slightly cly-chl altd, rr oli- xtls. Vf cpy-py disn (<1%).	Andesite	cly	chl	ері	сру	dissd	0.2	ру	dissd	0.2	flow	35	315	45		0	0
269	202577	Outcrop	As 202576 but w 2.5m wide fracts filled w dl- gn dolomite.	Andesite	cly	chl	ері			0			0	fract	80	20	290		0	0

Waypoint_ID	Sample_ID	Type	Description	Lith	Altn1	Altn2	Altn3	Min1	MStyle1	MPer1	Min2	MStyle2	MPer2	Struct1	S1Dip	S1Str	S1DipDirn	Struct2	S2Dip	S2DipDirn
269	202578	Outcrop	Folded (syn) ande pory w slgt cly-altd plag & partly epid plag rims, still w <1% vf cpy-py dissn	Andesite	cly	ері		сру	dissd	0.5	ру	dissd	0.5	syn	45	20	200		0	0
269	202579	Outcrop	Msv dl-gn dolomite + cal vnlets filling the fracts/shear planes	Dolomite						0			0	fract	85	18	288		0	0
269	202580	Outcrop	Pillowed and pory flow, slgtly cly sltd w vr (<1%) vf py-cpy dissn. Cal-epi filled vesicles while dolomitic carb replaced inter-pillow seds.	Andesite	cly			ру	dissd	0.5	сру	dissd	0.5	flow	40	352	82		0	0
269	202581	Outcrop	As 202580	Andesite	cly			ру	dissd	0.5	сру	dissd	0.5	flow	40	352	82		0	0
269	202582	Outcrop	As 202580	Andesite	cly			ру	dissd	0.5	сру	dissd	0.5	flow	40	352	82		0	0
269	202583	Outcrop	Slgtly cly altd porc ande, modly fractd, fr w vr (<<1%) dissd py. Dike?	Andesite	cly			ру	dissd	0.2			0	cont	80	35	305		0	0
269	202584	Outcrop	As 202583 but less fractd, jointed only.	Andesite	cly			ру	dissd	0.2			0	dike	78	24	254		0	0
Вха	202585	Outcrop	cbx. Sub-ang 15mm to 100mm cl of dia to and text, slt'ly to mod'ly sil-cly altd w/ 1% flky wh to silvery py or asp?, occ'l br pyrr? Mx is rk-flour epi-cly altd w/ slight car and no minn - Could be tec'c/fault bxa.	Andesite	sil	cly		ру	dissd	1			0	cbx	0	0	0		0	0
Вха	202586	Outcrop	cbx. Sub-ang 15mm to 100mm cl of dia to and text, slt'ly to mod'ly sil-cly altd w/ 1% flky wh to silvery py or asp?, occ'l br pyrr? Mx is rk-flour epi-cly altd w/ slight car and no minn - Could be tec'c/fault bxa.	Andesite	sil	cly		ру	dissd	1			0	cbx	0	0	0		0	0
271	202587	Outcrop	3m thk cars (blk) arg, lamd w car-Fe stained NE/73NW fract's, whole rk is dissd w vf flky wh-py (1-5%), fossiliferous	Argillite	car					0			0	lam	26	326	56	fracture	73	315
273	202588	Outcrop	dia'c rk but slt'ly cly-py altd. Py is 2% vf flky & silvery-wh w ovrlying lam'd blk argillite.	Diamicton	cly			ру	dissd	2			0		0	0	0		0	0
275	202589	Outcrop	cbx, basalt, similar to 202585-86 but more car- chl altd. Cpy dissd flakes vr (<<1%) vf. car is purplish-br (ank) w weak epi spots. tec'c/flt bxa.	Basalt	carb	chl	ері	сру	dissd	0			0	cbx	0	0	0		0	0