> BC Geological Survey Assessment Report 31408

BAYMAG INC.

2009 GEOLOGICAL REPORT

EXPLORATION DRILLHOLE ANALYSIS

- Consisted of the assaying of core samples from exploration holes drilled on Struna Creek Site, Mineral Claim 596516.

GOLDEN MINING DIVISION

NTS 82 J/13 @ 562700 N, 593000 E
LATITUDE 50 47’ N LONGITUDE 115 41' W
CLAIMS OWNED BY: Baymag Inc.
AUTHORS: Ian Knuckey, Chris Pilarski
DATE SUBMITTED: March 12, 2010

TABLE OF CONTENTS

PAGE
1.0 INTRODUCTION
1.1 Locations and Access 4
1.2 Previous Work 4
1.3 Geological Summary of Orebody 6
2.0 DETAILED TECHNICAL DATA AND INTERPRETATION
2.1 Purpose 7
2.2 Methodology 7
2.3 Data 8
2.5 Conclusions 10
3.0 ITEMIZED COST STATEMENT 11
4.0 AUTHOR'S QUALIFICATIONS 12
5.0 LIST OF FIGURES
Figure 1: Regional Location Map 13
Figure 2: Baymag Claim Map 14
Figure 3: Mineral Claim 596514 Map 15
Figure 4: Struna Creek Drill Site Map 16
Figure 5: Struna Creek Drill Holes Location Map 17
6.0 APPENDIX A: DDH Assay Sheets 19

1 INTRODUCTION

This report summarizes activities and results obtained from drilling exploration program carried out by Baymag Inc. in summer and fall seasons of 2009.

The program consisted of drilling, coring, logging, sampling and assaying 8 vertical holes, each of 100 m in depth and 0.025 m in diameter (except for hole 0909 drilled 119 m deep). The holes were drilled on the west slope of Mount Brussilof, only 3.5 km south of Baymag's Mt. Brussilof Magnesite Mine, in close vicinity to Struna Creek (See Fig. 3).

In the course of the program a total of 816.6 meters of drill core was recovered. The core subsequently generated 354 samples for the purpose of mineral research and chemical evaluation.

Execution of the program, along with all necessary field works (roads construction, sites preparation, equipment repositioning), was performed by John Wolf Construction, the Company which in the past was involved in similar projects.

Baymag Mining staff was responsible for the program design, coordination, and supervision as well as holes lay out, core logging, sampling and handling.

Chemical composition of core samples was determined at Baymag analytical lab in Exshaw Alberta, through application of ICP (Induced Coupled Plasma) analyzes.

1.1 Location and Access

The Struna Creek Site and Mt. Brussilof Magnesite Mine are located in the District of East Kootenay British Columbia, approximately 35 km north-east of Radium Hot Springs, immediately north of the confluence of the Mitchell River and Assiniboine Creek (See Fig.1). The property, while within borders of the Mining Lease M31, is crossed by latitude $50^{\circ} 47$ ' N and longitude $115^{\circ} 41^{\prime} \mathrm{W}$.

Access to the Sites is by Provincial Highway 93 to Settlers Road in Kootenay National Park. Settlers Road leads south/southeast along the valley of the Kootenay River. At a distance of 12 kilometres, the Palliser road turns east off Settlers Road to the 14 km mark. There the Cross River begins trending northeast along the south side of the Cross River Valley to the 32 km mark. The Mitchell River road turns northward toward the mine at the 38 km mark. (See Fig. 1)
The gravel road, which is maintained year round by Baymag Inc , is 38 km in length from the highway to the Mine site.

1.2 Previous Work

Baymag's property is comprised of 461 contiguous claims in the Golden Mining Division (See Fig. 2) G.B. Leech of the Geological Survey of Canada, who was conducting in 1966 mapping program in the area, first discovered the magnesite occurrence. Rock samples collected during the program upon chemical assaying showed high contents of MgO . The content was consistently reaching or exceeding $97 \% \mathrm{MgO}$ level. Because of the Leech report, New Jersey Zinc Exploration Canada Ltd. staked the area and conducted a mapping and diamond drill program. Imperial Oil Enterprises also investigated the area but no additional work was performed. Baykal Minerals Ltd. conducted a mapping program in 1969, which resulted in acquisition of additional claims to bring the total to 278. Baykal Minerals arranged with New Jersey Zinc Exploration Canada Ltd. to conduct mining on their claims.

Following the completion of fieldwork in 1969 to 1970, which included diamond-drilling programs, Acres Western Limited of Vancouver completed a production feasibility report for Baykal Minerals Ltd.

During 1971 Brussilof Resources Limited and Baykal Minerals Ltd. amalgamated to form Baymag Mines Co. Limited.

The property was optioned to Canadian Exploration Limited (CANEX) in 1972. CANEX conducted a field orientation program that included 2819.4 meters of diamond drilling to bring the total length then drilled on the property to 5,255 meters. Geological mapping of specific areas was also completed.

In 1975, a 250 mt. bulk sample was shipped to Refratechnik, a major German producer of refractory products, which showed interest in securing a raw material source. Crushed material was then forwarded to the research and manufacturing companies of KHD, Lorgi and Polysius for research into developing a modern technology for calcining and dead-burning Mt. Brussilof type ore.

In 1979 Baymag Mines Co. Limited - a subsidiary of Refratechnik GmbH of West Germany contracted Techman and Kilborn Engineering (B.C.) Ltd to re-evaluate the feasibility of bringing the magnesite deposit into production. The evaluation involved surveys, 130 meters of percussion drilling, 75 meters of shallow diamond drilling and bulk sample extraction. A 100 ton sample of magnesite was extracted from a site on Rok 17 (now mine lease M31) and shipped to a crusher to be reduced to a minus 10 millimetres mesh. The crushed sample was then shipped to Nichols Engineering and Research in New Jersey to be dead burnt. The dead burnt material was briquetted for further testing. In 1981, Baymag entered into a contractual agreement with John Wolfe Construction Co. Ltd to operate the mine and to be responsible for ore supply to the production plant at Exshaw, Alberta, a facility leased from Canada Cement Lafarge.

During 1984, eight exploration holes totalling a length of 731.5 meters of diamond drilling was completed on the Rok 17 claim. The core was descriptively logged, sampled and assayed.

A major exploration program was conducted in 1987, the purpose of which was to investigate the extension of the known magnesite deposit up-slope from the current pit development and further delineate and evaluate the quality and quantity of the ore in the immediate vicinity of the active mining operations. Thirty-four diamond drill holes totalling 2707 meters were drilled, logged, sampled and assayed.

A smaller exploration program was conducted in 1989 in two areas of the claim block. In the area proximal to the current mine development, the goal was to further delineate and evaluate the quality and quantity of ore immediately north of the known reserves. Fifteen shallow diamond drill holes totalling 273 meters were drilled, logged, sampled and assayed. The other area of interest was near the confluence of the Cross and Mitchell Rivers on the southern Vano claims (now Bay 19 \& 21 claims). Ten shallow diamond drill holes totalling 110 meters were drilled, logged, sampled and assayed.

The following year Baymag acquired new ground up the Alcantara, Assiniboine and Aurora Creeks bringing the total number of claims to 461 units.

A small, percussion drilling program was conducted in 1990 with the goal of delineating zones of contamination near the little explored upper pit area. A total of 370 meters was drilled, sampled and assayed. It became evident that these localized contamination zones greatly influence the direction of pit development. Future drill and assay programs will be targeted toward these structures.

Eight shallow percussion holes were drilled in the summer of 1991 to further delineate the zones of contamination in the north section of the upper pit. A total of 166 m were drilled, logged and assayed.

A diamond-drilling program consisting of 16 holes was drilled in the summer of 1992. A total of 950 m was drilled, concentrated in an area immediately north of the upper pit. The program hoped to delineate new reserves and determine future pit development.

A small exploration program was conducted in 1993 on the Bay-21 claim. Three diamond drill holes totalling 182 meters were drilled, logged, sampled and assayed.

At the end of the 1993 exploration program, a total of 27 percussion holes and 145 diamond drill holes had been drilled on the property. This brings the total length of diamond drilling to 10,280 meters and percussion drilling to 500 meters.

Commercial scale mining started in the second quarter of 1982 and has increased dramatically since then. The Mine is an open pit development and operates year round. Currently it produces in the order of $150,000 \mathrm{mt} /$ year of high quality magnesite ore.
The ore is subsequently transported to Baymag's production facilities in Exshaw, Alberta where it is calcined into various grades of magnesium oxide (MgO).
The calcined product is used in a wide variety of industrial, agricultural and environmental applications. Baymag produces several grades of MgO suitable for all of these purposes.

1.3 Geological Summary of Orebody

The genesis of the deposit is thought to be as mineralogical replacement or molecular substitution. As such, the process occurred when a fine-grained dolomite $\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}$ was substituted by a coarsecrystalline magnesite MgCO_{3}. When taking place in geological past, the replacement likely included several phases of progressive influx of magnesium (Mg) into existed dolomite sediment.

On the molecular basis, the incursion resulted in a near complete removal of Ca^{+2} from chemical structure of the sediment and a fill up of available vacancies with Mg^{+2}. The above chemical process was accompanied by a textural transformation, where original fine-grained layout of dolomite molecules was transposed into coarse-crystalline texture of newly formed magnesite. When viewed on a large scale the deposit is a relatively homogenous, high-grade orebody. Its appearance is well defined by a white to light-grey colour and remarkably evident crystalline texture of the magnesite rock.
Closer examination, predominantly by chemical analysis, have identified that broad irregular zones of contaminants occur through such forms as veining, in-filling of fractures and within the magnesite matrix itself. The value of these contaminants and the form in which they occur play a key role in determining whether the material is considered as ore or waste.

The components of vein material are generally fine-grained pyrite and/or aphanitic white dolomite. Veins occur as irregularly oriented structures with individual veins swelling to thickness of 10 cm and pinching out to nothing. Some veins, especially pyrite, tend to form in swarms covering areas tens of meters wide.

In-filling of fractures occurs in thickness up to 5 cm and generally occurs as a light brown silty clay material, aphanitic white dolomite or as pyrite. Minor occurrences of palygorskite can sometimes be seen coating fracture walls. The fractures are generally narrow elongated curvy-planar structures with local deviations of strike and dip. An invisible chemical halo often brackets the more visible fracture. These halos pinch and swell in a similar manner as veining but on a larger scale.

The interstitial or in-matrix contaminants are comprised of thin coatings of calcite or dolomite between magnesite crystals or as a simple Ca ion exchange within the crystal lattice itself. This form of contamination is the broadest form, covering areas as wide as 100 meters. With sufficient drilling, these areas can now be generally classified in the complimentary and marginal ore types, as contaminant values are usually less than occur in the other forms of contamination.

The competitive market and specific end uses of magnesite, place a great importance on the chemical specification of the product. Somewhat unique to industrial minerals and magnesite in particular is the requirement of continually meeting a set grade specification without receiving any bonus for surpassing it. Material under spec on the other hand, has a very sharp value cut-off and is essentially valueless mere tenths of a percent below spec. Most, if not all naturally occurring deposits, rarely conform to such strict boundaries (e.g. some material within the deposit is above spec, some right at spec and some below.) As a result, before mining can be contemplated, a complex and feasible sequence of blending ore quality and ore type has to be determined.

The Brussilof deposit is somewhat lucky in the respect that inverse grade relationship exists between various chemical zones of the ore-body. For example, when the ore has iron values above spec the calcium values are often consistently below spec and vice versa. Similar associations exist with other element pairs to a lesser degree. Baymag has initiated a complementary ore pile strategy in order to
capitalize on this characteristic. Complimentary materials from different blasts are routinely blended together to achieve a uniform product exactly at the spec level thereby optimizing usage of the deposit. (A high iron, low calcium blast, which by itself would be waste, is blended with a low iron, high calcium which, again by itself would be waste, resulting in on-spec ore; in other words the right waste with its correct complimentary waste results in ore).

2 DETAILED TECHNICAL DATA AND INTERPRETATION

2.1 Purpose

The primary objective of the 2009 Diamond Drilling Exploration Project was a comprehensive geochemical examination of an unexplored area of the Struna Creek. The area, since closely located and geologically related to the main Brussilof magnesite orebody, appeared promising for identifying additional occurrences of the mineral. Furthermore, good chemical results derived in 2008 from several grab samples taken from the area's exposed bedrock, supported such assumption.

As a result, the 2009 DDH research was conducted to:

- investigate if a lateral extension of the Brussilof orebody continued 3.5 km southward of the current limits of Mining Area;
- evaluate subsurface geological, mineral and geochemical make up of the site's bedrock to the depth of 100 meters.
- determine if qualitatively promising grades and economically feasible tonnages of the mineral occurred;
- define zoning (if any) and preliminary spatial parameters, shapes, contacts directions and trends between zones of potential interest;
- determine future activities on the subject area, whether advanced exploration or others.

2.2 Methodology

Prior to commencement of the project, it was necessary to construct a way in to the site base and subsequent bore hole locations.
A D7 CAT dozer and a 320 CAT hoe, subcontracted by John Wolf Construction, were utilized for the work.
The road was built on a fairly steep $\left(5^{0}\right.$ to $\left.25^{\circ}\right)$ west flank of Mount Brussilof. An old deactivated forestry landing on elevation 1450 was chosen as a starting point for the new way. From there, the dozer's ground work continued first in the NE and then in the E direction, following former logging skid trail, for a total distance of 1832 m . Eventually the base was established on a fairly flat ground on elevation of 1600 m .
Clearance of individual drill sites included tree removal and repositioning of overburden and glacial sediments, so that adequate exposure of the solid bedrock was accomplished.

The actual drilling was commenced on August 4, 2009 and completed on August 21, 2009. A Longyear Model "34" (Stub Shaft with a Ford 172 Diesel engine) core rig was used to carry out the program. The unit was operated by a crew of two workers.

Recovered form the drill holes core, of 2.5 cm in diameter, was stored in core boxes in sequential segments of 4 sections by 5 feet long each.
Subsequently, the core was split along its length with a 12 " rock saw, and arranged for generic logging.
The logging included visually most recognizable features of the core, pertinent to its mineral and chemical compositions. In the focus for the core description and classification were in particular: core texture (whether crystalline or not), color, hardness, reactivity with HCl , inventory of minerals other than carbonates.
Once logged, a half of the core from each 5 foot section was bagged, properly labeled and shipped as exploration samples for chemical examination. The remaining core halves were left in boxes that were placed in a core shack for future reference if needed.

Analytical assaying performed at Baymag lab in Exshaw resulted in quantitative determination of MgO , $\mathrm{CaO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and SiO_{2} as major chemical constituents of the samples. Appendix 6 provides a complete set of chemical data obtained from the program.

2.3 Data

DDH 2009-09

Based on crystalline texture, color and overall strength and hardness of the core, the following zones were distinguished in the hole:

- from 1603.0 m to 1600.0 m caprock, consisting of very weathered, brittle and fragmented material;
- from 1600.0 m to 1526.8 m medium to coarse crystalline carbonate, light-gray in color and of consistent solidity;
- from 1526.8 to $1484.1 \mathrm{~m}(\mathrm{EOH}) \mathrm{m}$ fine crystalline to none-crystalline dolomite, gray to dark- gray in color with visible horizontal stratification.

At first, the above middle section appeared as exceptionally promising for a potential high MgO enrichment. However, despite many external traits that resembled a typical high purity magnesite ore, vast majority of the researched samples identified rather high CaO contamination range. The array in fact averaged $5.82 \% \mathrm{CaO}$ with some values reaching 10.00% to $14.00 \% \mathrm{CaO}$ level. Just only a few assays showed the oxide volume below acceptable 3.0% maximum (samples: 127005, 127009,127021, 127025, 127026, 127041 and 127043).

In addition, a core section of 16.8 m in length from 1564.9 m down to 1548.1 m was recognized as highly saturated with Pyrite FeS_{2} mineralization. The mineral occurred in a usual form as irregular veins, veinlets and clusters ranging in thickness from 1 to 10 mm ..
Resulting from the mineralization average contents of iron oxide $\mathrm{Fe}_{2} \mathrm{O}_{3}$ for the zone was reported as high as 2.37%, significantly exceeding limits of usability.

The dolomite section, extending from 1525.3 m down to the hole's end at 1484.1 m , was identified megascopically by finely grained crystallinity, bedding and reactivity with HCl acid. Due to obvious mineralogy and thus predictable high CaO composition, the section was sampled intermittently.

DDH 2009-10

Location of this hole was designed in distance of about 50 m further north off the DDH 2009-09 site. The hole went through fairly similar lithological and mineral succession as the former one.
After drilling through initial depth of 7.6 m of fragmented, partially weathered and thus quite brittle caprock, the probe entered at near elevation of 1590.5 m into consistently harder, cleaner and of medium size crystallinity, light gray monolith. This material type continued down to 1541.6 m level, showing the following chemistry averages: $\mathrm{MgO} 91.91 \%, \mathrm{CaO} 6.58 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 1.28 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.08 \%$, $\mathrm{SiO}_{2} 0.77 \%$.

Major mineral intrusions, consisting of brown limonite (mixture of iron oxide and iron hydroxide) and highly calcitic (CaO) loose, sand-like material, were identified on the depth between 1573.6 to 1572.5 m , and also at elevation of 1567.5 m . In both cases, the intrusions were developed along two large tectonic fractures. It is likely, that along those discontinuities intense decomposition of initial ferrous minerals took place, transforming the latter into secondary oxidized products.

The pyrite zone, which was first recognized in 0909 hole, continued its lateral expansion to the north. As a result, it's presence was identified as well in 0910 between elevations of 1573.6 and 1553.8 m . The section's vertical extent clearly increased by 3.0 m from the original 16.8 m to 19.8 m . Orientation of pyrite veins, which remained the main contaminating factor, was noticeably organized in sets of thick (up to 2.5 cm), horizontal and parallel to each other dark bands. An average chemical content of iron oxide for the section was determined as $2.08 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.

An abrupt change in lithology of the core and its texture was noticed at the depth of 1541.6 m . Within a length of only 1.5 m , a coarse and sparry crystalline texture, that dominated the top 56.4 m , was replaced by a fine grained, thinly-bedded material of dark gray color. The transformation was caused by a clear conversion of sparry, dolomitic carbonate into fine grained dolomite with well defined horizontal stratification.

In addition, the change was evidently documented by considerably different distribution of CaO assays for the two lithologically diverse unites. While the top, sparry part (from 1598 m to 1541.3 m) showed CaO contamination level averaging $6.65 \% \mathrm{CaO}$, the bottom unit (1541.6 m to 1498.9 m) was documented consistently within a double digit range (from 17.76% to 40.40%) to average 29.97% CaO . For this reason the section was sampled in a sporadic way.

In core segment from 1585.8 to 1576.7 m (10.7 m in total) the analyzed material resulted in quality, which came fairly close to the ore requirements currently in force. On average, for this particular section chemical composition was documented as follow: $96.19 \% \mathrm{MgO}, 2.95 \% \mathrm{CaO}, 0.55 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$, $0.08 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 0.22 \% \mathrm{SiO}_{2}$.

DDH 2009-11

The uppermost part of the core from 1589.0 m to 1578.3 m , while showing apparent features of a caprock - overall brittleness, soft sections, brown discoloration - was concurrently indicative of fairly high contents of magnesium oxide. Whereas the MgO contents averaged 96.18%, other major oxides were reported as follows: $2.43 \% \mathrm{CaO}, 1.02 \% \mathrm{Fe}_{2} \mathrm{O}_{3}, 0.10 \% \mathrm{Al}_{2} \mathrm{O}_{3}$, $0.27 \% \mathrm{SiO}_{2}$. As such and with regard to a possible usability of the section's material, the results stood for somewhat encouraging though border line values.

Chemical assays from core cut between elevation of 1578.3 and 1535.7 m, indicated on far less encouraging rock quality, than the grade in the section above. Due to increase volume of CaO - mainly coming from the rock's matrix, $(6.48 \% \mathrm{CaO}$ on average) - a subsequent and drastic reduction in MgO value from 96.18% to 92.02% was reported.

Presence of numerous small fractures filled with leather-like mineral Palygorskite was found at the depth between 1547.9 and 1544.8 m . The mineral, since made of substantial amount of SiO_{2}, contributed in minor yet noticeable SiO_{2} increase in the section itself and in adjacent core vicinity.

The above three section, although showing minor but obvious compositional differences, had - as a common feature - a well developed medium size crystalline texture. The texture was evident in entire vertical stretch of the hole, from collar elevation of 1589.0 m to the depth of 1535.7 m . The crystalline part of the researched core yielded the following average chemical characteristic: $92.77 \% \mathrm{MgO}, 5.75 \% \mathrm{CaO}, 0.93 \% \mathrm{Fe}_{2} \mathrm{O}_{3}, 0.14 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 0.42 \% \mathrm{SiO}_{2}$.

The drilling below 1535.7 m down to the hole's end at 1489.9 m was carried out in the dolomite unit, previously identified and described in DDH 0909 and DDH 0910.
In the sharp contrast with the upper, crystalline section, the dolomite unit was defined by extremely high CaO contamination averaging 39.88% and very low MgO contents of only 58.92%. Analyses of the remaining oxide constituents were reported as follows: $0.75 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$, $0.14 \% \mathrm{Al}_{2} \mathrm{O}_{3}$, and $0.31 \% \mathrm{SiO}_{2}$

DDH 2009-12

For this hole both CaO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ analytical results were elevated and evenly distributed through entire core length from 1558.00 m to 1456.80 m .

Among 43 samples only 3 obtained $\mathrm{Fe}_{2} \mathrm{O}_{3}$ results were reported below 0.96% cut off mark. The remaining 40 specimens showed the contaminant array from 0.96% to $3.98 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$, which at last averaged $2.00 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.
Mineralization of pyrite FeS_{2}, turned out to be a main source of iron contamination. However, unlike thick pyrite veins found in previous holes, in 2009-12 the pyrite was identified as evenly scattered, very small (near visual deductibility) crystals and clusters.

Crystalline texture, made of medium size sparry crystals, was present throughout entire 100 m of the hole extent. Regardless of the texture, level of calcium contamination remained high in the section and averaged $9.42 \% \mathrm{CaO}$, while ranging from 3.62% to $35.33 \% \mathrm{CaO}$. The above CaO characteristic was likely even worse for the bottom 33.5 m of the core length, which contained abundant and large, dolomite crystals. The crystals, very discernable due to outstanding size of 1 to 20 cm and milky-white color, were evenly implanted within the core matrix made of much smaller crystals.

DDH 2009-13

The hole's lithological pattern was recognized as a replica of conditions identified in DDH 0909, 0910 and 0911.

The crystalline lithological unit was recognized in the core from the collar elevation of 1566.0 m to the depth of 1541.6 m . Its overall chemical composition was reported as follows: $\mathrm{MgO} 91.05 \%, \mathrm{CaO}$ $7.53 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 1.08 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.13 \%$ and $\mathrm{SiO}_{2} 0.22 \%$

The dolomite unite, of fine grained, non-crystalline texture and visually discernable bedding, continued from 1541.6 m down to 1464.8 m . The following analytical averages were obtained for the division: $\mathrm{MgO} 64.55 \%, \mathrm{CaO} 34.53 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 0.70 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.08 \%$ and $\mathrm{SiO}_{2} 0.15 \%$
In conclusion, no core samples from the two units generated any analytical assays that would indicate on any occurrences of usable material.

DDH 2009-14; DDH 2009-15;

Exploration cores derived from both holes (especially from 2009-15) were very consistent, hard, lacking any major fractured or brittle zones and showed crystalline texture of small to medium size throughout entire holes lengths.

Despite encouraging lithological characteristics, the core samples and their ensuing chemical analysis detected only a dolomite as the foremost constituting mineral.

Consequently, the averaged analytical composition, for the subject DDH probes were as follows:
DDH 2009-14: $\mathrm{MgO} 72.87 \%, \mathrm{CaO} 25.71 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 1.11 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.12 \%$ and $\mathrm{SiO}_{2} 0.18 \%$;
DDH 2009-15: MgO 75.57\%, $\mathrm{CaO} 22.99 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 1.12 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.11 \%$ and $\mathrm{SiO}_{2} 0.20 \%$

DDH 2009-16

Since vast majority of the hole's core was made of two major types of dolomite, only a few samples were taken for chemical verification.

White, fine grained dolomite occurring as mainly horizontal bends up to 3 cm thick, and large, white dolomite mega-crystals up to 15 cm big, was the mineral's typical occurrence.
From the collected samples and subsequent analytical data the following averages were calculated for the hole: $\mathrm{MgO} 79.74 \%, \mathrm{CaO} 18.62 \%, \mathrm{Fe}_{2} \mathrm{O}_{3} 1.13 \%, \mathrm{Al}_{2} \mathrm{O}_{3} 0.19 \%$ and $\mathrm{SiO}_{2} 0.29 \%$

2.4 Conclusions

- The program showed no horizontal extension of the Brussilof magnesite orebody on to the Struna Creek Site, 3.5 km southward from the Baymag active mining area.
- Only in hole 0910 in core section of 10.7 m in length, the identified composition was narrowly adequate ($96.19 \% \mathrm{MgO}, 2.95 \% \mathrm{CaO}, 0.55 \% \mathrm{Fe}_{2} \mathrm{O}_{3}, 0.08 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 0.22 \% \mathrm{SiO}_{2}$) to current ore specifications. Otherwise, analytical data obtained from the drill holes failed to recognize any geological zones of potential value as magnesite ore resource.
- Sequential lithological pattern, consisted of crystalline, sparry carbonates overlaying noncrystalline, stratified dolomite rocks, was identified in 4 holes located on the site's higher elevations (0909, 0910, 0911 and 0913). Whereas the crystalline unit showed unmistakably
much higher MgO enrichment than the underlying division, the overall identified MgO contents was however insufficient by existing operational standards.
- Visually recognised mineral phases included various forms of dolomite, pyrite, limonite, palygorskite and quartz. If analysed on more detailed, microscopic scale the researched core would have likely generated more mineral findings.

3 ITEMIZED COST STATEMENT

The total costs incurred during the 2009 (from August - November 2009) for diamond drilling program were as follows:

ITEM	UNIT	$\begin{aligned} & \hline \text { UNIT } \\ & \text { COST } \end{aligned}$	QUANTITY	TOTAL COST	
Diamond Drilling	meters	\$ 77.10	816.6	\$	62,956.50
Pump \& hose rental	days	\$ 400.00	16	\$	6,400.00
Baymag Lab (Exshaw)	IVIgU, CaU, $\mathrm{Fe}_{2} \mathrm{U}_{3}$, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ sample analvsis	\$ 60.00	354	\$	21,240.00
Diamond Drilling Core Boxes	box	\$ 11.11	114	\$	1,266.35
Drill Pad Construction	hr	\$ 135.00	8	\$	1,080.00
Mobilization / demobilization	backhoe (hr)	\$ 135.00	8	\$	1,080.00
	D7 Cat (hr)	\$ 125.00	8	\$	1,000.00
Road Construction	backhoe (hr)	\$ 135.00	40.5	\$	5,467.50
	D7 Cat (hr)	\$ 125.00	19	\$	2,375.00
Settling Pond Construction	backhoe (hr)	\$ 135.00	4	\$	540.00
Lowbed	hr	\$ 120.00	20	\$	2,364.90
Pickup	day	\$ 150.00	8	\$	1,200.00
Grand Total				\$	106,970.25

4 AUTHORS' QUALIFICATIONS

Ian Knuckey, MBA, B. Sc. Geology, Mine Manager

Program supervision

Chris Pilarski, M.Sc. Geology, Senior Mine Geologist

Report compilation, geological interpretation and conclusions.

5 Figures

Figure 1: Regional Location Map

Baymag - Mt Brussilof Mine Location Map

© Baymag - Mt Brussilof Mine Location

Topographic Layers
Lakes 1:6M
Rivers 1:6M
BC Border Layers
BC Border 1:6M

Figure 2: Baymag Claims Map

Figure 3: Mineral Claim 596514 Map

Baymag Mine Claim Map

Mineral Titles Layers
 Baymag Mine Tenure
 All Mineral Tenures

Topographic Layers

Railways 1:20K
Roads 1:20K
Gravel Road
Paved Road
Rough Road
Lakes 1:20K
Rivers 1:20K

Grid Layers
 Grid 1:20K - labels

- Grid 1:20K - outline

BC Border Layers
BC Border 1:50K

SCALE 1 : 68,606

Figure 4: Struna Creek Drill Site Map

Figure 5: Struna Creek Drill Holes Location Map

Ddh 09-016 Ddh 09-014

Sam 09-002 0° Sam 09-004

Sam 09-005 O Sam 09-006 Sam 09-012 0

Sam 09-009
Sam,09-007
Sam 09-008

Appendix A - DDH Assay Sheets

DDH 2009-09

Smpl. \#	Start [ft]	$\begin{aligned} & \text { End } \\ & {[f t]} \\ & \hline \end{aligned}$	Start [m]	$\begin{aligned} & \hline \text { End } \\ & {[\mathrm{m}]} \\ & \hline \end{aligned}$	Start Elev. [m]	End Elev. [m]	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
127001	0	10	0.0	3.0	1603.0	1600.0	90.10	5.90	0.98	0.72	2.30
127002	10	15	3.0	4.6	1600.0	1598.4	84.71	11.59	1.05	0.62	2.03
127003	15	20	4.6	6.1	1598.4	1596.9	88.54	9.69	1.09	0.17	0.51
127004	20	25	6.1	7.6	1596.9	1595.4	92.60	6.25	0.69	0.13	0.32
127005	25	30	7.6	9.1	1595.4	1593.9	96.09	1.62	1.13	0.28	0.88
127006	30	35	9.1	10.7	1593.9	1592.3	95.35	3.47	0.71	0.09	0.37
127007	35	40	10.7	12.2	1592.3	1590.8	95.13	3.86	0.58	0.09	0.34
127008	40	45	12.2	13.7	1590.8	1589.3	95.11	3.53	0.53	0.20	0.63
127009	45	50	13.7	15.2	1589.3	1587.8	96.81	2.60	0.47	0.03	0.10
127010	50	55	15.2	16.8	1587.8	1586.2	94.54	4.25	0.95	0.05	0.21
127011	55	60	16.8	18.3	1586.2	1584.7	89.17	10.18	0.56	0.03	0.06
127012	60	65	18.3	19.8	1584.7	1583.2	90.33	8.97	0.55	0.05	0.11
127013	65	70	19.8	21.3	1583.2	1581.7	88.51	10.52	0.72	0.07	0.18
127014	70	75	21.3	22.9	1581.7	1580.1	89.64	9.55	0.60	0.06	0.15
127015	75	80	22.9	24.4	1580.1	1578.6	87.85	10.82	0.51	0.15	0.68
127016	80	85	24.4	25.9	1578.6	1577.1	94.51	4.75	0.56	0.05	0.13
127017	85	90	25.9	27.4	1577.1	1575.6	87.18	12.21	0.53	0.03	0.05
127018	90	95	27.4	29.0	1575.6	1574.0	90.19	9.17	0.52	0.05	0.08
127019	95	100	29.0	30.5	1574.0	1572.5	94.25	4.94	0.64	0.06	0.11
127020	100	105	30.5	32.0	1572.5	1571.0	92.30	7.01	0.54	0.04	0.10
127021	105	110	32.0	33.5	1571.0	1569.5	96.74	2.42	0.68	0.05	0.11
127022	110	115	33.5	35.1	1569.5	1567.9	91.89	6.68	0.98	0.11	0.35
127023	115	120	35.1	36.6	1567.9	1566.4	91.84	7.14	0.73	0.07	0.22
127024	120	125	36.6	38.1	1566.4	1564.9	91.25	5.99	2.22	0.13	0.41
127025	125	130	38.1	39.6	1564.9	1563.4	96.99	1.70	0.93	0.10	0.28
127026	130	135	39.6	41.1	1563.4	1561.9	95.31	2.57	1.37	0.17	0.58
127027	135	140	41.1	42.7	1561.9	1560.3	90.71	7.45	1.26	0.11	0.47
127028	140	145	42.7	44.2	1560.3	1558.8	90.26	6.88	2.59	0.07	0.20
127029	145	150	44.2	45.7	1558.8	1557.3	89.16	4.94	5.80	0.02	0.08
127030	150	155	45.7	47.2	1557.3	1555.8	87.55	6.73	5.66	0.02	0.04
127031	155	160	47.2	48.8	1555.8	1554.2	88.33	10.14	1.36	0.05	0.12
127032	160	165	48.8	50.3	1554.2	1552.7	87.29	10.21	2.39	0.04	0.08
127033	165	170	50.3	51.8	1552.7	1551.2	83.58	14.31	2.03	0.03	0.05
127034	170	175	51.8	53.3	1551.2	1549.7	91.43	7.27	1.24	0.02	0.05
127035	175	180	53.3	54.9	1549.7	1548.1	94.86	3.22	1.67	0.07	0.19
127036	180	185	54.9	56.4	1548.1	1546.6	93.83	5.13	0.89	0.04	0.11
127037	185	190	56.4	57.9	1546.6	1545.1	94.12	4.63	0.87	0.10	0.28
127038	190	195	57.9	59.4	1545.1	1543.6	92.89	6.11	0.82	0.06	0.12
127039	195	200	59.4	61.0	1543.6	1542.0	88.49	10.52	0.90	0.03	0.06
127040	200	205	61.0	62.5	1542.0	1540.5	88.71	10.33	0.71	0.07	0.17
127041	205	210	62.5	64.0	1540.5	1539.0	96.83	2.19	0.86	0.03	0.10
127042	210	215	64.0	65.5	1539.0	1537.5	93.19	5.73	0.87	0.07	0.14
127043	215	220	65.5	67.1	1537.5	1535.9	96.58	2.51	0.73	0.05	0.14
127044	220	225	67.1	68.6	1535.9	1534.4	94.54	4.42	0.86	0.05	0.13
127045	225	230	68.6	70.1	1534.4	1532.9	95.25	3.78	0.80	0.05	0.13
127046	230	235	70.1	71.6	1532.9	1531.4	94.58	4.34	0.82	0.11	0.16
127047	235	240	71.6	73.2	1531.4	1529.8	94.77	3.94	1.00	0.11	0.18

127048	240	245	73.2	74.7	1529.8	1528.3	94.41	4.56	0.74	0.11	0.18
127049	245	250	74.7	76.2	1528.3	1526.8	95.46	3.29	0.91	0.11	0.23
127050	250	255	76.2	77.7	1526.8	1525.3	93.44	5.45	0.70	0.16	0.25
	255	260	77.7	79.2	1525.3	1523.8					
	260	265	79.2	80.8	1523.8	1522.2					
	265	270	80.8	82.3	1522.2	1520.7					
	270	275	82.3	83.8	1520.7	1519.2					
127051	275	280	83.8	85.3	1519.2	1517.7	54.27	44.56	0.75	0.17	0.25
	280	285	85.3	86.9	1517.7	1516.1					
	285	290	86.9	88.4	1516.1	1514.6					
	290	295	88.4	89.9	1514.6	1513.1					
127052	295	300	89.9	91.4	1513.1	1511.6	57.21	41.52	0.83	0.18	0.26
	300	305	91.4	93.0	1511.6	1510.0					
	305	310	93.0	94.5	1510.0	1508.5					
	310	315	94.5	96.0	1508.5	1507.0					0.19
127053	315	320	96.0	97.5	1507.0	1505.5	55.70	43.51	0.47	0.14	0.19
	320	325	97.5	99.1	1505.5	1503.9					
	325	330	99.1	100.6	1503.9	1502.4					
127054	330	335	100.6	102.1	1502.4	1500.9	58.15	41.20	0.35	0.10	0.19
	335	340	102.1	103.6	1500.9	1499.4					
	340	345	103.6	105.2	1499.4	1497.8					
	345	350	105.2	106.7	1497.8	1496.3					
127055	350	355	106.7	108.2	1496.3	1494.8	59.44	39.75	0.40	0.17	0.24
	355	360	108.2	109.7	1494.8	1493.3					
	360	365	109.7	111.3	1493.3	1491.7					
	365	370	111.3	112.8	1491.7	1490.2					0.35
127056	370	375	112.8	114.3	1490.2	1488.7	58.90	40.25	0.32	0.18	0.35
	375	380	114.3	115.8	1488.7	1487.2					
	380	385	115.8	117.3	1487.2	1485.7					
	385	390	117.3	118.9	1485.7	1484.1					

DDH 2009-10

Smpl \#	Start [ft]	End [ft]	Start $[\mathrm{m}]$	End $[\mathrm{m}]$	Start Elev. $[\mathrm{m}]$	End Elev. $[\mathrm{m}]$	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	1598.0	1595.0					
127201	10	15	3.0	4.6	1595.0	1593.4	92.05	6.93	0.90	0.03	0.08
127202	15	20	4.6	6.1	1593.4	1591.9	90.05	8.41	1.30	0.06	0.17
127203	20	25	6.1	7.6	1591.9	1590.4	91.67	6.74	1.40	0.05	0.15
127204	25	30	7.6	9.1	1590.4	1588.9	92.74	6.40	0.72	0.04	0.10
127205	30	35	9.1	10.7	1588.9	1587.3	92.83	6.55	0.48	0.04	0.10
127206	35	40	10.7	12.2	1587.3	1585.8	95.99	3.22	0.64	0.04	0.11
127207	40	45	12.2	13.7	1585.8	1584.3	96.34	3.02	0.55	0.02	0.06
127208	45	50	13.7	15.2	1584.3	1582.8	96.23	3.09	0.61	0.02	0.05
127209	50	55	15.2	16.8	1582.8	1581.2	97.58	1.76	0.39	0.06	0.20
127210	55	60	16.8	18.3	1581.2	1579.7	97.04	2.31	0.43	0.05	0.16
127211	60	65	18.3	19.8	1579.7	1578.2	94.81	4.27	0.58	0.09	0.25
127212	65	70	19.8	21.3	1578.2	1576.7	95.35	3.02	0.66	0.26	0.71
127213	70	75	21.3	22.9	1576.7	1575.1	92.72	6.17	0.83	0.08	0.20
127214	75	80	22.9	24.4	1575.1	1573.6	92.26	5.60	1.88	0.06	0.20

127215	80	85	24.4	25.9	1573.6	1572.1	92.96	4.25	2.61	0.04	0.14
127216	85	90	25.9	27.4	1572.1	1570.6	95.21	3.12	1.19	0.12	0.35
127217	90	95	27.4	29.0	1570.6	1569.0	93.87	3.83	2.12	0.05	0.13
127218	95	100	29.0	30.5	1569.0	1567.5	89.69	6.75	3.47	0.03	0.05
127219	100	105	30.5	32.0	1567.5	1566.0	87.67	10.84	1.43	0.03	0.03
127220	105	110	32.0	33.5	1566.0	1564.5	77.91	20.06	1.92	0.05	0.06
127221	110	115	33.5	35.1	1564.5	1562.9	80.35	18.22	1.31	0.05	0.07
127222	115	120	35.1	36.6	1562.9	1561.4	85.70	12.69	1.49	0.04	0.08
127223	120	125	36.6	38.1	1561.4	1559.9	82.77	15.30	1.79	0.05	0.09
127224	125	130	38.1	39.6	1559.9	1558.4	85.69	12.85	1.40	0.02	0.04
127225	130	135	39.6	41.1	1558.4	1556.9	94.92	3.93	0.87	0.08	0.21
127226	135	140	41.1	42.7	1556.9	1555.3	96.42	1.72	1.63	0.07	0.17
127227	140	145	42.7	44.2	1555.3	1553.8	91.70	2.15	6.04	0.04	0.08
127228	145	150	44.2	45.7	1553.8	1552.3	94.90	4.00	0.74	0.11	0.25
127229	150	155	45.7	47.2	1552.3	1550.8	94.50	4.65	0.59	0.10	0.17
127230	155	160	47.2	48.8	1550.8	1549.2	93.33	5.81	0.64	0.08	0.13
127231	160	165	48.8	50.3	1549.2	1547.7	90.80	7.99	0.69	0.20	0.32
127232	165	170	50.3	51.8	1547.7	1546.2	92.45	6.60	0.60	0.16	0.19
127233	170	175	51.8	53.3	1546.2	1544.7	93.37	5.45	0.98	0.07	0.14
127234	175	180	53.3	54.9	1544.7	1543.1	91.91	7.07	0.55	0.15	0.32
127235	180	185	54.9	56.4	1543.1	1541.6	91.20	7.87	0.54	0.13	0.26
127236	185	190	56.4	57.9	1541.6	1540.1	66.92	32.31	0.47	0.13	0.17
127237	190	195	57.9	59.4	1540.1	1538.6	69.62	29.42	0.48	0.16	0.32
127238	195	200	59.4	61.0	1538.6	1537.0	76.41	22.74	0.49	0.13	0.23
127239	200	205	61.0	62.5	1537.0	1535.5	80.86	17.76	0.83	0.15	0.40
127240	205	210	62.5	64.0	1535.5	1534.0	79.45	19.44	0.49	0.16	0.46
127241	210	215	64.0	65.5	1534.0	1532.5	74.11	24.79	0.49	0.19	0.41
127242	215	220	65.5	67.1	1532.5	1530.9	75.16	22.01	0.54	0.28	2.01
127243	220	225	67.1	68.6	1530.9	1529.4	80.29	18.55	0.57	0.20	0.40
	225	230	68.6	70.1	1529.4	1527.9					
127244	230	235	70.1	71.6	1527.9	1526.4	58.37	40.40	0.94	0.12	0.18
	235	240	71.6	73.2	1526.4	1524.8					
	240	245	73.2	74.7	1524.8	1523.3					
	245	250	74.7	76.2	1523.3	1521.8					
127245	250	255	76.2	77.7	1521.8	1520.3	61.53	37.58	0.52	0.15	0.22
	255	260	77.7	79.2	1520.3	1518.8					
	260	265	79.2	80.8	1518.8	1517.2					
	265	270	80.8	82.3	1517.2	1515.7					
127246	270	275	82.3	83.8	1515.7	1514.2	60.81	38.45	0.58	0.06	0.10
	275	280	83.8	85.3	1514.2	1512.7					
	280	285	85.3	86.9	1512.7	1511.1					
	285	290	86.9	88.4	1511.1	1509.6					
127247	290	295	88.4	89.9	1509.6	1508.1	60.91	38.39	0.49	0.07	0.14
	295	300	89.9	91.4	1508.1	1506.6					
	300	305	91.4	93.0	1506.6	1505.0					
127248	305	310	93.0	94.5	1505.0	1503.5	60.11	39.18	0.45	0.12	0.15
	310	315	94.5	96.0	1503.5	1502.0					
	315	320	96.0	97.5	1502.0	1500.5					
127249	320	325	97.5	99.1	1500.5	1498.9	60.85	38.56	0.34	0.11	0.14

Smpl. \#	Start [ft]	End $[\mathrm{ft]}$	Start [m]	End [m]	Start Elev. [m]	End Elev. [m]	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	1589.0	1586.0					
127101	10	15	3.0	4.6	1586.0	1584.4	95.49	3.33	0.88	0.08	0.22
127102	15	20	4.6	6.1	1584.4	1582.9	96.53	2.25	0.93	0.08	0.21
127103	20	25	6.1	7.6	1582.9	1581.4	96.79	1.53	1.06	0.17	0.45
127104	25	30	7.6	9.1	1581.4	1579.9	95.86	2.90	0.84	0.11	0.29
127105	30	35	9.1	10.7	1579.9	1578.3	96.55	1.95	1.21	0.07	0.23
127106	35	40	10.7	12.2	1578.3	1576.8	95.86	2.62	1.23	0.07	0.22
127107	40	45	12.2	13.7	1576.8	1575.3	93.45	4.95	1.13	0.12	0.35
127108	45	50	13.7	15.2	1575.3	1573.8	95.54	3.17	1.15	0.03	0.11
127109	50	55	15.2	16.8	1573.8	1572.2	93.86	5.24	0.77	0.03	0.10
127110	55	60	16.8	18.3	1572.2	1570.7	93.46	5.17	0.99	0.09	0.30
127111	60	65	18.3	19.8	1570.7	1569.2	88.87	9.79	0.95	0.10	0.29
127112	65	70	19.8	21.3	1569.2	1567.7	90.14	7.85	1.47	0.16	0.38
127113	70	75	21.3	22.9	1567.7	1566.1	84.11	13.90	1.68	0.09	0.21
127114	75	80	22.9	24.4	1566.1	1564.6	83.07	15.92	0.83	0.05	0.13
127115	80	85	24.4	25.9	1564.6	1563.1	95.67	3.41	0.85	0.02	0.06
127116	85	90	25.9	27.4	1563.1	1561.6	97.20	1.97	0.67	0.04	0.12
127117	90	95	27.4	29.0	1561.6	1560.0	94.37	4.64	0.65	0.10	0.25
127118	95	100	29.0	30.5	1560.0	1558.5	90.85	8.15	0.81	0.06	0.14
127119	100	105	30.5	32.0	1558.5	1557.0	90.22	8.71	0.75	0.09	0.22
127120	105	110	32.0	33.5	1557.0	1555.5	93.42	5.75	0.71	0.04	0.09
127121	110	115	33.5	35.1	1555.5	1553.9	93.68	5.03	1.02	0.07	0.20
127122	115	120	35.1	36.6	1553.9	1552.4	92.26	6.61	0.94	0.06	0.13
127123	120	125	36.6	38.1	1552.4	1550.9	92.54	5.27	0.81	0.26	1.13
127124	125	130	38.1	39.6	1550.9	1549.4	88.88	9.08	1.20	0.22	0.62
127125	130	135	39.6	41.1	1549.4	1547.9	92.24	5.60	1.40	0.17	0.59
127126	135	140	41.1	42.7	1547.9	1546.3	89.14	8.81	0.72	0.29	1.04
127127	140	145	42.7	44.2	1546.3	1544.8	93.01	5.07	0.80	0.22	0.90
127128	145	150	44.2	45.7	1544.8	1543.3	95.36	3.07	0.66	0.25	0.66
127129	150	155	45.7	47.2	1543.3	1541.8	94.79	3.50	0.70	0.26	0.76
127130	155	160	47.2	48.8	1541.8	1540.2	94.02	3.62	0.72	0.35	1.29
127131	160	165	48.8	50.3	1540.2	1538.7	93.76	4.63	0.75	0.24	0.63
127132	165	170	50.3	51.8	1538.7	1537.2	88.86	9.79	0.66	0.20	0.49
127133	170	175	51.8	53.3	1537.2	1535.7	91.66	6.40	0.70	0.30	0.94
127134	175	180	53.3	54.9	1535.7	1534.1	53.88	44.70	0.78	0.23	0.41
127135	180	185	54.9	56.4	1534.1	1532.6	76.39	22.14	0.56	0.23	0.67
127136	185	190	56.4	57.9	1532.6	1531.1	77.78	20.53	1.10	0.17	0.42
127137	190	195	57.9	59.4	1531.1	1529.6	63.89	34.92	0.80	0.12	0.27
127138	195	200	59.4	61.0	1529.6	1528.0	58.00	41.04	0.67	0.11	0.18
127139	200	205	61.0	62.5	1528.0	1526.5	60.40	38.43	0.68	0.19	0.30
	205	210	62.5	64.0	1526.5	1525.0					
	210	215	64.0	65.5	1525.0	1523.5					
127140	215	220	65.5	67.1	1523.5	1521.9	59.56	39.74	0.38	0.13	0.19
	220	225	67.1	68.6	1521.9	1520.4					
	225	230	68.6	70.1	1520.4	1518.9					
	230	235	70.1	71.6	1518.9	1517.4					
127141	235	240	71.6	73.2	1517.4	1515.8	54.70	44.13	0.51	0.24	0.43
	240	245	73.2	74.7	1515.8	1514.3					
	245	250	74.7	76.2	1514.3	1512.8					

	250	255	76.2	77.7	1512.8	1511.3					
127142	255	260	77.7	79.2	1511.3	1509.8	54.77	43.21	1.42	0.10	0.51
	260	265	79.2	80.8	1509.8	1508.2					
	265	270	80.8	82.3	1508.2	1506.7					
127143	270	275	82.3	83.8	1506.7	1505.2	50.16	48.38	0.98	0.12	0.36
	275	280	83.8	85.3	1505.2	1503.7					
	280	285	85.3	86.9	1503.7	1502.1					
	285	290	86.9	88.4	1502.1	1500.6					
127144	290	295	88.4	89.9	1500.6	1499.1	52.49	46.72	0.67	0.05	0.07
	295	300	89.9	91.4	1499.1	1497.6					
	300	305	91.4	93.0	1497.6	1496.0					
	305	310	93.0	94.5	1496.0	1494.5					
127145	310	315	94.5	96.0	1494.5	1493.0	52.13	47.13	0.64	0.04	0.06
	315	320	96.0	97.5	1493.0	1491.5					
127146	320	325	97.5	99.1	1491.5	1489.9	51.82	47.36	0.59	0.08	0.14

DDH 2009-12

Smpl. \#	Start $[\mathrm{ft}]$	End $[\mathrm{ft]}]$	Start $[\mathrm{m}]$	End $[\mathrm{m}]$	Start Elev. $[\mathrm{m}]$	End Elev. $[\mathrm{m}]$	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	$\mathbf{1 5 5 8 . 0}$	1555.0					
	0	10									
127701	10	15	3.0	4.6	1555.0	1553.4	66.81	32.13	0.83	0.04	0.19
127702	15	20	4.6	6.1	1553.4	1551.9	63.99	35.33	0.56	0.04	0.08
127703	20	25	6.1	7.6	1551.9	1550.4	76.72	21.92	1.18	0.05	0.13
127704	25	30	7.6	9.1	1550.4	1548.9	87.41	9.37	2.94	0.07	0.21
127705	30	35	9.1	10.7	1548.9	1547.3	84.43	13.31	2.02	0.07	0.18
127706	35	40	10.7	12.2	1547.3	1545.8	87.25	10.99	1.50	0.07	0.20
127707	40	45	12.2	13.7	1545.8	1544.3	88.51	9.72	1.44	0.08	0.25
127708	45	50	13.7	15.2	1544.3	1542.8	85.17	13.16	1.46	0.06	0.15
127709	50	55	15.2	16.8	1542.8	1541.2	88.40	9.71	1.43	0.12	0.35
127710	55	60	16.8	18.3	1541.2	1539.7	89.13	9.29	1.31	0.08	0.19
127711	60	65	18.3	19.8	1539.7	1538.2	91.47	7.16	1.08	0.08	0.21
127712	65	70	19.8	21.3	1538.2	1536.7	88.93	9.31	1.47	0.09	0.20
127713	70	75	21.3	22.9	1536.7	1535.1	88.41	9.85	1.43	0.09	0.22
127714	75	80	22.9	24.4	1535.1	1533.6	86.36	11.76	1.60	0.09	0.20
127715	80	85	24.4	25.9	1533.6	1532.1	88.20	9.48	1.42	0.25	0.65
127716	85	90	25.9	27.4	1532.1	1530.6	89.40	8.82	1.40	0.10	0.28
127717	90	95	27.4	29.0	1530.6	1529.0	93.52	4.82	1.29	0.09	0.27
127718	95	100	29.0	30.5	1529.0	1527.5	92.60	5.05	1.71	0.15	0.49
127719	100	105	30.5	32.0	1527.5	1526.0	89.18	9.38	0.95	0.12	0.38
127720	105	110	32.0	33.5	1526.0	1524.5	94.39	3.90	1.10	0.15	0.47
127721	110	115	33.5	35.1	1524.5	1522.9	93.54	4.56	1.21	0.16	0.53
127722	115	120	35.1	36.6	1522.9	1521.4	92.63	4.55	1.59	0.29	0.95
127723	120	125	36.6	38.1	1521.4	1519.9	90.80	4.45	3.98	0.18	0.59
127724	125	130	38.1	39.6	1519.9	1518.4	91.66	4.64	2.99	0.17	0.54
127725	130	135	39.6	41.1	1518.4	1516.9	90.84	6.45	2.20	0.13	0.38
127726	135	140	41.1	42.7	1516.9	1515.3	89.87	7.04	2.86	0.07	0.16
127727	140	145	42.7	44.2	1515.3	1513.8	90.84	4.94	3.05	0.34	0.83
127728	145	150	44.2	45.7	1513.8	1512.3	90.76	5.43	2.61	0.35	0.85

127729	150	155	45.7	47.2	1512.3	1510.8	91.07	5.58	2.77	0.14	0.44
127730	155	160	47.2	48.8	1510.8	1509.2	90.46	6.96	2.15	0.11	0.31
127731	160	165	48.8	50.3	1509.2	1507.7	89.76	7.24	2.64	0.08	0.27
127732	165	170	50.3	51.8	1507.7	1506.2	90.64	7.48	1.70	0.05	0.14
127733	170	175	51.8	53.3	1506.2	1504.7	89.77	7.75	2.10	0.10	0.28
127734	175	180	53.3	54.9	1504.7	1503.1	89.92	7.04	2.52	0.12	0.40
127735	180	185	54.9	56.4	1503.1	1501.6	93.33	3.62	2.44	0.14	0.47
127736	185	190	56.4	57.9	1501.6	1500.1	92.06	5.21	2.03	0.16	0.53
127737	190	195	57.9	59.4	1500.1	1498.6	92.34	4.81	2.33	0.12	0.40
127738	195	200	59.4	61.0	1498.6	1497.0	90.95	5.77	2.96	0.08	0.23
127739	200	205	61.0	62.5	1497.0	1495.5	92.02	3.94	2.83	0.27	0.94
127740	205	210	62.5	64.0	1495.5	1494.0	90.14	6.69	2.67	0.13	0.37
127741	210	215	64.0	65.5	1494.0	1492.5	73.14	24.01	1.65	0.28	0.92
	215	220	65.5	67.1	1492.5	1490.9					
	220	225	67.1	68.6	1490.9	1489.4					
	225	230	68.6	70.1	1489.4	1487.9					
	230	235	70.1	71.6	1487.9	1486.4					
	235	240	71.6	73.2	1486.4	1484.8					
	240	245	73.2	74.7	1484.8	1483.3					
	245	250	74.7	76.2	1483.3	1481.8					
127749	250	255	76.2	77.7	1481.8	1480.3	89.20	9.11	1.38	0.12	0.19
	255	260	77.7	79.2	1480.3	1478.8					
	260	265	79.2	80.8	1478.8	1477.2					
	265	270	80.8	82.3	1477.2	1475.7					
	270	275	82.3	83.8	1475.7	1474.2					
	275	280	83.8	85.3	1474.2	1472.7					
	280	285	85.3	86.9	1472.7	1471.1					
	285	290	86.9	88.4	1471.1	1469.6					
	290	295	88.4	89.9	1469.6	1468.1					
127758	295	300	89.9	91.4	1468.1	1466.6					
	300	305	91.4	93.0	1466.6	1465.0	84.69	13.28	1.47	0.24	0.33
	305	310	93.0	94.5	1465.0	1463.5					
	310	315	94.5	96.0	1463.5	1462.0					
	315	320	96.0	97.5	1462.0	1460.5					
	320	325	97.5	99.1	1460.5	1458.9					
	320	327	97.5	99.7	1458.9	1456.8					

DDH 2009-13

Smpl. \#	Start $[\mathrm{ft]}$	End $[\mathrm{ft}]$	Start $[\mathrm{m}]$	End $[\mathrm{m}]$	Start Elev. $[\mathrm{m}]$	End Elev. $[\mathrm{m}]$	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	1566.0	1563.0					
127301	10	15	3.0	4.6	1563.0	1561.4	91.36	7.32	1.08	0.07	0.18
127302	15	20	4.6	6.1	1561.4	1559.9	89.99	8.66	1.11	0.07	0.18
127303	20	25	6.1	7.6	1559.9	1558.4	92.73	5.91	0.94	0.17	0.25
127304	25	30	7.6	9.1	1558.4	1556.9	88.48	10.04	1.17	0.08	0.23
127305	30	35	9.1	10.7	1556.9	1555.3	88.24	10.57	1.09	0.04	0.06
127306	35	40	10.7	12.2	1555.3	1553.8	90.52	8.22	1.06	0.08	0.12
127307	40	45	12.2	13.7	1553.8	1552.3	92.72	5.83	1.02	0.17	0.26
127308	45	50	13.7	15.2	1552.3	1550.8	89.55	9.31	0.92	0.10	0.13
127309	50	55	15.2	16.8	1550.8	1549.2	95.15	3.78	0.92	0.06	0.10

127310	55	60	16.8	18.3	1549.2	1547.7	92.85	5.68	1.14	0.14	0.20
127311	60	65	18.3	19.8	1547.7	1546.2	89.3	9.07	1.18	0.15	0.24
127312	65	70	19.8	21.3	1546.2	1544.7	91.42	6.30	1.46	0.25	0.57
127313	70	75	21.3	22.9	1544.7	1543.1	91.16	7.36	1.05	0.19	0.25
127314	75	80	22.9	24.4	1543.1	1541.6	91.12	7.40	0.97	0.22	0.30
	80	85	24.4	25.9	1541.6	1540.1					
	85	90	25.9	27.4	1540.1	1538.6					
	90	95	27.4	29.0	1538.6	1537.0					
	95	100	29.0	30.5	1537.0	1535.5					
127319	100	105	30.5	32.0	1535.5	1534.0	65.21	33.79	0.70	0.12	0.19
	105	110	32.0	33.5	1534.0	1532.5					
	110	115	33.5	35.1	1532.5	1530.9					
	115	120	35.1	36.6	1530.9	1529.4					
	120	125	36.6	38.1	1529.4	1527.9					
	125	130	38.1	39.6	1527.9	1526.4					
	130	135	39.6	41.1	1526.4	1524.9					
	135	140	41.1	42.7	1524.9	1523.3					
	140	145	42.7	44.2	1523.3	1521.8					
127328	145	150	44.2	45.7	1521.8	1520.3	66.69	32.13	0.98	0.09	0.11
	150	155	45.7	47.2	1520.3	1518.8					
	155	160	47.2	48.8	1518.8	1517.2					
	160	165	48.8	50.3	1517.2	1515.7					
	165	170	50.3	51.8	1515.7	1514.2					
	170	175	51.8	53.3	1514.2	1512.7					
	175	180	53.3	54.9	1512.7	1511.1					
	180	185	54.9	56.4	1511.1	1509.6					
	185	190	56.4	57.9	1509.6	1508.1					
127337	190	195	57.9	59.4	1508.1	1506.6	60.08	39.22	0.51	0.07	0.12
	195	200	59.4	61.0	1506.6	1505.0					
	200	205	61.0	62.5	1505.0	1503.5					
	205	210	62.5	64.0	1503.5	1502.0					
	210	215	64.0	65.5	1502.0	1500.5					
	215	220	65.5	67.1	1500.5	1498.9					
127360	305	310	93.0	94.5	1473.0	1471.5	64.66	34.77	0.50	0.03	0.04
127345	230	2358	235	70.1	71.6	1495.9	1494.4	60.60	38.62	0.54	0.08

127361	310	315	94.5	96.0	1471.5	1470.0	66.34	33.14	0.39	0.04	0.10
127362	315	320	96.0	97.5	1470.0	1468.5	65.01	34.49	0.40	0.04	0.07
	127363	320	325	97.5	99.1	1468.5	1466.9	67.67	31.76	0.49	0.03
	320	327	97.5	$\mathbf{9 9 . 7}$	1466.9	1464.8					

DDH 2009-14

Smpl. \#	Start [ft]	End [ft]	Start [m]	$\begin{gathered} \text { End } \\ \text { im } \end{gathered}$	$\begin{gathered} \hline \text { Start Elev. } \\ {[\mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { End Elev. } \\ {[\mathrm{m}]} \end{gathered}$	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	1542.0	1539.0					
127401	10	15	3.0	4.6	1539.0	1537.4	74.97	23.96	0.71	0.16	0.20
127402	15	20	4.6	6.1	1537.4	1535.9	70.61	28.28	0.86	0.11	0.14
127403	20	25	6.1	7.6	1535.9	1534.4	66.88	32.04	0.81	0.11	0.16
127404	25	30	7.6	9.1	1534.4	1532.9	71.45	27.60	0.72	0.10	0.12
127405	30	35	9.1	10.7	1532.9	1531.3	68.63	30.34	0.77	0.12	0.15
127406	35	40	10.7	12.2	1531.3	1529.8	73.27	25.36	0.58	0.32	0.47
127407	40	45	12.2	13.7	1529.8	1528.3	72.60	26.28	0.77	0.14	0.21
127408	45	50	13.7	15.2	1528.3	1526.8	74.13	24.66	0.86	0.15	0.21
127409	50	55	15.2	16.8	1526.8	1525.2	71.92	26.18	1.60	0.12	0.19
127410	55	60	16.8	18.3	1525.2	1523.7	66.14	32.66	0.98	0.09	0.13
127411	60	65	18.3	19.8	1523.7	1522.2	69.19	29.49	0.93	0.16	0.23
127412	65	70	19.8	21.3	1522.2	1520.7	70.06	28.50	1.19	0.10	0.15
127413	70	75	21.3	22.9	1520.7	1519.1	69.46	29.34	0.94	0.11	0.16
127414	75	80	22.9	24.4	1519.1	1517.6	68.07	30.58	1.15	0.08	0.12
127415	80	85	24.4	25.9	1517.6	1516.1	79.74	18.68	0.83	0.26	0.50
127416	85	90	25.9	27.4	1516.1	1514.6	75.08	21.59	2.88	0.17	0.29
127417	90	95	27.4	29.0	1514.6	1513.0	81.70	16.84	1.00	0.18	0.28
127418	95	100	29.0	30.5	1513.0	1511.5	80.04	18.23	1.14	0.23	0.36
127419	100	105	30.5	32.0	1511.5	1510.0	79.70	18.77	1.08	0.18	0.27
127420	105	110	32.0	33.5	1510.0	1508.5	79.76	18.98	0.99	0.10	0.17
	110	115	33.5	35.1	1508.5	1506.9					
	115	120	35.1	36.6	1506.9	1505.4					
127423	120	125	36.6	38.1	1505.4	1503.9	70.68	28.30	0.89	0.05	0.08
127424	125	130	38.1	39.6	1503.9	1502.4	68.04	31.15	0.65	0.10	0.06
127425	130	135	39.6	41.1	1502.4	1500.9	74.68	24.32	0.78	0.10	0.13
127426	135	140	41.1	42.7	1500.9	1499.3	67.43	30.60	1.74	0.15	0.08
127427	140	145	42.7	44.2	1499.3	1497.8	67.81	19.87	12.14	0.09	0.10
127428	145	150	44.2	45.7	1497.8	1496.3	74.17	24.63	0.90	0.13	0.18
127429	150	155	45.7	47.2	1496.3	1494.8	72.71	26.26	0.80	0.10	0.13
127430	155	160	47.2	48.8	1494.8	1493.2	73.92	24.77	1.13	0.08	0.10
127431	160	165	48.8	50.3	1493.2	1491.7	78.30	19.81	1.76	0.05	0.07
127432	165	170	50.3	51.8	1491.7	1490.2	65.32	31.15	3.17	0.14	0.22
127433	170	175	51.8	53.3	1490.2	1488.7	69.26	29.40	1.09	0.10	0.15
127434	175	180	53.3	54.9	1488.7	1487.1	82.03	16.53	0.90	0.23	0.32
127435	180	185	54.9	56.4	1487.1	1485.6	80.40	18.08	1.02	0.21	0.30
127436	185	190	56.4	57.9	1485.6	1484.1	81.41	17.31	0.98	0.11	0.19
127437	190	195	57.9	59.4	1484.1	1482.6	79.67	18.97	1.02	0.12	0.22
127438	195	200	59.4	61.0	1482.6	1481.0	82.98	15.09	1.41	0.17	0.34
127439	200	205	61.0	62.5	1481.0	1479.5	86.82	11.89	0.68	0.16	0.44
127440	205	210	62.5	64.0	1479.5	1478.0	83.45	15.16	0.80	0.17	0.43

127441	210	215	64.0	65.5	1478.0	1476.5	70.59	27.78	0.91	0.20	0.52
127442	215	220	65.5	67.1	1476.5	1474.9	76.13	23.09	0.46	0.13	0.19
127443	220	225	67.1	68.6	1474.9	1473.4	68.32	30.87	0.58	0.09	0.14
127444	225	230	68.6	70.1	1473.4	1471.9	71.02	28.22	0.65	0.05	0.07
127445	230	235	70.1	71.6	1471.9	1470.4	69.59	29.85	0.44	0.05	0.06
127446	235	240	71.6	73.2	1470.4	1468.8	69.72	29.76	0.42	0.05	0.05
127447	240	245	73.2	74.7	1468.8	1467.3	70.53	28.82	0.56	0.04	0.05
127448	245	250	74.7	76.2	1467.3	1465.8	74.19	25.30	0.39	0.05	0.08
127449	250	255	76.2	77.7	1465.8	1464.3	67.14	32.19	0.51	0.06	0.09
127450	255	260	77.7	79.2	1464.3	1462.8	66.74	32.56	0.61	0.04	0.05
127451	260	265	79.2	80.8	1462.8	1461.2	73.75	25.44	0.68	0.04	0.08
127452	265	270	80.8	82.3	1461.2	1459.7	63.45	35.81	0.50	0.07	0.17
127453	270	275	82.3	83.8	1459.7	1458.2	71.79	27.55	0.52	0.04	0.10
127454	275	280	83.8	85.3	1458.2	1456.7	72.04	27.24	0.51	0.06	0.15
127455	280	285	85.3	86.9	1456.7	1455.1	71.58	27.83	0.43	0.05	0.12
127456	285	290	86.9	88.4	1455.1	1453.6	69.19	30.23	0.38	0.08	0.12
127457	290	295	88.4	89.9	1453.6	1452.1	67.27	32.13	0.40	0.08	0.12
127458	295	300	89.9	91.4	1452.1	1450.6	65.48	33.69	0.66	0.05	0.12
	300	305	91.4	93.0	1450.6	1449.0					
	305	310	93.0	94.5	1449.0	1447.5					
	310	315	94.5	96.0	1447.5	1446.0					
	315	320	96.0	97.5	1446.0	1444.5					
	320	325	97.5	99.1	1444.5	1442.9					

DDH 2009-15

Smpl. \#	Start $[\mathrm{ft}]$	End [ft]	Start $[\mathrm{m}]$	End [m]	Start Elev. $[\mathrm{m}]$	End Elev. $[\mathrm{m}]$	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
		0	10	0.0	3.0	1546.0	1543.0	85.75	12.68	1.38	0.07
	0				0.12						
127501	10	15	3.0	4.6	1543.0	1541.4	88.08	10.18	1.28	0.17	0.29
127502	15	20	4.6	6.1	1541.4	1539.9	88.62	9.59	1.41	0.14	0.24
127503	20	25	6.1	7.6	1539.9	1538.4	87.85	10.04	1.51	0.21	0.40
127504	25	30	7.6	9.1	1538.4	1536.9	84.33	14.25	0.99	0.15	0.28
127505	30	35	9.1	10.7	1536.9	1535.3	81.30	17.18	0.95	0.21	0.36
127506	35	40	10.7	12.2	1535.3	1533.8	83.78	14.45	1.31	0.16	0.30
127507	40	45	12.2	13.7	1533.8	1532.3	82.66	15.74	1.11	0.17	0.32
127508	45	50	13.7	15.2	1532.3	1530.8	74.72	23.34	1.38	0.19	0.36
127509	50	55	15.2	16.8	1530.8	1529.2	79.36	18.77	1.51	0.13	0.23
127510	55	60	16.8	18.3	1529.2	1527.7	79.36	18.77	1.51	0.13	0.23
127511	60	65	18.3	19.8	1527.7	1526.2					
127512	65	70	19.8	21.3	1526.2	1524.7					
127513	70	75	21.3	22.9	1524.7	1523.1					
127514	75	80	22.9	24.4	1523.1	1521.6					
127515	80	85	24.4	25.9	1521.6	1520.1	66.61	32.06	0.95	0.15	0.23
127516	85	90	25.9	27.4	1520.1	1518.6	70.38	28.12	0.96	0.22	0.32
127517	90	95	27.4	29.0	1518.6	1517.0	68.50	29.72	1.65	0.06	0.08
127518	95	100	29.0	30.5	1517.0	1515.5	72.91	25.98	0.96	0.07	0.08
127519	100	105	30.5	32.0	1515.5	1514.0	83.61	14.51	1.47	0.17	0.24
127520	105	110	32.0	33.5	1514.0	1512.5	82.51	15.45	1.59	0.20	0.26
127521	110	115	33.5	35.1	1512.5	1510.9	73.62	24.91	1.05	0.18	0.24

127522	115	120	35.1	36.6	1510.9	1509.4	70.99	27.60	0.96	0.19	0.27
127523	120	125	36.6	38.1	1509.4	1507.9	80.14	18.32	0.90	0.20	0.43
127524	125	130	38.1	39.6	1507.9	1506.4	76.74	21.27	1.50	0.17	0.32
127525	130	135	39.6	41.1	1506.4	1504.9	79.88	18.36	1.26	0.21	0.29
127526	135	140	41.1	42.7	1504.9	1503.3	69.52	28.74	1.26	0.18	0.30
127527	140	145	42.7	44.2	1503.3	1501.8	66.41	32.01	1.04	0.18	0.36
127528	145	150	44.2	45.7	1501.8	1500.3	70.04	28.93	0.81	0.07	0.15
127529	150	155	45.7	47.2	1500.3	1498.8	69.02	29.90	0.94	0.05	0.10
127530	155	160	47.2	48.8	1498.8	1497.2	68.72	30.08	1.08	0.04	0.08
127531	160	165	48.8	50.3	1497.2	1495.7	66.92	32.24	0.74	0.04	0.06
127532	165	170	50.3	51.8	1495.7	1494.2	68.09	30.76	1.04	0.04	0.07
127533	170	175	51.8	53.3	1494.2	1492.7	71.61	27.21	0.97	0.08	0.13
127534	175	180	53.3	54.9	1492.7	1491.1	78.25	20.76	0.86	0.05	0.08
127535	180	185	54.9	56.4	1491.1	1489.6	84.13	14.85	0.85	0.06	0.12
127536	185	190	56.4	57.9	1489.6	1488.1	89.13	9.66	1.05	0.05	0.11
127537	190	195	57.9	59.4	1488.1	1486.6	84.71	14.03	1.09	0.05	0.12
127538	195	200	59.4	61.0	1486.6	1485.0	87.00	11.53	1.11	0.10	0.26
127539	200	205	61.0	62.5	1485.0	1483.5	83.55	15.18	1.07	0.06	0.14
127540	205	210	62.5	64.0	1483.5	1482.0	82.02	16.65	1.00	0.12	0.21
127541	210	215	64.0	65.5	1482.0	1480.5	86.12	12.03	1.17	0.24	0.45
127542	215	220	65.5	67.1	1480.5	1478.9	75.76	22.65	1.29	0.12	0.18
127543	220	225	67.1	68.6	1478.9	1477.4	79.84	18.55	1.4	0.08	0.12
127544	225	230	68.6	70.1	1477.4	1475.9	78.60	19.79	1.23	0.16	0.22
127545	230	235	70.1	71.6	1475.9	1474.4	74.63	23.70	1.29	0.17	0.22
127546	235	240	71.6	73.2	1474.4	1472.8	72.29	26.72	0.74	0.11	0.14
127547	240	245	73.2	74.7	1472.8	1471.3	67.40	31.55	0.72	0.11	0.22
127548	245	250	74.7	76.2	1471.3	1469.8	65.83	33.21	0.6	0.09	0.23
127549	250	255	76.2	77.7	1469.8	1468.3	65.77	30.78	2.95	0.12	0.38
127550	255	260	77.7	79.2	1468.3	1466.8	70.25	27.83	1.65	0.08	0.19
127551	260	265	79.2	80.8	1466.8	1465.2	72.47	25.85	1.47	0.06	0.14
127552	265	270	80.8	82.3	1465.2	1463.7	68.84	29.65	1.39	0.04	0.08
127553	270	275	82.3	83.8	1463.7	1462.2	68.10	31.04	0.72	0.05	0.09
127554	275	280	83.8	85.3	1462.2	1460.7	69.66	29.31	0.77	0.07	0.19
127555	280	285	85.3	86.9	1460.7	1459.1	68.84	29.98	1.01	0.05	0.11
127556	285	290	86.9	88.4	1459.1	1457.6	67.86	31.26	0.80	0.04	0.04
127557	290	295	88.4	89.9	1457.6	1456.1	65.40	33.91	0.60	0.04	0.06
127558	295	300	89.9	91.4	1456.1	1454.6	66.55	32.58	0.78	0.04	0.06
127559	300	305	91.4	93.0	1454.6	1453.0	72.05	26.99	0.83	0.05	0.08
127560	305	310	93.0	94.5	1453.0	1451.5	75.83	22.82	1.22	0.05	0.07
127561	310	315	94.5	96.0	1451.5	1450.0	77.53	21.58	0.61	0.11	0.17
127562	315	320	96.0	97.5	1450.0	1448.5	74.99	23.92	0.73	0.15	0.22
127563	320	327	97.5	99.7	1448.5	1446.3	68.95	30.17	0.72	0.06	0.10

DDH 2009-16

Smpl. \#	Start tet [ft]	$\begin{aligned} & \hline \text { End } \\ & {[f t]} \end{aligned}$	$\begin{aligned} & \hline \text { Start } \\ & {[\mathrm{m}]} \end{aligned}$	End [m]	Start Elev. [m]	End Elev. [m]	MgO	CaO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}
	0	10	0.0	3.0	1511.0	1508.0					
	10	15	3.0	4.6	1508.0	1506.4					
	15	20	4.6	6.1	1506.4	1504.9					

	20	25	6.1	7.6	1504.9	1503.4					
	25	30	7.6	9.1	1503.4	1501.9					
	30	35	9.1	10.7	1501.9	1500.3					
	35	40	10.7	12.2	1500.3	1498.8					
	40	45	12.2	13.7	1498.8	1497.3					
	45	50	13.7	15.2	1497.3	1495.8					
	50	55	15.2	16.8	1495.8	1494.2					
	55	60	16.8	18.3	1494.2	1492.7					
	60	65	18.3	19.8	1492.7	1491.2					
	65	70	19.8	21.3	1491.2	1489.7					
	70	75	21.3	22.9	1489.7	1488.1					
	75	80	22.9	24.4	1488.1	1486.6					
	80	85	24.4	25.9	1486.6	1485.1					
	85	90	25.9	27.4	1485.1	1483.6					
	90	95	27.4	29.0	1483.6	1482.0					
	95	100	29.0	30.5	1482.0	1480.5					
	100	105	30.5	32.0	1480.5	1479.0					
	105	110	32.0	33.5	1479.0	1477.5					
	110	115	33.5	35.1	1477.5	1475.9					
	115	120	35.1	36.6	1475.9	1474.4					
	120	125	36.6	38.1	1474.4	1472.9					
	125	130	38.1	39.6	1472.9	1471.4					
	130	135	39.6	41.1	1471.4	1469.9					
	135	140	41.1	42.7	1469.9	1468.3					
	140	145	42.7	44.2	1468.3	1466.8					
	145	150	44.2	45.7	1466.8	1465.3					
	150	155	45.7	47.2	1465.3	1463.8					
	155	160	47.2	48.8	1463.8	1462.2					
	160	165	48.8	50.3	1462.2	1460.7					
	165	170	50.3	51.8	1460.7	1459.2					
	170	175	51.8	53.3	1459.2	1457.7					
	175	180	53.3	54.9	1457.7	1456.1					
	180	185	54.9	56.4	1456.1	1454.6					
	185	190	56.4	57.9	1454.6	1453.1					
	190	195	57.9	59.4	1453.1	1451.6					
	195	200	59.4	61.0	1451.6	1450.0					
	200	205	61.0	62.5	1450.0	1448.5					
127640	205	210	62.5	64.0	1448.5	1447.0	63.98	34.52	1.00	0.17	0.33
	210	215	64.0	65.5	1447.0	1445.5					
	215	220	65.5	67.1	1445.5	1443.9					
	220	225	67.1	68.6	1443.9	1442.4					
127644	225	230	68.6	70.1	1442.4	1440.9	82.31	16.56	0.66	0.19	0.28
	230	235	70.1	71.6	1440.9	1439.4					
	235	240	71.6	73.2	1439.4	1437.8					
	240	245	73.2	74.7	1437.8	1436.3					
127648	245	250	74.7	76.2	1436.3	1434.8	80.72	18.07	0.62	0.24	0.35
	250	255	76.2	77.7	1434.8	1433.3					
	255	260	77.7	79.2	1433.3	1431.8					
	260	265	79.2	80.8	1431.8	1430.2					
127652	265	270	80.8	82.3	1430.2	1428.7	81.57	16.95	0.98	0.21	0.29
	270	275	82.3	83.8	1428.7	1427.2					

	275	280	83.8	85.3	1427.2	1425.7					
	280	285	85.3	86.9	1425.7	1424.1					
127656	285	290	86.9	88.4	1424.1	1422.6	77.98	20.04	1.47	0.21	0.29
	290	295	88.4	89.9	1422.6	1421.1					
	295	300	89.9	91.4	1421.1	1419.6					
	300	305	91.4	93.0	1419.6	1418.0					
	305	310	93.0	94.5	1418.0	1416.5					
127661	310	315	94.5	96.0	1416.5	1415.0	91.90	5.61	2.08	0.18	0.23
	315	320	96.0	97.5	1415.0	1413.5					
	320	325	97.5	99.1	1413.5	1411.9					
	320	327	97.5	99.7	1411.9	1409.8					

