FIELD SEASON 2009 GEOLOGY AND GEOCHEMISTRY,

DECAR PROPERTY, BC

(NTS 093/K14)

54° 92' N, 125° 37' W 349,000 E; 6,087,000 N; Zone 10 (NAD 27)

Omineca Mining Division

BC Geological Survey Assessment Report 31334

First Point Minerals Corp.

Suite 906 – 1112 West Pender Street Vancouver, BC, V6E 2S1

Bу

Ron Britten, Ph.D., P.Eng.

Feb 03, 2010

Agent for

Cliffs Natural Resources Exploration Canada Inc.

c/o Cliffs Natural Resources Inc. 200 Public Square, Suite 3400 Cleveland, Ohio, 44114

EXECUTIVE SUMMARY

The Decar claims cover a portion of Cache Creek Complex that consists of obducted and sheared ophiolite ultramafic rocks which have been episodically deformed and serpentinized to produce naturally occurring nickel-iron alloy (awaruite).

At the Decar property disseminated, fine to coarse grained awaruite has been found within a large area. The coarser variety of awaruite (100-400 microns) is found at the Sidney and Baptiste targets. Around and between these two target areas, a fine grained variety of awaruite is present that ranges in grain size from 50 to 100 microns. Overburden masks several portions or margins of the target areas where additional exploration potential is anticipated.

The Van target also contains coarse grained awaruite but continuity of the mineralized is erratic.

Petrography and scanning electron microprobe work has confirmed the visual presence of the nickel-iron alloy over wide areas on the property and the awaruite averages 77% nickel with a range of 68 to 85% based on microprobe data.

Field work in 2009 included reconnaissance-level mapping and sampling in previously unchartered parts of the property and later detailed mapping and sampling in the target areas. The size of the Baptiste Target was doubled as a result of the 2009 field work verses 2008 and now measures 1,750 meters long by 800 to 1,300 meters wide. About 50% of this area is covered by overburden which masks the southern boundary of the Target. The northwest end of the Baptiste Target is open and requires additional mapping and sampling which will be undertaken in 2010 to define additional extensions of the mineralization.

Overburden masks the east margin of the target and minor outcrops contain coarse grained awaruite indicating good exploration potential to the east.

Future near-term work at Decar includes detailed metallurgical testing using recently collected large samples to determine the recovery of the alloy and the most cost effective extraction method. Detailed petrography of the rock samples and processed fractions from crushed, magnetic and gravity fractions are planned.

In 2010, a helicopter supported airborne magnetic survey is anticipated to cover most of the Decar Property in the next few months. Grid controlled induced polarization, ground magnetic and detailed mapping and sampling on the Baptiste and Sidney Targets will be completed following spring breakup. The results of this work will help to design a drill program in the best areas of the Targets by testing the continuity, grain size and grade of the nickel-iron alloy mineralization and to provide samples for more extensive metallurgical tests.

TABLE OF CONTENTS

1.0 INTRODUCTION
1.1 Background
1.2 Location and Access
1.3 Claim Data7
1.4 History
1.5 Current Work
2.0 REGIONAL GEOLOGY
3.0 PROPERTY GEOLOGY
3.1 Units
3.2 Structure
3.3 Alteration
3.4 Mineralization
4.0 GEOCHEMISTRY
4.1 Rocks
4.1.1 Baptiste Target Area
4.1.2 Sidney Target Area
4.1.3 Van Target Area
5.0 CONCLUSIONS
6.0 RECOMMENDATIONS FOR FUTURE WORK
7.0 EXPENDITURES
8.0 REFERENCES
AUTHOR STATEMENT AND QUALIFICATIONS
APPENDIX I ROCK SAMPLE DATA
APPENDIX IIA ACME TOTAL NICKEL SAMPLE DATA
APPENDIX IIB ACME VERSES NITON TOTAL NICKEL COMPARISON
APPENDIX III SEDIMENT SAMPLE DATA
APPENDIX IV MEMO: TESTS OF NITON NLP 502 ANALYZER
APPENDIX V PETROGRAPHIC DESCRIPTIONS

LIST OF FIGURES

Figure 1	Location of the Decar property
Figure 2	Location of Decar Claims
Figure 3a	Regional Geology Map10
Figure 3b	Regional Geology Map Legend11
Figure 4	Property Geology Map13
Figure 5	Geology of the Southern Half of Decar14
Figure 6	Property Alteration Map
Figure 7	Awaruite Grain Size and Targets17
Figure 8	Baptiste Target Area Rock Sample Nickel values
Figure 9	Van Target area rock sample nickel values
Figure 10	Stream sediment magnetic fraction locations and nickel values
Figure 11	2008 Sample results of Acme Labs versus Niton Analyser

LIST OF TABLES

Table 1	Mineral Title Claims for Decar Property	. 7
Table 2	Expenditures for 2009 Fieldwork	23

1.0 INTRODUCTION

1.1 Background

Prior to November 13, 2009 the Decar property mineral title was 100% wholly owned by First Point Minerals Corporation (FPM), a publicly traded company on the TSX Venture Exchange (symbol FPX). An option-joint venture agreement was signed on November 13, 2009 between FPM and Cliffs Natural Resources (CNR), where CNR can earn an initial 51% by spending by spending US\$5million on the property in four years, of which US\$1million is a firm commitment in year one. First Point will manage the initial exploration activities.

1.2 Location and Access

The Decar Property is situated approximately 85 km northwest of Fort St. James in Central British Columbia (Figure 1). The property is approximately 15 kilometers northwest of Trembleur Lake, which is to the west of Middle River and south of Takla Lake. The Decar Property covers a large part of the Mount Sidney Williams ultramafic complex. Access to the property is by primary forestry roads and helicopter. A BC rail line is located approximately 2 km east of the Decar claim boundary and runs along the east bank of Middle River.

Figure 1 Location map of the Decar property in Central British Columbia.

1.3 Claim Data

This assessment report will cover 33 claims listed in Table 1 and total approximately 132 square kilometers. Claims are located in Figure 2 and are centered on coordinates 54° 54' N, 125° 22' W or 349,000 E, 6,086,000 N (Zone 10, NAD 27) on NTS map 93 K/12.

<u>Tenure</u> <u>Number</u>	<u>Type</u>	<u>Claim Name</u>	Good Until	<u>Area</u> (ha)
559615	Mineral	WILL 1	2010/11/14	464.762
559616	Mineral	WILL 2	2010/11/14	464.764
559617	Mineral	WILL 3	2010/11/14	464.764
559618	Mineral	WILL 4	2011/05/31	446.354
575674	Mineral	WILL 5	2010/11/14	446.491
575675	Mineral	WILL 6	2011/02/08	446.628
575677	Mineral	WILL 7	2011/02/08	465.191
575678	Mineral	WILL 8	2010/11/14	464.954
575679	Mineral	WILL 9	2010/11/14	464.719
575680	Mineral	WILL 10	2010/11/14	465.194
575681	Mineral	WILL 11	2010/11/14	446.383
575682	Mineral	WILL 12	2010/11/14	297.647
575683	Mineral	WILL 13	2010/11/14	390.396
575684	Mineral	WILL 14	2010/11/14	223.371
575686	Mineral	WILL 15	2010/11/14	316.242
594247	Mineral	BAP 1	2010/11/14	446.78
594248	Mineral	BAP 2	2010/11/14	335.142
594249	Mineral	BAP 3	2010/11/14	465.431
594250	Mineral	BAP 4	2010/11/14	446.701
594251	Mineral	BAP 5	2010/11/14	390.879
594252	Mineral	KAR 1	2010/11/14	464.528
594254	Mineral	KAR 2	2010/11/14	464.291
594255	Mineral	KAR 3	2010/11/14	464.293
594256	Mineral	KAR 4	2010/11/14	427.273
594257	Mineral	KAR 5	2010/11/14	371.629
594258	Mineral		2010/11/14	464.525
594259	Mineral	KAR 7	2010/11/14	445.967
594260	Mineral	KAR 8	2010/11/14	297.189
594262	Mineral	KAR 9	2010/11/14	408.717
594263	Mineral	KAR 10	2010/11/14	389.917
602564	Mineral		2010/11/14	18.583
602566	Mineral		2010/11/14	148.665
603803	Mineral	VAN 1	2010/11/14	464.51

Table 1 Mineral Title Claims for Decar Property

Total Area: 13182.88 ha

Figure 2 Location of Decar Claims with tenure numbers that correlate to Table 1.

1.4 History

Since 1949, various individuals (Armstrong, 1949) or groups have examined the area of the Decar Property area for chrome, platinum and gold potential (Mowat, 1988a). Chrome and chrome spinels were investigated in the Cache Creek Group, which includes the Decar Property area (Whittaker, 1983), and awaruite was identified for the first time.

Early exploration work located west of the Decar Property, close to Mount Sidney Williams, consisted of prospecting and mapping as well as soil, silt and rock geochemical surveys (Mowat, 1988b). Subsequent work included trenching, geophysical surveys and diamond drilling (Mowat, 1990, 1991, 1994). First Point Minerals investigated the nickel-

iron alloy potential of the area (Mowat, 1997), however, in the following year the option agreement terminated due to low nickel prices and the difficulty of identifying awaruite.

First Point Minerals renewed their interest in the area and began evaluating the exploration potential for disseminated Ni-Fe alloys within the Decar Property during the summers of 2007, 2008 and 2009.

1.5 Current Work

During the field season of 2009 two campaigns were completed between June 10 and June 17 and October 5 to October 13 for bedrock mapping and collection of rock and sediment samples. The field work involved geologists Ron Britten and Peter Bradshaw and field assistants Paul Williams and Kathryn Britten. Rock samples that were all taken from outcrop on the Decar Property were analyzed and cut and polished using a diamond saw. In addition to outcrop samples, this preparation was conducted on cobbles from sediment sample sites. Standard and magnetic fractions of 51 sediment samples (See Sediment Sample Data in Appendix III) were collected from the area of the Decar claims and samples sieved to minus 60 mesh fractions and analyzed.

A portable XRF Niton NLP 502 Analyser (Niton) was instrumental for guiding rock sampling in the field. The analyser provided analyses of Ni, Co, Cu, Cr of rock samples (Appendix I), cobbles and stream samples (Appendix III). Sample 07KNB007 (analyzed by ACME, returned 2561 ppm nickel) was the standard used to check the Niton with a reading taken about every 20 sample analyses. Selected rock samples taken in 2008 were re-analyzed at ACME using analytical package 1D (Appendix IIA) to compare total nickel wet chemical analyses verses the Niton results (Appendix IIB). Appendix IV details a variety of accuracy and precision tests on the Niton NLP 502 analyser.

Polished thin sections of interesting rock samples were petrographically examined (Appendix V) and selective samples were sent for scanning electron microscopic work to confirm petrographic examinations.

Garmin 60 GPS units, using projection NAD 27, Zone 10, were directly downloaded into a computer using Garmin Map Source application, and copied into excel spreadsheets. The sample ID and location were later matched with corresponding rock and silt sample technical data that had been entered into the excel spreadsheet (Appendices I and III). The data was then imported into MapInfo for spatial plotting. Additional forestry roads were surveyed by GPS and imported into MapInfo. All other technical outcrop, structural and interpretation was compiled with excel and graphically displayed using MapInfo.

2.0 REGIONAL GEOLOGY

The Decar Property covers a portion of the Cache Creek Complex that likely represents a portion of an obducted or imbricated sequence of upper Paleozoic and lower Mesozoic oceanic rocks that have been significantly deformed and sheared. Four litho-tectonic units have been defined by Schiarizza and MacIntyre (1998) in the Cache Creek Complex (Figure 3b). Two of these units occur within or adjacent to the Decar claims, namely the Trembleur Ultramafics and North Arm Succession. The older Trembleur ultramafic units represent mantle and lower-crustal portions of an ophilolite sequence

(Figs 3a and b). Lithologies of the Trembleur Ultramafic Unit are dominated by pyroxene phyric peridotites, with lesser fine grained ultramafics, and dunites. These rock types show various overprinting styles of alteration dominated by serpentinization and carbonate-silicification with lesser talc-listwanite alteration. The lithologies of the North Arm Succession include cherts, limestones, phyllites and greenstones comprised of basalts, mafic dikes and gabbros. The two units juxtapose one another with the younger the North Arm Succession is overthrusted by the older Trembleur Ultramafic Unit.

Upper Triassic to lower Jurassic lithologies comprised of dominantly phyllites and limestones form part of the Sitlika Assemblage (shown as the orange colored unit in the southwest corner of Figure 3a). This assemblage is younger than the Trembleur ultramafic unit. The sediments are generally steeply dipping, probably folded and are in fault contact with the ultramafics.

Figure 3a Regional geology map (MacIntyre and Schiarizza, 1999 - Open File 1999-11) and First Point Mineral's claim boundary in green. See Figure 3b for legend. Orange unit=phyllite (u>JSc)

Figure 3b

Regional Geology Map Legend (MacIntyre and Schiarizza, 1999 - Open File 1999-11).

Most geological contacts are faulted or sheared (dashed lines on Fig 3a) forming a combination of thrust faults formed during obduction and cross cut by later right-lateral strike slip shear along northwest regional trending faults (aka Pinchi Lake Fault). These fault networks generate structurally complex geological contacts. North of the Decar Property, Schiarizza and MacIntyre (1998) recognized a regional west-verging open antiform in addition to minor warps and buckling that were formed during imbrication of the Cache Creek terrane.

3.0 PROPERTY GEOLOGY

3.1 Units

Geology from 2008 and 2009 field work and from MacIntyre and Schiarizza (1999) was compiled in Figures 4 and 5,

The Decar ultramafic body measures more than 15 km northwest and averages 5.5 km wide. They are the oldest units on the Decar property and consist of peridotite, lesser fine grained ultramafic and relatively minor dunite. Dark green-black peridotite contains 10 to 30% medium grained pyroxenes set in a fine to medium grained, mostly relict olivine rich matrix that is strongly serpentinized. This rock type is typically micro-fractured, crackled to intensely foliated (schistose) and mark shear zones. These micro-structures probably control the moderate to strong serpentinization or Fe-Mg carbonate-silicification alteration as noted in section 3.3.

Pods, possible layers and breccia fragments of dunite have been found along the western margin of the Baptiste Target area. Fine grained grey dunite is featureless except where brecciated (Fig 5). Dunite fragments form resistant ductile deformed clasts that are enclosed by peridotite and form sheared, subrounded elongate fragments. These fragments have a long axis that dips 30° northwest and is parallel to lineation. These rocks also occur in a major northwest trending shear zone.

Gabbro combines medium to fine grained stocks and 5 to 10 meter wide and up to 50 meter long dikes that trend northeast and east in the southern end of the Decar claims. Stocks measure from 100 m long and are elongate to the west and northwest. Differentiating fine grained gabbros verses metavolcanics can be difficult. The gabbro or microdiorite contains fine to medium grained subeuhedral feldspar and ferromagnesian minerals, mainly amphibole. Unusual serrated stockwork textures or vein borders of light feldspar have also been noted in the gabbro. Some of these gabbros and microdiorites could be coeval with the metavolcanics shown in Figure 5.

Where observed contacts of two major panels of green metavolcanics (volcanics), black phyllite and minor limestone occur in the ultramafics and are bounded on their margins by subvertical faults (Fig 5). These panels appear to be about 800 meters wide based on the limited exposures. In general, bedding is subvertical in the northern panel whereas the southern panel dips about 65° southwest and could be overturned. The northern panel coincides with a northwest trending aeromagnetic low. Both panels probably represent upper oceanic crust and are in fault contact with upper mantle rocks (peridotite). The upper units of a classic ophiolite sequence have a dike complex and layered gabbro sequences. The fault contacts between the metavolcanics and peridotites

suggest that significant sections of the ophilolite could be missing due to thrusting or shearing tectonic events or they simply didn't exist.

Across a major northwest trending fault to the southwest of the two metavolcanic panels are a massive package of north trending, thinly bedded phyllite, slate and mudstone (Sitlika Assemblage from MacIntyre and Schiarizza, 1999, shown as grey in Figs 4 and 5). Bedding dips about 75 degrees to the southwest and tight folding is suggested but not proven whereas the metavolcanic panels have probably not been tightly folded due to massive nature of the panels.

A medium grained feldspar porphyry stock in the southwest end of the Decar ultramafic unit reaches 600 m long, east trending and is altered to sericite-chlorite-Fe/Mg carbonate-calcite assemblages with iron oxide staining or disseminated sulphides in both the intrusion and peridotites. Other smaller dikes or irregular intrusions trend mainly northwest and west and are spatially associated with pervasive intense Fe/Mg carbonate-silicification and either magnetite or lesser sulphides in the ultramafics.

Overburden covers large sections of the Decar property, and includes talus, scree (avalanche deposits), glacial till, alluvial and general cover. These units mask the exploration potential of the larger targets that are described further in section 3.4.

Figure 4 Property geology map

Geology of the southern half of Decar Claim Group; metavolcanics and minor phyllite/limestone panels are outlined by the green diagonal pattern.

3.2 Structure

Microfractures in hand samples and polished thin sections indicate that the ultramafics underwent multiple breakage and brecciation events prior to and during serpentinization. These relationships are hard to discern in outcrops. Post alteration fault and shear zones are marked by slickensides, gouge, fault breccia and shear fabrics. Two major northwest trending, subvertical structures are interpreted to be fault zones. The southern-most fault bounds the east and west Baptiste target. Previous mapping by the GSC (MacIntyre and Schiarizza, 1999) defined a northeast trending, right lateral (dextral) fault (south end of Figure 3a). This structure was believed to be misinterpreted as an alteration contact, and not the juxtaposition of two units (P>CCu and P>CCua).

The most common foliations in the ultramafics dip subvertical and trend northwest. These foliations are thought to mirror diffuse faults or shear zones. On the southwest side of the property, northwest trending faults that juxtapose different rock units are not well exposed, although strong foliations or shear fabrics present in both phyllites and ultramafics suggest a fault contact including those in the Baptiste Target area.

Small cumulate layers in the ultramafic units have variable dips, with numerous subvertical attitudes and a variety of azimuths that range from north to northeast. If these layers represent beds then serious structural deformation has occurred in the ultramafics. This deformation could be related to a northerly trending fold axes, however, there is no indication of the similar style of folding in the overlying metavolcanic panels which seem dip moderately to the southwest with no observed closures.

3.3 Alteration

Serpentinization and Fe carbonate-silicification are the two major types of alteration that occur within or southeast of the property respectively (Figure 6). Rock samples taken within the peridotite are variably altered and unaltered peridotite has not been found, although, large areas of the ultramafic have not been explored within the northwest quadrant of the property.

Serpentinization, consisting mainly of chrysotile and antigorite (?), is commonly found in the ultramafics that are common within the property. These outcrops range from massive, strong peridotite to weaker, foliated and penetratively strained, exposures that are structurally complex. Most olivine has been altered to serpentine and secondary magnetite with minor brucite, awaruite, ferrichromite and ferrimagnesia with trace amounts of pentlandite and heazlwoodite. Many hand and petrographic samples indicate several structural-hydrothermal episodes. These episodes include; an initial moderate pervasive-selective serpentinization recognized by light green serpentine, later stage hydrothermal brecciation is inferred from textures of crackle breccias, rectilinear microfracturing and locally offset generations of micro-veinlets that contain a mineral assemblage of serpentine-magnetite-awaruite±talc. Rare late stage, discontinuous micro-veinlets containing carbonate perhaps related to local intrusions. Pyroxenes are partially to completely altered to serpentine or tremolite and magnetite with minor brucite.

An alteration assemblage of Fe/Mg-carbonate-silicification occurs off the southeast end the property where it is spatially associated with small feldspar-porphyry intrusions that

have been altered to sericite+chlorite+Fe/Mg-carbonate(s)+magnetite±sulphides (mainly pyrite). Fe-Mg carbonate alteration dominates this area where a strong iron oxide stain is caused by weathering of carbonate alteration. Later en echelon quartz veins cut alteration zones in the west end of the feldspar porphyry stock trends north-northeast and dips moderately east. Listwanite locally dominates and pyrite and rare chalcopyrite are associated with this alteration assemblage.

Figure 6 Property alteration map and rock sample locations (grey boxes).

3.4 Mineralization

Three major zones of relatively coarse-grained (50 to 400 microns size) disseminated awaruite (Ni-Fe alloy) occur in the Sydney, Baptiste and Van areas east, southwest and north-northeast of Mt Sidney Williams, respectively, as shown in red patches in Figure 7. A broader zone of fine-grained (<5 to 50 microns) disseminated awaruite, shown as yellow in Figure 6, encompasses the three main targets based on visual inspection in both hand samples and confirmed by analysis from polished thin section and electron microprobe (Britten 2008). Two northwest trending zones of fine to coarse grained awaruite are separated by the panel of metavolcanics (Figure 5).

The fine grained zone (yellow) in the northeast side of Figure 7 hosts the Van Target measures about 5 km long and a maximum 1.3 km wide. The second more regular fine grained mineralized zone to the southwest measures about 5 km and reaches 2.9 km wide. The Sidney and Baptiste, the largest target on the Decar Property, are located on the north and south margin of this zone.

Characteristics of awaruite and overburden have been described previously (Britten 2008).

Figure 7 Awaruite grain size and targets; all rocks samples were taken in 2007, 2008 and 2009.

4.0 GEOCHEMISTRY

4.1 Rocks

During the field seasons from 2007 to 2009 a total of 394 rock samples were collected. In 2007, 34 samples were collected (Voormeij and Bradshaw, 2008). In 2008 192 samples were collected (Britten 2008). In 2009 (this volume) 130 samples were collected. These samples were collected as hand samples or as 1 to 2 kilogram samples that were used for mineralogical or microprobe analyses. The distribution of rock samples were taken from outcrop, or less commonly, sub outcrop that ranged from 50 to 300 meter intervals depending on the permissive bedrock exposures. Many outcrops and all rock samples were analyzed using the portable Niton XRF Analyzer and provided analytical data for Ni, Co, Cu and other elements. These results are tabulated in Appendices I and III. All rock samples are shown in Figure 7. Rock samples taken in 2009 and total nickel values are shown in Figures 8, 9 and 10.

4.1.1 Baptiste Target Area

The coarse grained awaruite characteristic of the Baptiste Target trends west-southwest and measures approximately 1750 meters long (Fig 8, shown in red). The northern limit of the central and east portions at the Baptiste Target is reasonably well defined based on outcrop. The target features an irregular northern limit whereas the southern limits are masked by overburden. The estimate of the west northwest trending width of the Baptiste Target ranges from 800 to 1300 meters with overburden covering about 60% of the target area. Future ground controlled magnetic and induced polarization could help further define the Baptiste Target prior to drill testing.

Total Nickel values from the Niton analyser range from 1142 to 2753 ppm and average 1941 ppm.

Two sizeable syn- and post-mineralization northwest trending shear/fault zones bound the east and western limits of the Baptiste Targets. The eastern shear is at least 75 meters wide and consists of a well defined sub vertical northwest trending schistosity representing **a shear "s" fabric**. Along the western boundary of Baptiste, the fault contact that juxtaposes a volcanics and peridotite is not well exposed. To the northeast of this contact are two sub-vertical faults at least 15 meters wide and mark a contact between peridotite and dunite.

4.1.2 Sidney Target Area

The east margin of the Sidney target was largely covered by overburden based on field work. The relation of a zone of coarse grained awaruite located about 2000 meters southeast of Sidney (Figure 8) is unknown. Total nickel values range from 1447 to 1971 ppm.

4.1.3 Van Target Area

Currently three coarse grained awaruite patches (red units on Figure 9) at the Van Target have been mapped. The two patches of coarse grained awaruite, that occur about 700 m apart, are linked by an inferred boundary beneath alluvium (Figure 9). A west-northwest fault in northern margin of this target area has significantly brecciated and sheared the south face of the Van Hill. The third patch of coarse grained awaruite located on the north margin of the Van area is covered by alluvial material.

Rock samples range from 1335 to 2680 ppm Nickel and average 2055 ppm based on the Niton Analyzer results (Appendix I).

Figure 8 Baptiste Target area rock sample nickel values (ppm) and awaruite grain size.

Figure 9 Van Target area rock sample nickel values (ppm) and awaruite grain size.

Figure 10 Stream sediment magnetic fraction locations and nickel values (ppm).

4.2 Stream Sediments

Fifty stream sediment samples have been collected (Figure 10), described and dominant rock types recorded at each site. Standard preparation for each sample involved air drying, sieving to -60 mesh (125 micron) fractions, collecting the magnetic fraction using a pencil magnet and analyzed using a portable XRF Spectrometer (Niton). The description and analytical results of the sediment samples are tabulated in Appendix III and nickel values are plotted in Figure 10.

A large portion of the claim group is dominated by ultramafics that have high background Ni values. The magnetic fraction of silts associated with Ni range from 1,215 to 4,791 ppm. In the area of the Baptiste target, silt sample magnetic fractions range from 3000 to almost 4800 ppm Ni. The Van target area has anomalous values from 2000 to 3000 ppm Ni. Samples taken off the southwest corner of the claim group covering the Sitlika Group sediments carried less than 1000 ppb Ni including three samples that did not provide any magnetic fractions indicating there are no ultramafics above those sites.

5.0 CONCLUSIONS

The Decar claims cover a portion of Cache Creek Complex that consists of obducted ophiolite ultramafic rocks which have been episodically deformed and serpentinized to produce naturally occurring nickel-iron alloys (awaruite). Deformation has caused fold events, fault-shear activity and generated wide zones of micro-fractures.

The disseminated nickel-iron alloy (awaruite) has been found in wide areas on the Decar Property, particularly in Baptiste target that encompass coarser-grained awaruite ranging from 100 to 400 microns within a broad halo of fine grained alloy that is less than 50 microns. The Baptiste target measures 1750 m long and 800 to 1350 m wide whereas both Sidney and Van are smaller. Overburden masks several portions and margins of target areas where additional exploration potential is anticipated.

Total nickel values in rock samples range from 1142 to 2753 ppm.

6.0 RECOMMENDATIONS FOR FUTURE WORK

Future near-term work at Decar includes detailed metallurgical testing using recently collected large samples to determine the recovery of the alloy and the most cost effective extraction method. Detailed petrography of the rock samples and processed fractions from crushed, magnetic and gravity fractions are planned.

In 2010, a helicopter supported airborne magnetic survey is anticipated to cover most of the Decar Property in the next few months. Grid controlled induced polarization, ground magnetic and detailed mapping and sampling on the Baptiste and Sidney Targets will be completed following spring breakup. The results of this work will help to design a drill program in the best areas of the Targets by testing the continuity, grain size and grade of the nickel-iron alloy mineralization and to provide samples for more extensive metallurgical tests.

7.0 EXPENDITURES

Expenditures for the 2009 summer field program at the Decar Property (Table 2) consisted of mapping, rock and sediment sampling, and petrography and total \$45,416.11.

Exploration Work type	Comment	Days			Totals
Personnel (Name)*/Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Ron Britten/Geologist	June 10-17, Sept 15, Oct 5-13	18	\$628.00	\$11,304.00	
Peter Bradshaw/Geologist	June 10-17	8	\$628.00	\$5,024.00	
Paul Williams/Field Assistant	June 10-17, Sept 15, Oct 5-13	18	\$175.00	\$3,150.00	
Kat Britten/Field Assistant	June 10-17, Oct 5-13	17	\$175.00	\$2,975.00	
				\$22,453.00	\$22,453.00
Office Studies Rock/PTS exam, data input,	List Personnel				
interp	Ron Britten	6	\$628.00	\$3,768.00	
Rock sawing, data input	Kat Britten	4	\$175.00	\$700.00	
Report preparation	Ron Britten	2	\$628.00	\$1,256.00	
				\$5,724.00	\$5,724.00
Ground Exploration	Area in Hectares/List Personnel				
Ceological manning	1500 bectares/Pop Britten				
Geological mapping	1500 hectales/ Kur Bitten				
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Stream sediment	51, analysed by Niton see below		\$0.00	\$0.00	
Rock	132, analysed by Niton		\$0.00	\$0.00	
			\$0.00	\$0.00	
				\$0.00	\$0.00
Other Operations	Clarify	No.	Rate	Subtotal	
Polished Thin Sections (PTS)	6 samples, prepared	6.0	\$40.00	\$240.00	
Other (specify)			\$0.00	\$0.00	
				\$240.00	\$240.00
Transportation		No.	Rate	Subtotal	
Airfare	Vanc to Prince George	3	\$450.00	\$1,350.00	
Truck rental	4037 km at 0.54, includes gas	4037	\$0.54	\$2,179.98	
Freight				\$453.27	
Helicopter (hours)		3.6	\$1,022.68	\$3,681.65	
Helicopter fuel				\$676.50	
				\$8,341.40	\$8,341.40
Accommodation & Food	Rates per day	No.	Rate	Subtotal	
Hotel		4	\$80.00	\$320.00	
Camp	Cabin rate	16	\$80.00	\$1,280.00	
Camp Breakfast, Dinner	8 days, 3 people, \$25/person	24	\$25.00	\$600.00	

Table 2 Expenditures for 2009 Fieldwork

Groceries/Comsumables			\$0.00	\$1,183.87	
				\$3,383.87	\$3,383.87
Miscellaneous		No.	Rate	Subtotal	
Field Gear/Supplies				\$1,132.84	
Telephone	Satphone - 3 weeks	3	\$75.00	\$225.00	
Radios	4 hand held radios	4	\$100.00	\$400.00	
				\$1,757.84	\$1,757.84
Equipment Rentals		No.	Rate	Subtotal	
Niton XRF Analyser	18 days field, 4 days office hand-held field magnetic susceptibility	22	\$150.00	\$3,300.00	
KT-Kappameter meter	meter	18	\$12.00	\$216.00	
				\$3,516.00	\$3,516.00
TOTAL Expenditures					\$45,416.11

8.0 REFERENCES

Armstrong, J.E. (1949): Fort St James map-area, Cassiar and Coast districts, British Columbia; *Geological Survey of Canada,* Memoir 252, 210 pages.

Britten, R.M. (2008): Geological and Geochemical Report on the Decar Property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report

MacIntyre, D. and Schiarizza, P. (1999): Open File 1999-11 Bedrock Geology 1999-11 (1:100,000 scale)

Mowat, U. (1988a): Geochemical sampling on the Van Group, Klone Group, Mid Claim, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 17 173.

Mowat, U. (1988b): Geochemical sampling, prospecting and mapping on the Van Group, Klone Group, Mid Claim, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 19 089.

Mowat, U. (1990): Mapping and drilling program on the Mount Sidney Williams property, Omineac Mining Division; **BC Ministry of Energy, Mines and Petroleum Resources**, Assessment Report 20 541.

Mowat, U. (1991): Drilling program on the Mount Sidney Williams property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 21 870.

Mowat, U. (1994): Drilling program on the Mount Sidney Williams gold property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 23 569. Mowat, U. (1996): Drilling and sampling program on the Bornite property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 24 277.

Mowat, U. (1997): A geochemical/petrographic report on the Mount Sidney Williams property, Omineca Mining Division; *BC Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 24 906.

Schiarizza, P. and MacIntyre, D. (1998): Geology of the Babine Lake – Takla Lake Area, central British Columbia (93K/11, 12, 13, 14; 93N/3, 4, 5, 6), BC Geological Survey Branch contribution to the Nechako NATMAP Project, *Geological Fieldwork 1998, Paper 1999-1*: 33-68.

Voormeij D, and Bradshaw, P.M.D. (2008) Summer 2007, Geology and Rock Samples, Decar Property, BC; *BC Ministry of Energy, Mines and Petroleum Resources*, *Assessment Report, 16 p.*

Whittaker, P.J., 1983: Geology and petrogenesis of chromite and chrome spinel in alpine-type peridotites of the Cache Creek Group, BC; PhD thesis, Carleton Uni., 339 pp.

AUTHOR STATEMENT AND QUALIFICATIONS

I, Ronald M Britten, Ph.D., P.Eng. certifies that:

- 1. I reside at 3525 West 26th Street, Vancouver, British Columbia, Canada.
- I have degrees from the University of British Columbia B.Ap.Sc. 1974 and a Ph.D. 1982 from the Australian National University, Canberra, Australia.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (license #109865).
- 4. I have worked as an exploration geologist for more than 30 years since 1974, only in the mining and mineral exploration industry and I have worked in numerous countries.
- 5. I have spent 23 field days at the Decar Property and have supervised all aspects of the field work.
- 6. I am an officer (VP Exploration) of First Point Minerals Corp. since 1996 and I hold stock and stock options in First Point Minerals Corp.
- 7. **I have read the definition of "qualified person" set out in Nation**al Instrument 43-101 and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a Qualified Person.
- 8. I consent to the filing and any publication of this Assessment Report.

This report dated 3th of Feb, 2010

Ron M Britten, Ph.D., P.Eng. "signed and sealed"

APPENDIX I ROCK SAMPLE DATA

Awaruite Size millimeters	1 <.00502 2 0.02 - 0.05 3 .05 - 0.10 4 .12 5 .24 0 none
Minerals	awar-awaruite cpy-chalcopyrite heaz-heazlewoodite mag-magnetite mill-millerite py-pyrite serp-serpentine sul-sulphide
Other	HS-hand sample LOD-lower of detection LS-large size sample MS-moderate size sample n-no NS-no sample oc-outcrop PTS-polish thin sections tr-trace vlets-veinlets y-yes
Serp	w-weak m-moderate s-strong vs-very strong

Sample #	Target	Easting	Northing	Rock Type	Sorn	Magnetite	Awar size	Awar range	Awar %	Sulphide	Comment	Ni	Zn	Cu
Gample #	Target	Lasung	Noruning	поск туре	Jerp	widghetite	Awai_3ize	Awai_range	Awai_/0	Sulpinue	Comment	10.00	211	ou
09KNB001		350330	6084316	CD-SII/INT							rext	1962		
09KNB002		350196	6084485	peridotite	2.5	2.5	2	2 2	a-c		psbx	2269		
09KNB003		350097	6084662	peridotite	2.5	2.5				tr-py/po	mfr, sub II	2228		
09KNB004		350107	6084686	neridotite	2.5	2.5	2	2		comp sul	natchy arn: interesting text	2007		1
OOKNBOOE		250107	6094954	peridotite	2.0	2.0	1			comp, oul	paterly grit, interesting text	1990		
USKINBUUS		330020	0064634	peridotite	2.0	3	-		vv	comp, sui	CD VIEL	1000	L	
09KNB006	Sid?	349834	6084994	peridotite	2.5	2	5	4-5	a		grn patchy; good example cg	1971		
09KNB007		349574	6084871	peridotite	2.5	2	. 2	2 2	c		mfr	2493		
09KNB008		349704	6084690	peridotite	2	0.5	2	2 2	C		mfr	2162		
		349850	6084463	neridotite	2.5	2	1	1			natchy	2323		
00KND010		340017	0004405	peridotite	2.0	2	1				pateny	2325	I	ł
OBKINBOTO		349917	0084355	peridotite	2.5	2.5	4	Z	C-W		pateny	2306	L	
09KNB011		350057	6084119	peridotite	2.5	2.5	3	3 3	C		crackle	1917		
09KNB012		350397	6083991	peridotite	2.5	3.5	1	1	w		patchy	2613	935	2307
09PXB002		348105	6090101	peridotite	2.5	3	2	1-2	W			2237	882	2220
09PXB003		348146	6090339	neridotite	2	2	2	1-2	C-W	·		1917		
00000000		3 101 10	6000308	peridotite	2.5	25					mfr. notoby	2274	H	
09PXB004		348147	6090398	peridotite	2.5	2.5	2	2	a		mir, pateny	2374	I	
09PXB005		348139	6090506	peridotite	2.5	3	2	2-1	a-c		mfr	1947		
09PXB006		348248	6090484	peridotite	2.5	3	2	2-1	a			2238		
09PXB007		348319	6090179	peridotite	2.5	3	2	1-2	C		patchy	2676		
09228008		348324	6090089	neridotite	2.5	3	1	1	14	,	natchy	2643		-
000000	1	340324	6000033	peridotite	2.5			0.1	-		patchy	2043	<u> </u>	+
03PAB009	l	348319	0090032	periuotite	2.5	3	4	2-1	C		patchy	2154	┢────	
U9PXB010	Van	348500	6089890	peridotite	2.5	2	4	3-4	a		stwk, crackle	2088	L	<u> </u>
09PXB011	Van	348489	6089936	peridotite	2.5	3	4	4	a		stwk, crackle	1335		
09PXB012		348498	6090014	peridotite	2.5	2	2	2	c-a			2380		Γ
09PXB013	Van	3/18525	6090044	peridotite	2.5	3.5	1	2.4			stuk crackle	1610		1
00000014	2011	240503	6000402	peridotte	2.0	3.0	-	3-4	- a	tr pv	Stwr., GdCKIE	2010	└──	+
09PXB014		348507	6090103	peridotite	2.5	3	4	2	a	и-ру		2218	I	
09PXB015		348517	6090226	peridotite	2.5	2	1	1	tr			2231		
09PXB016		348511	6090313	peridotite	2.5	3	1	1	tr			2597		
09PXB017		348510	6090403	peridotite	2.5	3	2	2	c-a		mfr	2388		
09PXB018		348669	6090426	neridotite	2.5	2	2	2-1	c-a		mfr	2071		1
000000010		3 10005	6000271	peridotite	2.0	-		1.0			mfr	2071	H	
09PXB019		348675	6090371	peridotite	2.5	2		1-2	C-a			2519	<u> </u>	-
09PXB020		348679	6090372	peridotite	2.5	1.5	2	2 2	c-a		mfr	2110		
09PXB021		348703	6090294	peridotite	2.5	2.5	1	1	w	1		2483		
09PXB022		348675	6090229	peridotite	2.5	1	0	0				2358		
09PXB023		348689	6090128	peridotite	2.5	1	1	1	w	,	mfr. blk serp	2810		
09PXB024		348729	6089988	neridotite	2.5	2.5	0	0			mfr	2311		
00000000		249775	6090960	poridotito	2.5	2.5	2	2			nahy	2412		+
09PXB025		346773	0089809	peridotite	2.5	2.0	2				psbx	2412	L	
09PXB026		348908	6090006	peridotite	2.5	2.5	1	1	W		patchy	2381		
09PXB027		348803	6090376	peridotite	2.5	2					mfr	2579		
09PXB037		348734	6083765	peridotite	2	2	2	2 2	w	,	lattice mfr	2772		
09PXB038		348673	6083737	peridotite	2	1	1	1	w	,	lattice mfr	2615		1
0000000	Pantisto	240620	6092741	poridotito		2.5	4	4			viete	1469		+
09PXB039	Baptiste	346026	0083741	peridotite	2	2.0	4	4	a		viets	1408	<u> </u>	
U9PXB040	Baptiste	348585	6083715	peridotite	2	2.5	4	4	a		patchy	1627	—	
09PXB041	Baptiste	348527	6083728	peridotite	2	2.5	4	4	a		psbx	1888		
09PXB042		348452	6083703	peridotite	2	2	3	2-3	c		crackle	2103	915	2211
09PXB043	Baptiste	348420	6083690	peridotite	2	2.5	5	4-5	а		crackle, psbx	1856	917	2234
09PXB044	Baptiste	348334	6083666	peridotite	2	2	4	4			crackle	1905		1
000000452	Paptiste	240107	6000000	peridotite		2		4.0	-	+	or dokie	1207	i	+
03FADU45d	supriste	34818/	0083026	peridotite	2	2.5	4	4-3	a a	-	patchy	1297	007	
09RMB002	2103	349125	6085163	peridotite	2.5	3	1	1	w	1	mfr	2520	937	2247
09RMB004	Sid?	349172	6085133	peridotite	3	2.5	4	4	a-c		psbx	1488		
09RMB005	Sid?	349245	6085132	peridotite	2.5	2.5	4	4	a-c		ckbx	1447	1	
09RMB010	1	349627	6084959	peridotite	25	2	1	1	144		natchy	2629	<u> </u>	1
0000010	1	3/0600	6084020	peridotito	2.0						polony	1629		+
	l	347088	0004939	penuotite	2.5		3	, 3			psux, IIII	1028	┝───	+
09RMB012		349924	6084675	peridotite	2.5	2	1	1	C		psbx	2410		
09RMB015	1	349130	6089758	peridotite	2.5	2	2	2	c		mfr,patchy, psbx	2323		<u> </u>
09RMB020		349522	6089506	peridotite	2.5	2	4	4	a-c		ckbx	1648		
09RMB021a		349487	6089501	dunite	2.5	2	0	0			msv	1951		1
09RMB0215	1	349490	6089501	neridatite	2.0	2		3			irreg/patchy/psby	2722	l	<u>†</u>
0000400210		349490	0003301	penuoille	2.5		3				ineg/patcity/psbx	2/33	├ ──	+
09RMB022		349380	6089422	dunite	2.5	3	1	1	c		msv,fg	2376	┝───	
09RMB024	I	349224	6089359	peridotite	2.5	2	1	1	C-W			1929		
09RMB025		347926	6090514	peridotite	2.5	3	4	4	c-a		ckbx	1531	951	2088
09RMB026		347926	6090504	ab. volc			0	0			light grn wh, chl. sil-w ser vlets	1239	953	1996
09RMB030	1	347424	6091218				0				nink monz fa	275 0		
000040021-	1	247250	6001210						ł	ł	pink monz, ig	1651	└──	+
03KIVIBU31d		34/358	0091318	VOIC		0	- U	, U	ł	l	rext alt	1001	└──	+
U9RMB031b	I	347358	6091318	peridotite	2.5	2	1	1	c			2186	┝───	
09RMB032	I	347063	6091363	Bas		1	0	0		sul diss	ph & frags/ basalt, chl-fe cb	1859		

	-													
Sample #	Target	Easting	Northing	Rock Type	Serp	Magnetite	Awar_size	Awar_range	Awar_%	Sulphide	Comment	t Ni	Zn	Cu
09RMB033		346977	6091412	cb-sil/int			C	0 0			s alt, fecb I	l 1897		
09RMB034		346971	6091528	ultramafic	2	2.5	0	0 0		m chl-cb (m	g)-cal-ep, gy spots cb, mt lattice	2780		
09RMB035		346926	6091543	ultramafic	2	2.5	0) 0		tr py	(ma)-cal, av spots cb, mt lattice	2571		
00000026		246004	6001612	ultramafic	2					m obl ob	(mg) col, gy opoto ch, mt lottico	2410		
09000000		340664	0091012	uitraffialit	2	3				III CIII-CD	(mg)-cai, gy spois cb, mi lauice	2419		
0981018040		350007	6084477	peridotite	2.5	2	4	4			mir	2346		
09RMB041		349731	6084873	peridotite	2	0.5	1	1 1	v	1	mg light grn 30%-40% px	2224		
09RMB042		349665	6084986	peridotite	2	2.5	1	1 1	0		mg light grn 20% px	2400		
09RMB043		349447	6084795	peridotite	2	0.5	2	2 2			mg light grn 20% px	1804		
09RMB044		349420	6084737	peridotite	2	1	1 1	1 1			mfr	2431		
09RMB046		349436	6084627	neridotite	2	15	2	1-2		V ŵ	awar grn blk sern 2 awar sizes	2268		
000040		240526	6094621	peridotite	2.5	1.0					awar, grif bik serp) 2 awar sizes	2200		
0961018047		349320	0084331	peridotite	2.0	2.0	2	2 2		,	CKDX, lattice	2131		
09RMB048		349679	6084394	peridotite	2	2	3	3 3	C-a	1	mfr, viets bik ch	1 2185		
09RMB049	Baptiste	349803	6084312	peridotite	2.5	2.5	4	4 4			psbx orient frags	2148		
09RMB050		349985	6084195	peridotite	2	2	2	2 2-1	v	/	mfr, blk serp	3039		
09RMB051		350042	6084045	peridotite	2.5	2	2	2 2	W	/ py-diss	mix blk serp	1904	976	2443
09RMB052		350139	6083924	neridotite	2	2	3	3 1-3			nsby chivle	t 2322	979	2290
00000052		350267	6083774	peridotite	2	2		2 2			poss, os no	2405	0.0	2250
0000400054		350207	0083774	peridotite	2	2	2				p3bX, 111	2403		
09RMB054		350128	6083514	peridotite	2	2	2	2 2-1	(30% px, psbx, mfr	r 2532		
09RMB055	Baptiste	350097	6083828	peridotite	2.5	3	4	4 4	e e	1	psbx, blk serp	1976		
09RMB056		349928	6083750	peridotite	2	2	2	2 2	C-W	1	mfr	2308		
09RMB057		349877	6083971	peridotite	2	2	3	3 3		mill hz	psbx, rod text	t 1927		
09RMB058	Baptiste	349728	6083975	peridotite	2	2	4	1 3-4			patchy	/ 2225		
09RMB059	Bantiste	349622	6084079	peridotite	2	2	4				ckby mfr	1764		
000040000	Duptiste	340400	0004075	peridotite	2						ekby mfr neby	2221		
U9RIVIBU6U		349406	6084161	peridotite	2	2	4	2 2-1	, i	5	CKDX, IIII, pSDX	2331		
09RMB061		349535	6083973	peridotite	2	2	0	0 0			cb qt vlet	t 2646		
09RMB062	Baptiste	349840	6083658	peridotite	2.5	2	4	4 4	C-a	1	knobby, pen foliation, psbx	1813		
09RMB063	Baptiste	349932	6083587	peridotite	2.5	2	5	5 4-5	C-a	1	knobby, pen foliation, psbx	2337		
09RMB064	Baptiste	349951	6083480	peridotite	2.5	2	5	5 4-5	C-a	1	knobby, pen foliation, psbx	1967		
09RMB065		349834	6085931	dunite	2	2	0) 0			rext alt, sh-fluid text	t 1884		
000040067		250720	6084060	poridotito	2			2 2			nchy	1601		
000040000		350733	6004330	periodite	2	4		, <u> </u>		, 	pabz	1001		
0981018068		351001	6084776	CD-SII/INT							CD VIEts	5 2099		
09RMB069		351207	6084509	peridotite	2	2	1	l tr		tr	wh px alt to serp, ch	l 2124		
09RMB070		351215	6084280	peridotite	2	2	1	1 1	0		mfr	r 2629		
09RMB072		351284	6084120	peridotite	2	2	: 1	1 1	0		patchy	2343		
09RMB130		351194	6083177	fecb-sil			C)						
09RMB131fl		351315	6082977	peridotite			0)			wcb spots	5		
00PMB132fl	Sid	2/9952	6086022	peridotite	2	3		2 1 to 2			nchy	1979	771	2260
000000000000000000000000000000000000000	Sid	348833	0080023	peridotite	2	1		102			ulate mf 200/ m	1020	1006	2203
U9RIVIB133	Siu	348882	6085754	peridotite	2	1					viets, mi, 30%px	2330	1006	2182
09RMB140	Baptiste	348053	6083289	peridotite	2.5	3	4	1	a	1	soc, psbx, hbx, sh/banding text	t 1401		
09RMB141	Baptiste	347999	6083296	peridotite	2.5	3	4	4 3 to 4	a	1	psbx, hbx, sh/banding text	t 1386		
09RMB142	Baptiste	347897	6083579	bx	2.5	3	3	3	0	bx,	micro granular gy subrded frags	1774		
09RMB143	Baptiste	348002	6083262	ultramafic	2.5	3	1	1	r-o			1797		
09RMB144	Baptiste	347895	6083318	bx. peridotite	2.5	3	3	3		2	stripe text	1572		
000000000000000000000000000000000000000	Bantiste	3/7027	6083200	ultramafic	2.0	3	2	2 1 to 2			ckby	1/25		
000040440	Daptiste	347327	6003233	untruthunc manial at it a	2		-	1 10 2				1420		
09RIVIB148	варияте	340918	6082822	peridotite	3	2.5	3	1103	, i	; psi	DX, CKDX, Tate WIT VIELS CLYSTAIIITE	1469		
09RMB149	Baptiste	34/2/1	6083170	gb			0)		lä	ate stage wh granular felsic stwk	3/3		
09RMB154	Baptiste	347334	6083677	peridotite	3	3	4	4 3 to 4		psb;	<, hbx, crude, banding stripe text	t 1608		
09RMB155	Baptiste	347358	6083734	peridotite	3	2.5	4	1	8	l cl	kbx, mf, tect, text sim 154 above	1152		
09RMB156	Baptiste	347496	6083740	gb			0)			sim R149	338		
09RMB158	Baptiste	347758	6083661	unite & peridotite	1.5	3		1	1	1	light av fg granular	2721	1	
09RMB159	Bantiste	347708	6083643	neridotite		2	1		r./		late blk sern-awar viet	2220		
000040100	Daptiste	347708	0083043	peridotite	1	2		1 40 2	1-0		late bik selp-awar vier	2020		
03KIVIB100	варизсе	347643	0083597	periootite	2	2.5		103			CKDX, DSDX	2053		
09RMB161	Baptiste	347556	6083560	peridotite	2.5	3	5	5 4 to 5	a	1	bx, react rim	n 1380		
09RMB162	Baptiste	348599	6083466	ultramafic	2	2.5	3	3 2 to 3	0		v, weird text	t 1942		
09RMB163	Baptiste	348482	6083618	peridotite	2.5	2	3	3	a	1	psbx	1668		
09RMB164	Baptiste	348101	6083618	dunite, tect bx	2	2	3	3 1 to 3	r-c	bx, frags for	dun in later P; mainly awar in P	2430		
09RMB165A	Baptiste	348033	6083627	dunite	2	3	1	1	1	r s	whylet serp-trace away	2312		
09RMP165P	Bantisto	2/20033	6003027	neridatita	2	25		13 to 4			nchu	1/07		
00DMAD4CC	Daptiste	340022	0005732	peridotte	2.5	2.5	4	5.04	<u> </u>	1	psbx	1492	001	2200
U9RMB166	Baptiste	347931	6083779	peridotite	2.5	2.5	4	<u> </u>	a	1	psbx	1384	801	2398
09RMB167	Baptiste	347938	6083638	intrusive, tect bx		2	1	1	r-c	ault bx, friable,	subrded frags, feox serp?-awar	2194		
09RMB168	Baptiste	347909	6083636	peridotite	2.5	2	3	3 2 to 3			k	1674		
09RMB169	Baptiste	347811	6083679	peridotite	2.5	3	2	2	0		psbx, cbnx	2052		
09RMB170	Baptiste	347770	6083698	dunite	1	2	1	1	r-0		serp-awar viets	2753		
09RMB171	Bantiste	3/1777	6083776	neridotite	25	2		3 2 to 3			nshy ckhy	10/15		
000040472	Deptiste	347772	6003770	pendotte	2.5			- 10 5	<u> </u>		p307, CKD7	1343		
U9KIVIB1/2	вартіste	347770	6083759	dunite	1	3	1	1	1	1	teox serp-mt-awar viets	i 2658		

APPENDIX IIA ACME TOTAL NICKEL SAMPLE DATA

Client:

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Crush, split and pulverize rock to 200 mesh

1:1:1 Aqua Regia digestion ICP-ES analysis

Number of

Samples

46

46

ADDITIONAL COMMENTS

First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 2S1 Canada

VAN09001837.1

Test

0.5

Wgt(g)

Report

Status

Completed

Acme Analytical Laboratories (Vancouver) Ltd. Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Method

Code

R200

1D

Submitted By:	Peter Bradshaw
Receiving Lab:	Canada-Vancouver
Receive d:	May 25, 2009
Report Date:	June 02, 2009
Page:	1 of 3

CERTIFICATE OF ANALYSIS

CLIENT	JOB IN	VFORM	A TION
--------	--------	-------	--------

Project:	None Given
Shipment I D:	
P.O. Number	
Number of Samples:	46

SAMPLE DISPOSAL

RTRN-PLP Return RTRN-RJT Return

Acres does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 2S1 Canada

CC: Ron Britten

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acree assumes the liabilities for actual cost of analysis only. ** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

ΛΔ	me	ah	S											906 - Vano	1112 W. ouver BC	Pender 8 V6E 2S1	it. Canada				
1020 Cor Phone (6	rdova St. East Vanco 304) 253-3158 Fax (6	uver BC 04) 253-	V6A 4/ 1716	Acme A3 Can	Analyt ada	ical Lab	oratori	es (Var	couver) Ltd.		Project Report	t: Date:	None June	Given 02, 2009						
						www	v.acme	lab.co	n			Page:		2 013	P	art 1					
CERTIFIC		IALY	SIS													VA	N09	001	837	.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	C
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	p pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	p pm	2
	MDL	0.01	1	1	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.0
08PCL094	Rock		<1	7	8	18	⊲0.3	1956	91	821	4.40	<2	8	4	<2	<1	1.0	4	4	9	0.00
08PCL096	Rock		<1	6	4	21	⊲0.3	2329	95	768	4.25	<2	10	4	<2	<1	0.7	5	4	14	0.04
08PCL097	Rock		<1	32	4	18	⊲0.3	2177	99	881	4.81	<2		<2	<2	<1	1.0	4	4	14	0.05
08PCL099	Rock		<1	11	4	17	⊲0.3	2329	102	896	4.52	<2		4	<2	<1	0.8	6	4	15	0.07
08PCL100	Rock		<1	13	4	16	<0.3	2299	97	834	4.40	<2		2	<2	<1	0.7	5	4	18	0.00
08PCL101	Rock		<1	11	4	12	<0.3	2036	85	724	4.20	<2	14	<	<2	<1	0.6	4	4	10	0.00
08PCL102	Rock		<1	21	4	13	<0.3	1848	76	803	3.85	<2	10	~	<2	<1	0.6	3	4	15	0.13
08PCL103	Rock		<1	<1	4	10	<0.3	2096	85	717	4.12	<2		4	<2	<1	0.8	6	4	21	0.16
08PXB225	Rock		<1	3	4	18	<0.3	2291	99	830	4.55	<2	11	4	<2	<1	0.8	7	4	13	0.00
08PX8226	ROCK		<1	10	3	27	40.3	2242	97	849	4.73	<2	11	4	<2	<1	0.9		<	15	0.0
08RMB102	ROCK		<1		<	10	<0.3	2203	87	004	3.95	<2	10	~	<2	<1	0.8		4	12	0.00
08RMB103	Rock		<1	1	<	13	<0.3	1650	82	703	4.40	<2	11	~	<2	<1	0.8	-	4	21	0.2
08RMB108	Rock		<1	2	4	14	<0.3	2302	105	1032	3.95	<2	40	~	<2	3	0.8		0	12	0.44
00RMB109	Rock		<1		0	13	40.3	2320	91	625	3.97	52	40	~	<2	<1	0.0				-0.0
00RMD110	Rock			12		16		2349		879	4.60		10	~	2					10	
00RMD111	Rock			12		10		2019	80	079	4.00	2	10	~	2		0.9			19	0.00
08RMB113	Rock		- 1	8	2	10		2206	92	844	4.56	*2		~	<2	- 1	0.7			14	0.0
08RMB114	Rock		<1	7		17	40.3	2009	92	839	4.52	<2	13	0	<2	<1	11	5		16	0.12
08RMB115	Rock		<1			17	-0.3	2055	94	885	4.71	<2		0	<2	<1	1.0			15	0.00
08RMB116	Rock		<1	11	4	17	<0.3	2316	95	850	4.59	<2	10	2	<2	<1	0.9	5	4	18	0.00
08RMB117	Rock		<1	7	4	17	<0.3	2306	100	876	4.71	<2		~	<2	<1	0.9	8	4	16	0.00
08RMB118	Rock		<1	6	4	18	<0.3	2433	104	911	5.19	<2	11	- 2	<2	<1	1.0	8	4	6	0.00
08RMB119	Rock		<1	16	4	12	<0.3	2083	100	863	4.59	10		2	<2	2	1.0	7	4	14	0.56
08RMB120	Rock		<1	5	4	15	<0.3	1988	84	735	4.31	<2	10	4	<2	<1	0.7	7	4	16	0.14
08RMB122	Rock		<1	2	4	14	<0.3	1833	89	710	4.30	<2	9	4	<2	<1	0.7	6	4	9	0.0
08RMB123	Rock		<1	8	4	14	⊲0.3	1922	87	710	4.36	<2	11	4	<2	<1	0.8	7	4	16	0.0
08RMB125	Rock		<1	9	4	14	<0.3	1833	81	788	4.20	<2		4	<2	<1	0.7	7	4	14	0.0
08RMB126	Rock		<1	6	4	18	⊲0.3	2407	100	832	4.65	4	11	4	<2	<1	0.9	8	4	15	0.0
08RMB127	Rock		<1	10	4	19	<0.3	2185	101	907	4.64	<2	8	<2	<2	<1	0.9	7	4	22	0.05
																					_

This report supe nodes all provides preliminary and that reports with this file number dated prior to the date on this certificate. Signature indicates that approvel, preliminary reports are unsigned and should be used for reference only.

Client:

Client: First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V&E 281 Canada

Part 2

VAN09001837.1

None Given

2 of 3

June 02, 2009

Project:

Page:

Report Date:

Acme Analytical Laboratories (Vancou 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

		1											
	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	P	La	Cr	Mg	Ba	n	в	AI	Na	ĸ	w	S
	Unit	%	ppm	ppm	%	ppm	%	p pm	%	%	%	ppm	%
1	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05
08 PCL094	Rock	<0.001	2	331	19.54	<1	<0.01	<20	0.17	0.03	<0.01	<2	<0.05
08 PCL096	Rock	0.001	2	613	18.62	<	<0.01	<20	0.20	< 0.01	<0.01	<2	<0.05
08 PCL097	Rock	<0.001	2	436	21.10	<	<0.01	<20	0.35	< 0.01	<0.01	<2	<0.05
08 PCL099	Rock	<0.001	2	630	20.60	<	<0.01	<20	0.25	< 0.01	<0.01	2	<0.05
08 PCL100	Rock	<0.001	2	675	18.93	<	<0.01	<20	0.27	< 0.01	<0.01	<2	<0.05
08 PCL101	Rock	<0.001	2	465	15.78	<	<0.01	<20	0.12	< 0.01	<0.01	<2	<0.05
08PCL102	Rock	<0.001	2	685	16.84	<	<0.01	28	0.16	< 0.01	<0.01	<2	<0.05
08 PCL103	Rock	<0.001	2	998	19.99	<	<0.01	88	0.17	< 0.01	<0.01	2	<0.05
08 PXB225	Rock	<0.001	2	510	19.39	<1	<0.01	<20	0.15	< 0.01	<0.01	<2	<0.05
08 PXB226	Rock	<0.001	2	602	18.90	<1	<0.01	<20	0.17	< 0.01	<0.01	2	<0.05
08 RMB102	Rock	<0.001	2	451	17.50	<1	<0.01	<20	0.19	< 0.01	<0.01	3	<0.05
08 RMB103	Rock	<0.001	2	855	17.01	<	<0.01	24	0.28	< 0.01	<0.01	<2	<0.05
08 RMB108	Rock	<0.001	2	814	21.08	<	<0.01	75	0.16	< 0.01	<0.01	<2	0.05
08 RMB10 9	Rock	<0.001	2	261	18.38	<	<0.01	<20	0.19	< 0.01	<0.01	3	<0.05
08 RMB110	Rock	<0.001	<1	1576	5.05	<	<0.01	<20	1.46	< 0.01	<0.01	<2	<0.05
08 RMB111	Rock	<0.001	2	786	19.73	<1	<0.01	<20	0.31	< 0.01	<0.01	2	<0.05
08RMB112	Rock	<0.001	2	440	17.28	<	<0.01	<20	0.08	< 0.01	<0.01	<2	<0.05
08 RMB113	Rock	<0.001	2	483	19.39	< <	<0.01	<20	0.13	< 0.01	<0.01	3	<0.05
08 RMB114	Rock	<0.001	2	585	20.45	<	<0.01	<20	0.24	0.03	<0.01	2	<0.05
08 RMB115	Rock	<0.001	2	517	20.39	<	<0.01	<20	0.27	0.05	<0.01	2	<0.05
08 RMB116	Rock	<0.001	2	626	19.62	<	<0.01	<20	0.17	< 0.01	<0.01	3	<0.05
08RMB117	Rock	<0.001	2	628	20.08	<1	<0.01	<20	0.22	< 0.01	<0.01	2	<0.05
08RMB118	Rock	<0.001	2	249	20.64	<1	<0.01	<20	0.05	< 0.01	<0.01	<2	<0.05
08 RMB119	Rock	<0.001	2	903	19.50	4	<0.01	54	0.19	< 0.01	<0.01	3	0.10
08 RMB120	Rock	<0.001	2	693	16.88	<	<0.01	<20	0.19	< 0.01	<0.01	3	<0.05
08 RMB122	Rock	<0.001	2	400	16.89	<	<0.01	47	0.07	< 0.01	<0.01	2	<0.05
08RMB123	Rock	<0.001	2	688	18.28	<1	<0.01	25	0.29	< 0.01	<0.01	2	<0.05
08 RMB125	Rock	<0.001	2	570	17.51	<1	<0.01	30	0.20	< 0.01	<0.01	2	<0.05
08RMB126	Rock	<0.001	2	663	20.03	<1	<0.01	<20	0.19	< 0.01	<0.01	2	<0.05
08RMB127	Rock	<0.001	2	792	20.60	<1	<0.01	<20	0.33	<0.01	<0.01	2	<0.05

This report supe nodes all provides preliminary and load reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

Client: First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 2S1 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Project: None Given Report Date: June 02, 2009

Page:

												Page:		3 of 3	P	art 1					
CERTIFICATE O	F AN	IALY	SIS													VA	NOS	9001	837	.1	
	Method	WGHT	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Min	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
1	MOL	0.01	1	1	3	1	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01
08RMB129 Rock		L	<1	7	4	11	⊲0.3	1645	76	660	4.35	<2	10	4	<2	<1	1.0	6	4	26	0.51
08RMB132 Rock		<u> </u>	<1	13	4	15	⊲0.3	2450	82	992	3.35	<2	10	<2	<2	<1	0.5	7	<	10	0.01
08RMB152 Rock			<1	3	4	16	<0.3	2401	107	1043	4.60	2	10	4	<2	<1	1.0	8	4	21	0.09
08RMB155 Rock			<1	5	4	24	<0.3	2355	98	885	4.80	<2		2	<2	<1	1.0	10	4	8	0.05
08RMB205 Rock			<1	7	4	8	<0.3	1960	80	698	3.76	<2	15	4	<2	<1	<0.5	8	0	8	0.02
08RMB226 Rock			<1	10	6	9	<0.3	2365	100	872	4.64	<2	-	4	<2	<1	<0.5	9	4	14	0.05
08RMB228 Rock			<1	9	5	12	<0.3	2044	97	1052	4.68	<2	-	3	<2	<1	<0.5	11	4	26	0.02
08RMB240L Rock			<1	16	6	12	<0.3	2480	104	1044	4.83	<2		3	<2	<1	0.5	11	4	24	0.02
08RMB227L Rock			<1	15	4	12	<0.3	2342	95	1007	4.47	2	4	4	<2	<1	0.5	11	4	20	0.04
08RMB261L Rock			<1	17	3	12	<0.3	2223	91	932	4.34	<2		4	<2	<1	0.5	9	4	22	0.02
08RMB214L Rock			<1	18	4	19	<0.3	2209	106	900	4.63	<2		3	<2	<1	<0.5	9	3	36	0.10
07PXB028L Rock			<1	12	4	9	<0.3	2266	90	824	4.16	<2		<2	<2	<1	<0.5	10	<	17	0.03
08RMB205L Rock	$\neg \neg$		<1	5	4	12	<0.3	1884	98	1049	4.68	<2		<2	<2	<1	0.5	9	4	8	0.01
08RMB241L Rock			<1	16	4	9	⊲0.3	2188	92	1051	3.80	<2		4	<2	<1	<0.5	9	4	21	0.05
08PCL093 Rock			<1	7	4	10	<0.3	1966	90	829	4.61	<2	4	4	<2	<1	0.6	8	4	9	0.19
08PXB241 Rock			<1	11	4	12	<0.3	2448	102	875	4.54	<2		4	<2	<1	0.6	10	4	15	0.04

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client:	First Point Minerals Corporation 906 - 1112 W. Pender St.
	Vancouver BC V6E 2S1 Canada

Project:	None Given
Report Date:	June 02, 2009

Page:

3 of 3 Part 2

VAN09001837.1

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	P	La	Cr	Mg	Ba	n	в	AI	Na	ĸ	w	8
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05
08 RMB129	Rock	<0.001	2	1134	16.18	<	≪0.01	76	0.41	< 0.01	<0.01	3	♦.05
08RMB132	Rock	<0.001	2	535	17.49	~	<0.01	<20	0.10	< 0.01	<0.01	3	0 .05
08 RMB152	Rock	<0.001	3	1067	22.76	< N	<0.01	101	0.25	< 0.01	<0.01	<2	9 .05
08 RMB155	Rock	<0.001	2	317	20.32	<	⊲0.01	<20	0.08	< 0.01	<0.01	2	<0.05
08 RMB20 5	Rock	<0.001	3	520	16.31	 	<0.01	23	0.09	< 0.01	<0.01	<2	\$.05
08 RMB226	Rock	<0.001	3	610	18.36	<	<0.01	<20	0.14	< 0.01	<0.01	<2	<0.05
08 RMB22 8	Rock	<0.001	3	1435	20.54	<	<0.01	<20	0.26	< 0.01	<0.01	<2	<0.05
08 RMB24 0L	Rock	0.003	3	1275	21.83	2	<0.01	<20	0.24	< 0.01	<0.01	<2	<0.05
08 RMB22 7L	Rock	<0.001	3	838	18.96	<1	<0.01	<20	0.18	< 0.01	<0.01	<2	<0.05
08 RMB26 1L	Rock	0.002	3	1173	20.36	<1	<0.01	<20	0.25	< 0.01	<0.01	<2	<0.05
08 RMB214L	Rock	<0.001	3	1677	21.55	2	<0.01	22	0.63	< 0.01	<0.01	<2	0 .05
07 PXB028L	Rock	0.002	3	824	19.23	<1	<0.01	<20	0.27	< 0.01	<0.01	<2	<0.05
08 RMB20 5L	Rock	<0.001	2	859	16.80	4	<0.01	<20	0.12	< 0.01	<0.01	<2	Ø.05
08 RMB24 1L	Rock	0.001	3	1207	20.47	<u>^</u>	<0.01	25	0.19	< 0.01	<0.01	<2	805
08 PCL093	Rock	<0.001	3	388	18.88	<1	<0.01	<20	0.11	0.02	<0.01	<2	<0.05
08 PXB241	Rock	<0.001	3	633	20.31	<	<0.01	<20	0.22	< 0.01	<0.01	<2	<0.05

This report supe nodes all provides preliminary and load reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

Client: First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 251 Canada

VAN09001837.1

1 of 1 Part 1

Project	None Given
Report Date:	June 02, 2009

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

1D 1	10	45	4.00						_								
		10	10	1D	1D	10	1D	1D	1D	1D	1D	10	1D	1D	10		
Zn /	Ag	N	Co	Min	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca		
m pp	n ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%		
1 0	0.3	1	1	2	0.01	2	8	2	2	1	0.5	3	3	1	0.01		
18 🗠	s <0.3	2291	99	830	4.55	2	11	2	2	<1	0.8	7	<3	13	0.06		
18 <0	3 ⊲0.3	2274	97	865	4.52	2	\$	4	2	<1	0.7	6	<3	13	0.06		
12 <	2 <0.3	2480	104	1044	4.83	2	<8	3	2	<1	0.5	11	<3	24	0.02		
11 <	<0.3	2355	100	1042	4.67	2	<8	3	2	<1	0.6	11	<3	24	0.02		
															j.		
76 1	1.1	50	8	595	2.29	42	11	2	3	65	5.2	5	<3	73	0.89		
84 0	0.8	50	8	624	2.33	44	14	2	5	67	5.4	4	<3	76	0.90		
13 1	3 1.0	54	9	666	2.53	52	10	2	5	75	5.6	3	<3	81	0.97		
10 0	0.8	53	9	677	2.49	51		2	4	75	5.6	5	5	80	0.97		
11 0	0.9	56	10	627	2.39	48	5	0.07	4	68	6.4	5	5	84	0.93		
<1 <	<0.3	<1	<1	2	<0.01	~2	<8	<2	\$	<1	<0.5	<3	<3	<1	<0.01		
<1 <	<0.3	<1	<1	2	<0.01	2	\$	2	2	<1	<0.5	<3	<3	<1	<0.01		
	-1 25			- CALL			1942				1.411.0	201	DECR	100			
44 <	<0.3	5	4	550	2.05	<2	<8	2	4	63	<0.5	<3	<3	37	0.55		
43 ⊲0	<0.3	4	4	523	1.80	<2	8	<2	4	55	<0.5	<3	<3	36	0.51		
	2 m 1 18 18 11 11 77 84 12 10 11 44 45	Zn Ag m ppm 1 0.3 18 <0.3	Ag Ni m ppm ppm 1 0.3 1 18 <0.3	Ag Ni Co m ppm ppm ppm 1 0.3 1 1 18 <0.3	Ag Ni Co Mn m ppm ppm ppm ppm ppm 1 0.3 1 1 2 18 <0.3	<1<	<1<	Zn Ag Ni Co Mn Fe m ppm ppm ppm ppm ppm % 1 0.3 1 1 2 0.01 18 <0.3	Zn Ag Ni Co Mn Fe As m ppm ppm ppm ppm ppm % ppm 1 0.3 1 1 2 0.01 2 18 0.3 2274 97 853 4.55 <2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Žn Ag Ni Co Mn Fe As U Au m ppm ppm	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

This report supermides all previous preliminary and final reports with this file number dated prior to the date on this out fitcate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

Client: First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 251 Canada

VAN09001837.1

Project: None Given Report Date: June 02, 2009

Page:

1 of 1 Part 2

	Method	1D	1D	1D	1D	1D	1D	1D	10	10	1D	1D	10
	Analyte	P	La	Cr	Mg	Ba	TI	B	AL	Na	ĸ	w	5
	Unit	%	ppm	ppm	%	ppm	%	p pm	%	%	%	ppm	96
	MDL	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05
Pulp Duplicates													
08PXB225	Rock	<0.001	2	510	19.39	<1	<0.01	<20	0.15	<0.01	<0.01	<2	<0.05
REP 08PXB225	QC	<0.001	2	504	19.69	<1	<0.01	<20	0.15	<0.01	<0.01	<2	<0.05
08 RMB240L	Rock	0.003	3	1275	21.83	2	<0.01	<20	0.24	<0.01	<0.01	<2	<0.05
REP 08RM B240L	QC	0.003	3	1245	21.32	1	<0.01	<20	0.23	<0.01	<0.01	<2	<0.05
Reference Materials	1												- ii
STD DS7	Standard	0.068	10	187	0.97	404	0.11	29	0.95	0.08	0.45	3	0.17
STD DS7	Standard	0.070	11	194	1.01	412	0.11	30	0.99	0.08	0.46	3	0.18
STD DS7	Standard	0.073	12	210	1.10	448	0.13	33	1.10	0.09	0.51	3	0.19
STD DS7	Standard	0.072	12	210	1.11	444	0.13	39	1.09	0.10	0.50	2	0.19
STD DS7 Expected	Construction of	0.08	13	179	1.05	370	0.124	39	0.959	0.073	0.44	4	0.19
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<0.05
BLK	Blank	< 0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<0.05
Prep Wash	and and the first of the second se	1999-0011-0		- 20	20045	77723	2500.0	- 64	124.35	-	282.917-		1.1
G1	Prep Blank	0.080	6	9	0.61	258	0.14	<20	1.03	0.09	0.55	<2	<0.05
G1	Prep Blank	0.078	6	9	0.57	238	0.13	<20	0.96	0.07	0.50	<2	<0.05

This report supermides all previous preliminary and final reports with this file number dated prior to the date on this out fitcate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

APPENDIX IIB ACME VERSES NITON TOTAL NICKEL COMPARISON

Since 2007 the accuracy and precision of the Niton NLP 502 analyser that is used in the field has been studied (see Appendix IV). Selected samples taken during the 2008 field season were analyzed by Acme labs using package 1-D. The results from Acme labs were compared to data acquired from the Niton analyzer (Figure 11). A weak correlation (R^2 =0.244) suggests that higher Ni concentrations yields lower values from the analyser.

Element concentrations from the Niton analyser were often under or over-reported compared to Acme analytical results. In instances when the Ni concentration was under reported by the analyser, it is speculated that a slight nugget effect may be produced due to the majority of the results have disseminated medium to coarse grained awaruite exceeding 0.08%. This is evident in samples 08RMB132, 08RMB126, and 08PXB225. When element concentrations were over reported by the analyser, **the analyser's Ni** reading was found to be erroneous by factors of 1.2 to 1.9. Higher Ni Niton values compared to Acme data, could be related to the presence of chromite and, to a lesser extent, magnetite. The presence of chromite may greatly reduce the accuracy of the **analyser's ability to detect nickel, as seen from chromite**-bearing samples 08RMB103, 08RMB110 and 08RMB129 (see Appendix I *in* Britten, 2008). A weaker correlation also exists between vein related magnetite and a reduction of the accuracy of Ni readings.

APPENDIX III SEDIMENT SAMPLE DATA

Sample No	Easting	Northing	Sediment	Notes	Ni
09PXB028s	346564	6081497	standard	sed, volc,?	1781
09PXB030s	344763	6081407	standard	sed, volc	0
09PXB031s	344995	6081810	standard	sed, volc, other	829
09PXB032s	341680	6078581	standard	volc, sed, int	0
09PXB033s	345106	6079711	standard	FeOx stain peb, sed, phy	0
09PXB034s	343648	6080867	standard	seds, other	852
09PXB035s	352304	6084000	standard	?, int, volc, sed, other	1816
09PXB036s	351105	6083123	standard	volc, (?), other	2778
09KNB001s	350235	6084427	standard		2011
09KNB002s	350198	6084471	standard		4791
09KNB003s	349591	6084949	standard		1938
09KNB004s	349809	6084496	standard		3559
09RM B 003s	349152	6085143	standard		2403
09RM B 006s	349279	6085136	standard		3561
09RM B 007s	349387	6085115	standard		2805
09RM B 008s	349454	6085102	standard		18 18
09RM B 009s	349470	6085040	standard		2682
09RM B 013s	348907	6089739	standard		2735
09RM B 014s	349146	6089740	standard		2572
09RM B 016s	349220	6089743	standard		2613
09RM B 017s	349769	6089787	standard		2593
09RMB018s	349727	6089873	standard		2213
09RM B 0 19s	349522	6089506	standard		2366
09RM B 023s	349317	6089294	standard		2545
09RM B 025s	347926	6090504	standard		2649
09RM B 027s	347851	6090555	standard		1462
09RM B 028s	347593	6090803	standard		3903
09RM B 029s	347424	6091218	standard		1213
09RM B 037s	349639	6082893	standard		3751
09RM B 038s	350166	6084308	standard		2625
09RM B 039s	349962	6084466	standard		2531
09RM B 045s	349404	6084641	standard		2111
09PXB046s	349528	6082830	standard		909
09PXB047s	346835	6082490	standard		3227
09PXB048s	346427	6081411	standard		1484
09RM B 066s	350002	6085613	standard		1736

Sample No	Easting	Northing	Sediment	Notes	Ni
09RM B 068s	351001	6084776	standard		1604
09RMB071s	351271	6084142	standard		1735
09RM B 134s	347566	6086850	standard		2742
09RMB 135s	347659	6087813	standard		3419
09RMB 136s	348148	6088728	standard		2783
09RM B 137s	348909	6082788	standard		3062
09RMB 138s	348388	6083244	standard		3151
09RMB 139s	348129	6083369	standard		3844
09RM B 146s	348146	6082680	standard		1834
09RMB 147s	348718	6082680	standard		1215
09RM B 150s	347128	6083450	standard		3022
09RMB151s	347168	6083461	standard		3091
09RM B 152s	347249	6083799	standard		4116
09RM B 153s	347259	6083809	standard		4711
09RMB157s	347350	6084310	standard		3810

APPENDIX IV MEMO: TESTS OF NITON NLP 502 ANALYZER

Author Peter Bradshaw - December 2007

A series of test were run to determine how to most effectively use this analyser, to check the precision and accuracy under various conditions and to determine the effect of variables such as: different styles of sample presentation (pulps in mylar holders, pulps in baggies, pulps in field bags, hand specimens, cut surfaces); effect of moisture; effect of surface roughness and air gaps; etc. This work was focused on Ni, with some attention paid to Fe and Cr.

GENERAL CONCLUSIONS

- 1. For *single* measurement of 30 sec of *outcrop or hand samples* in the field for Ni, Fe and Cr can be in the +100% 60% range and can be used for *very general* conclusions only.
- 2. The precision generally improves x2 when the count time is increased by x4 as predicted by the manufacturers, while at the same time the detection limit reduced by approximately x2.
- 3. For *outcrop or hand specimens* a better result is obtained by taking readings from different samples rather than taking several readings from the same sample, and the more readings taken the better the precision. For the same parameters considerably better precision is obtained from Ni and Fe than for Cr (probably due to the course grained nature of the chromite)
- 4. Averaging 3 to 4 or 6 analyses from different parts of an outcrop or hand samples with a 60 sec count is a good compromise between speed and accuracy. To increase the reliability increase the number of different places analysed rather than time.
- 5. Multiple readings *for pulps* in the mylar holders (plastic containers with thin film support on the base with a thickness of 6 microns) all fall with the +/_ range stated by the analyser which is approximately +/- 10% for Ni, 2% for Fe and 12% for Cr at the concentration levels tested and a counting time of 60 seconds used. The improvement in accuracy by averaging 3 readings for homogenized *pulps* samples is very marginal. It would be better to increase the counting time on the *pulps* rather than averaging several readings.
- 6. For Ni and Fe the mean difference between the 3 readings on a single *cut surfaces* on samples (i.e. the variability of reading on one sample) is a bit worse for cut surfaces than pulp and much worse for hand specimens indicating that the roughness of the surface is a greater cause of poor precision than variable content of metal within the sample.
- 7. The detector resolution is tested by the shutter calibration each time calibration is done and displayed on the screen and should be in the order of 220 keV
- 8. Using the ACME samples as standards the analyser was *recalibrated*.
- 9. The light weight "snack baggies" do not degrade the signal for the 3 elements tested any more than the 6μ thin film support in the mylar holders and therefore can be used

in the field with the same reliability as the mylar holders for soil and sediment samples (keeping in mind the need to also homogenize the samples and to dry them – see paragraph 12 below). Paper and field plastic bags degrade the signal by ~20% for Ni, ~30% for Fe and ~ 50% for Cr. These figures double with a double thickness of paper. A 2.5mm air gap reduces the value by ~ 5% for Ni, 30% for Fe and Cr; a 5mm gap by ~20%, 50% and 50% and a 10mm gap by ~40%, 60% and 60%. Therefore a 1mm gap, probably a very common occurrence on outcrop samples, can be expected to reduce the value by ~5% for Ni and 10 to 20% for Fe and Cr.

10. For wet *sediment samples* the value was reduced by the same % whether the sample was just wet enough to get it damp or if there was free standing water. For Ni this reduction was ~40% at 1,500 ppm Ni dry, ~25% at 1,000 ppm Ni dry and ~20% at 500 ppm Ni dry.

For Fe the reduction was $\sim 35\%$ between 3 and 4% Fe dry.

Fe Cr the reduction was ~ 30% between 1,500 and 3,000 ppm Cr.

The same would apply to soil samples.

For soil and sediment samples, if they are dried and sieved the field, with a 60 second count should have an accuracy of 10% and detection limit of \sim 250 ppm.

DETAILS of CONCLUSIONS

1. Field Results vs Acme Lab results

Initially 72 individual hand samples were analysed once in the field camp on Aug 9/07 with a single 30 second reading using the factory calibration, and later analysed by Acme by their standard hot HCl-HNO₃ extraction except using a 15gm sample.

Conclusions

- For a single 30 sec reading on outcrop the Ni field results can be anywhere from +100% to -60% of the analytical result.
- Field results taken in this manner should only be used for broad general conclusions about the Ni level, e.g. to insure all samples >1,500ppm Ni are collected all samples with a single field reading of 30 seconds >750 need to be collected.
- -

2. <u>Multiple Readings of the Same Sample to Check Homogeneity and</u> <u>Reproducibility of the Pulp</u>

Some of the pulps from the 72 samples from 1 above were obtained from Acme and mounted in the mylar holders and held in the Niton stand. A series of tests were run by analysing several pulps 6 times each using the factory calibration and a 60 second count. For the first 3

readings the sample was undisturbed. Between each of the next 3 the sample was shaken and rotated to mix the pulp in the holder.

Conclusions

- Multiple readings for pulps in the mylar holders all fall with the +/_ range stated by the analyser which is approximately +/- 10% for Ni, 2% for Fe and 12% for Cr at the concentration levels tested and a counting time of 60 seconds used.
- The pulps are reasonably homogeneous as they give the same readings on average if they were undisturbed or shaken and rotated between readings.
- A graph of pulps vs Acme results for shows correlations of For Ni y= 1.145 + 262, R² =0.86 For Fe y=0.589 + 2.11, R2 =0.682 For Cr y=0.719 -224, R2 = 0.154
- The analyser was recalibrated using these factors from this time on.

3. Multiple vs Single Readings on Pulps Mylar Mounted

A few samples were examined to see what the improvement would be in the correlation to the Acme results by analysing the mylar mounted pulps 3 times and comparing the average to analyzing them once only. Counting time was 60 sec. The results were as follows:

Element	R^2 with average of 3	R ² against 1 st	R^2 against 2^{nd}
	analysis	analysis only	analysis only
Ni	0.88	0.84	0.84
Fe	0.80	0.80	0.81
Cr	0.19	0.16	

Conclusion

- The improvement in accuracy by averaging 3 readings for homogenized pulp samples is very marginal. It would be better to increase the counting time on the pulps rather than averaging several readings, see item 7 below.

4. Effect of analysing with different coverings and different air gaps

Experiments were run on Ni, Fe and Cr with results, which are average of 4 samples, as follows.

	% difference from Acme value					
	Ni ppm	Cr ppm				
Atomic No	28	26	24			
Analyte Energy, Kα, KeV	7.48	6.40	5.41			
6µ Mylar - not moved	105	70	97			
Snack bag - not moved	108	71	109			
snack bag - moved	106	72	103			
lab paper bag for pulps - not moved	80	46	43			
lab paper bag for pulps - moved	74	47	42			

double lab paper bag (at end) - moved	58	29	18
Plastic field bag	81	72	55
6µ Mylar + 2.5 mm air gap - not moved	95	56	72
6µ Mylar + 5 mm air gap - not moved	80	50	50
6µ Mylar + 10 mm air gap - not moved	61	42	38

Data provided by Niton in their Nov 6/05 Applications Update shows the x-ray transmission properties of various thin films. FP is using the 6μ Mylar film provided by Niton, - curve "I" in the figure below.

TRANSMISSION PROPERTIES OF VARIOUS THIN-FILM MATERIALS AND GAUGES

NOTE, for the elements FP is using the atomic number is >24 and the KeV >5.9

Conclusions

X-ray penetration

- For the 3 elements tested the response to different coverings and air gaps is roughly proportional to their atomic No i.e. the lower the atomic No the greater the effect of thicker coverings and bigger air gaps
- The light weight "snack baggies" do not degrade the signal for the 3 elements tested any more than the 6µ Mylar
- Paper and field plastic bags degrade the signal by ~20% for Ni, ~30% for Fe and ~ 50% for Cr. These figures double with a double thickness of paper
- A 2.5mm air gap reduces the value by ~ 5% for Ni, 30% for Fe and Cr; a 5mm gap by ~20%, 50% and 50% and a 10mm gap by ~40%, 60% and 60%. Therefore a 1mm gap, probably a very common occurrence on outcrop samples, can be expected to reduce the value by ~5% for Ni and 10 to 20% for Fe and C.

5. Outcrop homogeneity

At several locations in the field multiple hand specimen sized samples were collected over several 10's of m^2 and have been retained. For 2 of these multiple specimen samples 8 individual "hand specimens" were analysed 3 times each so the variation within a hand specimen vs multiple samples from a larger outcrop could be assessed. Results were as follows

07PXB074BAcme value (not available yet)			
	Ni	Fe	Cr
"total average" i.e. arithmetic avg of all 3 readings of the 8	2290	3.63	673
samples, i.e. 24 readings			
Diff. between avg of 1 st reading on 1 st 3 samples and "total avg."	170	.14	131
Diff. between avg of 1 st reading on 1 st 4 samples and "total avg."	117	.10	98
Diff. between avg of 1 st reading on 1 st 5 samples and "total avg."	90	.07	72
Diff. between avg of 1 st reading on 1 st 6 samples and "total avg."	31	.03	77
Diff. between avg of 1 st reading on 1 st 7 samples and "total avg."	11	.02	124
Diff. between avg of 1 st reading on all 8 samples and "total avg."	46	.00	124
Diff. between avg of 2 nd reading on all 8 samples and "total avg."	25	.06	53
Diff. between avg of 3 ^{ed} reading on all 8 samples and "total avg."	21	.06	56

07PXB076B Acme value (not available yet)			
	Ni	Fe	Cr
"total average" i.e. arithmetic avg of all 3 readings of the 7	2227	3.62	423
samples, i.e. 21 readings			
Diff. between avg of 1 st reading on 1 st 3 samples and "total avg."	38	.32	427
Diff. between avg of 1 st reading on 1 st 4 samples and "total avg."	39	.15	258
Diff. between avg of 1 st reading on 1 st 5 samples and "total avg."	71	.05	122
Diff. between avg of 1 st reading on 1 st 6 samples and "total avg."	35	.03	111
Diff. between avg of 1 st reading on all 7 samples and "total avg."	69	.04	218
Diff. between avg of 2 nd reading on all 7 samples and "total avg."	42	.06	40
Diff. between avg of 3 ^{ed} reading on all 7 samples and "total avg."	130	.02	101

Conclusions

- *A better result is obtained by taking results from different samples rather than taking 2 or more readings from the same sample.*
- Obviously the more readings the better but a minimum 3 and preferably 5 to 6 readings appears a reasonable compromise.
- Considerably better precision is obtained from Ni and Fe than Cr

6. <u>Comparison of pulps vs cut surface vs hand specimen/outcrop</u>

Using the 22 samples analyses were completed to judge the effect of analySing different surfaces. Summary below.

	ACME	NITON				
	Avg of	Pulps	Hand			
	all		surface	Samples		
	samples					
Number of samples		22	6	22		
Ni	<mark>2173</mark>					
Mean difference from the average value of						
the 3 readings (%)		3.3	4.2	9.0		
Correlation with Acme - R^2		0.69	0.84	0.49		
Difference of average of all samples Acme						
/ Niton		-276	-292	-322		
% difference between avg. Acme and avg.						
Niton		-12.7	-13.4	-14.8		
Fe	<mark>4.57</mark>					
Mean difference from the average value of						
the 3 readings (%)		1.1	2.7	7.1		
Correlation with Acme - R^2		0.73	0.36	0.45		
Difference of average of all samples Acme						
/ Niton		1.70	1.92	1.52		
% difference between avg. Acme and avg.						
Niton		37.2	42.0	33.2		
Cr	<mark>920</mark>					
Mean difference from the average value of						
the 3 readings (%)		7	21.6	20.8		
Correlation with Acme - R^2		negative	0.11	negative		
Difference of average of all samples Acme						
/ Niton		503	263	661		
% difference between avg. Acme and avg.						
Niton		54.7	28.6	71.8		
Mean difference from the average value of						
the 3 readings (%)		7	21.6	20.8		

Conclusions

These conclusions are based on a very limited sample set and so are preliminary

- For Ni and Fe the mean difference between the 3 readings on a single samples (i.e. the variability of reading on one sample) is a bit worse for cut surfaces than pulp and much worse for hand specimens indicating that the roughness of the surface is a greater cause of poor precision than variable content of metal within the sample
- The cut-surface and pulps have very roughly the same correlation with the Acme samples for the individual readings. The hand specimen surface results are significantly worse.

- The AVERAGE % difference, i.e. the difference between the average Ni in all 22 samples and the same for the 3 surfaces tested are only ~+/-15%. Fe and Cr are quite a bit worse.

7. Effect of Moisture

Three stream sediment samples were analyzed in a baggie. First sample analyzed dry, second sample dampened throughout with water and third totally saturated with water.

Conclusions

- The analytical value was reduced by the same % whether the sample was just enough water to get it damp or if there was free standing water.
- For Ni this reduction was ~40% at 1,500 ppm Ni dry
 - ~25% at 1,000 ppm Ni dry
 - ~20% at 500 ppm Ni dry
- For Fe the reduction was ~ 35% between 3 and 4% Fe dry
- Fe Cr the reduction was ~ 30% between 1,500 and 3,000 ppm Cr

APPENDIX V PETROGRAPHIC DESCRIPTIONS

	oliv	vine	срх								<u> </u>	
sample#	fresh	psuedo	fresh	psuedo	serp	trem	brucite	magnetite	chromite	awaruite	ni sulphide	talc
09RM B 140	\checkmark	V		\checkmark	70-80%	?		$\sqrt{\sqrt{1}}$	\checkmark	V		cal-talc vlets
pseudobreccia	• awar is triangular rods; rare mt with awar incl (<20µ); <5 and 50-150µ euhedral chr											
crude layering	• secondary ol? Dog-tooth spar-appearing mantles on ol(?) clear cleavage displayed - something else											
blk-grn serp matrix	• aggregate or aggregate-cummulate opx											
variable grn patches	• mt is <5-500µ											
09RM B 155	\checkmark		5-10%		60-70%			\checkmark	\checkmark	\checkmark		
pseudobreccia	 irregular equa 	nt, rare triangula	ır awaruite <5µ a	and 50-100µ, loca	al mt mantle							
large crystals, px + frags	• bx to pseudob	oreccia; definate	opx									
	 disseminated 	mt <5µ, commo	only 5µ									
	• chromite /w ir	reg-embayed m	argins >500µ	-			-	-				
09RM B 156												
gabbro?harzburgite?	• hb rich, possil	ble alteration? a	anorthite-gabbro	o /w sphere, stro	ngly pleo chro ic	hornblende with	poikilitic texture	e				
	• cpy+py dissen	nnated as 5-9µ g	grains; local py-c	py mantled by b	iotite; cpy <310µ							
	•mt5µ dissem	inated										
	 anorthite has 	low releif; 2nd g	rain has higher r	eleif								-
09RMB 158					>90%			\checkmark	\checkmark	1, fg	?	
fine grained gy	• probe remnar	nts and microve	inlets /w fresh, f	g awaruite <5-10	µ widely spread o	disseminated; m	inor sulph?					
ghost microfractue veinlets /w	 awaruite is pre 	esent as mainly	micro fracture ir	nfills and microv	einlets							
serpentine	euhedral chr c	rystals, mantled	l by mt?									
	 interlocking, least 	ow-relief serp	1	•			•	•			1	1
09RMB 162						?	?	\checkmark	\checkmark	\checkmark		
pseudobreccia	 variable texture 	res in awaruite -	serrated, triangu	ular, irregular-eq	uant, and bladed							
					• CO re	e spongy chr? T	exture enclosed	lbymt				
	• trem? Epi? Hi	gh releif, high bir	refringence, not	pleochroic, spli	ntery shark toot	h-like crystals						
	 post-serpenti 	ne-veinlets, high	n Ca >3%, +Na, lo	ow Mg. Shark to	oth spar-like tex	ture	1	1		2 nons 1)		
09RMB 164		\checkmark			70%	\checkmark	?	\checkmark	\checkmark	> 2)	√?	
fragments are fine grained, grey	• composite: av	war mantled by r	nt +later pent in	period; larger co	omp in fg grey ur	nit, less in c.g. du	inite	-	-		-	-
same as 158 in peridotite	 interlocked sh 	nreddy serpentin	iite									
	core is chr mantled by Fe-rich mt; abundant fg gy											
09RMB 164	\checkmark				60%					\checkmark	\checkmark	
later fg ol	• ol shattered s	howing serpent	ine alteration									
	 >100µ composites - awaruite mantled by pentlandite / heazlewoodite; vfg <5-100µ: awaruite is disseminated 											