

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2009 Trenching Program at the Mount Burns Claim Group

TOTAL COST: \$37,591.68 ***

AUTHOR(S): Angelique Justason

SIGNATURE(S): <signed>

NOTICE OF WORK PERMIT NUMBER: MX-11-143

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 4384728, 4566552 ***

***see note in cost statement

YEAR OF WORK: 2009

PROPERTY NAME: Mount Burns Claim Group

CLAIM NAME(S) (on which work was done): 506325, 506328 and 506333

COMMODITIES SOUGHT: Gold and silver

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093H035, 093H037, 093H056,

093H057, 093H099, 093H107, 093H143

MINING DIVISION: Cariboo

NTS / BCGS: NTS 093H/04 : BCGS 093H.002

LATITUDE: 53° 03' 34.6"

LONGITUDE: -121° 41' 38.0" (at centre of work)

UTM Zone: 10 EASTING: 587545 NORTHING: 5879880

OWNER(S): Gemco Minerals Inc

MAILING ADDRESS: #203-20189 56th Avenue

Langley, British Columbia

V3A 3Y6

OPERATOR(S) [who paid for the work]: Gemco Minerals Inc

MAILING ADDRESS: same

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

Barkerville Terrane, metallic screen, metallic assay, chloritic, ankerite, lode gold, drag fold recumbent fold, quartzite, phyllite, argillite, quartz vein

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 8820, 15947, 27684, 28776, 30716 and 31008

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samp	les analysed for)		
Soil	2	506325	199.94
Silt			
Rock	297	506325, 506328 and 506333	29691.74
Other			
DRILLING (total metres, number o	f holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sc	ale, area)		
Legal Surveys (scale, area)		
Road, local access (km)/tra	ail		
Trench (number/metres)	14 trenches 665 m total	506325, and 506333	7700.00
Underground development	(metres)		
Other			
		TOTAL COST	\$37,591.68

Technical Report

BC Geological Survey Assessment Report 31465

2009 Trenching Program at the Mount Burns Claim Group

Cariboo Mining Division NTS 093H/04 TRIM 093H002 and 093H003 53°02' North Latitude, 121°41' West Longitude Tenures 506325, 506328, 506333, 506335, 506336, 506337, 533053, 533317, 536356 and 536403

(owner/operator) #203-20189 56th Avenue Langley, British Columbia V3A 3Y6

By
Angelique Justason

Tenorex GeoServices
PO Box 4656
Quesnel, British Columbia
V2J 2M0

March 2010

TABLE OF	CONTENTS
1.0	TITLE PAGE1
2.0	TABLE OF CONTENTS
3.0	INTRODUCTION
4.0	PROPERTY DESCRIPTION AND LOCATION4
5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY
6.0	GEOLOGICAL SETTING8
7.0	DEPOSIT TYPES
8.0	HISTORY15
9.0	EXPLORATION22
10.0	DISCUSSION and RESULTS27
11.0	CONCLUSIONS and RECOMMENDATIONS31
12.0	REFERENCES
13.0	SUMMER 2009 STATMENT OF COSTS
14.0	STATEMENT OF SOFTWARE USED36
15.0	STATEMENT OF QUALIFICATIONS

3.0 INTRODUCTION

Gemco Minerals Inc. 2009 trenching program began in the summer months and carried on, as schedules permitted, until access became restricted with the permanent arrival of snow in mid October. Tenorex GeoServices was contracted to conduct the field work while TCH Consulting provided an excavator for trenching and reclamation activities. The purpose of the 2009 exploration program was to 1) conduct assessment work on the 5134 hectare property; 2) define the source of self potential geophysical anomalies, and 3) determine, in general, the extent of auriferous rock in waste material and historical stock piles of Mount Burns.

297 rock samples and 2 soil samples were taken from the general areas of Mount Nelson and Mount Burns at rock exposures in road and trail cuts as well as from trenches opened up this season. Samples from trenches showed gold values peaking at 460 ppb and were from sheared and shattered quartz vein and gouge from within fault zones. Although mineralization was observed during this trenching program trenches, no economic values of gold were found within the trenches themselves. Outcrops and historically worked areas, however, provided the company with 23 rock samples assaying greater than 1.0g/t gold. The highest value of 109.0g/t gold (based on a 120g average metallic assay) was obtained from sample 189395, a vuggy quartz vein sample found at the Perkins opencut. Sample 189407, pyrite rich sericitic phyllite from the Burns Long Crosscut waste dump, metallic assayed 8.95 g/t gold. More details are provided in this report. Continued detailed exploration is highly recommended.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Mount Burns Claim Group, also referred to as the Burns Group, presently consisting of 225 mineral cells on ten contiguous mineral tenures, encompasses 5134 hectares of land and is located approximately 70 kilometers east of Quesnel near Wells, British Columbia. Gemco Minerals Inc. currently retains 100% ownership of the 5134 hectares of contiguous mineral tenure cells. The property is located entirely within NTS map sheet 094H/04, is centered at approximately Zone 10U 590700E, 5877000N (NAD 83). A statement of mineral claims is shown in Table 1.

Tenure Number	Claim Name	Area (ha)	Expiry Date
506325	-	77.7	Nov 23, 2010
506328	-	446.9	Nov 23, 2010
506333	-	913.7	Nov 23, 2010
506335	-	992.0	Nov 23, 2010
506336	-	758.3	Nov 23, 2010
506337	-	758.6	Nov 23, 2010
533053	SPOT 8	19.4	Nov 23, 2010
533317	SPOT	1069.8	Nov 23, 2010
536356	GRUB3	58.4	Nov 23, 2010
536403	SPOT 9	38.9	Nov 23, 2010

 Table 1: Statement of mineral claims held by Gemco Minerals Inc.

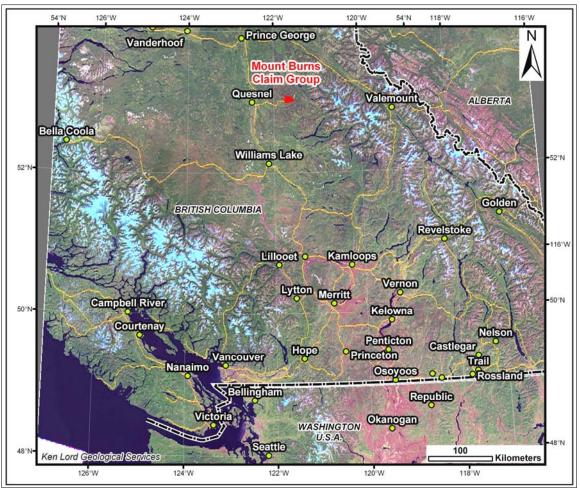
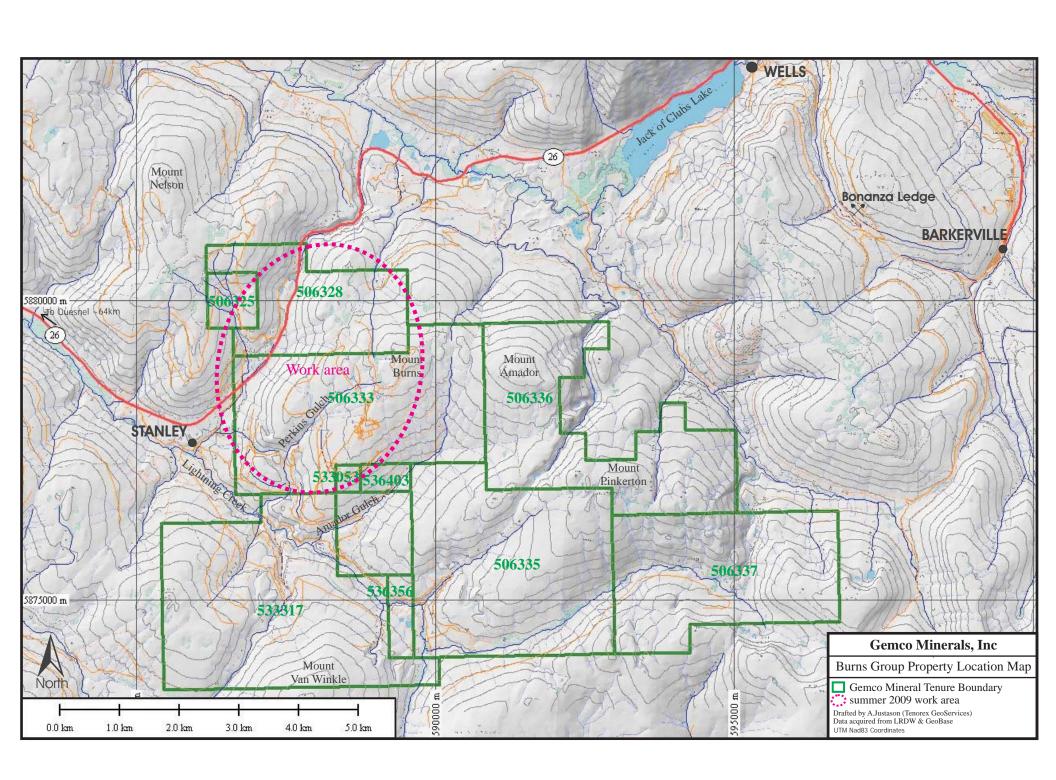



Figure 1: Property Location Map

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY (from Reid and Justason, 2007)

The Mount Burns Claim Group of mineral tenures is located some 70 kilometres east of the junction of Highway 97 North and Highway 26 at Quesnel, British Columbia. Access to the property is made by travelling approximately 70 kilometres east from Quesnel along Highway 26, also locally known as the Barkerville Highway. The closest populated community is centred about 10 kilometres further east along Highway 26 and is situated at the north east end of the Jack of Clubs Lake. The highway itself passes through the northwest portion of the claim group for an approximate length of 3.5 kilometers. The Fosters East target area is located to the north of the highway and access is via a small, 4x4 vehicle accessible exploration trail which begins near hydro pole #672 on Highway 26 (Davies, 2006). Access to the remaining majority of the property, located to the southeast of the highway, is made via the partially deactivated 72F forest service road which heads southeast from the Stanley Loop Road. Good access is available as far as the cabin at Milk Ranch Pass Creek, but the southern and eastern most reaches of the Mount Burns Claim group has limited to non-existent vehicular access.

The project area lies in the forested mountain region located southwest of the Jack of Clubs Lake and is situated within the Quesnel Highlands on the eastern margin of the Interior Plateau. Elevations range from 1200 meters in the Stanley – Lightening Creek area to approximately 1680 meters at the mountain tops. Mountain summits are generally rounded, having been glaciated by continental ice sheets during the Pleistocene Epoch. Glacial till is the most widespread surficial deposit in the area. Areas of rock exposure are generally limited to fault related bluffs and, to some extent, mountain summits and road cuts. Drainage of the area is mostly within mossy draws which in several places lead into gold bearing placer creeks: these placer bearing creeks have been extensively worked and hydralicked in the past. Less destructive means of placer exploration operations continue today. The area is in a moist climatic belt, subject to heavy snowfall in winter and generally rainy conditions in summer. The District of Wells can see winter accumulations of snow from about eight to over twenty feet. The project area is usually snow free from late May to early November, providing Gemco Minerals Ltd. a four or five month window for an exploration season where the ground can be readily accessed. The Wells area is generally well forested; hillside slopes are dominated by spruce, pine, sub-alpine fir, accompanied by alders and other deciduous foliage on lower, wetter slopes flanking river valleys. At the Burns Group mineral claim alone, it is estimated by the author that greater than 75% of the pine trees are presently dead standing due to the destructive nature of the pine beetle on the trees of the area over the past 6 years. Prior to 2002, no pine beetle kill was observed in the immediate area.

The community of Wells is home to a population of about 225 permanent residents (pers. comm., Gary Champagne, 2007, District Administrator). It contains one gas station, one Canada Post postal outlet, two small grocery stores, a community elementary school, a public library with two publicly accessible high-speed internet computer kiosks, an RCMP detachment, an ambulance station, a volunteer Fire Brigade, one hotel, two motels, several restaurants and several other privately owned businesses. Although a broad range of

amenities can be found here, the City of Quesnel, located about a 55 minute drive away, provides a more complete range of services, such as a hospital, medical clinics, banking services and larger commercial stores. The economy of Wells is mainly supported by summer and winter tourism, followed by mining activities, mineral and placer exploration activities, forestry activities and other recreational activities.

A helipad is located next to the Wells RCMP detachment and a small airstrip is located at the junction of Highway 26 and the Bowron Lake Road, approximately 4 kilometers east of Wells. An airport is also located in Quesnel.

6.0 GEOLOGICAL SETTING

6.1 Regional Geology: Quesnel Highlands

The geology of the Cariboo mining district has been presented in various reports / memoirs and maps presented by geologists such as Bowman (1889, 1895), Dawson (1894), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988), Levson and Giles (1993) and Schiarizza (2004). Many mineral assessment reports of the area also state the regional geology of the area typically see paraphrasing of the region's geological setting by the above noted geologists.

Struik (1988) describes the northern Quesnel Highlands as underlain by four geological terranes, three of which are fault bounded. The terranes are defined by their unique stratigraphic successions. The easternmost is the Cariboo Terrane consisting of sedimentary rocks in fault contact with the western margin of the Precambrian North American Craton along the Rocky Mountain Trench. The Barkerville Terrane consists of mostly sedimentary rocks and is west of, and in fault contact with, the Cariboo Terrane. The Barkerville and Cariboo Terranes are overthrust by the Slide Mountain Terrane [which is] composed of basic volcanics and intrusives [as well as] generally fine grained clastic rocks. The root zone of the Slide Mountain Terrane is considered to be serpentinite and sheared mafic rocks that exist locally at the western boundary of the Barkerville Terrane. West of that root zone is the Quesnel Terrane composed of volcanic, volcaniclastic and fine grained clastic rocks.

The Mount Burns Claim Group occurs within the confines of the Barkerville Terrane.

6.2 Local Geology: Barkerville Terrane

The Barkerville Terrane is dominated by folded and overturned Precambrian and Paleozoic varieties of grit, quartzite, black to green pelite or argillite with lesser amounts of limestone and volcaniclastic rocks (Struik, 1988). The Barkerville Terrane is regionally metamorphosed to low and middle greenschist facies, sometimes making it difficult to define the original fabric of the rock. The intrusive rocks of the Barkerville Terrane occur sporadically as diorite, rhyolite or rhyodacite dykes and sills. Also, fossiliferous units

within the Barkerville Terrane are few and are, for the most part, limited to the crinoidal and fossilized algae limestone units, though, to date, none of these units have been mapped at the Mount Burns Claim Group.

Struik (1988) describes the Barkerville Terrane as containing one structural package; defined as a deformed sequence of rock separated from others by an angular unconformity. This package has been named the Snowshoe Group and contains several subunits.

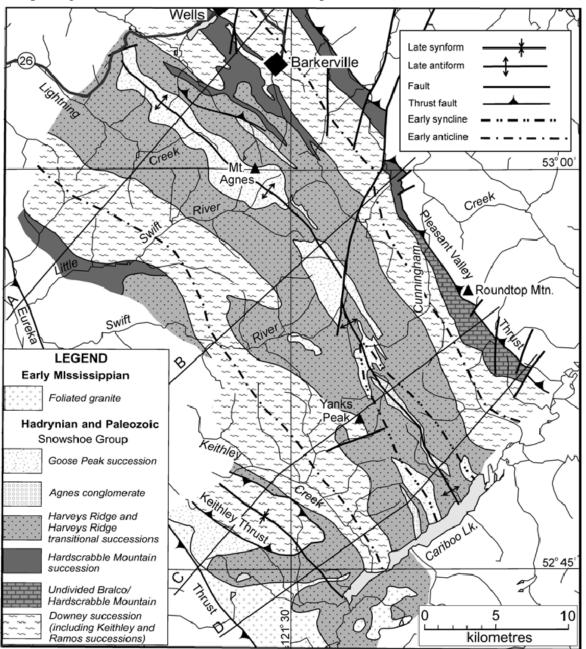


Figure 3. Generalized geology of the Barkerville Terrane (from Schiarizza and Ferri, 2002)

Structures of the Snowshoe Group are divided into three categories: from oldest to youngest they are shear/ductile shortening, brittle shortening and extension (Struik, 1988). The subunits separated by conformable and non-conformable contacts. Common to the Barkerville Terrane are compressional strike faults which parallel the Terrane's northwest-southeast trending stratigraphy which are further cut and displaced by the younger extensional, north and northeast trending, steeply dipping faults. The gold bearing quartz veins of the Barkerville Terrane are generally found to be within the extensional, north and northeast trending faults and are a focus for exploration at the Mount Burns Claim Group.

6.3 Property Geology: Mount Burns Claim Group

Gemco Minerals Inc. Burns Group property lies in a package of rocks mapped by Struik as mainly containing the Eaglesnest and Harveys Ridge successions, with a sliver of the Agnes succession occurring on Mount Amador and undifferentiated Snowshoe Group rocks occurring along the southern most boundary of the Mount Burns Claim Group.

The petrology at the Mount Burns Claim Group is somewhat defined, however thorough structural understanding of the property is not yet completely clear. The majority of the property is covered in glacial drift which limits outcrop exposures to the prominent north-south trending bluffs, the tops of ridges and divides, the steep slopes of hydraulicked creeks, road cuts and already worked, stripped and/or trenched ground. Some areas of glacial drift are defined in historic placer records as being up to 120 feet thick in places and sporadic with no consistent depth which could be in direct relationship with the ancient kettle topography of the last glacial retreat.

Local to the Mount Burns Claim Group area, the Barkerville Terrane contains two gold bearing belts: The Barkerville Gold Belt and the Hixon Creek-Stanley-Yanks Peak Gold Belt, which Gemco Minerals Inc. geologists have termed the Nelson-Yanks Gold Belt. A third belt is described further south and is named the Likely-Horsefly Belt. In 1932, Galloway introduced the term 'Barkerville Gold Belt' to describe this zone of intermittent mineralization which is defined by Holland (1948) as being less than 1.5 kilometres wide and extending over a distance of 15 kilometres. The Nelson-Yanks Gold Belt parallels the Barkerville Gold Belt. Each belt generally follows the larger northwest-southeast regional structures of the geologic terranes. The two belts contain significant vein systems which are cited in Hedley and Watson's 1945 Bulletin 20 to follow favorable stratigraphy within the Barkerville Gold Belt while the veins of the Nelson-Yanks Gold Belt generally follow close to and slightly east of the axis of the anticlinorium. The Mount Burns Claim Group occurs within the confines of the Nelson-Yanks Gold Belt of the Barkerville Terrane.

The rocks found at the property, as described by Reid (2005), and agreed by the author, generally consist of foliated, gritty to fine grained quartzites \pm sericite and finely laminated siltstone and phyllite \pm sericite. Alteration of the country rock is spotty and generally chloritic. Silicification of the country rock is apparent in areas usually adjacent to fault structures. Carbonaceous to calcareous siltstones have also been observed, though the

author has yet to locate the latter on the property. Holland's description of the local area's geology, taken partially out of context, is quoted as follows:

"The Stanley area is underlain by a succession of metamorphosed sedimentary rocks belonging to the Precambrian Richfield formation...The area straddles the regional anticlinal axis which has been mapped previously (Johnston and Uglow, 1926 p. 31) as running between Mount Amador and Mount Nelson". [NOTE: Struik has moved the anticlinal axis slightly to the southwest and has differentiated the main units as the Eaglesnest succession and Harveys Ridge succession within the Paleozoic Snowshoe Group of the Barkerville Terrane].

"Quartzite, [the most common rock found on the property to date]...displays variations in colour from white and light grey, through medium grey, brown, to black; in granularity from fine quartzite to coarse grits...; in composition through admixture with varying amounts of dark argillaceous material; and in fissility either through variations in amount of mica developed in the rock or through the rock's relation to the axial plane and minor folds. Individual beds, ranging from a fraction of an inch to several tens of feet in thickness, are interbedded with others which may vary in colour, granularity, and general composition."

"Dominantly argillaceous rocks are considerably less common than quartzites. They are present as black slate and dark schistose quartzitic argillite, grey argillaceous schists, and as thin partings and interbeds of dark argillaceous material in a dominantly quartzitic succession. The grey colours of most quartzites are due to the variable content of dark argillaceous and, in some instances, graphitic material."

"For the most part the rocks are not calcareous. The few thin limestone beds could not be traced for any great distance and their correlation was not possible. Many of the

rocks have a low to moderate amount of carbonate mineral which, when determined, was found to be ankerite." The author has not yet located limestone or otherwise calcareous units on the property.

"Green chloritic schists, some weathering brown and some exceedingly brightly coloured, are also present... In several places pale, greenish-grey quartities

several places pale, Photo 1. Rock exposure on west side of Mount Burns showing typical greenish-grey quartzite degree of folding at outcrop scale. (photo by T.Hatton)

schists are exposed; their green caste evidently is a result of the development of small amounts of chlorite."

"The rocks represent a sedimentary succession that has been subjected to regional metamorphism. Cleavage, in varying degrees of perfection, is developed in all rocks and is the result of the oriented development mainly of sericite and less commonly of chlorite. The perfection of the cleavage depends primarily on the initial composition of the rock and the amount of argillaceous material that was available to form mica. To a lesser extent the position of the rock in relation to the axial plane of a fold contributes to the degree to which the cleaner, more massive quartzites are cleaved."

7.0 DEPOSIT TYPES

There are currently three known types of gold bearing hardrock deposits within the Barkerville Terrane of the Cariboo Mining District:

- 1. Quartz pyrite veins
- 2. Pyritic replacement in limestone
- 3. Pyritic replacement in metasedimentary rocks

7.1 Quartz-pyrite veins

Quartz-pyrite vein deposits within the Barkerville Terrane are described in detail by Dunne and Ray (2001) and are quoted from their report as follows:

Vein ore typically comprises dominantly massive, white to translucent quartz, lesser dolomite/ankerite, muscovite (as sericite) and pyrite and rarely minor arsenopyrite, galena, sphalerite and/or scheelite (Skerl, 1948). Pyrrhotite and chalcopyrite have been reported as accessory minerals (Skerl, op. cit.; International Wayside Gold Mines Ltd., 2000). Wide veins, such as the BC Vein, can be greater than 15 metres in width and may have sheared graphitic margins. Sericite from quartz veins in the Cariboo Gold Quartz mine, Mosquito Creek Gold mine and Cariboo Hudson mine have been dated using the [potassium-argon] method at 140 Ma (International Wayside Gold Mines Ltd., 2000). Vein textures in the Wells-Barkerville Belt are highly variable. Massive, white to translucent 'bull' quartz veins comprise subhedral to anhedral crystals from less than 0.5 mm to approximately 2 mm in size. Sutured grain boundaries have been noted in some samples. Many of the massive veins are highly fractured and in some cases the abundance of microfractures results in a texture described by Reynolds (1991) as 'wispy quartz'. Reynolds (op. cit.) suggests that this texture is characteristic of deep vein environments (> 4km and possibly > 8 km). In contrast, breccia textures indicative of brittle crushing reflecting higher level emplacement are observed in other veins. Skerl (1948) reports that approximately one percent of the veins at the Cariboo Gold Quartz deposit have vugs containing well terminated quartz crystals. These vugs indicate open-space filling late in the vein history... Even fractured and wispy quartz veins have vugs...

Four distinct, structurally-controlled vein orientations occur in the Wells-Barkerville Belt: strike, bedding-parallel veins (NW-SE/45-70NE), northerly (N-S/40-70E), orthogonal (030-040/70SE) and diagonal (070-090/subvertical) (Hanson, 1935; Benedict, 1945; Richards, 1948; Skerl, 1948; Robert and Taylor, 1989). Orthogonal veins are most abundant and these contain the highest concentrations of gold (Benedict, 1945, Robert and Taylor, 1989, International Wayside Gold Mines Ltd., 2000).

In addition, quartz veining within the District has historically been designated as either "A' veins, those being sub-parallel the north westerly trending strata and are usually of greater extent, or "B" veins which are either transverse (right angles to stratigraphy) or oblique, cut stratigraphy and are at right angles to the northerly trending faults. The "B' veins have

been interpreted as tension fracture filling possibly explained geologically by the Riedel shear model. Skerl (1948) states that continued movement along the northerly trending faults opened up both groups of these fractures enabling mineral solutions to invade the broken zones near both the north – south and the "bedded" faults and produce auriferous quartz-pyrite veins. Some mineralization is found within the faults themselves.

7.2 Pyritic replacement in limestone

Dunne and Ray (2001) describe that pyritic replacement orebodies at the Mosquito Creek and Island Mountain Gold Mines as occuring within or adjacent to limestone units and are commonly associated with fold hinges. Stope dimensions for the orebodies in fold hinges are commonly less than 10 metres thick and several hundred meters in the down plunge direction (Benedict, 1945). Pyrite lenses at Mosquito Creek can either be parallel to the strong foliation or parallel to bedding (Robert and Taylor, 1989). Dunne and Ray go on to explain:

Pyrite orebodies at Mosquito Creek typically comprise fine to medium-grained crystalline pyrite forming individual or stacked lenses (Robert and Taylor, 1989). At the Cariboo Gold Quartz mine, massive crystalline pyrite orebodies contain little or no quartz but grey and white carbonates, galena, sphalerite and scheelite are reported around the margins of the ore (Skerl, 1948).

7.3 Pyritic replacement in metasedimentary rocks

The most recent lode gold deposit was discovered on Barkerville Gold Mines Ltd. mineral property (previously known as International Wayside Gold Mines Ltd) at the south facing flank of Barkerville Mountain, approximately 7 kilometers north east of Gemco Minerals Inc Claim Group, and has been named "Bonanza Ledge". Historical documents refer to the historically named Bonanza Ledge as the gold bearing quartz ledge which is now referred to as the BC Vein, but today's named Bonanza Ledge refers to the gold bearing replacement deposit. The Bonanza Ledge deposit occurs within a package of quartzitic and phyllitic rocks of the Lowhee unit. Rhys (2000) describes folded high-grade pyrite mineralization that is discordant to stratigraphy and locally more than 30 metres thick over a strike length of 130 metres. Pyritic ore at Bonanza Ledge comprises veinlets, concordant laminations and massive bands of pyrite, often with trace chalcopyrite and galena, in a gangue of muscovite, dolomite/ankerite and quartz.

At the Burns Group property, the exploration focus is mainly on the north trending faults and proximal quartz veining. The north striking faults are an important control for the gold vein mineralization (Hall, 1999). Favorable stratigraphy for replacement deposits does exist at the Burns Group mineral claims and, though, exploration does focus on proximal veining to faults, Gemco Minerals Inc. is also exploring for replacement type deposits. The main commodities historically found and presently looked for by Gemco Minerals Inc. are gold and silver. Other commodities, to a lesser extent, include lead and zinc.

8.0 HISTORY

To the extent known by the author, a portion of today's Mount Burns Claim Group package was acquired by Douglas W. Merrick of Wells, British Columbia, via ground staking of 4-post mineral claims in 1998. Firstline Recovery Systems Inc. bought the claims in March 1999 and by the end of the year had 1325 hectares of mineral tenure. The 25 hectare JCB5 tenure was later sold to the BC Ministry of Transportation and in 2001 was declared a no staking reserve by the Minister of Energy and Mines, Richard Neufeld, and further named the Devil's Canyon Aggregate Pit. Between the time of original acquisition and 2005, Firstline Recovery Systems Inc. acquired an additional 3025 hectares of contiguous mineral tenure in the area for a total of 4325 hectares of tenure by the end of January 2005.

2005 saw a significant change in how claim acquisition occurred in British Columbia: online staking was the new rule and individuals and companies, alike, had a window of opportunity to convert their ground staked claims, now called legacy claims, into cells. Firstline Recovery Systems Inc. successfully converted their ground staked claims to cells in March 2005. In the end the conversion brought the mineral tenure holding from 4325 hectares to 3947 hectares, a loss of 378 hectares as calculated by the author from Mineral Titles data. In August 2005 Firstline Recovery Systems Inc. transferred all of their mineral title holdings to Gemco Minerals Inc. In the spring 2006, Gemco Minerals Inc. purchased an additional 1129 hectares of mineral tenure and map staked a 58 hectare mineral tenure. To date Gemco Minerals Inc. holds 100% ownership of mineral rights to a total of 5134 hectares of land on ten mineral tenures located at the Mount Burns property.

Geologic and economic interest in the hard rock ground located at and adjacent to the Mount Burns Claim Group dates back to 1878, as documented in the Annual Reports of the Minister of Mines of Canada. A summary of the property's known work history conducted by all known previous owners and operators is outlined below in detail. This time line of historic hard rock exploration activities details only what is known to the author at the time of writing of this report and may not be an absolute history to the hard rock exploration and mining activities which occurred at or near the Mount Burns Claim Group.

8.1 Mineral exploration time line for the Mount Burns Claim Group area

1870's The first quartz-vein discoveries were made on Burns Mountain as well as the Oregon Gulch, Foster and Smith Ledges (Holland, 1948).

1877 Some trenching and drifting took place on the Foster and Smith Ledges.

1877 Fuller and Hawes sink 18 foot shaft at the Foster Mine on Chisholm Creek. The Foster Mine assays from \$120 to over \$700 per ton. The Montgomery and Foster Extension tunnels are having difficulty intersecting the veins of the Foster Mine (Report of Minister of Mines 1877 Annual Report, pg 396)

1878 Beedy selectively mines veins from surface and processed some ore using a quartz mill at Van Winkle. The veins, oriented 195°-205°/70°W, contained high grade gold in association with pyrite and galena across of about one foot (Report of the Minister of Mines 1878 Annual Report, pg 374)

1878 Beedy has two hundred tons of ore to haul to the stamp mill (Report of the Minister of Mines 1878 Annual Report, pg 374)

1879 Beedy has only hard rock mine operating this year (Johnston and Uglow, Memoir 149, pg 183).

1880 Reid acquired the property after the death of J.C. Beedy; the Reid Adit was driven as a crosscut to intersect the Beedy veins 75 feet below the surface showings. The adit was collared at an elevation of 5062 feet and driven on an azimuth of 108° for a distance of 387 feet. A quartz vein (probably the central vein) about one foot in width, striking 205° and dipping 62°NW was drifted to the north for 20 feet at a distance of 337 feet from the portal. A raise was driven to surface and, probably, some [stoping] was carried out on the vein. A grab sample (95F) of the vein in the adit assayed 0.4 ounces gold per ton and one (99F) of clean pyrite from the Reid Adit dump assayed 1.06 ounces gold per ton (Holland, 1948).

1880 The Cohen veins, 1500 feet northeast of the Perkins veins were mined prior to 1885. Workings, between elevations of 5250 and 5300 feet, consist of several open cuts with associated shafts and mine dumps. C. Fuller indicated that the shaft on the Cohen Incline was 70-90 feet deep. The open cuts were driven into the hillside along strike of veins less than one foot in width and with orientations 065°/75°SE, 205°/65°W and 190° dipping steeply to the west. The veins contain high grade gold mineralization in association with galena, pyrite and sphalerite.

1880 Work on the Galena vein, located at an elevation of 5190 feet and about 700 feet northeast of the Perkins veins, was probably also carried out at about this time. The original workings consisted of a mine dump, an open cut driven northwest for eighty feet and a shallow drift of a vein oriented 230°/55°NW for eighty feet. High grade gold mineralization with Au/Ag of about 1 [sic] is associated with pyrite, galena and sphalerite in a vein less than 1.5 feet in width.

1881 The Fallis Company drove a 600 foot tunnel to hit a ledge at a lower level (Report of the Minister of Mines 1881, pg 98).

1882 More tunnel work carried out on Mount Burns (Report of the Minister of Mines 1882, pg 357).

1883 Burns Mountain Gold Quartz Mining Co. works on tunnel to be 600-700 feet when completed (Johnston and Uglow Memoir 149, pg 183).

- **1884** Burns Mountain Gold Quartz Mining Co. halt work when they fail to hit the ledges (Johnston and Uglow Memoir 149, pg 184).
- **1885** E. Perkins selectively mined the Beedy veins and processed ore using an arrastre for a number of years (Johnston and Uglow Memoir 149, pg 183)
- **1886** Mr.Jaques drove 800 feet with good indications (Johnston and Uglow Memoir 149, pg 184).
- **1889** gold quartz with values of \$30-\$120 was reported (1889 Geol. Surv. Can Report Vol. 111, pt.C, p.38: Johnston and Uglow Memoir 149, pg 209).
- **1891** Perkins mines and processes with arrastre.
- **1902** C.J. Seymour Baker and A.J.R. Atkins recovered about ten ounces of gold from nine tons of Perkins vein ore treated at the Government Reduction Works near Barkerville (Minfile 093H 037: Report of Minister of Mines 1902 Annual Report, pg 108-9)
- **1914** Perkins 80 year old dump was assayed at 0.02 ounces per ton (Report of the Minister of Mines 1914, pg k66-67)
- **1919** Fuller and Hawes acquired the property after the death of E. Perkins (Holland, 1948, pg 13)
- **1920** Fuller and Hawes acquire ground at the Foster Ledges (Holland, 1948, pg. 13).
- **1932** Burns Mountain Gold Quartz Mining Company Ltd acquired the property and extended the Reid Adit fifty feet and drove the Burns Mountain Adit as a crosscut to intersect the Perkins veins 275 feet below the surface showings. This adit was collared at an elevation of 4844 feet and driven 1743 feet on an azimuth of 327° and 420 feet on an azimuth of 284°. A vein striking 197° and dipping 70°W was intersected 150 feet west of the Perkins showing and on to the north for 127 feet (Holland, 1948).
- **1932** R.E. MacDougall, W.E. North [and] J.J. Gunn of Wells relocated the ground after the Burns Mountain Quartz Mining Company Ltd allowed the property to lapse (Holland 1948).
- **1933** A. McLeod drove 1040 feet for Burns Mountain Gold Quartz Mining Co. Ltd. (Report of the Minister of Mines 1933 Annual Report, pg A125).
- **1933** B.C. Cariboo Gold Fields Ltd. with V. Dolmage as V.P. prospect 19 claims they hold at the head of Burns Creek (Report of the Minister of Mines 1933, pg A125).
- **1933** Foster Ledge Gold Mines Ltd drove the lower and eastern adits; lower adit driven 065° for 75 feet and 123° for 170 feet; at 32 feet back of the face a vein was drifted on for

43 feet to the northeast; the vein is less than 0.5 feet in width, oriented 025/80NE, and barren looking but contained some gold. Eastern adit driven 343° for 168 feet and 324° for 83 feet; at 23 feet back of the face a crosscut was driven on 058° for 60 feet and then 290° for 50 feet; veins less than 0.5 feet in width and oriented 202°/70°W and [218°/62°NW] were found at a distance of 70 feet and 118 feet respectively, from the portal; a fault several feet in width striking 165°-170° and dipping 60°-70°W was located at a face (Report of the Minister of Mines 1933, pg A26)

1936 Some work done on Mount Burns by Burns Mountain Gold Quartz Mining Co. Ltd. (Report of the Minister of Mines 1936 Annual Report, pg C38).

1946 Cariboo Rainbow Gold Quartz Mines Ltd. completed 3500 feet of stripping and trenching using a bulldozer. The stripping showed that the Perkins area consisted of three narrow veins about fifty feet apart over a composite strike of about 400 feet. Shafts are associated with the west and central veins. The northern 150 feet of the central vein is marked by stopes caved to surface and was probably the source of most ore mined from the property (Holland, 1948).

1975 Golden Arc Explorations Ltd did magnetometer survey and line cutting on the Foster Ledges and Oregon Gulch (Assessment report 5554).

1977 Golden Arc Explorations Ltd did a pilot geochemical survey on the Foster Ledges and Oregon Gulch (Assessment report 6668).

1978 Murray Ranking Development Ltd did a pilot magnetometer and geochem survey on Mount Nelson and Oregon Gulch (Assessment report 7099).

1979 L&G Resources Ltd contracted C. Ball to conduct one day of field work on the property and submitted a report of his recommendations based on researched literature, a field reconnaissance of the property and six grab samples taken from various tailings dumps. Surface exploration, trenching and diamond drilling were suggested in various phases to thoroughly test the ground with the objective of finding veins averaging 1.0-1.5 feet running 0.3 to 0.5 ounces gold per ton (Ball, 1979).

1980 Perry and McKelvie: trenched, sampled and mapped the Cohen, Galena and Perkins showings at a scale of 1:200; produced a geological map at a scale of 1:5000; completed about 315 meters of diamond drilling in three holes, one on each showing. Drill hole S80-1 intersected a zone of vein quartz and fracturing (core length of seven meters), thought to be the Perkins structure. Gold values were not encountered (Assessment Report 08820) at the main lower, or most easterly vein due to core recovery issues, however economic gold and silver values were present (Assessment Report 08820)

1980 Mr. David King did a pilot geochem survey on the Foster Ledges and Oregon Gulch area (Assessment report 7734).

1981 Jack LaFleur carry out a shallow seismic survey in the Dry Up Gulch area on Mount Burns (Assessment Report 8824).

1982 American Volcano Minerals Corp conduct a geochemical survey in the Davis Creek and Mount Nelson area (Assessment Report 11672).

1983 Gold Point Resources did a ground magnetometer survey on the Oregon Gulch and Foster Ledge area (Assessment Report 11886).

1984 Gold Point Resources Ltd. conducted a magnetometer survey on the Foster Ledge Mount Nelson Area (Assessment Report 12361).

1985 Clifton Resources Ltd. Conducted a geochemical and geological survey over Devils Canyon, Mount Burns and Mount Nelson (Assessment Report 13252a).

1985 Dale Pauls carry out prospecting over Jawbone Creek and Mount Nelson (Assessment Report 14311).

1985 Onsun Developments conducted an airborne magnetic and VLF-EM survey over Lightning Creek and Grub Mountain (Assessment Report 13678).

1985 Robert H. Davie carried out a VLF-EM survey over Devils Canyon (Assessment Report 14636).

1986 Winex Resources Inc. carried out a ground magnetometer survey over Mount Nelson (Assessment Report 15832).

1987 Billwiller carried out an airborne mag, electromag, VLF survey over Lightning Creek area (Assessment Report 15942).

1987 John Bot carried out an airborne mag, electromag and VLF survey over Mount Nelson (Assessment Report 15947)

1987 Lightening Creek Resources carried out an airborne mag, electromag, VLF survey over Lightning Creek and Mount Burns (Assessment Report 16315).

1987 Winex Resources Inc. carried out Geochemical, Geophysical, and Geological work over Mount Nelson (Assessment Report 18911).

1987 Winex Resources Inc. placed 63.0 line kilometers of cut line put in on an older property adjacent to and covering Gemco Minerals Inc current tenure 506325. Approximately 5 line kilometers of that grid covers current tenure and it appears that the 1987 0+00 baseline is the baseline of Gemco's current 'Foster's East' grid. The 63.0 line kilometer grid saw soil sampling, VLF-EM and ground magnetometer surveys completed (Assessment Report 18011).

1988 Gallant Gold Mines Ltd. carried out geochemist and geophysical work over Mount Nelson (Assessment Report 17116).

1988 Golden Opportunity Mining Ltd. conducted dipole-dipole resistively work over Lightning Creek, Mount Burns-Amador (Assessment Report 18257).

1988 Billwiller conducted geophysical exploration on Mount Amador and Jack O Clubs Creek (Assessment Report 17268).

1988 Lightening Creek Mines Ltd. carried out Geological, Geophysical, and Geochemical work as well as Drilling (Assessment Report 17671).

1988 Davie carried out diamond drilling near Burns Creek (Assessment Report 16174).

1989 Boulder Gold Mines Ltd. did Seismic Refraction work on Mount Burns (Assessment Report 19538).

1989 Kangeld Resources Ltd. carried out drilling, as well as geochemical, and physical work on Lightning Cr. and Mount Burns-Amador (Assessment Report 18695).

1989 Rae, Blaine and Hunt carried out "dip-needle" surveys on Mount Nelson (Assessment Report 19795).

1989 Rae, Blaine, Hunt and Zeiler carried out Geophysical work on Mount Nelson (Assessment Report 18707 and 18896).

1990 Poshner excavated the main showings. The Perkins area is a trench twenty feet deep and six hundred feet in length. The Galena Vein is now trenched to about three hundred feet in length. The Cohen veins are in a stripped area about 600 by 150 feet in size.

1990 Rae, Blaine and Hunt conducted VLF-EM geophysics on Mount Nelson (Assessment Report 20085).

1996 Gold City Mining Corp. conducted a Dighem Airborne survey with report northwest of Mount Burns (Assessment Report 24336a).

1998 Firstline Recovery Systems Inc. acquires Mount Burns ground and conducts geochem, prospecting, and V.L.F./Mag and results published internally

1999 Firstline Recovery Systems Inc. stakes more ground conducts reconnaissance exploration, prospecting, geochem on Oregon Gulch and Foster Ledges (pers. comm. Merrick 2006).

2000 Firstline Recovery Systems Inc. stakes additional ground at Mount Amador.

2000 The Minister of Energy and Mines, Dan Miller, created a 400 hectare conditional reserve (number 377844) protecting the road surface and 100 meter buffer zone along each side of the Cariboo Waggon Road from Stanley to Barkerville.

2001 Firstline Recovery Systems Inc. sampled, crushed and screened mine dumps to test for gold (2001 internal report by T.Hatton, and pers. comm., T.Hatton, 2006).

2001 The Minister of Energy and Mines, Richard Neufeld, established a 25 hectare no staking reserve (number 389352) lying at an aggregate pit at the height of land near Devil's Canyon at Highway 26.

2002 Firstline Recovery Systems Inc. lays out a grid and conducts 7.74 line km of self potential geophysics on Mount Burns. An internal report is made in 2002 and technical data is later published in the 2006 assessment report (pers. comm., A.Justason 2006).

2003 Firstline Recovery Systems Inc. conducts GPS survey of legal corner posts

2004 Firstline Recovery Systems Inc. conducts GPS work, grid layout and soil sampling on Oregon Gulch and Foster Ledges and submits report for assessment purposes (Assessment report 27684: pers. comm. Merrick, Hatton 2006).

2005 Firstline Recovery Systems Inc. conducts no work filed this year but does convert claims to cells.

2005 Mel Zeiler conducts soils geochem survey at Oregon Gulch (Assessment Report 28372).

2005 Gemco Minerals Inc. acquires mineral and placer properties from Firstline Recovery Systems Inc. No field work conducted by Gemco Minerals Inc. at the Mount Burns Mineral Claim Group this season.

2006 Trenching, geochemical sampling, SP and dip needle geophysical surveying were comducted at various locations at the Foster's East Grid and on Mount Burns.

2007 Gemco Minerals extends the Burns grid to the south towards Amador Gulch for the purpose of geophysical surveying. The legacy claims at the summit of Mount Burns, over the reverted Crown Granted mineral claims L.62, 63 and 64, expire and, as a result, give full mineral rights to Gemco Minerals as mineral cells were overlying the legacy.

2008 Gemco Minerals conducts SP geophysical survey extending to south of work conducted in 2002. Geochemical analysis of select mine site dumps were also conducted. Upon inspection of the Galena Vein workings on Mount Burns in June 2008, visible gold was located in bedrock. After digitizing and georeferencing an 1880's Bowman map in the late fall of 2008, the 1880's Burns Mountain Gold Mining Co adit and lay down area was located on the ground and inspected.

2009 Tenorex GeoServices was contracted to conduct a 50Lkm winter beep mat geophysical survey for assessment purposes in March 2009. A trenching program was conducted in the summer and fall of 2009 and is the main subject of this report. Two samples of visible gold were located at the Cohen Incline. Also this year, at a gain to Gemco Minerals Inc, legacy claims belonging to another company and located at the southwest corner of the property were converted to cells.

9.0 EXPLORATION

Tenorex GeoServices and TCH Consulting (equipment operator) were contracted in the summer of 2009 to conduct followup on geophysical surveys and conduct geochemical surveys of rock for assessment and future exploration purposes. A 130 Hyundai excavator was used to open trenches laid out for investigation. A total of 665 meters of trenching was conducted in 14 trenches. In addition some outcrops and historical workings were visited and sampled. In total, 297 rock samples and 2 soil samples were sent to EcoTech Laboratory in Kamloops for analysis. 23 rock samples assayed at greater than 1g/t gold and the lab also advised that a metallic assay be conducted on some of the samples in an effort to more accurately quantify the gold values within the sample analysed. EcoTech commented to the author that this method is best used where the 'nugget effect' is found. The lab also reported that sample 189415 was compromised during processing at the lab, so there is no metallic screen available, however the fire assay was not compromised.

In addition to the geochemical sampling, survey control was established at two locations on Mount Burns. Survey hubs are now located at the Perkins opencut area and the Standard shaft area and will be used in the coming season to survey the historical workings as well as future exploration programs, such as drill hole survey control. No further details will be discussed in this particular report.

Brief description of field sampling

All sample locations from trenches were calculated by measuring from a GPS'd picket located at one end of the trench. Except as noted, channel sample coordinates are provided at the center of the interval. Some samples were also flagged and labeled on a nearby tree adjacent the trench, in case future inspection is required. All trenches except Trench G and H were reclaimed and seeded before October 2009. Trench G and H will be reclaimed when the snow has cleared in the spring.

All other sample locations were flagged and labeled, and most were also picketed and labeled in the field. GPS coordinates of most locations were taken while in the field and are provided in UTM Nad83 (Zone 10). All field notes and samples were taken by Angelique Justason while Vanessa Finch, Bret and/or Tom Hatton assisted.

All samples were placed into a clear poly sample bag along with the corresponding sample tag. Each bag was sealed tightly with flagging tape and labeled with a permanent marker. Samples were later sorted by sample number and placed in a large white rice bag, labeled and sealed for shipping via VanKam.

Description of analytical procedure (as provided by EcoTech)

Eco Tech Laboratory Ltd. is registered for ISO 9001:2008 by KIWA International (TGA-ZM-13-96-00) for the "provision of assay, geochemical and environmental analytical services". Eco Tech also Participates in the annual Canadian Certified Reference Materials Project (CCRMP) and Geostats Pty bi-annual round robin testing programs. The laboratory operates an extensive quality control/quality assurance program, which covers all stages of the analytical process from sample preparation through to sample digestion and instrumental finish and reporting.

SAMPLE PREPARATION (codes vary)

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

ICP-AES MULTI-ACID DIGESTION (MA-ES)

A 0.5 gram sample is weighed into teflon tubes. The sample is digested with nitric acid, hydrofluoric and perchloric acids. The sample is taken to dryness using a heating block apparatus. The sample is subsequently re-dissolved with 3ml of a 3:1:2 (HCl:HN03:H20) solution which contains beryllium (Be acts as an internal standard) and the sample is then bulked with DI water. Samples are analyzed on a Thermo IRIS Intrepid II XSP ICP unit.

Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift occurred or instrumentation issues occurred during the run procedure. Repeat samples (every batch of 10 or less) and re-splits (every batch of 35 or less) are also run to ensure proper weighing and digestion occurred.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

Detection Limits (ICP-AES):

Element	Unit	LDL	Element	Unit	LDL
Ag	ppm	0.5	Mo	ppm	1
Al	%	0.01	Na	%	0.01
As *	ppm	5	Ni	ppm	1
Ba *	ppm	2	P	%	0.001
Be	ppm	1	Pb	ppm	3
Bi	ppm	5	Rb	ppm	50
Ca	%	0.01	S	%	0.01
Cd	ppm	1	Sb *	ppm	5
Co	ppm	1	Sc	ppm	1
Cr *	ppm	2	Se	ppm	10
Cu	ppm	2	Sn *	ppm	5
Fe	%	0.01	Sr	ppm	20
Hg *	ppm	1	Ti *	ppm	10
K	%	0.01	U	ppm	5
La	ppm	2	V	ppm	2
Li	ppm	2	W *	ppm	5
Mg	%	0.01	Y	ppm	1
Mn	ppm	5	Zn	ppm	2

^{*}Elements marked with an asterisk * may not be totally digested

GOLD AQUA REGIA DIGEST: ICP-MS FINISH (Au1-10,25)

Samples are digested in an aqua regia solution for 45 minutes. They are bulked with deionized water, and an aliquot of this is taken for analysis a Thermo Scientific X series II ICP-MS unit. All synthetic standards are purchased and verified by 3 independent analysts and are used for instrument calibration before each and every ICP-MS run.

A 2-3 point standardization curve is used to check the linearity (high and low). Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift or instrumentation issues occurred during the analysis of the sample(s). Repeat samples (every 10 or less) and re-splits (every 35 or less) are also run to ensure proper weighing and digestion occurred. Detection limits for aqua regia digest gold values is 1-1000ppb.

Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). Results are emailed, faxed, or mailed to the clients.

**** This method is recommended for soil and silt samples only.

GOLD FIRE ASSAY: GEOCHEM (Au2-15,30,50)

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument).

Over-range geochem values (Detection limit 5-1000ppb) for rocks are re-analyzed using gold assay methods (see below).

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

GOLD FIRE ASSAY: ASSAYS (Au3-15,30,50)

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument). Gold detection limit on AA is 0.03-100 g/t. Any gold samples over 100g/t will be run using a gravimetric analysis protocol.

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment. Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

METALLIC SCREEN FIRE ASSAY (Au4-250,500,1000)

Samples are catalogued and dried. Rock samples are crushed to minus 70% passing through 10 mesh, then split to achieve a 250g, 500g or 1000g sub sample. The sample is pulverized to 95% passing through -150 mesh. The entire sample is weighed, then rolled and homogenized and screened through a 150 mesh.

The resulting -150 mesh fraction is homogenized and two sub-sample portions are fire assayed. All of the resulting +150 mesh material is fire assayed. The resultant fire assay beads are digested with a nitric acid followed by hydrochloric acid, and then analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to 0.03g/t detection

limit. If the gold values are over an agreed level a gravimetric finish would be performed. (Same process but only nitric acid is used to dissolve the silver away from the gold. The resulting gold bead is weighed on a Mettler Toledo MX5 micro-balance.)

The results for the two -150 values and single +150 mesh value are then calculated based on the original sample weight providing a net gold value.

The entire set of samples is re-assayed if the quality control standard is outside 2 standard deviations or if the blank is greater than .015 g/t.

Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). Results are faxed, emailed or mailed to the client.

[*Note: the metallic assay conducted for Gemco Minerals in 2009 was recommended based on a 120g sample]

[** 189415 was compromised during processing at the lab, so there is no metallic screen available]

10.0 DISCUSSION and RESULTS

297 rock samples and 2 soil samples were taken from the general areas of Mount Nelson and Mount Burns at rock exposures in road and trail cuts as well as from trenches opened up this season. 13 trenches totaling 665 meters were inspected as well as several existing opencuts and historical workings on the property. 23 rock samples assayed greater than 1.0g/t gold. The highest value of 109.0g/t gold (based on a 120g average metallic assay) was obtained from sample 189395, a vuggy quartz vein sample found at the Perkins opencut. Also to worth highlighting is sample 189407, a pyrite rich sericitic phyllite from the Burns Long Crosscut waste dump which metallic assayed 8.95 g/t gold. Samples from trenches showed gold peaking at 460 ppb in sheared and shattered quartz vein and gouge from within fault zones. A synopsis of each area sampled is provided below followed by a more detailed description of each sample in tabular format.

Trench A was located on the trail approaching the Galena opencut. The trench was about 55 meters long and all coordinates were calculated from a picket located at 588985E, 5877989.7Nwith a general east/west trend. 32 samples were taken from this trench.

Trench A1 was located a few meters to the south of Trench A and located immediately adjacent an existing exploration trail. Three samples of the same vein were taken from this 4 meter trench.

Trench B was also generally east/west trending and about 23.5 meters long. 15 samples were taken and all coordinates were calculated from 588908.2E, 5878029.7N.

Trench C was 34 meters long with coordinates calculated to the west from 588918E, 5878104N. 20 samples were taken and upon exposure of a promising looking 8" wide mineralized quartz vein, a second trench was opened up here to follow the vein along its strike.

Trench C1 was 16 meters long and had an azimuth of 208°. 10 samples were taken along this trench and gold here peaked in 189214 at 325ppb gold.

Trench D was 35 meters long with an azimuth of 90°. 8 samples were obtained and each were calculated at a distance from a picket placed at 588935E, 5878213N. No significant gold values were found.

Trench E was about 72 meters long with an azimuth of about 90°. 18 samples were obtained and each was calculated at a distance from a picket placed at 588976.1E, 5878275N. Sample 189183 assayed 110ppb gold from a grab of an orange weathered, oxidized quartz vein >4" wide.

Trench F was 109 meters long with an azimuth of 90° and located several meters east of the Cohen showing. 20 samples were obtained and each was calculated at a distance from a picket placed at 589021E, 5878332N. No significant gold values were obtained but the

trench did expose much faulting as well as numerous fold structures. Increasing values of manganese were noted where faulting was evident.

Trench G was 104 meters long with an azimuth of 90° and located a couple hundred meters south of the Perkins showing, and east of the possible southern extension of the Perkins Vein system. 19 samples were obtained and each was calculated at a distance from a picket placed at 588874E, 5877693N

Trench H was 96 meters long with an azimuth of 90° and located 50m north of Trench G. 46 samples were obtained and each was calculated at a distance from a picket placed at 588870E, 5877748N.

The **Gibson Trench** was located near the summit of Mount Burns and was 79 meters long. All measurements were calculated from 589353.5E, 5878999N. While no significant gold values were obtained, quartz veins were found as were recumbent folds and faulting.

Trench FE1 was located in the deactivated road bed of 72C FSR near Oregon Gulch. The trench was 6 meters long and 3 samples were taken.

Trench FE2 was located in the southern portion of a recent cutblock to the east side of Oregon Gulch. The trench was 27 meters long with an azimuth of 258° and located several meters east of the Cohen showing. 2 soil samples and 8 rock samples were taken and each was calculated at a distance from a picket placed at 586804.5E, 5879896N. No significant gold values were found.

To summarize the above, the trenching program determined that peak SP geophysical values were in response to graphitic fault zones and shear structures found here, as expected. Although mineralization was observed, no values of gold >1g/t were found from within the trenches themselves.

72F and Highway 26 saw a few samples taken from various areas showing trace to promising looking mineralization within phyllite, quartzite and quartz veins, but with no significant gold values in this sample as later determined by the ICP multielement geochemistry.

The **Standard Shaft** is located on the summit of Mount Burns and vein material of various sizes is stockpiled adjacent the shaft, in small quantity. 3 samples were taken from here and varied from 0.5 to 2.2 g/t gold.

The **Burns Mountain Co waste pile** is located about 300 meters north of the Standard Shaft. The waste pile was scouted for vein material and several samples were taken, which represents veins found within the 130+ year old tunnel, whose adit is slumped over/caved. Historical maps suggest possibly 4 veins were drifted on, which parallel veins located on surface. One of the veins is called "Silver Ledge" and is said to strike 30°. No significant mineralization was seen in the waste pile, except sample 189328 which contained minor amounts of galena and about 25% pyrite. This sample fire assayed 1.79 g/t gold.

The **Cohen showing** is a series of pre-Bowman era (<1880's) tunnels and shafts, now opened up and exposed along the trace of the original tunnels. General areas of the shaft locations are known, but no shafts have actually been located and are assumed to be collapsed and/or filled. The now existing open cut follows what was a gold and silver bearing quartz vein, dipping steeply to the west or northwest. Sections of the vein remain in place and several samples of in-situ vein as well as angular float (man transported) material located nearby. 2 samples of visible gold were taken from the southern area of the opencut, nearest an open laydown or flat pad area. These were not sent for assay. However, 2 of a total 8 samples sent for assay from here returned values of 9.9 – 32.2g/t gold.

The **Long Cross Cut waste pile** is located at the northwest edge of a large cutblock overlooking Amador Gulch. One sample was taken near the portal while several samples of quartz vein and mineralized rock were taken from various areas of the waste pile. 2 samples of the 8 taken had greater than 1 g/t gold. A quartz vein, sample 189406, with about 10% cubic pyrite metallic assayed 24.5 g/t gold. Much to the company's surprise a sample of foliated phyllitic country rock with 75% cubic pyrite metallic assayed at 8.95 g/t gold (sample 189407). Holland's 1948 report noted pyritized wallrock from the Cross cut assaying at 0.08oz/t gold. Exploration along the surface trace of the 'mine' is highly recommended.

Galena opencut (aka:Grassroot Tunnel) is located about 200 meters east of the Perkins opencut on Mount Burns. Once a short tunnel, possibly of similar age to the Perkins/Beedy

tunnel, it is now a large open cut with vein material piled on each side. Several samples were taken near here as well as at the location of the historical waste pile of the old "Grassroot tunnel". All but one sample assayed between 1.6 to 30.5 g/t gold. Two samples, 189397 and 189398, also contained 67 and 156g/t silver as well as 2.5 and 6.2% lead respectively in addition to the gold.

The **Reid waste pile** is located to the west of the original portal to the Perkins/Beedy or Reid Tunnel. 6 samples were taken at various locations within the area and gold peaked in sample at 360ppb. Ore from early exploration here was crushed, roasted and processed at different locations on the property. The roasting site was sampled and described below.

The **Perkins roasting site** (aka: Rocker Tailings) is located a few meters northwest of the Reid adit near Perkins cabin (in ruins). The area was previously sampled by Holland in the late 1940's. A local prospector and long time Wells resident, Herald McGowan, states that he was Holland's field assistant during that time (*pers comm., McGowan, 2008*). The author visited the roasting site with the intent to followup on Holland's sampling which was reported in Bulletin 26. The exact age/era of the roasting site is

unknown. Moss covered crushed and roasted quartz were found in a linear to oval shaped area no more than 20 meters long, however further investigation is required to determine the exact area. Upon sampling, hand made hole punched sheet metal were uncovered. These pieces of sheet metal ranged in size up to 1 meter square or so, and holes were also various sizes and are assumed to be the method used to sort and test the crushed and/or roasted ore. Black charcoaled wood were also found throughout the roasting site. It is

assumed that ore material was crushed at the arrastra, some 100 meters or so to the south, and transported back to near the cabin site for roasting and possible processing. It is also assumed that the crush was roasted on the cleared forest floor in a controlled manner, however more research may indicate otherwise. It is estimated that with the approximate area and depth of roasted ore still remaining here, that approximately 10 tons of material remains stockpiled. All 7 samples taken from the area assayed gold values ranging from 1.3 – 23.9g/t gold, averaging 9.9g/t gold over those 7 samples. This is a similar value to the gold which is said to have been processed from this area in 1902 at the Government Reduction Works.

The **Perkins opencut** is located along the main access road and trail of Mount Burns. The road is also a part of the 72F forest service road. The opencut follows what was once a quartz ledge. In the late 1800's and early 1900's it was explored at depth via drifting and locating shafts along at certain locations. In later years the main vein was opened up along its length with machinery and explored in minor detail in the 80's and 90's. The Perkins opencut was visited this past season but no detailed inspection was made since the main vein itself, is no longer apparent at surface. Samples of vein located loose on the surface was sampled, however, as it is assumed these rocks came from the main Perkins vein itself. Evidence of the veins at depth are found in historical reports. Four samples were taken here, 189393-189396, and assayed excellent gold values: 8.05g/t, 4.16g/t, 109.0g/t and 96.7 g/t gold.

			UTM Cod	ordinates					Au	Ag	Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)	(g/t) (c	z/t)	
189028	grab	18-Sep-09	589355.5	5878999	506333	Gibson	2m from start trench S wall (W end). Dk gy- minor chloritized + silicified Fe rich qtzite		20	<0.2	66					
189029	channel	18-Sep-09	589355.9	5878999	506333	Gibson	at 2.4m. 0.8m sample blk gouge w/ Fe rich gy qtzite + small QV	F 292/40	15	<0.2	33					
189030	grab	18-Sep-09	589353.5	5878999	506333	Gibson	dk gy Fe rich dk gy qtzite. Tr sulphides.	1 232/40	15	<0.2	27					
189031	grab	18-Sep-09	589359.7	5878999	506333	Gibson	at 6.2m. Fe rich + vuggy shattered QV. No single vein orient but appears	orient 082/24 (?). F @5.2 - 6.0m								
189032	grab	18-Sep-09	589359.5	5878999	506333	Gibson	parallel to faulting at least 1:0 thick QV at 6.0m. QV same as last	074/80 J @ 7.4m 180/64. silicif qtzite	15	<0.2	137					
103002	grab	10 Ocp 00		0070303		Cibson	QV at 14m from W end of trench. Dk-bright orange → brn-blk Fe rich	·	15	<0.2	338					
189033	grab	18-Sep-09	589367.5	5879000	506333	Gibson	honeycombed & highly weathered QV. Adjacent silic dk gy qtzite. QV 2-6" wide bright true red weathering in places.	QV orient 228/80. F 182/73 @ 19.3m.	15	0.3	485					
189034	grab	18-Sep-09	589371	5879000	506333	Gibson	same QV as last. @17.5m. apparent new horizontal bedding w/ very shallow 8' plunge of small wavy S folds plunging towards 340°. 8°→ 340.	J 220/82 @ 21m. J 104/62 @ 21.5m	15	0.4	551					
189035		18-Sep-09	589379.5	5879000.5	506333	Gibson	at 26m. 3" thick QV. Fe weathrd but no appar sulphides	QV 140/30	20	<0.2	75					
189036	grab	21-Sep-09	589387.4	5879001	506333	Gibson	at 34m. 3-4" thick Fe rich QV near horizontal orient	Q V 140/00	20	<0.2	31					
189037	grab	21-Sep-09	589388.5	5879001	506333	Gibson	QV @ ~35m. Likely same QV as 189036 rusty + vuggy w/ dk brn-blk	QV 277/55								
189038	-	21-Sep-09	589389.5	5879001	506333	Gibson	weathering rare muscovite on joints. QV lense ~ ½ m above + 1m E of last same. Within	QV 244/24	15	<0.2	72					
	grab	-					blk gf, + seric phyll. QV fold is hinge of anticlinal fold.		15	<0.2	44					
189039	grab	21-Sep-09	589396.4	5879001.6	506333	Gibson	at 43.0m. Dk dk gy qtzite w/ 2% cubic py <2.0mm size + up to 5% qtzeyes.	J 054/78	15	<0.2	28					
189040	grab	21-Sep-09	589399.4	5879002	506333	Gibson	at 46m. Dk gy qtzite w/ about $40\% < 1$ cm wide QS. $< 5\% < \frac{1}{2}$ mm cubic py. Fe rich joints	J in QV 005/82E @51m	15	<0.2	29					
189041	grab	21-Sep-09	589404.4	5879002.4	506333	Gibson	QV Fe rich joints + folded in w/ dk gy phyll		20	<0.2	28					
189042	grab	21-Sep-09	589420	5879003.7	506333	Gibson	at 67m. QV ser + Fe rich. Tr sulph. Looks to be generally horizontal to shallow NNW dip		20	<0.2	119					
189043	float	21-Sep-09	589421.6	5879004	506333	Gibson	Float sample from 68.5m center of trench - broken bolder of qtzite w/ QV. Unsure of exact placement/origin in trench, but is is local to trench.	J 106/35, J302/84, J330/87, J322/15 @ 67-69m.	15	<0.2	32					
189044	grab	21-Sep-09	589427.4	5879004.5	506333	Gibson	at 74.3m. Dk gy qtzite sericitic & quite heavy. Tr cubic py + QS < 1cm wide.	J 300/28 possible bedding: J 352/86: J + Qs 184/80 in dk gy qtzite @70.2m: J 352/86 @ 74.3m: J 058/85 @76.6m.	15	<0.2	98					
189045	grab	21-Sep-09	589421.6	5879003.6	506333	Gibson	no description but was sketched in field notes in same QV plane as samples 189047-048		15	<0.2	41					
189046	grab	21-Sep-09	589421.6	5879003.5	506333	Gibson	Fe rich QV \pm fol phyll. Note: 189045-050 is resampling of 189043 area after cleaned up trench abit more with excavator, in effort to better expose vein. Upon exposure appears to pinch and swell on width less than 1ft and strikes possibly ~305-310d.		15	<0.2	68					
189047	grab	21-Sep-09	589421.6	5879003.9	506333	Gibson	1" wide Fe rich, dk brn weathered QV		20	<0.2	90					
189048	grab	21-Sep-09	589421.1	5879003.7	506333	Gibson	Fe rich QV ± faulted phyllitic rock		15	<0.2	162					
189049	grab	21-Sep-09	589420.8	5879003.6	506333	Gibson	Highly fractured, friable, Fe rich QV on W side jointing.		45	<0.2	134					
189050	float	21-Sep-09	589419.8	5879003.7	506333	Gibson	QV originating from QV in tr. Not in place but from same as 189046 - 189049.		25	<0.2	46					
189151	channel	23-Sep-09	589334.7	5878611.8	506333	rd cut trench	1.5m vertical channel across SW face. Fine to med grained, gritty, sil qtzite with tr py in top ½ m of trench. Overlies blk gf phyll interbedded with fg greenish - gy atzite. Hinge of fold?		15	<0.2	79					
189152	grab	24-Sep-09	588920.7	5878337.1	506333	subcrop in old trench near Tr.F	Shiney, sericitic and finely lam dk gy - blk phyll→ schist with ~20% sulphides as <1mm cubic py. Minor chloritic alteration.	Cleavage 042/16 SE. Common J 216/62W	25	<0.2	669					-
189153	grab	24-Sep-09	588998.0	5878332.0	506333	Trench F	at 23m from east end trench. Grab of silicicious greenish gy, gritty qtzite with trace pyrite	Cleavage 021/58 @ 23m on gritty qtzite	15	<0.2	248					
189154	grab	24-Sep-09	588997.5	5878332	506333	Trench F	at 23.5m. red- blk weatered, muscovite rich 4" wide QV	QV parallels last noted cleavage			173					
189155	grab	24-Sep-09	588997.5	5878332	506333	Trench F	at 23.5m. red- blk weatered, muscovite rich 4" wide QV	QV parallels last noted cleavage	15	<0.2						
							bleached It gy qtzite with 20% cubic py weathered brn. Rare cloritic pylllite.		10	<0.2	268					
189156	grab	24-Sep-09	588995	5878331.56	506333	Trench F	Represents rock exposed from 25-27.5m from east end of trench	000/07:	10	<0.2						
189157	grab	24-Sep-09	588992	5878331.6	506333	Trench F	QV grab, sparks with hammer and sulphur smell	cleavage 020/35 in country rk	10	<0.2		H				
189158 189159	grab grab	24-Sep-09 24-Sep-09	588992 588991	5878331.6 5878331.5	506333 506333	Trench F Trench F	QV grab, sparks with hammer and sulphur smell Milky white QV with blk mang on fractures. No visible sulphides. Looks to be a	F zone 194/58 bedding 358/30, drag folding in		<0.2						
	_						lense in a small fault zone, parallel to bedding Schistose phyl or vfg qtzite in dark gy-grn weakly chloritized qtzite, 5% cubic py	places	15	<0.2	310					
189160	grab	25-Sep-09	588986.6	5878331.1	506333	Trench F	and Mang staining.	bedding 352/46	10	<0.2	527					

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)	(g/t)	(oz/t)	
189161	grab	25-Sep-09	588985	5878331.1	506333	Trench F	in hinge of synclinal fold. Pencil cleaved phyll or vfg qtzite. Reddish	At 35 m hinge of synclinal fold observed, finger sized pencil cleavage. Seen in north wall	10	<0.2	388					
189162	grab	25-Sep-09	588980.7	5878331	506333	Trench F	QV with mang rich fractures and bright orange to brn vugs. Muscovite present with tr py	QV 140/85	15	0.2	1512					
189163	grab	25-Sep-09	588980.2	5878331	506333	Trench F	Mang rich QV grab from center of trench. 2% cubic py. Extension of last QV vein sample. Heavy		15	0.2	681					
189164	grab	25-Sep-09	588974	5878331	506333	Trench F	black phyllite immediately adjacent (east side) fault/fold zone	43.6m cleavage 020/25	20	<0.2	1311					
189165	grab	25-Sep-09	588973	5878331	506333	Trench F	Fault and broken QV	cleavage 340/40	20	<0.2	1851					
189166	channel	25-Sep-09	588971	5878331	506333	Trench F	1m channel in fault zone with indications of drag folding		15	0.3	2243					
189167	grab	25-Sep-09	588967	5878330.5	506333	Trench F	in phyllitic rock on west side/ foot wall of fault	cleavage 010/24	15	<0.2	831					
189168	grab	25-Sep-09	588959.2	5878330.5	506333	Trench F	1" rusty QV. Tr suphides		15	0.3	553					
189169	grab	25-Sep-09	588962.7	5878330.5	506333	Trench F	greenish gy, fg to gritty qtzite. 1% py cubes, <2mm cube	at 62 m, cleavage = 020/26	15	<0.2	289					
189170	grab	25-Sep-09	588957	5878330.5	506333	Trench F	Orange broken sheer zone with minor QV		15	<0.2	349					
189171	grab	25-Sep-09	588947.7	5878330	506333	Trench F	finely lam grnish gy phyll to fg qtzite with 20%, <1mm cube weathered pyrite	at 70.5m, 8" wide F 018/20, note also 2.5 m wide fault zone starting 2m west of 189171	10	<0.2	829					
189172		25-Sep-09	588941.5	5878330	506333	Trench F	rusty and highly fractured 3-6" wide QV.	QV 314/44	10	0.2	1034					
189173	grab	28-Sep-09	588960	5878275	506333	Trench E	"watery" smokey grey, sercitic QV with trace pyrite	fault zone 16.5-21.5m from west end trench	15	<0.2	145					
189174	grab	28-Sep-09	588957.1	5878275	506333	Trench E	broken and sericitic QV (no orientation), with trace py, 19m west of start of									
103174	grab	20-ОСР-03	300337.1	3070273	300333	TICHCITE	trench		15	0.4	195					
189175	grab	28-Sep-09	588953	5878275	506333	Trench E	Chloritic and cooked, khaki brn weathered phyl with <1" QS of various orientations. Tr py. S folds and pencil cleavage dipping moderately to SE	cleavage at 23 m = 032/34	10	0.2	99					
189176	grab	28-Sep-09	588945.5	5878275	506333	Trench E	QV lense at 30.6m with trace py. No orientation measured	fault zone 23-27m. 27m-29.6m is orange weathered phyll with <10% cubic pyrite	10	<0.2	764					
189177	grab	28-Sep-09	588933.1	5878275	506333	Trench E	Orange broken QV. NOTE: sample misplaced (perhaps dropped in field)		no data	a: missir	ng sampl	e not sen	for analy	rsis		
189178	grab	28-Sep-09	588927.6	5878275	506333	Trench E	smokey gy to white 4" side QV. Dips easterly but not specifc details on orientation		10	<0.2	53					
189179	grab	28-Sep-09	588926.5	5878275	506333	Trench E	Orange and blk weathered QV. High managanese on fractures. In fold or sheared zone. No oritentation		10	0.2	1085					
189180	grab	28-Sep-09	588925.5	5878275.5	506333	Trench E	From QV in center of trench. 2"wide with trace py and some mn on fractures	QV 310/70	10	<0.2	788					
189181	grab	28-Sep-09	588925.5	5878275	506333	Trench E	4" wide QV in north face of trench. Brownish red vugs withtrace massive py on edges of otherwise white QV	QV 048/22	10	0.4	582					
189182	grab	28-Sep-09	588921.1	5878275	506333	Trench E	Orange broken QV, with tr py. Appears folded or in a lense.	QV 310/50	10	<0.2	100					
189183	grab	28-Sep-09	588917.6	5878275	506333	Trench E	orange weathered QV, pinching and swelling 1-4" and dipping about 30d to SSE. In south face of wall		110	<0.2	137					
189184	grab	28-Sep-09	588919.1	5878275	506333	Trench E	QV, orange to red hematite colour stained, <1% massive py. Recumbant fold here?	towards 106degrees	15	0.4	560					
189185	grab	29-Sep-09	588926.5	5878213	506333	Trench D	At 8.5m. Muscovite rich, "watery" QV 3" thick. <1% massive py. Brn - blk mang staining.		5	0.2	1212					
189186	grab	29-Sep-09	588923.7	5878213	506333	Trench D	At 11.3m. Weakly chloritized phyllite.	Cleavage 050/16, J 266/90 @ 0.5m	15	<0.2	541					
189187	channel	29-Sep-09	588915	5878213	506333	Trench D	At 20- 20.1m. 1.2m channel of fault. Fault gouge + very broken blk gf phyll. Rare orange weathering where vein material as gravel fragments evident.	Cleavage 036/16 @ 6m.	15	<0.2	102					
189188	grab	29-Sep-09	588915	5878213	506333	Trench D	At 20m in S wall. Apparent folding (no deter orient) which has silicious zone/weakly gy QV ~ 3" thick. Tr py.		15	<0.2	147					
189189	grab	29-Sep-09	588911.3	5878213	506333	Trench D	At 23.7m S wall. Dk gy gritty qtzite with Fe rich QS < 1" thick. Tr py.	J 234/50NW, J 124/84 SW, cleavage 018/20E @ 21.2m	5	<0.2	320					
189190	grab	29-Sep-09	588911	5878213	506333	Trench D	At 24.0m N wall. Mottled QV with brn-blk fractures & tr py.	Cleavage 358/48 E, J 076/82 @ 29.7m	10	<0.2	345					
189191	grab	29-Sep-09	588910.5	5878213	506333	Trench D	At 24.5m. Gy ser finely lam gy qtzite with tr py as rare diss + 1mm sq cubic py.	Common J 200/60 NW @ 23.0m. Cleavage 014/34 @ 34m.	10	<0.2	502					
189192	grab	29-Sep-09	588918	5878213	506333	Trench D	Dk gy gritty qtzite with tr diss py (dyke?) Breaks in Layers. No bedding apparent.		20	<0.2	532					
189193	grab	29-Sep-09	588917.5	5878104	506333	Trench C	At 0.5m. Fg It gy-gn phyllite interbedded with dk gy sericitic phyll. Tr diss py~ 2% < 1mm cubic py.		10	<0.2	712					

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)	(g/t) (oz/	:)
189194	grab	29-Sep-09	588914	5878104	506333	Trench C	At 4m. Orange weathered QV in faulted or folded area. Friable + broken.	Cleavage 010/20E @ 0.5m	20	<0.2	104				
189195	grab	29-Sep-09	588913.5	5878104	506333	Trench C	Same orange QV but highly fractured with blk to smokey gy watery qtz vein as well. @4.5m	Cleavage 020/25E @5.0m	25	<0.2	206				
189196	channel	30-Sep-09	588910	5878104.5	506333	Trench C	0.5m channel from N wall. Mod ser tr py. QV orange on fractures 2-6" thick pinching and swelling (along possible fold?)	J 210/62 NW, cleavage 350/44E @ 16.6m	10	<0.2	58				
189197	grab	30-Sep-09	588909.5	5878104	506333	Trench C	At 8.5m. Same as last but in swarm area. tr massive py, rare dk br-blk vugs. T COSALITE!?	Cleavage 020/36E @ 14.3m	10	0.2	48				
189198	channel	30-Sep-09	588908.5	5878104	506333	Trench C	at 9 - 10m. 1m channel from S wall. Same vein as N wall? Orange weathered broken QV pinching and swelling from 1 - 4".	Cleavage 360/026E @ 20.0m	15	<0.2	339				
189199	grab	30-Sep-09	588905.8	5878104.5	506333	Trench C	at 12.2m from base of N wall below vein. Qtzite dk gy and gritty with silicified gnish gy fg qtzite. Tr diss- cubic py.	Cleavage within fault zone 310/20N @ 23.1m	15	<0.2	604				
189200	grab	30-Sep-09	588905.8	5878104	506333	Trench C	At 12.2m at center of trench. Orange weathered QV 12" thick. Micaceous and tr py.	J in vein is 217/60W	10	<0.2	525				
189201	grab	30-Sep-09	588905.5	5878104	506333	Trench C	same as last.Tr py. Strike vein?	J 230/54. Poss orient 030/30, strike vein?	10	<0.2	145				
189202	grab	30-Sep-09	588905	5878104	506333	Trench C	Grab of QV contact with dk gy gritty qtzite with QS. Tr py as diss - rare cubic. Irregular contact but generally parallel to overall bedding. No orient.	Cleavage 018/30E, J 214/60NW @ 26.0m	10	<0.2	654				
189203	grab	30-Sep-09	588904.5	5878104	506333	Trench C	At 13.5m. Dk gy, slightly burg weathered dk gy gritty qtzite. 5% QS. Tr diss - cubic py maybe a lens inclusion in vein?		10	<0.2	1976				
189204	grab	30-Sep-09	588902.4	5878104	506333	Trench C	At 15.6m. 3" QV. Ser along margins with tr py. Minor voids. Vein is milky white to rarely gy.	Orient 032/024	10	<0.2	674				
189205	grab	30-Sep-09	588901.2	5878104.5	506333	Trench C	At 16.8m N wall. 10" thick QV. 1% py. Some ser and weathers orange to brn closest to massive to cubic py pockets.	QV 032/32 E. J 212/056W	10	<0.2	545				
189206	grab	30-Sep-09	588901.2	5878103.5	506333	Trench C	At 16.8m at S wall. Gy silicified med gr qtzite 5% cubic py up to 2mm sq, tr disa	s QV 208/76W @24.8m	10	<0.2	934				
189207	grab	30-Sep-09	588894.1	5878104	506333	Trench C	At 23.9m N wall. Orange weathered, friable QV pod in fault zone.		120	<0.2	628				
189208	grab	30-Sep-09	588893.8	5878103.5	506333	Trench C	At 24.2m S wall. Broken, 2"thick QV. Shallow but irreg dip towards E subparallel to faulting. No apparent sulphides.		20	<0.2	210				
189209	grab	30-Sep-09	588893.5	5878103.5	506333	Trench C	At 24.5m on South wall. Grab of F gouge on HW of 189211. Gnish gy \rightarrow blk mica rich gf.		20	<0.2	344				
189210		30-Sep-09	588893.5	5878104.5	506333	Trench C	At 24.5m N wall. 6" wide QV weathers orange on surface. Fresh breaks show red iron oxides, about 25%. Sericitic in places. N wall extention of 189211.		20	<0.2	1663				
189211	grab	30-Sep-09	588892.9	5878104	506333	Trench C	8" wide QV in south wall. Same vein as 189210. Fe ox on HW. NOTE: 189210 211 is seemingly significant vein and worth further investigation, subject to geochem results and/or geophys correlation	QV 208/76W 8" wide.	15	<0.2	886				
189212	grab	30-Sep-09	588893.5	5878104	506333	Trench C	Same as 189209 vein but from footwall vein.	Cleavage and bedding 360/40 @ 32m	20	<0.2	159				
189213	grab	1-Oct-09	588894.9	5878108.8	506333	Trench C 1	At 2.1m E wall. QV is folded fg qtzite & fault. Orange to brn weathered QV exposed ~ 1.5 - 3m. Broken sample with elongate thin radiating vugs, blk - brn weatherd. Tr py.	orient ~ 010/28E	10	<0.2	558				
189214	grab	1-Oct-09	588894.5	5878108.4	506333	Trench C 1	At 2.6m E wall. Same QV as last. Very broken + soft orange oxides weathered out.	Common J 208/68W @ 0-6m	325	<0.2	925				
189215	grab	1-Oct-09	588893.9	5878107.2	506333	Trench C 1	At 4m @ center of trench. QV orange weathered, ser prob same orient as the 208 vein	Bedding 001/22E @ 12m - end	55	<0.2	225				
189216	grab	1-Oct-09	588892.9	5878106.1	506333	Trench C 1	At 5.4m. 6" thick QV with Fe ox in faulted sericitic gouge.	Distinct J 208/74W @ 16m	15						
189217	grab	1-Oct-09	588892.4	5878104.3	506333	Trench C 1	At 7.0m. QV similar orient as last & along strike. Very broken friable orange weatherd QV with Fe ox in fault zone.	QV 206/70 @ 5.4m	10	<0.2	448				
189218	grab	1-Oct-09	588891.2	5878101.7	506333	Trench C 1	At 10.1m. Lt orange - It brn weatherd QV. Some Fe ox.			<0.2	1298				
189219	grab	1-Oct-09	588890.3	5878100.4	506333	Trench C 1	At 11.7m. Broken orange - brn weathered QV. QV in fault zone of ser phyll, white gouge.		5	<0.2	2105				
189220	grab	1-Oct-09	588890.7	5878100.1	506333	Trench C 1	At 11.8m on W center of trench. Smokey 2" QV with brn + orange weathering. Tr py.	QV 330/36	15	<0.2	1269				
189221	grab	1-Oct-09	588890.2	5878099.6	506333	Trench C 1	At 12.5m. QV along trend from 189219. White QV with 30 + % Fe ox vein in blk phyll.		10	<0.2	1867				
189222	grab	1-Oct-09	588889.3	5878097.6	506333	Trench C 1	At 14.7m in open area of W side of trench. Smokey watery. Orange fractures + 2% massive py along edges. Tr py overall	•	10	<0.2	53				
189223	grab	1-Oct-09	588868	5877748	506333	Trench H	At 2.0m N wall. Representative grab of finely lam fg gnish gy qtzite >> dk gy seric phyll < 5% cubic py weatherd to brn up to 1 cm cube.	Cleavage 318/42	10	<0.2	552				
189224	channel	1-Oct-09	588870	5877748	506333	Trench H	1m vertical channel in N wall of faulted & highly foliated qtzite & phyll. White &/or blk gouge but overall orange weathered. Mostly consistency of clay & faul gouge. Some blotching Fe ox.		10	<0.2	573				
189225	grab	1-0ct-09	588865.5	5877748	506333	Trench H	At 4.5m. 8" thick QV in S wall. Commonly fractures is gravel size bits. Smokey watery gy QV weathers bright orange in places	QV 360/28. J 162/76	5	<0.2	47				

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Aq	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb			(g/t)	(oz/t)	(g/t)	(oz/t)	OTTILIX
rug #		DAIL	Lust	North	renare	Aica	'	Cleavage 068/44 @ 5.7m S wall.	PP	le le	PP	(9/1)	(02/1)	(9/1)	(02/1)	
189226	channel	1-Oct-09	588864.1	5877748	506333	Trench H	At 5.9m. 1m vertical channel. Foliated, broken finely lam fg qtzite with carbonate alt & 2 parallel 4-6" (each) smokey QV.	Fractured, fol fg qtzite. QV general orient 350/20E.	10	<0.2						
189227	grab	2-Oct-09	588964	5877966	506333	Trench A 1	W side. Foliated orange fractures with ~40% red to blk oxides	QV 196/60W	40	<0.2	4517					
189228	grab	2-Oct-09	588964	5877966	506333	Trench A 1	HW irregular contact with silicified phyll. Orange weatherd QV. Rare vugs. 10% py as ox.	Cleavage 340/42E @ E end of 4m trench	10	<0.2	217					
189229	channel	2-Oct-09	588964	5877966	506333	Trench A 1	1m channel along width of same QV as last two samples	J common 196/60W, J 336/50E	20	<0.2	826					
189230	grab	2-Oct-09	588858.7	5877748	506333	Trench H	At 11.3m N wall. Smokey→milky white QV. Tr sulphides within It gy silicious gritty qtzite with some QS of varying orient.	QV 204/86	15	<0.2	257					
189231	grab	2-Oct-09	588858.4	5877748	506333	Trench H	At 11.6m S wall in silicified + blk weatherd gritty qtzite. QS in places. Tr py disseminations immediately adjacent W side QV.	Cleavage 350/10E @ 21m	20	<0.2	1565					
189232	channel	2-Oct-09	588852.4	5877748	506333	Trench H	At 17.6m N wall 1m vertical channel. Highly fol thinly to med interbedded dk gy blk shear zone. Overall 5% cubic py up to 1cm cube. Base of sample interval is blk gf gouge over 3m on base of N wall.	Cleavage 022/26 @ 17m S wall. J 215/62 @ 17.5m	15	<0.2	813					
189233	grab	2-Oct-09	588841	5877748	506333	Trench H	3" QV in fault zone. Bound by fol bed dk gy qtzite above & blk gf phyll below blueish smokey gray - white QV. Tr py. Common small vugs < 0.3mm size	Cleavage 232/20 @ 25.6m QV 308/38 NE # 189233	15	0.3	75					
189234	grab	2-Oct-09	588835.7	5877748	506333	Trench H	At 34.3m. 6" thick QV, red Fe ox rare <4mm long clear Qtz xtls.Heavy.	Cleavage 308/18 @ 33.6m.	15	<0.2	1111					
189235	grab	2-Oct-09	588835.3	5877748	506333	Trench H	At 34.7 m. Same QV as last. !% py as diss & < 1mm sq cubes on fresh surface. Mang staining on fractures. Heavy.	QV orient 330/30 subparallel to cleavage.	15	<0.2	247					
189236	grab	2-Oct-09	588833.6	5877748	506333	Trench H	At 36.4m. 3" QV at base of 1m deep trench. Very heavy. Bright orange weatherd + vuggy with brn oxides common.	Orient 300/30	15	<0.2	433					
189237	grab	2-Oct-09	588831	5877748	506333	Trench H	foliated and silicified phyll with <5% py stringers	Cleavage 316/38 @ 52.5m	20	<0.2	340					
189238	grab	5-Oct-09	588830.2	5877748	506333	Trench H	at 39.8m S side of trench @ 1m depth. Rusty orange & gy gf gouge ± QV fragments.		95	<0.2	406					
189239	grab	5-Oct-09	588830	5877748	506333	Trench H	S side of trench@1m depth. Fractured orange-brn weathered QV undeter orient. Tr py		20	<0.2	277					
189240	channel	5-Oct-09	588830	5877748	506333	Trench H	0.3 vertical. N wall @ 40m. Crushed QV & khaki orange gouge. Base of trench is blk gf gouge + phyllitic rock.		15	<0.2	135					
189241	channel	5-Oct-09	588830	5877748	506333	Trench H	0.5m vertical channel in orange weath'd blocky & jointed QV. Rare irregular <3mm noncubic voids. Musc on fractures. Minor bright red oxides	J 260-290/38	15	<0.2	451					
189242	grab	5-Oct-09	588829.2	5877748	506333	Trench H	4" wide QV at N.wall @40.8m extended to west in same plane as 189241	QV 290/32	50	0.2	138					
189243	grab	5-Oct-09	588826.5	5877748	506333	Trench H	4"wide QV at N. wall @43.5 in same plane of 189342. Rusty brn, elongate voids. Musc rich, tr py		15	<0.2	265					
189244	grab	5-Oct-09	588824.8	5877748	506333	Trench H	0.2m wide QV at 45.2 S.wall cutting interb qtzite>phyll. Bxwk, musc rich, blk fractures, elongate fractures, tr py	QV 234/70	20	<0.2	149					
189245	grab	5-Oct-09	588822.2	5877748	506333	Trench H	N wall QV 47.8 base of 4" thick gouge <2% py + vf galena?? Muscovite rich @ start of orange gossen zone		15	<0.2	92					
189246	grab	5-Oct-09	588821	5877748	506333	Trench H	at 49.0m. Orange weathered very broken QV. Tr py.		15	<0.2	172					
189247	grab	5-Oct-09	588820.5	5877748	506333	Trench H	@ 49.5 of 0.2 - 0.3 on thick QV. Fe & mang staining common voids along rims weathered brn. Tr py.		15	<0.2	607					
189248	grab	5-Oct-09	588820.5	5877748	506333	Trench H	0.3m vertical @ 49.5 in orange foliated & ser gouged phyll w/ base of vf lam fg qtzite (brn & blk weathered surface)	bedding 260/16N	15	0.2	1025					
189249	grab	5-Oct-09	588817.9	5877748	506333	Trench H	at 52.1 base of 1m deep trench in W wall. start area of blk gf gouge ± yellowy orange highly fol phyll. ± Qtz fragments w/ oxides.	Cleavage 296/30 F	85	<0.2	874					
189250	channel	5-Oct-09	588816	5877748	506333	Trench H	vertical 1m. Includes 0.6m blk-gy gf gouge + 0.4m broken QV & qtzite @54m.		15	<0.2	1017					
189266	channel	5-Aug-09	588947.5	5877989.3	506333	Trench A	0.4m. Dk gy gritty qtzite +/- <2% py cubes, <3mm sq. rarely 5% in places. NOTE: channel samples in this trench have west end (start) of coordinates displayed for each interval. (not the center of the interval as in other trenches) Start of trench is 588985E, 5877989.7N		10	<0.2	109					
189267	channel	5-Aug-09	588947.7	5877989.0	506333	Trench A	sections bik & red gr faulting	339/35 cleavage, 193/74 joint	<5	<0.2				_		
189268	channel	5-Aug-09	588948.4	5877988.7	506333	Trench A	0.4m channel across blk ser phyll + fault gouge		5	<0.2	171					
189269	channel	5-Aug-09	588948.9	5877988.7	506333	Trench A	0.7m. N wall. Blk & orange gf gouge. Rare steeply dipping & silicious, broken ugy-khaki gn phyllite. Minor wavy contortion or folding		5	<0.2	149					

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)	(g/t) (oz/t)	
189270	channel	5-Aug-09	588949.9	5877988.5	506333	Trench A	0.6m in red gouge of N?striking fault at south wall		65	0.2	608					
189271	grab	5-Aug-09	588950.0	5877988.3	506333	Trench A	under side of hanging wall of QV. Rusty & blk on fracture-no appar min look lik QV cut off on west and trench by fault but is also controlled on strike by fault. Main structure appears to drop to East but may be cut off by N trending fault. QV orient ~355/~40E cut by fault? 014/64	-355/~40EQV cut by fault? 014/64	55	0.2	979					
189272	grab	5-Aug-09	588951.2	5877988.1	506333	Trench A	top foot wall of QV at south wall		5	<0.2	160					
189273	grab	5-Aug-09	588951.3	5877988.0	506333	Trench A	~ 6" thick QV immediately adjacent to or maybe same as the 1m QV 330/56	330/56 QV	5	<0.2	83					
189274	channel	5-Aug-09	588951.2	5877988.1	506333	Trench A	3.5m. Silicified course gr gy qtzite with minor QV's <<4" thick & undetermined orientation. From 1m wide QV to end this sample interval is very silicified & resistent to weathering & breaking. Hard to sample. Channel begins at 189272		<5	<0.2	180					
189275	grab	5-Aug-09	588954.7	5877987.4	506333	Trench A	QV undetermined orientation or thickness. Suggest similar orient to last QV's 330-340ish?		5	<0.2	84					
189276	channel	5-Aug-09	588954.6	5877987.3	506333	Trench A	2.7m. Gy ser phyll →rare & weak chlortic(?)alteration nearest faulting. Fault (blk gf) 0.3m wide @2m. Rare <3m sq cubic pyrite <2% in rx nearest foot wall of fault	F 350/40	<5	0.2	513					
189277	grab	5-Aug-09	588958.8	5877986.4	506333	Trench A	at 4.0m from start of 189276. grab in south wall trench is bright orange sheared QV near horizontal & pinches out.	d	60	<0.2	782					
189278	channel	5-Aug-09	588957.4	5877986.6	506333	Trench A	6.1m broken & faulted gy-blk ±gf phyllite rare qtzitic beds <4" thick.		25	<0.2	801					
189279	grab	5-Aug-09	588963.1	5877985.4	506333	Trench A	QV in footwall blk gf fault	324/50 QV ~ 0.3m thick</td <td>5</td> <td>0.6</td> <td>646</td> <td>ļļ.</td> <td></td> <td></td> <td></td> <td></td>	5	0.6	646	ļļ.				
189280	channel	5-Aug-09	588964.3	5877985.4	506333	Trench A	7m - 9.5m past 189276 2.5m channel in broken dk gy phyllite>silicified gy qtzit	е	<5	<0.2	527					
189281	grab	5-Aug-09	588964.5	5877985.3	506333	Trench A	silicified finely lam gy qtzite, heavy weathered nodules <<1m size ~5% tr sulphides.		<5	<0.2	483					
189282	channel	5-Aug-09	588965.4	5877985.2	506333	Trench A	3.5m sample. Major fault zone 11.3-13m past 189276. (Wp004 in notes)	orient ~ 330/350	5	<0.2	1218					
189283	grab	5-Aug-09	588962.8	5877985.2	506333	Trench A	silic gy micaceous phyll (?) qtzite @ 8.2m past 189276. <2" gouge (gy-orange)	F 049/70 (tiny)	<5	<0.2	675					
189284	channel	5-Aug-09	588968.9	5877985.2	506333	Trench A	3.5m sample. Gy finely lam sericitic phyll.		<5	<0.2	717					
189285	channel	5-Aug-09	588972.4	5877985.2	506333	Trench A	5m sample. Dk gy finely lam sericitic phyll + 5-10% orange weathered out nodules <1m size ± py cubes in places.	cleavage 334/46	<5	<0.2	897					
189286	channel	7-Aug-09	588977.4	5877985.2	506333	Trench A	2.3m sample. Dk gy - blk gf phyll ± muscovite on planes of fracture + weathered out orange nodules + py cubes <1cm sq ~ 1%. Folding apparent bunot defined.	cleavage 340-360/46 @end of interval	<5	<0.2	394					
189287	channel	7-Aug-09	588979.7	5877985.2	506333	Trench A	3.2m sample. Finely lam It gy phyll vfg qtzite. 3-5% sulphides as 2mm sq py cubes+ diss py. Rare interbeds dk gy-blk foliated phll	cleavage 360/30, fol plunges→132	5	<0.2	427					
189288	channel	7-Aug-09	588982.9	5877985.2	506333	Trench A	2.5m sample. Same as last but slightly chloritized ends @ gn-orange gouged fault (1.5m of same as last) (0.7m blk gf sltst) (0.3m orange-gn gouge at E most end interval)		< 5	<0.2	493					
189289	channel	7-Aug-09	588985.4	5877985.2	506333	Trench A	0.7m sample. Silicified fg lt gy qztite tr sulphides ± tr magnetite xtls??? Minor qtz stringer		<5	<0.2	272					
189290	channel	7-Aug-09	588986.1	5877985.2	506333	Trench A	1.5m sample. Mixture of 2 or more QV <6" thick. Each in zone of breccuted + cooked/bleached fg qtzite. Orange gouge in places but orient undeter.		<5	<0.2	344					ļ
189291	channel	7-Aug-09	588987.6	5877985.2	506333	Trench A	0.7m sample ends 0.7m from end 189290. Blk-orange gouge w/3" sheared QV at end interval. No apparent sulphides.	QV @ end 360/~40	<5	<0.2	510					
189292	channel	7-Aug-09	588988.3	5877985.2	506333	Trench A	3.5m sample. Fault zone +< 8-12"thickQV located ~1m from start interval ending at 1m to end of that in a dk gy gouged - gf fault. Fault turns orange at end interval.	cleavage 350/40 6m from 189290	15	<0.2	387					
189293	channel	7-Aug-09	588991.8	5877985.2	506333	Trench A	6m sample. Dk gy - blk fol ser phyll. Weathered orange @ surface in places bu no visible sulphides. Broken rock suggest in hinge of fold.	hinge of anticl plunges ~130° @7m from end 189290	<5	<0.2	836					
189294	grab	7-Aug-09	588989.3	5877985.2	506333	Trench A	QV + fg lt gy gritty qtzite. + < 1% sulphides. Rare blebs py <1cm size from interval 189292		15	<0.2	288					
189295	grab	7-Aug-09	588982.9	5877985.2	506333	Trench A	from start interval 189288. micaceous QV <3" thick tr py.	QV ~ 320/46	<5	<0.2						
189296	grab	7-Aug-09	588981.2	5877985.2	506333	Trench A	from interval 189287. vfg lt gy lam qtzite + sulphides. ~5% py cubes <2mm siz + disseminations	e	<5	<0.2	373				T	
189297	grab	7-Aug-09	588979.7	5877985.2	506333	Trench A	from end 189286 interval. Orange micaceous QV + fault	cleavage 340 - 360/46	<5	<0.2	99					
189298	-					-	no description and location misplaced.		<5	<0.2	132	II				
189299	grab	16-Aug-09	588907.5	5878029.7	506333	Trench B	grab of dk gy-gn weakly chloritized fg qtzite with > 20% vf disseminations weathered out and blk weathered py cubes >>0.5mm sqLocated @ 0.7m fror west start of trench but represents S.East shallow dipping rocks from 0-3.7m.	т	10	<0.2	173					
<u> </u>	İ								10	\U.Z	173	Ц				

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement		ppm	ppm	(g/t)	(oz/t)		(oz/t)	<u> </u>
	channel	16-Aug-09	588910.5	5878029	506333	Trench B	vertical channel on S.wall @3.7m. Same as last but silicified in places with minor QS and 0.1m shallow blk gf faulted phyllite at base. Underlying is a slightly chloritized sericitic phyllite It gy-gn in color. Very fine weathered out py. Shallow shallow dip to S.E.	Bedding 034/22: Common jointing 298/84 and 196/72	15	<0.2	102	,	,	νο /		
189301	grab	16-Aug-09	588911.7	5878028.7	506333	Trench B	at 5m in base of south wall approx 1m from surface is sm <0.1m QV/QS with orange and black weathering on joints. Sm black voids as well. Shallow lying similar to bedding.		10	<0.2	96					
189302	grab	16-Aug-09	588915	5878028.2	506333	Trench B	at 8.4m grab. geology orientation has changed at ~ 8.4 m in dk gy qtzite	bedding 334/38	10	<0.2	346					
189303	grab	16-Aug-09	588916.2	5878027.9	506333	Trench B	QV @9.5m south wall. Rusty and blk, hard "watery" QV. Margins show blk phyl abd very chloritized in places.	QV @9.5m 322/46, pencil cleavage (up to 1.5ft long) strikes 020° @10m in N side trench and 130° in South side at 12m	10	<0.2	651					
189304	grab	16-Aug-09	588916.7	5878027.7	506333	Trench B	QV north side of trench in bottom, same trend as 189303 ~ .5m away	pencil cleavage @ 12m ~130°	15	0.2	174					
189305	grab	16-Aug-09	588919.6	5878028.1	506333	Trench B	QV @ 13m ~ 320/50 but discontinuous in gy qtzite >> phyllite. Silicified in East side as approaching fault zone.	QV 320/50	10	<0.2	185					
189306	channel	16-Aug-09	588920.6	5878028.2	506333	Trench B	At 14.0m in N wall. 0.7m channel bright-dk orange rusty broken qtzite > phyll in F zone. (13.2 - 16.0 =F) didn't continuously sample.	014/32 F @14m	10	<0.2	413					
189307	grab	16-Aug-09	588921.2	5878028.4	506333	Trench B	At 14.6m. Blk gf seric phyll with bright orange and white zones in fault in N wall		20	<0.2	176					
189308	grab	16-Aug-09	588921.7	5878028.4	506333	Trench B	At 15.1m. Bright orange and white F zone in base trench 14.6 - 16m. Fault zone and silic & seric qtzite		125	0.4	1090					
189309 189310	channel grab	16-Aug-09 16-Aug-09	588921.9 588923.2	5878028.5 5878028.4	506333 506333	Trench B Trench B	bedding 008/28 at 18.5m	15 15	<0.2	272						
189311	grab	16-Aug-09	588925	5878028.9	506333	Trench B		10	<0.2	511						
189312	grab	16-Aug-09	588929.5	5878029.7	506333	Trench B	bedding 348/40 @23.0m	15	<0.2	305						
189313	grab	16-Aug-09	588929.6	5878030	506333	Trench B	At 23.1m. Base of Tr. Bright orange + white F with undetermined orient. Broker up QV or QS also found here.		45	<0.2	242					
189314	chip	28-Aug-09	587666.9	5880791	506328	Hwy	Fe QV over 1m x 1/2m area. QV looks to be in joints but undetermined. QV ~ 0.5m wide but in a swarm or blowout area	common J 052/70	10	<0.2	39					
189315	grab	28-Aug-09	587667	5880791.5	506328	Hwy	in very dk Fe weathered QV/QS juncture		15	0.2	87					
189316	grab	28-Aug-09	587668.0	5880795.0	506328	Hwy	QV weathered out py + rusty		25	<0.2	73					
189317	float	28-Aug-09	587716.8	5880445.8	506328	Hwy	QV		10	<0.2	240					
189318	grab	28-Aug-09	587640.5	5880073.9	506328	Hwy	1m wide vein in mostly dk gy fg qtzite trace sulphides as cubic py, rare cpy		55	0.2	45					
189319	grab	28-Aug-09	587640.5	5880073.9	506328	Hwy	QV		20	<0.2	27	i i				
189320	grab	28-Aug-09	587660.0	5880074.0	506328	Hwy	finely lam vfg dk gy qtzite→ phyll blebs + fine laminations of sulphides. Cubic py blebs>diss sulphides. Fairly dense. Watch this sample!!!		10	0.3	137					
189321	grab	29-Aug-09	-	-	506328	Hwy	QV with ~10% sulphide stringers + py pods. Took photo. Brn lam qtzite >>> with dk gy-blk phyl.		15	0.5	1354					
189322	channel	29-Aug-09	587701	5880357	506328	Hwy	located ~ 40' high on bluff, E side hwy precisely 90°E from S end of Nugget Patch. 1/2m channel. Brownish - redish purple weathered dk gy→ blk vf lam pelite	bedding 042/40	15	0.3	1587					
189323	grab	29-Aug-09	587700	5880342	506328	Hwy	same as last but with D alt + very ser + shiney on faces		10	0.2	127					
189324	float	30-Aug-09	589525	5879440	506328	Burns Mtn Co waste	QV from waste pile. 189327-328 UTM is general location+/-20m. All flagged and picketed in field		310	<0.2	497					
189325	float	30-Aug-09	589525	5879440	506328	Burns Mtn Co waste	QV from waste pile.		70	<0.2	129					
189326	float	30-Aug-09	589525	5879440	506328	Burns Mtn Co waste QV from waste pile.			15	1.6	667					
189327	float	30-Aug-09	589525	5879440	506328	Burns Mtn Co waste QV from waste pile.			10	<0.2	259					
189328	float	30-Aug-09	589525	5879440	506328	Burns Mtn Co waste QV grab from waste pile with about 25% pyrite >>galena QV in Fe weathered QV. Vein may follow the initing orien, dies >< 1mm cubic			>1000	0.5	183	1.79	0.052			
189329	grab	1-Sep-09	587545	5879889	506328	QV in Fe weathered QV. Vein may follow the jointing orien. diss→ < 1mm cubic py in blebs throughout. Overall ~ < 1% py inclusion of foliated & sulphide rich (~5%) dk gy phyll. ~ 6" long x 1" high in QV. Hwy QV. Trace py. Vein apparently follows 270°/64 orient. ~ 12" wide			20	<0.2	31					
189330	grab	1-Sep-09	587544	5879889	506328	Hwy QV. Trace py. Vein apparently follows 270°/64 orient. ~ 12" wide			15	0.2	25					
189331	grab	1-Sep-09	587545	5879888	506328	Hwy	Fe stained QV. Irregular orient + thickness but follows 349/70. 2-6" wide apparently discontinues but much veining swarms throughout this o/c.		10	<0.2	36					

			UTM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag A	\g (OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)		z/t)	
189332	grab	1-Sep-09	587545	5879886	506328	Hwy	HG grab. Vein swarm/ blowout? Fe stained w/ many pitted vugs ± 1 cm long clear qtz xtls. HG sample contains massive py ~30% ± galena ~2%	common J 018/70 ±	215	6.2	23					
189333	grab	1-Sep-09	587640	5880053	506328	Hwy	QV w/Fe staining.	F ~ 060/mod ~ 60° dip to east	10	1.2	473					
189334	grab	1-Sep-09	587636	5880059.36	506328	Hwy	It gy-very light distinctive green silicious rx. ~ 10% diss sulphides (yellow to chromitic colored) Heavy dyke? Or altered pyll?		10	0.6	62					
189335	grab	2-Sep-09	588974.4	5878275	506333	Trench E	1.7 m west of picket. 2-4" QV from shiny ser gy-khaki phyll	QV 060/30	10	0.3	588					
189336	grab	2-Sep-09	588973.2	5878275	506333	Trench E	2.8m from picket. gy-khaki foliated ser phyll - fg qtzite. $\sim 5\%$ cubic py < 0.5 cm cube.	cleavage 048/26	5	0.2	500					
189337	grab	2-Sep-09	588967.7	5878275	506333	Trench E	8.3m west of picket. Center trench. Fe rich broken (fist size) fg qtzite w/ <1% sulphides + 1 cm wide QS.		10	0.2	257					
189338	grab	2-Sep-09	588967.7	5878275	506333	Trench E	at 8.3m in S wall trench. QV 3-5" at base. Mildly bluish w/ Fe stained joints. Trace sulphides		10	<0.2	65					
189339	grab	2-Sep-09	588965	5878275	506333	Trench E	10-12 m from picket. Representative grab of (high clay) gouge from S wall. Redish brown - khaki w/ blk layers as well as minor broken zones of Quartz.		10	<0.2	116					
189340	grab	2-Sep-09	588962	5878275	506333	Trench E	14m. Bluish gy fg qtzite w/ \sim 5-10% diss \rightarrow cubic sulphides. General area of less faulting but still in overall fault zone		10	0.2	194					
189341	grab	5-Oct-09	588816	5877748	506333	Trench H	QV @54m from within last sample. Brn weathered cavities. Fe + mang stained Very broken.		10	0.2	985					
189342	grab	5-Oct-09	588814.2	5877748	506333	Trench H	QV lense @55.8m. Quite vuggy. tr py. Heavy Fe + mang staining. 4-6" thick budiscontinuous or offset to E.	¹ QV 304/50	15	<0.2	313					
189343	channel	5-Oct-09	588810	5877748	506333	Trench H	1m vertical @60.0m in highly foliated gouged phyll. ± blk-khaki fault gouge. Rare 1" x 4" pods friable broken orange Qtz.		55	<0.2	177					
189344	channel	5-Oct-09	588808.4	5877748	506333	Trench H	0.6 horizontal @ 61.3 - 61.9m of sheared up highly broken QV ± F gouge. Powdery to rare gravel size QV. White to orange >> brn. From N wall 0.5m below surface.		65	1.8	50					
189345	crush	5-Oct-09	588715.2	5877989.5	506333	Rocker tailings	4"deep. Pea to 2cm² crush gravel. Dk orange-brn&wh. Charcoal fragments present		>1000	18.0	327	12.1*	0.353*			
189346	crush	5-Oct-09	588719.9	5877992.9	506333	Rocker tailings	4"deep. Pea to 2cm² crush gravel. Dk orange-brn&wh. Charcoal fragments present		>1000	2.3	395	1.29	0.038			
189347	crush	5-Oct-09	588725.3	5877989.7	506333	Rocker tailings	4"deep. Pea to 2cm² crush gravel. Dk orange-brn&wh. Charcoal fragments present		>1000	2.0	340	9.55	0.279			
189348	crush	5-Oct-09	588725.2	5877996.3	506333	Rocker tailings	3"deep. Pea to 2cm² crush gravel. Dk orange-brn&wh. Charcoal fragments present		>1000	2.1	217	1.49	0.043			
189349	crush	5-Oct-09	588723.8	5877998.5	506333	Rocker tailings	4"deep. Pea size crush to chunky QV gravel . Dk orange-brn&wh. Charcoal fragments present		>1000	8.6	226	19.8*	0.577*			
189350	crush	5-Oct-09	588730.7	5877988.6	506333	Rocker tailings	3"deep. Contains up to 2"angular fragments roasted qtz. 8' to SE is old flag "105657"		>1000	5.1	58	23.9*	0.697*			
189351	crush	5-Oct-09	588729.3	5877989.7	506333	Rocker tailings	5"deep. Consistant gravel size pieces roasted qtz. Rare fragments sericitic phyll.		>1000	0.6	36	1.26	0.037			
189352	grab	6-Oct-09	588800.7	5877748	506333	Trench H	at 69.3m. Fist-sized sorted finely 1mm fg gy qtzite. ~10% >0.5mm orange weathered nodules py. Larger cubes py up to 4mm sq are more fresh & ~1%.		45	<0.2	573					
189353	grab	6-Oct-09	588798.3	5877748	506333	Trench H	at 71.7m. Bright yellowy orange ser altered phyllite. Much dk br to dk orange patches, likely weathered cubic py but no boxwork. Otherwise 2% py cubes <1mm cube	F 018/10 @73m in lowlying 1" wide gouge. J 006/72. cleavage 320/20	30	<0.2	26					
189354	grab	6-Oct-09	588794.6	5877748	506333	Trench H	at 75.4m. S. wall. Vfg finely lam gy qtzite w/phyll 5% cubic py <5mm in size.		25	0.2	777					
189355	chip	6-Oct-09	588794	5877748	506333	Trench H	at 76m N wall. 0.6 m vertical across small gouge zone & offset interbedded fg qtzite phyll rk. Offset is right lateral	F 006/68	15	<0.2	1172					
189356	grab	6-Oct-09	588792.3	5877748	506333	Trench H	at 77.7m. 2"QV. Very broken &rusty weathered. Minor boxworks. Other vein is below but goes subsurface. Need excavator if going to inspect further. Qtz appears to be // to bedding or cleavage.		15	<0.2	158					
189357	grab	6-Oct-09	588791.6	5877748	506333	Trench H	at 78.4m. Bleached white fine med gr qtzite. <1% vf cubic py.		45	<0.2	24					
189358	grab	6-Oct-09	588791.3	5877748	506333	Trench H	at 78.7m. Highly foliated seric phyll →fg qtzite. Strong linear fabric strikes 113. Strong foliation @78.7 in finely lam qtzite±ser		55	<0.2	54					
189359	channel	6-Oct-09	588789.7	5877748	506333	Trench H	0.6m channel in S. wall @ 80-80.6m, highly fractured white-brown weath QV	QV 170/60 w end. min 4" gouge	45	<0.2	77					
189360	chip	6-Oct-09	588788	5877748	506333	Trench H	0.2 x 0.3 m rep sample of same QV in center of trench. Approx coordinate		10	<0.2	36					
189361	grab	6-Oct-09	588787	5877748	506333	Trench H	W end QV w/ blk gouge Approx coordinate	QV 170/60.	30	<0.2	235					
189362	grab	6-Oct-09	588786	5877748	506333	Trench H	up to 1.5" QV lense in blk gf argillite.Approx coordinate	cleavage 302/28	15	<0.2	355	<u> </u>				

			UTM Coo	ordinates				Au	Ag	Mn	Au	Au	Ag A		
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	ppm	(g/t)	(oz/t)	(g/t) (oz	t)
189363	grab	6-Oct-09	588785	5877748	506333	Trench H	at 85m. S wall. Fol dk gy atzite to ser argillite w/ 1% py cubes < 1 cm sq	J 046/80. Fol trends 124°	15	0.3	852				
189364	grab	6-Oct-09	588783.2	5877748	506333	Trench H	at 86.8m in N wall. Fol qtzite similar to last w/ 2% - 5% weathered cubic py <1cm cube		10	<0.2	525				
189365	grab	6-Oct-09	588780.5	5877748	506333	Trench H	at 89.5m. 0.6m from surface. 4" QV. Boxwork, <2% overall oxides.		10	<0.2	118				
189366	grab	6-Oct-09	588780.5	5877748	506333	Trench H	at 89.5m. 1m from surface. 4" QV. Orange weathered joints.	QV ~ 022/20	15	<0.2	507				
189367	channel	6-Oct-09	588779	5877748	506333	Trench H	0.5m vertical sample across both QV & fol qtzite host. Approximate coordinate		15	<0.2	1158				
189368	grab	6-Oct-09	588777.8	5877748	506333	Trench H	at 92.2m bxwk QV. Orange brn weathered		10	<0.2	800	l			
189369	grab	6-Oct-09	588777.8	5877748	506333	Trench H	at 92.2m. Same as last but 50% bxwk.	0.6m QV zone 300/50N	10	0.2	211	H			
	channel	6-Oct-09	588777.3	5877748	506333	Trench H	at 92.7m. 0.3 sample larger QV. Same as last samples	J 201/86W	10	<0.2	199	H			
189371	grab	6-Oct-09	588777.2	5877748	506333	Trench H	at 92.8m. At base of last is a shared QV at least 0.2m wide.	3 20 1/00 VV	10	<0.2	147	H			-
								h - 040/00				 			
189372	grab	6-Oct-09	588777.2	5877748	506333	Trench H	at 92.8m in S wall. Start interval for It gy med gy qtzite. 1% py.	bedding 310/28	10	<0.2	392	H			
189373	grab	6-Oct-09	588775	5877748	506333	Trench H	at 95m. Bleached & silicified fg-med qtzite. Rare QS. <1% diss cubic py <1mm.		10	<0.2	84				
189374	grab	7-Oct-09	588870.8	5877693	506333	Trench G	at 3.2m N wall. 2" wide mottled Fe + blk QV in fg argillite @ base of qtzite micaceaous QV.	bedding 310/28	10	0.5	79				
							.445 N. 1105	Cleavage 330/22 @ 10.6m:							
189375	channel	7-Oct-09	588859.5	5877693	506333	Trench G	at 14.5m N wall. 0.5m vertical sample in Fe stained fol & broken vfg gy qtzite >	Bedding 298/30 & J 215/80 @							
							argillite. 5% <1mm cubic py	14.5m.	15	<0.2	73				
189376	grab	7-Oct-09	588857.9	5877693	506333	Trench G	at 16.1m S wall. 4" wide smokey blue grey QV. Tr sulphides. Well sorted	QV 020/30			427				
-								F 055/00 @ 00 0 VtiI	10	<0.2	421	1			
189377	grab	7-Oct-09	588850.1	5877693	506333	Trench G	at 23.9m. QV + fault	F 055/90 @ 23.9m. Vertical	4.0		40000				4 000/ 11
	g							slickenlines	10	<0.2	>10000				1.32% Mn
189378	grab	7-Oct-09	588848.5	5877693	506333	Trench G	at 25.5m. Brnish orange broken QV ~ 4" thick	cleavage 061/13 (bedding in							
109370	grab	7-001-09	300040.3	3011093	300333	Trench G	at 25.5m. Birlish orange broken QV ~ 4 thick	qtzite) @ 35.2m	10	< 0.2	485				
189379	grab	7-Oct-09	588848.5	5877693	506333	Trench G	at 25.5m. Sheared orange + mag stained QV on N wall ~ 4" thick.	dips 20°± to E	10	<0.2	757				
							at 26.5m. Same QV as last 4 samples. Broken + orange stained. Broken 1/4 -1/8	cleavage 314/20 (in seric							
189380	grab	7-Oct-09	588847.5	5877693	506333	Trench G	natural crush of QV at surface	argillite) @ 38m	10	<0.2	98				
							at 43.9m QV 3" wide along hinge of fold? Not well exposed. <2% py in pockets	arginito) © com	- 10	10.2	- 00	H			
100001	avole	7.0~4.00	E00000 4	5877693	E00000	Transh C		ala aya a 240/26 @ 45m							
189381	grab	7-Oct-09	588830.1	5877693	506333	Trench G	± Fe ox. QV strikes ~298°. Pencil cleaved seric phyll (finger size) <0.5 cm wide	cleavage 310/26 @ 45m	40	0.0	550				
							cholitic alteration along margin of vein @ host rock		10	<0.2	558	.			
189382	grab	7-Oct-09	588825	5877693	506333	Trench G	QV <4". Same or // to last sample. Micaceous + bxwk. Tr py. approximate	J 048/84 @ 37.6m. J 340/84 @							
.00002	9.00	. 00.00		00000			location	63.3m.	5	<0.2	167				
							at 61.8m. QV at least 6" thick muscovite rich. Common bxwks + ~ 10% vugs.	cleavage 318/28 @ 48.0m.							
189383	grab	7-Oct-09	588812.2	5877693	506333	Trench G	Orange weath + sheared in places. Dips to SE.	Cleavage 310/22N, J 140/76W							
							Orange wealth + sheared in places. Dips to 3E.	@ 63.0m	10	1.7	259				
							at 65.5m. Broken Manganese rich blk gouge & fault material w/ ~ 20% orange	J 050/88 @ 49.6m. J 180/62W							
189384	grab	7-Oct-09	588808.5	5877693	506333	Trench G	nodules (pv?)	@ 53.5m.	10	<0.2	4064				
189385	grab	7-Oct-09	588803.5	5877693	506333	Trench G	at 70.5m in N wall. Vfg finely lam gy qtzite w/ cubic py >5mm sq.	F 354/72	10	<0.2	1219				
	Ŭ						at 71m N wall. QV <4" wide. (seen in S wall too). Sm rare vugs and rotten	QV 322/30. bedding 320/22, J		10.2		H			+
189386	grab	7-Oct-09	588803	5877693	506333	Trench G	bleached margins. Tr py	344/66 @ 70.5m	5	<0.2	338				
							bleached margins. 11 py		3	<0.2	330	-			
189387	grab	7-Oct-09	588787.2	5877693	506333	Trench G	at 86.8m S wall. Milky white-watery QV. Tr py. // to cleavage.	Cleavage 332/24, J 356/60 @	40	0.0	407				
	Ü							78m.	10	0.2	167	ļ.			
189388	grab	7-Oct-09	588784.5	5877693	506333	Trench G	at 89.5m N wall. Sheared QV 4-12" wide. Some mica much Fe weathering. Tr	QV 335/25 and F	_						
	9						py in faulted argillite w/ gouge.		5	<0.2	802				
							at 91m S wall. 0.6m sample. Shattered white & orange QV w/ blk fault gouge. ~	cleavage /bedding 320/44 @							
189389	channel	7-Oct-09	588783	5877693	506333	Trench G	1/2 of each.	89.5m S wall. Cleavage 300/38							
							/2 Of Eduli.	@ 86.0m	15	< 0.2	525				
400000		7.0.100	E00700 0	5077000	F00000	T 10	at 91.7m N wall. Small blowout zone of It br weathered QV of various orient &	0)/ : 1045/00							
189390	grab	7-Oct-09	588782.3	5877693	506333	Trench G	sizes 1"- <6". Mang stains ± muscovite	QV orient 315/66	15	<0.2	867				
							at 93.1m S wall. 1m sample fault gouge ± qtzite/argillite frag and white								
189391	channel	7-Oct-09	588780.9	5877693	506333	Trench G	shattered rotten QV lense.		110	1.0	1369				
-							at 94.3m N wall. 1m sample broken + qtzlite phyll QV, fault gouge & sheared,		110	1.0	1303	+			
189392	channel	7-Oct-09	588779.7	5877693	506333	Trench G			400	0.4	0.40				
							rotten white lenses QV.		460	0.4	642	ļ.			
189393	float	13-Oct-09	588758	5877954	506333	Perkins Ledge	rep chips of weathered and bxwk QV from diggings pile in east side Perkins								
100000	noat	10 001 00	000700	0077001	000000	T OTHER Edge	ledge near original shaft		>1000	5.1	3425	8.05*	0.235*		
400004	414	40.0-4.00	500757 F	F0770F0 0	F00000	Dankina Ladaa	QV originating from Perkins ledge @ 1m east of 189393 10% cubic to mass								
189394	float	13-Oct-09	588757.5	5877950.2	506333	Perkins Ledge	py+/- 2% galena		>1000	2.5	349	4.16*	0.121*		
						L	contact at fol phyll +QV with much bxwk and about 10 % py off of west pile @					11			-
189395	float	13-Oct-09	588746.7	5877954.5	506333	Perkins Ledge	Perkins ledge		>1000	7.5	108	109.0*	3.179*		
								+		10	. 50				
189396	float	13-Oct-09	588746.7	5877954.5	506333	Perkins Ledge	HG QV off of west side Perkins ledge 40% mass py, tr chalco, tr galena		>1000	27.0	46	96.7*	2.82*		
						+	HC OV from Colona showing (Grassroot Tunnel) pile with 200/ py and 40/		/1000	27.0	70	30.7	2.02		+
400007	float	13-Oct-09	589008	5877979	506333	Grassroot	HG QV from Galena showing (Grassroot Tunnel) pile with 30% py and 1%		>1000	. 00	25	13.4*	0.391*	66.6	4 2.52 % Pb
189397	110at I						lgalena la			<(1)					

			UTM Coo	ordinates		Tenure Area Description Measu					Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	Au ppb	Ag ppm	ppm	(g/t)	(oz/t)	(g/t)	(oz/t)	OLIX
189398	float	13-Oct-09	589013	5877984	506333	Grassroot	HG QV from Galena showings pile taken several meters north of 189397 25% mass py % 25% galena	modourement	>1000		241	30.5*	0.889*	156	` ,	6.16 % Pb
189399	grab	13-Oct-09	589016.7	5877968	506333	Grassroot	QV in 80's trench behind (east) of Galena vein QV approx. dip to 304° and at least 6" thick orange weathered but no apparent min.	QV dips to ~304°	30	0.2	114	30.3	0.003	.00	7.00	3.13 /0 F D
189400	float	13-Oct-09	589016.5	5877945	506333	Grassroot	QV originating from Galena showings pile. Orange weath QV float 10% mass to cubic py and 10% galena	d	>1000		755	5.55*	0.162*			
189401	float	13-Oct-09	589015	5877942	506333	Grassroot	QV originating from Galena showings pile. Approx. 5m south of 189400 at head of original open cut. Approx. 10% cubic to mass py and 5% galena		>1000		34	1.60	0.047			
189402	float	13-Oct-09	589552.5	5879156.7	506333	Standard shaft	HG QV from Standard shaft dump site. About 20% mass to cubic py and 1% galena		510	0.5	50					
189403	float	13-Oct-09	589555.3	5879150.1	506333	Standard shaft	HG QV from Standard shaft dump site. About 20% mass to cubic py and no galena		>1000		1683	2.17	0.063			
189404	float	13-Oct-09	589552.0	5879151.1	506333	Standard shaft	representative chip samples @ Standard shaft site		>1000		251	1.84	0.054			
189405	float	14-Oct-09	589068.0	5877481.9	506333	Cross cut	from E edge of Long Cross Cut adit. 1" thick weathered QV		10	<0.2	2490	1	$oxed{oxed}$			
189406	float	14-Oct-09	589083.2	5877419.9	506333	Cross cut	from waste pile. QV with ~10% weathered cubic py		>1000	1.5	4194	24.5*	0.714*			
189407	float	14-Oct-09	589070.4	5877424.1	506333	Cross cut	From base of waste pile. Foliated and silicified argillite>phyll with ~75% cubic to mass py.other rx here also contain much cubic py <2cm in size		>1000		171	8.95	0.261			
189408	float	14-Oct-09	589069.6	5877425.6	506333	Cross cut	of QV with approx. 10% cubic py taken 2 feet NW of 189407		355	<0.2	8391					
189409	float	14-Oct-09	589068.3	5877428.5	506333	Cross cut	dk gy ser foliated phyll with ~ 5% cubic to rare diss py. Grab from dump about feet NW of 189407 @ base dump		110		622					
189410	float	14-Oct-09	589068.3	5877428.5	506333	Cross cut	grab of QV from same loc as 189409. approx. 5% overall cubic py				2134	1				
189411	float	14-Oct-09	589069.6	5877433.0	506333	Cross cut	grab gravel size waste pile material.fol arg +/- qtz gravel +/- cubic py			0.2	441	<u> </u>				
189412	float	14-Oct-09	589069.6	5877433.0	506333	Cross cut	grab QV float on waste pile @ same loc as 189411. 1% py		15	0.2	483					
189413	float	14-Oct-09	588870	5878307	506333	Cohen	At Cohen. Orange weath QV float shows some fresh galena. Estimate ~20% sulphides. VG located at same location		>1000		149	3.48	0.101	164	4.78	5.39 % Pb
189414	float	14-Oct-09	588877.5	5878315.2	506333	Cohen	orange weather QV		610	2.8	79					
189415	float	14-Oct-09	588890.7	5878327.6	506333	Cohen	orange weathered QV with dk orangey brn fractured face		>1000	0.9	673	9.85	0.287			
189416	float	14-Oct-09	588900.6	5878336.7	506333	Cohen	orange weath honeycombed QV at back of original and recorded lower adit?		>1000	2.8	151	32.2*	0.939*			
189417	float	14-Oct-09	588908	5878365	506333	Cohen	QV float with blotchy brn weathered oxides in white bullqtz at head of open cut to old adit	t	190	<0.2	469					
189418	grab	14-Oct-09	588913	5878370	506333	Cohen	silicified gy fg qtzite with 1% diss-cubic py + QS. At QV blowout area within opencut/adit		30	<0.2	110					
189419	grab	14-Oct-09	588948.7	5878418.9	506333	Cohen	QV @ most northerly Cohen adit. Fe ox on margin & orange weathered overal Cut fg folliated gy qtzite→phyllitic rx 189419 from base at back wall	QV 202\78 ~12-14" wide.	25	0.2	2375					
189420	grab	14-Oct-09	588947.5	5878416.9	506333	Cohen	QV @ most northerly Cohen adit. Fe ox on margin & orange weathered overall. Cut fg folliated gy qtzite→phyllitic rx 189420 at head ~ 6' S of 189419 along 202°	QV 202\78 ~12-14" wide.	40	0.2	1541					
189421	float	15-Oct-09	588599.9	5877988.5	506333	Reid Waste	Grab Fe ox (orange-purple) QV from Reid waste pile. Near most westerly end at top		360	0.2	3689					
189422	float	15-Oct-09	588600.5	5877990.7	506333	Reid Waste	Grab highly fol blk argillite with ~10% cubic py < 3mm sq. loc ~ 3m west of 189421		15	<0.2	656					
189423	float	15-Oct-09	588584.3	5877996.0	506333	Reid Waste	Grab of gravel to sm fist size qtzites & qtz likely from Reid adit stockpile? ~ 5m x 4m with posts nailed sideways. Historical screening location?		30	<0.2	735					
189424	float	15-Oct-09	588614.5	5877996.5	506333	Reid Waste	Grab qtz is ~ 5% Fe ox from N side Reid waste pile. Majority of surrounding material is dk gy fg qtzites + argillites		10	0.2	327					
189425	float	15-Oct-09	588612.0	5877989.8	506333	Reid Waste	Grab <1" crush QV & qtzite at top of Reid waste pile behind blacksmith shop		20	<0.2	2075					
189426	float	15-Oct-09	588611.5	5877978.7	506333	Reid Waste	Grab QV from top of waste pile in mix of mostly qtz crush <1" sample has ~ 10% Fe ox + rare fresh py		95	0.3	4551					
189427	grab	15-Oct-09	587630.0	5876933.6	506333	72F Rd	Grab QV @ 72f rd near Perkins gulch. Orange weathered QV 6" wide. Blotchy Fe ox on margins. In highly folliated vfg interbedded qtzite + argillite	QV 254/76 NNW, cleavage 021/30SE	10	0.3	227					
189428	grab	15-Oct-09	587630.0	5876933.6	506333	72F Rd	vf interbed to fine lam gy fg qtzite + arg. ~5% cubic py nodules + vfg mica or sulphides. Likely micaceous		15	<0.2	555					
189429	grab	15-Oct-09	587602.9	5880330.3	506328	Nugget Patch	>6" QV with ~5% py cutting siliceous "watery looking" rock unit - not limestone	· ·	10	0.2	78					
189015	channel		586600	5880308	506325	FE1	2m channel. 0-2 m. light-med gy fg micaceous qtzite. Apparent irregular spotty silification. Some iron weathering but no apparent mineralization. Approx location. Trenched across FSR		5	<0.2	368					

			LITM Coo	ordinates					Au	Ag	Mn	Au	Au	Ag	Ag	OTHER
Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement		ppm		(g/t)	(oz/t)			JIIILK
189016	channel	272	586604	5880308	506325	FE1	3m channel. 2m-5m. Similar to 189015 except finer grained to light gy to kakki grn siltstone. Rare apparent dolomite porphoblastic in small zones. 4-5m interval is sericitic & very rusty but trace mineralization (may be fault). Approx location. Trenched across FSR	model of the	5	<0.2	196	(3'-7	(5-2-7)	(3. 7	()	
189017	chip		586606	5880307	506325	FE1	chip sampling over 1m x 1/2m exposure of vein & highly silicified qtzite. 5-6m interval irregular exposure of QV. Blotchy iron weathering & black manganese staining. Approx location. Trenched across FSR		<5	<0.2	491					
189018	soil		586805	5879897	506325	FE2	depth from top of trench to sample is 1m. Clayey soil. Kacki greenish/grey/brown soil with well sorted fine gravels. Gravel typically > 1/2 cm diameter, with rare pockets of (same size) andesite. Soil sample located under 2 large flattened cobbles inside of trench.		15	<0.2	287					
189019	soil		586805	5879897	506325	FE2	same description as 189018 except 1/2m from top of trench		5	<0.2	337					1
189020	grab		586800	5879896	506325	FE2	grab @ 4.5m from picket. Fg dk gy very micaceous siltstone. Bleached siltstone area caught my eye. Blotchy <2mm blotches typically <1mm disseninations of sulphides <3% in bleached zone dark colored sulphides.		<5	<0.2	101					
189021	channel		586799	5879896	506325	FE2	channel 4-6m from picket. Silicified & micaceous med-dk gy siltstone - sandstone		<5	<0.2	347					<u> </u>
189022	channel		586797	5879895	506325	FE2	channel 6-11m from picket. 6.5m = cleavage 346/40. bleached & silicified, finely laminated silt >>sandstone. Light to dk gy. Minor iron weathering on fractures.	cleavage 346/40	5	<0.2	258					
189023	grab		586795	5879894	506325	FE2	grab 10m from picket. Bleached siltstone.> 3% diss. Sulphides. Micascious		<5	<0.2	80					I
189024	grab		586795	5879894	506325	FE2	grab 10m from picket. Same description as 189022. except qv of unknown orientation approx. 13.5m from picket. Qv appears barren,milky white >3 inches wide (?)		<5	<0.2	332					
189025	channel		586789	5879893	506325	FE2	channel 15-19m from picket. Same as last description 189022 except bleaching & silicification more common.		5	<0.2	402					<u> </u>
189026	channel		586785	5879892	506325	FE2	channel 19-23 m from picket. Same as last description 189022. except contains E/W, south dipping vein 4 inch wide rusty. General azimuth 098/60S.	vein 098/60S	<5	<0.2	382					
189027	grab		586781	5879891	506325	FE2	grab. Trace sulphides, rusted fractures, micascious, on edges. Azimuth 098/60S. Cosalite!!!! Note: from 4.5 - 22m bleaching & silification increases	vein 098/60S	<5	<0.2	200					

^{*} metallic assay based on 120g

11.0 CONCLUSIONS and RECOMMENDATIONS

The author has concluded the following based on the presented technical data, field work and field notes:

- Overburden is commonly less than 1m thick at the areas which were trenched.
- Trenching showed that highly anomalous conductive signatures from previous self potential geophysics correlated with fault zones.
- Fault zones *appear* to have heightened values of Manganese. Worth noting is sample 189377, from a fault zone of Trench G, which contained 1.32% manganese.
- The most apparently significant fault zones were encountered at Trench G and Trench H.
 - o Near the east part of Trench G there is an 8m wide fault striking NE/SW and another approximately 10-13m wide fault of unknown orientation located at the west end of the trench. Comparing the 8m wide fault to the regional topography suggests this may be part of a large regional structure, but further detailed followup on the ground is required.
 - o Trench H also has two major fault zones, one of which has an apparent width of 13 meters, but no specific orientation or correlation with other trenches can be confirmed at present.
- folding structures were encountered in trenches and outcrops and paralleled the regional Lightening Creek Anticlinorium
- A set of veins can be traced intermittently on surface for about 1800m as of the date of this report.
 - O These set of veins are intermittently gold bearing +/- silver and lead with high grade zones known, to date, to occur at the *Perkins, Cohen* and *Standard* shaft areas.
 - o These veins appear to be the result of the infilling of tension fractures related to regional folding and generally follow joint structures at right angles to the fold axes.
- Common jointing (tension fractures) dip steeply north to north west and are host to the majority of vein structures (0.3<2.0 m wide)
- Bedding orientation varied slightly but generally were shallow dipping to the east
- Stock piles of gold bearing quartz exist on the property in small quantity (for example, about 11 tons at the Perkins roasting site and perhaps 4 tons at the Standard Shaft)
- Samples of quartz vein float found adjacent to opencuts and MinFile showings are gold, silver and lead bearing. The most significant metallic assay was sample 189395 which assayed 109g/t gold and originated from the Perkins or Beedy set of veins at the Perkins showing.
- A sample of phyllitic rock containing massive to course cubic pyrite assayed 8.95g/t gold. This sample came from the Long Cross Cut waste pile and is suggestive that gold may be found in the country rock on Mount Burns, not just the quartz veins. The sample is assumed to originate from a location within the

- 2600+ foot long drift and followup along the surface trace of the drift is highly recommended.
- In addition to the above mentioned recommendations, the author proposes the following:
 - o Plot all known outcrops with lithology and structural measurements in GIS or CAD software and add new field data as it is gathered in an effort to upgrade the property geology and structural database for future interpretation, printing and reporting.
 - o Conduct soil and/or biogeochemical surveys on the ground between the Long Cross Cut adit and the summit of Mount Burns.
 - o Extend an SP geophysical survey to encompass the geochemical survey
 - o Consider conducting a small IP geophysical survey between Perkins adit and the Grassroot Tunnel opencut (Galena Vein) to provide pseudosection sand /or 3d images of conductive bodies in the area.
 - o Conduct an addition 1000m trenching in the area as followup to the 2009 trenching and early 2010 field work
 - o Establish several survey control points on the property and survey known workings in detail.
 - o Survey and conduct more test samples, perhaps on a gridded layout, of crushed rocks located near the Perkins showing
 - O Consider planning a surface drill program to follow up on historical drill results and to test the downward and lateral extensions of known showings and mineralization. 8 to 10 pads are recommended to start, with possibly 2 pads on each showing. It is proposed that there would be no new disturbance to these areas. All drill hole locations and orientations should be surveyed.

12.0 REFERENCES

Ball, C.W. (1979). Geological Report: Gold Showings: Monty Claim Groups: Perkins Creek – Stanley Area. Assessment Report #8039 - Part 2 of 2.

Borovic, I. (1981). Progress Report on the 1980-81 Exploration Program of the Beau Group of Mineral Claims, Burns Mtn. Cariboo M.D. Assessment Report #8820

Borovic, I. (1988). Report on the Mineral Exploration of the Mt. Nelson Project. Assessment Report #18011.

Bowman, A. (1888). Report on the Geology of the Mining District of Cariboo, British Columbia. Geological and Natural History Survey of Canada.

Burr, S.V. (1982). A Guide to Prospecting by the Self-Potential Method. Ontario Geological Survey Miscellaneous Paper 99: pp. 4, 10-11.

De Carle, R.J. (1987). Report on Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey: Barkerville Property, Mount Nelson Area. Assessment Report #15947.

Davies, B. (2006). Foster East and Perkins Gulch: Reconnaissance. Assessment Report for Gemco Minerals Inc.

Davies, B. (2006). Mount Burns Claim Group: Foster East Trenching Program (first phase). Assessment Report for Gemco Minerals Inc.

Galloway, J.D. (1932). Lode Gold Deposits of British Columbia. British Columbia Department of Mines Bulletin 1.

Hedley, M.S. and Watson K. (1945). Part III: Lode-gold Deposits, Central-southern British Columbia. British Columbia Geological Survey Bulletin 20

Holland, S.S. (1948). Report on the Stanley Area: Cariboo Mining Division. British Columbia Department of Mines Bulletin 26.

Holland, S.S. (1950). Placer Gold Production of British Columbia. Ministry of Energy, Mines and Petroleum Resources Bulletin 28.

Johnston, W. and Uglow, W. (1926). Placer and Vein Gold Deposits of Barkerville, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 149.

Justason, A. (2006). Self Potential Geophysical Surveys on the Mount Burns Claim Group. Assessment Report for Gemco Minerals Inc.

Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge University Press, United Kingdom: pp. 209-212.

Mason, E. and Guiguet, M (1979). Report on the Burns Mountain Property: Beau Group, Cariboo Mining Division.

Olfert, E.G. (1984). Report on a Geochemical and Geological Survey of the Devils Canyon Claim Group. Assessment Report #13252

Plenderleith, D. (1983). Preliminary Geophysical Report: Ground Magnetometer Survey: Foster Group of Mineral Claims. Assessment Report #11886.

Reid, R.E. (2005). Mount Burns Claim Group 2004 Exploration Program: Target Selection and Geochemical Surveys. Assessment Report # 27684

Reid, R. and Justason, A. (2006). Summary of Mineral Exploration Activities at the Mount Burns Claim Group. NI43-101 Compliant Technical Report

Rhys, D. and Ross, K. (2001). Evaluation of the Geology and Exploration Potential of the Bonanza Ledge Zone, and Adjacent Areas Between Wells and Barkerville, East Central British Columbia. Panterra Geoservices Inc., Report for International Wayside Gold Mines Ltd.

Struik, L.C. (1988). Structural Geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421.

Internal or Unpublished Reports

Hall, R.D. (2000). Burns Mountain Gold Property near Wells B.C. Internal Memo to Firstline Recovery Systems Inc.

Merrick D.W. (1998-2002). Catalogued notes, sketches, maps and progress reports.

13.0 SUMMER 2009 STATEMENT OF COSTS

For the period July 30, 2009 to October 16, 2009

Tenorex GeoServices (as invoiced: total 61 man days @ 181.99/day)	11,101.35
Truck rental (31.5 days @ \$50/day)	1575.00
Tenorex fuel costs	990.00

Equipment (TCH Consulting)

130 Hyundai Excavator (45hours @ \$140/hour)	6300.00
Pickup and saw	270.00
Fuel	178.00

Mob/demob of excavator 252.00

Geochemistry

EcoTech Lab (as invoiced for 297 rock samples, 2 soils)	10,186.43
Sample storage at EcoTech (pulps and rejects now returned to Gemco)	107.26
Van Kam Freightways shipping	494.21

Supplies (batteries, flagging tape, sample bags, markers, etc) 200.00

Technical report 2520.00

SUBTOTAL \$34,174.25

10% administration and contingencies 3417.43

TOTAL technical value available to use towards assessment**

\$37,591.68

***<u>important note</u>: **\$4030.09** of the \$8900.05 value relating to event number 4566552 was filed in error. The actual value filed should have been \$4896.96, not \$8900.05, as documented in the above supporting cost statement. The total original filing of the two related events was \$41,621.77; however, the actual cost as shown above is \$37,591.68. The author kindly requests that a reduction of work credits be applied to event 4566552 upon approval of this report. – Thank you

^{**}Any funds not applied to the work value is requested to be credited to Gemco Minerals Inc PAC

14.0 STATEMENT OF SOFTWARE USED

I, Angelique Justason, of Quesnel, British Columbia certify that the following is, to the best of my knowledge, a complete list of the software programs used in the support of the exploration and development of the Gemco Minerals Inc. tenures as well as in the preparation of the related report.

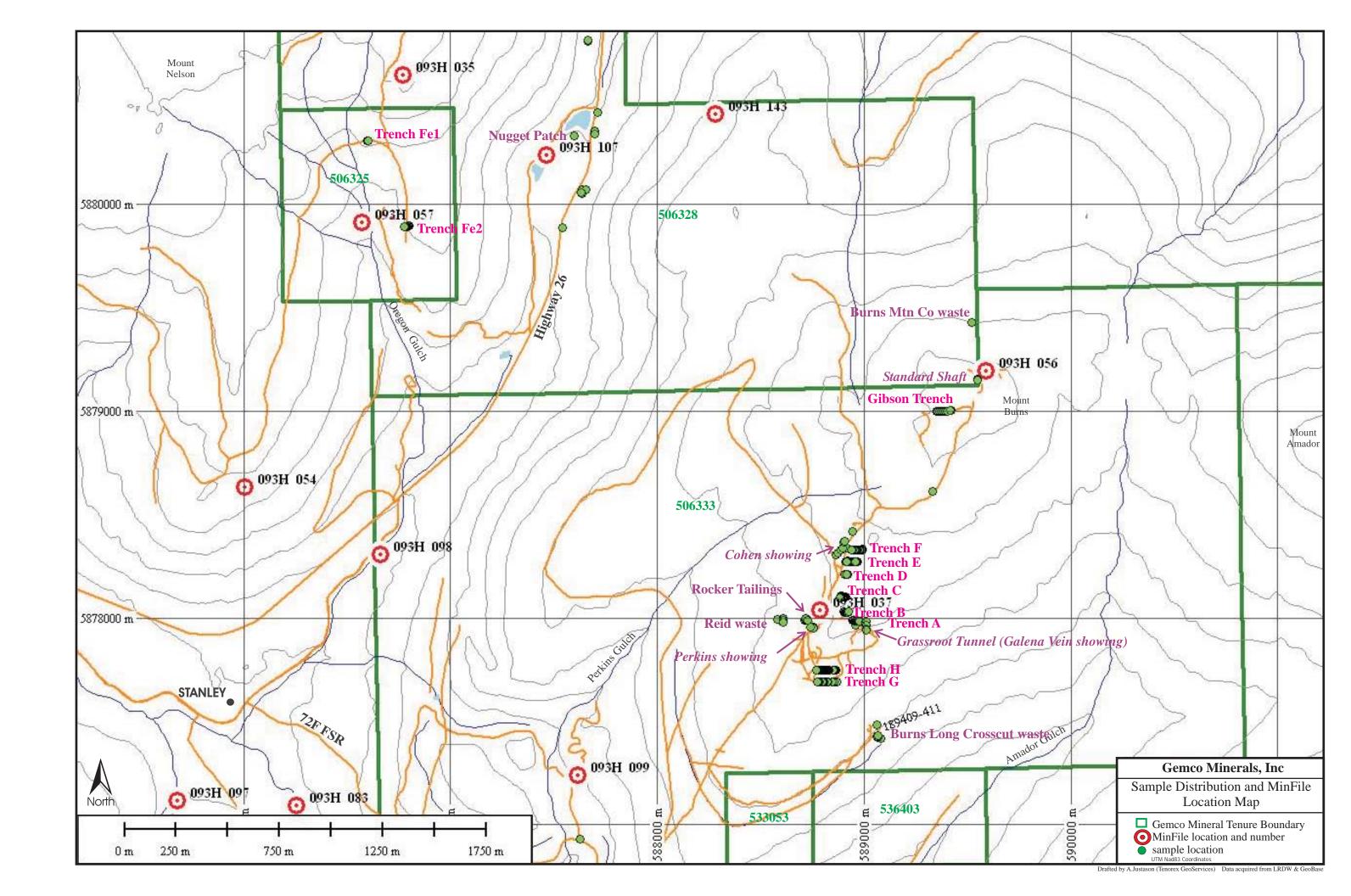
- Adobe Acrobat 6.0 and 9.0
- CorelDraw 10
- Global Mapper v10.02
- OziExplorer version 3.95.4q
- Internet Explorer
- MS Excel
- MS Word

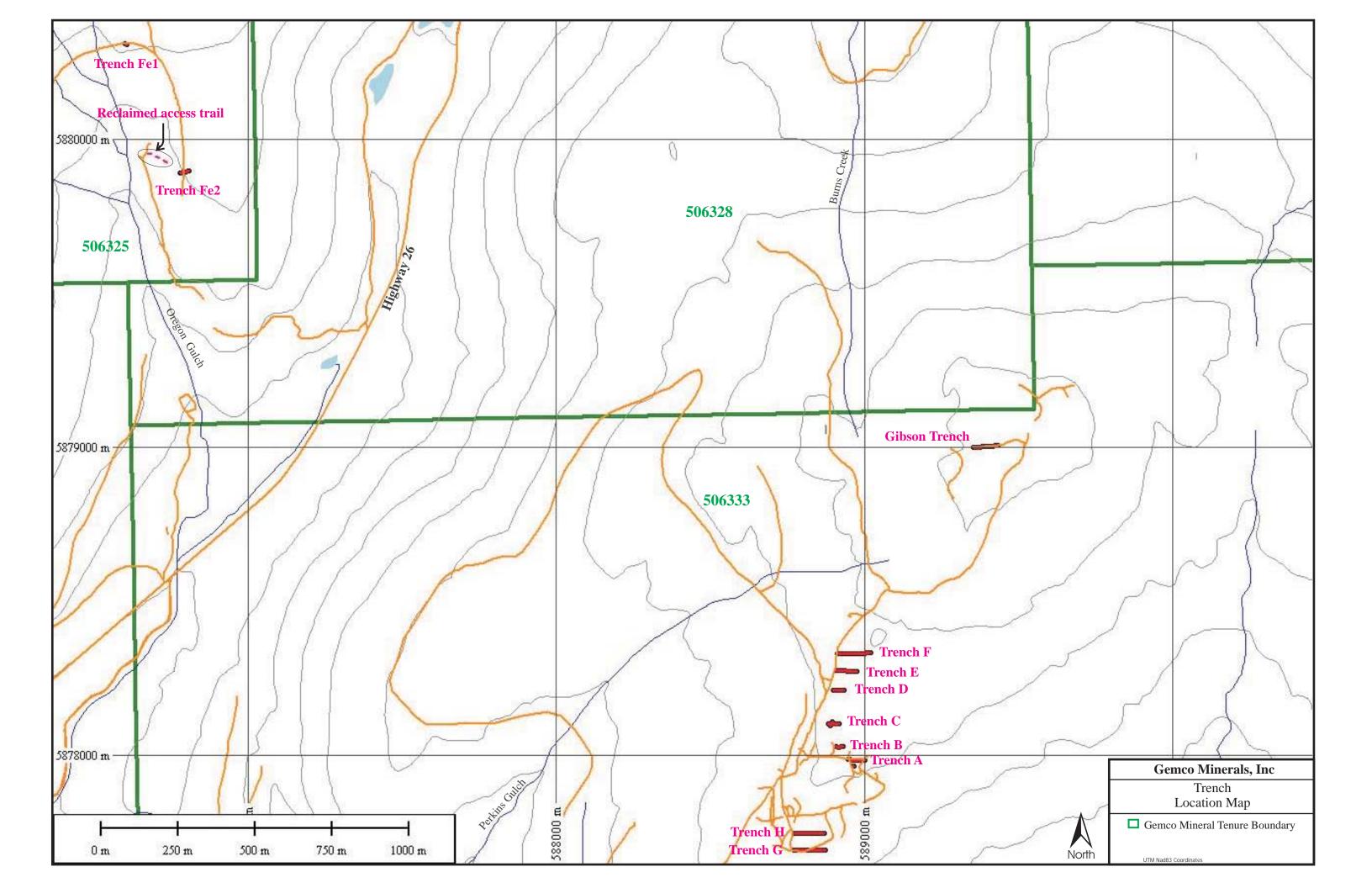
HHT

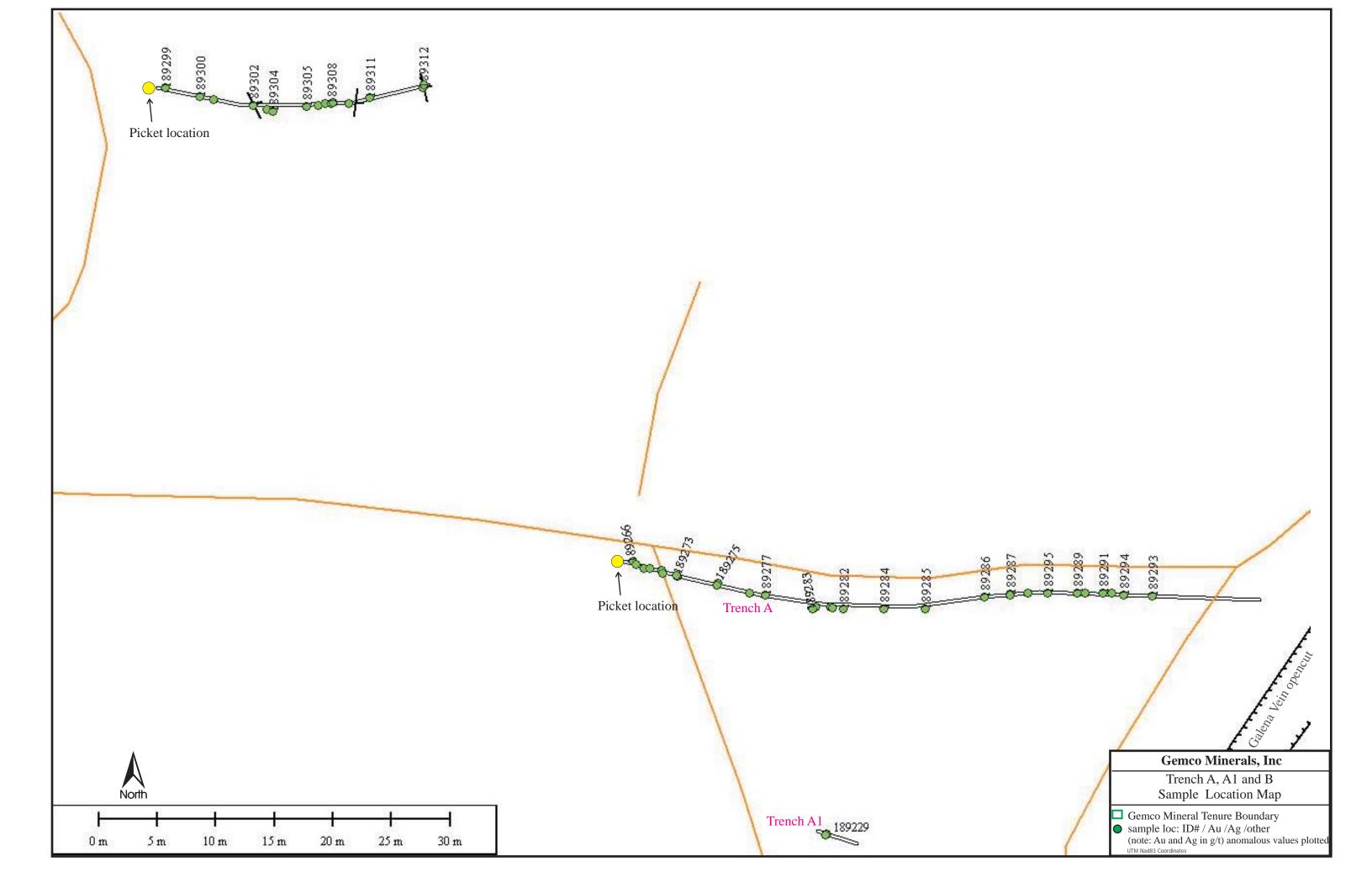
Angelique Justason

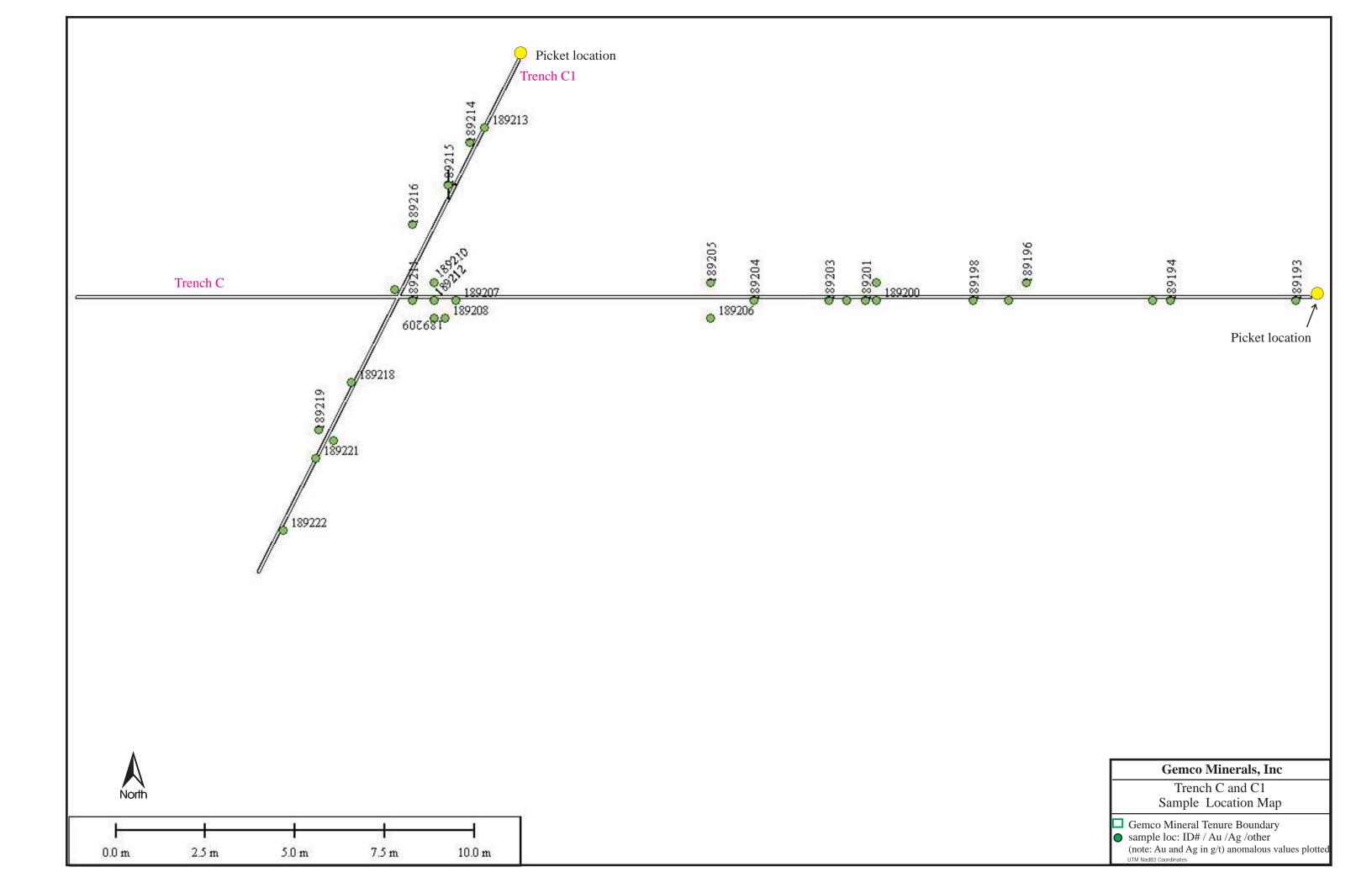
Signed,

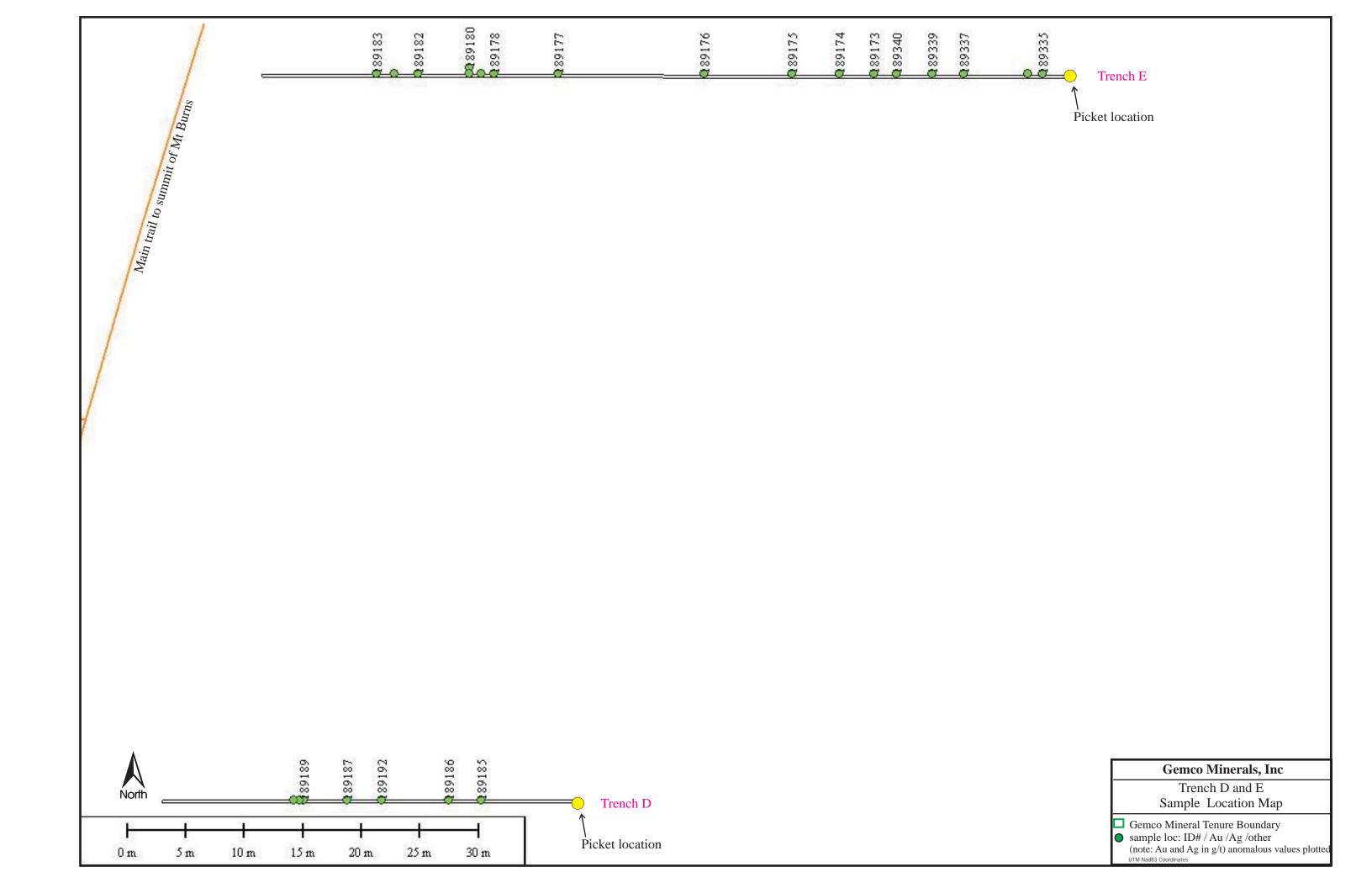
15.0 STATEMENT OF QUALIFICATIONS

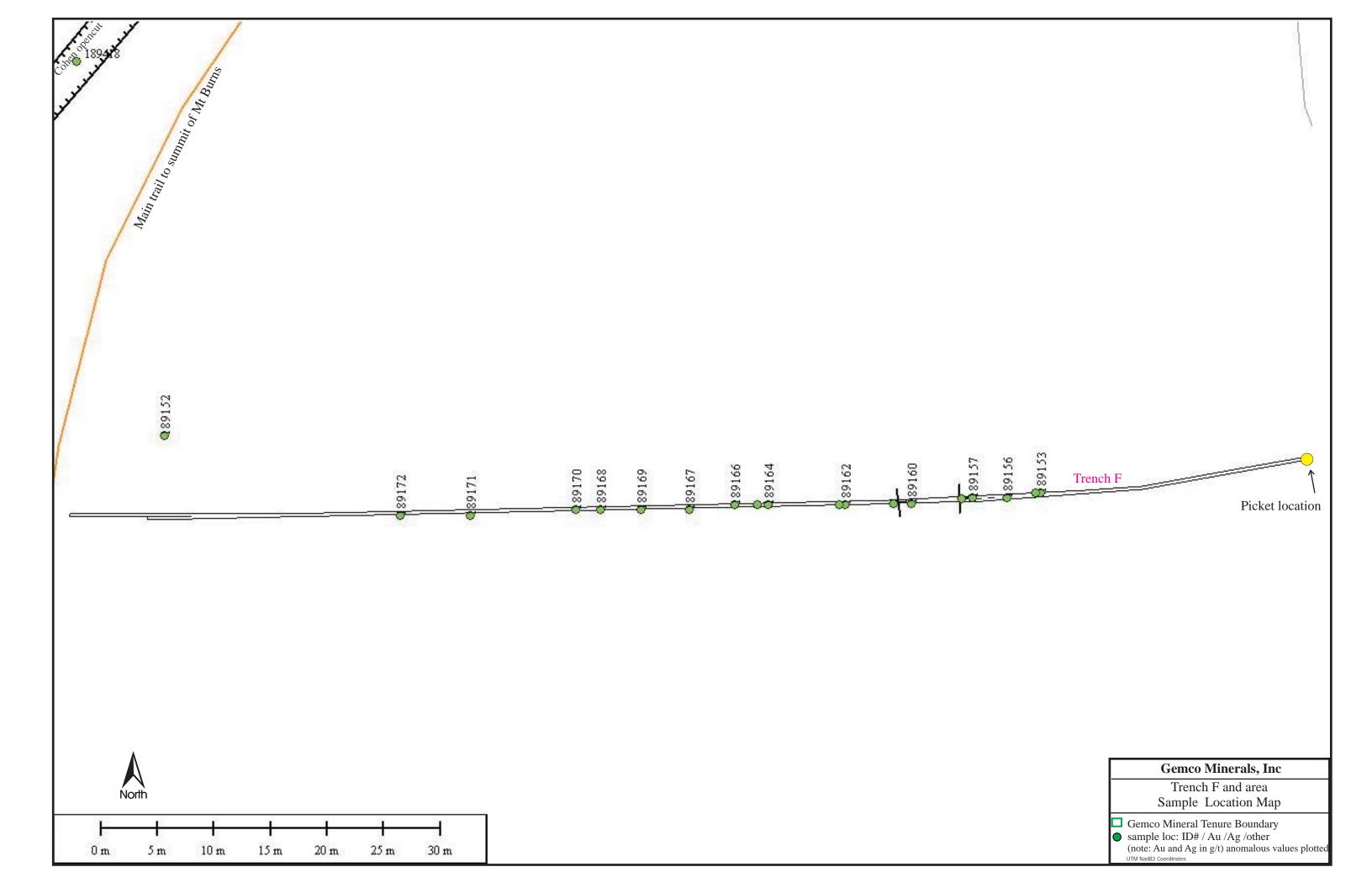

- I, Angelique Justason of Quesnel, British Columbia certify the following:
 - I am owner of Tenorex GeoServices, a Cariboo based mineral exploration support services company.
 - I personally conducted the mapping and sampling of trenches, rock exposures and historical workings which are the subject of this report
 - I am a member of the Geological Association of Canada and the Association for Mineral Exploration British Columbia.
 - I have attended geology courses at Camosun College and the University of Victoria.
 - I have been employed in the Cariboo Region as a geotechnican and mine surveyor for over 9 years and have held a supervisory position, in that capacity, for over 6 years.
 - I have a total of 4 seasons work experience with the BC Geological Survey and the Geological Survey of Canada.
 - I have been an avid prospector for over 18 years.
 - I have successfully completed and received certificates for the Advanced Prospecting Course (1992) and Petrology for Prospectors Course (1993).
 - I hold 25,000 common shares in the public company, Gemco Minerals Inc.

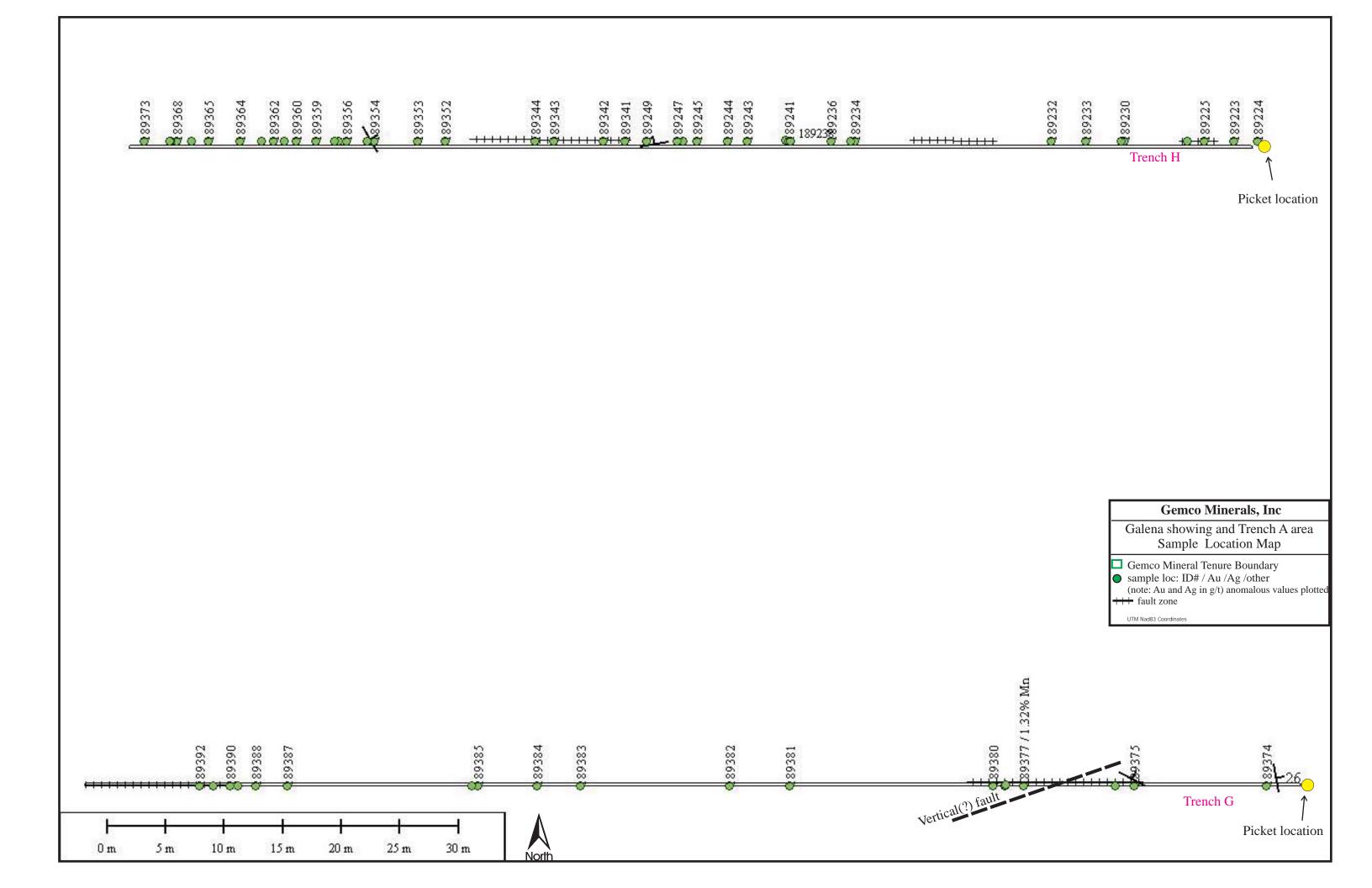

Signed,

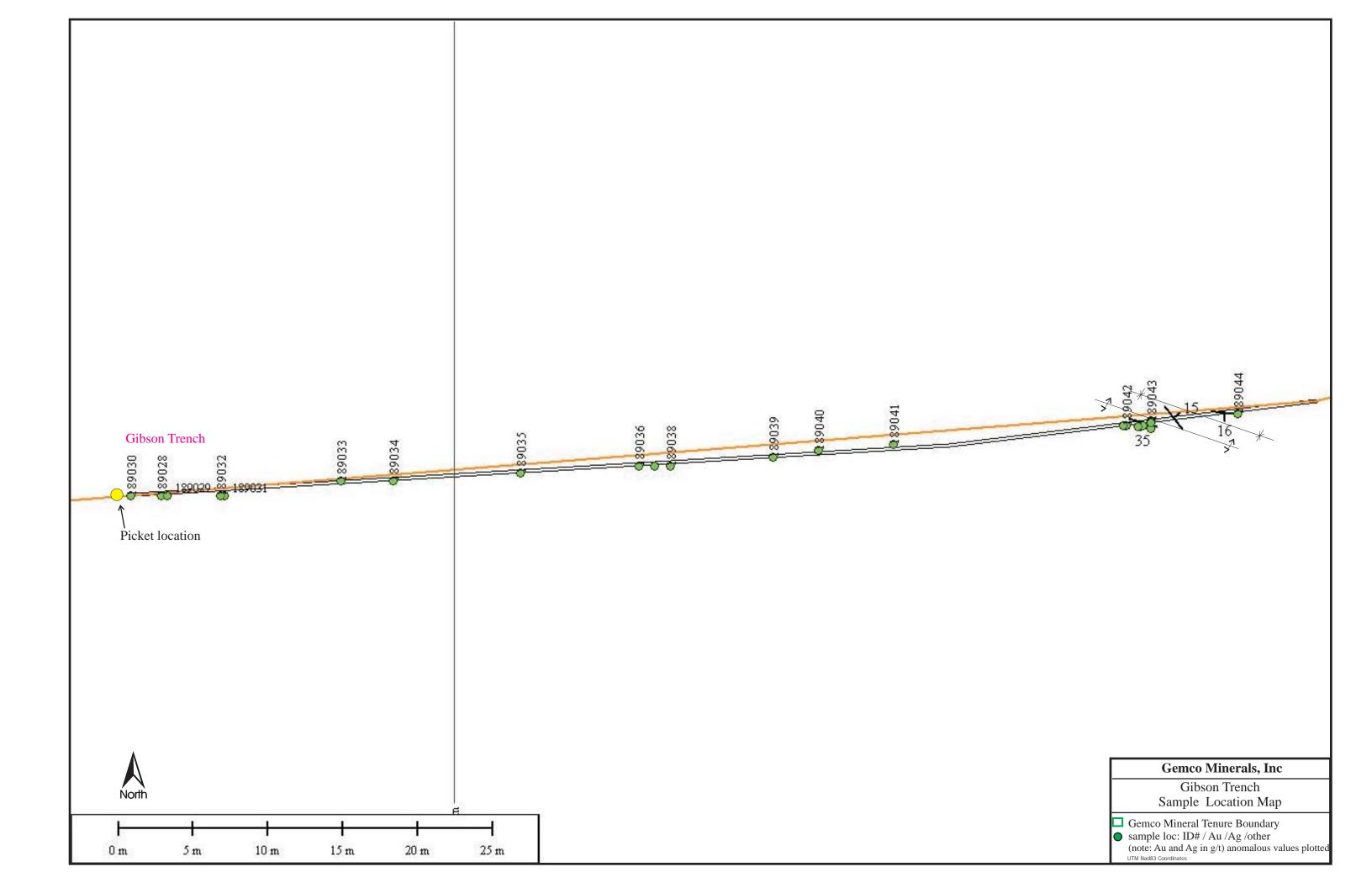

Angelique Justason March 15, 2010

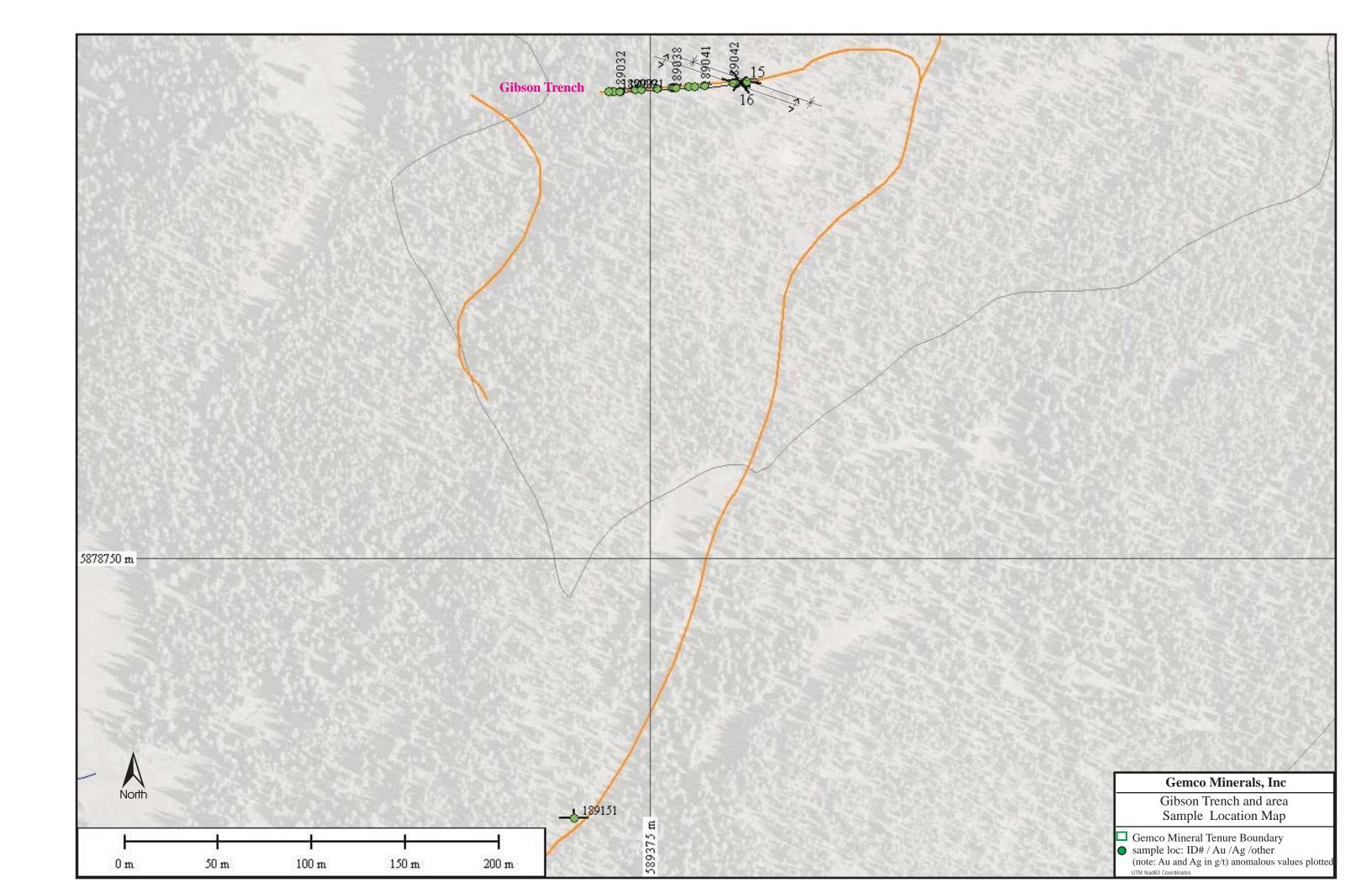

APPENDIX I

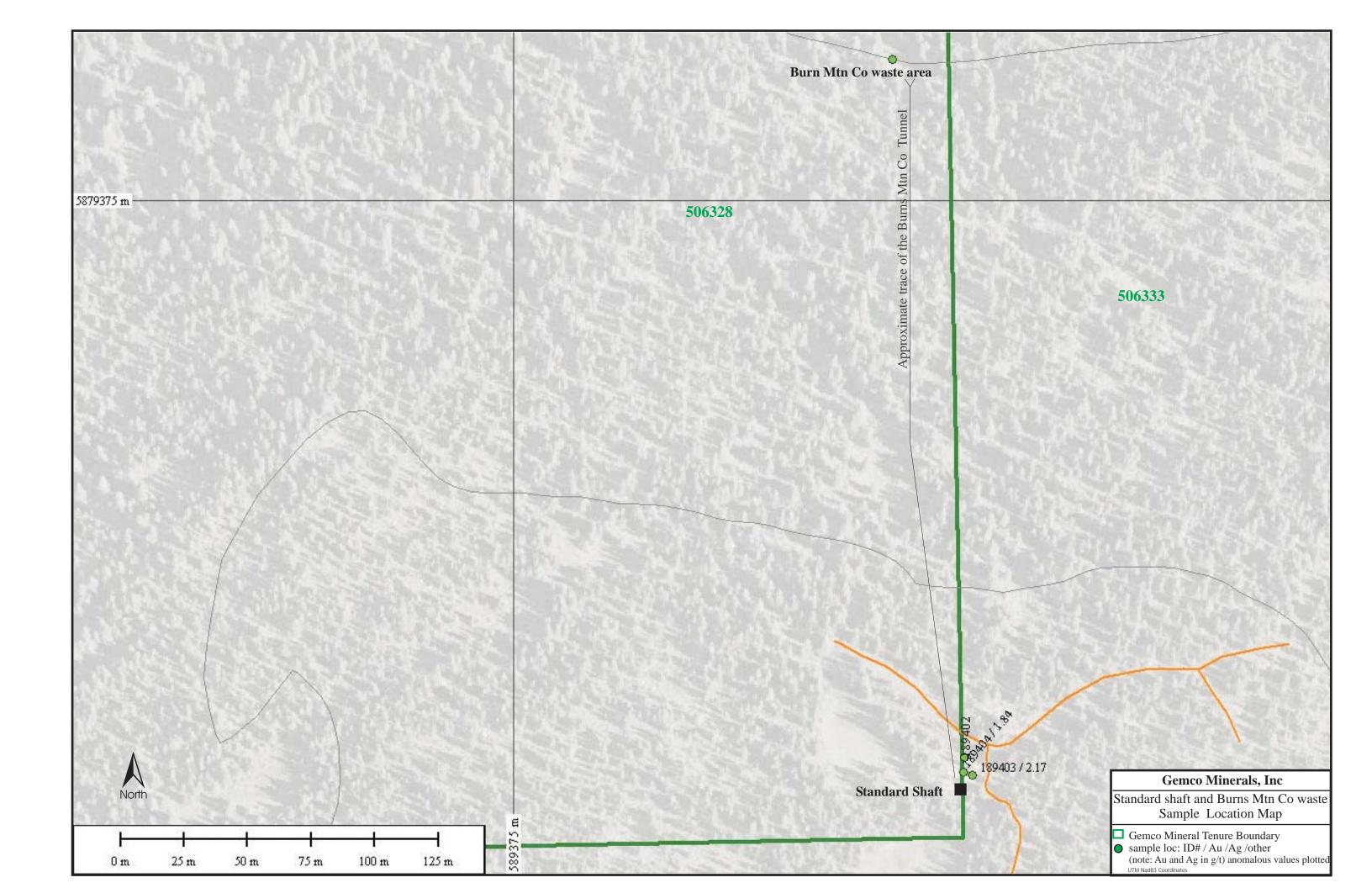

SAMPLE LOCATION MAPS

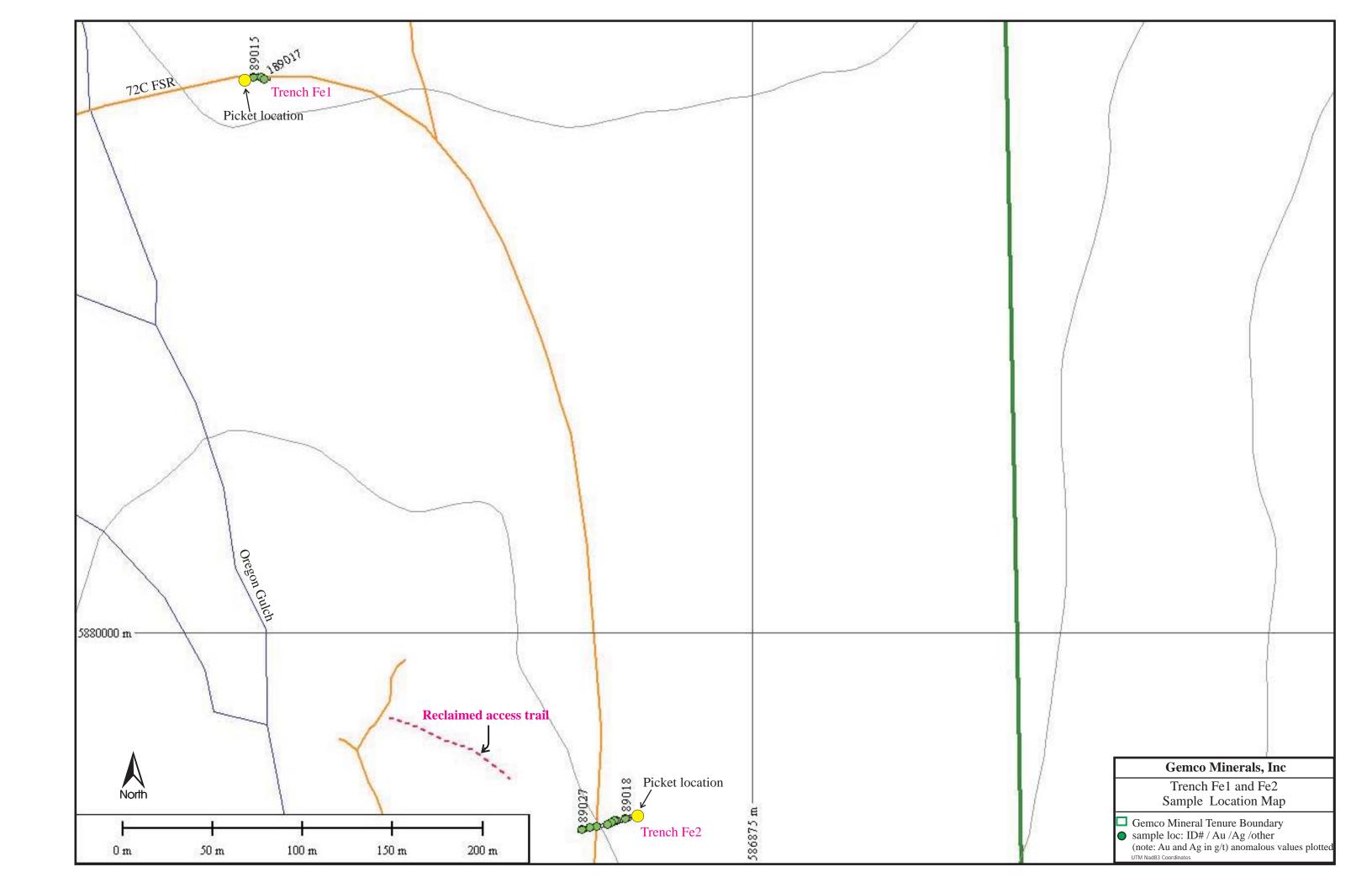


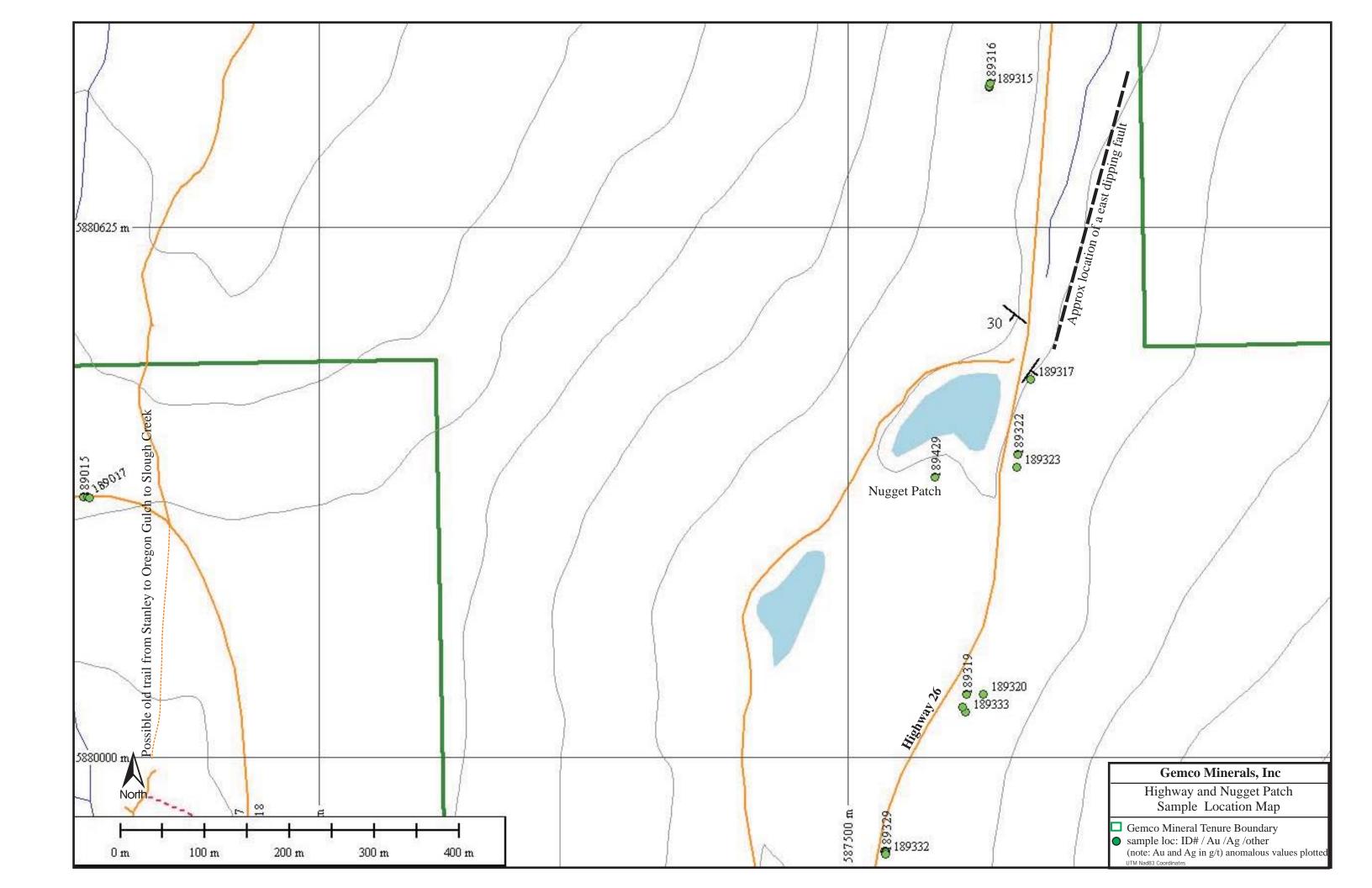


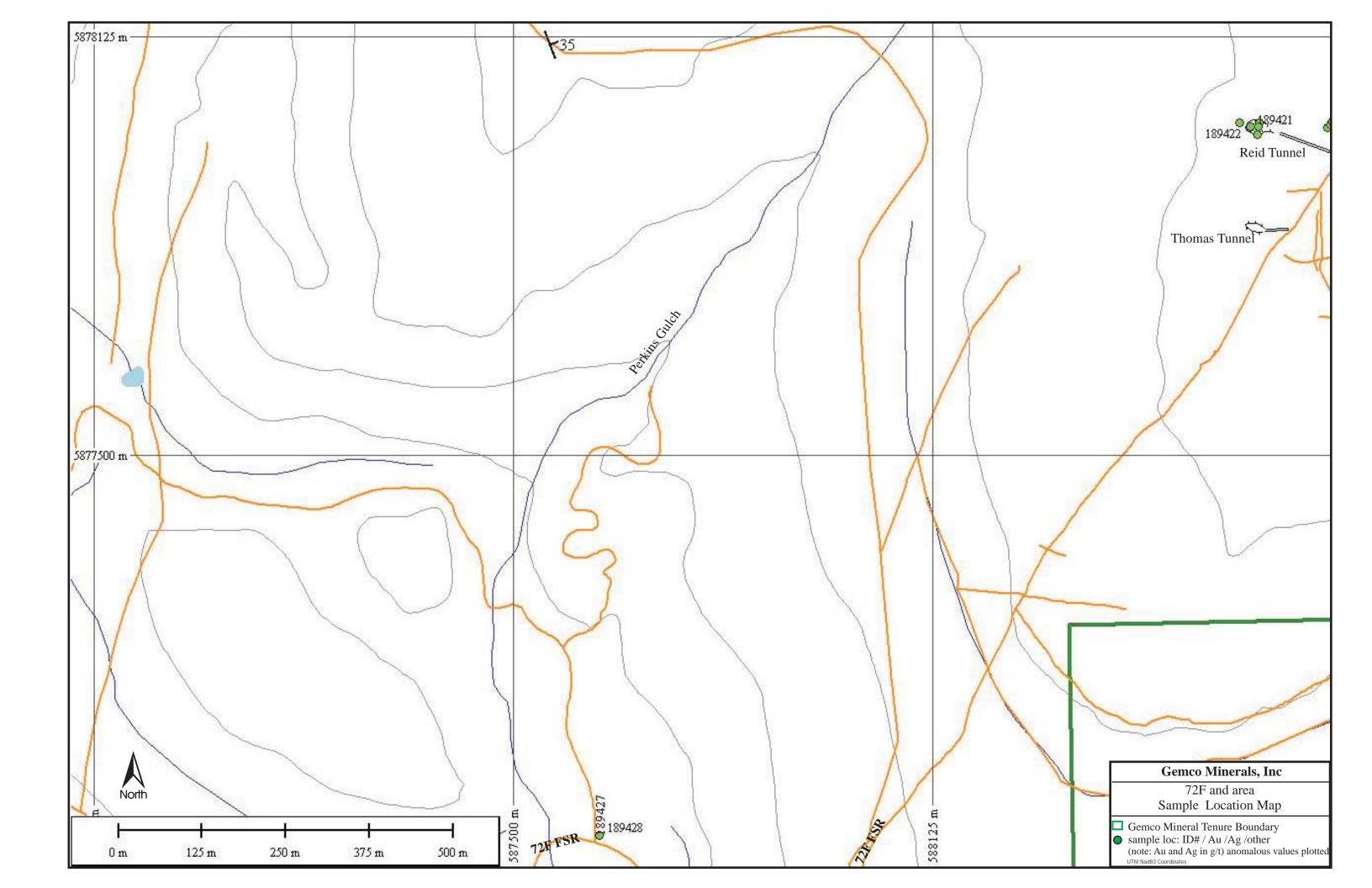


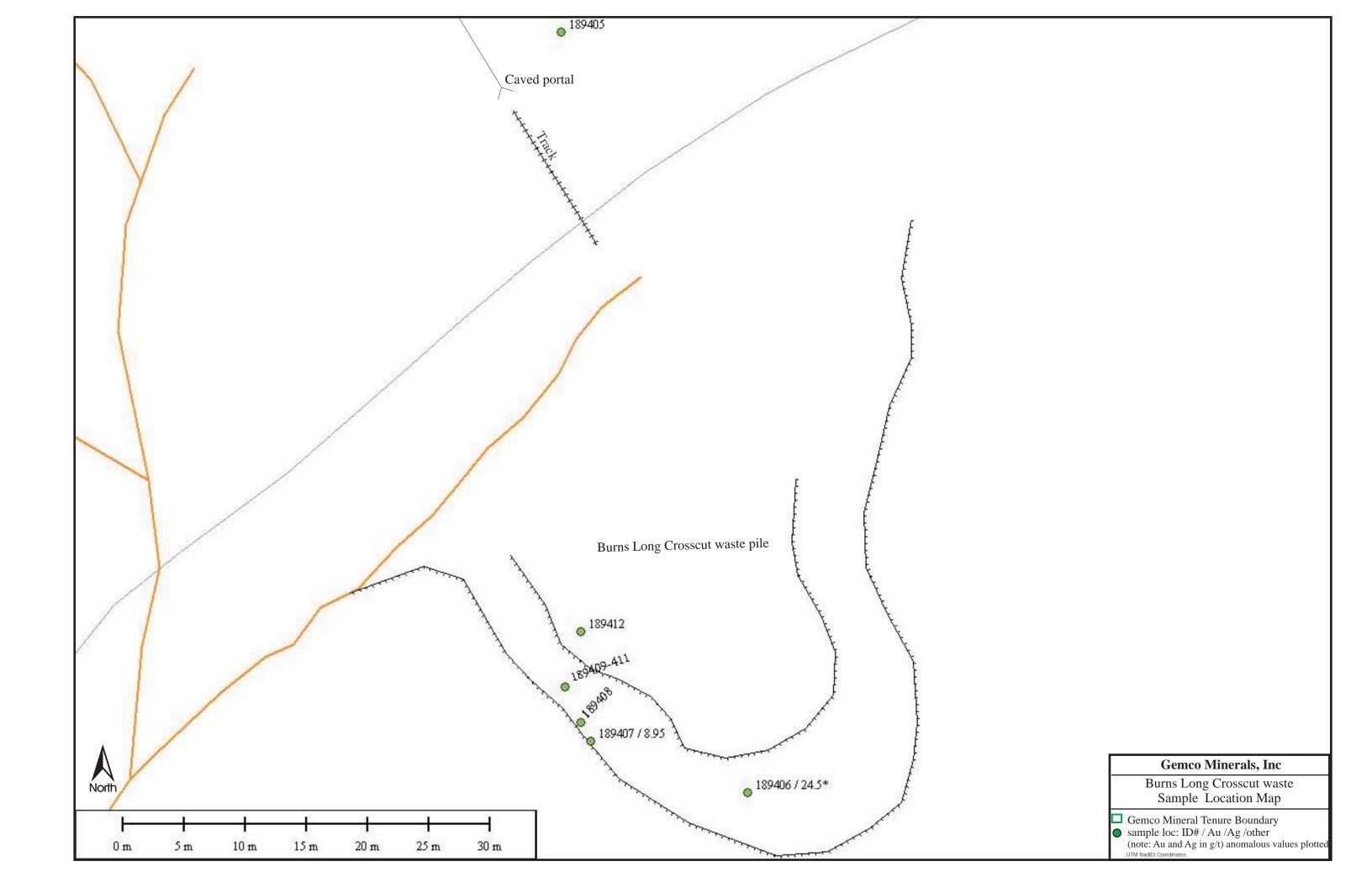


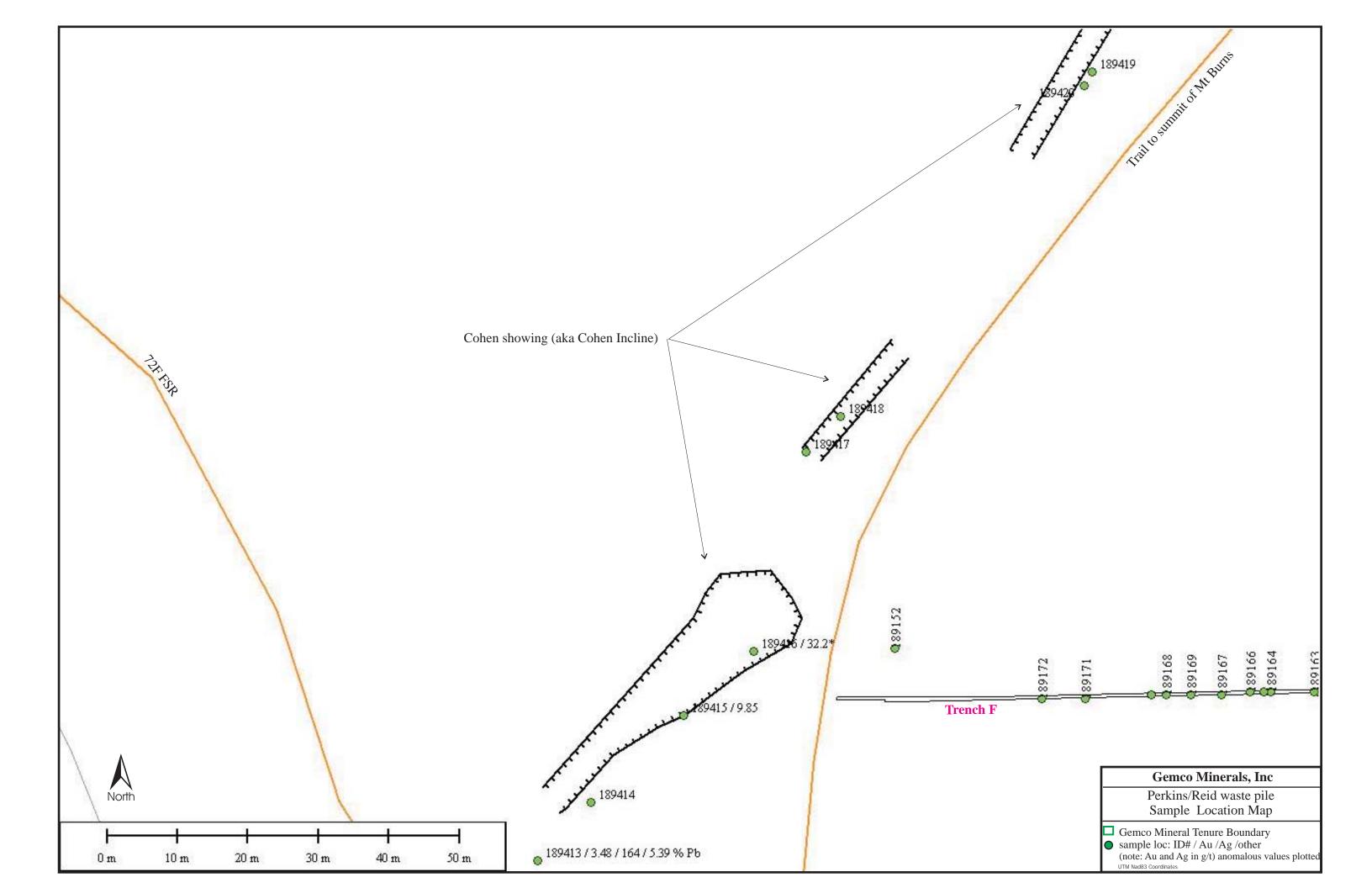


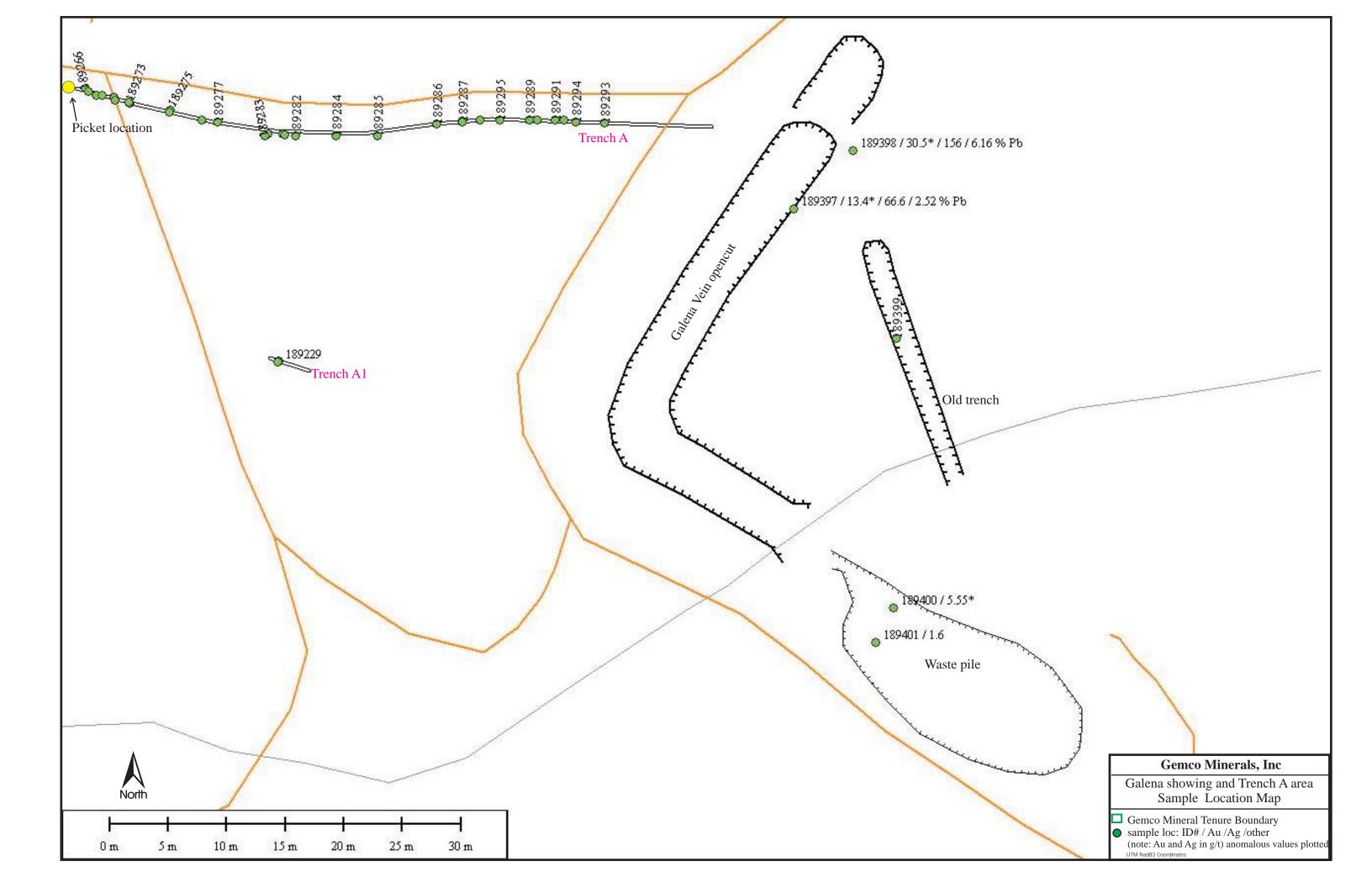


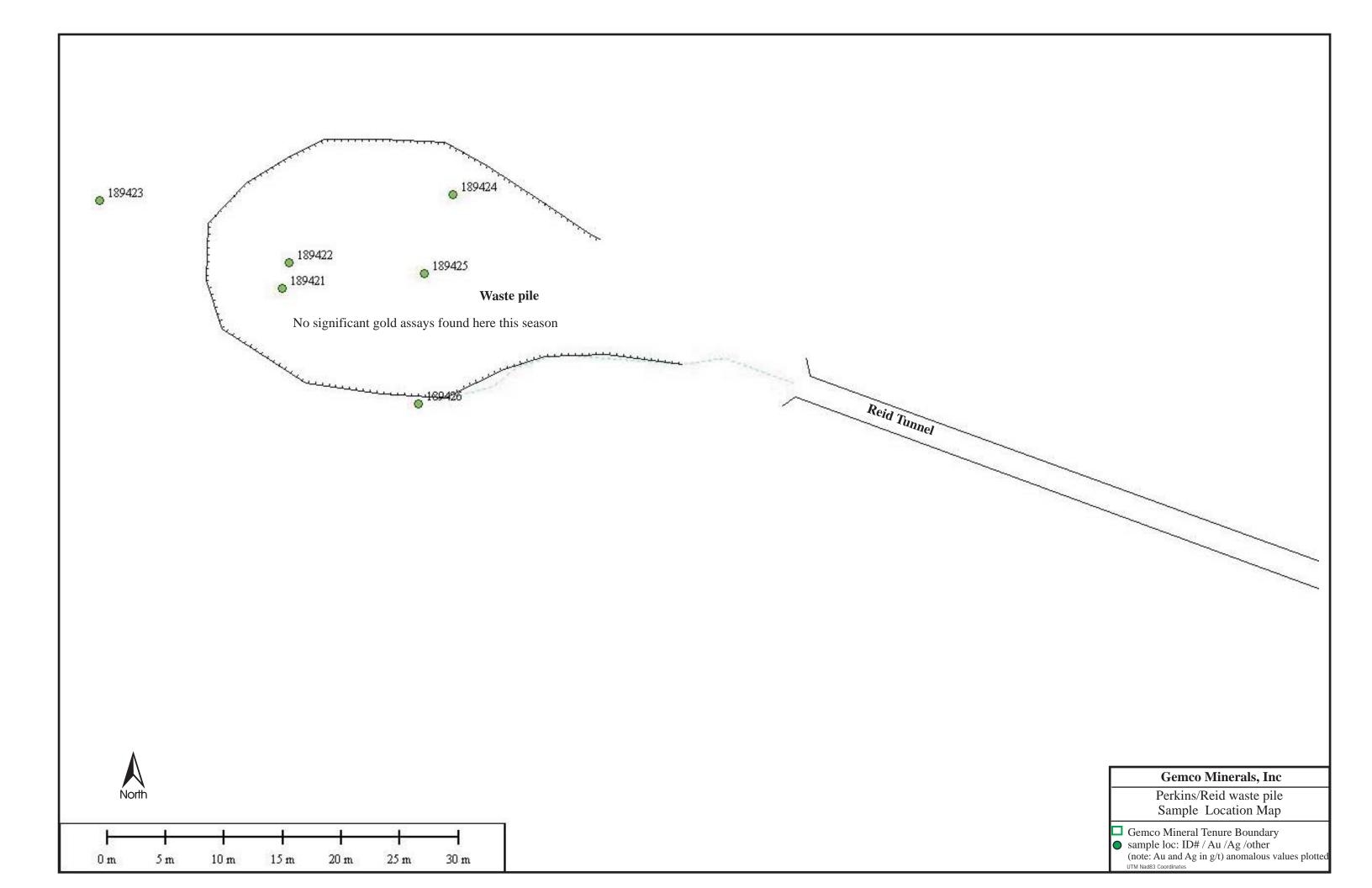


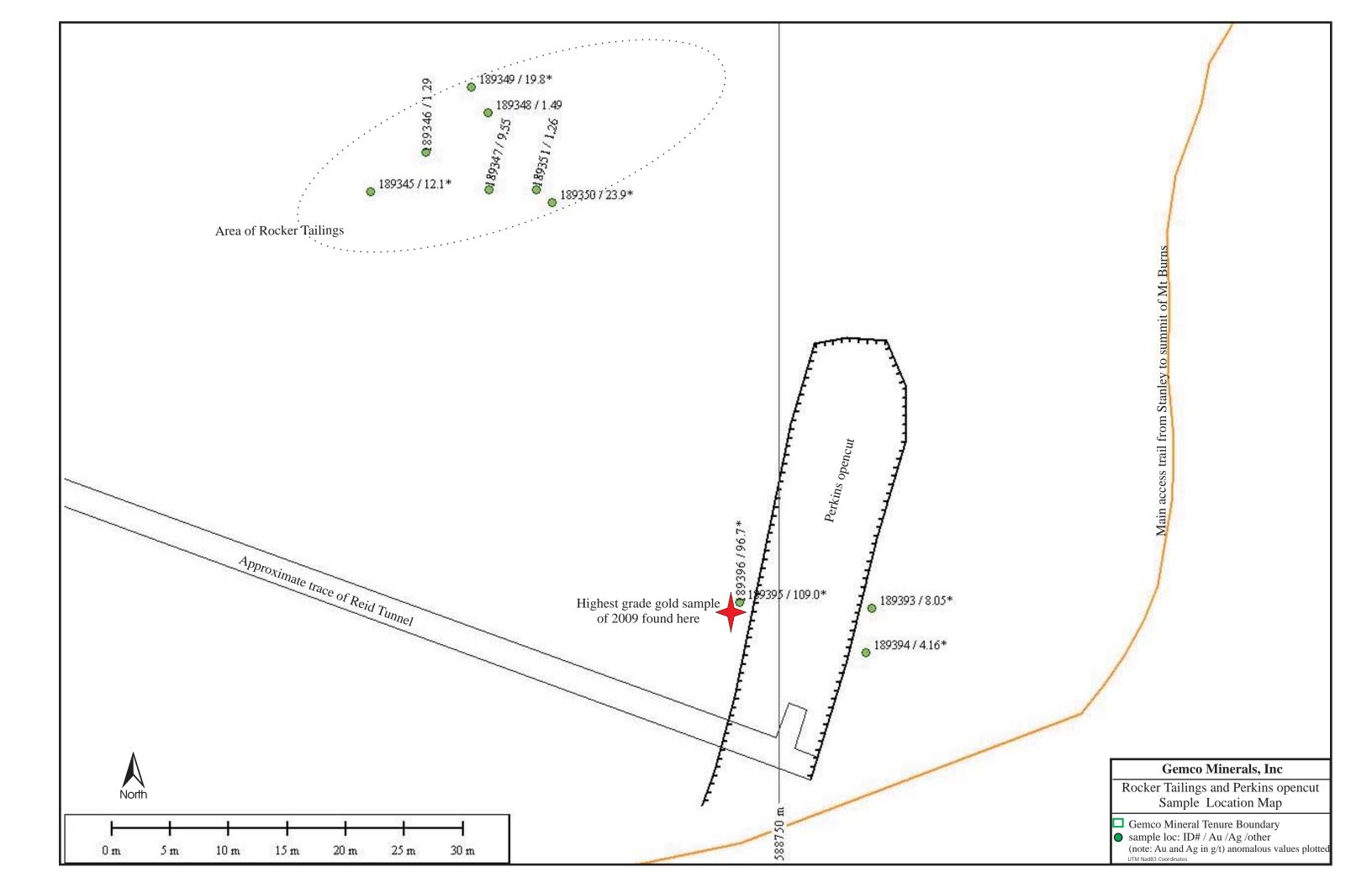












APPENDIX II

ASSAY CERTIFICATES

Stewart Group

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009- 0407

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

No. of samples received: 11 Sample Type: Rock **Project: Fosters 09** Submitted by: A. Justason

Values in ppm unless otherwise reported

1 E189015 5 <0.2 1.09 <5 25 <5 0.02 <1 7 90 15 2.42 10 0.65 26 82 0.03 17 200 20 <5 <0.0 4 <0.01 <10 7 <10 1 1 2 E189016 5 <0.2 1.29 5 25 <5 0.01 <1 7 95 21 2.98 10 0.67 196 2 0.03 18 190 18 <5 <0.0 4 <0.01 <10 8 <10 7 <10 1 1 4 1 51 11 0.90 <10 0.02 491 <1 0.03 14 140 8 <5 <0.0 2 <0.05 <0.01 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10 1 <10	Et #	. Tag#	Au(ppb) Ag Al %	As	Ва	Bi Ca s	6 Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
3 E189017	1	E189015	5	<0.2 1.00	<5	25	<5 0.0	2 <1	7	90	15	2.42	10	0.52	368	2	0.03	17	200	20	<5	<20	4	<0.01	<10	7	<10	1	56
3 E189017	2	E189016	5	<0.2 1.29	5	25	< 5 0.0	1 <1	7	95	21	2.98	10	0.67	196	2	0.03	18	190	18	<5	<20	4	< 0.01	<10	8	<10	2	62
## E189020	3	E189017	<5	<0.2 0.15	<5	10	<5 0.0	1 <1	4	157	11	0.90	<10	0.02	491	<1	0.03	14	140	8	<5	<20	2	< 0.01	<10	1		1	15
5 E189021 <5 <0.2 1.17 <5 25 <5 0.02 <1 10 105 18 2.90 10 0.68 347 <1 0.03 18 200 20 <5 <0 4 <0.01 <10 8 <10 1 6 E189022 5 <0.2 1.82 <5 20 <5 0.03 1 1 14 73 27 4.01 20 1.07 258 1 1 0.03 25 260 18 <5 <0 4 <0.01 <10 8 <10 1 7 E189023 <5 <0.2 1.23 <5 15 <5 0.01 <1 14 71 33 3.05 <10 0.74 80 <1 0.03 31 200 16 <5 <0 2 <0 0.03 16 50 20 2 <0.01 <10 8 <10 <1 8 E189024 <5 <0.2 1.01 <5 20 <5 0.02 <1 10 87 18 2.62 10 0.54 332 2 0.03 21 240 16 <5 <0 2 <0.01 <10 8 <10 1	4	E189020	<5	<0.2 1.91	<5	30	<5 0.0	2 1	10	69	28	4.22	<10	1.18	101	1	0.03	15	310	14	<5					12		<1	76
7 E189023	5	E189021	<5	<0.2 1.17	<5	25	<5 0.0	2 <1	10	105	18	2.90	10	0.68	347	<1	0.03	18	200	20	<5	<20						1	56
7 E189023	6	E189022	5	<0.2 1.82	<5	20	<5 0.0	3 1	14	73	27	4.01	20	1.07	258	1	0.03	25	260	18	<5	<20	4	<0.01	~10	11	-10	1	85
8 E189024	7	E189023	<5	<0.2 1.23	<5	15	<5 0.0	1 <1	14							<1					_							-1	63
9 E189025 5 <0.2 0.94 <5 20 <5 0.02 <1 7 101 14 2.51 10 0.45 402 <1 0.03 14 270 20 <5 <20 4 <0.01 <10 7 <10 1 1 10 E189026 <5 <0.2 0.65 <5 25 <5 0.01 <1 7 100 14 2.01 10 0.27 382 2 0.03 15 160 12 <5 <20 3 <0.01 <10 5 <10 1 1 11 E189027 <5 <0.2 0.05 <5 <5 <5 <5 <0.01 <1 7 100 14 2.01 10 0.27 382 2 0.03 15 160 12 <5 <20 3 <0.01 <10 5 <10 1 1 11 E189027 <5 <0.2 0.05 <5 <5 <5 <0.01 <1 7 100 14 2.01 10 0.27 382 2 0.03 15 160 12 <5 <20 3 <0.01 <10 5 <10 1 1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10	8	E189024	<5		<5	20			10																	_		1	53
10 E189026 <5 <0.2 0.65 <5 25 <5 0.01 <1 7 100 14 2.01 10 0.27 382 2 0.03 15 160 12 <5 <20 3 <0.01 <10 5 <10 1 11 E189027 <5 <0.2 0.05 <5 <5 <5 <0.01 <1 1 192 4 0.56 <10 0.01 200 <1 0.01 5 40 4 <5 <20 <1 <0.01 <10 1 <10 <1 11 E189026 12 E189015 1 E189026 1	9	E189025	5	< 0.2 0.94	<5	20	<5 0.0	2 <1	7												_					•		1	49
QC DATA: Repeat: 1 E189015 <5 <0.2 0.97 <5 20 <5 0.02 <1 7 90 14 2.31 10 0.50 350 2 0.03 16 190 18 <5 <20 4 <0.01 <10 7 <10 1 10 1 10 1 10 1 10 1 10 1	10	E189026	<5	<0.2 0.65	<5	25	<5 0.0	1 <1	7	100	14														-	•		1	40
Repeat: 1 E189015 <5 <0.2 0.97 <5 20 <5 0.02 <1 7 90 14 2.31 10 0.50 350 2 0.03 16 190 18 <5 <0.04 <0.01 <10 7 <10 1 10 E189026 1 E189026 <5 <0.2 0.96 <5 25 <5 0.01 <1 7 100 13 2.01 10 0.50 350 2 0.03 15 160 12 <5 <0.03 15 160 12 <5 <0.03 3 <0.01 <10 7 <10 1 1	11	E189027	<5	<0.2 0.05	<5	<5	<5 <0.0	l <1	1	192	4	0.56	<10	0.01	200	<1	0.01	5	40	4	<5	<20	<1	<0.01	<10	1	<10	<1	3
1 E189015 <5 <0.2 0.97 <5 20 <5 0.02 <1 7 90 14 2.31 10 0.50 350 2 0.03 16 190 18 <5 <0 4 <0.01 <10 7 <10 1 10 E189026																													
10 E189026	Repe																												
Resplit: 1 E189015 <5 <0.2 0.96 <5 25 <5 0.02 <1 7 101 15 2.30 10 0.49 358 <1 0.03 16 190 18 <5 <20 4 <0.01 <10 7 <10 1 Standard:	1		<5		<5	20	< 5 0.02	2 <1	7	90	14	2.31	10	0.50	350	2	0.03	16	190	18	<5	<20	4	< 0.01	<10	7	<10	1	52
1 E189015 <5 <0.2 0.96 <5 25 <5 0.02 <1 7 101 15 2.30 10 0.49 358 <1 0.03 16 190 18 <5 <20 4 <0.01 <10 7 <10 1 Standard:	10	E189026		<0.2 0.66	<5	25	<5 0.0	<1	7	100	13	2.01	10	0.27	383	2	0.03	15	160	12	<5	<20	3	<0.01	<10	5	<10	1	40
Standard:	Resp	lit:																											
Plus Andrews Control of the Control	1		<5	<0.2 0.96	<5	25	<5 0.02	2 <1	7	101	15	2.30	10	0.49	358	<1	0.03	16	190	18	<5	<20	4	<0.01	<10	7	<10	1	53
Pb129a 11.6 0.83 <5 75 <5 0.46 54 6 11 1365 1.52 <10 0.65 357 2 0.04 5 410 6122 15 <20 29 0.06 <10 15 <10 2 9 0.06	Pb12	9a	630	11.6 0.83	<5	75	<5 0.46	5 54	6	11 1	365	1.52	<10	0.65	357	2	0.04	5	410 6	6122	15	<20	29	0.06	<10	15	<10	2	9986

ICP: Aqua Regia Digest / ICP- AES Finish.

Ag : Aqua Regia Digest / AA Finish. Au: 30g Fire Assay/ AA Finish.

NM/nw df/1_407S XLS/09

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

-----**Stewart Group**

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2009- 0408

Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

No. of samples received: 2 Sample Type: Soils Project: Fosters 09 Submitted by: A. Justason

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %		W	147	v	
1	E189018	15	<0.2 0.87	10	30		0.02	2	12	13	27	3.00												U	V	W	Y	<u>Z</u>
2	E189019	5											10			<1 <0.01	25	230	20	<5	<20	2	0.01	<10	11	<10	2	6
	L103013	5	<0.2 0.95	10	35	<5	0.02	2	14	14	30	3.17	10	0.36	337	<1 0.01	30	210	20	<5	<20	2	0.02	<10	14	<10	2	6
QC DATA: Repeat:	E189018	5	<0.2 0.88	10	30	<5	0.02	2	13	13	27	2.94	10	0.34	277	<1 <0.01	25	230	18	<5	<20	2	0.01	<10	11	<10		6
Standard: Till-3 SF30		840	1.5 0.96	90	35	<5	0.62	1	12	66	20	1.99	10	0.60	303	<1 0.02	32	470	20	<5	<20	14	0.05	<10	35	<10	5	3

ICP: Aqua Regia Digest / ICP- AES Finish.

Ag: Aqua Regia Digest / AA Finish. Au: 30g Fire Assay/ AA Finish.

NM/nw df/2_408S XLS/09

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer 18-Aug-09
Stewart Group
ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009- 0409

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 Gemco Minerals Inc. PO Box 111 Wells, BC VOK 2R0

No. of samples received: 33 Sample Type: Rock **Project: Burns 09** Submitted by: A. Justason

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	v	w	Υ	Zn
1	E189266	10	<0.2 1.50	10	30	<5 0.10	1	15	46	26	3.91	<10	0.62	109	<1	0.03	36	550	28	<5	<20	10 < 0.01	<10	7	<10	2	99
2	E189267	<5	<0.2 0.82	10	25	< 5 0.04	<1	12	57	24	2.91	10	0.25	361	<1	0.03	24	260	18	<5	<20	5 < 0.01	<10	3	<10	2	58
3	E189268	5	<0.2 0.95	10	30	< 5 0.09	<1	12	43	36	2.91	20	0.33	171	<1	0.03	25	510	16	<5	<20	10 < 0.01	<10	5	<10	3	66
4	E189269	5	<0.2 0.23	20	20	<5 < 0.01	<1	7	66	19	1.90	10	0.03	149	1	0.02	14	100	12	<5	<20	4 < 0.01	<10	1	<10	2	28
5	E189270	65	0.2 0.30	25	15	<5 < 0.01	<1	14	74	13	3.40	<10	0.03	608	<1	0.03	25	140	78	<5	<20	3 < 0.01	<10	1	<10	2	75
6	E189271	55	0.2 0.05	10	5	5 < 0.01	1	7	131	7	5.58	<10	0.01	979	2	0.03	15	100	38	<5	<20	2 < 0.01	-10	1	<10	2	41
7	E189272	5	<0.2 0.04	<5	<5	<5 < 0.01	<1	1	166		0.74		<0.01	160	<1	0.01	5	30	10	<5		1 < 0.01	<10	<1	<10	<1	5
8	E189273	5	< 0.2 0.04	<5	<5	<5 0.01	<1	<1	156		0.36		<0.01	83	4	0.02	4	50	20	-	<20			<1	<10	<1	5
9	E189274	<5	<0.2 0.22	<5	15	<5 < 0.01	<1		135		1.01	<10		180	<1	0.03	8	80	8	-	<20	2 < 0.01		2	<10	<1	16
10	E189275	5	<0.2 0.09	<5	5	<5 < 0.01	<1			4		<10		84	3	0.03	5	30	4	_	<20			_	<10	<1	4
														- '	_		•	•	•	-	-20	, 40.01	110		110	- '	•
11	E189276	<5	0.2 0.54	5	20	<5 < 0.01	<1	10	90	24	2.63	<10	0.17	513	<1	0.03	21	100	12	<5	<20	3 < 0.01	<10	3	<10	1	54
12	E189277	60	<0.2 0.38	15	15	<5 0.08	<1	10	134	23	2.91	<10	0.06	782	3	0.03	33	440	36	-	<20			-	<10	2	59
13	E189278	25	<0.2 0.52	15	25	<5 0.02	<1	15	69	38	3.77	10	0.17	801	<1	0.04	29	210	20				<10		<10	2	94
14	E189279	5	0.6 0.28	5	15	<5 0.02	<1	8	133	21	2.27	<10	0.06	646	3	0.03	18	130	82	<5	<20	3 < 0.01	<10	_	<10	2	36
15	E189280	<5	<0.2 0.61	<5	25	<5 < 0.01	<1	10	74	23	2.63	10	0.17	527	<1	0.03	24	140	20	<5	<20		<10		<10	2	53
																				_		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		_	
16	E189281	<5	<0.2 0.55	<5	15	<5 < 0.01	<1	9	98	18	2.43	<10	0.19	483	2	0.03	20	60	16	<5	<20	2 < 0.01	<10	3	<10	<1	49
17	E189282	5	<0.2 0.42	5	30	<5 < 0.01	<1	21	56	54	3.81	20	0.05	1218	<1	0.04	32	110	20	<5	<20	10 < 0.01	<10	-	<10	3	71
18	E189283	<5	<0.2 0.37	<5	15	<5 < 0.01	<1	5	95	13	1.54	<10	0.10	675	2	0.03	14	100	14	<5	<20		<10	-	<10	1	26
19	E189284	<5	<0.2 0.95	<5	25	< 5 0.02	<1	14	81	25	3.25	<10	0.37	717	<1	0.03	25	140	18	<5	<20	4 < 0.01			<10	2	67
20	E189285	<5	<0.2 1.06	<5	20	< 5 0.02	1	17	64	35	4.03	10	0.43	897	<1	0.04	32	170	22	<5	<20	5 < 0.01			<10	2	79
21	E189286	<5	<0.2 0.65	10	20	<5 <0.01	<1	9	73	43	3.42	20	0.20	394	1	0.04	21	190	40	<5	<20	4 < 0.01	<10	4	<10	2	64
22	E189287	5	<0.2 0.66	<5	15	<5 0.02	<1	11	92	23	2.67	<10	0.25	427	2	0.03	19	160	16	<5	<20	4 < 0.01	<10	4	<10	1	55
23	E189288	<5	<0.2 0.62	<5	20	<5 < 0.01	<1	11	76	20	2.69	10	0.18	493	<1	0.03	18	120	18	<5	<20	4 < 0.01	<10	3	<10	2	46
24	E189289	<5	<0.2 0.32	<5	10	<5 < 0.01	<1	5	114	10	1.18	10	0.08	272	3	0.02	10	50	8	<5	<20	2 < 0.01	<10	2	<10	<1	20
25	E189290	<5	<0.2 0.36	<5	15	<5 0.01	<1	6	153	15	1.61	10	0.09	344	<1	0.03	12	80	10	<5	<20		<10		<10	1	28

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	Bi Ca	% Cc	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	v	w	v	Zn
26	E189291	<5	<0.2 0.31	5	20	<5 <0	.01 <1	15	78	36		20			1	0.03	17	80	14	<5						<u> </u>	
27	E189292	15	<0.2 0.41	5	20		.01 <1	9	134	26		20			<1	0.03	19	100	14			4 < 0.01	<10	2	<10	2	59
28	E189293	<5	<0.2 0.67	<5	25		02 <1	16		32		10		836	1	0.04	31			<5 .c	<20	5 < 0.01	<10	3		2	47
29	E189294	15	<0.2 0.21	5	5		01 <1	3		12		<10		288	-1	0.04		170	16	<5	<20	5 < 0.01	<10	4	<10	2	75
30	E189295	<5	< 0.2 0.06	<5	<5	-	02 <1	_		4	0.70		< 0.03	621	<1 4		10	60	8	<5		3 < 0.01	<10	<1	<10	<1	17
				_	-		· ·	-			0.70	×10	\0.01	021	4	0.02	6	140	28	<5	<20	2 < 0.01	<10	<1	<10	<1	8
31	E189296	<5	<0.2 0.72	5	15	<5 0	01 <1	9	86	19	2.79	<10	0.31	373	<1	0.03	16	160	4.4		.00	0 004	40		4.0		
32	E189297	<5	<0.2 0.20	10	10		02 <1	4		24		10	0.01	99	4	0.03	13	160 160	14 12	<5 		3 < 0.01		4	<10	1	56
33	E189298	<5	< 0.2 0.09	<5	<5		02 <1	2		6		<10		132	<1	0.03	7	100	14	<5 <5	<20 <20	4 < 0.01	<10	1	<10	2	37
								_		Ū	0.07	`,,	0.02	102	` '	0.02	′	100	14	<0	<20	2 < 0.01	<10	<1	<10	<1	9
QC D/	ATA:																										
Repea	at:																										
1	E189266	5	<0.2 1.56	10	30	<5 0.	10 1	15	48	26	3.99	<10	0.65	112	<1	0.03	37	570	22	<5	<20	11 <0.01	<10	7	.10	0	01
5	E189270	70											0.00		`'	0.00	0,	370	~~	\3	\20	11 <0.01	< 10	′	<10	2	91
10	E189275	<5	<0.2 0.10	<5	5	<5 <0.	01 <1	2	144	4	0.50	<10	0.01	86	3	0.03	5	30	4	<5	<20	1 < 0.01	<10	<1	-10	.4	4
12	E189277	55												•	Ŭ	0.00	J	00	7	\ 0	~20	1 <0.01	< 10	< 1	<10	<1	4
19	E189284	<5	<0.2 0.97	<5	25	<5 0.	02 <1	14	81	25	3.27	<10	0.37	730	<1	0.03	25	140	18	<5	<20	4 < 0.01	<10	5	<10	2	68
28	E189293		<0.2 0.67	<5	20	<5 0.	02 <1	16	65	32	3.89	10	0.24	810	1	0.04	30	170	14	<5	<20	5 < 0.01	<10	-	<10	2	74
														• • •	•	0.01		1,0	17	\0	\20	3 <0.01	<10	4	< 10	2	74
Respli																											
1	E189266	<5	<0.2 1.58	10	30	<5 0.	10 1	15	45	26	3.83	10	0.64	112	<1	0.03	36	550	22	<5	<20	10 < 0.01	<10	6	<10	2	92
.	_																			••		10 10.01	\0	Ü	~10	2	32
Standa																											
Pb129			11.9 0.81	<5	70	<5 0.	43 57	6	10 1	405	1.54	<10	0.64	332	2	0.04	5	410 6	190	15	<20	27 0.04	<10	15	<10	2 >	10000
OXE74	ļ	630															-					0.0.		. 0	0		.0000

ICP: Aqua Regia Digest / ICP- AES Finish.

Ag : Aqua Regia Digest / AA Finish. Au: 30g Fire Assay/ AA Finish.

NM/nw df/1_409S XLS/09

ECO TECH LABORATORY LTD.

6-Oct-09

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2009-0511

Gemco Minerals Inc. PO Box 111

Wells, BC V0K 2R0

No. of samples received: 42 Sample Type: Rock **Project: Burns 09**

Project: Burns 09
Submitted by: A. Justason

Et #.	Tag #	Au(ppb	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %	. U	٧	w	Υ	Zn
1	E189299	10	<0.2 1.70	15	35	<5 <0.01	1	13	81	18	4.02	20	0.72	173	<1	0.02	40	140	16	<5	<20	3 < 0.0	<10	10	<10	2	100
2	E189300	15	<0.2 0.81	10	35	<5 0.01	<1	8	156	14	1.95	20	0.22	102	<1	0.02	20	110	14	<5	<20	3 < 0.0		4	<10	1	40
3	E189301	10	<0.2 0.18	<5	15	<5 0.02	<1	3	252	6	0.60	<10	0.02	96	<1	0.02	11	90	8	<5	<20	3 < 0.0		2	<10	<1	7
4	E189302	10	<0.2 0.90	10	40	<5 < 0.01	<1	11	130	20	2.59	20	0.28	346	<1	0.03	25	110	14	<5	<20	3 < 0.0		5	<10	2	62
5	E189303	10	<0.2 0.21	<5	10	<5 0.04	<1	6	249	8	1.14		0.04	651	<1	0.03	14	220	104	<5	<20	7 < 0.01		2	<10	1	16
															-											•	
6	E189304	15	0.2 0.06	<5	<5	<5 0.01	<1	2	205	5	0.56	<10	< 0.01	174	<1	0.02	6	80	34	<5	<20	2 < 0.01	<10	1	<10	<1	4
7	E189305	10	<0.2 0.16	<5	10	<5 0.02	<1	4	288	8	0.85	<10	0.04	185	<1	0.02	12	110	16	<5	<20		<10	2	<10	<1	12
8	E189306	10	<0.2 0.54	<5	20	<5 0.01	<1	8	157	13	1.85	10	0.09	413	<1	0.02	16	120	20	<5	<20		<10	3	<10	1	26
9	E189307	20	<0.2 0.70	15	35	<5 < 0.01	1	11	112	47	3.40	30	0.12	176	<1	0.02	27	160	16	<5	<20	3 < 0.01		5	<10	2	55
10	E189308	125	0.4 0.64	25	30	<5 0.01	<1	15	93	13	2.36	10	0.06		<1	0.02	17	100	10	<5	<20	3 < 0.01		3	<10	2	27
																				-				_			
11	E189309	15	0.2 0.66	15	30	<5 < 0.01	<1	11	94	19	2.22	10	0.13	272	<1	0.02	24	120	18	<5	<20	3 < 0.01	<10	3	<10	2	44
12	E189310	15	<0.2 0.67	10	30	<5 <0.01	1	18	76	44	3.74	10	0.22	210	<1	0.02	37	160	10	<5	<20	3 < 0.01	<10	3	<10	1	84
13	E189311	10	<0.2 0.17	10	25	<5 < 0.01	<1	5	151	9	1.28	10	0.01	511	<1	0.03	9	100	12	<5	<20	2 < 0.01	<10	2	<10	1	20
14	E189312	15	<0.2 0.21	10	20	<5 < 0.01	<1	5	133	12	1.07	<10	0.02	305	<1	0.02	12	60	12	<5	<20	2 < 0.01		1	<10	<1	14
15	E189313	45	<0.2 0.47	30	15	<5 < 0.01	<1	10	155	14	2.47	<10	0.05	242	<1	0.01	20	120	12	<5	<20	2 < 0.01		2	<10	1	27
																								_	., .	-	
16	E189314	10	<0.2 0.03	<5	<5	<5 < 0.01	<1	1	230	12	0.65	<10	< 0.01	39	<1	0.01	7	20	<2	<5	<20	<1 <0.01	<10	1	<10	<1	<1
17	E189315	15	0.2 0.11	15	15	<5 < 0.01	<1	5	204	9	1.00	<10	0.01	87	<1	0.01	13	30	4	<5	<20	2 < 0.01		1	<10	<1	2
18	E189316	25	<0.2 0.08	10	5	<5 < 0.01	<1	2	265	16	1.33	<10	0.01	73	<1	0.01	9	20	4	<5	<20	<1 <0.01	<10	2	<10	<1	2
19	E189317	10	<0.2 0.23	<5	10	<5 0.38	<1	3	235	11	1.20	<10	0.08	240	<1	0.01	13	1710	16	<5	<20	20 < 0.01	<10	2	<10	5	13
20	E189318	55	0.2 0.08	35	15	<5 < 0.01	<1	3	171	31	2.02	<10	< 0.01	45	<1	0.01	13	80	4	<5	<20	2 < 0.01	<10	2	<10	<1	9
21	E189319	20	<0.2<0.01	10	<5	<5 < 0.01	<1	5	273	6	0.82	<10	<0.01	27	<1	0.01	13	<10	<2	<5	<20	<1 <0.01	<10	1	<10	<1	<1
22	E189320	10	0.3 0.17	<5	30	<5 0.37	1	19	106	39	3.25	<10	0.14	137	<1	0.02	25	140	6	<5	<20	15 < 0.01	<10	2	<10	2	40
23	E189321	15	0.5 0.04	15	10	<5 0.05	2	52	201	80	7.14	<10	0.53	1354	<1	0.02	47	20	18	<5	<20	2 < 0.01	<10	2	<10	<1	79
24	E189322	15	0.3 0.35	<5	40	<5 < 0.01	2	26	77	45	5.27	10	0.04	1587	<1	0.02	55	250	12	<5	<20	3 < 0.01	<10	2	<10	2	139
25	E189323	10	0.2 0.22	<5	35	<5 <0.01	1	8	108	17	3.73	10	<0.01	127	<1	0.02	14	260	8	<5	<20	2 < 0.01	<10	2	<10	<1	52
26	E189324	310	<0.2 0.06	180	5	<5 0.31	<1	2	176	8	2.35	<10	0.22	497	<1	0.01	11	150	2	<5	<20	48 < 0.01	<10	2	<10	<1	4
27	E189325	70	<0.2 0.04	25	<5	<5 0.25	<1	2	165	4	0.71	<10	0.11	129	<1	0.01	8	10	2	<5	<20	18 < 0.01	<10	1	<10	<1	<1
28	E189326	15	1.6 0.24	5	5	10 1.17	<1	5	185	12	1.70	<10	0.37	667	3	0.01	10	770	414	<5	<20	44 < 0.01	<10	2	<10	3	15
29	E189327	10	<0.2 0.31	<5	20	<5 0.18	<1	8	91	22	2.20	<10	0.40	259	<1	0.03	17	150	12	<5	<20	11 < 0.01	<10	2	<10	1	51
30	E189328	>1000	0.5 0.18	760	5	< 5 0.19	1	5	183	61	4.24 _F	<10	0,21	183	3	0.02	14	50	6	<5	<20	16 < 0.01	<10	2	<10	<1	9
											F	'ane 1	int 2														

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %	U	V	w	Υ	Zn
31	E189329	20	<0.2 0.04	10	10	<5 <0.01	<1	2	175	14	1.05	<10	<0.01	31	<1	0.01	6	20	10	<5	<20	<1 <0.01	<10	1	<10	<1	3
32	E189330	15	0.2 < 0.01	<5	<5	<5 < 0.01	<1	<1	228	3	0.31	<10	<0.01	25	4	0.01	5	10	4	<5	<20	<1 <0.01	<10	1	<10	<1	<1
33	E189331	10	< 0.2 0.02	<5	5	<5 < 0.01	<1	<1	178	7	0.43	<10	< 0.01	36	<1	0.01	5	40	16	<5	<20	<1 <0.01		1	<10	<1	3
34	E189332	215	6.2 < 0.01	30	<5	15 < 0.01	1	11	223	70	4.30	<10	<0.01	23	4	0.01	19	20	1638	<5	<20	<1 <0.01	<10	1	<10	<1	6
35	E189333	10	1.2 0.03	<5	10	<5 0.10	1	3	156	11	1.49	<10	0.01	473	3	0.01	15	140	24	<5	<20	3 < 0.01		3		3	78
36	E189334	10	06 040		00	5 0.00			440	40	4 50	4.0			_					_				_			
37	E189335		0.6 0.18	<5	30	<5 0.08	<1	11	113	18	1.59	<10	0.04	62	2		25	110	60	<5	<20	5 < 0.01		2		<1	52
38	E189336	10	0.3 0.08	<5	10	<5 0.03	<1	5	231	13	1.12	<10	0.01	588	4	0.02	13	130	70	<5	<20	3 < 0.01		1	<10	<1	10
39	E189337	5	0.2 0.28	<5	15	<5 0.02	<1	7	99	11		<10	0.07	500	<1	0.02	14	130	18	<5	<20	3 < 0.01		2		1	32
40		10	0.2 0.33	<5	10	<5 0.01	<1	6	132		2.07	<10	0.04	257	2	0.04	9	80	14	<5	<20	2 < 0.01		<1	<10	<1	8
40	E189338	10	<0.2 0.03	<5	<5	<5 <0.01	<1	1	167	3	0.39	<10	<0.01	65	<1	0.01	5	30	4	<5	<20	<1 <0.01	<10	<1	<10	<1	<1
41	E189339	10	<0.2 0.59	<5	25	<5 0.02	<1	8	122	26	2.48	10	0.10	116	2	0.03	23	100	18	<5	<20	5 < 0.01	<10	3	<10	2	54
42	E189340	10	0.2 0.59	<5	15	<5 0.01	1	9	85	26	3.34	<10	0.28	194	<1	0.03	17	60	14	<5	<20	3 < 0.01		3	<10	1	60
QC DA																											
Repeat																											
1	E189299	10	<0.2 1.73	15	35	<5 <0.01	1	13	81	18	3.97	30	0.72	171	<1	0.02	40	140	16	<5	<20	3 < 0.01	<10	11	<10	2	98
10	E189308	130	0.5 0.69	25	30	<5 0.01	<1	16	102	15	2.53	20	0.06	1155	<1	0.02	18	110	10	<5	<20	3 < 0.01	<10	3	<10	2	29
19	E189317	10	<0.2 0.23	<5	10	<5 0.38	<1	3	239	11	1.19	<10	0.08	240	<1	0.01	13	1740	16	<5	<20	21 < 0.01	<10	1	<10	5	13
26	E189324	340																									
34	E189332	170																									
36	E189334	10	0.5 0.18	<5	30	<5 0.08	<1	11	116	19	1.64	<10	0.04	64	2	0.02	25	110	60	<5	<20	5 < 0.01	<10	2	<10	<1	52
Resplit	:																										
1	E189299	10	<0.2 1.65	10	35	<5 < 0.01	1	13	96	18	3.82	20	0.67	177	<1	0.02	40	130	14	<5	<20	3 < 0.01	<10	10	<10	2	94
36	E189334	10	0.5 0.18	<5	30	<5 0.11	<1	11	99		1.70	<10	0.06	71	<1	0.02	25	110	66	<5	<20	7 < 0.01		2	<10	<1	59 59
			0.0 0.10	10	00	40 0.11	` '	• • •	33	20	1.70	~10	0.00	/ 1	<u> </u>	0.02	25	110	00	<0	<20	/ <0.01	< 10	2	<10	< I	59
Standa	rd:																										
Pb129a			11.7 0.89	<5	60	< 5 0.46	60	6	11 1	478	1.64	<10	0.70	380	2	0.03	5	410	6186	15	<20	30 0.06	<10	16	<10	2 >	10000
Pb129a			11.4 0.87	<5	55	< 5 0.44	59	6	12 1		1.67	<10	0.69	384	2	0.03				15	<20	29 0.06		15	<10		10000
SF30		830											-		_		-										

ICP: Aqua Regia Digest / ICP- AES Finish.

840

Ag : Aqua Regia Digest / AA Finish.

Au: 30g Fire Assay/ AA Finish.

NM/nw df/2_511S XLS/09

SF30

ECO TECH LABORATORY LTD.

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tet + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2009-0511

Gemco Minerals Inc.

7-Oct-09

PO Box 111 Wells, BC V0K 2R0

No. of samples received: 42

Sample Type: Rock
Project: Burns 09

Submitted by: A. Justason

ET #.	Tag #	Au (g/t)	Au (oz/t)	
30	E189328	1.79	0.052	
QC DATA	<u>A:</u>			
30	E189328	1.72	0.050	
Standard OXI67	d:	1.81	0.053	

NM/nw XLS/09 ECO TECH LABORATORY LTD

14-Oct-09

Stewart Group

ECO TECH LABORATORY LTD.

ECO TECH LABORATORY LTD

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2009- 0629

Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

No. of samples received: 101 Sample Type: Rock **Project: Burns 09** Submitted by: A. Justason

Values in ppm unless otherwise reported

Et #.	Too #	Au(nnh) Ag Al%	As	Ва	Bi Ca%	Cd	Со	Cr	Cu	Fe %	La Mg%	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	٧	w	Υ	Zn
	Tag #	Au(ppb		10	70	<5 < 0.01	<1	8	65		4.21	10 < 0.01	66	<1		36	340	10		<20	2 < 0.01		3		2	211
1	E189028	20 15	<0.2 0.19 <0.2 0.22	5	40	<5 < 0.01		3	103		3.01	10 < 0.01	33	<1	0.02	11	250	12	<5	<20	2 < 0.01		4	<10	1	117
2	E189029			ა <5	20	<5 < 0.01 < 5 < 0.01	<1 <1	3	113		2.11	<10 <0.01	27	<1	0.02	9	130	6	<5	<20	<1 < 0.01		3	<10	<1	72
3	E189030	15	<0.2 0.17	-		<5 <0.01 <5 <0.01		-	175				137	<1	0.01	15	50	<2	<5	<20	<1 <0.01		2		<1	40
4	E189031	15	<0.2 0.05	<5 .5	10		<1		148		1.14	<10 < 0.01	338	<1	0.01	16	60	<2	<5	<20	<1 <0.01			<10	<1	54
5	E189032	15	<0.2 0.04	<5	10	<5 <0.01	<1	4	140	3	1.20	<10 <0.01	330	~1	0.01	10	00	~~	~5	\20	×1 ×0.01	~10	_	~10	- '	J-T
6	E189033	15	0.3 0.12	5	15	<5 <0.01	1	16	156	21	4.95	<10 <0.01	485	<1	0.02	44	380	10	<5	<20	<1 <0.01	<10	5	<10	3	181
7	E189034	15	0.4 0.20	10	20	<5 < 0.01	2	18	133	36	6.19	<10 <0.01	551	<1	0.02	45	570	18	<5	<20	<1 <0.01	<10	7	<10	3	213
8	E189035	20	< 0.2 0.05	<5	25	<5 < 0.01	<1	4	175	7	1.10	<10 <0.01	75	<1	0.01	10	60	4	<5	<20	1 <0.01	<10	2	<10	<1	22
9	E189036	20	<0.2 0.11	<5	50	< 5 0.03	<1	1	154	9	1.00	<10 <0.01	31	<1	0.01	5	310	30	<5	<20	7 <0.01	<10	3	<10	<1	6
10	E189037	15	<0.2 0.14	5	45	<5 < 0.01	<1	6	151	29	3.72	10 < 0.01	72	<1	0.02	19	210	34	<5	<20	1 < 0.01	<10	3	<10	2	71
11	E189038	15	<0.2 0.08	<5	30	<5 <0.01	<1	3	170	6	1.56	<10 <0.01	44	<1	0.01	9	150	18	<5	<20	<1 <0.01			<10	<1	19
12	E189039	15	<0.2 0.17	<5	50	<5 <0.01	<1	2	117		1.09	10 < 0.01	28	<1	0.02	8	70	10	<5	<20	2 < 0.01		3		<1	12
13	E189040	15	<0.2 0.17	<5	45	<5 <0.01	<1	2	109	11	0.98	10 < 0.01	29	<1	0.02	6	140	8	<5	<20	2 < 0.01		3		1	7
14	E189041	20	<0.2 0.11	<5	30	<5 <0.01	<1	2	179		1.18	<10 <0.01	28	<1	0.01	11	110	14	<5	<20	1 <0.01		2		<1	18
15	E189042	20	<0.2 0.10	<5	30	<5 <0.01	<1	7	162	12	1.78	<10 <0.01	119	<1	0.02	16	140	12	<5	<20	<1 <0.01	<10	2	<10	1	27
16	E100040	15	<0.2 0.04	.E	10	<5 <0.01	<1	<1	186	3	0.61	<10 <0.01	32	<1	0.01	7	40	4	<5	<20	<1 <0.01	<10	1	<10	<1	<1
16	E189043 E189044	15	<0.2 0.04	<5 <5	25	<5 < 0.01	<1		174		1.62	<10 <0.01	98	<1	0.01	10	130	12	<5	<20	<1 <0.01		2		<1	20
17	E189044	15	<0.2 0.12	10	50	<5 < 0.01	<1	_	117		2.29	20 < 0.01	41	<1	0.02	.0	140	<2	<5	<20	1 <0.01		2		1	24
18	E189045	15	<0.2 0.10	<5	30	<5 < 0.01	<1	_	146		2.46	<10 <0.01	68	<1	0.02	13	280	44	<5	<20	<1 <0.01	<10	2		1	31
19	E189047	20	<0.2 0.10	10	70	<5 < 0.01	2	13	63	56	>10	30 < 0.01	90	<1	0.04	39	410	40	<5	<20	2 < 0.01		4		4	172
20	E109047	20	<0.2 0.27	10	/0	25 20.01	2	10	00	30	710	00 \0.01	30	`'	0.04	00	710	-70	-0	120	2 10.01	110	•		•	
21	E189048	15	<0.2 0.13	5	30	<5 <0.01	<1	8	153	16	2.86	<10 <0.01	162	<1	0.02	14	270	58	<5	<20	<1 <0.01	<10	3	<10	2	41
22	E189049	45	<0.2 0.09	5	35	<5 < 0.01	<1	5	178	10	0.98	<10 <0.01	134	<1	0.02	7	90	12	<5	<20	1 < 0.01	<10	3	<10	<1	6
23	E189050	25	<0.2 0.14	10	50	<5 < 0.01	<1	3	152	13	1.95	20 < 0.01	46	<1	0.02	11	190	12	<5	<20	2 < 0.01	<10	3	<10	2	28
24	E189151	15	<0.2 0.24	20	70	<5 < 0.01	<1	4	106	20	2.03	20 0.01	79	<1	0.01	9	110	12	<5	<20	2 < 0.01	<10	2	<10	1	38
25	E189152	25	<0.2 0.32	5	30	<5 < 0.01	<1	10	83	16	2.71	<10 0.05	669	<1	0.03	21	80	6	<5	<20	3 < 0.01	<10	2	<10	1	45

Et #.	Tag #	Au(ppb)) Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	V	w	Υ	Zn
26	E189153	15	<0.2 0.27	<5	30	<5 <0.01	<1	6	108	17 1.56	<10	0.04	248	<1	0.03	13	70	4	<5	<20	2 <0.01	<10	2	<10	<1	13
27	E189154	15	<0.2 0.08	<5	10	<5 0.01	<1	1	187	8 1.11	<10	<0.01	173	<1	0.02	8	90	18	<5	<20	2 < 0.01	<10	2	<10	<1	2
28	E189155	10	<0.2 0.10	<5	10	< 5 0.04	<1	3	178	11 0.99	<10	<0.01	268	<1	0.02	9	220	8	<5	<20	4 < 0.01	<10	2	<10	<1	4
29	E189156	10	<0.2 0.32	10	45	<5 < 0.01	<1	15	102	17 2.75	<10	0.04	738	<1	0.03	29	70	4	<5	<20	4 < 0.01	<10	3	<10	2	58
30	E189157	10	<0.2 0.12	5	10	<5 < 0.01	<1	1	174	14 1.76	<10	<0.01	37	<1	0.02	6	110	<2	<5	<20	2 < 0.01	<10	3	<10	<1	1
00	2.00.07	. •		•	•																					
31	E189158	30	<0.2 0.42	40	30	<5 < 0.01	1	5	92	47 6.43	<10	0.01	60	<1	0.03	12	340	24	<5	<20	4 < 0.01	<10	5	<10	1	24
32	E189159	15	<0.2 0.23	<5	20	<5 < 0.01	<1	7	157	15 1.77	<10	0.03	310	<1	0.03	15	80	8	<5	<20	3 < 0.01	<10	3	<10	<1	20
33	E189160	10	<0.2 0.40	5	40	<5 < 0.01	<1	15	65	28 3.53	<10	0.06	527	<1	0.04	29	120	10	<5	<20	4 < 0.01	<10	3	<10	1	71
34	E189161	10	<0.2 0.58	<5	25	<5 < 0.01	<1	8	105	17 3.48		0.10	388	<1	0.03	23	70	12	<5	<20	2 < 0.01	<10	3	<10	1	56
35	E189162	15	0.2 0.19	<5	25	<5 0.02	<1	8	191	16 1.98		0.05		<1	0.02	16	180	82	<5	<20	6 < 0.01	<10	3	<10	1	13
00	L100102	10	0.2 0.10	10				•																		
36	E189163	15	0.2 0.57	<5	30	<5 0.04	<1	14	147	32 2.95	<10	0.23	681	<1	0.02	21	280	70	<5	<20	6 < 0.01	<10	6	<10	1	28
37	E189164	20	<0.2 0.51	10	40	<5 0.04	<1	12	80	68 3.79	30	0.11		6	0.03	42	200	34	<5	<20	8 < 0.01	<10	5	<10	5	65
38	E189165	20	<0.2 0.29	<5	25	<5 0.04	<1	20	144	42 2.61	10	0.05		1			100	140	<5	<20	6 < 0.01	<10	2	<10	2	95
39	E189166	15	0.3 0.56	5	45	<5 0.06	1	29	49	74 4.64	30	0.11		3	0.04	57	170	34	<5	<20	9 < 0.01	<10	3	<10	5	104
40	E189167	15	<0.2 0.97	<5	50	<5 0.05	- <1	17	59	51 3.16	20	0.33		<1	0.03	34	190	14	<5	<20	8 < 0.01	<10	6	<10	2	80
40	E109107	13	CO.2 0.97	\0	50	<0 0.00	` '	• • •	00	00		0.00				-										
41	E189168	15	0.3 0.87	<5	30	<5 0.04	<1	14	151	29 3.21	<10	0.33	553	<1	0.02	22	250	120	<5	<20	6 < 0.01	<10	8	<10	1	42
42	E189169	15	<0.2 1.25	<5	35	<5 0.04	<1	14	89	17 3.92		0.58	289	<1	0.03	26	90	8	<5	<20	4 < 0.01		11	<10	1	69
43	E189170	15	<0.2 1.23	<5	20	<5 0.06	<1	9	107	12 2.23	10	0.20		<1	0.03	22	100	12	<5	<20	7 < 0.01	<10	5	<10	1	27
	E189170	10	<0.2 0.70	<5	40	<5 0.00	<1	15	61	25 4.26	10	0.14		<1	0.04	34	120	4	<5	<20	5 < 0.01			<10	2	80
44	E189172	10	0.2 0.33	<5	15	<5 0.01	<1		187			<0.01		<1	0.02	13	90	38	<5	<20	4 < 0.01			<10	<1	18
45	E109172	10	0.2 0.10	\0	10	\0.02	- '	,	107	.0,	1,0															
46	E189173	15	<0.2 0.12	<5	15	<5 < 0.01	<1	4	157	10 1.26	<10	0.01	145	<1	0.03	9	60	10	<5	<20	3 < 0.01	<10	2	<10	<1	6
47	E189174	15	0.4 0.11	<5	15	< 5 0.02	<1	7	180	10 1.52	<10	0.02	195	<1	0.02	15	100	86	<5	<20	3 < 0.01	<10	3	<10	<1	15
48	E189175	10	0.2 0.65	<5	25	<5 0.01	<1	6	99	11 2.82	<10	0.14	99	<1	0.03	17	90	8	<5	<20	3 < 0.01	<10	2	<10	1	30
49	E189176	10	<0.2 0.11	10	15	<5 0.01	1	12	149	6 6.88		0.05	764	<1	0.03	30	110	<2	<5	<20	3 < 0.01	<10	3	<10	1	48
50	E189178	10	<0.2 0.04	<5	5	<5 < 0.01	<1	<1	188	3 0.37			53	<1	0.01	6	<10	<2	<5	<20	<1 <0.01	<10	1	<10	<1	<1
30	L109170	, 0	VO.2 0.04	-0	Ū	10 10.01				• • • • • • • • • • • • • • • • • • • •																
51	E189179	10	0.2 0.12	<5	15	<5 <0.01	<1	3	187	10 0.96	<10	<0.01	1085	<1	0.02	11	70	12	<5	<20	3 < 0.01	<10	2	<10	<1	5
52	E189180	10	<0.2 0.13	<5	20	<5 0.10	<1	5	190	7 1.63		0.01		<1	0.02	16	480	28	<5	<20	14 < 0.01	<10	2	<10	2	22
53	E189181	10	0.4 0.06	<5	10	<5 0.01	<1	5	189	6 1.66	<10	0.01	582	<1	0.02	11	50	42	<5	<20	2 < 0.01	<10	3	<10	<1	18
54	E189182	10	<0.2 0.13	5	15	<5 0.01	<1	-	173	15 1.77		< 0.01		<1	0.02	14	110	8	<5	<20	3 < 0.01	<10	2	<10	<1	23
55	E189183	110	<0.2 0.07	10	10	<5 0.03	<1		166	7 1.21		< 0.01		<1	0.01	8	170	4	<5	<20	5 < 0.01	<10	2	<10	<1	<1
33	£103100	110	10.L 0.07			10 0.00	•	_																		
56	E189184	15	0.4 0.07	5	10	<5 0.02	<1	7	187	12 1.76	<10	0.01	560	<1	0.02	13	110	76	<5	<20	3 < 0.01	<10	2	<10	<1	69
57	E189185	5	0.2 0.26	<5	20	<5 0.02	<1	9	132	9 1.91	<10	0.07	1212	<1	0.03	11	150	38	<5	<20	5 < 0.01	<10	3	<10	<1	15
58	E189186	15	<0.2 1.51	5	40	<5 0.02	1	16	68	18 4.45	20	0.68	541	<1	0.03	26	170	14	<5	<20	6 < 0.01	<10	13	<10	2	72
59	E189187	15	<0.2 0.37	30	35	<5 < 0.01	<1	5	96	64 3.79	40	0.04	102	5		18	210	20	<5	<20	5 < 0.01	<10	7	<10	2	43
60	E189188	15	<0.2 0.07			<5 < 0.01		3	139	16 0.73		<0.01	147	<1	0.01	7	40	2	<5	<20	2 < 0.01	<10	2	<10	<1	5
00	£109100	10	-U.E U.U/			.0 .0.01	•																			
61	E189189	5	<0.2 0.14	<5	20	<5 < 0.01	<1	4	174	4 0.79	10	<0.01	320	<1	0.02	11	60	<2	<5	<20	2 < 0.01	<10		<10	<1	4
62	E189190	10	<0.2 0.08	<5	10	<5 < 0.01	<1		193	6 0.73					0.02	10	50	8	<5	<20	2 < 0.01	<10	2	<10	<1	2
63	E189191	10	<0.2 0.75	<5	15	<5 < 0.01	<1		117	15 2.41					0.02	16	50	8	<5	<20	2 < 0.01	<10	7	<10	<1	39
64	E189192	20	<0.2 0.11		20		<1		158	6 0.78							70	<2	<5	<20	2 < 0.01	<10	2	<10	<1	3
	E189193	10	<0.2 0.81		35		<1		92	20 3.54							110	16	<5	<20	3 < 0.01		7	<10	1	53
65	E103133	10	~U.Z. U.U1	~5	00	-0 -0.01	- 1	.5	~_			Ţ. _	· · -					_	_							

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu F	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %		V	W	Υ	Zn
66	E189194	20	<0.2 0.13	5	10	<5 0.03	<1		181	5	0.74	<10	<0.01	104	<1	0.02	8	170	6	<5	<20	4 < 0.01	<10	2	<10	<1	10
67	E189195	25	< 0.2 0.24	5	10	<5 < 0.01	<1	4	146	11	1.14	<10	0.02	206	<1	0.02	11	90	<2	<5	<20	4 < 0.01	<10	2	<10	<1	9
68	E189196	10	< 0.2 0.09	<5	5	< 5 0.03	<1	2	202	9	0.97	<10	0.01	58	<1	0.02	8	180	16	<5	<20	3 < 0.01	<10	2	<10	<1	7
69	E189197	10	0.2 0.05	10	<5	<5 < 0.01	<1		209	12	0.98	<10	<0.01	48	<1	0.02	7	60	10	<5	<20	1 < 0.01	<10	2	<10	<1	<1
70	E189198	15	<0.2 0.18	55	20	<5 0.02	<1	10		17	3.22	<10	0.02	339	1	0.02	16	190	20	<5	<20	4 < 0.01	<10	3	<10	1	40
, 0	L103130	10	VO.E 0.10	00		10 0.02																					
71	E189199	15	<0.2 0.31	<5	10	<5 < 0.01	<1	5	120	10	1.37	<10	0.09	604	<1	0.03	10	50	6	<5	<20	1 < 0.01	<10	3	<10	<1	16
72	E189200	10	< 0.2 0.09	<5	<5	<5 0.03	<1	3	170	5	0.92	<10	0.01	525	<1	0.03	8	180	<2	<5	<20	5 < 0.0	<10	2	<10	<1	2
73	E189201	10	< 0.2 0.14	<5	5	<5 < 0.01	<1	2	204	8	0.72	<10	0.04	145	<1	0.02	8	60	<2	<5	<20	2 < 0.0	<10	3	<10	<1	2
74	E189202	10	<0.2 0.09	<5	10	<5 0.02	<1		167				<0.01	654	<1	0.02	9	150	<2	<5	<20	4 < 0.0	<10	2	<10	<1	<1
75	E189203	10	<0.2 0.18	<5	20	<5 < 0.01	<1		158		1.36		<0.01		<1	0.04	11	90	6	<5	<20	4 < 0.0	<10	2	<10	<1	8
/3	L109200	10	VO.2 0.10	10		10 10.01		•		_																	
76	E189204	10	<0.2 0.20	<5	15	<5 0.07	<1	6	166	10	1.04	<10	0.04	674	<1	0.02	12	350	58	<5	<20	8 < 0.0	<10	2	<10	1	9
77	E189205	10	<0.2 0.09	<5	10	<5 0.05	<1		165	10	0.90	<10	0.01	545	<1	0.02	9	270	8	<5	<20	6 < 0.0	<10	2	<10	<1	2
78	E189206	10	< 0.2 0.47	<5	30	<5 < 0.01	<1		140		2.72		0.14	934	<1	0.03	17	80	22	<5	<20	4 < 0.0	<10	4	<10	1	46
79	E189207	120	<0.2 0.17	20	30	<5 0.01	<1	12		17	3.68	<10	0.01		<1	0.03	26	150	<2	<5	<20	4 < 0.0	<10	3	<10	1	14
80	E189208	20	<0.2 0.17	25	10	<5 < 0.01	<1		174				<0.01	210	<1	0.02	11	160	<2	<5	<20	2 < 0.0	l <10	2	<10	<1	2
80	L103200	20	VO.E 0.00			10 10.01	•	•																			
81	E189209	20	<0.2 0.27	15	40	<5 <0.01	<1	15	52	4	2.54	20	0.01	344	<1	0.03	14	140	<2	<5	<20	4 < 0.0	<10	2	<10	1	9
82	E189210	20	<0.2 0.10	20	20	<5 < 0.01	1	16			6.18	<10	0.02		<1	0.03	15	30	<2	<5	<20	3 < 0.0	<10	2	<10	<1	25
83	E189211	15	<0.2 0.10	5	<5	<5 < 0.01	<1		138		3.91	<10	<0.01		<1	0.02	10	10	<2	<5	<20	<1 <0.0	1 <10	1	<10	<1	14
	E189212	20	<0.2 0.40	5	55	<5 < 0.01	<1		107		2.66	10		159	<1	0.03	11	230	<2	<5	<20	6 < 0.0	1 <10	3	<10	1	2
84 85	E189213	10	<0.2 0.40	<5	10	<5 0.02	<1		159	-	0.85		< 0.01		<1	0.01	13	140	<2	<5	<20	3 < 0.0	1 <10	1	<10	1	<1
65	E109213	10	VO.2 0.07	~0		10 0.02		•		•																	
86	E189214	325	<0.2 0.42	35	30	<5 < 0.01	<1	15	140	40	3.52	<10	0.04	925	<1	0.03	32	130	12	<5	<20	3 < 0.0	1 <10	3	<10	1	21
87	E189215	55	<0.2 0.11	10	20	<5 < 0.01	<1		174	2	1.08	<10	< 0.01	225	<1	0.02	13	40	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	<1
88	E189216	15	<0.2 0.10	<5	20	<5 < 0.01	1		161	4	5.61	<10	0.02	1536	<1	0.02	22	40	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	27
89	E189217	10	<0.2 0.12	<5	20	<5 < 0.01	<1		190	4	1.77	<10	< 0.01	448	<1	0.02	12	90	<2	<5	<20	3 < 0.0	1 <10	2	<10	<1	4
90	E189218	10	<0.2 0.08	<5	15	<5 < 0.01	<1		176				< 0.01		<1	0.02	22	70	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	14
30	L109210	10	10.L 0.00	10																							
91	E189219	5	<0.2 0.14	<5	30	<5 < 0.01	<1	7	153	7	4.48	<10	< 0.01	2105	<1	0.02	24	130	<2	<5	<20	4 < 0.0	1 <10	3	<10	1	24
92	E189220	15	<0.2 0.21	20	30	<5 0.02	<1	12	169	27	2.37	<10	< 0.01	1269	<1	0.02	26	230	10	<5	<20	6 < 0.0	1 <10	2	<10	1	9
93	E189221	10	<0.2 0.12	<5	30	<5 0.01	1	6	163	4	5.61	<10	0.01	1867	<1	0.03	14	170	<2	<5	<20	5 <0.0	1 <10	3	<10	1	26
94	E189222	10	<0.2 0.12	<5	15	<5 < 0.01	<1		173		0.92		<0.01		<1	0.02	10	60	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	4
95	E189223	10	<0.2 1.34	<5	40	< 5 0.01	1	17	76	22	4.13	20	0.65	552	<1	0.03	30	200	18	<5	<20	5 <0.0	1 <10	11	<10	2	71
33	L103220	10	40.E 1.01																								
96	E189224	10	<0.2 0.95	<5	35	<5 < 0.01	<1	13	78	27	3.81	20	0.37	573	<1	0.03	18	130	14	<5	<20	4 < 0.0	1 <10	9	<10	2	52
97	E189225	5	<0.2 0.33	<5	20	<5 < 0.01	<1	2	139	7	1.15	10	0.06	47	<1	0.02	6	50	<2	<5	<20	3 < 0.0	1 <10	3	<10	<1	4
98	E189226	10	< 0.2 0.77	10	30	<5 < 0.01	<1	11	100	16	2.44	10	0.19	1096	<1	0.02	21	70	14	<5	<20	3 <0.0	1 <10	4	<10	1	30
99	E189227	40	<0.2 0.08	50	15	<5 < 0.01	4	24	94	4	>10	<10	0.04			0.04	32		10		<20	5 < 0.0	1 <10	2	20	2	102
100	E189228		<0.2 0.00	<5	20	<5 < 0.01	<1	3	194	5	1.04	<10	0.02	217	<1	0.02	10	70	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	3
100	L 103220																										
101	E189229	20	<0.2 0.11	<5	10	<5 < 0.01	<1	5	183	3	3.09	<10	0.01	826	<1	0.02	11	50	<2	<5	<20	2 < 0.0	1 <10	2	<10	<1	14
101	LIUSEES		10.2 0///																								
QC DA	TA:																										
Repeat																								_		_	00=
1	E189028	20	<0.2 0.20	10	70	<5 <0.01	<1	8	66	33	4.16	10	< 0.01			0.02		340							<10		207
10	E189037	15	<0.2 0.15	5	50	<5 < 0.01	<1	7	159	30	3.89	10	<0.01	76	<1	0.02	19	220	34	<5	<20	1 <0.0	1 <10	3	<10	2	73
				-																							

ICP CERTIFICATE OF ANALYSIS AK 2009- 0629

Gemco Minerals Inc.

Et #.	Tag #	Au(ppb) Ag Al %	As	Ва	Bi Ca%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
19	E189046	15	<0.2 0.10	<5	30	<5 < 0.01	<1	4	145	16	2.38	<10	<0.01	65	<1	0.02	12	280	42	<5	<20	<1	< 0.01	<10	2	<10	1	31
36	E189163	10	0.4 0.60	<5	30	< 5 0.04	<1	14	159	33	3.09	<10	0.24	690	<1	0.02	22	290	74	<5	<20	7	<0.01	<10	7	<10	1	29
45	E189172	10	<0.2 0.10	<5	15	<5 0.01	<1	6	188	14	1.14	<10	< 0.01	1010	<1	0.02	13	80	38	<5	<20	4	<0.01	<10	2	<10	<1	18
54	E189182	10	<0.2 0.13	5	15	<5 0.01	<1	4	173	15	1.72	<10	< 0.01	96	<1	0.02	14	110	8	<5	<20	3	<0.01	<10	2	<10	<1	23
55	E189183	130																										
71	E189199	10	<0.2 0.31	<5	10	<5 <0.01	<1	5	122	10	1.36	<10	0.08	600	<1	0.03	10	50	6	<5	<20	2	<0.01	<10	3	<10	<1	16
79	E189207	145																										
80	E189208	20	<0.2 0.08	25	10	<5 <0.01	<1	6	173	3	2.35	<10	< 0.01	204	<1	0.02	11	150	<2	<5	<20	2	<0.01	<10	2	<10	<1	2
86	E189214	310																										
89	E189217	10	<0.2 0.12	<5	20	<5 < 0.01	<1	5	188	4	1.75	<10	<0.01	441	<1	0.02	12	90	<2	<5	<20	3	<0.01	<10	2	<10	<1	3
Resplit:																												
1	E189028	15	<0.2 0.21	10	70	<5 < 0.01	1	9	74	34	4.40	10	< 0.01	66	<1	0.02	36	340	10	<5	<20	2	< 0.01	<10	3	<10	2	205
36	E189163	10	0.2 0.57	<5	35	< 5 0.05	<1	14	172	32	3.13	<10	0.23	720	<1	0.02	24	320	76	<5	<20	7	< 0.01	<10	6	<10	1	27
71	E189199	10	<0.2 0.30	<5	10	<5 < 0.01	<1	5	131	9	1.31	<10	0.08	584	<1	0.03	10	50	6	<5	<20	2	<0.01	<10	3	<10	<1	15
Standar	d:																											
Pb129a			11.6 0.84	5	55	<5 0.47	55	6	10	1327	1.50	<10	0.65	346	2	0.03	5	420	6152	20	<20	31	0.05	<10	18	<10	2	9919
Pb129a			11.4 0.87	5	60	<5 0.43	57	6	10	1379	1.56	<10	0.67	356	2	0.04	5	410	6128	20	<20	32	0.05	<10	19	<10	2 :	>10000
Pb129a			11.4 0.86	5	55	<5 0.46	56	6	10	1353	1.53	<10	0.66	352	2	0.03	5	410	6254	20	<20	30	0.05	<10	18	<10	2	9913
SF30		830																										
SF30		840																										

ICP: Aqua Regia Digest / ICP- AES Finish.

820

Ag : Aqua Regia Digest / AA Finish.

Au: 30g Fire Assay/ AA Finish.

NM/nw df/2_629BS XLS/09

OXE74

ECO TECH LABORATORY LTD.

28-Oct-09

Stewart Group

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009- 0700

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

No. of samples received: 110 Sample Type:Rock

Project: Burns 09
Submitted by: A Justason

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	٧	w	Υ	Zn
1	E189230	15	<0.2 0.14	<5	<5	<5 0.02	2	3	194	5	0.56	<10	0.01	257	<1	0.02	7	90	8	<5	<20	3 < 0.01	<10	3	<10	<1	14
2	E189231	20	<0.2 0.44	<5	15	<5 <0.01	1	12	128	11	1.96	<10	0.05	1565	<1	0.03	22	40	26	<5	<20	2 < 0.01	<10	3	<10	<1	28
3	E189232	15	<0.2 0.91	5	20	<5 0.01	2	21	102	40	4.54	10	0.42	813	<1	0.03	24	220	34	<5	<20	4 < 0.01	<10	10	<10	1	68
4	E189233	15	0.3 0.15	<5	10	<5 < 0.01	<1	1	200	6	0.68	<10	0.02	75	<1	0.02	5	60	12	<5	<20	2 < 0.01	<10	3	<10	<1	7
5	E189234	15	<0.2 0.10	<5	5	<5 <0.01	<1	4	195	5	1.23	<10	0.01	1111	<1	0.02	11	20	6	<5	<20	1 < 0.01	<10	2	<10	<1	12
6	E189235	15	<0.2 0.19	<5	<5	<5 <0.01	<1	3	175	10	0.87	<10	0.02	247	<1	0.04	8	50	8	<5	<20	1 < 0.01	<10	4	<10	<1	9
7	E189236	15	<0.2 0.35	<5	25	<5 0.03	<1	6	207	16	2.33	10	0.06	433	<1	0.03	16	170	10	<5	<20	6 <0.01	<10	4	<10	<1	22
8	E189237	20	<0.2 0.80	<5	30	<5 0.02	1	11	133	36	3.22	10	0.24	340	<1	0.03	19	190	16	<5	<20	6 < 0.01	<10	8	<10	1	46
9	E189238	95	<0.2 0.60	15	40	<5 <0.01	3	14	83	41	6.21	20	0.06	406	<1	0.03	38	140	14	<5	<20	4 < 0.01	<10	4	<10	2	65
10	E189239	20	<0.2 0.32	<5	5	<5 0.01	<1	10	223	11	2.45	<10	0.02	277	<1	0.02	24	110	8	<5	<20	2 < 0.01	<10	3	<10	<1	24
11	E189240	15	<0.2 0.71	<5	30	<5 < 0.01	1	9	190	29	3.16	10		135	<1	0.03	24	110	8	<5	<20	4 < 0.01		6	<10	<1	41
12	E189241	15	<0.2 0.51	<5	20	<5 <0.01	1	14	197	29	3.21	10		451	<1	0.02	26	100	8	<5	<20	3 < 0.01			<10	1	44
13	E189242	50	0.2 0.22	10	10	<5 <0.01	<1	6	214	15	2.50	<10		138	<1	0.02	24	110	8	<5	<20	1 < 0.01		-	<10	<1	34
14	E189243	15	<0.2 0.07	<5	<5	< 5 0.03	<1	3	259				<0.01	265	<1	0.01	9	120	6	<5	<20	2 < 0.01			<10	<1	8
15	E189244	20	<0.2 0.05	<5	<5	<5 <0.01	<1	2	242	4	0.72	<10	<0.01	149	<1	0.01	9	20	2	<5	<20	<1 <0.01	<10	3	<10	<1	5
16	E189245	15	<0.2 0.04	<5	<5	< 5 0.09	<1		247				<0.01	92	<1	0.01	10	330	2	<5	<20	5 < 0.01			<10	<1	6
17	E189246	15	<0.2 0.61	<5	15	<5 <0.01	1	14	148	16		<10		172	<1	0.02	40	110	14	<5	<20	2 < 0.01			<10	1	42
18	E189247	15	<0.2 0.26	<5	10	<5 <0.01	<1	8	194		1.93	<10		607	<1	0.03	21	80	10	<5	<20	2 < 0.01			<10	<1	28
19	E189248	15	0.2 0.70	<5	40	<5 <0.01	1	16	111	22	2.77	10			<1	0.04	20	70	12	<5	<20		<10		<10	2	44
20	E189249	85	<0.2 0.36	15	25	<5 0.01	2	40	191	32	5.52	20	0.02	874	<1	0.03	47	160	58	<5	<20	5 <0.01	<10	5	<10	3	131
21	E189250	15	<0.2 0.78	<5	30	<5 <0.01	2	32	74	43	4.65	20			<1	0.04	50	150	24	<5	<20	5 < 0.01		-	<10	2	86
22	E189341	10	0.2 0.51	<5	25	<5 0.01	1	24	227	20	2.63	10	0.08	985	<1	0.03	41	130	20	<5	<20	5 < 0.01		7	<10	1	50
23	E189342	15	<0.2 0.17	<5	<5	<5 0.07	<1	4	190	6	0.69	<10		313	<1	0.05	11	270	16	<5	<20				<10	<1	9
24	E189343	55	<0.2 0.40	20	30	<5 <0.01	2	11	48	60	4.62	40	0.02	177	3	0.03	20	290	20	<5	<20	5 < 0.01	<10	5	<10	2	48
25	E189344	65	1.8 0.32	15	15	5 < 0.01	2	5	139	77	4.36	20	<0.01	50	1	0.02	9	270	274	<5	<20	3 < 0.01	<10	5	<10	<1	40

26	Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti %	U	V	w	Υ	Zn
27 E189346 1,000	26	E189345	>1000	18.0 0.29	35	30	10 0.02	6	16	242	28	3.24	<10	0.03	327	<1	0.02	19	220	2588	<5	<20	4 < 0.01	<10	6	<10	<1	287
28	27	E189346	>1000	2.3 0.25	35	40	5 0.05	2	12	141	27																	
E189348 >1000	28	E189347	>1000																									
State Stat																												
31 E189350 > 1000 5.1 0.15 15 20 5 < 0.01 1 4 193 11 1.55 < 10 < 0.01 58 < 1 0.02 9 110 960 < 5 < 20 2 < 0.01 < 10 4 < 10 < 1 70 < 18																												
Second S	00	2100010	> 1000	0.0 0.20	00		10 0.02	J	10	.,,	20	0.20	~10	0.02	220	`'	0.02	10	230	4400	\J	~20	4 <0.01	<10	7	<10	<u> </u>	102
32 E189351 >1000 0.6 0.09 10 10 <5 <5 <0.01 <1 2 180 8 1.46 <10 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0.01 36 <1 <0 <0.01 36 <1 <0 <0.01 36 <0 <0 <0 <0.01 36 <0 <0 <0 <0 <0 <0 <0 <	31	F189350	>1000	51 015	15	20	5 < 0.01	1	4	193	11	1 55	<10	<0.01	58	-1	0.02	a	110	960	-5	-20	2 -0.01	-10	1	-10	-1	70
33 E189352 45 <0.02 0.94 <5 25 <5 <0.01								-										-			-							
34 E189353 30													-			-		_			_				_			
35 E189354 25 0.2 0.69 <5 30 <5 <0.01																					-							
36 E189355 15 <0.2 0.45 <5 30 <5 <0.01 1 2 30 51 50 5.42 20 0.05 1172 <1 0.04 39 160 26 <5 <0.05 <0.01 <10 5 <0.01 <1 4 <10 1 48 38 E189367 15 <0.2 0.34 <5 10 <5 <0.01 1 1 1 212 17																												
37 E189356 15 < 0.02 0.34 < 5 10 < 5 < 0.01	35	E189354	25	0.2 0.69	<5	30	<5 <0.01	2	28	67	50	5.90	10	0.20	///	<1	0.04	45	1/0	32	<5	<20	5 <0.01	<10	7	<10	2	94
37 E189366 15 <0.2 0.34 <5 10 <5 <0.01	36	E180255	15	-02 045	-5	30	-5 -0.01	2	20	E1	50	E 40	20	0.05	1170	-1	0.04	20	160	26	-E	-20	E -0.01	-10	E	-10	2	00
38																												
39 E189358 55 <0.2 0.38 10 25 <5 <0.01 1 5 118 31 2.91 20 0.01 54 <1 0.03 13 120 10 <5 <20 4 <0.01 <10 4 <10 2 31 40 E189369 45 <0.2 0.21 25 10 <5 <0.01 1 5 200 17 2.92 10 <0.01 77 <1 0.02 13 230 22 <5 <20 4 <0.01 <10 4 <10 2 31 40 22 <10 <10 25 <10 <10 25 <10 <10 <10 25 <10 <10 <10 25 <10 <10 <10 25 <10 <10 <10 25 <10 <10 <10 25 <10 <10 <10 <10 25 <10 <10 <10 <10 25 <10 <10 <10 <10 25 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10																											-	
40 E189359 45 <0.2 0.21 25 10 <5 <0.01 1 5 200 17 2.92 10 <0.01 77 <1 0.02 13 230 22 <5 <0.2 <0.01 <10 3 <10 <1 25 <10 3 <10 <1 25 <11 <10 <10 <1 >25 <11 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1					_																							
41 E189360 10 <0.2 0.09 <5 <5 <5 <0.01 <1 1 254 7 0.84 <10 <0.01 36 <1 0.01 6 90 16 <5 <0.01 <1 0.01 <10 3 <10 <1 6 42 E189361 30 <0.2 0.29 20 15 <5 <0.01 <1 11 366 25 2.42 10 0.02 355 <1 0.03 38 670 38 5 <20 2 <0.01 <10 4 <10 2 119 43 E189362 15 <0.2 0.37 <5 20 <5 0.05 <1 11 366 25 2.42 10 0.02 355 <1 0.03 31 230 52 <5 <0.0 8 <0.01 <10 6 <10 1 51 44 E189363 15 0.3 0.65 <5 25 <5 <0.01 2 23 152 40 4.92 10 0.18 852 <1 0.03 39 100 28 <5 <0.0 4 <0.01 <10 7 <10 2 84 45 E189364 10 <0.2 0.52 <5 20 <5 <0.01 2 21 136 52 3.94 <10 0.20 525 <1 0.03 40 60 16 <5 <0.0 4 <0.01 <10 5 <10 1 64 40 <1 21 44 E189365 10 <0.2 0.33 <5 10 <5 <0.01 1 2 22 1 136 52 3.94 <10 0.02 525 <1 0.03 40 60 16 <5 <0.0 4 <0.01 <10 5 <10 1 64 40 <1 21 41 41 41 41 41 41 41 41 41 41 41 41 41								-	-							-												
42 E189361 30	40	E189359	45	<0.2 0.21	25	10	<5 <0.01	1	5	200	17	2.92	10	<0.01	77	<1	0.02	13	230	22	<5	<20	2 < 0.01	<10	3	<10	<1	25
42 E189361 30	41	E180360	10	~n 2 n na	-5	-5	-5 -0 01	_1	1	254	7	0.84	-10	-0.01	36	_1	0.01	6	QΩ	16	-5	-20	-1 -0.01	-10	2	-10	-1	6
## E189362 15 <0.2 0.37 <5 20 <5 0.05 <1 11 366 25 2.42 10 0.02 355 <1 0.03 31 230 52 <5 <20 8 <0.01 <10 6 <10 1 51 ## E189363 15 0.3 0.65 <5 25 <5 <0.01 2 23 152 40 4.92 10 0.18 852 <1 0.03 39 100 28 <5 <20 4 <0.01 <10 7 <10 2 84 ## E189364 10 <0.2 0.52 <5 20 <5 <0.01 2 21 136 52 3.94 <10 0.20 525 <1 0.03 39 100 28 <5 <20 4 <0.01 <10 7 <10 2 84 ## E189365 10 <0.2 0.36 <5 15 <5 0.03 <1 6 240 24 1.87 10 0.07 118 <1 0.03 13 160 24 <5 <20 6 <0.01 <10 6 <10 <1 21 ## E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 4 <0.01 <10 6 <10 <1 21 ## E189368 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 31 70 38 <5 <20 7 <0.01 <10 6 <10 <1 21 ## E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 3 <0.01 <10 6 <10 <1 21 ## E189371 10 <0.2 0.16 <5 5 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 9 <0.01 <10 6 <10 2 2 ## E189373 10 <0.2 0.18 <5 50 0.05 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 5 <10 <1 2 <1 5 ## E189373 15 <0.2 0.98 <5 30 <5 0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <0 5 <0.01 <10 11 <10 2 69 ## E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <0 5 <0.01 <10 11 <10 2 69 ## E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03						-			-												_				_			-
44 E189363 15 0.3 0.65 <5 25 <5 <0.01 2 23 152 40 4.92 10 0.18 852 <1 0.03 39 100 28 <5 <20 4 <0.01 <10 7 <10 2 84 45 E189364 10 <0.2 0.52 <5 20 <5 <0.01 2 21 136 52 3.94 <10 0.20 525 <1 0.03 40 60 16 <5 <20 3 <0.01 <10 5 <10 1 64 46 E189365 10 <0.2 0.36 <5 15 <5 0.03 <1 6 240 24 1.87 10 0.07 118 <1 0.03 13 160 24 <5 <20 6 <0.01 <10 6 <10 <1 21 47 E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 4 <0.01 <10 6 <10 <1 21 48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <20 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 111 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <20 17 <0.01 <10 8 <10 4 42 50 E189370 10 <0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 9 <0.01 <10 4 <10 2 10 51 E189372 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 9 <0.01 <10 4 <10 2 10 52 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 2 20 5 <0.01 <1 2 20 5 0.71 <10 <0.01 <10 9 <10 2 69 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <0 5 <0.01 <10 11 <10 1 <10 2 69 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <0 5 <0.01 <10 11 <10 1 1 <10 2 69								-		-											-				-	_		
45 E189364 10 <0.2 0.52 <5 20 <5 <0.01 2 21 136 52 3.94 <10 0.20 525 <1 0.03 40 60 16 <5 <20 3 <0.01 <10 5 <10 1 64 46 E189365 10 <0.2 0.36 <5 15 <5 0.03 <1 6 240 24 1.87 10 0.07 118 <1 0.03 13 160 24 <5 <20 6 <0.01 <10 6 <10 <1 21 47 E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 6 <0.01 <10 6 <10 <1 21 48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <20 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 11 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <20 17 <0.01 <10 8 <10 4 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 9 <0.01 <10 6 <10 2 30 51 E189370 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 4 <10 2 10 52 E189371 10 <0.2 0.20 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 9 <0.01 <10 4 <10 5 <10 2 20 53 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 4 220 5 0.01 <1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 1 <0.01 <10 5 <0.01 <10 5 <10 2 69 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <20 5 <0.01 <10 11 <11 <10 2 69					_													-			_				-			
46 E189365 10 <0.2 0.36 <5 15 <5 0.03 <1 6 240 24 1.87 10 0.07 118 <1 0.03 13 160 24 <5 <20 6 <0.01 <10 6 <10 <1 21 47 E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 4 <0.01 <10 6 <10 <1 21 48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <0.0 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.02 0.57 <5 15 <5 0.21 1 11 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <0 0 7 <0.01 <10 8 <10 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <0 0 3 <0.01 <10 6 <10 2 30 <10 2 55 <10 2 2 20 18 50 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <0 0 7 <0.01 <10 6 <10 2 30 <10 2 55 <10 0.02 19 18371 10 <0.02 0.35 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <0 0 7 <0.01 <10 6 <10 2 30 <10 2 55 <10 0.02 0.35 <15 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 10 480 12 <5 <0 0 7 <0.01 <10 5 <10 2 20 53 E189372 10 <0.02 0.29 <5 10 <5 0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <0 0 2 <0.01 <10 4 <10 <17																												
47 E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 4 <0.01 <10 6 <10 <1 21 48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <20 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 111 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <0 17 <0.01 <10 8 <10 4 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <0 3 <0.01 <10 6 <10 2 30	45	E189364	10	<0.2 0.52	<5	20	<5 <0.01	2	21	136	52	3.94	<10	0.20	525	<1	0.03	40	60	16	<5	<20	3 < 0.01	<10	5	<10	1	64
47 E189366 15 <0.2 0.33 <5 10 <5 0.01 <1 7 226 21 1.63 <10 0.07 507 <1 0.03 14 60 24 <5 <20 4 <0.01 <10 6 <10 <1 21 48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <20 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 111 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <0 17 <0.01 <10 8 <10 4 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <0 3 <0.01 <10 6 <10 2 30	46	F189365	10	<0.2 0.36	<5	15	<5 0.03	~1	6	240	24	1 87	10	0.07	118	~ 1	0.03	13	160	24	<5	<20	6 <0.01	<10	6	<10	-1	21
48 E189367 15 <0.2 0.74 <5 25 <5 0.02 2 20 185 50 3.56 20 0.19 1158 <1 0.03 33 170 38 <5 <20 7 <0.01 <10 9 <10 2 56 49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 11 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <20 17 <0.01 <10 8 <10 4 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 3 <0.01 <10 6 <10 2 30 10 6 <10 2 30 10 6 <10 2 30 10 6 <1 5 5 <0.01 <1 3 266 8 0.95 <10 0.03 199 <1 0.02 10 480 12 <5 <20 9 <0.01 <10 4 <10 2 10 52 E189371 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 5 <10 2 20 53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 <11 17 <10 <10 <11 17 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10																												
49 E189368 10 <0.2 0.57 <5 15 <5 0.21 1 11 247 18 2.99 <10 0.17 800 <1 0.02 19 940 48 <5 <20 17 <0.01 <10 8 <10 4 42 50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 3 <0.01 <10 6 <10 2 30 10 10 <0.2 0.16 <5 5 <5 0.12 <1 3 266 8 0.95 <10 0.03 199 <1 0.02 10 480 12 <5 <20 9 <0.01 <10 4 <10 2 10 52 E189371 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 5 <10 2 20 53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 4 <10 2 20 53 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 4 <10 <1 175 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10																												
50 E189369 10 0.2 0.48 <5 15 <5 0.02 <1 8 247 16 1.99 10 0.12 211 <1 0.02 16 140 28 <5 <20 3 <0.01 <10 6 <10 2 30																					_				_			
51 E189370 10 <0.2 0.16 <5 5 <5 0.12 <1 3 266 8 0.95 <10 0.03 199 <1 0.02 10 480 12 <5 <20 9 <0.01 <10 4 <10 2 10 52 E189371 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 5 <10 5 <10 2 20 53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 <1 17 54 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 2 220 5 0.71 <10 <0.01 84 <1 0.02 8 40 6 <5 <20 1 <0.01 <10 3 <10 <1 6 55 E189374 10 0.5 0.18 <5 15 <5 <0.01 1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 3 <0.01 <10 5 <0.01 <10 5 <10 2 16																												
52 E189371 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 5 <10 2 20 53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 <1 17 54 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 2 220 5 0.71 <10 <0.01 84 <1 0.02 8 40 6 <5 <20 1 <0.01 <10 3 <10 <1 6 55 E189374 10 0.5 0.18 <5 15 <5 <0.01 1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 3 <0.01 <10 5 <10 2 69 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <20 5 <0.01 <10 11 <10 2 69	50	E109309	10	0.2 0.40	<5	15	<5 0.02	< 1	0	241	10	1.99	10	0.12	211	<1	0.02	10	140	20	<0	<20	3 <0.01	< 10	О	<10	2	30
52 E189371 10 <0.2 0.35 <5 15 <5 0.06 <1 6 226 17 1.50 <10 0.06 147 <1 0.02 14 280 32 <5 <20 7 <0.01 <10 5 <10 2 20 53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 <1 17 54 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 2 220 5 0.71 <10 <0.01 84 <1 0.02 8 40 6 <5 <20 1 <0.01 <10 3 <10 <1 6 55 E189374 10 0.5 0.18 <5 15 <5 <0.01 1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 3 <0.01 <10 5 <0.01 <10 5 <10 2 16 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <20 5 <0.01 <10 11 <10 2 69	51	E189370	10	<0.2 0.16	<5	5	< 5 0.12	<1	3	266	8	0.95	<10	0.03	199	<1	0.02	10	480	12	<5	<20	9 < 0.01	<10	4	<10	2	10
53 E189372 10 <0.2 0.29 <5 10 <5 <0.01 <1 4 174 7 1.19 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 4 <10 <1 17 <10 <10 0.04 392 <1 0.02 10 50 6 <5 <20 2 <0.01 <10 4 <10 4 <10 <1 17 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52	E189371	10	< 0.2 0.35	<5	15	<5 0.06	<1	6	226	17	1.50	<10	0.06	147	<1	0.02	14	280	32	<5	<20	7 < 0.01	<10	5	<10	2	20
54 E189373 10 <0.2 0.18 <5 10 <5 <0.01 <1 2 220 5 0.71 <10 <0.01 84 <1 0.02 8 40 6 <5 <20 1 <0.01 <10 3 <10 <1 6 <55 E189374 10 0.5 0.18 <5 15 <5 <0.01 1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 3 <0.01 <10 5 <10 2 16 <10 2 69	53	E189372	10	< 0.2 0.29	<5	10	<5 < 0.01	<1	4	174	7	1.19	<10	0.04	392	<1	0.02	10	50	6	<5	<20	2 < 0.01	<10	4	<10	<1	
55 E189374 10 0.5 0.18 <5 15 <5 <0.01 1 4 257 37 3.40 <10 0.01 79 <1 0.02 10 230 82 <5 <20 3 <0.01 <10 5 <10 2 16 56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <20 5 <0.01 <10 11 <10 2 69					-											-				6	_							
56 E189375 15 <0.2 0.98 <5 30 <5 <0.01 2 10 77 39 5.38 30 0.43 73 <1 0.03 25 280 18 <5 <20 5 <0.01 <10 11 <10 2 69											-									-								
	00	2.000, ,	,,	0.0 0.10			10.01	•			0,	0.10	110	0.01		٠,	0.02			02		`	0 40.07	110	·	110	_	
57 E189376 10 <0.2 0.41 <5 10 <5 <0.01 <1 13 208 14 2.03 <10 0.06 427 <1 0.02 19 110 12 <5 <20 2 <0.01 <10 4 <10 1 30	56	E189375	15	<0.2 0.98	<5	30	<5 < 0.01	2	10	77	39	5.38	30	0.43	73	<1	0.03	25	280	18	<5	<20	5 < 0.01	<10	11	<10	2	69
	57	E189376	10	<0.2 0.41	<5	10	<5 < 0.01	<1	13	208	14	2.03	<10	0.06	427	<1	0.02	19	110	12	<5	<20	2 < 0.01	<10	4	<10	1	30
58 E189377 10 <0.2 0.33 <5 30 <5 0.06 <1 19 239 20 1.41 10 0.05 0000 <1 0.01 76 180 36 <5 <20 22 <0.01 <10 5 <10 4 47				<0.2 0.33		30		<1		239			10	0.05	0000	<1	0.01			36	<5	<20	22 < 0.01	<10	5	<10	4	47
59 E189378 10 <0.2 0.31 <5 5 <5 0.02 <1 14 226 21 1.54 <10 0.04 485 <1 0.01 12 130 12 <5 <20 2 <0.01 <10 4 <10 <1 24	59	E189378	10	< 0.2 0.31	<5	5	<5 0.02	<1		226	21	1.54	<10	0.04	485	<1	0.01	12	130	12	<5	<20	2 < 0.01	<10	4	<10	<1	24
60 E189379 10 <0.2 0.43 <5 15 <5 <0.01 <1 26 203 32 2.00 10 0.07 757 <1 0.02 15 70 28 <5 <20 2 <0.01 <10 4 <10 1 24						-																						
								- ·								•									•		•	
61 E189380 10 <0.2 0.25 <5 10 <5 <0.01 <1 3 239 17 1.22 <10 0.02 98 <1 0.01 9 70 12 <5 <20 2 <0.01 <10 4 <10 <1 10	61	E189380	10	<0.2 0.25	<5	10	<5 < 0.01	<1	3	239	17	1.22	<10	0.02	98	<1	0.01	9	70	12	<5	<20	2 < 0.01	<10	4	<10	<1	10
62 E189381 10 <0.2 0.62 <5 20 <5 0.01 1 13 191 20 2.68 <10 0.21 558 <1 0.02 21 90 22 <5 <20 4 <0.01 <10 7 <10 <1 41	62	E189381	10	<0.2 0.62	<5	20	<5 0.01	1	13	191	20	2.68	<10	0.21	558	<1	0.02	21	90	22	<5	<20	4 < 0.01	<10	7	<10	<1	41
63 E189382 5 <0.2 0.08 <5 5 <5 0.03 <1 2 256 5 0.58 <10 <0.01 167 <1 0.02 6 130 4 <5 <20 4 <0.01 <10 4 <10 <1 4	63	E189382	5	<0.2 0.08	<5	5	<5 0.03	<1	2	256	5	0.58	<10	<0.01	167	<1	0.02	6	130	4	<5	<20	4 < 0.01	<10	4	<10	<1	4
64 E189383 10 1.7 0.13 <5 5 <5 0.04 <1 4 259 9 1.59 <10 <0.01 259 <1 0.02 11 160 150 <5 <20 3 <0.01 <10 3 <10 <1 28	64	E189383	10	1.7 0.13	<5	5	<5 0.04	<1	4	259	9	1.59	<10	<0.01	259	<1	0.02	11	160	150	<5	<20	3 < 0.01	<10	3	<10	<1	28
65 E189384 10 <0.2 0.23 5 25 <5 <0.01 2 18 92 40 4.38 30 0.04 4064 <1 0.02 22 210 16 <5 <20 4 <0.01 <10 3 <10 3 81	65		10	<0.2 0.23	5	25	<5 < 0.01	2	18	92	40	4.38	30	0.04		<1	0.02	22	210	16	<5	<20	4 < 0.01	<10	3	<10	3	81

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi Ca%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	₽	Pb	Sb	Sn	Sr Ti%	U	٧	w	Υ	Zn
66	E189385	10	<0.2 0.59	<5	20	<5 <0.01	<1	10	143	10	2.06	10	0.08	1219	<1	0.03	24	60	12	<5	<20	3 < 0.01	<10	3	<10	1	39
67	E189386	5	<0.2 0.28	<5	10	<5 0.02			200		1.13	<10			<1	0.03	14	80	12	<5	<20	4 < 0.01			<10	<1	16
68	E189387	10	0.2 0.30	<5	10	<5 < 0.01	<1		209		1.01	<10	0.04		<1	0.02	11	70	14	<5	<20	2 < 0.01			<10	<1	10
69	E189388	5	<0.2 0.53	<5	10	<5 < 0.01	<1	8	199	11	2.38	<10	0.08	802	<1	0.03	19	110	18	<5	<20	2 < 0.01		_	<10	<1	21
70	E189389	15	<0.2 0.37	10	30	<5 < 0.01	1		117	31		30	0.03		<1	0.03	20	170	26	<5	<20	4 < 0.01			<10	2	49
, 0	2100000	,,,	10.E 0.07			10 10.01	•	.,	,	01	0.01	00	0.00	OLO	`'	0.00	20	170	20	\0	\20	4 (0.01	~10	7	10	_	70
71	E189390	15	<0.2 0.33	<5	20	<5 <0.01	<1	13	197	16	2.40	10	0.03	867	<1	0.02	20	130	38	<5	<20	3 < 0.01	<10	4	<10	1	28
72	E189391	110	1.0 0.41	20	30	<5 < 0.01	3	33	91	51	6.18	20		1369	1	0.03	32	260	316	<5	<20	4 < 0.01			<10	3	64
73	E189392	460	0.4 0.46	15	25	<5 <0.01	2		119	35	4.25	20	0.05		<1		21	210	112	<5	<20	4 < 0.01			<10	2	160
74	E189393	>1000	5.1 0.12		10	<5 0.01	3	20	197	11	5.86		<0.01		<1	0.02	21	130	1006	<5	<20	11 < 0.01			<10	<1	48
75	E189394	>1000	2.5 0.01	60	<5	<5 < 0.01	1		257	4			<0.01		<1		10	<10	116	<5	<20	2 < 0.01			<10	<1	4
75	L10303-1	>1000	2.5 0.01	00	\3	~5 ~0.01	•	3	231	7	2.31	~10	\0.01	049	- 1	0.01	10	\10	110	\3	\20	2 <0.01	<10	2	~10	- 1	4
76	E189395	>1000	7.5 0.17	615	10	<5 <0.01	6	20	135	10	>10	-10	<0.01	108	<1	0.03	25	90	454	10	<20	1 < 0.01	-10	3	10	<1	51
77	E189396	>1000	27.0 < 0.01		<5	35 < 0.01	_	448	159	29	>10		<0.01	46	<1	0.03	58	20	1160	10	<20	<1 <0.01		2	10	<1	126
78	E189397	>1000	>30<0.01	75	<5	160 < 0.01	4		244	36	4.08		<0.01	25	<1	0.00	69		>10000	5	<20	<1 <0.01		2	20	<1	10
79	E189398	>1000	>30 < 0.01		<5	365 0.12	11			20	8.33		0.12		<1	0.01	55		>10000	15	<20	5 < 0.01		3	20	<1	10
80	E189399	30	0.2 0.07	15	5	<5 < 0.01	<1		261		1.03		<0.12			0.02	9	40	60	<5	<20	<1 <0.01		_	<10	<1	3
80	E109399	30	0.2 0.07	15	5	<5 <0.01	<1	5	201	Э	1.03	<10	<0.01	114	<1	0.01	9	40	60	<5	<20	<1 <0.01	<10	3	<10	< 1	3
01	E189400	>1000	17.1 < 0.01	90	<5	35 0.08	4	22	204	_	7.28	<10	0.28	755	.4	0.02	ε0	120	7758	5	-20	2 < 0.01	-10	2	10	4	24
81					_										<1 		50 156	120		_	<20			3	10	1	
82	E189401	>1000	10.4 0.03		<5	20 < 0.01	2	39	243		4.35		< 0.01	34	<1	0.02		<10	3420	<5	<20	<1 < 0.01			<10	<1	5
83	E189402	510	0.5 0.01		<5	<5 < 0.01	3	33	219	15	7.84		<0.01	50	<1	0.02	95	20	42	5	<20	<1 <0.01			<10	<1	65
84	E189403	>1000	1.1 0.01	585	<5	<5 0.04		150	110	26	>10	<10		1683	<1	0.04	186	20	38	10	<20	2 < 0.01		3	20	2	104
85	E189404	>1000	0.7 0.07	290	10	<5 <0.01	3	11	209	134	7.85	<10	0.03	251	<1	0.02	24	100	30	<5	<20	2 < 0.01	<10	4	<10	<1	135
86	E189405	10	<0.2 0.17	<5	5	<5 <0.01	7	22	113	9	>10	<10	0.05	2490	<1	0.03	63	100	38	10	<20	3 < 0.01	-10	4	10	8	140
87	E189406	>1000	1.5 0.02	65	<5	<5 0.14	5	25	153	4		<10		4194	<1	0.03	53	20	14	5	<20	2 < 0.01		3	10	1	62
88	E189407	>1000	1.0 0.18		10	<5 0.14	6	66	115	6	>10	<10		171	<1	0.02	34	70	20	5	<20	19 < 0.01		3	10	<1	7
	E189408	355	<0.2 0.05	55	5	<5 0.42	10	22	99	14	>10	<10	4.52		<1	0.03	15	200	20	10	<20	9 < 0.01		3	20	3	, 91
89					_		2	19			3.96			622	1		25	270	20	<5	<20	20 < 0.01		_	<10	2	31
90	E189409	110	<0.2 0.27	30	30	<5 0.33	2	19	71	57	3.90	10	0.64	022		0.02	25	2/0	20	<0	<20	20 <0.01	<10	**	<10	2	31
91	E189410	525	<0.2 0.06	30	5	<5 0.12	2	a	206	7	6.03	<10	1.11	213/	<1	0.02	27	110	8	<5	<20	5 < 0.01	-10	3	<10	1	29
92	E189411	355	0.2 0.33	45	25	<5 0.12	2	_	115		4.37	10	0.50		<1	0.02	30	250	18	<5	<20	15 < 0.01			<10	2	40
93	E189412	15	0.2 0.33	<5	5	<5 0.21	<1	3			1.18	<10	0.32		<1	0.02	8	150	24	<5	<20	38 < 0.01			<10	<1	10
93 94		>1000	>30 0.03	395	<5	355 < 0.01	7	39	193	-	6.42	<10	0.02	149	<1	0.01	49		>10000	15	<20	1 < 0.01		3	30	<1	82
-	E189413					5 < 0.01	1		232	5	3.56		<0.01	79	<1	0.02		130	750	<5	<20	1 <0.01			<10	<1	33
95	E189414	610	2.8 0.04	80	<5	5 <0.01	'	0	232	5	3.30	<10	<0.01	19	< 1	0.01	12	130	750	<0	<20	1 <0.01	<10	۷.	< 10	~ !	33
96	E189415	>1000	0.9 0.05	30	<5	<5 <0.01	2	3	243	18	3.16	<10	0.06	673	<1	0.01	7	30	366	5	<20	1 < 0.01	<10	3	<10	<1	189
97	E189416	>1000	2.8 0.20		15	<5 < 0.01	2	6	150	10	4.18	10			<1	0.03	12	160	234	< 5	<20	3 < 0.01			<10	1	143
98	E189417	190	<0.2<0.01	10	<5	<5 < 0.01	<1	2	304	6	2.35	<10	0.01	469	<1	0.03	9	40	22	<5	<20	<1 <0.01		-	<10	<1	12
	E189418		<0.2 < 0.01	<5	20	<5 < 0.01	<1		192	_	0.64		< 0.01		<1	0.02	8	60	10	<5	<20	2 < 0.01			<10	<1	7
99 100	E189418	30 25	0.2 0.19	<5 20	10	<5 <0.01 <5 <0.01	4	12	194		8.91	<10		2375	<1	0.02	17	130	230	<5	<20	4 < 0.01			<10	2	168
100	E109419	25	0.2 0.13	20	10	<5 <0.01	4	12	194	13	0.91	<10	0.03	23/3	< I	0.02	17	130	230	<5	\2 0	4 <0.01	< 10	7	<10	2	100
101	E189420	40	0.2 0.07	5	10	<5 <0.01	3	8	198	9	6.41	<10	0 02	1541	<1	0.02	12	60	140	<5	<20	2 < 0.01	<10	3	<10	1	275
102	E189421	360	0.2 0.07	5	5	<5 0.07	3	11	213	_	7.93	<10	1.02		<1	0.02	15	80	48	<5	<20	3 < 0.01			<10	1	74
102	E189421	15	<0.2 0.03	10	25	<5 0.06	2	24	73	33	4.03	20	0.50		<1	0.02	38	190	14	<5	<20	7 < 0.01			<10	2	76
103	E189423	30	<0.2 0.23	10	20	<5 0.00	1	14	171	24	3.12	10	0.22		<1	0.03	26	160	58	<5	<20	5 < 0.01			<10	1	57
104	E189424	10	0.2 0.33	<5	10	<5 0.04	<1	6	227	-	1.08	<10	0.10		<1	0.02	14	170	62	<5	<20	10 < 0.01			<10	1	19
100	L103424	10	U.Z U.13	<.∪	10	~U.ZU	∼ i	v		11	1.00	~ 10	0.10	U21	~ 1	0.02	17	.,,	<u>پ</u>	~~	~~0	,0 ~0.01	~ 10	J	- 10		

Et #.	Tag #	Au(ppb) Ag Al%	As	Ва	Bi Ca%	Cd	Со	Cr	Cu F	e %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti	%	U	٧	w	Υ	Zn
106	E189425	20	<0.2 0.17	5	15	<5 0.10	3	16	136	15 (6.48	<10	0.99	2075	<1	0.03	26	220	28	<5	<20	6 <0.	01 <	:10	4	<10	2	72
107	E189426	95	0.3 0.03	20	<5	<5 0.10	4	12	171	4 9	9.15	<10	1.84	4551	<1	0.02	13	30	88	<5	<20	1 <0.	01 <	:10	3	<10	2	56
108	E189427	10	0.3 0.11	5	10	<5 0.01	1	7	229	32	3.60	<10	0.02	227	<1	0.02	13	90	38	<5	<20	2 < 0.	01 <	:10	3	<10	2	17
109	E189428	15	< 0.2 0.64	<5	35	<5 0.03	2	16	124	28	3.69	20	0.15	555	<1	0.02	33	270	10	<5	<20	5 <0.	01 <	10	6	<10	2	69
110	E189429	10	0.2 0.06	<5	<5	<5 0.19	2	4	240			<10	0.07	78	<1	0.01	10	90	8	<5	<20	10 <0.	01 <	:10	3	<10	<1	195
QC DA	TA:																											
Repeat	:																											
1	E189230	15	0.2 0.15	<5	<5	<5 0.02	2	3	201	5 (0.58	<10	0.01	259	<1	0.03	7	90	8	<5	<20	3 <0.	01 <	10	3	<10	<1	15
9	E189238	70																										
10	E189239	20	<0.2 0.32	<5	5	<5 0.01	<1	10	228	11 2	2.46	<10	0.02	278	<1	0.02	23	110	8	<5	<20	2 <0.	01 <	10	4	<10	<1	25
19	E189248	20	<0.2 0.70	<5	40	<5 < 0.01	1	16	110	21 2	2.74	10	0.10	1009	<1	0.04	20	70	14	<5	<20	5 <0.	01 <	10	5	<10	2	43
36	E189355	15	0.3 0.47	<5	30	<5 < 0.01	2	30	51	50 !	5.43	30	0.06	1160	<1	0.04	40	170	28	<5	<20	6 <0.	01 <	:10	5	<10	3	90
45	E189364	10	0.2 0.52	<5	20	<5 < 0.01	2	21	136	51 (3.79	<10	0.20	508	<1	0.03	38	60	16	<5	<20	3 <0.	01 <	10	5	<10	1	63
54	E189373	10	<0.2 0.18	<5	10	<5 < 0.01	<1	2	200	5 (0.69	<10	0.01	77	<1	0.02	7	40	6	<5	<20	1 <0.	01 <	10	3	<10	<1	6
71	E189390	15	0.2 0.32	<5	20	<5 < 0.01	<1	13	192	16 2		10	0.03	858	<1	0.02	21	130	40	<5		3 <0.				<10	1	28
73	E189392	500																										
80	E189399	25	0.3 0.06	15	5	<5 < 0.01	<1	5	249	5 (0.98	<10	<0.01	108	<1	0.01	9	40	66	<5	<20	<1 <0.	01 <	:10	3	<10	<1	3
83	E189402	530			_			-									-						-		-			-
89	E189408	375	<0.2 0.05	55	5	<5 0.28	10	22	107	15	>10	<10	4.50	8480	<1	0.04	16	210	20	10	<20	9 <0.	01 <	10	4	20	3	96
91	E189410	510	10.2 0.00	•	Ŭ						0	1,0				0.0 .				, ,		0 10.	•		•			00
106	E189425	10	<0.2 0.18	5	15	<5 0.10	3	17	137	15 (6.61	<10	1.02	2016	<1	0.03	26	210	30	<5	<20	6 <0.	01 <	10	4	<10	2	73
Resplit	·•																											
1	E189230	30	0.2 0.14	<5	<5	<5 0.02	2	3	191	5 (0.56	<10	0.01	257	<1	0.02	8	70	8	<5	<20	2 <0.	01 <	10	3	<10	<1	11
36	E189355	10	0.2 0.42	<5	30	<5 < 0.01	2	28	47		5.29	20	0.06		<1	0.04	39	160	24	<5	<20	5 <0.				<10	3	91
71	E189390	10	0.2 0.29	<5	15	<5 < 0.01	<1	12	192		2.46	10		871	<1	0.02	20	110	38	<5	<20	3 <0.	-		-	<10	1	26
106	E189425	15	<0.2 0.19	10	15	<5 0.08	3	19	145		6.39	10	0.96		<1	0.03	28	170	26	<5	<20	5 <0.			-	<10	2	67
Standa	rd:																											
Pb129a			11.8 0.82	<5	70	<5 0.50	73	7	15 1	433	1.65	<10	0.65	379	2	0.04	5	430	6272	15	<20	30 0.	05 <	10	23	<10	2 3	10000
Pb129a			11.8 0.84	<5	70	<5 0.47	71	8				<10	0.66	386	2	0.04	-		6256	20	<20					<10		>10000
Pb129a			11.7 0.87	<5	70	<5 0.51	67	7	14 1			<10	0.69	387	2	0.03	_	410	6192	15	<20					<10		9942
Pb129a			11.7 0.83	<5	65	<5 0.46	70	7	14 1			<10	0.65	398	2	0.04	5	420	6152	15	<20					<10		9961
SF30	•	835				.5 5.10	, ,	•	• • •		•		0.00		_	J. V .	•		J. 	. •				. •			_	
0. 00		വാ																										

ICP: Aqua Regia Digest / ICP- AES Finish.

610

620

Ag : Aqua Regia Digest / AA Finish. Au: 30g Fire Assay/ AA Finish.

NM/nw df/2_700S XLS/09

OXE74

OXE74

ECO TECH LABORATORY LTD.

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Gemco Minerals Inc. AK09-0700

3-Nov-09

		Au	Au	Ag	Ag	Pb
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
88	E189407	8.35	0.244			
94	E189413	3.89	0.113			
Standar	d:					
Pb104				104	3.03	0.99
OXI67		1.87	0.055			
SQ30		30.5	0.889			

NM/ap/nw XLS/09 ECÒ TECH L'ABORATORY LTD.

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2009-0700

Gemco Minerals Inc.

3-Nov-09

PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 110

Sample Type:Rock Project: Burns 09

Submitted by: A Justason

			Au	Au	Ag	Ag	Pb
ET #.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
26	E189345	*	14.5	0.423			
27	E189346		1.29	0.038			
28	E189347		9.55	0.279			
29	E189348		1.49	0.043			
30	E189349	*	22.8	0.663			
31	E189350	*	25.8	0.751			
32	E189351		1.26	0.037			
74	E189393	*	6.85	0.200			
75	E189394	*	2.61	0.076			
76	E189395	*	79.5	2.318			
77	E189396	*	88.5	2.581			
78	E189397	*	14.8	0.432	66.6	1.94	2.52
79	E189398	*	42.5	1.239	156	4.55	6.16
81	E189400	*	10.2	0.296			
82	E189401		1.60	0.047			
84	E189403		2.17	0.063			
85	E189404		1.84	0.054			
87	E189406	*	31.5	0.919			
88	E189407		8.95	0.261			
94	E189413		3.48	0.101	164	4.78	5.39
96	E189415	*	9.85	0.287			
97	E189416	*	44.0	1.283			

QC DATA:

epeau	5 <i>:</i>		
27	E189346	1.21	0.035
28	E189347	10.3	0.300
84	E189403	2.04	0.059
85	E189404	1.76	0.051

ECO TECH LABORATORY LTD.

^{*} Based on 1200 Metallic Assays Forceonmended are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Page 1 of 2

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2009-0700

Revised

Gemco Minerals Inc.

3-Nov-09

PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 110

Sample Type:Rock Project: Burns 09

Submitted by: A Justason

ET #. Tag # Au (g/t) Au (oz/t) Au (oz/t) Au (oz/t) Au (oz/t) Ag (g/t) Ag (oz/t) 26 E189345 * 14.5 0.423 12.1 0.353 27 E189346 1.29 0.038 12.1 0.353 28 E189347 9.55 0.279 29 189348 1.49 0.043 30 E189349 * 22.8 0.663 19.8 0.577 31 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6
26 E189345 * 14.5 0.423 12.1 0.353 27 E189346 1.29 0.038 28 E189347 9.55 0.279 29 E189348 1.49 0.043 30 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
26 E189345 * 14.5 0.423 12.1 0.353 27 E189346 1.29 0.038 28 E189347 9.55 0.279 29 E189348 1.49 0.043 30 E189349 * 22.8 0.663 19.8 0.577 31 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
28 E189347 9.55 0.279 29 E189348 1.49 0.043 30 E189349 * 22.8 0.663 19.8 0.577 31 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
29 E189348
30 E189349 * 22.8 0.663 19.8 0.577 31 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
31 E189350 * 25.8 0.751 23.9 0.697 32 E189351 1.26 0.037 74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
32 E189351
74 E189393 * 6.85 0.200 8.05 0.235 75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
75 E189394 * 2.61 0.076 4.16 0.121 76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
76 E189395 * 79.5 2.318 109 3.179 77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
77 E189396 * 88.5 2.581 96.7 2.820 78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
78 E189397 * 14.8 0.432 13.4 0.391 66.6 1.94 2 79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
79 E189398 * 42.5 1.239 30.5 0.889 156 4.55 6 81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
81 E189400 * 10.2 0.296 5.55 0.162 82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
82 E189401 1.60 0.047 84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
84 E189403 2.17 0.063 85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
85 E189404 1.84 0.054 87 E189406 * 31.5 0.919 24.5 0.714
87 E189406 * 31.5 0.919 24.5 0.714
88 E189407 8 95 0 261
94 E189413 3.48 0.101 164 4.78 5
96 E189415 * 9.85 0.287
97 E189416 * 44.0 1.283 32.2 0.939
QC DATA:
Repeats:
27 E189346 1.21 0.035
28 E189347 10.3 0.300 Am
84 E189403 2.04 0.059 (////////////////////////////////////
85 E189404 1.76 0.051 ECO TECH LABOR

Norman Monteith B.C. Certified Assayer

* Based on 120g Metallic Assays Reccommended

Albusiness is undertaken Jubied to the Company's Exheral Conditions of Business which are available on
request. Registered Office. Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Page 1 of 2

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Gemco	Minerals Inc	. AK09-0700R		Metallic Assay					3-Nov-09
ET #.	Tag #	Au (g/t)	Au (oz/t)		Au (oz/t)	Ag (g/t)	Ag (oz/t)	Pb (%)	
88	E189407	8.35	0.244						
94	E189413	3.89	0.113						
Standard	d:								
Pb104						104	3.03	0.99	
OXI67		1.87	0.055				0.00	0.00	
SQ30		30.5	0.889						

NM/ap/nw XLS/09

ECO TECH LABORATORY LTD.

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tet + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2009-0700

Gemco Minerals Inc.

13-Jan-10

PO Box 111 **Wells, BC** V0K 2R0

No. of samples received: 110

Sample Type:Rock
Project: Burns 09

XLS/09

Submitted by: A Justason

		Fe	Mn	
ET #.	Tag #	(%)	(%)	
42	E189361	9.92	*****	***
58	E189377		1.32	
76	E189395	12.5		
77	E189396	12.1		
84	E189403	23.0		
86	E189405	16.5		
87	E189406	10.4		
88	E189407	12.1		
89	E189408	19.3		
QC DAT	A:			
42	E189361	10.1		
58	E189377		1.32	
Standard	d:			
CCu1c		29.5		
WPR-1			0.17	
			Ø	m
NM/nw			ECO TECH I Norman Mon	ABORATORY LTD.

B.C. Certified Assayer