BC Geological Survey Assessment Report 31380

Exploration 2009

Mineral Tenures 513516 and 606445

Reconnaissance Geochemical Sampling and Physical Work Donna Project

Vernon Mining Division British Columbia

BCGS Maps 082L018 & 019

Latitude 50°07'57" N, Longitude 118°24'27" W

November 2009

Garrett Paul Ainsworth, B.Tech.

Table Of Contents

1.0	INT	FRODUCTION	
	1.1	Location, Access and Title	4
	1.2	Climate and Topography	5
	1.3	Previous Production and Exploration	5
2.0	GE	OLOGY	8
	2.1	Regional Geology	
	2.2	Property Geology	9
		2.2.1 Lithology	
		2.2.2 Structure and Metamorphism	
		2.2.3 Mineralization	
3.0	200	9 WORK PROGRAM	
	3.1	Stream Sediment Geochemistry	
		3.1.1 Sampling Method	
		3.1.2 Sample Preparation, Analysis, and Quality Control	
		3.1.3 Results	
	3.2	Rock Geochemistry	
		3.2.1 Sampling Method	
		3.2.2 Sample Preparation, Analysis, and Quality Control	
		<u>3.2.3 Results</u>	
4.0	CO	NCLUSIONS	13
5.0	RE	COMMENDATIONS	
6.0	RE	FERENCES	15
7.0	STA	ATEMENT OF QUALIFICATIONS	17

LIST OF DRAWINGS

- Figure 1 Location
- Figure 2 Mineral Tenure Location
- Figure 3 Historical Exploration Compilation
- Figure 4 Regional Geology
- Figure 5 Property Geology
- Figure 6 Stream Sediment Geochemical Survey
- Figure 7 Rock Geochemical Survey

LIST OF TABLES

- Table 1
 Stream Sediment Geochemical Results
- Table 2Rock Geochemical Results
- Table 3Rock Sample Descriptions

LIST OF APPENDICES

- Appendix A Lumby Climate Normals
- Appendix B BC MINFILE Records
- Appendix C Assessment Cost Statement
- Appendix D Opal Resources Physical Work Report
- Appendix E ALS Chemex Analytical Reports

1.0 INTRODUCTION

1.1 Location, Access and Title

The property is located in the Vernon Mining Division in south-central British Columbia, and is approximately 60 km east to southeast of Vernon, BC (Figure 1). The approximate 1080 ha property covers the east flank of Monashee Mountain, and its center is about 3.6 km from Keefer Lake at the headwaters of the Kettle River (Figure 2). ESO Uranium Corp. (ESO) holds additional mineral tenures adjacent to the north and east of the tenures described that are not part of this technical assessment report. Additional property information is included in the table below:

BCGS Maps	082L018 and 082L019
UTM North	5551174 to 5556282 m (NAD 83, Zone 11N)
UTM East	397561 to 400784 m (NAD 83, Zone 11N)
Mining Division	Vernon
Exploration Area	Monashee Mountains
Project Name	Donna Project

Table A: Property Location Information

The property is readily accessible from Vernon along BC Highway #6 for 85 km to the Keefer Lake Forest Access Road. This forest access road is followed northeasterly for 9 km where a four-wheel drive road branches off to the north before a bridge crossing over the Kettle River, and leads 1 km onto the property.

Vernon is the closest major supply center with drilling and heavy equipment contractors, and helicopter and fixed wing airplane available for charter. Food, fuel and limited supplies are available in Lumby (about 50 km from property), and to a lesser extent in Cherryville (about 30 km from the property).

ESO optioned mineral tenure 513516 from Harold Jones (90% owner) and Matthew Yorke-Hardy (10% owner) as stated in ESO's news release of July 15th, 2009:

"The terms include a payment of a total of \$100,000 over 4 years and the issuance of a total of 300,000 shares over 4 years and total work commitments of \$400,000 over 4 years. A net smelter royalty of 2% is to be paid from production and an advanced royalty of \$30,000 per annum, deductible from the royalty will be due on the anniversary of every year following the exercise of the option. A 50% buyout of the royalty for \$1,000,000 and a right of first refusal for the remaining 50% are agreed."

Mineral tenure 606445 was acquired online by ESO on June 22, 2009. The locations of the tenures are plotted on the BC Mineral Titles online map at <u>www.mtonline.gov.bc.ca</u>. ESO's mineral tenures are shown on Figure 2, which was

created by importing TRIM Positional Map data from the BC Integrated Land Management Bureau into geographic information software Geosoft Target. The table below lists the details of the mineral titles:

Title Name	Tenure #	ure # Area (ha) Registered Owner		Expiry (upon report acceptance)
DONNA	513516	724.85	Harold Jones & Matthew York- Hardy	October 4 th , 2010*
DONNATOO	606445352.17Benjamin Ainsworth (for ESC Uranium Corp.)		Ainsworth (for ESO	June 22 nd , 2011*

Table	B:	Property	Title	Description
TUDIC	Ξ.	roperty	1 ILIC	Description

* Based on acceptance of this assessment report

1.2 Climate and Topography

Environment Canada's climate normals recorded at Lumby Sigalet Road between 1971 and 2000 are in Appendix A. Daily average temperatures range from -1.8 to -8.0 degrees Celsuis in January and 10.1 to 25.6 degrees Celsius in July. Annual precipitation averages 628.3 mm, with 164.9 cm falling as snow. The ground is generally clear of snow from early May to early October.

The property is characterized by relatively steep slopes that lead up to a somewhat flat summit with elevations ranging from 1281 to 1712 m. The central part of the property was observed to contain thick brush of second growth fir and hemlock. The north, east and west sections of the property have commercial-sized fir, hemlock, pine and spruce that have been partially logged. Rock outcrops are rather sparse, and are better accessed in road cuts and historical trenches across the property.

1.3 Previous Production and Exploration

The property is situated within an area from Cherryville southeast to Needles which has a gold placer history dating from the 1870's to the present. Limited production came from a number of streams in this area. The Kettle River and Yeoward Creek are adjacent to the south and north of the property, respectively, and are listed on BC MINFILE as a past gold placer producer (Appendix B). Other placer gold placer production was reported for Marsh Creek 5 km to the southwest, Barnes Creek 8 km to the southeast, Monashee Creek 5 km to the northwest, and Cherry Creek 12 km to the northwest of the property (Appendix B).

MINFILE records show intermittent small-scale production occurred at Morgan and St. Paul located about 1.4 km and 1.6 km west of the property, respectively

(Appendix B and Figure 2 & 4). The ore mined at these showings was narrow quartz veins (less than 0.6 meters wide) with occasional native gold, disseminated pyrite, some arsenopyrite and smaller amounts of galena, sphalerite and tetrahedrite. A total of 392 tonnes producing 5630 grams gold, 112,406 grams silver, 3720 kilograms of lead, and 1258 kilograms of zinc were produced between 1914 to 1973 at Morgan and St. Paul (Appendix B).

The Monashee is another record in MINFILE that is located about 5.4 km west of the south end of the property. The ore at Monashee was sulphide rich quartz veins where 2193 tonnes of ore was mined to produce 11,415 grams of gold, 50,916 grams of silver, 706 kilograms of lead, and 190 kilograms of zinc between 1939 and 1940 (Appendix B).

The property was discovered in 1973 as a prospect for polymetallic veins, and is shown on the BC MINFILE as Dona (Appendix B and Figure 2).

Dona was discovered by El Paso Mining and Milling Company through a systematic stream-sediment sampling program (Figure 3). El Paso's initial program indicated anomalous arsenic in sediment content originating from the east end of Monashee Mountain and the northwestern flank of Yeoward Mountain (Mackenzie, 1973). Further work included detailed sediment and soil sampling, selective float rock sampling, and an Electromagnetic (EM) Survey. An area of highly anomalous arsenic values in soils coincident in part with gold, silver and lead anomalies varied from about 60 to 180 m in width, and extended at least 1200 m along a strike of N50°W (Figure 3). Gold in soil assayed up to 4200 ppb (Ryback-Hardy, 1973). Heavy sulfide float rock assayed as high as 22.8 g/t gold, and 1700 g/t silver (Figure 3) (Mackenzie, 1973). A moderately strong conductor displaced slightly to the east of the arsenic anomaly was generated by the EM Survey (Ryback-Hardy, 1973).

In 1974 El Paso completed 13 trenches totaling 1915 m, and 19 percussion drill holes totaling 980 m (Figure 3). A Self-Potential Survey of approximately 6.1 line kilometers was carried out, but did not define any targets. Trenching exposed numerous narrow quartz veins mineralized in gold and silver. Rock assay values reached 29.7 g/t gold and 90 g/t silver over 2.29 m, and 112.4 g/t gold and 39.3 g/t silver over 0.08 m in Trenches 4 and 8, respectively (Figure 3). The average grade of these veins is approximately 0.69 g/t. Occasional small pods of massive arsenopyrite-stibnite yielded the highest values in gold and silver. The best drilling intersection was 35.2 g/t gold from 23.8 to 24.4 m in P-6 (Figure 3) (Jones, 1974).

In 1982 F. Marshall Smith carried out assessment work that included reopening four of the 1974 El Paso trenches. Smith noted that geophysical work completed on the property had not defined any drill targets. The highest rock assays during the 1982 trenching were 140.3 g/t Au and 1.8 g/t Ag over 2.3 m, and 21.7 g/t Au and 0.34 g/t Ag over 2.1 m in El Paso's Trench 1A. Smith indicated that the grade of the deposit within the mineralized horizons is about 4.1 g/t gold with minor silver values. He determined that trenching had located 10 mineralized horizons of

skarned limy cracked crystal tuff and debris flow that had an average thickness of 6 m, and ranged up to 12.8 m (Smith, 1982).

In 1984 L.A. Bayrock completed a work program that comprised 3 trenches totaling 380 m. No high gold or silver values were encountered, although encouraging alteration minerals and sulfide mineralization were observed (Bayrock, 1984).

In 1988 a limited rock and stream sediment geochemical sampling program was conducted by Hi-Tec Resource Management Ltd. The highest rock assay value was 0.70 g/t gold and 442 g/t silver in a well mineralized phyllite and tuffaceous unit. A sediment sample from a stream that drains off of the mineralized zone of the Donna claims yielded 1020 ppb gold and 70 ppm zinc (Collins, 1988).

In 1992, Phelps Dodge commenced a soil geochemical survey comprising 112 sampled locations (Figure 3) to re-establish El Paso's 1973 gold with coincident pathfinder element anomaly. Phelps survey outlined a coincident gold-arsenic soil anomaly 1200 m long as (Cameron, 1992).

Phelps Dodge expanded their soil geochemical survey grid, and sampled bedrock in reopened and new trenches in 1993 (Figure 3). The gold-arsenic soil anomaly was expanded to 2000 m long and up to 300 m wide with gold values up to 3470 ppb. The highest bedrock sample was 8.1 g/t gold and 253.5 g/t silver over a 2 m chip sample in El Paso's Trench 6. Rock samples recovered from trenching contained slightly anomalous gold throughout that was related to low angle shears with high gold values (Fox, 1993).

In 1996 James W. McLeod conducted a limited diamond drill hole program. Three AQ-size holes totaling about 180 m were drilled on the property (Figure 3). The best intersection was 10.1 g/t gold and 6.2 g/t silver from 14.3 to 14.9 m in hole 96-1 (McLeod, 1996). Very few core samples were analyzed due to the lack of funds.

From 1999 to 2001 Harold M. Jones carried out biogeochemical surveys on the property. The 1999 and 2000 surveys acted as pilot tests to assess the usefulness of a biogeochemical survey on the property. The survey area covered the known gold-base metal mineralized zone established from previous exploration, and confirmed the presence of elevated values of gold pathfinder elements (silver, arsenic, antimony, cadmium and manganese) from specific foliage sampling (Jones, 2000, 2001). The 2001 survey expanded the elevated occurrence of pathfinder elements south of the known gold-base metal mineralized zone (Jones, 2002).

2.0 GEOLOGY

2.1 Regional Geology

The oldest rocks in the region belong to the Proterozoic Monashee Complex, which form the basement to the Monashee Mountains. These pericratonic rocks are composed largely of amphibolite and gneiss (Koffyberg, 2006).

The Monashee Complex is overlain unconformably by a west-northwest trending inter-layered package of Paleozoic and Mesozoic (Carboniferous to Permian – possibly Triassic) sedimentary and volcanic rocks of the Thompson Assemblage, which was formerly referred to as the Cache Creek Group. This sequence is believed to have undergone sub-greenschist facies metamorphism synchronously with Jurassic to Cretaceous orogenic events with some deformation having occurred before deposition of the Upper Triassic sediments and volcanics (Jones, 2002).

The Thompson Assemblage appears unconformably overlain to the north of Monashee Mountain by Triassic age mixed sediments and volcanics of the Slocan Group, and volcanics of the Nicola Group. These Triassic mixed sediments and volcanics exhibit low grade green schist metamorphism due to regional causes (McLeod, 1996).

The Columbian Orogeny from Middle Jurassic to Cretaceous resulted in calc-alkaline plutonism represented by the Nelson Intrusions. The plutons from this event are exposed to the south of Monashee Mountain. The Nelson Intrusions are found within the Thompson Assemblage as dykes and small intrusive bodies of mostly granodiorite and diorite (rhyodacite to andesite) composition (Koffyberg, 2006; McLeod, 1996).

Tertiary (Miocene to Pliocene) basaltic flows of the Chilcotin Group are present west of Monashee Mountain as cap rock or as valley flows. Fault bounded blocks of basalt are common, as they were likely down-dropped along low angle normal faults adjacent to high grade metamorphic Okanagan and Monashee Complexes (McLeod, 1996). Figure 3 shows the regional geology of the area.

Precious and base metal deposits in the region are thought to be controlled by Eocene extensional faults. Polymetallic mesothermal quartz veins are lead-rich, and contain associated gold, silver, copper, zinc, antimony and arsenic. In several parts of the region where these polymetallic quartz veins occupy low angle Eocene structures, they are interpreted to be root zones of listric normal faults. At shallow to intermediate structural levels these faults are potential host structures for epithermal previous metal veins, replacments and stockworks that could support a low grade bulk tonnage deposit (Fox, 1993). Figure 4 shows the regional geology of the area.

2.2 Property Geology

2.2.1 Lithology

The property has little outcrop exposed, and has been geologically mapped based on knowledge of the regional geology, and historical trenching. Smith (1986) best summarizes the property geology as quartz latite to dacite flows amongst interbedded sediments with varying calcareous pyritic interbeds, albitic tuffs and tuffaceous limestone that have been intruded by dioritic intrusives.

The southwestern portion of the property is underlain by the Thompson Assemblage, while the north and east portions are underlain by the Slocan and Nicola Groups (Figure 4).

The Thompson Assemblage is observed on the property as interbedded dark grey argillite (calcareous argillite and limestone west of historical trenches), buff to grey felsic volcaniclastic rocks and dacitic tuff (Fox, 1993).

The Slocan Group is observed as interbedded grey, green and buff phyllite and shale that is overlain by hornblende-bearing, massive to poorly bedded latite tuff of the Nicola Group (Fox, 1993).

A fine to medium grained, equigranular, hornblende diorite and quartz diorite forms a northwesterly striking elongate pluton, which is partially conformable with the enclosing sedimentary rocks. Fine grained biotite-rich diorite dikes and small equigranular granitic dikes cut both the sedimentary rocks and hornblende diorite intrusion (Fox, 1993).

2.2.2 Structure and Metamorphism

Rocks underlying the property are intensely deformed, and the area has undergone a period of cleavage formation and fold development (Thompson, 1988). The Thompson Assemblage rocks have been isoclinally folded about northwesterlystriking axes with folds overturned to the northeast. In proximity to the historical trenches, a northwesterly isoclinal syncline that plunges at about 15° northwest appears to have been refolded about northeasterly-striking axes. Northwesterly-striking axial planar cleavage from early folding of the Thompson rocks is common, whereas the northeasterly folds area observed without accompanying axial planar fabric (Fox, 1993).

On the northeast portion of the property Slocan Group rocks have a well developed penetrative fabric striking at 80° and dipping moderately southwest. This foliation is cut by a subvertical fracture cleavage striking to the northwest, which is commonly infilled with quartz and calcite (Fox, 1993).

Shear zones exposed in the historical trenches were observed to postdate the folding events. The shear zones are best developed in the hornblende diorite intrusions as shallow dipping structures that contain boudinaged sulphide-bearing quartz veins with elongation in a northerly direction. Poorly preserved cataclastic fabric in shear zone wallrock with a flat to shallow dipping fracture cleavage is common in historical trenches (Fox, 1993).

A northerly-striking fault juxtaposes calcareous argillite and limestone against siliceous siltstone on an exposed road-cut along a trail to the northern trenches (Fox, 1993).

All rocks in the district are partially skarnified with actinolite and clinozoisite the most common alteration mineral in the sediments and limy tuffs. The flows do not appear to be the sole cause of the alteration, as these limy rocks are themselves altered with epidote, clinozoisite, and some muscovite (Smith, 1986). Emplacement of sub-concordant intrusive sections has likely alterated plagioclase feldspars to chlorite and sericite, which are often observed on quartz veinlet walls (McLeod, 1996).

2.2.3 Mineralization

Flat to shallow-dipping shears within the diorite intrusive exposed in some of the trenches host quartz veins, which in places contain pods and irregular masses of sulphides such as arsenopyrite, pyrite, pyrrhotite, stibnite, galena, minor chalcopyrite, tetrahedrite-tennantite, and possibly sphalerite. Thickness of these sulphide bodies ranges from a few millimeters to a maximum of about 10 cm, and do not exceed a few meters in length. Adjacent to the sulphide quartz veins and shears are irregularly distributed silicified zones that contain disseminated pyrite up to 2% (Fox, 1993).

Another location of mineralization occurs at the interface where sediments are overlain by rubble of tuffaceous material rich in lime with varying amounts of sulphides and quartz. The sulphides occur as finely disseminated grains, and in pods or masses parallel to the bedding (Smith, 1986).

Jones (2002) summarizes the mineralization as distinctive hematite-rich, stacked, stockwork-like zones within the intrusive and extrusive units. The sulphide-bearing quartz veins (or silicified zones) typically strike between N20°E and N45°W, and dip 20-45° west or southwest; a small amount have a very low dip angle. Most of the veins follow the bedding (or shearing parallel to bedding), but some are related to crosscutting fractures or faults. The veins are very irregular, and show offsets from 6 to 60 cm on crosscutting fractures (Jones, 2002).

Figure 5 shows the geology of the property.

3.0 2009 WORK PROGRAM

Exploration on the property was conducted from September 16th to 18th, 2009, and comprised reconnaissance stream sediment and rock geochemical sampling. The purpose of this work was to confirm and further delineate historical anomalous gold stream silt samples on and surrounding the property. Representative rock samples were recovered and analyzed to provide baseline assay values for each rock type encountered on the property. A Garmin GPSmap 60CSx® was utilized to locate all sample locations, as well as roads and trenches travelled. The UTM Co-ordinate system was used with map datum NAD83 in zone 11N.

Physical work was conducted by Opal Resources Canada Inc. between September 11th and 18th, 2009, and consisted of clearing heavy brush from about 3.75 km of historical exploration roads and trenches. The assessment cost statement is in Appendix C, and the physical work report by Opal Resources is in Appendix D.

3.1 Stream Sediment Geochemistry

3.1.1 Sampling Method

A total of 19 stream sediment samples were recovered on and surrounding the property from September 17th to 18th, 2009. A plastic scoop was used to collect a composite sample from high-energy streambed sediment at each sample location. Care was taken to ensure that at least 30 g of less than 180 µm sediment was obtained, while organic matter and water were removed. The samples were collected in one liter Ziploc® sample bags, and were transported with the ESO project geologist to ALS Chemex in North Vancouver for analysis.

3.1.2 Sample Preparation, Analysis, and Quality Control

The stream sediment samples were logged into ALS Chemex on September 30th, 2009. Sample preparation included drying at 60°C followed by sieving to 180 µm. For gold analysis a 30 g sub-sample was fire assayed and analyzed by inductively-coupled plasma mass spectrometry (ICP-MS) techniques (ALS Group Au-ICP21). A 33 element analysis was done on each sample with a four acid digestion followed by ICP-MS techniques (ALS Group ME-ICP61). The ALS Chemex certificates of analysis are included in Appendix E.

ALS Chemex has developed and implemented a Quality Management System (QMS) that operates under global and regional quality control teams that execute and monitor ALS Chemex's various quality assurance and quality control programs. These programs are audited both internally and by outside parties in order to meet their stringent accreditation of ISO 9001:2000 for the provision of assay and

geochemical services according to QMI-SAI Global Management Systems Registration. The laboratory has also been accredited to ISO 17025 standards for specific laboratory procedures by the Standards Council of Canada (SCC).

3.1.3 Results

Gold values in stream sediment were generally at background or slightly anomalous except in sample DDS-09-12, which had an anomalous value of 75 ppb gold as shown in Figure 6. Arsenic is a strong pathfinder element for gold on the property, and was highly anomalous in samples DSS-09-06 to DSS-09-08 with arsenic values of 983, 1360 and 1470 ppm, respectively. Nickel is a less consistent pathfinder for gold, and was assayed in anomalous values in samples DSS-09-11 to DSS-09-13 with nickel values of 145, 150 and 142 ppm, respectively. The analytical results of the sediment samples are in Table 1.

The anomalous samples described above were recovered in close proximity to the west mineral claim boundary, and west of a soil geochemical survey grid completed by Phelps Dodge in 1993.

3.2 Rock Geochemistry

3.2.1 Sampling Method

A total of 12 rock samples were recovered on the property from September 16th to 18th, 2009 with eight samples from the reconnaissance of historical exploration roads and trenches, and four samples from traverse between stream sediment sampling (Figure 7). Although most trenches were backfilled there were occasional rock exposures available to sample. Sampling was carried out as either a chip sample over a certain width of bedrock or as a grab sample from float material. The rock samples were transported by the ESO project geologist to ALS Chemex in North Vancouver for analysis.

3.2.2 Sample Preparation, Analysis, and Quality Control

The rock samples were logged into ALS Chemex on September 30th, 2009. Sample preparation in the lab involved crushing the samples to 70% passing 2 mm, and then pulverizing a split of up to 250 g to 85% passing 75 µm. The analytical method was similar to that described for the stream sediment samples (ALS Group's Au-ICP21 and ME-ICP61), except the fire assay for gold was finished with the atomic adsorption (AA) technique for ore grade samples (ALS Group Au-AA25). The 33 element analysis on these ore grade samples was conducted using a higher range of

detection limits (ALS Group ME-ICP61a). The ALS Chemex certificates of analysis are included in Appendix E.

Quality control of rock samples is the same as sediment samples as per section 3.1.2.

3.2.3 Results

Three samples recovered within the historical trenches returned highly anomalous gold values as shown in Figure 7. Sample D-09-05 was a 3 m horizontal chip sample along a nearly flat lying 0.35 m wide quartz vein with sulphides that assayed 12.3 g/t gold. Samples D-09-06 and D-09-07 comprised quartz with sulphide float rock that assayed 3.7 and 11.4 g/t gold, respectively, along with high silver, cadmium, lead, antimony and zinc values. All three samples contained very high arsenic values and very low barium values.

A 1 m chip sample (D-09-08) in the trenches of heavily limonitic pyritic diorite returned 0.084 g/t gold with anomalous silver, arsenic, cadmium, lead, antimony and zinc values.

Sample D-09-09 comprised limonitic pyritic shale sub-crop that was recovered about 1 km southwest of the trenches. This sample assayed 0.189 g/t gold with anomalous silver, arsenic, cadmium, lead, antimony and zinc values.

The remaining rock samples had gold values ranging from 0.002 to 0.036 g/t. The analytical results of the rock samples are in Table 2, and the rock sample descriptions are in Table 3.

4.0 CONCLUSIONS

Exploration in 2009 comprised a reconnaissance stream sediment and rock geochemical survey, and re-opening of about 3.75 km of historical exploration roads and trenches. Stream sediment samples with background to anomalous gold, arsenic and nickel values are located west of a soil geochemical survey done by Phelps Dodge in 1993.

The highest gold value in rock was 12.3 g/t recovered from a 3 m horizontal chip sample across a 0.35 m wide sulpide-rich quartz vein. Two suphide-rich quartz float samples returned 3.7 and 11.4 g/t gold and significant cadmium, lead, antimony and zinc values. Arsenic continued to be a corresponding pathfinder element in all three gold bearing samples, and rocks slightly anomalous with gold.

5.0 RECOMMENDATIONS

A soil geochemical survey should be conducted to test the area from the west mineral claim boundary to the west extent of the 1993 soil survey grid. This area lies between the Morgan and Donna mineral occurrences, has anomalous gold and pathfinder element values in stream sediment and rock, and is under explored. The proposed soil sample grid is about 1100 by 3700 m comprising about 450 sample locations.

An induced polarization survey should be completed over the area historically trenched in order to map the subsurface distribution of mineralization beneath the grid coverage. The data produced from this geophysical survey should be used in conjunction with past geochemical data to select diamond drill targets.

Drill targets should be diamond drilled with at least NQ-size holes to maximize core recovery. Drill holes should only be completed on high priority targets that are developed through the geophysical and geochemical data. A reasonable attempt should be made to intercept the possible calc-alkaline intrusive pluton unit below the inter-layered sedimentary, extrusive, and intrusive dyke/sill rocks. Historical drill holes on the property reach a maximum depth of 60 m, and do not intercept the intrusive pluton. The rationale to target the intrusive pluton includes the possibility of intercepting mineralized saddle veins at depth within Thompson Assemblage rocks, and to investigate the Nelson pluton intrusion for gold porphyry potential.

6.0 **REFERENCES**

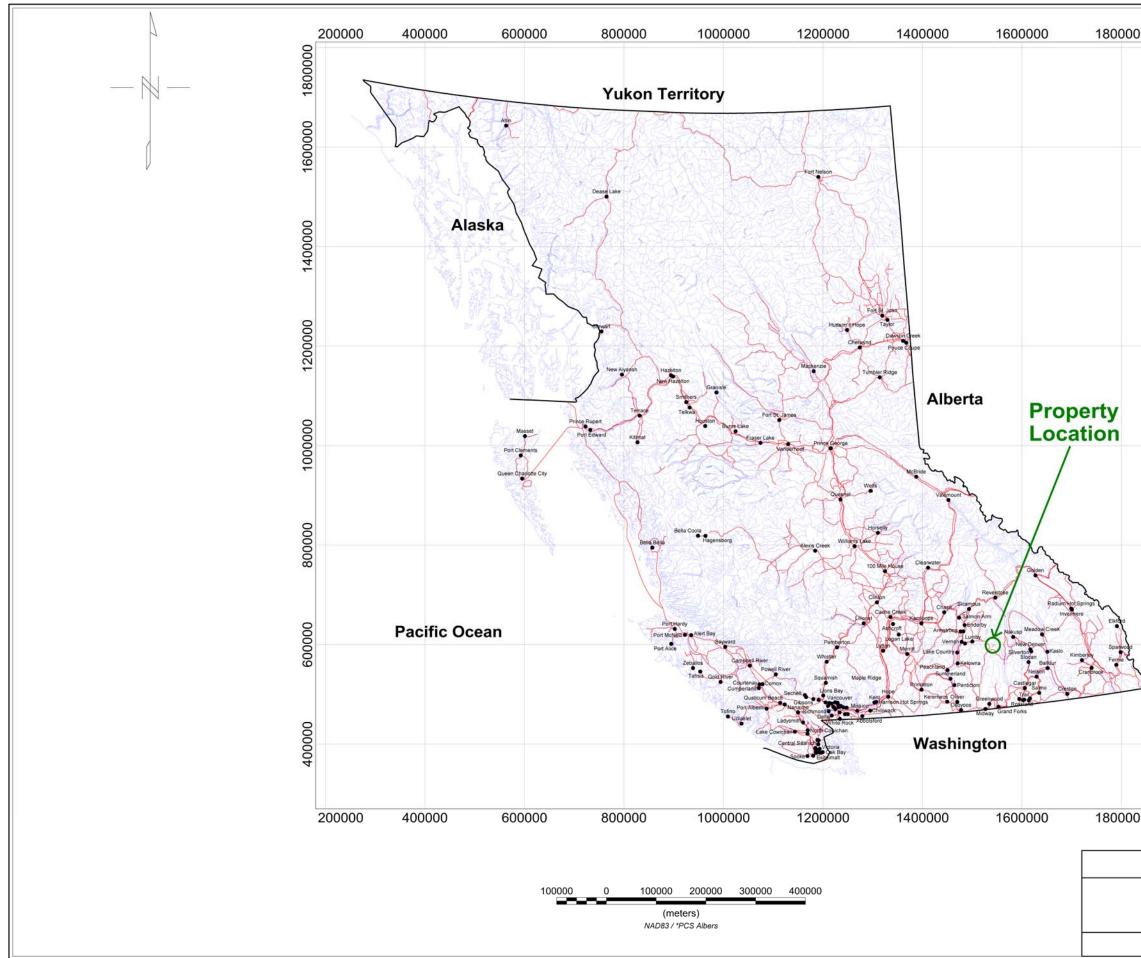
- Bayrock, L.A. September 1985. Geological Report, Dona and Irene Claims, Vernon Mining Division, British Columbia, Monashee Mountain Area. Unpublished Report by L.A. Bayrock, Ph.D., P.Geol. British Columbia Geological Branch Assessment Report 14,567.
- Cameron, Robert S. September 28, 1992. Soil Geochemical Report on the Donna 1 to 17 Claims, Vernon Mining Division. Unpublished Report by Phelps Dodge Corporation of Canada Limited. British Columbia Geological Branch Assessment Report 22,538.
- Collins, Denis A. July 1988. Report on the Dona and Irene Claims, Keefer Lake Area, Vernon Mining Division, British Columbia. Unpublished Report by Hi-Tech Resource Management Ltd. British Columbia Geological Branch Assessment Report 17,663.
- Fox Geological Consultants Ltd. February 15, 1993. 1992 Project Report, Donna Property, Vernon Mining Division. Unpublished Report by Phelps Dodge Corporation of Canada Limited. British Columbia Geological Branch Assessment Report 22,931.
- Koffyberg, Agnes. November 30, 2006. Assessment Report on the 2006 Geochemical, Geological and Trenching Program, Morgan Showing, St. Paul Property, Vernon Mining Division, British Columbia. Unpublished Report by Discovery Consultants. British Columbia Geological Branch Assessment Report 29,067.
- Mackenzie, W.J. December 6, 1973. Summary Report 1973 Fieldwork, District Gold Study, Project 186-2603. Unpublished Report by El Paso Mining and Milling Company.
- McLeod, James W. September 16, 1996. Geological Drilling Report on the DNA Mineral Claims, Vernon Mining Division, British Columbia. Unpublished Report by James W. McLeod, P.Geo. British Columbia Geological Branch Assessment Report 24,552.
- Ryback-Hardy, V. November 21, 1973. Geochemical and Geophysical Report on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining and Milling Company.
- Jones, Harold M. October 21, 1974. Assessment Report of the Percussion Drilling and Physical Work on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining and Milling Company.
- Jones, Harold M. December 4, 1974. Report on the Exploration Program on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining

and Milling Company.

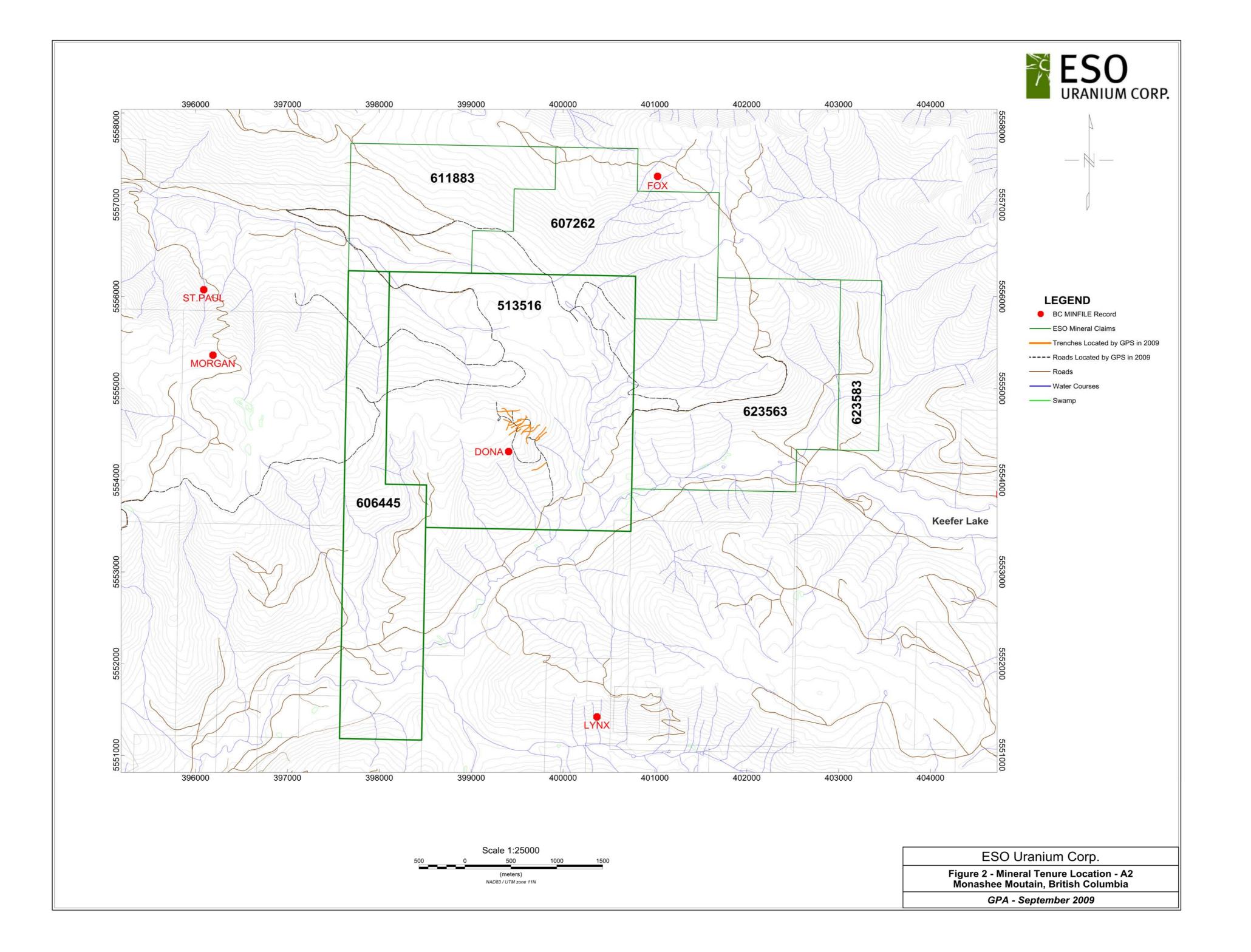
- Jones, Harold M. February 22, 2000. Biogeochemical Report on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,245.
- Jones, Harold M. May 20, 2001. Assessment Report, Additional Biogeochemical Sampling, on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,630.
- Jones, Harold M. May 2, 2002. Assessment Report, Geological Mapping and Biogeochemical Sampling on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,866.
- Smith, F. Marshall. November 28, 1982. Report on the Evaluation with Recommendations of the Dona and Irene Claims, Vernnon Mining Division, Monashee Mountain Area. Unpublished Report by F. Marshall Smith Consulting Geologist Geochemist. British Columbia Geological Branch Assessment Report 10,920.
- Thompson, David A. November 1988. Report on the Dona and Irene Claims, Keefer Lake Area, Vernon Mining Division, British Columbia. Unpublished Report by Hi-Tec Resource Management Ltd. British Columbia Geological Branch Assessment Report 18,147.

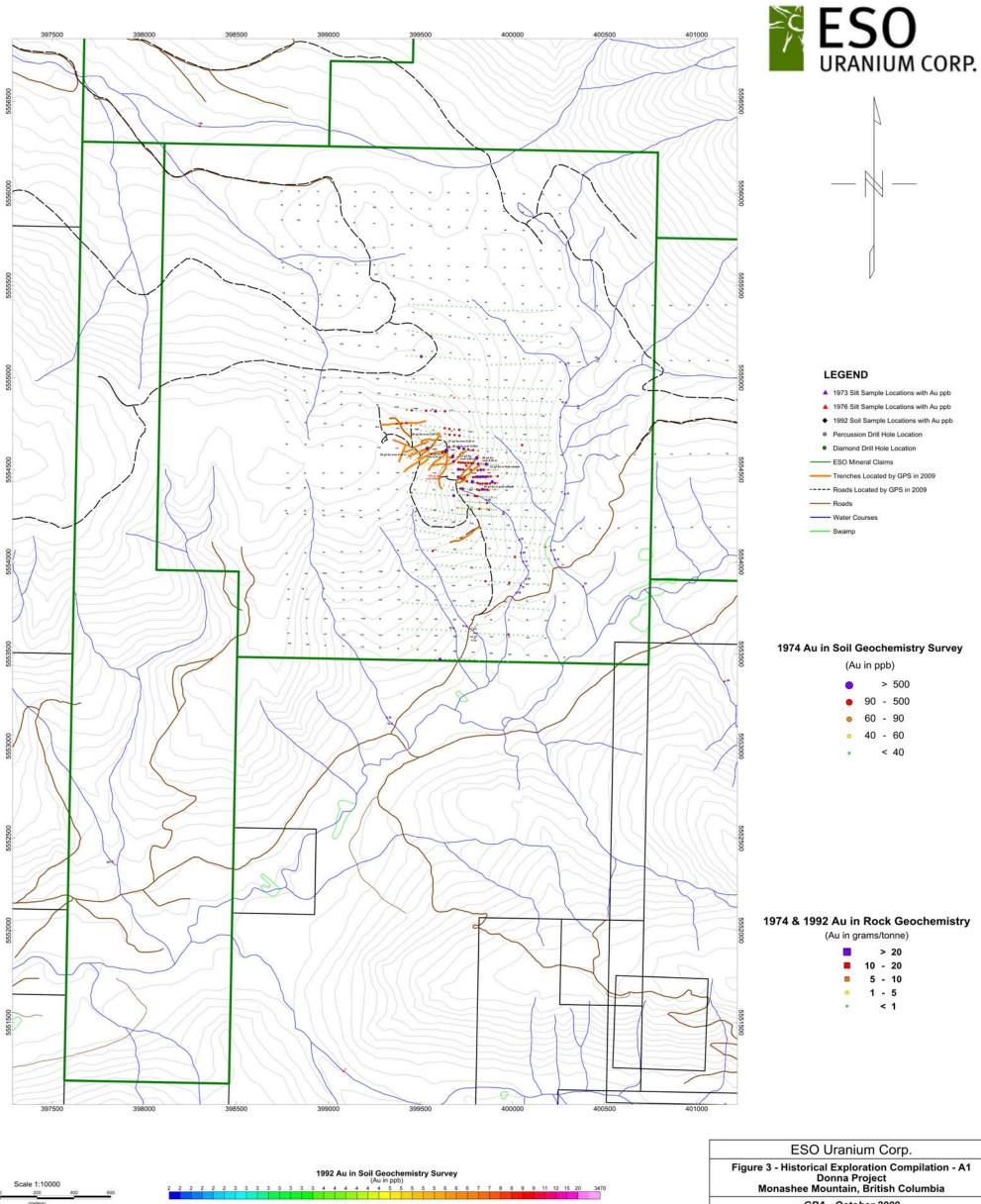
7.0 STATEMENT OF QUALIFICATIONS

Garrett Paul Ainsworth 1201-1438 Richards Street Vancouver, BC, V6Z 3B8 Telephone: 604-657-3235

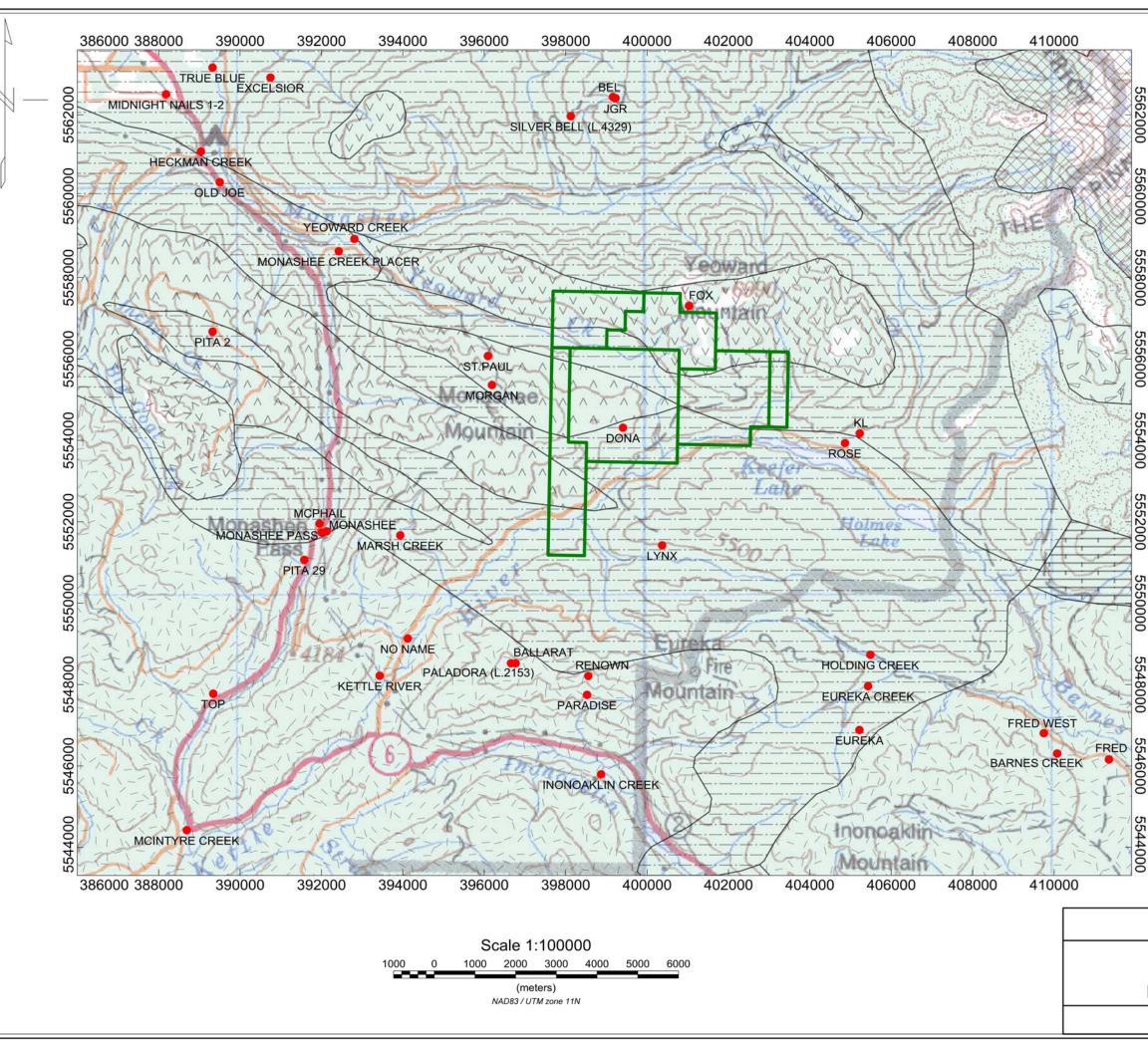

I, Garrett Ainsworth, do hereby certify that:

- 1. I am a geologist in the mineral exploration industry and have been employed by ESO Uranium Corp. since June 2006.
- I graduated from the British Columbia Institute of Technology with a Diploma of Mining in 2000, and a Bachelor of Technology in Environmental Engineering with honours in 2004. In addition, I am in the 4th year of a Bachelor of Science in Geology from the University of London, England.
- 3. I have been involved in mineral exploration for gold, copper, uranium, and diamonds in Canada, United States, and West Africa intermittently since 1996. From 2001 to 2006 I conducted environmental investigations for mining companies and other industrial corporations.
- 4. I conducted the 2009 reconnaissance geochemical sampling on the property, and am responsible for the preparation of this report.
- 5. I have an interest on this property through ESO Uranium Corp. as stated in the terms of the option in agreement in section 1.1.


Dated at Vancouver, British Columbia, this 2nd day of November 2009.


Garrett Ainsworth, B.Tech.

FIGURES



00	
	ESO URANIUM CORP.
	1600000
	1400000
	1200000
	1000000
	800000
2	600000
	400000
00	
	ESO Uranium Corp.
	Figure 1 - Location Donna Project
	Monashee Mountain, BC
	GPA - October 2009

GPA - October 2009

LEGEND

(unnamed)

ESO Mineral Tenure Boundary

Paleogene alkali feldspar granite

rocks (Chilcotin Group)

intrusive rocks (unnamed)

Mesozoic Pegmatitic rocks

Miocene to Pliocene basaltic volcanic

Middle Jurassic granodioritic intrusive rocks (Nelson Intrusions)

Upper Triassic to Lower Jurassic undivided volcanic rocks (Nicola Group)

 $\vee \vee \vee \vee \vee \vee$

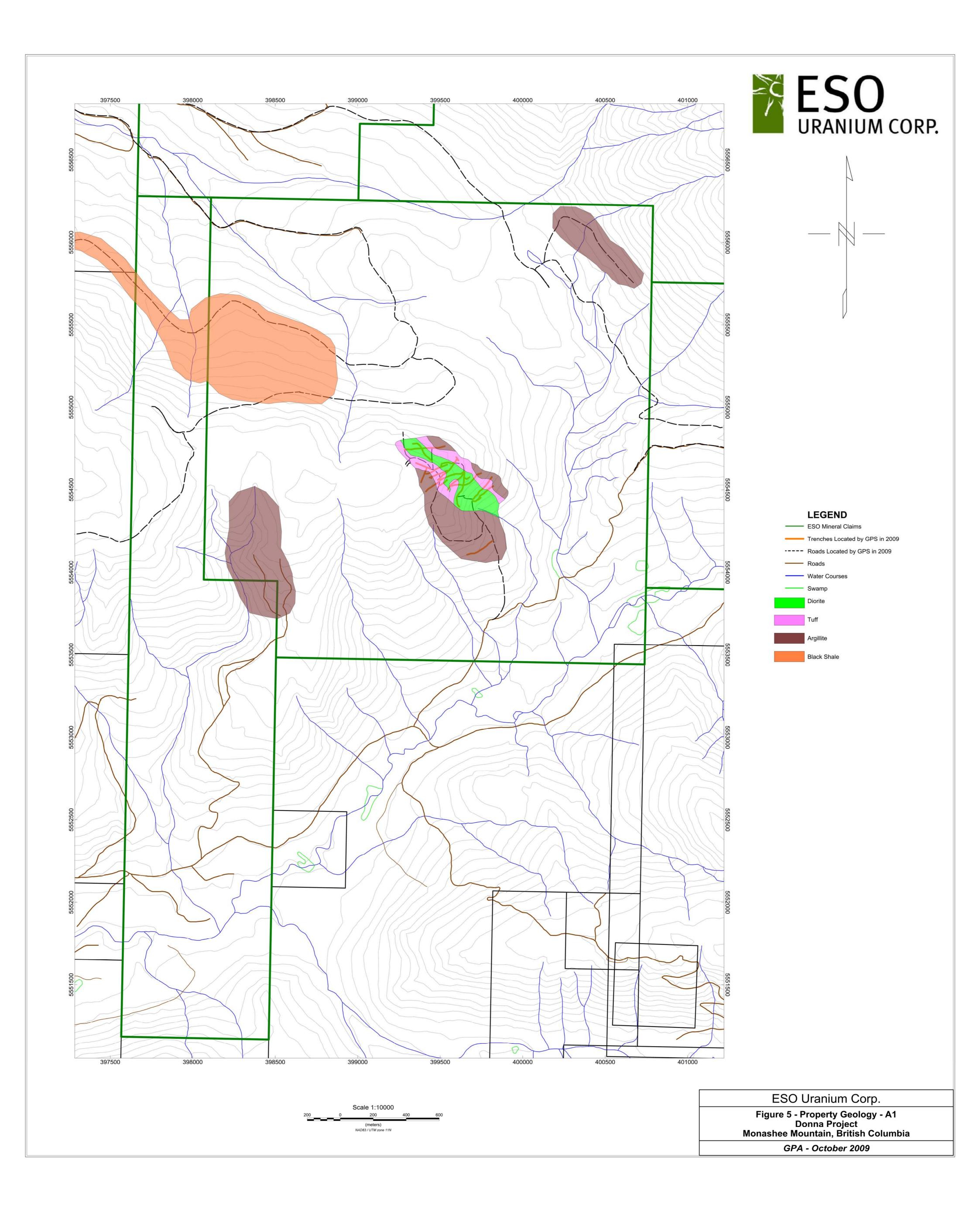
Triassic limestone, slate, siltstone, argillite (Slocan Group)

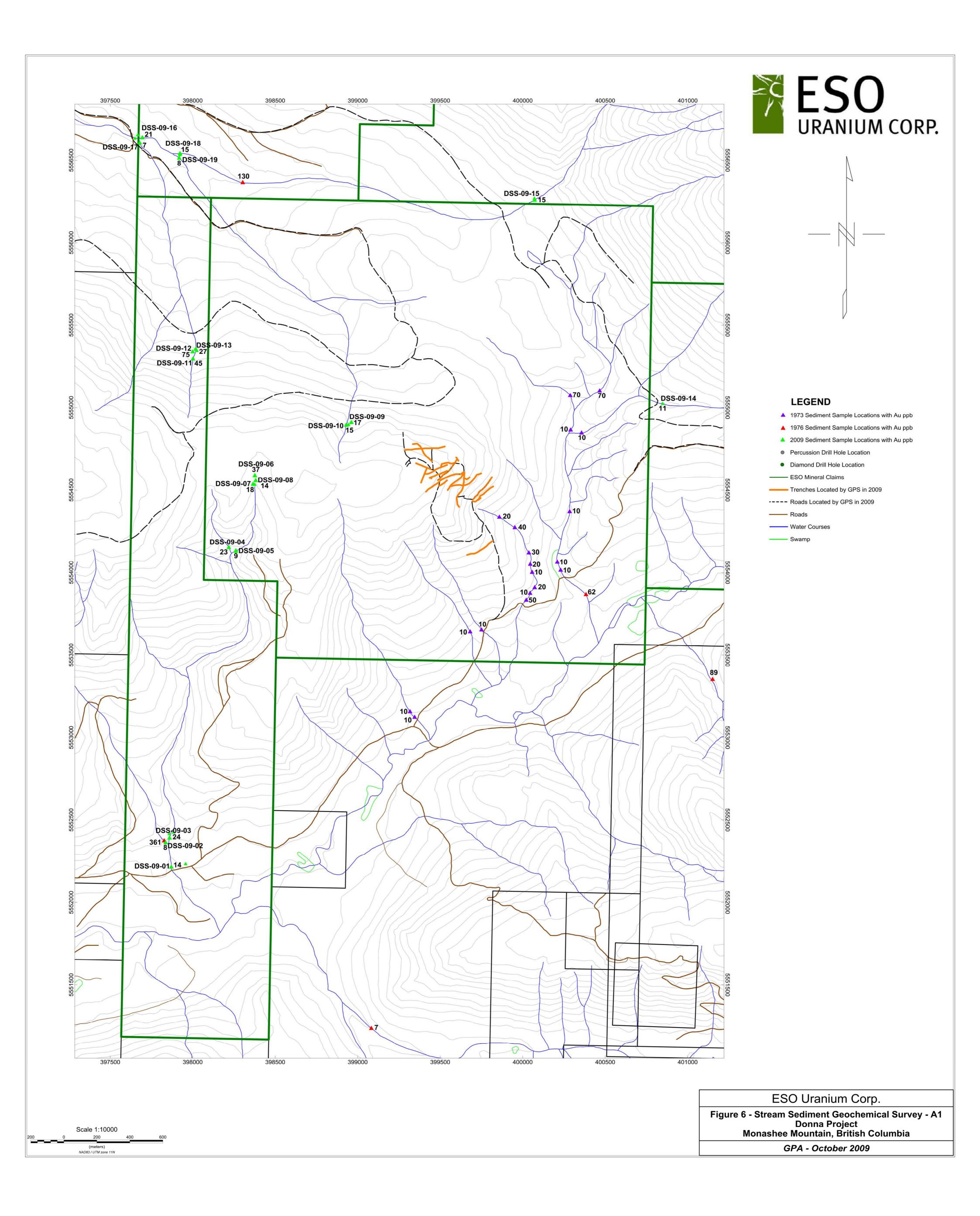
Devonian to Triassic mudstone, shale, siltstone, fine clastic sedimentary rocks (Harper Ranch and/or Nicola Groups)

Devonian to Triassic volcanic rocks (Harper Ranch and/or Nicola Groups)

Proterozoic to Lower Paleozoic

paragneiss (Monashee Complex)




BC MINFILE Record

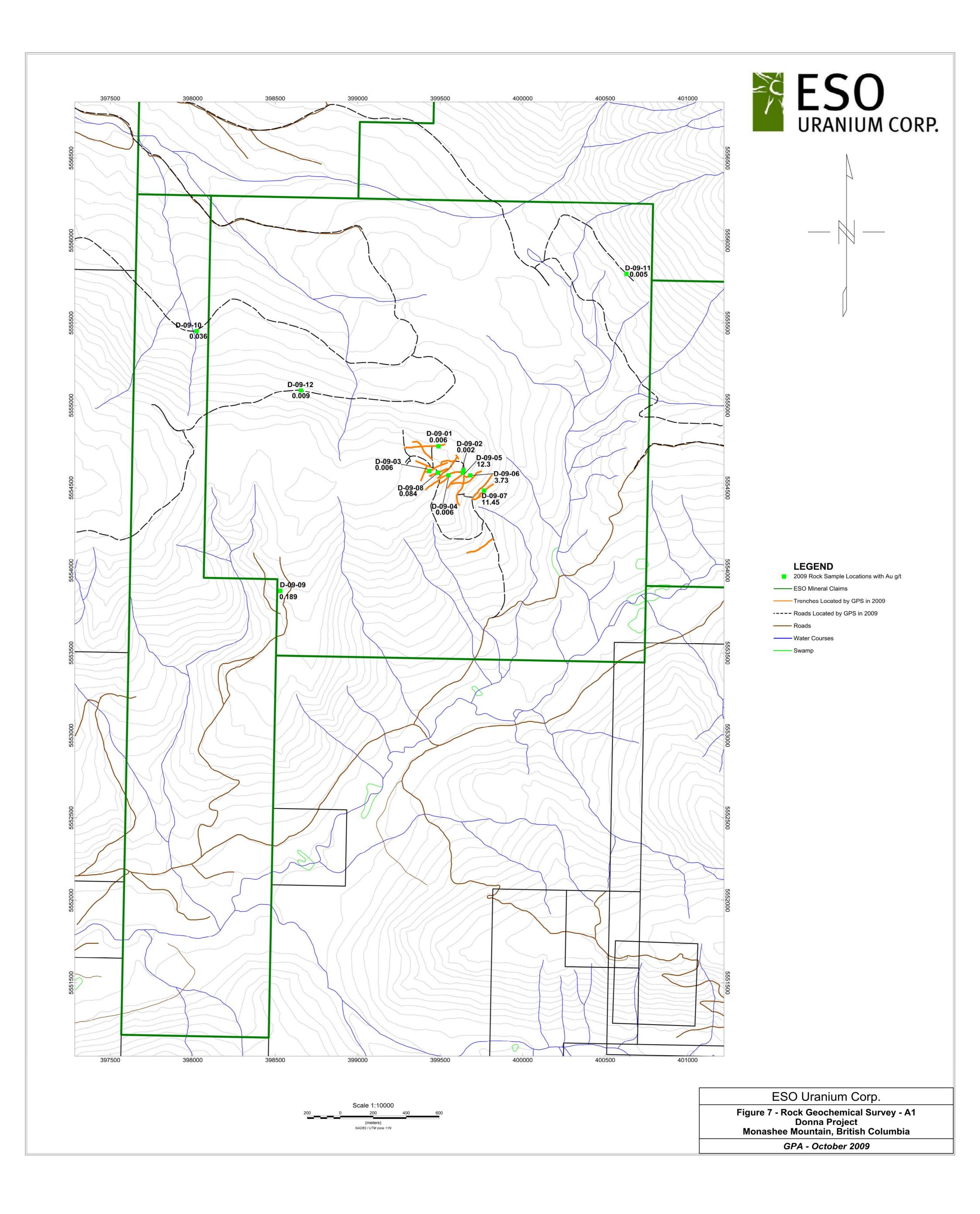

ESO Uranium Corp.

Figure 4 - Regional Geology Donna Project Monashee Mountain, British Columbia

GPA - October 2009

TABLES

TABLE 1

Stream Sediment Geochemical Results

Table 1 Stream Sediment Geochemical Results Donna Project Monashee Mountain, British Columbia

	Sample		Parameter																
Location	Tag Number	Date	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
DSS-09-01	H540759	Sept. 17, 2009	14	0.6	6.5	68	920	1	<2	2.12	0.9	15	106	45	4.24	10	1.28	20	1.66
DSS-09-02	H540760	Sept. 17, 2009	8	0.8	6.83	24	720	0.9	<2	1.59	0.7	15	119	48	4.17	10	1.11	20	1.85
DSS-09-03	H540761	Sept. 17, 2009	24	0.9	6.37	124	1040	0.9	<2	2.25	1.4	15	111	59	4.17	10	1.29	20	1.76
DSS-09-04	H540762	Sept. 17, 2009	23	1.1	6.25	88	1100	0.9	<2	2.96	2.3	14	78	65	4.77	10	1.15	20	1.85
DSS-09-05	H540763	Sept. 17, 2009	9	1.1	6.46	379	1140	1	<2	3.12	2	15	87	65	4.9	10	1.31	20	1.85
DSS-09-06	H540764	Sept. 17, 2009	37	1	5.3	983	840	1	<2	4.5	1.5	15	66	66	5.57	10	1.14	20	1.96
DSS-09-07	H540765	Sept. 17, 2009	18	0.8	5.69	1360	770	1	<2	3.32	1	15	64	87	5.2	10	1.26	20	1.74
DSS-09-08	H540766	Sept. 17, 2009	14	1	6.32	1470	870	1.2	<2	3.59	1.2	17	70	99	5.75	10	1.42	20	1.94
DSS-09-09	H540768	Sept. 18, 2009	17	< 0.5	5.72	333	900	0.9	<2	2.04	1.7	10	86	50	3.29	10	1.05	20	1.08
DSS-09-10	H540769	Sept. 18, 2009	15	0.7	6.25	222	990	0.9	<2	1.93	2.5	13	86	52	3.81	10	1.17	20	1.29
DSS-09-11	H540770	Sept. 18, 2009	45	0.9	6.49	67	1070	1	<2	1.46	2	20	166	69	4.87	10	1.29	20	1.41
DSS-09-12	H540771	Sept. 18, 2009	75	2.1	6.76	232	1210	0.9	<2	1.32	2.3	21	184	77	5.83	10	1.43	20	1.33
DSS-09-13	H540772	Sept. 18, 2009	27	1.2	6.27	139	1100	0.9	<2	1.57	2.2	19	168	69	5.1	10	1.3	20	1.28
DSS-09-14	H540774	Sept. 18, 2009	11	0.8	6.59	17	730	1	<2	2.36	1.3	15	56	65	4.11	10	1.12	20	1.31
DSS-09-15	H540775	Sept. 18, 2009	15	0.8	7.16	47	960	1.1	<2	1.76	4.3	19	72	87	4.92	20	1.56	20	1.61
DSS-09-16	H540777	Sept. 18, 2009	21	0.6	7.28	35	990	1.1	<2	2.05	1.6	14	71	50	4.68	20	1.44	20	1.54
DSS-09-17	H540778	Sept. 18, 2009	7	0.8	6.46	36	940	1	<2	1.52	1.3	14	116	51	4.03	10	1.23	20	1.45
DSS-09-18	H540779	Sept. 18, 2009	15	1	7.37	27	980	1.1	<2	1.95	2.2	16	70	67	4.82	20	1.5	20	1.58
DSS-09-19	H540780	Sept. 18, 2009	8	1.1	6.19	58	1100	1	<2	1.75	1.6	13	99	41	3.61	10	1.21	20	1.26
Units			ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

Table 1 Stream Sediment Geochemical Results Donna Project Monashee Mountain, British Columbia

	Sample		Parameter																
Location	Tag Number	Date	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Tl	U	V	W	Zn
DSS-09-01	H540759	Sept. 17, 2009	795	1	1.76	46	1010	10	0.03	<5	16	448	<20	0.38	<10	<10	152	<10	114
DSS-09-02	H540760	Sept. 17, 2009	983	1	1.93	46	800	9	0.04	<5	16	290	<20	0.32	<10	<10	136	<10	101
DSS-09-03	H540761	Sept. 17, 2009	842	2	1.59	57	1070	10	0.03	<5	16	490	<20	0.33	<10	<10	150	<10	134
DSS-09-04	H540762	Sept. 17, 2009	1045	2	1.31	59	1350	11	0.06	<5	18	658	<20	0.34	<10	<10	164	<10	217
DSS-09-05	H540763	Sept. 17, 2009	1130	2	1.35	67	1710	13	0.06	6	20	590	<20	0.38	<10	<10	183	<10	215
DSS-09-06	H540764	Sept. 17, 2009	1225	2	0.98	49	2530	8	0.06	<5	25	500	<20	0.41	<10	<10	215	10	183
DSS-09-07	H540765	Sept. 17, 2009	1500	3	1.02	32	3030	13	0.09	<5	22	419	<20	0.42	<10	<10	190	<10	168
DSS-09-08	H540766	Sept. 17, 2009	1690	3	1.12	36	3020	21	0.1	7	25	462	<20	0.45	<10	<10	208	<10	186
DSS-09-09	H540768	Sept. 18, 2009	1150	3	1.53	79	1270	10	0.07	6	13	305	<20	0.31	<10	<10	122	<10	130
DSS-09-10	H540769	Sept. 18, 2009	940	3	1.58	76	1290	12	0.05	5	15	309	<20	0.34	<10	<10	142	<10	154
DSS-09-11	H540770	Sept. 18, 2009	994	2	1.39	145	1240	36	0.06	5	19	272	<20	0.28	<10	<10	142	<10	184
DSS-09-12	H540771	Sept. 18, 2009	785	2	1.37	150	1110	16	0.09	8	18	204	<20	0.25	<10	<10	172	<10	229
DSS-09-13	H540772	Sept. 18, 2009	754	2	1.36	142	1070	20	0.06	7	17	250	<20	0.25	<10	<10	147	<10	203
DSS-09-14	H540774	Sept. 18, 2009	1065	1	1.48	26	1320	12	0.05	<5	17	360	<20	0.36	<10	<10	145	<10	115
DSS-09-15	H540775	Sept. 18, 2009	1155	2	1.65	37	1440	16	0.05	6	18	341	<20	0.4	<10	<10	189	<10	211
DSS-09-16	H540777	Sept. 18, 2009	879	1	1.9	31	1200	12	0.04	<5	18	411	<20	0.44	<10	<10	185	<10	142
DSS-09-17	H540778	Sept. 18, 2009	801	1	1.68	61	1110	12	0.04	5	16	303	<20	0.34	<10	<10	146	<10	129
DSS-09-18	H540779	Sept. 18, 2009	1030	2	1.78	34	1200	16	0.04	6	18	377	<20	0.43	<10	<10	185	<10	165
DSS-09-19	H540780	Sept. 18, 2009	1075	2	1.54	56	1220	10	0.05	5	14	313	<20	0.35	<10	<10	134	<10	132
Units			ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

TABLE 2

Rock Geochemical Results

Table 2 Rock Geochemical Results Donna Project Monashee Mountain, British Columbia

		Sample			Parameter																
Location	Tag Number	Date	Sample Type	Length (m)	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D-09-01	H540751	Sept. 16, 2009	chip	1.0 H	0.006	1	7.46	86	1420	1	<2	3.08	1.3	12	192	43	4.07	20	1.68	10	2.45
D-09-02	H540752	Sept. 16, 2009	chip	1.0 H	0.002	0.5	8.1	14	2140	0.7	<2	6.57	0.7	12	62	52	3.54	20	1.84	10	1.87
D-09-03	H540753	Sept. 16, 2009	grab	-	0.006	0.8	7.74	22	1710	1	<2	11.15	1.2	12	107	59	4.78	20	1.49	10	2.07
D-09-04	H540754	Sept. 16, 2009	chip	1.0 H	0.006	0.8	8.14	40	1210	1.7	<2	4.32	< 0.5	12	34	88	5.83	20	3.15	20	2.37
D-09-05	H540755	Sept. 16, 2009	chip	3.0 H	12.3	4	0.46	7810	<50	<10	<20	0.26	<10	<10	50	10	2.07	<50	0.1	<50	0.05
D-09-06	H540756	Sept. 16, 2009	grab	-	3.73	68	0.06	5630	<50	<10	<20	0.09	160	<10	30	20	1.69	<50	< 0.1	<50	< 0.05
D-09-07	H540757	Sept. 16, 2009	grab	-	11.45	341	< 0.05	21900	<50	<10	<20	< 0.05	550	<10	10	220	15.8	<50	< 0.1	<50	< 0.05
D-09-08	H540758	Sept. 17, 2009	chip	1.0 H	0.084	4.2	8.51	147	640	< 0.5	<2	3.88	4.2	20	25	154	5.77	20	1.32	10	2.87
D-09-09	H540767	Sept. 17, 2009	grab	-	0.189	9.7	7.23	365	1470	0.9	<2	4.02	11	5	62	44	5.37	20	1.82	10	1.78
D-09-10	H540773	Sept. 18, 2009	grab	-	0.036	0.8	0.36	23	120	< 0.5	<2	2.54	0.7	<1	21	2	0.64	<10	0.09	<10	0.11
D-09-11	H540776	Sept. 18, 2009	chip	0.48 H	0.005	< 0.5	1.81	15	750	< 0.5	<2	0.13	< 0.5	4	24	126	1.48	<10	1.25	<10	0.39
D-09-12	H540781	Sept. 18, 2009	chip	0.32 H	0.009	0.8	3.5	34	510	< 0.5	<2	15	0.5	7	128	20	2.3	<10	0.75	<10	0.68
Units					ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

Table 2 Rock Geochemical Results Donna Project Monashee Mountain, British Columbia

		Sample			Parameter														\neg		
Location	Tag Number	Date	Sample Type	Length (m)	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U	v	W	Zn
D-09-01	H540751	Sept. 16, 2009	chip	1.0 H	360	6	1.73	74	940	8	0.14	<5	20	629	<20	0.42	<10	<10	220	<10	134
D-09-02	H540752	Sept. 16, 2009	chip	1.0 H	608	7	2.5	24	870	5	0.45	<5	19	1180	<20	0.39	<10	10	221	<10	96
D-09-03	H540753	Sept. 16, 2009	grab	-	543	5	1.28	62	1180	5	0.75	<5	22	1860	<20	0.49	<10	10	238	<10	169
D-09-04	H540754	Sept. 16, 2009	chip	1.0 H	887	2	2.18	6	2940	8	1.57	<5	27	950	<20	0.49	<10	<10	274	<10	75
D-09-05	H540755	Sept. 16, 2009	chip	3.0 H	160	<10	0.27	<10	90	50	1	50	<10	50	<50	< 0.05	<50	<50	20	170	<20
D-09-06	H540756	Sept. 16, 2009	grab	-	70	<10	< 0.05	10	<50	44900	3.2	35900	<10	10	<50	< 0.05	<50	<50	<10	<50	4150
D-09-07	H540757	Sept. 16, 2009	grab	-	20	<10	< 0.05	<10	<50	161000	18.6	4250	<10	20	<50	< 0.05	<50	<50	<10	70	15450
D-09-08	H540758	Sept. 17, 2009	chip	1.0 H	661	2	3.36	10	1710	1380	3	449	26	1410	<20	0.74	<10	10	329	<10	201
D-09-09	H540767	Sept. 17, 2009	grab	-	520	6	1.21	16	820	3610	0.34	133	18	838	<20	0.37	<10	<10	236	<10	411
D-09-10	H540773	Sept. 18, 2009	grab	-	137	<1	0.04	7	130	205	0.04	106	1	221	<20	0.01	<10	<10	9	<10	24
D-09-11	H540776	Sept. 18, 2009	chip	0.48 H	257	<1	0.17	5	140	68	0.06	29	2	68	<20	0.04	<10	<10	36	<10	22
D-09-12	H540781	Sept. 18, 2009	chip	0.32 H	627	2	1.28	71	420	111	0.11	10	8	1170	<20	0.1	<10	10	70	<10	82
Units					ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

TABLE 3

Rock Sample Descriptions

Table 3 **Rock Sample Descriptions and Selected Results** Donna Project Monashee Mountains, British Columbia

Field Nomenclature	Sample Tag Number	Description	Au	Ag	As	Ва	Cd	Cu	Pb	Sb	Zn
D-09-01	H540751	Heavily iron stained black SHALE with rust along fractures and cleavage planes. One metre horizontal chip sample. Sampled over 5-10cm gouge with S=337° & D=14°.	0.006	1	86	1420	1.3	43	8	<5	134
D-09-02	H540752	Moderately iron stained light brown to light grey SKARN with trace pyrite, occasional quartz stringer/vein. One metre horizontal chip sample.	0.002	0.5	14	2140	0.7	52	5	<5	96
D-09-03	H540753	Sub-crop intermingled DIORITE & SKARN with trace quartz stringers and moderate surficial iron staining. Diorite is dark grey, very fine grain, minor pyrite, moderate surficial iron staining. Skarn is light brown, fine grained, occasional vugs with hematite.	0.006	0.8	22	1710	1.2	59	5	<5	169
D-09-04	H540754	Sub-crop grey to dark grey, fine to medium grain DIORITE with heavy iron staining throughout, trace pyrite and trace quartz stringers. One meter horizontal chip sample.	0.006	0.8	40	1210	<0.5	88	8	<5	75
D-09-05	H540755	Very fractured 0.35 m wide QUARTZ VEIN with some hematite, sulphides (arsenopyrite, pyrite). Three metre horizontal chip sample from 6 m long outcrop in trench.	12.3	4	7810	<50	<10	10	50	50	<20
D-09-06	H540756	QUARTZ FLOAT with heavy iron staining and massive arsenopyrite, trace to some pyrite. Grab sample from three 0.25 by 0.12 m boulders.	3.73	68	5630	<50	160	20	44900	35900	4150
D-09-07	H540757	QUARTZ FLOAT with heavy iron staining and massive arsenopyrite and pyrite, trace chalcopyrite. Grab sample from two 0.46 by 0.25 m boulders.	11.45	341	21900	<50	550	220	161000	4250	15450
D-09-08	H540758	Fractured, brittle, dark grey, fine to medium grain DIORITE with very heavy surficial iron staining, trace to some pyrite. One metre horizontal chip sample.	0.084	4.2	147	640	4.2	154	1380	449	201
D-09-09	H540767	Brittle, dark grey, fine grain, heavy iron staining throughout SHALE with trace to some pyrite. Grab sample from subcrop.	0.189	9.7	365	1470	11	44	3610	133	411
D-09-10	H540773	Highly fractured, moderate iron staining, vuggy QUARTZ FLOAT with most sulphides weathered out, occasional pyrite. Grab sample from stream.	0.036	0.8	23	120	0.7	2	205	106	24
D-09-11	H540776	QUARTZ VEIN 0.48 m wide with some iron staining, vugs partially filled with hematite, trace to some pyrite, trace sphalertie?, tetrahedrite? Surrounded by argillite. Chip sample across 0.48 m wide of vein.	0.005	<0.5	15	750	<0.5	126	68	29	22
D-09-12	H540781	Dark grey, slately SHALE with moderate iron oxidation, trace pyrite, occasional calcite and quartz stringers with S=2470 & D=340. Horizontal chip across 0.32 m.	0.009	0.8	34	510	0.5	20	111	10	82

Note: All results are presented in ug/g (ppm)

APPENDICES

APPENDIX A

Lumby Climate Normals

Canada

Notices:

As of July 24, 2008 changes were made in how data are accessed at 25 stations. <u>Please click here</u> for further details.

Popular historical Environment Canada publications, studies, and reports from the National Climate Archive library are now available for download as electronic files. They can be accessed by clicking the "Products and Services" link on the left menu bar.

Canadian Climate Normals 1971-2000

The minimum number of years used to calculate these Normals is indicated by a <u>code</u> for each element. A "+" beside an extreme date indicates that this date is the first occurrence of the extreme value. Values and dates in bold indicate all-time extremes for the location.

NOTE!! Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

LUMBY SIGALET RD
BRITISH COLUMBIA

Latitude: 50° 22.000' N Climate ID: 1164730		Longitude: 7	118° 46.000)' W		Elevation: 55 TC ID:	9.90 m
Temperature:	Jan	Feb	Mar	Apr	Мау	Jun	Jul
Daily Average (°C)	-4.9	-2.2	2.3	7.4	11.6	15.3	17.9
Standard Deviation	2.9	2.4	1.6	1.2	1.6	1.5	1.6
Daily Maximum (°C)	-1.8	1.8	7.6	14.1	18.5	22.4	25.6
Daily Minimum (°C)	-8	-6.2	-3	0.6	4.6	8.1	10.1
Extreme Maximum (°C)	14	15	21	29.4	34	35.5	37.2
Date (yyyy/dd)	1989/30	1986/25	1994/30	1977/24	1986/26	1992/26	1974/31
Extreme Minimum (°C)	-30.5	-28	-20	-8	-4	-1	3
Date (yyyy/dd)	1996/30+	1996/01	1976/04	1979/01	1985/12	1988/02	1984/07
Precipitation:							
Rainfall (mm)	11.3	12.7	26.5	40.2	61.3	69.8	58
Snowfall (cm)	48.1	23.5	8.2	0.7	0.1	0	0
Precipitation (mm)	59.5	36.2	34.8	40.8	61.3	69.8	58
Average Snow Depth (cm)	32	29		0	0	0	0
Median Snow Depth (cm)	31	28		0	0	0	0
Snow Depth at Month-end (cm)	33	21	2	0	0	0	0
Extreme Daily Rainfall (mm)	14	23.1	13.4	24.8	29.6	35	32.5
Date (yyyy/dd)	1974/24	1977/11	1996/09	1983/24	1996/30	1990/03	1982/13
Extreme Daily Snowfall (cm)	31	21	10.2	5.3	1.3	0	0

Date (yyyy/dd)	1993/24	1994/08	1975/08	1972/10	1996/08	1971/01+	1971/01+
Extreme Daily Precipitation	31	22.1	12 /	24.8	29.6	25	20 F
(mm)	31	23.1	13.4	24.8	29.0	35	32.5
Date (yyyy/dd)	1993/24	1977/11	1996/09	1983/24	1996/30	1990/03	1982/13
Extreme Snow Depth (cm)	76	85	51	21	1	0	0
Date (yyyy/dd)	1982/29	1982/14	1982/01+	1982/01	1996/09	1981/01+	1981/01+
Days with Maximum Tempera	ature:						
<= 0 °C	18.3	8.8	1	0	0	0	0
> 0 °C	12.7	19.4	30	30	31	30	31
> 10 °C	0.11	0.35	7		29.7	30	30.9
> 20 °C	0	0	0.04		9.8	19.4	25.7
> 30 °C	0	0	0		0.53	2	6.5
> 35 °C	0	0	0	0	0	0.04	0.73
Days with Minimum Tempera							
> 0 ° C	0.59	1.6	5.3		26.8	29.9	30.6
<= 2 °C	30.9	28.1	29.9	21.1	8	0.73	0
<= 0 °C	30.4	26.5	25.6	15.6	3.6	0.09	0
< -2 °C	25	20	16	5.9	0.22	0	0
< -10 °C	9.6	5.8	1.6		0	0	0
< -20 °C < - 30 °C	1.6	0.72	0		0 0	0	0
	0.07	0	0	0	0	0	0
<u>Days with Rainfall</u> : >= 0.2 mm	3.9	4.2	9	11.8	13.5	13.6	10.2
>= 0.2 mm	0.66	4.2 0.66	9 1.9		4.3	4.9	4.1
>= 10 mm	0.03	0.00	0.18		4.3	2.1	4.1 1.9
>= 25 mm	0.03	0.14	0.18		0.08	0.18	0.14
Days With Snowfall:	0	0	0	0	0.00	0.10	0.14
>= 0.2 cm	11.7	6.9	3.4	0.29	0.04	0	0
>= 5 cm	3.4	1.5	0.43	0.27	0.04	0	0
>= 10 cm	1.2	0.45	0.11	0.01	0	0	0
>= 25 cm	0.03	0	0		0	0	0
Days with Precipitation:		-	-	-	-	-	-
>= 0.2 mm	14.6	10.5	11.5	11.9	13.5	13.6	10.2
>= 5 mm	4.3	2.2			4.3	4.9	4.1
>= 10 mm	1.3	0.62	0.36	0.54	1.9	2.1	1.9
>= 25 mm	0.03	0	0		0.08		
Days with Snow Depth:							
>= 1 cm		25.8		0.6	0.06	0	0
>= 5 cm		25.1		0.4	0	0	0
>= 10		24.5		0.33	0	0	0
>= 20		20.9		0.07	0	0	0
Degree Days:							
Above 24 °C	0	0	0	0	0	0	
Above 18 °C	0	0	0	0	2.2	11.3	
Above 15 °C	0	0	0	0.5	10.2	42.8	
Above 10 °C	0	0	0	10.8	64.4	159.2	
Above 5 °C	0.2	0.3	7	74.6	194.7	307.7	
Above 0 °C	7.8	21.8			349.5	457.7	
Below 0 °C	160.5	89.7	16.8	0.1	0	0	
Below 5 °C	307.8	209.3	94.9	13.5	0.2	0	

Below 10 °C	462.6	350	243	99.6	24.9	1.5	
Below 15 °C	617.6	491.1	398	239.4	125.7	35	
Below 18 °C	710.6	575.8	491	328.9	210.7	93.6	

> 20 °C

> 30 °C

> 35 °C

> 0 ° C

Days with Minimum Temperature:

А

А

А

А

NOTE!! Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

		GH COLU					
Latitude: 50° 22.000' N	Longit	ude: 118° 46	5.000' W		Elevation:	559.90) m
Climate ID: 1164730	WMO ID:				<u>TC ID</u> :		
Temperature:	Aug	Sep	Oct	Nov	Dec	Year	Code
Daily Average (°C)	17.6	12.8	6.2	0.2	-4.2		А
Standard Deviation	1.4	1.7	1	1.8	2.6		А
Daily Maximum (°C)	25.3	19.8	11	3.2	-1.5		А
Daily Minimum (°C)	9.9	5.6	1.4	-2.7	-6.9		А
Extreme Maximum (°C)	39	34.5	26.1	20.6	15		
Date (yyyy/dd)	1998/04	1987/01	1975/02	1975/04	1980/26		
Extreme Minimum (°C)	0.6	-6	-19	-32	-33		
Date (yyyy/dd)	1973/19	1983/19	1984/31	1985/27	1990/29		
Precipitation:							
Rainfall (mm)	48	47.4	45.1	32.3	10.7	463.4	А
Snowfall (cm)	0	0	1.7	28.4	54.2	164.9	А
Precipitation (mm)	48	47.4	46.8	60.7	64.9	628.3	А
Average Snow Depth (cm)	0	0	0		14		D
Median Snow Depth (cm)	0	0	0		12		D
Snow Depth at Month-end (cm)	0	0	0	7	24	7	D
Extreme Daily Rainfall (mm)	29.2	25.6	19.3	29.2	16		
Date (yyyy/dd)	1976/16	1993/19	1996/28	1990/09	1972/21		
Extreme Daily Snowfall (cm)	0	0	10.2	24	32.3		
Date (yyyy/dd)	1971/01+	1971/01+	1971/31	1990/08	1971/16		
Extreme Daily Precipitation (mm)	29.2	25.6	19.3	37	32.3		
Date (yyyy/dd)	1976/16	1993/19	1996/28	1995/13	1971/16		
Extreme Snow Depth (cm)	0	0	5	38	56		
Date (yyyy/dd)	1980/01+	1981/01+	1984/31	1996/28	1996/24		
Days with Maximum Temperature:							
<= 0 °C	0	0	0.41	5.9	19.1		А
> 0 ° C	31	30	30.6	24.1	11.9		А
> 10 °C	31	29.3	16.8	1.3	0.27		А

LUMBY SIGALET RD

A			18.2	4.4	0.14	<= 2 °C
	30.2	23.5	12.3	1.6	0	<= 0 °C
A	24.3	14.2	5.2	0.71	0	< -2 °C
A	6.8	2	0.17	0	0	< -10 °C
A	1.1	0	0	0	0	< -20 °C
A	0.08	0	0	0	0	< - 30 °C
						Days with Rainfall:
						Days with Rainfall:

24.9

5.7

0.22

30.7

14.6

0.12

27.8

0

0.94

18.5

0

0

0

0

6.3

0.05

0

0

0

0.85

1						
>= 0.2 mm	9.7	9.9	12.6	10.1	3.6 112	А
>= 5 mm	3.5	3.4	3.3	2	0.61 31.6	А
>= 10 mm	1.5	1.4	0.81	0.54	0.11 11.1	А
>= 25 mm	0.04	0.04	0	0.07	0 0.55	А
Days With Snowfall:						
>= 0.2 cm	0	0	0.75	7.3	12.2 42.6	А
>= 5 cm	0	0	0.11	1.8	3.8 11.1	А
>= 10 cm	0	0	0.04	0.89	1.2 3.9	А
>= 25 cm	0	0	0	0	0.07 0.1	А
Days with Precipitation:						
>= 0.2 mm	9.7	9.9	13	15.5	15.1 148.8	А
>= 5 mm	3.5	3.4	3.4	3.9	4.5 43.4	А
>= 10 mm	1.5	1.4	0.85	1.5	1.4 15.3	А
>= 25 mm	0.04	0.04	0	0.11	0.11 0.73	А
Days with Snow Depth:						
>= 1 cm	0	0	0.35			D
>= 5 cm	0	0	0.06			D
>= 10	0	0	0			D
>= 20	0	0	0			D
Degree Days:						
Above 24 °C	0.6	0	0	0	0	А
Above 18 °C	36.4	1.1	0	0	0	А
Above 15 °C	93	13.3	0.1	0.1	0	А
Above 10 °C	234.9	95.5	7.9	0.5	0	А
Above 5 °C	389.9	232.3	62.4	4.5	0.3	А
Above 0 °C	544.9	381.6	191.9	50.3	10	А
Below 0 °C	0	0	3.6	41.6	144.3	А
Below 5 °C	0	0.6	29.1	145.8	289.6	А
Below 10 °C	0	13.9	129.5	291.8	444.3	А
Below 15 °C	13.1	81.7	276.7	441.4	599.3	А
Below 18 °C	49.5	159.5	369.7	531.4	692.3	А
L						

Date Modified: 2009-04-30

APPENDIX B

BC MINFILE Records

		Location/Identif	ication	
IINFILE Number:	082LSE042			
ame(s):	KETTLE RIVER			
tatus:	Past Producer		Mining Division:	Vernon
fining Method	Open Pit		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
CGS Map:	082L008			
TS Map:	082L01W		UTM Zone:	11 (NAD 83)
atitude:	50 04 36 N		Northing:	5548217
ongitude:	118 29 22 W		Easting:	393428
levation:	1200 metres Within 1KM			
ocation Accuracy: Comments:		of occurrence #348 (Geological Survey of	of Canada Open File 63	7).
somments	11		1	,
		Mineral Occurr	ence	
Commodities:	Gold			
Minerals	Significant:	Gold		
, incluis	Mineralization Age:	Unknown		
	0			
Deposit	Character:	Unconsolidated		
	Classification:	Placer		
	Туре:	C01: Surficial placers		
		Strike/Dip:	000/	
		Host Rock	:	
Dominant Host Ro	ck: Sedimentary			
Stratigraphic Age Recent	Group 	Formation		eous/Metamorphic/Other cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	ravel			
		Geological Se	tting	
Fectonic Belt:	Omineca	Physiographic Area	a: Okanagan	Highland
Terrane:	Overlap Assembla	age		
		Inventory		

No inventory data

Capsule Geology

The Kettle River placer deposit is located on the Kettle River just north of the Vernon-Edgewood highway, about 1.2 kilometres below the bridge and about 70 kilometres southeast of Vernon.

In 1877, gold was discovered at the headwaters of the Kettle River. In 1886, Hollingsworth and McMillan recorded a discovery claim on the Kettle River about 25 kilometres from Monashee Mountain. In 1931, "attractive values" came from the riverbank about 1.2 kilometres below the bridge. In 1933, 2 leases were staked by C.H. Martin, Frank Layman and associates. They conducted small hydraulic operations along the benches.

Bedrock in the area consists of granitic rocks of the Jurassic Nelson Intrusions.

A cut 38 metres long by 7.6 metres high uncovered some well- layered slightly cemented gravel for about 60 centimetres above the granite bedrock. This section was predicted to average 45 cents a cubic yard and contained nuggets up to \$1.50. The gravel on and above the bedrock had all the appearances of an old channel.

Other test pits outlined an area 1.6 kilometres long and 800 metres wide on the east side. Above the road "encouraging prospects" were reported. About 3.2 kilometres below, in and at the mouth of the canyon, coarse gold values were mined.

The origin of most of this gold has been traced to the quartz veins found in the argillites on Monashee Mountain (082LSE010,022).

There is no record of how much placer gold was removed from the Kettle River.

			Bibliography						
EMPR AR 1877-404	4; 1886-213; *1931-129; *	*1933-162							
EMPR BULL *28, p	EMPR BULL *28, p. 36								
EMPR FIELDWOR	K 1987, pp. 55-58; 1988,	pp. 49-54; 1992, pp.	255-257						
EMPR OF 1991-18;	1994-8								
EMPR RGS 082L, 1	976; 32, 1991								
GSC MAP 7216G; 8	491G								
GSC MEM 296									
GSC OF *637(#348)	; 658								
GSC P 91-2, pp. 115	-135								
CJES Vol. 26, No. 2									
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν				
Date Revised:	1994/11/28	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν				

		Location/Ic	lentification	
MINFILE Number:	082LSE037			
Name(s):	YEOWARD CREEK			
	PORCUPINE CREEK			
Status:	Showing		Mining Division:	Vernon
Status.	6		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L02E		UTM Zone:	11 (NAD 83)
Latitude:	50 10 23 N		Northing:	5558951
Longitude:	118 30 04 W		Easting:	392809
Elevation:	800 metres		-	
Location Accuracy:				
Comments:	Occurrence #328 (Geo	ogical Survey of Canada Open F	File 637).	
		Mineral O	ccurrence	
Commodities:	Gold			
Minerals	Significant:	Gold		
	Mineralization Age:	Unknown		
Deposit	Character:	Unconsolidated		
	Classification:	Placer		
	Туре:	C01: Surficial placers	e/Din: 000/	
D : (H (D		Host	Rock	
Dominant Host Ro	ck: Sedimentary			
Stratigraphic Age	Group	Formation		eous/Metamorphic/Other
Recent			Gla	cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	ravel, Unconsolidated Sedime	nt/Sedimentary		
		Geologic	cal Setting	
Tectonic Belt:	Omineca	Physiograph	nic Area: Okanagan	Highland
Terrane:	Overlap Assemblag	e		
		Inve	ntory	
			· · · · · · · · · · · · · · · · · · ·	

Capsule Geology

The Yeoward Creek deposit is located on Yeoward Creek near its confluence with Monashee Creek, about 22 kilometres south of Cherryville.

A "little" placer mining was attempted in 1923. An old story states that placer miners in the 1870s found coarse gold at the confluence of Yeoward and Monashee creeks. A 180-metre tunnel was driven but abandoned before they reached their goal. By 1923, the old tunnel was caved in.

Bedrock in the area consists of sedimentary and volcanic rocks of the Upper Triassic to Lower Jurassic Nicola Group and the Devonian to Triassic Harper Ranch Group.

Placer activity is reported from Yeoward Creek (Porcupine Creek) but no production is recorded.

		Bibliography						
EMPR AR *1923-160								
EMPR BULL *28, p. 62; 79	EMPR BULL *28, p. 62; 79							
EMPR FIELDWORK 1987, pp. 55-58; 1988, pp.	. 49-54; 1992, pp. 2	255-257						
EMPR OF 1990-30; 1991-18; 1994-8								
EMPR RGS 082L, 1976; 32, 1991	EMPR RGS 082L, 1976; 32, 1991							
GSC MAP 7216G; 8491G								
GSC MEM 296								
GSC OF *637 (#328); 658								
GSC P 91-2, pp. 115-135								
CJES Vol. 26, No. 2								
Date Coded: 1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν				
Date Revised: 1994/12/19	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν				

		Location/Identif	ication	
MINFILE Number:	082LSE039			
Name(s):	MARSH CREEK			
	PLACER LEASES	291, 1310, 1358		
Status:	Past Producer		Mining Division:	Vernon
Mining Method	Open Pit		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
Latitude:	50 06 28 N 118 29 00 W		Northing:	5551668
Longitude: Elevation:	1380 metres		Easting:	393934
Location Accuracy:				
Comments:		of Placer Lease 1291 (Assessment Report	7485).	
		Mineral Occurr	ence	
<i>c</i>	Gold			
Commodities:	Gold			
Minerals	Significant:	Gold		
	Mineralization Age:	Unknown		
Deposit	Character:	Unconsolidated		
	Classification:	Placer		
	Туре:	C01: Surficial placers Strike/Dip:	000/	
Dominant Host Ro	ock: Sedimentary	Host Rock		
	-	Formation	Ian	oons/Motomorphic/Other
Stratigraphic Age Recent	e Group	Formation		eous/Metamorphic/Other cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	iravel			
		Geological Se	tting	
Tectonic Belt:	Omineca	Physiographic Area	Chanagan	Highland
Terrane:	Quesnel			
		Inventory		
No inventory data				

Capsule Geology

The Marsh Creek deposits are located about 100 kilometres east of Vernon.

These deposits were originally worked by A. Marsh beginning in 1883 until his death in 1925. Marsh developed an adit, 3 short drifts and sunk a shaft to 13.5 metres. In 1935, an opencut was started. In 1938, the old upper drift was cleaned out and several test pits were dug. In 1941, the shaft was dewatered and it promptly caved. In 1942, the upper section of the creek was worked with a dragline. In 1947, a 4.2-metre shaft was sunk before it caved and then a 6-metre shaft was sunk near it. There was work done in the 1960s and 1970s but little information is available. In 1979, geophysical surveys, hand trenching, sluicing and panning were completed. In 1990, Commonwealth Gold completed geochemical surveys in this area.

The area is underlain by volcanic and sedimentary rocks of the Devonian to Triassic Harper Ranch Group. The creek contains glacial and fluvial gravels which contain placer gold.

It is believed that the source of the placer gold in Marsh Creek is the quartz vein at the foot of the limestone cliffs above the south branch of Marsh Creek. This vein is described in the Monashee showings (082LSE001). The main catchment area for this gold is likely below the falls. The location of the main buried channel remains to be determined.

The amount of gold removed from this creek is unrecorded though A. Marsh was able to survive for at least 15 years on what he recovered.

			Bibliography			
EMPR ASS RPT *74	85, 21592					
EMPR BULL 28						
EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257						
EMPR OF 1991-18; 1	1994-8					
EMPR RGS 082L, 19	976; 32, 1991					
GSC MAP 7216G; 84	491G					
GSC MEM 296						
GSC OF 637 (#330);	658					
GSC P 91-2, pp. 115-	-135					
CJES Vol. 26, No. 2						
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν	
Date Revised:	1994/07/11	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν	

		Location/1a	entification	
MINFILE Number:	082LSE053			
Name(s):	BARNES CREEK			
Status:	Past Producer		Mining Division:	Slocan
Mining Method	Open Pit		Electoral District:	Nelson-Creston
Regions:	British Columbia		Forest District:	Arrow Boundary Forest District
BCGS Map:	082L009			
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
atitude:	50 03 44 N		Northing:	5546305
ongitude:	118 15 23 W		Easting:	410076
Elevation:	1230 metres		0	
Location Accuracy:				
Comments:	At the confluence of	Barnes Creek with Eureka Creek (B	Bulletin 28, #171).	
		Mineral Oc	ccurrence	
Commodities:	Gold			
Minerals	Significant:	Gold		
	Mineralization Age:	Unknown		
Deposit	Character:	Unconsolidated		
Deposit	Classification:	Placer		
	Туре:	C01: Surficial placers		
		Host	Rock	
Dominant Host Ro	ck: Sedimentary			
Stratigraphic Age Recent	Group	Formation		eous/Metamorphic/Other cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	ravel			
		Geologic	al Setting	
Tectonic Belt:	Omineca	Physiographi	ic Area: Okanagan	Highland
Terrane:	Overlap Assembl	age		
		Inver		

No inventory data

Capsule Geology

The Barnes Creek placer deposit is located on Barnes Creek about 11 kilometres west of Whatshan Lake. The exact location of the placer workings is unknown. Geological Survey of Canada Memoir 296 reports that these placer workings are on the tributaries of Barnes Creek which are Eureka Creek (082LSE046) and Holding Creek (082LSE45). B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 28 reports production for Barnes Creek and Eureka Creek. Bedrock in the area consists of granitic rocks of the Cretaceous Whatshan batholith. Glacial and fluvial gravels in the creek contained placer gold.

During 1935 to 1945, reported production from Barnes Creek was 2581 grams of gold. This is probably production from Holding Creek or at least includes production from Holding Creek (Bulletin 28, page 14).

No other information is available.

Bibliography

. N
: N

MINFILE Detail Report BC Geological Survey Ministry of Energy, Mines & Petroleum Resources

		Location/Ident	ification	
MINFILE Number:	082LSE059			
Name(s):	MONASHEE CREEF	K PLACER		
	SOUTH FORK CHER	RY CREEK, RAMBLER		
Status:	Past Producer		Mining Division:	Vernon
Mining Method	Open Pit		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L02E, 082L01W		UTM Zone:	11 (NAD 83)
Latitude:	50 10 13 N		Northing:	5558649
Longitude:	118 30 23 W		Easting:	392426
Elevation:	800 metres			
Location Accuracy:	Within 5KM			
Comments:	Location very approxi	mate (Bulletin 28, symbol 168).		
		Mineral Occur	rrence	
Commodities:	Gold			
N.C. 1	o	Gold		
Minerals	Significant:	Unknown		
	Mineralization Age:	Chkhown		
	Channachann	Unconsolidated		
Deposit	Character:	Placer		
	Classification: Type:	C01: Surficial placers		
	Type.	Host Ro	ok	
Dominant Host Roc	k: Sedimentary	11051 KU		
Stratigraphic Age	Group	Formation		eous/Metamorphic/Other
Recent			Gla	cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: Gra	avel			
		Geological S	-	
Tectonic Belt:	Omineca	Physiographic A	rea: Okanagan	Highland
Terrane:	Overlap Assembla	ge		
		Inventor	41 1	

No inventory data

Capsule Geology

The Monashee Creek Placer deposit is located on Monashee Creek, just south of Cherry Creek. Monashee Creek was previously known as the south fork of Cherry Creek (082LSE013) and there is possibly some confusion between the placer activity on these two creeks.

In 1932, several placer miners were working along Monashee Creek and they reported small recoveries. In 1940 and 1941, mining of gold-bearing

gravel in an old channel below the creek bed took place.

Bedrock in this area comprises volcanic and sedimentary rocks of the Devonian to Triassic Harper Ranch Group.

Gravels from this creek are reported to have produced 6749 grams of gold (217 ounces) during the period from 1936 to 1945 (Bulletin 28, page 63). The gold from Monashee Creek and Cherry Creek has a low fineness (695.5 to 700.0).

Bibliography EMPR AR 1932-144; 1940-97; 1941-91 EMPR BULL *28, pp. 62-63 EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257 EMPR OF 1991-18; 1994-8 EMPR RGS 082L, 1976; 32, 1991 GSC MAP 7216G; 8491G; 8501G GSC MEM 296, p. 138 GSC OF 637; 658 GSC P 91-2, pp. 115-135 CJES Vol. 26, No. 2 1994/11/14 Dorthe E. Jakobsen(DEJ) Ν Date Coded: Coded By: Field Check: **Date Revised:** 1994/12/15 Dorthe E. Jakobsen(DEJ) Ν **Revised By:** Field Check:

		Location/Iden	ntification	
MINFILE Number: Name(s):	082LSE013 <u>CHERRY CREEK I</u> NORTH FORK, MO			
Status: Mining Method Regions: BCGS Map: NTS Map: Latitude: Longitude: Elevation: Location Accuracy: Comments:		ion of Cherry Creek and Monashee Cr	Mining Division: Electoral District: Forest District: UTM Zone: Northing: Easting:	Vernon Okanagan-Vernon Okanagan Shuswap Forest District 11 (NAD 83) 5565321 389528 luction came from (Bulletin 28, pages
	62-67).			
		Mineral Occi	urrence	
Commodities:	Gold			
Minerals	Significant: Mineralization Age:	Gold Unknown		
Deposit	Character: Classification: Type:	Unconsolidated Placer C01: Surficial placers Strike/D	ip: 000/	
		Host R	ock	
Dominant Host Ro	ck: Sedimentary			
Stratigraphic Age Quaternary	Group 	Formation	0	eous/Metamorphic/Other cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	ravel, Slate, Shale, Clay			
		Geological	Setting	
Tectonic Belt: Terrane:	Omineca Overlap Assemb	Physiographic A age	Area: Okanagan	Highland
		Invento	ory	
			-	

No inventory data

Capsule Geology

The Cherry Creek Placer deposit is located at the confluence of Cherry Creek and Monashee Creek (082LSE059). Placer activity centred on the north fork or main stream of Cherry Creek 25 to 32 kilometres east of Lumby. Monashee Creek (082LSE059) was previously known as the south fork of

Cherry Creek and because of this there is some confusion between the placer activity on the two creeks.

Placer deposits on this creek have been worked since 1876 when it was discovered, until 1945 when the last production was recorded. The deposits have been worked by hand, by an elaborate system of flumes, by hydraulics and later by gasoline shovels. Benches 30 metr above the creek were mined in 1876. From 1890 to 1896, 15 people were working on the creek taking out about \$2.00 per day. There was little or no activity between 1905 and 1922, but activity was renewed in 1925.

The valleys were filled with gravel after the retreat of ice and remnants of these gravels have been left in benches up to 91.4 metres high, by the recent stream. Lenticular, irregular gravel beds occur in 12 to 15 metres of a sandy unit. This unit rests on water- worn black slates and shales cut by quartz veins. Boulder clay overlies the sandy unit. Placer gold occurs in the preglacial gravels over several kilometres.

The gold has a low average fineness of 700. Nuggets up to 264 grams (8.5 ounces) have been found. The gold is of 2 types: light, flat, scaly particles, and less commonly, coarse gold pieces.

Most production came from the confluence of Cherry Creek and Monashee Creek, upstream to 5.6 kilometres above the confluence. Production totals 155,158 grams of gold (4989 ounces) (Bulletin 28, page 63).

Bibliography	
EMPR AR 1876-410,423; 1877-404; 1878-378; 1879-241; 1881-398; 1882-362; 1886-213; 1887-277; 1888-316,325; 1889-291; 1890-378;	
$1891-575;\ 1892-543;\ 1893-1073;\ 1894-753;\ 1896-706;\ 1901-1127;\ 1905-192;\ 1920-187;\ 1922-145;\ 1923-160;\ 1925-184;\ 1926-200;$	
1927-213; 1930-208; 1931-116; 1933-198; 1934-D34	
EMPR BULL *28, pp. 62,67	
EMPR FIELDWORK 1982, pp. 33-36; 1987, pp. 55-58, 401-404, 511-514; 1988, pp. 49-54; 1990, pp. 301-306; 1991, pp. 319-323;	
1992, pp. 255-257	
EMPR OF 1990-30; 1991-18; 1994-8	
EMPR PF (Report on Monashee Creek Placers, C.E. Cairnes, 1932)	
EMPR RGS 082L, 1976; 32, 1991	
GSC MAP 1059A; 7216G; 8501G	
GSC MEM 296, p. 138	
GSC OF 637(#314)	
GSC P 91-2, pp. 115-135	
Placer Dome File	
Date Coded:1985/07/24Coded By:BC Geological Survey (BCGS)Field Check:N	
Date Revised:1994/12/12Revised By:Dorthe E. Jakobsen(DEJ)Field Check:N	

		Location/Identificat	ion	
MINFILE Number:	082LSE022	National Mine	ral Inventory Nur	nber: 082L1 Au1
Name(s):	MORGAN			
		LACK BESS (L.4186), SKB, MORNING, C	UYSBOROUGH	DAWN YEOWARD
	YEOWARD 6-7, YEO		ie i biberte e eri,	2, 120 ···
Status:	Past Producer		ing Division:	Vernon
Mining Method	Underground		ctoral District:	Okanagan-Vernon
Regions:	British Columbia		est District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L01W	UT	M Zone:	11 (NAD 83)
Latitude:	50 08 29 N	No	rthing:	5555362
Longitude:	118 27 10 W		ting:	396191
Elevation:	1737 metres		g.	
Location Accuracy:	Within 500M			
Comments:	Morgan workings locat	ed on the Minerva claim (Lot 4187) (Propert	y File - Report on t	he St. Paul Property, 1974).
		Mineral Occurrenc	a	
	Cald Silver Land Zing	mineral occurrence	t in the second s	
Commodities:	Gold, Silver, Lead, Zinc			
Minerals	Significant:	Gold, Pyrite, Sphalerite, Tetrahedrite, Galer	na, Arsenopyrite	
	Associated:	Quartz		
	Mineralization Age:	Unknown		
	in the second second second			
Deposit	Character:	Vein, Disseminated		
Deposit	Classification:	Hydrothermal, Epigenetic		
	Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-Au		
	-) [Strike/Dip: 00)/	
		Host Rock		
Dominant Host Ro	ck: Metasedimentary			
Stratigraphic Age	Group	Formation	Igne	ous/Metamorphic/Other
Paleozoic-Mesozoi	Harper Ranch	Undefined Formation		
Jurassic			Nels	on Intrusions
Isotopic Age		Dating Method N	Iaterial Dated	
Lithology: Sl	ate, Ouartzite, Calcareous Tuf	f, Tuff, Dacite Porphyry Dike, Dacite		
8,	ne Harper Ranch Group is Dev			
Comments: Th	le Harper Railen Group is Dev			
	0	Geological Setting	-	
Tectonic Belt:	Omineca	Physiographic Area:	Okanagan I	Highland
Terrane:	Quesnel			
		Inventory		
				1074
Ore Zone [.]	VEIN			Year: 19/4
	VEIN Assay/analysis			Year: 1974 ort On: N

Sample Type:	Grab		
	Commodity	Grade	
	Silver	13.7000 grams per tonne	
	Gold	3.8000 grams per tonne	
Comments:	Sample from 15 centimetre wide	vein.	
Reference:	Property File - Report on the St. F	Paul Property, 1974.	

Capsule Geology

NI 43-101: N

The Morgan deposit is located on top of Monashee Mountain, 60 kilometres east-southeast of Vernon and about 800 metres southeast of the St. Paul (082LSE010) deposit. A few hundred tons of high-grade gold ore have been produced to date.

The showings were discovered in 1899 and staked as the Morgan, Guysborough, Dawn and Morning claims. The Morgan workings, on what later became the Minerva Crown grant (Lot 4187), were the initial development. Later development was mainly on the Toughnut claim (Lot 4189) (St. Paul deposit) about 800 metres northwest of the Morgan workings. The Cherry Creek Gold Mining Co. Ltd. optioned the Morgan group in 1902 and by 1904 had driven a 10.7-metre adit on the Morning claim. The workings by 1905 consisted of the 10.7 metre adit and two shafts, 24.4 and 10.7 metres deep. The 10.7-metre shaft and the drift from it provided most of the production. After 1907, the property was restaked as the Minerva group of 4 claims.

The Black Bess, Minerva, Zilpah and Toughnut (Lots 4186 to 4189) were Crown granted in 1915. Development work, mainly on the Toughnut claim, during the period 1914-1916 consisted of 2 adits, 6.1 and 106.7 metres in length. In 1927, St. Paul Mines Ltd. acquired the 4 Crown grants and 3 claims. Intermittent development work continued into 1933. The workings in 1930 consisted of 5 adits from 10.7 to 106.7 metres in length, 2 winzes and a number of trenches. The company reportedly carried out some work in 1949. A new adit begun in 1961 was extended to a total length of 61 metres in 1962. A shipment of 7.3 tonnes was reported in 1966. The property in 1971 included the 4 Crown grants and the Snow, Snowshoe and SKB claims. Work during the period 1971-1973 included trenching and stripping. Some crude ore was shipped in 1971 and 1973, and 4.5 tonnes of concentrate were shipped in 1973. In 1973, Coast Interior Ventures Ltd. leased the properties and in 1974 carried out extensive road improvements, reopening and deepening of old trenches, opening and draining adits 4 and 5 at the St. Paul workings, and a metallurgical study on a bulk sample from the St. Paul workings. In 1982, Brican Resources conducted a geochemical survey and a magnetometer survey on the St. Paul and Minerva deposits. In 1983, Brican Resources Ltd. conducted a geochemical survey and geological mapping on the two deposits. In 1990, Commonwealth Gold conducted a geochemical survey over this area. In 1992, Cameco Corp. conducted geochemical and geological surveys in this area.

The area is underlain by sedimentary rocks and greenish volcanics of the Devonian to Triassic Harper Ranch Group intruded by several Jurassic or Cretaceous dikes or small hypabyssal bodies of dacite porphyry. The sediments, striking west to northwest and dipping moderately to steeply south, consist of quartzite, calcareous tuffs and slates.

The Morgan showings consist of 2 or more narrow, north striking quartz veins dipping about 45 degrees southwest and are 36 to 61 centimetres wide. At least one important cross vein is normal to the main veins. The veins occur in quartzite, calcareous tuff and slate which has been intruded by dacite porphyry dikes.

The vein quartz contains, in addition to occasional specks of native gold, disseminated pyrite with some arsenopyrite and locally small amounts of galena, sphalerite and tetrahedrite.

Old reports refer to a vein which is up to 3 metres wide but this vein was not found in 1974. Two veins were noted in the large cleared area south of the caved adit.

A shipment of 10 tonnes of selected material from the veins was sent to Trail in 1973. The shipment graded 44.9 grams per tonne gold, 48 grams per tonne silver, 0.6 per cent lead, 0.4 per cent zinc and 0.02 per cent copper (Property File - Report on the St. Paul Property, 1974). In the 1962 tunnel, one 15-centimetre vein was noted about 46 metres from the portal; one other vein is reported from this tunnel. A grab sample taken from the 15-centimetre vein assayed 3.8 grams per tonne gold and 13.7 grams per tonne silver (Property File - Report on the St. Paul Property, 1974).

Production for the period 1914-1973 totalled 392 tonnes producing 5630 grams of gold, 112,406 grams of silver, 3720 kilograms of lead and 1258 kilograms of zinc for the Morgan and St. Paul deposits. Refer to the St. Paul deposit (082LSE010) for production figures.

Bibliography

EMPR AR 1900-857; 1902-189; 1904-228; 1905-193; 1907-128; 1913- 179; 1914-360,511; 1915-252,446,450; 1916-263; 1923-160; 1927-185, 213; 1928-220; 1930-208; 1931-116; 1932-144; 1933-197; 1934-D34; 1949-138; 1962-66

EMPR ASS RPT 12050, 21592, 22575, 22827, 23110 EMPR BULL 1, p. 79; 20, pp. 3-24 EMPR EXPL 1975-E50 EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257 EMPR GEM 1971-431; 1972-79; 1973-98; 1974-88 EMPR OF 1991-18; 1994-8 EMPR PF (Sketch of Morgan Mine, c. 1930; Map of the Upper Workings on the Minerva, c. 1952; See also 082LSE010) EMPR RGS 082L, 1976; 32, 1991 GSC MAP 7216G; 8491G GSC MEM 296 GSC OF 637(#332); 658 GSC P 91-2, pp. 115-135 CJES Vol. 26, No. 2 GCNL #17,1983 N Date Coded: 1985/07/24 BC Geological Survey (BCGS) Coded By: Field Check: **Date Revised:** 1994/11/24 Dorthe E. Jakobsen(DEJ) Ν **Revised By:** Field Check:

		Location/Identific	cation	
MINFILE Number:	082LSE010	National M	ineral Inventory Num	ber: 082L1 Au1
Name(s):	ST.PAUL			
		, ZILPAH (L.4188), SHEPPARD, SNOW	, SNOWSHOE, PIONE	ER, IRON HORSE,
	· · · · · · · · · · · · · · · · · · ·	RD 9-10, YEOWARD 6-7, MONASHEE	· · · · ·	· · ·
Status:	Past Producer	М	Mining Division:	Vernon
Mining Method	Underground	1	Electoral District:	Okanagan-Vernon
Regions:	British Columbia	1	Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L01W	1	UTM Zone:	11 (NAD 83)
Latitude:	50 08 52 N		Northing:	5556074
Longitude:	118 27 16 W		Easting:	396086
Elevation:	1432 metres		5	
Location Accuracy:				
Comments:	Location of St. Paul we	orkings on the Toughnut claim (Property F	File - Report on the St. P	Paul Property, 1974).
		Mineral Occurre	nco	
			nce	
Commodities:	Silver, Gold, Lead, Zinc, A	ntimony, Copper		
Minerals	Significant:	Arsenopyrite, Jamesonite, Stibnite, Pyrit Freibergite, Pyrrhotite	te, Tetrahedrite, Sphaler	ite, Galena, Chalcopyrite,
	Associated:	Quartz		
	Alteration:	Silica		
	Alteration Type:	Silicific'n		
	Mineralization Age:	Unknown		
	0			
Deposit	Character:	Vein, Disseminated, Massive		
Deposit	Classification:	Hydrothermal, Epigenetic		
	Туре:	105: Polymetallic veins Ag-Pb-Zn+/-Au	l	
	• •	Strike/Dip:	000/	
		Host Rock		
Dominant Host Ro	ck: Sedimentary	1105t NOCK		
Stratigraphic Age	Group	Formation	Igneo	us/Metamorphic/Other
Paleozoic-Mesozoi	-			r
Triassic-Jurassic	Nicola	Undefined Formation		
Jurassic			Nelso	n Intrusions
Isotopic Age		Dating Method	Material Dated	
	rgillite, Quartzite, Slate, Lime	stone, Diorite Sill, Diorite, Feldspar Porph		yry, Greenstone,
Lithology: A	ndesite Tuff	. , , , , ,	r	
		· · · · · ·		
A	ne Harper Ranch Group is Dev	vonian to Triassic.		
A	ne Harper Ranch Group is De	vonian to Triassic. Geological Sett	ting	
A	ne Harper Ranch Group is Der Omineca			ighland

		Inventory		
Ore Zone:	LENS		Year: 1974	
Category:	Assay/analysis		Report On: N	
0.			NI 43-101: N	
Sample Type:	Chip			
	Commodity	Grade		
	Silver	1371.0000 grams per tonne	e	
	Gold	6.5000 grams per tonne		
	Lead	4.3900 per cent		
	Antimony	3.8000 per cent		
	Zinc	0.0300 per cent		
Comments:	A 1-metre sample across one of the	e massive sulphide lenses in a quartz vein.		
Reference:	Property File - Report on the St. F	aul Property, 1974.		
		Summary Production	!	
		Metric	Imperial	
	Mined:	392 tonnes	432 tons	
	Milled:	0 tonnes	0 tons	
Recovery	Silver	112,406 grams	3,614 ounces	
	Gold	5,630 grams	181 ounces	
		, -		
	Lead	3,720 kilograms	8,201 pounds	

Capsule Geology

2,773 pounds

The St. Paul mine is located on the steep north face of Monashee Mountain, 60 kilometres east-southeast of Vernon and about 800 metres northwest of the Morgan (082LSE022) deposit.

1,258 kilograms

Development work began on the Toughnut claim in 1913. In 1914, a tramline was constructed and a mill was installed on the Sheppard claim. The mill operated for short periods in 1914 and 1915, milling 200 tonnes. Four claims, the Black Bess, Minerva, Zilpah and Toughnut (Lots 4186 to 4189), were Crown granted in 1915. Development work, mainly on the Toughnut claim during the period 1914-1916, included 2 adits, 6.1 metres and 106.7 metres in length.

In 1927, St. Paul Mines Ltd. acquired the 4 Crown grants and 3 claims (which included the Morgan (082LSE022)). Intermittent development work continued into 1933. The workings in 1930 included 5 adits from 10.7 to 106.7 metres in length, 2 winzes and a number of trenches. The company reportedly carried out some work in 1949.

In 1962, a new adit begun in 1961 was extended to a total length of 61 metres. A shipment of 7.3 tonnes was reported in 1966. The property in 1971 included the 4 Crown grants and the Snow, Snowshoe and SKB claims. Work done during the period 1971-1973 included trenching and stripping. Some crude ore was shipped in 1971 and 1973 and 4.5 tonnes of concentrate were shipped in 1973. In 1973, Coast Interior Ventures Ltd. leased the properties and in 1974 carried out extensive road improvements, reopening and deepening of old trenches, opening and draining adits 4 and 5 at the St. Paul workings and a metallurgical study on a bulk sample from the St. Paul workings.

In 1982, Brican Resources conducted geochemical surveys and magnetometer survey on the St. Paul and Morgan deposits. In 1983, Brican Resources Ltd. conducted a geochemical survey and geological mapping on the two deposits. In 1990, Commonwealth Gold conducted a geochemical survey over this area. In 1992, Cameco Corp. conducted geochemical and geological surveys in this area.

The area is underlain by sedimentary rocks and greenish volcanics of the Devonian to Triassic Harper Ranch Group and the Upper Triassic to Lower Jurassic Nicola Group. These are intruded by a Jurassic diorite sill of the Nelson Intrusions near the St. Paul workings. The sediments consist of black slate and argillite with lesser grey to black limestone, intermediate volcanic tuffs and quartzite. Minor greenstone or andesite tuff occurs near the St. Paul workings. The volcanics and sediments generally strike east and dip south. The intrusion is medium grained, dark grey and carries disseminated pyrite, locally in heavy concentrations. The diorite exhibits chlorite and carbonate alteration and has hornfelsed the surrounding rocks.

Zinc

Mineralization at the St. Paul workings occurs as scattered to sub-massive sulphides in quartz veins within or adjacent to the diorite sill. Varying amounts of disseminated sulphides also occur in the diorite body and in certain of the surrounding hostrocks. There are 2 large quartz veins (61 to 182 centimetres wide), 10 to 15 narrower ones (1 to 15 centimetres wide) and one mineralized "silicified zone". Most of the veins strike northwest and dip moderately to shallowly southwest.

Mineralization in the large quartz veins consists of stringers, bunches and massive to sub-massive lenses of arsenopyrite with occasional massive lenses of jamesonite and stibuite. Minor amounts of the antimony minerals are found as small stringers and disseminated grains. Minor amounts of pyrite, tetrahedrite, sphalerite and chalcopyrite sometimes accompany the arsenopyrite. High silver values indicate the presence of some other sulphosalt, possibly freibergite. At the face of the No. 3 adit, the vein was 91 centimetres to 1.2 metres wide and composed of heavily mineralized diorite. The vein contains about 0.5 to 60 centimetres of nearly solid sulphides, principally a mixture of arsenical iron with streaks and small kidneys of antimony sulphides, mostly jamesonite.

The narrow quartz veins are mineralized with smaller quantities of the above minerals usually as small stringers or disseminated grains.

Other small quartz veins with northeast strikes and southeast dips may represent faulted segments of one vein. These veins are mainly quartz containing sulphides as disseminations or as streaks, bunches or small kidneys of nearly solid mineral. The sulphides are principally arsenopyrite, antimony sulphides, pyrite and pyrrhotite. Very small amounts of galena, sphalerite and copper pyrites are present and native silver occurs in microscopic specks.

A diffuse "silicified zone" occurs adjacent to the footwall or northern contact of the diorite sill. The zone is about 1.2 to 1.5 metres wide and contains scattered to sub-massive pyrite and arsenopyrite. The zone is exposed in a small creek above the portal of adit 4. A representative grab sample of this material assayed 66 grams per tonne silver and 5 grams per tonne gold (Property File - Report on the St. Paul Property, 1974).

The diorite sill commonly contains disseminated pyrite and arsenopyrite and locally these minerals may constitute 5 to 10 per cent of the intrusive rock. Disseminated pyrite and arsenopyrite were also noted in blue-grey limestone and in a feldspar porphyry dike (dacite porphyry) adjacent to the south contact of the diorite body.

A 1-metre chip sample from adit 1 across one of the massive sulphide lenses in a quartz vein assayed 1371 grams per tonne silver, 6.5 grams per tonne gold, 4.39 per cent lead, 0.03 per cent zinc and 3.8 per cent antimony (Property File - Report on the St. Paul Property, 1974). A grab sample, taken from a 1.2 metre quartz vein carrying scattered arsenopyrite, jamesonite and pyrite 12 metres from the portal of adit 1, assayed 381 grams per tonne silver and 3 grams per tonne gold (Property File - Report on the St. Paul Property, 1974).

Recorded production for the period 1914-1973 totals 392 tonnes producing 5630 grams of gold, 112,406 grams of silver, 3720 kilograms of lead and 1258 kilograms of zinc. These figures include production from the Morgan deposit.

			Bibliography		
EMPR AR 1913-17	9; 1914-360,511; 1915-25	2,446,450; 1916-263	; 1923-160; 1927-185,213; 1928-220; 1	1930-208; 1931-116; 1932-14	4;
1933-197; 1934-D3	4; 1949-138; 1962-66				
EMPR ASS RPT 1	967, 12050, 21592, 22575	5, 22827, 23110			
EMPR BC METAL	MM00442				
EMPR BULL 1, p.	79; 20, pp. 3-24				
EMPR FIELDWOR	RK 1987, pp. 55-58; 1988,	pp. 49-54; 1992, pp.	255-257		
EMPR GEM 1971-	431; 1972-79; 1973-98; 19	974-88			
EMPR INDEX 3-2	11				
EMPR OF 1991-18	; 1994-8				
EMPR PF (Plan of	St. Paul (lower) workings,	copy of 1952 map; *	Report on the St. Paul Property, Coast	Interior Ventures, 1974)	
EMPR RGS 082L,	1976; 32, 1991				
GSC MAP 1059A;	7216G; 8502G				
GSC MEM 296, p.	147				
GSC OF 637(#331)	; 658				
GSC P 91-2, pp. 11	5-135				
GSC SUM RPT 19	30A, p. 116				
CJES Vol. 26, No. 2	2				
GCNL #17, 1983					
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν
Date Revised:	1994/11/16	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν

RISKE (L. 192), VERNON (L. 193), MCINTYRE (L. 194), RISKE (L. 195), WITIROW (L. 306), MOONDEAM, KITTLE 2, MORNING SUN, FIELD Vernon Waining Method Underground Electoral Districe: Vernon Kegions: Dasi foodombia Electoral Districe: Okanagan-Vernon Kegions: Distrib (olumbia Forst Districe: Okanagan-Nernon Kegions: OSL02D2, 0S2L01 UTM Zone: II (NAD 8.) Longindue: 118 30 31 W Northing: 392128 Longindue: Utper adir (No.1) on the Withrow claim (Lot 306) near stamp mill site (Ascessment Report 11789). Vernon Contracter: Utper adir (No.1) on the Withrow claim (Lot 306) near stamp mill site (Ascessment Report 11789). Vernon Comments: Utper adir (No.1) on the Withrow claim (Lot 306) near stamp mill site (Ascessment Report 11789). Vernon Comments: Utper adir (No.1) on the Withrow claim (Lot 306) near stamp mill site (Ascessment Report 11789). Vernon Minerals Significant: Galera, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Vernon Minerals Significants: Galera, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Vernon Minerals Significants: Galera, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite V			Location/Identific	ation	
RISKE (L. 192), VERNON (L. 193), MCINTYRE (L. 194), RISKE (L. 195), WITHROW (L. 366), MOONBEAM, KUTTLE 2, MORNING SUN, FIELD Vernon Status: Past Product Vernon Kegion: Past Product Forest District: Okanagan-Vernon Kegion: 0821026, 0821018 Forest District: Okanagan-Vernon Kegion: 0821026, 0821018 UTM Zone: 11 (NAD 8.3) Latitude: 20 06 30 N Northing: 551 766 Longinude: 118 30 31 W Kateria S55 7766 Comments: Utper addt (No.1) on the Writhrow claim (Lot 366) near samy mill site (Assessment Report 1789). Vernon Comments: Withing One. Vernon Vernon Mineralization: Quartz Vernon Vernon Associate1: Quartz Vernon Vernon Atteration: Site, Clay, Christic, Argillis, Clay, Christic, Argillis, Clay, Christic, Argillis, Macherike, Argillis, Macherike, Argillis, Macherike, Argillis, Macherike, Mache	AINFILE Number:	082LSE001	National Mi	neral Inventory Nun	nber: 082L2 Au1
KETTLE 2, MORNING SUN, FIELD Mining Ntoion: Vernon Status: Pas Producer Mining Division: Okanagan-Vernon Region: Otto No Forest Divirie: Okanagan-Vernon Region: Otto No Forest Divirie: Okanagan-Vernon Status: Otto 30 N UTN Zone: I (NAD 83) Lattude: 006 30 N Northing: 555 1766 Lattude: 18 80 31 N Kerritoria: 10 (NAD 83) Lattude: 006 30 N Northing: 555 1766 Longitude: 118 80 31 N Kerritoria: 10 (NAD 83) Lattude: 006 30 N Northing: 392 12 F Longitude: 118 80 31 N Kerritoria: 10 (NAD 83) Longitude: 118 80 31 N Kerritoria: 10 (NAD 83) Longitude: 118 80 31 N Kerritoria: 10 (NAD 83) Longitude: Upper adit (No.1) on the Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Kerritoria: Mineralization: Silicific:n, Argillic, Claic/C	Name(s):	MONASHEE			
KETTLE 2, MORNING SUN, FIELD Mining Nivion: Vernon Status: Pas Produer Mining Nivion: Okanagan-Vernon Region: Brinsh Columbia Forest District: Okanagan-Vernon Region: 0821/02F, 0821/01V UTM Zone: I (NAD 83) Latitude: 000-00 N Northing: 555/766 Latitude: 108 00 -80 N Northing: 555/766 Longitude: 118 30 31 N Easting: 392/25 Elevation: 118 30 31 N Easting: 392/25 Comments: Upper adit (No.1) on Ure Withow claim (Lot 306) near stamp mill site (Assessment Report 11789). Commoditie: Significant: Galexa, Gold, Pyrite, Sphalerite, Chaleveryrite, Negerite: Mineralization Type: Silker, Clay, Charlerite: Silker/Dig Associated: Silker/Dig Verlin: South Mineralization Type: Silker/Dig Verlin: South Type: 105 Polymetallite viss Ag-Pb-Zm+/Au Verlin: Southease and Silker/Dig Mineralization Type: 105 Polymetallite viss Ag-Pb-Zm+/Au Verlin: Southease and Silker/Dig Type: 105 Polymetallite viss Ag-Pb-Zm+/Au Verlin: Southease and Silker/Dig Dimension: Forevini In the adfor to the Withow class Silker/Dig Verlin: Southease and Silker/Dig L			ON (L. 193) MCINTYRE (L. 194) RISKE	(I. 195) WITHROW	(I. 306) MOONBEAM
Sates: Pisa Producer Mining Division: Vormon Mining Methodi Underground Electoral District: Okanagan-Vernon Regions: Bitials Columba Vorta Zane: Statisticet				(E.199), WITHIO W	
Main Method Underground Electral Distriet: Okanagan-Vernon Regions: 0821/025, 0821/018 Forest District: Okanagan-Shuswap Forest District Strighted: 0821/025, 0821/018 UTM Zone: 11 (NAD 83) Latitud: 090 60 N Northing: 551766 Latitud: 1265 metrics Jastice Jastice Elevation Accuracy: UTM Zone: Jastice Jastice Commoditie: 1265 metrics Jastice Jastice Jastice Commoditie: Uthin Joon He Withrow claim (Lot J06) near stamp mill site (Assessment Report I1789). Jastice Commoditie: Significant: Galena, Gold, Pyrite, Sphalerite, Chalk-Opyrite, Magnetite Jastice Alteration Type: Silita, Clay, Chlorite Minerallation Age: Uthonown Jastice Type: Silita, Clay, Chlorite Jastice Jastice Jastice Jastice Type: Silita, Clay, Chlorite Jastice	tatus.			lining Division:	Vernon
Region: British Columbia Forest District: Okanagan Shaswap Forest District KCS Map: 0821018 UTM Zone: II (NAD 83) Laittode: 500 630 N Northing: 5551766 Longitude: 183 03 1W Easting: 32128 Keation: 1265 metrs: Within 500M Status: 32128 Leastion Accuracy: Within 500M Mineralle Status: Status: Commodities: Silver, Gold, Lead, Zine: Mineralle Status: Status: Associated: Quartz Associated: Quartz Associated: Quartz Status: Status: Associated: Quartz Associated: Status: Associated: Quartz Status: Status: Associated: Polytonhermal, Epigencii: Status: Status: Tassociated: Registro Associated: Status: Status:					Okanagan-Vernon
RCS Map: 98/01/E UTM Zon S UTM Zon S Statistical S 18 30 31 W Northing: 551766 Longinude: 18 30 31 W Easting: 392128 Contain Accessor With Stoom Uter Statistical S 392128 Contain Accessor With Stoom Uter Statistical S 392128 Connondities: Vaper addr (No.1) on the Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Connondities: Silver, Fold, Load, Zine, Clay, Clay in the Action Control Contro Control Control Contro Control Control Control Control Co	0				-
TYS Name: 082L02E, 082L01W UTM Zone: 11 (NAD 83) Latitude: 50 63 0 N Northing: 5551766 Longitude: 113 53 1 W Eaving: 392128 Elevation: 1265 metres 392128 392128 Elevation: Upper adit (No. 1) outbee Withrow claim (Lol 306) near stamp mill site (Assessment Report 11789). Statistice Commodifies: Significant: Galena, Gold, Pyrite, Sphalerife, Chalcopyrite, Magnetite Associated: Quarty Associated: Quarty: Quarty Associated: Quarty Statistice? Statistice? Atteration: Silice? (No. Chlorite: Atteration: Silice? (No. Shear Statistice? Statistice? Atteration: Unknown Binemision: Of Statistic? Statistic? Statistic? Deposit Character: Vein, Shear Lister/Statistic? Statistic? Statistic? Atteration: Usi? Of Statistic? Statistic? Statistic? Statistic? Statistic? Toppic Of Statistic? Of Statistic? Statistic? Statistic? Statistic? Statistic? Atte				orest District.	
Latitude: S0 % 3 N Northing: S531766 Longitude: 1263 orths/s 392128 Elevation: Within 500M	-		τ	TM Zone:	11 (NAD 83)
longitude: 118 30 31 W Eaxing: 392128 Elevation Accurate: Ution in the Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Commonits: Viper adit (No.1) on the Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Commonitie: Silver, Gold, Lead, Zine, Coper Minerals: Galena, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Associated: Quartz Atteration: Quartz Atteration: Quartz Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Atteration Type: Ution: Argitlic, Chloritie Atteration Type: Silica Clay, Chlorite Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Type: Of 05. Polymetallic vin Sq.Pb-Zn ¹ /-Au Deposit Character: Vier, Shear Classification: Hydrothermal, Fpigenetic Type: Of 05. Polymetallic vin Sq.Pb-Zn ¹ /-Au Differetion: Type: Strate: S	-	50 06 30 N		lorthing:	
Elevation: I 265 metres Within 500M Comments: Upper adit (No.1) on He Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Minerals Significant: Galena, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Associated: Quartz Atteration: Silica, Clay, Chlorite Associated: Quartz Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up 1-1 5. metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age: Group Formation Imperiate the set of the s		118 30 31 W		0	
Comments Upper adit (No.1) on the Withrow claim (Lot 306) near stamp mill site (Assessment Report 11789). Commodities Silver, Gold, Lead, Zinc, Cisper Commodities Significant: Galena, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Associated Quartz Stansfer Galena, Gold, Clav, Chorite Associated Quartz Stansfer Significant: Silicification: Silicification: Silicification: Atteration Type: Silicification:	0	1265 metres	1	asting.	572120
Automation Mineral Occurrence Commodities: Silver, Gold, Lead, Zinc, Copper Minerals Significant: Galena, Gold, Pyrile, Sphalerite, Chalcopyrile, Magnetite Associated: Quartz Alteration: Silicia, Clay, Chlorite Alteration: Silicia, Clay, Chlorite Alteration: Silicia, Clay, Chlorite Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: Type: 105 Polymetallic veins Ag-Pb-Zn+/-Au Jinension: Dimension: 760x1 x0 metres Strike/Dip: 045/34E: Comments: The vein in the adit on the Winforw claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age: Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Haper Ranch Undefined Formation Igneous/Metamorphic/Other Jurastic Litology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotic Granodiorite, Andesite Sill	Location Accuracy:	Within 500M			
Commodities: Silver, Gold, Lead, Zinc, Copper Minerals Significant : Galena, Gold, Pyrite, Sphalerite, Chaleopyrite, Magnetite Associated: Quarz Atteration : Silica, Clay, Chlorite Atteration Type: Silicingfen, Argillic, Chloritic Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x100 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age Group Formation Igneous/Metamorphic/Other Palezoit-Mesozoic Harper Ranch Undefined Formation Material Dated Intrasic Out Material Dated Imagenetic Strike Imagenetic Strike Itablogy: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Conments: Group is a strike Itablogy: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Imagenetic Strike<	Comments:	Upper adit (No.1) on the	he Withrow claim (Lot 306) near stamp mil	l site (Assessment Re	eport 11789).
Commodities: Silver, Gold, Lead, Zinc, Copper Minerals Significant: Galena, Gold, Pyrite, Sphalerite, Chaleopyrite, Magnetite Associated: Quarz Atteration: Silica, Clay, Chlorite Atteration: Silica, Clay, Chlorite Mineralization Type: Silicingfre, Arguilic, Chloritic Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x130 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoit-Mesozoit Harper Ranch Undefined Formation Metson Intrusions Isotopic Age Dating Method Material Dated Imagenetic Intrusion: The Harper Ranch Group is Devonian to Triassic. Geological Setting Metavalesite Sill Comments: The Harper Ranch Group is Devonian to Triassic.					
Minerals Significant: Galena, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite Associated: Quartz Atteration: Silicia, Clay, Chlorite Atteration Type: Silicifich, Argillic, Chloritic Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age Group Formation Institute Vinter Vin			Mineral Occurren	ice	
Associated: Quartz Alteration: Silica, Clay, Chlorite Alteration Type: Silici, Clay, Chlorite Alteration Type: Silici, Chloritic Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Fratigraphic Age Group Formation Interest	Commodities:	Silver, Gold, Lead, Zinc, Co	opper		
Associated: Quartz Alteration: Silica, Clay, Chlorite Alteration Type: Silica, Clay, Chlorite Alteration Type: Silici, Choritic Mineralization Age: Unknown Deposit Character: Vein, Shear Chassification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Fratigraphic Age Group Formation Interest I	Minerals	Significant:	Galena, Gold, Pyrite, Sphalerite, Chalcop	yrite, Magnetite	
Alteration: Silica, Clay, Chlorite Atteration Type: Silici, Clay, Chloritic Mineralization Age: Unknown. Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: Type: US: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Stratigraphic Age: Group Formation Igneons/Metamorphic/Other Paleozoice-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Istologic Age Oruing Material Dated		Associated	Quartz		
Alteration Type: Sillifich, Argillic, Chloritic Mineralization Age: Unknown Deposit Character: Wein, Shear Type: Os: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: Polymetallic veins Ag-Pb-Zn+//-Au Comments: Polymetallic veins Ag-Pb-Zn+/-Au Defined Type: Strike/Dig: Ostigation and weils up to 1.5 Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoit-Mesozoit Happer Ranch Undefined Formation Metson Jurassic Group Formation Igneous/Metamorphic/Other Mineralization Age: Dating Method Material Dated Strike Dig: Material Dated Method Dated Strike Dig: Group Group Material Dated Material Dated					
Mineralization Age: Unknown Deposit Character: Vein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein interverse southeast and dips 34 degrees southeast. The vein interverse southeast and dips 34 degrees southeast. The vein interverse southeast and dips 34 degrees southeast. The vein interverse southeast and dips 34 degrees southeast. The vein interverse southeast.					
Deposit Character: Yein, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x 1x0 metres Strate/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Dominant Host Rock: Metavolcanic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoie-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Intrusions Lithology: Meta Volcanic, Argiillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devoisite Triassic. Lithology: Meta Volcanic, Argiillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devoiset Comments: The Group Group Singer Site Group Group Site Granodiorite, Andesite Sill			-		
Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Dominant Host Rock: Metavolcanic Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassie Nelson Intrusions Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornbende Biotite Granodiorite, Andesite Sill Sill Comments: The Harper Ranch Group is Devian to Triassic. Group Isotopic Age Dating Method Material Dated Isotopic Age Meta Volcanic, Argillite, Marble, Limestone, Hornbende Biotite Granodiorite, Andesite Sill Sill Sill Comments: The Harper Ranch Group is Devian to Triassic. Isotopic Age Meta V		wineralization Age:			
Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Dimension: 760x1x0 metres Strike/Dip: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Dominant Host Rock: Metavolcanic Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassie Nelson Intrusions Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornbende Biotite Granodiorite, Andesite Sill Sill Comments: The Harper Ranch Group is Devian to Triassic. Group Isotopic Age Dating Method Material Dated Isotopic Age Meta Volcanic, Argillite, Marble, Limestone, Hornbende Biotite Granodiorite, Andesite Sill Sill Sill Comments: The Harper Ranch Group is Devian to Triassic. Isotopic Age Meta V	D	Character	Vein Shear		
Type: 105: Polymetallic veix λ=Pb-Zn+/Au Dimension: 760x1x0 metres Strike/Dig: 045/34E Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein inches and swells up 1.5 metres in width and near reported to surface for 760 metres. Dominant Host Ner: Metavolcanic Harper Ranch Metavolcanic Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Detection Isotopic Age Dating Method Isotopic Age Isotopic Age Isotopic Age Dating Method Isotopic Age Isotopic Age Isotopic Age Dating Method Isotopic Age Isotopic Age Isotopic Age Tele Petrole Store Sto	Deposit				
Dimension: 760x1x0 metres Strike/Dip: 045/34E Dimension: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Dominant Host Rock: Metavolcanic Hore reportedly been traced on surface for 760 metres. Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassie Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The vein in trassice Comments: The areach Group is Devorian to Triassice Forological Setting Okanagan Highland					
Comments: The vein in the adit on the Withrow claim strikes northeast and dips 34 degrees southeast. The vein pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Dominant Host Rock: Metavolcanic Host Rock Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Igneous/Metamorphic/Other Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic. Comments: The Harper Ranch Group is Devonian to Triassic. Metavolcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: Okanagan Highland)45/34F	
pinches and swells up to 1.5 metres in width and has reportedly been traced on surface for 760 metres. Host Rock Dominant Host Rock: Metavolcanic Igneous/Metamorphic/Other Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Igneous/Metamorphic/Other Jurassic With and has reported by been traced on surface for 760 metres. Isotopic Age Dating Method Material Dated Isotopic Age Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodorite, Andesite Sill Comments: Sill Comments: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodorite, Andesite Sill Sill Sill Comments: The Harper Ranch Group is Devonian to Triassic. Sill Sill Sill Seological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland					
Host Rock Dominant Host Rock: Metavolcanic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic. Tectonic Belt: Omineca Physiographic Area: Okanagan Highland		Comments:			
Dominant Host Rock: Metavolcanic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Isotopic Age Dating Method Material Dated Itinology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic- Fotonic Belt: Omineca Physiographic Area: Okanagan Highland				in and has reportedly	y been fraced on surface for 700 metres.
Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Isotopic Age Material Dated Comments: The Harper Ranch Group is Devonian to Triassic Tectonic Belt: Omineca Physiographic Area: Okanagan Highland	Dominant Host Roc	k: Metavolcanic	HOSt KOCK		
Jurassic Image: Second Secon	Stratigraphic Age	Group	Formation	Igne	ous/Metamorphic/Other
Isotopic Age Dating Method Material Dated Tetonic Bett Omineca Physiographic Area: Okanagan Highland	Paleozoic-Mesozoic	Harper Ranch	Undefined Formation		-
Image:	Jurassic			Nels	on Intrusions
Itihology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic. Itihology: Omineca Physiographic Area: Okanagan Highland	Isotopic Age		Dating Method	Material Dated	
Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic. Geological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland					
Lithology: Meta Volcanic, Argillite, Marble, Limestone, Hornblende Biotite Granodiorite, Andesite Sill Comments: The Harper Ranch Group is Devonian to Triassic. Comments: Comineca Comineca Physiographic Area: Okanagan Highland					
Comments: The Harper Ranch Group is Devonian to Triassic. Geological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland	Lithology: Me	ta Volcanic, Argillite, Marbl	e, Limestone, Hornblende Biotite Granodic		
Geological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland		-			
Tectonic Belt: Omineca Physiographic Area: Okanagan Highland	Comments: The				
		Ominaca		0	Tinkland
Terrane: Quesnel	Lastonia Dalta		Physiographic Area	Okanagan F	ngmand
			i nysiogi upine i ricu.		

Ore Zone:	VEIN		Year:	1983
Category:	Assay/analysis		Report On:	
			NI 43-101:	Ν
Sample Type:	Grab			
	Commodity	Grade		
	Silver	161.8000 grams per tonne		
	Gold	24.9000 grams per tonne		
	Copper	0.3150 per cent		
	Lead	0.7100 per cent		
		Summary Production		
		Metric	Imperia	ıl
	Mined:	2,193 tonnes	2,417	tons
	Milled:	1,421 tonnes	1,566	tons
Recovery	Silver	50,916 grams	1,63	ounces
	Gold	11,415 grams	36	7 ounces
	Lead	706 kilograms	1,55	5 pounds
	Zinc	190 kilograms) pounds
		Capsule Geology		

The Monashee deposit is located 20 kilometres south of Cherryville, just north of McIntyre Lake on the east side of Monashee Pass.

Work was initially reported in 1886 but it may have begun earlier. Underground development and stockpiling of ore were carried out each year. The Riske (Lot 192), Vernon (Lot 193), McIntyre (Lot 194) and Riske (Lot 195) claims were Crown granted in 1887; the Withrow (Lot 306) claim was Crown granted in 1890. The stamp mill was completed in and the workings comprised 3 adits: an upper adit at 1265 metres, driven 91 metres; a middle adit driven 10.7 metres; and a lower adit near the bottom of the hill driven 82.3 metres.

In 1900, the Cherry Creek Gold Mining Co. Ltd. acquired the property and the adjoining McPhail (082LSE009) property. Drifting and crosscutting were done in the old adits. A 5-stamp mill operated for a short time in 1903. In 1907, the Fire Valley Gold Mining Co. Ltd. acquired the two properties. The old adits were reopened but no work was reported and the company ceased work in 1915. The Progressive Mining Co. Ltd. acquired the McIntyre, Morning Sun and Monashee claims in 1921. The adit and opencuts on the McIntyre were cleaned out. On the Morning Sun claim a crosscut adit was driven 12 metres. On the Monashee claim the old lower adit was reopened. In the 1920s, New Monashee Mines Ltd. acquired the Withrow, Field, Vernon and Riske claims but no work was reported.

In 1933, Monashee Mines Syndicate Ltd. acquired the Withrow, Vernon, Field and Riske Crown grants and the adjoining McPhail property. The old adits were reopened, a drift adit was extended 230 metres and two new drift adits were completed. A total of 1254 metres of drifting and raising was done by Vidette Gold before work ceased in 1935. In 1939, Monashee Development installed a 50 ton-per-day mill which began operation in October. The mill operated for 55 days before work ceased; all equipment was removed. In 1940, the property was leased to G.M.F. and F.H. Paterson, S. Flodstrom and William McLaren who mined remnants of ore by hand steel methods.

In 1983, reconnaissance geochemical sampling and geological mapping surveys were done on the Monashee and McPhail properties and the Moonbeam claims by I.M. Watson and Associates Ltd. for Nakusp Resources Ltd. In 1989, reconnaissance mapping and geochemical sampling was completed on the Monashee and McPhail properties, which were staked as the Kettle 2 and 1 claims. In 1992, Cameco Corp. conducted geochemical and geological surveys in the area.

The claims are underlain by Devonian to Triassic metavolcanics and metasediments of the Harper Ranch Group, a short distance north of the contact with Jurassic granitic rocks of the Nelson Intrusions. These consist of interdigitating lenses of fine grained, altered volcanics and metasediments. The volcanics are possibly meta-andesites and the metasediments consist of argillites and marbles. The sediments strike west to northwest and dip steeply to moderately north. On the northern part of the property the Monashee Pass marble showing (082LSE049) forms 50 metre cliffs along the crest of the ridge overlooking Highway 6.

The intrusive rocks consist of leucocratic medium to coarse-grained hornblende biotite granodiorite. The generally fractured granitic rocks are locally heavily sheared and altered. The degree of kaolinization and chloritization is relative to the degree of deformation. The contact with the metamorphic rocks trends northwest.

Disseminated pyrite is common along or near the contact with the granites and is associated with fracturing in silicified and rusty metavolcanics and sediments. Pyritized rusty skarn zones, lensoid and less than 10 metres in extent, occur at volcanic/marble contacts exposed in roadside cuts.

Three adits have been driven on the Withrow claim. The upper adit has been driven on a quartz vein which pinches and swells from 30 to 150 centimetres in width, with the widest sections near faults. The vein, traced on surface for 760 metres, strikes northeast and dips 34 degrees southeast. Mineralization consists of pyrite, galena, chalcopyrite, sphalerite, magnetite and native gold. A faulted outcrop containing a 1.8 metre wide quartz vein has been explored by adit but was not described. Just north of the vein outcrop, another adit has been driven on a quartz vein. This vein is 2 to 10 centimetres wide, strikes southeast and may be a stringer in the hangingwall of the main vein. The veins occur in argillites and metamorphosed volcanics. The workings at 1265 metres elevation were sampled in 1983. A selected grab sample of quartz vein material containing disseminated pyrite, galena and chalcopyrite assayed 0.315 per cent copper, 0.71 per cent lead, 161.8 grams per tonne silver and 24.9 grams per tonne gold (Assessment Report 11789). Samples taken in 1989 from this same dump material assayed similar values (Assessment Report 19209). Samples of dump material from the other adits assayed insignificant values. Geochemical sampling indicated a gold anomaly in the area of the old dumps and workings on the Withrow claim.

On the Vernon claim, pyritic, rusty andesite sills occur in marble. Grab samples assayed low gold and silver values (Assessment Report 11789).

Adits on the Moonbeam 5 and 6 claims, about 425 metres south of the Vernon claim, were driven on a strong northwest trending shear. The shear cuts highly silicified and carbonatized volcanics and contains irregular quartz veins and pods. These are weakly to moderately pyritized and contain rare chalcopyrite and galena. Chip and grab samples assayed up to 132 grams per tonne silver and 0.27 gram per tonne gold (Assessment Report 11789). Samples taken in 1989 assayed low values (Assessment Report 19209).

During 1939-1940, 2193 tonnes of ore were milled producing 11,415 grams of gold, 50,916 grams of silver, 706 kilograms of lead and 190 kilograms of zinc.

Bibliography	
EMPR AR 1886-213; 1887-277; 1889-292; 1890-378; 1891-576; 1892-543; 1893-1073; 1897-609; 1900-857,1128; 1901-1128,1155;	
1902-188; 1903-178; 1904-228; 1905-193; 1907-128; 1909-278; 1913-171; 1914-359,511; 1915-252,446; 1916-263; 1921-191; 1933-155;	
1934-D11; 1935-D13; 1939-37,42; 1940-23,71	
EMPR ASS RPT 4771, 11537, *11789, 19209, 22827, 22575, *23110	
EMPR BC METAL MM00433	
EMPR BULL 1, p. 79; 20, pp. 3-24	
EMPR FIELDWORK 1982, pp. 33-36; 1987, pp. 55-58, 401-404, 511-514; 1988, pp. 49-54; 1990, pp. 301-306; 1991, pp. 319-323;	
1992, pp. 255-257	
EMPR GEM 1973-23,98	
EMPR INDEX 3-206	
EMPR OF 1991-18; 1994-8	
EMPR PF (Workings Plans 1915, 1932)	
EMPR RGS 082L, 1976; 32, 1991	
EMR CORPFILE (Monashee Gold Mines Ltd., Monashee Mines Syndicate Ltd., Vidette Gold Mines Ltd.)	
EMR MINES BRANCH 1934 Report 748-171(#604)	
GSC ANN RPT 1890, Vol. 5	
GSC MAP 1059A; 7216G; 8491G; 8501G	
GSC MEM 296, p. 147	
GSC OF 637 (#327); 658	
GSC P 91-2, pp. 115-135	
GSC SUM RPT 1930A, p. 116	
CJES Vol. 26, No. 2	
GCNL #17, 1983	
Date Coded:1985/07/24Coded By:BC Geological Survey (BCGS)Field Check:N	
Date Revised:1994/11/17Revised By:Dorthe E. Jakobsen(DEJ)Field Check:N	

<form>INFUE Number:DELEMING MUNALING NATIONAL TRENEStatemed:PoorestKentorial District:Ventorial Chanagan-Vent</form>			Location/Identif	fication	
DONA 1-11, DONNA, DNA, RENE instan: Prospect Mining Division: Vernon Kegion: Pritish Columbia Forest District: Okangan Shuswap Forest District KGS Map: 082,018 UTM Zane: IL(NAD 83). autitude: 90 75 7N Narriting: 5554311 autitude: 90 75 7N Lasting: 39408 inaugitude: 118 24 27 N Easting: 39408 inaugitude: 1585 metros Lasting: 39408 ineation: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: 39408 ineation: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: 39408 Mineralization: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: Sphalerite, Sphalerite, Fornantite Mineralization: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: Lasting: Mineralization: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: Lasting: Mineralization: Centre of Dorno 3 claim (Assessment Report 2291). Lasting: Lasting: Mineralization: Gigriffican: Centre of Dorno 1 Line: Alteration: Gigriffican: Gigriffican: Line: Mineralization: Verno 7 Naco	MINFILE Number:	082LSE016			
inner: Prospect	Name(s):	DONA			
		DONA 1-11, DONNA	, DNA, IRENE		
	Status.	Prospect		Mining Division:	Vernon
<form>Region:Initial ColumbiaForest Nutrie:Okanagan Shaswap Forest DustrieCGS May:0821.018II (AZD S)Autivali097.57 NNorthing:554311autivali109.75 NNorthing:554311autivali135.27 NFassing:399408Stanton135.27 NFassing:399408Stanton135.5 metrasStantonStantonVillini 300MStantonStantonCurrier Journal J Lain:Assessment Report 2021).StantonCurrier Journal J Lain:Assessment Report 2021).StantonStantonPortific, Stanton Report Report 2021).MareationMareation Type:Outation, Propylitic, Stalerich, CarbonateAlteration Type:Outation, Propylitic, Stalerich, CarbonateAlteration Type:VillanovaType:Usation, Propylitic, Stalerich, CarbonateStantonPropylitic, Stalerich, StartonStantonPropylitic, Stalerich, CarbonateStantonMareation:Alteration Type:VillanovaType:VillanovaStantonMareation:StantonMareation:Mareation:Propylitic, Stalerich, Currier StattonStantonMareation:Type:M</form>	status.	1			Okanagan-Vernon
TS Inp: 082L01W UTI Zone: 11 (ADD 83) autude: 30 07 57 N Northing: 5554311 conginude: 118 34 27 W Fasting: 394408 Severino: 1585 metres 399408 contain Accuracy: With Sisterios Significant: Accuracy Associated: Quart Accuracy With Project Silica, Ankerite: Atteration Type: Oxidation, Propylific, Silicia fi, Curbonate Significant: Accuracy Mineralization Age: Vithonermal, Epigenetic Type: Oxidation, Propylific, Silicia fi, Curbonate Type: 105: Polymetallic veins Age-Po-Zn+/Au Silicia Finance Silicia Finance Startingenylic Accuracy Mineralization Age: Vithonermal Silicia Finance Atteration: Vithonermal Silicia Finance Silicia Finance Atteration: Vithonermal Silicia Finance Silicia Finance	Regions:	British Columbia			Okanagan Shuswap Forest District
aditude: 50 07 57 N Northing: 5554311 .ongitude: 118 24 27 W Easting: 399408 .comments: 1885 interds .continue in 1885 interds .comments: Centre of Donna 3 claim (Assessment Report 22931).	BCGS Map:	082L018			
onginde: 118 24 27 W Easing: 399408 Revation Recurey: With SOM Comments: Centre of Donna 3 claim (Assessment Report 22931).	NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
ileration: ISS metres Unit of Dana 3 claim (Assessment Report 22931). Commotive: Within 500M Commotive: Centre of Dana 3 claim (Assessment Report 22931). Minerals Significant: Arsenopyrite, Pyrite, Stibuite, Galena, Chalcopyrite, Tetrahedrite, Sphalerite, Tennantite Associated: Quartz Associated: Quartz Asteration Type: Oxidation, Propylitic, Silicific'n, Carbonate Minerals Significant: Vien, Podiform, Shear Classification: Henätte, Silce, Ankerite Alteration Type: Oxidation, Propylitic, Silicific'n, Carbonate Mineralization Age: Ubknow Deposit Character: Vein, Podiform, Shear Classification: Hydrothermal, Epigenetic Type: US: Polymetallic veins AgePb-Znr4-An Strike/Dip: 000/				Northing:	5554311
ovation Accuracy is difficient in the other and elimin (Assessment Report 22931). Immenties Critice of Doma 3 elimi (Assessment Report 22931). Immenties Clineral Occurrence Commodities Silver, Gold, Lead, Zine, Corper, Antimory Minerals Significant: Arsenopyrite, Stibuite, Galena, Chalcopyrite, Tetrabedrite, Sphalerite, Tennantite Associated: Quartz Associated: Quartz Atteration: Hematite, Silicia, Ankerite Associated: Quartz Atteration Type: Oxidation, Propylitic, Silicifen, Carbonate Sphalerite, Tennantite Deposit Charater: Vin, Podiform, Shear Strike/Dig: Odd Classification: 105: Polymedallic veins Ag: Pb-Zn+/-Au Igeoos/Metamorphic/Other Palezoric-Mesozoi: Polymedallic veins Ag: Pb-Zn+/-Au Nelson Intrusions Strike/Palezoi: Polymedallic veins Ag: Pb-Zn+/-Au Nelson Intrusions Str				Easting:	399408
Commenties Centre of Donna 3 claim (Assessment Report 2931). Demonities Silver, Gold, Lead, Zine, Copper, Antimony Winerals Significant: Assenopyrite, Pyrite, Stibnite, Galena, Chalcopyrite, Tetrahedrite, Sphalerite, Tennantite Associated: Quartz Associated: Quartz Atteration Type: Oxidation, Propylitic, Silicif.dn, Carbonate Mineralization Age: Unknown Deposit Character: Vein, Podiform, Shear Classification: Hydrothermal, Epigenetic Type: 005: Polymetallie veins Ag-Pb-Zm-/Au Briteripion: Hydrothermal, Epigenetic Type: 005: Polymetallie veins Ag-Pb-Zm-/Au Bratistipaphic Age Group Paleoxole-Messociate Illaper Ranch Underined Formation Igneous/Metamorphic/Other Paleoxole-Messociate Polysiographic Age <td></td> <td></td> <td></td> <td></td> <td></td>					
Mineral Occurrence Commodities: Silver, Gold, Lead, Zinc, Copper, Antimony Winerals Significant: Arsenopyrile, Pyrile, Sibbnile, Galena, Chalcopyrile, Tetrahedrite, Sphalerite, Tennantite Associated: Quatz Alteration: Hematite, Spile, Ankerite Alteration: Hematite, Splite, Silicific'n, Carbonate Mineralization Type: Oxidation, Propylitic, Silicific'n, Carbonate Deposit Character Vein, Podiform, Shear Exercise Vein Podiform, Shear Classification: Hydrothermal, Epigenetic Type: 005: Polymetallic veins Ag-Pb-Zn+/-Au Botopic Age Group Formation Igneous/Metamorphic/Other Palezozie-Messozie Harper Ranch Undefined Formation Igneous/Metamorphic/Other Palezozie-Messozie Dating Method Material Dated Image: Site Site Site Site Site Site Site Site			m (Assessment Report 22931).		
Commodities: Silver, Gold, Lead, Zine, Copper, Antimony: Minerals Significant: Arsenopyrite, Pyrite, Sibnite, Galena, Chalcopyrite, Tetrahedrite, Sphalerite, Tennantite Associated: Quarz Alteration: Hematite, Silica, Ankerite Atteration Type: Oxidation, Propylitie, Silicificen, Carbonate Mineralization Age: Unknown Deposit Character: Vein, Podiform, Shear Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Strike/Dip: 000/ Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Strike/Dip: 000/ Classification: Hydrothermal, Epigenetic Type: 000/ Classification: Harper Ranch Undefined Formation Neuro Nelson Intrusions Stotopic Age Group Formation Neuro Lithology: Dating Method Material Dated Comments: The Harper Ranch Group is Devonian to Triassic Comments: The Harper Ranch Group is Devonian to Triassic Caments: Kootenay Classification: Physiographic Area: Okanagan Highland Terrane: Kootenay					
Minerals Significant: Arsenopyrite, Pyrite, Stibuite, Galena, Chalcopyrite, Tetrahedrite, Sphalerite, Tennantile Associated: Quartz Alteration: Hematic, Silica, Ankerite Alteration Type: Oxidation, Propylitic, Silicifie'n, Carbonate Mineralization Age: Unknown Deposit Charaeter: Vein, Podiform, Shear Classification: Hydrothermal, Epigenetic Type: Type: 105: Polymetallie veins Ag-Pb-Zn+/-Au Stratigraphic Age: Group Kormation Paleozoic-Mesozoic Harper Ranch Undefined Formation Imerial Dated Intrassic Image Ranch Undefined Formation Image Intrassic Image Ranch Material Dated Intrassic Image Ranch Image Ranch Image Ranch Intrassic Image Ranch Image Ranch Image Ran			Mineral Occurr	ence	
Associated: Quartz Atteration: Hematite, Silica, Ankerite Atteration: Hematite, Silica, Ankerite Atteration: Oxidation, Propylitic, Silicif.en, Carbonate Mineralization Age: Unknown Deposit Character: Vein, Podiform, Shear Type: Iteration: Hydrothermal, Epigenetic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic: Harper Ranch Undefined Formation Image: Igneous/Metamorphic/Other Jarcssic Harper Ranch Undefined Formation Image: Igneous/Metamorphic/Other Iterasic: Image: Igneous/Metamorphic/Other <	Commodities:	Silver, Gold, Lead, Zinc, C	opper, Antimony		
Associated::::::::::::::::::::::::::::::::::::	Minerals	Significant:	Arsenopyrite, Pyrite, Stibnite, Galena,	Chalcopyrite, Tetrahed	lrite, Sphalerite, Tennantite
Atteration Type: Oxidation, Propylitic, Silicific'n, Carbonate Mineralization Age: Unknown Deposit Character: Vein, Podiform, Shear Classification: Hydrothermal, Epigenetic Jeposit Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Jeposit Stratigraphic Age: Pominant Host Rock: Plutonic Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Intrusions Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Intrusions Itothe, Siliceous Phyllite, Felsic Voleanic, Argillite, Quartzite, Tuff, Quartz Diorite		0			
Mineralization Age: Unknown Deposit Character:: Vein, Podiform, Shear Classification:: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Stratigraphic Age: Group Paleozoic-Mesozoic Harper Ranch Jurassic Nelson Intrusions Isotopic Age Onting Method Material Dated Stratigraphic Kge: Dating Method Material Dated Stotopic Age Dating Method Material Dated Isotopic Age Dating Method Material Dated Isotopic Age Dating Method Material Dated Isotopic Age Dorine, Silice-ous Phyllite, Felsic Volcanic, Argillite, Quartz Diorite Comment: The Harper Ranch Group is Devonian to Triassic.		Alteration:	Hematite, Silica, Ankerite		
Mineralization Age: Unknown Deposit Character: Vein, Podiform, Shear Chassification: Hydrothermal, Epigenetic Type: 105: Polymetallizeria. Spigenetic Type: 105: Polymetallizeria. Spigenetic Type: 105: Polymetallizeria. Spigenetic Stratigraphic Age: Portuge Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Jurassic Stotopic Age: Dating Method Jurassic Jurassic Stotopic Age: Dating Method Material Dated Jurassic Stotopic Age: Dorine, Silie-cuare Argillite, Quartzite, Tuff, Quartz Diorite Lithology: Diorite, Silie-cuare Argillite, Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Chartenal Geological Setting: Physiographic Aree: Nelson Intrusions Contenal:		Alteration Type:	Oxidation, Propylitic, Silicific'n, Carb	onate	
Classification: Hydrothermal, Epigenetic Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Straike/Dip: 000/ Dominant Host Rock: Plutonic Straigraphic Age Group Formation Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dorite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: The Harper Ranch Group is Devonian to Triassic Isotopic Age Doirite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: The Harper Ranch Group is Devonian to Triassic Isotopic Age: Omineca Physiographic Area: Okanagan Highland Inventory			Unknown		
Classification: Hydrothermal, Epigenetic. Type: 105: Polymetallic veins Ag-Pb-Zn+/-Au Strike/Dip: 000/ Hydrothermal, Epigenetic. Strike/Dip: Ominant Host Rock: Platozoic-Mesozoic Platopreach Material Date Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Jurassic 1sotopic Age Dating Method Material Dated Nelson Intrusions Isotopic Age Doirite, Silic-ous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite	Denosit	Character:	Vein, Podiform, Shear		
Strike/Dip: 000/ Host Rock Dominant Host Rock: Plutonic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoice-Mesozoic Harper Ranch Undefined Formation Jurassic Welson Intrusions Isotopic Age Dating Method Material Dated Isotopic Age Dating Method Material Dated Isotopic Age Dating Method Material Dated Isotopic Age Dorite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite	Deposit	Classification:	Hydrothermal, Epigenetic		
Host Rock Host Rock Dominant Host Rock: Plutonic Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Lithology: Diorite, Siliceous Phyllite, Felsic Voleanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: Tectonic Belt: Omineca Physiographic Area: Okanagan Highland Terrane: Kootenay Inventory Inventory		Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-A	Au	
Dominant Host Kei: Plutonic Stratigraphic Age Group Paleozoic-Mesozoic Harper Ranch Harper Ranch Undefined Formation Jurassic Resonance of the strateging of the			Strike/Dip:	000/	
Stratigraphic Age Group Formation Igneous/Metamorphic/Other Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated Isotopic Age Nelson Intrusions Isotopic Age Dating Method Material Dated Isotopic Age Isotopic Age Isotopic Age			Host Rock	k	
Paleozoic-Mesozoic Harper Ranch Undefined Formation Jurassic Nelson Intrusions Isotopic Age Dating Method Material Dated	Dominant Host Ro	eck: Plutonic			
Jurassic Image: Contrastion of the second				Ū.	•
Isotopic Age Dating Method Material Dated Lithology: Diorite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: The Harper Ranch Group is Devonian to Triassic.		ic Harper Ranch			
Lithology: Diorite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: The Harper Ranch Group is Devonian to Triassic. Geological Setting Okanagan Highland Terrane: Kootenay					
Image:	Isotopic Age		-	Material Dated	
Lithology: Diorite, Siliceous Phyllite, Felsic Volcanic, Argillite, Quartzite, Tuff, Quartz Diorite Comments: The Harper Ranch Group is Devonian to Triassic. Cectonic Belt: Omineca Kootenay Okanagan Highland Lithology: Inventory					
Comments: The Harper Ranch Group is Devonian to Triassic. Geological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland Terrane: Kootenay Immentation		iorite Siliceous Phyllite Fels			
Geological Setting Tectonic Belt: Omineca Physiographic Area: Okanagan Highland Terrane: Kootenay					
Tectonic Belt: Omineca Physiographic Area: Okanagan Highland Terrane: Kootenay Inventory	Comments: 11				
Terrane: Kootenay Inventory	Tectonic Belt	Omineca		-	Highland
Inventory			r nysiographic Are	a. Okunugan	
·	1 vi i ant.				
Ore Zone: TRENCH Year: 1990			Inventory	,	
	Ore Zone:	TRENCH			Year: 1990
		20. 2000			Paga 1 of 2

Category:	Assay/analysis	Report On: N	
		NI 43-101: N	
Sample Type:	Chip		
	Commodity	Grade	
	Silver	207.8000 grams per tonne	
	Gold	0.5110 grams per tonne	
	Copper	0.0160 per cent	
	Lead	0.1350 per cent	
	Zinc	0.0680 per cent	
Comments:	Chip sample, across 2 metres, fro	m Trench 6 on the Donna claims.	
Reference:	Assessment Report 22931.		

A agory/onolygic

Capsule Geology

Dement One N

The Dona showing is located 4.8 kilometres west-northwest of Keefer Lake at the headwaters of Kettle River, 63 kilometres southeast of Vernon.

In 1973, the Dona 1-11 claims were staked and geochemical and VLF surveys were completed. In 1974, trenching and percussion drilling were undertaken. In 1982, the Irene and Dona claims were staked. In 1984, trenching was done and in 1988 geochemical surveys and geological mapping were completed. In 1992, claims were staked and soil sampling, trenching, bedrock sampling and geological mapping were completed. In 1993, geophysical surveys were completed in the area.

The area is underlain by a metamorphosed poly-deformed sequence of metasediments and tuffaceous rocks of the Devonian to Triassic Harper Ranch Group. These predominantly comprise varieties of black, intensely cleaved argillite and dark grey to grey siliceous phyllite and intermixed felsic volcanics. These are intruded by small stocks and plugs of diorite and quartz diorite of the Jurassic Nelson Intrusions.

The diorite is the main host of the mineralization and shallow dipping shears control gold distribution. Boudinaged quartz veins commonly fill the shear zones and contain pods and irregular masses of arsenopyrite, pyrite, stibnite, galena and minor chalcopyrite, tetrahedrite-tennantite and possibly sphalerite. The mineralized pods and masses vary from a few millimetres to a maximum of about 10 centimetres thick and do not exceed a few metres in length. Adjacent to the shears are irregularly distributed zones of silicification which contain up to about 2 per cent pyrite. Quartz veins generally have hematite-rich selvages. Hematite also occurs as fracture fillings. The diorite host is commonly weakly propylitized and, near shears, is pyritic. Strong silicification and ankerite(?) alteration of diorite and adjacent argillaceous sedimentary rocks has been noted in outcrop.

In 1974, Sample P3 assayed 43.9 grams per tonne silver and 1.4 grams per tonne gold (Assessment Report 5220). Trenching and bedrock sampling yielded low values, generally less than 0.5 gram per tonne gold (Assessment Report 22931). A chip sample across 2 metres from Trench 6 on the Donna claims assayed 0.016 per cent copper, 0.135 per cent lead, 0.068 per cent zinc, 207.8 grams per tonne silver and 0.511 gram per tonne gold (Sample 35781, Assessment Report 22931).

Bibliography

EMPR ASS RPT 4740, 5220, 10920, 14567, 17663, 18147, 21592, 22538, *22931, 23189 EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257 EMPR GEM 1973-97; 1974-81 EMPR OF 1991-18; 1994-8 EMPR PF (Keefer Resources Prospectus, 1988; Dona Property description, 1974) EMPR RGS 082L, 1976; 32, 1991 GSC MAP 7216G; 8491G GSC MEM 296 GSC OF 637(#333); 658 GSC P 91-2, pp. 115-135 CJES Vol. 26, No. 2 Chevron File **Date Coded:** 1985/07/24 Ν Coded By: BC Geological Survey (BCGS) Field Check: Date Revised: 1994/03/21 Dorthe E. Jakobsen(DEJ) Ν **Revised By:** Field Check:

		Locatio	n/Identification		
MINFILE Number:	082LSE020				
Name(s):	FOX				
	VERNA, NUGGET,	KELLY			
Status:	Showing		Mining Div	vision:	Vernon
status:	Showing		Electoral I		Okanagan-Vernon
Regions:	British Columbia		Forest Dist		Okanagan Shuswap Forest District
-	082L019		Forest Dist	unct.	Okulugul oluowup i olost Distilet
BCGS Map:	082L01V		UTM Zone	. 11.0	NAD 83)
NTS Map: Latitude:	50 09 35 N			(
	118 23 08 W		Northing:	5557	
Longitude:	1966 metres		Easting:	4010	032
Elevation:	Within 500M				
Location Accuracy:		area on the Fox 16 claim (Ass	assmant Panort 5066)		
Comments:		area on the Pox To claim (Ass	essment Report 5000)		
		Minera	al Occurrence		
Commodities:	Silver, Lead, Gold, Coppo	er			
Minerals	Significant:	Chalcopyrite, Pyrite, Gale	na, Pyrrhotite, Arsenopyr	ite	
	Associated:	Quartz			
	Alteration:	Silica			
		Silicific'n			
	Alteration Type:				
	Mineralization Age:	Unknown			
Deposit	Character:	Vein, Disseminated			
•	Classification:	Hydrothermal, Epigenetic			
	Туре:	105: Polymetallic veins A	g-Pb-Zn+/-Au		
	Dimension:	1x0x0 metres	Strike/Dip: 000/		
	Comments:		-	metres wide and d	lips about 30 degrees to the
	comments.	southeast.		metres while and e	ips about 50 degrees to the
		I	Host Rock		
Dominant Host Roc	:k: Sedimentary				
Stratigraphic Age Triassic-Jurassic	Group Nicola	Formatio Undefined	n Formation	Igneous/M 	etamorphic/Other
Isotopic Age		Dating Method	Materia	l Dated	
Lithology: Arg	gillite, Limy Quartzitic/Qu	artzose Schist, Tuff, Andesite,	Quartzite, Limestone, Tu	affaceous Andesite	9
		Geol	ogical Setting		
			graphic Area:	Okanagan Highlar	nd
Tectonic Belt:	Omineca	Physiog	graphic Area.	6 6	
	Omineca Quesnel	Physiog	graphic Arca.	0 0	
Tectonic Belt: Terrane:			nventory		

Report On: N Assay/analysis Category: NI 43-101: N Sample Type: Grab Commodity Grade Silver 129.6000 grams per tonne Gold 0.2000 grams per tonne Lead 3.3500 per cent Highest assay; sample from the old shaft area. **Comments: Reference:** Assessment Report 7005.

Capsule Geology

The Fox showing is located on the southwestern slope of Yeoward Mountain, about 90 kilometres east of Vernon.

The Fox showings were discovered and investigated in 1974 by David King. There is an older shaft on the northwest corner of the claims from previous unrecorded work. Also in 1974, a geochemical program was completed by Nielsen Geophysics. In 1978, a geochemical sampling program was conducted on these showings now covered by the Verna and Nugget claims for Murray Ranking Developments Ltd. In 1983, a heavy mineral study was completed on the Kelly claims, just to the west of the Fox showings by C.F. Mineral Research Ltd. for David King. In 1993, geophysical surveys were conducted in this area by James McLeod for Harold Arnold.

The area is underlain by Upper Triassic to Lower Jurassic Nicola Group sedimentary and volcanic rocks. In the area of the showings these consist of argillite, tuff, andesite, quartzite and limestone.

The largest mineralized area is on the Fox 16 claim. This area contains chalcopyrite and pyrite in argillites near the exposure of limy quartzose schists. A quartz vein, dipping 30 degrees southeast and about 1.2 metres wide, contains galena and pyrite.

Just to the west of this area, tuffaceous andesite containing minor disseminated pyrite and chalcopyrite is exposed for 61 metres. About 100 metres to the west, an area with small quartz veins contains heavy arsenopyrite and pyrite in "tuff" rock.

The old shaft is about 150 metres to the north of the largest mineralized area on the Fox 16. The shaft is driven 3.6 metres in a large 1.2 to 2.4 metre wide quartz vein containing blobs of galena. Smaller cross veins carry pyrite, pyrrhotite, arsenopyrite, galena and chalcopyrite. The silicified hostrocks contain disseminated sulphides. A sample taken from this area in 1978 assayed 0.2 gram per tonne gold, 129.6 grams per tonne silver and 3.35 per cent lead (Assessment Report 7005).

Bibliography

EMPR ASS RPT *5066, 5099, 7005, 11759, 23189								
EMPR EXPL 1978-E87; 1979-96	EMPR EXPL 1978-E87; 1979-96							
EMPR FIELDWORK 1987, pp. 55-58; 1988	8, pp. 49-54; 1992, pp	. 255-257						
EMPR GEM 1974-87								
EMPR OF 1991-18; 1994-8								
EMPR RGS 082L, 1976; 32, 1991								
GSC MAP 7216G; 8491G								
GSC MEM 296								
GSC OF 637(#334); 658								
GSC P 91-2, pp. 115-135								
CJES Vol. 26, No. 2								
Date Coded:1985/07/24Coded By:BC Geological Survey (BCGS)Field Check:N								
Date Revised: 1994/11/18	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν				

APPENDIX C

Assessment Cost Statement

Exploration Work type	Comment	Days			Totals
		David	Data	C	
Personnel (Name)* / Position	Field Days (list actual days)	Days		Subtotal*	
Garrett Ainsworth / Geologist	September 15-19, 2009	5		\$1,136.35	
Bob Yorke-Hardy / Labourer	September 11, 14-18, 2009	6		\$2,700.00	
Paul Case / Labourer	September 14-18, 2009	5		\$1,500.00	
LeVerne Bowles / Labourer	September 14-18, 2009	5		\$1,500.00	
Chris Yorke-Hardy / Labourer	September 16-18, 2009	3		\$1,050.00	
			\$0.00	l	#7.00/ 0F
Office Studies	List Dorsonnol (noto Office on	lv do not	inaluda fi	\$7,886.35	\$7,886.35
	List Personnel (note - Office on	iy, ao not	\$0.00	-	
Literature search	Corrett Ainquerth / Coologiet	11.0			
Database compilation	Garrett Ainsworth / Geologist	11.0		\$2,499.97	
Computer modelling	Garrett Ainsworth / Geologist	11.0		\$2,499.97	
Reprocessing of data		44.0	\$0.00		
General research	Garrett Ainsworth / Geologist	11.0		\$2,499.97	
Report preparation	Garrett Ainsworth / Geologist	4.0	\$227.27	\$909.08	
Other (specify)	Bob Yorke-Hardy / Prep & Report	1.0	\$300.00	· · · · ·	
				\$8,708.99	\$8,708.99
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced a	amount			
Aeromagnetics			\$0.00	\$0.00	
Radiometrics			\$0.00		
Electromagnetics			\$0.00		
Gravity			\$0.00		
Digital terrain modelling			\$0.00		
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoiced	amount or I	ist personne		
Aerial photography			\$0.00		
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: ex	penditures	here	
Reconnaissance		should b	e captured	in Personnel	
Prospect		field exp	enditures a	bove	
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amount in	nvoiced list	personnel		
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in	the field			
SP/AP/EP	should be captured above in Person				
IP	field expenditures above				
AMT/CSAMT					
Resistivity					
Complex resistivity					
				1	

Seismic refraction					
Well logging	Define by total length				
Geophysical interpretation					
Petrophysics					
Other (specify)					
Other (specify)				\$0.00	\$0.00
Geochemical Surveying	Number of Complex	No.	Rate	Subtotal	\$0.00
Geochemical Surveying	Number of Samples	NO.	Rale	Sublotal	
Drill (cuttings, core, etc.)			\$0.00	\$0.00	
Stream sediment	1	9 19.0	\$31.91	\$606.29	
Soil	1	9 19.0	\$31.91		
	1	2 12.0			
Rock	1	2 12.0			
Water			\$0.00		
Biogeochemistry			\$0.00		
Whole rock			\$0.00		
Petrology			\$0.00		
Other (specify)			\$0.00		
			1	\$1,131.77	\$1,131.77
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond			\$0.00	\$0.00	
Reverse circulation (RC)			\$0.00	\$0.00	
Rotary air blast (RAB)			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Other Operations	Clarify	No.	Rate	Subtotal	
Trenching			\$0.00	\$0.00	
Bulk sampling			\$0.00		
Underground development			\$0.00		
Other (specify)			\$0.00		
			\$0.00	\$0.00	\$0.00
Reclamation	Clarify	No.	Rate	Subtotal	\$0.00
After drilling		110.	\$0.00	\$0.00	
Monitoring			\$0.00		
Other (specify)			\$0.00		
Other (specify)			\$0.00	\$0.00	
Transportation		No.	Rate	Subtotal	
		_			
Airfare		_	\$0.00		
Тахі			\$0.00		
truck rental	11 truck days	11.00	\$115.00		
kilometers			\$0.00		
ATV	10 ATV/Dirtbike days	10.00	\$50.00		
fuel		1.00	\$839.26	\$839.26	
Helicopter (hours)			\$0.00	\$0.00	
Fuel (litres/hour)			\$0.00	\$0.00	
Other					
				\$2,604.26	\$2,604.26
Accommodation & Food	Rates per day				•
Hotel	Travelodge & Twin Creeks Motel	2.00	\$91.80	\$183.60	
Camp	Keefer Lake Resort	2.00			
Meals		1.00			

Miscellaneous					
Telephone			\$0.00	\$0.00	
Other (Specify)	Digital TRIM Maps 82L018 & 019	2.00	\$400.00	\$800.00	
				\$800.00	\$800.00
Equipment Rentals					
Field Gear (Specify)	Chain Saw & Tools	5.00	\$120.00	\$600.00	
Other (Specify)	Sampling Supplies	1.00	\$74.84	\$74.84	
				\$674.84	\$674.84
Freight, rock samples					
			\$0.00	\$0.00	
			\$0.00	\$0.00	
				\$0.00	\$0.00
TOTAL Expenditu	ires				\$22,369.55

APPENDIX D

Opal Resources Physical Work Report

Opal Resources Canada

BC Precious Opal -- Property

Exploration, Evaluation & Development Opal Mining Processing, Cutting; Jewellery Production & Marketing

To: ESO Uranium Corp. Ste. 408 – 1199 West Pender St., Vancouver, BC V6E 2R1 Attention: Ben Ainsworth

September 19, 2009

Donna Property

Physical Work Program September 2009

Program:

At the request of ESO Uranium Corp. a program of brush clearing along roads and trenches on the Donna property (Tenure # 5134516) was conducted by Opal Resources Canada Inc.

Crews traveled to the site daily from Vernon, BC, travel time was ~1.5 hours each way; arriving at ~9 am and worked daily till ~4:30 pm.

Bob Yorke-Hardy worked Sept 10 --- 1/2 day office --- planning, prep and map acquisition Sept 11 --- Recon Sept 14 to 18 incl --- 5 days road clearing Plus 1/2 day office --- Report prep (in process)

Paul Case worked Sept 14 to 18 incl --- 5 days road clearing

Le Verne Bowles worked Sept 14 to 18 incl --- 5 days road clearing

Chris Yorke-Hardy worked Sept 16 to 18 --- 3 days road clearing (plus Level 3 First Aid)

Work was conducted over the period from September 10 to 19, 2009.

A cost statement is hereto attached.

Opal Resources Canada^{IIIC.}

BC Precious Opal -- Property

Exploration, Evaluation & Development Opal Mining Processing, Cutting; Jewellery Production & Marketing

Donna Property

Physical Work Program September 2009

Cont'd

Work Conducted:

A total of 18 man days was spent physically clearing brush from the existing roads and trenches which had grown in with alder since the last work was conducted. Thick brush cover was encountered over most of the work area.

In the order of 2.5 kms of road clearing and 1.25 kms of trenches were cleared.

Day 1: 3 men cleared the first 1.16 kms from the Keefer Lk. Road

first 810 metres light to moderate brush

last 350 metres moderate to heavy brush

Day 2: 3 men cleared 302 metres of very heavy brush along access road

Day 3: 4 men cleared 415 metres of heavy brush along access roads

Day 4: 4 men cleared 370 metres of heavy brush along access roads

Day 5: 4 men cleared ~1.25 kms of light to very heavy brush from trenches

Cutting was conducted using power saw and machetes. Brush was cut low to the ground i.e. no stubs left, to allow vehicle travel with minimum concern of puncturing tires. All brush and trim material as well as rocks sloughed onto roads were piled off the outer edge of the road into the bush were winter snows should settle most of this material flat to the ground.

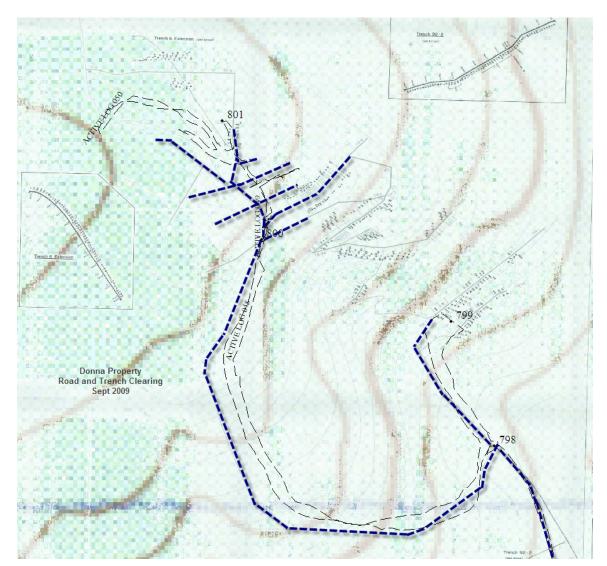
Respectfully Submitted: Opal Resources Canada Inc.

R.W. Yorke-Hardy, Mining Technologist

Opal Resources Canada^{Inc.}

BC Precious Opal -- Property

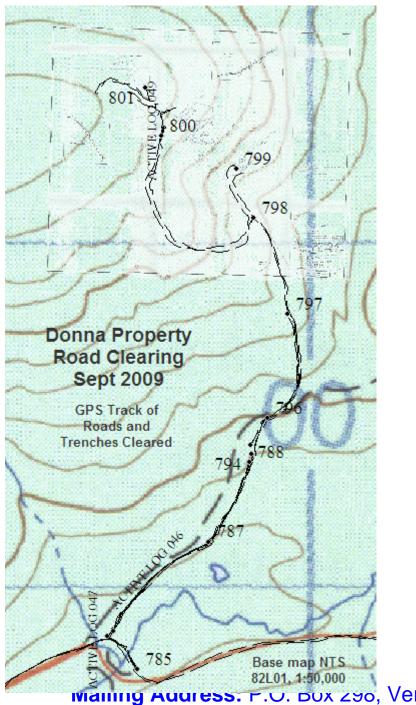
Exploration, Evaluation & Development Opal Mining Processing, Cutting; Jewellery Production & Marketing


Cost Statement:

DESCRIPTION:		
DONNA PROPERTY – Road and trench clearing project.		
Time Period September 10 to September 19, 2009	-	
Bob Yorke-Hardy – Mining Technologist		
1.0 days @ \$450/day – recon trip	\$ 450.00	
5.0 days @ \$450/day - road clearing	\$ 2,250.00	
1.0 days @ \$300/day – office (2 x ½ day)	<u>\$ 300.00</u>	
Sub Total	\$ 3,000.00	\$ 3,000.00
Wages – 3 men		
Labourers – 10 man days @ \$300/day – clearing	\$ 3,000.00	
1 st Aid/Labourer – 3 man days @ \$350/day - clearing	<u>\$ 1,050.00</u>	
Sub Total	\$ 4,050.00	\$ 4,050.00
Vehicle – F350 4x4		
6 days @ \$115/day	\$ 690.00	\$ 690.00
ATV Rental – 5 days @ \$50/day	\$ 250.00	\$ 250.00
Fuel, saw gas & oil, food – travel to/from project & supplies	\$ 600.00	\$ 600.00
Power Saws – 2 @ \$35/day each x 5 days	\$ 350.00	\$ 350.00
Tools/Equipment rental – \$50/day x 5 days	\$ 250.00	<u>\$ 250.00</u>
Sub Total		\$ 9,190.00
5% GST		<u>\$ 459.50</u>
Total		\$ 9,650.50

Opal Resources Canada^{Inc.}

BC Precious Opal -- Property Exploration, Evaluation & Development Opal Mining Processing, Cutting; Jewellery Production & Marketing



Opal Resources Canada^{IIIC.}

BC Precious Opal -- Property

Exploration, Evaluation & Development Opal Mining Processing, Cutting; Jewellery Production & Marketing

Wiaiiiig Auuress. F.O. DUX 290, Vernon, B.C. V1T 6M2 Phone: (250) 542-5173 Fax: (250) 542-7115

APPENDIX E

ALS Chemex Analytical Reports

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 1 Finalized Date: 14-OCT-2009 This copy reported on 23-OCT-2009 Account: ESOURA

CERTIFICATE VA09104720

Project: Monashee

P.O. No.:

This report is for 19 Sediment samples submitted to our lab in Vancouver, BC, Canada on 22-SEP-2009.

The following have access to data associated with this certificate:

GARRETT AINSWORTH

BEN AINSWORTH

GARRETT AINSWORTH

	SAMPLE PREPARATION	J
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
DRY-22	Drying - Maximum Temp 60C	
LOG-21	Sample logging - ClientBarCode	
SCR-41	Screen to -180um and save both	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14-OCT-2009 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H540759 H540760 H540761 H540762		1.00 1.16 1.10 0.76	0,014 NSS 0.024 0.023	0.6 0.8 0.9 1.1	6.50 6.83 6.37 6.25	68 24 124 88	920 720 1040 1100	1.0 0.9 0.9 0.9	<2 <2 <2 <2 <2	2.12 1.59 2.25 2.96	0,9 0.7 1.4 2.3	15 15 15 14	106 119 111 78	45 48 59 65	4,24 4.17 4.17 4.77	10 10 10 10 10 10
H540763 H540764 H540765 H540766 H540768 H540769		0.98 0.84 0.60 0.82 0.76 0.82	0.009 0.037 0.018 0.014 0.017 0.015	1.1 1.0 0.8 1.0 <0.5 0.7	6.46 5.30 5.69 6.32 5.72 6.25	379 983 1360 1470 333 222	1140 840 770 870 900 990	1.0 1.0 1.2 0.9 0.9	<2 <2 <2 <2 <2 <2 <2 <2 <2	3.12 4.50 3.32 3.59 2.04 1.93	2.0 1.5 1.0 1.2 1.7 2.5	15 15 15 17 10	87 66 64 70 86 86	65 66 87 99 50 52	4.90 5.57 5.20 5.75 3.29 3.81	10 10 10 10 10 10
H540769 H540770 H540771 H540772 H540774 H540775		0.82 0.64 0.86 0.90 0.92 0.78	0.045 0.075 0.027 0.011 0.015	0.9 2.1 1.2 0.8 0.8	6.25 6.49 6.76 6.27 6.59 7,16	67 232 139 17 47	1070 1210 1100 730 960	1.0 0.9 0.9 1.0 1.1	<2 <2 <2 <2 <2 <2 <2 <2	1.46 1.32 1.57 2.36 1.76	2.3 2.0 2.3 2.2 1.3 4.3	13 20 21 19 15 19	166 184 168 56 72	69 77 69 65 87	4.87 5.83 5.10 4.11 4.92	10 10 10 10 20
H540777 H540778 H540779 H540780		1.00 0.82 0.82 0.82	0.021 0.007 0.015 0.008	0.6 0.8 1.0 1.1	7.28 6.46 7.37 6.19	35 36 27 58	990 940 980 1100	1,1 1,0 1,1 1,0	<2 <2 <2 <2 <2	2.05 1.52 1.95 1.75	1.6 1.3 2.2 1.6	14 14 16 13	71 116 70 99	50 51 67 41	4.68 4.03 4.82 3.61	20 10 20 10
		dala seconda de la companya de la co														

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14-OCT-2009 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
H540759		1.28	20	1,66	795	1	1.76	46	1010	10	0.03	<5	16	448	<20	0,38
H540760		1.11	20	1.85	983	1	1.93	46	800	9	0.04	<5	16	290	<20	0.32
H540761		1.29	20	1.76	842	2	1.59	57	1070	10	0.03	<5	16	490	<20	0.33
H540762	l	1.15	20	1.85	1045	2	1.31	59	1350	11	0.06	<5	18	658	<20	0.34
H540763		1.31	20	1.85	1130	2	1.35	67	1710	13	0.06	6	20	590	<20	0.38
H540764		1.14	20	1.96	1225	2	0.98	49	2530	8	0,06	<5	25	500	<20	0.41
H540765		1.26	20	1,74	1500	3	1.02	32	3030	13	0.09	<5	22	419	<20	0.42
H540766		1.42	20	1.94	1690	3	1.12	36	3020	21	0,10	7	25	462	<20	0.45
H540768		1,05	20	1,08	1150	3	1.53	79	1270	10	0.07	6	13	305	<20	0.31
H540769		1.17	20	1.29	940	3	1.58	76	1290	12	0.05	5	15	309	<20	0.34
H540770		1.29	20	1.41	994	2	1.39	145	1240	36	0.06	5	19	272	<20	0.28
H540771		1.43	20	1.33	785	2	1.37	150	1110	16	0.09	8	18	204	<20	0.25
H540772		1.30	20	1.28	754	2	1.36	142	1070	20	0.06	7	17	250	<20	0.25
H540774		1.12	20	1.31	1065	1	1.48	26	1320	12	0.05	<5	17	360	<20	0.36
H540775		1.56	20	1.61	1155	2	1.65	37	1440	16	0,05	6	18	341	<20	0.40
H540777		1.44	20	1.54	879	1	1.90	31	1200	12	0.04	<5	18	411	<20	0.44
H540778		1.23	20	1.45	801	1	1.68	61	1110	12	0.04	5	16	303	<20	0.34
H540779		1.50	20	1.58	1030	2	1.78	34	1200	16	0.04	6	18	377	<20	0.43
H540780		1,21	20	1,26	1075	2	1.54	56	1220	10	0,05	5	14	313	<20	0,35

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14-OCT-2009 Account: ESOURA

Project: Monashee

Sample Description	Mathod Anglyte Units LOR	ME-ICP61 TI Ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
H540759		<10	<10	152	<10	114	
H540760		<10	<10	136	<10	101	
H540761		<10	<10	150	<10	134	
H540762		<10	<10	164	<10	217	
H540763		<10	<10	183	<10	215	
H540764		<10	<10	215	10	183	
H540765		<10	<10	190	<10	168	
H540766		<10	<10	208	<10	186	
H540768		<10	<10	122	<10	130	
H540769		<10	<10	142	<10	154	
H540770		<10	<10	142	<10	184	
H540771		<10	<10	172	<10	229	
H540772		<10	<10	147	<10	203	
H540774		<10	<10	145	<10	115	
H540775		<10	<10	189	<10	211	
H540777		<10	<10	185	<10	142	
H540778		<10	<10	146	<10	129	
H540779		<10	<10	185	<10	165	
H540780		<10	<10	134	<10	132	
	l						

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14-OCT-2009 Account: ESOURA

Project: Monashee

Method	CERTIFICATE COMMENTS
ALL METHODS	NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 1 Finalized Date: 19-OCT-2009 Account: ESOURA

	SAMPLE PREPARATION	DN
ALS CODE	DESCRIPTION	
FND-02	Find Sample for Addn Analysis	
	ANALYTICAL PROCEDU	IRES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
	FND-02 ALS CODE	ALS CODE DESCRIPTION FND-02 Find Sample for Addn Analysis ANALYTICAL PROCEDU ALS CODE DESCRIPTION

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

See. Sur Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 19-OCT-2009 Account: ESOURA

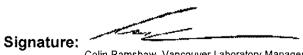
Project: Monashee

Sample Description	Method Analyte Units LOR	Au-ICP21 Au ppm 0.001	Au-ICP21 WT SAMP 9 0.01		
H540760		0.008	15.54		
	ĺ				

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 1 Finalized Date: 7-OCT-2009 This copy reported on 23-OCT-2009 Account: ESOURA


ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

CEF	RTIFICATE VA0910472	1]	SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: Monashee			WEI-21	Received Sample Weight	
P.O. No.:			LOG-21	Sample logging - ClientBarCode	
This report is for 12 Rock same	oles submitted to our lab in Vanco	uver BC Canada on	CRU-QC	Crushing QC Test	
22-SEP-2009.			PUL-QC	Pulverizing QC Test	
			CRU-31	Fine crushing - 70% <2mm	
÷ .	o data associated with this ce		SPL-21	Split sample - riffle splitter	
GARRETT AINSWORTH	BEN AINSWORTH	GARRETT AINSWORTH	PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Ag-OG62	Ore Grade Ag - Four Acid	VARIABLE
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	VARIABLE
Au-AA25	Ore Grade Au 30g FA AA finish	AAS
ME-ICP61a	High Grade Four Acid ICP-AES	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 7-OCT-2009 Account: ESOURA

Project: Monashee

										CERTIF		OF ANA	LYSIS	VA091	04721		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Recvd Wt. kg	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0,5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
H540751 H540752 H540753 H540754 H540755		0.70 0.82 1.60 1.05 1.48	0.006 0.002 0.006 0.006	1.0 0.5 0.8 0.8	7,46 8,10 7,74 8,14	86 14 22 40	1420 2140 1710 1210	1,0 0.7 1.0 1.7	<2 <2 <2 <2 <2	3,08 6.57 11,15 4,32	1.3 0.7 1.2 <0.5	12 12 12 12 12	192 62 107 34	43 52 59 88	4,07 3.54 4.78 5.83	20 20 20 20	
H540756 H540757 H540758 H540767 H540773		2.04 1.78 0.90 0.86 1.06	0,084 0,189 0.036	4.2 9.7 0.8	8,51 7,23 0.36	147 365 23	640 1470 120	<0.5 0,9 <0.5	<2 <2 <2	3.88 4.02 2.54	4.2 11.0 0.7	20 5 <1	25 62 21	154 44 2	5.77 5.37 0.64	20 20 <10	
H540776 H540781		1.12 0.84	0.005 0.009	<0.5 0.8	1.81 3.50	15 34	750 510	<0.5 <0.5	<2 <2	0.13 15.00	<0.5 0,5	4 7	24 128	126 20	1.48 2.30	<10 <10	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - B Total # Pages: 2 (A - E) Finalized Date: 7-OCT-2009 Account: ESOURA

Project: Monashee

									CERTIF	ICATE (OF ANA	LYSIS	VA091	104721	
Method Anaiyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP6 Ti % 0.01
	1.68 1.84 1.49 3.15	10 10 10 20	2.45 1.87 2.07 2.37	360 608 543 887	6 7 5 2	1.73 2.50 1.28 2.18	74 24 62 6	940 870 1180 2940	8 5 5 8	0,14 0.45 0.75 1.57	<5 <5 <5 <5	20 19 22 27	629 1180 1860 950	<20 <20 <20 <20	0.42 0.39 0.49 0.49
	1.32 1.82 0.09	10 10 <10	2.87 1.78 0.11	661 520 137	2 6 <1	3,36 1,21 0.04	10 16 7	1710 820 130	1380 3610 205	3.00 0.34 0.04	449 133 106	26 18 1	1410 838 221	<20 <20 <20	0.74 0,37 0,01
	1.25 0.75	<10 <10	0.39 0.68	257 627	<1 2	0.17 1.28	5 71	140 420	68 111	0.06 0.11	29 10	2 8	68 1170	<20 <20	0.04 0,10
	Analyte Units	Analyte K Analyte K Units % LOR 0.01 1.68 1.84 1.49 3.15 1.32 1.82 0.09 1.25	Manifyle K La Analyte K La Units % ppm LOR 0.01 10 1.68 10 1.84 1.84 10 1.49 3.15 20 10 1.82 10 0.09 1.82 10 1.82 1.25 <10	Manajyte Units K La Mg Units % ppm % LOR 0.01 10 0.01 1.68 10 2.45 1.84 10 1.87 1.49 10 2.07 3.15 20 2.37 1.82 10 1.78 0.09 <10	Analyte Units K La Mg Mn Units % ppm % ppm LOR 0.01 10 0.01 5 1.68 10 2.45 360 1.84 10 1.87 608 1.49 10 2.07 543 3.15 20 2.37 887 1.32 10 2.87 661 1.82 10 1.78 520 0.09 <10	Manalyte Units K La Mg Mn Mo Units % ppm % ppm ppm <td>Manalyte Units K La Mg Mn Mo Na Units % ppm % ppm ppm ppm ppm % LOR 0.01 10 0.01 5 1 0.01 1.68 10 2.45 360 6 1.73 1.84 10 1.87 608 7 2.50 1.49 10 2.07 543 5 1.28 3.15 20 2.37 887 2 2.18 1.32 10 2.87 661 2 3.36 1.82 10 1.78 520 6 1.21 0.09 <10</td> 0.11 137 <1	Manalyte Units K La Mg Mn Mo Na Units % ppm % ppm ppm ppm ppm % LOR 0.01 10 0.01 5 1 0.01 1.68 10 2.45 360 6 1.73 1.84 10 1.87 608 7 2.50 1.49 10 2.07 543 5 1.28 3.15 20 2.37 887 2 2.18 1.32 10 2.87 661 2 3.36 1.82 10 1.78 520 6 1.21 0.09 <10	Manatyte Units K La Mg Mn Mo Na Ni Units % ppm % ppm ppm ppm % ppm LOR 0.01 10 0.01 5 1 0.01 1 1.68 10 2.45 360 6 1.73 74 1.84 10 1.87 608 7 2.50 24 1.49 10 2.07 543 5 1.28 62 3.15 20 2.37 887 2 2.18 6 1.32 10 2.87 661 2 3.36 10 1.82 10 1.78 520 6 1.21 16 0.09 <10	Method Analyte ME-ICP61 ME -ICP61 ME -ICP61 ME -ICP61 ME -ICP61 ME -ICP61 </td <td>Method Analyte Units LOR ME-ICP61 ME ICP61 ME ICP61 ME IC</td> <td>Method Analyte Units LOR ME-ICP61 ME -ICP61 ME -</td> <td>Method Analyte Units ME-ICP61 ME-ICP61<</td> <td>Method Analyte Units ME-ICP61 ME-ICP61<</td> <td>Method Analyte Units ME-ICP61 ME -ICP61 ME -ICP61 ME -ICP</td> <td>Method Ansiyte Units K La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Th Mailye Units 0.01 10 0.01 5 1 0.01 1 100 2 0.01 5 1 1 20 1.68 10 2.45 360 6 1.73 74 940 8 0.14 <5 20 629 <20 1.84 10 1.87 608 7 2.50 24 870 5 0.45 <5 19 1180 <20 1.49 10 2.07 543 5 1.28 62 1180 5 0.75 <5 22 1860 <20 3.15 20 2.87 661 2 3.36 10 1710 1380 3.00 449 26 14410 <20 1.82 10 1.78 520 6 1.21</td>	Method Analyte Units LOR ME-ICP61 ME ICP61 ME ICP61 ME IC	Method Analyte Units LOR ME-ICP61 ME -ICP61 ME -	Method Analyte Units ME-ICP61 ME-ICP61<	Method Analyte Units ME-ICP61 ME-ICP61<	Method Analyte Units ME-ICP61 ME -ICP61 ME -ICP61 ME -ICP	Method Ansiyte Units K La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Th Mailye Units 0.01 10 0.01 5 1 0.01 1 100 2 0.01 5 1 1 20 1.68 10 2.45 360 6 1.73 74 940 8 0.14 <5 20 629 <20 1.84 10 1.87 608 7 2.50 24 870 5 0.45 <5 19 1180 <20 1.49 10 2.07 543 5 1.28 62 1180 5 0.75 <5 22 1860 <20 3.15 20 2.87 661 2 3.36 10 1710 1380 3.00 449 26 14410 <20 1.82 10 1.78 520 6 1.21

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Lid.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 7-OCT-2009 Account: ESOURA

Project: Monashee

									CERTIFICATE OF ANALYSIS				VA091			
Sample Description	Method Analyto Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	Pb-OG62 Pb % 0.001	Au-AA25 Au ppm 0.01	ME-ICP61a Ag ppm 1	ME-ICP61a Al % 0.05	ME-ICP61a As ppm 50	ME-ICP61a Ba ppm 50	ME-ICP61a Be ppm 10	ME-ICP61a Bí ppm 20	ME-ICP61a Ca % 0.05
H540751 H540752 H540753 H540753 H540754 H540755		<10 <10 <10 <10	<10 10 10 <10	220 221 238 274	<10 <10 <10 <10	134 96 169 75			12.30	4	0.46	7810	<50	<10	<20	0.26
H540756 H540757 H540758 H540767 H540773		<10 <10 <10	10 <10 <10	329 236 9	<10 <10 <10	201 411 24	341	16.10	3.73 11.45	68 >200	0.06 <0.05	5630 21900	<50 <50	<10 <10	<20 <20	0.09 <0.05
H540776 H5407B1		<10 <10	<10 10	36 70	<10 <10	22 82										
	-															

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 7-OCT-2009 Account: ESOURA

Project: Monashee

									CERTIFICATE OF ANALYSIS					VA091		
Sample Description	Method Analyte Units LOR	ME-ICP61a Cd ppm 10	ME-ICP61a Co ppm 10	ME-ICP61a Cr ppm 10	ME-ICP61a Cu ppm 10	ME-ICP61a Fe % 0.05	ME-ICP61a Ga ppm 50	ME-ICP61a K % 0.1	ME-ICP61a La ppm 50	ME-ICP61a Mg % 0.05	ME-ICP61a Mn ppm 10	ME-ICP61a Mo ppm 10	ME-ICP61a Na % 0.05	ME-ICP61a Ni ppm 10	ME-ICP61a P ppm 50	ME-ICP61a Pb ppm 20
H540751 H540752 H540753 H540754 H540755		<10	<10	50	10	2.07	<50	0.1	<50	0.05	160	<10	0.27	<10	90	50
H540756 H540757 H540758 H540767 H540773		160 550	<10 <10	30 10	20 220	1.69 15.80	<50 <50	<0.1 <0.1	<50 <50	<0.05 <0.05	70 20	<10 <10	<0.05 <0.05	10 <10	<50 <50	44900 >100000
H540776 H540781																

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 7-OCT-2009 Account: ESOURA

Project: Monashee

									(CERTIFICATE OF ANALYSIS			VA09104721
Sample Description	Method Analyte Units LOR	ME-ICP61a S % 0.1	ME-ICP61a Sb ppm 50	ME-ICP61a Sc ppm 10	ME-ICP61a Sr ppm 10	ME-ICP61a Th ppm 50	ME-ICP61a Ti % 0.05	ME-ICP61a TI ppm 50	ME-ICP61a U ppm 50	ME-ICP61a V ppm 10	ME-ICP61a W ppm 50	ME-ICP61a Zn ppm 20	
H540751 H540752 H540753 H540754 H540755		1.0	50	<10	50	<50	<0.05	<50	<50	20	170	<20	
H540756 H540757 H540758 H540767 H540767		3,2 18.6	35900 4250	<10 <10	10 20	<50 <50	<0.05 <0.05	<50 <50	<50 <50	<10 <10	<50 70	4150 15450	
H540776 H540781												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	