

BC Geological Survey Assessment Report 31210

GEOCHEMICAL TECHNICAL ASSESSMENT REPORT

on the

SCOTIA PROPERTY SCOTIA RIVER AREA, SKEENA MD

> NTS: 103I 103I/04 103I.012 + 103I.002

Lat/Long: 54° 05' 37" N, 129° 40' 16" W U.T.M. (N.A.D. 83) 455980 E.; 5992650 N.; Zone 9

DATE STARTED: AUGUST 3, 2009

DATE COMPLETED: AUGUST 12, 2009

OWNER/OPERATOR: GEO MINERALS LTD.

AUTHOR: PAUL D. GRAY, P.GEO.

SUBMITTED: VANCOUVER, BC DATE: NOVEMBER 30, 2009

TABLE OF CONTENTS

[

Į.

-

.....

1.0	Summary and Introduction	1
2.0	Location Topography, Climate, and Access	3
3.0	Claim Status	8
4.0	History	9
5.0	Regional Geology	12
6.0	Property Geology	14
7.0	Mineralization	18
8.0	2009 Work Program Summary	20
9.0	Discussion and Recommendations	
10.0	References	
11.0	Statement of Qualifications	32
12.0	Statement of Expenditures	
	-	

Appendix A—Assay CertificatesAl
Appendix B—Compiled Assay ResultsB1

LIST OF FIGURES

Γ

-

Figure 2-1 Scotia Project Location Map (British Columbia)	5
Figure 2-2 Scotia Project Claim Group and Regional Property Location	6
Figure 2-3 Scotia Project Claim Map	7
Figure 5-1 Scotia Project Regional Geology	13
Figure 5-2 Scotia Project Property Geology	17
Figure 8-1 Scotia Project – Sample Locations	22
Figure 8-2 Scotia Project – 2009 Program Sampling Map	23
Figure 8-3 Scotia Project – 2009 Program Sampling and Assay Map	26
Figure 8-4 Scotia Project – 2009 Soil Sample Results Map	27

LIST OF TABLES

-

-

Scotia Property Mineral Claims Tenure Status	7
2009 Scotia Project Geochemical Survey – Rock Samples Highlighted	
Results	24
2009 Scotia Project Geochemical Survey - Rock Sampling Notes	24
2009 Scotia Project Geochemical Survey – Soil Samples Highlighted	
Results	25
	Scotia Property Mineral Claims Tenure Status

1.0 SUMMARY AND INTRODUCTION

This report summarizes and presents the results of Geo Minerals Ltd. 2009 work program on the Scotia Property Mineral Claim located in the Scotia River area, approximately 40 kilometres southeast of Prince Rupert in west central British Columbia, in the Skeena Mining Division. The Scotia mineral claim is comprised of one (1) cell selected mineral claim that total 5,576 hectares in area. The Scotia MTO Mineral Tenure is owned 100% by Geo Minerals Ltd.

The Scotia property lies within a belt of Paleozoic metavolcanic and metasedimentary rocks trending approximately north-south between the Skeena River to the north and the Ecstall River to the south. The volcanic rocks have been subjected to upper amphibolite grade metamorphism during at least three periods of folding and are now represented by amphibolites, gneisses and schists. The lithologies underlying the Scotia property belong to a metavolcanic unit which is intruded by the Ecstall granite along the west side of the property, and by several stages of dioritic to pegmatitic dykes.

The Albere Zone at the Scotia Property was discovered by Texas Gulf Sulphur in 1958 and has undergone several vintages of exploration work over the past 40 years. The Albere Zone is characterized by coarsely crystalline, massive to semi-massive sphalerite with lesser amounts of pyrite, galena, pyrrhotite, magnetite and chalcopyrite. The mineralized zone is essentially open to the north and west.

A 1997 drill program on the Albere Zone encountered disseminated, semi-massive and massive base metal sulphide intersections in nine of the ten holes drilled. The most significant intersection was from drill hole S-37-97 which intercepted 26.7 metres grading 9.0% zinc, 1.2% lead, 21.5 g/t silver, 0.3 g/t gold and 0.2% copper.

The Albere Zone on the Scotia Property lies along the western limb of a broad southplunging anticline. The Albere Zone is characterized in outcrop by a well developed gossan which is readily apparent from the air. A very similar gossan outcrops in cliff

1

faces which lie along the eastern limb of the anticline adjacent to the Albere Zone (the "East Limb" gossan zone).

A Scotia Property field exploration program was conducted during the period August 3 to 12, 2009 by a Geo Minerals Ltd. geological crew consisting of a technical climbing geologist and assistant. Expenditures from this program totaled \$24,619.86 as per a Statement of Exploration and Development Work filed as Event Number 4329711. The 2009 Scotia exploration program was designed to access and sample the exposed outcropping "East Limb" area and soil sample the lower elevations areas immediately below the precipitous outcropping. Technical climbers were required to access and sample the "East Limb" exposure. Substantial iron and limonite staining and limited pyrite mineralization was uncovered from a section of the "East Limb" exposure, however subtly elevated base metal values were present in the collected rock samples. In all, 12 rock samples and twenty-five soil samples were collected and subsequently assayed by Acme Analytical Labs. One mineralized rock chip sample returned 255 ppm Zn and one soil sample returned 191 ppm Zn.

The "East Limb" area requires follow-up prospecting and sampling as well as a gridbased soil geochemical sampling program conducted immediately below the "East Limb" showing.

2.0 LOCATION, TOPOGRAPHY, CLIMATE AND ACCESS

The Scotia Project is located on N.T.S. map sheets 103I (1:250,000 scale), 103I/04 (1:50,000 scale), 103I.002 and 103I.012 (1:20,000 scale) at approximately 54° 05' 37" North Latitude and 129° 40' 16" West Longitude. The Property lies roughly 40 kilometres southeast of Prince Rupert, B.C. between the Ecstall and Scotia River Valleys (Figures 2-1 and 2-2). Access is by helicopter from Prince Rupert or by barge from Kwinitsa on the north shore of the Skeena River to the Scotia River logging camp on the south shore of the Skeena River, owned by Interfor (International Forest Products) and operated by Bear Creek Contracting of Terrace, BC. From the Scotia River logging camp a network of variously maintained logging roads leads to the Property boundary.

The Scotia Claim occupies an area of 5,576.27 hectares of crown land which covers predominantly the topographic ridges above treeline of the Mt. Haywood Range within the Kitimat Range of the Northern Coast Mountains. The terrain is mountainous with smooth, precipitous, rock faces to moderate brush and tree covered slopes. Property elevations range from 600 metres to over 1,300 metres. The lower elevation portions of the property are dominated by heavily forested (fir and hemlock) valley sides with sparse conifers growing to approximately 1,000 metres. Above 1,000 metres is brush and taiga typical of northern alpine climates.

Prince Rupert, B.C. and northern B.C. Coastal region, have a climate characterized by high precipitation and moderate temperatures. Winters are typically mild and extremely wet with precipitation occurring mostly as rain (snowfall is generally restricted to elevations above 300 metres), winter temperatures commonly average in the 5°C and can reach lows of -10C°. Summer weather is typified by mixed rain and cloud with temperatures typically from 10°C to 25°C. Freeze-up typically occurs in mid-November. The Property is best worked in the months of June through September

All of the major valleys in the area are accessible by logging roads maintained by Bear Creek Contracting as most valleys have been logged from within 15 years to over 30

3

years ago. 1990's vintage logging road deactivation has rendered some of the spur roads within this logging road system inaccessible, however most main drainage roads are passable by four wheel drive vehicles.

Prince Rupert is a year-round deep-sea port with a population of 12,000, and represents a Provincial centre with a viable and ready workforce at the western terminus of the Canadian National rail line. A portion of the railroad line is located along the north bank of the Skeena River, within 5 kilometres of the Property boundary. Three Phase BC Hydro Grid power line based electric power is available on the South bank of the Skeena River within 5 kilometres of the Property boundary.

3.0 CLAIM STATUS

The Scotia Property is owned 100% by Geo Minerals Ltd.

The Property consists of one (1) MTO Mineral Tenure (#593613) cell based claim. In total, the property covers 5,576.27 hectares. See Figures 2-2 and 2-3.

Table 3-1: Scotia Property Mineral Claims Tenure Status

Tenure Number	Claim Name	OWNER	Good To Date*	Area
593613	SCOTIA	GEO MINERALS LTD.	2010/DEC/05	5576.27

*The expiry date is based on the acceptance of this report for assessment work credits.

4.0 **HISTORY**

4.1 Regional Exploration History

Mineral exploration in the Scotia Project district was initiated on a regional scale in the 1950's and 1960's when the Texas Gulf Sulphur Company was developing the Ecstall VMS deposit for its sulphur content. Reserves of approximately 6 million tons were delineated by diamond drilling and underground development on the Ecstall Deposit, however due to falling market conditions for sulphur the Ecstall deposit was never developed. Texasgulf and Cominco drilled the Packsack claims and Noranda conducted geophysical surveys and limited drilling at the Horse Fly prospect during this period of exploration.

After the culmination of the 1970's vintage exploration in the Ecstall belt and region, exploration as a whole stalled. A regional geochemical stream sediment and water reconnaissance program was conducted by the British Columbia Geological survey on NTS map sheets 103Iand 103J in 1978-79 and published in those years. Samples collected during this program were re-analyzed in 1991 and published as BC RGS 42 in June 1995. The release included previously unreleased data for 26 metals in stream sediments. A total of 2,253 stream sediment and 2,237 stream water samples were collected from 2,128 sites through the course of this study.

A two year geological mapping program was carried nout by Dani Alldrick of the BCGS beginning in the mid 1990's. A 1:20,000 scale map of the project area (the Ecstall Belt) was released in 2001 as a Geoscience Map titled Geology and Mineral Deposits of the Ecstall Greenstone Belt, North West BC.

The GSB subsequently conducted a Regional Geochemical Survey (Open File 2001-13) reporting the results of stream sediment and water sampling of 228 sites over a 1,800 square kilometre area.

4.2 Scotia Property Exploration History

The Albere Zone at the Scotia Deposit was discovered by Texas Gulf Sulphur in 1958 during a regional reconnaissance program. In 1960, 10 holes (totaling 570 metres) were drilled by Texasgulf Inc. with seven holes reporting significant base and precious metal mineralization intersections between 2.2 to 7.7 metres in length. The best intersection was from drill hole S-01-60 which assayed 19.9% zinc and 26 g/t silver over 7.7 metres. No further work was reported until 1970, when TexasGulf conducted a small mapping and soil geochemical program resulting in a multi-element soil anomaly coving the Albere zone.

In 1980, Kidd Creek Mines Ltd. drilled 7 holes for an aggregate 960 metres, with massive sulphide mineralization intersections in six of the holes holes. The most significant intersection was reported as 18.1 metres of 9.8% zinc and 14 g/t silver. In 1981, Kidd Creek Mines Ltd. continued to work the project, culminating with a 1:5,000 scale map of the south central area of the project and 4 step-out drillholes totaling 1,104.2 metres. No massive sulphide mineralization was encountered within the holes from this program. A down hole pulse EM geophysical survey was also conducted on holes S-11, 14, 16, 17, 19 and 20.

In 1984, Andaurex Resources Inc. optioned the Scotia property and conducted a 767 metre, 11 drillhole program, which highlighted the continuity of the massive sulphides within the Albere zone. Andaurex subsequently forfeited the option and in 1987 Kidd Creek worked 10 kilometres line kilometers of grid based magnetometer, VLF-EM and lithogeochemical surveys. 159 grab samples were collected during this program. The geophysical surveys found conductors associated with the massive sulphide mineralized zones.

Bishop Resources Inc ("Bishop") entered into an option agreement with Falconbridge in 1996 to acquire 100% interest in the Scotia Property. In 1997, a 10 hole drill program was conducted with mineralization encountered in nine of the ten holes drilled. The best

10

intersection from the program was from hole S-37-97 with 26.7 metres grading 9.0% zinc, 1.2% lead, 21.5 g/t silver, 0.3 g/t gold and 0.2% copper, in addition, mineralized intersections greater that 15 metres were intersected in two other 1997 drill holes.

In 2005 a core re-sampling program and project reconnaissance program was conducted by Doublestar Resources Ltd.

From September 1 to 11, 2006 a grid-based soil geochemical program was run by Geo Minerals Ltd. A total of 114 soil samples were collected during the program. All soil samples were collected from the B-horizon. Several coincident Pb-Zn anomalies were uncovered from this program, a few of which are located beyond the drilled portion of the Albere Zone.

A Remote Sensing Interpretation study was conducted by John Berry Associates for Geo Minerals dated October 11, 2006.

From July 31st – August 6th, 2008 Aeroquest conducted an Helicopter-Borne AeroTEM System System Electromagnetic, Magnetic and Radiometric Survey of the Scotia Property. The total survey coverage was 525.2 line-km. The survey block was flown at 100 metre line spacing, and at a 70°/250° direction. The control (tie) lines were flown perpendicular to the survey lines with a spacing of 1,000 metres. Several EM anomalies were discovered from this program.

5.0 REGIONAL GEOLOGY

The Prince Rupert-Skeena district is predominantly underlain by plutonic and metamorphic rocks of the Coast Plutonic Complex. The regional distribution of the metavolcanic rocks of the Ecstall Greenstone Belt is illustrated in Figure 5-1. Mesozoic Plutonic rocks consisting of large plutons and smaller intrusive bodies, mostly quartz diorite and granodiorite to diorite and quartz monzonite end members with rare gabbro and granite (Hutchinson, 1982). A north-northwest-trending belt of metavolcanic and metasedimentary rocks of varying ages known as the Scotia-Quaal metamorphic complex has been mapped through the area between the Skeena River and Douglas Channel. Due to the of the strong metamorphic overprint and distinct lack of fossils, the age of these lithologies is uncertain, however, radiometric dating places them at pre-Early Jurassic age. The major structural trend in the area is northwest (Birkeland, 2007a).

The units which comprise the Ecstall Belt can be generally described from west to east, as defined by Gareau (1997) are: the Big Falls orthogneiss, in the southern part only; a metavolcanic unit, a metasedimentary clastic unit, a quartzite unit and a layered gneiss unit. The Scotia deposit lies within the metavolcanic unit, which hosts several other VMS-type deposits north and south of the Ecstall River, and the metasedimentary unit, particularly near its contact with the metavolcanic unit.

The region has undergone three main phases of regional deformation however the metamorphic grade is variable, from low to high grade with a generally increase in grade from west to east.

The Ecstall Pluton, which borders the Scotia-Quaal metamorphic belt to the west, is Cretaceous in age while the Quottoon Pluton to the east is Late Paleocene to Early Eocene in age (Gareau, 1997). The Ecstall Pluton appears to have been generated and mobilized from east to west during an intense period of metamorphism of Late Cretaceous age (Hutchinson, 1982).

GEO M Scotia Projec	INERALS LTD. t Assessment Report	t 2009	Scotia Project Regional Geology
FIGURE NUMBER	FILENAME:	Ec	estall Belt Geology
5-1	SCREGEO.CDR	Fre	om BCGS On-Line Resources

6.0 PROPERTY GEOLOGY

The Scotia Property is situated in an area defined surficially by heavily glaciated by alpine and valley glaciers and by at least one ice sheet, although glacial deposits are rare (Hutchinson, 1982). Deposits of colluvium till and talus are present on mountain slopes locally, and thick Pleistocene and Recent fluvial deposits occupy the main river and drainage valleys. At higher elevations, above the treeline, bedrock exposures are abundant with areas of unconsolidated materials overlying the bedrock within flats.

The Devonian metavolcanic unit of the Ecstall Greenstone Belt in turn intruded by the Cretaceous Ecstall granite intrusion and by multiple stages of dioritic to pegmatitic dykes of late Cretaceous to Eocene age underlie the Scotia Property. The metavolcanic lithologies are described as a bimodal suite of tholeiitic basalt and andesite, and calcalkalic dacite to rhyolite (Manojlovic, et. al. 1987), possibly of Island Arc affinity.

The volcanic lithologies have undergone to amphibolite grade metamorphism that postdated the second of two stages of intense isoclinal folding (Gareau, 1991a,

b; Krage, 1984). Gareau (1991a, b) believes that metamorphic grade increases to the north and east within the northern section of the Ecstall Belt (and on the Scotia Property itself) and reflects increasing levels of uplift and erosion in those directions. One megascopic antiform-synform pair has been mapped on the property by Eldridge (1983). A third stage of folding interpreted by Eldridge (1983) to be post-metamorphic and is characterized by broad "warps" of all pre-intrusion lithologies. These are proposed to be temporally associated with the intrusion of the Ecstall intrusives.

On the Scotia Property the volcanic rocks have been heavily deformed to the point of recrystallization. Scotia Property amphibolites are characterized by a melanocratic, gneissic to subgneissic hornblende-rich lithologies. The amphibolites can occur as massive (>20 meter to < 2 cm thick) units. Other mafic metavolcanic rocks are dominantly black, biotite-rich gneisses and schists, although hornblende and biotite do occur together locally. Myers (1982) interprets these rocks might be metaandesites. Geological mapping by Meyers and Moreton in 1981 lead to their interpretation of a

west-dipping homoclinal sequence of mixed gneisses and schists which strikes northnorthwest, with moderate west dips.

Felsic metavolcanic rocks are dominantly feldspar-rich, gneissic and less commonly schistose rocks with up to 10% biotite, and rare hornblende. Quartz is rare. The most common type is commonly moderately to strongly magnetic. Other felsic rocks are found only within and near the Albere zone mineralization. These are chert, chert breccia, "exhalite", and quartz porphyry schist. These highly siliceous rocks display very well preserved textures that suggest both replacement and primary silica deposition, presumably of hydrothermal origin. These units are almost always present in close proximity to sulphide mineralization.

These mafic and intermediate rocks are almost invariably non to weakly magnetic. A unit called interbanded gneiss is characterized by numerous interbanded felsic with mafic, intermediate and amphibolite units. These bands range from three to over 10 per meter. The felsic bands are usually moderately magnetic.

There are several other rock units that are spatially associated with sulphide mineralization. These are brown biotite gneiss and schist, felsic brown biotite gneiss and schist, felsic sericite gneiss and schist, felsic muscovite gneiss and schist, and massive sericite to muscovite gneiss and schist. These rocks are located either with or to the west of the sulphide mineralization. They may represent hydrothermally altered equivalents of the units described above. Units containing brown biotite usually occur between unaltered and sulphide-bearing or muscovite-sericite altered units. This suggests that brown biotite, sericite and muscovite represent increasingly altered equivalents of unaltered hornblende and black biotite-bearing rocks. This appears to be particularly evident for the more mafic units, i.e. black biotite - brown biotite - massive sericite gneiss/schist. The units lack sharp boundaries and do not form identifiable repetitive sequences. The rocks are typically gneissic, banded, schistose and massive to locally foliated. At the northern edge of the property, the gneisses are truncated by a massive

foliated diorite intrusion. The term ["]felsic tuff' was applied, by Meyers and Moreton (1982), to the sericiterich rocks which host the massive sulphide mineralization. The tuffaceous connotation is highly interpretive and infers that the host rock was a hydrothermally altered volcaniclastic rock

Meyer and Moreton (1982) identified a broad, open antiform which closes in the eastcentral part of the property and plunges gently to the south. This fold has an amplitude of at least 400 metres and appears to be overturned to the east, with a steep axial plane dip of 65-75° to the west. These authors further suggest that there may be a reversal of fold plunge directions from southeast to northnorthwest, which resulted from a later folding event with a southwest oriented axial plane.

Several episodes of mafic, felsic and pegmatitic dyking have occurred. These appear to be of late deformation age to very late and undeformed. A 200 metre wide "swarm" of northeast trending pegmatite dykes crosscut the gneisses and massive sulphide showing. Pegmatite dykes also occur throughout the property. They are quite variable in composition. An unusual white, garnet-bearing plagioclase-rich type is compositionally similar to felsic gneisses and may be a partial melt of felsic units. Other leucocratic, plagioclase-rich pegmatite dykes appear to be confined to hinge zones of folds. These dykes are less than three metres wide on average, and consist of very coarse-grained potassium-feldspar, quartz and muscovite. At the Scotia mineralized showing the dykes are spaced from 2 to 7 metres apart and trend 0.10° to 020° .

16

7.0 MINERALIZATION

North and south of the Ecstall River, several VMS-type zinc (+/- copper-lead-silver-gold) occurrences and deposits are known within the metavolcanic unit. Eleven deposits of this type are located within ten kilometers of the southern margin of the Scotia claims. Horsefly, Third Outcrop, East Plateau, Packsack and Trench are all located north of the Ecstall River. The Ecstall, Phoebe Creek, Mariposite, West Grid, Thirteen Creek Cirque, El Amino, South Creek Grid are located south of the Ecstall River.

Mineralization within the Scotia Property occurs as thin conformable lenses of massive to semi-massive sphalerite-rich VMS style mineralization with accessory amounts of pyrite, galena, pyrrhotite and chalcopyrite. Sericitic (muscovite) rocks partially envelop the sulphide lenses. These rocks have variable sulphide content, are usually pyritic and locally contain significant amounts of disseminated sphalerite, galena, pyrrhotite and minor chalcopyrite Drilling in 1984 confirmed the presence of three parallel zones of sphalerite mineralization (Hilker, 1984). The mineralized zones trend 340° and have been intersected in drill holes for over 230 metres of strike length.

The Scotia mineralization occurs on the west limb of an interpreted overturned anticline within a complexly folded sequence of felsic and mafic gneiss. The three mineralized zones, termed the upper, middle and lower zone by Hilker (1984) strike 340°, dip 40° to the west with a calculated average rake of 9° to the south. The mineralized zones undulate along a 228 metre strike length and are interpreted to pinch and swell down dip and down plunge. The zones were interpreted to be contained within an overturned fold with related drag folding caused by shearing along gneiss layers. According to Hilker (1984), the mineralization appears to be continuous along strike and dip.

Sphalerite occurs as dark brown, massive to semi-massive and occasionally disseminated crystals. Scattered garnets or garnet clusters occur within portions of the massive to semi-massive sphalerite zones. Metallic-grey galena occurs as coarse to fine crystals in concentrations of 0.5 to 2% and rarely up to 5% with pyrite, pyrrhotite and bornite. Galena is never present with massive sphalerite and only occasionally in minor

quantities with semi-massive sphalerite (Hilker, 1984). Bornite has been observed in portions of the drill core. Less than 1% chalcopyrite typically occurs with pyrite, pyrrhotite and galena and may contain gold or silver. Pyrite occurs disseminated within the mafic gneiss or within quartz-sericite schist bands from 3-10%. Up to 20% pyrite can occur in zones in the hanging wall and footwall adjacent to the three sphalerite-rich zones. Pyrite is typically associated with galena, pyrrhotite and chalcopyrite. Less than 1% pyrrhotite occurs in fringe zones to the massive sphalerite (Hilker, 1984).

Gold, silver and copper mineralization has also been identified at Scotia. Silver grades vary between 1-3 ounces per tonne and correlate well with high grade zinc mineralization. Gold grades vary up to 0.03 ounces per tonne and do not consistently correlate with the highest zinc or silver grades.

8.0 2009 WORK PROGRAM SUMMARY

The Geo Minerals 2009 Scotia field program was conducted from August 3-August 12, 2009. The project utilized helicopter (Vancouver Island Helicopters) support from Prince Rupert, B.C. to access the project area and establish a fly camp for the duration of the program. The exploration team consisted of a technical climbing geologist and assistant. The focus of the 2009 program was to collect rock samples on the opposite limb (the "East Limb") of the antiform from the main mineralized zone on the Scotia Property, the Albere Zone, as well as to conduct a geochemical soil sampling profile on the areas immediately below the East Limb zone. Twelve (12) rock-chip samples were collected in a mineralized area of approximately 100 x 30 meters and selected by the presence of Feoxides replacing sulfides. Subtle but elevated Zn (255 ppm max) anomalies were noted in select samples. Twenty-five (25) soil samples were also collected along two lines roughly perpendicular to the mineralized stratigraphy, 12 of these soils returned Zn values equal to or in excess of 100 ppm.

The 12 rock samples (chip) were collected in a mineralized zone centered at approximately 456650mE./59926450mN.(UTM Zone 9 NAD83). The zone is approximately 100 metres by 30 metres in area and is easily identified from its rusty weathering due to a significant amount of pyrite. The immediate area surrounding this zone is a relatively unaltered hornblende-garnet schist/gneiss barren of sulphides. The sample locations were marked in the field with spray paint and their locations are highlighted on Figure 8-1). The rocks sampled were pyrite rich garnet muscovite schist, with no visible sphalerite, galena or copper sulphide observed. The mineralized package appears to be focused on the hinges of a fold.

25 soil samples were collected along two soil lines. The soil line labeled KM1 begins at 457339mE./5992426mN. and ends at 456860mE./5992529mN. Samples were collected at approximately 25 metre spacings, with the exception of a few locations where a sample was not possible to collect. 17 soil samples were taken along soil line KM1. The soil

line labelled KM2 begins at 456956mE./5992352mN. and ends at 456775mE./5992344mN. Samples were collected on approximately 25 metere centres except in a few locations where no sample could be taken. 8 samples were collected along line KM2. All soil samples were sampled from the C horizon where possible and where not, the B-Horizon was sampled.

All samples were assayed by ICP methods at ACME Analytical Laboratories of Vancouver B.C. On the Rock Chip Samples Acme Analytical Labs conducted the assaying by Group 7TX Hot Aqua Regina digestion with ICP-MS and ICP-ES finish. On the Soil Samples Acme Analytical Labs conducted the assaying by Group 1EX 4-acid digestion of 0.25g split heated in HNO₃-HClO₄-HF with ICP-MS finish. Results from the program are presented in their raw, un-interpreted form, in Appendix A and in their compiled forms in Appendix B, sample locations and assays are illustrated figures 8-1 through 8-4. Tables 8-1 through 8-3 present the tabulated results of the 2009 Scotia sampling program

Sample	UTM NA	D 83 Zone 9	Cu	Pb	Zn	Ag	Mn
Number	Easting	Northing	ppm	ppm	ppm	ppm	ppm
89806	456628	5992654	55.6	14.2	255	0.7	1517
89807	456633	5992653	32.3	16.2	96	1.1	13089
89808	456638	5992645	20.5	14.3	158	<0.5	1351
89809	456642	5992645	24.6	15.5	141	0.7	757
89810	456645	5992644	17.6	13.2	160	<0.5	912
89811	456648	5992641	24.3	9.3	196	<0.5	1213
89812	456652	5992645	48.8	15.9	56	1	339
89813	456654	5992645	28.4	15.3	90	0.6	675
89814	456657	5992645	89.1	13.7	213	0.8	450
89815	456675	5992700	20.7	31.6	49	<0.5	998
89816	456677	5992700	78.5	8.3	57	<0.5	990
89817	456680	5992684	46.7	32	11	<0.5	136

 Table 8-1: 2009 Scotia Project Geochemical Survey – Rock Chip Sample Locations and Highlighted Results

Table 8-2: 2009 Scotia Project Geochemical Survey – Rock Chip Sampling Notes

Sample	Туре	Length of chip (m)	Mineralization	Structure	Strike	Dip	Rock Type	minerals
89806	chip	1.5	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89807	chip	3	pyrite	Foliation	115	44	amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89808	chip	3	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89809	chip	2	pyrite	Foliation	113	38	amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89810	chip	2	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89811	chip	2	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89812	chip	1.5	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89813	chip	3	pyrite	Foliation	112	36	amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89814	chip	2.5	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89815	chip	1	pyrite				amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89816	chip	1	pyrite	Foliation	355	50	amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole
89817	chip	2	pyrite	Foliation	10	50	amphibole-mica schist	biotite, muscovite, qtz, feldspar, amphibole

Sample	UTM NA	D 83 Zone 9	Cu	Pb	Zn	Ag	Ni	Со
Number	Easting	Northing	ppm	ppm	ppm	ррт	ррт	ррт
50975	457339	5992426	22.2	17.2	79	<0.1	8.5	11.7
50976	457303	5992435	8.9	9.8	81	<0.1	5.3	6.6
50977	457249	5992444	10.1	7.5	63	<0.1	8.6	11.2
50978	457272	5992456	11.6	8.3	63	<0.1	9	9.5
50979	457227	5992456	5.4	10.4	65	<0.1	8.3	8.5
50980	456776	5992345	20.1	16.6	85	0.2	10.7	8.4
50981	457227	5992469	20.5	7.9	100	<0.1	9.9	11.7
50982	457161	5992475	7	8.4	63	<0.1	6.6	10.3
50983	457138	5992481	26.9	9.3	88	<0.1	8.5	10.2
50985	457031	5992493	25.3	8.8	87	0.1	9	7.3
50986	457060	5992502	19.1	9.7	105	0.2	10.2	9.7
50987	457031	5992508	19.7	11.5	86	<0.1	15.3	11.3
50988	457009	5992518	23.8	11.1	133	<0.1	20.1	13.6
50989	456981	5992523	22.6	12.3	145	0.3	13.6	9.9
50990	456951	5992526	9.3	13.2	119	<0.1	1	0.9
50991	456923	5992527	13.9	14.6	85	0.1	20	13.3
50992	456894	5992527	29.5	10.7	98	<0.1	13.3	9.8
50993	456860	592529	22.4	9.9	92	<0.1	11.9	10.4
50994	456952	5992358	11.4	15.7	130	<0.1	15.7	13
50995	456930	5992357	20.4	10.3	186	<0.1	28.5	21.3
50996	456905	5992352	26.3	10	177	<0.1	25.7	21.6
50997	456876	5992359	33.6	10.3	191	<0.1	26.8	22.1
50998	456852	5992339	18.8	9.8	126	<0.1	18.4	14.9
50999	456827	5992344	30.9	9.5	102	0.1	13.7	13.6
51000	456800	5992347	12.6	7.9	109	0.2	32.1	23.6

 Table 8-3: 2009 Scotia Project Geochemical Survey – Soil Samples Locations and Highlighted Results

ſ

Γ

L

-

9.0 DISCUSSION AND RECOMMENDATIONS

The 2009 exploration work was successful in accessing and sampling an area interpreted as the mineralized extension of the Albere Zone. The program uncovered a previously un-sampled zone of subtly anomalously sulphide mineralization covering an area of approximately 100 x 30 metres. This zone, and the entirety of the immediate area in and around the "East Limb", requires follow-up exploration work. Owing to the relative inaccessibility of this zone and the surrounding precipitous exposures, any such exploration would require a larger more heavily equipped technical climbing team to conduct a complete work program.

The rock and soil geochemical data collected and analyzed during the 2009 program established a geochemical baseline for all future soil sampling on the lower elevation portions of the Scotia Property. This work will greatly add to the follow-up work required including extending the sampling area within this new "East Limb" zone of bedrock mineralization and aid the requisite on-the-ground evaluations of the geophysical targets identified from the 2008 airborne study.

The geophysical targets identified by the 2008 airborne survey should be ground-truthed and explored by systematic exploration including ground grid geological mapping, detailed soil geochemistry and contingent ground geophysics in the vicinity of the drilled zone to extrapolate drill targets. Ground geophysics may include magnetic, UTEM, IP and bore-hole geophysical surveys. High priority targets should be subsequently trenched utilizing a helicopter portable backhoe. All trenches should be mapped, sampled and assayed by 36 element ICP minimum analytical procedures.

A property-wide proposed Scotia field program is detailed below:

Scotia property grid work: The 2006 Scotia sampling grid established by should be extended to the east and north. Additionally a sampling grid should be established below the 2009 sampling program and should be designed to test the entire strike length of the "East Limb" of the Albere Zone. This lower elevation grid should consist of East-West

lines from a North-South Base line.

Soil and Rock geochemistry: Soil sample spacing of 20 meters is recommended in the upper elevation target areas and at 40 meters for the lower elevation grids and general survey areas with line spacing of at least 100 metres. First pass rock (float and chip) sampling should be completed coincident with any grid based soil surveys.

Ground geophysics: Magnetics, electromagnetics, and IP surveys should be considered over delineated soil geochemical anomalies.

Geological Mapping: A detailed geological mapping is required in the Albere Zone, and over the 2009 "East Limb" target. Additionally, the anomalous areas defined from the 2008 airborne survey should be mapped, prospected and sampled.

Drill Core Preservation: A great portion of the Scotia Project drill core (cross-piled on site) has been lost due to the weathering of the wooden core boxes. Where possible, all salvageable should be re-boxed for posterity.

(Ha

Paul D. Gray, P.Geo.

Dated: November 30, 2009

10.0 REFERENCES

Alldrick, D.J. and Gallagher, C. S. 2001. Geology of the Ecstall Greenstone Belt, Coast Mountains, BC. Ministry of Energy and Mines, GSB.

Birkeland, A.O. and Lindinger, L. 1998. Diamond Drilling Report on the Albere Zone, Scotia Property. Arnex Resources Ltd.

Birkeland, A.O. 2001. Summary Report, Reclamation Program on the Scotia Mineral Property. Arnex Resources Ltd

Birkeland, A.O. 2007. Technical Report, Scotia Property. Arnex Resources Ltd.

Birkeland, A.O. 2007. Assessment Report Scotia Mineral Property, Scotia River Area, Skeena MD, ARIS Report #29340.

DeLancey, P.R. 1977. Report on the West Scotia Property. 8 pages plus attachments. Unpublished Company Report. Texasgulf Inc.

DeLancey, P.R. 1980. West Scotia Drilling Program. Texasgulf Inc.

DeLancey, P.R. 1981. Report on Diamond Drilling on the Albere 2 M.C. (part of the WEST SCOTIA Property). Kidd Creek Mines Ltd. ARIS Report #9302.

Eldridge, R. 1983. A Structural Analysis of the West Scotia Property, British Columbia, Unpublished B.Sc. Thesis. 70 pp. Bryn Mawr College, Department of Geology.

Falconbridge Minerals Ltd., 1960. Unpublished Diamond Drill Logs.

Gareau, S.A. 1991. Geology of the Scotia-Quaal metamorphic belt, Coast Plutonic Complex, British Columbia. 390 pp. Unpublished Ph.D. Thesis, Carleton University Department of Geology.

Gareau, S.A. 1991. The Scotia-Quaal metamorphic belt: a distinct assemblage with preearly Late Cretaceous deformational and metamorphic history, Coast Plutonic Complex, British Columbia. in Canadian Journal of earth Sciences, Vol. 28, No. 6. pp873-:880.

Graff, B. 2001. Report of Inspector of Mines, Reclamation and Permitting.

Hendrikson G.A. and Geoph, P. 1987. Geophysical Surveys, Scotia Project. Kidd Creek Mines Ltd., 13 pp. plus attachments. ARIS Report #16795.

Hilker, R.G. 1985. Scotia Zinc Property, 1984 Exploration Drill Program, Geological Evaluation Report for Andaurex Resources Ltd., 38 pp. ARIS Report 13794.

Hilker, R.G. (1985) 1984 Exploration Drill Program Geological Evaluation Report, Falconbridge Limited, internal report.

John Berry Associates. 2006. Remote Sensing Interpretation, Scotia Area.

Krage, S.M. 1984. Metamorphic Fluid Inclusion Study of Amphibolite - grade rocks West Scotia, British Columbia. 98 pp. Unpublished M.A. Thesis, Bryn Mawr College, Department of Geology.

Manojlovic, P.M. and Fournier, J.D. 1987. Geological and Geophysical Survey, Scotia Property. 6 pages plus attachments.

Ministry of Energy and Mines. 2001. Geochemistry of the Ecstall Greenstone Belt. GSB OF 2001-13.

Money, D.P. 1989. Scotia Project Review. Falconbridge Limited.

Myers, R.E. and Moreton, E.P. 1981. Final Report on the Geology, Geophysics and Diamond Drilling Programmes, West Scotia Property. Unpublished Kidd Creek Mines Ltd. report. GSB Assessment Report 10,332.

Meyers, R.E. and Moreton, E.P. (1982) Report on Geological Mapping and Diamond Drilling; Falconbridge Limited, internal report.

11.0 STATEMENT OF QUALIFICATIONS

I, Paul D. Gray, of #1 – 1081 West 8th Avenue, Vancouver V6H 1C3, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. During the time of the work described in this report I was a Director of Geo minerals Ltd, a public Company with offices at 1220-789 West Pender Street, Vancouver, B.C.
- 2. I am a graduate of Dalhousie University, Halifax, in the Province of Nova Scotia, with a Bachelor of Science degree (Honours) in Earth Sciences.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), License Number 29833.
- 4. I have practised my profession as an exploration geologist in the mineral exploration industry continuously since 1997. I have worked on base and precious metals exploration projects as a geologist in Canada, United States of America, Mongolia, Mexico, Central and South America.
- 5. I am the author of this report and the supervisor of the field work performed on the Scotia Property as reported herein.

DATED at Vancouver, British Columbia this 30th day of November, 2009.

Paul D. Gray, P.Geo

12.0 STATEMENT OF EXPENDITURES

,.....

.

-

<u>Scotia Project Expenses Statement</u> 2009 Field Season

August 3 - 12, 2009 Scotia Geological Program

Paul D. Gray, P.Geo., Geolo	gist 3 days @ \$650.00/day	1	\$1,950.00
James Thom, Climbing Geo	ogist 10 days @ \$450.00/da	iy	\$4,500.00
Kelty McKenzie, Sampler	10 days@ \$350/day		\$3,500.00
Truck	1 Trucks @ \$75.00/day/truck	@ 10 days	\$750.00
Meals	\$35.00/man/day @ 23 days		\$805.00
Hotels	\$100/room/day @ 2 rooms/2	days	\$400.00
Equipment Rental	Fly Camp, Communications,	GPS	\$1,500.00
	Satellite Phone Rental/Servic	e	\$160.00
	Drill and Generator (Climbin	g) Rental	\$640.00
Fuel	Mob/Demob plus Generator		\$583.66
Flights	Vancouver – Prince Rupert x	2	\$1,826.30
Equipment acquisition	Climbing gear and related		\$445.75
		Sub-Total = \$	17,059.96
Helicopter Access Contrac	ors		
Vancouver Island Helicopte	s 3.5 h @ \$1300.00/hou	ır + fuel	\$5,532.18
Post Program Expenses			
ACME Labs Inc., Assays	12 Rock Samples @ \$30.00 e 25 Soil Samples @ \$30.00 ea	ach ch	\$366.24 \$540.00
		Sub Total =	\$906.24

Report Writing

Paul D. Gray, P.Geo.

2 days @ \$560.80/day

\$1,121.58

Sub Total = \$24,619.96

Dated: November 30, 2009

Paul D. Gray, P.Geo.

Tart

APPENDIX A

.

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Method

Code

R200

7TX

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Submitted By: Paul D. Gray Receiving Lab: Canada-Vancouver Received: August 25, 2009 Report Date: September 06, 2009 1 of 2

VAN09003841.1

Report

Status

Completed

Lab

VAN

VAN

CERTIFICATE OF ANALYSIS

Return

Return

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Page

Project:	Scotia
Shipment ID:	1 OF 1
P.O. Number	
Number of Samples:	12

CLIENT JOB INFORMATION

Number of Samples	Code Description	Test Wgt (g)
12	Crush, split and pulverize rock to 200 mesh	
12	4 Acid Digestion Analysis by ICP-ES/ICP-MS	0.5

SAMPLE DISPOSAL

RTRN-PLP RTRN-RJT

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

ADDITIONAL COMMENTS

Client:

Project:

Page:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 1

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Report Date:

September 06, 2009

Scotia

2 of 2

CERTIFICATE OF ANALYSIS

CERTIF	ICATE O	= AN	IALY	SIS													VA	NOS	9003	841	.1	
		Method	WGHT	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	77X	71
		Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	r
		Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	٩
		MDL	0.01	0.5	0.5	0.5	5	0.5	0.5	1	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5	10	0.01	0.0
89806	Rock			14.2	55.6	14.2	255	0.7	6.2	2	1517	6.99	27	1.7	16.7	30	<0.5	<0.5	1.5	<10	0.35	0.0
89807	Rock			27.8	32.3	16.2	96	1.1	0.9	9	13089	11.17	26	1.4	7.8	46	1.0	<0.5	2.1	14	0.62	0.0
89808	Rock			4.1	20.5	14.3	158	<0.5	0.6	3	1351	6.33	8	1.8	10.6	67	<0.5	<0.5	1.5	17	0.73	0.0
89809	Rock			3.4	24.6	15.5	141	0.7	1.7	3	757	4.85	<5	1.0	5.2	62	<0.5	<0.5	1.2	20	0.57	0.0
89810	Rock			2.5	17.6	13.2	160	<0.5	0.8	3	912	3.46	<5	0.7	4.7	60	<0.5	<0.5	<0.5	45	0.53	0.0
89811	Rock			1.6	24.3	9.3	196	<0.5	0.6	<1	1213	3.28	<5	0.7	8.9	102	<0.5	<0.5	0.5	<10	0.66	0.0
89812	Rock			7. 9	48.8	15.9	56	1.0	1.9	2	339	5.20	<5	<0.5	5.6	32	<0.5	<0.5	1.3	<10	0.22	<0.0
89813	Rock			1.8	28.4	15.3	90	0.6	<0.5	1	675	3.39	<5	<0.5	5.0	94	<0.5	<0.5	0.8	<10	0.85	< 0.0
89814	Rock			8.5	89.1	13.7	213	0.8	0.9	9	450	7.44	<5	1.1	5.9	55	<0.5	<0.5	1.3	10	0.54	0.0
89815	Rock			7.8	20.7	31.6	49	<0.5	<0.5	<1	998	2.69	<5	0.7	9.6	45	<0.5	<0.5	<0.5	<10	0.43	<0.0
89816	Rock			1.2	78.5	8.3	57	<0.5	<0.5	<1	990	2.87	<5	2.5	9.0	20	<0.5	<0.5	<0.5	<10	0.16	<0.0
89817	Rock			4.8	46.7	32.0	11	<0.5	<0.5	<1	136	2.34	12	1.6	4.4	82	<0.5	<0.5	<0.5	<10	0.68	<0.0

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Γ

Client:

Page:

GEO Minerais Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Project: Scotia Report Date:

September 06, 2009

2 of 2 Part 2 VAN090038411

CERTIFI	CATE OF A	NALY	′SIS													VA	N09	9003	841	.1	
	Method Analyte	7TX La	7TX Cr	7TX Mg	7TX Ba	7TX Ti	7TX Al	7TX Na	7ТХ К	7TX W	7TX Zr	7TX Ce	7TX Sn	7TX Y	7TX Nb	7TX Ta	7TX Be	7TX Sc	7TX Li	7TX S	7TX Rb
	Unit MDL	ррт 0.5	ppm 1	% 0.01	ppm 5	% 0.001	% 0.01	% 0.01	% 0.01	ррт 0.5	ppm 0.5	ppm 5	ррт 0.5	ppm 0.5	ррт 0.5	ррт 0.5	ppm 5	ppm 1	ррт 0.5	% 0.05	ррт 0.5
89806	Rock	94.0	15	4.52	788	0.298	6.82	1.50	3.49	<0.5	1.0	196	10.7	19.7	29.0	1.4	5	1	15.8	2.33	97.3
89807	Rock	52.0	5	1.23	491	0.137	5.07	1.25	1.47	1.3	2.0	111	7.4	48.1	10.8	<0.5	<5	2	7.3	6.34	29.0
89808	Rock	54.5	8	2.14	448	0.191	5.50	1.96	1.73	<0.5	1.1	126	7.0	18.5	23.2	0.9	<5	3	10.7	2.50	35.2
89809	Rock	28.5	11	1.74	651	0.184	5.04	1.62	2.08	0.8	3.1	66	5.4	9.3	15.3	0.7	<5	4	6.1	2.05	45.0
89810	Rock	26.5	9	1.11	443	0.187	5.40	3.14	1.60	<0.5	2.0	61	4.5	10.9	7.0	<0.5	<5	5	6.1	1.16	39.9
89811	Rock	46.6	8	0.81	318	0.172	5.77	3.87	1.11	<0.5	1.0	106	5.5	37.5	12.5	0.6	<5	1	6.6	0.58	26.5
89812	Rock	36.7	7	0.36	805	0.131	3.63	2.12	1.68	1.9	0.9	80	4.9	9.3	6.1	<0.5	<5	1	2.8	1.35	23.0
89813	Rock	32.7	11	0.52	784	0.112	6.08	3.44	1.07	0.8	0.8	72	4.6	20.4	7.1	<0.5	<5	2	4.2	1.11	18.2
89814	Rock	34.5	8	1.45	533	0.174	5.21	2.77	1.76	0.7	0.7	79	6.1	9.2	9.3	<0.5	8	2	8.6	3.83	31.1
89815	Rock	82.2	11	0.20	407	0.097	4.27	3.60	0.59	<0.5	1.6	158	3.1	35.5	15.0	0.8	<5	<1	2.0	0.55	8.6
89816	Rock	66.6	12	0.32	238	0.088	3.84	3.72	0.60	0.8	1.1	142	2.7	51.8	25.9	1.1	<5	<1	3.5	0.22	10.5
89817	Rock	24.6	8	0.06	133	0.060	5.61	4.62	0.55	<0.5	11.1	53	1.3	8.3	5.1	<0.5	<5	<1	<0.5	0.27	6.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

í

-

Client:

Project:

Page:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 3

VAN09003841.1

Scotia Report Date: September 06, 2009

2 of 2

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

CERTIFICATE OF ANALYSIS

	Method Analyte	7TX Hf
	Unit	ppm
	MDL	0.5
89806	Rock	<0.5
89807	Rock	<0.5
89808	Rock	<0.5
89809	Rock	<0.5
89810	Rock	<0.5
89811	Rock	<0.5
89812	Rock	<0.5
89813	Rock	<0.5
89814	Rock	<0.5
89815	Rock	<0.5
89816	Rock	<0.5
89817	Rock	0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 1

VAN09003841.1

Project: Report Date:

Page:

Scotia September 06, 2009

1 of 1

www.acmelab.com

QUALITY CONTROL REPORT

	Method	WGHT	7TX	7TX	7TX	7TX	7TX	7TX	7TX	77X	7TX	7TX	77X	7TX	77X	7TX	7TX	7TX	77X	7TX	712
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	F
	Unit	kg	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.5	0.5	0.5	5	0.5	0.5	1	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5	10	0.01	0.01
Pulp Duplicates																					
89812	Rock		7.9	48.8	15.9	56	1.0	1.9	2	339	5.20	<5	<0.5	5.6	32	<0.5	<0.5	1.3	<10	0.22	<0.01
REP 89812	QC		4.5	47.1	14.7	51	0.9	<0.5	2	309	5.41	<5	<0.5	5.2	35	<0.5	<0.5	1.3	<10	0.26	<0.01
Reference Materials																					
STD SF-3T	Standard		310.2	7718	8542	10929	51.4	3434	174	4240	8.12	41	3.4	3.6	428	48.0	9.0	4.6	116	4.03	0.06
STD SF-3T	Standard		311.8	7775	8614	11007	52.4	3498	180	4233	8.23	41	3.5	3.9	433	48.0	8.9	4.6	119	4.06	0.06
STD SF-3T Expected			320	7723	9610	10672	52	3500	181	4320	8.33	40	4	4.7	440	47.5	11.1	4.8	143	4.1	0.06
BLK	Blank		<0.5	<0.5	<0.5	<5	<0.5	<0.5	<1	<5	<0.01	<5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<10	<0.01	<0.01
Prep Wash																					
G1	Prep Blank		0.8	5.4	50.0	88	<0.5	3.5	5	752	2.27	138	2.2	6.2	740	<0.5	<0.5	<0.5	47	2.44	0.08
G1	Prep Blank		0.6	3.5	26.6	63	<0.5	2.0	4	691	2.14	24	2.3	6.1	723	<0.5	<0.5	<0.5	42	2.43	0.08

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

l

-

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Project: Scotia September 06, 2009 Report Date:

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

												Page:		1 of 1	Pa	rt 2					
QUALITY CO	ONTROL	REP	OR	Γ												VA	N09	0038	341.	1	
	Method	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7TX	7 TX	7TX	7TX	7TX	77X	717
	Analyte	La	Cr	Mg	Ba	Ti	Al	Na	к	w	Zr	Ce	Sn	Y	Nb	Та	Be	Sc	Li	S	R
	Unit	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ррп
	MDL	0.5	1	0.01	5	0.001	0.01	0.01	0.01	0.5	0.5	5	0.5	0.5	0.5	0.5	5	1	0.5	0.05	0.
Pulp Duplicates																					
89812	Rock	36.7	7	0.36	805	0.131	3.63	2.12	1.68	1.9	0.9	80	4.9	9.3	6.1	<0.5	<5	1	2.8	1.35	23.0
REP 89812	QC	35.3	8	0.37	786	0.133	4.48	2.14	1.69	0.9	0.7	78	5.0	10.0	6.2	<0.5	<5	2	4.1	1.41	22.
Reference Materials																	-				
STD SF-3T	Standard	17.1	199	4.55	739	0.188	5.37	2.08	2.45	4.4	14.1	39	5.7	10.6	15.1	0.8	<5	7	20.5	3.72	86.
STD SF-3T	Standard	17.7	174	4.56	732	0.190	5.42	2.08	2.46	4.1	13.8	40	6.0	10.9	15.5	0.8	<5	7	20.7	3.75	88.
STD SF-3T Expected		17	207.4	4.67	508	0.19	5.43	2.06	2.47	4.3	14	38	5.8	11.5	15.1	0.9	2.4	7	19.1	3.5	90.8
BLK	Blank	<0.5	<1	<0.01	<5	<0.001	<0.01	<0.01	<0.01	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<5	<1	<0.5	<0.05	<0.
Prep Wash							-														
G1	Prep Blank	21.4	17	0.61	1132	0.232	6.46	2.74	3.10	<0.5	10.5	49	2.0	11.6	26.8	1.5	<5	4	36.5	<0.05	99.
G1	Prep Blank	19.0	12	0.61	1027	0.218	6.97	2.80	3.03	<0.5	12.2	42	1.1	11.7	28.3	1.7	<5	4	39.7	<0.05	104.4

This report supersedes all previous preliminary and final reports with this file number dated pror to the date on this certificate. Signature indicates final approval: preliminary reports are unsigned and should be used for reference only.

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Client: Project: Report Date:	GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada Scotia September 06, 2009
www.acmelab.com		
	Page:	1 of 1 Part 3
QUALITY CONTROL REPORT		VAN09003841.1

	Method	71X
	Analyte	Hf
	Unit	ppm
	MDL	0.5
Pulp Duplicates		
89812	Rock	<0.5
REP 89812	QC	<0.5
Reference Materials		
STD SF-3T	Standard	0.5
STD SF-3T	Standard	0.7
STD SF-3T Expected		0.6
BLK	Blank	<0.5
Prep Wash		
G1	Prep Blank	<0.5
G1	Prep Blank	0.6

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

VAN09003842.1

Submitted By: Paul D. Gray Receiving Lab: Canada-Vancouver Received: August 25, 2009 Report Date: September 14, 2009 1 of 2

CERTIFICATE OF ANALYSIS

Scotia

1 OF 1

26

Return

Return

CLIENT JOB INFORMATION

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Page:

Method	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
SS80	25	Dry at 60C sieve 100g to -80 mesh			VAN
Dry at 60C	25	Dry at 60C			VAN
1EX	25	4 Acid digestion ICP-MS analysis	0.25	Completed	VAN
RJSV	25	Saving all or part of Soil Reject			VAN

SAMPLE DISPOSAL

RTRN-PLP RTRN-RJT

Number of Samples:

Project:

Shipment ID:

P.O. Number

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

50992

50993

50994

50995

50996

50997

50998

50999

51000

Client:

1EX

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 1

1EX

Cđ

ppm

0.2 <0.1

0.1 <0.1

0.3

0.1

0.1 < 0.1

0.4

0.2 <0.1

0.2 <0.1

0.2

03 <0.1

0.2 <0.1

0.3

0.4

0.3

0.5 < 0.1

0.3

0.4

0.3 <0.1

0.3

0.3

0.6

0.5

0.3

0.2

0.2

L.N.R.

VAN09003842.1

1ËX

ppm

0.1

0.2

0.2

0.2

0.2

0.2

0.4

0.3

0.3

0.3

03

0.3

0.3

0.4 157

0.3

0.2

0.4

0.3

0.2

0.3

0.3

0.3

0.3 165

0.3

0.3

0.5 202

L.N.R.

Bi

1EX

ppm

152

95 1.03 0.056

188 1.54

129

86 1.48 0.057

105

178

198

191

133

137

121 2.35 0.342

123 2.26

31 1.78 0.011

158 4.09 0.089

143 2.72 0.167

136

164

204

173 3.96 0.153

168 3.56 0.27

204

L.N.R.

v Са

1

1EX

%

0.01

3.31 0.171

1.42

2.45 0.167

1.67 0.042

1.96 0.022

1.54

1.53 0.096

1.70 0.07

2.78 0.166

2.27

3.47 0.081

4.10 0.199

3.77 0.153

3.78 0.208

4.10 0.137

L.N.R.

1EX

Sb

ppm

0.1

<0.1

< 0.1

0.1

<0.1

0.1

0.2

< 0.1

0.2

0.1

0.1

0.1

0.1

0.1

0.3

0.1

0.2

L.N.R.

1EX

0.001

0.060

0.062

0.068

L.N.R

0.110

0.104

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Method

www.acmelab.com

1EX

13.3

11.9

15.7

28.5

25.7

26.8

18.4

13.7

9.8 1367

10.4

13.0 1811

21.3

21.6

22.1

14.9

13.6

23.6

1226

2138

2215

2437

1752

1410

2020

1EX

1EX

1EX

7.34

8.99

5.70

7.85

7.68

771

7.02

6.90

6.77

3 3.6 <0.1

1

3 3.6 <0.1

4 3.1 < 0.1

6 2.9 < 0.1

2 4.2 <0.1

1

1

3.0 <0.1

2.8 <0.1

2.4 <0.1

2.5 <0.1

1EX

Acme Analytical Laboratories (Vancouver) Ltd.

Project: Report Date:

1EX

Scotia September 14, 2009

1EX

Sr

1 0.1

ppm

526

121

133

147

150

162

114

146

100

110

130

166

150

155

117

225

151

169

182

429

206

196

185

190

185

13.1

12.3

10.9

13.7

11.9

12.2

14.6

10.7

8.5

2 of 2

1EX

	Page
CERTIFICATE OF ANALYSIS	

1EX

1EX

1EX

1EX

10.7

9.9

15.7

10.3

10.0

10.3

9.8

9.5

7.9

98 <0.1

92 <0.1

130 <0.1

186

177

191

126

102

109

<0.1

<0.1

<0.1

<0.1

0.1

0.2 32.1

1EX

5.0 29.5

3.5

2.8 11.4

2.8 20.4

2.7 26.3

3.1 33.6

4.2 18.8

3.5 30.9

2.7 12.6

22.4

	Analyt	e Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Si
	Un	it ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	MD	0.1	0.1	0.1	1	0.1	0.1	0.2	1	0.01	1	0.1	0.1	0.1	1
50975	Soil	2.9	22.2	17.2	79	<0.1	8.5	11.7	1042	4.79	3	2.0	<0.1	8.4	526
50976	Soil	9.7	8.9	9.8	81	<0.1	5.3	6.6	1478	4.70	3	2.3	<0.1	14.5	121
50977	Soil	6.0	10.1	7.5	63	<0.1	8.6	11.2	1926	8.51	5	2.5	<0.1	15.2	133
50978	Soil	7.3	11.6	8.3	63	<0.1	9.0	9.5	1505	6.01	4	2.2	<0.1	11.0	147
50979	Soil	4.7	5.4	10.4	65	<0.1	8.3	8.5	1673	4.19	1	1.8	<0.1	11.9	150
50980	Soil	3.1	20.1	16.6	85	0.2	10.7	8.4	1255	5.47	1	2.5	<0.1	10.6	162
50981	Soil	4.3	20.5	7.9	100	<0.1	9.9	11.7	2214	9.48	2	1.7	<0.1	9.8	114
50982	Soil	5.2	7.0	8.4	63	<0.1	6.6	10.3	2725	6.82	2	2.1	<0.1	12.4	146
50983	Soil	4.5	26.9	9.3	88	<0.1	8.5	10.2	2193	10.87	6	1.5	<0.1	8.1	100
50984	Soil	L.N.R.													
50985	Soil	4.2	25.3	8.8	87	0.1	9.0	7.3	1652	7.89	2	2.2	<0.1	11.4	110
50986	Soil	4.3	19.1	9.7	105	0.2	10.2	9.7	1679	7.27	3	1.8	<0.1	8.9	130
50987	Soil	3.0	19.7	11.5	86	<0.1	15.3	11.3	1400	5.40	3	2.0	<0.1	10.6	166
50988	Soil	5.0	23.8	11.1	133	<0.1	20.1	13.6	2164	7.18	3	2.7	<0.1	12.7	150
50989	Soil	2.6	22.6	12.3	145	0.3	13.6	9.9	1582	6.31	2	2.7	<0.1	10.8	155
50990	Soil	2.4	9.3	13.2	119	<0.1	1.0	0.9	1214	5.29	2	2.2	<0.1	15.7	117
50991	Soil	4.6	13.9	14.6	85	0.1	20.0	13.3	1555	5.22	2	2.7	<0.1	10.6	225

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Project: Scotia Report Date: Septer

Page:

September 14, 2009

2 of 2

CERTIFICATE OF ANALYSIS

VAN09003842.1

	Metho	1 1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX
	Analyt	e La	Cr	Mg	Ba	Ti	A	Na	к	w	Zr	Ce	Sn	Y	Nb	Ta	Be	Sc	Li	s	Rb
	Un	t ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
	MD	0.1	1	0.01	1	0.001	0.01	0.001	0.01	0.1	0.1	. 1	0.1	0.1	0.1	0.1	1	1	0.1	0.1	0.1
50975	Soil	35.3	21	1.46	811	0.729	7.79	2.716	1.38	0.5	7.2	79	4.2	27.2	22.8	0.8	2	12	7.2	<0.1	29.7
50976	Soil	76.3	15	1.40	283	0.691	5.61	2.374	0.69	0.8	5.0	159	6.3	33.6	30.8	1.5	3	9	8.4	<0.1	18.0
50977	Soil	83.5	24	2.06	162	1.302	5.84	2.512	0.44	0.8	3.3	177	7.6	32.4	31.1	1.4	_4	15	9.2	<0.1	11.9
50978	Soil	57.6	20	1.81	230	0.934	6.06	2.496	0.57	0.8	5.6	125	5.2	26.0	25.8	1.2	4	12	5.9	<0.1	15.3
50979	Soil	61.7	19	1.63	194	1.001	6.36	3.205	0.47	8.0	3.7	131	7.1	32.2	30.5	1.4	4	11	7.3	<0.1	14.2
50980	Soil	54.0	23	0.87	250	0.838	5.90	3.042	0.89	0.9	11.1	112	5.6	76.8	28.4	1.4	2	10	2.1	<0.1	16.0
50981	Soil	56.1	21	1.61	149	1.242	. 5.82	2.384	0.33	1.3	6.6	115	5.7	37.4	29.7	1.4	3	13	5.6	<0.1	10.3
50982	Soil	75.4	16	1.21	160	1.755	6.48	3.695	0.25	1.6	5.8	157	7.1	40.2	40.9	2.0	4	13	2.8	<0.1	4.2
50983	Soil	48.7	19	1.00	150	1.348	4.98	2.363	0.35	1.2	4.8	100	6.4	38.6	31.7	1.4	3	11	2.0	<0.1	9.6
50984	Soil	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.								
50985	Soil	70.5	23	0.87	209	0.994	5.22	2.332	0.37	1.0	5.8	146	6.5	42.0	30.4	1.4	3	8	1.8	<0.1	8.4
50986	Soil	49.3	24	1.30	282	0.929	5.42	2.266	0.80	8.0	6.4	100	5.1	33.4	26.9	1.2	3	12	4.4	<0.1	27.0
50987	Soil	56.4	40	1.65	310	0.820	5.77	2.370	1.03	0.9	9.1	114	5.8	57.9	31.4	1.4	3	13	2.5	<0.1	31.1
50988	Soil	71.3	44	1.56	281	1.237	5.61	2.243	1.10	1.1	13.9	146	5.6	82.1	36.2	1.5	4	14	4.5	<0.1	65.1
50989	Soil	57.3	32	1.21	262	0.806	5.21	2.157	0.97	0.8	11.0	116	5.5	77.5	31.2	1.4	2	12	2.8	<0.1	24.0
50990	Soil	76.7	4	0.33	232	0.419	5.97	3.559	1.16	0.5	5.2	160	9.3	142.9	49.5	2.5	4	2	0.9	<0.1	12.4
50991	Soil	57.4	49	1.51	314	1.080	6.37	2.805	1.21	1.8	20.3	121	7.0	93.3	38.6	1.9	3	15	2.4	<0.1	18.3
50992	Soil	73.2	39	1.24	246	0.959	5.42	2.398	0.99	1.1	12.3	147	6.2	95.7	36.5	1.6	4	12	2.5	<0.1	17.5
50993	Soil	58.4	36	1.09	336	0.950	5.07	1.967	0.80	0.8	12.7	114	4.7	7 3 .0	35.9	1.6	2	11	1.9	<0.1	28.5
50994	Soil	62.0	41	1.53	243	1.116	6.21	2.933	0.98	1.0	16.5	128	5.6	104.5	37.2	1.6	3	16	1.9	<0.1	16.6
50995	Soil	81.1	80	2.18	317	1.450	6.67	2.848	1.02	0.9	59.3	162	6.4	112.6	44.2	1.9	4	17	7.2	<0.1	48.5
50996	Soil	71.9	64	2.09	265	1.179	6.18	2.559	1.00	0. 8	21.0	146	5.8	107.0	35.3	1.7	4	18	5.9	<0.1	39.1
50997	Soil	71.2	64	2.20	283	1.137	6.55	2.628	1.07	0.7	19.2	143	5.7	103.6	34.8	1.8	4	17	6.9	<0.1	41.6
50998	Soil	73.0	54	1.72	241	1.196	5.75	2.588	0.95	1.1	17.0	147	6.1	100.8	39.8	1.9	4	17	3.5	<0.1	34.0
50999	Soil	64.5	41	1.80	197	1.276	6.27	2.739	0.76	0.9	17.7	130	5.6	87.3	33.0	1.5	3	16	2.8	0.1	14.4
51000	Soil	46.5	67	2.49	243	1.293	6.90	2.774	0.90	1.3	16.3	96	3.5	71.0	24.5	1.1	3	23	3.7	<0.1	19.0

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

Acme		bs
1020 Cordova St. East	Vancouver I	BC V6A 4

-.

-

L

Phone (604) 253-3158 Fax (604) 253-1716

Acme Analytical Laboratories (Vancouver) Ltd. A3 Canada

Client:

Project:

Page:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

Part 3

VAN09003842.1

Scotia Report Date: September 14, 2009

2 of 2

www.acmelab.com

CERTIFICATE OF ANALYSIS

	Method	1EX
	Analyte	н
	Unit	ppm
	MDL	0.1
50975	Soil	0.5
50976	Soil	0.2
50977	Soil	0.2
50978	Soil	0.2
50979	Soil	0.2
50980	Soil	0.6
50981	Soil	0.3
50982	Soil	0.3
50983	Soil	0.3
50984	Soil	L.N.R.
50985	Soil	0.3
50986	Soil	0.3
50987	Soil	0.4
50988	Soil	0.7
50989	Soil	0.6
50990	Soil	0.2
50991	Soil	1.0
50992	Soil	0.6
50993	Soit	0.6
50994	Soil	0.9
50995	Soil	1.8
50996	Soil	1.0
50997	Soil	0.9
50998	Soil	0.7
50999	Soil	0.9
51000	Soil	1.1

This report supersedes all previous preliminary and final reports with this file number dated pror to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

Client:

Project:

Page:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

VAN09003842.1

Scotia Report Date: September 14, 2009

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

1 of 1 Part 1

QUALITY CONTROL REPORT

	Method	157	157	167	167	167	157	167	157	167	167	167	157	4EV	157	157	1EV	157	157	157	151
	Δnalvte	Mo	C	Ph	70	40	Ni	Co	Mo	EA	Δe		A	Th	Sr	Cd	Sh	Bi			167
	Unit	non	nom	00m	000	maa	maa	ppm	maa	%	ppm	nom	00m	000	00	00	DDm	ppm	, maa	%	%
	MDL	0.1	0.1	0,1	1	0.1	0.1	0.2	1	0.01	1	0.1	0.1	0,1	1	0.1	0.1	0.1	1	0.01	0.001
Pulp Duplicates																					
50989	Soil	2.6	22.6	12.3	145	0.3	13.6	9.9	1582	6.31	2	2.7	<0.1	10.8	155	0.3	<0.1	0.3	123	2.26	0.110
REP 50989	QC	2.9	21.4	12.3	142	0.2	12.4	10.0	1487	6.23	1	2.8	<0.1	11.4	159	0.4	0.1	0.3	121	2.36	0.110
Reference Materials																					
STD OREAS24P	Standard	1.5	54.5	3.2	125	<0.1	154.6	48.6	1154	8.00	6	0.7	<0.1	2.7	397	<0.1	<0.1	<0.1	170	6.06	0.140
STD OREAS24P	Standard	1.5	54.3	2.9	115	<0.1	153.7	46.6	1130	7.64	4	0.7	<0.1	2.6	374	<0.1	<0.1	<0.1	166	5.94	0.126
STD OREAS24P Expected		1.5	52	2.9	118.9	0.06	141	44	1100	7.53	1.2	0.75		2.85	403	0.15	0.09		158	5.83	0.136
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.2	<1	<0.01	<1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only

i

١

Client:

GEO Minerals Inc. 1220 - 789 West Pender Street Vancouver BC V6C 1H2 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Acme Analytical Laboratories (Vancouver) Ltd.

Project: Scotia Report Date: Septer

September 14, 2009

www.acmeiab.com

												Page:		1 of 1	Pa	rt 2					
QUALITY CO	NTROL	REP	OR	T												VAI	N09	0038	342.	1	
	Method	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX W	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX	1EX
	Unit	ppm 0.1	ppm 1	mg % 0.01	ppm 1	0.001	% 0.01	Na %	~ % 0.01	ppm 0.1	ppm 0.1	ppm 1	ppm 01	r ppm 01	ppm 01	ppm 01	ppm 1	ppm 1	ppm 01	3 % 01	ppm 0.1
Pulp Duplicates			· · ·		· · ·					•				•			· · · ·	· · ·			
50989	Soil	57.3	32	1.21	262	0.806	5.21	2.157	0.97	0.8	11.0	116	5.5	77.5	31.2	1.4	2	12	2.8	<0.1	24.0
REP 50989	QC	58.4	31	1.19	248	0.857	5.15	2.172	0.99	0.8	11.1	118	5.2	81.1	32.0	1.5	3	12	2.9	<0.1	24.7
Reference Materials																					
STD OREAS24P	Standard	18.5	211	3.98	284	1.108	7.71	2.383	0.71	0.4	141.6	37	1.5	21.2	21.2	1.0	<1	18	8.1	<0.1	23.3
STD OREAS24P	Standard	18.3	207	3.95	285	1.104	7.25	2.223	0.69	0.4	138.7	34	1.7	20.9	21.0	1.0	1	18	10.2	<0.1	21.8
STD OREAS24P Expected		17.4	196	4.13	285	1.1	7.66	2.34	0.7	0.5	141	37.6	1.6	21.3	21	1.04		20	8.7		22.4
BLK	Blank	<0.1	<1	<0.01	<1	<0.001	<0.01	<0.001	<0.01	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1	<0.1	<0.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	Client:	GEO I 1220 - 78 Vancouv	Minerals Inc. 9 West Pender Street er BC V6C 1H2 Canada	
V ACME LABOS Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date;	Scotia Septemb	er 14, 2009	
www.acmelab.com				
	Page:	1 of 1	Part 3	
QUALITY CONTROL REPORT			VAN09	003842.1

QUALITY CONTROL REPORT

-

	Method	1E
	Analyte	ŀ
	Unit	ppi
	MDL	0.
Pulp Duplicates		
50989	Soil	0.
REP 50989	QC	0.
Reference Materials		
STD OREAS24P	Standard	3.
STD OREAS24P	Standard	3.
STD OREAS24P Expected		3.
BLK	Blank	<0.

ture indicates final approval; preliminary reports are unsigned and should be used for reference only This report us pretiminary and final reports with this file n or to the date on this certificate. Six

APPENDIX B

Γ

Γ

-

_

• • •

Sample	Easting	Northing	Number	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn
				PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
SC1	456628	5992654	89806	14.2	55.6	14.2	255	0.7	6.2	2	1517
SC2	456633	5992653	89807	27.8	32.3	16.2	96	1.1	0.9	9	13089
SC3	456638	5992645	89808	4.1	20.5	14.3	158	<0.5	0.6	3	1351
SC4	456642	5992645	89809	3.4	24.6	15.5	141	0.7	1.7	3	757
SC5	456645	5992644	89810	2.5	17.6	13.2	160	<0.5	0.8	3	912
SC6	456648	5992641	89811	1.6	24.3	9.3	196	<0.5	0.6	<1	1213
SC7	456652	5992645	89812	7.9	48.8	15.9	56	1	1.9	2	339
SC8	456654	5992645	89813	1.8	28.4	15.3	90	0.6	<0.5	1	675
SC9	456657	5992645	89814	8.5	89.1	13.7	213	0.8	0.9	9	450
SC10	456675	5992700	89815	7.8	20.7	31.6	49	<0.5	<0.5	<1	998
SC11	456677	5992700	89816	1.2	78.5	8.3	57	<0.5	<0.5	<1	990
SC12	456680	5992684	89817	4.8	46.7	32	11	<0.5	<0.5	<1	136

Scotia Project 2009 - Rock Sample Compiled Assay Results

Γ

r

-

_

Sample	Easting	Northing	Number	Fe	As	U	Th	Sr	Cd	Sb	Bi
				%	PPM	PPM	PPM	PPM	PPM	PPM	PPM
SC1	456628	5992654	89806	6.99	27	1.7	16.7	30	<0.5	<0.5	1.5
SC2	456633	5992653	89807	11.17	26	1.4	7.8	46	1	<0.5	2.1
SC3	456638	5992645	89808	6.33	8	1.8	10.6	67	<0.5	<0.5	1.5
SC4	456642	5992645	89809	4.85	<5	1	5.2	62	<0.5	<0.5	1.2
SC5	456645	5992644	89810	3.46	<5	0.7	4.7	60	<0.5	<0.5	<0.5
SC6	456648	5992641	89811	3.28	<5	0.7	8.9	102	<0.5	<0.5	0.5
SC7	456652	5992645	89812	5.2	<5	<0.5	5.6	32	<0.5	<0.5	1.3
SC8	456654	5992645	89813	3.39	<5	<0.5	5	94	<0.5	<0.5	0.8
SC9	456657	5992645	89814	7.44	<5	1.1	5.9	55	<0.5	<0.5	1.3
SC10	456675	5992700	89815	2.69	<5	0.7	9.6	45	<0.5	<0.5	<0.5
SC11	456677	5992700	89816	2.87	<5	2.5	9	20	<0.5	<0.5	<0.5
SC12	456680	5992684	89817	2.34	12	1.6	4.4	82	<0.5	<0.5	<0.5

Sample	Easting	Northing	Number	V	Са	Р	La	Cr	Mg	Ва	Ti
				PPM	%	%	PPM	PPM	%	PPM	%
SC1	456628	5992654	89806	<10	0.35	0.02	94	15	4.52	788	0.298
SC2	456633	5992653	89807	14	0.62	0.01	52	5	1.23	491	0.137
SC3	456638	5992645	89808	17	0.73	0.02	54.5	8	2.14	448	0.191
SC4	456642	5992645	89809	20	0.57	0.02	28.5	11	1.74	651	0.184
SC5	456645	5992644	89810	45	0.53	0.03	26.5	9	1.11	443	0.187
SC6	456648	5992641	89811	<10	0.66	0.01	46.6	8	0.81	318	0.172
SC7	456652	5992645	89812	<10	0.22	<0.01	36.7	7	0.36	805	0.131
SC8	456654	5992645	89813	<10	0.85	<0.01	32.7	11	0.52	784	0.112
SC9	456657	5992645	89814	10	0.54	0.02	34.5	8	1.45	533	0.174
SC10	456675	5992700	89815	<10	0.43	<0.01	82.2	11	0.2	407	0.097
SC11	456677	5992700	89816	<10	0.16	<0.01	66.6	12	0.32	238	0.088
SC12	456680	5992684	89817	<10	0.68	<0.01	24.6	8	0.06	133	0.06

Scotia Project 2009 - Rock Sample Compiled Assay Results

.

-

Sample	Easting	Northing	Number	Al	Na	K	W	Zr	Ce	Sn	Y
				%	%	%	PPM	PPM	PPM	PPM	PPM
SC1	456628	5992654	89806	6.82	1.5	3.49	<0.5	1	196	10.7	19.7
SC2	456633	5992653	89807	5.07	1.25	1.47	1.3	2	111	7.4	48.1
SC3	456638	5992645	89808	5.5	1.96	1.73	<0.5	1.1	126	7	18.5
SC4	456642	5992645	89809	5.04	1.62	2.08	0.8	3.1	66	5.4	9.3
SC5	456645	5992644	89810	5.4	3.14	1.6	<0.5	2	61	4.5	10.9
SC6	456648	5992641	89811	5.77	3.87	1.11	<0.5	1	106	5.5	37.5
SC7	456652	5992645	89812	3.63	2.12	1.68	1.9	0.9	80	4.9	9.3
SC8	456654	5992645	89813	6.08	3.44	1.07	0.8	0.8	72	4.6	20.4
SC9	456657	5992645	89814	5.21	2.77	1.76	0.7	0.7	79	6.1	9.2
SC10	456675	5992700	89815	4.27	3.6	0.59	<0.5	1.6	158	3.1	35.5
SC11	456677	5992700	89816	3.84	3.72	0.6	0.8	1.1	142	2.7	51.8
SC12	456680	5992684	89817	5.61	4.62	0.55	<0.5	11.1	53	1.3	8.3

Sample	Easting	Northing	Number	Nb	Та	Be	Sc	Li	S	Rb	Hf
				PPM	PPM	PPM	PPM	PPM	%	PPM	PPM
SC1	456628	5992654	89806	29	1.4	5	1	15.8	2.33	97.3	<0.5
SC2	456633	5992653	89807	10.8	<0.5	<5	2	7.3	6.34	29	<0.5
SC3	456638	5992645	89808	23.2	0.9	<5	3	10.7	2.5	35.2	<0.5
SC4	456642	5992645	89809	15.3	0.7	<5	4	6.1	2.05	45	<0.5
SC5	456645	5992644	89810	7	<0.5	<5	5	6.1	1.16	39.9	<0.5
SC6	456648	5992641	89811	12.5	0.6	<5	1	6.6	0.58	26.5	<0.5
SC7	456652	5992645	89812	6.1	<0.5	<5	1	2.8	1.35	23	<0.5
SC8	456654	5992645	89813	7.1	<0.5	<5	2	4.2	1.11	18.2	<0.5
SC9	456657	5992645	89814	9.3	<0.5	8	2	8.6	3.83	31.1	<0.5
SC10	456675	5992700	89815	15	0.8	<5	<1	2	0.55	8.6	<0.5
SC11	456677	5992700	89816	25.9	1.1	<5	<1	3.5	0.22	10.5	<0.5
SC12	456680	5992684	89817	5.1	<0.5	<5	<1	<0.5	0.27	6.2	0.5

Scotia Project 2009 - Rock Sample Compiled Assay Results

,

.

-

-

. ___

Station	Easting	Northing	Sample	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn
				PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
KM1_1	457339	5992426	50975	2.9	22.2	17.2	79	<0.1	8.5	11.7	1042
KM1_2	457303	5992435	50976	9.7	8.9	9.8	81	<0.1	5.3	6.6	1478
KM1_3	457249	5992444	50977	6	10.1	7.5	63	<0.1	8.6	11.2	1926
KM1_4	457272	5992456	50978	7.3	11.6	8.3	63	<0.1	9	9.5	1505
KM1_5	457227	5992456	50979	4.7	5.4	10.4	65	<0.1	8.3	8.5	1673
KM2_8	456776	5992345	50980	3.1	20.1	16.6	85	0.2	10.7	8.4	1255
KM1_7	457227	5992469	50981	4.3	20.5	7.9	100	<0.1	9.9	11.7	2214
KM1_8	457161	5992475	50982	5.2	7	8.4	63	<0.1	6.6	10.3	2725
KM1_9	457138	5992481	50983	4.5	26.9	9.3	88	<0.1	8.5	10.2	2193
KM1_11	457031	5992493	50985	4.2	25.3	8.8	87	0.1	9	7.3	1652
KM1_12	457060	5992502	50986	4.3	19.1	9.7	105	0.2	10.2	9.7	1679
KM1_13	457031	5992508	50987	3	19.7	11.5	86	<0.1	15.3	11.3	1400
KM1_14	457009	5992518	50988	5	23.8	11.1	133	<0.1	20.1	13.6	2164
KM1_15	456981	5992523	50989	2.6	22.6	12.3	145	0.3	13.6	9.9	1582
KM1_16	456951	5992526	50990	2.4	9.3	13.2	119	<0.1	1	0.9	1214
KM1_17	456923	5992527	50991	4.6	13.9	14.6	85	0.1	20	13.3	1555
KM1_18	456894	5992527	50992	5	29.5	10.7	98	<0.1	13.3	9.8	1367
KM1_19	456860	592529	50993	3.5	22.4	9.9	92	<0.1	11.9	10.4	1226
KM2_1	456952	5992358	50994	2.8	11.4	15.7	130	<0.1	15.7	13	1811
KM2_2	456930	5992357	50995	2.8	20.4	10.3	186	<0.1	28.5	21.3	2138
KM2_3	456905	5992352	50996	2.7	26.3	10	177	<0.1	25.7	21.6	2215
KM2_4	456876	5992359	50997	3.1	33.6	10.3	191	<0.1	26.8	22.1	2437
KM2_5	456852	5992339	50998	4.2	18.8	9.8	126	<0.1	18.4	14.9	1752
KM2_6	456827	5992344	50999	3.5	30.9	9.5	102	0.1	13.7	13.6	1410
KM2_7	456800	5992347	51000	2.7	12.6	7.9	109	0.2	32.1	23.6	2020

-

.

. .

7

-

--

.

r

=

Ξ

-

:=

Station	Easting	Northing	Sample	Bi	V	Ca	Р	La	Cr	Mg	Ва
				PPM	PPM	%	%	PPM	PPM	%	PPM
KM1_1	457339	5992426	50975	0.2	152	3.31	0.171	35.3	21	1.46	811
KM1_2	457303	5992435	50976	0.2	95	1.03	0.056	76.3	15	1.4	283
KM1_3	457249	5992444	50977	0.2	188	1.54	0.06	83.5	24	2.06	162
KM1_4	457272	5992456	50978	0.2	129	1.42	0.062	57.6	20	1.81	230
KM1_5	457227	5992456	50979	0.2	86	1.48	0.057	61.7	19	1.63	194
KM2_8	456776	5992345	50980	0.4	105	2.45	0.167	54	23	0.87	250
KM1_7	457227	5992469	50981	0.3	178	1.67	0.042	56.1	21	1.61	149
KM1_8	457161	5992475	50982	0.3	198	1.96	0.022	75.4	16	1.21	160
KM1_9	457138	5992481	50983	0.3	191	1.54	0.068	48.7	19	1	150
KM1_11	457031	5992493	50985	0.3	133	1.53	0.096	70.5	23	0.87	209
KM1_12	457060	5992502	50986	0.3	137	1.7	0.071	49.3	24	1.3	282
KM1_13	457031	5992508	50987	0.3	121	2.35	0.342	56.4	40	1.65	310
KM1_14	457009	5992518	50988	0.4	157	2.78	0.166	71.3	44	1.56	281
KM1_15	456981	5992523	50989	0.3	123	2.26	0.11	57.3	32	1.21	262
KM1_16	456951	5992526	50990	0.2	31	1.78	0.011	76.7	4	0.33	232
KM1_17	456923	5992527	50991	0.4	158	4.09	0.089	57.4	49	1.51	314
KM1_18	456894	5992527	50992	0.3	143	2.72	0.167	73.2	39	1.24	246
KM1_19	456860	592529	50993	0.2	136	2.27	0.104	58.4	36	1.09	336
KM2_1	456952	5992358	50994	0.3	164	3.47	0.081	62	41	1.53	243
KM2_2	456930	5992357	50995	0.3	204	4.1	0.199	81.1	80	2.18	317
KM2_3	456905	5992352	50996	0.3	173	3.96	0.153	71.9	64	2.09	265
KM2_4	456876	5992359	50997	0.3	165	3.77	0.153	71.2	64	2.2	283
KM2_5	456852	5992339	50998	0.3	168	3.56	0.277	73	54	1.72	241
KM2_6	456827	5992344	50999	0.3	204	3.78	0.208	64.5	41	1.8	197
KM2_7	456800	5992347	51000	0.5	202	4.1	0.137	46.5	67	2.49	243

L, . . .

F

÷

Station	Easting	Northing	Sample	Ti	AI	Na	К	w	Zr	Ce	Sn
	×		•	%	%	%	%	PPM	PPM	PPM	PPM
KM1_1	457339	5992426	50975	0.729	7.79	2.716	1.38	0.5	7.2	79	4.2
KM1_2	457303	5992435	50976	0.691	5.61	2.374	0.69	0.8	5	159	6.3
KM1_3	457249	5992444	50977	1.302	5.84	2.512	0.44	0.8	3.3	177	7.6
KM1_4	457272	5992456	50978	0.934	6.06	2.496	0.57	0.8	5.6	125	5.2
KM1_5	457227	5992456	50979	1.001	6.36	3.205	0.47	0.8	3.7	131	7.1
KM2_8	456776	5992345	50980	0.838	5.9	3.042	0.89	0.9	11.1	112	5.6
KM1_7	457227	5992469	50981	1.242	5.82	2.384	0.33	1.3	6.6	115	5.7
KM1_8	457161	5992475	50982	1.755	6.48	3.695	0.25	1.6	5.8	157	7.1
KM1_9	457138	5992481	50983	1.348	4.98	2.363	0.35	1.2	4.8	100	6.4
KM1_11	457031	5992493	50985	0.994	5.22	2.332	0.37	1	5.8	146	6.5
KM1_12	457060	5992502	50986	0.929	5.42	2.266	0.8	0.8	6.4	100	5.1
KM1_13	457031	5992508	50987	0.82	5.77	2.37	1.03	0.9	9.1	114	5.8
KM1_14	457009	5992518	50988	1.237	5.61	2.243	1.1	1.1	13.9	146	5.6
KM1_15	456981	5992523	50989	0.806	5.21	2.157	0.97	0.8	11	116	5.5
KM1_16	456951	5992526	50990	0.419	5.97	3.559	1.16	0.5	5.2	160	9.3
KM1_17	456923	5992527	50991	1.08	6.37	2.805	1.21	1.8	20.3	121	7
KM1_18	456894	5992527	50992	0.959	5.42	2.398	0.99	1.1	12.3	147	6.2
KM1_19	456860	592529	50993	0.95	5.07	1.967	0.8	0.8	12.7	114	4.7
KM2_1	456952	5992358	50994	1.116	6.21	2.933	0.98	1	16.5	128	5.6
KM2_2	456930	5992357	50995	1.45	6.67	2.848	1.02	0.9	59.3	162	6.4
KM2_3	456905	5992352	50996	1.179	6.18	2.559	1	0.8	21	146	5.8
KM2_4	456876	5992359	50997	1.137	6.55	2.628	1.07	0.7	19.2	143	5.7
KM2_5	456852	5992339	50998	1.196	5.75	2.588	0.95	1.1	17	147	6.1
KM2_6	456827	5992344	50999	1.276	6.27	2.739	0.76	0.9	17.7	130	5.6
KM2_7	456800	5992347	51000	1.293	6.9	2.774	0.9	1.3	16.3	96	3.5

. ----

Station	Easting	Northing	Sample	Y	Nb	Та	Ве	Sc	Li	S	Rb	Hf
				PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM
KM1_1	457339	5992426	50975	27.2	22.8	0.8	2	12	7.2	<0.1	29.7	0.5
KM1_2	457303	5992435	50976	33.6	30.8	1.5	3	9	8.4	<0.1	18	0.2
KM1_3	457249	5992444	50977	32.4	31.1	1.4	4	15	9.2	<0.1	11.9	0.2
KM1_4	457272	5992456	50978	26	25.8	1.2	4	12	5.9	<0.1	15.3	0.2
KM1_5	457227	5992456	50979	32.2	30.5	1.4	4	11	7.3	<0.1	14.2	0.2
KM2_8	456776	5992345	50980	76.8	28.4	1.4	2	10	2.1	<0.1	16	0.6
KM1_7	457227	5992469	50981	37.4	29.7	1.4	3	13	5.6	<0.1	10.3	0.3
KM1_8	457161	5992475	50982	40.2	40.9	2	4	13	2.8	<0.1	4.2	0.3
KM1_9	457138	5992481	50983	38.6	31.7	1.4	3	11	2	<0.1	9.6	0.3
KM1_11	457031	5992493	50985	42	30.4	1.4	3	8	1.8	<0.1	8.4	0.3
KM1_12	457060	5992502	50986	33.4	26.9	1.2	3	12	4.4	<0.1	27	0.3
KM1_13	457031	5992508	50987	57.9	31.4	1.4	3	13	2.5	<0.1	31.1	0.4
KM1_14	457009	5992518	50988	82.1	36.2	1.5	4	14	4.5	<0.1	65.1	0.7
KM1_15	456981	5992523	50989	77.5	31.2	1.4	2	12	2.8	<0.1	24	0.6
KM1_16	456951	5992526	50990	142.9	49.5	2.5	4	2	0.9	<0.1	12.4	0.2
KM1_17	456923	5992527	50991	93.3	38.6	1.9	3	15	2.4	<0.1	18.3	1
KM1_18	456894	5992527	50992	95.7	36.5	1.6	4	12	2.5	<0.1	17.5	0.6
KM1_19	456860	592529	50993	73	35.9	1.6	2	11	1.9	<0.1	28.5	0.6
KM2_1	456952	5992358	50994	104.5	37.2	1.6	3	16	1.9	<0.1	16.6	0.9
KM2_2	456930	5992357	50995	112.6	44.2	1.9	4	17	7.2	<0.1	48.5	1.8
KM2_3	456905	5992352	50996	107	35.3	1.7	4	18	5.9	<0.1	39.1	1
KM2_4	456876	5992359	50997	103.6	34.8	1.8	4	17	6.9	<0.1	41.6	0.9
KM2_5	456852	5992339	50998	100.8	39.8	1.9	4	17	3.5	<0.1	34	0.7
KM2_6	456827	5992344	50999	87.3	33	1.5	3	16	2.8	0.1	14.4	0.9
KM2_7	456800	5992347	51000	71	24.5	1.1	3	23	3.7	<0.1	19	1.1

r

r

ء ہ

.

• ---

-