Assessment Report

for the

Tillicum Property

2009 VLF / Road Survey

Slocan Mining Division B.C.G.S. 082 F092 and 082K002 Latitude 49° 59' 29" N, Longitude 117° 43' 31" W

for

AMT Industries Canada Inc. Rt. 1, Box 1092, Fairfield, ID 83327

Submitted by:

Rick Walker Dynamic Exploration Ltd. 2601 - 42nd Ave South Cranbrook, BC V1C 7H3

Submitted: November, 2009

SUMMARY

A combined VLF / road survey was undertaken in late October, 2009 to continue evaluation of the Tillicum property, together with the results reported from previous programs, by AMT Industries Canada Inc. (hereafter referred to as "AMT"). The property has been the locus of a considerable amount of exploratory work since its initial acquisition in 1960 by local prospectors Arnie and Elaine Gustafson.

The Tillicum property consists of 11 MTO Mineral Tenures, comprising 3,552 ha (8,777 acres), located east of the village of Burton and east of Lower Arrow Lake in southeast British Columbia. The property can be accessed using Highway 6 to Burton, then east along the Caribou Creek Forest Service Road to Londonderry Creek. The property covers the height of land between Caribou and Snow Creeks, northwest of Valhalla Provincial Park, including Tillicum Mountain, Golden Hope Peak, Grey Wolf Mountain, Hailstorm Peak and Hailstorm Ridge.

The property is underlain by metasediments of the Triassic Milford Group on the south and east portion of the property. The Milford Group is host to the silver mineralization documented on the property. The Milford Group is overlain by the Lower Jurassic Rossland Group, comprised metamorphosed metamorphosed metamorphosed is and static flows with interbedded and overlying mafic tuffs and shales correlated to the Elise Formation.

The predominantly volcanic to volcaniclastic lithologies were subsequently intruded by intrusive quartz monzonite, granodiorite and quartz diorites lithologies of the Cretaceous Goat Canyon and Halifax Creek stocks.

Subsequent deformation has divided the property into a number of fault bounded blocks. Most faults are interpreted to have minor displacement, however, several are interpreted to have more significant offsets.

Gold and/or silver mineralization occurs in shear and fracture related, calc-silicate, quartz skarns developed in metasedimentary and metavolcanic rocks of both the Milford and Rossland Groups adjacent to or in close proximity to quartz monzodiorite porphyry sills. These skarns are divisible into gold-rich and silver rich types.

A total of 248 VLF / road survey stations were recorded with stations approximately every 20 metres along the existing road network in a north facing bowl immediately southeast of the Upper Camp. VLF data was collected using the signal from the Seattle station. Station location data was recorded with a hand-held GPS using the NAD 83 datum, using either a Garmin GPS 72 or a Magellan Mobile Mapper receiver (dependent upon satellite reception for the Magellan). Accuracy for a given station location varied between 5.6 and 31.8 m on the Garmin or a PDOP (Predicted Degree of Precision) 1.7 to 9.1 on the Magellan (as calculated by the receiver used).

Table of Contents

	Page
Summary	i
Table of Contents	ii
List of Figures	iii
List of Appendices	iii
Introduction	1
Location and Access	7
Physiography and Climate	8
Claim Status	9
Work History	9
General Geology	13
Property Geology	13
Mineralization	15
Heino - Money Zone	15
East Ridge Zone	16
Grizzly Zone	16
Lower Jennie, Command and Road Ridge Zones	17
Silver Queen Zone	17
Arnie Flats Zone	17
2009 Field Program	19
Results	19
Infrastructure and Resources	19
Road Survey	20
VLF Survey	21
Discussion	26
Drill Core	26
VLF Survey	26
Road Survey	27
Conclusions	29
Recommendations	30
References	32

List of Figures

	Page
Figure 1 - Regional Location Map	2
Figure 2 - Property Location Map	3
Figure 3 - Tenure Location Map	4
Figure 4a - Geological Map (1:60,000 scale)	5
Figure 4b - Geology and Zone Location Map	6
Figure 5 - Station Location Map	19
Figure 6 - Station Location Map-north bowl area	21
Figure 7 - View along road to mineralized zone - Upper Camp	Appendix C
Figure 8 - Building at Upper Camp	Appendix C
Figure 9 - Cross stacked core - Upper Camp	Appendix C
Figure 10 - Core racks by building - Upper Camp	Appendix C
Figure 11 - Core racks along road - south of Upper Camp building	Appendix C
Figure 12 - Vandalized core boxes - Upper Camp	Appendix C
Figure 13 - Core rack in good condition - Upper Camp	Appendix C
Figure 14 - Core rack in moderate condition, collapsing - Upper Camp	Appendix C
Figure 15 - Core rack in moderate condition, collapsing - Upper Camp	Appendix C
Figure 16 - Core rack in moderate condition, collapsing - Upper Camp	Appendix C
Figure 17 - Old scoop tram at Lower Camp	Appendix C
Figure 18 - View of Administration / Cook building, view to west	Appendix C
Figure 19 - Bunk / Shower building - Lower Camp	Appendix C
Figure 20 - Bunk / Shower and Administration building, view to northeast	Appendix C
Figure 21 - Warehouse building - view to west	Appendix C

List of Appendices

- Appendix A Statement of Qualifications Appendix B VLF / Road Survey Results
- Appendix C Photographs
- Appendix D Statement of Expenditures
- Appendix E Program Related Documents

INTRODUCTION

A combined VLF / road survey was undertaken in late October, 2009 to continue evaluation of the Tillicum property, together with the results reported from previous programs, by AMT Industries Canada Inc. (hereafter referred to as "AMT"). The property has been the locus of a considerable amount of exploratory work since its initial acquisition in 1960 by local prospectors Arnie and Elaine Gustafson.

The Tillicum property consists of 11 MTO Mineral Tenures, comprising 3,552 ha (8,777 acres), located east of the village of Burton and east of Lower Arrow Lake in southeast British Columbia.(Fig. 1 to 3). The property can be accessed using Highway 6 to Burton, then east along the Caribou Creek Forest Service Road to Londonderry Creek. The property covers the height of land between Caribou and Snow Creeks, northwest of Valhalla Provincial Park, including Tillicum Mountain, Golden Hope Peak, Grey Wolf Mountain, Hailstorm Peak and Hailstorm Ridge.

The property is underlain by metasediments of the Triassic Milford Group on the south and east portion of the property (Fig. 4b). The Milford Group is host to the silver mineralization documented on the property. The Milford Group is overlain by the Lower Jurassic Rossland Group, comprised metamorphosed maasive basaltic - andesitic flows with interbedded and overlying mafic tuffs and shales correlated to the Elise Formation.

The predominantly volcanic to volcaniclastic lithologies were subsequently intruded by intrusive quartz monzonite, granodiorite and quartz diorites lithologies of the Cretaceous Goat Canyon and Halifax Creek stocks (Fig. 4).

Subsequent deformation has divided the property into a number of fault bounded blocks. Most faults are interpreted to have minor displacement, however, several are interpreted to have more significant offsets.

Gold and/or silver mineralization occurs in shear and fracture related, calc-silicate, quartz skarns developed in metasedimentary and metavolcanic rocks of both the Milford and Rossland Groups adjacent to or in close proximity to quartz monzodiorite porphyry sills. These skarns are divisible into gold-rich and silver rich types.

A total of 248 VLF / road survey stations were recorded with stations approximately every 20 metres along the existing road network in a north facing bowl immediately southeast of the Upper Camp. VLF data was collected using the signal from the Seattle station. Station location data was recorded with a hand-held GPS using the NAD 83 datum, using either a Garmin GPS 72 or a Magellan Mobile Mapper receiver (dependent upon satellite reception for the Magellan). Accuracy for a given station location varied between 5.6 and 31.8 m on the Garmin or a PDOP (Predicted Degree of Precision) 1.7 to 9.1 on the Magellan (as calculated by the receiver used).

LOCATION AND ACCESS

The property is located approximately 12 km east of the village of Burton, east of Lower Arrow Lake in southeastern British Columbia (Fig. 1 to 3). The Tillicum occurrence (Minfile 082FNW234; Fig. 4) is located in the approximate centre of the current Tillicum property, which is currently in good standing. The Silver Queen occurrence (Minfile 082FNW220) is located in the southern portion of the property.

The property is located on NTS mapsheets 082F/13 and 082K/4 (B.C.G.S. mapsheet F092 and 082K002), and is centred approximately at:

UTM: 449291 E, 5537473 N, or Latitude 49° 59' 29" N, Longitude 117° 43' 31" W

The claims can be easily accessed by following Highway 6 to the community of Burton on the east side of Lower Arrow Lake. From Nakusp, take the third exit to the east on McCormack Road Odometer - 0.0). Turn left on to the Caribou Creek Road at 0.7 km (Radio Frequency - 152.030 Hz). At 7.9 km, keep right at the fork in the road. Km 8.0 - Junction with Blue Mountain Creek. Stay right and cross the bridge. Stay left on the main road at each of the following junctions - 11.1 km, 12.5 km, 16.3 km and 17.4 km. Cross the bridge at 18.0 km, then stay right at the junction at 18.5 km. At 20.1 km take the right fork down and cross the creek, swinging back to the east toward the Lower Camp. At 20.3 km take the right fork for the Lower Camp or the left fork to continue to the Upper Camp. At 19.8 km are the buildings comprising the Lower Camp. The Upper Camp is another 6.9 km along the left fork.

There are a number of logging roads in various states of repair that facilitate access to and through the property. The main road is accessible using 2WD whereas many of the other roads are best negotiated using 4WD.

The Caribou Creek road to the Lower Camp is, generally in good repair, although narrow in many spots in the event there is active logging in the area. The bridge at 18.0 km needs to have the railings repaired and there were several spots between approximately 17.0 and 20 km where the road is narrow due to the effects of mass wasting (both slump and debris onto the road and slumping at the edge of the road).

The road to the Upper Camp needs to have some work done with a cat before it can be accessed by vehicles larger than a quad. The lower 5 km of road (between the Lower and Upper Camps) will need to be bladed to remove alders encroaching along the side of the road. At higher elevations, there are a number of stretches of road that will need to be cleared of road fall debris and a very narrow stretch for about 1 km north of 448775 E, 5537469 N is very narrow and would need to be widened to facilitate access for anything larger than a pickup.

The road network over the mineralized area of interest would also need to be re-bladed to remove rock fall debris as there is continual movement of material downslope, particularly during periods

of moderate to heavy precipitation and/or melting on areas with higher relief. As it stands, much of the road network would be accessible by quad once the snow has melted off the roads.

The Tillicum property covers the height of land between Caribou and Snow Creeks, northwest of Valhalla Provincial Park, including Tillicum Mountain, Golden Hope Peak, Grey Wolf Mountain, Hailstorm Peak and Hailstorm Ridge.

PHYSIOGRAPHY AND CLIMATE

The property is located east of Lower Arrow Lake (Fig. 2) and is characterized by moderate to high precipitation, resulting moderate to heavy rain during the summer months and heavy snowfall during the winter, particularly at higher elevations. "Total annual precipitation in the main valley is 810 mm with about 280 mm of that in the form of rain between May and September" (Dykes 2003).

Topography on the property ranges from 920 m (3,020 feet) along Caribou Creek to 2283 m (7,490 feet) at Golden Hope Peak. The extent to which the property is free of snow and, therefore, available for work programs is highly variable given the high level of relief on the property, with lower elevations free of snow much early and later in the year than the higher elevations. In general, the property is available for work between June and September in most years. As the main mineralized area of interest is located at higher elevations within an north-facing bowl, work may be delayed by the presence of snow into late June.

"The main camp is located at an elevation of 2,000 m. The topography is generally steep and in places, precipitous. Bedrock outcrop is generally restricted to ridge crests and covers approximately 10% of the surface area. Slopes are mostly covered with overburden consisting of talus slopes, snow -avalanche debris tracks and unconsolidated glacial debris. Coniferous forests covers the entire area with the exception of the highest peaks and ridges" (Dykes 2003).

CLAIM STATUS

The property consist of 11 Mineral Tenure Online (MTO) Mineral Tenures (see Figure 3). Pertinent tenure information has been confirmed using the Ministry of Energy and Mines Mineral Tenure Online web-site and is summarized below:

Tenure	Claim Name	Work Recorded	Status	Area (ha)
Number		To*		
555065	TILLICUM 1	2010/OCT/31	In Good Standing	166.2137
555066	TILLICUM 2	2010/OCT/31	In Good Standing	498.7690
555068	TILLICUM 3	2010/OCT/31	In Good Standing	498.4743
555069	TILLICUM 4	2010/OCT/31	In Good Standing	457.1521
555071	TILLICUM 5	2010/OCT/31	In Good Standing	498.3402
555074	TILLICUM 6	2010/OCT/31	In Good Standing	415.4236
555078	TILLICUM 7	2010/OCT/31	In Good Standing	269.9478
555079	TILLICUM 8	2010/OCT/31	In Good Standing	20.7741
555087	TILLICUM 9	2010/OCT/31	In Good Standing	207.6573
555089	TILLICUM 10	2010/OCT/31	In Good Standing	20.7741
555728	TILLICUM 11	2010/OCT/31	In Good Standing	498.3691
			Total	3551.8953

* Subject to acceptance of the 2009 Assessment Credits

WORK HISTORY

The following has been taken from Dykes (2003):

"The following section has been summarized from various sources including assessment files, internal company reports and BC Government Minfile information. The town of Burton was founded in 1895 as a result of gold mining activity in the area. There are reports of numerous placer operations within the Caribou Creek drainage system during the early 1990's.

During the period 1896 to 1930 several small-scale, hard rock mine workings were active and are found throughout the area. Prospecting was carried out in the Tillicum Mountain area up to 1960, but the source of the placer gold was never identified. In 1980 local prospectors Arnie and Elaine Gustafson discovered gold in what is now known as the Heino-Money Zone, on the north slope of Tillicum Mountain.

Esperanza Explorations Ltd. optioned the property in the fall and 1981 and initiated an exploration program that sparked a district wide staking rush. The Tillicum property covers in excess of 15,00 acres containing 10 known deposits and prospects of gold-silver mineralization.

Early exploration was initially focused on the discovery zone, which later became the Heino-Money Mine. Work consisted of geophysical and geochemical surveys, mapping, trenching, surface drilling, underground drifting and raising, underground drilling and bulk sampling. Exploration work outside of the discovery zone led to the finding of several other significant mineralized zones. These include "East Ridge" and "Grizzly " zones. (Figure 3).

In 1993 Bethlehem Resources Corporation and Goldnev Resources Inc. optioned the property and obtained a permit for an underground mining operation. Mining commenced in mid-August of that year and was completed in late October. A total of 29,009 m (95,150 feet) of surface and 3,865 m (12,677feet) of underground drilling for a total of 376 holes have been completed. In addition, underground development consisting of : 1,374 m(4,507 feet) in the Heino-Money zone and 410 m (1,345 feet) in the East Ridge zone was completed.

Mineral Zone	Years	Drilling	(surface)	Drilling (Underground)		Underground Development	
		Holes	Meters	Holes	Meters		
Heino_Money	1981 - 87	100	7060	9	177	955 m – 4 levels	
	1988			92	3079	442 m	
	1993			8	284	121 m	
East Ridge	1981-84	26	1586			60m – 2118 xc	
	1988	75	13149	14	610	350 m – 2062 Dr	
	1989	10	1446				
Silver Queen	1984	12	????				
Grizzly	1984	4	615				
Arnie Flats	1984	5	292				

Considering the size of the property and the money spent the amount of drilling is relatively small and concentrated in a single area.

Small scale production occurred in 1981, 1985,1991 and 1993 from the Heino-Money zone.

Year	Mined	Milled	Au grams	Au ounces	Ag grams	Ag ounces
	Tonnes	Tonnes	Recovered	recovered	recovered	recovered
1993	5,503	5,503	102,455	3,294	164,071	5,275
1991			9,207	296		
1985	227	168	48,351	1,554	51,570	1658
1981	58	58	4,539	146	3,267	105
Total	5,788	5,729	164,552	5,290	218,908	7,038

It is important to note that mining was discontinued, as the recovered grades did not match the expected grades from the reserve calculations. The 1993 mining was supposed to mine 17,490 tons (15,874 tonnes) grading 1.002 oz Au/ton (34.28 gms/tonne), however only 6,064 tons (5,503 tonnes) grading 0.543 oz Au/ton (18.61 gms/tonne) were produced. The probable reasons for these discrepancies are discussed later in this report".

In fall 2002, Mustang Minerals Corp sold the company to 1330275 ONTARIO LIMITED which commissioned a comprehensive report emphasizing the sub-surface drill information.

The following has been taken from (Dykes 2003) report:

Data Used in Analysis

All data in the possession of Mustang Minerals has been examined. The data consists of summary reports, surface and underground plans, assay data, sections and drill logs. Additional data is supposed to be in the possession of Mr. George Addie, a geologist who recently worked on the property, however, at this time this has not been examined.

A fairly complete record of all exploration and mining carried out on the property is present with the exception of exploration data for the Silver Queen zone. This data was lost in a landslide at the home of the property vendors. The data however is not indexed and stored in a haphazard manner.

Detailed plans and sections were found for the Heino-Money and East Ridge Zones along with drill log and assay data for the underground workings and the drill holes and surface samples. Gemcom database was also found from the previous compilation work, however, this database had only partial underground workings and several assay problems. Sections and the model created by the Gemcom system were based on connecting up assay values only with no regard

for the geology. This is a common practice but quite often leads to erroneous assumptions and conclusions, especially in high grade gold deposits. The Gemcom database had 339 drill holes, 19 trenches with 17,042 drill hole assays, 294 trench assay and 11,706 lithology records. Sections and solid models developed were basically discarded, once an examination of the gold grade distribution was completed.

Construction of the Property Database

Rather than use Gemcom to store the project data, maps and sections etc., it was decided to store the data in a more flexible and readily available system. Microsoft Excel (spreadsheet) was selected to storeall the assay and drill hole information, AutoCAD used for all maps, section, plans and 3D images, finally CorelDraw was used for all presentation maps. Data was processed using Geologic Systems proprietary software, which does geological controlled statistical analyses, direct AutoCad drawing files and 3D models. Rendering of the 3D models is done using either AutoCAD or 3D studio. All these are well supported and easily obtained commercial software programs.

Having analyzed all available data, compilation of the data began with data entry and confirmation of the drill hole database including assays, lithologies, drill hole surveys and collars. Underground workings, mining and geology missing from the Gemcom database were electronically scanned. All data and maps were checked to ensure reliability. The resulting database consists of several Excel files and AutoCAD drawings and 3D models. Appendix A has a complete list of all files included with this assessment report.

Interpretation and Results of Data Compilation.

The results of the analysis and compilation appear to shed light on the problems encountered during exploration and development of the property. In addition the tremendous potential of this property is readily apparent. Once the very high grade narrow vein of the Heino-Money zone was identified, exploration and development of the property was concentrated on following and finding more of this type of mineralization, other styles of lower grade were noted but explored only for very high grade (> 1 oz Au/ton) mineralization. Very little work was done in trying to understand the large scale picture, the overall regional metal zoning, geological and structural patterns were never fully understood. As a result only a fraction of the property has been explored.

GENERAL GEOLOGY

The Tillicum Mountain Gold Property covers a portion of a roof pendant situated at the northwest end of a 250 kilometer long arcuate belt of Rossland Group volcanics. This belt is host to several gold mines and prospects with recorded production in excess of 4 million ounces of gold.

The property is underlain by a sequence of Pennsylvanian to Triassic Milford Group volcanosedimentary siltstone, arkosic sandstone and wacke overlain by Lower Jurassic Rossland Group basaltic-andesite flows and tuffaceous siltstones.

Three episodes of intrusion are recognized within the area. The first consists of swarms of dioritic sills of uncertain age, the second is the large-scale Cretaceous monzonitic stocks and the third are swarms of Lamprophyre dykes that cut all rocks. Gold and silver mineralization occurs in shear related calc-silicate quartz skarns, developed in metavolcanic and metasedimentary rocks of both the Milford and Rossland Groups, adjacent to or in close proximity to these stocks and sills.

The metamorphic grade throughout the region is generally sillimanite facies, however the grade is lower around Tillicum Mountain with biotite, muscovite, chlorite and amphibole the main metamorphic minerals.

PROPERTY GEOLOGY

Pennsylvanian to Triassic Milford Group forms the base of the stratigraphic succession on the property. It consists of siltstones, quartzites and limey sediments that have been regionally metamorphosed to hornfels, schists and gneisses (figure 3). The Milford Succession underlies much of the south and eastern portion of the claims and is host for the stratabound silver mineralization at the Silver Queen zone.

The Milford group units are overlain by metamorphosed and volcanoclastic rocks that are correlated to the Elise Formation of the Lower Jurassic Rossland Group. In the Tillicum Mountain area, the Elise Formation is comprised of massive basaltic-andesite flows, which are both overlain by and locally interbedded with mafic tuff and shale. The Elise Formation can be further divided into massive flows, breccia and tuffs of the Lower Elise Formation, which are overlain by pyroclastic, epiclastic and minor flows of the Upper Elise Formation. Metavolcanics of the Lower Elise Formation consisting of pillow flows, agglomerates and breccias are found on the west and north slopes of Tillicum Mountain with an estimated thickness varying to 200 meter feet. It appears that the largest exposure of basaltic andesite is overlain by a sequence of tuffaceous sediments interbedded with up to 20 meter thick flows of basaltic andesite. The Upper Elise Formation consists of intercalated tuffaceous volcanic cycles along with clastic sedimentation that includes recognizable units of epiclastics, tuffaceous siltstone, lapilli tuff, ash flow tuffs and shaly siltstone. This formation, which is exposed throughout the property, is best exposed on the north slope of Tillicum Mountain where the apparent thickness has been measured in excess of 250 meters.

Porphyritic dykes and sills, up to 200 meters thick intrude the Milford-Rossland Group succession. These intrusives pre-date the Cretaceous stocks and occur in northeast trending belts that host all known gold and silver skarn mineralized zones. Composition of these porphyry rocks varies from quartz monzodiorite at Tillicum Mountain to quartz monzonite at Hailstorm Ridge. The intrusive bodies have cores with medium grained packed porphyritic texture grading to fine grained and granular margins. Intense alteration and recrystallization of the sedimentary units adjacent to larger porphyry bodies has produced a dioritized unit unique to the district (Devlin and Robert's 1989).

The Cretaceous-age Goat Canyon and Halifax Creek stocks are intrusive into all the above mentioned units and postdate regional greenschist metamorphism. The stocks are compositionally similar and consist of fine to medium grained, hypidiomorphic granular quartz monzonite, granodiorite and quartz diorite with contaminated border phases of monzonite and diorite.

The youngest rocks on the property are narrow (less than 4 meter), north trending, steeply dipping lamprophyre dykes. Although present throughout the property, these dykes are concentrated in two swarms that cross through the East Ridge and Heino-Money gold zones. They are probably Tertiary in age.

Faulting on the property is dominated by moderate to steep angle, normal and reverse structures. Most faults have minor offsets, however several faults with large displacements segment the property into fault bounded blocks. Within the fault bounded blocks little evidence of folding exists. The metamorphic fabric of the rock closely parallels the bedding planes with minor or parasitic folding only very rarely observed. Further details on the property geology and the skarns are available in several publications, including those by Ray, McClintock and Roberts (1985) and Ettinger and Ray (1989).

MINERALIZATION

Gold and/or silver mineralization occurs in shear and fracture related, calc-silicate, quartz skarns developed in metasedimentary and metavolcanic rocks of both the Milford and Rossland Groups adjacent to or in close proximity to quartz monzodiorite porphyry sills. These skarns are divisible into gold-rich and silver rich types. In fact Addie (1997) noted a semi-circular regional geochemical pattern centered on Tillicum Mountain, consisting of an outer anomalous molybdenum zone grading inward to higher silver values followed by gold. The skarn mineralization appears to follow this pattern.

Skarn assemblages consist of quartz, plagioclase, sericite, tremolite-actinolite, clinozoisite, garnet, biotite and microcline. High grade "bonanza type" gold ore shoots are hosted within quartz-actinolite-chlorite assemblage. Skarns contain quartz-calc-silicate segregations, injections and veins that vary from less than 10 cm to 4 meters thick. Skarn zones vary in thickness from 1 to 60 meters. Skarns also contain variable amounts of pyrrhotite, pyrite, sphalerite, galena, as well as traces of chalcopyrite and tetrahedrite. The sulphides occur as fine disseminations orientated within the plane of the metamorphic fabric or as coarse grained aggregates within the segregations. Native gold occurs within the skarn assemblages as 25-micron disseminations to over several millimeter diameter flakes within and along the margins of the quartz calc-silicate segregations. Petrographic studies (Northcote, 1983) of polished thin sections indicate that the gold occurs as plates and anhedral grains which are generally free, but are intimately associated with pyrrhotite, arsenopyrite, sphalerite and pyrite-marcasite.

There are a number of significant mineralized zones identified to date on the property. These include the following gold rich zones: Heino-Money zone, East Ridge Zone, Grizzly, Lower Jennie, and Road Ridge; and the following silver rich zones: Silver Queen and Arnie Flats. The zones are located in figure 3.

Heino-Money Zone

This Gold rich mineralized zone has had extensive work including underground mining. The mining reserve is outlined in four south raking shoots that occur in a near vertical shear structure, which averages about 2 meters wide and has a strike length of approximately 200 meters and vertical extent of 100 meters. Three distinct types of mineralization have been identified (Tindall 1993).

High sulphide polymetallic mineralization occurs in the 2112 zone in a high angle crosscutting breccia. Alteration, consisting of strong silicification and calc-silicate replacement of wall rocks and breccia fragments, are confined to the Breccia zone. Sulphides in order of abundance, are pyrrhotite, sphalerite, galena and pyrite with minor chalcopyrite and arsenopyrite. They occur as blebs, lenses, stringers and massive accumulations. Sulphide

content within the zone is highly variable but averaged in excess of 10%. Gold grades are significantly higher in areas of quartz stringer veining or high sulphide content.

Low sulphide polymetallic mineralization exemplified by the 2130 zone that crosscuts metavolcanic and metasedimentary rocks at a high angle confined by steeply dipping shears. Alteration consists of strong to moderate hornfels and calc-silicate replacement. Quartz stringers, lenses and small veins were common. Sulphides content is less than 5% consisting of pyrrhotite, pyrite, sphalerite and galena with minor chalcopyrite and arsenopyrite. Gold values are extremely variable over short distances and were generally less than 0.5 oz/ton.

The final type consists of *low sulphide, pyrite dominated mineralization* that occurs on the 2148, 2160 and 2171 levels. Alteration ranges from moderate to strong hornfels and calc-silicate replacement to weak chloritization. In all levels, veining and alteration are confined to steeply dipping shear zones.

Total sulphide content is generally less than 3% with pyrite predominant and only minor amounts of other base metal sulphides. Gold values tend to be highly erratic but overall the grade is low. Ettlinger and Ray (1989) report that whole-rock and trace element analyses of samples from one of the Heino-Money drill holes indicates that there were at least two episodes of mineralization, the first being gold-rich and silver-poor and a slightly younger episode of silver and lead-rich, gold -poor mineralization.

East Ridge Zone

Mineralization in the East Ridge zone occurs in multiple skarn horizons within a calc-silicate altered succession of tuffaceous sediments and volcanics approximately 125 meters thick overlying a diorite porphyry intrusion. Mineralization has been traced for at least 1100 meters along strike and 360 meters down dip. It is currently open in all directions. The exact nature and structural relationships of the mineralization to the host rocks is poorly understood. The zones range in thickness up to 51 meters ... and dip 55 degrees to the west. High grade gold values are associated with quartz-pyrite-pyrrhotite mineralization with trace amounts of sphalerite and galena. High grade zones appear restricted to zones of narrow calc-silicate altered areas surrounded by lower grade over larger intervals. The overall indicated grade of the zone is considerably less than the Heino-Money Zone.

Grizzly Zone

This area of mineralization is approximately 900 meters southeast of the Heino-Money zone. Addie (1997) reports that the mineralization is similar to that found in the Heino-Money zone. Gold and silver mineralization occurs in shear-related calc-silicate-quartz skarns that contain elongate zones of massive pyrrhotite with minor sphalerite, galena, chalcopyrite and traces of visible gold. The skarns are hosted within zones of moderate to intense calc-silicate alteration and silicification in the host rocks. The zone is poorly understood with only a limited amount of work.

Lower Jennie, Command and Road Ridge zones

Thought to be similar to the East Ridge zone only minor amounts of surface sampling and geological mapping have been completed.

Silver Queen Zone

This prospect, active in the 1930's, is silver -rich and gold-poor. It consists of skarn alteration and mineralization associated with feldspar porphyry sills intruded into impure calcareous metasedimentary rocks. Skarn minerals include quartz, tremolite-actinolite, clinozoisite, garnet, biotite and carbonate.

Sulphides include pyrite, pyrrhotite, tetrahedrite, sphalerite and galena.

Arnie Flats Zone

The zone located 2 kilometers to the southwest of the Heino-Money zone, is silver rich and in a similar setting to the East ridge zone. Mineralization is hosted in a sequence of interbedded tuffaceous volcanics and meta-basaltic-andesite of the Elise Formation overlain by a dioritic sill. Silver mineralization with low gold values occur in two sub-parallel calcsilicate-quartz skarn horizons within the host rock sequence. The two skarn horizons strike north east and dip 45 degrees to the southwest. The upper A horizon ranges from 1 to 3 meters thick and contains 5%, medium grained disseminated pyrite. The lower B horizon is similar in thickness with 3% disseminated and stringer pyrrhotite with minor pyrite. Both horizons have been traced for 120 meters along strike.

Figure 4 - Geological Map for the Tillicum Property. Simple geological map in which the Cretaceous Whatshan Batholith (KWh) intruded the Triassic Slocan Group (TrSlc). MINFILE occurrences documented on the property include the Tillicum (082FNW234) and the Silver Queen (082FNW220). Approximate scale - 1: 60,000. Map produced using The MapPlace.

2009 FIELD PROGRAM

The 2009 program completed represents a relatively small survey to continue initial evaluation of the Tillicum property by AMT Industries Canada Inc. Between October 18 and 21, inclusive, the available infrastructure and resources, together with an evaluation of road access and condition was an important part of this program, preparatory to a proposed diamond drill program next year. In addition, a limited VLF survey (using the signal from the Seattle station) comprising a total of 248 readings, was completed, together with a coincident road survey so as to assess the response of the host lithologies and accompanying mineralization to geophysical methods. A GPS coordinate was determined, with highly variable accuracy, for each VLF survey station, comprising an initial survey of the existing road network.

One survey line (stations 1 to 15) was taken along the road between the Lower and Upper Camps and is underlain by rocks correlated to the Goat Canyon - Halifax Creek stocks of the Cretaceous Whatshan Batholith. The remainder survey was underlain by meta-sediments of the Triassic Slocan Group (Fig. 4, 4b, 5 and 6).

VLF and road survey data are plotted on Figure 5 and 6, with quantitative results included in Appendix B.

RESULTS

Infrastructure and Resources

There is some infrastructure remaining and available at both the Lower and Upper Camps, although those at the Upper Camp (Fig. 8 - 16) are limited and suffering from the combined effects of weather and vandalism. The buildings in the Lower Camp (Fig. 18 - 21) are intact but have been broken into, with the theft of some items. As a result, there is virtually nothing in the way of equipment that remains usable on-site. There is a supply vehicle on a pick-up chassis, as well as an older scoop tram (Fig. 17), within and outside, respectively, the large storage warehouse (Fig. 21). The operational condition of these vehicles is unknown but, at the very least, will require servicing to return to operation.

The buildings in the Lower Camp have all been broken into, with anything of value removed and /or stolen. One of the large cook stoves remains and the shells of the buildings remain intact (Figs. 18 - 21).

A single A-frame building is present at the Upper Camp (Fig. 9) and is available for use. There are many hoses stored at the Upper Camp, however, it is unlikely that many could be used as they have been exposed to the sun and weather for many years.

There is a large amount of core stored at the Upper Camp, both cross stacked (Fig. 9) and in racks (Fig. 10 - 16). The racks are in variable condition, from relatively intact (Fig. 13) to those in the process of collapsing (Figs. 14 - 16). In addition, the drill core itself has suffered some vandalism (mineralization high graded, box pulled out and not replaced, boxes and core spilled to the ground). Finally, many of the plastic tags used to identify the core boxes have deteriorated to the point they have fallen off, leaving much of the core unlabelled. As the conditions at the time of the visit were quite wet, it is unknown if any of the original markings (probably in felt pen) remain legible on the boxes. Furthermore, there may remain identification within the boxes themselves, such as Drill Hole / Box Number, footage markers and/or sample tags, with which the core could be recovered.

Road Survey

Limited data, both graphical and digital, have been acquired from previous programs, particularly from the program of Dykes (2003). In addition, AMT is in the possession of a considerable amount of archival analog material (maps, sections and analytical data) comprising a significant portion of the records from previous programs. Various generations of partial compilations exist or varying quality and accuracy.

The limited road network survey, using hand-held (non-differential) GPS receivers, was undertaken in an attempt to evaluate the quality of the data on which to base future decisions, particularly in association with a proposed diamond drill program in 2010.

Station location data was recorded with a hand-held GPS using the NAD 83 datum, using either a Garmin GPS 72 or a Magellan Mobile Mapper receiver (dependent upon satellite reception for the Magellan). Due to the steep, north facing topography of the majority of the road network surveyed and the disposition of the satellite constellation available, the accuracy of any given station location was highly variable, ranging between 5.6 and 31.8 m on the Garmin GPS 72 or a PDOP (Predicted Degree of Precision) 1.7 to 9.1 on the Magellan (as calculated by the receiver used).

The Magellan Mobile Mapper was the preferred receiver as it had been anticipated that the road survey data could be collected as a vector file for input and use in ArcMap. However, due to highly variable satellite signal reception and quality, the Garmin GPS 72 was used predominantly to collect data on a station by station basis.

The data collected were overlain and compared to the "Geology" compilation maps of Dykes (2003) and is plotted as Figure 5. As Dykes (2003) Geology map records only the local grid and has no UTM reference fiducials, it was "rubber sheeted" as an underlay for the quantitative data collected. For station locations having an accuracy of ≤ 8.0 m, or a PDOP of ≤ 5.0 , these data have been used to position the Geology map of Dykes (2003). Stations having an accuracy between 8.0 and 16.0, or a PDOP between approximately 5.0 and 10.0, were re-positioned using a combination of adjacent survey points and the underlying Geology Map. The remainder of road survey station locations were repositioned largely on the basis of the Geology Map.

The station location data plotted in Figure 5 have not been "smoothed" in any way.

VLF Survey

The 2009 program occurred late in the season and followed a heavy snowfall in the second week of October. The program was, therefore, delayed until the third week in October. The intent was to take advantage of slightly warmer weather during the week subsequent to the snowfall so as allow snow to melt. As a result, the VLF survey was carried out with between 10 and 15 cm (4 to 6 inches) of snow on the ground.

The intent of the survey was to gather a set of preliminary data, over as wide an area and within as short a period of time as was possible before the next snowfall precluded the opportunity for work. To this end, the road network was selected for the survey.

VLF survey data, comprised of Quadrature, In-Phase and Residual data, were collected at approximately 20 m intervals over the road network in the north facing bowl within which much of the work from previous programs, both surface and underground, has been undertaken. Fraser Filter values were then calculated from the resulting data and plotted (Fig. 5 and 6).

448940 448960 448980 449000 449020 449040 449060 449080 449100 449120 449140 449160 449180 449200 449240 449260 449280 449300 449320 449340 449360 449360 449380 449400

448940 448960 448980 449000 449020 449040 449060 449080 449100 449120 449140 449160 449180 449200 449220 449240 449260 449280 449300 449320 449340 449360 449360 449380 449400

DISCUSSION

Drill Core

The drill core represents a considerable investment of both time and money. Furthermore, and more importantly, it represents an irreplaceable (as it is unlikely that the complete set of holes would be re-drilled) source of information.

As ideas, theories and models pertaining to the source and style of mineralization change over time, the drill core represents the hard data by which such evolving thinking and modeling can be evaluated and, potentially, tested. In addition, as the project evolves and matures toward a possible mining operation, the drill core resource provides a means of undertaking due diligence (re-logging and/or re-sampling) and/or further testing (additional sampling).

At the current time, the status of core storage is critical, with many boxes missing identification tags and many racks in the process of collapsing. It is uncertain how many of the racks currently standing will survive the winter.

Consideration should be given to rehabilitating existing racks and/or building new racks at the Lower Camp and transporting the core to a lower elevation where a lower snow load is anticipated.

VLF Survey

A VLF survey may be of great value for future work on the property given that the interpreted host for gold and/or mineralization is along "... shear and fracture related, calc-silicate, quartz skarns developed in metasedimentary and metavolcanic rocks of both the Milford and Rossland Groups adjacent to or in close proximity to quartz monzodiorite porphyry sills" (Dykes 2003)

The VLF survey, limited though it was, documented significant variation in response in Quadrature and Fraser Filter values (Fig. 5 and 6). Quadrature values varied between +6 and -46 while Fraser Filter values varied between +34 and -48. The resulting Fraser Filter data were contoured and is shown in Figure 6.

The contoured data graphical document a number of closures suggesting proximity to conductors. As there is a relatively large distance between lines (as opposed to between stations), the data is more qualitative than quantitative. Furthermore, there is not a lot of constraint on the orientation of any possible conductors portrayed. With these qualifiers in mind, however, there are several features of interest in the data, as follows:

- 1. There is not much activity with regard to Quadrature along the line farthest to the northwest (Stations 1 to 15), overlying the Cretaceous lithologies of the Goat Canyon and Halifax Creek stocks (Fig. 5),
- 2. Areas underlain by meta-sediments of the Triassic Slocan Group show a wide range of values, both in Quadrature and Fraser Filter values (Fig. 5 and 6),
- 3. Measured values on lines spaced relatively closely together (i.e. stations 63 to 88) have both similar magnitude and sign, suggesting the possible conductors they define may be valid signatures of the underlying host lithologies and/or mineralization, and
- 4. The main portal (448048 E, 5537326 N) and the lower adit (448319 E, 5537340 N) are both spatially associated with relative lows, while the upper adit (448231 E, 5537202 N) is associated with a relative high. Furthermore, there may be a coarse trend evident from each of these locations with similar highs and lows on adjacent lines, possible indicating conductors trends of potential interest.

A VLF survey should be considered for the north facing bowl within which the Heino-Money Zone, Money Pit, BB Zone, Jenny Au Zone, 1250 Au Zone, East Ridge Au Zone, Command Au Zone, 950 JJ Zone and the Ridge Road Au Zone are located. The proposed VLF survey should be undertaken on a regularly spaced grid in the north facing bowl and would be relatively inexpensive to complete. The resulting information would allow evaluation of the geophysical response for known zones of mineralization. Based on the results of the survey, the response for an alternate geophysical method having a deeper response could be evaluated. For instance, the Titan 24 (combined IP / magnetotelluric) method of Quantec Geosciences might be worthy of consideration. The IP method provides a signal response to as much as 250 m below surface while the magnetotelluric method provides detection to as much as 850 m (as stated for their Kemess case study).

Road Survey

The road survey is of some concern in that there are significant discrepancies locally in a feature that should be relatively consistent from program to program. Once the roads are built, there should be little change in there surface trace over time. The most significant discrepancy is evident along the line extending from the Upper Camp to the lower adit and passing the Main portal (Stations 158 to 197 on Fig. 5). The underlying "Geology" map (Dykes 2003) shows two opposing hairpin corners, separated by approximately 45 m, which are, in fact, a single continuous road providing the main access to the

road network. Other examples exits of roads indicated on the map which are not present on the ground and roads on the ground not indicated on the map.

Another example of a significant error can be seen in the discrepancy between the road to the "1250 Au Zone" at the extreme north edge of the map. There is a discrepancy of up to 25 m evident between the two roads.

In and of itself, this is not a major concern as the road network can be re-surveyed. The discrepancy becomes very significant, however, **IF** the Geology map compilation is based upon an erroneous map of the road network. The Geology Map includes a geological interpretation based on the location of outcrops and observations tied to the road network and so the road network is integral to the interpretation. Therefore, the validity of the geological interpretation is critically dependent upon the accuracy of the road network.

At the current time, the author is uncertain if the geology was compiled independently of the road network and, therefore, potentially correct. If, on the other hand, the Geology map was compiled with reference to an incorrect representation of the road network, then the geological interpretation is also incorrect.

Furthermore, the topographic contours of the Geology map are displaced approximately 500 m north on the Geology map. A close examination of the road network with regard to topographic contours reveals some glaring errors (road traces at highly oblique angles to perpendicular to topographic contours (i.e. straight uphill or downhill in an area characterized by high relief.

A separate drill map was also prepared for the Dykes (2003) report, together with sections and plans. If the drill holes traces and subsequent sections and plans were prepared on the basis of their actual coordinates, then the correlations and projections inherent in the sections and plans are likely defensible. However, if the locations were digitized from one or more of the maps from which the "Geology" map was compiled, then the drill hole trace map, drill plans and sections may also be significantly erroneous.

The road survey has been extremely valuable component to the 2009 program in that a number of potentially significant discrepancies in the previous Geology map have been identified on the basis of the road survey data collected. Much of the data has a relatively high degree of accuracy and has been used to constrain the location of the Geology Map.

Further work will need to be undertaken to determine the source(s) of information on which compilation of the Geology Map was based. A similar determination will also need to be made to ascertain the validity of the drill hole map and, subsequently, the associated drill plans and sections.

CONCLUSIONS

The 2009 program represents a further limited, preliminary evaluation of the Tilllicum property by AMT Industries (Canada) Inc. The 2009 program consisted of a combined VLF / road survey along the existing road network in the north facing bowl immediately east-southeast of the Upper Camp. In addition, a brief examination of the infrastructure and resources available on the property was made at the same time.

A VLF survey was believed to be potentially useful with regard to clarifying the nature and location of mineralization on the property given the statement that the interpreted host for gold and/or mineralization is along "... shear and fracture related, calc-silicate, quartz skarns developed in metasedimentary and metavolcanic rocks of both the Milford and Rossland Groups adjacent to or in close proximity to quartz monzodiorite porphyry sills" (Dykes 2003). VLF surveys are generally very responsive to faults and shear zones.

Despite the preliminary nature of the VLF survey, it served to document a number of possible conductors, many of which agree from line to line. Given the disparity of (generally) large distance between lines relative to the distance between stations, the apparent trends defined (Fig. 6) must be regarded with considerable caution. However, given the large range of values for both Quadrature and, subsequently, Fraser Filter values, further VLF surveying on a regularly spaced grid may prove fruitful.

The road survey component of the program documented some major inconsistencies between the previous road network, as plotted on Dykes (2003) Geology map, and the road network documented in the 2009 program. The discrepancy has a number of implications of great significance to future work on the property, particularly with regard to the surface geology, surface drill hole locations and subsurface correlations and projections on plan and section. Further work will need to be undertaken to tie the road network to the underlying topography, geological information from previous programs. Drill hole locations will need to be re-evaluated and confirmation of location made on a hole by hole basis. Finally, once surface topography, geology and drill hole locations have been confirmed and accurately located, sub-surface correlations and projections will need re-evaluated.

The 2009 program, although undertaken late in the field season and of short duration, is considered to have been successful in providing useful, quality information for further evaluation of the Tillicum property.

RECOMMENDATIONS

- 1. Make an effort to locate the Gemcon database referred to in Dykes (2003) report. The database is described as consisting of "... 330 drill holes, 19 trenches with 17,042 drill hole assays, 294 trench assay and 11,706 lithology records" (Dykes 2003). Presumably, these data have been captured in the 2003 database compiled in the AutoCad environment, however, the database should be secured for evaluation and, if nothing else, redundancy;
- 2. Undertake compilation of surface / sub-surface analytical and lithological data available for the Tillicum property, including verification of the data compiled in 2003. Available surface geochemical results and geology needs to be compiled for the purposes of attempting correlations between sub-surface mineralization and areas of anomalous geochemistry at surface. This work might, potentially, have significant implications for identifying additional tonnage potential;
- 3. Sub-surface correlations made in 2003 on the basis of the compilation of data at that time need to be evaluated and revised, if necessary, so as to be consistent with the interpretations of AMT Industries (Canada) Inc in future evaluation and exploration programs on the property;
- 4. The road network needs to be accurately surveyed and georeferenced. Depending on the available satellite constellation at any given time, either a hand-held (using only high accuracy location determinations or a differential (back calculate coordinates against a known base station) could be used to collect the necessary data.
- 5. Where possible, old drill collars should be located and coordinates accurately determined. Even a small population of accurately determined collar locations would be of significant value in order to: 1) accurately position graphical drill collar maps in an GIS database, 2) confirm locations for drill holes in the existing database, and/or 3) assist in positioning or confirming the position of other maps and data in the GIS database (i.e. Geology, surface geochemistry, underground workings, etc).
- 6. Undertake a VLF survey on a regularly spaced grid in the north facing bowl within which the Heino-Money Zone, Money Pit, BB Zone, Jenny Au Zone, 1250 Au Zone, East Ridge Au Zone, Command Au Zone, 950 JJ Zone and the Ridge Road Au Zone are located. Based on the success of the VLF survey, an alternate geophysical method having deeper penetration could be considered.
- 7. Alternatively, a deeper penetrating geophysical method could be evaluating, particularly once sub-surface plans and sections have been thoroughly evaluated and/or a new set prepared. The

nature and character of the sub-surface mineralization could be evaluated in the context of its probable response to a geophysical signal, the nature of its expected response and the resolution and reliability that could be expected.

- 8. There is a significant amount of material that needs to be compiled or, at the very least, reviewed prior to a proposed 2010 drill program. Planning for a program needs to recognize the volume of material to be reviewed in preparation for a proposed program.
- 9. The status of the drill core needs to be evaluated in 2010 with regard to its preservation. Additional core is likely to be lost this year due to the effects of the winter snow load on core racks already failing. The core that can be recovered needs to be re-located to new, or re-built / strengthened, core racks as soon as is practical. Ideally, the core should be re-located to a lower elevation (i.e. Lower Camp) where snow load will not be as great a factor in the preservation / storage of core.
- 10. Review and consider implementing outstanding "Recommendations" from Dykes (2003) report.

REFERENCES

Dykes, S.M. 200. Assessment Work Report - Tillicum Mountain Gold Property, Slocan Mining Division, Assessment Report 27,144, dated April 15, 2003.

Appendix A

Statement of Qualifications
STATEMENT OF QUALIFICATIONS

I, Richard T. Walker, of 2601 42nd Ave South, Cranbrook, BC, hereby certify that:

- 1) I am a graduate of the University of Calgary of Calgary, Alberta, having obtained a Bachelors of Science in 1986.
- 2) I obtained a Masters of Geology at the University of Calgary of Calgary, Alberta in 1989.
- 3) I am a member of good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I am a consulting geologist, residing at $2601 42^{nd}$ Ave South, Cranbrook, British Columbia.
- 5) I am the author of this report which is based on field work undertaken in late September, 2008.

Dated at Cranbrook, British Columbia this 6th day of January, 2009.

Richard T. Walker, P.Geo.

Appendix B

VLF / Road Survey Results

Accuracy (m)		Ea	asting (Corrected		Northing	Corrected	
Oct. 18, 2009			E	Easting			Northing	
6	172	66	449066	449066	355	5537355	5537355	End of Ramp Portal
12.1	173	48	449048	449048	326	5537326	5537326	
	175	52	449052	449052	334	5537334	5537334	13 paces from Portal
	194	319	449319	449319	340	5537340	5537340	Mouth of Adit
	210	231	449231	449231	202	5537202	5537204	Mouth of Adit

Accuracy (m)		E	asting	Corrected		Northing	Corrected	Dip <	Res	FS	
Oct. 18, 2009				Easting			Northing				
	1	763	448763	448763	433	5537433	5537433	-2	50	4	
	2	755	448755	448755	451	5537451	5537451	0	52	4	
	3	753	448753	448753	476	5537476	5537476	-3	51	4	
	4	737	448737	448737	494	5537494	5537494	-2	51	6	
	5	726	448726	448726	507	5537507	5537507	0	54	5	
	6	706	448706	448706	525	5537525	5537525	2	56	6	
	7	693	448693	448693	544	5537544	5537544	1	61	7	
	8	678	448678	448678	564	5537564	5537555	3	62	6	
	9	665	448665	448665	570	5537570	5537570	2	65	6	
	10	652	448652	448652	591	5537591	5537591	1	65	4	
	11	640	448640	448640	602	5537602	5537602	4	67	5	
	12	622	448622	448622	617	5537617	5537617	2	69	5	
6.5	13	606	448606	448606	635	5537635	5537635	2	73	6	
	14	592	448592	448592	654	5537654	5537654	2	71	6	
	15	573	448573	448573	668	5537668	5537668	4	71	6	
Oct 10 2000											
Oct. 19, 2009	16	002	110000	110000	720	EE27770	EE27770	10	10	FO	
	10	805 707	440005	440005	729	5557729	EE27742	01-	10	50	
	10	797	448/9/	448797	742	5537742		-0	10	40	
	10	700	440/00	440700	759	5557759		-0 C	9	42	
	19	780	448/80	448780	770			-0 16	10	40	
	20	705	448/05	448779	789	5537789	553//88	-10	10	47	
	21	774	448774	448774	800	5537800		-21	10	43	
	22	783	448783	448783	818	553/818	553/818	-24	- 11	39	
	23	/9/	448797	448797	835	5537835	5537835	-18	/	34	
	24	62	449062	449062	363	5537363	5537363	-16	10	50	Gain set at 2.0
	25	64	449064	449064	361	5537361	5537361	-16	7	50	
	26	72	449072	449072	346	5537346	5537346	-19	9	58	
	27	87	449087	449087	339	5537339	5537339	-18	14	56	
	28	105	449105	449105	328	5537328	5537328	-20	10	59	
	29	117	449117	449117	322	5537322	5537322	-14	10	66	

30	132	449132	449132	313	5537313	5537313	-20	15	50 Gain set to 10.5
31	144	449144	449144	301	5537301	5537301	-23	15	47
32	158	449158	449158	290	5537290	5537290	-20	11	49
33	174	449174	449174	292	5537292	5537292	-25	12	44
34	188	449188	449188	298	5537298	5537298	-25	12	44
35	200	449200	449202	309	5537309	5537302	-29	12	44
36	214	449214	449214	308	5537308	5537308	-29	15	42
37	226	449226	449228	319	5537319	5537316	-26	18	42
38	242	449242	449242	326	5537326	5537326	-32	16	40
39	252	449252	449252	335	5537335	5537335	-33	12	36
40	264	449264	449261	351	5537351	5537345	-34	12	39
41	270	449270	449269	366	5537366	5537355	-34	11	35
42	214	449214	449214	312	5537312	5537312	-30	17	36
43	225	449225	449225	326	5537326	5537326	-24	14	43
44	231	449231	449231	335	5537335	5537335	-25	16	34
45	244	449244	449244	348	5537348	5537348	-31	13	30
46	255	449255	449255	359	5537359	5537359	-35	12	30 Gain set to 17.8
							-36	19	60
47	268	449268	449269	374	5537374	5537370	-36	15	33
48	282	449282	449282	381	5537381	5537381	-33	14	72
49	291	449291	449291	392	5537392	5537392	-32	19	82 Gain set to 11.6
							-31	16	50
50	308	449308	449308	406	5537406	5537406	-18	22	69
51	284	449284	449284	380	5537380	5537380	-30	16	40
52	268	449268	449268	372	5537372	5537372	-31	12	36
53	253	449253	449253	364	5537364	5537364	-33	16	38
54	234	449234	449234	360	5537360	5537360	-32	20	41
55	216	449216	449216	361	5537361	5537358	-22	21	46
56	201	449201	449201	357	5537357	5537357	-25	16	48
57	181	449181	449181	355	5537355	5537355	-28	14	42
58	167	449167	449167	337	5537337	5537358	-24	12	41
59	151	449151	449151	357	5537357	5537363	-26	18	45
60	134	449134	449134	363	5537363	5537373	-28	9	34
61	124	449124	449122	383	5537383	5537376	-34	11	35

7.2 24.9 22.4 26.6 30.2

	62	107	449107	449107	388	5537388	5537388	-44	7	31
31.8	63	98	449098	449096	407	5537407	5537396	-46	5	31
28.6	64	81	449081	449081	404	5537404	5537404	-40	5	31
22.9	65	71	449071	449065	449	5537449	5537415	-36	4	28
19.2	66	59	449059	449048	452	5537452	5537423	-31	9	37
								-34	12	38
21.9	67	37	449037	449037	444	5537444	5537434	-32	13	35
17.6	68	27	449027	449027	453	5537453	5537448	-32	13	36
18	69	17	449017	449017	458	5537458	553746 <mark>2</mark>	-24	14	44
28.7	70	3	449003	449008	480	5537480	5537476	-21	16	39
17.3	71	988	448988	449003	477	5537477	5537489	-20	17	50
16.4	72	983	448983	448998	494	5537494	5537499	-24	16	44
17.7	73	996	448996	449011	479	5537479	5537488	-20	19	36
15.2	74	12	449012	449022	475	5537475	5537483	-24	11	38
13.9	75	31	449031	449033	474	5537474	5537477	-26	10	31
13.5	76	51	449051	449041	466	5537466	5537468	-32	7	38
13.9	77	62	449062	449050	454	5537454	5537459	-38	10	35
16.3	78	92	449092	449084	430	5537430	5537426	-36	12	31
23.3	79	74	449074	449073	425	5537425	5537433	-38	9	52
15.9	80	61	449061	449062	418	5537418	5537438	-32	11	34
11	81	49	449049	449049	443	5537443	5537447	-32	10	35
6.4	82	32	449032	449033	453	5537453	5537458	-28	10	35
7.1	83	20	449020	449020	465	5537465	5537465	-26	15	42
17.9	84	4	449004	449014	470	5537470	5537477	-26	15	45
9.9	85	35	449035	449035	430	5537430	5537430	-24	15	42
10.8	86	24	449024	449023	440	5537440	5537431	-30	10	44
9.4	87	9	449009	449009	436	5537436	5537436	-24	21	39
5.6	88	994	448994	448994	447	5537447	5537447	-26	27	44
Oct. 20, 2009										
12.1	89	162	449162	449172	349	5537349	5537359	-19	7	50 Gain at 11
11.6	90	176	449176	449183	362	5537362	5537370	-21	15	35
12.1	91	195	449195	449195	382	5537382	5537382	-20	9	49
12.9	92	207	449207	449207	396	5537396	5537396	-30	8	45

14.9	93	214	449214	449214	407	5537407	5537407	-22	10	56	
14.6	94	199	449199	449199	395	5537395	5537395	-24	7	36	
14.8	95	184	449184	449184	392	5537392	5537392	-23	8	75	
15	96	167	449167	449167	390	5537390	5537390	-14	13	40 Junction	
15.4	97	149	449149	449149	391	5537391	5537399	-6	7	50 Short Spur	Gain to 6
9.8	98	139	449139	449139	410	5537410	5537410	-19	7	29	
7.8	99	180	449180	449180	401	5537401	5537401	-24	6	30 Back at Junctio	n
6	100	192	449192	449192	409	5537409	5537409	-27	4	16	
7.4	101	207	449207	449207	417	5537417	5537417	-30	4	19	
5.8	102	191	449191	449191	417	5537417	5537417	-24	4	18	
5.8	103	176	449176	449176	415	5537415	5537415	-16	4	22	
5.9	104	158	449158	449158	420	5537420	5537420	-4	6	50 Junction	Gain to 36
6.2	105	147	449147	449147	430	5537430	5537430	-5	4	27 spur	
5.9	106	131	449131	449131	439	5537439	5537439	-20	5	50	
6.1	107	114	449114	449114	443	5537443	5537443	-30	5	48	
6.1	108	104	449104	449104	452	5537452	5537452	-22	4	19	
	109	159	449159	449159	421	5537421	5537421			Back at junction	n
6.3	110	170	449170	449170	425	5537425	5537425	-20	7	42	
7	111	188	449188	449188	436	5537436	5537436	-19	4	14	
7.1	112	206	449206	449206	444	5537444	5537444	-26	3	14 4 way junction,	station at west edge of junction
7.2	113	218	449218	449222	450	5537450	5537453	-27	4	19	
7.2	114	240	449240	449232	457	5537457	5537461	-28	4	52	
7.9	115	246	449246	449241	468	5537468	5537470	-27	5	19	
7.5	116	257	449257	449257	482	5537482	5537482	-20	6	26	
7.6	117	269	449269	449269	495	5537495	5537495	-10	9	17	
12.9	118	281	449281	449281	503	5537503	5537503	-4	8	16	
15.6	119	294	449294	449290	515	5537515	5537517	-11	16	50 Gain to 7.9	
16.5	120	293	449293	449296	536	5537536	553753 <mark>2</mark>	-5	10	32	
12.5	121	300	449300	449300	546	5537546	5537546	-6	11	42	
12.7	122	312	449312	449303	562	5537562	5537565	-14	11	50	
12.8	123	308	449308	449308	585	5537585	5537585	-11	8	21	
15.2	124	312	449312	449312	603	5537603	5537603	-14	8	25	
11.1	125	309	449309	449309	622	5537622	5537622	-15	7	30	
11.5	126	314	449314	449314	640	5537640	5537640	-16	7	30	

10.4	127	310	449310	449310	622	5537622	5537622	-7	9	22
10	128	298	449298	449298	607	5537607	5537607	-10	9	25
8.6	129	279	449279	449279	601	5537601	5537601	-6	9	26
9.2	130	260	449260	449260	607	5537607	5537607	1	12	40
8.8	131	244	449244	449244	615	5537615	5537615	-1	12	58
7.4	132	228	449228	449228	626	5537626	5537626	-7	7	37
7.1	133	224	449224	449224	641	5537641	5537641	-14	6	29
7.2	134	210	449210	449210	652	5537652	5537652	-14	6	30
7.3	135	196	449196	449196	659	5537659	5537659	-20	6	20 Gain to 15.1
	136	196	449196	449196	659	5537659	5537659	-22	6	50
12.3	137	184	449184	449184	656	5537656	5537656	-20	6	60
12.7	138	174	449174	449174	645	5537645	5537645	-16	9	42
11.5	139	169	449169	449169	636	5537636	5537636	-17	7	50 Gain to 5
11.7	140	155	449155	449155	622	5537622	5537622	-20	7	27
11.8	141	141	449141	449141	612	5537612	5537612	-16	7	15
12	142	123	449123	449123	614	5537614	5537614	-13	3	25 Creek
18.6	143	248	449248	449251	479	5537479	5537476	-18	3	50 Gain to 12
18.1	144	264	449264	449264	469	5537469	5537469	-13	13	34
17	145	277	449277	449277	463	5537463	5537463	-12	13	55
13	146	291	449291	449291	458	5537458	5537458	-20	13	50
20.6	147	302	449302	449302	471	5537471	5537471	-12	15 100+	
24.9	148	315	449315	449310	473	5537473	5537483	-6	16	57
27.3	149	323	449323	449323	499	5537499	5537499	-6	13	48
24.8	150	316	449316	449310	477	5537477	5537483	-6	12	67
24.6	151	305	449305	449302	465	5537465	5537471	-10	14 100+	
23.9	152	296	449296	449291	451	5537451	5537458	-27	13 100+	
25.5	153	287	449287	449281	443	5537443	5537447	-27	13 100+	
25.4	154	267	449267	449267	435	5537435	5537444	-27	13	50 Gain to 0.8
25.5	155	252	449252	449252	430	5537430	5537438	14	4	70
10	156	234	449234	449234	136	5537/36	5537436	-24	4	18
	150	234	115251	775257	450	5557450	5557450	24	-	10

Oct. 21, 2009

	158	902	448902	448902	515	5537515	5537515	-3	4	50 Gain to 10.5
	159	915	448915	448915	505	5537505	5537505	-4	5	33
PDOP 2.3	160	920	448920	448920	491	5537491	5537491	-6	5	33
2.3	161	928	448928	448928	474	5537474	5537474	-6	5	33
2.3	162	935	448935	448935	457	5537457	5537457	-10	5	33
2.7	163	943	448943	448943	446	5537446	5537446	-8	5	35
2.3	164	952	448952	448952	428	5537428	5537428	-14	5	32
10.7	165	966	448966	448966	416	5537416	5537416	-11	7	43 Gain to 14.5
10.4	166	980	448980	448980	404	5537404	5537404	-16	15	40
9.5	167	994	448994	448994	392	5537392	5537392	-18	10	42
9.5	168	9	449009	449009	383	5537383	5537383	-18	8	30
9.4	169	26	449026	449024	380	5537380	5537375	-24	7	82
9.4	170	42	449042	449040	368	5537368	5537365	-21	5	36
9	171	56	449056	449053	362	5537362	5537358	-13	7	40
6	172	66	449066	449066	355	5537355	5537355			End of Ramp Portal
12.1	173	48	449048	449048	326	5537326	5537326			
5.6	174	78	449078	449078	348	5537348	5537348	-18	7	40
	175	52	449052	449052	334	5537334	5537334			13 paces from Portal
5.8	176	81	449081	449081	336	5537336	5537336	-14	5	43
5.8	177	99	449099	449099	330	5537330	5537330	-16	6	57
5.8	178	114	449114	449114	325	5537325	5537325	-12	8	43
7.4	179	129	449129	449129	314	5537314	5537314	-10	10	60
16.7	180	141	449141	449141	309	5537309	5537309	-18	8	43
5.9	181	158	449158	449158	292	5537292	5537292	-20	8	39 Junction down
5.9	182	171	449171	449171	283	5537283	5537283	-24	12	98
6.2	183	187	449187	449187	282	5537282	5537282	-24	8	47
2.7	184	189	449189	449189	283	5537283	5537283			
2.7	185	205	449205	449205	284	5537284	5537284	-24	6	35
2.8	186	219	449219	449219	287	5537287	5537287	-22	8	32
2.8	187	236	449236	449236	294	5537294	5537294	-24	9	29
2.6	188	251	449251	449251	299	5537299	5537299	-28	9	26
2.6	189	269	449269	449269	304	5537304	5537304	-30	7	24
2.7	190	284	449284	449284	313	5537313	5537313	-30	6	26
2.8	191	298	449298	449298	327	5537327	5537327	-28	5	32

2.9	192	309	449309	449309	338	5537338	5537338	-30	6	40	
2.9	193	322	449322	449322	351	5537351	5537351	-10	5	68	
	194	319	449319	449319	340	5537340	5537340			Mouth of Adit	
3	195	334	449334	449334	361	5537361	5537361	4	4	64	
3.1	196	347	449347	449347	372	5537372	5537372	3	4	50	
	197	360	449360	449360	383	5537383	5537383	4	4	46	
3.6	198	333	449333	449322	353	5537353	5537342	5	4	43	
3.7	199	322	449322	449321	347	5537347	5537331	2	4	56	
8.9	200	314	449314	449317	321	5537321	5537319	-4	4	61	
3.7	201	311	449311	449311	303	5537303	5537303	-22	5	47	
3.7	202	300	449300	449300	285	5537285	5537285	-22	4	46	
3.7	203	289	449289	449289	271	5537271	5537271	-23	3	27	
3.7	204	271	449271	449277	261	5537261	5537255	-25	2	31	
3.6	205	264	449264	449264	244	5537244	5537244	-19	4	36	
3.6	206	253	449253	449253	235	5537235	5537235	-18	6	30	
3.5	207	243	449243	449243	215	5537215	5537222	-19	7	28	
3.4	208	227	449227	449227	211	5537211	5537211	-16	6	32	
3.4	209	221	449221	449221	198	5537198	5537198	-11	5	36	
	210	231	449231	449231	202	5537202	5537204			Mouth of Adit	
	211	242	449242	449242	202	5537202	5537202	-12	7	45	
	212	258	449258	449258	208	5537208	5537208	-11	6	45	
3	213	274	449274	449274	209	5537209	5537209	-8	5	49	
2.8	214	263	449263	449263	191	5537191	5537191	-4	5	45	
3.8	215	253	449253	449253	174	5537174	5537174	-6	2	38	
1.9	216	246	449246	449246	163	5537163	5537163	6	2	40	
3.6	217	230	449230	449230	164	5537164	5537164	4	2	44 Walked back down	to adit
2.2	218	207	449207	449207	196	5537196	5537196	-10	7	39	
2.1	219	197	449197	449197	182	5537182	5537182	-12	7	44	
2.1	220	185	449185	449185	178	5537178	5537178	-16	12	39	
2.1	221	162	449162	449167	154	5537154	5537171	-13	10	33	
11.5	222	149	449149	449149	176	5537176	5537176	-15	6	25	
10.9	223	135	449135	449135	182	5537182	5537182	-13	4	24	
10	224	110	449110	449122	171	5537171	5537190	-16	3	24	
9.4	225	103	449103	449113	216	5537216	5537198	-8	4	24	

8.7	226	89	449089	449103	214	5537214	5537204	-8	2	23
8.1	227	78	449078	44909 2	221	5537221	5537214	-8	3	10
7.6	228	95	449095	449107	215	5537215	5537209	-14	2	21
7.2	229	108	449108	449120	202	5537202	5537207	-16	2	21
1.8	230	124	449124	449135	193	5537193	5537206	-13	2	21
6.5	231	140	449140	449150	200	5537200	5537209	-16	3	21
6	232	157	449157	449165	210	5537210	5537215	-19	4	23
5.6	233	172	449172	449175	217	5537217	5537221	-14	5	26
5.4	234	186	449186	449188	225	5537225	5537227	-16	5	28
5.2	235	200	449200	449200	243	5537243	5537234	-16	5	28
4.8	236	213	449213	449213	247	5537247	5537253	-17	4	28
2.6	237	222	449222	449222	266	5537266	5537266	-19	4	24
2.6	238	232	449232	449232	283	5537283	5537283	-22	5	18
2.6	239	218	449218	449218	273	5537273	5537273	-20	4	18
2.6	240	200	449200	449200	269	5537269	5537269	-18	3	2
2.6	241	182	449182	449182	269	5537269	5537269	-20	2	2
12.2	242	165	449165	449165	277	5537277	5537277	-16	2	2
11.7	243	157	449157	449157	290	5537290	5537290	-18	2	21

	Corrected	Corrected	Dip <	Res	FS	Calc. A	Fraser	l	Mid - East	Mid - North			
	Easting	Northing					Filter						
15	448573	5537668	2	l 71	6								
14	448592	5537654	2	2 71	6	6							
13	448606	5537635	2	2 73	6	4		2	448599	5537645			
12	448622	5537617	2	2 69	5	4	-	-2	448614	5537626			
11	448640	5537602	2	l 67	5	6	-	-1	448631	5537610			
10	448652	5537591	1	L 65	4	5		3	448646	5537597			
9	448665	5537570	2	2 65	6	3		0	448658.5	5537581			
8	448678	5537555	3	62	6	5	-	-1	448671.5	5537563			
7	448693	5537544	1	L 61	7	4		2	448685.5	5537550			
6	448706	5537525	2	2 56	6	3		2	448699.5	5537535			
5	448726	5537507	() 54	5	2		5	448716	5537516			
4	448737	5537494	-2	2 51	6	-2		7	448731.5	5537501			
3	448753	5537476	-3	3 51	4	-5		1	448745	5537485			
2	448755	5537451	() 52	4	-3	-	-3	448754	5537464			
1	448763	5537433	-2	2 50	4	-2							
23	448797	5537835	-18	3 7	34								
22	448783	5537818	-24	l 11	39	-42							
21	448774	5537800	-21	L 10	43	-45	-	-5	448778.5	5537809			
20	448779	5537788	-16	5 10	47	-37	-2	3	448776.5	5537794			
19	448786	5537776	-6	5 10	46	-22	-2	25	448782.5	5537782			
18	448786	5537759	-6	5 9	42	-12	-	-8	448786	5537768			
17	448797	5537742	-8	3 10	40	-14		6	448791.5	5537751			
16	448803	5537729	-10) 10	50	-18							
24	449062	5537363	-16	5 10	50								
25	449064	5537361	-16	5 7	50	-32							
26	449072	5537346	-19) 9	58	-35					5	449068	5537354
27	449087	5537339	-18	3 14	56	-37					3	449079.5	5537343
28	449105	5537328	-20) 10	59	-38					-3	449096	5537334
29	449117	5537322	-14	l 10	66	-34					-4	449111	5537325
30	449132	5537313	-20) 15	50	-34					9	449124.5	5537318

31	449144	5537301	-23	15	47	-43						
32	449158	5537290	-20	11	49							
33	449174	5537292	-25	12	44	-45						
34	449188	5537298	-25	12	44	-50				9	449181	5537295
35	449202	5537302	-29	12	44	-54				8	449195	5537300
36	449214	5537308	-29	15	42	-58	1	449208	5537305			
37	449228	5537316	-26	18	42	-55	0	449221	5537312			
38	449242	5537326	-32	16	40	-58	10	449235	5537321			
39	449252	5537335	-33	12	36	-65	9	449247	5537331			
40	449261	5537345	-34	12	39	-67	3	449256.5	5537340			
41	449269	5537355	-34	11	35	-68						
	440450		20		40							
32	449158	5537290	-20	11	49	45						
33	449174	5537292	-25	12	44	-45	0	440404	FF2720F			
34	449188	5537298	-25	12	44	-50	9	449181	5537295			
35	449202	5537302	-29	12	44	-54	9	449195	553/300			
42	449214	553/312	-30	1/	36	-59	0	449208	553/30/			
43	449225	553/326	-24	14	43	-54	-10	449219.5	553/319			
44	449231	553/335	-25	16	34	-49	2	449228	553/331			
45	449244	553/348	-31	13	30	-56	1/	449237.5	553/342			
46	449255	553/359	-35	12	30	-66	15	449249.5	553/354			
47	449269	553/3/0	-36	15	33	-/1	3	449262	553/365	6	440275 5	
48	449282	553/381	-33	14	/2	-69	10	440206 5		-6	449275.5	553/3/6
49	449291	5537392	-32	19	82	-65	-19	449286.5	553/38/			
50	449308	5537406	-18	22	69	-50						
72	448998	5537499	-24	16	44							
71	449003	5537489	-20	17	50	-44						
70	449008	5537476	-21	16	39	-41	1	449005.5	5537483			
69	449017	5537462	-24	14	44	-45	15	449012.5	5537469			
68	449027	5537448	-32	13	36	-56	19	449022	5537455			

67	449037	5537434	-32	13	35	-64	10	449032	5537441			
66	449048	5537423	-34	12	38	-66	6	449042.5	5537429			
65	449065	5537415	-36	4	28	-70	10	449056.5	5537419			
64	449081	5537404	-40	5	31	-76	16	449073	5537410			
63	449096	5537396	-46	5	31	-86	14	449088.5	5537400			
62	449107	5537388	-44	7	31	-90	-8	449101.5	5537392			
61	44912 <mark>2</mark>	5537376	-34	11	35	-78	-28	449114.5	5537382			
60	449134	5537373	-28	9	34	-62	-24	449128	5537375			
59	449151	5537363	-26	18	45	-54				-12	449142.5	5537368
58	449167	5537358	-24	12	41	-50				-2	449159	5537361
57	449181	5537355	-28	14	42	-52	3	449174	5537357			
56	449201	5537357	-25	16	48	-53	-5	449191	5537356			
55	449216	5537358	-22	21	46	-47	1	449208.5	5537358			
54	449234	5537360	-32	20	41	-54	18	449225	5537359			
53	449253	5537364	-33	16	38	-65	10	449243.5	5537362			
52	449268	5537372	-31	12	36	-64	-4	449260.5	5537368			
51	449284	5537380	-30	16	40	-61	-16	449276	5537376			
50	449308	5537406	-18	22	69	-48						
73	449011	5537488	-20	19	36							
74	449022	5537483	-24	11	38	-44						
75	449033	5537477	-26	10	31	-50	14	449027.5	5537480			
76	449041	5537468	-32	7	38	-58	20	449037	5537473			
77	449050	5537459	-38	10	35	-70						
72	448998	5537499	-24	16	44							
71	449003	5537489	-20	17	50	-44						
84	449014	5537477	-26	15	45	-46	8	449008.5	5537483			
83	449020	5537465	-26	15	42	-52	8	449017	5537471			
82	449033	5537458	-28	10	35	-54	8	449026.5	5537462			
81	449049	5537447	-32	10	35	-60	10	449041	5537453			
80	449062	5537438	-32	11	34	-64	10	449055.5	5537443			
79	449073	5537433	-38	9	52	-70	10	449067.5	5537436			

78	449084	5537426	-36	12	31	-74						
88	448994	5537447	-26	27	44							
87	449009	5537436	-24	21	39	-50						
86	449023	5537431	-30	10	44	-54	4	449016	5537434			
85	449035	5537430	-24	15	42	-54	1	449029	5537431			
66	449048	5537423	-31	9	37	-55				13	449041.5	5537427
65	449065	5537415	-36	4	28	-67				21	449056.5	5537419
64	449081	5537404	-40	5	31	-76						
61	449122	5537376	-34	11	35							
60	449134	5537373	-28	9	34	-62						
59	449151	5537363	-26	18	45	-54	-17	449142.5	5537368			
89	449172	5537359	-19	7	50	-45	-14	449161.5	5537361			
90	449183	5537370	-21	15	35	-40	-4	449177.5	5537365			
91	449195	5537382	-20	9	49	-41	10	449189	5537376			
92	449207	5537396	-30	8	45	-50	11	449201	5537389			
93	449214	5537407	-22	10	56	-52						
98	449139	5537410	-19	7	29							
97	449149	5537399	-6	7	50	-25						
96	449167	5537390	-14	13	40	-20	12	449158	5537395			
95	449184	5537392	-23	8	75	-37	27	449175.5	5537391			
94	449199	5537395	-24	7	36	-47	9	449191.5	5537394			
93	449214	5537407	-22	10	56	-46						
98	449139	5537410	-19	7	29							
97	449149	5537399	-6	7	50	-25						
96	449167	5537390	-14	13	40	-20				13	449158	5537395
99	449180	5537401	-24	6	30	-38	31	449173.5	5537396			

100	449192	5537409	-27	4	16	-51	19	449186	5537405			
101	449207	5537417	-30	4	19	-57						
108	449104	5537452	-22	4	19							
107	449114	5537443	-30	5	48	-52						
106	449131	5537439	-20	5	50	-50	-27	449122.5	5537441			
105	449147	5537430	-5	4	27	-25				-41	449139	5537435
104	449158	5537420	-4	6	50	-9				-5	449152.5	5537425
103	449176	5537415	-16	4	22	-20	31	449167	5537418			
102	449191	5537417	-24	4	18	-40	34	449183.5	5537416			
101	449207	5537417	-30	4	19	-54						
108	449104	5537452	-22	4	19							
107	449114	5537443	-30	5	48	-52						
106	449131	5537439	-20	5	50	-50	-27	449122.5	5537441			
105	449147	5537430	-5	4	27	-25	-45	449139	5537435			
109	449159	5537421				-5	-5	449153	5537426			
110	449170	5537425	-20	7	42	-20	34	449164.5	5537423			
111	449188	5537436	-19	4	14	-39				25	449179	5537431
112	449206	5537444	-26	3	14	-45				17	449197	5537440
157	449216	5537439	-30	5	12	-56	9	449211	5537442			
156	449234	5537436	-24	4	18	-54	-46	449225	5537438			
155	449252	5537438	14	4	70	-10	-41	449243	5537437			
154	449267	5537444	-27	13	50	-13	44	449259.5	5537441			
153	449281	5537447	-27	13 100-	÷	-54	41	449274	5537446			
152	449 2 91	5537458	-27	13 100-	F	-54	-17	449286	5537453			
151	44930 <mark>2</mark>	5537471	-10	14 100+	F	-37				-38	449296.5	5537465
150	449310	5537483	-6	12	67	-16				-25	449306	5537477
149	449323	5537499	-6	13	48	-12						
117	110206	5527///	-26	2	11							
112	445200	557444	-20 27	5	14 10	ΕĴ						
113	449222	5557455	-27	4	19	-55						

114	449232	5537461	-28	4	52	-55				2	449227	5537457	
115	449241	5537470	-27	5	19	-55				-10	449236.5	5537466	
143	449251	5537476	-18	3	50	-45	-24	449246	5537473				
144	449264	5537469	-13	13	34	-31	-20	449257.5	5537473				
145	449277	5537463	-12	13	55	-25	1	449270.5	5537466				
146	449291	5537458	-20	13	50	-32	7	449284	5537461				
147	449302	5537471	-12	15 100)+	-32	-14	449296.5	5537465				
148	449310	5537483	-6	16	57	-18	-20	449306	5537477				
149	449323	5537499	-6	13	48	-12							
110	1/0170	5527/25	-20	7	17								
111	449170 1/0188	5537425	-20	1	42 1 <i>1</i>	-30	1/	110170	5527/21				
112	445100	5537430	-15	4	14	-35	10	44J1/J 1/0107	5537431				
112	1/0222	5537450	-27	л Л	10	-53	2	1/Q21/	5537440				
11/	1/0737	5537450	-27	4	52	-55	-8	44J214 1/10227	5537447				
115	44JZJZ 110711	5537457	-28	-+ 5	10	-55	-0 -25	1/0736 5	5537454				
116	44J241 110257	5537400	-27	5	26	-35	-23	1/02/0	5537405				
117	449297 1/19269	5537402	-20	9	17	-47	-55	1/19263	5537475				
118	1/9281	5537503	-1	8	16	-1/	2	1/19275	5537/99				
110	1/19201	5537515	-11	16	50	_15		1/19285 5	5537509				
120	449296	5537536	-5	10	32	-16	- - Д	449205.5	5537526				
121	449300	5537546	-6	11	42	-11	14	449298	5537541				
122	449303	5537562	-14	11	50	-20	5	449301 5	5537554				
123	449308	5537585	-11	8	21	-25	<u></u>	449305 5	5537574				
124	449312	5537603	-14	8	25	-25	6	449310	5537594				
125	449309	5537622	-15	7	30	-29	-29	449310.5	5537613				
126	449314	5537640	-16	7	30	-31		. 1551015	2007010				
	1.5511	2007010	10		50	01							
142	449123	5537614	-13	3	25								
141	449141	5537612	-16	7	15	-29							
140	449155	5537622	-20	7	27	-36	8	449148	5537617				
139	449169	5537636	-17	7	50	-37	-3	449162	5537629				

138	449174	5537645	-16	9	42	-33	-1	449171.5	5537641
137	449184	5537656	-20	6	60	-36	9	449179	5537651
136	449196	5537659	-22	6	50	-42	6	449190	5537658
135	449196	5537659	-20	6	20	-42	-8	449196	5537659
134	449210	5537652	-14	6	30	-34	-14	449203	5537656
133	449224	5537641	-14	6	29	-28	-13	449217	5537647
132	449228	5537626	-7	7	37	-21	-20	449226	5537634
131	449244	5537615	-1	12	58	-8	-21	449236	5537621
130	449260	5537607	1	12	40	0	-3	449252	5537611
129	449279	5537601	-6	9	26	-5	16	449269.5	5537604
128	449298	5537607	-10	9	25	-16	12	449288.5	5537604
127	449310	5537622	-7	9	22	-17	7	449304	5537615
126	449314	5537640	-16	7	30	-23			
158	448902	5537515	-3	4	50				
159	448915	5537505	-4	5	33	-7			
160	448920	5537491	-6	5	33	-10	5	448917.5	5537498
161	448928	5537474	-6	5	33	-12	6	448924	5537483
162	448935	5537457	-10	5	33	-16	6	448931.5	5537466
163	448943	5537446	-8	5	35	-18	6	448939	5537452
164	448952	5537428	-14	5	32	-22	7	448947.5	5537437
165	448966	5537416	-11	7	43	-25	5	448959	5537422
166	448980	5537404	-16	15	40	-27	9	448973	5537410
167	448994	5537392	-18	10	42	-34	9	448987	5537398
168	449009	5537383	-18	8	30	-36	8	449001.5	5537388
169	449024	5537375	-24	7	82	-42	9	449016.5	5537379
170	449040	5537365	-21	5	36	-45	-8	449032	5537370
171	449053	5537358	-13	7	40	-34	-14	449046.5	5537362
174	449078	5537348	-18	7	40	-31	-2	449065.5	5537353
176	449081	5537336	-14	5	43	-32	-1	449079.5	5537342
177	449099	5537330	-16	6	57	-30	-4	449090	5537333
178	449114	5537325	-12	8	43	-28	-8	449106.5	5537328
179	449129	5537314	-10	10	60	-22	0	449121.5	5537320
180	449141	5537309	-18	8	43	-28	16	449135	5537312

181	449158	5537292	-20	8	39	-38	16	449149.5	5537301			
182	449171	5537283	-24	12	98	-44	10	449164.5	5537288			
183	449187	5537282	-24	8	47	-48	-20	449179	5537283			
184	449189	5537283				-24	-24	449188	5537283			
185	449205	5537284	-24	6	35	-24	22	449197	5537284			
186	449219	5537287	-22	8	32	-46	22	449212	5537286			
187	449236	5537294	-24	9	29	-46	6	449227.5	5537291			
188	449251	5537299	-28	9	26	-52	12	449243.5	5537297			
189	449269	5537304	-30	7	24	-58	8	449260	5537302			
190	449284	5537313	-30	6	26	-60	0	449276.5	5537309			
191	449298	5537327	-28	5	32	-58	-2	449291	5537320			
192	449309	5537338	-30	6	40	-58	-18	449303.5	5537333			
193	449322	5537351	-10	5	68	-40				-52	449315.5	5537345
195	449334	5537361	4	4	64	-6				-47	449328	5537356
196	449347	5537372	3	4	50	7	-13	449340.5	5537367			
197	449360	5537383	4	4	46	7						
227	449092	5537214	-8	3	10							
226	449103	5537204	-8	2	23	-16						
225	449113	5537198	-8	4	24	-16	8	449108	5537201			
224	449122	5537190	-16	3	24	-24	13	449117.5	5537194			
223	449135	5537182	-13	4	24	-29	4	449128.5	5537186			
222	449149	5537176	-15	6	25	-28	-1	449142	5537179			
221	449167	5537171	-13	10	33	-28	1	449158	5537174			
220	449185	5537178	-16	12	39	-29	0	449176	5537175			
219	449197	5537182	-12	7	44	-28	-7	449191	5537180			
218	449207	5537196	-10	7	39	-22	-7	449202	5537189			
209	449221	5537198	-11	5	36	-21				5	449214	5537197
208	449227	5537211	-16	6	32	-27	14	449224	5537205			
207	449243	5537 <mark>222</mark>	-19	7	28	-35	10	449235	5537217			
206	449253	5537235	-18	6	30	-37	2	449248	5537229			
205	449264	5537244	-19	4	36	-37	7	449258.5	5537240			
204	449277	5537255	-25	2	31	-44	11	449270.5	5537250			
203	449289	5537271	-23	3	27	-48	1	449283	5537263			

202	449300	5537285	-22	4	46	-45	-4	449294.5	5537278
201	449311	5537303	-22	5	47	-44	-19	449305.5	5537294
200	449317	5537319	-4	4	61	-26	-42	449314	5537311
199	449321	5537331	2	4	56	-2	-33	449319	5537325
198	449322	553734 <mark>2</mark>	5	4	43	7	3	449321.5	5537337
193	449322	5537351	-10	5	68	-5	13	449322	5537347
195	449334	5537361	4	4	64	-6	-12	449328	5537356
196	449347	5537372	3	4	50	7	-13	449340.5	5537367
197	449360	5537383	4	4	46	7			
221	449167	5537171	-13	10	33				
220	449185	5537178	-16	12	39	-29			
219	449197	5537182	-12	7	44	-28	-7	449191	5537180
218	449207	5537196	-10	7	39	-22	-7	449202	5537189
209	449221	5537198	-11	5	36	-21	1	449214	5537197
211	449242	5537202	-12	7	45	-23	2	449231.5	5537200
212	449258	5537208	-11	6	45	-23	-4	449250	5537205
213	449274	5537209	-8	5	49	-19			
213	449274	5537209	-8	5	49				
214	449263	5537191	-4	5	45	-12			
215	449253	5537174	-6	2	38	-10	-12	449258	5537183
216	449246	5537163	6	2	40	0	-20	449249.5	5537169
217	449230	5537164	4	2	44	10			
238	449232	5537283	-22	5	18				
237	449222	5537266	-19	4	24	-41			
236	449213	5537253	-17	4	28	-36	-8	449217.5	5537260
235	449200	5537234	-16	5	28	-33	-4	449206.5	5537244
234	449188	5537227	-16	5	28	-32	-3	449194	5537231
233	449175	5537221	-14	5	26	-30	1	449181.5	5537224
232	449165	5537 2 15	-19	4	23	-33	5	449170	5537218

231	449150	5537209	-16	3	21	-35	-4	449157.5	5537212			
230	449135	5537206	-13	2	21	-29	-6	449142.5	5537208			
229	449120	5537207	-16	2	21	-29	1	449127.5	5537207			
228	449107	5537209	-14	2	21	-30	-7	449113.5	5537208			
227	449092	5537214	-8	3	10	-22						
177	449099	5537330	-16	6	57							
178	449114	5537325	-12	8	43	-28						
179	449129	5537314	-10	10	60	-22				0	449121.5	5537320
180	449141	5537309	-18	8	43	-28				14	449135	5537312
243	449157	5537290	-18	2	21	-36				6	449149	5537300
242	449165	5537277	-16	2	2	-34	0	449161	5537284			
241	449182	5537269	-20	2	2	-36	4	449173.5	5537273			
240	449200	5537269	-18	3	2	-38	2	449191	5537269			
239	449218	5537273	-20	4	18	-38						

Appendix C

Photographs

Captions

- Page 1 Figure 7 View east-southeast along road by Upper Camp, from immediately south of Upper Camp building. The steep topography of the north facing bowl is evident along the skyline.
 - Figure 8 A-frame style building (to accommodate snow load) at Upper Camp. Core rack to left (south) and cross stacked core to right (north) of building.
- Page 2 Figure 9 Cross stacked core at Upper Camp, south of building. Very few of the plastic box labels (blue) remain with which to identify the core. As the boxes were wet when examined, it is possible that the original markings in black felt pen might remain and still be legible. Failing that, footage markers and sample tags might be used to identify and, therefore, recover the core.
 - Figure 10 Core racks by building at Upper Camp. The lateral steel rods are beginning to fail, likely due to the winter snow load, and, as a result, the racks are in the process of collapsing.
- Page 3 Figure 11 View east-southeast toward north-facing bowl from Upper Camp. Series of core racks along east side of road in varying state of repair. Note: all racks beginning to tilt to left (east).
 - Figure 12 Evidence of vandalization of core. Unknown person(s) have pulled boxes from the racks, presumably to scavenge mineralized core, and have not pushed the boxes back into the racks.
- Page 4 Figure 13 Core rack in good condition, little evidence of vandalization. Metal tags still affixed to boxes allowing identification of drill hole.
 - Figure 14 Metal core rack along road south of building at Upper Camp. Lateral metal rods beginning to fail and rack beginning to collapse, likely due to winter snow load. Note: some boxes pulled out (vandalized).
- Page 5 Figure 15 Wooden core rack along road south of building at Upper Camp. Plastic tags on box ends missing. Original markings may remain with which to identify hole / box. Failing that, footage markers and/or sample tags within boxes may permit identification, if present.

- Figure 16 Metal core rack along road at Upper Camp beginning to collapse due to winter snow load. Minor evidence of vandalization.
- Page 6 Figure 17 Old scoop tram on west side of Warehouse building at Lower Camp. Operational condition unknown.
 - Figure 18 Administration / Cook building at Lower Camp. View to west. In relatively good condition.
- Page 7 Figure 19 Bunk / Shower building to west of Administration building, view to northwest.
 - Figure 20 View of disposition of Bunk / Shower and Administration / Cook buildings, view to northeast.

Page 8 - Figure 21 - Warehouse building at Lower Camp, view to west.

Appendix D

Statement of Expenditures

STATEMENT OF EXPENDITURES

The following expenses were incurred between September 4th and October 27th, 2009.

PERSONNEL		
Geologist: additional filings 2008 report: 1.5 days x \$650 / day	\$	975.00
: 2009 Program - 9 days at \$650 / day	\$	5,850.00
ACCOMMODATIONS		
4 Days:	\$	339.00
MEALS		
Meals / Groceries:	\$	215.94
EQUIPMENT		
4WD Vehicle - 6 days at \$75 / day:	\$	450.00
- mileage - 1,269km at \$0.80 / km:	\$	1,015.20
Quad: 4 days at \$175 / day:	\$	700.00
Fuel:	\$	251.77
Digital Camera: 2 days at \$20 / day	\$	40.00
Field Supplies: 4 man-days at \$20 /day:	\$	80.00
Laptop: 7 days at \$20 / day	\$	140.00
Map (28" x 40"): 1 at \$38.89	\$	38.89
Miscellaneous:	\$	13.10
Satellite Phone: 4 days at \$15 / day:	\$	60.00
Truck VHF Radio: 4 days at \$20 / day	\$	80.00
VLF Survey instrument: 4 days at \$35 / day	<u>\$</u>	140.00
	\$ [10,388.90
TECHNICAL REPORT		
R.T. Walker, P.Geo.: 3 days at \$650 / day	\$	1,950.00

Total <u>\$12,338.90</u>

Appendix E

Program-Related Documents

Help 🛞

Contact Us >

Printer Version 🗎

B.C. HOME

 \checkmark Y 7 2 V V $\mathbf{\nabla}$ 9 Y

Mineral Titles

Mineral Titles Online

Mineral Claim	Mineral Claim Exp Change	k/Expiry Date	Confirmation						
Development Work/Expiry Date	Recorder: AMT INDUS INC. (2029	STRIES CANADA 20)	Submitter	AMT INDUSTRIES CAN INC. (202920)	ADA				
Change	Recorded: 2009/OCT/	27	Effective:	2009/OCT/27					
Select Input Method	D/E Date: 2009/OCT/27								
Select/Input Tenures									
🗹 Input Lots	Confirmation								
Link Event Numbers									
🗹 Data Input Form	If you have not yet subr	nitted your report for	this work progr	am, your technical work	report is due in				
🗹 Upload Report	90 days. The Exploration	n and Development W	ork/Expiry Date	Change event number i	is required with				
😡 Review Form Data	Mineral Titles Branch for	r more information.	y of this confi	rmation page to your	report. Contact				
Process Payment									
🗹 Confirmation	Event Number:	4385829							
	Work Type: Technical Items:	Technical Work Geophysical, PAC Wi	thdrawal (up to	30% of technical work p	performed)				
Main Menu Work Start Date: 2009/SEP/04									
Search for Mineral /	Work Stop Date:	2009/OCT/27							
Placer / Coal Titles	Mine Permit No:								
Search for Reserve Sites									

Summary of the work value:

Tenure Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
555065	TILLICUM 1	2007/mar/26	2009/oct/31	2010/oct/31	365	166.21	\$ 664.85	\$ 66.49
555066	TILLICUM 2	2007/mar/26	2009/oct/31	2010/oct/31	365	498.77	\$ 1995.08	\$ 199.51
555068	TILLICUM 3	2007/mar/26	2009/oct/31	2010/oct/31	365	498.47	\$ 1993.90	\$ 199.39
555069	TILLICUM 4	200 7 /mar/26	2009/oct/31	2010/oct/31	365	457.15	\$ 1828.61	\$ 182.86
555071	TILLICUM 5	2007/mar/26	2009/oct/31	2010/oct/31	365	498.34	\$ 1993.36	\$ 199.34
555074	TILLICUM 6	2007/mar/26	2009/oct/31	2010/oct/31	365	415.42	\$ 1661.69	\$ 166.17
555078	TILLICUM 7	2007/mar/26	2009/oct/31	2010/oct/31	365	269.95	\$ 1079.79	\$ 107.98
555079	TILLICUM 8	2007/mar/26	2009/oct/31	2010/oct/31	365	20.77	\$ 83.10	\$ 8.31
555087	TILLICUM 9	2007/mar/26	2009/oct/31	2010/oct/31	365	207.66	\$ 830.63	\$ 83.06
555089	TILLICUM 10	2007/mar/26	2009/oct/31	2010/oct/31	365	20.77	\$ 83.10	\$ 8.31
555728	TILLICUM 11	2007/apr/04	2009/oct/31	2010/oct/31	365	498.37	\$ 1993.48	\$ 199.35

Financial Summary:

Total applied work value:\$ 14207.59

PAC name: Debited PAC amount: Credited PAC amount:	AMT \$ 1899.59 \$ 0.0
Total Submission Fees:	\$ 1420.76
Total Paid:	\$ 1420.76

Please print this page for your records.

- **→** 9
- ➔ <u>View Mineral Tenures</u>
- View Placer Tenures

View Coal Tenures

→ MTO Help Tips

- Free Miner Landowner ÷
- Notification

