BC Geological Survey Assessment Report 31250

Romios Gold Resources Inc

2009 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE DIRK PROPERTY

Located in the Newmont Lake Area Liard Mining District NTS 104B 14E BCGS 104B 085 56°51' North Latitude 131°31' West Longitude

Prepared for: ROMIOS GOLD RESOURCES 25 Adelaide St East, Suite 1010 Toronto, Ontario M5C 3A1

> Prepared by: Paola Chadwick Scott Close

September 30, 2009

SOW Numbers: 435529

SUMMARY

The Dirk Property consists of 3 contiguous map-selection claims covering 1202.68 hectares in northwestern British Columbia, approximately 100km south-southeast of Telegraph Creek within the Liard Mining District. Access to the property is from a seasonal base at Kilometer 2 of the Eskay mine road and from the Bob Quinn Airstrip on Highway 37, approximately 45 kilometers to the east. The claims are wholly owned by Romios Gold Resources Inc.

Work was first completed on the property by Newmont Mining Corporation of Canada in 1972, on claims staked to cover copper mineralization discovered in 1971. Over the 1972 field season, Newmont Mining completed 1:9600 scale mapping and geochemical rock sampling and 3 drillholes of "A" size core were drilled on the property. Airborne magnetics were flown over the full extent of the property, and 3 ground magnetic surveys were run over prospective zones within the claims.

The Dirk claims cover a nunatuk of rocky outcrops situated between sizeable glaciers and permanent snowfields. Approximately 1.5 kilometers of glacier-covered ground separate the Dirk claims from Romios' large Newmont Lake property due east of the Dirk claims.

Over the 2009 season, mapping, prospecting and geochemical rock sampling were completed over the Dirk and Telena showings, located 1.5 kilometers apart across a small snowfield. In total, 32 grab and chip samples of bornite and chalcopyrite bearing copper-gold mineralization were collected.

Table of Contents

1.0 INTRODUCTION	1
2.0 LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0 CLAIM STATUS	4
4.0 HISTORICAL WORK	6
5.0 GEOLOGY AND MINERALIZATION	6
5.1 REGIONAL GEOLOGY	6
5.2 PROPERTY GEOLOGY	7
6.0 2009 EXPLORATION PROGRAM	12
6.1 2009 GEOCHEMICAL ROCK SAMPLING	12
6.2 2009 GEOLOGICAL MAPPING	
7.0 CONCLUSIONS AND RECOMMENDATIONS	27
8.0 EXPENDITURES	
9.0 BILBLIOGRAPHY	29

LIST OF FIGURES

- Figure 1 Location Map of the Dirk Property
- Figure 2 Tenure Map Showing Claim Location with Tenure Number
- Figure 3 Location Map of Showing with 2009 Geochemical Rock Sample Locations
- Figure 4A Dirk Regional Geology
- Figure 4B Geology of the Dirk Claims
- Figure 5 2009 Rock Sampling Sample Location Dirk Showing
- Figure 6 2009 Rock Sampling Copper Geochemistry Dirk Showing
- Figure 7 2009 Rock Sampling Gold Geochemistry Dirk Showing
- Figure 8 2009 Rock Sampling Silver Geochemistry Dirk Showing
- Figure 9 2009 Rock Sampling Sample Location– Telena Showing
- Figure 10 2009 Rock Sampling Copper Geochemistry Telena Showing
- Figure 11 2009 Rock Sampling Gold Geochemistry Telena Showing
- Figure 12 2009 Rock Sampling Silver Geochemistry Telena Showing

LIST OF TABLES

- Table 1Claim Status and Tenure
- Table 22009 Geochemical Rock Sample Assay Results
- Table 32009 Dirk Property Expenditures

LIST OF APPENDICES

- Appendix A Geochemical Rock Sample Assay Results
- Appendix B Certificates of Assay

1.0 INTRODUCTION

The Dirk claims held by Romios Gold Resources are situated in Northwestern British Columbia, between Barrick's past producing Eskay Creek Mine to the southeast and Novagold/Teck's proposed Galore Creek Mine to the northwest. This report describes the work completed by Romios on the Dirk claims over the 2009 summer exploration field season.

The Dirk claims consist of 3 wholly owned, contiguous claim blocks totalling 1202.68ha held by Romios Gold Resources through April 1st, 2011.

Over the 2009 season, Romios completed the following exploration efforts on the property:

- 1:5000 scale mapping over the main mineralized zones
- Geochemical rock sampling, totalling 32 grab and chip samples over the Dirk and Telena showings

All work was completed out of the seasonal McLymont camp, located on McLymont Creek within the Newmont Lake claim block held by Romios Gold Resources, and out of the all-season Espaw camp - part of the Galore Creek operations - located on Sphaler Creek within Novagold's Galore Creek claim block.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Dirk property is located in north-western British Columbia (Figure 1), approximately 100 km south-southeast of Telegraph Creek, centered on latitude 56°51'00" and longitude 131°31'00" in NTS map sheet number 104B085.

The property is about 46 kilometres west-southwest of the Bob Quinn airstrip, which is located along the west side of highway 37(Figure 2). Access to the property - primarily to McLymont camp - is via helicopter from the Bob Quinn airstrip. Bob Quinn is about 5 hours drive north of Terrace and about 6 hours north of Smithers, BC. The Forrest Kerr airstrip at the northern end of the Newmont Lake graben is unmaintained and is in unknown condition.

A road to this property is possible from the Stewart-Cassiar highway along a route following More creek to the Forrest Kerr drainage – a distance of approximately 60 kilometers.

Topography on the property is rugged, with elevations on the claims ranging from 2060m at the peaks in the southwest of the property to 1390m at the edge of the glacier. Vegetation is very sparse, with lichens and low lying heather present on lower slopes in the north of the property. Rocky outcrops, talus cover and permanent snow and ice cover the majority of the property.

The Dirk claims can be worked from late June through until October, with best outcrop exposure occurring in mid to late August.

Figure 1: Location Map of the Dirk Property

3.0 CLAIM STATUS

The Dirk claim block consists of 3 contiguous claim blocks totalling 1202.68 ha located approximately 1.5km due west of the Newmont Lake property, a large claim block of wholly owned and optioned properties held by Romios Gold Resources.

Table 1: Claim Status and Tenure

Tenure			Tenure	Мар		Good To		
Number	Claim	Owner	Туре	Number	Issue Date	Date	Status	Area (ha)
510300	DIRK	146096 (100%)	Mineral	104B	2005/apr/06	2011/apr/01	GOOD	424.356
510301	DIRK	146096 (100%)	Mineral	104B	2005/apr/06	2011/apr/01	GOOD	336.043
510302	DIRK	146096 (100%)	Mineral	104B	2005/apr/06	2011/apr/01	GOOD	442.282
							TOTAL	1202.681

Figure 2: Tenure Map Showing Claim Location with Tenure Number

4.0 HISTORICAL WORK

The Dirk claims were first staked by Newmont Mining Corporation in 1972 to cover copper mineralization discovered in 1971. Sole exploration efforts on the property were completed in 1972 and consisted of 1:9600 scale mapping over the entire Dirk claims, airborne and ground geophysics as well as 3 "A" size drill core holes over the main Dirk showing. Airborne Magnetics was flown in approximately 800" (243.8m) spaced lines oriented north-south. Ground Magnetics were completed over magnetic anomalies seen in the airborne magnetic results. The Dirk and Ridge grids were completed over known areas of outcropping mineralization; the Icecap grid was completed over a permanent snowfield northeast of the Dirk Grid where a small, clearly defined magnetic high was seen in airborne results.

Coarse geophysical maps are given in the 1972 assessment report, yet no assay results from surface or drillcore sampling are included in the report. Drillcore was described as being stored at their base camp at the Forrest Kerr airstrip, yet efforts to locate the core were unsuccessful; due to the short length of the drillholes and the small size of the drillcore, the amount of core would be limited to just a couple of boxes which may have been flown out by fixed wing aircraft. Drillcore from the Ken zone drilled the same year was also not located.

5.0 GEOLOGY AND MINERALIZATION

5.1 REGIONAL GEOLOGY

The regional setting of the Romios claim group is provided by Bulletin 104 (Logan et al., 2000), which describes mostly Stikine Terrain rocks (Stikinia) at the boundary between the Intermontane Belt and the Coast Belt (Figure 4a). Stikinia is the largest and westernmost allochthonous terrain of the Intermontane Superterrane. It has a unique pre-Jurassic geological history, paleontological and paleomagnetic signatures.

It is unclear if Stikinia originated far from the margin of ancestral North America (Gabrielse and Yorath, 1991) and later amalgamated with the Cache Creek, Quesnel and Slide Mountain terranes prior to accretion to the North American craton. Alternatively, Stikinia may have originated adjacent to the ancestral North America margin (McClelland, 1992; Mihalynuk et al., 1994). In either case there is no time-stratigraphic or lithologic continuity beyond the boundaries of the Stikine Terrane.

Stikinia near the Romios claims consists of well-stratified middle Paleozoic to Mesozoic sedimentary rocks, volcanic and comagmatic plutonic rocks probably formed in an island arc setting. Lithologically the Stikine Terrane is divided into the Paleozoic Stikine assemblage, the Late Triassic Stuhini Group and the Early Jurassic Hazelton Group. These time and lithostratigraphic units are overlain by Middle Jurassic to early Tertiary successor-basin sediments (Bowser Lake and Sustut Groups), late Cretaceous to Tertiary continental volcanic rocks (Sloko Group) and Late Tertiary to Recent bimodal shield volcanism (Edziza and Spectrum ranges) (Gabrielse and Yorath, 1991).

The predominately calcalkaline Jurassic to Paleocene aged Coast Plutonic Complex intrudes the western boundary of the Stikine Terrane. Cooling ages and uplift history are complex varying from mid-Cretaceous and older on the west side of the belt and mainly Late Cretaceous and Tertiary on the east side. The Romios claim group is on the east of the complex where voluminous postorogenic Tertiary bodies (Eocene Sloko Group continental volcanic rocks) obscure the western margin of Stikinia. These rocks are known from centres north and northwest of the Romios claim group (Logan et al 2000).

Late Triassic to Early Jurassic intrusive rocks of the Copper Mountain Plutonic Suite (Woodsworth et al., 1991) characteristically comprises small alkaline bodies, varying from monzodiorite to monzonite to syenite. The intrusions are lithologically complex with multiple intrusive phases. They are metalogenically important, being related to both copper and gold mineralization in both Stikinia and Quesnellia.

U-Pb ages are similar (circa 200 to 210 Ma) for intrusions associated with porphyry Cu-Au deposits in both Stikinia and Quesnellia terranes. Multiple alkaline intrusions and associated ultramafic phases are also present at Galore Creek (Barr, 1966 cited in Yarrow 1991; Allen et al., 1976; Enns et al., 1995). U-Pb dates of 205.1 ±2.3 (zircon) and 200.1±2.2 (titanite) for the potassium feldspar megacrystic syenite porphyry at Galore Creek and a U-Pb date of 210+/-1(zircon, titanite) for a pseudoleucite-orthoclase syenite (Mortensen et al., 1995) brackets the Cu-Au mineralization formation.

5.2 PROPERTY GEOLOGY

The Dirk claims are underlain by faulted slivers of early Permian carbonate, late Carboniferous conglomerate and Devonian to Early Carboniferous volcanic rocks.

The limestone of early Permian age structurally overlies older rocks consisting mainly of quartzite and phyllitic quartzite. Volcaniclastic rocks, tuffs and shales are also found locally within this older sequence of rocks.

The quartzite is a well indurated, brownish weathering rock which has undergone some degree of recrystallization and metamorphism. It varies in composition from an orthoquartzite to a lithic quartzite containing a significant proportion of other sedimentary rock fragments.

The Permian limestone is locally separated into two units by intercalations of tuff, argillite, and chert. The lower limestone unit is a grey, thinly bedded calcarenite with abundant crinoid fragments. Corals, brachiopods and bryozoa are also part of the faunal assemblage found within the limestone. Bands of shaley argillite are common within this limestone unit which is normally less than 100 feet thick. The upper Permian limestone unit is well developed elsewhere in the Stikine area and attains a maximum observed thickness of 1800 feet. This upper limestone unit is a massive gray or dark grey calcarenite. Crinoids, corals, brachiopods and bryozoa also comprise the major part of the faunal assemblage in the upper limestone unit. In certain areas - such as on the Dirk mineral occurrence - the limestone has been completely recrystallized and only sparse fossil remains are found.

The Permian limestone is either unconformably overlapped by or faulted against sediments of late Paleozoic or early Mesozoic age. The overlying rocks include a Devonian to Early Carboniferous volcanic sequence noted locally to contain pillowed andesite flows and a Late Carboniferous, well indurated, massive conglomeratic sequence composed of mainly volcanic peddles with a matrix of volcaniclastic cement. Pebbles in the conglomerate are mainly andesitic in composition, are highly variable in size, and locally contains blocks of crinoidal limestone. The conglomerates are overlain by, interbedded with or faulted against fine sediments, shales, cherts, and argillites. In the southwest of the area conglomerates exposed as an arête are overlain by thinly bedded sediments.

Figure 3: Location Map of Showing with 2009 Geochemical Rock Sample Locations

Figure 4A: Dirk Regional Geology (adapted from BCGS, 2005)

Figure 4B: Geology of the Dirk Claims (from Costin, 1973)

6.0 2009 EXPLORATION PROGRAM

Over the 2009 Season, Romios completed exploration on the Dirk Property as part of a larger exploration program on the Newmont Lake and Trek properties. Work was completed out of McLymont Camp on the Newmont Lake properties to the east and out of Espaw camp on Novagold's Galore Creek claims to the north. Exploration works consists of geological mapping and geochemical rock sampling over the Dirk and Telena showings. In total, 32 rock samples were taken from bornite and chalcopyrite bearing copper-gold mineralization on the claims.

6.1 2009 GEOCHEMICAL ROCK SAMPLING

Below is a tabulated list of samples taken on the property; all locations are given in UTM NAD 83 Zone 9 coordinates.

Assay							
Number	Area	Easting	Northing	Sample Type	Cu (%)	Au (g/t)	Ag (g/t)
G 0806101	Dirk	376236	6305090	Grab	1.92	0.04	22
G 0806102	Dirk	376251	6305090	Grab	0.07	0.01	1.1
G 0806103	Dirk	376431	6305043	1 meter chip	1.54	0.68	18.3
G 0806104	Dirk	376431	6305042	1 meter chip	4.53	1.19	54
G 0806105	Dirk	376431	6305041	1 meter chip	4.02	0.25	31.3
G 0806106	Dirk	376431	6305040	1 meter chip	3.14	0.21	22.4
G 0806107	Dirk	376431	6305039	1 meter chip	0.04	0.01	0.8
G 0806108	Dirk	376431	6305038	1 meter chip	4.26	0.98	40.4
G 0806109	Dirk	376431	6305037	1 meter chip	3.87	0.23	9.4
G 0806110	Dirk	376431	6305036	1 meter chip	1.86	1.61	26.6
G 0806111	Dirk	376317	6305245	Grab	2.38	2.06	26.3
G 0806112	Dirk	376588	6304824	3 Meter Chip	6.21	0.58	44.1
G 0806113	Dirk	376605	6304808	Grab	3.08	1.40	5.6
G 0806114	Dirk	376586	6304778	Grab	0.09	0.03	0.9
G 0806115	Telena	376502	6304841	Grab	1.08	1.66	27.9
H 138203	Telena	375715	6303706	1 meter chip	0.01	0.02	0.3
H 138204	Telena	375716	6303705	1 meter chip	3.55	1.39	16.2
H 138205	Telena	375717	6303704	1 meter chip	1.01	0.43	4.8
H 138206	Telena	375718	6303703	1 meter chip	0.92	0.09	0.7
H 138207	Telena	375719	6303702	1 meter chip	5.69	2.20	20.7
H 138208	Telena	375720	6303701	1 meter chip	0.98	0.32	1.7
H 138209	Telena	375721	6303700	1 meter chip	0.66	0.35	2.2

H 138210	Telena	375722	6303699	1 meter chip	1.16	0.24	3.6
H 138211	Telena	375636	6303711	2 meter chip	0.01	0.02	-1
H 138212	Telena	375633	6303708	2 meter chip	0.07	0.06	1
H 138213	Telena	375630	6303705	2 meter chip	0.02	0.01	0.7
H 138214	Telena	375627	6303702	2 meter chip	0.07	0.05	1
H 138215	Telena	375624	6303699	2 meter chip	0.03	0.05	0.6
H 138216	Telena	375621	6303696	2 meter chip	0.13	0.14	2
H 138217	Telena	375618	6303693	2 meter chip	0.28	0.79	3.5
H 138218	Telena	375615	6303690	2 meter chip	0.24	0.32	6

The following maps show assay results for Copper, Gold and Silver for all geochemical rock sampling completed over the 2009 season on the Dirk Property.

Figure 5: 2009 Rock Sampling Sample Location – Dirk Showing

Figure 6: 2009 Rock Sampling Copper Geochemistry, Dirk Showing

Figure 7: 2009 Rock Sampling Gold Geochemistry, Dirk Showing

Figure 8: 2009 Rock Sampling Silver Geochemistry – Dirk Showing

Figure 9: 2009 Rock Sampling Sample Location, Telena Showing

Figure 10: 2009 Rock Sampling Copper Geochemistry, Telena Showing

Figure 11: 2009 Rock Sampling Gold Geochemistry, Telena Showing

Figure 12: 2009 Rock Sampling Silver Geochemistry, Telena Showing

6.2 2009 GEOLOGICAL MAPPING

Mapping over the 2009 season focussed on evaluating styles of mineralization, alteration distribution and assemblages, and possible petrogenesis of mineralization.

A suite of potassic, hypabyssal intrusions spatially associated with – and likely directly linked to – copper-gold mineralization was identified on the Dirk property. Intruding the Permian to Carboniferous rocks, the swarm of crosscutting syenitic dykes are presumed to be Late Triassic in age due to textural and compositional similarities to Late Triassic intrusive phases seen on the nearby Newmont Lake property and regionally identified intrusive suites associated with Galore Creek style mineralization. The dykes are commonly potassium feldspar porphyritic to megacrystic, biotite phyric or pseudoleucite bearing pink intrusions usually less than 5 meters in width. Megacrystic and porphyritic kspar dykes are often trachytic, and are seen to be cut by biotite-phyric dykes locally. The dyke swarm trends northeast, and is traceable over approximately 3 kilometers along strike and approximately 1 kilometer in width where snow and ice cover allow outcrop to be exposed.

Dirk Property: Intrusive Breccia Plates 1 and 2

Angular to subrounded irregular clasts of equigranular, trachyitic, porphyritic and megacrystic syenitic hypabyssal intrusive units in a finer-grained intrusive groundmass.

Lesser volcanic clasts are consistently seen extensively altered to calcpotassic assemblages: biotite - diopside replacement of mafic minerals (Lower right corner of Plate 2)

Mineralization at the Dirk claims occurs as high grade, very low pyrite, bornite and chalcopyrite mineralization associated with a northeast trending swarm of potassium feldspar megacrystic to porphyritic and often trachytic syenite dykes, crowded pseudo-leucite bearing dykes and biotite phyric pink syenitic dykes.

Above the main Dirk showing sits a large intrusive breccias which cuts –and contains abundant fragments of – the kspar porphyry and megacrystic dykes, and is cut by the later biotite bearing syenite dykes. Alteration within and haloing the breccias is intense, and a pervasive "baked" texture is dominant across the entire area, likely indicating widespread, high temperature clay-silica alteration. The breccia is strongly hematized, and contains angular to subrounded clasts dominantly of intrusive origin up to 1m in diameter. Clasts of kspar megacrystic, trachylic and porphyritic dykes dominate, and are usually larger in size, but smaller pink and grey aphanitic clasts are present. Possible volcanic clasts may be represented by intensely chlorite-actinolite-mica altered dark green clasts, yet texture destruction and replacement of primary minerals is complete, making original mineral composition and texture indeterminable. Alteration

rinds on the intrusive clasts are common. The breccia is dominantly clast-supported, and the matrix is intrusive in origin, dark grey and finely feldspar phyric. Within 10-15m of the outer extents of the breccia's surface expression, the matrix is replaced by a fine-grained epidote +/- chlorite cement with minor mica content. Nearing the center of the breccias, groundmass percentage increases, clast size decreases, and approximately 5% euhedral biotite in seen in the intrusive matrix.

Plate 3: Late biotite-phyric syenite dyke crosscuts intrusive breccia Plate 4: Early, trachytic, megacrystic syenite dyke - megacrysts of potassium-feldspars to 3cm.

The main Dirk showing – that which was drilled in 1972 by Newmont – consists of bornite, covellite and trace chalcopyrite mineralization in irregular, discontinuous, resistively weathered veins cutting large, silicified limestone rafts within the syenite intrusive complex east of the intrusive breccia and as less obvious, fine veinlets of bornite within dusty white altered limestone. A skarn assemblage of euhedral epidote-garnet replacement within the limestone also contains copper mineralization seen as disseminated to coarse and clotty chalcopyrite +/- bornite. At the contact with the limestone rafts, advanced argillic alteration can be seen as feldspars become white and dusty and vuggy textures indicate strong leaching of primary minerals.

Plate 5: Dirk showing - bornite-malachite copper mineralization in altered limestone raft Plate 6: Argillically altered megacrystic syenite adjacent to mineralized limestone rafts

A second mineralized zone is seen to the southwest of the main Dirk showing, approximately 1.5 km along strike across a small snowfield. The "Telena" showing again is seen within a within a syenite intrusive suite of cross-cutting dykes, with small zones and float trains of intrusive breccias noted. Limestone rafts are intensely altered and mineralized within the zone, and copper mineralization in country rocks is seen as fine, stockworking veinlets of bornite and fine chalcopyrite disseminations within the kspar megacrystic dykes. Associated alteration is seen as massive to domainal kspar and epidote veinlets associated with bornite veinlets. In limestone rafts, locally thick hematite and manganese oxide coatings on weathered surface is associated with pods of clotty and veining chalcopyrite with silica and carbonate alteration showing replacement and infill textures. The Telena showing shows greater size and depth potential than the main Dirk showing as mineralization is seen within the syenite intrusive units and is not limited to the extent of the limestone rafts.

Plate 7: Telena Showing potassic alteration, malachite staining and fine bornite stringers

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Dirk claims show strong evidence for a large mineralizing intrusive system. Dykes swarms and intrusive breccias outcrop over an approximately 3km by 1km area, alteration is strong and widespread within the immediate and haloing areas of the intrusive activity, and mineralization associated with the intrusive is consistently high grade in both copper and gold. Follow-up work on the claims is warranted, and future work programs should include the following exploration efforts:

- Property wide detailed geological mapping and geochemical rock sampling
- Drilling of the Telena and Dirk showing, along with any new mineralized zones examined during early season mapping and sampling
- Flying of Airborne Geophysical Survey over the extent of the claims, including both Electromagnetics and Radiometrics
- Follow-up ground geophysical work if/where warranted by airborne geophysical survey results

8.0 EXPENDITURES

Below is a tabulated summary of 2009 exploration expenditures by Romios Gold Resources on the Dirk Claims.

2009 DIRK EXPENDITURES											
GEOLOGICAL											
Personnel		Rate	Days	Total							
Paola Chadwick	Geologist	\$525/day	4	\$2,100.00							
Scott Close	Geologist	\$525/day	4	\$2,100.00							
Duncan Luck	Sampler	\$325/day	1	\$325.00							
Devlin Luck	Sampler	\$325/day	1	\$325.00							
CAMP COSTS											
Camp	Cost Allocation	Rate	Days	Total							
Sphaler Camp	Food and Fuel	\$50/day	10 man days	\$500.00							
ASSAY COSTS											
Company	Cost Allocation	Rate	Amount	Total							
ALS Chemex	Rock Geochemistry	\$37/rock	32 rocks	\$1,184.00							
HELICOPTER											
Company	Cost Allocation	Rate	Hours	Total							
Quantum Helicopters	0.4/day over 5 days	\$1500/hour	2 Hrs Total	\$3,000.00							
REPORT WRITING											
Company	Personnel	Rate	Days	Total							
Romios Gold Resources	Paola Chadwick	\$525/day	3	\$1,575.00							
TOTAL COSTS				\$11,109.00							

Table 3: 200	9 Dirk Pro	perty Ex	penditures
--------------	------------	----------	------------

9.0 BILBLIOGRAPHY

Costin, C.P., 1973. Report on the Geological, Geophysical and Physical Work, Dirk Claim Group for Newmont Mining Corporation of Canada Limited. Ministry of Energy and Mines Assessment Report # 04150.

Gabrielse, H. and Yorath, C.J., 1992. Geology of the Cordilleran Orogen in Canada. Geological Survey of Canada, Geology of Canada DNAG No. 4, 843pp.

Logan, J.M., J.R. Drobe, and W.C. McLelland, 2000: Geology of the Forrest Kerr – Mess Creek Area, North Western British Columbia, Bulletin 104: BC Ministry of Energy and Mines, October,

McClelland, W.C., 1992. Permian and older rocks of the southwestern Iskut River map area, northwestern British Columbia. In: Current Research, Part A: Geological Survey of Canada, Paper 92-1A, pp. 303-307.

Mihalynuk, M.G., Nelson, J., and Diakow, L.J., 1994, Cache Creek terrane entrapment: oroclinal paradox within the Canadian Cordillera: Tectonics, v. 13, p. 575–595.

Mortensen, J.K., Ghosh, D.K., and Ferri, F. (1995). U-Pb Geochronology of Intrusive Rocks Associated with Cu-Au Porphyry Deposits in the Canadian Cordillera; in Porphyry, Deposits of the Northwestern Cordillera of North America, ed. T. Schroeter, Canadian Institute of Mining and Metallurgy, Special Volume 46, pp 142-160.

Woodsworth, G.J., Anderson, R.G., and Armstrong, R.L., 1992, Plutonic regimes, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran Orogen, Canada (The Geology of North America, v. G–2): Boulder, Col., Geological Society of America, p. 493–631.

Yarrow, E.W., 1991, Report on Airborne, Induced Polarization and Diamond Drill Surveys, Galore Creek Group I. II, III Claims Laird Mining Division, British Columbia, for Kennecott Canada Inc., (British Columbia Geological Branch Assessment Report 21,900)

STATEMENT OF QUALIFICATION

I, Garth David Kirkham, do hereby certify that:

- I am a consulting geoscientist with an office at 6331 Palace Place, Burnaby, British Columbia, V5E-1Z6.
- This Statement of Qualifications applies to the "2009 Assessment Filing for the Dirk Property".
- 3) I am a graduate of the University of Alberta in 1983 with a B.Sc. in Geophysics.
- 4) I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of Alberta, the Association of Professional Engineers and Geoscientists of BC, and the Northwest Territories and Nunavut Association of Engineers and Geoscientists. I have continuously practiced my profession performing field studies, resource and reserve estimates, and computer modelling and project management since 1988, both as an employee of a geostatistical modelling and mine planning software and consulting company and as an independent consultant. I am a member of the Canadian Institute of Mining (CIM) and Geological Association of Canada (GAC).
- 5) This report is based on exploration work on the Dirk Property performed in the summer of 2009. I was involved in the planning and execution of this program as a Director of Romios Gold Resources.
- 6) I hereby authorize Romios to use this report for their internal, corporate use.

Garth Kirkham, B.Sc., P.Geo., P.Geoph.

KIRKHAM December 15th, 2009 #30043 BRITISH COLUMBL SCIEN

STATEMENT OF QUALIFICATION

- I, Paola Chadwick hereby certify that:
 - 1) I am an independent consulting geologist residing in Squamish, British Columbia
 - I am a consulting geologist for Romios Gold Resources Inc with offices at 25 Adelaide Street East, Suite 1010, Toronto, Ontario, Canada and have been working on their properties in Northwestern British Columbia since May 2007.
 - I have been continuously active in the mineral exploration sector since 2004.
 - 4) I am a graduate of the University of British Columbia, with a Bachelors of Science Degree in Earth and Ocean Sciences.
 - 5) I am the author of the Assessment Report entitled "2009 Geological and Geochemical Report on the Dirk Property" dated September 30th, 2009.
 - 6) That this report is based on publically available reports and my actual exploration work on the property, and I was actively involved in the planning and execution of exploration work on the property during the summer of 2009.
 - 7) I hereby authorize Romios to use this report for their internal, corporate use.

Paola Chadwick, B.Sc

pchadwrc/2

May 25th, 2010

APPENDIX A GEOCHEMICAL ROCK SAMPLE ASSAY RESULTS

APPENDIX A ROCK SAMPLE ASSAY RESULTS

Assay Number	Company	Area	Easting	Northing	Sample Type	Collected By	Remarks
G 0806101	Romios Gold	Dirk	376236	6305090	Grab	Paola Chadwick, Scott Close	Malachite staining over veinlets of cpy, digenite? tenorite? in carbonate raft within orthomagmatic breccia.
G 0806102	Romios Gold	Dirk	376251	6305090	Grab	Paola Chadwick, Scott Close	Malachite staining over veinlets of cpy, digenite? tenorite? in carbonate raft within orthomagmatic breccia.
G 0806103	Romios Gold	Dirk	376431	6305043	1 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806104	Romios Gold	Dirk	376431	6305042	2 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806105	Romios Gold	Dirk	376431	6305041	3 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806106	Romios Gold	Dirk	376431	6305040	4 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806107	Romios Gold	Dirk	376431	6305039	5 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806108	Romios Gold	Dirk	376431	6305038	6 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806109	Romios Gold	Dirk	376431	6305037	7 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806110	Romios Gold	Dirk	376431	6305036	8 meter chip	Paola Chadwick, Scott Close	Malachite staining over veinlets/lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806111	Romios Gold	Dirk	376317	6305245	Grab	Paola Chadwick, Scott Close	Malachite staining over lens of cpy, digenite? tenorite? in carbonate raft within syenite intrusive swarm, near pseudoleucite dyke
G 0806112	Romios Gold	Dirk	376588	6304824	3 meter chip	Paola Chadwick, Scott Close	Cpy, garnet and epidote [+digenite? tenorite?] lens in carbonate adjacent to syenite intrusion swarm
G 0806113	Romios Gold	Dirk	376605	6304808	Grab	Paola Chadwick, Scott Close	Cpy, garnet and epidote [+digenite? tenorite?] lens in carbonate adjacent to syenite intrusion swarm
G 0806114	Romios Gold	Dirk	376586	6304778	Grab	Paola Chadwick, Scott Close	100% Black earthy dull-metallic mineral, perhaps tenorite/chalcocite
G 0806115	Romios Gold	Telena	376502	6304841	Grab	Paola Chadwick, Scott Close	Malachite staining over veinlets of cpy, digenite? tenorite? in carbonate adjacent to syenite intrusion swarm
H 138202	Romios Gold	Telena	375713	6303708	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138203	Romios Gold	Telena	375715	6303706	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138204	Romios Gold	Telena	375716	6303705	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138205	Romios Gold	Telena	375717	6303704	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138206	Romios Gold	Telena	375718	6303703	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138207	Romios Gold	Telena	375719	6303702	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138208	Romios Gold	Telena	375720	6303701	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138209	Romios Gold	Telena	375721	6303700	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138210	Romios Gold	Telena	375722	6303699	1 meter chip	Duncan Luck, Devlin Luck	Malachite seep: Thick hematite and mang coating, large clots cpy, mala, chalcocite,
H 138211	Romios Gold	Telena	375636	6303711	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138212	Romios Gold	Telena	375633	6303708	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138213	Romios Gold	Telena	375630	6303705	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138214	Romios Gold	Telena	375627	6303702	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138215	Romios Gold	Telena	375624	6303699	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138216	Romios Gold	Telena	375621	6303696	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138217	Romios Gold	Telena	375618	6303693	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm
H 138218	Romios Gold	Telena	375615	6303690	2 meter chip	Duncan Luck, Devlin Luck	Telena Showing: Bornite veining in megacrystic syenite dyke swarm

APPENDIX A ROCK SAMPLE ASSAY RESULTS

Assay Number	Au	Ag	AI A	IS	В	Ва	Ве	Bi	Ca	Cd	Co	Cr (Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na
G 0806101	0.04	22	0.04	7570	<det< td=""><td>30</td><td><det< td=""><td>2</td><td>16.8</td><td>33.2</td><td>59</td><td>4</td><td>19150</td><td>4.92</td><td><det< td=""><td>13</td><td>6 0.01</td><td>1(</td><td>0 6.64</td><td>4450</td><td>2</td><td>0.03</td></det<></td></det<></td></det<>	30	<det< td=""><td>2</td><td>16.8</td><td>33.2</td><td>59</td><td>4</td><td>19150</td><td>4.92</td><td><det< td=""><td>13</td><td>6 0.01</td><td>1(</td><td>0 6.64</td><td>4450</td><td>2</td><td>0.03</td></det<></td></det<>	2	16.8	33.2	59	4	19150	4.92	<det< td=""><td>13</td><td>6 0.01</td><td>1(</td><td>0 6.64</td><td>4450</td><td>2</td><td>0.03</td></det<>	13	6 0.01	1(0 6.64	4450	2	0.03
G 0806102	0.006	1.1	0.03	256	<det< td=""><td>1590</td><td><det< td=""><td><det< td=""><td>14</td><td>0.7</td><td>23</td><td>3</td><td>709</td><td>4.55</td><td><det< td=""><td></td><td>3 0.01</td><td>10</td><td>0 5.15</td><td>3980</td><td>1</td><td>0.02</td></det<></td></det<></td></det<></td></det<>	1590	<det< td=""><td><det< td=""><td>14</td><td>0.7</td><td>23</td><td>3</td><td>709</td><td>4.55</td><td><det< td=""><td></td><td>3 0.01</td><td>10</td><td>0 5.15</td><td>3980</td><td>1</td><td>0.02</td></det<></td></det<></td></det<>	<det< td=""><td>14</td><td>0.7</td><td>23</td><td>3</td><td>709</td><td>4.55</td><td><det< td=""><td></td><td>3 0.01</td><td>10</td><td>0 5.15</td><td>3980</td><td>1</td><td>0.02</td></det<></td></det<>	14	0.7	23	3	709	4.55	<det< td=""><td></td><td>3 0.01</td><td>10</td><td>0 5.15</td><td>3980</td><td>1</td><td>0.02</td></det<>		3 0.01	10	0 5.15	3980	1	0.02
G 0806103	0.682	18.3	0.87	161	17(0 100	0.6	5	16.9	23.2	7	10	15350	5.47	<det< td=""><td></td><td>2 0.04</td><td>1</td><td>0 0.49</td><td>1580</td><td><det< td=""><td>0.03</td></det<></td></det<>		2 0.04	1	0 0.49	1580	<det< td=""><td>0.03</td></det<>	0.03
G 0806104	1.19	54	0.51	50	50	0 140	<det< td=""><td>26</td><td>21.7</td><td>3.2</td><td>4</td><td>6</td><td>45300</td><td>3.87</td><td><det< td=""><td></td><td>2 0.02</td><td>2 10</td><td>0 0.43</td><td>1540</td><td>1</td><td>0.03</td></det<></td></det<>	26	21.7	3.2	4	6	45300	3.87	<det< td=""><td></td><td>2 0.02</td><td>2 10</td><td>0 0.43</td><td>1540</td><td>1</td><td>0.03</td></det<>		2 0.02	2 10	0 0.43	1540	1	0.03
G 0806105	0.249	31.3	0.31	34	<det< td=""><td>170</td><td><det< td=""><td>19</td><td>22.9</td><td>10.2</td><td>12</td><td>7</td><td>40200</td><td>2.47</td><td><det< td=""><td></td><td>2 0.02</td><td>2 10</td><td>0 0.2</td><td>1570</td><td><det< td=""><td>0.03</td></det<></td></det<></td></det<></td></det<>	170	<det< td=""><td>19</td><td>22.9</td><td>10.2</td><td>12</td><td>7</td><td>40200</td><td>2.47</td><td><det< td=""><td></td><td>2 0.02</td><td>2 10</td><td>0 0.2</td><td>1570</td><td><det< td=""><td>0.03</td></det<></td></det<></td></det<>	19	22.9	10.2	12	7	40200	2.47	<det< td=""><td></td><td>2 0.02</td><td>2 10</td><td>0 0.2</td><td>1570</td><td><det< td=""><td>0.03</td></det<></td></det<>		2 0.02	2 10	0 0.2	1570	<det< td=""><td>0.03</td></det<>	0.03
G 0806106	0.208	22.4	0.66	20	4(0 180	<det< td=""><td>20</td><td>22.1</td><td>2.8</td><td>7</td><td>14</td><td>31400</td><td>3.43</td><td><det< td=""><td><det< td=""><td>0.05</td><td>5 10</td><td>0 0.51</td><td>1650</td><td>1</td><td>0.04</td></det<></td></det<></td></det<>	20	22.1	2.8	7	14	31400	3.43	<det< td=""><td><det< td=""><td>0.05</td><td>5 10</td><td>0 0.51</td><td>1650</td><td>1</td><td>0.04</td></det<></td></det<>	<det< td=""><td>0.05</td><td>5 10</td><td>0 0.51</td><td>1650</td><td>1</td><td>0.04</td></det<>	0.05	5 10	0 0.51	1650	1	0.04
G 0806107	0.008	0.8	0.28	13	680	0 80	<det< td=""><td><det< td=""><td>24 -</td><td><det< td=""><td>1</td><td>6</td><td>391</td><td>1.5</td><td><det< td=""><td><det< td=""><td>0.03</td><td>3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td>24 -</td><td><det< td=""><td>1</td><td>6</td><td>391</td><td>1.5</td><td><det< td=""><td><det< td=""><td>0.03</td><td>3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	24 -	<det< td=""><td>1</td><td>6</td><td>391</td><td>1.5</td><td><det< td=""><td><det< td=""><td>0.03</td><td>3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<></td></det<></td></det<></td></det<>	1	6	391	1.5	<det< td=""><td><det< td=""><td>0.03</td><td>3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<></td></det<></td></det<>	<det< td=""><td>0.03</td><td>3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<></td></det<>	0.03	3 <det< td=""><td>1.05</td><td>2220</td><td><det< td=""><td>0.5</td></det<></td></det<>	1.05	2220	<det< td=""><td>0.5</td></det<>	0.5
G 0806108	0.984	40.4	1.29	71	200	0 190	0.6	39	16.5	8.2	40	15	42600	8.81	<det< td=""><td><det< td=""><td>0.02</td><td>2 10</td><td>0 0.85</td><td>1770</td><td>2</td><td>0.04</td></det<></td></det<>	<det< td=""><td>0.02</td><td>2 10</td><td>0 0.85</td><td>1770</td><td>2</td><td>0.04</td></det<>	0.02	2 10	0 0.85	1770	2	0.04
G 0806109	0.227	9.4	0.96	69	<det< td=""><td>60</td><td>0.5</td><td>6</td><td>8.38</td><td>3.5</td><td>62</td><td>5</td><td>38700</td><td>12.95</td><td><det< td=""><td><det< td=""><td>0.07</td><td>' 1(</td><td>0 0.44</td><td>1130</td><td>1</td><td>0.03</td></det<></td></det<></td></det<>	60	0.5	6	8.38	3.5	62	5	38700	12.95	<det< td=""><td><det< td=""><td>0.07</td><td>' 1(</td><td>0 0.44</td><td>1130</td><td>1</td><td>0.03</td></det<></td></det<>	<det< td=""><td>0.07</td><td>' 1(</td><td>0 0.44</td><td>1130</td><td>1</td><td>0.03</td></det<>	0.07	' 1(0 0.44	1130	1	0.03
G 0806110	1.605	26.6	1	95	<det< td=""><td>110</td><td>0.5</td><td>8</td><td>8.63</td><td>1.6</td><td>8</td><td>13</td><td>18550</td><td>4.6</td><td><det< td=""><td><det< td=""><td>0.16</td><td>6 12</td><td>0 1.76</td><td>1300</td><td>1</td><td>0.05</td></det<></td></det<></td></det<>	110	0.5	8	8.63	1.6	8	13	18550	4.6	<det< td=""><td><det< td=""><td>0.16</td><td>6 12</td><td>0 1.76</td><td>1300</td><td>1</td><td>0.05</td></det<></td></det<>	<det< td=""><td>0.16</td><td>6 12</td><td>0 1.76</td><td>1300</td><td>1</td><td>0.05</td></det<>	0.16	6 12	0 1.76	1300	1	0.05
G 0806111	2.06	26.3	0.39	21	260	50	<det< td=""><td>4</td><td>23.7</td><td>2.2</td><td>6</td><td>4</td><td>23800</td><td>3.07</td><td><det< td=""><td></td><td>1 0.01</td><td>20</td><td>0 0.1</td><td>1390</td><td>1</td><td>0.02</td></det<></td></det<>	4	23.7	2.2	6	4	23800	3.07	<det< td=""><td></td><td>1 0.01</td><td>20</td><td>0 0.1</td><td>1390</td><td>1</td><td>0.02</td></det<>		1 0.01	20	0 0.1	1390	1	0.02
G 0806112	0.577	44.1	1.28	52	11(0 10	<det< td=""><td>22</td><td>13.25</td><td>1.7</td><td>4</td><td>19</td><td>62100</td><td>12.05</td><td><det< td=""><td></td><td>3 0.03</td><td>3 40</td><td>0.08</td><td>1145</td><td>1</td><td>0.04</td></det<></td></det<>	22	13.25	1.7	4	19	62100	12.05	<det< td=""><td></td><td>3 0.03</td><td>3 40</td><td>0.08</td><td>1145</td><td>1</td><td>0.04</td></det<>		3 0.03	3 40	0.08	1145	1	0.04
G 0806113	1.395	5.6	1.46	77	<det< td=""><td>10</td><td><det< td=""><td>17</td><td>12.5</td><td><det< td=""><td>14</td><td>12</td><td>30800</td><td>11.9</td><td><det< td=""><td><det< td=""><td>0.02</td><td>2 20</td><td>0 0.07</td><td>1640</td><td>1</td><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<>	10	<det< td=""><td>17</td><td>12.5</td><td><det< td=""><td>14</td><td>12</td><td>30800</td><td>11.9</td><td><det< td=""><td><det< td=""><td>0.02</td><td>2 20</td><td>0 0.07</td><td>1640</td><td>1</td><td>0.02</td></det<></td></det<></td></det<></td></det<>	17	12.5	<det< td=""><td>14</td><td>12</td><td>30800</td><td>11.9</td><td><det< td=""><td><det< td=""><td>0.02</td><td>2 20</td><td>0 0.07</td><td>1640</td><td>1</td><td>0.02</td></det<></td></det<></td></det<>	14	12	30800	11.9	<det< td=""><td><det< td=""><td>0.02</td><td>2 20</td><td>0 0.07</td><td>1640</td><td>1</td><td>0.02</td></det<></td></det<>	<det< td=""><td>0.02</td><td>2 20</td><td>0 0.07</td><td>1640</td><td>1</td><td>0.02</td></det<>	0.02	2 20	0 0.07	1640	1	0.02
G 0806114	0.026	0.9	0.6	41	<det< td=""><td>130</td><td><det< td=""><td>2</td><td>5.33</td><td><det< td=""><td>41</td><td>1</td><td>921</td><td>50</td><td>10</td><td>) <det< td=""><td>0.25</td><td>o <det< td=""><td>0.91</td><td>1740</td><td><det< td=""><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	130	<det< td=""><td>2</td><td>5.33</td><td><det< td=""><td>41</td><td>1</td><td>921</td><td>50</td><td>10</td><td>) <det< td=""><td>0.25</td><td>o <det< td=""><td>0.91</td><td>1740</td><td><det< td=""><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<>	2	5.33	<det< td=""><td>41</td><td>1</td><td>921</td><td>50</td><td>10</td><td>) <det< td=""><td>0.25</td><td>o <det< td=""><td>0.91</td><td>1740</td><td><det< td=""><td>0.02</td></det<></td></det<></td></det<></td></det<>	41	1	921	50	10) <det< td=""><td>0.25</td><td>o <det< td=""><td>0.91</td><td>1740</td><td><det< td=""><td>0.02</td></det<></td></det<></td></det<>	0.25	o <det< td=""><td>0.91</td><td>1740</td><td><det< td=""><td>0.02</td></det<></td></det<>	0.91	1740	<det< td=""><td>0.02</td></det<>	0.02
G 0806115	1.655	27.9	1.05	73	280	0 100	<det< td=""><td>7</td><td>16.8</td><td>6.1</td><td>9</td><td>11</td><td>10750</td><td>4.01</td><td><det< td=""><td></td><td>2 0.02</td><td>2 40</td><td>0 0.36</td><td>948</td><td><det< td=""><td>0.02</td></det<></td></det<></td></det<>	7	16.8	6.1	9	11	10750	4.01	<det< td=""><td></td><td>2 0.02</td><td>2 40</td><td>0 0.36</td><td>948</td><td><det< td=""><td>0.02</td></det<></td></det<>		2 0.02	2 40	0 0.36	948	<det< td=""><td>0.02</td></det<>	0.02
H 138202	0.005	0.5	2.2	33	20	370	1.3	3	7.16	0.9	3	9	32	18.5	<det< td=""><td></td><td>3 0.2</td><td>2 30</td><td>0 0.77</td><td>3700</td><td>7</td><td>0.01</td></det<>		3 0.2	2 30	0 0.77	3700	7	0.01
H 138203	0.016	0.3	2.06	65	20	0 110	1.6	6	10.45	0.6	6	33	78	15.9	<det< td=""><td></td><td>1 0.32</td><td>2 60</td><td>0 0.59</td><td>2500</td><td>28</td><td>0.01</td></det<>		1 0.32	2 60	0 0.59	2500	28	0.01
H 138204	1.385	16.2	3.11	111	10) 120	1.3	<det< td=""><td>9.1</td><td>0.9</td><td>128</td><td>27</td><td>35500</td><td>16.9</td><td><det< td=""><td></td><td>1 0.17</td><td>′ 40</td><td>0 0.75</td><td>3020</td><td>11</td><td>0.01</td></det<></td></det<>	9.1	0.9	128	27	35500	16.9	<det< td=""><td></td><td>1 0.17</td><td>′ 40</td><td>0 0.75</td><td>3020</td><td>11</td><td>0.01</td></det<>		1 0.17	′ 40	0 0.75	3020	11	0.01
H 138205	0.431	4.8	2.82	32	1(90	1.4	<det< td=""><td>12.9</td><td>0.8</td><td>28</td><td>20</td><td>10100</td><td>16.6</td><td>10</td><td>)</td><td>1 0.17</td><td>4</td><td>0 0.72</td><td>2940</td><td>15</td><td>0.01</td></det<>	12.9	0.8	28	20	10100	16.6	10)	1 0.17	4	0 0.72	2940	15	0.01
H 138206	0.094	0.7	3.94	32	1() 70	1.5	<det< td=""><td>10</td><td>0.7</td><td>70</td><td>30</td><td>9150</td><td>20.4</td><td>1(</td><td>)</td><td>1 0.04</td><td>4</td><td>0 1.07</td><td>2810</td><td>10</td><td>0.01</td></det<>	10	0.7	70	30	9150	20.4	1()	1 0.04	4	0 1.07	2810	10	0.01
H 138207	2.2	20.7	3.24	308	1(90	1.1	<det< td=""><td>3.88</td><td>1.2</td><td>313</td><td>27</td><td>56900</td><td>22.8</td><td>1(</td><td>)</td><td>2 0.05</td><td>5 30</td><td>0 0.78</td><td>2340</td><td>17</td><td>0.01</td></det<>	3.88	1.2	313	27	56900	22.8	1()	2 0.05	5 30	0 0.78	2340	17	0.01
H 138208	0.324	1.7	3.66	35	1(0 60	1	<det< td=""><td>15.5</td><td>0.7</td><td>82</td><td>50</td><td>9810</td><td>13.4</td><td>1(</td><td>)</td><td>1 0.01</td><td>50</td><td>0 0.89</td><td>2620</td><td>9</td><td>0.01</td></det<>	15.5	0.7	82	50	9810	13.4	1()	1 0.01	50	0 0.89	2620	9	0.01
H 138209	0.351	2.2	2.61	45	<det< td=""><td>60</td><td>0.7</td><td><det< td=""><td>13.75</td><td>0.7</td><td>75</td><td>32</td><td>6560</td><td>11.2</td><td>10</td><td>)</td><td>2 0.01</td><td>30</td><td>0 0.68</td><td>2740</td><td>5</td><td>0.01</td></det<></td></det<>	60	0.7	<det< td=""><td>13.75</td><td>0.7</td><td>75</td><td>32</td><td>6560</td><td>11.2</td><td>10</td><td>)</td><td>2 0.01</td><td>30</td><td>0 0.68</td><td>2740</td><td>5</td><td>0.01</td></det<>	13.75	0.7	75	32	6560	11.2	10)	2 0.01	30	0 0.68	2740	5	0.01
H 138210	0.235	3.6	3.11	77	1(0 80	1.3	<det< td=""><td>18.7</td><td>0.7</td><td>67</td><td>31</td><td>11600</td><td>12.6</td><td>1(</td><td>)</td><td>2 0.02</td><td>2 30</td><td>0 0.97</td><td>3460</td><td>10</td><td>0.01</td></det<>	18.7	0.7	67	31	11600	12.6	1()	2 0.02	2 30	0 0.97	3460	10	0.01
H 138211	0.015	<det< td=""><td>0.84</td><td>9</td><td><det< td=""><td>450</td><td>0.9</td><td><det< td=""><td>5.4</td><td><det< td=""><td>6</td><td>6</td><td>136</td><td>4.49</td><td><det< td=""><td><det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	0.84	9	<det< td=""><td>450</td><td>0.9</td><td><det< td=""><td>5.4</td><td><det< td=""><td>6</td><td>6</td><td>136</td><td>4.49</td><td><det< td=""><td><det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<>	450	0.9	<det< td=""><td>5.4</td><td><det< td=""><td>6</td><td>6</td><td>136</td><td>4.49</td><td><det< td=""><td><det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<></td></det<></td></det<></td></det<>	5.4	<det< td=""><td>6</td><td>6</td><td>136</td><td>4.49</td><td><det< td=""><td><det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<></td></det<></td></det<>	6	6	136	4.49	<det< td=""><td><det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<></td></det<>	<det< td=""><td>0.39</td><td>) 30</td><td>0 0.46</td><td>1750</td><td>8</td><td>0.02</td></det<>	0.39) 30	0 0.46	1750	8	0.02
H 138212	0.064	1	0.66	35	20) 170	1.2	7	10.05	0.5	2	10	711	11.7	<det< td=""><td></td><td>2 0.3</td><td>3 30</td><td>0 0.24</td><td>2860</td><td>8</td><td>0.01</td></det<>		2 0.3	3 30	0 0.24	2860	8	0.01
H 138213	0.011	0.7	0.85	39	20	0 240	1.4	4	11.35	0.8	4	19	201	11.35	<det< td=""><td></td><td>3 0.45</td><td>5 50</td><td>0 0.45</td><td>3920</td><td>35</td><td>0.02</td></det<>		3 0.45	5 50	0 0.45	3920	35	0.02
H 138214	0.045	1	0.83	16	1(0 110	0.8	3	4.41	0.6	8	11	668	3.24	<det< td=""><td></td><td>1 0.34</td><td>20</td><td>0 0.32</td><td>1120</td><td>16</td><td>0.03</td></det<>		1 0.34	20	0 0.32	1120	16	0.03
H 138215	0.051	0.6	0.53	8	<det< td=""><td>60</td><td><det< td=""><td><det< td=""><td>7.21</td><td><det< td=""><td>9</td><td>22</td><td>319</td><td>2.24</td><td><det< td=""><td></td><td>1 0.12</td><td>2 10</td><td>0 0.46</td><td>1725</td><td>2</td><td>0.02</td></det<></td></det<></td></det<></td></det<></td></det<>	60	<det< td=""><td><det< td=""><td>7.21</td><td><det< td=""><td>9</td><td>22</td><td>319</td><td>2.24</td><td><det< td=""><td></td><td>1 0.12</td><td>2 10</td><td>0 0.46</td><td>1725</td><td>2</td><td>0.02</td></det<></td></det<></td></det<></td></det<>	<det< td=""><td>7.21</td><td><det< td=""><td>9</td><td>22</td><td>319</td><td>2.24</td><td><det< td=""><td></td><td>1 0.12</td><td>2 10</td><td>0 0.46</td><td>1725</td><td>2</td><td>0.02</td></det<></td></det<></td></det<>	7.21	<det< td=""><td>9</td><td>22</td><td>319</td><td>2.24</td><td><det< td=""><td></td><td>1 0.12</td><td>2 10</td><td>0 0.46</td><td>1725</td><td>2</td><td>0.02</td></det<></td></det<>	9	22	319	2.24	<det< td=""><td></td><td>1 0.12</td><td>2 10</td><td>0 0.46</td><td>1725</td><td>2</td><td>0.02</td></det<>		1 0.12	2 10	0 0.46	1725	2	0.02
H 138216	0.138	2	1.24	10	<det< td=""><td>80</td><td>0.7</td><td>5</td><td>4.6</td><td>0.8</td><td>6</td><td>14</td><td>1320</td><td>2.1</td><td><det< td=""><td></td><td>2 0.15</td><td>5 10</td><td>0 0.65</td><td>1275</td><td>5</td><td>0.02</td></det<></td></det<>	80	0.7	5	4.6	0.8	6	14	1320	2.1	<det< td=""><td></td><td>2 0.15</td><td>5 10</td><td>0 0.65</td><td>1275</td><td>5</td><td>0.02</td></det<>		2 0.15	5 10	0 0.65	1275	5	0.02
H 138217	0.793	3.5	1.78	24	1() 70	1	15	9.84	0.6	4	4	2820	5.07	<det< td=""><td></td><td>2 0.12</td><td>2 30</td><td>0 0.7</td><td>2510</td><td>1</td><td>0.02</td></det<>		2 0.12	2 30	0 0.7	2510	1	0.02
H 138218	0.322	6	1.85	9	1(90	1	6	7.95	0.8	7	5	2350	2.95	<det< td=""><td></td><td>2 0.09</td><td>) 30</td><td>0 0.69</td><td>2060</td><td><det< td=""><td>0.02</td></det<></td></det<>		2 0.09) 30	0 0.69	2060	<det< td=""><td>0.02</td></det<>	0.02

APPENDIX A ROCK SAMPLE ASSAY RESULTS

Assay Number	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	W	Zn	Cu %
G 0806101	68	30	38	0.6	990	3	82	<det< td=""><td><det< td=""><td><det< td=""><td><det< td=""><td>63</td><td><det< td=""><td>2230</td><td>1.915</td></det<></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td><det< td=""><td>63</td><td><det< td=""><td>2230</td><td>1.915</td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td>63</td><td><det< td=""><td>2230</td><td>1.915</td></det<></td></det<></td></det<>	<det< td=""><td>63</td><td><det< td=""><td>2230</td><td>1.915</td></det<></td></det<>	63	<det< td=""><td>2230</td><td>1.915</td></det<>	2230	1.915
G 0806102	57	20	3	0.09	49	7	120	<det< td=""><td><det< td=""><td><det< td=""><td><det< td=""><td>38</td><td><det< td=""><td>134</td><td></td></det<></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td><det< td=""><td>38</td><td><det< td=""><td>134</td><td></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td>38</td><td><det< td=""><td>134</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>38</td><td><det< td=""><td>134</td><td></td></det<></td></det<>	38	<det< td=""><td>134</td><td></td></det<>	134	
G 0806103	5	560	97	<det< td=""><td>15</td><td>6</td><td>166</td><td><det< td=""><td>0.08</td><td><det< td=""><td><det< td=""><td>187</td><td><det< td=""><td>824</td><td>1.535</td></det<></td></det<></td></det<></td></det<></td></det<>	15	6	166	<det< td=""><td>0.08</td><td><det< td=""><td><det< td=""><td>187</td><td><det< td=""><td>824</td><td>1.535</td></det<></td></det<></td></det<></td></det<>	0.08	<det< td=""><td><det< td=""><td>187</td><td><det< td=""><td>824</td><td>1.535</td></det<></td></det<></td></det<>	<det< td=""><td>187</td><td><det< td=""><td>824</td><td>1.535</td></det<></td></det<>	187	<det< td=""><td>824</td><td>1.535</td></det<>	824	1.535
G 0806104	5	160	64	1	<det< td=""><td>2</td><td>54</td><td><det< td=""><td>0.02</td><td><det< td=""><td>10</td><td>82</td><td><det< td=""><td>81</td><td>4.53</td></det<></td></det<></td></det<></td></det<>	2	54	<det< td=""><td>0.02</td><td><det< td=""><td>10</td><td>82</td><td><det< td=""><td>81</td><td>4.53</td></det<></td></det<></td></det<>	0.02	<det< td=""><td>10</td><td>82</td><td><det< td=""><td>81</td><td>4.53</td></det<></td></det<>	10	82	<det< td=""><td>81</td><td>4.53</td></det<>	81	4.53
G 0806105	8	20	56	1	2	2	41	<det< td=""><td>0.02</td><td><det< td=""><td>10</td><td>42</td><td><det< td=""><td>322</td><td>4.02</td></det<></td></det<></td></det<>	0.02	<det< td=""><td>10</td><td>42</td><td><det< td=""><td>322</td><td>4.02</td></det<></td></det<>	10	42	<det< td=""><td>322</td><td>4.02</td></det<>	322	4.02
G 0806106	6	80	40	0.8	<det< td=""><td>3</td><td>54</td><td><det< td=""><td>0.03</td><td><det< td=""><td><det< td=""><td>71</td><td><det< td=""><td>84</td><td>3.14</td></det<></td></det<></td></det<></td></det<></td></det<>	3	54	<det< td=""><td>0.03</td><td><det< td=""><td><det< td=""><td>71</td><td><det< td=""><td>84</td><td>3.14</td></det<></td></det<></td></det<></td></det<>	0.03	<det< td=""><td><det< td=""><td>71</td><td><det< td=""><td>84</td><td>3.14</td></det<></td></det<></td></det<>	<det< td=""><td>71</td><td><det< td=""><td>84</td><td>3.14</td></det<></td></det<>	71	<det< td=""><td>84</td><td>3.14</td></det<>	84	3.14
G 0806107	<det< td=""><td>30</td><td>6</td><td><det< td=""><td><det< td=""><td>1</td><td>76</td><td><det< td=""><td>0.01</td><td><det< td=""><td>10</td><td>24</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	30	6	<det< td=""><td><det< td=""><td>1</td><td>76</td><td><det< td=""><td>0.01</td><td><det< td=""><td>10</td><td>24</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td>1</td><td>76</td><td><det< td=""><td>0.01</td><td><det< td=""><td>10</td><td>24</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<></td></det<>	1	76	<det< td=""><td>0.01</td><td><det< td=""><td>10</td><td>24</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<>	0.01	<det< td=""><td>10</td><td>24</td><td><det< td=""><td>24</td><td></td></det<></td></det<>	10	24	<det< td=""><td>24</td><td></td></det<>	24	
G 0806108	30	90	51	1.1	<det< td=""><td>3</td><td>143</td><td><det< td=""><td>0.04</td><td><det< td=""><td>10</td><td>93</td><td><det< td=""><td>698</td><td>4.26</td></det<></td></det<></td></det<></td></det<>	3	143	<det< td=""><td>0.04</td><td><det< td=""><td>10</td><td>93</td><td><det< td=""><td>698</td><td>4.26</td></det<></td></det<></td></det<>	0.04	<det< td=""><td>10</td><td>93</td><td><det< td=""><td>698</td><td>4.26</td></det<></td></det<>	10	93	<det< td=""><td>698</td><td>4.26</td></det<>	698	4.26
G 0806109	15	70	17	0.35	<det< td=""><td>1</td><td>55</td><td><det< td=""><td>0.03</td><td><det< td=""><td>10</td><td>58</td><td><det< td=""><td>353</td><td>3.87</td></det<></td></det<></td></det<></td></det<>	1	55	<det< td=""><td>0.03</td><td><det< td=""><td>10</td><td>58</td><td><det< td=""><td>353</td><td>3.87</td></det<></td></det<></td></det<>	0.03	<det< td=""><td>10</td><td>58</td><td><det< td=""><td>353</td><td>3.87</td></det<></td></det<>	10	58	<det< td=""><td>353</td><td>3.87</td></det<>	353	3.87
G 0806110	5	410	56	0.11	<det< td=""><td>3</td><td>71</td><td><det< td=""><td>0.03</td><td><det< td=""><td>50</td><td>93</td><td><det< td=""><td>111</td><td>1.855</td></det<></td></det<></td></det<></td></det<>	3	71	<det< td=""><td>0.03</td><td><det< td=""><td>50</td><td>93</td><td><det< td=""><td>111</td><td>1.855</td></det<></td></det<></td></det<>	0.03	<det< td=""><td>50</td><td>93</td><td><det< td=""><td>111</td><td>1.855</td></det<></td></det<>	50	93	<det< td=""><td>111</td><td>1.855</td></det<>	111	1.855
G 0806111	5	770	34	0.8	2	2	60	<det< td=""><td>0.04</td><td><det< td=""><td>10</td><td>199</td><td><det< td=""><td>59</td><td>2.38</td></det<></td></det<></td></det<>	0.04	<det< td=""><td>10</td><td>199</td><td><det< td=""><td>59</td><td>2.38</td></det<></td></det<>	10	199	<det< td=""><td>59</td><td>2.38</td></det<>	59	2.38
G 0806112	12	390	38	1.26	2	5	11	<det< td=""><td>0.07</td><td><det< td=""><td>20</td><td>80</td><td><det< td=""><td>33</td><td>6.21</td></det<></td></det<></td></det<>	0.07	<det< td=""><td>20</td><td>80</td><td><det< td=""><td>33</td><td>6.21</td></det<></td></det<>	20	80	<det< td=""><td>33</td><td>6.21</td></det<>	33	6.21
G 0806113	13	40	3	1.42	5	3	9	<det< td=""><td>0.05</td><td><det< td=""><td>20</td><td>46</td><td><det< td=""><td>125</td><td>3.08</td></det<></td></det<></td></det<>	0.05	<det< td=""><td>20</td><td>46</td><td><det< td=""><td>125</td><td>3.08</td></det<></td></det<>	20	46	<det< td=""><td>125</td><td>3.08</td></det<>	125	3.08
G 0806114	9	<det< td=""><td>12</td><td>0.04</td><td>2</td><td><det< td=""><td>129</td><td><det< td=""><td><det< td=""><td><det< td=""><td><det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	12	0.04	2	<det< td=""><td>129</td><td><det< td=""><td><det< td=""><td><det< td=""><td><det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<></td></det<></td></det<></td></det<></td></det<>	129	<det< td=""><td><det< td=""><td><det< td=""><td><det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td><det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<></td></det<></td></det<>	<det< td=""><td><det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>48</td><td><det< td=""><td>251</td><td></td></det<></td></det<>	48	<det< td=""><td>251</td><td></td></det<>	251	
G 0806115	6	530	20	0.3	<det< td=""><td>2</td><td>79</td><td><det< td=""><td>0.04</td><td><det< td=""><td>10</td><td>34</td><td><det< td=""><td>592</td><td>1.075</td></det<></td></det<></td></det<></td></det<>	2	79	<det< td=""><td>0.04</td><td><det< td=""><td>10</td><td>34</td><td><det< td=""><td>592</td><td>1.075</td></det<></td></det<></td></det<>	0.04	<det< td=""><td>10</td><td>34</td><td><det< td=""><td>592</td><td>1.075</td></det<></td></det<>	10	34	<det< td=""><td>592</td><td>1.075</td></det<>	592	1.075
H 138202	7	1040	21	0.06	11	17	176	<det< td=""><td>0.06</td><td><det< td=""><td><det< td=""><td>227</td><td>10</td><td>59</td><td></td></det<></td></det<></td></det<>	0.06	<det< td=""><td><det< td=""><td>227</td><td>10</td><td>59</td><td></td></det<></td></det<>	<det< td=""><td>227</td><td>10</td><td>59</td><td></td></det<>	227	10	59	
H 138203	10	3370	24	0.04	18	11	207	<det< td=""><td>0.11</td><td><det< td=""><td><det< td=""><td>179</td><td>10</td><td>85</td><td></td></det<></td></det<></td></det<>	0.11	<det< td=""><td><det< td=""><td>179</td><td>10</td><td>85</td><td></td></det<></td></det<>	<det< td=""><td>179</td><td>10</td><td>85</td><td></td></det<>	179	10	85	
H 138204	67	570	37	0.59	7	16	164	<det< td=""><td>0.05</td><td><det< td=""><td><det< td=""><td>231</td><td>20</td><td>112</td><td>3.55</td></det<></td></det<></td></det<>	0.05	<det< td=""><td><det< td=""><td>231</td><td>20</td><td>112</td><td>3.55</td></det<></td></det<>	<det< td=""><td>231</td><td>20</td><td>112</td><td>3.55</td></det<>	231	20	112	3.55
H 138205	21	890	27	0.87	12	20	234	<det< td=""><td>0.11</td><td><det< td=""><td><det< td=""><td>364</td><td>10</td><td>82</td><td>1.01</td></det<></td></det<></td></det<>	0.11	<det< td=""><td><det< td=""><td>364</td><td>10</td><td>82</td><td>1.01</td></det<></td></det<>	<det< td=""><td>364</td><td>10</td><td>82</td><td>1.01</td></det<>	364	10	82	1.01
H 138206	35	910	34	0.13	16	20	241	<det< td=""><td>0.14</td><td><det< td=""><td><det< td=""><td>498</td><td>10</td><td>117</td><td></td></det<></td></det<></td></det<>	0.14	<det< td=""><td><det< td=""><td>498</td><td>10</td><td>117</td><td></td></det<></td></det<>	<det< td=""><td>498</td><td>10</td><td>117</td><td></td></det<>	498	10	117	
H 138207	139	910	37	1.95	14	13	67	<det< td=""><td>0.05</td><td><det< td=""><td><det< td=""><td>269</td><td>20</td><td>114</td><td>5.69</td></det<></td></det<></td></det<>	0.05	<det< td=""><td><det< td=""><td>269</td><td>20</td><td>114</td><td>5.69</td></det<></td></det<>	<det< td=""><td>269</td><td>20</td><td>114</td><td>5.69</td></det<>	269	20	114	5.69
H 138208	27	820	26	0.37	8	23	275	<det< td=""><td>0.07</td><td><det< td=""><td><det< td=""><td>611</td><td><det< td=""><td>129</td><td>0.981</td></det<></td></det<></td></det<></td></det<>	0.07	<det< td=""><td><det< td=""><td>611</td><td><det< td=""><td>129</td><td>0.981</td></det<></td></det<></td></det<>	<det< td=""><td>611</td><td><det< td=""><td>129</td><td>0.981</td></det<></td></det<>	611	<det< td=""><td>129</td><td>0.981</td></det<>	129	0.981
H 138209	31	820	20	0.3	10	13	242	<det< td=""><td>0.08</td><td><det< td=""><td><det< td=""><td>389</td><td>10</td><td>118</td><td></td></det<></td></det<></td></det<>	0.08	<det< td=""><td><det< td=""><td>389</td><td>10</td><td>118</td><td></td></det<></td></det<>	<det< td=""><td>389</td><td>10</td><td>118</td><td></td></det<>	389	10	118	
H 138210	35	700	34	1.1	8	10	305	<det< td=""><td>0.05</td><td><det< td=""><td><det< td=""><td>264</td><td>10</td><td>105</td><td>1.16</td></det<></td></det<></td></det<>	0.05	<det< td=""><td><det< td=""><td>264</td><td>10</td><td>105</td><td>1.16</td></det<></td></det<>	<det< td=""><td>264</td><td>10</td><td>105</td><td>1.16</td></det<>	264	10	105	1.16
H 138211	3	1230	12	0.08	6	9	279	<det< td=""><td>0.07</td><td><det< td=""><td><det< td=""><td>133</td><td><det< td=""><td>39</td><td></td></det<></td></det<></td></det<></td></det<>	0.07	<det< td=""><td><det< td=""><td>133</td><td><det< td=""><td>39</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>133</td><td><det< td=""><td>39</td><td></td></det<></td></det<>	133	<det< td=""><td>39</td><td></td></det<>	39	
H 138212	3	1030	24	0.04	14	10	266	<det< td=""><td>0.08</td><td><det< td=""><td><det< td=""><td>610</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<></td></det<>	0.08	<det< td=""><td><det< td=""><td>610</td><td><det< td=""><td>24</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>610</td><td><det< td=""><td>24</td><td></td></det<></td></det<>	610	<det< td=""><td>24</td><td></td></det<>	24	
H 138213	6	770	21	0.1	12	8	280	<det< td=""><td>0.08</td><td><det< td=""><td><det< td=""><td>342</td><td><det< td=""><td>32</td><td></td></det<></td></det<></td></det<></td></det<>	0.08	<det< td=""><td><det< td=""><td>342</td><td><det< td=""><td>32</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>342</td><td><det< td=""><td>32</td><td></td></det<></td></det<>	342	<det< td=""><td>32</td><td></td></det<>	32	
H 138214	10	480	18	0.41	3	7	145	<det< td=""><td>0.05</td><td><det< td=""><td><det< td=""><td>98</td><td><det< td=""><td>63</td><td></td></det<></td></det<></td></det<></td></det<>	0.05	<det< td=""><td><det< td=""><td>98</td><td><det< td=""><td>63</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>98</td><td><det< td=""><td>63</td><td></td></det<></td></det<>	98	<det< td=""><td>63</td><td></td></det<>	63	
H 138215	11	270	15	0.18	3	8	131	<det< td=""><td>0.07</td><td><det< td=""><td><det< td=""><td>103</td><td><det< td=""><td>54</td><td></td></det<></td></det<></td></det<></td></det<>	0.07	<det< td=""><td><det< td=""><td>103</td><td><det< td=""><td>54</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>103</td><td><det< td=""><td>54</td><td></td></det<></td></det<>	103	<det< td=""><td>54</td><td></td></det<>	54	
H 138216	6	410	32	0.17	2	5	111	<det< td=""><td>0.11</td><td><det< td=""><td><det< td=""><td>161</td><td><det< td=""><td>87</td><td></td></det<></td></det<></td></det<></td></det<>	0.11	<det< td=""><td><det< td=""><td>161</td><td><det< td=""><td>87</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>161</td><td><det< td=""><td>87</td><td></td></det<></td></det<>	161	<det< td=""><td>87</td><td></td></det<>	87	
H 138217	4	1960	16	0.06	4	3	170	<det< td=""><td>0.09</td><td><det< td=""><td><det< td=""><td>366</td><td><det< td=""><td>44</td><td></td></det<></td></det<></td></det<></td></det<>	0.09	<det< td=""><td><det< td=""><td>366</td><td><det< td=""><td>44</td><td></td></det<></td></det<></td></det<>	<det< td=""><td>366</td><td><det< td=""><td>44</td><td></td></det<></td></det<>	366	<det< td=""><td>44</td><td></td></det<>	44	
H 138218	6	1240	26	0.04	<det< td=""><td>4</td><td>177</td><td><det< td=""><td>0.12</td><td><det< td=""><td>10</td><td>294</td><td><det< td=""><td>80</td><td></td></det<></td></det<></td></det<></td></det<>	4	177	<det< td=""><td>0.12</td><td><det< td=""><td>10</td><td>294</td><td><det< td=""><td>80</td><td></td></det<></td></det<></td></det<>	0.12	<det< td=""><td>10</td><td>294</td><td><det< td=""><td>80</td><td></td></det<></td></det<>	10	294	<det< td=""><td>80</td><td></td></det<>	80	

APPENDIX B CERTIFICATES OF ASSAY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1 Page: 1 Finalized Date: 9-SEP-2009 This copy reported on 2-OCT-2009 Account: ROGORE

CE	RTIFICATE TR09090872	2		SAMPLE PREPARATION	l
			ALS CODE	DESCRIPTION	
Project: Trek Project P.O. No.: This report is for 20 Rock sam 28-AUG-2009. The following have access ROMIOS GOLD RESOURCES SCOTT CLOSE	ples submitted to our lab in Terrac to data associated with this cer WIKJORD ELENA GUSZOWATY	e, BC, Canada on tificate: PAOLA CHADWICK	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31 CRU-QC PUL-QC	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Crushing QC Test Pulverizing QC Test	
	II			ANALYTICAL PROCEDUR	ES
			ALS CODE	DESCRIPTION	INSTRUMENT
			ME-OG46 Cu-OG46 Au-AA23 ME-ICP41	Ore Grade Elements - AquaRegia Ore Grade Cu - Aqua Regia Au 30g FA-AA finish 35 Element Aqua Regia ICP-AES	ICP-AES VARIABLE AAS ICP-AES

To: ROMIOS GOLD RESOURCES INC. ATTN: PAOLA CHADWICK 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 9-SEP-2009 Account: ROGORE

Project: Trek Project

CERTIFICATE OF ANALYSIS TR09090872

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
H138905 H138906 H138907 H138202 H138203		1.37 0.78 1.10 0.76 0.59	0.014 0.073 0.051 0.005 0.016	0.6 1.5 0.8 0.5 0.3	0.60 1.83 1.27 2.20 2.06	150 111 498 33 65	<10 10 10 20 20	30 40 260 370 110	<0.5 <0.5 <0.5 1.3 1.6	<2 5 3 3 6	0.51 0.58 4.40 7.16 10.45	<0.5 <0.5 0.9 0.6	22 72 25 3 6	7 19 9 9 33	241 693 351 32 78	2.77 9.20 2.67 18.5 15.9
H138204 H138205 H138206 H138207 H138208		0.73 0.47 0.61 0.49 0.58	1.385 0.431 0.094 2.20 0.324	16.2 4.8 0.7 20.7 1.7	3.11 2.82 3.94 3.24 3.66	111 32 32 308 35	10 10 10 10 10	120 90 70 90 60	1.3 1.4 1.5 1.1 1.0	<2 <2 <2 <2 <2 <2 <2	9.10 12.90 10.00 3.88 15.5	0.9 0.8 0.7 1.2 0.7	128 28 70 313 82	27 20 30 27 50	>10000 >10000 9150 >10000 >10000	16.9 16.6 20.4 22.8 13.40
H138209 H138210 H138211 H138212 H138212 H138213		0.50 0.44 1.46 1.47 1.04	0.351 0.235 0.015 0.064 0.011	2.2 3.6 <0.2 1.0 0.7	2.61 3.11 0.84 0.66 0.85	45 77 9 35 39	<10 10 <10 20 20	60 80 450 170 240	0.7 1.3 0.9 1.2 1.4	<2 <2 <2 7 4	13.75 18.7 5.40 10.05 11.35	0.7 0.7 <0.5 0.5 0.8	75 67 6 2 4	32 31 6 10 19	6560 >10000 136 711 201	11.20 12.60 4.49 11.70 11.35
H138214 H138215 H138216 H138217 H138218		1.58 1.26 1.47 1.15 1.23	0.045 0.051 0.138 0.793 0.322	1.0 0.6 2.0 3.5 6.0	0.83 0.53 1.24 1.78 1.85	16 8 10 24 9	10 <10 <10 10 10	110 60 80 70 90	0.8 <0.5 0.7 1.0 1.0	3 <2 5 15 6	4.41 7.21 4.60 9.84 7.95	0.6 <0.5 0.8 0.6 0.8	8 9 6 4 7	11 22 14 4 5	668 319 1320 2820 2350	3.24 2.24 2.10 5.07 2.95

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 9-SEP-2009 Account: ROGORE

Project: Trek Project

CERTIFICATE OF ANALYSIS TR09090872

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
H138905 H138906 H138907 H138202 H138203		<10 10 <10 <10 <10	<1 1 <1 3 1	0.04 0.07 0.12 0.20 0.32	10 <10 10 30 60	0.45 1.18 0.87 0.77 0.59	166 253 622 3700 2500	14 3 25 7 28	0.11 0.16 0.06 0.01 0.01	8 17 15 7 10	1080 950 1140 1040 3370	6 19 7 21 24	0.92 6.03 0.57 0.06 0.04	<2 8 6 11 18	3 12 7 17 11	13 40 51 176 207
H138204 H138205 H138206 H138207 H138208		<10 10 10 10 10	1 1 1 2 1	0.17 0.17 0.04 0.05 0.01	40 40 40 30 50	0.75 0.72 1.07 0.78 0.89	3020 2940 2810 2340 2620	11 15 10 17 9	0.01 0.01 0.01 0.01 0.01	67 21 35 139 27	570 890 910 910 820	37 27 34 37 26	0.59 0.87 0.13 1.95 0.37	7 12 16 14 8	16 20 20 13 23	164 234 241 67 275
H138209 H138210 H138211 H138212 H138212 H138213		10 10 <10 <10 <10	2 2 <1 2 3	0.01 0.02 0.39 0.30 0.45	30 30 30 30 30 50	0.68 0.97 0.46 0.24 0.45	2740 3460 1750 2860 3920	5 10 8 8 35	0.01 0.01 0.02 0.01 0.02	31 35 3 3 6	820 700 1230 1030 770	20 34 12 24 21	0.30 1.1 0.08 0.04 0.10	10 8 6 14 12	13 10 9 10 8	242 305 279 266 280
H138214 H138215 H138216 H138217 H138218		<10 <10 <10 <10 <10	1 1 2 2 2	0.34 0.12 0.15 0.12 0.09	20 10 10 30 30	0.32 0.46 0.65 0.70 0.69	1120 1725 1275 2510 2060	16 2 5 1 <1	0.03 0.02 0.02 0.02 0.02	10 11 6 4 6	480 270 410 1960 1240	18 15 32 16 26	0.41 0.18 0.17 0.06 0.04	3 3 2 4 <2	7 8 5 3 4	145 131 111 170 177

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 9-SEP-2009 Account: ROGORE

Project: Trek Project

CERTIFICATE OF ANALYSIS TR09090872

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001			
H138905 H138906 H138907 H138202 H138203		<20 <20 <20 <20 <20	0.21 0.21 <0.01 0.06 0.11	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	58 153 52 227 179	<10 <10 <10 10 10	20 15 73 59 85				
H138204 H138205 H138206 H138207 H138208		<20 <20 <20 <20 <20	0.05 0.11 0.14 0.05 0.07	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	231 364 498 269 611	20 10 10 20 <10	112 82 117 114 129	3.55 1.010 5.69 0.981			
H138209 H138210 H138211 H138212 H138212 H138213		<20 <20 <20 <20 <20	0.08 0.05 0.07 0.08 0.08	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	389 264 133 610 342	10 10 <10 <10 <10	118 105 39 24 32	1.160			
H138214 H138215 H138216 H138217 H138218		<20 <20 <20 <20 <20	0.05 0.07 0.11 0.09 0.12	<10 <10 <10 <10 <10	<10 <10 <10 <10 10	98 103 161 366 294	<10 <10 <10 <10 <10	63 54 87 44 80				

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1 Page: 1 Finalized Date: 7-SEP-2009 This copy reported on 2-OCT-2009 Account: ROGORE

CE	RTIFICATE TR09090215	•		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: P.O. No.: This report is for 19 Rock sam 26-AUG-2009. The following have access ROMIOS GOLD RESOURCES SCOTT CLOSE	ples submitted to our lab in Terrace to data associated with this cert WIKJORD ELENA GUSZOWATY	e, BC, Canada on ificate: PAOLA CHADWICK	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31 CRU-QC PUL-QC	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Crushing QC Test Pulverizing QC Test	
			┘ ┌────	ANALYTICAL PROCEDUR	ES
			ALS CODE	DESCRIPTION	INSTRUMENT
			ME-OG46 Zn-OG46 Cu-OG46 Au-AA23 ME-ICP41	Ore Grade Elements - AquaRegia Ore Grade Zn - Aqua Regia Ore Grade Cu - Aqua Regia Au 30g FA-AA finish 35 Element Aqua Regia ICP-AES	ICP-AES VARIABLE VARIABLE AAS ICP-AES

To: ROMIOS GOLD RESOURCES INC. ATTN: PAOLA CHADWICK 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 7-SEP-2009 Account: ROGORE

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

									(CERTIF	ICATE (OF ANA	LYSIS	TR090	90215	
Sample Description	Method	WEI-21	Au-AA23	ME-ICP41												
	Analyte	Recvd Wt.	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
G0806116		1.64	<0.005	<0.2	1.38	7	<10	1590	0.7	<2	6.03	<0.5	14	2	84	3.96
G0806117		0.46	<0.005	0.3	1.50	4	<10	80	<0.5	<2	0.80	0.7	30	47	214	5.03
G0806118		0.54	<0.005	<0.2	1.44	16	<10	30	<0.5	<2	0.79	7.0	14	22	50	4.00
G0806119		1.27	0.007	0.9	4.19	4	<10	40	<0.5	<2	1.74	2.7	41	124	4750	7.25
G0806120		0.69	0.407	29.3	2.08	9	<10	50	<0.5	6	0.13	<0.5	7	83	2280	12.10
G0806121		0.95	0.126	5.1	3.05	27	<10	60	<0.5	5	0.67	1.1	27	87	2470	10.75
G0806122		0.97	<0.005	<0.2	1.54	2	<10	240	<0.5	<2	2.37	<0.5	12	15	44	3.09
G0806123		0.84	0.214	10.4	3.73	<2	<10	70	<0.5	2	1.00	1.4	22	63	3380	7.69
G0806124		2.29	0.752	4.5	0.18	8	<10	<10	<0.5	19	0.44	<0.5	10	<1	112	23.8
G0806125		1.53	9.25	57.1	0.19	>10000	<10	40	<0.5	56	4.57	409	349	3	333	5.86
G0806126		0.56	0.657	0.9	1.06	5	<10	20	<0.5	<2	1.10	<0.5	347	9	148	13.3
G0806127		0.59	0.010	<0.2	1.00	52	<10	310	<0.5	<2	2.54	1.3	14	6	54	4.42
G0806128		0.95	0.008	0.9	1.63	26	<10	20	<0.5	<2	0.14	<0.5	22	47	221	5.05
G0806129		0.17	0.006	<0.2	4.24	12	<10	360	<0.5	2	1.17	1.2	18	36	131	5.54
G0806130		0.96	<0.005	0.8	3.04	5	<10	120	<0.5	3	0.28	1.0	12	15	158	5.84
H138901		0.64	0.037	3.2	1.87	180	210	50	<0.5	3	9.44	4.4	56	22	2540	4.25
H138902		0.98	0.972	6.9	1.85	23	<10	180	0.8	2	7.06	0.6	42	4	>10000	7.87
H138903		0.94	0.061	1.2	1.47	11	<10	550	1.5	<2	6.92	<0.5	10	6	1090	4.18
H138904		0.58	0.024	0.3	0.90	7	<10	340	0.8	<2	6.39	<0.5	7	5	241	3.18

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 7-SEP-2009 Account: ROGORE

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

										CERTIF		OF ANA	LYSIS	TR090	90215	
Sample Description	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
G0806116 G0806117 G0806118 G0806119 G0806120 G0806121		<10 10 <10 10 10	<1 1 <1 1 <1 1	0.07 0.04 0.02 0.06 0.04	10 10 <10 <10 <10 <10	0.95 1.10 0.87 3.34 1.86 2.64	1155 763 782 1105 553 889	<1 3 1 1 8 9	0.06 0.06 0.04 0.02 0.01	2 38 8 86 6 36	1640 1250 780 820 640 940	21 8 <2 3 102 55	0.05 1.96 0.72 0.39 0.45 0.52	<2 <2 2 4 6 5	9 3 4 8 7 12	479 31 22 11 4 7
G0806122		<10	1	0.22	10	1.22	993	2	0.03	19	1070	<2	0.20	5	6	78
G0806123		10	1	0.08	<10	3.01	1145	2	0.02	36	950	9	0.33	2	11	9
G0806124		<10	<1	0.12	<10	0.05	101	74	<0.01	<1	70	26	>10.0	11	1	10
G0806125		<10	2	0.10	<10	1.74	6040	1	<0.01	102	240	9910	4.40	32	1	126
G0806126		<10	<1	0.02	<10	0.30	220	5	0.02	23	1160	12	>10.0	<2	2	78
G0806127		<10	<1	0.16	10	0.37	780	2	0.04	13	810	29	0.02	<2	7	31
G0806128		10	1	0.02	<10	1.44	754	3	0.01	21	370	94	0.07	<2	11	4
G0806129		10	<1	1.31	<10	1.88	603	2	0.34	24	850	23	0.71	5	13	102
G0806130		10	1	0.20	10	2.62	1055	2	0.01	10	540	44	0.77	<2	8	20
H138901		<10	1	0.10	10	0.60	1835	27	0.02	145	200	214	1.01	2	1	107
H138902		10	2	0.22	20	1.10	1850	4	0.01	13	3100	5	1.46	8	6	188
H138903		<10	1	0.33	10	1.01	1670	2	0.01	5	1090	14	0.08	<2	7	336
H138904		<10	1	0.39	10	0.56	1865	41	0.01	3	1000	15	0.07	4	7	263

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 7-SEP-2009 Account: ROGORE

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

										CERTIFICATE O	F ANALYSIS	TR09090215
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Zn-OG46 Zn % 0.001	Cu-OG46 Cu % 0.001		
G0806116 G0806117 G0806118 G0806119 G0806120		<20 <20 <20 <20 <20	0.04 0.28 0.26 0.33 0.49	10 <10 <10 <10 <10	<10 <10 <10 <10 <10	187 66 70 218 218	<10 <10 <10 <10 <10	57 106 1665 530 270				
G0806121 G0806122 G0806123 G0806124 G0806125		<20 <20 <20 <20 <20	0.38 0.01 0.37 0.01 <0.01	<10 <10 <10 <10 10	<10 <10 <10 <10 <10	304 43 249 6 6	<10 <10 <10 <10 10	389 32 269 7 >10000	5.09			
G0806126 G0806127 G0806128 G0806129 G0806130		<20 <20 <20 <20 <20	0.16 <0.01 0.20 0.26 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	93 36 169 121 58	<10 <10 <10 <10 <10	22 219 53 196 223				
H138901 H138902 H138903 H138904		<20 <20 <20 <20	0.19 0.25 0.07 0.07	<10 <10 <10 <10	<10 <10 <10 <10	45 667 266 129	<10 <10 <10 <10	923 224 104 46		2.07		

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1 Page: 1 Finalized Date: 17-AUG-2009 This copy reported on 2-OCT-2009 Account: ROGORE

ICP-AES

CE	RTIFICATE TR09080	141		SAMPLE PREPARATION	J
			ALS CODE	DESCRIPTION	
Project: P.O. No.: This report is for 15 Rock sam 5-AUG-2009. The following have access	nples submitted to our lab in Ter to data associated with this	rrace, BC, Canada on certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
ROMIOS GOLD RESOURCES SCOTT CLOSE	WIKJORD ELENA GUSZOWATY	PAOLA CHADWICK		ANALYTICAL PROCEDUR	ES
			ALS CODE	DESCRIPTION	INSTRUMENT
			ME-OG46 Cu-OG46 Au-AA23	Ore Grade Elements - AquaRegia Ore Grade Cu - Aqua Regia Au 30g FA-AA finish	ICP-AES VARIABLE AAS

ME-ICP41

To: ROMIOS GOLD RESOURCES INC. ATTN: PAOLA CHADWICK 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Signature:

35 Element Aqua Regia ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 17-AUG-2009 Account: ROGORE

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

										CERTIF	ICATE	OF ANA	LYSIS	TR090)80141	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
G0806101 G0806102 G0806103 G0806104 G0806105 G0806106 G0806107 G0806108 G0806109		1.72 0.91 0.59 0.50 0.50 0.22 0.44 0.96	0.040 0.006 0.682 1.190 0.249 0.208 0.008 0.984 0.984	22.0 1.1 18.3 54.0 31.3 22.4 0.8 40.4	0.04 0.03 0.87 0.51 0.31 0.66 0.28 1.29	7570 256 161 50 34 20 13 71	<10 <10 170 50 <10 40 680 200 110	30 1590 140 140 170 180 80 190	<0.5 <0.5 0.6 <0.5 <0.5 <0.5 <0.5 0.6 0.6	2 <2 5 26 19 20 <2 39	16.8 14.0 16.9 21.7 22.9 22.1 24.0 16.5	33.2 0.7 23.2 3.2 10.2 2.8 <0.5 8.2 2.5	59 23 7 4 12 7 1 40 62	4 3 10 6 7 14 6 15	>10000 709 >10000 >10000 >10000 >10000 391 >10000	4.92 4.55 5.47 3.87 2.47 3.43 1.50 8.81
G0806110 G0806111 G0806112 G0806113 G0806114 G0806115		0.97 0.57 3.00 1.79 1.76 0.71	0.227 1.605 2.06 0.577 1.395 0.026 1.655	9.4 26.6 26.3 44.1 5.6 0.9 27.9	0.96 1.00 0.39 1.28 1.46 0.60 1.05	95 95 21 52 77 41 73	<10 <10 260 110 <10 <10 280	50 110 50 10 10 130 100	0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4 22 17 2 7	8.63 23.7 13.25 12.50 5.33 16.8	3.5 1.6 2.2 1.7 <0.5 <0.5 6.1	6 4 14 41 9	5 13 4 19 12 1 11	>10000 >10000 >10000 >10000 921 >10000	4.60 3.07 12.05 11.90 >50 4.01

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 17-AUG-2009 Account: ROGORE

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

										CERTIF	ICATE	OF ANA	LYSIS	TR090	080141	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
G0806101 G0806102 G0806103 G0806104 G0806105		<10 <10 <10 <10 <10	136 3 2 2 2	0.01 0.01 0.04 0.02 0.02	10 10 10 10 10	6.64 5.15 0.49 0.43 0.20	4450 3980 1580 1540 1570	2 1 <1 1 <1	0.03 0.02 0.03 0.03 0.03	68 57 5 5 8	30 20 560 160 20	38 3 97 64 56	0.60 0.09 <0.01 1.0 1.0	990 49 15 <2 2	3 7 6 2 2	82 120 166 54 41
G0806106 G0806107 G0806108 G0806109 G0806110		<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	0.05 0.03 0.02 0.07 0.16	10 <10 10 10 120	0.51 1.05 0.85 0.44 1.76	1650 2220 1770 1130 1300	1 <1 2 1 1	0.04 0.50 0.04 0.03 0.05	6 <1 30 15 5	80 30 90 70 410	40 6 51 17 56	0.8 <0.01 1.1 0.35 0.11	<2 <2 <2 <2 <2 <2	3 1 3 1 3	54 76 143 55 71
G0806111 G0806112 G0806113 G0806114 G0806115		<10 <10 <10 10 <10	1 3 <1 <1 2	0.01 0.03 0.02 0.25 0.02	20 40 20 <10 40	0.10 0.08 0.07 0.91 0.36	1390 1145 1640 1740 948	1 1 <1 <1	0.02 0.04 0.02 0.02 0.02	5 12 13 9 6	770 390 40 <10 530	34 38 3 12 20	0.8 1.26 1.42 0.04 0.30	2 2 5 2 <2	2 5 3 <1 2	60 11 9 129 79

Г

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 17-AUG-2009 Account: ROGORE

										CERTIFICATE OF ANALYSIS	TR09080141
ample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001		
G0806101 G0806102 G0806103 G0806104 G0806105		<20 <20 <20 <20 <20	<0.01 <0.01 0.08 0.02 0.02	<10 <10 <10 <10 <10	<10 <10 <10 10 10	63 38 187 82 42	<10 <10 <10 <10 <10	2230 134 824 81 322	1.915 1.535 4.53 4.02		
30806106 30806107 30806108 30806109 30806110		<20 <20 <20 <20 <20	0.03 0.01 0.04 0.03 0.03	<10 <10 <10 <10 <10	<10 10 10 10 50	71 24 93 58 93	<10 <10 <10 <10 <10	84 24 698 353 111	3.14 4.26 3.87 1.855		
30806111 30806112 30806113 30806114 30806115		<20 <20 <20 <20 <20	0.04 0.07 0.05 <0.01 0.04	<10 <10 <10 <10 <10	10 20 20 <10 10	199 80 46 48 34	<10 <10 <10 <10 <10	59 33 125 251 592	2.38 6.21 3.08 1.075		