

### ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geochemical Report on the Wicheeda South Property

TOTAL COST: \$8,813.36

AUTHOR(S): Bob Lane

SIGNATURE(S)

NOTICE OF WORK PERMIT NUMBER/DATE: N/A

STATEMENT OF WORK EVENT NUMBER/DATE: 4455428 / January 14, 2010

YEAR OF WORK: 2009

PROPERTY NAME: Wicheeda South

CLAIM NAMES (on which work was done): 598206 and 598207

COMMODITIES SOUGHT: Rare Earth Elements

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Cariboo

NTS / BCGS: 093I.041 & 093J.050

LATITUDE:

LONGITUDE:

(at centre of work)

UTM Zone:

EASTING: 567700

NORTHING: 6037400

OWNER: Spectrum Mining Corporation

MAILING ADDRESS:

Box 20 Wardner, BC V0B 2J0

OPERATOR(S) [who paid for the work]: Spectrum Mining Corporation

MAILING ADDRESS: same as above

### REPORT KEYWORDS:

Foreland Belt, Rocky Mountain Trench, sedimentary strata, upper Cambrian to lower Ordovician Kechika Group, rare earth elements, niobium, fluorine.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 15944, 16246

| TYPE OF WORK IN<br>THIS REPORT      | EXTENT OF WORK (in metric units) | ON WHICH CLAIMS    | PROJECT COSTS<br>APPORTIONED<br>(incl. support) |
|-------------------------------------|----------------------------------|--------------------|-------------------------------------------------|
| GEOLOGICAL (scale, area)            |                                  |                    |                                                 |
| Ground, mapping                     | 12 ha                            | 598206 &<br>598207 | 613.36                                          |
| Photo interpretation                |                                  |                    |                                                 |
| GEOPHYSICAL (line-kilometres)       |                                  |                    |                                                 |
| Ground                              |                                  |                    |                                                 |
| Magnetic                            |                                  |                    |                                                 |
| Electromagnetic                     |                                  |                    |                                                 |
| Induced Polarization                |                                  |                    |                                                 |
| Radiometric reconnaissance only     | 12 ha                            | 598206 &<br>598207 | 2000                                            |
| Seismic                             |                                  |                    |                                                 |
| Airborne                            |                                  |                    |                                                 |
| GEOCHEMICAL (number of sample       | s analysed for)                  |                    |                                                 |
| Soil                                |                                  |                    |                                                 |
| Silt 23                             |                                  | 598206 &<br>598207 | 2000                                            |
| Rock 4                              |                                  | 598206 &<br>598207 | 500                                             |
| Other                               |                                  |                    |                                                 |
| DRILLING (total metres, number of h | noles, size, storage location)   |                    |                                                 |
|                                     | and along resulting              |                    |                                                 |
| Core                                |                                  |                    |                                                 |
| Non-core                            |                                  |                    |                                                 |
| RELATED TECHNICAL                   | 27                               | 598206 &           | 700                                             |
| Sampling / Assaying                 |                                  | 598207             |                                                 |
| Petrographic                        |                                  |                    |                                                 |
| Mineralographic                     |                                  |                    |                                                 |
| Metallurgic                         | 12 ha                            | 598206 &           | 1000                                            |
| PROSPECTING (scale/area)            |                                  | 598207             |                                                 |
| PREPATORY / PHYSICAL                |                                  |                    |                                                 |
| Line/grid (km)                      | 12 ha                            |                    | 2000                                            |
| Topo/Photogrammetric (scale         |                                  |                    |                                                 |
| Legal Surveys (scale, area)         |                                  |                    |                                                 |
| Road, local access (km)/trail       |                                  |                    |                                                 |
| Trench (number/metres)              |                                  |                    |                                                 |
| Underground development (r          | netres)                          |                    |                                                 |
| Other                               |                                  | TOTAL              | 69 912 25                                       |
|                                     |                                  | TOTAL<br>COST      | \$8,813.36                                      |

## GEOCHEMICAL REPORT ON THE WICHEDA SOUTH PROPERTY

## CARIBOO MINING DIVISION BRITISH COLUMBIA BCGS MAPS: 093I.041 & 093J.050 LATITUDE 54.482465° N LONGITUDE 121.965323° W STATEMENT OF WORK#: 4455428

Prepared For: Spectrum Mining Corporation

Box 20

Wardner, BC Canada V0B 2J0

Prepared By: Bob Lane, PGeo

BC Geological Survey Assessment Report 31477

Date: April 22, 2010

### **TABLE OF CONTENTS**

| 1   | EXECUTIVE SUMMARY                                                | 1    |
|-----|------------------------------------------------------------------|------|
| 2   | INTRODUCTION                                                     | 1    |
| 2.1 | LOCATION AND ACCESS                                              | 2    |
| 2.2 | PHYSIOGRAPHY AND CLIMATE                                         | 2    |
| 2.3 | PROPERTY STATUS & OWNERSHIP                                      | 2    |
| 3   | EXPLORATION HISTORY                                              | 4    |
| 4   | REGIONAL GEOLOGY                                                 | 4    |
| 5   | PROPERTY GEOLOGY                                                 | 8    |
| 5.1 | MINERALIZATION AND GEOLOGICAL MODEL                              | 9    |
| 6   | 2009 EXPLORATION PROGRAM                                         | .10  |
| 7   | RESULTS                                                          | .11  |
| 8   | DISCUSSION                                                       | .15  |
| 9   | CONCLUSIONS AND RECOMMENDATIONS                                  | .15  |
| 10  | ITEMIZED COST STATEMENT                                          | .16  |
| 11  | REFERENCES                                                       | .17  |
| 12  | STATEMENT OF QUALIFICATIONS                                      | .18  |
|     |                                                                  |      |
| LIS | ST OF FIGURES                                                    |      |
| FIG | GURE 1: WICHEEDA SOUTH PROPERTY LOCATION                         | 3    |
| FIG | GURE 2: WICHEEDA SOUTH PROPERTY CLAIM MAP                        | 6    |
| FIG | GURE 3: WICHEEDA SOUTH PROPERTY REGIONAL GEOLOGY                 | 7    |
| FIG | GURE 4: FLUORITE GRID AREA – ROCK, SILT & SCINTILLOMETER SAMPLES | . 14 |
| LIS | ST OF TABLES                                                     |      |
| TAI | BLE 1: LIST OF WICHEEDA SOUTH MINERAL CLAIMS                     | 2    |
|     | BLE 2: ROCK GEOCHEMICAL RESULTS – WICHEEDA SOUTH                 |      |
| ΤΔΙ | BLE 3: SILT GEOCHEMICAL RESULTS – WICHEEDA SOUTH                 | 13   |

### **LIST OF APPENDICES**

Appendix A. Rock Sample and Scintillometer Reading Locations

Silt Geochemical Sample Locations and Site Descriptions

Appendix B. Laboratory Certificates

Appendix C. Fluorite Grid Soil Geochemical Maps for Fluorite, Lanthanum and Niobium

### 1 EXECUTIVE SUMMARY

The Wicheeda South property consists of 5 mineral claims that cover 2311.46 hectares of prospective stratigraphy in central British Columbia. The Wicheeda South property is centered approximately 80 kilometres northeast of the town of Prince George. At present the Wicheeda South property is not accessible by road, but it is situated close to major infrastructure including power transmission lines, railway and major highways.

The intent of the 2009 program was to locate and evaluate an area encompassed by an old flagged grid, labelled the 'Fluorite' grid, previously identified as being anomalous in fluorine, niobium and lanthanum, and with high background to anomalous scintillometer readings.

While short in duration and area covered, the reconnaissance program was successful in identifying a very promising bedrock showing. This showing consists of narrow calcite-fluorite veinlets and quartz-carbonate veinlets cutting limestone. A grab sample of bedrock from this location (sample WI09-KM02) assayed 7064 ppm Ce, 4461 ppm La and 1387 ppm Nd (or approximately 1.29% combined Ce+La+Nd). Two other samples, WI09-04 collected 30 m upstream and WI09-03 collected more than 150 m upslope, returned highly anomalous light rare earth element values. Scintillometer readings as high as 1425 cps were coincident with the elevated REE values.

The presence of widespread, elevated levels of fluorine, fracture-controlled fluorite and encouraging values of cerium, lanthanum and neodymium, may be evidence of a buried REE-bearing carbonatite complex.

It is recommended that Spectrum Mining continue to explore the Wicheeda South property. Detailed prospecting, bedrock mapping, soil geochemical sampling, and magnetometer and scintillometer surveying is proposed as a Phase One program for the property.

### 2 Introduction

The Wicheeda South property is comprised of 5 contiguous MTO cell claims centered approximately 80 km northeast of Prince George, in central British Columbia. The property is not presently accessible by road, but is not far from all-season gravel roads, a paved provincial highway, rail service and hydroelectric power.

The property is owned by Spectrum Mining Corporation (Spectrum), a private mineral exploration company based in Wardner, BC. In 2009 Spectrum undertook a one-day assessment of its 100%-owned Wicheeda South property to re-visit one area of the property that had yielded anomalous results in the past by a previous operator.

The author has no ownership in the claims nor any direct interest in Spectrum.

This report summarizes the findings of the field sampling program, briefly discusses the properties exploration potential, and recommends follow-up work.

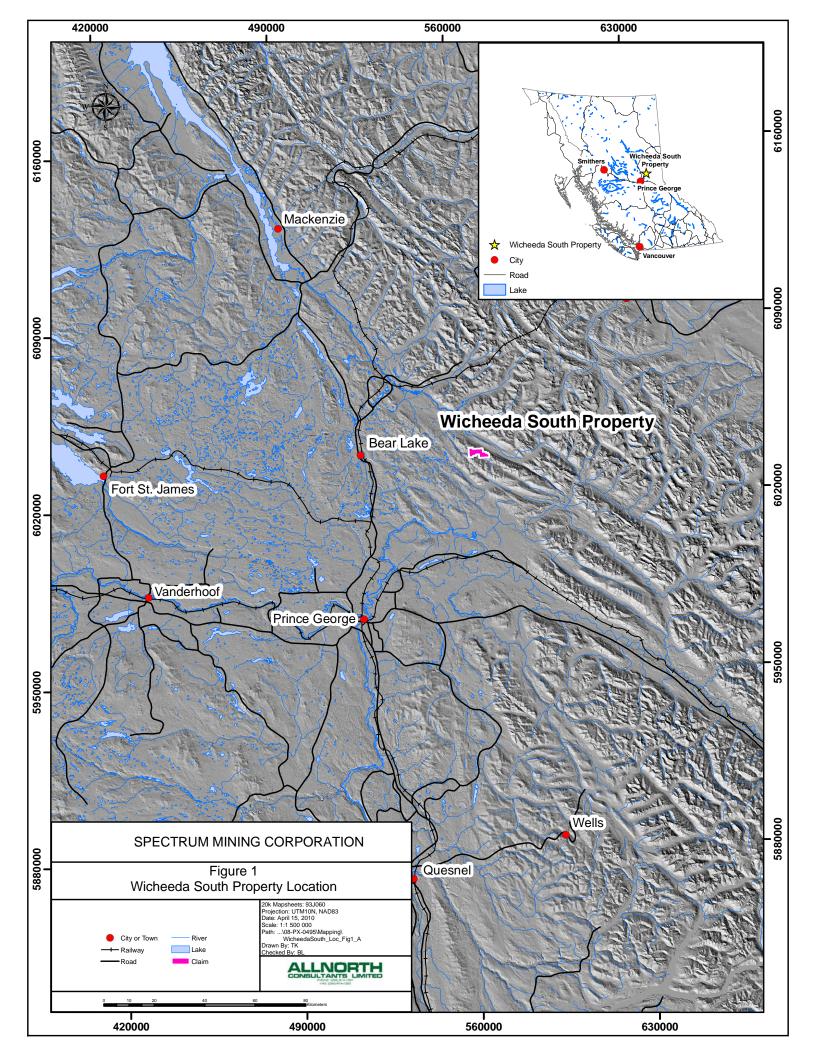
### 2.1 LOCATION AND ACCESS

The Wicheeda South property is centered approximately 80 kilometres northeast of the town of Prince George and about 46 kilometres due east of the community of Bear Lake and Highway 97 (Figure 1). The property is situated on BCGS mapsheets 93I.041 and 93J.050 and is centered approximately at Latitude 54.482465° N and Longitude 121.965323° W.

All-season gravel roads reach to within several kilometres of the property, but do not gain access to the claims. Helicopter-access to the property can be provided from a number of bases in Prince George. Flying time from Prince George to the property is less than 40 minutes.

### 2.2 Physiography and Climate

The Wicheeda South property is located in the Parsnip River valley area, about 12 kilometres southeast of Wicheeda Lake. Most of the property covers a south facing flank of a steep, north-trending ridge that terminates at Wicheeda Lake. Elevations range from about 900 m to 1500 m. Slopes are covered with stands of alder and pine. Buck brush and devil's club are common at lower elevations.


Winters are moderate to cold with typical snow accumulations of approximately one to two metres. The area is generally free from snow between May and October. Summers are moderate to warm.

### 2.3 Property Status & Ownership

The Wicheeda South property is comprised of 5 contiguous MTO cell claims that cover 2311.46 hectares in the Cariboo Mining Division (Figure 2). The claims are owned 100% by Spectrum Mining Corporation. The individual claims and their respective anniversary dates are listed in Table 1.

Table 1: List of Wicheeda South Mineral Claims

|   | Tenure<br>Number | Tenure Name | Owner  | Tenure<br>Type | Map<br>Number | Good To Date | Area (ha) |
|---|------------------|-------------|--------|----------------|---------------|--------------|-----------|
|   | 598206           | WICHEEDA 7  | 216712 | Mineral        | 0931          | 2011/Jan/30  | 469.8325  |
|   | 598207           | WICHEEDA 8  | 216712 | Mineral        | 0931          | 2011/Jan/30  | 432.1475  |
|   | 598208           | WICHEEDA 9  | 216712 | Mineral        | 0931          | 2011/Jan/30  | 469.6815  |
|   | 602257           | WICHEEDA 11 | 216712 | Mineral        | 0931          | 2011/Apr/07  | 469.8532  |
|   | 602258           | WICHEEDA 12 | 216712 | Mineral        | 0931          | 2011/Apr/07  | 469.9426  |
| _ | -                |             | -      |                | -             | TOTAL        | 2311.4573 |



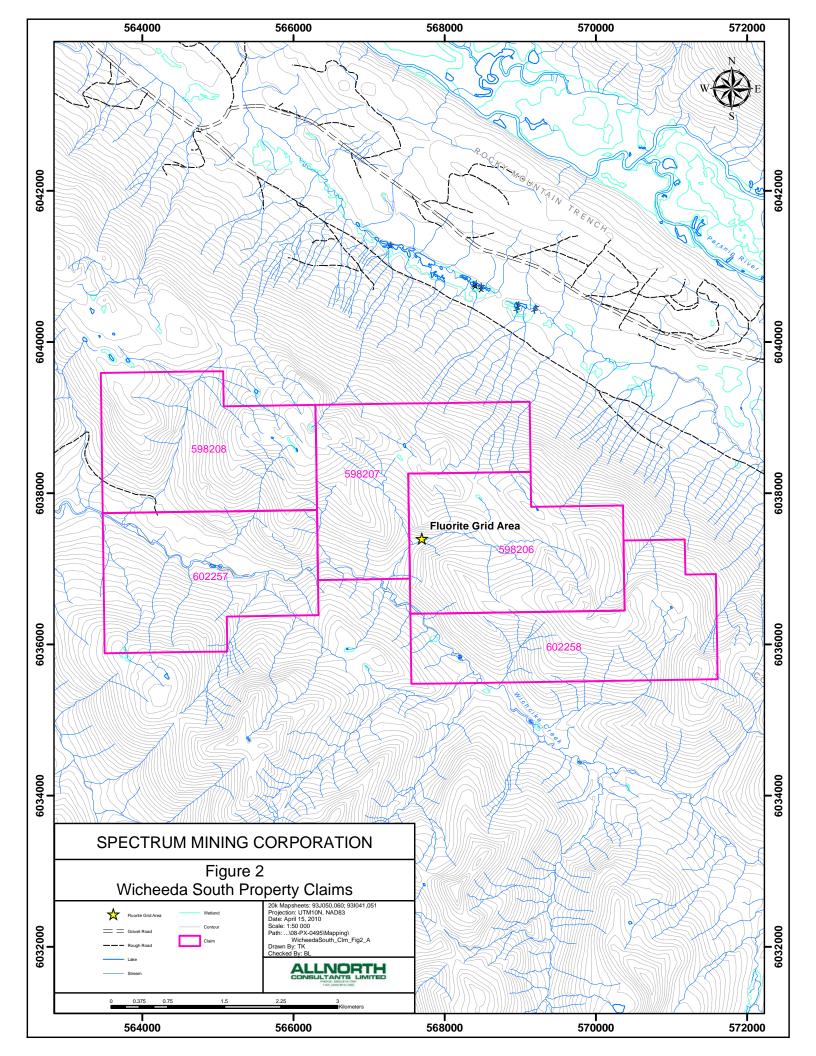
### 3 EXPLORATION HISTORY

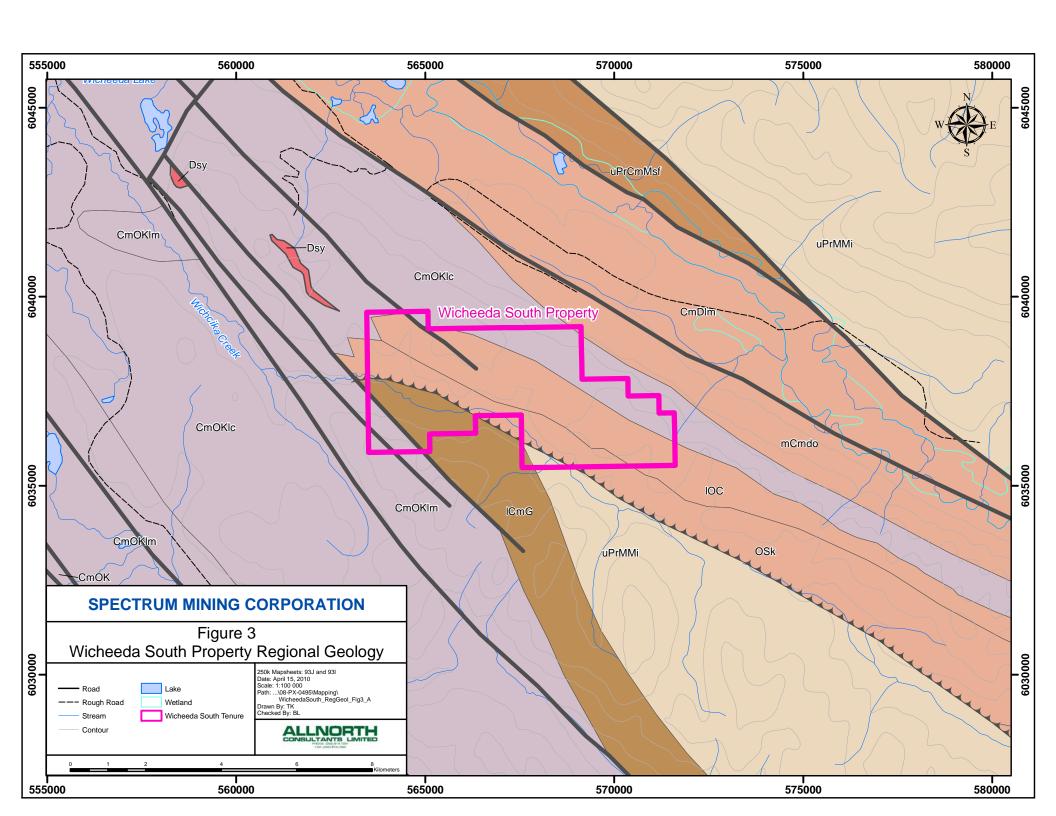
A regional aeromagnetic survey of the area, completed by the Geophysics Division of the Geological Survey of Canada in 1961, identified a magnetic high feature in the area of the Wicheeda South property. Prospecting of the area in 1976 and 1977 discovered minor base metal-bearing showings that were anomalous in niobium. Teck Exploration (Teck) later staked claims to cover the anomalous areas and completed field work in 1986 and 1987 consisting of geological mapping, soil, stream and rock geochemical sampling, trenching and ground magnetic surveying. Bedrock mapping and soil geochemical surveying completed over a northwest oriented series of grids (the 'Lake', 'George' and 'Prince' grids outlined a linear carbonatitic intrusion and a small syenite body that was exposed discontinuously over a total strike length of 7 km (Betmanis, 1987).

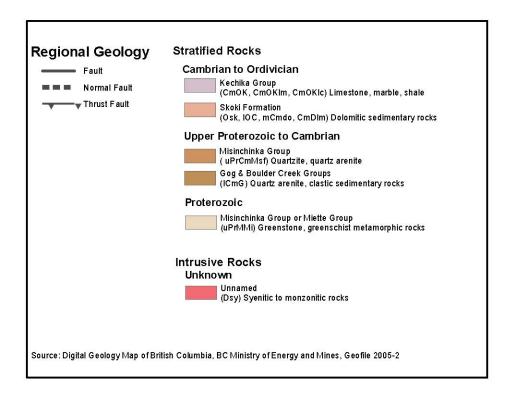
In 1987, Teck also established the 'Fluorite' grid to cover an area of anomalous fluorine in silt located about 4 km east of the 'Prince' grid. The gridded area was evaluated with a spectrometer survey and soil geochemical survey, but not bedrock mapping. The work identified a small >100 counts per second (cps) total count anomaly that may be indicative of an overburden-covered carbonatite (Betmanis, 1988a). Coincident with the high readings were anomalous levels of niobium, lanthanum, molybdenum and arsenic.

No further recorded assessment of the claims was conducted until the 2009 program.

### 4 REGIONAL GEOLOGY


The Wicheeda South property is located in the Foreland belt, a morphogeological belt of imbricated and folded miogeoclinal rocks that forms the eastern mountain ranges and foothills of the Canadian Cordillera (Gabrielse et al., 1991).


The regional geology of the area was mapped by Armstrong et al. (1969, McLeod Lake map sheet) and Taylor and Stott (1979, Monkman Pass map sheet). The regional geology map presented in Figure 3 is from a 1:250,000 scale digital compilation of the area (Digital Geology Map of British Columbia, BCMEMPR, Geofile 2005-2). The bedrock underlying the property and enclosing areas consists mainly of limestone, marble, siltstone, argillite and calcareous sedimentary rocks that have been assigned to the upper Cambrian to lower Ordovician Kechika Group). The strata generally strike from 120 degrees to 140 degrees with steep dips to the northwest or southeast. East of the property, rocks of the Kechika Group are in fault contact with unassigned carbonates, slates and siltstones of Cambrian to Devonian age. West of the property, rocks of the Kechika Group are in fault contact with quartzitic rocks of the Upper Proterozoic to Permian Gog Group and an unassigned felsic volcanic-dominated package of Devonian to Permian age.


The northwest-trending Rocky Mountain Trench, which follows the Parsnip River valley east of the property, is the dominant structural and geographical feature in the area. A number of major northwest trending faults occur in the area. One such structure is

shown to transect the property, and intersects a northeast trending fault near the area of interest.

In British Columbia, a small number of carbonatite-related complexes occur that are typically sub-circular to elongate in plan and commonly have well-developed metasomatic alteration haloes. Many of the intrusions that follow the trend of the Rocky Mountain Trench are Devono-Mississippian in age (Pell, 1987). They were subjected to sub-greenschist facies metamorphism during the Columbian orogeny, but behaved as inflexible and cohesive bodies during orogenesis and were rotated, tilted and/or transported eastwards in thrust panels (Pell, 1987).







Wicheeda South Property - Regional Geology Legend

### 5 Property Geology

The Wicheeda South property is at an early stage of exploration and the claim group has been covered by regional bedrock mapping, but not property-scale bedrock mapping. Exposed bedrock in the region is described as being quite scarce, and a dearth of outcrop may also pertain to the Wicheeda South claim group. However, the main structural and stratigraphic grain in the area is northwest-southeast; and regional maps indicate that the geology of the Wicheeda South claims is similar to areas to the northwest, including Spectrum's Wicheeda property (formerly the George claims) and the former Prince claims.

Previous bedrock mapping on these claims, specifically over a northwest-oriented series of grids (the 'Lake', 'George' and 'Prince' grids) outlined a carbonatite intrusion and a small related(?) syenite body that was exposed discontinuously over a total strike length of 7 km (Betmanis, 1987; Mader and Greenwood, 1988). These intrusions were hosted by a sequence of interbedded limestone, calcareous argillite and argillite with consistent northwest-trending attitudes and sub-vertical dips. The 'Fluorite' grid was established about 4 km east of the 'Prince' grid, to cover an area of anomalous fluorine in silt (Betmanis, 1988a), but mapping of the bedrock was not conducted at that time.

Limited rock geochemical sampling conducted in 2009 identified amorphous limestone, cherty ribbon and nodular limestone with lesser argillite, calcareous argillite, micaceous phyllite and a pebble conglomerate or breccia (MacDonald, 2009). The limestone is locally re-crystallized, and in places is cut by calcite +/- fluorite veinlets.

### 5.1 MINERALIZATION AND GEOLOGICAL MODEL

Carbonatites are igneous rocks dominated by calcite, dolomite and varieties of iron carbonate minerals. They are preserved as intrusions (occurring as sills, dikes, or small stocks) and as extrusive lava flows and pyroclastic rocks, but only intrusive varieties are sufficiently enriched in niobium and/or rare earth elements to be economic. Carbonatite complexes occur mainly in a continental environment and in BC carbonatites are mostly upper Devonian, Mississippian or Eocambrian in age (Pell, 1987). Carbonatites may have pronounced magnetic and/or radiometric geophysical signatures, and they may also be marked by elevated levels of niobium, phosphate, fluorine and barium in soils and stream sediments, and fluorine, thorium and uranium in waters (Birkett and Simandl, 1999).

Outcrop in the Wicheeda and Wicheeda South property area is quite scarce, therefore past soil geochemical surveys, particularly above the valley floor and at higher elevations, has been effective in outlining areas underlain by REE-bearing rocks. Cerium in particular, and to a lesser extent niobium and barium, outlines the carbonatite on the 'George' grid (Betamanis, 1988b). The multi-element soil anomaly is about 500 m across and ovoid in plan. Trenching in 1987 (Lovang and Meyer, 1987) and diamond drilling in 2008 (Lane, 2009) confirmed the presence of the carbonatite at depth. Niobium, barium, and to a lesser extent cerium, zinc and strontium, outline the 'Prince' grid intrusion (Betmanis, 1987). The 'Prince' system located 3.5 km to the southeast of the 'George' carbonatite and appears to be a sinuous carbonatite and syenite sill and/or dyke complex that has been traced for several kilometers along its southeast trend (Mader and Greenwood (1988).

Soil geochemical sampling in 1987 on the 'Fluorite' grid outlined an area with anomalous levels of niobium, lanthanum, molybdenum and arsenic (Betmanis, 1988a). All four elements are also elevated in drillhole assay data from the Wicheeda property and in the Wicheeda/Wicheeda South area may be considered possible pathfinders for carbonatite-syenite complexes (Lane, 2009).

Fluorite has been identified in some carbonatite-related calcareous dykes on the Wicheeda property (Betmanis, 1987) and in stringers that cut the calcareous country rock on the Wicheeda South property. The presence of fluorite may indicate the presence of a carbonatite or related REE-bearing intrusion on the Wicheeda South property. Importantly, fluorite is known to form in the roof zones of carbonatite complexes (Birkett and Simandl, 1999).

### 6 2009 EXPLORATION PROGRAM

The primary intent of the 2009 program was to:

- 1) Locate an area on the old Teck flagged grid between Line 33+00E to Line 37+50E and from about 11+50N to about 15+50N; previously identified as anomalous in Nb, F and with high background to anomalous scintillometer readings:
- 2) Locate and map any outcrops;
- 3) Examine and sample for carbonatite lithologies and related mineralization;
- 4) Conduct close-spaced silt sampling on East and West tributary creeks that form a confluence around 36+15E and 11+25N; using hand-held GPS;
- 5) Conduct reconnaissance-level scintillometer prospecting over Teck's Nb anomaly; using hand-held GPS.

Ken MacDonald (PGeo) and two field assistants, Brian Kornichuk and Justin Findlay, conducted the sampling program on October 24, 2009. The program took place in an area that roughly measures 450 m by 260 m. The area is steep, challenging ground with plus 45 degree slopes at mid-mountain with more gentle slopes toward the top and bottom. The steeper slopes tend to correspond with thin soil cover over talus blocks or sub-crop. Overall the property has poor outcrop exposure which makes for difficult mapping.

Access to the property was via a Jet Ranger 206 helicopter from Pacific Western Helicopter's base in Prince George. Working time on the property was constrained by short daylight hours and time required to hike to the old grid from chopper pad, and amounted to about 4.5 hours. Work completed included:

- location of remnant flagging from three of Teck's cross-lines: one is presumably 36+00 E; cross-lines appear to have been flagged, but apparently not cut. No evidence of other lines could be identified:
- about 600 line-meters of prospecting and scintillometer survey between assumed lines 36+00E and 35+50E: scintillometer values ranged from 216 cps up to a high of 614 cps; relatively higher total cps counts were found to correspond to an area at a certain; elevation on the steep slope; at about 250 m NE of confluence of East and West tributary creeks;
- collection of 22 conventional stream sediment samples from East and West tributaries; at about 25 m spacing;
- collection of 4 lithogeochemical samples: 1 boulder and 3 outcrop grabs;
- prospecting of the East Tributary creek bed which at low flow reveals nodular and cherty limestone cross-cut by narrow quartz-calcite-ankerite +/- fluorite veinlets and micro-stockworks with scintillometer values in the ~850 cps range; one sample from outcrop in East Tributary creek recorded scintillometer values up to 1425 cps, but a grab sample from same location returned only slightly elevated scintillometer values;

preliminary mapping identified minimal soil cover on talus blocks or outcropping: where exposed rock types are mainly grey amorphous limestone, cherty ribbon and nodular limestone with lesser argillite, calcareous argillite, micaceous phyllite and a "polymictic pebble conglomerate" which may also be an intra-formational breccia; limestone looks re-crystallized in places, and can be heavily cross-cit by calcite +/-fluorite veinlets and micro-stockworks. Minor cubic pyrite and trace disseminated and blebby pyrite was also noted. Localized ankerite alteration was accompanied by minor chlorite and sericite alteration.

### 7 RESULTS

### **Rock and Silt Geochemical Sampling**

A total of four lithogeochemical grab samples were collected: one from a boulder in East Tributary Creek, two from outcrop in East Tributary Creek, and one from mid-slope in an area of elevated scintillometer readings and sub-crop or partially buried talus blocks from nearby. Sample locations are shown in Figure 4. Selected results are listed below in tables 2 and 3 and full results are presented in Appendix B. Sample descriptions provided below are from MacDonald (2009).

### Sample WI09-KM01:

A 0.5m by 0.75m coarse angular boulder in East Fork tributary creek; about 75 m upstream from confluence. Rock is quartz-carbonate micro-stockwork; comprised of pale yellow calcite & quartz with chlorite-altered books of biotite. Calcite occurs as masses to subhedral rhombs, but also with tabular and lamellar habit; generally shows perfect cleavage with pearly luster; reacts vigorously to dilute cold HCL. Chlorite occurs as fracture coatings. Limonite occurs as oxide coatings on fracture surfaces. Host rock seems to be breccia with blocks of micaceous schist & calcareous argillite. Minor siderite and ankerite alteration. Much of the bedrock in creek bed appears to be platy limestone, nodular or ribbon chert limestone but difficult to map due to water levels and flow.

Scintillometer reading: 366 cps.

### Sample WI09-KM02:

Outcrop in creek, partially underwater; at old grid-line intersection; strike 150°/60° NE. Unit is pale grey weathered; white-grey fresh; fine-grained to crystalline limestone; local thin and well-bedded limestone and nodular and ribbon chert limestone; cross-cut by calcite-fluorite and quartz-carbonate veinlets and small micro-stockworks. Dark purple fluorite occurs as subhedral crystals, disseminations and blebs. Minor cubic pyrite. Limestone looks re-crystallized. Intercalated with minor calcareous argillite beds. Earthy, light brown Fe-oxide masses on weathered surfaces, reacts vigorously to dilute HCL. Interval measures up to 20 cm by 30 cm.

Scintillometer readings up to 870 cps.

### Sample WI09-KM03:

Open clearing; blocky talus or subcrop; blocks of very fine grained, calcareous argillite. One block is pale-grey to black weathered, varicolored fresh, medium grained, poorly

sorted, poorly bedded but weakly imbricated conglomerate comprised of quartz pebbles, calcite fragments, siltstone and lithic fragments (look like laminated rip-up clasts) in polymictic matrix. Some clasts measure up to 6 cm on long axis. Might be intraformational breccia. Secondary mica alteration. Unit reacts vigorously to dilute HCL. Minor pyrite.

Scintillometer readings erratic, ranging from 137 to 650 cps.

### Sample WI09-KM04:

Outcrop in East Fork tributary creek; about 15 m upstream and east of sample WI09-KM02. Pale yellow-brown on weathered surface, grey-white on fresh surface, re-crystallized limestone with quartz-ankerite stringers. Cubic pyrite <1%. Clotty purple fluorite <1%. Bright yellow earthy oxide on surface fractures. Unit reacts vigorously to dilute HCL.

Scintillometer readings of bedrock measured as high as 1425 cps, but reading of grab sample did not exceed 125 cps when re-sampled later with same scintillometer; difference remains unexplained.

Table 2: Rock Geochemical Results - Wicheeda South

| Sample ID | Ce*<br>(ppm) | La*<br>(ppm) | Nd*<br>(ppm) | Nb*<br>(ppm) | F**<br>(%) | As<br>(ppm) | Ba<br>(ppm) | Mo<br>(ppm) | Sr<br>(ppm) | Y<br>(ppm) | La<br>(ppm) | P<br>(ppm) |
|-----------|--------------|--------------|--------------|--------------|------------|-------------|-------------|-------------|-------------|------------|-------------|------------|
| WI09-KM01 | 59           | 34           | 25           | <3           | 0.03       | 2           | 93          | <2          | 479         | 7          | 23          | 377        |
| WI09-KM02 | 7064         | 4461         | 1387         | 88           | 0.47       | 249         | 99          | 23          | 880         | 165        | 7218        | 1195       |
| WI09-KM03 | 1282         | 726          | 336          | 154          | 0.08       | 149         | 86          | 4           | 836         | 47         | 821         | 158        |
| WI09-KM04 | 1434         | 785          | 448          | 70           | 0.22       | 2           | 140         | <2          | 216         | 99         | 31          | 511        |

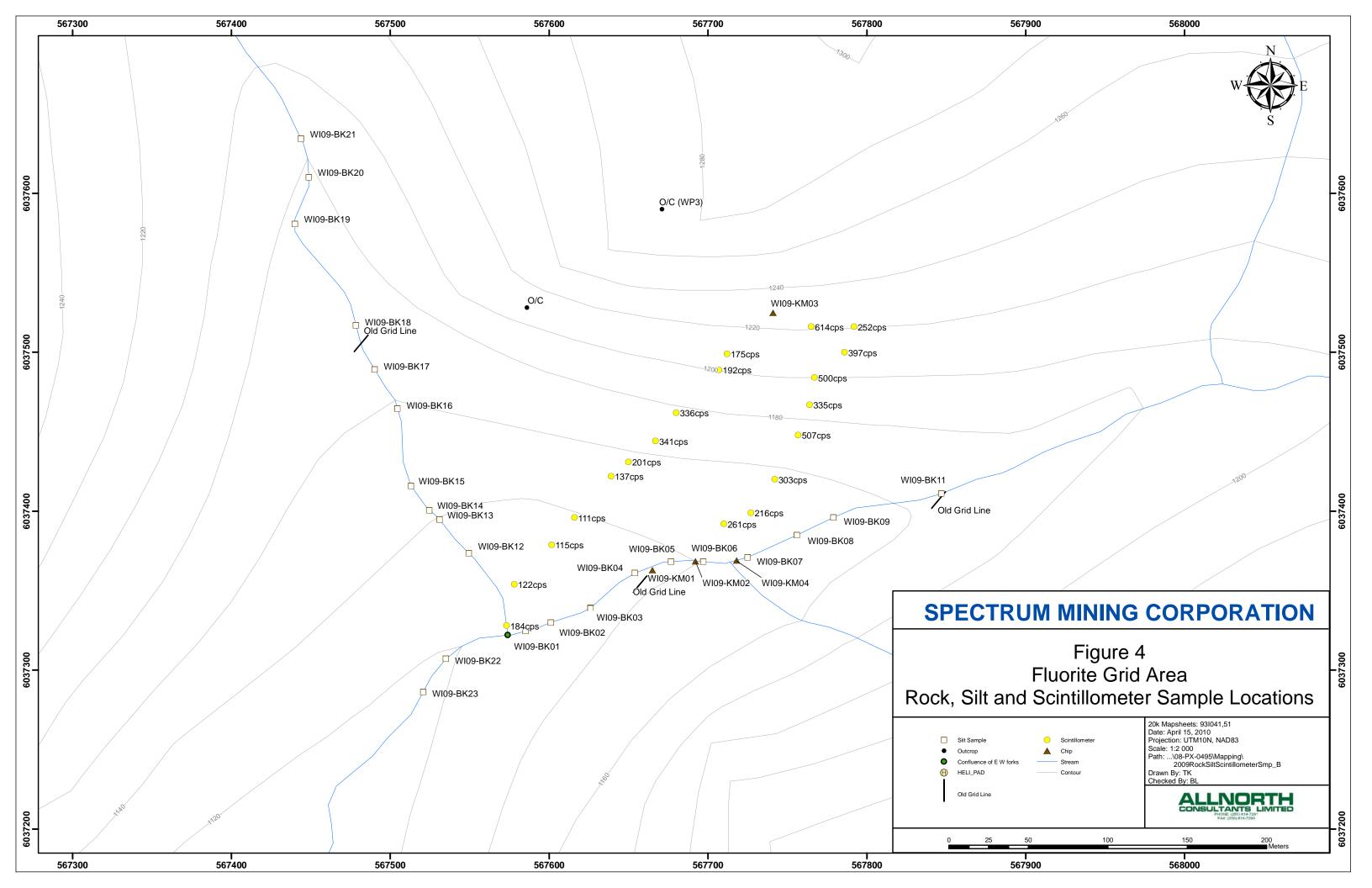
Analytical Methods:

others = ICP-AES: 30 element package digested in hot aqua regia (rocks).

<sup>\* =</sup> X-Ray fluorescence / pressed pellet

<sup>\*\* =</sup> NaOH fusion / analysis by specific ion electrode

Table 3: Silt Geochemical Results - Wicheeda South


| Sample ID | As<br>(ppm) | Ba<br>(ppm) | Mo<br>(ppm) | Sr<br>(ppm) | Y<br>(ppm) | La<br>(ppm) | P<br>(ppm) | F (%)** |
|-----------|-------------|-------------|-------------|-------------|------------|-------------|------------|---------|
| WI09-BK01 | 77          | 63          | 2           | 54          | 22         | 62          | 1488       | 0.15    |
| WI09-BK02 | 78          | 64          | 2           | 73          | 19         | 79          | 1456       | 0.15    |
| WI09-BK03 | 55          | 51          | <2          | 56          | 18         | 81          | 1447       | 0.09    |
| WI09-BK04 | 92          | 49          | 2           | 81          | 18         | 106         | 1535       | 0.17    |
| WI09-BK05 | 98          | 54          | <2          | 68          | 18         | 68          | 1413       | 0.12    |
| WI09-BK06 | 93          | 61          | 2           | 54          | 23         | 109         | 1493       | 0.09    |
| WI09-BK07 | 56          | 61          | <2          | 67          | 18         | 59          | 1296       | 0.13    |
| WI09-BK08 | 73          | 50          | 2           | 52          | 17         | 63          | 1345       | 0.14    |
| WI09-BK09 | 122         | 52          | <2          | 58          | 18         | 63          | 1279       | 0.12    |
| WI09-BK11 | 79          | 51          | <2          | 55          | 17         | 40          | 1697       | 0.11    |
| WI09-BK12 | 18          | 43          | <2          | 38          | 15         | 47          | 1295       | 0.10    |
| WI09-BK13 | 10          | 43          | <2          | 57          | 13         | 27          | 1206       | 0.08    |
| WI09-BK14 | 11          | 38          | <2          | 39          | 13         | 30          | 1232       | 0.10    |
| WI09-BK15 | 11          | 36          | <2          | 61          | 10         | 30          | 1113       | 0.08    |
| WI09-BK16 | 13          | 44          | <2          | 40          | 15         | 35          | 1216       | 0.09    |
| WI09-BK17 | 17          | 43          | <2          | 47          | 13         | 36          | 1115       | 0.10    |
| WI09-BK18 | 14          | 45          | <2          | 56          | 14         | 30          | 1265       | 0.03    |
| WI09-BK19 | 13          | 47          | <2          | 49          | 14         | 36          | 1193       | 0.09    |
| WI09-BK20 | 25          | 40          | <2          | 60          | 13         | 37          | 1084       | 0.02    |
| WI09-BK21 | 13          | 49          | 3           | 58          | 13         | 35          | 1260       | 0.11    |
| WI09-BK22 | 98          | 50          | <2          | 63          | 13         | 47          | 1247       | 0.09    |
| WI09-BK23 | 78          | 55          | 2           | 45          | 20         | 72          | 1430       | 0.10    |

others = ICP-AES: 30 element package digested in hot reverse aqua regia (soil, silt).

Analytical Methods:

\* = X-Ray fluorescence / pressed pellet

\*\* = NaOH fusion / analysis by specific ion electrode



### 8 Discussion

The 2009 exploration program consisted of one-day of reconnaissance-level prospecting and sampling in the 'Fluorite' grid area of Spectrum's Wicheeda South property.

Despite the extremely short duration of the program, rock geochemical sampling identified a very promising bedrock showing. This showing consists of narrow calcite-fluorite veinlets and quartz-carbonate veinlets cutting bedded limestone. A grab sample of bedrock from this location (sample WI09-KM02) assayed 7064 ppm Ce, 4461 ppm La and 1387 ppm Nd (or approximately 1.29% combined Ce+La+Nd). Consistent with the excellent light rare earth element values from this sample were site scintillometer readings as high as 870 cps.

Two other samples returned highly anomalous light rare earth element values and highlight the prospectivity of the property (see Table 2). Sample WI09-04 collected 30 m upstream assayed 1434 ppm Ce, 785 ppm La and 448 ppm Nd (or approximately 0.27% combined Ce+La+Nd) and WI09-03 collected more than 150 m upslope, assayed 1282 ppm Ce, 726 ppm La and 336 ppm Nd (or approximately 0.23% combined Ce+La+Nd).

Scintillometer readings across the area examined in 2009, which range from lows of 111 cps to highs of 1425 cps, are regarded to be moderate to very high and further emphasize the potential of the 'Fluorite' grid area of the Wicheeda South property.

The 2009 data was plotted and overlain with contoured 1987 soil geochemical data. Soil geochemical anomaly maps for each of fluorine, lanthanum and niobium were produced (Appendix C). The high REE-bearing rock samples correlate directly with a lobe of the >30 ppm Nb soil anomaly, and plot immediately south and down-slope of some of the highest soil values for F (up to 2290 ppm) and for La (up to 475 ppm).

### 9 Conclusions and Recommendations

Further work should be conducted in the Fluorite Grid area in 2010. An initial Phase One 2-week, 4-person program is recommended and consists of the following elements:

- Re-establish the old Teck grid by flagging and picketing stations at 25 m intervals: from 31+50 to 37+50 and 10N to 15+50N: about 7.2 line-kilometres in total
- Cut intermediate grid lines at 50 m spacing
- Complete a DGPS grid (hand-held GPS accuracy results in tall timber cover was not suitable for careful grid control and accurate sample locations
- Conduct grid-based conventional soil geochemical sampling
- Conduct a detailed scintillometer and magnetometer survey
- Map and prospect grid, especially East Tributary creek at lower water flow.

The cost of the initial non-mechanized components of the proposed work program is an estimated \$83,000.

### 10 ITEMIZED COST STATEMENT

| Exploration Work type                                   | Comment                                                    | Days         |                    |                                            | Totals             |
|---------------------------------------------------------|------------------------------------------------------------|--------------|--------------------|--------------------------------------------|--------------------|
| Personnel (Name)* /                                     |                                                            |              |                    |                                            |                    |
| Position                                                | Field Days                                                 | Days         | Rate               | Subtotal*                                  |                    |
| Ken MacDonald                                           | October 24                                                 | 1            | \$650.00           | \$650.00                                   |                    |
| Brian Kornichuk                                         | October 24                                                 | 1            | \$220.00           | \$220.00                                   |                    |
| Justin Findlay                                          | October 24                                                 | 1            | \$220.00           | \$220.00                                   |                    |
|                                                         |                                                            |              |                    | \$1,090.00                                 | \$1,090.00         |
| Office Studies                                          | List Personnel                                             |              |                    | ,                                          |                    |
| Chris Graf                                              | Project & Data Management<br>Project Preparation & Summary | 2            | \$600.00           | \$1,200.00                                 |                    |
| Ken MacDonald                                           | Report Project Management & Report                         | 1            | \$650.00           | \$650.00                                   |                    |
| Bob Lane                                                | Writing                                                    | 2.5          | \$650.00           | \$1,625.00                                 |                    |
| Kevin Frank                                             | Map Preparation                                            | 2            | 425.00             | 850.00                                     |                    |
|                                                         |                                                            | _            | .==                | \$4,325.00                                 | \$4,325.00         |
| Geochemical Surveying                                   | Number of Samples                                          | No.          | Rate               | , ,, ,                                     | , .                |
| Acme Labs                                               | 26 Samples submitted                                       | 26           | 25.53              | \$663.86                                   |                    |
|                                                         |                                                            |              |                    | \$663.86                                   | \$663.86           |
| Other Operations                                        | Clarify                                                    | Units        | Rate               |                                            |                    |
|                                                         |                                                            |              |                    | \$0.00                                     | \$0.00             |
| Transportation Helicopter (PG-property                  |                                                            | Units        | Rate               |                                            |                    |
| return)                                                 | October 24                                                 | 2.4          | \$946.00           | \$2,270.40                                 |                    |
| Jet Fuel                                                |                                                            | 273.6        | \$1.35             | \$372.10                                   |                    |
|                                                         |                                                            |              |                    | \$2,642.50                                 | \$2,642.50         |
|                                                         |                                                            |              |                    |                                            |                    |
| Accommodation & Food                                    |                                                            |              |                    |                                            |                    |
| Accommodation & Food                                    |                                                            |              |                    | \$0.00                                     | \$0.00             |
| Accommodation & Food  Miscellaneous                     |                                                            |              |                    | \$0.00                                     | \$0.00             |
|                                                         | Rice Bags, Poly Bags, Zip Ties                             | 1.00         | \$54.32            | \$0.00<br>\$54.32                          | \$0.00             |
| Miscellaneous                                           | Rice Bags, Poly Bags, Zip Ties                             | 1.00<br>1.00 | \$54.32<br>\$57.58 | , , , , ,                                  | \$0.00             |
| Miscellaneous<br>Field Supplies                         | Rice Bags, Poly Bags, Zip Ties                             |              |                    | \$54.32                                    | \$0.00<br>\$111.90 |
| Miscellaneous Field Supplies Shipping Equipment Rentals | Rice Bags, Poly Bags, Zip Ties                             | 1.00         | \$57.58            | \$54.32<br>\$57.58<br>\$111.90             |                    |
| Miscellaneous<br>Field Supplies<br>Shipping             | Rice Bags, Poly Bags, Zip Ties                             |              |                    | \$54.32<br>\$57.58<br>\$111.90<br>\$577.50 | \$111.90           |
| Miscellaneous Field Supplies Shipping Equipment Rentals | Rice Bags, Poly Bags, Zip Ties                             | 1.00         | \$57.58            | \$54.32<br>\$57.58<br>\$111.90             |                    |

TOTAL \$8,813.36

### 11 REFERENCES

Armstrong, J.E., Hoadley, J.W., Muller, J.E. and Tipper, H.W. (1969): Geology, McLeod Lake Map Area (93J); *Geological Survey of Canada*, Map 1204A.

Betmanis, A.I. (1987): Report on Geological, Geochemical and Magnetometer surveys on the Prince and George Groups, Cariboo Mining Division, BC; submitted by Teck Explorations Limited, *BC Ministry of Energy, Mines and Petroleum Resources*, AR15944, 14 pages.

Betmanis, A.I. (1988a): Geochemical Soil and Spectrometer Surveys on the Fluorite Grid and Ole 4 Claim, P.G. Niobium Property, Cariboo Mining Division, BC; unpublished company report, *Teck Explorations Limited*, 3 pages.

Betmanis, A.I. (1988b): Sampling Evaluation, P.G. Niobium Project (Prince and George Groups), Cariboo Mining Division (NTS 93J/8, 9; 93I/5); unpublished company report, *Teck Explorations Limited*, 15 pages.

Birkett, T.C. and Simandl, G.J. (1999): Carbonatite-associated Deposits: Magmatic, Replacement and Residual; in Selected British Columbia Mineral Deposit Profiles, Volume 3, Industrial Minerals, G.J. Simandl, Z.D. Hora and D.V. Lefebure, Editors, *British Columbia Ministry of Energy and Mines*.

Gabrielse, H., Monger, J.W.H., Wheeler, J.O. and Yorath, C.J. (1991): Part A. Morphogeological Belts, Tectonic Assemblages and Terranes; *in* Chapter 2 of Geology of the Cordilleran Ororgen in Canada, H. Gabrielse and C.J. Yorath (ed.); *Geological Survey of Canada*, Geology of Canada, no. 4, p15-28.

Lane, B. (2009): Diamond Drilling Report on the Wicheeda Property; submitted by Spectrum Mining Corporation, *BC Ministry of Energy, Mines and Petroleum Resources*, AR30873, 195 pages.

Lovang, G. and Meyer, W. (1987): Report on Trenching, Stream Silt Concentrate and Soil Sampling on the George Group, Cariboo Mining Division, BC; submitted by Teck Explorations Limited, *BC Ministry of Energy, Mines and Petroleum Resources*, AR16246, 5 pages.

Mader, U.K. and Greenwood, H.J. (1988): Carbonatites and Related Rocks of the Prince and George Claims, Northern Rocky Mountains (93J, 93I); *in* Geological Fieldwork 1987, *BC Ministry of Energy, Mines and Petroleum Resources*, Paper 1988-1, pp.375-380.

Pell, J. (1987): Alkaline Ultrabasic Rocks in British Columbia: Carbonatites, Nepheline Syenites, Kimberlites, Ultramafic Lamprophyres, and Related Rocks; *BC Ministry of Energy, Mines and Petroleum Resources*, Open File 1987-17.

Taylor, G.C. and Stott, D.F. (1979): Geology, Monkman Pass Map Area, British Columbia (93I); *Geological Survey of Canada*, Open File Map 630.

### 12 STATEMENT OF QUALIFICATIONS

I, Robert (Bob) A. Lane, of 2606 Carlisle Way, Prince George, B.C., do hereby certify that:

I advised the field crew regarding their visit to the Wicheeda South property, but did not visit the site while the project work took place.

I compiled the information that resulted from the 2009 exploration program, primarily from a summary provided by Ken MacDonald (PGeo), and produced the report entitled "Geochemical Report on the Wicheeda South Property", dated April 22, 2010.

I graduated from the University of British Columbia in 1990 with a M.Sc. in Geology.

I am a Professional Geoscientist (PGeo) registered with the Association of Professional Engineers and Geoscientists of British Columbia, license #18993, and have been a member in good standing since 1992.

From 1990 until present I have been continuously employed as a geologist in mining and mineral exploration sector.

Dated at Prince George, this 22th day of April, 2010.

Robert (Bob) A. Lane, PGeo

### **APPENDIX A**

### ROCK SAMPLE AND SCINTILLOMETER READING LOCATIONS

SILT GEOCHEMICAL SAMPLE LOCATIONS AND SITE DESCRIPTIONS

| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Waypoint | Sample<br>Type | Sample #  | Easting  | Northing | Elevation | GPS Accuracy (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scintillometer Reading (cps) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------|----------|----------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        |                | n/s       | 567671   | 6037590  |           | 10               | orange weathered; vuggy lst or dolomitized lst w/ cherty nodules; fines to calcareous argillite; vertical to steeply dipping if in place;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/s                          |
| EAST FORK creek, about 75m upstream from confinence, Rock is gle-carbonate micro-stockwork in creek boulder, comprised of pale yellow calcite & cry with charlest entered books of blottle. Calcite occurs as masses to sub-certain fromthe but also with laboular and lamellar habit, generally shows perfect on the part of the part o | 4        | n/s            | n/s       | 567657   | 6037354  |           | 10.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/s                          |
| Crossing, strike 150°/60° NE. Unit is pale grey weathered: white-greeft, \$41-to years it \$1, \$20 vstalline impure limestone; local thin & well-bedded Ist & nodular and ribbon chert impure list; \$4 control of the cours as subhedral vstals, disseminations and blebs; is tooks recystalized; intercalated minor calcareous argillite beds appear underwater; earthy light brown fe-oxide masses is tooks recystalized; intercalated minor calcareous argillite beds appear underwater; earthy light brown fe-oxide masses up to 20cm by 30 cm; measures up to 870 cps with scint.    Soint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5        | Chip           | WI09-KM01 | 567665   | 6037363  | 1145      |                  | EAST FORK creek; about 75m upstream from confluence. Rock is qtz-carbonate micro stockwork in creek boulder; comprised of pale yellow calcite & qtz w/ chlorite altered books of biotite. Calcite occurs as masses to subhedral rhombs but also with tabular and lamellar habit; generally shows perfect cleavage with pearly luster; reacts vigorously to dilute cold HCL; white streak. Chlorite occurs as fracture coatings; also limonite occurs as oxide coatings on fracture surfaces. Host seems to be breccia with blocks of micaceous schist & calcareous argillite. Minor siderite & ankerite alteration. Much of the bedrock in vicinity appears to be platy limestone, nodular or ribbon chert |                              |
| Scint   Scint   Scirt   Scir | 6        | Chip           | WI09-KM02 | 567692   | 6037381  | 1145      |                  | crossing; strike 150°/60° NE. Unit is pale grey weathered; white-grey fresh; f.g. to xstalline impure limestone; local thin & well-bedded Ist & nodular and ribbon chert impure Ist; crosscut by calcite-fluorite & qtz carbonate veinlets & small microstockworks, minor cubic pyrite; dark purple fluorite occurs as subhedral xstals, disseminations and blebs; Ist looks recystallized; intercalated minor calcareous argillite beds appear underwater; earthy light brown fe-oxide masses on weathered surfaces, reacts vigorously to dilute HCL; interval measures up to 20cm by 30 cm;                                                                                                              |                              |
| Scint   567737   6037433   1161   12.5   303   303   100   Scint   567745   6037429   1194   8.4   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   5077   | 7        | Scint          |           | 567710   | 6037392  | 1141      | 8.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 261                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8        | Scint          |           | 567727   |          | 1140      | 9.8              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Scint          |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 18         Scint         567707         6037489         1217         24.4         192           19         Scint         567680         6037462         1198         10.4         336           20         Scint         567667         6037444         1191         12.9         341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16       | Chip           | WI09-KM03 | 567741   | 6037525  | 1237      | 17.8             | blocks of very f.g calcareous argillite; one block is pale-grey to black weathered, varicolored fresh, medium grained, poorly sorted, poorly bedded but weakly imbricated conglomerate comprised of qtz pebbles, calcite fragments, siltstone & lithic frags (look like laminated rip-up clasts) in polymictic mtx. Some clasts measure up to 6 cm on long axis. Might be intraformational breccia. Secondary mica alteration. Unit reacts vigorously to dilute HCL. Minor pyrite. Scintillometer readings erratic; from 137 to 650 cps.                                                                                                                                                                   | 137                          |
| 18         Scint         567707         6037489         1217         24.4         192           19         Scint         567680         6037462         1198         10.4         336           20         Scint         567667         6037444         1191         12.9         341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17       | Scint          |           | 567712   | 6037499  | 1229      | 12.3             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                          |
| 19         Scint         567680         6037462         1198         10.4         336           20         Scint         567667         6037444         1191         12.9         341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10       | 0              |           | 50== · - | 000=:-:  | 10/-      | 0.1.1            | f.g. calcareous argillite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                          |
| 20 Scint 567667 6037444 1191 12.9 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 21 Scint 567650 6037431 1189 12.4 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                |           |          |          |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |

### Spectrum Mining Corporation

| 22 | Scint |           | 567639 | 6037422 | 1176 | 13.9 |                                                 | 137  |
|----|-------|-----------|--------|---------|------|------|-------------------------------------------------|------|
| 23 | Scint |           | 567616 | 6037396 | 1160 | 15.2 |                                                 | 111  |
|    | Scint |           | NO GPS | NO GPS  |      |      | 22.3m downslope from waypoint 23 at             | 115  |
|    |       |           |        |         |      |      | bearing 220°; less than 75m above               |      |
|    |       |           |        |         |      |      | confluence of EAST FORK and WEST FORK           |      |
|    |       |           |        |         |      |      | creeks                                          |      |
| 24 | Scint |           | 567578 | 6037354 | 1145 | 20   |                                                 | 122  |
| 25 | Scint |           | 567588 | 6037294 | 1145 | 20   | Back at confluence of EAST FORK & WEST          | 184  |
|    |       |           |        |         |      |      | FORK creeks                                     |      |
| 26 | Chip  | WI09-KM04 | 567720 | 6037344 | 1133 | 31.1 | Outcrop in EAST FORK creek; about 15 m          | 1425 |
|    |       |           |        |         |      |      | upstream and east of sample WI09-KM02;          |      |
|    |       |           |        |         |      |      | pale-yellow brown weathered, grey-white         |      |
|    |       |           |        |         |      |      | fresh, recrystallized limestone with qtz-       |      |
|    |       |           |        |         |      |      | ankerite stringers. Cubic pyrite <1%. Clotty    |      |
|    |       |           |        |         |      |      | purple fluorite <1%. Bright yellow earthy oxide |      |
|    |       |           |        |         |      |      | on surface fractures. Unit reacts vigorously to |      |
|    |       |           |        |         |      |      | dilute HCL. Scint in bedrock location           |      |
|    |       |           |        |         |      |      | measured as high as 1425 cps but actually       |      |
|    |       |           |        |         |      |      | grab sample did not reach higher than 125       |      |
|    |       |           |        |         |      |      | cps later when re-scinted so scintillometer     |      |
|    |       |           |        |         |      |      | high from o/c remains unexplained. Difficult    |      |
|    |       |           |        |         |      |      | footing in creek and overhanging bank made      |      |
|    |       |           |        |         |      |      | this a difficult location to sample.            |      |
|    |       |           |        |         |      |      |                                                 |      |

| SILT GEOCHEMICAL SAMPLE LOCATIONS AND SITE DESCRIPTIONS | WICHEEDA SOUTH 2009 ASSESSMENT REPORT |
|---------------------------------------------------------|---------------------------------------|
|                                                         | SILT GEOCHEMICAL SAMPLE               |
|                                                         |                                       |
|                                                         |                                       |
|                                                         |                                       |
|                                                         |                                       |
|                                                         |                                       |

| Waypoint | Location                            | Sample Type | Sample #  | Easting | Northing | Elevation | GPS Accuracy (m) | Description                                                                                                                                                   |
|----------|-------------------------------------|-------------|-----------|---------|----------|-----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | HELI_PAD                            | n/s         |           | 567395  | 6038478  | 1361      |                  | Heli-Pad                                                                                                                                                      |
| 2        | CONFLUENCE OF EAST FORK & WEST FORK | n/s         |           | 567558  | 6037318  | 1370      |                  | Confluence of east fork & west fork creeks                                                                                                                    |
| 3        | OUTCROP                             | n/s         |           | 567586  | 6037528  | 1381      |                  | Possible Outcrop                                                                                                                                              |
| 4        | EAST FORK                           | Silt Sample | WI09-BK01 | 567583  | 6037299  |           |                  | Coarse sand mixed w/ gravel; secondary organics; 1m to south of stream in small low energy 'pothole'                                                          |
| 5        | EAST FORK                           | Silt Sample | WI09-BK02 | NO GPS  | NO GPS   |           |                  | 25m upstream of sample BK01; on stream bank; behind large boulder (low energy); very rocky soil; diff. to obtain fines                                        |
| 6        | EAST FORK                           | Silt Sample | WI09-BK03 | NO GPS  | NO GPS   |           |                  | 25m upstream of sample BK02; small pool on southern bank; fine gravel mixed with seds; stream is braided to 2 narrow channels; roughly 1m wide each           |
| 7        | EAST FORK                           | Silt Sample | WI09-BK04 | NO GPS  | NO GPS   |           |                  | 35m upstream of BK03; small pool at edge of outcrop; very rocky, frozen; difficult access to locate any fines for sampling                                    |
| 8        | EAST FORK                           | Silt Sample | WI09-BK05 | 567722  | 6037355  | 1150      | 33               | 25m upstream of BK04; from north bank; under fallen log; fine seds mixed with large pebble gravel                                                             |
| 9        | EAST FORK                           | Silt Sample | WI09-BK06 | NO GPS  | NO GPS   |           |                  | 20m upstream of BK05; small pool on south bank; fairly rocky w/ some fine seds                                                                                |
| 10       | EAST FORK                           | Silt Sample | WI09-BK07 | NO GPS  | NO GPS   | 1165      |                  | 30m upstream of BK06; small bar in middle of stretch; stream roughly 1.5 m wide; stones surrounded by clay/silty seds                                         |
| 11       | EAST FORK                           | Silt Sample | WI09-BK08 | 567798  | 6037416  | 1153      | 10               | 35m upstream of BK07; poor sample location in vicinity; no decent spots for fines; stream 1m wide                                                             |
| 12       | EAST FORK                           | Silt Sample | WI09-BK09 | 567819  | 6037415  |           | 9                | 25m upstream from BK08; larger pool w/ bar in middle; stream + 2m wide @ pool                                                                                 |
| 13       | EAST FORK                           | n/s         | WI09-BK10 | 567845  | 6037407  | 1167      | 8                | Old flagging; probable Teck Explorations' line; no signs of flagging on north side                                                                            |
| 14       | EAST FORK                           | Silt Sample | WI09-BK11 | 567845  | 6037420  |           | 8.5              | Small pool @ bottom of falls on O/C; large O/C on south side; no real streambed; more bedrock than seds; coarse seds/gravel under boulder; stream 2m wide     |
| 15       | WEST FORK                           | Silt Sample | WI09-BK12 | 567567  | 6037373  | 1145      | 13.7             | 25m upstream of confluence of EAST FORK & WEST FORK aka Waypoint #2; small pool on east side; finer seds than other fork; more organics mixed; stream 2m wide |
| 16       | WEST FORK                           | Silt Sample | WI09-BK13 | 567556  | 6037395  |           |                  | Sediment mixed with organics; from west bank of stream; difficult to obtain good sample; very gravely & organic                                               |
| 17       | WEST FORK                           | Silt Sample | WI09-BK14 | 567536  | 6037401  | 1167      | 12               | Stream braided into 2 narrow channels; sampled western channel; under mossy overhanging bank; fine silt mixed w/ layered clay                                 |
| 18       | WEST FORK                           | Silt Sample | WI09-BK15 | NO GPS  | NO GPS   |           |                  | 25m upstream from sample BK14; sample from under log on west bank of stream; stream width 2.5m; seds are fine w/ mixed organic material; very gravelly        |
| 19       | WEST FORK                           | Silt Sample | WI09-BK16 | 567492  | 6037464  |           | 15               | Sampled east side of stream; small 'pothole' w/ silty bottom; little organics material; fairly fine seds; little gravel                                       |
| 20       | WEST FORK                           | Silt Sample | WI09-BK17 | NO GPS  | NO GPS   |           |                  | 25m upstream from sample BK16; sampled east bank; dug under gravel to reach coarse grained sed; streambed rocks are very orange-rusty red; stream is 1m wide  |

### Spectrum Mining Corporation

| 21 | WEST FORK                                      | n/s         |           | NO GPS | NO GPS  |      |    | 20m upstream of BK17; flagging found on west side of stream                                                                                                  |
|----|------------------------------------------------|-------------|-----------|--------|---------|------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 | WEST FORK                                      | Silt Sample | WI09-BK18 | NO GPS | NO GPS  |      |    | 30m upstream of BK17; sampled med. sized pool below falls over log; very rich sediment, small coarse pebbles mixed thru-out; rocks still rusty in stream bed |
| 23 | WEST FORK                                      | Silt Sample | WI09-BK19 | 567404 | 6037580 | 1167 | 25 | Stream is 1.5m wide; sampled under overhanging rocks on east side of creek; fine silt mixed w/ clay & organics                                               |
| 24 | WEST FORK                                      | Silt Sample | WI09-BK20 | NO GPS | NO GPS  |      |    | 30m upstream from sample BK19; sampled under<br>overhanging mossy log on west bank; very gravely; very little<br>organics                                    |
| 25 | WEST FORK                                      | Silt Sample | WI09-BK21 | NO GPS | NO GPS  |      |    | 25m upstream of sample BK20; sampled small pool behind log dam; stream is 1m wide; fairly coarse sediment mixed with gravel                                  |
| 26 | MAINSTEM BELOW CONFLUENCE OF EAST & WEST FORKS | Silt Sample | WI09-BK22 | NO GPS | NO GPS  |      |    | 25m south of confluence of 2 creeks on the mainstem;<br>stream roughly 2.5m wide; very coarse bedload                                                        |
| 27 | MAINSTEM BELOW CONFLUENCE OF EAST & WEST FORKS | Silt Sample | WI09-BK23 | NO GPS | NO GPS  |      |    | 50m south of confluence of 2 creeks on the mainstem;<br>sampled small 'pothole' on east side of stream; fine silt<br>mixed w/ clay; some organics            |

### **APPENDIX B**

### **LABORATORY CERTIFICATES**

Ref/I.D.: WICHEEDA: WI09 KM01 - KM04

Report date: 6 JAN 2010 Acme Job No: V09-0446R



| LAB NO       | FIELD NUMBER    | Ce(P) | La(P) | Nd(P) | Nb(P) | F     |
|--------------|-----------------|-------|-------|-------|-------|-------|
|              |                 | ppm   | ppm   | ppm   | ppm   | %     |
|              |                 |       |       |       |       |       |
| R0921209     | ACME PREP BLANK | 71    | 59    | 14    | 22    | 0.10  |
| R0921209 rpt |                 |       |       |       |       | 0.10  |
| R0921666     | WI09-KM01       | 59    | 34    | 25    | <3    | 0.03  |
| R0921667     | WI09-KM02       | 7064  | 4461  | 1387  | 88    | 0.47  |
| R0921668     | WI09-KM03       | 1282  | 726   | 336   | 154   | 0.08  |
| R0921669     | WI09-KM04       | 1434  | 785   | 448   | 70    | 0.22  |
| STD: STSD-1  |                 |       |       |       |       | 0.10  |
| STD: LIBF    |                 |       |       |       |       | 13.06 |
| STD: OKA-1   |                 |       | <3    | <3    | 3672  |       |
| STD: SY-3    |                 | 2307  | <3    | <3    | 140   |       |
| STD: SY-4    |                 |       |       | 58    | 15    |       |

I=insufficient sample

If requested analyses are not shown, results are to follow

### **ANALYTICAL METHODS**

Ce(P) X-Ray fluorescence / pressed pellet

La(P) X-Ray fluorescence / pressed pellet

Nd(P) X-Ray fluorescence / pressed pellet

Nb(P) X-Ray fluorescence / pressed pellet

F NaOH fusion / analysis by specific ion electrode



Fred Lo, Chemist - Acme Laboratories

Ref/I.D.: WICHEEDA: WI09 KM01 - KM04

Report date: 20 NOV 2009 Acme Job No: V09-0446R



| LAB NO       | FIELD           | Cu  | Pb  | Zn  | Ag   | As  | Ва  | Cd  | Co  | Ni  | Fe   | Мо  | Cr  | Bi  | Sb  | V   | Sn  | w   | Sr  | Υ   | La   | Mn   | Mg   | Ti   | Al   | Ca    | Na   | K    | P    | S    | Se  |
|--------------|-----------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|-------|------|------|------|------|-----|
|              | NUMBER          | ppm | ppm | ppm | ppm  | ppm | ppm | ppm | ppm | ppm | %    | ppm  | ppm  | %    | %    | %    | %     | %    | %    | ppm  | %    | ppm |
|              |                 |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |       |      |      |      |      |     |
| R0921209     | ACME PREP BLANK | 4   | <4  | 46  | <0.4 | 2   | 329 | <1  | 3   | 4   | 1.80 | <2  | 59  | <5  | <5  | 37  | <2  | <2  | 58  | 4   | 30   | 553  | 0.56 | 0.10 | 0.85 | 0.56  | 0.15 | 0.48 | 854  | <.05 | <5  |
| R0921666     | WI09-KM01       | 20  | 25  | 5   | 1.0  | 2   | 93  | <1  | 1   | 4   | 0.41 | <2  | 45  | <5  | <5  | 6   | 21  | <2  | 479 | 7   | 23   | 448  | 0.20 | <.01 | 0.13 | 10.47 | 0.05 | 0.01 | 377  | <.05 | <5  |
| R0921667     | WI09-KM02       | 8   | 38  | 24  | <0.4 | 249 | 99  | <1  | 2   | <1  | 2.56 | 23  | 23  | <5  | <5  | 65  | <2  | <2  | 880 | 165 | 7218 | 4552 | 2.58 | <.01 | 0.15 | 15.25 | 0.11 | 0.14 | 1195 | 0.34 | <5  |
| R0921667 rpt |                 | 8   | 36  | 23  | <0.4 | 249 | 101 | <1  | 2   | <1  | 2.57 | 24  | 22  | <5  | <5  | 65  | <2  | <2  | 900 | 166 | 7263 | 4563 | 2.61 | <.01 | 0.15 | 15.22 | 0.06 | 0.14 | 1188 | 0.33 | <5  |
| R0921668     | WI09-KM03       | 8   | 15  | 38  | <0.4 | 149 | 86  | <1  | 2   | 6   | 3.04 | 4   | 21  | <5  | <5  | 50  | <2  | <2  | 836 | 47  | 821  | 3622 | 1.85 | <.01 | 0.07 | 12.69 | 0.05 | 0.07 | 158  | 0.09 | <5  |
| R0921669     | WI09-KM04       | 5   | <4  | 40  | <0.4 | 2   | 140 | <1  | <1  | 6   | 3.27 | <2  | 8   | <5  | <5  | 7   | 3   | <2  | 216 | 99  | 31   | 655  | 0.20 | 0.06 | 1.37 | 3.08  | 0.61 | 0.43 | 511  | 0.48 | <5  |
| STD: DA      |                 | 122 | 199 | 632 | 6.7  | 45  | 279 | 3   | 9   | 31  | 2.91 | 3   | 31  | <5  | <5  | 52  | 2   | <2  | 34  | 8   | 13   | 609  | 0.45 | 0.05 | 1.25 | 0.47  | 0.10 | 0.10 | 904  | 0.18 | <5  |
|              |                 |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |       |      |      |      |      |     |

I=insufficient sample

If requested analyses are not shown, results are to follow

### **ANALYTICAL METHODS**

GROUP 1AA ICP-AES: 30 element package digested in hot reverse aqua regia (soil, silt) or hot aqua regia (rocks).

Alice Kwan, Chemist - Acme Laboratories

Ref/I.D.: WICHEEDA: WI09 BK01 - BK23

Report date: 17 DEC 2009 Acme Job No: V09-0447S



| LAB NO       | FIELD NUMBER   | ı     |
|--------------|----------------|-------|
| 2.2.10       | . ILLS NOMBLIK | %     |
|              | LAURO DICOL    |       |
| S0902949     | WI09-BK01      | 0.15  |
| S0902950     | WI09-BK02      | 0.15  |
| S0902951     | WI09-BK03      | 0.09  |
| S0902952     | WI09-BK04      | 0.17  |
| S0902952 rpt | 14444 B1445    | 0.19  |
| S0902953     | WI09-BK05      | 0.12  |
| S0902954     | WI09-BK06      | 0.09  |
| S0902955     | WI09-BK07      | 0.13  |
| S0902956     | WI09-BK08      | 0.14  |
| S0902957     | WI09-BK09      | 0.12  |
| S0902958     | WI09-BK11      | 0.11  |
| S0902959     | WI09-BK12      | 0.10  |
| S0902960     | WI09-BK13      | 0.08  |
| S0902961     | WI09-BK14      | 0.10  |
| S0902962     | WI09-BK15      | 0.08  |
| S0902963     | WI09-BK16      | 0.09  |
| S0902964     | WI09-BK17      | 0.10  |
| S0902965     | WI09-BK18      | 0.03  |
| S0902966     | WI09-BK19      | 0.09  |
| S0902967     | WI09-BK20      | 0.02  |
| S0902968     | WI09-BK21      | 0.11  |
| S0902969     | WI09-BK22      | 0.09  |
| S0902970     | WI09-BK23      | 0.10  |
| STD: STSD-1  |                | 0.08  |
| STD: LIBF    |                | 13.28 |
| Blank        |                | <0.01 |

I=insufficient sample

If requested analyses are not shown, results are to follow

**ANALYTICAL METHODS** 

F NaOH fusion / analysis by specific ion electrode



Ref/I.D.: WICHEEDA: WI09 BK01 - BK23

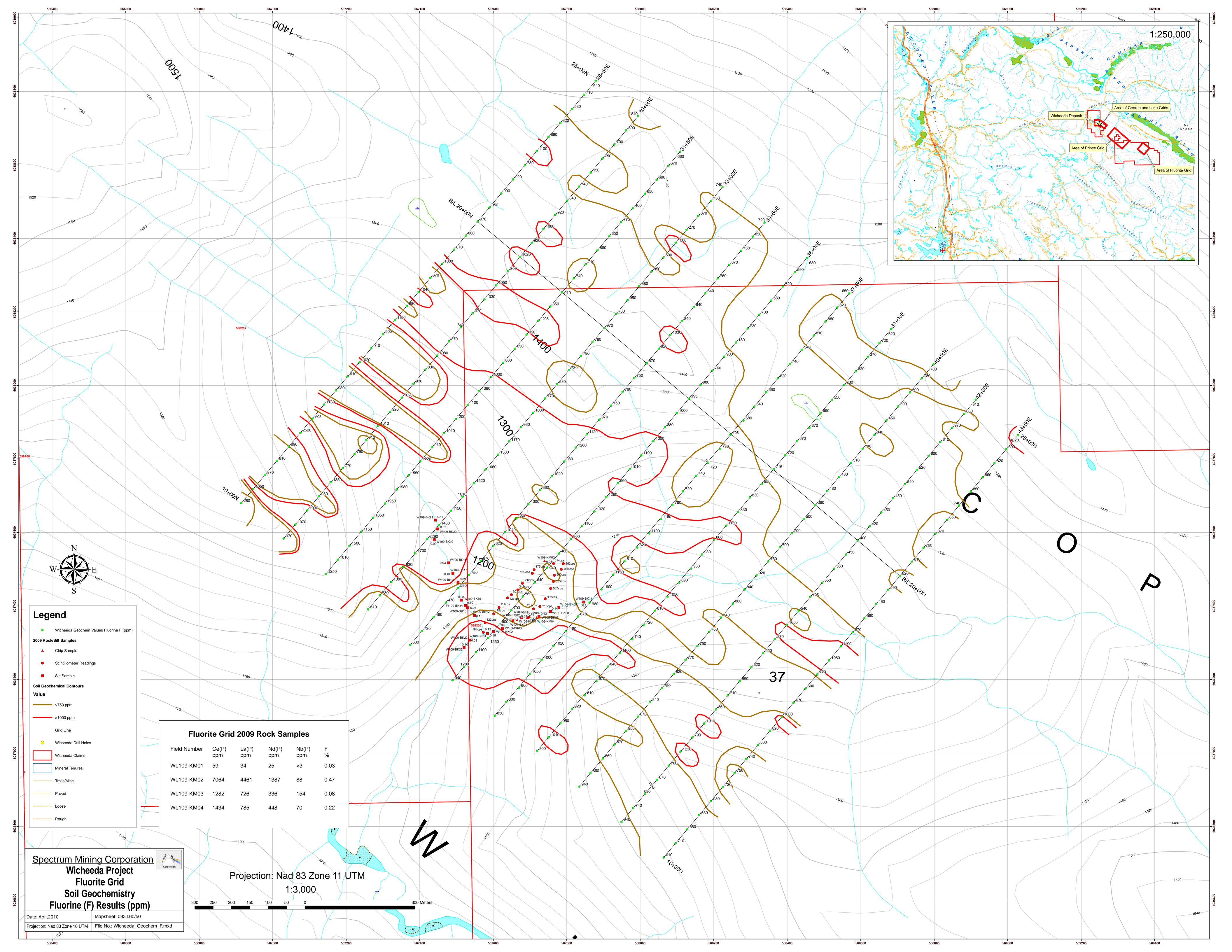
Report date: 20 NOV 2009 GDL Job No: V09-0447S

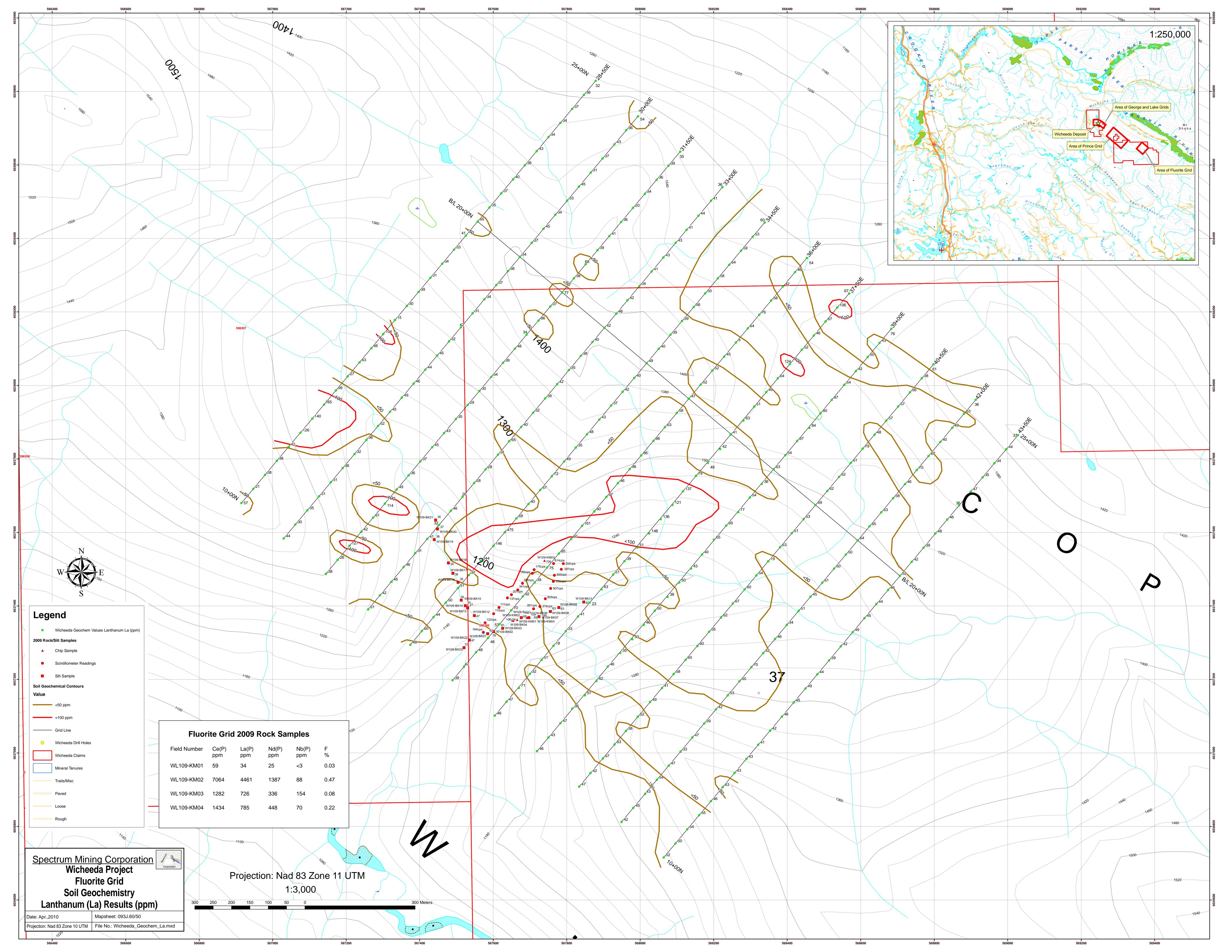


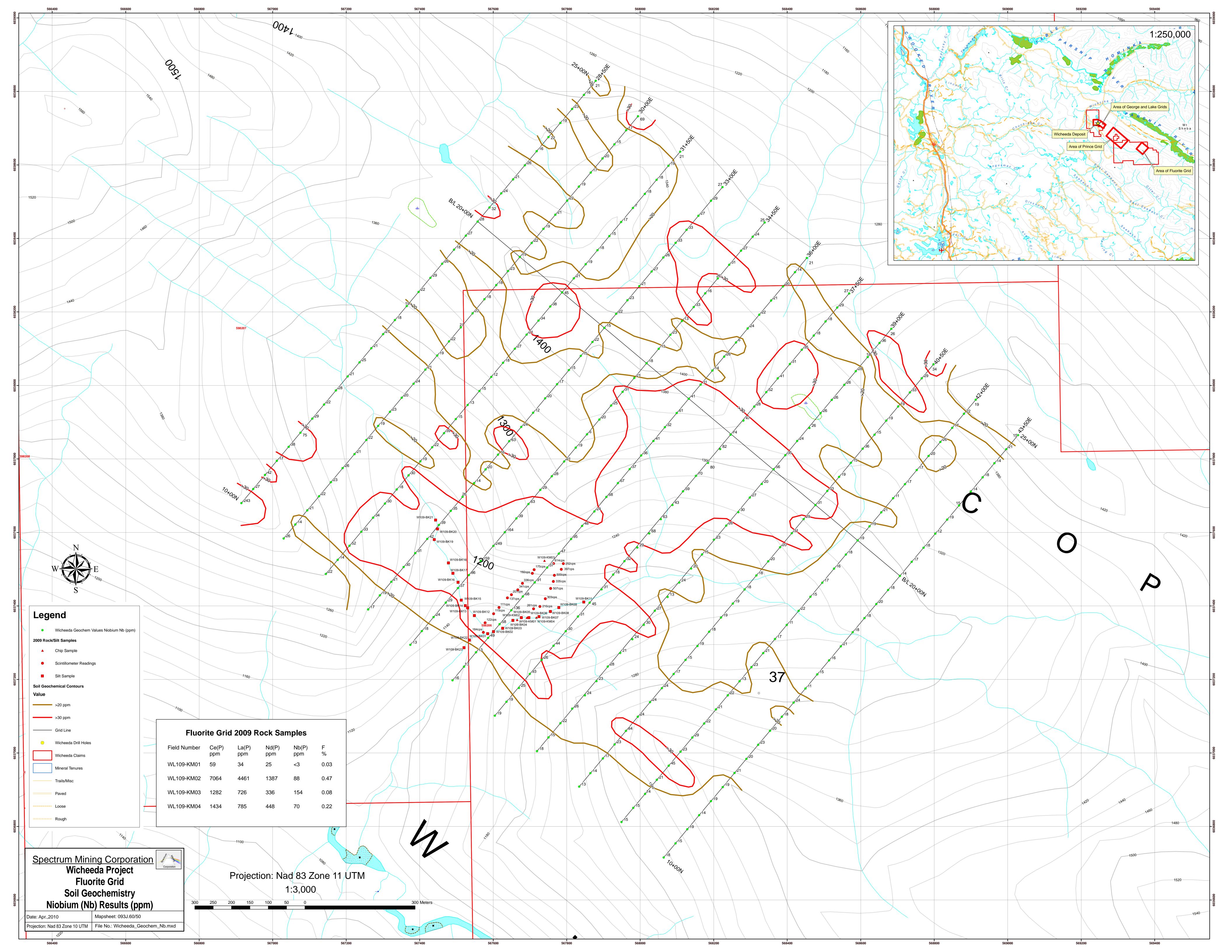
| LAB NO       | FIELD     | Cu  | Pb  | Zn    | Ag   | As  | Ba  | Cd  | Со  | Ni  | Fe   | Мо    | Cr  | Bi  | Sb    | ·v  | Sn  | w   | Sr    | ·v  | La  | Mn   | Mg     | ті   | AI   | Са   | Na   |      |      | s    | Se  |
|--------------|-----------|-----|-----|-------|------|-----|-----|-----|-----|-----|------|-------|-----|-----|-------|-----|-----|-----|-------|-----|-----|------|--------|------|------|------|------|------|------|------|-----|
| LABINO       | NUMBER    | ppm | ppm | ppm   | ppm  | ppm | ppm | ppm | ppm | ppm | %    | ppm   | ppm | ppm | ppm   | ppm | ppm | ppm | ppm   | ppm | ppm | ppm  | g<br>% | %    | %    | %    | %    | %    | ppm  | %    | ppm |
|              |           |     |     | • • • |      | • • |     |     |     |     |      | • • • |     |     | • • • |     |     |     | • • • |     | • • |      |        |      |      |      |      |      |      |      |     |
| S0902949     | WI09-BK01 | 17  | 22  | 80    | <0.4 | 77  | 63  | <1  | 10  | 22  | 2.97 | 2     | 17  | <5  | <5    | 18  | 2   | <2  | 54    | 22  | 62  | 1268 | 0.98   | <.01 | 1.22 | 1.37 | 0.04 | 0.06 | 1488 | 0.05 | <5  |
| S0902950     | WI09-BK02 | 17  | 22  | 76    | <0.4 | 78  | 64  | <1  | 11  | 24  | 3.35 | 2     | 20  | <5  | <5    | 19  | 3   | <2  | 73    | 19  | 79  | 1291 | 0.91   | <.01 | 1.12 | 2.24 | 0.04 | 0.05 | 1456 | <.05 | <5  |
| S0902951     | WI09-BK03 | 13  | 20  | 71    | <0.4 | 55  | 51  | <1  | 10  | 21  | 2.83 | <2    | 19  | <5  | <5    | 15  | <2  | <2  | 56    | 18  | 81  | 1052 | 0.90   | <.01 | 1.17 | 1.78 | 0.04 | 0.05 | 1447 | <.05 | <5  |
| S0902952     | WI09-BK04 | 15  | 23  | 77    | <0.4 | 92  | 49  | <1  | 10  | 24  | 3.21 | 2     | 19  | <5  | <5    | 18  | 2   | <2  | 81    | 18  | 106 | 1076 | 1.17   | <.01 | 1.31 | 2.84 | 0.04 | 0.06 | 1535 | 0.06 | <5  |
| S0902952 rpt |           | 16  | 22  | 78    | <0.4 | 89  | 46  | <1  | 10  | 21  | 3.04 | 2     | 17  | <5  | <5    | 16  | <2  | <2  | 70    | 17  | 92  | 1058 | 1.01   | <.01 | 1.09 | 2.84 | 0.04 | 0.05 | 1370 | 0.05 | <5  |
| S0902953     | WI09-BK05 | 14  | 23  | 77    | <0.4 | 98  | 54  | <1  | 10  | 24  | 3.34 | <2    | 21  | <5  | <5    | 20  | <2  | <2  | 68    | 18  | 68  | 1222 | 1.22   | <.01 | 1.40 | 2.23 | 0.04 | 0.05 | 1413 | <.05 | <5  |
| S0902954     | WI09-BK06 | 15  | 19  | 79    | <0.4 | 93  | 61  | <1  | 10  | 23  | 3.43 | 2     | 20  | <5  | <5    | 25  | <2  | <2  | 54    | 23  | 109 | 1402 | 1.06   | <.01 | 1.22 | 1.81 | 0.05 | 0.07 | 1493 | <.05 | <5  |
| S0902955     | WI09-BK07 | 15  | 19  | 84    | <0.4 | 56  | 61  | <1  | 11  | 23  | 3.29 | <2    | 20  | <5  | <5    | 19  | <2  | <2  | 67    | 18  | 59  | 1260 | 1.22   | <.01 | 1.28 | 2.59 | 0.05 | 0.08 | 1296 | <.05 | <5  |
| S0902956     | WI09-BK08 | 14  | 18  | 81    | 0.5  | 73  | 50  | <1  | 10  | 26  | 3.62 | 2     | 23  | <5  | <5    | 26  | <2  | <2  | 52    | 17  | 63  | 1220 | 1.38   | <.01 | 1.34 | 1.80 | 0.05 | 0.06 | 1345 | <.05 | <5  |
| S0902957     | WI09-BK09 | 15  | 21  | 82    | <0.4 | 122 | 52  | <1  | 11  | 27  | 3.63 | <2    | 21  | <5  | <5    | 23  | <2  | <2  | 58    | 18  | 63  | 1220 | 1.38   | <.01 | 1.35 | 2.23 | 0.04 | 0.06 | 1279 | <.05 | <5  |
| S0902958     | WI09-BK11 | 14  | 20  | 84    | <0.4 | 79  | 51  | <1  | 10  | 22  | 3.27 | <2    | 20  | <5  | <5    | 19  | <2  | <2  | 55    | 17  | 40  | 1195 | 1.20   | <.01 | 1.28 | 2.30 | 0.04 | 0.07 | 1697 | <.05 | <5  |
| S0902959     | WI09-BK12 | 18  | 14  | 70    | <0.4 | 18  | 43  | <1  | 9   | 21  | 2.81 | <2    | 20  | <5  | <5    | 16  | <2  | <2  | 38    | 15  | 47  | 833  | 1.01   | <.01 | 1.20 | 1.33 | 0.04 | 0.05 | 1295 | 0.05 | <5  |
| S0902959 rpt |           | 17  | 16  | 63    | 0.4  | 15  | 41  | <1  | 9   | 19  | 2.53 | <2    | 20  | <5  | <5    | 12  | <2  | <2  | 35    | 14  | 34  | 819  | 0.83   | <.01 | 1.05 | 1.22 | 0.04 | 0.04 | 1258 | 0.05 | <5  |
| S0902960     | WI09-BK13 | 17  | 13  | 72    | 0.5  | 10  | 43  | <1  | 9   | 19  | 2.66 | <2    | 17  | <5  | <5    | 13  | <2  | <2  | 57    | 13  | 27  | 793  | 1.00   | <.01 | 1.14 | 2.42 | 0.05 | 0.05 | 1206 | <.05 | <5  |
| S0902961     | WI09-BK14 | 14  | 14  | 63    | <0.4 | 11  | 38  | <1  | 9   | 18  | 2.63 | <2    | 20  | <5  | <5    | 14  | <2  | <2  | 39    | 13  | 30  | 665  | 0.91   | <.01 | 1.09 | 1.46 | 0.05 | 0.05 | 1232 | <.05 | <5  |
| S0902962     | WI09-BK15 | 14  | 16  | 72    | 0.9  | 11  | 36  | <1  | 9   | 23  | 2.88 | <2    | 22  | <5  | <5    | 16  | <2  | <2  | 61    | 10  | 30  | 667  | 1.22   | <.01 | 1.22 | 2.40 | 0.05 | 0.05 | 1113 | <.05 | <5  |
| S0902963     | WI09-BK16 | 15  | 13  | 66    | 0.5  | 13  | 44  | <1  | 9   | 18  | 2.53 | <2    | 15  | 6   | <5    | 14  | <2  | <2  | 40    | 15  | 35  | 772  | 0.85   | <.01 | 1.08 | 1.50 | 0.05 | 0.05 | 1216 | <.05 | <5  |
| S0902964     | WI09-BK17 | 15  | 13  | 70    | <0.4 | 17  | 43  | <1  | 9   | 19  | 2.73 | <2    | 19  | <5  | <5    | 14  | <2  | <2  | 47    | 13  | 36  | 817  | 1.02   | <.01 | 1.17 | 2.01 | 0.05 | 0.05 | 1115 | <.05 | <5  |
| S0902965     | WI09-BK18 | 16  | 15  | 77    | 0.6  | 14  | 45  | <1  | 9   | 20  | 2.87 | <2    | 20  | <5  | <5    | 14  | <2  | <2  | 56    | 14  | 30  | 851  | 1.06   | <.01 | 1.22 | 2.39 | 0.04 | 0.05 | 1265 | <.05 | <5  |
| S0902966     | WI09-BK19 | 16  | 15  | 75    | <0.4 | 13  | 47  | <1  | 10  | 19  | 2.78 | <2    | 21  | <5  | <5    | 16  | <2  | <2  | 49    | 14  | 36  | 766  | 0.99   | <.01 | 1.18 | 2.05 | 0.05 | 0.06 | 1193 | <.05 | <5  |
| S0902967     | WI09-BK20 | 15  | 15  | 77    | <0.4 | 25  | 40  | <1  | 10  | 21  | 3.02 | <2    | 20  | <5  | <5    | 16  | <2  | <2  | 60    | 13  | 37  | 789  | 1.25   | <.01 | 1.30 | 2.72 | 0.04 | 0.05 | 1084 | <.05 | <5  |
| S0902968     | WI09-BK21 | 16  | 21  | 91    | <0.4 | 13  | 49  | <1  | 10  | 23  | 3.27 | 3     | 20  | <5  | <5    | 17  | <2  | <2  | 58    | 13  | 35  | 1021 | 1.24   | <.01 | 1.32 | 2.56 | 0.05 | 0.07 | 1260 | <.05 | <5  |
| S0902969     | WI09-BK22 | 13  | 21  | 76    | <0.4 | 98  | 50  | <1  | 11  | 24  | 3.38 | <2    | 20  | <5  | <5    | 20  | <2  | <2  | 63    | 13  | 47  | 1220 | 1.21   | <.01 | 1.26 | 2.56 | 0.04 | 0.06 | 1247 | <.05 | <5  |
| S0902970     | WI09-BK23 | 14  | 17  | 71    | 0.5  | 78  | 55  | <1  | 9   | 20  | 2.89 | 2     | 17  | <5  | <5    | 17  | <2  | <2  | 45    | 20  | 72  | 1152 | 0.87   | <.01 | 1.06 | 1.32 | 0.05 | 0.06 | 1430 | <.05 | <5  |
| STD: DA      |           | 124 | 221 | 651   | 5.9  | 50  | 396 | 3   | 11  | 35  | 3.08 | 3     | 29  | <5  | 5     | 51  | 3   | <2  | 33    | 8   | 14  | 637  | 0.43   | 0.03 | 1.43 | 0.48 | 0.05 | 0.11 | 914  | 0.19 | <5  |

I=insufficient sample

If requested analyses are not shown, results are to follow


**ANALYTICAL METHODS** 


GROUP 1AA ICP-AES: 30 element package digested in hot reverse aqua regia (soil, silt) or hot aqua regia (rocks).


Alice Kwan, Chemist - Acme Laboratories

### **APPENDIX C**

# FLUORITE GRID SOIL GEOCHEMICAL MAPS FOR FLUORITE, LANTHANUM AND NIOBIUM





