BC Geological Survey Assessment Report 31071

TRENCHING ASSESSMENT REPORT

On The

LITTLE FORT PROPERTY Little Fort, British Columbia Kamloops & Clinton Mining Divisions

Tenure Nos: 389114, 389386, 509233, 509236, 509257, 509264, 509450, 509852, 509859, 509867, 509873, 571568

120°23'42" WEST LONGITUDE 51°29'33" NORTH LATITUDE 680,610mE and 5,713,690mN UTM NAD83 Zone 10, NTS Map Sheet No. 92P08.

For

CHRISTOPHER JAMES GOLD CORP. 1620 -1140 W. Pender Street Vancouver, B.C. V6E 4G1

Prepared By:

Brian May, B.Sc. & Tim Nillos, B.Sc.

September 17, 2009

Table of Contents

Table of Contents	
List of Figures	. III
List of Tables	
List of Appendices	. III
SUMMARY	
INTRODUCTION	
General Statement	
Location and Access	
Physiography and Vegetation	
Mineral Tenures	
History	-
GEOLOGY	
Regional Geology	
Supracrustal Rocks	
Local Geology	
Structure	
Alteration	
Mineralization	
Trenching	
Sampling and Analytical Procedures	
Quality Control Measures	
Method	
Results & Discussion	
Group A Trenches (Discovery)	
Trench A1	
Trench A2	
Trench A3	
Trench A8	26
Trench A10	26
Group B Trenches	
Trench B18	
Trench B2	
Trench B17	
Trench B1	
Trench B25 Trench B10	
Trench B15	
Trench B14	
Trench B13	
Trench B12	
Trench B3	

Trench B25A	
CONCLUSIONS	
Wandering Dog MINFILE Capsule (MINFILE 092P 183)	
RECOMMENDATIONS	
REFERENCES	-

List of Figures

Figure 2Little Fort Claim Map (Scale 1:100,000)Figure 3Little Fort Historic Claims (Scale 100,000)Figure 4Little Fort Regional Geology (Scale 1:250,000)Figure 5Little Fort Mineral Occurrence Map (MINFILES) (Scale 1:100,000)Figure 6Little Fort Trench Location Map (1:75,000)Figure 7Little Fort Trench Area A 2008 Trenches Over 2000 GeophysicalAnomalies (Scale 1:10,000)Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Little Fort Group B Trenches (Scale 1:10,000)Figure 9Little Fort Group B Trenches (Scale 1:10,000)Figure 10Little Fort Group B 2008 Trenches over 1st VD Magnetics	Figure 1	Little Fort Location Map (Scale 1:8,000,000)
Figure 4Little Fort Regional Geology (Scale 1:250,000)Figure 5Little Fort Mineral Occurrence Map (MINFILES) (Scale 1:100,000)Figure 6Little Fort Trench Location Map (1:75,000)Figure 7Little Fort Trench Area A 2008 Trenches Over 2000 GeophysicalAnomalies (Scale 1:10,000)Figure 8Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Figure 9Little Fort Group B Trenches (Scale 1:10,000)	Figure 2	Little Fort Claim Map (Scale 1:100,000)
Figure 5Little Fort Mineral Occurrence Map (MINFILES) (Scale 1:100,000)Figure 6Little Fort Trench Location Map (1:75,000)Figure 7Little Fort Trench Area A 2008 Trenches Over 2000 GeophysicalAnomalies (Scale 1:10,000)Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalFigure 9Little Fort Group B Trenches (Scale 1:10,000)	Figure 3	Little Fort Historic Claims (Scale 100,000)
Figure 6Little Fort Trench Location Map (1:75,000)Figure 7Little Fort Trench Area A 2008 Trenches Over 2000 GeophysicalAnomalies (Scale 1:10,000)Figure 8Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Figure 9Little Fort Group B Trenches (Scale 1:10,000)	Figure 4	Little Fort Regional Geology (Scale 1:250,000)
Figure 7Little Fort Trench Area A 2008 Trenches Over 2000 GeophysicalAnomalies (Scale 1:10,000)Figure 8Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Figure 9Little Fort Group B Trenches (Scale 1:10,000)	Figure 5	Little Fort Mineral Occurrence Map (MINFILES) (Scale 1:100,000)
Anomalies (Scale 1:10,000) Figure 8 Little Fort Trench Area A 2008 Trenches Over 2001 Geophysical Anomalies (Scale 1:10,000) Figure 9 Little Fort Group B Trenches (Scale 1:10,000)	Figure 6	Little Fort Trench Location Map (1:75,000)
Figure 8Little Fort Trench Area A 2008 Trenches Over 2001 GeophysicalAnomalies (Scale 1:10,000)Figure 9Little Fort Group B Trenches (Scale 1:10,000)	Figure 7	Little Fort Trench Area A 2008 Trenches Over 2000 Geophysical
Anomalies (Scale 1:10,000) Figure 9 Little Fort Group B Trenches (Scale 1:10,000)	Anomalies (S	Scale 1:10,000)
Figure 9 Little Fort Group B Trenches (Scale 1:10,000)	Figure 8	Little Fort Trench Area A 2008 Trenches Over 2001 Geophysical
	Anomalies (S	Scale 1:10,000)
Figure 10 Little Fort Group B 2008 Trenches over 1 st VD Magnetics	Figure 9	
righter to Elittle Fort Group B 2000 Trenenes over 1 VB Magneties	Figure 10	Little Fort Group B 2008 Trenches over 1 st VD Magnetics

List of Tables

- Table 1
 Little Fort Property Mineral Tenures (as of September 16,2009)
- Table 2
 MINFILE records located within the boundaries of the Little Fort Property.

Table 3Statement of Costs

List of Appendices

- Appendix I Authors Certificates and Statements of Qualifications
- Appendix II Eco-Tech Laboratory Ltd. Laboratory Assay Certificates
- Appendix III Summary of Trench Locations and Results
- Appendix IV Trench Lithological Logs
- Appendix V Trench Plan Views
- Appendix VI SIMPCW Seeding Letter

SUMMARY

Christopher James Gold Corp's 2008 Little Fort trenching program began on June 11, 2008 and was completed on November 30, 2008. A total of 17 trenches were excavated from June 26, 2008 until July 22, 2008. The trenches were subdivided into two groups based on separate objectives. The first objective was to test the correlation between historical ground geophysical surveys attempted by Christopher James Gold Corp in 2000 and 2001 with the 2007 airborne geophysical survey. For this objective, 5 out of 11 proposed trenches were excavated. The second objective was to test an in-house interpretation of the 2007 airborne geophysical survey by delineating skarn targets according to magnetic signature. Of the 25 proposed trenches, 11 were excavated. The total cumulative length of trenches was 861.3 meters.

All trenches were lithologically logged and selectively sampled. A total of 146 chipchannel samples were analyzed by Eco-Tech Laboratory Ltd. of Kamloops B.C. Rehabilitation of the trenches was performed by the Simpcw First Nation Sustainable Resources Department on November 15 and 16, 2008.

Of the five trenches in Group A three had to be abandoned due to overburden thickness and flooding. In the two trenches that were excavated, weak to moderate silica, chlorite and carbonate alteration was encountered. The trenching failed to prove continuation of the Discovery showing and was unable to tet geophysical anomalies delineated from the 2000 and 2001 geophysical surveys.

Eleven out of twelve trenches were sampled in Group B. Trench B1 was the most prospective trench with anomalous copper, molybdenum, silver, gold, lead, and zinc values, incluing an interval from 104 to 109 meters of 1920 ppm Cu. This interval was defined lithologically as a garnet-diopside-magnetite pyrite skarn. Trench B2 was the only other trench that encountered noticeable skarn minearlization with occasional brown garnets observed. The lithology at the Group B trenches appears to have undergone strong deformation and metamorphism leading to structural complexity and challenges in identifying continuous skarn. At this current time, the Wandering Dog showing and the trend from B1 to B25 appears to be the most prospective area.

Future exploration on the Little Fort Property could include percussion drilling in the Discovery (Group A) area to avoid conflicts with thick overburden and flooding. Lithological and float mapping near the Wandering Dog skarn would be beneficial for future exploration in the Group B area. The entire Little Fort Property claim block should be mapped on a property scale, including both bedrock and float mapping.

INTRODUCTION

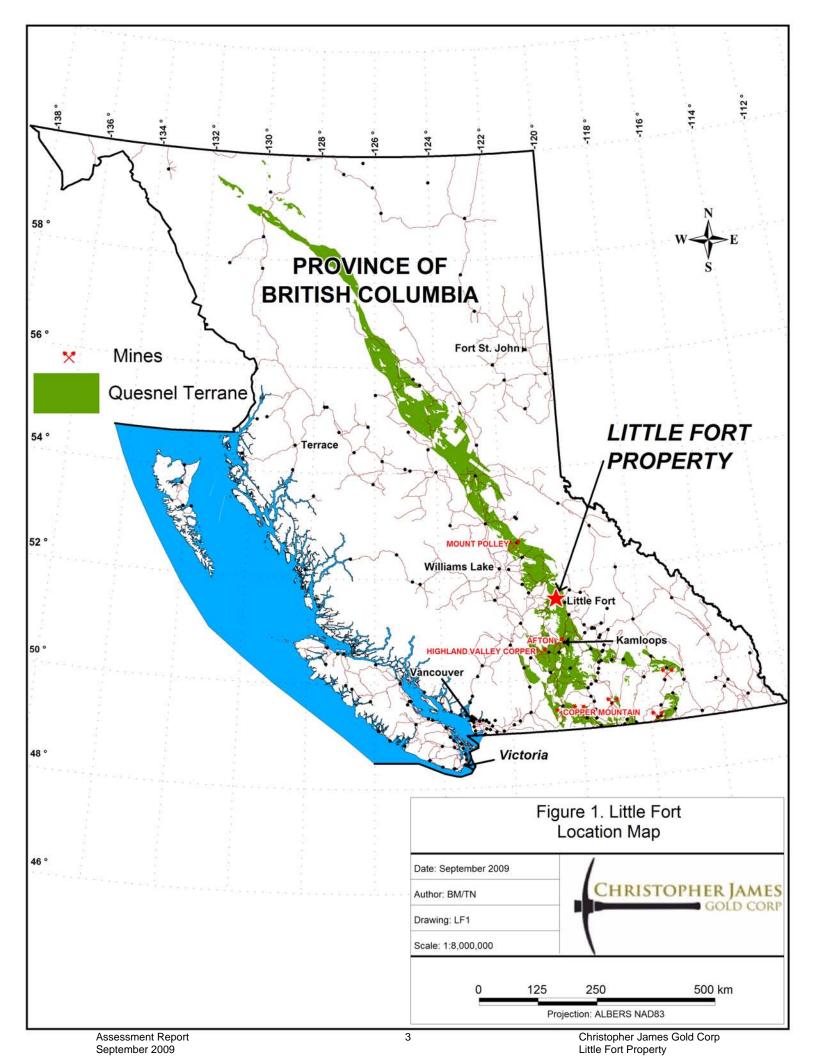
General Statement

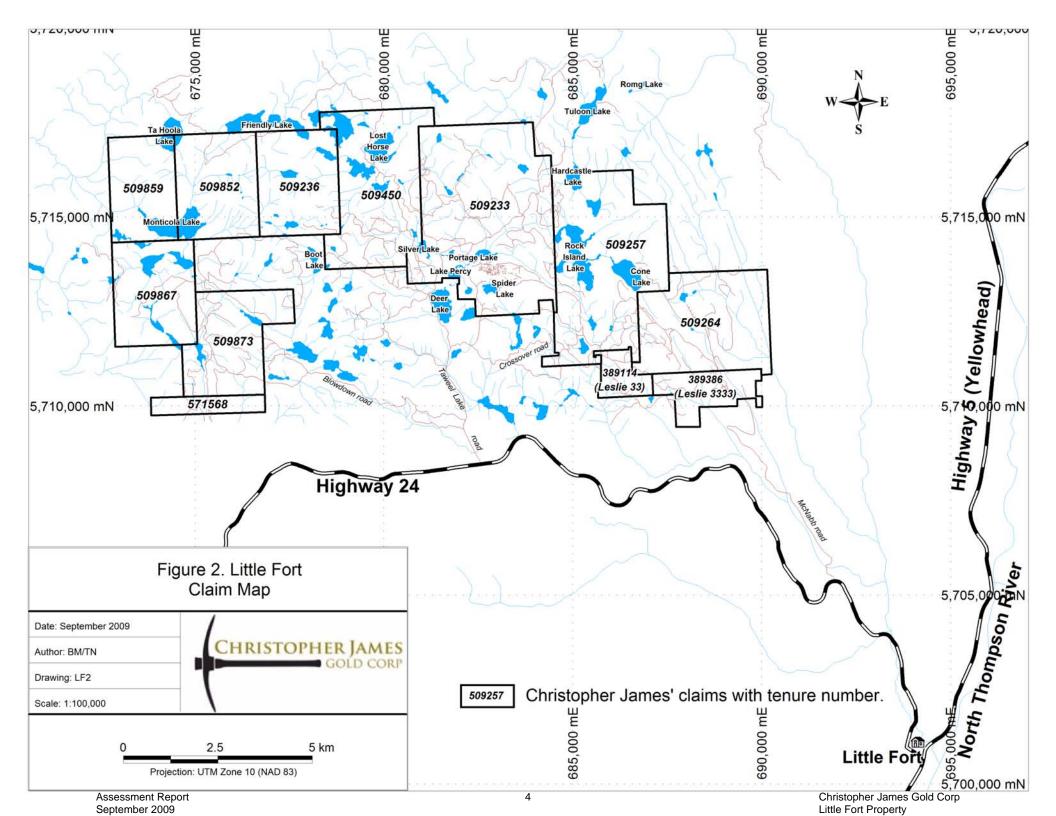
Christopher James Gold Corp's (CJGC) Little Fort Property is situated in the southcentral part of the Quesnel Trough in British Columbia, a prolific geologic terrane which hosts past and producing mines with precious and base metals commodities. The Little Fort Property consists of the Worldstock Project and Portage Lake Project.

In the summer of 2007, CJGC conducted an airborne magnetic-electromagnetic (Mag-EM) geophysics survey over the 8654.49 hectare Little Fort Property to assess the potential for skarn, porphyry, and massive sulphide mineralization. An in-house interpretation of the survey was compared to historical ground geophysical surveys to delineate trenching targets for 2008.

On June 11, 2008, mobilization to the property began in order to facilitate the logistics and ground checking for the proposed trench locations. When the trenching permit was released by the Mines Inspector (Permit no. MX-4-512) on June 26, 2008, trenching began immediately and proceeded until July 22, 2008. In October-November 2008, grass-seeding of the trenched areas capped the program.

The two objectives of the 2008 trenching program were:


1. To test geophysical anomalies delineated by Christopher James Gold Corp's 2000 Very Low Frequency – Electromagnetic (VLF-EM) and 2001 Mag-VLF/EM-IP ground surveys.


2. To test the in-house interpretation of the 2007 airborne geophysics survey which identified possible skarn targets.

Location and Access

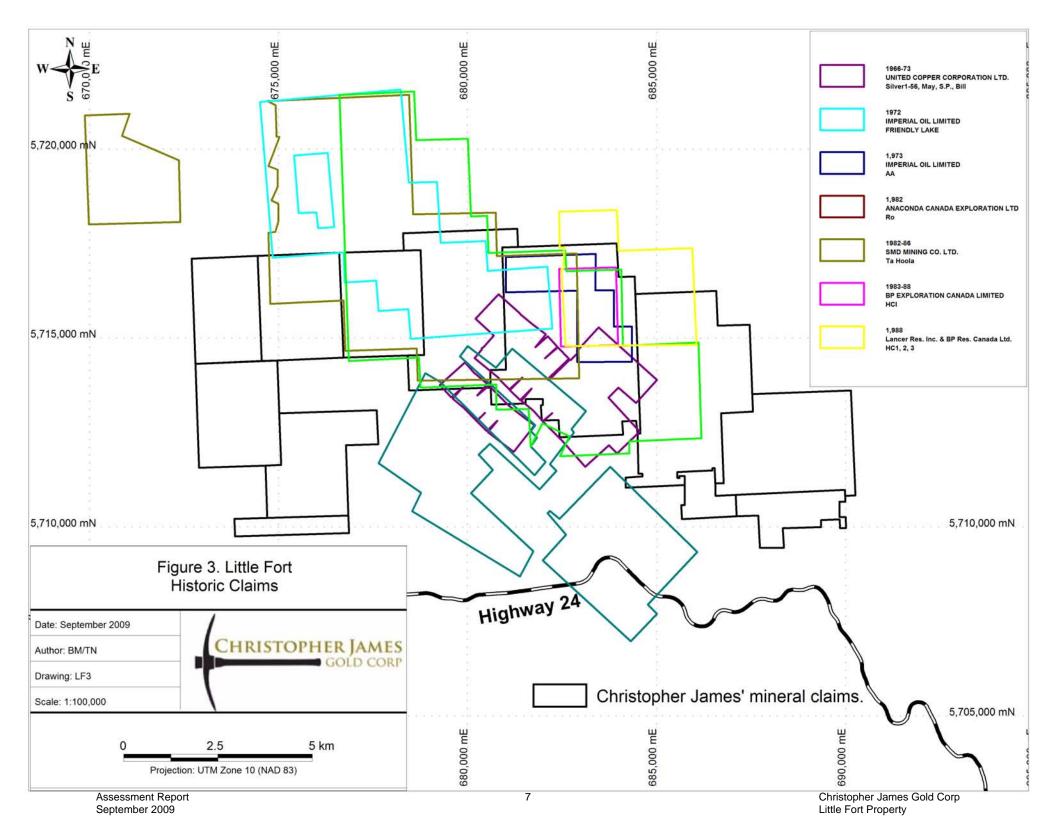
The Little Fort Property consists of 13 mineral tenures registered under the Mining Titles Online (MTO) system with a total area of 8,654.49 hectares. The property is located approximately 25 kilometers to the northwest of the town of Little Fort in the Kamloops Mining District. The property's central geographic coordinates are: 120°23'42" west longitude and 51°29'33" north latitude or 680,610mE and 5,713,690mN in UTM NAD83 Zone 10, on NTS map sheet 92P08 (Figure 1).

The Little Fort Property can be accessed through the town of Little Fort, by driving northwest on Highway 24 towards 100 Mile House. The Taweel Lake gravel-laden logging road is located approximately 16 kilometers from the town of Little Fort on the north side of Highway 24. The Taweel Lake road is well-maintained and runs through the central portion of the property, intersecting several access roads which provide access to the eastern and western claims. The western portion of claims can be accessed via the Blowdown logging road, while the eastern portion of claims can be accessed via Crossover Road. A map showing the roads throughout the property can be seen in Figure 2.

Physiography and Vegetation

The property is characterized by numerous lakes, streams, creeks, and rolling terrain, typical of the Thompson Plateau. In the central to southeastern portion of the property, the lakes are connected by southeast flowing creeks that flow into the Latremouille and Nehalliston Creeks, which eventually discharge into the North Thompson River. The creeks at the western part of the property generally flow northwest towards Jim Creek. In the southwestern part of the property, the creeks flow south towards Eagle Creek which flows into Long Island Lake. Topographic relief is around 400 metres, ranging from 1200 meters along Nehalliston Creek in the southeast, to 1564 meters – the highest peak located at the northwestern part of the property.

Overburden ranges from nil to very thin (<1 m) on ridge tops and knolls, to deposits tens of meters thick in larger valley bottoms and lake filled depressions. Quaternary mapping by the British Columbia Geological Survey (BCGS) indicates that regional ice movement was from the north-northwest. Local deviations to this trend were influenced by some of the larger valleys.


The property has been logged for many years, with recent timber harvesting occurring in 2007 over much of the area affected by the pine beetle. The property is forested with fir, spruce, balsam, some poplar and jack pine along with minor tag alder and willow underbrush. The logged areas were generally re-planted. Some access/feeder roads are still prominent.

Mineral Tenures

Christopher James Gold Corp. has 100% ownership of all 12 mineral tenures in the property, under the tenure ID number 139544 (Table 1). The current claims are an amalgamation of historical claims from the 1990's: the Discovery (originally a PGR group name), Crater and Worldstock (Figure 3). Details of Little Fort claim status is shown in the table below as downloaded from the Mineral Titles Online website.

Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Status	Area (ha)
389114	LESLIE 33	092P059	2001/aug/25	2013/jul/15	GOOD	225.0
389386	LESLIE 3333	092P059	2001/sep/01	2013/jul/15	GOOD	450.0
509233		092P	2005/mar/18	2013/dec/15	GOOD	1668.042
509236		092P	2005/mar/18	2013/dec/15	GOOD	602.766
509257		092P	2005/mar/18	2013/dec/15	GOOD	1366.974
509264		092P	2005/mar/18	2013/dec/15	GOOD	945.135
509450		092P	2005/mar/22	2013/dec/15	GOOD	964.471
509852		092P	2005/mar/30	2013/jul/15	GOOD	602.764
509859		092P	2005/mar/30	2013/jul/15	GOOD	482.208
509867		092P	2005/mar/30	2013/jul/01	GOOD	603.086
509873		092P	2005/mar/30	2013/jul/01	GOOD	623.354
571568		092P	2007/dec/10	2013/jun/07	GOOD	120.6883
					TOTAL	8654.488

Table 1. Little Fort Property Mineral Tenures (as of September 16, 2009)

History

The Little Fort Property was first explored in the 1930's following the discovery of the Lakeview Cu-Au skarn deposit, located just south of Deer Lake. Highlights of the property history are discussed below. Figure 3 shows the historic mineral claims of previous companies on the Little Fort Property.

From 1960 to 1975, exploration was directed toward copper-molybdenum porphyry deposits, similar to those found elsewhere in the Quesnel Trough (Copper Mountain, Ajax, Mount Polley). Anaconda, United Copper, Rio Tinto and Imperial Oil conducted regional exploration programs including trenching and percussion drilling. This work was focused mainly on the southern and western part of the current claims.

From 1972-1973, Barrier Reef Resources explored the area south and southwest of Deer Lake. During the period 1975 to 1985, SMDC and BP Selco conducted integrated exploration programs in the Ta Hoola Lake and Silver Lake areas on the western part of the claims. Several coincident polymetallic (Au, Ag, Cu, Pb, and Zn) soil anomalies were outlined. Trenching by BP Selco uncovered bedrock sources with local zones running up to several grams per tonne gold, along with anomalous silver, lead and zinc. Lornex Mining drilled 33 percussion holes on several zones in 1983 in the Meadow Lake zone, located north of Silver Lake. The best hole is reported to have returned 254 ppb Au over 36 metres. The areas explored during this phase of exploration included MINFILE occurrences 92P 137 (PGR), 92P 188 (HC Gold or Ta Hoola, Road), and 92P 189 (HC Silver).

Between 1987 and 1989, Rat Resources and Lancer Resources explored the area northwest of Rock Island Lake, under the exploration management of Rebagliati Consulting. They conducted fill-in soil sampling and diamond drilling on the copper-gold targets. Rat Resources drilled four diamond holes in 1988 with the best drill intercept being 3.1 meters of 4.29g/t gold. Lancer Resources' eight diamond drill-hole program intersected structural alteration and porphyry style zones with copper-gold anomalous values.

In 1991, prospector Paul Watt staked the PGR property and subsequently conducted bedrock and float sampling from the period of 1991-1994. This property was located between Deer Lake and Ta Hoola Lake. He located several new areas of mineralization including the "Road Showing" with float samples producing high gold, silver, molybdenum, zinc, lead and copper values.

From 1995 to 1996, Paul Watt's PGR property was optioned to Cambridge Minerals who dug five trenches in exploring the Road Showings. They discovered narrow veins with high gold and silver values (62.8 g/t Au and 183 g/t Ag over 0.5 metres). The flowing year, Cambridge drilled 11 reverse circulation and 7 diamond holes testing anomalous areas encountered by Lornex in 1983 and Rat Resources 1988. The best

drill-hole intercept was 2.4 meters of 0.74g/t gold and 19.1 g/t silver. In 1996, Paul Watt discovered porphyry-style copper-gold mineralization in the Worldstock area (located within the Worldstock and Crater claims).

In 1998, the PGR, Crater and Worldstock claims were packaged with the Silver Lake property and collectively optioned to Christopher James Gold Corp. The 1998 exploration program identified alteration, intrusive dikes, an IP chargeability anomaly, and Cu-Au-Ag-Mo-Zn soil anomalies in the PGR, Crater and Worldstock area. In 2000, diamond drilling of seven holes encountered low-grade Cu-Ag and Zn values in altered volcanic and intrusive rocks, indicative of a porphyry environment.

Further prospecting by Paul Watt for Christopher James Gold Corp. in 2001, near Portage Lake, resulted in the discovery of high-grade vein-style copper and silver mineralization labeled as the Discovery A and B areas in 2001. A total of 14 NQ diamond holes (1482.95 metres) were drilled in 2001, with the highest results coming from Hole ND2001-01, which had an intercept of 5.37 metres averaging 1.76% Cu, and 11.23 g/t Ag.

Exploration remained minimal until 2007 when Christopher James Gold Corp completed an airborne EM survey over the entire claim group.

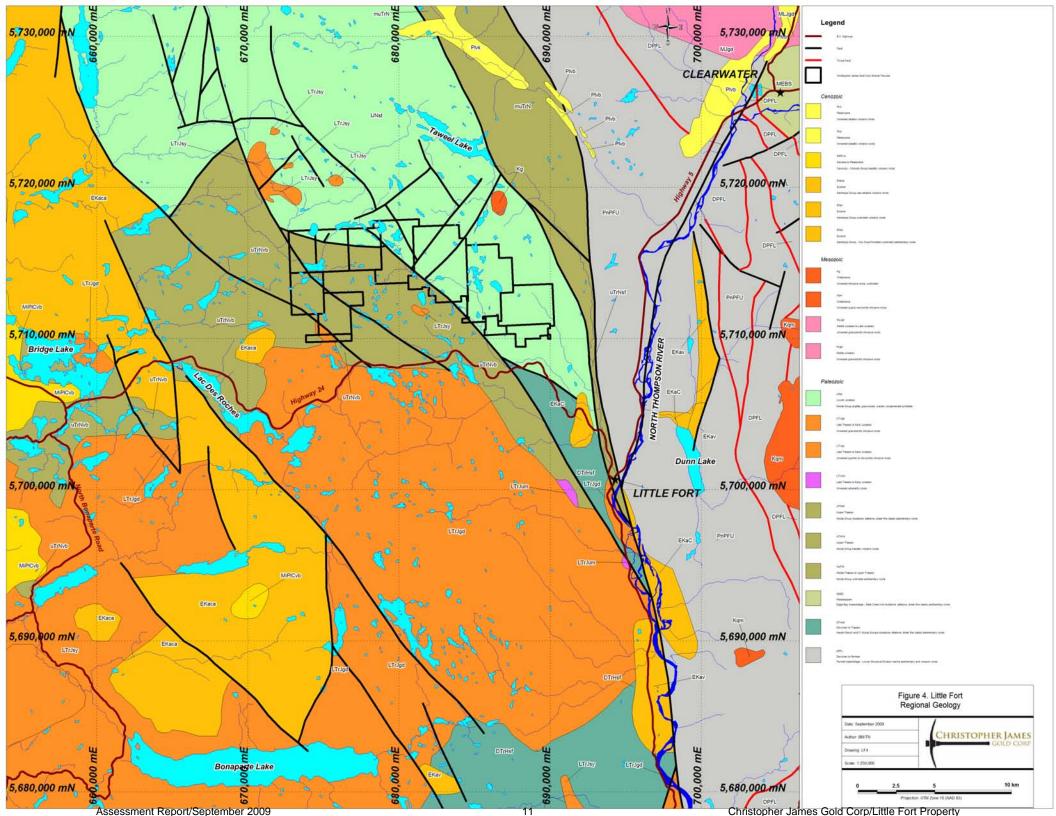
GEOLOGY

The regional geology in this report is adapted from Gruenwald (2008).

Regional Geology

The Little Fort Property is situated in the south-central part of the "Quesnel Trough", an approximately 1,000 kilometer long, northwesterly trending belt of volcanic and intrusive rocks that extend from the United States border to well north of Prince George, BC. The extent of this belt is shown in Figure 1. In the property region the lithologies include sediments, volcanics and several intrusive bodies ranging in age from Paleozoic to Tertiary. The northwest trending belt of Upper Paleozoic to Lower Mesozoic arc-supracrustal and plutonic rocks of the Quesnel Trough that underlies the Little Fort Property hosts many of the provinces largest and most economically important alkalic and calc-alkalic copper porphyry deposits, including the Afton-Ajax, Copper Mountain, Mount Polley, Highland Valley and Brenda. In addition, these rocks host a number of major copper or gold skarns including the Craigmont, Ingerbelle and Nickel Plate.

South of the Little Fort property, chalcopyrite skarn mineralization has been discovered in Nicola limestone beds along Highway 24. Further west along the highway, widely spaced, fractured controlled, gold bearing quartz veinlets occur in dioritic rocks. Two hundred metres to the south numerous large boulders of altered, silicified, pyritic felsic intrusive and volcanic rocks occur in thin glacial till on top of barren diorite. These float boulders contain up to 4 g/t gold and 80 g/t silver. They are thought to originate from an undiscovered source that is "up-ice", possibly originating on Little Fort property. East of these float occurrences are garnet-wollastonite skarn zones hosted by Nicola Group rocks.


North of the Little Fort property, Newmac Resources has encountered intercepts of over 100 meters of molybdenite and wolframite mineralization in a Cretaceous felsic stock intruding Nicola group volcanics.

Supracrustal Rocks

Rocks of the northwest trending supracrustal belt are separable into two temporally distinct packages.

- Devonian to Carboniferous rocks of the Harper Ranch Group (DTrHa) and Fenell Formation (DPFe). The Harper Ranch Group comprises fine-grained sedimentary rocks with minor limestone units. The Fenell Formation is an oceanic succession of pillowed basalts, cherts and mafic rocks.
- Middle to Late Triassic rocks of the **Nicola Group** (uTRjNc). These rocks are believed to overlie the Harper Ranch rocks with an angular unconformity. The Nicola Group makes up the majority of the supracrustal rocks on the Little Fort Property and is comprised of mafic volcanics and tuffs, argillites and calcareous siltstones, as well as some thin, widely distributed units of limestone. Unlike the Harper Ranch limestones, the Nicola Group calcareous rocks are important hosts for the Cu-Au skarns and Zn-Pb manto occurrences on the property.

The property is situated west of the North Thompson River, which appears to follow a major northwest-trending structure. Several northwest striking splay faults off this structure pass up through the Little Fort area (Figure 4).

supported by a diorite matrix. Epidote-chlorite-quartz veins are present. The pyrite content is less than 1%.

Numerous northwest and northeast trending faults traverse the property. Their traces are marked by the alignment of lake chains and a rectangular stream drainage pattern. The main north northwest striking faults are interpreted as part of a Tertiary (Eocene?) dextral strike-slip system (Schiarizza, 2002).

Structure

The reader should refer to Gruenwald (2008), Schiarizza and Israel (2001), and Schiarizza et al. (2002a and b) for an in-depth discussion of structure in the Little Fort claim area. The following is a very brief summary of the aforementioned reports.

The GSC report noted that the supracrustal rocks have been deformed by two fold phases, both of which overprinted the Nicola Group. No pre-Nicola structures have been recognized in the older Harper Ranch Group, although their presence is inferred by the Nicola-Harper Ranch angular unconformity.

The earliest identified (F1) deformation produced open to tight folds with NW striking axial planes, dominantly plunging to the northwest. The deformation was accompanied by low-grade metamorphism (sub-greenschist to greenschist). Strong tectonic foliation is rarely developed.

In the finer grained rocks the F1 fold-phase was accompanied by the local development of northwest striking, steeply dipping slaty or fracture cleavages. The volcanic and tuffaceous rocks in the Deer Lake area are believed to lie on the southwest limb of a northwest striking F1 fold structure, the Nehalliston Syncline, implying that they are locally part of a sequence decreasing in age to the northeast (Schiarizza and Israel, 2001).

The district is dominated by sets of northwest to north-striking faults (Figure 4) as well as less common northeast-trending structures (Campbell and Tipper, 1971; Schiarizza et al, 2002a and b). These authors noted that many of these faults cut Eocene rocks but pre-date the Miocene aged rocks.

Although post-Eocene movement is recognized, the structural control of some skarns along northwest-trending fractures in the Deer lake area supports the theory that pre-Eocene faults are also present. It is likely that some of the northwest-striking faults represent late Triassic to Early Jurassic structures that controlled both the plutons and the skarn mineralization. These older faults have probably undergone subsequent recurrent movements, including post-Eocene deformation. supported by a diorite matrix. Epidote-chlorite-quartz veins are present. The pyrite content is less than 1%.

Numerous northwest and northeast trending faults traverse the property. Their traces are marked by the alignment of lake chains and a rectangular stream drainage pattern. The main north northwest striking faults are interpreted as part of a Tertiary (Eocene?) dextral strike-slip system (Schiarizza, 2002).

Structure

The reader should refer to Gruenwald (2008), Schiarizza and Israel (2001), and Sciarizza et al. (2002a and b) for an in-depth discussion of structure in the Little Fort claim area. March 2008 assessment report, which was an adaptation of the GSC open-file report of Schiarizza and Israel (2001), Schiarizza et al. (2002a and b). The followings is a very brief summary of the aforementioned reports.

The GSC report noted that the supracrustal rocks have been deformed by two fold phases, both of which overprinted the Nicola Group. No pre-Nicola structures have been recognized in the older Harper Ranch Group, although their presence is inferred by the Nicola-Harper Ranch angular unconformity.

The earliest identified (F1) deformation produced open to tight folds with NW striking axial planes, dominantly plunging to the northwest. The deformation was accompanied by low-grade metamorphism (sub-greenschist to greenschist). Strong tectonic foliation is rarely developed.

In the finer grained rocks the F1 fold-phase was accompanied by the local development of northwest striking, steeply dipping slaty or fracture cleavages. The volcanic and tuffaceous rocks in the Deer Lake area are believed to lie on the southwest limb of a northwest striking F1 fold structure, the Nehalliston Syncline, implying that they are locally part of a sequence decreasing in age to the northeast (Schiarizza and Israel, 2001).

The district is dominated by sets of northwest to north-striking faults (Figure 4) as well as less common northeast-trending structures (Campbell and Tipper, 1971; Schiarizza et al, 2002a and b). These authors noted that many of these faults cut Eocene rocks but pre-date the Miocene aged rocks.

Although post-Eocene movement is recognized, the structural control of some skarns along northwest-trending fractures in the Deer lake area supports the theory that pre-Eocene faults are also present. It is likely that some of the northwest-striking faults represent late Triassic to Early Jurassic structures that controlled both the plutons and the skarn mineralization. These older faults have probably undergone subsequent recurrent movements, including post-Eocene deformation.

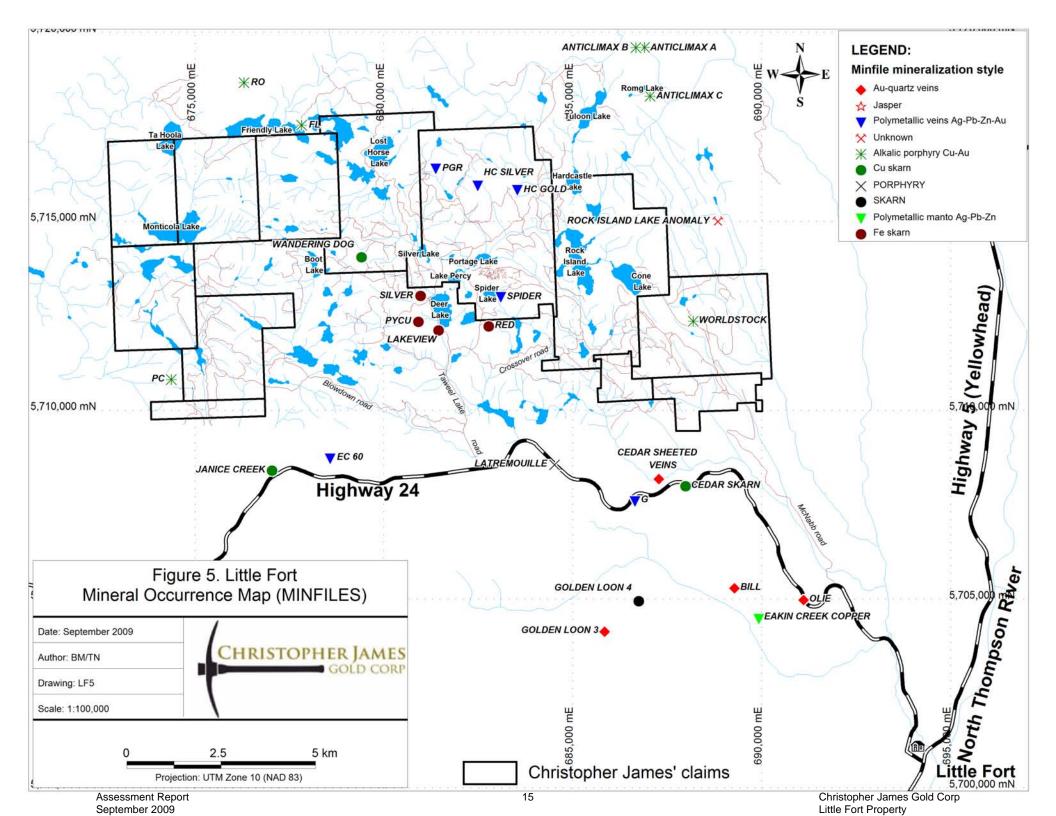
Alteration

Most rocks on the property have undergone some degree of regional and/or thermal metamorphism. Chloritic alteration of the mafic minerals in the Nicola volcanics is pervasive and variable in intensity. Plagioclase feldspars have been altered to epidote, albite, calcite and sericite. Thermal effects on the Nicola rocks are locally strong and include skarnification and hornfelsing. The former is often represented as a diopside ± garnet assemblage with "exo" and endoskarns being recognized. Diopside often retrogrades to actinolite in the Nicola volcanics of the area.

Hornfelsing of the Nicola volcanics results in a very fine-grained, pale grey, green, pinkish "porcelain-like" rock in which relict textures are often obliterated. The Thuya intrusive rocks commonly display variable chlorite \pm epidote \pm carbonate alteration. This alteration in the more dioritic phases can be intense, resulting in a distinctive bright green colour. Feldspars in the more felsic intrusives and volcanics often show some degree of alteration to sericite and carbonate.

Mineralization

The Little Fort property hosts five MINFILE occurrences (Figure 5). These are base and precious metal bearing skarns, veins and alteration zones in Nicola Group volcanics near dioritic intrusives. Two distinct areas have received attention over the past few years, the Worldstock and the Discovery showings (Portage Lake). The Worldstock area is described as a high-level, zoned copper porphyry system while the Portage Lake area is described as copper-silver massive sulphide zones in Nicola Group rocks.


Skarn Cu mineralization at the Wandering Dog prospect is similar to, and is located along strike from the Lakeview Cu-Au skarn near Deer Lake, just south of the property.

Comprehensive reviews of historic assessment reports on the property have indicated at least three styles of mineralization. These are copper-gold skarn, copper-gold <u>+</u>molybdenum porphyry, and possible gold-silver-polymetallic manto skarn.

Mineralization styles encountered the Little Fort property are Cu-Au skarns, veins, stockworking and porphyrys with variable contents of Au, Cu, Ag, Zn, Pb, and Mo.

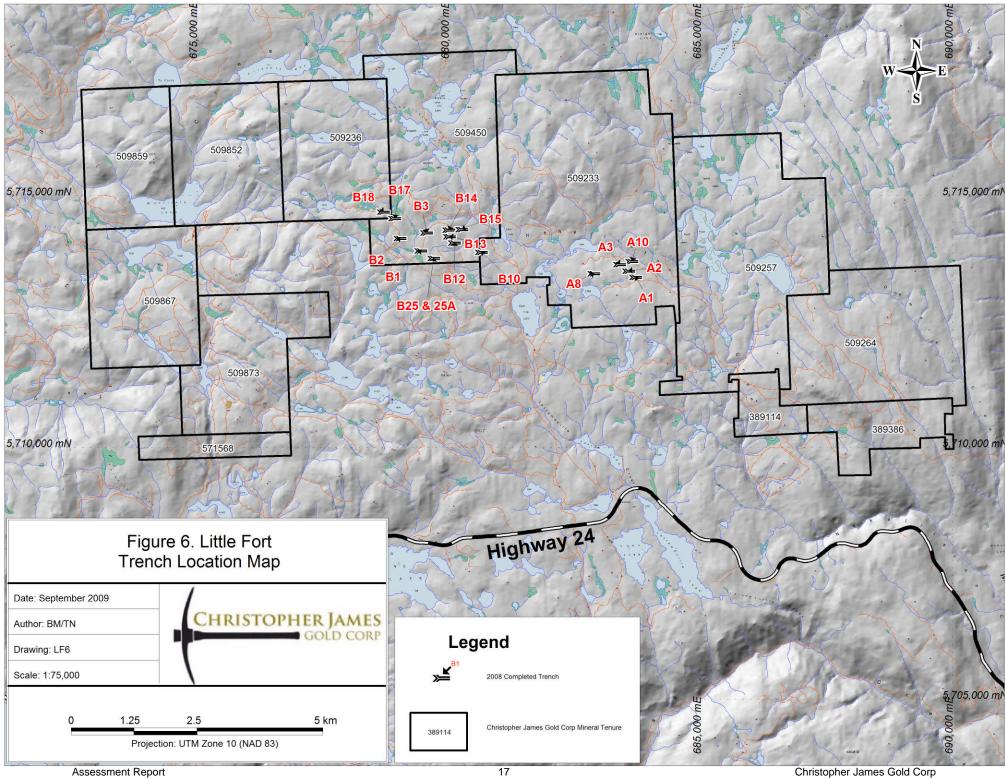
MINFILE	Names	Commodities
092P 137	PGR, TA HOOLA 9, TA HOOLA 12, AA, ROAD	Au, Ag, Pb, Zn, Cu
092P 145	WORLDSTOCK, SILVER LAKE	Cu
092P 181	SPIDER	Cu, Pb
092P 183	WANDERING DOG	Cu
092P 188	HC GOLD	Au, Cu, Ag
092P 189	HC SILVER	Ag, Pb, Zn, Au, Cu

Table 2. MINFILE records located within the boundaries of the Little Fort Property.

Trenching

The trenching exploration program was conducted from June 11 to July 22, 2008. The trenches were designed to test anomalies interpreted from the property-wide airborne Mag and EM survey flown in July 2007, as well as to test ground geophysical survey anomalies from the 2000 and 2001 exploration programs. A ground visit to several anomalies not tested by trenches was also completed during the trenching program. An additional section of claims located in the north to northwest corner of the property was also visited during the 2008 exploration program. This area of the property was soil sampled in 2007, but was not filed for assessment. A total of 9 grab samples were taken in 2008, which are not being filed for assessment.

The trenching program started on June 26, 2008 when the work permit (Permit no. MX-4-512) was granted by the Mines Inspector from the Kamloops Mining Division, and ended on July 22, 2008.


A total of 17 trenches with a cumulative length of 861.3 meters were dug using a Komatsu PC 250 excavator contracted from Monette Logging of 100 Mile House. The average length of the trenches was 50 meters and the average depth was 2 meters, with a maximum depth of approximately 5 meters. The first three trenches were dug exclusively with an excavator, while the additional 14 trenches required the use of a D4 bulldozer to clear old access roads which were mostly scarified and replanted. All 17 trenches are shown in Figure 6.

All trenches were back-filled except for a portion of trenches B2 and B1. These two trenches were kept open due to prospective alteration and mineralization. The two unfilled trenches have sloping sides with approximately one meter of soil over the outcrop and are bordered by berms or barricades to prevent accidental falls. The rehabilitated old access roads were also deactivated by building barricades made of dirt and boulders at the connection points with the existing logging roads.

A total of three local people from Little Fort community were hired and trained as chip channel samplers and provided with safety gears and tools.

One level-3 certified first aid attendant was contracted from the SIMPCW First Nations office located at Chu Chua, Little Fort and was always with the crew during the trenching program but was not allowed to get into the trenches.

In October 2008 a grass-seeding program involving back-filling of trenches, the replanting of disturbed areas and rehabilitation of old access roads was completed. Professional tree planters from the forestry division, of the SIMPCW First Nations office, were contracted for this work. The trenching program as indicated by the author was fully completed on November 30, 2008.

September 2009

Christopher James Gold Corj Little Fort Property

Sampling and Analytical Procedures

The proposed trenches were located by downloading the coordinates of the midpoint of the trenches from MapInfo into the GPS. The GPS used was the Garmin GPS Map 60CX. The trench's azimuth, length and coordinates were obtained using MapInfo and downloaded into Excel to serve as a checklist in locating and noting observations. Field checking of the proposed trench locations was attempted using a GPS, checklist sheet and base maps with the trenches.

Accessibility was considered in the proposed trench locations, as an attempt was made to minimize environmental impact. For each proposed trench the midpoint was located, and the azimuths of both ends of the trench were sighted by compass and marked by flagging tape. The flagging tape was labeled with the trench number, midpoint label, and midpoint and total distance. After the trenches were located, the environmental impact was considered for each of the proposed trench locations. Thus out of the eleven and twenty-five trenches originally designed for the area A and B respectively, only five were done on trench A area and twelve in trench B area.

Chip-channel samples from the excavated trenches were chosen based on lithological and alteration boundaries. Sample intervals ranged from 10 cm to 14.5 m. Samples were collected with a chisel and sledge hammer.

Approximately 4 to 5 kilograms of fist-size rock samples were taken and collected into a large poly ore bag. The bags were labeled on both sides with the corresponding sample ID numbers from the sample booklets. The sample ID tag was also inserted into the sample bag prior to sealing. Carefully detailed descriptions of each rock unit were recorded in the sample booklets (Appendix IV). Corresponding photos were also taken at each sample site. Sample intervals were marked on the outcrop using fluorescent pink spray. Sample ID numbers were provided by Eco-Tech Laboratory Ltd.

Quality Control Measures

All rock samples obtained from the 2008 exploration program were submitted to the Eco-Tech Laboratory Ltd. in Kamloops, B.C. The 28 element ICP package (Eco-Tech code BICP-11) and Au Fire Assay package (Eco-Tech code BAUFG-13) was used for the rock samples. The ICP package involved Aqua-Regia Digestion, while the Au Fire Assay package was by atomic absorption. A 50 gram sample was used for the Au Fire Assay package, with a detection limit of 5 ppb.

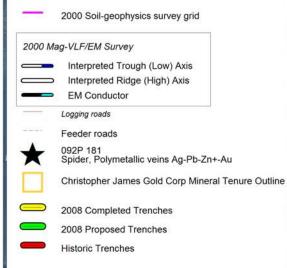
Eco-Tech Laboratory Ltd. performs their own QA/QC measures by adding their own duplicates and standards and performing rechecks

Method

The trenching program was designed for two main purposes:

1. To test geophysical anomalies delineated by Christopher James Gold Corp's 2000 Very Low Frequency – Electromagnetic (VLF-EM) and 2001 Mag-VLF/EM-IP ground surveys.

Data and maps from Wells (2002) and Wells (2000) were geo-referenced and encoded using MapInfo V8.5 to test the first theory. Included from Wells' reports were geophysical, soil-geochemical, prospecting surveys and results.


The 2000 geophysical grid was designed to follow-up on soil copper-molybdenum anomalies delineated by 1999 soil geochemical surveys. Magnetometer and VLF-EM surveys were conducted on the Discovery grid from November 22 to 25, 2000 by Scott Geophysics Ltd. Chalcopyrite-rich boulders were located in the two discovery areas, indicating the potential for good bedrock conductors. The main aim of the geophysical surveys was to outline bedrock conductors. Contoured magnetic and VLF-EM (Filtered) data was also used in interpreting geological trends.

This survey had delineated a 1.2 kilometer EM conductor trending northwest, as well as other similar but shorter EM conductors located at the western corner of the 2000 geophysical grid. This EM conductor happened to coincide with a massive pyrite-chalcopyrite vein exposed by earlier trenching which returned values of 5.9% Cu and 62g/t Ag, in the area known as Discovery B. The vein has a pod-like appearance, is around 50 cm thick and is exposed for about 5 meters along the trend of the EM conductor. The remaining length of the EM conductor to the northwest is the probable manifestation of the Discovery B massive sulphide vein. Accompanying this EM conductor is a sub-parallel mag-low axis, which was interpreted to be the chlorite-epidote altered volcanic host rock of the massive sulphide vein. From these geophysical anomalies, a total of eleven trenches were proposed in 2008 as shown in Figure 7.

In 2001, ground magnetic, VLF-EM and IP surveys were performed over the Discovery area. A 1.4 kilometer strong IP chargeability anomaly was delineated from the survey (grid 500W to 1900). This IP feature was coincident with the main VLF anomaly from the 2000 survey and up-slope from strong copper soil anomalies and mineralized rock float. West of grid 1500W, the chargeability anomaly divided into two anomalies, with the stronger anomaly trending southwest. IP chargeability and VLF anomalies occur between Discovery A and B, and trend northwest to west. VLF filtered anomalies are narrow and linear compared to generally broad IP chargeability anomalies with local lobes. A broad area of high IP chargeability anomaly continues to the west and off the grid. A locally coincident magnetic ridge shows a similar bend to the west across the grid with local narrow north-northeast trending breaks (Figure 8). From the results of these two surveys, eleven trenches in the Discovery area were proposed for the 2008 program.

lear-cut area Portage Lake 14,000 mN AS 00 mN 5.713.500 mN Lake Percy Spider Lake

Legend

Minfile: 092P181 - Spider Polymetallic veins Ag-Pb-Zn+-Au

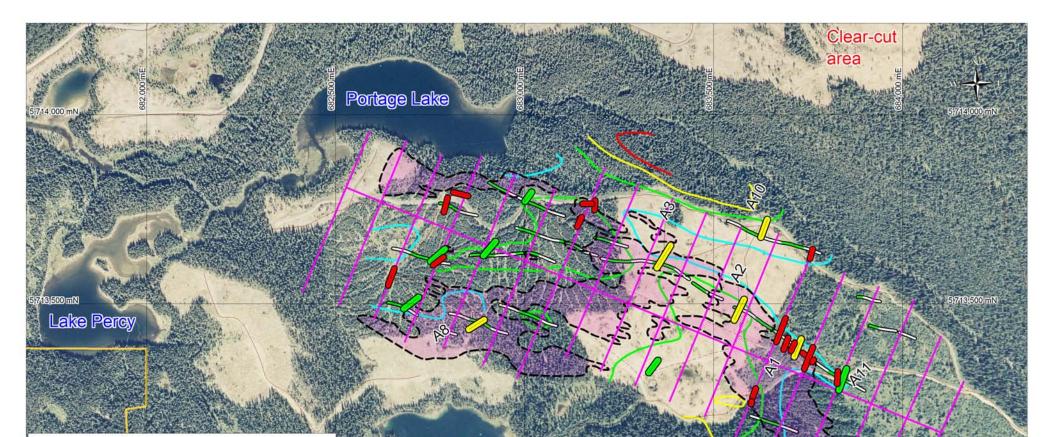

Clear-cut roads

Figure 7. Little Fort Trench A Area 2008 Trenches Over 2000 Geophysical Anomalies

Date: September	2009		1		
Author: BM/TN			CHRI	GOLD COR	
Drawing: LF7				GOLD CON	
Scale: 1:10,000			1		
	0	125	250	500	
		Project	tion: UTM Zone	10 (NAD 83)	

582,500 m

Christopher James Gold Corp/Little Fort Property

Legend

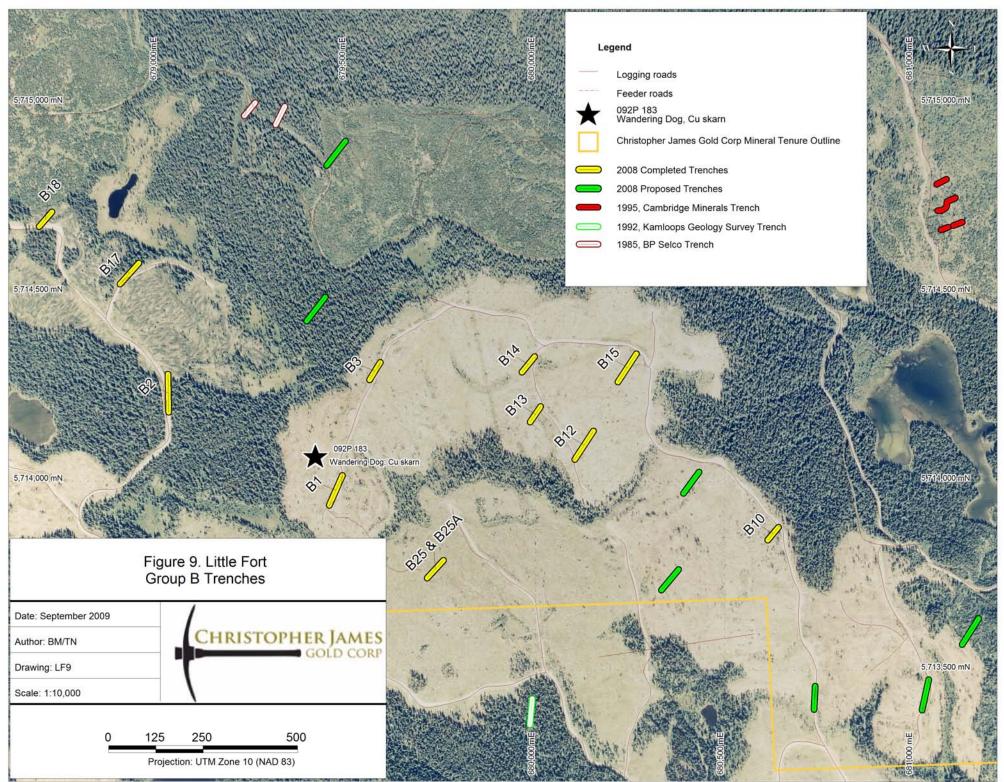
Spider Lake

Minfile: 092P181 - Spider Polymetallic veins Ag-Pb-Zn+-Au

Clear-cut roads

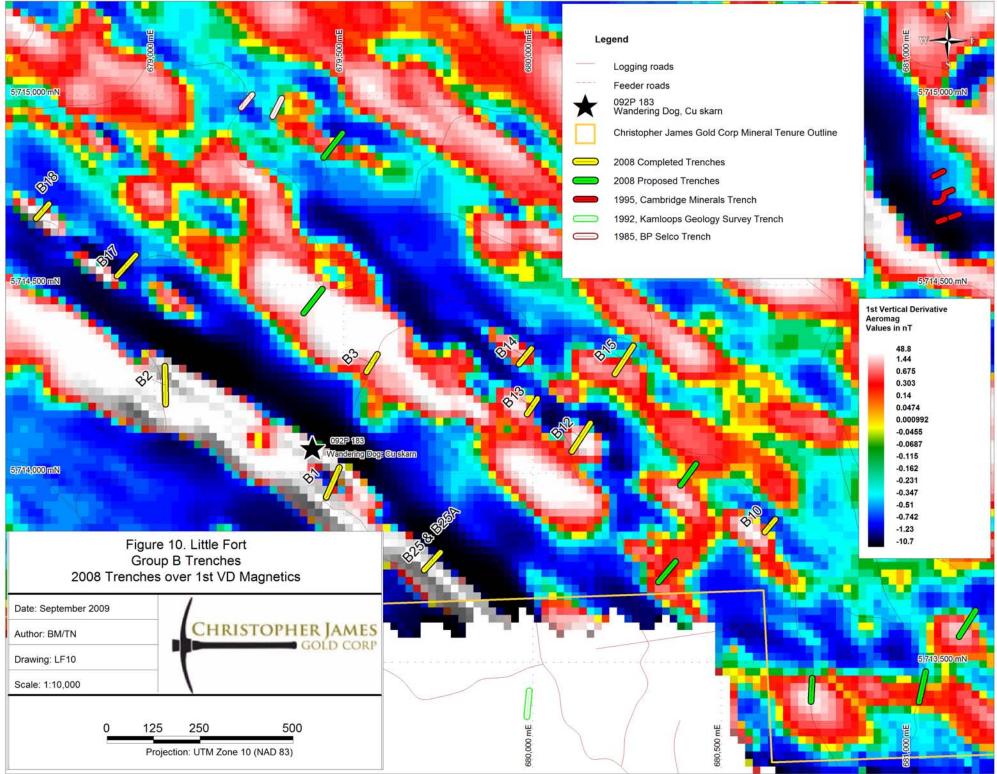
Figure 8. Little Fort Trench A Area 2008 Trenches Over 2001 Geophysical Anomalies

9	-	CHRIS	STOPHER JAMES
			GOLD CORP
		1	
0	125	250	500
	C	hrisopther Jar	nes Gold Corp
	9	D 125 Project	CHRIS


2. To test the in-house interpretation of the 2007 airborne magnetic-EM survey which delineated anomalies believed to be associated with skarn deposits.

An in-house interpretation of the 2007 airborne magnetic and electromagnetic data was performed by Christopher James Gold Corp staff. The interpretation was guided by previous 2007 ground checking, and historic assessment reports/maps which delineated possible skarn targets. Of 25 originally proposed trenches, eleven were excavated to test this hypothesis (Figure 10).

The airborne survey successfully delineated magnetic and conductive properties associated with the geology and mineral occurrences of the property. Magnetic highs are generally coincident with areas mapped as basaltic volcanics and diorite stocks or dikes. The Wandering Dog copper skarn prospect (MINFILE 92P 138) sits on a strong NW trending magnetic anomaly which trends towards Cu-Au skarn prospects in the Deer Lake area (e.g. Silver, MINFILE 92P 008; and Lakeview, MINFILE 92P 010). The anomaly has a strike length of 200 metres on Christopher James Gold Corp claims and may represent magnetite and/or pyrrhotite-bearing skarns (Cathro, 2008). Several EM conductors are coincident with lakes on the property including Rock Island, Crater, Hard Castle, Lost Horse, Flapjack, Meadow, Ta Hoola, and Friendly Lakes.


There are several long linear trends of EM conductors that are parallel with mapped geology, and may represent conductive formations (e.g. shale) or faults (Figure 11). The EM response over the known showings on the property is generally weak and of low relief. This is to be expected given that the majority of known showings are porphyry-style or disseminated/vein zones in silica-carbonate-altered volcanic rocks. Several of the known showings occur on the flanks of moderate to strong magnetic features with complex patterns (e.g. HC Gold, HC Silver, Discovery A&B, PGR, and Worldstock). These patterns may represent alteration, small or buried intrusions, or faulting. Smaller, linear or sub-circular magnetic highs in the eastern part of the area (e.g. east and north of Worldstock Cu-Au prospect) may represent small intrusive dikes or plugs. A weak linear EM conductor to the east of Worldstock is suggestive of a fault or conductive horizon (e.g. shale) (Cathro, 2008).

The first two trenches, B1 and B2, were located on a magnetic-high strip with highly contrasting surrounding mag-lows on both sides. This interpretation assumed that the magnetite and/or pyrrhotite bearing skarns were responsible for the magnetic-high signature while the sudden drops in adjacent sides reflect the non-magnetic propyliticaltered volcanics or volcano-sediments. The size and form of skarn mineralization was also considered, such that the short magnetic-highs surrounded by magnetic-lows were assumed to be a manifestation of structurally-controlled or skarn lenses, particularly if they lie on a northwest trend, such as trench B17 and B18. Where magnetic-highs are not highly contrasted by surrounding magnetic-lows, interpretation dictates that the intensity of skarn mineralization may not have been fully developed, similar to trenches B3 to B16.

Assessment Report/September 2009

Christopher James Gold Corp/Little Fort Property

Assessment Report/September 2009

Christopher James Gold Corp/Little Fort Property

Results & Discussion

A total of seventeen trenches were excavated. For simplicity, the trenches were divided into two groups. Group A trenches were located near the Discovery showings, while Group B trenches were anomalies interpreted from the 2007 airborne geophysical survey. Group A, consisted of 11 proposed trenches and was designed to test the correlation between the 2007 aeromagnetic survey and the 2000/2001 ground geophysical surveys. Group B, consisted of 25 proposed trenches and was designed to test the in-house interpretation of the 2007 aeromagnetic survey. Trench plan maps with lithology, sample numbers, copper, gold, and silver geochem are shown in Appendix A.

Group A Trenches (Discovery)

Five out of the 11 proposed Group A trenches were excavated, due to thick overburden and time constraints. The trenches were excavated in the following order:

Trench A1

Location: 30 meters to the northwest and along strike of the Discovery B vein and roughly around the same elevation.

Length: 20 meters

Depth: 5 meters; no bedrock

Purpose: Expose the massive pyrite-chalcopyrite vein, known as the Discovery B vein. It is located along the EM anomalies that coincide with a sub-parallel magnetic low axis. *Results/Comments:* Trench A1 failed to reach bedrock at 5 meters depth remaining in a diamicton/till deposit. Flooding of the trench forced it to be abandoned and no samples were taken. Although no outcrop/structure was exposed during the trenching, a structure may exist between the massive sulphide vein and the trench, which cut or offset the continuity of the massive sulphide vein. The EM anomaly cannot be explained while the magnetic-low axis may be a manifestation of the thick till deposits.

Trench A2

Location: Along slope of hill on former logging road in clear-cut area. Trench A2 is located approximately 180 meters to the northwest of Trench A1.

Length: 36.70 meters

Depth: 6 meters; no bedrock

Purpose: Located along margin of a mag-high zone along the EM and magnetic-low axis anomaly.

Results/Comments: Trench failed to hit bedrock. No samples were taken at this location; unable to confirm the presence of mineralization at this location.

Trench A3

Location: 220 meters northwest of Trench A2 *Length:* 39.0 meters

Depth: 4 to 5 meters to bedrock

Purpose: Located perpendicular to the axis of an EM conductor, fringing a mag-low axis in the SW, a mag-high axis in the NE.

Results/Comments: The bedrock is gray, moderately silica-carbonate altered massive basalt with minor disseminations of pyrite and magnetite. Locally pyrite-magnetite along the fractures reaches up to 10%. From the 3 samples taken, Au values average 0.01 ppm, Cu values range from 269 to 323 ppm, Ag ranged from 0.04 to 0.2 ppm, and Mo ranged from 0.45 to 1.21 ppm.

Trench A8

Location: Dug on an old access road located about 540 meters west-southwest of A3. *Length:* 27.0 meters

Depth: 0.5 meters to bedrock

Purpose: Testing an EM conductor

Results/Comments: Bedrock was shallow, exposed at around 0.5 meters, with minor flooding along the western end of the trench. The bedrock exposed was a greenish-gray to dark-green massive basalt. The rock is moderately chlorite-carbonate altered (propylitic), with local silicification, and contains up to 2% calcite veinlets. At 16.2 to 18.2 meters, quartz veinlets appear, reaching approximately 30% of the section. Around 2% of very fine disseminated pyrite is distributed throughout the trench with magnetite disseminations appearing at 24.8 to 27.0 meters. From the 9 samples chip-channeled, Au values maintained a steady 0.01 ppm, Cu ranged from 86.5 to 376 ppm, Ag ranged from 0.18 to 0.34ppm, Mo ranged from 0.48 to 1.25 ppm, and Zn ranged from 60.8 to 204.2 ppm. Silver values appear to increase with the quartz veining.

Trench A10

Location: Located approximately 200 meters north-northeast of trench A2 and off a deactivated logging road.

Length: 50 meters

Depth: 5 meters; no bedrock

Purpose: Testing mag-low axis

Results/Comments: The entire 50-meter length was mainly diamicton/till. Bedrock was not reached at this location and no samples were taken.

Group B Trenches

Of the 25 proposed trenches in Group B, only 12 trenches were completed. The B trenches were dug according to accessibility and prospectivity. The trenches were excavated in the following order: **B18**, **B2**, **B17**, **B1**, **B25**, **B10**, **B15**, **B14**, **B13**, **B12**, **B3**, **and B25A**. All of the Group B trenches were excavated perpendicular to magnetic NW trending magnetic high responses obtained from the 2007 aeromagnetic survey.

Trench B18

Location: Most westerly trench; flanking the edge of a well-maintained activated logging road.

Length: 44.5 meters Depth: <1 m; reached bedrock Purpose: Testing a "mag high" boudin Results/Comments: The highest obtained Cu value in the trench was 105.6 ppm.

Trench B2

Location: Parallels well-maintained logging road.

Length: 115.0 meters

Depth: 5.0 meters

Purpose: Testing mag high anomaly on strike and NW of Wandering Dog MINFILE. *Results/Comments:* High values from 5.3-65. M included 19.82 ppm Mo, 693.40ppm Cu, 149.90 ppm Pb, 100 ppb Au, 3.1 ppm Ag and 350.1 ppm Zn. Skarn-style mineralization was encountered along zones of strong silicification with brown very fine garnet.

Trench B17

Location: Directly southeast of B18 along well used logging road.

Length: 26 meters

Depth: <1 meter in parts; bedrock exposed

Purpose: Testing the fringe of a mag high.

Results/Comments: Trench was located in both microdiorite and basalt. The microdiorite did not show any mineralization. Low values were recorded in this trench and the highest copper value was from 39-42.5 meters at 78.97 ppm Cu.

Trench B1

Location: Located <100 meters southwest of the Wandering Dog prospect.

Length: 123.7 meters

Depth: <1 m; reached bedrock

Purpose: Test mag-high on northwest trend with the Wandering Dog copper-skarn; located less than 100 m to the SW of the Wandering Dog MINFILE.

Results/Comments: The highest values of the 2008 trenching program were obtained in this trench including 3 samples of 1000 ppm copper and higher (Samples 189894, 189899, and 190385) in skarnified rocks. Anomalous molybdenum values, greater than 50 ppm, were obtained in samples 189894 and 189899.

Trench B25

Location: Most southerly trench located on trend with Wandering Dog MINFILE; located on accessible logging road.

Length: 79.0 meters

Depth: <1 m; reached bedrock

Purpose: To test the southeastern continuity of a mag-high encountered by trenched B2 & B1.

Results/Comments: Trench had different lithology then other B and A trenches; located within units of marble, tuff basalt, chert and siltstone. Best grades for the trench are found in orange-brown highly limonitic chert with quartz veinlets/stringers (693.4 ppm Cu over 1.2 m), and within grey, highly silicified chloritized siltstone with 5% pyrite and possibly trace silver (1190 ppm Cu, 4.9 ppm Ag).

Trench B10

Location: Along logging road. *Length:* 27.0 meters

Depth: <1 meter; reached bedrock

Purpose: Testing a small mag high axis

Results/Comments: Entire trench was located in basalt. The highest copper values were obtained from 24-27 meters in sample 189940 with 119.10 ppm Cu.

Trench B15

Location: Directly east of B14 along logging road.

Length: 70 meters

Depth: <1 meter; reached bedrock

Purpose: Testing mag high lobe.

Results/Comments: The trench was dominantly located in basalt; sample 189948 from 39-42.5 meters recorded values of 100.60 ppm Cu.

Trench B14

Location: Easy access, ~100 meters from B13 Length: 30 meters Depth: Trench was ~5 meters deep; flooded and inaccessible. Purpose: Small mag high anomaly. Results/Comments: Not sampled. Trench was flooded and inaccessible.

Trench B13

Location: Located 100 meters from B12 along deactivated logging road. Length: 19.7 meters Depth: <1 meter; reached bedrock Purpose: Fringing mag high; easy access along logging road. Results/Comments: Located entirely in basalt. None of the samples from B13 had values greater than 100 ppm Cu.

Trench B12

Location: Located along old logging road.

Length: 44.6 meters

Depth: <1 meter; reached bedrock

Purpose: Small circular mag high target.

Results/Comments: Located entirely in basalt. Only sample 190362 had copper values > 100 ppm (119.90 ppm).

Trench B3

Location: Along deactivated logging road ~200 meters north-northwest of B1.

Length: 64.7 meters

Depth: <1 meter; reached bedrock

Purpose: Mag high target, less pronounced than high associated with Wandering Dog MINFILE.

Results/Comments: Trench was located entirely in basalt. The highest value obtained in the trench was 232.9 ppm Cu.

Trench B25A

Location: Most southerly trench, located on trend with Wandering Dog MINFILE. Extension of trench 25.

Length: 23.4 meters

Depth: 1 meter; reached bedrock

Purpose: To test the western continuity of skarn lithology in Trench B25

Results/Comments: The trench was located entirely in siltstone. Two intervals obtained values greater than 100 ppm (Sample 190379 – 118.2 ppm Cu, Sample 190378 – 150.2 ppm Cu).

CONCLUSIONS

The purpose of the 2008 trenching exploration program was two-fold.

1) To test geophysical anomalies delineated by Christopher James Gold Corp's 2000 Very Low Frequency – Electromagnetic (VLF-EM) and 2001 Mag-VLF/EM-IP ground surveys.

Five trenches were attempted to test the anomalies delineated by the 2000 and 2001 geophysical surveys. Unfortunately the five trenches that were excavated in the 2008 exploration program ran into complications with overburden thickness and flooding. Three out of five trenches had to be abandoned and were inaccessible for sampling or mapping. The geophysical anomalies were not fully tested as a result. The only rock type encountered with the trenches associated with this objective (Group A trenches) was basaltic in composition and varied in weak to moderate silica, chlorite and carbonate alteration. The trenching failed to prove continuation of the Discovery showings.

To test the in-house interpretation of the 2007 airborne magnetic-EM survey which delineated anomalies believed to be associated with skarn deposits.

Twelve trenches were excavated to test the in-house interpretation of delineated anomalies believed to be associated with skarn deposits. Of the twelve trenches tested, eleven were sampled, with only trench B14 being abandoned due to flooding. Only trench B1 intercepted visible skarn mineralization and returned anomalous copper, molybdenum, silver, gold, lead, and zinc values. The highest copper value obtained was in this trench with a value of 1920 ppm Cu from 104 to 109 meters in a unit of garnetdiopside-magnetite-pyrite skarn with trace chalcopyrite. This trench was located in close proximity to the Wandering Dog MINFILE(see below), which was discovered by the B.C.G.S. in 2000. Trench B2 also showed skarn-style mineralization with occasional brown garnets observed. The sample obtained by the B.C.G.S. at that time was 872 ppm copper. Several other trenches obtained intervals with values greater than 100 ppm copper. High values appear to correlate with disseminated pyrite. Mineralization is spotty and disseminated. The lithology in the general location of the trenches shows strong deformation and metamorphism, leading to increased complexity when trying to delineate skarn targets in the area. At this current time the Wandering Dog showing and trenches B1 and B25 have signatures associated with polymetallic skarn, rich in magnetite, but deprived of gold values.

Wandering Dog MINFILE Capsule (MINFILE 092P 183)

The Wandering Dog showing was found in 2000 by the B.C. Geological Survey. It is about 1.5 kilometres due west of Silver Lake, about 25 kilometres northwest of Little Fort. Thin bedded, locally skarn-altered sedimentary rocks are separated from a diorite stock to the northeast by a poorly-exposed lens of massive pyrrhotite-pyrite, with traces of chalcopyrite. Permian fossils were found by Campbell and Tipper (Geological Survey of Canada Map 1278A) within two hundred metres of the Wandering Dog showing, so it is uncertain whether the sedimentary host-rock for this mineralization is Permian, or Upper Triassic Nicola Group. A sample from this sulphide lens analysed 0.0872 per cent copper (Sample 00SIS-359, Fieldwork 2000). The B.C. Geological Survey conducted a regional till geochemistry program over NTS mapsheets 092P09W and 08W in 1999 (Open File 2000-17).

RECOMMENDATIONS

The Group A trenches had several complications with overburden depth and flooding. Future exploration in the area should attempt to minimize the complications associated with thick overburden in the area. Trenching should occur at the driest time of the year in the claim area, which would generally facilitate a late August program. Other options include percussion drilling, which is comparable in price to a trenching program and causes minimal disturbance to the ground. The extent of the Discovery skarn showings has neither been proven or unproven to extend to the northwest at this current time.

The Group B trenches were technically successful and intercepted narrow zones of anomalous mineralization. The lithology from the trenches in the area is complex structurally and thus far shows minimal skarn mineralization. It is possible that the magnetic signature defined by the 2007 Aeroquest survey has a deeper depth signature than is visible by trenching alone. Future work should focus near the Wandering Dog copper skarn showing extending northwest to the B2 trench. Potential drill targets could be delineated by carefully examining the outcrop in the area. Float mapping is also recommended.

The claim block as a whole has still been relatively unexplored. Any future exploration on the property should involve geological mapping on a property scale including float mapping.

Table 3. Statement of Costs.

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Tim Nillos/Field Geologist	June 12, 2008 - July 31, 2008); November 1, 2008 - November 8, 2008	47	\$525.00	24,675.00	
Woerner Gruenwald, P. Geo/Geological Consultant (Geoquest Consulting Ltd.)	June 22, 2008	1	\$525.00	525.00	
Christopher Pennimpede/Geological Assistant	June 23, 2008 - July 31, 2008	26	\$200.00	5,184.00	
Brian May/Geologist (GIT)	June 23, 2008 - July 6, 2008	14	\$275.00	3,794.29	
Ernie Celesta/First Aid Supervisor	June 24, 2008 - July 19, 2008	20	\$300.00	6,000.00	
Edwin Williams/Labourer	July 2, 2008 - July 19, 2008	14.5	\$150.00	2,175.00	
Steve Muir/Labourer	July 5, 2008 - July 19, 2008	12	\$150.00	1,800.00	
Warner Gruenwald, P. Geo/Geological Consultant (Geoquest Consulting Ltd.)	July 5/15/16/18, 2008	2	\$612.50	1,225.00	
Mitch Friars/Labourer	July 8, 2008 - July 19, 2008	8	\$150.00	1,200.00	
Steve Muir/Guide	November 14, 2008	1	\$165.00	165.00	• • • • • • • • • •
Office Studies	List Personnel (note - Office only, do not include field days			46,743.29	\$46,743.29
Literature search	Tim Nillos	11.0	\$525.00	5,775.00	
Database compilation	Tim Nillos	7.0	\$525.00	3,675.00	
Computer modelling	Tim Nillos	14.0	\$525.00	7,350.00	
Computer modelling	Brian May	2.0	\$334.81	669.62	
Reprocessing of data	Tim Nillos	5.0	\$525.00	2,625.00	
Report preparation	Tim Nillos	13.0	\$525.00	6,825.00	
Report preparation	Brian May	10.0	\$400.00	4,000.00 30,919.62	\$30,919.62
Ground Exploration Surveys	Area in Hectares/List Personnel			50,919.02	ψ 30 ,913.02
Trenches	Define by length and width	861.3	2	1722.6 m²	

Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
	146 rock chip samples				
Eco Tech Laboratory Ltd.	for analysis	146.0	40.14	5,860.44	
				5,860.44	\$5,860.44
Other Operations	Clarify	No.	Rate	Subtotal	<i>v</i> , <i>v</i>
Trenching	Dowling C. Monette Logging Ltd Trenching & Reclamation (Backhoe)	102.0	\$150.00	15,300.00	
Trenching	J & J Enterprises - Cat D4H	77.0	\$105.00	8,085.00	
				23,385.00	\$23,385.00
Reclamation	Clarify	No.	Rate	Subtotal	
Other (specify)	Simpcw First Nation - Tree Planting	39.0	\$32.00	1,248.00	\$1,248.00
Transportation		No.	Rate	Subtotal	¢1,210100
Lowbedding to and from site - D4 crawler and PC250 excavator (July 1 to July 25, 2008) - Dowling C. Monette Logging Ltd.				2,291.25	
CJGC Gas Receipts (Exploration					
Program)				1,959.35	
Mileage charge - July 30				759.72	
Toll payment				20.00	
CJGC Truck Rental - June 23 - July 4, 2008				1,349.89	
CJGC Truck Rental - July 12 - 22, 2008				3,207.83	
Field vehicle charge (July 5/15/16/18) - Geoquest Consulting				262.50	
Truck Rental - Simpcw First					
Nation (November 15 - 17, 2008)		2.00	\$100.00	200.00	
				10,050.54	\$10,050.54
Accommodation & Food					
CJGC Hotel Costs (Ministry/First Nations meeting)				435.41	
CJGC Hotel Costs (Exploration Program)				5,604.02	
CJGC Meals (Ministry/First Nations meeting)				294.53	
CJGC Meals (exploration program)				5,342.51	
Meals Field examination W.Gruenwald (July 05/15/16/18, 2008)				98.61	
				11,775.08	\$11,775.08
Miscellaneous					
Cell phone				119.35	

Pay phone	22.40	
Entertainment - Books,		
Magazines, Music for fieldwork	98.61	
Office supplies - ink cartridges	207.79	
	448.15	\$448.15
Equipment & Rentals		
SPOT satelite messenger	181.89	
Globestar gps tracker x 2	361.66	
Garmin gps map 60C x 2	737.60	
Rock chisel/crack hammers	289.97	
Bugblocker jacket	20.33	
Exploration field	07.54	
stakes/paint/groceries/misc	67.54	
Exploration moil sharpening c/o e. williams	260.00	
Miscellaneous field supplies		
(shovels, bags, tags, markers,		
field clothes)	1,431.35	
Eco-Tech Laboratory - Sample		
Bags	481.50	
Simpcw First Nation - Grass seeds	307.50	
Walkie talkie rental	251.40	
First Aid Gear (stretcher,	201.40	
equipment)	500.00	
	4,890.74	\$4,890.74
No category		+ .,
Reclamation Bond	-2,000.00	
Portable Assessment Credits (PAC) Withdrawal	39,700.82	
	37,700.82	\$37,700.82
TOTAL Expenditures		\$173,021.68

REFERENCES

Campbell, R.B. and Tipper, H. W. (1971): Bonaparte Lake Map-Area, British Columbia, *Geol. Surv., Assoc. of Canada,* Guidebook for Field Trip C-11, Annual Meeting, 1976, Edmonton, Alberta.*Canada,* Mem. 363.

Cathro, M. (2008). Report on an Airborne Geophysical Survey on the Worldstock Property, Little Fort Area, British Columbia. Christopher James Gold Corp. Assessment Report 29562, *82 pages*.

Gruenwald, W. (2008). Geochemical, Geophysical, and Diamond Drilling Assessment Report on the Deer Lake Property. Candorado Operating Company Ltd, Assessment Report 30704, *under review*.

Schiarizza, P., Heffernan, S. and Zuber, J. (2002a): Geology of Quesnel and Slide Mountain Terranes, West of Clearwater, South-Central British Columbia (92P19, 10, 15, 16); in Geological Fieldwork 2001, British Columbia Ministry of Energy and Mines Paper 2002-1; pp. 83-108.

Schiarizza, P., Israel, S., Heffernan, S., and Zuber, J., (2002b): Geology of Nehalliston Plateau (92P/7, 8, 9, 9, 10); British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File 2002-4.

Schiarizza, P. and Israel, S. (2001): Geology and mineral occurrences of the Nehalliston Plateau, south-central British Columbia (92PI7, 8, 9, 10); in Geological Fieldwork 2000, British Columbia Ministry of Energy and Mines Paper 2001-1, pages 1-30.

Wells, R.C. (2002): Report on the 2001 Exploration Programs (Geological, Geochemical, Trenching and Diamond Drilling) Worldstock Property Target on the Silver Lake Property. Christopher James Gold Corp. Assessment Report 26,839A, *145 pages*.

Wells, R.C. (2000). Report on the 2000 Exploration Programs (Geological, Geochemical, Geophysical) on the Silver Lake property. Christopher James Gold Corp. Assessment Report 26457, *143 pages*.

Appendix I

Author's Certificates and Statements of Qualifications

I, Brian D. May, of 1620 - 1140 West Pender Street, Vancouver, BC, V6E 4G1, hereby certify that:

- I am a graduate of Simon Fraser University, Burnaby, B.C., with a B.Sc., in Earth Sciences (2006).
- I am a Geoscientist in Training registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- I am currently employed with Christopher James Gold Corp. of 1620 1140 West Pender Street, Vancouver, BC.
- I have been continuously employed as a geologist in Canada and Mexico since 2006.
- I have visited the Little Fort property on numerous occasions and am familiar with the geology, mineral deposits and recent exploration programs.

Dated at Vancouver, British Columbia on September 17, 2009.

K

Brian May, B. Sc

Appendix I

Author's Certificates and Statements of Qualifications

I, Timoteo E. P. Nillos, of the City of Richmond, British Columbia, hereby certify that:

- I am a registered professional geologist (No. 1235) of the Republic of the Philippines
- I am a graduate of the Mapua Institute of Technology, Manila, Philippines, with a Bachelor of Science degree in Geology (1990).
- I am an independent consulting geologist.
- I have practiced continuously as an exploration geologist since 1991.
- I have visited the Little Fort property on numerous occasions and am familiar with the geology, mineral deposits and recent works.

Dated at Richmond, British Columbia on September 17, 2009.

Timoteo Nillos, B. Sc

Assessment Report September, 2009 Appendix I

APPENDIX II

Eco-Tech Laboratory Ltd. Laboratory Assay Certificates Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

22-Aug-08

CERTIFICATE OF ASSAY AK 2008-1146

Christopher James Gold Corp. Ste #102 - 418 St. Paul st. Kamloops,BC V2C 2J6

Sample Type:Rock **Project: Little Fort** Submitted by:Tim Nillos

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	8R189851	<0.03	<0.001	
2	8R189852	<0.03	<0.001	
3	8R189853	<0.03	<0.001	
4	8R189854	<0.03	<0.001	
5	8R189856	<0.03	<0.001	
6	8R189857	<0.03	<0.001	
7	8R189858	<0.03	<0.001	
8	8R189859	<0.03	<0.001	
9	8R189860	<0.03	<0.001	
10	8R189861	<0.03	<0.001	
11	8R189862	<0.03	<0.001	
12	8R189863	<0.03	<0.001	
13	8R189864	<0.03		
14	8R189865	<0.03		
15	8R189866	0.05		
16	8R189867	0.21	0.006	
17	8R189868	<0.03		
18	8R189869	<0.03		
19	8R189870	<0.03		
20	8R189871	<0.03		
21	8R189872	<0.03		
22	8R189873	<0.03		
23	8R189874	<0.03		
24	8R189875	<0.03		
25	8R189876	<0.03		
26	8R189877	<0.03		
27	8R189878	<0.03		
28	8R189879	<0.03		Man
29	8R189880	<0.03		HHALM -
30	8R189881	<0.03	<0.001	ECO TECH LABORATO

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Christopher James Gold Corp. AK8-1146

Christo	pher James	s Gold Corp. AK8-1146			22-Aug-08
		-	Au	Au	Ū.
ET #.	Tag #		(g/t)	(oz/t)	
31	8R189882		<0.03	<0.001	
32	8R189883		<0.03	<0.001	
33	8R189884		<0.03	<0.001	
34	8R189885		<0.03	<0.001	
35	8R189886		<0.03	<0.001	
36	8R189887		<0.03	<0.001	
37	8R189888		<0.03	<0.001	
38	8R189889		0.04	0.001	
39	8R189890		<0.03	<0.001	
40	8R189891		<0.03	<0.001	
41	8R189892		<0.03	<0.001	
42	8R189893		<0.03	<0.001	
43	8R189894		<0.03	<0.001	
44	8R189895		<0.03	<0.001	
45	8R189896		<0.03	<0.001	
46	8R189897		<0.03	<0.001	
47	8R189898		<0.03	<0.001	
48	8R189899		<0.03	<0.001	
49	8R189900		0.06	0.002	
50	8R189901		<0.03	<0.001	
51	8R189902		<0.03	<0.001	
QC DAT	A:				
Repeat:					
.1	8R189851		<0.03	<0.001	
10	8R189861		<0.03	<0.001	
19	8R189870		<0.03	<0.001	
36	8R189887		0.03	0.001	
45	8R189896		<0.03	<0.001	
Resplit:					
1	8R189851		<0.03	<0.001	
36	8R189887		<0.03	<0.001	
<u>.</u>					
Standar	a:		4.00	0.050	
OX167			1.83	0.053	
OX167			1.81	0.053	
					-

<u>lea</u> ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

/

22-Aug-08

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AW 2008-1146

Christopher James Gold Corp. Ste #102 - 418 St. Paul st. Kamloops,BC V2C 2J6

No. of samples received:51 Sample Type:Rock **Project: Little Fort** Submitted by:Tim Nillos

Values in ppm unless otherwise reported

Et #.	Tag #	Ag A		Ba				Со	Cr	Cu	Fe		Hg	K	La M			Mo Na	Ni	P	Pb	S	Sb	Sc			Те		Tì		-	v		Zn
<u> </u>		<u>ppm %</u>					ppm			ppm	%	ppm			ppm %			pm %	ppm	ppm	ppm				ppm	<u> </u>	ppm	ppm	%	ppm		<u> </u>		
1	8R189851	<0.1 2.2					0.12				5.22	6.2		0.07				0.10 0.055		1316.0	3.00				0.6	63.0		3.4 (0.06			<0.1	52.6
2	8R189852 8R189853	<0.1 2.3			<0.02					70.50	4.98	6.3			9.0 1.7			0.08 0.052		1337.0	2.44		0.40		0.4	54.0	****	2.7 (0.08	0.6	108	<0.1	44.0
3	8R189853	<0.1 2.1 0.1 1.7			<0.02					56.24	5.24	6.8	-		11.5 1.3			0.08 0.052		1521.0	3.45				0.6	59.0	0.02	3.1 (0.08	0.6		<0.1	64.8
4	8R189856	0.1 1.7								73.02	4.23	5.4			9.5 1.2			0.27 0.047		1297.0	1.87				0.6	47.0	0.02	2.0 (0.08	0.5		<0.1	
5	00109000	0.1 2.1	/ 11.	5 71.5	0.06	1.00	0.29	10.0	25.5	105.60	5.16	7.3	<5	0.13	10.0 1.8	98	υι	0.31 0.051	4.5	1522.0	6.13	0.32	0.52	3.2	0.4	37.5	0.04	3.2 (0.073	0.08	0.7	92	<0.1	73.2
6	8R189857	0.9 1.0	03 4.	2 417.5			0.12	10.3	67.0	9.26	3.69	4.3	20	0.10	10.5 0.6	61 61	8 (0.77 0.067	38.3	1103.0	3.0 9	0.12	0.16	2.6	0.2	61.5	0.02	3.2 (0.003	0.06	0.5	26	<0.1	39.4
7	8R189858	0.3 1.7								55.16	3.84	4.0	<5	0.07	10.0 1.1	6 60	1 (0.72 0.060	21.7	1270.0	7.60	0.46	1.26	3.5	0.3	70.5	0.04	2.3 (0.098	0.04	0.6	74	<0.1	63. 9
8	8R189859	0.7 1.2					0.38	8.3	69.0	39.57	1.66	4.4	15	0.07	4.5 1.0	66 66	6 (0.31 0.068	37.2	1220.0	14.74	0.38	0.80	3.6	0.6	60.0	<0.02	2.3 (0.050	0.06	0.4	56	<0.1	101.9
9	8R189860	0.4 1.9								179.40	6.42	5.1	10	0.09	8.5 1.0	75 75	i1 (0.63 0.036	8.3	1051.0	8.31	1.28	1.00	3.5	0.5	47.0	0.10	1.1 (0.003	0.06	0.3	54	<0.1	111.3
10	8R189861	0.3 3.0)5 26.	5 54.0	0.22	2.07	0.64	20.6	32.0	117.20	6.62	9.1	5	0.09	10.0 2.2	24 149	I 3 1	1.23 0.037	8.9	1560.0	17.92	0.28	1.18	4.8	0.3	34.5	0.08	1.9 (0.031	0.04	0.6	108	<0.1	215.5
11	8R189862	28.25	3 143.	9 58.0	0.10	2 17	3.87	10.8	33.5	32.77	5.35	7.4	20	0.08	12.5 1.9	3 155	7 (0.86 0.031	11.0	1416.0	23.77	0.14	1.72	4.0	0.2	46.5	0.06	22.0	0.023	0.04	0.5	64	<0.1	210.0
12	8R189863	0.8 0.4								157.00	8.18	2.2			16.0 0.3			1.22 0.022		148.0	17.26	5.48			1.0	10.0	0.48		0.023	0.04	0.5	20	<0.1	
13	8R189864	0.6 1.4								380.60	15.35	6.3						1.98 0.023			5.09				1.0	9.0	0.48		0.005	0.02	1.5	20 74		67.4 57.5
14	8R189865	0.6 0.7		2 106.0						338.50	10.60	6.1						3.48 0.026			9.61				1.2	58.0	0.22		0.040	0.04	2.3	148		103.6
15	8R189866	0.2 0.6		9 144.5	+ +					222.30	9.74	3.7						3.25 0.024			3.40				1.1	56.0		0.7 (0.00	2.3	90		19.3
											••••	0.7	10	0.00	10.0 0.0			0.20 0.024	14.0	000.0	0.40	0.00	0.00	7.0	1.1	50.0	0.00	0.7	0.011	0.00	2.2	30	0.0	19.0
16	8R189867	0.1 2.1	2 12.	5 73.0	0.10	9.96	0.08	21.1	34.5	46.55	10.54	7.6	10	0.05	12.0 1.7	2 179	2 2	2.40 0.041	9.1	596.0	2.07	0.44	0.54	3.5	0.9	49.0	0.04	0.8 (0.035	0.04	2.0	96	0.6	50.5
17	8R189868	0.4 0.2	25 19.	5 20.0	0.12	5.51	2.56	10.5	90.5	125.90	3.80	2.0	35	<0.01	2.0 0.0	9 73	5 (0.94 0.023	5.4	139.0	82.18	0.90	0.42	0.7	0.6	75.0	0.04	0.1 (0.002	<0.02	1.1	22	<0.1	420.5
18	8R189869	0.2 1.6	60 16.	8 39.0	0.10	1.84	0.06	18.0	77.5	145.20	4.99	4.7	<5	0.06	1.5 0.9	5 70	7 (0.72 0.035	10.5	382.0	6.00	0.96	0.66	4.3	0.7	31.0	0.02	0.5 (0.003	0.04	0.3			35.3
19	8R189870	0.2 2.5	57 13.	3 77.0	0.20	2.89	0.09	34.9	63.0	256.60	8.76	7.0	<5	0.04	5.5 1.4	1 144	3 (0.67 0.044	11.5	665.0	3.92	1.24	0.56	4.0	1.1	32.0	0.06	0.6 (0.046	0.04	0.7	94	0.1	58.9
20	8R189871	0.1 3.1	5 16.	7 52.5	0.06	3.66	0.12	21.1	57.5	62.61	6.48	8.4	<5	0.07	4.0 2.3	9 161	0 0	0.28 0.032	16.8	990.0	4.23	0.14	0.28	6.3	0.1	48.5	<0.02	1.0 (0.023	0.04	0.4	132	<0.1	104.1
	0.5400070												_																					
21	8R189872	<0.1 0.5								14.86	1.71				1.5 0.8			0.74 0.029		328.0	2.00				0.1		0.02		0.022		0.3		<0.1	20.7
22	8R189873	0.2 2.7		9 158.5						124.40	7.15	8.7		0.04	3.5 2.6			1.37 0.061		895.0	6.69				0.3	72.0	0.06	0.6 (0.04	0.5		<0.1	94.7
23	8R189874	0.2 2.7								132.40	6.08	6.8		0.10	5.0 2.0			0.41 0.032		1170.0	10.84				0.4	48.0		1.8 (0.04	0.6		<0.1	278.9
24	8R189875	0.1 1.3								33.98	3.32	4.8		0.05	3.5 0.8			0.32 0.033		375.0	25.95			4.2		41.5			0.082	0.02	0.2		<0.1	
25	8R189876	0.1 2.7	75 14.	0 65.5	0.02	4.54	0.14	22.5	19.0	79.53	6.06	9.0	<5	0.10	12.0 1.9	94 147	3 <0	0.01 0.051	4.8	1317.0	12.04	0.12	0.66	4.1	0.2	112.5	<0.02	2.9 (0.090	0.04	0.6	118	<0.1	122.2
26	8R189877	0.1 2.1	8 6.	7 55.5	<0.02	2.56	0.14	22.3	47.0	60.62	4.47	6.4	<5	0.03	10.0 1.7	2 111	7 <0	0.01 0.053	9.9	1496.0	3.63	0.16	1.02	3.9	0.3	170.5	0.04	2.2 (0.074	0.02	0.5	82	<0.1	65.0
27	8R189878	0.1 1.8	31 35.	6 111.0	0.06	5.45	0.22	17.6	55.0	34.89	4.43	5.6	5	0.11	8.0 1.0	9 118	9 (0.11 0.035	10.1	1150.0	9.93	0.80	0.84			126.0			0.018	0.04	0.5	70	<0.1	
28	8R189879	0.8 1.1	6 60.	1 34.0	0.20 >	>10	1.04	23.7	34.0	254.80	16.57	6.0	30	0.01	4.5 0.6			3.03 0.021		375.0	15.75		1.14			366.5	0.08			<0.02	5.2	54		202.7
29	8R189880	0.4 3.4	13 26.	0 94.5	0.18	4.82	0.87	19.4	53.0	118.00	10.13	9.7	10					4.34 0.026		1057.0	18.34	0.70				125.5	0.04	1.2 (0.04	1.7		< 0.1	
30	8R189881	0.3 0.9	90 45.	5 35.5	0.24	6.94	1.93	15.8	87.5	140.80	8.79	4.6	70					3.78 0.021		317.0	7.16		0.90			98.0		0.3 (0.02	2.2	48		380.6
																	-					•											~	

ECO T	ECH LABORA	ATORY L	TD.									TIFICA	TE OF	ANAL	YSIS	AW 2008	- 1146													Christ	topher	James	Gold	Corp).	
		Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ	La M	g Mn	Me	1 a	l a	NI	Р	Pb	S	Sb	Sc	Se	Sr	Те	Th	Ti	ті	U	vİ	w	Zn
<u>Et #.</u>	Tag #	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppb	%	ppm %	6 ppn	n ppi	m ʻ	%р	opm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm i	mqc	ppm	ppm
31	8R189882	0.8 1	.69	80.6	53.5	0.28	2.81	1.18	19.5	93.0	188.40	8.01	5.3	20	0.07	32.5 1.	00 184	12 1.	74 0.0	026	11.0	549.0	27.41	0.96	1.12	4.4	0.8	45.5	0.08	0.7	0.002	0.04	0.7			280.5
32	8R189883	0.4 0	.43	53.0	17.5	0.26	5.46	0.12	20.3	114.0	158.80	5.32	2.4	10	<0.01	3.5 0.	35 224	12 0.	58 0.0	022	8.9	488.0	4.97	1.30	0.48	1.4	1.1	63.5	0.06	0.2	0.002	< 0.02	1.2		<0.1	
33	8R189884	0.1 1	.00	6.5	21.0	0.06	4.89	0.15	15.4	90.0	54.38	2.34	4.5	<5	0.05	1.5 1.	17 74	I <mark>3 1</mark> .2	23 0.0	0 39	11.1	366.0	2.45	0.46	0.48	4.7	0.2	114.0	< 0.02	0.1	0.003	0.02	0.1		<0.1	
34	8R189885	0.3 1	.38	14.1	47.5	0.54	2.29	0.38	32.7	52.5	93.12	6.61	4.5	20	0.09	4.0 1.	21 76	6 18.9	92 0.0	036	10.1	736.0	10.33	1.86	1.02	3.6	1.3	64.0	0.18	0.9	0.003	0.04	0.6		<0.1	
35	8R189886	0.1 1	.30	11.8	50.0	0.10	8.41	0.11	16.4	51.0	97.76	8.64	5.4	10	0.06	9.5 0.	79 130)1 1.0	02 0.	030	8.0	545.0	5.84	0.72	0.64	3.2	0.3	82.5	0.04	0.6	0.006	0.02	1.1	60		52.0
36	00100007		40	144.0	10.0	0.00	0.04	0.00	4 4 9 5					~ ~																						
	8R189887	0.8 0			10.0		0.34				778.40				<0.01							363.0	7.68	9.40			3.0		0.36		0.003	0.04	1.9	14	0.3	9.7
37	8R189888	0.2 1		13.6	48.0		2.33				165.00		5.7	-	0.08				59 0.			865.0	3.65	0.60			0.5		0.06	0.4	0.007	0.04	0.3	70	<0.1	42.3
38	8R189889	1.0 1		161.8	12.5		2.96				495.70			25	0.03				80 0.0			354.0	8.34	6.56			2.3	42.0	0.48	0.3	0.006	0.04	0.6	50	<0.1	38.7
39	8R189890	0.4 0		68.7	19.0		4.59				75.09	6.02		20	0.04							105.0	19.49	2.36					0.10	0.2	0.002	0.02	0.8	38	0.2	67.2
40	8R189891	0.2 1	.01	60.8	88.5	0.04	6.17	0.14	21.8	46.5	101.10	5.51	4.8	10	0.09	6.0 0.	98 118	50 1.3	39 0.0	044	13.8	1147.0	3.50	0.64	0.70	6.2	0.8	93.5	0.10	1.8	0.001	0.04	0.4	54	<0.1	49.6
41	8R189892	0.2 0	.92	20.8	64.0	0 16	4.52	0.31	23.7	73.0	139.50	3.43	3.2	10	0.08	5.0 0.	60 8/	8 2.3	21 0	051	90	975.0	4.18	0 50	0.82	26	0.4	116.0	0.00	0.0	0.001	0.04	<u>م ج</u>			50.0
42	8R189893	0.2 1		37.9	48.5		5.43				101.90	2.93		10	0.09			36 0.3				1275.0	2.84	0.56		2.8		169.0			0.001		0.5		<0.1	
43	8R189894	0.9 2		126.6	39.5		4.57				615.20	8.21		10		11.0 1.		7 51.3				1359.0		3.18				138.5			0.001	0.04 0.02	0.5		<0.1	
44	8R189895	0.8 0		27.4	15.5		0.98				1186.00		3.9			66.5 0.		34 4.2				1075.0	9.97		3.48		2.4		0.24		0.002		1.0 2.3	62	<0.1 0.2	
45	8R189896	0.1 1	.50	20.4	34.5		0.53			90.0		3.74		10	0.05							575.0	6.27	0.16			0.3	10.0	0.04		0.015	<0.02	2.3 0.5	20 34	<0.2	
								•		00.0	·	0.7 1	,	10	0.00	0.0 0.	50 50	<i>,</i> o	17 0.	000	10.5	575.0	0.27	0.10	0.00	0.0	0.0	10.5	0.06	0.5	0.003	0.02	0.5	34	<0.1	83.Z
46	8R189897	0.2 0	.20	11.0	22.0	0.06	0.94	0.24	9.1	142.5	94.56	1.88	0.6	10	0.04	2.5 0.	09 46	5 2.°	14 0.0	031	13.1	88.0	2.85	0.42	0.38	2.0	0.4	25.0	0.08	02	0.001	0.02	0.2	4	<0.1	48 1
47	8R189898	0.1 1	.42	19.8	56.5	0.12	7.90	0.13	28.1	64.0	71.32	7.28	4.6	10	0.05	6.0 1.	00 132	24 0.8	82 0.0			443.0	4.79	1.92		2.8	0.4		0.06		0.020	0.02	1.4	50		50.2
48	8R189899	0.3 1	.06	86.4	14.0	0.38	2.53	0.14	123.4	58.5	826.00	22.75	4.6	30	0.03	8.0 0.	53 106	64 63.0	04 0.0	022	14.8	520.0	5.89	7.04			4.1		0.40		0.053	0.04	1.8	58		44.3
49	8R189900	0.8 2	.00	78.3	7.5	0.12	0.78	0.18	282.5	46.0	1920.00	20.57	4.8	25	0.02	6.5 1.	02 59	ю о.	90 0.0	026	20.4	798.0		>10		3.4	6.2		0.30		0.020	0.06	0.5		<0.1	
50	8R189901	0.1 3	.59	7.8	58.5	0.04	2.23	0.27	42.0	306.0	151.30	6.97	10.1	10	0.03	7.0 3.			84 0.0			1260.0	4.86	0.42	0.96	11.5	0.3		<0.02		0.037	0.02		-	<0.1	
54	0.0400000		~~	~ ~			.																													
51	8R189902	0.2 3	.60	6.0	431.5	<0.02	3.16	0.14	42.6	419.0	132.80	6.34	9.1	5	0.01	5.5 4.	37 116	65 O.	78 0.0	023 1	21.2	1154.0	3.66	0.08	1.24	13.0	0.1	109.0	<0.02	1.0	0.044	<0.02	0.5	160	<0.1	91.3
<u>QC DA</u> Repea																																				

8R189851 1 <0.1 2.19 7.9 36.0 0.02 2.36 0.12 20.1 28.5 79.46 5.08 6.1 <5 0.07 9.0 1.58 893 0.12 0.053 8.8 1264.0 0.22 0.52 2.9 2.56 0.6 66.0 < 0.02 3.3 0.107 0.04 0.7 108 <0.1 49.1 10 8R189861 0.3 2.96 25.5 52.0 0.22 1.96 0.59 19.9 30.0 114.80 6.43 8.8 5 0.09 9.5 2.18 1436 1.10 0.039 8.4 1533.0 17.35 0.28 1.22 4.5 0.3 33.5 0.06 1.9 0.028 0.04 0.6 104 <0.1 208.1 19 8R189870 0.2 2.47 12.6 72.5 0.18 2.79 0.10 33.5 59.5 252.30 8.62 6.9 <5 0.04 5.5 1.37 1421 0.62 0.038 11.3 655.0 3.90 1.20 0.58 3.9 32.0 0.04 1.1 0.7 0.043 0.02 0.7 92 0.1 59.0 36 8R189887 0.8 0.18 137.9 10.5 0.82 0.34 0.05 146.4 140.0 783.90 15.07 1.8 20 <0.01 3.0 0.07 163 1.80 0.019 15.0 341.0 7.42 9.04 2.04 1.2 3.1 0.1 0.003 4.0 0.42 0.04 1.9 14 0.2 9.4

Resplit:

1 8R189851 <0.1 2.14 7.8 40.0 0.04 2.51 0.13 19.7 27.0 73.81 5.21 6.5 <5 0.07 9.5 1.51 922 0.05 0.053 7.5 1224.0 2.85 0.20 0.56 3.3 0.7 70.5 < 0.02 3.5 0.117 0.02 0.8 110 <0.1 55.6 36 8R189887 0.9 0.20 155.7 12.5 0.96 0.33 0.05 159.8 130.5 820.70 16.58 1.9 25 <0.01 3.5 0.08 170 1.47 0.017 17.1 394.0 8.56 9.61 2.14 1.3 3.5 4.0 0.50 0.1 0.003 0.04 2.1 16 0.3 9.5

Standard:

PB129a 12.1 0.74 0.40 0.52 58.89 9.4 68.0 4.8 11.5 1407.00 1.56 2.3 75 0.09 4.0 0.61 362 1.72 0.040 5.2 462.0 6218.00 0.74 17.80 0.6 0.1 29.5 0.14 0.4 0.031 0.04 0.1 17 <0.1 >10000 PB129a 11.9 0.73 8.9 71.0 0.40 0.49 58.89 4.8 11.0 1392.00 1.52 2.3 80 354 1.74 0.039 0.09 4.5 0.59 5.1 458.0 6204.00 0.72 17.24 0.6 0.2 29.5 0.18 0.4 0.031 0.04 0.1 17 <0.1 >10000

JJ/nw ^{Jf/msr1146s} XLS/07

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

25-Aug-08

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Christopher James Gold Corp Suite 410 1111 Melville St Vancouver, BC V6E 3V6

No. of samples received: 78 Sample Type: Rock **Project: Little Fort Shipment # 2** Submitted by:Tim Nillos

Values in ppm unless otherwise reported

Et #.	Tog #	Au	Ag	AI	As	Ва	Bi	Ca			Cr	Cu	Fe		•	К		<u> </u>	Mn					Pb	S			Se			Th		TI	U	v	w	Zn
	Tag #	ppb	ppm		ppm	ppm	ppm					ppm		ppm									ppm			ppm		The second second			ppm		ppm				ppm
1	8R189903 8R189904	5		0.93		64.0		1.00			-	129.60	5.02										1125.0		0.52				26.5			0.003			30		193.7
2	8R189904	5		1.45 0.57		56.0		1.70				92.82	3.84	3.8	. –		7.0 0						1009.0			0.56			45.0			0.002		0.5	42		145.2
3	8R189905	10				42.0		0.79				132.00	3.24	1.4			3.5 0						586.0		0.48				25.0				0.04	0.3	8		244.0
4	8R189907	100					0.74					693.40	18.20											149.40			5.4			0.24		0.011		*.*	64		3501.(
5	00109901	20	1.0	4.50	31.5	60.0	0.54	0.66	7.42	36.1	17.0	241.60	13.82	9.1	510	0.09	4.5 2	.09	3084	2.74	0.039	9.0	1797.0	71.53	1.68	1.00	6.8	1.3	16.5	0.16	1.7	0.003	0.04	0.9	104	<0.1	2067.(
6	8R189908	85	4.9	2.42	346.8	24.5	1.64	1.00	6.34	43.4	51.0	1190.00	28.05	62	430	0.08	3.0 1	07	4099	9.24	0.033	18.1	690.0	253 70	\10	5 02	71	53	25.5	0.52	0.0	0.003	0.06	1.3	68	-0.1	1988.(
7	8R189909	20		3.13			0.50					121.40												34.82					20.0			0.003		1.0			1988.0
8	8R189910	10	0.6	3.25	24.8	95.5	0.26	0.72				128.50	9.31	7.1										80.22					21.0			0.003		0.5			1093.(
9	8R189911	10	0.5	2.24	14.7	45.0	0.20	1.43	3.79	18.4	92.5	173.80	7.89	5.0										39.93								0.002		0.5			756.1
10	8R189912	20	0.3	0.65	7.9	71.5	0.14	0.55	1.26	15.6	88.5	162.80		2.2		0.06	6.5 0	.13	1496	3.87	0.056	16.3	500.0	17.57	0.52	0.38	4.6	0.5	12.5	0.00		0.002		0.0	•••		236.6
																							000.0		0.01	0.00	1.0	0.0	12.0	0.00	1.1	0.002	0.02	0.9	10	<0.1	230.0
11	8R189913	5	0.2	1.86	21.9	76.5	0.10	0.95	0. 79	12.9	145.0	118.20	8.59	5.1	15	0.05	7.0 0	.55	2178	3.73	0.039	13.8	351.0	22.61	0.60	0.54	5.6	0.7	15.0	0.04	0.9	0.004	0.02	0.7	32	<01	290.6
12	8R189914	<5	0.3	2.09	13.1	90.0	0.14	0.64	1.17	14.1	158.5	170.60	8.66	4.7	40									40.30			4.5		8.0			0.006		0.7	26		367.8
13	8R189915	<5	0.2	1.32	14.2	116.5	0.16	0.54	0.59	13.3	148.5	111.70	3.54	2.8	15								147.0		0.62		2.4	0.7	8.0	0.02		0.005		0.3	24		167.4
14	8R189916	40	1.0	3.24	40.0	87.5	1.60	0.31	0.88	23.7	83.5	239.80	15.52	7.1	40	0.08	12.0 1	.55	2093	9.18	0.029	11.9	1060.0	35.64	0.52	1.10	5.3	1.0	10.0	1.26		0.008		1.6			415.9
15	8R189917	<5	0.1	2.53	7.4	118.0	0.10	4.56	0.39	8.5	17.5	33.71	3.97	5.2	10	0.15	15.0 1	.87	1911	0.38	0.035	5.3	1806.0	20.19	0.22	0.42	4.2	0.4	63.5	0.04	1.6	0.008	0.04	1.1			191.0
16	8R189918	5		2.88		14.0																		59.73			4.6	0.4	7.0	0.12	0.8	0.040	<0.02	1.5	44	0.2	335.6
17	8R189919	35		1.89								315.70	=											122.00	3.42	0.62	4.1	0.9	21.5	0.20	0.6	0.025	<0.02	3.3	28	0.5	433.9
18	8R189920	10		1.92		119.5						149.20	5.74	-			10.0 0							57.01	1.26	0.84	2.8	0.5	54.5	0.08	2.1 (0.019	0.04	1.0	46	<0.1	455.4
19	8R189921	25		1.08		14.5							12.24	5.7			8.0 0							28.10			2.2	0.6	5.0	0.12	0.7	0.013	<0.02	4.2	20	0.8	270.6
20	8R189922	<5	0.3	1.56	9.6	66.0	0.14	2.20	1.29	10.6	99.5	110.20	5.75	3.8	25	0.09	4.0 0	.66	1906	2.36	0.036	13.6	919.0	27.56	0.76	0.48	3.5	0.4	36.5	0.08	1.1 (0.005	0.02	0.8	26	<0.1	226.5
21	8R189923	<5	0.1	1 0 4	44 5	110	0.04	0.44	0.00		447 F	40.00			_																						
21	8R189923	<5 <5			14.1							40.39		4.2										10.39								0.004		0.7			142.6
22	8R189925	<5 10		1.84		62.0 51.5	0.16					144.20	6.73	5.3										17.14					22.0			0.002		0.7			173.4
23 24	8R189926	-		1.78								135.40	9.04	5.5												1.44						0.002		0.6			122.8
25	8R189927	20 <5		1.23			0.28 0.10					160.10	7.69	4.5										94.19					13.0			0.001	• • • •	0. 9			943.2
20	01109927	<0	0.3	1.23	7.9	75.5	0.10	1.27	2.18	12.7	20.0	133.90	4.72	3.5	80	0.11	10.5 0	.54	1536	0.91	0.064	7.0	1422.0	12.23	0.44	0.64	6.4	0.4	45.5	0.02	4.5 (0.001	0.02	0.8	30	<0.1	511.3
26	8R189928	5	0.2	1.30	7.7	57.5	0.16	0.95	0.30	16.5	25.0	146.20	3.76	3.4	10	0.10	6.0 C	74	1024	0.79	0.054	6.8	1227.0	10.94	0.06	0.62	5.0	07	26.0	0.04	2.8 (0.01	0.02	0.6	04	<0.1	70.7
27	8R189929	<5	0.1	1.96	6.4		0.08					141.30	4.51	4.8			7.0 1				0.076		1631.0			0.38			16.5			0.001		0.6 0.5	24 36		
28	8R189930	<5	0.2		5.9		0.12					166.20	3.99	1.3			5.0 C				0.096		1502.0	7.02		0.38			64.0			0.001		0.5 0.6			65.3 36.2
29	8R189931	<5	<0.1				0.04					40.46	1.73	1.7			7.0 0			1.12			774.0	3.05	0.14				15.0			0.001 0.001		0.6			36.2 27.6
30	8R189932	<5	0.1	0.81	5.6	66.5	0.06	1.65				76.83	3.06	2.4			7.5 0			1.28			1198.0			0.52					1.1 (0.2	-		27.6 115.3
															-							0.0		5.10	0.02	0.02	0.0	0.0	10.0	0.04	1.1 \		0.04	0.0	12	V . 1	110.0

ICP CERTIFICATE OF ANALYSIS AW 2008-1174

ECO T	ECH LABORA	TORY L	.TD.											ICP (CERTI	FICAT		IALYSIS	WA :	2008- 117	4							CI	nristoph	er Jame	es Gold	Corn		
		Au	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	La M	g Mn	Μ	lo Na	Ni P	Pb	s	Sb	Sc	Se	Sr		h Ti			•		Zn
<u>Et #.</u>	Tag #	ррЬ	ppm				ppm		ppm	ppm	ppm	ppm	%	ppm	ppb	%	<u>ppm %</u>	。 ppm	n pp	om %	ppm ppm	ppm	%	ppm	ppm p	pm p			om %		ppm p		mag	
31	8R189933	5		0.69			0.08			13.1		59.14	3.82	2.1	5	0.18	5.5 0.5	56 86	3 1	.37 0.061	4.1 1493.0) 10.26		0.46			32.5 0		1.0 0.00		0.2			76.9
32	8R189934	<5		0.88			0.06							3.1			8.5 0.6		5 0	.48 0.067	9.1 1202.0) 4.48	0.76	0.32	3.9	0.9	63.5 0.		3.0 0.00		0.7		<0.1	
33	8R189935	<5		0.88		56.0				8.7			1.77	2.8			3.5 0.6			.50 0.055			0.40	0.22	2.4	0.3	39.0 <0.		0.9 0.00		0.2			31.4
34	8R189936	5		2.53	5.6			2.50		14.9		42.14	5.06	8.5						.61 0.059	7.9 1799.0	6.24	0.10	0.20	3.8	0.5	79.5 <0.	.02	2.9 0.00	5 0.04	0.6	56		92.2
35	8R189937	<5	0.1	2.48	6.3	66.0	0.04	1.78	0.06	14.9	30.5	32.86	5.10	9.0	<5	0.10	11.0 1.4	12 123	2 0	.34 0.064	3.1 1716.0	9 4.03	0.20	0.20	3.5	0.4	56.5 0.	.02	2.2 0.00	5 0.02	0.4	64	<0.1	82.2
36	8R189938	5	0.1	2.16	5.2	72.5	0.04	2.83	0.07	13.2	37.0	35.33	4.51	70	<5	0.16	10.5 1	07 136	5 0	.98 0.054	2.2 1458.0	6.05	0 12	0 10	2.0	05	70.0 .0	00	1.0.0.00					
37	8R189939	<5	0.1	1.99	5.1	58.5	0.06	1.96		13.3				5.5						.26 0.053				0.16			79.0 <0. 57.5 0.		1.8 0.00		0.3		<0.1	
38	8R189940	<5	0.2	2.52	6.5	70.0	0.14							7.7			5.5 2.1			.23 0.064	4.6 2182.0			0.10			26.0 0.		2.2 0.00 1.0 0.00		0.3 0.3		<0.1	
39	8R189941	<5	0.4	2.58	5.1	111.5	<0.02	2.30	0.06	30.0 4	411.5	83.76	4.74	7.0			3.5 3.5				96.0 1149.0			0.66			20.0 0. 01.0 <0.		0.9 0.07		0.3		<0.1 <0.1	53.7
40	8R189942	10	0.1	0.70	8.3	76.0	0.12	0.89	0.06	8.4	71.5	72.78	1.66	2.2	<5	0.16	3.5 0.3			.48 0.073							40.5 0.		1.1 0.00		0.2		<0.1	
41	8R189943	<5	0.1	1.00	5.3	81.0	0.06	0.46	0.05	89	78.0	21 70	1.96	3.2	-5	0 17	3.5 0.6	en 25	<u> </u>	04 0 070	0.4 770.0	0.07	0.40	0.40										
42	8R189944	<5		3.26			<0.02			32.9 2				10.4							3.4 778.0 66.6 1261.0						26.5 0.		1.0 0.00		0.2		<0.1	
43	8R189945	<5		3.44	6.2			5.52		33.4 2				10.4			4.0 3.9				67.5 1138.0						55.5 0.		0.9 0.11		0.2	-	<0.1	
44	8R189946	<5	0.2	2.99	5.8	99.5		2.01		29.0 2				8.5			3.5 3.2				61.5 1138.0		0.04	0.54			91.0 0.		0.8 0.10		0.2			69.6
45	8R189947	5	0.1	2.07	4.9	36.0	<0.02			22.7 2		-		6.7	-		4.0 2.4				49.3 1124.0						29.5 <0. 11.5 <0.		0.8 0.12		0.2		<0.1	
																00			0 0	.00 0.001	43.0 1124.0	2.30	0.04	0.92	2.1	0.2 1	11.5 <0.	02	0.9 0.12	4 0.06	0.2	104	<0.1	49.2
46	8R189948	<5		2.60		37.5 •		1.91		27.9 2			5.15	8.1			4.5 3.0				61.5 1248.0		0.04	0.90	5.4	0.2 12	23.5 0.	04	0.8 0.13	6 0.04	0.2	130	<0.1	61.9
47	8R189949	10		3.33		644.5		5.86		41.7 4			6.88	8.6							121.7 1000.0		0.04	0.64	17.9	0.2 24	19 .0 0.		0.8 0.07		0.2		<0.1	
48	8R189950	<5		3.68		56.0		4.35		38.7 4				9.5	<5 •	<0.01	3.5 4.9) 3 111	2 0	.15 0.033	116.2 1158.0	2.89	0.02	0.64	8.3	0.2 14	43.0 <0.	02	0.9 0.10	5 <0.02	0.3		<0.1	
49	8R190351	<5	<0.1		5.3	55.0		3.16		28.6 1				9.7	<5	0.08	5.5 3.0)7 107	0 0	.41 0.046	35.2 1550.0) 3.94	0.04	0.68	8.6	0.3 10	0.5 <0.	02	1.1 0.13	5 <0.02	0.3	150	<0.1	76.4
50	8R190352	<5	<0.1	3.21	5.6	84.5	<0.02	4.25	0.09	22.0	20.0	10.70	6.00	9.2	<5	0.14	11.0 1.9) 4 101	4 0	.17 0.049	7.0 1803.0) 4.34	0.02	0.44	7.0	0.3 12	24.0 0.	04	1.6 0.01	1 0.04	0.2	112	<0.1	78.5
51	8R190353	<5	0.1	2.63	4.8	60.0	<0.02	2.78	0.09	22.0	20.5	8.57	5.74	7.8	<5	0.14	14.0 1.2	26 67	0 0	.87 0.063	8.2 1956.0) 5.53	0.02	0.56	97	03 4	58.0 0.	04	1.9 0.00	9 0 04	0.2	114	-0.1	60.0
52	8R190354	<5	0.1	2.31	5.9	54.5	0.02	1.00	0.09	19.9	37.5	50.76	4.90	8.0			12.0 1.2			.96 0.086							30.0 0.		1.8 0.00		0.3 0.2		<0.1 <0.1	
53	8R190355	<5	0.1	4.00	6.2	93.0	0.02	3.85	0.05	36.1	40.5	19.96	8.06	10.4			3.0 3.6				12.3 561.0						45.0 0.		1.0 0.13		0.2		< 0.1	82.0
54	8R190356	<5	<0.1	4.08	6.5		<0.02			39.9			7.08	9.7	<5	0.06	3.5 3.5				13.6 857.0						75.0 0.		0.8 0.20		0.1		<0.1	
55	8R190357	5	0.1	1.52	5.8	78.0	0.06	1.41	0.11	12.8	59.5	23.62	4.18	5.9			8.5 0.7			.56 0.078							42.0 0.		1.5 0.00				<0.1	
56	8R190358	<5	0.1	3.15	5.7	49.0	0.04	2.94	0.09	27.3	50.5	26.53	6.68	8.9	<5	0.05	2.5 3.0	10 104	8 0	92 0 049	12.4 693.0	4.90	0.04	0.70	16.0	0.0.40		00	10 0 11					
57	8R190359	10	<0.1	3.31	5.4	107.0		4.80		26.5			6.74							.19 0.049							27.00. 58.50.		1.0 0.14		0.1	-	<0.1	
58	8R190360	<5	0.1	4.50	6.4	152.5	0.04	6.36		38.5			10.37								12.3 486.0						65.0 0.		0.9 0.08		0.1		<0.1	
59	8R190361	15	1.2	3.33	6.9	58.5	0.04	8.75	0.17	33.2	70.5		9.30	9.8							27.9 596.0						23.5 0.		0.7 0.049 0.3 0.009		0.1		<0.1	
60	8R190362	50	0.1	3.08	6.2	73.0	0.02	6.50	0.14	29.9	14.5	119.90	8.38	8.6							10.5 662.0						52.0 0.		1.0 0.00		0.1 0.1		<0.1 <0.1	
01	0.0400000	-																					0.10	0.01	10.1	0.12	L .0 0.	00	1.0 0.000	0.04	0.1	102	<0.1	91.0
61 62	8R190363 8R190364	<5 <5		3.30		150.0 <		1.80		33.2 2			5.94	9.2	<5	0.03	5.0 3.6	<i>i</i> 7 109	5 0.	.44 0.051	70.2 1231.0	3.83	0.06	0.78	9.9	0.2 10	03.5 <0.	02	0.7 0.116	6 <0.02	0.2	144	<0.1	74.8
63	8R190365	<5 5		3.57 3.32	6.9 6.7								5.77	8.3	<5	0.03	3.5 3.5	3 110	1 0.	.99 0.069	36.9 1673.0			0.74	5.9	0.3 12	20.0 0.	06	0.5 0.199	9 <0.02	0.2	136	<0.1	91.3
64	8R190366	5		3.24	-	94.5 27.0				23.4 25.7		73.38								.29 0.060				0.42			28.0 0.		1.0 0.16	5 0.02	0.2	150	<0.1 2	214.6
65	8R190367	5		4.45								119.30	5.37	6.9							12.0 1089.0			0.50			57.5 0.		0.6 0.127	7 <0.02	0.2	112	<0.1	80.8
	011100007	Ŭ	0.0	4.40	1.7	40.0	0.04	1.13	0.03	42.1	54.0	119.30	7.00	9.0	<5	0.09	3.0 3.6	4 130	6 0.	.47 0.039	15.9 1356.0	7.03	0.26	0.68	8.8	1.0 5	50.5 0.	12	0.4 0.20	0.02	0.2	196	<0.1	142.9
66	8R190368	<5	0.1	4.83	6.8	32.0 -	<0.02	2.67	0.17	33.9	30.0	117.90	7.95	11.2	<5	0.07	4.0 4.0	1 108	70.	.63 0.041	11.4 2311.0	4.90	0.18	0.60	8.2	0.2 9	97.5 0.	08	0.3 0.156	5 <0.02	<0.1	238	<01	83.5
67	8R190369	<5		3.24	7.8	44.0	0.18	0.84	0.11	18.9	31.0	29.47		8.3	<5	0.13	4.0 3.4	43 103	1 1.	22 0.043	14.7 2795.0	5.03							0.4 0.011		0.1			
68 68	8R190370	10		3.79			0.40						8.22		5	0.14	2.5 3.9	97 130	92.	.67 0.044	10.8 1968.0	5.57					2.5 0.		0.3 0.009		0.2		<0.1	
69 70	8R190371	5		3.19			0.34								<5	0.16	3.0 3.0	04 132	1 0.	87 0.045	10.2 1710.0	7.97					60.5 0.		0.5 0.004				<0.1	
70	8R190372	<5	0.1	3.58	0.5	59.5	0.10	4.07	0.11	26.3	37.5	72.13	7.18	9.8	<5	0.11	2.5 3.3	9 105	31.	.20 0.044	9.7 603.0	6.32	1.70	0.56	11.7	2.1 13	19 .0 0.	16	0.7 0.179	0.02			<0.1	
71	8R190373	<5	0.1	3.28	5.6	24.5	0.04	2.66	0.14	20.8 1	112.0	61.17	4.87	8.9	<5	0.04	5.5 3.1	3 96	50	82 0.052	23.2 1336.0	7 25	0.24	0 46	76	0.3 9	6.0 0.	<u>04</u>	0.085	: 0.02	0.0	100	-0.1	045
72	8R190374	<5	0.3	4.30	6.2	64.5	0.04	4.27	0.16	29.0	31.5	138.40	7.89								14.0 1895.0						6.0 0.		0.08 0.023		0.2		<0.1 <0.1 1	
73	8R190375	<5		0.90	86.6	53.0	0.10	1.74	0.33	9.4	72.5	70.62			10	0.13	5.5 0.4			33 0.037	8.4 812.0						6.5 0.		1.1 0.001				<0.1 1	
74	8R190376	<5		1.06			0.16						3.19	2.5	5	0.10	4.5 0.5	52 899	52.	55 0.039	8.4 443.0	4.32							0.001				<0.1	
75	8R190377	<5	0.3	1.44	30.2	66.5	0.24	4.06	0.52	7.5	65.0	97.04	3.72	3.9							9.2 1075.0								0.002					
																														0.01	0.0		-9.1	

ECO TE	CH LABORA	TORY	.TD.											ICP	CERT	TFICAT		- ANAL	YSIS A	W 200	08-1174	4									Christ	ophe	r Jame	s Gold			
		Au	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Sr	Те		Ti	Т	U	v		Zn
Et #.	Tag #	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppb	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	maa	mag	ppm		%	maa	ppm	naa	ppm	
76	8R190378	<5	0.3	2.00	26.2	59.5	0.12	6.87	0.30	13.7	38.0	150.20	8.64	5.6	10	0.08	9.0	1.23	1912	5.94	0.032	64	821.0	7.70	0.84	0.82	5.6		123.5				<0.02	0.7	52	< 0.1	95.6
77	8R190379	<5	0.4	1.71	47.2	17.5	0.12	0.78	0.86			118.20	4.60	4.3	20	0.05		0.82			0.026		397.0	13.28	0.62		3.6	0.6	15.0				<0.02	0.3	34		194.8
78	8R190380	<5	0.1	3.05	5.2	23.5		2.46				65.10	4.57	8.1	<5	0.03		2.93					1240.0		0.22		7.3	0.3	87.5				<0.02		102	<0.1	74.2
		_												••••		0.00	0.0	2.00		•	0.000		12.10.0	0.02	0.1	0.10	7.0	0.0	07.0	0.04	0.0	0.000	\U.U	0.2	102	\U. 1	/ 4.2
QC DAT	A:																																				
Repeat:																																					
1	8R189903	5	0.3	0.93	16.6	59.5	0.18	1.01	0.78	14.8	69.0	123.80	4.89	2.6	45	0.14	8.5	0.49	1154	4.81	0.042	14.6	1146.0	10.95	0.54	0.88	5.1	0.7	25.5	0.10	2.9	0.003	0.04	0.5	32	<0.1	185.4
4	8R189906	100																																			
6	8R189908	85																																			
10	8R189912	15	0.3	0.68	7.9	74.0	0.14	0.58	1.31	16.5	92.0	171.10	5.40	2.2	20	0.06	6.5	6 0.14	1596	3.92	0.057	16.9	527.0	19.21	0.52	0.36	4.8	0.5	13.5	0.06	1.0	0.002	0.02	0.8	18	<0.1	242.6
19	8R189921	20	0.7	1.04	32.0	14.0	0.14	4.04	1.32	13.3	122.5	259.20	11.82	5.3	95	0.01	7.5	0.50	2044	2.10	0.025	13.3	214.0	25.90	0.80	0.64	2.2	0.6	4.5	0.12			< 0.02	4.2	20		261.3
36	8R189938	5	0.1	2.15	5.2	74.0	0.06	2.88	0.07	13.2	36.0	34.93	4.43	7.1	<5	0.15	10.5	5 1.07	1333	0.96	0.052	2.3	1469.0	5.56	0.10	0.18	2.1	0.4	81.0	<0.02			0.04	0.3	26		105.4
45	8R189947	10	0.1	2.18	5.4	37.5	<0.02	2.15	0.06	24.8	237.5	92.65	4.50	7.6	<5	0.17	4.5	2.56	730	0.95	0.052	53.4	1219.0	3.32	0.04	0.96	3.0	0.2	112.5				0.06		110	<0.1	54.8
54	8R190356	<5	<0.1	3.81	5.1	39.5	<0.02	2.92	0.06	36.7	68.0	27.47	6.67	8.9	<5	0.05	3.0	3.44	1058	0.24	0.039	11.0	838.0	2.01	0.04	1.40			167.5				< 0.02		224	<0.1	
Resplit:																																					
1	8R189903	10	0.4	0.98	17.2	66.0	0.22	1.10	0.86	16.8	71.0	141.90	5.30	3.2	45	0.14	9.0	0.52	1317	5.19	0.045	16.3	1243.0	14.52	0.60	1.12	6.0	0.8	26.5	0.10	1.8	0.003	0.04	0.5	34	<0.1	212.7
36	8R189938	<5		2.20	5.4	79.5		3.12	0.06			33.79	4.63	7.3	<5	0.17	11.0) 1.10	1476	0.88	0.053	3.0	1465.0	4.03	0.12	0.20	2.2	0.3	95.5	< 0.02	1.6	0.003	0.04	0.3	28	<0.1	105.1
71	8R190373	<5	0.1	3.13	5.7	24.0	0.02	2.64	0.0 9	20.6	124.5	57.70	4.79	8.3	<5	0.04	5.5	5 3.05	934	1.16	0.052	23.9	1292.0	6.97	0.22	0.44	7.9	0.3	92.0	< 0.02	0.7	0.090	<0.02	0.2	106	<0.1	79.2
Standa																																					
PB129a				0.81	9.4	62.0			57.94	4.7		1421.00	1.60	2.3	65	0.11		5 0.73			0.049			6186.00			0.7	0.2	25.5	0.20	0.4	0.037	0.42	<0.1	16	<0.1	9969.(
PB129a			11.5		9.4	66.5			59.26	4.7		1413.00	1.62			0.11		5 0.75	350		0.050			6253.00			0.7		28.0	0.12	0.4	0.037	0.44	0.1	16	<0.1	>1000
PB129a			11.9	0.86	9.4	64.0	0.36	0.43	55.93	4.5	10.5	1384.00	1.57	2.3	70	0.10	3.5	5 0.72	347	1.98	0.047	4.6	6 442.0	6187.00	0.94	16.44	0.7	0.3	27.0	0.16	0.3	0.036	0.38	0.1	14	<0.1	>1000
SE29		605																																			
SE29		595																																			
SE29		595																																			
																								0	2												

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/nw ^{df/msr1174s} XLS/07 ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AW 2008- 1175

Christopher James Gold Corp. Suite 410 1111 Melville St Vancouver, BC V6E 3V6

No. of samples received: 27 Sample Type: Rock Submitted by:Tim Nillos Project: Little Fort

Values in ppm unless otherwise reported

		Au			As	Ва	Bi		Cd	Co	Cr	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo N	la	NI	Ρ	Pb	S	Sb	Sc	Se	Sr	Тө	Th T	i	п	U	v	w	Zn
Et #		ррь	ppm %	_	and the second second	ppm			ppm			ppm	%	ppm	ppb	%	ppm	%	ppm	ppm 🤋	%р	pm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm %	5 p	pm p	pm p	pm pp	om	ppm
1	8R202401	<5	0.2 1.		5.9	73.5						105.20	5.47	8.3	15	1.60	4.0	2.58	735	1.21 0.0	043 !	57.3	1155.0	1.89	0.06	0.16	3.5	0.4	100.5	0.04	1.4 0.1				144 (6	79.9
2	8R202402		0.1 1.			124.5			0.05				5.49	7.2	20	1.51	2.5	2.61	777	0.86 0.0	045 0	70.0	1169.0	7.05	0.08	0.20	3.4	0.2	70.0	0.06	2.0 0.1	18 0	.42	0.3	112 (38.1
3	8R202403	-	0.0 1.			106.5						28.22	4.98	6.6	15	1.12				0.45 0.0					0.04	0.22	3.2	0.2	104.5	0.02	1.3 0.1	08 0			96 <(
4	8R202404	-	0.3 2.			47.0						176.20	5.40	10.1	15					0.97 0.0					0.28	0.46	9.5	0.7	75.0	0.04	3.2 0.0	65 0			152 <(
5	8R202405	5	0.2 3.	63	13.2	55.0	0.08	5.85	0.59	37.2	227.5	71.02	9.63	11.7	30	0.04	4.0	4.14	4153	0.97 0.0	028 4	48.1	1092.0	12.01	0.46	0.74	22.5	0.6			1.4 0.0				206 <0		
6	8R202406	10	0.2 3.	51	11.2	61.0	0.10	5.86	0.23	38.7	225.0	50.41	9.00	12.0	20	0.03	45	4.06	3763	1.00 0.0	100	16.2	1202.0	16.61	0 50	0.74	01 5	0.5	151 0	0.00						. .	
7	8R202407		0.2 1.0	-	5.7							94.20	5.83	7.4						0.48 0.0											1.3 0.0						
8	8R202408	-	0.3 1.4									143.70	5.78	5.4		0.12			2289						0.04						1.2 0.0						
9	8R202409	-	0.2 2.0									100.80	5.58	8.1					1936						0.78						0.8 0.0				98 <0		
10	8R202410		0.2 3.									83.76	7.03	12.1						0.79 0.0					0.48						2.1 0.0				108 <0		
		-						0.00	0.11	00.0	101.0	00.70	7.00	1 44.7	10	0.00	4.0	0.00	0000	0.75 0.0	JJ2 (00.7	1004.0	2.09	0.36	0.34	10.2	0.3	139.0	0.06	1.3 0.0	19 0	0.02	0.3	194 <(0.1	86.1
11	8R202411	5	0.2 4.0	03	11.1	109.5	0.14	6.01	0.34	45.4	341.0	38.43	8.69	12.6	15	0.04	4.0	4.34	5194	1.06 0.0	026 10	04.7	1042.0	5 16	0.34	0.48	22.0	0.6	124.0	0.04	1.0 0.0	51 0	02	0.2 0	200 -	0 4 ·	111.0
12	8R202412	5	0.3 3.4	40	10.6	74.0	0.20	5.80	0.31	35.6	376.0	90.52	8.01	11.9	15					1.25 0.0				6.47			24.4				0.9 0.0				208 <(212 <(
13	8R202413	<5	0.3 0.	52								450.10	7.15	2.4	105	0.09				4.56 0.0											0.8 0.0						
14	8R202414	10	0.1 0.3	38	15.5	55.0	0.08	1.27	4.61	10.1	91.0	89.72	1.69	1.9	120	0.06				7.27 0.0							2.1				0.8 0.1						
15	8R202415	15	0.1 1.0	02	7.0	84.0	0.04	1.18	0.07	22.7	106.5	43.66	2.57	4.5	15	0.08	3.5	1.09		0.49 0.0							2.6				1.0 0.1						
																									0.2	0.00	2.0	0.0	102.0	0.04	1.0 0.1	01 0	.02	0.2	00 <0	J. I	30.3
16	8R202416	-	0.1 1.3									36.35	3.63	6.3	10	0.18	3.5	1.43	472	0.47 0.0	060 4	42.4	1090.0	4.14	0.50	0.26	3.8	0.5	68.0	0.06	0.9 0.1	36 0	.06	0.3	88 </th <th>2.1</th> <th>44 1</th>	2.1	44 1
17	8R202417	-	0.2 1.0				<0.02					307.00	6.26	7.9	10	1.57	3.0	2.02	640	0.41 0.0	062 4	42.0	1191.0	4.26	0.12	0.20	4.2				0.8 0.1						
18	8R202418	5	0.1 2.9				0.04					108.60	7.09	8.0	10	0.04	4.0	2.79	1063	0.40 0.0	030	8.6	1796.0	2.15			8.4				0.6 0.1						
19	8R202419	-	0.5 1.0			37.5	0.16	0.96	0.11	20.9	122.5	151.40	7.65	6.9	35	0.11	6.5	1.63	635	0.97 0.0	078 3	33.9	1033.0	6.61	2.68	2.34	7.1	2.1			1.9 0.1						
20	8R190381	10	0.2 0.4	45	30.8	19.0	0.18	>10	0.06	19.9	18.5	26.44	15.64	6.3	10	0.01	5.5	0.40	395 9	1.46 0.0)23	3.8	230.0	5.59	1.18	0.76	1.0				0.3 0.0						
01	8R190382	-	0.7 0.1	10	44 5	40 5	0.50	0.40				107 70																									
21	8R190383	-	0.7 0.	-	44.5 22.8	49.5 38.5						107.70		0.9		0.03	3.0	0.09	3187	10.91 0.0	024 1	10.6	326.0					1.2	13.0	0.08	0.4 0.0	01 <0	.02	0.9	12 <0	0.1 2	277.0
23	8R190384		0.1 0.			36.5 16.5						49.43			40					1.98 0.0			199.0	4.93	0.14			0.5			0.4 0.0				74 (0.9	49.5
20	8R190385		1.6 0.9									725.90		3.6		0.04				3.05 0.0				7.40	6.96			1.9	9.0	0.32	0.3 0.0	20 <0	.02	0.8	26 0).2	34.3
24	8R190386		0.2 2.2									1000.00				<0.01				1.68 0.0								3.8			0.3 0.0						
20	01190300	20	0.2 2.4	20	12.1	22.5	0.06	6.90	0.12	14.4	55.0	101.50	3.12	5.1	10	0.04	6.5	2.29	943	0.16 0.0	057 1	19.6	1117.0	4.36	0.72	6.78	5.6	0.4	107.5	0.04	0.5 0.0	78 <0	.02	0.3 1	38 <0	D.1	52.6
26	8R190387	45	15.5 0.9	55	17.2	46.5	0.66	0.74	2.30	26.7	68.0	3621.00	2.51	1.5	45	0.22	10	0 17	888	106.00	121 1	12.1	191.0	7 70	1.04	1 20	26	0.0	00.0	0.40			4.0	~ .	10		
27	8R190388	5	0.2 0.0										2.25	2.1	25	0.22	1.0	0.17	1000	1.06 0.0 5.72 0.0	ו וטע ו מכיר	10.1	1007.0	7.70											46 C		
001	DATA:				- · ·		0					50.00		£.1	20	0.22	-7.0	0.70	1002	J.12 U.U	,00 I	10.9	1007.0	7.10	0.56	1.04	2.1	3.0	1209.0	0.16	0.9 0.1	0000	.14	0.4	30 <0	J.1 1	68.8

Repeat:

1 8R202401 <5 0.2 1.76 5.3 73.5 0.02 2.62 0.06 27.1 260.5 106.90 5.38 7.9 15 1.56 4.0 2.48 724 1.21 0.041 57.3 1124.0 1.57 0.04 0.12 3.3 0.3 100.5 0.06 1.0 0.126 0.40 0.3 140 <0.1 76.3 10 8R202410 <5 0.2 3.02 8.4 108.5 0.06 5.70 0.12 30.5 182.0 83.80 6.78 11.0 15 0.05 3.5 3.25 3231 0.81 0.029 64.2 1075.0 5.92 0.36 0.34 18.1 0.4 134.5 0.08 1.1 0.017 <0.02 0.2 194 <0.1 81.1

ECO TEC		RATO	AY LTD	•									IC'	P CER	RTIFICAT	TE OF	- ANAL	_YSIS	AW 20	<i>i</i> 08- 117	5										Chris	topher	r James	s Golr	d Corr	<i>р</i> .	
Et #.	Tag #	Au ppb	Ag ppm	-		Ba ppm p	Bi ppm	Ca %	Cd ppm		Cr ppm	Cu ppm			Hg ppb	K %	La ppm			Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %				Sr ppm	Te ppm	Th ppm	Ti %	Ti ppm p	U ppm p	V ppm r	••	
<i>Resplit:</i> 1 8R	R202401	<5	0.2 1	1.88	7.1	79.0 <	<0.02 2	2.93	0.07	30.3 2	258.0	114.40	5.53	8.8	3 15	1.79	9 4.5 :	2.56	767	1.02 0	0.042	64.0	1204.0	1.63	0.04	0.14	3.3	0.4	108.0	0.06	1.0	0.124			152 <		75.2
Standard Pb129a SE29	1:	610	11.8 0	0.86	11.4	72.0	0.40 (0.43	56.06	4.7	11.0 1	1433.00	1.62	2.3	8 80	0.10	4.0	0.58	349	1.90 0	J.0 38	5.2	425.0	6212.00	0.82	16.82	0.7	0.3	29.5	0.14	0.4	0.038	0.48	0.1	18 <	<0.1 {	9987.0

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/nw ^{df/msr1175s} XLS/07

Appendix III

Summary of Trench Locations and Results

*(NA = not assayed/not applicable)

Trench Collar Locations

Trench_ID	Length_m	Azimuth	Dip	Datum	Easting_m	Northing_m	Elevation_m
A1	20	25	-5	NAD83Z10	683711	5713391	1336
A10	50	200	5	NAD83Z10	683632	5713702	1327
A2	36.7	202	5	NAD83Z10	683574	5713512	1359
A3	30	260	-5	NAD83Z10	683389	5713640	1352
A8	39	261	-2	NAD83Z10	682880	5713458	1378
B1	123.7	21	-2	NAD83Z10	679446	5713915	1466
B10	27	232	1	NAD83Z10	680648	5713886	1406
B12	44.6	33	1	NAD83Z10	680112	5714070	1443
B13	19.7	265	8	NAD83Z10	680013	5714192	1437
B14	30	220	0	NAD83Z10	679998	5714328	1431
B15	70	185	1	NAD83Z10	680260	5714336	1403
B17	44	30	0	NAD83Z10	678927	5714555	1487
B18	44.5	52	-2	NAD83Z10	678701	5714685	1485
B2	115	356	2	NAD83Z10	679028	5714161	1499
B25	79	68	-2	NAD83Z10	679697	5713765	1470
B25A	23.4	234	5	NAD83Z10	679697	5713765	1470
B3	64.7	26	-5	NAD83Z10	679560	5714270	1452

LEGEND	
CODE	Description
From_m	Start of Interval used for GPS measurement
To_m	End of Interval used for GPS measurement
Length_m	Length of Interval for GPS measurement
Easting_m	Original Proposed Easting Waypoint (NA indicates no original GPS waypoint)
Northing_m	Original Proposed Northing Waypoint (NA indicates no original GPS waypoint)
XE_m	GPS Easting Measurement
XN_m	GPS Northing Measurement
XR_m	GPS Elevation Measurement
MIDPNT_m	Midpoint of Interval, location where GPS waypoint was taken

Trench_ID	From_m	To_m	Length_m	Azimuth	Dip	Datum	Easting_m	Northing_m	XE_m	m_NX	XR_m	MIDPNT_m
A1	0	20	20	25	-5	NAD83Z10	683711	5713391	683715.21	5713400.03	1335.13	10
A10	0	50	50	200	5	NAD83Z10	683632	5713702	683623.48	5713678.6	1329.18	25
A2	0	36.7	36.7	202	5	NAD83Z10	683574	5713512	683567.15	5713495.05	1360.6	18.35
A3	0	15.5	15.5	260	-5	NAD83Z10	683368	5713627	683381.4	5713638.66	1351.32	7.75
A3	15.5	20	4.5	260	-5	NAD83Z10	NA	NA	683371.59	5713636.93	1350.45	17.75
A3	20	30	10	260	-5	NAD83Z10	NA	NA	683364.47	5713635.68	1349.82	25
A8	0	27	27	261	-2	NAD83Z10	682872	5713444	682866.67	5713455.89	1377.53	13.5
A8	27	39	12	272	0	NAD83Z10	NA	NA	682847.43	5713452.84	1376.85	33
B1	0	22.4	22.4	31	2	NAD83Z10	679446	5713915	679450.01	5713925.45	1465.61	11.2
B1	22.4	50	27.6	23	-3	NAD83Z10	NA	NA	679462.88	5713946.87	1466.48	36.2
B1	50	71.5	21.5	25	-2	NAD83Z10	NA	NA	679472.46	5713969.43	1465.2	60.75
B1	71.5	95	23.5	32	0	NAD83Z10	NA	NA	679481.96	5713989.81	1464.41	83.25
B1	95	100	5	5	0	NAD83Z10	NA	NA	679489.51	5714001.9	1464.41	97.5
B1	100	123.7	23.7	5	1	NAD83Z10	NA	NA	679490.76	5714016.19	1464.41	111.85
B10	0	19.6	19.6	232	-7	NAD83Z10	680648	5713886	680640.28	5713879.97	1406.17	9.8
B10	19.6	27	7.4	232	-7	NAD83Z10	NA	NA	680629.72	5713871.72	1404.53	23.3
B12	0	19	19	33	0	NAD83Z10	680113	5714084	680117.17	5714077.97	1443.17	9.5
B12	19	30	11	18	1	NAD83Z10	NA	NA	680125.34	5714090.55	1443.17	24.5
B12	30	44.6	14.6	18	0	NAD83Z10	NA	NA	680129.3	5714102.72	1443.39	37.3
B13	0	19.7	19.7	265	8	NAD83Z10	680018	5714177	680003.28	5714191.15	1438.37	9.85
B15	0	5	5	195	2	NAD83Z10	680260	5714336	680259.78	5714333.51	1403.04	2.5
B15	5	16	11	201	2	NAD83Z10	NA	NA	680257.71	5714325.79	1403.32	10.5
B15	16	42	26	213	3	NAD83Z10	NA	NA	680251.09	5714308.53	1403.97	29

Assessment Report September, 2009

Trench_ID	From_m	To_m	Length_m	Azimuth	Dip	Datum	Easting_m	Northing_m	XE_m	т. Ж	XR_m	MIDPNT_m
B15	42	70	28	207	-4	NAD83Z10	NA	NA	680236.4	5714285.91	1405.38	56
B17	0	14	14	30	1	NAD83Z10	NA	NA	678930.5	5714561.06	1487	7
B17	14	21	7	18	-3	NAD83Z10	NA	NA	678935.75	5714570.15	1487.18	17.5
B17	21	28	7	32	-8	NAD83Z10	NA	NA	678937.91	5714576.8	1486.82	24.5
B17	28	44	16	32	0	NAD83Z10	NA	NA	678943.94	5714586.46	1485.22	36
B18	0	21	21	52	-3	NAD83Z10	678701	5714685	678709.27	5714691.46	1484.63	10.5
B18	21	34	13	35	-2	NAD83Z10	NA	NA	678722.65	5714701.91	1483.74	27.5
B18	34	44.5	10.5	40	-2	NAD83Z10	NA	NA	678729.38	5714711.53	1483.33	39.25
B2	0	32	32	1	0	NAD83Z10	679028	5714161	679026.88	5714176.95	1499.56	16
B2	32	50	18	358	0	NAD83Z10	NA	NA	679027.32	5714201.95	1499.56	41
B2	50	93	43	356	2	NAD83Z10	NA	NA	679026.26	5714232.43	1499.56	71.5
B2	93	115	22	336	2	NAD83Z10	NA	NA	679023.99	5714264.83	1500.69	104
B25	0	20	20	86	0	NAD83Z10	679697	5713765	679706.27	5713768.74	1469.65	10
B25	20	40	20	88	1	NAD83Z10	NA	NA	679726.22	5713770.14	1469.65	30
B25	40	60	20	44	-2	NAD83Z10	NA	NA	679746.2	5713770.84	1470	50
B25	60	72	12	44	-1	NAD83Z10	NA	NA	679757.31	5713782.34	1469.44	66
B25	72	79	7	20	0	NAD83Z10	NA	NA	679763.91	5713789.17	1469.28	75.5
B25A	0	11	11	238	6	NAD83Z10	679700	679700	679692.57	5713761.78	1470.48	5.5
B25A	11	23.4	12.4	228	-1	NAD83Z10	NA	NA	679682.7	5713755.61	1471.7	17.2
B3	0	50	50	26	-8	NAD83Z10	679575	5714290	679570.92	5714292.38	1449.82	25
B3	10.2	64.7	54.5	26	3	NAD83Z10	NA	NA	679584.96	5714321.18	1445.32	57.35

Little Fort Trench Assays

٥	۳_B	m_p	m_no	E	ε	e_ID	Batch	qd	шd	Шd	mq	шd	Ш
Trench_ID	Easting_m	Northing_m	Elevation_m	From_m	To_m	Sample_ID	Assay_Batch	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm
A1	NA	NA	NA	0	20	No Sample	NA	NA	NA	NA	NA	NA	NA
A10	NA	NA	NA	0	50	No Sample	NA	NA	NA	NA	NA	NA	NA
A2	NA	NA	NA	0	36.7	No Sample	NA	NA	NA	NA	NA	NA	NA
A3	683389	5713640	1352	0	5	No Sample	NA	NA	NA	NA	NA	NA	NA
A3	683384.09	5713639.14	1351.56	5	7	202401	AK2008-1175	<5	0.20	105.20	1.21	1.89	79.90
A3	683382.13	5713638.79	1351.39	7	8	No Sample	NA	NA	NA	NA	NA	NA	NA
A3	683381.15	5713638.62	1351.3	8	9.3	202402	AK2008-1175	5	0.06	31.01	0.86	7.05	38.10
A3	683379.88	5713638.39	1351.19	9.3	13.7	No Sample	NA	NA	NA	NA	NA	NA	NA
A3	683375.56	5713637.63	1350.81	13.7	15.5	202403	AK2008-1175	<5	0.04	28.22	0.45	1.65	37.40
A3	683373.79	5713637.32	1350.65	15.5	30	No Sample	NA	NA	NA	NA	NA	NA	NA
A8	682880	5713458	1378	0	1.6	No Sample	NA	NA	NA	NA	NA	NA	NA
A8	682878.42	5713457.75	1377.94	1.6	4.6	202404	AK2008-1175	<5	0.30	176.20	0.97	3.23	67.30
A8	682875.46	5713457.28	1377.84	4.6	7.5	202405	AK2008-1175	5	0.20	71.02	0.97	12.01	204.20
A8	682872.6	5713456.83	1377.74	7.5	9.5	202406	AK2008-1175	10	0.18	50.41	1.00	16.61	125.60
A8	682870.62	5713456.51	1377.67	9.5	11.9	202407	AK2008-1175	5	0.18	94.20	0.48	4.86	60.80
A8	682868.25	5713456.14	1377.58	11.9	16.2	No Sample	NA	NA	NA	NA	NA	NA	NA
A8	682864.01	5713455.47	1377.43	16.2	18.2	202408	AK2008-1175	<5	0.34	143.70	1.10	7.09	132.50
A8	682862.04	5713455.15	1377.36	18.2	19.9	202409	AK2008-1175	5	0.22	100.80	1.22	2.72	95.40
A8	682860.36	5713454.89	1377.31	19.9	22.9	202410	AK2008-1175	5	0.22	83.76	0.79	2.39	86.10
A8	682857.4	5713454.42	1377.2	22.9	24.8	202411	AK2008-1175	5	0.18	38.43	1.06	5.16	111.20
A8	682855.52	5713454.12	1377.13	24.8	27	202412	AK2008-1175	5	0.34	90.52	1.25	6.47	97.20
B1	679446	5713915	1466	0	2.9	189879	AK2008-1146	<30	0.82	254.80	13.03	15.75	202.70
B1	679447.04	5713917.71	1465.9	2.9	6	189880	AK2008-1146	<30	0.44	118.00	4.34	18.34	300.90
B1	679448.21	5713920.57	1465.82	6	8.6	189881	AK2008-1146	<30	0.32	140.80	3.78	7.16	380.60
B1	679449.55	5713922.79	1465.91	8.6	14	189882	AK2008-1146	30	0.82	188.40	1.74	27.41	280.50
B1	679451.2	5713925.54	1466.02	11.8	13	190382	AK2008-1175	5	0.72	107.70	10.91	38.91	277.0
B1	679452.33	5713927.42	1466.1	14	18	189883	AK2008-1146	30	0.40	158.80	0.58	4.97	21.20
B1	679452.54	5713927.76	1466.11	14.4	15	190381	AK2008-1175	10	0.22	26.44	1.46	5.59	12.6
B1	679454.49	5713931.02	1466.24	18.2	27.3	189903	AK2008-1174	5	0.3	129.60	4.83	12.32	193.7
B1	679458.73	5713939.04	1466.25	27.3	28.3	189884	AK2008-1146	30	0.10	54.38	1.23	2.45	58.10
B1	679459.12	5713939.96	1466.2	28.3	32.5	189885	AK2008-1146	30	0.30	93.12	18.92	10.33	85.40
B1	679460.76	5713943.82	1465.98	32.5	40	189886	AK2008-1146	30	0.14	97.76	1.02	5.84	52.00
B1	679462.43	5713947.77	1465.75	36.8	38.6	190383	AK2008-1175	15	0.10	49.43	1.98	4.93	49.5
B1	679463.68	5713950.71	1465.58	40	41	189887	AK2008-1146	30	0.80	778.40	1.69	7.68	9.70
B1	679464.07	5713951.63	1465.53	41	41.1	190384	AK2008-1175	15	0.62	725.90	3.05	7.40	34.3
B1	679464.11	5713951.72	1465.53	41.1	46.9	189888	AK2008-1146	30	0.20	165.00	0.59	3.65	42.30
B1	679466.37	5713957.06	1465.22	46.9	47	190385	AK2008-1175	60	1.60	1000.00	1.68	9.94	24.7
B1	679466.39	5713957.1	1465.22	47	49	189889	AK2008-1146	40	1.04	495.70	1.80	8.34	38.70
B1	679467.21	5713958.98	1465.12	49	63.5	189904	AK2008-1174	5	0.2	92.82	1.18	6.93	145.2
B1	679473.34	5713972.11	1464.62	63.5	67.5	189890	AK2008-1146	30	0.38	75.09	3.87	19.49	67.20
B1	679475.02	5713975.74	1464.48	67.5	68.8	189891	AK2008-1146	30	0.16	101.10	1.39	3.50	49.60
B1	679475.57	5713976.91	1464.43	68.8	73	189892	AK2008-1146	30	0.22	139.50	2.21	4.18	52.30
B1	679477.46	5713980.66	1464.32	73	77.9	No Sample	NA	NA	NA	NA	NA	NA	NA
B1	679480.05	5713984.82	1464.32	77.9	79.6	189893	AK2008-1146	30	0.18	101.90	0.35	2.84	36.50
B1	679480.95	5713986.26	1464.32	79.6	85.3	189894	AK2008-1146	30	0.86	615.20	51.36	30.64	98.20
B1	679483.97	5713991.09	1464.32	85.3	86.5	189895	AK2008-1146	30	0.76	1186.00	4.25	9.97	43.30
B1	679484.61	5713992.11	1464.32	86.5	89	189896	AK2008-1146	30	0.14	92.21	5.17	6.27	83.20
B1	679485.93	5713994.23	1464.32	89	94.3	189897	AK2008-1146	30	0.18	94.56	2.14	2.85	48.10

Assessment Report September, 2009

Trench_ID	Easting_m	Northing_m	Elevation_m	From_m	To_m	Sample_ID	Assay_Batch	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	mqq_nZ
B1	679487	5713999.31	1464.32	94.3	101	189898	AK2008-1146	30	0.12	71.32	0.82	4.79	50.20
B1	679487.6	5714006.08	1464.32	101	103	190386	AK2008-1175	20	0.24	101.50	0.16	4.36	52.6
B1	679487.59	5714005.98	1464.32	102.6	104	189899	AK2008-1146	30	0.32	826.00	63.04	5.89	44.30
B1	679487.85	5714008.97	1464.32	104	109	189900	AK2008-1146	60	0.80	1920.00	0.90	10.52	46.80
B1	679488.29	5714013.95	1464.39	109	116	189901	AK2008-1146	30	0.14	151.30	0.84	4.86	125.30
B1	679488.85	5714020.42	1464.51	116	118	189902	AK2008-1146	30	0.16	132.80	0.78	3.66	91.30
B1	679489.07	5714022.91	1464.55	118	124	No Sample	NA	NA	NA	NA	NA	NA	NA
B10	680648	5713886	1406	0	5.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B10	680643.85	5713882.76	1405.35	5.3	9.9	189936	AK2008-1174	5	0.2	42.14	0.61	6.24	92.2
B10	680640.26	5713879.95	1404.79	9.9	14	189937	AK2008-1174	<5	0.1	32.86	0.34	4.03	82.2
B10	680637.05	5713877.44	1404.29	14	19	189938	AK2008-1174	5	0.1	35.33	0.98	6.05	107.6
B10	680633.28	5713874.24	1404.21	19	20	No Sample	NA	NA	NA	NA	NA	NA	NA
B10	680632.57	5713873.55	1404.35	20	22	189939	AK2008-1174	<5	0.1	35.78	1.26	4.24	79.6
B10	680631.14	5713872.17	1404.62	22	24	No Sample	NA	NA	NA	NA	NA	NA	NA
B10	680629.72	5713870.8	1404.9	24	27	189940	AK2008-1174	<5	0.2	119.10	1.23	4.64	53.7
B12	680112	5714070	1443	0	0.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B12	680112.16	5714070.25	1443	0.3	4.1	190352	AK2008-1174	<5	<0.1	10.70	0.17	4.34	78.5
B12	680114.23	5714073.44	1443	4.1	5.9	190353	AK2008-1174	<5	0.1	8.57	0.87	5.53	69.0
B12	680115.21	5714074.95	1443	5.9	7.65	190354	AK2008-1174	<5	0.1	50.76	0.96	3.15	82.0
B12	680116.17	5714076.42	1443	7.65	13.2	190355	AK2008-1174	<5	0.1	19.96	0.94	3.31	85.9
B12	680119.19	5714081.07	1443	13.2	15.5	190356	AK2008-1174	<5	<0.1	31.80	0.29	1.64	108.9
B12	680120.17	5714083.13	1443.02	15.5	20	No Sample	NA	NA	NA	NA	NA	NA	NA
B12	680121.56	5714087.41	1443.09	20	23.6	190357	AK2008-1174	5	0.1	23.62	2.56	3.22	93.6
B12	680122.66	5714090.78	1443.09	23.6	28.5	190358	AK2008-1174	<5	0.1	26.53	0.92	4.90	95.5
B12	680124.19	5714095.49	1443.09	28.5	33.3	190359	AK2008-1174	10	<0.1	21.82	0.19	3.29	59.4
B12	680125.67	5714100.06	1443.09	33.3	38	190360	AK2008-1174	<5	0.1	42.66	0.70	4.50	84.6
B12	680127.12	5714104.53	1443.09	38	42.3	190361	AK2008-1174	15	1.2	98.56	1.54	3.31	92.7
B12	680128.45	5714108.62	1443.09	42.3	44.6	190362	AK2008-1174	50	0.1	119.90	1.56	3.91	91.6
B13	680013	5714192	1437	0	2.2	No Sample	NA	NA	NA	NA	NA	NA	NA
B13	680010.83	5714191.81	1437.31	2.2	5	189949	AK2008-1174	10	0.1	71.29	1.12	7.32	73.0
B13	680008.05	5714191.57	1437.51	5	7.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B13	680005.76	5714191.37	1437.51	7.3	10	189950	AK2008-1174	<5	0.1	71.29	0.15	2.89	62.1
B13	680003.07	5714191.13	1437.51	10	13.6	190351	AK2008-1174	<5	<0.1	51.74	0.41	3.94	76.4
B13	679999.49	5714190.82	1437.51	13.6	19.7	No Sample	NA	NA	NA	NA	NA	NA	NA
B14	NA	NA	NA	0	30	No Sample	NA	NA	NA	NA	NA	NA	NA
B15	680260	5714336	1403	0	1.5	No Sample	NA	NA	NA	NA	NA	NA	NA
B15	680259.61	5714334.55	1403.05	1.5	6	189941	AK2008-1174	<5	0.4	83.76	0.82	6.25	45.6
B15	680258.15	5714330.3	1403.21	6	12	189942	AK2008-1174	10	0.1	72.78	0.48	6.06	32.2
B15	680255.79	5714324.82	1403.44	12	15.7	189943	AK2008-1174	<5	0.1	21.79	2.04	2.87	38.1
B15	680253.77	5714321.72	1403.63	15.7	20.4	189944	AK2008-1174	<5	0.1	97.44	0.49	2.34	75.9
B15	680251.22	5714317.78	1403.88	20.4	21.6	No Sample	NA	NA	NA	NA	NA	NA	NA
B15	680250.57	5714316.78	1403.94	21.6	23.4	189945	AK2008-1174	<5	0.1	78.97	0.95	3.06	69.6
B15	680249.59	5714315.27	1404.04	23.4	27.4	189946	AK2008-1174	<5	0.2	81.70	0.28	3.77	61.7
B15	680247.41	5714311.92	1404.24	27.4	34.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B15	680243.66	5714306.14	1404.61	34.3	37.6	189947	AK2008-1174	5	0.1	87.02	0.96	2.95	49.2
B15	680241.86	5714303.38	1404.78	37.6	39	No Sample	NA	NA	NA	NA	NA	NA	NA
B15	680241.18	5714302.16	1404.75	39	42.5	189948	AK2008-1174	<5	0.1	100.60	0.32	3.73	61.9
B15	680239.59	5714299.05	1404.5	42.5	70	No Sample	NA	NA	NA	NA	NA	NA	NA
B17	678927	5714555	1487	0	9	No Sample	NA	NA	NA	NA	NA	NA	NA
B17	678931.5	5714562.79	1487	9	14	189876	AK2008-1146	<30	0.12	79.53	0.01	12.04	122.20

Assessment Report September, 2009

Trench_ID	Easting_m	Northing_m	Elevation_m	From_m	To_m	Sample_ID	Assay_Batch	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	mqq_nZ
B17	678934	5714567.12	1487	14	21	189877	AK2008-1146	<30	0.08	60.62	0.01	3.63	65.00
B17	678937.5	5714573.19	1487	21	22	No Sample	NA	NA	NA	NA	NA	NA	NA
B17	678938	5714574.05	1487	22	26	189878	AK2008-1146	<30	0.12	34.89	0.11	9.93	86.40
B17	678940	5714577.52	1487	26	44	No Sample	NA	NA	NA	NA	NA	NA	NA
B18	678701	5714685	1485	0	5	189851	AK2008-1146	<30	0.10	83.12	0.10	3.00	52.60
B18	678704.93	5714688.07	1484.74	5	10	189852	AK2008-1146	<30	0.10	70.50	0.08	2.44	44.00
B18	678708.87	5714691.15	1484.48	10	15	189853	AK2008-1146	<30	0.10	56.24	0.08	3.45	64.80
B18	678712.8	5714694.22	1484.21	15	20	189854	AK2008-1146	<30	0.10	73.02	0.27	1.87	37.80
B18	678716.2	5714697.81	1484	20	25	No Sample	NA	NA	NA	NA	NA	NA	NA
B18	678719.07	5714701.9	1483.82	25	30	189856	AK2008-1146	<30	0.14	105.60	0.31	6.13	73.20
B18	678721.94	5714705.99	1483.65	30	35	189857	AK2008-1146	<30	0.92	9.26	0.77	3.09	39.40
B18	678724.98	5714709.95	1483.47	35	40	189858	AK2008-1146	<30	0.32	55.16	0.72	7.60	63.90
B18	678724.98	5714709.95	1483.47	40	44.5	No Sample	NA	NA	NA	NA	NA	NA	NA
B2	679028	5714161	1499	0	7	189860	AK2008-1146	<30	0.38	179.40	0.63	8.31	111.30
B2	679028.12	5714168	1499	7	13	189861	AK2008-1146	<30	0.30	117.20	1.23	17.92	215.50
B2	679028.23	5714174	1499	13	22.8	189862	AK2008-1146	<30	2.84	32.77	0.86	23.77	310.20
B2	679028.04	5714183.79	1499	22.8	25	189863	AK2008-1146	<30	0.82	157.00	1.22	17.26	67.40
B2	679027.97	5714185.99	1499	25	28	189864	AK2008-1146	<30	0.64	380.60	1.98	5.09	57.50
B2	679027.86	5714188.99	1499	28	39	No Sample	NA	NA	NA	NA	NA	NA	NA
B2	679027.48	5714199.98	1499	39	41	189865	AK2008-1146	<30	0.64	338.50	3.48	9.61	103.60
B2	679027.41	5714201.98	1499	41	43	No Sample	NA	NA	NA	NA	NA	NA	NA
B2	679027.27	5714203.98	1499.07	43	45	189866	AK2008-1146	50	0.24	222.30	3.25	3.40	19.30
B2	679027.13	5714205.97	1499.14	45	47	189867	AK2008-1146	210	0.10	46.55	2.40	2.07	50.50
B2	679026.99	5714207.96	1499.21	47	56	No Sample	NA	NA	NA	NA	NA	NA	NA
B2	679026.36	5714216.94	1499.52	56	58.3	189868	AK2008-1146	<30	0.36	125.90	0.94	82.18	420.50
B2	679026.2	5714219.23	1499.6	58.3	61.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B2	679025.99	5714222.22	1499.71	61.3	67.5	189869	AK2008-1146	<30	0.20	145.20	0.72	6.00	35.30
B2	679025.56	5714228.4	1499.92	67.5	74.5	189870	AK2008-1146	<30	0.16	256.60	0.67	3.92	58.90
B2	679024.06	5714235.13	1500.17	74.5	77	189871	AK2008-1146	<30	0.10	62.61	0.28	4.23	104.10
B2	679023.04	5714237.41	1500.26	77	79.8	189872	AK2008-1146	<30	0.10	14.86	0.74	2.00	20.70
B2	679021.91	5714239.97	1500.35	79.8	85	189873	AK2008-1146	<30	0.22	124.40	1.37	6.69	94.70
B2	679019.79	5714244.71	1500.54	85	89	189874	AK2008-1146	<30	0.22	132.40	0.41	10.84	278.90
B2	679018.17	5714248.37	1500.68	89	90.5	-	NA	NA	NA	NA	NA	NA	NA
B2	679017.56	5714249.74	1500.73	90.5	94	189875	AK2008-1146	<30	0.10	33.98	0.32	25.95	120.90
B2	679016.13	5714252.93	1500.85	94	115	No Sample	NA	NA	NA	NA	NA	NA	NA
B25	679697	5713765	1470	0	2.7	No Sample	NA	NA	NA	NA 122.00	NA	NA 00.07	NA
B25	679699.69	5713765.19	1470	2.7	5.3	189905	AK2008-1174	10	0.5	132.00	4.09	28.67	244.0
B25	679702.29	5713765.37	1470	5.3	6.5	189906	AK2008-1174	100	3.1	693.40	19.82	149.40	3501.0
B25	679703.48	5713765.45	1470	6.5	9	189907	AK2008-1174	20	1.0	241.60	2.74	71.53	2067.0
B25	679705.98	5713765.63	1470	9	10.4	189908	AK2008-1174	85	4.9	1190.00	9.24	253.70	1988.0
B25	679707.38	5713765.71	1470.01	10.4	11.6	189909	AK2008-1174	20	1.4	121.40	6.40	34.82	1093.0
B25	679708.57	5713765.75	1470.03	11.6	14.3	189910	AK2008-1174	10	0.6	128.50	4.63	80.22	1028.0
B25	679711.27	5713765.85	1470.08	14.3	17	189911	AK2008-1174	10	0.5	173.80	2.16	39.93	756.1
B25	679713.97	5713765.94	1470.12	17	19	189912	AK2008-1174	20	0.3	162.80	3.87	17.57	236.6
B25	679715.97	5713766.01	1470.16	19	21	189913	AK2008-1174	5	0.2	118.20	3.73	22.61	290.6
B25	679717.97	5713766.08	1470.19	21	23.7	189914	AK2008-1174	<5	0.3	170.60	3.47	40.30	367.8
B25	679720.67	5713766.18	1470.24	23.7	27	189915	AK2008-1174	<5	0.2	111.70	2.07	30.28	167.4
B25	679723.96	5713766.29	1470.3	27	28	189916	AK2008-1174	40	1.0	239.80	9.18	35.64	415.9
B25	679724.96	5713766.33	1470.31	28	29.4	189917	AK2008-1174	<5	0.1	33.71	0.38	20.19	191.0
B25	679726.36	5713766.37	1470.34	29.4	32	189918	AK2008-1174	5	0.4	171.90	6.33	59.73	335.6

Trench_ID	Easting_m	Northing_m	Elevation_m	From_m	To_m	Sample_ID	Assay_Batch	Au_ppb	Ag_ppm	Cu_ppm	Mo_ppm	Pb_ppm	zn_ppm
Trei	Eas	Nort	Eleva	Fro	Ť	Sam	Assa	Au	Ag	Cu	Mo	ΡP	Zn
B25	679728.35	5713767.83	1470.28	32	32.8	189919	AK2008-1174	35	1.2	315.70	3.32	122.00	433.9
B25	679728.9	5713768.41	1470.25	32.8	34	189920	AK2008-1174	10	0.8	149.20	0.48	57.01	455.4
B25	679729.74	5713769.27	1470.21	34	35	189921	AK2008-1174	25	0.7	267.70	2.24	28.10	270.6
B25	679730.43	5713769.99	1470.17	35	40	189922	AK2008-1174	<5	0.3	110.20	2.36	27.56	226.5
B25	679733.9	5713773.58	1470	40	41	189923	AK2008-1174	<5	0.1	40.39	2.25	10.39	142.6
B25	679734.6	5713774.3	1469.97	41	46	189924	AK2008-1174	<5	0.3	144.20	2.20	17.14	173.4
B25	679735.99	5713775.74	1469.9	43	44	189925	AK2008-1174	10	0.3	135.40	1.72	20.88	122.8
B25	679738.07	5713777.9	1469.79	46	50	189926	AK2008-1174	20	0.5	160.10	3.28	94.19	943.2
B25	679740.85	5713780.77	1469.65	50	53	189927	AK2008-1174	<5	0.3	133.90	0.91	12.23	511.3
B25	679742.93	5713782.93	1469.6	53	56	189928	AK2008-1174	5	0.2	146.20	0.79	10.94	72.7
B25	679745.01	5713785.09	1469.55	56	57.5	189929	AK2008-1174	<5	0.1	141.30	0.76	5.49	65.3
B25	679746.05	5713786.17	1469.52	57.5	60	189930	AK2008-1174	<5	0.2	166.20	0.43	7.02	36.2
B25	679747.79	5713787.97	1469.48	60	65	189931	AK2008-1174	<5	<0.1	40.46	1.12	3.05	27.6
B25	679751.26	5713791.56	1469.39	65	66.8	189932	AK2008-1174	<5	0.1	76.83	1.28	8.45	115.3
B25	679752.23	5713793.03	1469.37	66.8	71.4	189933	AK2008-1174	5	0.1	59.14	1.37	10.26	76.9
B25	679753.8	5713797.36	1469.37	71.4	75	189934	AK2008-1174	<5	0.2	191.60	0.48	4.48	41.8
B25	679755.04	5713800.74	1469.37	75	78.3	189935	AK2008-1174	<5	0.1	71.95	0.50	5.85	31.4
B25	679756.16	5713803.84	1469.37	78.3	79	No Sample	NA	NA	NA	NA	NA	NA	NA
B25A	679700	5713767	1470	0	4.9	190375	AK2008-1174	<5	0.2	70.62	3.33	9.72	106.8
B25A	679695.87	5713764.42	1470.51	4.9	8.3	190376	AK2008-1174	<5	0.2	67.98	2.55	4.32	81.6
B25A	679693.28	5713762.23	1470.53	8.3	11.6	190377	AK2008-1174	<5	0.3	97.04	2.63	9.98	109.3
B25A	679690.83	5713760.02	1470.47	11.6	17	190378	AK2008-1174	<5	0.3	150.20	5.94	7.70	95.6
B25A	679686.82	5713756.41	1470.37	17	19	190379	AK2008-1174	<5	0.4	118.20	2.91	13.28	194.8
B25A	679685.33	5713755.07	1470.34	19	23.4	190380	AK2008-1174	<5	0.1	65.10	0.74	6.92	74.2
B3	679560	5714270	1452	0	4	No Sample	NA	NA	NA	NA	NA	NA	NA
B3	679561.74	5714273.56	1451.44	4	7	190363	AK2008-1174	<5	0.3	97.46	0.44	3.83	74.8
B3	679563.05	5714276.25	1451.29	7	10.2	No Sample	NA	NA	NA	NA	NA	NA	NA
B3	679564.45	5714279.12	1451.29	10.2	11.2	190364	AK2008-1174	<5	0.5	232.90	0.99	2.86	91.3
B3	679564.89	5714280.02	1451.29	11.2	14.2	190365	AK2008-1174	5	0.1	73.38	0.29	12.79	214.6
B3	679566.2	5714282.72	1451.29	14.2	17.3	No Sample	NA	NA	NA	NA	NA	NA	NA
B3	679567.56	5714285.5	1451.29	17.3	19.9	190366	AK2008-1174	5	0.1	67.76	1.02	4.76	80.8
B3	679568.7	5714287.84	1451.29	19.9	23	190367	AK2008-1174	5	0.3	119.30	0.47	7.03	142.9
B3	679570.06	5714290.63	1451.29	23	28.1	190368	AK2008-1174	<5	0.1	117.90	0.63	4.90	83.5
B3	679572.3	5714295.21	1451.29	28.1	30.1	190369	AK2008-1174	<5	0.1	29.47	1.22	5.03	82.4
B3	679573.17	5714297.01	1451.29	30.1	31.1	190370	AK2008-1174	10	0.1	35.67	2.67	5.57	106.2
B3	679573.61	5714297.91	1451.29	31.1	33.7	190371	AK2008-1174	5	0.1	44.81	0.87	7.97	92.6
B3	679574.75	5714300.24	1451.29	33.7	55.2	No Sample	NA	NA	NA	NA	NA	NA	NA
B3	679584.17	5714319.55	1451.92	55.2	57.7	190372	AK2008-1174	<5	0.1	72.13	1.20	6.32	57.6
B3	679585.26	5714321.8	1451.99	57.7	61.8	190373	AK2008-1174	<5	0.1	61.17	0.82	7.25	84.5
B3	679587.06	5714325.48	1451.99	61.8	64.7	190374	AK2008-1174	<5	0.3	138.40	0.35	4.81	122.3

Appendix IV

Trench Lithological Logs

LEGEND	
CODE	Description
Lith_1	Primary Lithology
Lith_2	Secondary Lithology
Alt1_Int	Primary Alteration & Intensity (1=high, 2=medium, 3=low)
	Secondary Alteration & Intensity (1=high, 2=medium,
Alt2_Int	3=low)
Min1_percent	Primary Mineralization & Percent
Min2_percent	Secondary Mineralization & Percent
Struct_1	Primary Structure
S_Depth	Structure Depth
S_DDir_1	Structure Dip Direction
S_Dip_1	Structure Dip

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
A1	0	20	0	Not sampled - no bedrock exposed, till deposit.	Till							0	0	0
A10	0	50	0	Not sampled - no bedrock exposed, till deposit.	Till							0	0	0
A2	0	36.7	0	Not sampled - no bedrock exposed, till deposit.	Till							0	0	0
A3	0	5	0	Not sampled. Gy mod'ly sil-carb altd masv vol'c.	Basalt		Sil2	Car2			Fracture	4.9	96	54
A3	5	7	202401	Gy mod'ly sil-carb altd masv vol'c w diss'd mag-py. 10% mag xtls.	Basalt		Sil3	Car2	Py1	Mag10		0	0	0
A3	7	8	0	Not sampled. Gy mod'ly sil-carb altd masv vol'c.	Basalt		Sil2	Car2				0	0	0
A3	8	9.3	202402	Gy mod'ly sil-carb altd masv vol'c w diss'd mag-py. 10% mag xtls.	Basalt		Sil3	Car2	Py1	Mag10		0	0	0
A3	9.3	13.7	0	Not sampled. Gy mod'ly sil-carb altd masv vol'c.	Basalt		Sil2	Car2				0	0	0
A3	13.7	15.5	202403	Gn-gy highly sil-chl-carb altd masv vol'c w 10% mag.	Basalt		Sil3	Car2	Mag10			0	0	0
A3	15.5	30	0	Not sampled. Gy mod'ly sil-carb altd masv vol'c.	Basalt		Sil2	Car2				0	0	0

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
A8	0	1.6	0	Not sampled - no bedrock exposed.	Basalt		Chl2					0	0	0
A8	1.6	4.6	202404	Gn-gy chl-altd masv vol'c w 2% diss'd py.	Basalt		Chl3		Py2	Mag1		0	0	0
A8	4.6	7.5	202405	Gy-gn mod'ly chl-carb altd masv vol'c w/ 10% cal-veinlets.	Basalt		Chl2	Car2	Mag5			0	0	0
A8	7.5	9.5	202406	Dk gn highly sil- mod'ly carb altd masv vol'c w/ 2% cal-vn & 2% diss'd py.	Basalt		Sil3	Car2	Py2	Mag5		0	0	0
A8	9.5	11.9	202407	Lt gy mod'ly carb-chl alt'd masv vol'c w/ 10% mafic clots & 10% cal pods.	Basalt		Chl3	Car2	Mag10			0	0	0
A8	11.9	16.2	0	Not sampled. Lt gy weakly carb-chl alt'd masv vol'cs.	Basalt		Chl1	Car1				0	0	0
A8	16.2	18.2	202408	Gn gy to wh highly chl, mod carb, wk sil alt'd masv vol'c w/ 30% qtz vnlets, 5% cal fract-fill, 2% diss'd py.	Basalt		Chl3	Sil2	Py2		QtzVn	16.9	325	71
A8	18.2	19.9	202409	Gn gy highly chl, mod sil altd masv volc w/ 5% cal veins and 2% diss'd py.	Basalt		Chl3	Sil2	Py2			0	0	0
A8	19.9	22.9	202410	Dk gn highly chl, mod carb alt'd masv volc w/ 2% diss'd py and 2% cal- veins.	Basalt		Chl3	Car2	Py2		Fracture	21.3	195	86
A8	22.9	24.8	202411	Dk gn highly chl alt'd schistose volc w/ 2% mag, 2% fine diss'd py, 2% cal- veins.	Basalt		Chl3		Mag2		Foliation	23.6	325	60
A8	24.8	27	202412	Gy-dk gy mod carb, mod sil alt'd masv volc w/ 2%fine diss'd py, 10% qtz vein'g, cal fracture-fill, and mag 5%	Basalt		Sil3	Car2	Py2	Mag5		0	0	0
B1	0	2.9	189879	Yellowish-pk highly sheared slt.	Siltstone						Contact	2.9	345	90
B1	2.9	3.8	189880	Bl-gy highly sil'd still & sheared slt w/ occ'l <1cm qtz-carb veinlets 2%, and red-bn bands of ankerite?	Siltstone		Sil3				QCVnl	0	0	0
B1	3.8	9.6	189881	Lt-bn limonitic and Mn-stained soft soil @ HW of fault while cherty boudinage-rich w/ 1-2%vf py diss'n @ FW.	Undefined		Sil4				Fault	6.8	285	85
B1	9.6	11.8	189882	Lt gn-gy ill-chl-car altd volc's, sheared.	Basalt		III2	Chl2			Fault	11.8	230	85
B1	11.8	13	189883	Blk highly lim-Mn stained & fract'd/ argillite w/ occ'l boxworks along fractures.	Argillite							0	0	0
B1	13	14	189882	Blk highly lim-Mn stained & fract'd/sheared argillite w/ occ'l boxworks along fractures.	Argillite						Fault	13	355	82
B1	14	14.4	190382	1-2cm qtz-py (20%) vnlets in highly sil'd to occasionally cherty volc's.	Basalt		Sil3				QPVnl	14.4	310	90
B1	14.4	15	190381	Bn mag-py (5%) diss'd carbonaceous-lim'c block of volc.	Basalt		Car3		Mag5	Py5		0	0	0
B1	15	18.2	189883	Gn-gy translucent chert w/ 1-2% v.f py masv volc.	Basalt				Py2		Fault	18.2	15	80

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B1	18.2	27.8	189903	Ill-chl to mod'ly sil'd, NE ward /sheared volc w/ slightly lim filled fractures, mag-py along fracture of chert.	Basalt		III2	Sil2			Fracture	24	50	90
B1	27.8	28.9	189884	Highly to int'ly sild, ill'chl altd volc w/ traces of vf py.	Basalt		Sil4	III2	Py1			0	0	0
B1	28.9	32.5	189885	III-chl altd volc, occ'ly sil'd w/ lim'd vf py, sheared.	Basalt		III2	Chl2	Py1			0	0	0
B1	32.5	36.8	189886	Dk-gn to blk highly sil-car-ill-chl altd volc varying to sheared/fold argillite northwards.	Basalt	Argillite	Sil3	Car3	Mag1	Py1		0	0	0
B1	36.8	38.6	190383	Mag-py(5%)-cpy(tr) skarn pod/boudinage? in argillite.	Skarn	Argillite					Boudinage	37.7	325	90
B1	38.6	40	189886	Dk gn-blk highly chl alt'd sheared argillite/	Argillite							0	0	0
B1	40	41	189887	Lt gy-gn highly sil'd alt'd masv volc-chert w/ 5% diss'd fracture-fill py, 2% chl pods, lim.	Basalt							0	0	0
B1	41	41.1	190384	10cm masv mag-py-qtz vein @ FW of shear plane.	Mag-Py-Qtz Vein		Sil5				MPQVn	41.1	195	76
B1	41.1	46.9	189888	Slightly fract'd to sheared volc, lim'c w/ mag-py-qtz vnlets.	Basalt							0	0	0
B1	46.9	46.95	190385	5-6cm masv py rimming the mag-py-carb skarn.	Mag-Py Vein						Contact	46.95	40	90
B1	46.95	49	189889	Dk gn-gy massv block of mag-py-carb skarn w/ occ'l qtz vnl.	Skarn		Sil					0	0	0
B1	49	54.5	189904	Gn-gy Ill-chl alt'd volc occ'l augite porpy texture, highly sheared w/ lim, tr- 1% fine py.	Basalt		III2	Chl2	Py1		Contact	54.5	35	90
B1	54.5	60	189904	Lt gn-gy marble, sil-carb altd and slightly fract'd to massive,	Marble		Sil4	Car3				0	0	0
B1	60	63.5	189904	Gn-gy Ill-chl alt'd volc occ'l augite porpy texture, highly sheared w/ lim, tr- 1% fine py.	Basalt		III2	Chl2	Py1		Contact	60	30	90
B1	63.5	67.5	189890	Highly to int'ly sil'd (cherty @ 67.5-68.5) ill-chl- altd volc w/ mag-py-carb rich boudinage.	Basalt		Sil4	1113			QtzVn	64.4	200	65
B1	67.5	68.8	189891	Int'ly sil'd ill-chl- altd volc.	Basalt		Sil5	1113			Contact	68.8	15	90
B1	68.8	73	189892	YI-bn slight to mod sil-altd marble, sheared w/ oxi'd py diss'n.	Marble		Sil3					0	0	0
B1	73	75.8	189892	As above but stronger sil'n, acc'ly cherty @ 75-75.8 w/ vf py disn.	Marble		Sil4		Py1		Contact	75.8	240	85
B1	75.8	79.6	189893	Highly sheared chl-ill-carb alt volc, highly oxidized	Basalt		Chl3	III2	Py1			0	0	0
B1	79.6	85.3	189894	Highly to int'ly sheared chl-ill altd volc w/ occ'l lim'c qtz vnlets.	Basalt		Chl3	1112	Py2			0	0	0

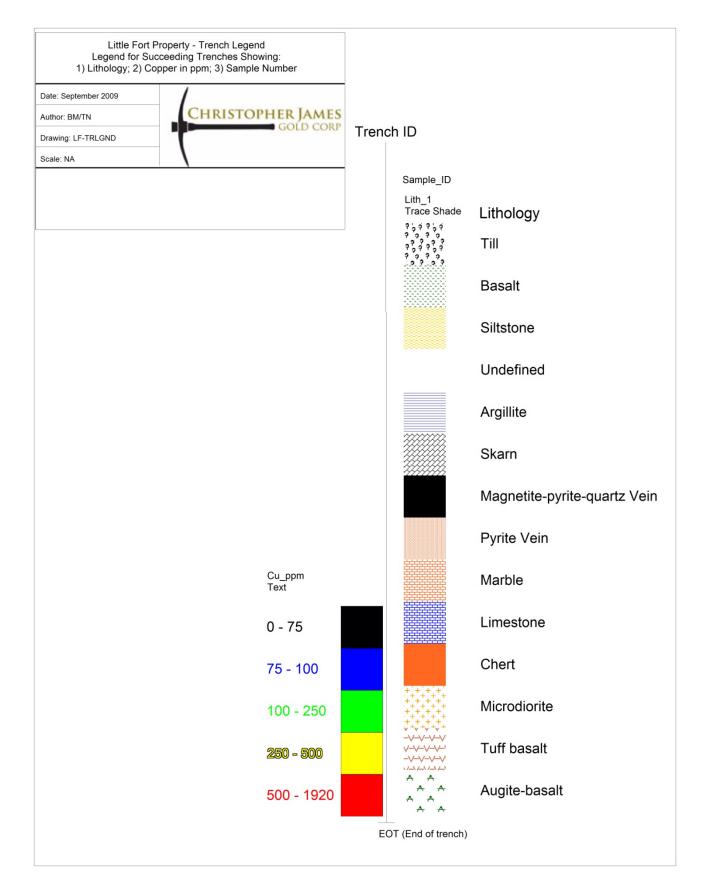
Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B1	85.3	86.5	189895	Highly to int'ly sheared chl-ill altd volc w/ occ'l lim'c qtz vnlets.	Basalt		Chl3	III2	Py2			0	0	0
B1	86.5	89	189896	As above but more carb-altd and w/ cherty portions.	Basalt		Chl3	III2			Contact	89	45	85
B1	89	94.3	189897	YI-brn highly sil alt'd marble cut by NE-trending <3cm qtz vn. Vf py disn 2%	Limestone		Sil2		Py2		QtzVn	91	125	80
B1	94.3	101	189898	As above but more sil'd w/ cherty mag-py-carb boudinage (10% py-mag)	Limestone		Sil3		Py10	Mag10		0	0	0
B1	101	101.1	189899	10cm lim-py filled fracture.	Py Vein		Sil5		Py10		PVn	101.1	135	70
B1	101.1	102.6	190386	Cherty boudinage? w/ 5% 1cm thick carb vnlets.	Chert		Sil5	Car2				0	0	0
B1	102.6	104	189899	Gn-Gy highly sil alt'd masv volc w/ vnlets of masv py (70%), 1% qtz pods, 25% lim-mag.	Basalt		Sil3		Py70	Mag25	Contact	104	230	82
B1	104	109	189900	Approx'ly 3m thick garnet-diopside-mag-py skarn. Py is 10% to massive locally w/ traces of cpy.	Skarn		Gar2	Diop2	Py10	Cpy1	Contact	109	40	85
B1	109	115.5	189901	Car-chl-ill altd volc, w/ remnant augite porphyry, slightly sil'd w/ 3% vf py dissn.	Basalt		Car2	Chl2	Ру3			0	0	0
B1	115.5	118	189902	As above but highly oxidized/leached.	Basalt							0	0	0
B1	118	123.7	0	Not sampled. Chl-alt'd sheared vol'cs.	Basalt							0	0	0
B10	0	5.3	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B10	5.3	9.9	189936	Gy-gn mod'ly sil'd+chl'd alt'd masv volc sed w/ 5% diss'd py, 10-20% diss'd chl	Basalt		Sil3	Chl2	Py5		Fracture	7.4	105	50
B10	9.9	14	189937	Gy mod'ly sil'd low chl'd alt'd masv volc rock w/ 2% py	Basalt		Sil3	Chl2	Py2		Fracture	10.6	325	74
B10	14	19	189938	Gn-gy mod'ly chl'd low sil'd alt'd masv volc sed w/ 2% py, 5% qtz.	Basalt		Chl3	Sil2	Py2		Fracture	13.2	3	88
B10	19	20	0	Not sampled. Med gy slightl sil-chl alt'd masv volc-sed.	Basalt		Sil1	Chl1			Fracture	17.8	210	84
B10	20	22	189939	Med gy mod'ly sil low chl'd alt'd masv volc sed	Basalt		Sil2	Chl1			Fracture	21.4	205	70
B10	22	24	0	Not sampled. Med gy slightl sil-chl alt'd masv volc-sed.	Basalt							0	0	0
B10	24	27	189940	Lt gy highly sil'd alt'd masv volc sed w/ 25%sil, 50% qtz in vein'g	Basalt		Sil3					0	0	0
B12	0	0.3	0	Not sampled - no bedrock exposed.	Till							0	0	0

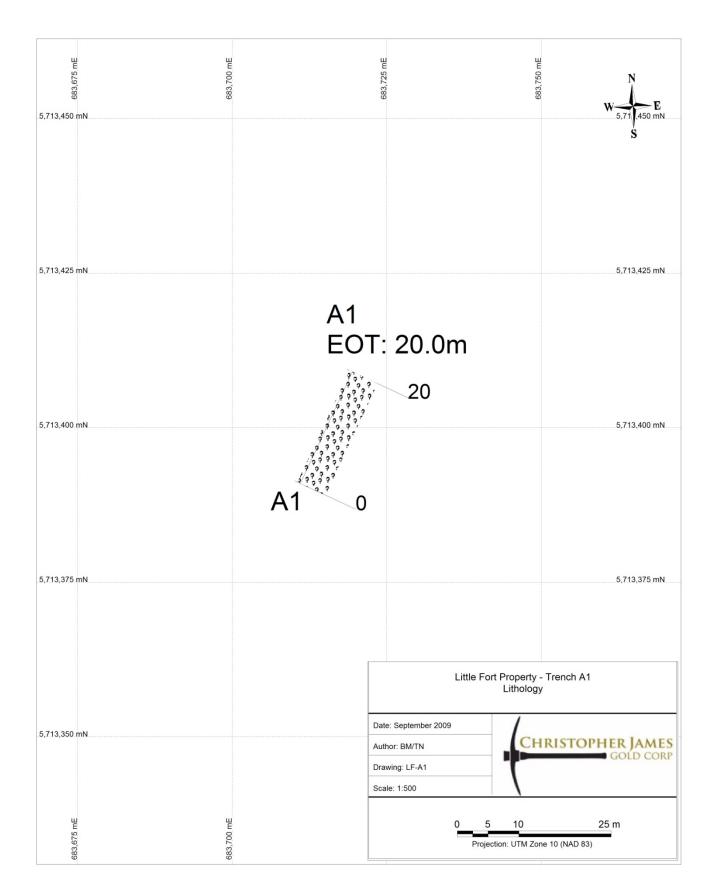
Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B12	0.3	4.1	190352	Dk grn-gy mod'ly sil'd chl'd, low carb alt'd masv volc sed	Basalt		Sil2	Chl2			Fracture	3	40	30
B12	4.1	5.9	190353	Variable color, highl sil'd chl'd alt masv volcanic w/ 20% cal veins, 10% chlorite, 15% mafic min'ls	Basalt		Chl3	Sil2				0	0	0
B12	5.9	7.65	190354	Bn weathered colour masv lim'c altered zone	Basalt				Lim10		Fracture	6.7	356	60
B12	7.65	13.2	190355	Variable colour, highly chl'd alt'd masv volcanic w/ 10% chlorite, 5% qtz veins, 2% cal, 15% mafic min'ls, %2 mag, 2% lim	Basalt		Chl3	Car1	Mag2	Lim2		0	0	0
B12	13.2	15.5	190356	Dk grn-gy highly chl'd and sil'd mod'ly carb alt'd masv volc sed w/ 5% mag, 1% chl	Basalt		Sil3	Chl3	Mag5		Fracture	14.6	40	70
B12	15.5	20	0	Not sampled. Dk grn-gy slightly chl-sil mod'ly carb alt'd masv volc-sed.	Basalt							0	0	0
B12	20	23.55	190357	Brn-white highly sil'd or carb alt'd masv volc rock w/ 30% masv toothy qtz vein, 10% lim	Basalt		Car3	Sil2	Lim10		Fracture	21	155	82
B12	23.55	28.5	190358	Dk gy highly sil'd, mod carb, low chl'd alt'd masv volc sed w/ 5% cal frct fill, 10% diss'd py	Basalt		Sil3	Chl1			Fracture	23	160	76
B12	28.5	33.3	190359	Gn-gy-bk mod'ly chl'd +carb heavily alt'd masv volc sed w/ 2% py, 1% mafic minearls, 2% cal, 5% chl, 5% mag, 1%lim	Basalt		Chl2	Sil1	Mag5	Lim1	Fracture	29	330	78
B12	33.3	38	190360	Gy-dk grn highly sil'd mod'ly carb alt'd masv volc sed w/ 1% py, 2% cal, 5% lim	Basalt		Sil3	Car2	Lim5		Fracture	30.2	35	50
B12	38	42.3	190361	Variable colour, highly carb alt'd masv rock w/ 10% cal, 30% lim	Basalt		Car3		Lim30		Fracture	33.4	150	82
B12	42.3	44.6	190362	Gy-gn mod'ly carb and chl'd alt'd masv volc sed w/ 10% cal vein, 1% py diss'd., 1% lim	Basalt		Car2	Chl2			Fracture	41.2	160	82
B13	0	2.2	0	Not sampled - no bedrock exposed.	Till							0	0	0
B13	2.2	5	189949	Gn-gy mod'ly chl+sil'd alt'd masv volc sed w/ 10% mag, qtz sil vein'g	Basalt		Chl2	Sil2	Mag10		Fracture	5	355	50
B13	5	7.3	0	Not sampled. Gn-gy slightly chl-sil alt'd masv volc-sed.	Basalt						Fracture	13.4	85	84
B13	7.3	10	189950	Gn-gy highly chl'd alt'd masv volc sed w/ 2% qtz vein'g, 5% mafic min'ls	Basalt		Chl3		Lim2		Fracture	16.4	40	80
B13	10	13.6	190351	Gn highly chl'd alt'd masv volc sed w/2% py, 5% mag, 5% qtz, 5% cal.	Basalt		Chl3		Py2		Fracture	17.8	260	84
B13	13.6	19.7	0	Not sampled. Gn-gy slightly chl-sil alt'd masv volc-sed w/ 10cm thick Qtzvn.	Basalt						Qtzvn	19.7	345	74
B14	0	30	0	Not sampled. Flooded and inaccessible.	Basalt							0	0	0
B15	0	1.5	0	Not sampled - no bedrock exposed.	Till							0	0	0

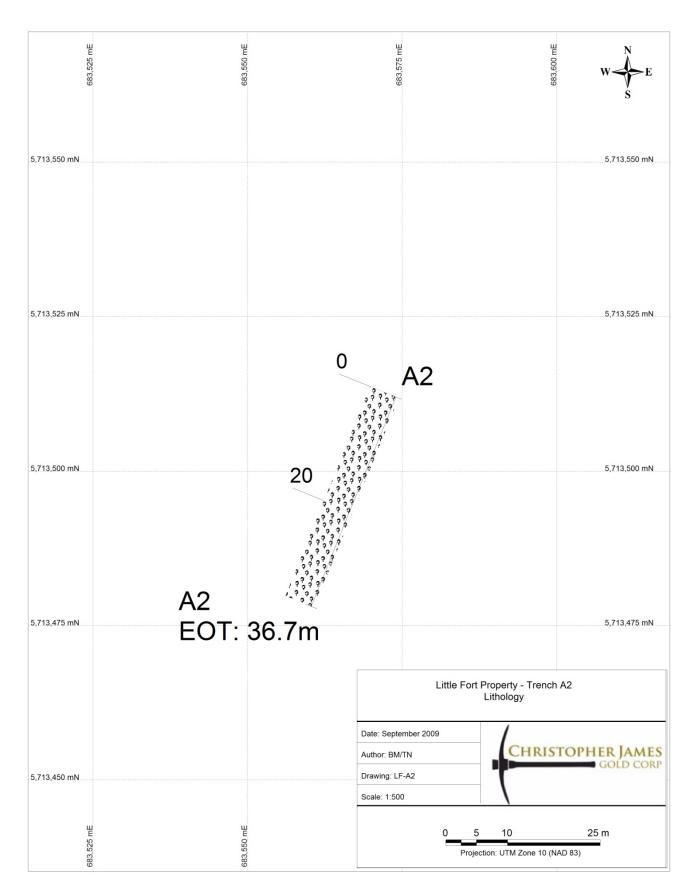
Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B15	1.5	6	189941	Gn-gy highly chl'd mod'ly sil'd alt'd masv volc sed w/ 2% diss'd py, mag'c. Basalt dike @ 4.8-6m.	Basalt		Chl3	Sil2	Py2		Dike	4.8	20	90
B15	6	12	189942	Gy-Lt brn highly sil'd alt'd masv volc sed w/ 5% py in fracture, qtz vein, 2%malachite stain, 5% lim	Basalt		Sil3		Py5	Lim5	Fracture	11.2	80	79
B15	12	15.7	189943	Lt gy highly sil'd alt'd masv sil'd siltstone w/ 2% diss'd py	Basalt		Sil3		Py2			0	0	0
B15	15.7	20.4	189944	Gy-wt highly sil'd low chl'd alt'd masv volc sed w/ 20% qtz, 20% sil, 5% cal, 2% py.	Basalt		Sil3	Chl1	Ру3		Fracture	16.5	350	70
B15	20.4	21.6	0	Not sampled. Lt gy-gn slightly sil-chl alt'd masv volc-sed.	Basalt						Fracture	21.7	345	70
B15	21.6	23.4	189945	Lt gy-gn mod'ly sil'd chl'd alt'd masv volc sed w/ 5% sil, mag	Basalt		Sil2	Chl2			Fracture	25.6	325	30
B15	23.4	27.4	189946	Gn to dk-gn highly chl'd alt'd masv volc w/ 15% mafic min'ls	Basalt		Chl3				Fracture	27.5	340	79
B15	27.4	34.3	0	Not sampled. Gn-dkgn highly chl'd masv volc.	Basalt						Fracture	31.5	15	80
B15	34.3	37.6	189947	Gn-bk mod'ly chl'd masv volc w/ 30% mafic min'ls, 10% epi?, mag	Basalt		Chl2		Mag1		Fracture	34.4	335	60
B15	37.6	39	0	Not sampled. Gy-gn to dkgn highly chl'd masv volc-sed.	Basalt						Fracture	35.6	350	86
B15	39	42.5	189948	gy-gn-dkgn highly chl'd alt'd masv volc sed w/ mag.	Basalt		Chl3		Mag1		Fracture	42	205	87
B15	42.5	70	0	Not sampled. Diamicton (till deposit).	Till						Fracture	48.8	355	54
B17	0	9	0	Not sampled. Gn-gy-wt highly sil'd, mod'ly chl+carb volc sed w/ 5-10% diss'd py, 2% lim	Basalt		Sil3	Chl2	Lim2			0	0	0
B17	9	14	189876	Fine grn-gy-wh crystalline rk - microdiorite, reacts w/ HCI.	Microdiorite		Car2	Sil1	Lim5			0	0	0
B17	14	21	189877	Gn-wt to bk highly chl'd masv volc-sed w/ fault-bxd portion, w/ 5% mafic min'ls, 1% diss'd py, 5% cl, 5% cal, 5% lim	Basalt		Chl3	Sil1	Py1		Fault	15.5	77	85
B17	21	22	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B17	22	26	189878	Gy-gn highly sil'd, mod'ly chl'd microdiorite w/ 2% py, 5% chl , 10-12cm wide qtz vein, 1% lim	Microdiorite		Sil3	Chl2	Py2	Lim1	Qtzvn	22.5	10	82
B17	26	44	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B18	0	5	189851	Lt gy-wt highly sil'd, low carb alt'd masv lithic volc sed w/lim 2%	Tuff basalt		Sil3	Car2	Lim2			0	0	0
B18	5	10	189852	Lt gy highly sil'd chl'd? alt'd masv volc sed w/ 1% diss'd py, 5% epi, 20% qtz	Tuff basalt		Chl3	Car2	Py0.5	Mag0.5	Contact	9.2	181	86

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B18	10	15	189853	Med gy-grn mod'ly carb chl'd alt'd masv microdiorite w/ 2% py	Microdiorite		Chl2	Car1	Py1			0	0	0
B18	15	20	189854	Dk gy mod'ly chl'd carb alt'd masv microdiorite w/ 2-10% py	Microdiorite		Chl2		Py3			0	0	0
B18	20	25	0	Not sampled. Mod'ly chl altd masv microdiorite.	Microdiorite		Chl2		Py10			0	0	0
B18	25	30	189856	Med gy mod'ly chl slt'ly carb alt'd masv microdiorite w/ 2% diss'd py	Microdiorite		Chl2	Car1	Py2			0	0	0
B18	30	35	189857	Dk gy mod'ly chl'd carb alt'd masv microdiorite w/ 2% py, some augite or mafic min'ls	Microdiorite		Chl2	Car1	Py2		Contact	34.4	40	90
B18	35	40	189858	Dk gy highly chl'd alt'd masv microdiorite or volc sed w/ 5% diss'd py, some masv py 2%, 15% lim	Basalt		Chl3		Py5			0	0	0
B18	40	44.5	0	Not sampled. Flooded and inaccessible.	Basalt							0	0	0
B2	0	7	189860	Dk-bn highly sheared lim-Mn stained vol'c w/ bl-gy translucent chert boudins w/ 1% py diss'n	Basalt		III3	Chl3	Py1		Sin-Fault	3.4	220	86
B2	7	13	189861	As above but less chert boudins.	Basalt		III3	Chl3	Py1		Fault contact	10	215	85
B2	13	22.8	189862	Lt gy highly sil'd mod'ly ill-chl-carb alt'd sheared masv vol'c w/ Mn-stainings confined to fractures.	Tuff basalt	Siltstone	1113	Chl3	Py5		Bedding	11	230	72
B2	22.8	25	189863	Gn-rust modly' chl'd masv volc sed w/ 10% diss'd py, 20% lim, qtz grains	Tuff basalt	Siltstone	Sil3	Chl3	Py10		Fault	20.5	60	85
B2	25	28	189864	As above but less py-lim w/ diamicton cover.	Tuff basalt		Sil3	Chl3	Py1		Fault contact	25	40	86
B2	28	39	0	Not sampled. Diamicton (till deposit).	Till						Bedding	28	50	78
B2	39	41	189865	Gy-translucent highly sil-chl alt'd masv volc w/ 1% py, 2% lim	Tuff basalt		Sil3	Chl3	Py2			0	0	0
B2	41	43	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B2	43	45	189866	Gy highly sil-chl-py altd masv volc w/ 1% garnet, 15% lim 1-cm coatings, mag	Tuff basalt		Sil3		Py5	Mag15		0	0	0
B2	45	47	189867	Wh-gy rusty mod'ly sil'd slightly chl'd masv volc sed w/ 5% py diss'd, 5% qtz, 10% lim, mag'c.	Tuff basalt		Sil3	Chl1	Py5	Mag5		0	0	0
B2	47	56	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B2	56	58.3	189868	1.5m milky-wh translucent chert w/ 5% flaky py, partly mag'c.	Chert		Sil5		Py5			0	0	0
B2	58.3	61.3	0	Not sampled. Diamicton (till deposit).	Till							0	0	0

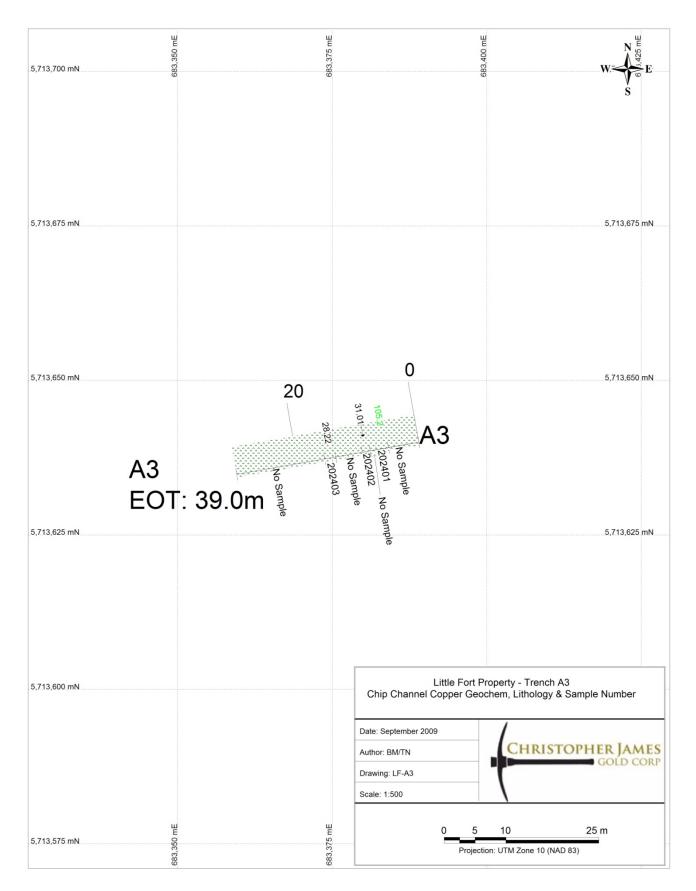
Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B2	61.3	67.5	189869	Gy sheared but highly sil-ill-chl altd volc w/ cherty boudins w/ 10% py, 1% chalcopy, 10% lim	Tuff basalt		Sil3	III2	Py10	Lim10		0	0	0
B2	67.5	74.5	189870	Bedded slt, highly sild w/ sheared ill-chl-carb altd walls.2% py, vein sil/qtz, 2% lim.	Siltstone	Tuff basalt	Sil3	III2	Py2		Bedding	71	30	72
B2	74.5	77	189871	Dk-gy ill-chl-sil alt'd masv volc w/ 1% diss'd py.	Tuff basalt		III2	Chl2	Py1		Fault	75	40	85
B2	77	79.8	189872	Dk-gy slightly sil-ill-chl altd volc boudin in sheared/lim'c vol'c, w/ 2% diss'dinated py, 5% lim	Tuff basalt		Sil2	1112	Py2			0	0	0
B2	79.8	85	189873	Lt gy slightly ill-chl altd aug-porphyry basalt w/ qtz-car vnlets.	Aug-Basalt		III1	Chl1			Fault	85	230	85
B2	85	89	189874	Gn-gy slightly sil-ill-chl altd volc-sed w/ 2% diss'd py, 2% lim	Tuff basalt		Sil1	III1	Py2			0	0	0
B2	89	90.5	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B2	90.5	94	189875	Gy translucent chert w/ up to 5% cubic py dissn.	Chert		Sil5		Py5			0	0	0
B2	94	115	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B25	0	2.7	0	Not sampled.Slightly sil-ill-chl altd siltstone, folded and oxidized.	Siltstone		Sil1	III1			Fault	2	210	78
B25	2.7	5.3	189905	Off wt sheared slt w/ 30cm-wide chert having 2% diss'd py/	Siltstone				Lim1		Fracture	5	235	90
B25	5.3	6.5	189906	Or-bn highly lim'c (rusty-boxworks) w/ 10% qtz veinlets/stringers.	Chert		Sil1		Lim10		Boudinage	6.2	235	90
B25	6.5	9	189907	Gy highly sil slightly chl'd volc w/ 5% py and vf silver? traces.	Siltstone		Sil3	Chl1	Py5		Fracture	9	235	90
B25	9	10.4	189908	Fold trough of It-gy highly fract'd slightly chl'd slt w/ 50% lim, 10-15% masv py.	Siltstone		Chl1		Py15	Lim10	Fold trough	9.9	130	32
B25	10.4	11.6	189909	Med gy sheared/foliated chl alt'd siltstone w/ 30% lim, 1% py	Siltstone		Chl1		Py15	Lim10	Fault	0	0	0
B25	11.6	14.3	189910	Br highly sheared and Fe-Mn stained rock w/ 30% lim	Siltstone				Lim30		Fault	11.8	195	85
B25	14.3	17	189911	Med gy highly sil'd selec'ly carb alt'd volc sed w/ 5% sili qtz, 5% lim	Tuff basalt		Sil3	Car2	Lim5			0	0	0
B25	17	19	189912	Med gy highly sil'd mod'ly carb alt'd masv volc w/ cherty core, 20% qtz vein'g, 5% py fract fill, 10% lim	Tuff basalt		Sil3	Car2	Py5	Lim10	Fault contact	17.8	35	80
B25	19	21	189913	Highly sil'd to cherty chl-alt siltstone w/ mag'c veneer of lim/Mn-rich soil.	Siltstone		Sil3	Chl1	Lim10		Fault	19.6	225	90
B25	21	23.7	189914	Dk gy lim/Mn stained sheared slt, mod'ly chl'd weakly sil'd w/ 2% diss'd py, 3% lim	Siltstone		Chl2	Sil1	Py2	Lim3	Fault contact	22.2	35	75

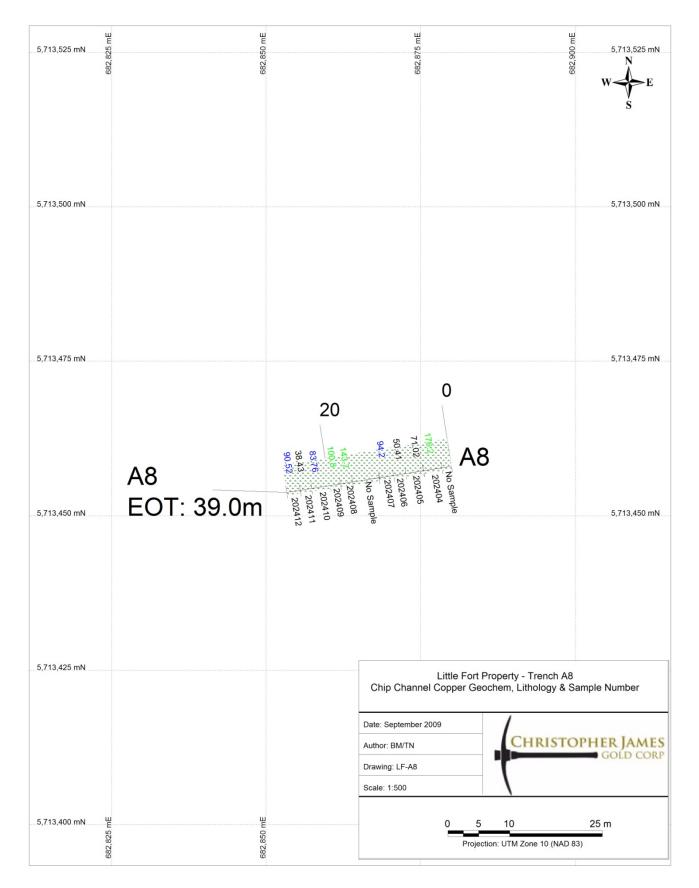

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B25	23.7	27	189915	As above, but med-gy highly sil'd mod'ly carb alt'd sed w/ 2% mag, 5% lim	Siltstone		Sil3	Car2	Mag2	Lim5	Fault contact	27.2	230	80
B25	27	28	189916	Brn highly ill-chl-sil altd volc w/ 40% lim, 10% qtz, mag	Tuff basalt		III3	Chl3	Lim40		Bedding	27.8	225	82
B25	28	29.4	189917	As above but continuity at southern wall of trench.	Tuff basalt		III3	Chl3	Lim40		Fault contact	28.2	220	78
B25	29.4	32	189918	Gn highly sheared Fe/Mn-stained volc w/ rare sil-chl-mag-py boudins w/ 2% py, 5% lim	Tuff basalt				Py2	Lim5	Fold crest	30.2	145	40
B25	32	32.8	189919	Lt gy mod'ly ill-chl'd alt'd slt w/ 2% diss'd py, 5% mag, 10% lim	Siltstone		III2	Chl2	Py2	Mag5	Fault contact	32	255	90
B25	32.8	34	189920	As above but med gy, w/ 5% diss'd py, 2% lim	Siltstone		III2	Chl2	Py5	Lim2	Bedding	33.2	30	75
B25	34	35	189921	As above but mag'c and highly lim-Mn filled fractures, dk gy, highly chl-sil alt'd w/ 10% py vein fill, 5% lim.	Siltstone		Chl3	Sil3	Py10		Pvn	34	45	77
B25	35	40	189922	As above but sheared, It gy-gn w/ 5% diss'd py.	Siltstone		Chl3	Sil3	Py5		Bedding	35	225	50
B25	40	41	189923	Med gy-gn highly sil-chl-ill alt'd masv volc w/ 2% diss'd py-mag.	Siltstone		Sil3	Chl3	Py2	Mag2	Fracture	38	40	90
B25	41	43	189924	As above but less sil'd, It gy slt w/ 2% diss'd py, 10% lim.	Siltstone		Sil1	Chl2	Py2	Lim10	Boudinage	41	40	90
B25	43	44	189925	Dk gn-gy highly chl-ser alt'd slt w/ 2% py, 1% lim-mag.	Siltstone		Chl3	Ser1	Py2	Lim10	Fault	43.4	40	65
B25	44	46	189924	As above but more fractured.	Siltstone		Chl3	Ser1	Py2	Lim10	Fault	45.8	20	90
B25	46	50	189926	Wh-gy sheared ill-chl-ser altd slt w/ 2% py, 5% lim	Siltstone		III2	Ser1	Py2	Lim5	Fold trough	46	285	30
B25	50	53	189927	As above but more fractured.	Siltstone		III2	Ser1	Py2	Lim5	Fault	46.8	190	70
B25	53	56	189928	As above but so sheared w/ traces of py.	Siltstone		III2	Ser1	Py0.5	Lim5	Fault reverse	48.3	200	85
B25	56	57.5	189929	As above but less sheared.	Siltstone		III2	Ser1	Py0.5	Lim5	Fold crest	50.8	135	30
B25	57.5	60	189930	Boudin of It brn highly sil-ill-chl alt'd sheared slt w/ 5% py, 10% lim.	Siltstone		Sil3	1113	Py5	Lim10	Fault	52.5	40	85
B25	60	65	189931	Wt masv but sheared marble w/ cherty/sil fills, 10% lim	Marble		Sil2		Lim10		Fault	54	230	74
B25	65	66.8	189932	As above bu It gy-gn and less sheared w/ 5-10% py, 2% lim	Marble		Sil2		Py10	Lim2	Fault	56	225	82
B25	66.8	71.4	189933	BI-gy slightly fractured and slightly sil-ill-chl altd slt w/ 3% py, 5% lim.	Siltstone		Sil1	III1	Ру3	Lim5	Fault contact	59.2	225	85

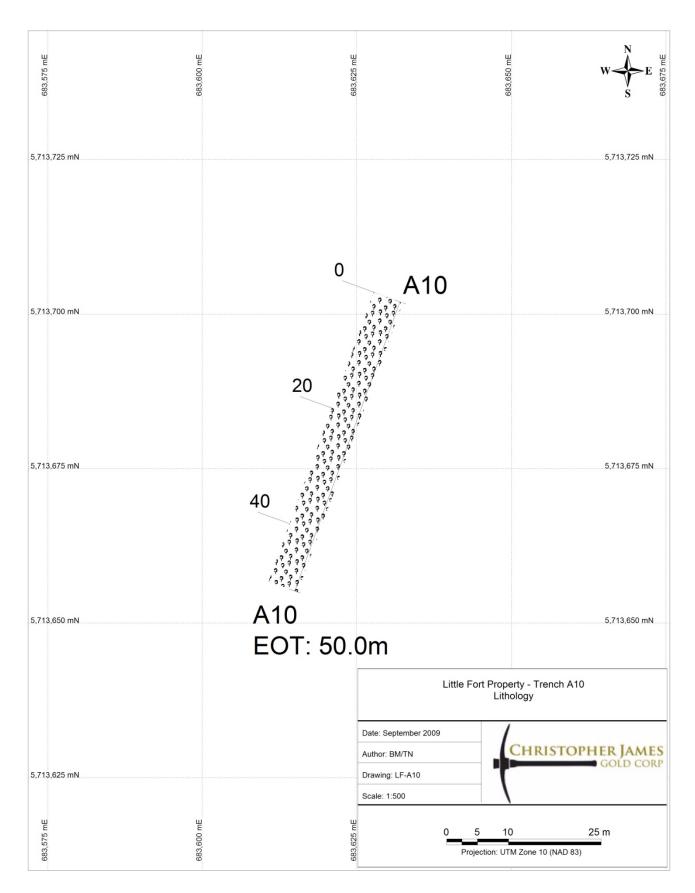

Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B25	71.4	75	189934	As above but gn-gy w/ 3% py, 5% lim.	Siltstone		Sil1	III1	Ру3	Lim5	Fault contact	66.8	210	80
B25	75	78.3	189935	Lt gy-gn sheared marble w/ cherty fracture-fills w/ 2% py.	Marble		Sil4		Py2		Bedding	69.6	200	78
B25	78.3	79	0	Not sampled. Sheared yl-marble, almost translucent.	Marble						Fault contact	75.4	35	70
B25A	0	4.9	190375	Lim/Mn stained sheared slightly sil-ill-chl alt'd siltstone w/ 10% cherty boudins w/ 2% py.	Siltstone		Sil2	Chl2	Py2			0	0	0
B25A	4.9	8.3	190376	As above but less sil'd, wh-gy w/ 2% py, 1% lim.	Siltstone		Sil2	Chl2	Py2		Fault	6	200	75
B25A	8.3	11.6	190377	Gy to It-gn sheared ill-chl-carb altd siltstone w/ occ'l chert w/ 2% py.	Siltstone		Sil2	Chl2	Py2		Fault	8.4	35	80
B25A	11.6	17	190378	Dk gy sheared sil-ill-chl altd slt w/ 70% mag-py-qtz-rich boudins w/ 10% py.	Siltstone		Sil2	Chl2	Py10		Contact	11.6	35	90
B25A	17	19	190379	As above but highly sil-ill-chl altd, gy-gn w/ occ'l chert boudins and 2% py.	Siltstone		Sil3	Chl3	Py2		Fault	17	210	85
B25A	19	23.4	190380	As abiove but highly sheared, gy w/ 10% py diss'd, 5% lim.	Siltstone		Sil3	Chl3	Py10	Lim5	Fault	19.2	30	80
В3	0	4	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
В3	4	7	190363	Lt gy-gn highly sil'd mod'ly carb alt'd masv volc	Basalt		Sil2	Car1			Fracture	5.2	280	40
B3	7	10.2	0	Not sampled. Lt gy-gn sligtly sil'd mod'ly carb alt'd masv volc.	Basalt		Sil2	Car1				0	0	0
В3	10.2	11.2	190364	Gy-gn highly sil'd mod'ly chl'd augite poyphyry basalt.	Aug-Basalt		Sil2	Car1			Fracture	10.6	355	70
B3	11.2	14.2	190365	Dk gy highly sil'd alt'd masv volc w/ 10cm wide qtz vein, 2% diss'd py	Basalt		Sil3		Py2		Qtzvn	12.9	210	42
B3	14.2	17.3	0	Not sampled. Dk-gy slightly sil-chl alt'd volc.	Basalt		Sil1	Chl1				0	0	0
B3	17.3	19.9	190366	Gn-gy mod'ly chl-sil masv volc w/ 5% diss'd py, 5% cal, 1% lim	Basalt		Sil3	Chl1	Py5	Lim1	Fracture	18.4	190	80
В3	19.9	23	190367	Lt gy highly sil'd masv volc w/ %2 lim	Basalt		Sil3		Lim2			0	0	0
В3	23	28.1	190368	Lt gy highly sild, mod'ly carb alt'd masv volc.	Basalt		Sil3	Chl2			Fracture	25	185	80
В3	28.1	30.1	190369	Masv lim'd zone, cherty fresh	Basalt				Lim2		Contact	30	180	90
В3	30.1	31.1	190370	Gy highly sil'd masv volc w/ 5% lim, qtz veins, diss'd py	Basalt		Sil3		Py1			0	0	0


Trench_ID	From_m	To_m	Sample_ID	Description	Lith_1	Lith_2	Alt1_Int	Alt2_Int	Min1_percent	Min2_percent	Struct_1	S_Depth	S_DDir_1	S_Dip_1
B3	31.1	33.7	190371	Lt gy-wt highly sil'd, low carb alt'd masv cherty volc w/ 2% cal vein, diss'd py	Basalt		Sil3	Car1	Py1			0	0	0
B3	33.7	55.2	0	Not sampled. Diamicton (till deposit).	Till							0	0	0
B3	55.2	57.7	190372	Gy-gn highly sil'd mod'ly carb alt'd masv volc w/ 20% cal vein, 2% dis'd py, 2% lim.	Basalt		Sil3	Chl2	Py2		CalVn	55.2	55	70
B3	57.7	61.8	190373	Lt gy highly sil'd low chl alt'd masv volc w/ 5% diss'd py, 3% lim	Basalt		Sil3	Chl1	Py5		CalVn	62.4	60	70
В3	61.8	64.7	190374	Gy highly sil'd masv volc w/ 1% py, 2% lim	Basalt		Sil3		Py1			0	0	0

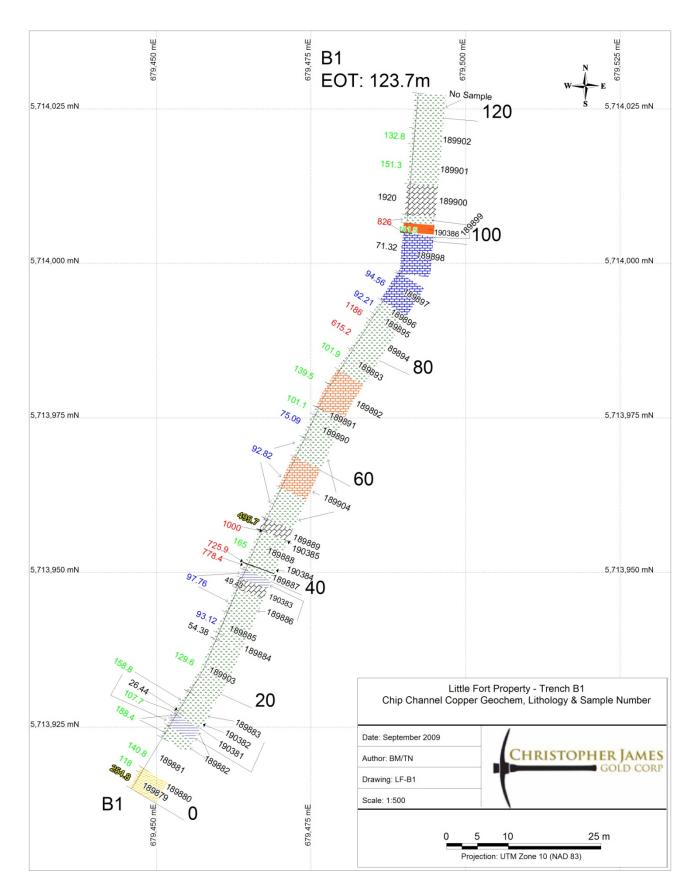
Appendix V

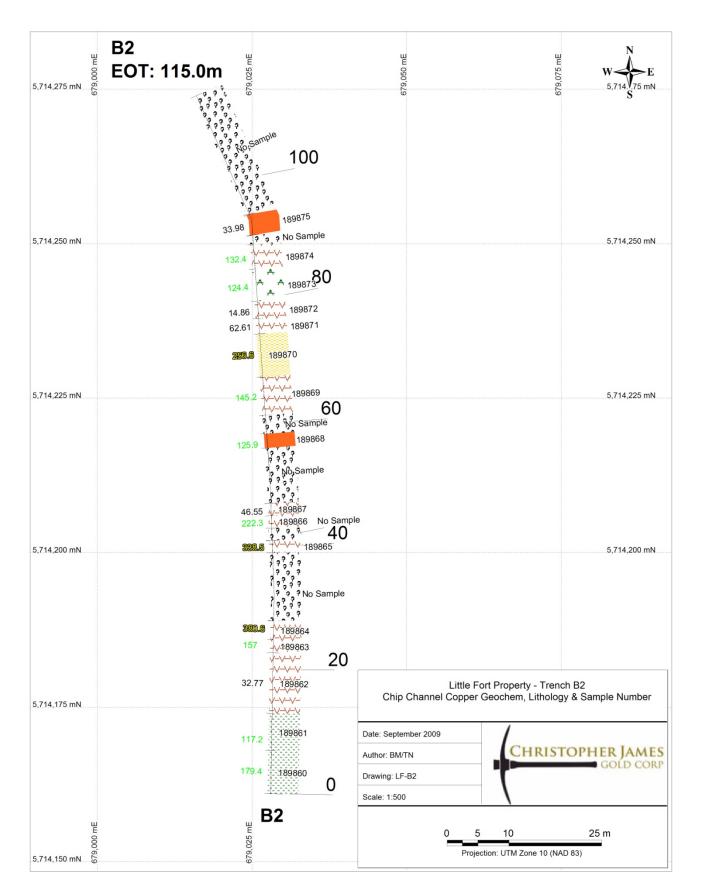

Trench Plan Views (in numerical order eg. B1, B2...)

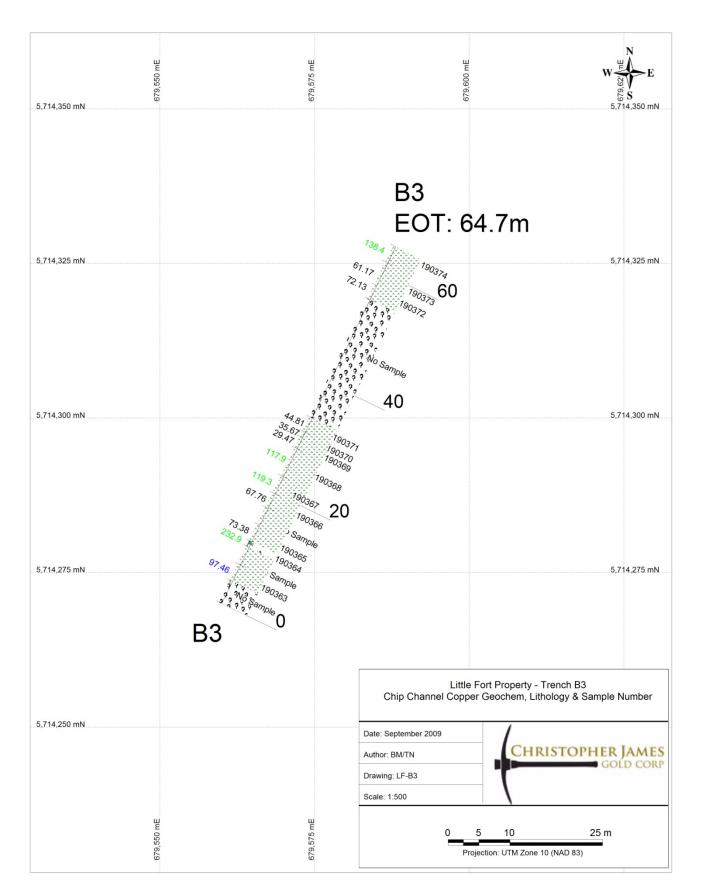


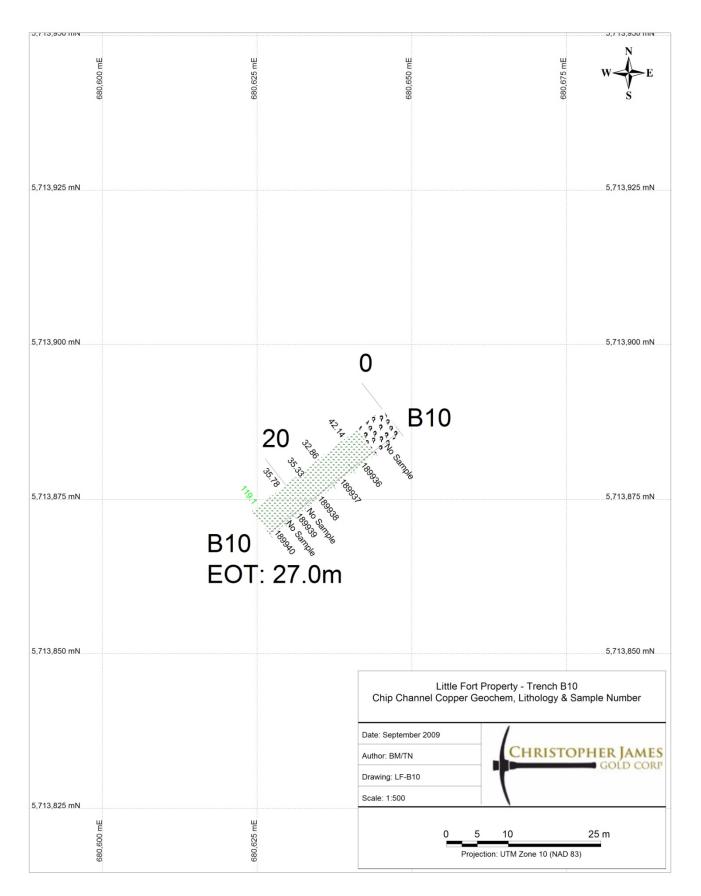


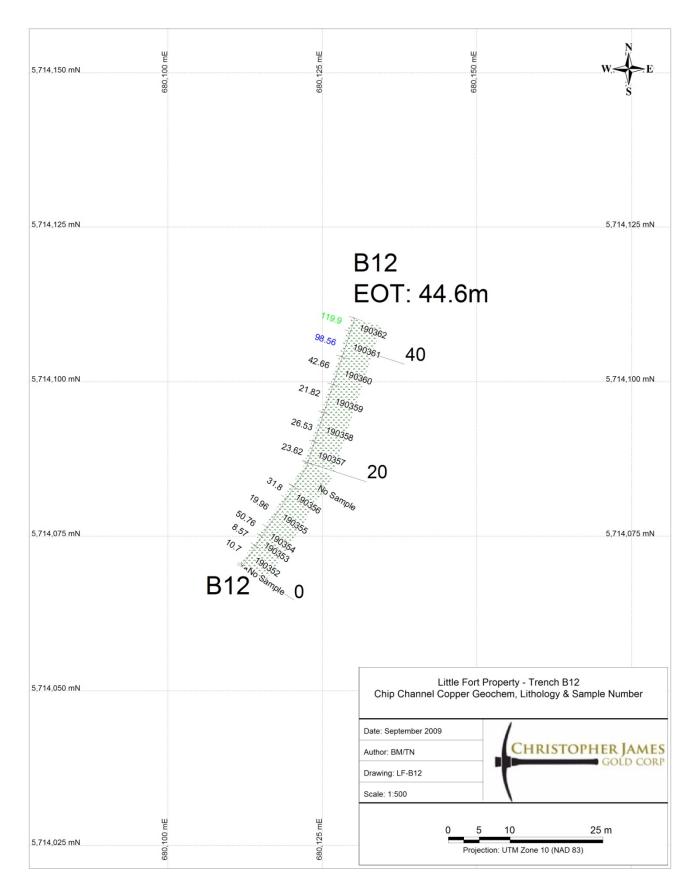
Appendix V

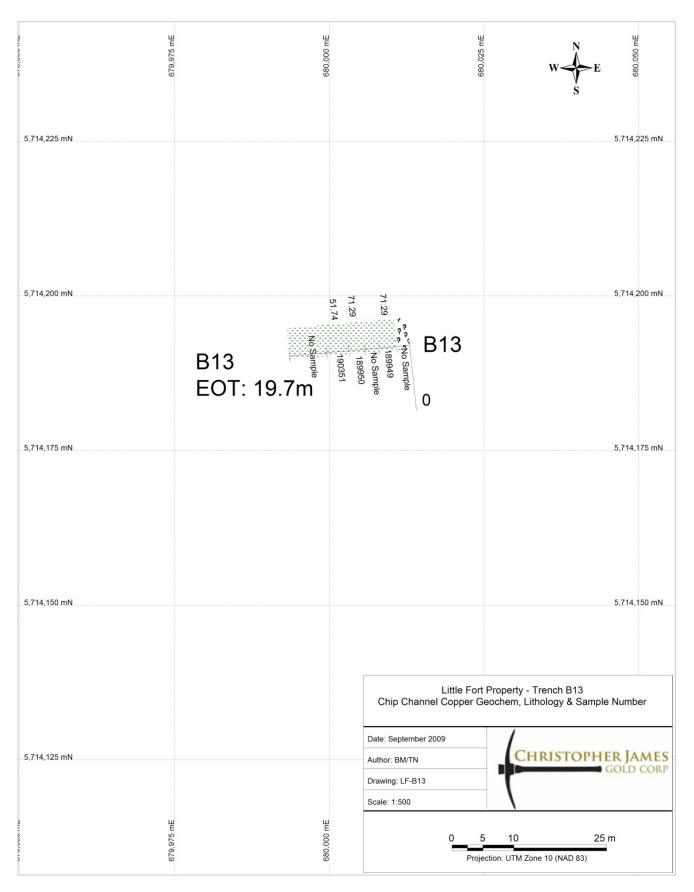


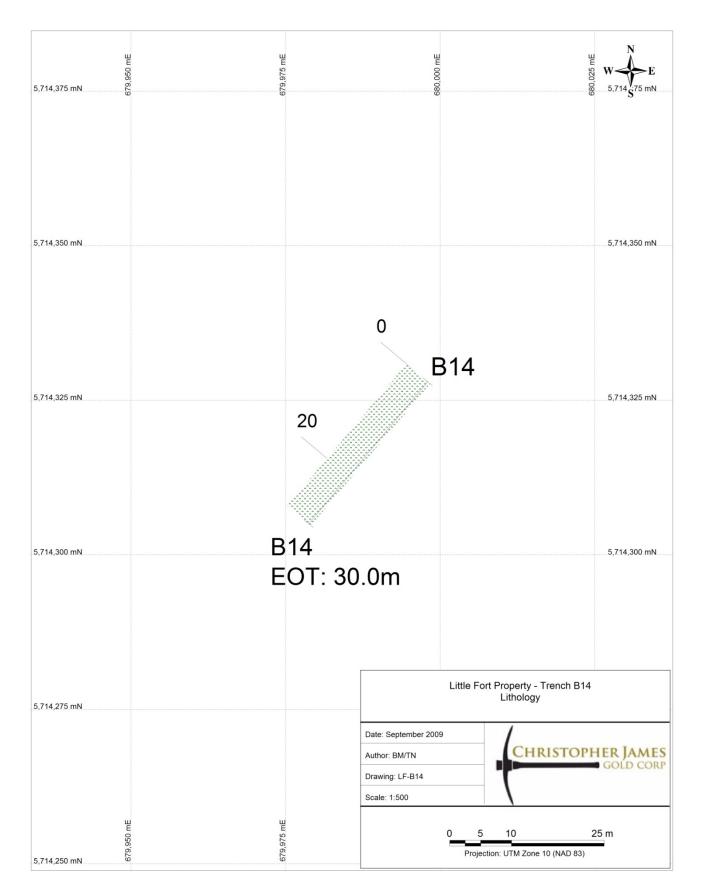


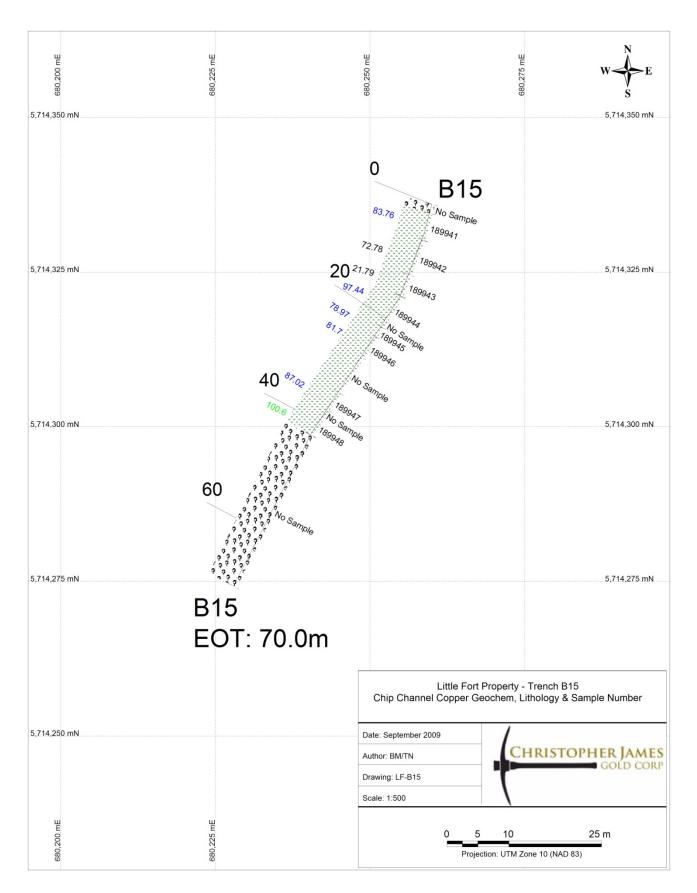

Appendix V


Appendix V

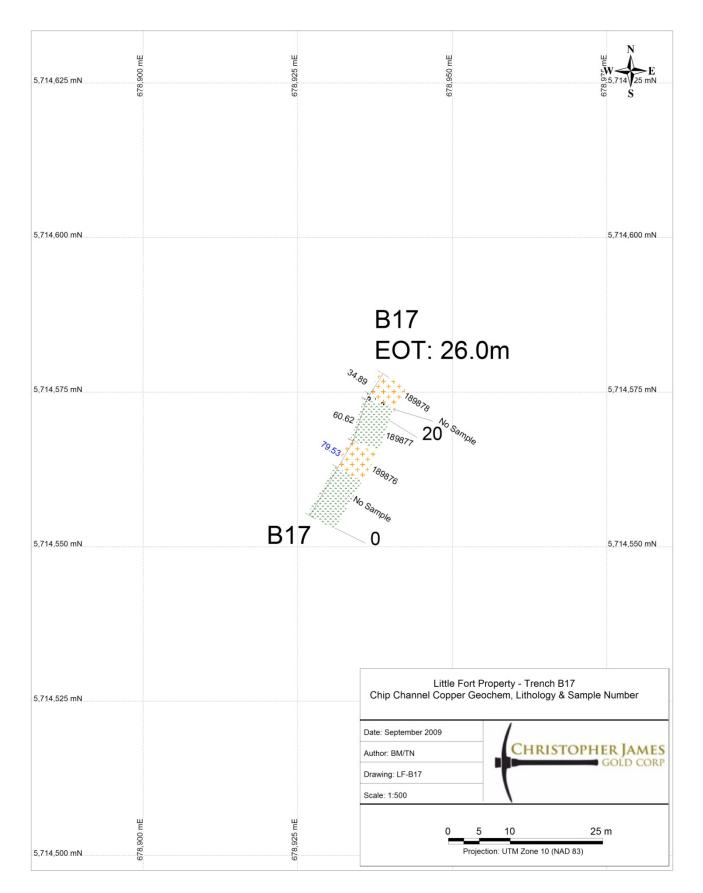


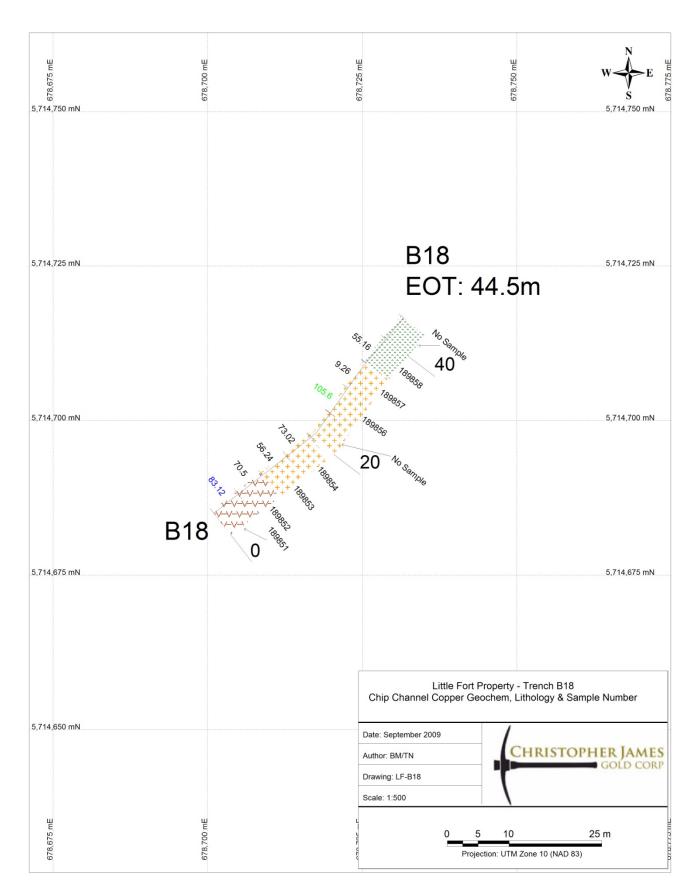


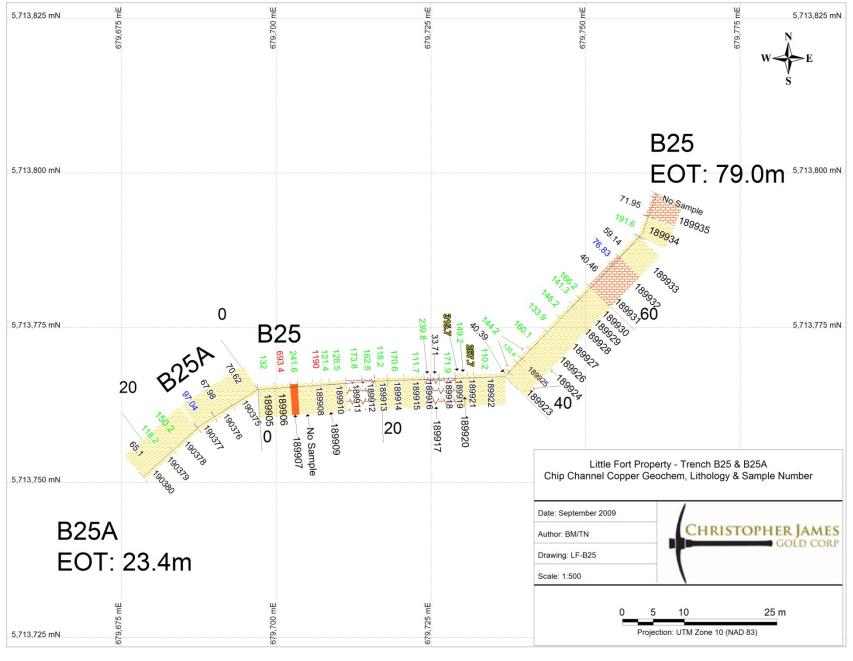

Appendix V



Appendix V







Appendix V

Appendix V

Appendix VI

Christopher James Gold Corp Seeding Letter

December 5, 2008

Tim Nillos Christopher James Gold corp. via e-mail

Re:Grass Seeding in the Little Fort Area.

Dear Tim,

Please accept this letter as confirmation that the grass seeding was completed on all sites identified by the Christopher James Gold Corp. in the Little Fort area. The sites were reviewed with your contractor on November 14, 2008 and the grass seeding was conducted on November 15 and 16, 2008 by a 2 man crew. Although I did not supervise this work directly in the field, I am confident that the seeding was conducted to a satisfactory standard.

Yours Truly,

James Foster FIT Forestry manager Simpcw First Nation