Rock Geochemistry Report

Devil Mineral Claims

NTS Mapsheet 82L 07/08/09

BC Geological Survey Assessment Report 31195

Vernon Mining Division

Southern British Columbia

Work Performed Summer 2009

Owners:

Tom Kennedy

Operator:

Kootenay Gold Inc.

Vancouver, BC

Report Written By Sean Kennedy, Prospector

October 2009

Straight Straight St

TYPE OF REPORT [type of survey(s)]: Rock Geochemistry

TOTAL COST: \$6,968

AUTHOR(S): Sean Kennedy	sic	GNATURE(S):	<i></i>
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):			YEAR OF WORK: 2009
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE	(s): <u>4332708</u>		
PROPERTY NAME: Devil			
CLAIM NAME(S) (on which the work was done): All tenures			
COMMODITIES SOUGHT: Gold			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:			
ANING DIVISION: Vernon O ' " LONGITUDE:	O NTS/BC	1 11	
		(at centi	re of work)
Tom Kennedy	2)		
MAILING ADDRESS: 2290 DeWolfe Ave			
Kimberley, BC			
OPERATOR(S) [who paid for the work]: 1) Kootenay Gold Inc	2)		
MAILING ADDRESS: Kootenay Gold Inc. Suite 920 - 1055 W. Hastings St.			
Vancouver, British Columbia			
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, struct Gold mineralization in quartz veins hosted in Jurassic Spruce			ititude):

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (Incl. support)
`EOLOGICAL (scale, area)	<u></u>		
Ground, mapping			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
CIM CIM			
Rock 32 rock samples, inclu	des wages for collection	All	\$6,268
Other Report			\$700
RILLING stal metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Land europe (and anna)			
Road, local access (kilometres)/			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	
		TOTAL GOST.	Ψ0,900

Table of Contents

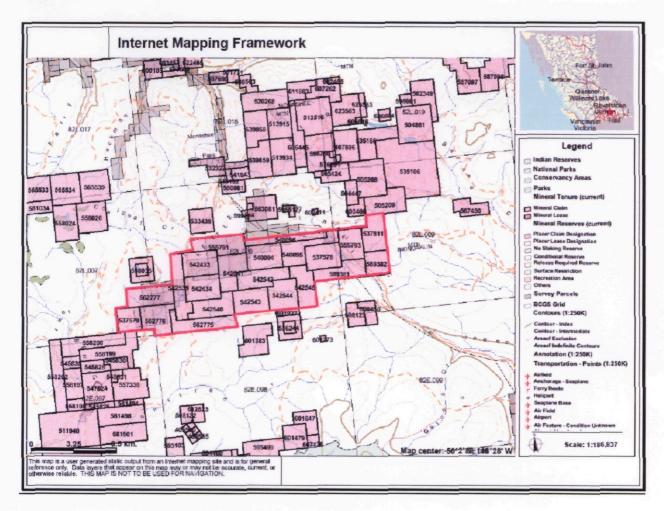
Introduction				Page	3
Location and	Access			Page	3
Property				Page	3
Physiography				Page	3
History				Page	4
Geology				Page	5
Rock Geoche	mistry			Page	5
Conclusions a	nd Reco	mmendations		Page	6
Statement of	Costs			Page	6
Statement of	Qualifica	ations		Page	7
List of Illustra	tions	Property Location Ma	р	Page	4
	Samp	le Location Map - Au in	opb	Sleeve	
Appendix	Rock	Sample UTM/description	ı	Page	10
	Rock :	Sample Analysis		Page	11

Introduction

During the summer of 2009 a rock geochemistry program was undertaken on the Devil claims as a follow up to a biogeochemistry survey completed on the property in late fall of 2007. Gold and multi-element biogeochemistry anomalies were examined with two separate groups of prospectors. Each area was scoured for rock to sample which was hoped to explain the biogeochemical anomalies. However the majority of the biogeochemistry anomalies did not have any outcrop or subcrop and therefore samples collected were limited.

Location and Access

The Devil claims are located approximately 30 kilometres southeast of the community of Cherryville in the headwaters of the Kettle River and Inonoaklin Creek in the Monashee Pass. Highway 6 dissects the property along its northern margin. Access is provided by a number of well maintained logging roads that branch off of Highway 6 both to the north and to the south.


Property

A table of tenure numbers and corresponding claim names is included below.

Tenure Number	Claim Name/Property
537578	WHITE DEVIL
540094	WHITE DEVIL 2
540095	WHITE DEVIL 3
540096	WHITE DEVIL 4
542433	BLACK DEVIL
542434	BLACK DEVIL 2
542539	BLACK DEVIL 3
542540	BLACK DEVIL 4
542541	BLACK DEVIL 5
542542	BLACK DEVIL 6
542543	BLACK DEVIL 7
542544	BLACK DEVIL 8
542545	BLACK DEVIL 9
555791	grey devil
537811	THUNDER
555793	THUMDER 2
589381	THUNDER 3
589382	THUNDER 4
562775	RED DEVIL 1
562776	RED DEVIL 2
562777	RED DEVIL 3
537579	Bis

Physiography

Topography is generally gentle as most of the mountains are rolling and hilly. Elevation on the property ranges from 1200 metres in valley bottoms to over 1900 metres at the top of mountains. The property is entirely below tree line; tree species include spruce, balsam, lodgepole pine, and cedar/hemlock in wetter areas. Topographic lows and flat spots are often occupied by bogs. The area has seen extensive road building and logging, much of the property is clearcut and in various stages of regeneration.

Claim map with regional location in top right

History

To date no old workings have been located on the Devil. The area has been held by a number of mining exploration companies with most exploration taking place in the late 1970's and early 1980's. The area had been targeted as a potential porphyry and precious metal vein district; lack of bedrock exposure and till cover hampered these programs.

In 2007 Kootenay Gold Inc completed a reconnaissance style prospecting program discovering a number of new multigram gold occurrences associated with quartz veins and alteration within new bedrock exposures uncovered due to logging and road building. The area was initially targeted because of suspect regional magnetic features that coincide with a major lithological break. The Devil claims occupy an important transition in the regional geology from granite dominated domains to the south and volcanic/sediment dominated lithologies to the north. In addition to this a number of Tertiary extension faults exist in the region and are known to be important focuses for mineralization, these include the Bevan Fault on the eastern portion of the property.

After gold was discovered by prospecting, follow up work failed to discover any new showings due to a significant lack of outcrop off of existing roads and clearcuts. At this juncture a program of biogeochemistry was elected upon partly because of the recent success of this method by Roca Mines at their Max molybdenum mine. The biogeochemical survey was controlled by selecting the same species/relative age of tree (in this case Engleman Spruce) from each site, snipping the end foliage of a branch and assaying for a multi-element package. The program was intended to test the underlying geology below a cover of glacial till that soil sampling would not be able to see through. The majority of the claims were covered by taking foliage samples along existing roads which ended up giving a consistent ground cover. A number of anomalies were highlighted, some of which coincide with gold showings previously discovered by prospecting.

Geology

The Devil is mostly underlain by the two phase Jurassic age Spruce Grove Batholith. One phase is a medium to coarsely crystalline biotite (+/- hornblende) granodiorite. Typically it contains 10-30% biotite with accessory hornblende up to 10%. The granodiorite is often seen to be weakly foliated. Another phase of the Spruce Grove is as leucocratic granite, weakly foliated with medium to coarse feldspar/quartz, less than 10% biotite, containing sericite, and is often bleached. In the southeast portion of the claims, across the Tertiary Bevan Fault, is an exposure of Triassic (possibly older) black phyllite schist, micaceous quartzite, calcareous schist and marble. There is also an exposure of the Cretaceous age Whatshan Lake Batholith, a leucocratic, potassium feldspar (megacrystic), hornblendebearing quartz monzonite. Lamprophyres are common and are typically brown-weathering, biotite-potassium feldspar, fine to medium crystalline dikes up to 20 metres wide. Mafic dikes that contain hornblende and plagioclase (diabase/gabbro) are also common.

Rock Geochemistry

The present program was undertaken to follow up the aforementioned biogeochemistry survey. An overlay of multi-element anomalies for Au, As, and Mo was drafted. These anomalies, as well as spot highs for single element anomalies of Au, As, and Mo, were inspected on the ground by two groups of prospectors over four days. Sixteen rock samples were collected from these anomalous areas, an additional sixteen samples were taken from an area of brecciation and open-space quartz fills within altered granite. This area had been previously sampled with weakly anomalous gold values obtained. Therefore another pass of higher density sampling was initiated in this area after the biogeochemistry follow up. All samples were sent into Acme Analytical Labs and analyzed for a 36 element package with Au in ppb. Sample locations with gold values in ppb are included in the sleeve.

Rock sampling in the area of the biogeochem anomalies provided mixed results. A number of anomalous areas for gold were not prospected as they overlay areas where previous prospecting had already found multigram gold in bedrock. One sample containing 2,486 ppb Au was taken from an area of anomalous vegetation. This zone coincided with weakly anomalous values in rocks from previous sampling. This area was characterized by thin mm scaled quartz veins with sericite and pyrite/limonite alteration and argillic fault gouge in the host granodiorite. All the other anomalous zones failed to

produce any significant results. This is partially due to lack of bedrock exposure, however, because the foliage samples were collected from existing logging roads and skid trails a number of the anomalous areas had good bedrock exposure in ditch lines. While them majority of biogeochem anomalies were investigated very few samples were collected due to a lack of outcrop. A number of the biogeochem anomalies coincided with topographic lows that contain bogs. A number of the anomalies remain enigmatic.

Conclusions and Recommendations

During the summer of 2009 a program of rock geochemistry was undertaken on the Devil claims in southern British Columbia to follow up a number of biogeochemical anomalies from a previous survey completed on the project. Limited outcrop occurrences at each of the anomalies allowed for only sixteen samples to be collected with the highest gold value obtained at 2,486 ppb. Results of the program were mixed as a few of the anomalous areas did have good bedrock exposure yet contained little to no visible alterations or structure. A number of the anomalies were occupied by boggy areas. Sixteen other samples were collected from an openspace- quartz breccia, the highest gold returned was 47 ppb.

At this point it is recommended that zones of gold mineralization discovered in the initial prospecting program be trenched and channel sampled. These zones should be prioritized and treated as "leads". Reconnaissance soil sampling and ground based geophysics could be used to try to tighten these areas down for additional trenching.

Statement of Costs

Costs were accrued from August 6 to August 9 2009

Mike Kennedy,	Prospector	4 days @ \$350/day	\$1400
Sean Kennedy,	Prospector	4 days @ \$350/day	\$1400
Sarah Jean Kennedy,	Prospector	4 days @ \$200/day	\$800
Sara Ann Kennedy,	Prospector	4 day @ \$150/day	\$600
Rock Samples,		32 samples @\$24/sample	\$768
Freight			\$100
Report Writing	Sean Kennedy	2 days @\$350/day	\$700
Total			\$6968

Statement of Qualifications

- I, Sean Kennedy, certify that:
 - 1. I am an independent prospector residing at 272 Kimbrook Crescent, Kimberley, BC.
 - 2. I have been actively prospecting in the East Kootenay district of BC for the past 15 years
 - 3. I have been employed as a professional prospector by junior mineral exploration companies.
 - 4. I own and maintain mineral claims in BC

APPENDIX

SAMPLE LOCATIONS/DESCRIPTIONS

<u> SHIVIP</u>	LE LUCA	THOMS/	DESCRIPTIONS
5K09- 162	389635	5545153	carb and arg alt'd granite, hairline fractures, composite of narrow gouge, sericite, lamroid proximal, 340 degree trend
SK09- 163	389554	5545101	same a above, hairline fractures with qtz/Mn/goe/green feldspar/sericite
5K09- 164	389554	5545101	same as above, hem/Py/Qtz
SK09- 165	389527	5545101	same as 163
5K09- 166	389371	5545102	same as above, with sheeted veins, end of zone
5K0 9 - 167	389885	5546472	rusty crystalline qtz float, 2 angular pieces, arg alt'd granite margins, hem and Mn, poor o/c
5K09- 168	397288	5542485	pretty good outcrop, some lamproids in a relatively fresh granite, biotite alt'd to chlorite, foliated granite o/c, sugary white qtz veins
5K09- 169	397169	5542352	greissen zone, some white qtz and Mn, fresh granite with a swamp where the anomaly is
5K09- 170	396654	S542075	arg/goe-rich gouge in foliated granite, near lamproid
5K09- 171	397229	5543750	recessive granite/sand, rusty
5K09- 172	397077	\$543649	lamproid dykes cutting foliated granite, carb alt, calcite, some qtz, Py, Mn
5K09- 173	394223	5542001	NS trending sone of Py-rich fractures >30cm wide, in metaseds, mafic sills around
5K09- 174	394168	S541995	320 trending zone >1M wide of qtz (sugary white) veins in metaseds, Py, chloritic, at granite contact
5K09- 175	394000	5541868	Foliation parliel qtz vein in granite, Mn and chlorite, some pink stain
5K09- 176	394128	5541518	Goe and hem along fractures with open space sugary qtz veins in granite
5K09- 177	393766	5541831	Weak carb ait with qtz veins and ser/chlorite in granite
5K09- 178	398882	5544059	open-space qtz breccia, ser, goe, hem, carb
5K09- 179	398818	5544124	open-space qtz breccia, ser, goe, hem, carb
5K09- 180	398799	5544149	open-space qtz breccia, ser, goe, hem, carb
181 5K09-	398785	5544137	open-space qtz breccia, ser, goe, hem, carb
182 5K09-	398839	5544090	open-space qtz breccia, ser, goe, hem, carb
5K09- 183 5K09-	398831	5544096	open-space qtz breccia, ser, goe, hem, carb
184 SK09-	398827	5544108	open-space qtz breccia, ser, goe, hem, carb
185 SK09-	398797	S544109	open-space qtz breccia, ser, goe, hem, carb
186 SK09-	398793	5544124	open-space qtz breccia, ser, goe, hem, carb
187 5K09-	398789	5544121	open-space qtz breccia, ser, goe, hem, carb
188 5K09-	398822	S544117	open-space qtz breccia, ser, goe, hem, carb
189 SK09-	398825	5544119	open-space qtz breccia, ser, goe, hem, carb
190 SK09-	398949	5544092	open-space qtz breccia, ser, goe, hem, carb
191 5K09-	398852	5544092	open-space qtz breccia, ser, goe, hem, carb
192 5K09-	398882	5544119	open-space qtz breccia, ser, goe, hem, carb
193	398809	5544108	open-space qtz breccia, ser, goe, hem, carb

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Kootenay Gold Inc.

Suite 960 - 1055 W. Hastings St. Vancouver BC V6E 2E9 Canada

Project:

MONASHEE DEVIL

Report Date:

August 31, 2009

www.acmelab.com

Page:

2 of 3

Part 1

CERTIFICATE	OF AN	JAL Y	'SIS													VA	\N09	9003	3593	.2	
	Method Analyte	WGHT Wgt	1DX15 Mo	1DX15 Cu	1DX15 Pb	1DX15 Zn	1DX15 Ag	1DX15 Ni	1DX15 Co	1DX15 Mn	1DX15 Fe	1DX15 As	1DX15 U	1DX16 Au	1DX15 Th	1DX15 Sr	1DX16 Cd	1DX16 Sb	1DX15 Bi	1DX15 V	1DX15 Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% 0.04	ppm	ppm	ppb	ppm	Ppm	ppm	ppm	ppm	ppm	%
SK09-162 R	MDL ock	0.01 0.63	0.1	10.6	0.1 14.6	111	0.1	0.1 5.2	7.1	1064	0.01 3.56	1.9	0.1 5.6	0.5 36.0	0.1 5.4	22	0.1 <0.1	0.1 <0.1	0.1 <0.1	2 17	0.01
	ock	0.03	0.3	3.8	17.1	16	<0.1	1.1	0.9	465	0.44	0.5	1.1	3.8	4.3	9	0.1	<0.1	<0.1	<2	0.21
	ock	0.84	0.5	6.6	5.5	21	0.6	1.7	2.9	507	1.09	0.8	1.4	2486	2.6	. 41	0.1	<0.1	0.4	5	0.88
	ock	0.87	0.2	2.5	10.5	<u></u>	<0.1	0.9	0.6	130	0.33	0.7	1.4	0.9	3.3	10	<0.1	<0.1	<0.1	<2	0.10
	ock	1.01	0.3	1.7	11.3	15	<0.1	0.7	0.7	484	0.72	<0.5	1.9	0.5	3.6	45	<0.1	<0.1	<0.1	3	1.09
SK09-167 R	ock	0.91	0.8	3.0	3.4	5	<0.1	1.2	0.6	108	0.34	<0.5	0.1	<0.5	0.3	5	<0.1	<0.1	<0.1	<2	0.01
SK09-168 R	ock	0.81	<0.1	2.8	1.7	50	<0.1	2.6	3.3	523	1.41	<0.5	1.1	6.7	4.4	24	<0.1	<0.1	<0.1	24	0.27
SK09-169 R	ock	0.97	0.2	34.0	10.7	38	0.3	2.1	0.9	1811	0.87	3.1	0.5	1.6	4.2	25	0.6	<0.1	0.6	7	0.85
SK09-170 R	ock	0.54	0.6	31.4	21.4	63	<0.1	107.7	19.9	1419	3.64	3.9	3.4	3.6	7.1	66	0.2	0.1	0.2	40	0.51
SK09-171 R	ock	0.76	0.3	4.3	4.1	39	<0.1	4.1	3.0	314	1.25	<0.5	0.6	1,1	2.7	22	0,2	<0.1	<0.1	20	0.16
SK09-172 R	ock	1.26	1.2	1.4	3.0	16	<0.1	3.5	3.5	593	1.18	<0.5	1.6	0.6	6.0	33	0.2	<0.1	0.1	10	0.65
SK09-173 R	ock	0.96	37.2	373.4	4.0	40	0.9	14.3	13.7	384	11.98	<0.5	1.0	73.0	1.5	20	<0.1	<0.1	9.2	114	0.27
SK09-174 R	ock	0.68	7.7	26.1	3.9	32	<0.1	13.8	6.4	632	1.38	<0.5	0.4	3.6	2.0	165	0.3	<0.1	0.1	37	3.44
SK09-175 R	ock	0.80	1.4	1.9	3,3	20	0.1	1.4	1,0	612	0.80	<0.5	0.5	4.2	2.3	31	0.3	<0.1	1.6	7	0.36
SK09-176 R	ock	0.97	3.5	5.0	10.9	12	<0.1	1.8	2.6	144	1.30	3.6	0.6	7.8	4.1	20	<0.1	<0.1	0.8	5	0.22
SK09-177 R	ock	0.85	8.0	1.0	5.2	8	0.3	2.5	2.8	195	1.02	15.3	8.0	16.8	3.5	8	0.1	<0.1	1.4	3	0.21
SK09-178 R	ock	1.04	0.2	2.6	6.9	7	<0.1	1.0	1.5	236	1.26	<0.5	0.4	9.4	3.9	15	<0.1	<0.1	0.4	<2	0.17
SK09-179 R	ock	0.90	0.2	2.5	2.0	9	0.2	1.8	2.2	389	1.40	<0.5	0.8	20.2	4.4	15	<0.1	<0.1	0.4	2	0.14
SK09-180 R	ock	0.97	0.2	1.7	1.1	5	<0.1	1.2	3.4	335	1.27	<0.5	0.4	2.7	1.2	3	<0.1	<0.1	0.2	<2	0.02
SK09-181 R	ock	1.31	0.2	1.2	2.5	4	<0.1	1.2	2.8	220	1.51	<0.5	0.3	2.6	1.1	7	<0.1	<0.1	0.2	<2	0.05
SK09-182 R	ock	0.79	<0.1	2.5	2.9	5	0.2	1.2	2.7	206	1.54	<0.5	0.8	16.9	4.6	17	<0.1	<0.1	0.7	3	0.06
SK09-183 R	ock	0.89	0.2	3.4	2.5	7	0.3	1.5	2.8	288	1.56	<0.5	0.8	17.7	4.4	13	<0.1	<0.1	0.6	2	0.04
SK09-184 R	ock	0.90	0.1	2.5	1.9	5	0.2	0.8	1.1	165	1.28	<0.5	0.4	37.2	2.9	14	<0.1	<0.1	0.5	2	0.03
SK09-185 R	ock	0.78	0.1	2.1	2.3	3	0.2	1.6	3.4	189	1.37	<0.5	0.7	14,8	4.4	11	<0.1	<0.1	0.4	2	0.08
SK09-186 R	ock	0.72	0.2	2.3	3.3	3	0.3	1.5	3.3	165	1.24	<0.5	0.5	10.6	3.6	9	<0.1	<0.1	0.4	2	0.06
SK09-187 R	ock	0.79	0.2	1.1	1.6	3	<0.1	0.9	1.6	43	1.40	<0.5	0.3	3.6	2.1	5	<0.1	<0.1	0.3	2	0.02
SK09-188 R	ock	0.69	0.2	2.9	3.1	5	0.3	1.9	3.4	579	1.42	<0.5	0.6	18.7	4.0	23	0.1	<0.1	0.6	2	0.27
SK09-189 R	ock	0.82	<0.1	2.4	2.7	5	0.3	0.8	1.0	72	1.45	<0.5	0.6	44.1	4.2	20	<0.1	<0.1	0.6	2	0.03
SK09-190 R	ock	0.66	0.1	3.9	4.5	7	0.5	2.1	4.0	307	1.64	<0.5	1.0	47.2	5.7	21	<0.1	<0.1	0.5	3_	0.16
SK09-191 R	ock	0.59	<0.1	2.5	3.8	6	0.2	1.3	1.4	181	1.36	<0.5	0.6	12.3	4.0	13	<0.1	<0.1	0.5	2	0.12

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Kootenay Gold Inc.

Suite 960 - 1055 W. Hastings St. Vancouver BC V6E 2E9 Canada

Project:

MONASHEE DEVIL

Report Date:

August 31, 2009

2 of 3

www.acmelab.com

Page:

Part 2

CERTIFICATE OF ANALYSIS

VAN09003593.2

	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX16	1DX15								
	Analyte	P	La	Cr	Mg	Ва	Ti	В	AI	Na	K	w	Hg	Sc	TI	s	Ga	Se
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
	MDL	0.001	1	11	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5
SK09-162 Roc	k	0.040	13	5_	0.10	76	0.001	<1	0.59	0.013	0.15	<0.1	<0.01	2.1	<0.1	<0.05	2	<0.5
SK09-163 Roo	k	0.012	6	5	0.02	61	<0.001	<1	0.30	0.023	0.16	<0.1	<0.01	0.4	<0.1	<0.05	<1	<0.5
SK09-164 Roc	k	0.024	7	10	0.15	74	0.003	<1	0.57	0.017	0.22	0.2	<0.01	0.4	<0.1	0.28	2	<0.5
SK09-165 Roc	k	0.011	6	6	<0.01	37	<0.001	<1	0.22	0.026	0.16	<0.1	<0.01	0.3	<0.1	<0.05	<1	<0.5
SK09-166 Roc	k	0.010	. 6	6_	0.02	41	<0.001	<1	0.20	0.027	0.09	<0.1	<0.01	0.7	<0.1	<0.05	<1	<0.5
SK09-167 Roc	:k	0.002	<1	8	<0.01	36	<0.001	<1	0.14	0.025	80.0	<0.1	<0.01	0.1	<0.1	<0.05	<1	<0.5
SK09-168 Roc	k	0.047	6	11	0.39	29	0.077	<1	0.75	0.046	0.39	<0.1	<0.01	0.6	0.2	<0.05	3	<0.5
SK09-169 Roc	k	0.056	6	5	0.16	82	0.003	<1	0.69	0.012	0.34	0.3	<0.01	0.9	0.2	0.13	2	<0.5
SK09-170 Roc	:k	0.182	38	88	0.61	313	0.005	1	1.33	0.016	0.22	<0.1	0.01	8.1	0.2	<0.05	4	0.7
SK09-171 Roc	:k	0.047	6	6	0.26	35	0.023	1	0.74	0.033	0.12	<0.1	<0.01	0.7	<0.1	<0.05	2	<0.5
SK09-172 Roc	:k	0.061	16	4	0.13	144	0.001	2	0.53	0.025	0.21	<0.1	<0.01	1.6	0.1	<0.05	1	<0.5
SK09-173 Roc	:k	0.095	3	17	0.96	140	0.124	<1	1.58	0.033	0.39	>100	<0.01	3.2	0.4	0.99	6	9.6
SK09-174 Roc	:k	0.029	4	25	0.60	84	0.057	<1	0.51	0.029	0.05	2.5	<0.01	2.7	<0.1	0.19	3	1.0
SK09-175 Roc	:k	0.040	4	7	0.19	22	0.021	<1	0.52	0.008	0,12	1.5	<0.01	0.5	<0.1	0.07	2	<0.5
SK09-176 Roc	k	0.056	3	6	0.13	35	0.029	<1	0.39	0.018	0.18	2.0	<0.01	0.5	<0.1	0.24	1	<0.5
SK09-177 Roc	k	0.042	5	8	0.11	26	0.002	<1	0.32	0.007	0.18	0.5	<0.01	0.3	<0.1	0.45	<1	<0.5
SK09-178 Roc	k	0.041	5	6	0.02	119	<0.001	. 1	0.19	0.013	0.14	0.4	<0.01	0.3	<0.1	0.15	<1	0.5
SK09-179 Roc	:k	0.044	7	6	0.04	88	0.013	3	0.55	0.098	0.37	0.4	<0.01	3.7	0.1	0.15	2	0.5
SK09-180 Roc	:k	0.020	2	8	0.02	30	<0.001	<1	0,20	0.003	0.08	0.2	<0.01	0.2	<0.1	0.07	<1	0.8
SK09-181 Rac	:k	0.014	2	9	0.01	33	<0.001	<1	0.13	0.006	0.07	0.2	<0.01	0.2	<0.1	0.16	<1	0.9
SK09-182 Roc	:k	0.060	8	. 5	0.02	64	<0.001	<1	0.23	0.018	0.16	0.2	<0.01	0.5	<0.1	0.09	<1	0.6
SK09-183 Roc	:k	0.045	8	. 7	0.02	79	<0.001	<1	0.21	0.017	0.16	0.1	<0.01	0.4	<0.1	0.12	<1	<0.5
SK09-184 Roc	:k	0.037	9	6	0.02	219	<0.001	<1	0.24	0.016	0.15	0.2	<0.01	0.3	<0.1	0.06	<1	0.8
SK09-185 Roc	:k	0.036	6	_ 7	0.01	67	<0.001	<1	0.20	0.012	0.15	0.1	<0.01	0.4	<0.1	0.14	<1	<0.5
SK09-186 Roc	k i	0.041	6	5	0.01	91	<0.001	<1	0.18	0.011	0.13	<0.1	<0.01	0.4	<0.1	0.22	<1	0.6
SK09-187 Roc	k	0.023	4	6	0.01	137	<0.001	<1	0.19	0.009	0.13	<0.1	<0.01	0.2	<0.1	0.11	<1	0.6
SK09-188 Roc	k	0.056	7	_ 7	0.07	66	0.001	1	0.20	0.012	0.15	0.1	<0.01	0.5	<0.1	0.28	<1	<0.5
SK09-189 Roc	k	0.045	10	5	0.01	362	<0.001	<1	0.22	0.019	0.17	0.1	<0.01	0.4	<0.1	0.08	<1	0.7
SK09-190 Roc	:k	0.073	9	4	0.02	210	0.001	<1	0.28	0.014	0.21	0.1	<0.01	0.8	<0.1	0.32	<1	0.6
SK09-191 Roc	k	0.062	10	6	0.02	91	0.001	<1	0.23	0.018	0.15	0.1	<0.01	0.5	<0.1	<0.05	<1	<0.5

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Kootenay Gold Inc.

Suite 960 - 1055 W. Hastings St.

Vancouver BC V6E 2E9 Canada

Project:

MONASHEE DEVIL

Report Date:

August 31, 2009

www.acmelab.com

Page:

															J 01 .		ait .					
CERTIFIC	ATE OF A	N	ALY	'SIS													VA	4N09	9003	3593	.2	
	Meth Anal	- 1	WGHT Wgt	1DX15 Mo	1DX15 Cu	1DX15 Pb	1DX15 Zn	1DX15 Ag	1DX15 Ni	1DX15 Co	1DX15 Mn	1DX15 Fe	1DX15 As	1DX15 U	1DX15	1DX15 Th	1DX15 Sr	1DX15 Cd	1DX15 Sb	1DX15 Bi	1DX15 V	1DX16 Ca
	•	nit	kg 0.01	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.5	ppm 0.1	ppb 0.5	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 2	% 0.01
SK09-192	Rock		0.76	0.1	1.2	4.6	2	0.5	1.7	4.5	43	1.75	<0.5	0.4	8.2	4.5	13	<0.1	<0.1	0.9	3	0.07
SK09-193	Rock		0.79	0.2	3.1	2.2	9	0.3	1.8	4.4	666	2.11	<0.5	0.8	40.6	3.0	11	0.1	<0.1	0.4	3	0.04

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Kootenay Gold Inc.

Suite 960 - 1055 W. Hastings St. Vancouver BC V6E 2E9 Canada

Project:

Client:

MONASHEE DEVIL

Report Date:

August 31, 2009

www.acmelab.com

Page:

3 of 3

Part 2

IFICATE OF ANALYSIS

	1	Method	1DX15																
		Analyte	P	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
		MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5
SK09-192	Rock		0.058	7	3	0.01	117	0.001	<1	0.20	0.010	0.16	<0.1	<0.01	0.5	0.1	0.19	<1	0.9
SK09-193	Rock		0.036	8	5	0.02	56	0.001	<1	0.29	0.012	0.16	<0.1	<0.01	0.5	<0.1	0.11	<1	2.4