ASSESSMENT REPORT:

STRUCTURAL MAPPING AND WHOLE ROCK GEOCHEMICAL SAMPLING

LARA POLYMETALLIC PROPERTY

VICTORIA MINING DIVISION 48° 53' N AND 123° 52' W NTS SHEET 092B/13 BRITISH COLUMBIA, CANADA BC Geological Survey Assessment Report 31578

TREASURY METALS INC. 130 KING STREET WEST, SUITE 3680 PO BOX 99, THE EXCHANGE TOWER TORONTO, ONTARIO, CANADA M5X 1B1

May 19th, 2010

Prepared By:

Caracle Creek International Consulting Inc. Suite 1409-409 Granville Street Vancouver, BC, Canada V6C 1T2

Stephen Wetherup, B.Sc., P.Geo.

TABLE OF CONTENTS

TABLE	E OF CONTENTS	1
LIST C	DF FIGURES	1
	DF TABLES	
LIST C	OF APPENDICES	2
1.0INT	RODUCTION AND TERMS OF REFERENCE	3
1.1		3
1.2	TERMS OF REFERENCE AND UNITS	3
1.3	CCIC QUALIFICATIONS	4
2.0PR	OPERTY DESCRIPTION AND LOCATION	5
2.1	LOCATION	
2.2	DESCRIPTION AND OWNERSHIP	5
3.0AC	CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	5
3.1	Access	5
3.2	CLIMATE AND VEGETATION	.10
3.3	Physiography	
3.4	INFRASTRUCTURE AND LOCAL RESOURCES	.10
4.0PR	OPERTY HISTORY	.11
4.1	EXPLORATION HISTORY	.12
4	1.1. Underground Exploration	. 14
4.2	HISTORICAL DRILLING	
4.3	HISTORICAL RESOURCE ESTIMATES	.15
4.4	HISTORICAL PRODUCTION	.16
4.5	RECENT EXPLORATION WORK	.16
5.0GE	OLOGICAL SETTING	.17
5.1	REGIONAL GEOLOGY	.17
5.2	DISTRICT GEOLOGY	.19
5.3	LOCAL GEOLOGY	.20
6.0DE	POSIT TYPE	
6.1	VOLCANOGENIC MASSIVE SULPHIDE	.24
7.0MI	VERALIZATION	.25
7.1	CORONATION TREND	.28
7.2	"126" ZONE	.29
7.3	ANITA ZONE	. 30
7.4	Randy (North) Zone	
7.5	SHARON COPPER – SILVER CREEK TREND	
7.6	"262" Zone	.31
8.0EX	PLORATION	
8.1	STRUCTURAL AND GEOLOGICAL MAPPING	
8.2	WHOLE ROCK DATA	
9.0CO	NCLUSIONS	
10.0	SUMMARY OF EXPLORATION EXPENSES	
11.0	STATEMENT OF AUTHORSHIP	
12.0	REFERENCES	. 39

LIST OF FIGURES

FIGURE 2–1. LOCATION OF LARA POLYMETALLIC PROPERTY ON VANCOUVER ISLAND, BRITISH COLUMBIA,	
CANADA6	5
FIGURE 2–2. REGIONAL MAP OF SOUTHERN VANCOUVER ISLAND SHOWING THE LOCATION OF TREASURY MINERAL	
CLAIMS THAT COMPRISE THE LARA PROPERTY (REFER TO TABLE 4–1)7	•
FIGURE 2–3. LOCATION OF LARA POLYMETALLIC PROPERTY ON SOUTHEASTERN VANCOUVER ISLAND, BC,	
CANADA)

FIGURE 5–1. GEOLOGY OF VANCOUVER ISLAND SHOWING MAJOR GEOLOGICAL FEATURES, STRUCTURES AND COMPONENTS OF THE INSULAR SUPERTERRANE OF THE WRANGELLIA TERRANE (AFTER EARLE, 2004)	18
FIGURE 5–2 REGIONAL GEOLOGY OF THE SOUTH CENTRAL PORTION OF VANCOUVER ISLAND, BRITISH COLUMBIA	
FIGURE 5–3. BEDROCK GEOLOGY UNDERLYING THE LARA PROPERTY (SOUTH VANCOUVER ISLAND, B.C.) AFTER MASSEY ET AL. 2005A.	
FIGURE 6–1. IDEALIZED CHARACTERISTICS OF A BIMODAL-FELSIC VMS DEPOSIT (AFTER GALLEY, ET. AL., 2007)	
FIGURE 7–1 LOCATION OF MINERALIZED ZONES WITHIN MINERAL CLAIMS OF LARA PROPERTY, VANCOUVER	27
FIGURE 8-1. GEOLOGY MAP OF THE LARA PROPERTY.	32
FIGURE 8-2. STEREONET PROJECTION OF THE POLES TO THE S1 AND L1 DATA COLLECTED ON THE LARA PROPERTY.	
FIGURE 8-3. GEOLOGY MAP OF THE LARA PROPERTY WITH THE SPITZ-DARLING RATIOS FOR THE WHOLE ROCK	35

LIST OF TABLES

TABLE 2–1. MINERAL CLAIMS COMPRISING THE LARA PROPERTY, BRITISH COLUMBIA, CANADA AS OF NOVEMB	ER
15, 2007, INCLUDING DOLLAR AMOUNTS OF ASSESSMENT WORK REQUIRED FOR THE PERIOD OCTOBER 3	,
2006 TO JANUARY 21, 2010.	8
TABLE 4-1. SUMMARY OF PROPERTY OWNERSHIP ON THE ORIGINAL LARA PROPERTY (ARCHIBALD, 1999;	
TREASURY, 2007).	12
TABLE 4-2. SUMMARY OF PROPERTY OWNERSHIP ON THE ORIGINAL CHEMAINUS PROPERTY (STEWART, 1991)).12
TABLE 4-3. EXPLORATION HISTORY OF THE LARA PROPERTY (ARCHIBALD, 1999; PEATFIELD AND WALKER,	
1994)	
TABLE 4-4. EXPLORATION HISTORY OF THE CHEMAINUS PROPERTY (ARCHIBALD, 1999; STEWART, 1991)	14
TABLE 4-5. SUMMARY OF HISTORICAL DRILLING PROGRAMS ON LARA PROPERTY	15
TABLE 4-6. HISTORICAL RESOURCE ESTIMATES FOR THE LARA DEPOSIT IN THE CORONATION TREND	16
TABLE 4-7. CORONATION TREND MINERAL RESOURCE ESTIMATE.	17
TABLE 5-1. STRATIGRAPHY OF THE BUTTLE LAKE AND SICKER GROUPS UNDERLYING THE LARA PROPERTY AR	₹EA
(AFTER MASSEY 1992)	21
TABLE 7-1. MINERALIZED ZONES WITHIN THE LARA PROPERTY	26
TABLE 15–1. SUMMARY OF EXPLORATION EXPENSES	37

LIST OF APPENDICES

APPENDIX 1 Certificates of Qualification APPENDIX 2 Sample and Structural Data Summary APPENDIX 3 Geochemical Certificates APPENDIX 4 Geology and Structural Map

1.0 INTRODUCTION AND TERMS OF REFERENCE

1.1 Introduction

Caracle Creek International Consulting Inc. has been retained by Treasury Metals Inc. to conduct an Independent Mineral Resource Estimate of the base and precious metal resources located on the Lara Polymetallic Property and conduct exploration on the Property comprised by an airborne geophysical survey of the entire Property and drill core re-sampling. In addition, Treasury requested CCIC to provide recommendations and to propose an exploration program and a budget for further exploration and development on the Property.

The Lara Property, located in the southern portion of Vancouver Island, lies about 75 km north of Victoria, ~15 km northwest of Duncan and ~12 km west of the Village of Chemainus, British Columbia, Canada. Situated in the Victoria Mining Division, the Property is centred at approximately 48°52'52" N and 123°54'18" W.

The Property comprises 47 mineral claims (8649.99 ha) held 100% by Treasury Metals Inc., with eight (8) of the mineral claims subject to a 1% Net Smelter Return Royalty ("NSR") to Bluerock Resources Ltd.

The Property hosts the Lara copper-lead-zinc-gold-silver deposit ("Lara Deposit") which comprises two main sulphide zones referred to as the Coronation and Coronation Extension zones. Critical intersections of sulphide mineralization in diamond drill core are currently stored in sheltered core racks on the Property.

During the course of the exploration program, a total of most of the property was traversed to collect structural measurements, verify rock types at various key outcrop locations and collect whole rock geochemical samples (63 in total). A total of \$55,604.33 was spent during the course of this work.

1.2 Terms of Reference and Units

The Metric System is the primary system of measure and length used in this Report and is generally expressed in kilometres (km), metres (m) and centimetres (cm); volume is expressed as cubic metres (m³), mass expressed as metric tonnes (t), area as hectares (ha), and gold and silver concentrations as grams per tonne (g/t). Conversions from the Metric System to the Imperial System are provided below and quoted where practical. Many of the geologic publications and more recent documents now use the Metric System but older documents almost exclusively refer to the Imperial System. Metals and minerals acronyms in this report conform to mineral industry accepted usage and the reader is directed to www.maden.hacettepe.edu.tr/dmmrt/index.html for a glossary.

Conversion factors utilized in this report include:

- 1 troy ounce/ton = 34.285714 grams/tonne
- 1 gram/tonne = 0.029167 troy ounces/ton
- 1 troy ounce = 31.103477 grams
- 1 gram = 0.032151 troy ounces

The term gram/tonne or g/t is expressed as "gram per tonne" where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). The mineral industry accepted terms Au g/t and g/t Au are substituted for "grams gold per metric tonne" or "g Au/t". Other abbreviations include ppb = parts per billion; ppm = parts per million; oz/t = troy ounce per short ton; Moz = million ounces; Mt = million tonne; t = tonne (1000 kilograms); SG = specific gravity; lb/t = pound/ton; and, st = short ton (2000 pounds).

Dollars are expressed in Canadian currency (CAD\$) unless otherwise noted. Zinc (Zn), copper (Cu) and lead (Pb) are reported in US\$ per pound (US\$/lb) or US\$ per metric tonne (US\$/t). Gold (Au) and silver (Ag) are stated in US\$ per troy ounce (US\$/oz). Where quoted, Universal Transverse Mercator (UTM) coordinates are provided in the datum of Canada, NAD83 Zone 10 North.

1.3 CCIC Qualifications

Caracle Creek International Consulting Inc. is an international consulting company with the head office of Canadian operations based in Toronto, Ontario, Canada. CCIC provides a wide range of geological and engineering services to the mineral industry. With offices in Canada (Sudbury and Toronto, Ontario and Vancouver, British Columbia) and South Africa (Johannesburg), CCIC is well positioned to service its international client base.

CCIC's mandate is to provide professional geological and engineering services to the mineral exploration and development industry at competitive rates and without compromise. CCIC's professionals have international experience in a variety of disciplines with services that include:

- Exploration Project Generation, Design and Management
- Data Compilation and Exploration Target Generation
- Property Evaluation and Due Diligence Studies
- Independent Technical Reports (43-101)/Competent Person Reports
- Mineral Resource/Reserve Modelling, Estimation, Audit; Conditional Simulation
- 3D Geological Modelling, Visualization and Database Management

In addition, CCIC has access to the most current software for data management, interpretation and viewing, manipulation and target generation.

The Qualified Person and principal author for this Report is Mr. Stephen Wetherup, Principal Geologist of CCIC Canada, and a geologist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC #27770). Mr. Wetherup has more than 13 years of experience in the mineral exploration industry, specializing in structural geological mapping and

interpretation, with exploration experience in base metals, gold, uranium, diamonds and platinum-group elements. Mr. Wetherup has written or co-written numerous NI43-101 compliant Independent Technical Reports.

Certificate of Author are provided in Appendix 1.

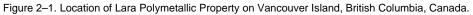
2.0 PROPERTY DESCRIPTION AND LOCATION

2.1 Location

The Lara Property, located in the southern part of Vancouver Island, lies approximately 75 km north of Victoria, 15 km northwest of Duncan and 12 km west of the Village of Chemainus, British Columbia, Canada (Figures 2-1 and 2-2). The Property, situated in the Victoria Mining Division, is centered at 48°52'52" N and 123°54'18" W (NAD83 Zone 10 North: 5414789mN and 433651mE) and is covered by the 1:50 000 National Topographic Series ("NTS") map sheet 92B/13 [Duncan] and 92C/16 [Cowichan Lake].

2.2 Description and Ownership

The Lara Property is 100% held by Treasury Metals Inc. and comprises 47 mineral claims covering 8649.99 hectares (Table 2–1; Figure 2–3). Eight (8) mineral claims, previously held by Bluerock Resources Ltd., are subject to a 1% NSR as per a *Mineral Property Purchase and Sale Agreement* dated May 25th,


3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

3.1 Access

A network of logging roads and rough drill trails extend to most areas on the Property (Figure 2-3). Vehicle access to the Property is via the Chemainus River Logging Trunk Road (MacMillan Bloedel) for 12 km from Highway No. 1 at Chemainus. From the Chemainus River Road, the Property is accessed by a network of secondary logging and forestry roads, at Mile 10, Mile 12 and C-7 to the power line service road to reach the different parts of the claim group. The B.C. Hydro Right of Way (a cleared power line right-of-way) cuts across the Property (northwest to southeast). Although these roads provide access, they go through rough terrain and steep grades. The northern and northeastern sections of the Property

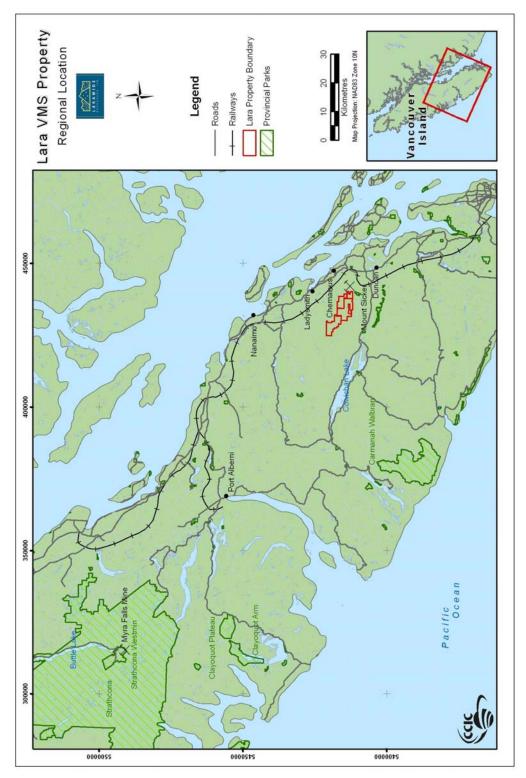


Figure 2–2. Regional map of Southern Vancouver Island showing the location of Treasury mineral claims that comprise the Lara Property (refer to Table 4–1).

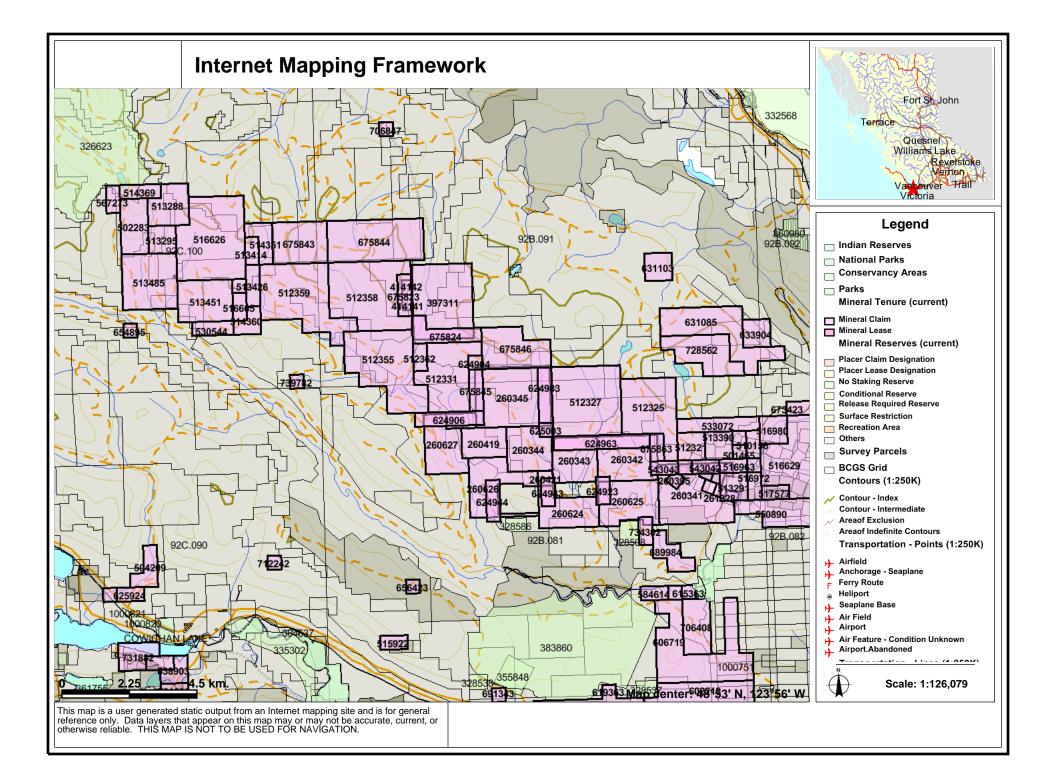


Table 2–1. Mineral claims comprising the Lara Property, British Columbia, Canada as of November 15, 2007, including dollar
amounts of assessment work required for the period October 3, 2006 to January 21, 2010.

Tenure Number	Claim Name	Owner	Tenure Type	Map Number	Issue Date	Good To Date	Area (ha)
260341	FANG	213790 (100%)	Mineral	092B	1981/may/08	2011/jan/21	500
260342	SILVER 1	213790 (100%)	Mineral	092B	1981/may/08	2011/jan/21	300
260343	SILVER 2	213790 (100%)	Mineral	092B	1981/may/08	2011/jan/21	225
260344	SOLLY	213790 (100%)	Mineral	092B	1981/may/08	2011/jan/21	225
260345	TL	213790 (100%)	Mineral	092B	1981/may/08	2011/jan/21	500
260393		213790 (100%)	Mineral	092B	1982/oct/26	2011/jan/21	25
260394		213790 (100%)	Mineral	092B	1982/oct/26	2011/jan/21	25
260395		213790 (100%)	Mineral	092B	1982/oct/26	2011/jan/21	25
260419	UGLY	213790 (100%)	Mineral	092B	1983/feb/08	2011/jan/21	150
260420	WIMP	213790 (100%)	Mineral	092B	1983/feb/08	2011/jan/21	50
260421	NERO	213790 (100%)	Mineral	092B	1983/feb/08	2011/jan/21	25
260521	JENNIE	213790 (100%)	Mineral	092B	1983/nov/18	2011/jan/21	100
260606	тоотн	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	125
260607	COR 1 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260608	COR 2 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260609	COR 3 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260610	COR 4 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260611	COR 5 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260612	COR 6 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260613	COR 7 FR.	213790 (100%)	Mineral	092B	1984/nov/07	2011/jan/21	25
260624	TOUCHE	213790 (100%)	Mineral	092B	1985/jan/21	2011/jan/21	300
260625	CAVITY	213790 (100%)	Mineral	092B	1985/jan/21	2011/jan/21	300
260626	PLANT	213790 (100%)	Mineral	092B	1985/jan/23	2011/jan/21	500
260627	FACE	213790 (100%)	Mineral	092B	1985/jan/23	2011/jan/21	300
512321		213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	84.965
512325	LADY 6	213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	382.311
512327	LADY 7	213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	530.958
512331	LADY 8	213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	360.994
512355	LADY 9	213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	530.847
512358	LADY 9	213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	530.552
512359		213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	530.506
512362		213790 (100%)	Mineral	092B	2005/may/10	2011/jan/21	42.465
624904	LAZ1	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	21.2334
624906	LAZ2	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	106.2009
624923	LAZ3	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	42.4971
624943	LAZ4	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	42.4974
624944	LAZ5	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	63.7501
624963	LAZ6	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	148.701
624983	LAZ7	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	84.9505
625003	LAZ8	213790 (100%)	Mineral	092B	2009/aug/27	2011/jan/21	21.2416
						Total	7374.67

*subject to 1% NSR held by Bluerock Resources Ltd.

in particular are difficult because the terrain is steep and broken by numerous gullies: access to these areas is limited to an existing grid between the access roads. The Trans Canada Highway (Highway No. 1) provides access to these roads from Chemainus and Victoria. This route also provides the best access for heavy equipment to the Property.

3.2 Climate and Vegetation

The climate in the Duncan – Port Alberni area is a typical continental climate with moderating influences of the Pacific air throughout the year. The area lies within a rain shadow leeward of the coastal mountains. In summer there is intense surface heating and convective showers, and in the winter there are frequent outbreaks of Arctic air. The mean annual temperature and precipitation varies to some extent within the region, depending on the location's elevation and proximity to salt water. At sea level snow fall is infrequent, although it increases with elevation. The January mean temperatures are also moderated with an average temperature of 2.7°C (37°F). Duncan has a July mean maximum of 25.2°C (77.4°F) and a July mean minimum of 11.6°C (52.9°F). However, precipitation (with the most falling between October and March) varies from 96.1 cm (37.85 in) in Cowichan Bay, 109.2 cm (41.04 in) in Duncan, and 117.6 cm (46.28 in) in Chemainus. Vegetation is dominated by dense mixed forest of pine, spruce, cedar, alder, poplar and local low lying swamps and marshes.

3.3 Physiography

The Property straddles the southern flank of the Coronation Mountains which include both Mount Brenton and Mount Hall. Total relief on the Property is on the order of 1,000 metres ranging from 200 m above sea level ("ASL") near the Chemainus River at the southeast end of the claims to about 1,200 m near the top of Mount Brenton and on the high hills to the northwest. Elevation on the Property generally increases towards the north and west with the lowest point in the southeast at 174 m. The topography is gentle to steep where creeks have deeply incised the terrain. Outcrop is abundant along creek valleys and roads, but in general there exists extensive thick deposits of glacial overburden and little outcrop. The entire Property lies in a heavily forested area, although there has been extensive logging activity for the past 40 years and most of the tree cover is second or even third growth. Much of the Property has been logged by clear-cutting methods over the past 40 years with present vegetation consisting of secondary growths of spruce, balsam, fir and cedar with thick undergrowth cover (Archibald, 1999; Peatfield and Walker, 1994; Roscoe, 1988).

3.4 Infrastructure and Local Resources

The Property, located between Victoria (population 325,000) and Nanaimo (population 78,700), lies within the southern part of Vancouver Island which also supports most of the population base of the island. Services include hospital, medical and dental facilities, pharmacy, restaurants, grocery stores, hotels, service stations and major automobile dealerships, small airports, banks, building supply centers and other small businesses. The regional government of the Cowichan Valley Regional District (includes the towns of Cowichan (population 2,830), Ladysmith (population 8,000) and the City of Duncan (population 5,500), Chemainus, and Nanaimo support the service needs of the local communities.

A British Columbia hydro line crosses the Lara Property and is a source of power for any development on the Property (Peatfield and Walker, 1994). The Myra Falls Operating Facility, the milling site for the Buttle Lake/Myra Falls mine (operated by NVI, a subsidiary of Breakwater Inc.) is a potential facility for the processing of future ore of the Lara mine and is located 140 km due north (300 km by road) of the centre of the Lara Property (Roberts, 2007).

4.0 PROPERTY HISTORY

The original claims on the Lara Property were staked by Treasury in 1981. The original Lara Property encompassed the Coronation Zone, Coronation Extension, Randy North and the "262" mineralized zones (see Figure 7-1). The Property boundaries were expanded in 1992 when Treasury acquired claims within the northwest and northeast blocks of Chemainus claims from Falconbridge. The new group of claims includes the northernmost mineralized zones; Anita, Silver Creek, "126" and Sharon zones (see Figure 7-1). The Chemainus Property option agreement between Falconbridge and Treasury executed in June 1992 resulted in the addition of approximately 3,725 ha. Exploration of the two properties prior to their amalgamation was carried out separately with different operators, the Chemainus Property having the longer history of exploration work. Several operators were involved in the exploration of these properties. For clarity, the historic group names will be retained for much of this report: the Lara Property makes up the central portion of the final Property boundary comprising mostly of mineral legacy claims (Figure 2–3) and the Chemainus Property is made up of mineral cell claims to the northeast and west.

Abermin Resources Ltd. carried out the exploration programs after the first claims on the Lara Property were staked in 1981. Minnova Inc. purchased the Abermin interests in 1988 and took over as operator of the exploration programs. Nucanolan Resources Ltd. entered into an option agreement with Treasury in 1998 to conduct exploration programs on the Lara Property.

Interest in the area of the Chemainus Property, in particular west of the Chemainus River began when rights to the Esquimalt and Nanaimo Railway Land Grant were surrendered back to the Crown and became available for staking. In 1903, an adit was excavated near a copper showing in the area of the Sharon Zone – it was dominated by pyrite with minor chalcopyrite. In 1915, a 50-foot shaft was sunk near the Anita Zone and revealed a chalcopyrite-bearing pyrrhotite lens in schist. In the 1960's, exploration accelerated with increasing number of geological mapping and geophysical surveys: Cominco working in the west and Imperial Oil Resources working in the east. The subsequent operators and their interests in the properties are outlined in Tables 4–1 and 4–2.

Year	Company	Property		
1981	Treasury	Treasury staked claims for Lara Property [Coronation Trend area] south and east of Chemainus Property		
1982-88	Abermin	Abermin [originally Aberford Resources] entered into a Joint Venture agreement with Treasury		
1987	1987 Abermin The Lara Property is owned 65% by Abermin Corporation and 35% by Treasury: Abermin the operator			
1988-91	Minnova	Minnova Inc. purchased Abermin's interest (65% ownership in 1988) and acquired exclusive exploration rights to the Lara Property		
1992	Falconbridge	Chemainus Property option agreement between Falconbridge and Treasury was finalized; work done on Property by Minnova under option with Falconbridge		
1998	Nucanolan	Nucanolan Resources Ltd. under option to Treasury becomes operator of Lara Property exploration programs with the right to earn 50% interest in the Property in consideration of an annual payment and exploration of development work		
2006	Treasury	Treasury acquired 8 mineral claims, from Bluerock, for \$125,000 and a 1% NSR to be held by Bluerock		

Table 4-1 Summary	of property ownersh	in on the original Lara Pron	erty (Archibald, 1999; Treasury, 20	07)
rabic + 1. Ournmary	or property ownersh	np on the onginal Lata Frop		51).

Table 4-2. Summary of property ownership on the original Chemainus Property (Stewart, 1991).

Year	Company	Property		
1966-67	Cominco Ltd.	base metal rights were optioned from Canadian Pacific Oil and Gas Limited (controlled E&N Railway Land grant).		
1976	Imperial Oil Ltd	staked mineral claims on the southern flank of Mt. Brenton and Silver Creek Zone area as Brent and Holyoak claims		
1977-83	Esso Minerals	original Chemainus Property [Chemainus NW and NE blocks] includes Anita, Randy, Silve Creek, 126 and Sharon zones		
1983	Esso Minerals	conducted exploration program for Kidd Creek Mines		
1984	Kidd Creek	Kidd Creek Mines Ltd entered into a Joint venture agreement with Esso		
1989	Falconbridge	Falconbridge purchased Esso's interest		
1992	Falconbridge	Chemainus Property option agreement between Falconbridge and Treasury was finalized; work done on Property by Minnova under option with Falconbridge		

4.1 Exploration History

Exploration and prospecting on Vancouver Island began in 1862 with small-scale placer gold mining on China Creek near Port Alberni. By the 1890s more gold mining took place along the Alberni Inlet at China Creek and Mineral Creek and several gold veins were found. Exploration for gold continued over the years with peaks in 1930s and 1960s (Massey and Friday 1989). In 1865, the John Buttle expedition was the first to explore the Buttle Lake area (Chong, 2005); and the Price Ellison Expedition arrived in 1910. The Strathcona Park Act was legislated in 1911 and the first claims in the Buttle Lake area were staked on 1918. Further south, the first claim to be staked in the Big Sicker Mountain area was in 1895 (MINFILE, 1997); the Lenora and Tyee mines were discovered in 1897 and production began in 1898 and lasted until 1909. The Tyee, Lenora and Richard deposits of the Mt. Sicker mine were eventually amalgamated into the Twin J mine which operated intermittently between 1942 and 1952.

Following the discovery of the HW polymetallic massive sulphide orebody at Buttle Lake (1979), nearly all areas of Sicker Group outcrop in the Alberni-Nanaimo Lakes and the Duncan area have been staked. Polymetallic massive sulphide deposits have been a major target within the Sicker Group since the development of the Myra Falls mine at Buttle Lake (1960's), and extensive drilling has occurred since

then. Deposits associated with felsic volcanic rocks continue to be discovered within the McLaughlin Ridge Formation of the Cowichan uplift (Massey and Friday 1989).

Year	Company	Exploration Activity	
1981-83	Abermin	Geological mapping, geophysical and geochemical surveys and backhoe trenching	
1984	Abermin	12 diamond drill holes, 1,346 metres; backhoe trenching. Discovery of Coronation Zone - intersected true thickness of 7.95 m of 0.68% Cu, 0.45% Pb, 3.01% Zn, 67.54 g/t Ag, 3.46 g/t Au;	
1985	Abermin	61 diamond drill holes, 7,437 m Discovery of Coronation Extension - intersected over 3.08 m of 1.16% Cu, 2.53% Pb, 9.22% Zn, 8.6 g/t Ag, 0.213 oz/Au	
1986	Abermin	Discovery of Randy north - over a true width of 3.51 metres returned 3.04% Cu, 43.01% Zn, 8.3% Pb, 513.6 g/t Ag, 24.58 g/t Au 75 Diamond drill holes, 11,339 m; Mineralogical testing by CANMET	
1987	Abermin	Delineate Coronation Trend, Randy North Zone 83 Diamond drill holes, 15,038 m Metallurgical testing by Coastech Research Inc	
1988	Minnova	1988-91, Minnova under option for exclusive exploration rights to Lara Property Underground exploration program Diamond drilling (surface included); Metallurgical testing from Coronation Trend Trenching (770 m of ramping and drifting in Coronation Zone)	
1989	Minnova	Exploration program to delineate extent of Coronation Trend, geological work, lithological sampling, line-cutting, geophysical surveys (EM and IP) 43 Diamond drill holes, 10,328 m; Reclamation and closure plan prepared	
1990	Minnova	Exploration program by Minnova, focussed on the 262 Felsic volcanic rocks which define the structural hangingwall to the Coronation Trend 49 Diamond drill holes, 11,167 m	
1992	Falconbridge	option agreement between Falconbridge and Treasury was completed (executed); work done on Property by Minnova under option with Falconbridge	
1998	Nucanolan	Coronation Trend area, exploration program with 12 drill holes (2,559 m)	

Table 4-3. Exploration history of the Lara Property (Archibald, 1999; Peatfield and Walker, 1994).

Exploration work includes geophysical work, geochemistry and geological mapping (and prospecting), as well as diamond drilling. The geophysical surveys were determined to be mostly ineffective due to terrain conditions, low chargeability contrast of the rock units and poor conductivity of the zinc-rich massive sulphides (Wells and Kapusta, 1990). However, magnetometer and VLF-electromagnetic surveys were useful in delineating zones along strike of conductivity of the sulphide mineralization for locating drilling locations (Archibald, 1999). Geochemical data tends to be inconclusive due to the thick overburden cover in many areas; some degree of oxidation and weathering; and a lack of corroboration by visual identification or drilling as to the continuity of the underlying sulphide zones (Wells and Kapusta, 1990). Drilling was the most effective exploration tool for the Lara project area primarily due to these accessibility and challenges to interpreting the geophysical data in the area (Peatfield and Walker, 1994).

Year	Company	Exploration Activity	
1903	unknown	Sharon "copper" Zone was discovered (Sharon Copper Mine Limited 1963)	
1915	unknown	Anita occurrence discovery and 50-foot shaft excavated	
1966-67	Cominco	Geological mapping and IP survey on claims in the northwest	
1977-83	Esso	Covers Anita, Randy North, Silver Creek, 126 and Sharon zones. Exploration program included airborne EM survey, Genie-EM survey, drilling, soil sampling	
1984	Kidd Creek	Joint Venture Esso Minerals and Kidd Creek: geophysical surveys	
1985-90	Falconbridge	Falconbridge operated geophysical (IP, VLF, Magnetic) surveys; drilling in 1988 and onwards; Property purchased by Falconbridge from Esso	
1990	Falconbridge	Drilling, testing anomalies, VLF and EM	
1992	Falconbridge	option agreement between Falconbridge and Treasury was completed; work done on Property by Minnova under option with Falconbridge	

Table 4-4. Exploration history of the Chemainus Property (Archibald, 1999; Stewart, 1991).

4.1.1.Underground Exploration

In 1988, an underground exploration program tested the continuity of the Coronation Zone, evaluated rock conditions for mining cost estimates and provided a bulk sample for metallurgical tests (see Section 10.0). The program included ramping (from the footwall side) and crosscutting to access the high-grade mineralized zone and was followed by geological mapping (1:100 and 1:50 scales) and sampling (muck; test hole, diamond drilling (NQ size) and chip-channel) (Harris, 1988).

The results of the program confirm the presence of several potentially economic, continuous pods of zinc and gold rich mineralization along the Coronation Trend. Zinc and gold provide the gross metal value of the deposit with lesser silver, copper and lead. The dominant mineralization style is not massive, but consists of a structurally complicated mixture of sulphide bands, laminae, stringers and isolated massive pods in a siliceous, somewhat fragmental rhyolitic host rock. Reverse and normal faulting has juxtaposed the differing mineralization modes within this zone. Remobilization of primary sulphide into new modes of occurrence appears to determine the final morphology of the deposit. The presence of gold and silver not tied to any particular mineralization type or host rock also indicates secondary mineralization.

The underground mapping program delineated four major structural-mineralogical domains in the Coronation Zone that differ with respect to grade, structural setting, mineralization styles and implications for future mine design. The eastern section showed the discontinuous and poddy character of the high-grade mineralization and therefore the disadvantages to widely spaced drilling. This complex high-grade mineralized and multi-directionally faulted zone transitions to a thinner structurally simpler low- to medium-grade section to the west. The mineralization was a mixed sequence of banded, to poddy semi-massive material containing boudinaged pods and bands of massive pyrite. The western section contained mineralization that approached significant grades and widths. It consisted mainly of pyrite (85%) with locally enriched sphalerite and chalcopyrite banded and brecciated zones. The entire zone was strongly sericitized and appeared shattered and brecciated (Harris, 1988).

4.2 Historical Drilling

Drilling primarily focused on delineating the mineralization extent of the Coronation Trend. A total of 490 diamond drill holes, totalling ~101,686 metres, have been reported as completed on the Property (Table 4-5). Twenty-four (24) of these drill holes, totalling 473.20 m, were completed from underground by Minnova (Peatfield and Walker, 1994). The most recent drilling was by Nucanolan, who in 1998 completed 12 drill holes totalling 2,559 m (Archibald, 1999). **There has been no diamond drilling on the Property since 1998**.

Company	No. of Holes	Length (m)
Abermin		
1984	12	1,346
1985	61	7,437
1986	75	11,339
1987	83	15,038
Minnova		
1988	24	473
1989	43	10,328
1990	49	11,123
Falconbridge		
1977 to 1990	131	42,043
Nucanolan		
1998	12	2,559
Total:	490	101,686

Table 4-5. Summary of historical drilling programs on Lara Property.

4.3 Historical Resource Estimates

The historical estimates of resources were calculated by several operators and consultants. They were determined on the basis of best intersections from diamond drill core and using various cut-off grades and values (Table 4-6).

CCIC considers all of the historical resource estimates to be non-compliant with National Instrument 43-101 standards and as such they should not be relied upon.

The inventory files of the British Columbia government (MINFILE 092B 129) report the Lara Deposit as 528,839 tonnes grading 5.87% Zn, 1.22% Pb, 1.01% Cu, 100.09 g/t Ag and 4.73 g/t Au which has a reported source of the "George Cross News Letter No. 188, September 29, 1992".

DATE	COMPANY	RESOURCE ESTIMATE
1986	Abermin	Reserves to the end of 1986: estimated at 837,332 tonnes, grading 0.61% Cu, 3.59% Zn, 0.81% Pb, 3.26 g/t Au (0.085 opt Au), 89.49 g/t Ag (2.61 opt Ag) (Bailes et al., 1987)
1988	Abermin	Probable Reserve: 199,000 tons grading 0.72% Cu, 0.89% Pb, 4.68% Zn, 2.90 opt Ag and 0.110 opt Au. Possible Reserve : 272,000 tons grading 0.75% Cu, 0.95% Pb, 4.15% Zn, 2.17 opt Ag and 0.10 opt Au. Reserves estimated using \$US80 cut-off grade, minimum width of 2m and average thickness of 3 m (Roscoe and Postle, 1988)
1989	Minnova	Reported 324,100 tonnes grading 0.91% Cu, 6.01% Zn, 1.26% Pb, 111.07 g/t Ag and 4.70 g/t Au Resource estimated using cut-off of \$50 NSR over 2.0 metre (NSR = \$101.67 per tonne) (Wells and Kapusta, 1990a)
1997	Treasury	Resource: 580,000 tons averaging 1.01% Cu, 1.22% Pb, 5.87% Zn, 2.92 opt Ag, 0.138 opt Au averaging 8.3 feet thick (Nucanolan, 1998 ; Peatfield and Walker, 1994)
1998	Nucanolan	Resource: 583,000 tons averaging 1.01% Cu, 1.22% Pb, 5.87% Zn, 2.92 opt Ag and 0.138 opt Au over an average thickness of 8.3 feet (Archibald, 1999; Nucanolan Resources Ltd., 1998)

Table 4-6. Historical resource estimates for the Lara Deposit in the Coronation Trend.

4.4 Historical Production

To the best of the authors' knowledge that has not been any historical production on the Property.

4.5 Recent Exploration Work

In 2007, Laramide Resources Ltd., of which Treasury Metals Inc. is a spin-off company, completed 500.1 line-km of airborne geophysical AeroTEM lines were flown of which 477.8 line-km were on Laramide controlled claims. This work encompassed the entire claim package owned by Laramide. Drill core sampling, totalling 78 samples, occurred within a few meters of a core storage facility on the Property (on claim 260344) but the drill holes that were sampled we originally drilled on claims 260344, 260342 and 512327. A NI43-101 compliant resource calculation was completed as part of the 2007 exploration work (Table 4-7).

Table 4-7. Coronation Trend Mineral Resource Estimate.

1% Zn Block Cut-off						
Category	Tonnes	Zn (%)	Ag (g/t)	Cu (%)	Pb (%)	Au (g/t)
Indicated	1,146,700	3.01	32.97	1.05	0.58	1.97
Inferred	669,600	2.26	32.99	0.90	0.44	1.90

2% Zn Block Cut-off

Category	Tonnes	Zn (%)	Ag (g/t)	Cu (%)	Pb (%)	Au (g/t)
Indicated	428,600	5.65	47.04	2.25	1.18	2.39
Inferred	207,900	3.99	37.57	1.73	0.84	2.30

3% Zn Block Cut-off

Category	Tonnes	Zn (%)	Ag (g/t)	Cu (%)	Pb (%)	Au (g/t)
Indicated	189,600	9.74	60.85	4.44	2.23	3.07
Inferred	91,100	6.15	40.79	3.15	1.45	2.50

5.0 GEOLOGICAL SETTING

5.1 Regional Geology

Vancouver Island lies wholly within the Insular Superterrane of the Canadian Cordillera that makes up one of the five tectonic belts produced by the collisions and accretions along the Canadian northwest edge of North America (Lithoprobe, 2007). The island is dominated by rocks of the Wrangellia Terrane, that consist of three volcano-sedimentary cycles: the oldest volcanic cycle is made up of the volcanic rocks of the Upper Palaeozoic Sicker Group which are conformably overlain by the limestone rocks of the Buttle Lake Group; the second cycle is made up of the tholeiitic volcanic rocks of the Karmutsen Formation of the Vancouver Group which are overlain by the limestone of the Quatsino Formation; and the third cycle is made up of the volcanic rocks of the Lower Jurassic Bonanza Group (Figure 5–1). These cycles have been intruded by mafic sills of the Mount Hall Gabbro (coeval with the overlying Karmutsen Formation) and subsequently intruded by various granodioritic stocks. The sedimentary rocks of the Cretaceous Nanaimo Group unconformabley overlie these older sequences (Massey, 1992).

Regional-scale warping of the Vancouver Island rocks produced the 3 major geanticlinal uplifts cored by Sicker Group rocks, including the Cowichan (Horne Lake – Cowichan), Buttle and Nanoose uplifts. The oldest rocks of Wrangellia lie at the top of an imbricated stack of northeast-dipping thrust sheets and are Late Silurian to Early Permian arc sequences (Green, Scoates and Weis, 2005). The Sicker and Buttle Lake groups, the main target for volcanogenic massive sulphide deposits, are primarily exposed in the Cowichan Lake area, at the southeastern extent of the Cowichan uplift (BCMEMPR, 2007a) (Figure 5–2).

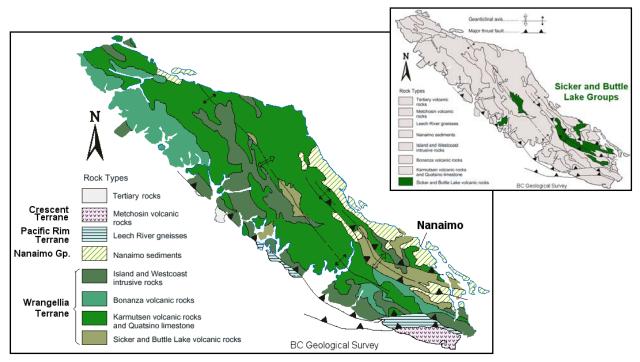


Figure 5–1. Geology of Vancouver Island showing major geological features, structures and components of the Insular Superterrane of the Wrangellia Terrane (after Earle, 2004).

Vancouver Island has undergone at least six periods of deformation (Massey and Friday, 1987) giving rise to a broad antiform structure with a west-northwesterly axis, with younger units towards the west and plunging from 5° to 15° to the west-northwest to east-southeast. The schistosity and cleavage is moderate to steeply dipping to the northeast. Large-scale west to northwesterly trending thrust faults cut the Cowichan-Horne Lake uplift into multiple slices (Figure 5–2). These in turn these are transected by northeast trending block faults. The over-thrusting of these faults pushed the older units up over the younger. Two major fault zones are recognized. The Cameron River fault runs southeast along the Cameron River valley, and joins the Fulford fault. The Fulford fault is a regional west-northwest trending fault that dips at about 47° and crosscuts bedding in the volcanic rocks (McLaughlin Ridge Formation) at a shallow angle The thrusts (where exposed) are high-angle reverse faults which dip between 45° and 90° to the east or northeast, generally place older rocks over younger and become listric at mid-crustal depths. The metamorphic grade in the area is generally low, but increases with the age and structural position of the rocks (Massey and Friday, 1989; MINFILE, 1990a).

The surficial geology and stratigraphy of the southern Vancouver Island have been studied in the area, and the glacial events established by Blyth and Rutter (1993). The surficial geology of area is characterized by glaciomarine drift, beach materials, till and/or glaciofluvial/fluvial sand and gravel in the low-lying (200-300 metres) coastal areas. Higher elevations (from 600 to 900 m ASL) are covered by till or colluviated till, glaciofluvial sand and gravel and more recent colluvium. Diamicton deposits are found

in low-lying areas of Ladysmith (up to 12 m of massive, indurated and clay-rich). Chemainus is draped by 1 to 2 metres of silty diamicton directly on bedrock or over silty clay unit and in upland areas overlying glaciofluvial sand and gravel. Sand and gravel deposits are found west of Victoria and in the Chemainus area, throughout the lower and upper Cowichan Valley (area east of Cowichan Lake). Convoluted, interbedded sand, gravel and diamicton combined with pitted, kame and kettle topography occurs just south of Duncan. Economic aggregate deposits have been established at Metchosin, Lanford, Goldstream, Duncan and parts of the Cowichan Valley. The mountainous inland areas appear to have been completely covered by ice. Surficial materials consist of colluviated diamicton over bedrock. Exposures of well-indurated clay-rich diamicton or sandy diamicton occur locally in valley basins. These diamictons are usually overlain by recent fluvial sands, gravels and lacustrine silts and clays.

5.2 District Geology

The Sicker Group is a package of volcanic and volcaniclastic rocks that forms the exposed basement on Vancouver Island (Massey 1992). The Kuroko-type exhalite massive sulphide deposits (zoned and stratabound) occur in this group of rocks with the largest ore deposits located in the Lynx and Myra properties and adjacent mineral showings at Buttle Lake. The mineralization is related to the rhyolitic or rhyodacitic volcanic rocks of the Myra Formation and its equivalent in the lower section of McLaughlin Ridge of the Lara Property area. The significant rock types are rhyolite and mixed breccias, quartz porphyries and finegrained rhyolite (Massey and Friday, 1989).

The rocks of the Sicker Group comprise a bimodal assemblage of felsic and mafic metavolcanic rocks which range from fine tuffs to coarse fragmental units along with massive flows and apparently intrusive rocks, interbedded, cherty to argillaceous and sulphidic sediment horizons are a minor but significant component of the stratigraphy. Mafic volcanic and volcaniclastic rocks are intimately interlayered with felsic units and intermixed as heterolithic clasts. Mafic rocks dominate an upper volcanic package which is variably hematitic (purple and green) and contains beds and lenses of jasper, green to grey chert and carbonaceous black chert and argillite. This upper sequence flanks the felsic-rich stratigraphy near both sides of the Property and is capped, at least in places, by the thickest and richest lenses of iron formation known in the Sicker Group. The iron formation includes jasper, grey chert and massive magnetite and is locally anomalous in gold and base metals (Peatfield and Walker, 1994; Massey et al., 2005a).

The metamorphic grade in the area is generally low, but increases with the age and structural position of the rocks. The sediments of the Sicker Group rocks are un-metamorphosed except in areas of intense shearing where chlorite and sericite have developed along foliation planes. The Sicker Group volcanic rocks show the effects of greenschist metamorphism. Intermediate to mafic rocks have chloritic schistose matrices with epidote alteration of feldspars and uralitization of pyroxenes. Granodiorite stocks and plutons only show sporadic development of contact metamorphic aureoles around their perimeters (Massey and Friday 1989).

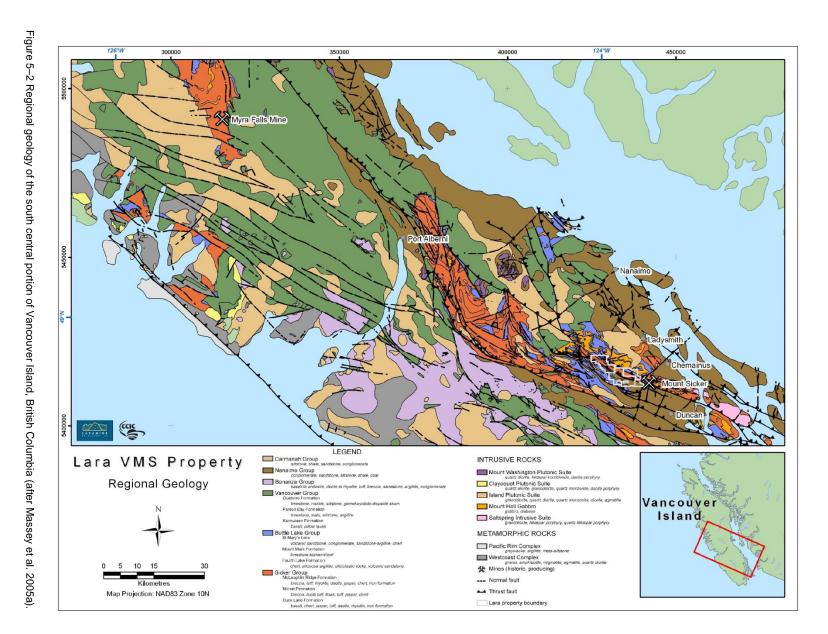
The Sicker Group rocks have been affected by several intrusive events: Tyee intrusions are the oldest and emplaced concurrently with deposition and extrusion of the Myra Formation. Diabase and gabbro are younger than Tyee Intrusions and were injected as dikes and sills probably in conjunction with extrusions of the Karmutsen basalt Island intrusions are result of Early Jurassic plutonism and formed elongate bodies of granodiorite, diorite and minor agmatite in Sicker Group and younger rocks (Massey and Friday, 1988).

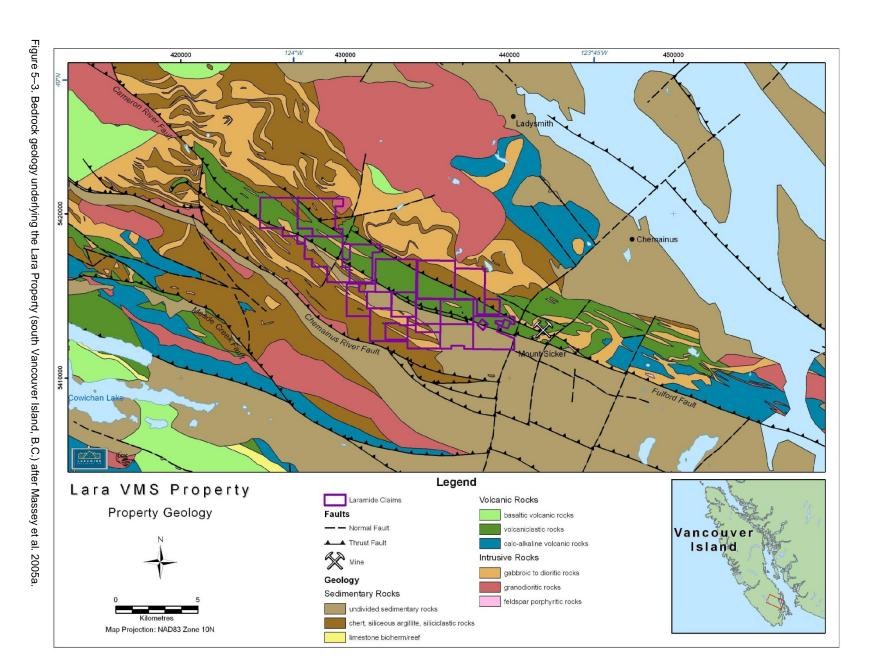
The Sicker Group volcanic rocks are overlain by the sedimentary rocks of the Buttle Lake Group. The rocks can be found in fault contact with the lower volcanic units of the Sicker Group or more commonly in unconformable contact with the volcanic rocks. The Buttle Lake Group is dominated by epiclastic and limestone sedimentary package. The base is made up of a sequence of radiolarian ribbon cherts, laminated cherts and cherty tuffs within thin argillite interbeds that pass upwards into sandstone-siltstoneargillite intercalations of the Fourth Lake Formation. Minor though significant volcanic rocks are found interbedded with the sediments on the northeast limb of the Cowichan uplift. On the north slopes of Coronation Mountain, the rocks comprise hornfelsed, amygdaloidal diabasic flows and interbedded cherty tuffs and sediments. The Fourth Lake Formation is overlain by the Mount Mark Formation which is composed of massive and laminated crinoidal calcarenites with chert and argillite interbeds. However, this unit is absent north of the Cowichan River, where the Fourth Lake Formation is unconformably overlain by the Nanaimo Group sediments. The Fourth Lake Formation is intruded by the thick mafic sills and dikes of the Mount Hall Gabbro. The intrusions are coeval with the Karmutsen Formation of the Vancouver Group that overlies the Buttle Group sedimentary rocks. The Mount Hall Gabbro rocks are characterized by medium- to coarse-grained diabase, gabbro and leucogabbro with minor diorite and glomeroporphyritic feldspar gabbro (Massey, 1992).

5.3 Local Geology

The Lara Property area is underlain primarily by the McLaughlin Ridge Formation, the uppermost unit of the Sicker Group which has been thrust over the younger rocks of the Fourth Lake Formation and the Nanaimo Group by the Fulford fault; this is referred to as the Cowichan Uplift. The McLaughlin Ridge Formation, which hosts the VMS deposits, consists of northerly dipping, west-northwest striking rhyolitic to andesitic rocks. Bedding generally dips steeply at 60° to 75° north, although dips of between 30° and 45° north are common (MINFILE, 1990a; Massey et al. 2005a). The principal stratigraphic units of the Eastern Belt of the Cowichan Uplift are presented in Table 5–1 and Figure 5–2 (Massey, 1992).

The McLaughlin Ridge Formation is a sequence of volcaniclastic sediments dominated by thickly bedded, massive tuffites and lithic tuffites with interbedded laminated tuffaceous sandstone, siltstone and argillite. Associated breccias and lapilli tuffs are usually heterolithic and include aphyric and porphyritic (feldspar, pyroxene, hornblende) lithologies, commonly mafic to intermediate in composition; felsic tuffs are rare.




In the region east (Duncan area) of the Lara Property, the tuffaceous sediments thin out and the strata is dominated by volcanic rocks with only minor tuffaceous sediments. The volcanic rocks are predominantly intermediate to felsic pyroclastic rocks, commonly feldspar-crystal lapilli tuffs and heterolithic lapilli tuffs and breccias. A thick package of quartz- crystal, quartz-feldspar-crystal and fine dust tuffs is developed in the Chipman Creek-Mount Sicker area and is host to the massive sulphides. This package thins to the west where it intercalates with andesitic lapilli tuffs and breccias. It appears to be stratigraphically high within the formation. A distinctive maroon schistose heterolithic breccia and lapilli tuff forms the uppermost unit within the McLaughlin Ridge Formation and is seen in the southern claims of the Lara Property (Figure 5-3).

The McLaughlin Ridge Formation is correlative to the Myra Formation of the Buttle Lake uplift (Massey and Friday, 1989; Massey, 1992). The unit is 450 metres thick and its components have been subdivided into four discrete structural packages which are believed to be fault bounded. A number of quartz-feldspar porphyry dikes that are coeval with the felsic volcanic rocks of the McLaughlin Ridge Formation. Each volcanic series is referred to as a member. The members are separated by "break" sequences which are dominated by near vertical mafic intrusions emplaced along faults. All four member sequences host polymetallic mineralization (Roscoe, 1988).

Formation	Туре
Buttle Lake Group	Sedimentary rocks
St. Mary's Formation	Sandstone, conglomerate
Mount Mark Formation	Massive and laminated crinoidal calcarenites, chert and argillite interbeds
Fourth Lake Formation	Cherts grade into tuffs, argillite to turbiditic sandstone, siltstone, argillite
Sicker Group	Volcanic rocks
McLaughlin Ridge Formation	Heterogeneous sequence of mafic to felsic volcanic rocks and volcaniclastic sediments
Nitinat Formation	Pyroxene-feldspar-porphyritic basalt and basaltic andesite rocks
Duck Lake Formation	Pillowed, amygdaloidal basalts with minor chert and cherty tuffs

Table 5-1. Stratigraphy of the Buttle Lake and Sicker Groups underlying the Lara Property area (after Massey 1992).

6.0 DEPOSIT TYPE

6.1 Volcanogenic Massive Sulphide

Franklin et. al. (2005) defined volcanogenic massive sulphide deposits as stratabound accumulations of sulphide minerals that precipitated at or near the sea floor. All VMS deposits occur in terrains dominated by volcanic rocks, although individual deposits may be hosted by volcanic or sedimentary rocks that form part of the overall volcanic complex (Franklin, 1996). VMS deposits primarily occur in subaqueous, rift related environments (i.e. oceanic, fore-arc, back-arc, continental margins or continental) and hosted by bi-modal mafic-felsic successions, where the felsic volcanic rocks have specific geochemical characteristics and are referred to as FI, FII, FIII, and FIV (Hart et. al., 2004) based on the REE classification scheme of Lesher et al. (1986).

A typical VMS deposit (Figure 6–1) consists of a concordant synvolcanic lens or body of massive sulphides that stratigraphically overlies a cross cutting, discordant zone of intense alteration and stockwork veining. The discordant alteration and stockwork-veining zone is interpreted to be the channel-way or conduit for hydrothermal fluids that precipitated massive sulphides at or near the seafloor. A heat source, such as a subvolcanic intrusion is required to induce the water-rock reactions that result in metal leaching from the surrounding rocks and create the hydrothermal convection system (Höy, 1991; Franklin et. al., 2005).

The massive sulphide body is generally in sharp contact with the overlying sedimentary or volcanic stratigraphy (hangingwall stratigraphy), while the massive sulphide body may be in sharp or gradational contact with the underlying stringer and alteration zone (footwall stratigraphy) (Höy, 1991).

Most VMS deposits, including Achaean VMS deposits, are surrounded by alteration zones, which are spatially much larger than the deposits themselves. A number of zones of alteration are commonly recognized; the footwall alteration pipe, alteration within the ore zone, a large semi-conformable zone beneath the ore zone and alteration of the hanging wall. Figure 6–1 is a synthesis of alteration zones associated with Zn-Cu-Pb (minor Au, Ag) deposits that formed in bimodal mafic-felsic volcanic sequences. The core of the alteration pipe can be up to 2 km in diameter and is reflected mineralogically by a strong chloritic core surrounded by sericitic and chloritic alteration. Chemically, the alteration pipe zone in Figure 6–1 is represented by additions of Si, K, Mg and Fe and depletions in Ca and Na. According to Franklin (1996), alteration zones adjacent to the main alteration pipe are not well defined. He also noted that Na depletions are laterally extensive, but are confined only to a few hundred metres vertically in this type of deposit. Virtually all alteration pipes are characterized by Na depletion and the resulting alkali depletion common to many alteration zones is manifested as abundant aluminosilicate minerals (Franklin 1999; Höy, 1991).

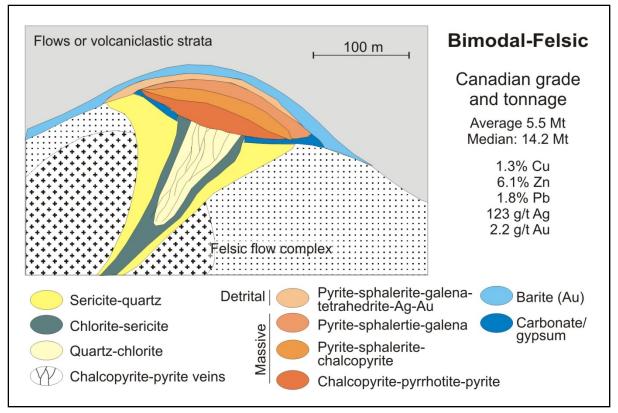


Figure 6–1. Idealized characteristics of a bimodal-felsic VMS deposit (after Galley, et. al., 2007).

The Property has previously been classified as a VMS deposit because of the apparent stratabound nature of the mineralized zone. However, the Property also has affinities to epithermal deposits and the reported conformable nature of the mineralized zone could be due to the development of preferred mineralization along zones of structural weakness. The most common deposit types in the area are porphyry deposits, polymetallic base metal veins and the subvolcanic Cu-Ag-Au (As-Sb) deposit type. These and other deposit types are described by the British Columbia Mineral Deposit Profiles (www.em.gov.bc.ca/mining/Geolsurv/MetallicMinerals/MineralDepositProfiles/).

7.0 MINERALIZATION

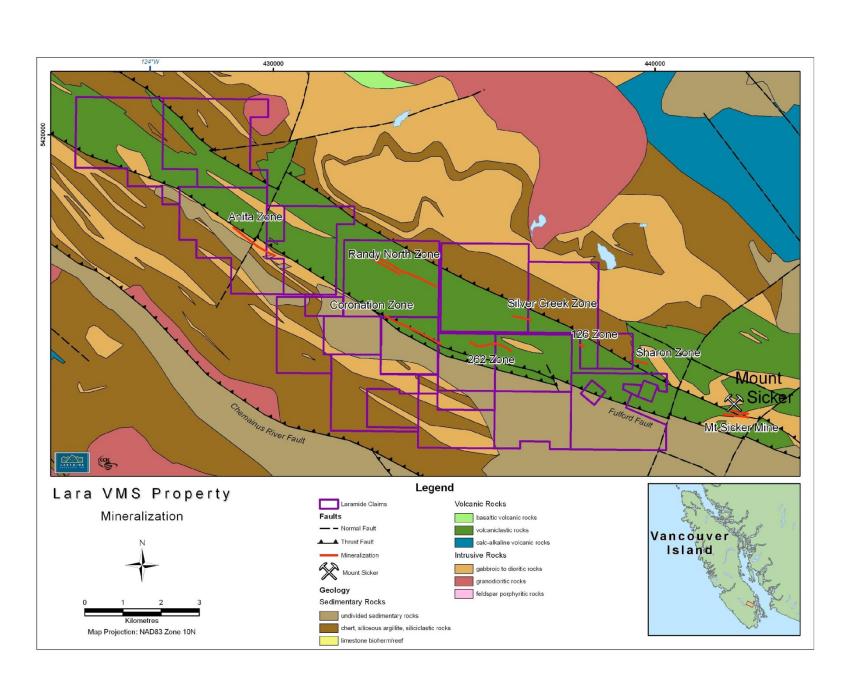
The polymetallic, VMS deposits on Vancouver Island are hosted in the structural uplifts of the Palaeozoic Sicker Group: the Myra Falls deposit within the Buttle Lake uplift, while the Lara and Mt. Sicker mine workings are located in the Horne Lake-Cowichan uplift. The felsic volcanic rocks of the McLaughlin Ridge Formation (Horne Lake-Cowichan uplift) and the Myra Formation (Buttle Lake uplift) host the deposits of Cu, Pb, Zn, Ag and Au within several stratigraphic levels (Crick, 2003; Massey, 1992).

The mineralized zones on the Lara Property were identified from drilling and extrapolating geological units along strike. The interpretive work by various exploration companies involved primarily comparison studies to the Buttle Lake/Myra Falls up strike deposits and the Mt. Sicker deposit down strike (Archibald,

1999). Seven zones, located at various stratigraphic levels were delineated on the Lara Property: Anita, Coronation Trend, Randy North, 262, Silver Creek, 126 and the Sharon zones (from west to east).

The deposit type on the Lara Property is classified as Kuroko-type massive sulphides consisting of volcanic-hosted, stratiform accumulations of copper, lead, zinc, silver and gold. The zones are described in Table 9–1 and their locations within Treasury's registered claim boundaries (superimposed on bedrock geology) are illustrated in Figure 7–1.


Ore Zone	Discovery	Type of Mineralization	Description
Anita	1915	main	Anita tuff; exhalative
Randy North	1986		pyrite horizon within alteration zone (Na depletion, Zn enrichment
Coronation Trend	1984 and 1985	main	massive sulphide, banded/laminated and stringer facies in altered rhyolite-tuff sequence: hanging wall represents alteration zone (Na depletion, Zn enrichment
Silver Creek			stringer zone in mafic tuff host
262	1989	Sub-parallel	unaltered felsic rocks host semi-massive to massive sulphides at shallow depths; distal exhalite
126	1990		stringer-style mineralization
Sharon Copper	1903		stringer zone in mafic tuff host not within Lara Property


Table 7-1. Mineralized zones within the Lara Property.

The most important of these zones is the Coronation Trend which is made up of the Coronation Zone, the Coronation Extension and the Hanging Wall deposit. Together the deposits of the Coronation mineralized trend make up most of the reserve and the historic resource calculations of the Lara Property. Of the mineralized zones tested, the Coronation Trend and Anita appear to be on a similar trend; whereas the "262" Zone may be a sub-parallel structure. The Randy North, Silver Creek, "126" and Sharon zones appear to be on a more northerly trend as part of the northern limb of a synclinal structure (Archibald, 1999; Wells and Kapusta, 1990a).

The package of rocks hosting the Lara deposits consists of an andesitic sequence referred to as the "Green volcaniclastic Sequence" overlying rhyolite which hosts to the massive sulphide ore. The rhyolite has been subdivided into two units which are referred to as the "Rhyolite Sequence" and the "Footwall Sequence", the latter underlying the lowermost sulphide sequence. Numerous minor faults occurring in

three or four directions have been observed on the Property resulting in displacement and gaps of the mineralized stratigraphy (MINFILE 1990a; Roscoe and Postle, 1988).

The mineralized zones are characterized by rapid facies changes and abrupt fault displacements. Mineralization that has been discovered above and below the Coronation Trend stratigraphy is likely repeated on the Property either by regional folds or faults.

VMS mineralization on the Property is characterized by hydrothermal alteration of the rhyolite host that is typical of VMS deposits. The mineralized zones are characterized by strong sodium depletion, enrichment in potassium (sericitization) and zinc, silicification and pyritization. The lithogeochemical surveys defined two areas of hydrothermal alteration: the Randy Zone with a strike extent of at least six kilometres where the pyritic cherts are interpreted as a distal exhalite; and the structural hanging wall east of the Coronation Zone (Peatfield and Walker, 1994; Wells and Kapusta, 1990a). The geological reconnaissance work by Nucanolan in 1998 (Archibald, 1999) suggests that the structural controls existing in the area and the alteration mineralization indicate secondary mineralization via hydrothermal processes. The original features of the host sedimentary rock appear to be upgraded or influenced by the cross-cutting fault structures and possibly by the late stage mafic or diorite intrusions.

7.1 Coronation Trend

The Coronation Trend consists of several stratiform massive sulphide lenses within an envelope of banded or laminated sulphides. The Trend is made up of three zones: the original discovery of the Coronation Zone, the Coronation Extension Zone (east and stratigraphically above the Coronation Zone) and the Hanging Wall Zone which consists of stringer mineralization that is also stratigraphically above the Coronation Zone (Roscoe and Postle, 1988). Although classified as massive sulphides, the predominant facies actually consists of bands, laminae and stringers of sulphide minerals in a strongly silicified rhyolite host (intercalated with siliceous and tuffaceous debris). The Coronation sulphide mineralization strikes west-northwest, dips to the northeast at 60° and exhibits variation in thickness from 3 to 16 metres, averaging about 6 metres (Crick, 2003; MINFILE, 1990a). The distribution of mineralization along the Coronation Trend is influenced by a strong linear structural fabric which plunges at a low angle to the east (Roscoe and Postle, 1988).

The Coronation Zone is hosted by the southern Rhyolite Sequence (one of the 4 members of the McLaughlin Ridge Formation) and which consists of coarse grained rhyolite crystal tuff and ash tuff. Black argillite beds and buff coloured mudstones occur at the boundaries of pyritic units and enclose the polymetallic zones. The Footwall Sequence underlying the Member 1 Rhyolite consists of coarse-grained quartz porphyries and feldspar porphyries. These appear to form domal structures which not only controlled palaeotopography and basin configuration but may have played a role in focussing mineralizing fluids. Only a few diamond drill holes have penetrated the Footwall Sequence and these have intersected

another similar rhyolite porphyry package which is mineralized and has potential. The Member 1 Rhyolite is in fault contact with the overlying Green Volcaniclastic Sequence consisting of a 250 m thick unit of dacite to andesite fragmental rocks, minor argillite and quartz feldspar porphyry dykes (Roscoe and Postle, 1988). The footwall sequence is dominantly quartz porphyritic massive rhyolitic rocks up to 40 m thick (Crick, 2003) and is clearly from a distinct stratigraphic level compared to the above. These rocks are texturally variable but are distinguishable by the presence of abundant large quartz eyes. Feldspar porphyry dykes, rhyolite dykes, rhyolite breccia and mudstone and argillite beds are also present (MINFILE, 1990a).

Mineralogical studies carried out on drill core samples in 1989 (Peatfield and Walker, 1994) show that the mineralogy of the Coronation Trend is complex. The minerals include sphalerite, pyrite, chalcopyrite, galena and tetrahedrite [(Cu, Ag, Zn, Fe)₁₂As₄S₁₃], with small amounts of bornite, rutile and arsenopyrite and locally abundant barite. Tetrahedrite appears to be the preferred host for gold whereas pyrite shows very few included gold grains, but gold and silver are found dispersed in tennantite [(Cu, Ag, Zn, Fe)₁₂As₄S₁₃]. Gangue consists mostly of quartz and calcite with lesser amounts of muscovite, feldspar, and barium-bearing feldspar (Peatfield and Walker, 1994; MINFILE, 1990a).

The predominant facies of the Coronation deposits is the banded and laminated facies which consist of sulphide laminae and bands up to a few cm thick in a siliceous host. The host rock varies from a silicified rhyolite to a very fine-grained siliceous mass with various amounts of felsic tuffaceous debris. The mineralization is broadly conformable, however, crosscutting features are common within the conformable zones. Crosscutting mineralization varies from occasional sulphide stringers to well-developed breccia zones with sulphides in the matrix. Sulphides also occur disseminated in the rhyolite host. Primary textures are masked by pronounced cataclastic overprint. Although these features to some extent mask the primary depositional style, the overall stratiform character of the facies is demonstrated by the presence of sedimentary units which enclose and occur within the deposit, and which can be correlated over considerable distances. The banded and laminated facies varies up to 16 metres true thickness. Although not as high grade as the massive sulphide facies, laminated and banded sulphides can achieve significant grade (MINFILE, 1990a). One massive sulphide lens exposed by trenching in the Coronation Zone graded **24.58 g/t Au, 513.6 g/t Ag, 3.04% Cu, 43.01% Zn and 8.30% Pb over 3.51 m**.

7.2 "126" Zone

Diamond drill hole data indicates stringer style mineralization with long intersection of alteration and scattered mineralization at the "126" Zone. This zone consists of chalcopyrite in quartz veins hosted by chloritic volcanic flows/tuffs, which overlie a thick sequence of felsic volcanic rocks (Peatfield and Walker, 1994). Drilling indicates the presence of a gabbro intrusion (Peatfield and Walker, 1994). This zone is located in an area of deep overburden therefore geophysical and geochemical data cannot be interpreted.

7.3 Anita Zone

The Anita Zone encompasses the area of the original Anita showing, where a 50-foot shaft was excavated in 1915. The original Anita showing, which occurs along the Anita Horizon, consists of quartz lenses in schist traceable for at least 60 metres in an easterly direction. The "vein" is up to 4.5 metres wide and carries chalcopyrite and pyrite. The schist zone is a pyritic, sodium-depleted felsic tuff/lapilli (quartz-phyric sericite schist) unit also known as the Anita active tuff. Mineralization occurs in massive sulphides and as pyrite, sphalerite and chalcopyrite occurring as sparse veinlets, stringers and as polymetallic bands in barite-enriched pyritic zones known as the Anita Horizon. A major thrust fault occurs immediately north of the Anita active tuff (MINFILE, 1990b; Stewart, 1991).

The best mineralization within the Anita active tuff occurs along the Anita Horizon that is generally located within 15 metres north of the Anita felsic tuff-mafic tuffaceous sediment contact. The horizon can be traced discontinuously along a 3.3 km strike length and is made up of a 1 to 10 metre wide zone of disseminated to massive pyrite in foliation-parallel bands or beds up to 0.5 metres thick with traces to a few percent of associated chalcopyrite and sphalerite (Stewart, 1991).

The western end of the Coronation Zone of the Lara deposit occurs about 1.5 kilometres southeasterly (120°) from the eastern end of the Anita Horizon. The two deposits are almost along strike from each other but significant differences in their settings suggest that the horizons are not identical but significant differences in their settings indicate different positions in stratigraphy. Diamond drilling and geophysical (IP) evidence indicate that there is very little potential for near surface massive sulphide ore body. (MINFILE, 1990b; Stewart, 1991).

7.4 Randy (North) Zone

The Randy Zone is a pyrite horizon that is accompanied by weak base metal concentrations in rhyolite volcaniclastic rocks. There is a very strong alteration trend (sodium depletion) over a 200 metre thickness and it lies down section from a well defined oxide iron formation. The zone consists of 3 to 6 zinc-rich weakly polymetallic horizons over a stratigraphic thickness of about 150 metres. These horizons consist of laminated light brown sphalerite and pyrite with subordinate chalcopyrite and trace tetrahedrite hosted by a strongly schistose quartz-eye rhyolite tuff (sericite-quartz schist). The Randy Zone area is largely underlain by felsic volcanic rocks (MINFILE 1990c). The rhyolite sequence composed predominantly of quart-eye porphyry and feldspar porphyry rhyolite, rhyolite tuffs, and minor lapilli tuff, andesite and argillite. The upper contact of this sequence is marked by an argillite bed underlain by quartz-eye (Roscoe and Postle, 1988).

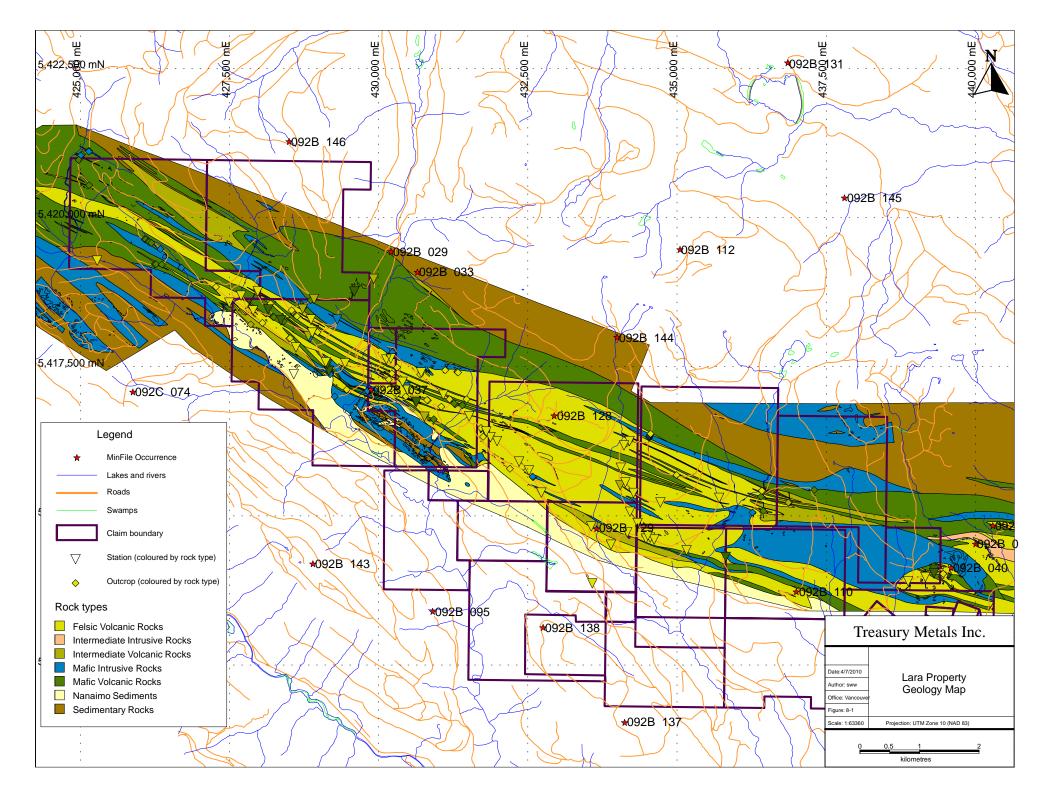
7.5 Sharon Copper – Silver Creek Trend

The Sharon Copper Zone is a chlorite-pyrite-chalcopyrite stringer zone exposed on surface and in drill core that is hosted in predominantly mafic tuffs approximately 10 m north of a large distinct unit of quartz phyric felsic tuff (coarse quartz eye sericite schist). A large gabbro body apparently truncates the favourable stratigraphy at depth. Most of the original rock textures and structures are obscured by late shearing and extensive faulting. The sulphides are hosted by extremely sheared chlorite-sericite schist, and appear to be concentrated in two 10-metre wide horizons forming the core of an antiform. The sulphides are re-crystallized after deformation but appear to have undergone some later shearing. Underground development includes 3 parallel adits 46 metres, 1.5 metres and 11 metres in length.

Similar results occur in the Silver Creek area where drilling and trenching located mineralization near surface that was cut off by a gently dipping gabbro. Drilling to date (1991) has not traced the mineralization below the gabbro (MINFILE 1990c; Stewart, 1991).

7.6 "262" Zone

Drilling in 1990 by Minnova tested the felsic sequence at variable depths over a strike length of 6.5 km. The "262" Zone felsic volcanic rocks host a distal exhalite composed of pyritic cherts, ashes, and thin, copper-rich, semi-massive to massive sulphides and occurs within 40 m of the contact between the felsic and the underlying andesite rocks. The best development of exhalative sulphides, cherts and stringer mineralization is found in shallow, near surface holes. At depth, there is a fine-grained, siliceous felsic ash that is depleted in base metals and hosted in unaltered felsic rocks, suggesting that this zone has limited opportunity for development (Wells and Kapusta, 1991).


8.0 EXPLORATION

Work in 2009 consisted of geological mapping, collecting structural data and collection of whole rock samples throughout the Property. Work was conducted from November 22 to December 9, 2009. The main focus of the work program was to explore additional volcanogenic massive sulphide horizons on the Property beyond the known mineralized zones.

8.1 Structural and Geological Mapping

During the field program the Sicker Group volcanic rocks that underlie the most of the Property and host the VMS mineralization were the focus of geological investigation. As the Property was held by two different companies in the past and areas near the previous property boundaries were vaguely mapped. This mapping project included compiling the historical data as well as ground truthing and re-mapping.

The Sicker Group rocks are comprised of a west to west-northwest shallowly plunging anticline which is cored by felsic volcanic rocks belonging to the McLaughlin Ridge formation (Figure 8-1). On the extreme east side of the Property mafic volcanic rocks primarily pillowed basalt and rare sedimentary rocks appear to underlie the felsic volcanic rocks and may represent the uppermost section of the Nitnat Formation.

Flanking to the north and south of the felsic volcanic rocks are a mafic volcanic sequence (McLaughlin Ridge Formation?) which are in turn overlain by fine grained clastic sedimentary rocks and iron formation. The sedimentary rocks and iron-formation likely belong to the Fourth Lake Formation. Mt. Hall gabbroic rocks are intruded into the Mt Sicker volcanic rocks throughout the Property. In many locations the Mt. Hall gabbro is fine grained and easily confused with the mafic volcanic rocks in the area. Previous mapping identified a large area of gabbro on the east side of the Property but mapping in 2009 showed that some of these outcrops were mis-mapped and are actually mafic volcanic rocks as some of them have pillow textures.

The south side of the Property is covered by Nanaimo Group sedimentary rocks.

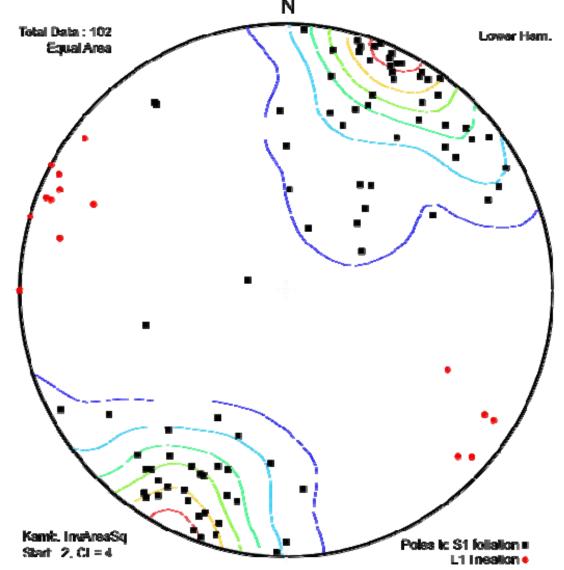
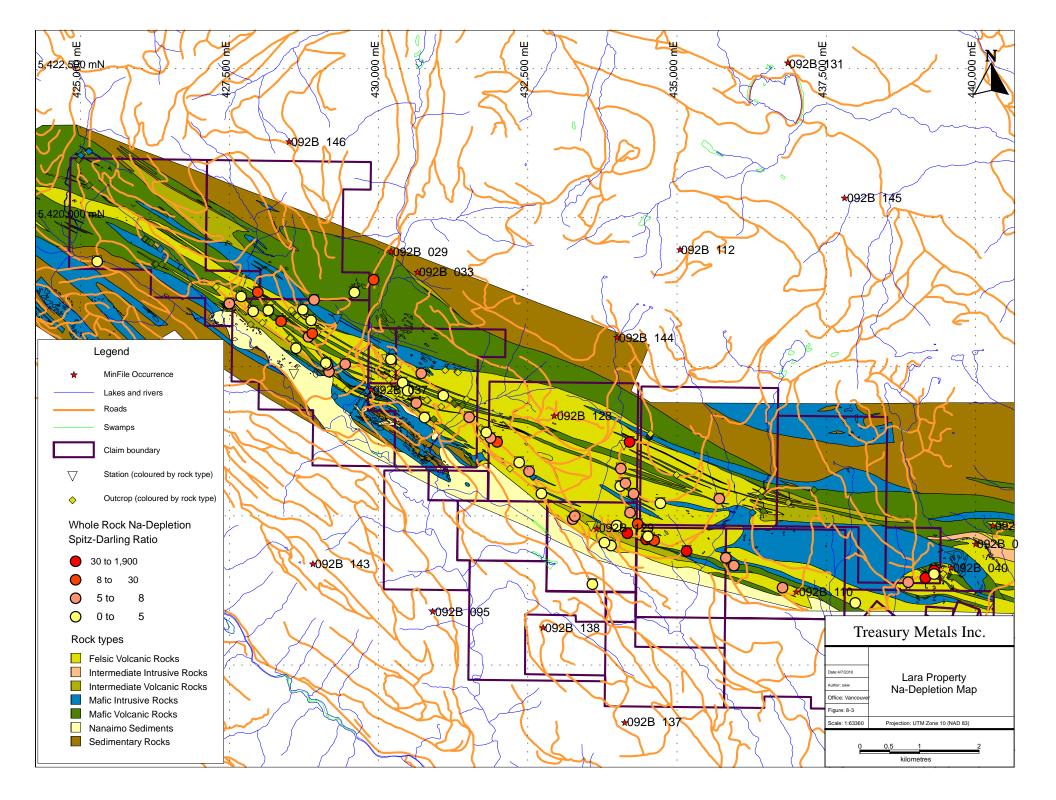


Figure 8-2. Stereonet projection of the poles to the S1 and L1 data collected on the Lara Property.

The felsic and sedimentary rock in the area have accommodated a large amount of strain and are well foliated while the mafic volcanic flows are poorly to non-foliated. The foliation or S_1 fabric is generally parallel to layering (transposed bedding) and is axial planar to isoclinal folding. A well developed stretching lineation is parallel to the isoclinals fold axes and generally plunges very shallowly westward. S_1 foliation strikes west to west-northwest and either dips steeply northward or steeply southward. The S_1 and L_1 fabric is folded which accounts for the L_1 lineation measurements which plunge shallowly eastward in the Coronation Zone and a crenulations to the S_1 foliation locally (Figure 8-2).

Several, southeast striking and moderately to steeply dipping southwest faults occur locally including the Fulford Fault which truncates the Coronation Zone at depth. A splay of the this fault or a parallel structure cuts a surface exposure of the Coronation Zone approximately 50 m north of the Coronation decline. This fault appears to have accommodated oblique reverse-sinistral motion as determined by slicken-side measurements.


Figure 8-1 is a map of the property geology and outcrop locations. A 1:20,000 scale map is also presented in Appendix X with the structural measurement collected during the field program.

8.2 Whole Rock Data

A total of 63 whole rock samples were collected from drill core and outcrops throughout the Property during the 2009 field program. Only samples of Sicker Group volcanic rocks were collected with the intent to use the whole rock geochemical data to define possible Na-depletion zones favourable to host VMS mineralization.

Figure 8-3 is a map of the Spitz-Darling ratio (AI_2O_3/Na_2O) from the samples collected in 2009 (Spitz and Darling, 1978). It shows strong Na-depletion in the Coronation Zone but also shows Na-depletion north of the Coronation Zone approximately 1.5 km east from the Randy Zone. There are also Na-depleted rocks in the Sharon Zone on the east side of the Property and several samples of moderate Na-depletion west of the Anita showing and one in mafic volcanic rocks south of two iron-formation MinFile occurrences (Lady A and Lady B).

9.0 CONCLUSIONS

The recognition of the anticlinal folding of the Sicker Group rocks on the Property suggests that the VMS mineralized horizon that hosts the Coronation and Anita Zones is likely duplicated to the north (i.e. the Randy Zone). Several other zones of VMS mineralization have been outlined by historical drilling and these also may be repeated on the north side of the anticline.

Whole rock sampling demonstrated that Na-depletion occurs in the footwall of the Coronation Zone and several other NA-depleted samples occur throughout the Property several of which have not been drill tested or have only been tested by a handful of drill holes. Additional whole rock sampling is suggested to follow-up on samples of anomalous Na-depletion.

10.0 SUMMARY OF EXPLORATION EXPENSES

Work Category/Contractor	Details	Dates	No.	Units	*Unit Cost	Amount
Accomodation, Food, and	Travel					
Hotel	Wetherup, Gutierrez, Nixon	Nov 22 to Dec 9, 2009	18.0	days	\$ 126.24	\$ 2,272.31
Meals	Wetherup, Gutierrez, Nixon	Nov 22 to Dec 9, 2009	18.0	days	\$ 42.25	\$ 760.52
CCIC Truck	Truck Rental	Nov 22 to Dec 9, 2009	3.0	weeks	\$ 454.75	\$ 1,364.2
Fuel		Nov 22 to Dec 9, 2009				\$ 408.57
Ferry/Taxi Fares						\$ 667.87
Field Labour						
Management (Wetherup)	Mapping and sampling	Nov 18 to Dec 9, 2009	23.0	days	\$ 823.90	\$ 18,949.70
Field Assistant (Gutierrez)	Rock sampling	Nov 25 to Dec 9, 2009	10.0	days	\$ 329.56	\$ 3,295.60
Field Assistant (G. Nixon)	Rock sampling	Nov 22 to Dec 7, 2009	10.0	days	\$ 417.30	\$ 4,173.00
Equipment Rental						
CCIC	ATV rental	Nov 29 to Dec 6, 2009	2.0	week	\$ 417.30	\$ 834.60
CCIC	Field office rental	Nov 22 to Dec 9, 2009	2.5	weeks	\$ 337.05	\$ 842.63
Geochemical Analysis						
Geo Labs (OGS)	Whole rock samples	Dec. 23, 2009	63.0	samples	\$ 90.42	\$ 5,696.15
Field Expenses and suppli	es					
Field and office supplies						\$ 691.17
Report Writing						
Management (Wetherup)	Writing and data comp.	Dec 10/09 - Jan 15/10	18.0	days	\$ 823.90	\$ 14,830.20
GIS Technician (Nixon)	Map generation	Dec 10/09 - Jan 15/10	7.0	days	\$ 417.30	\$ 2,921.10
Courier/Shipping and Offic	e					
Shipping						\$ 361.4
					Total	\$ 58,069.11

11.0 STATEMENT OF AUTHORSHIP

This Report, titled "Independent Technical Report and Mineral Resource Estimation, Lara Polymetallic Property, British Columbia, Canada", and dated June 27th, 2010 was prepared and signed by the following author:

"Stephen Wetherup"

Stephen Wetherup, B.Sc., P.Geo. June 27th, 2010 Vancouver, British Columbia

12.0 REFERENCES

- Aeroquest International Ltd. (2007) Report on a Helicopter-Borne AeroTEM System Electromagnetic, Radiometric & Magnetic Survey. Aeroquest Job # 08022, Lara Project, Vancouver Island, British Columbia, NTS 092B13, 092C16. For Treasury Metals Inc., 38 pp, with data DVD.
- Archibald, J.C. (1999) Summary Report on the Treasury Property Diamond Drill Program, Lara VMS Project, Vancouver Island, B.C., 103 pp.
- Bailes, R.J., Blackadar, D.W. and Kapusta, J.D. (1987) The Lara Polymetallic massive Sulphide Deposit. Vancouver Island, British Columbia. Abermin Corporation, 31 pp.
- B.C. MEMPR (2006) Legacy Claim Conversion to Cell Claim *in* Information Update, Number 13, revision date November 26, 2006; British Columbia Ministry of Energy, Mines and Petroleum Resources, online <u>http://www.em.gov.bc.ca/mining/titles/infoupdate/default.htm</u> [accessed October 1, 2007].
- B.C. MEMPR (2007) Geology of Vancouver Island; British Columbia Ministry of Energy, Mines and Petroleum Resources online at http://www.em.gov.bc.ca/Mining/Geolsurv/GeologyBC/default.htm [accessed October 1, 2007].
- B.C. MEMPR (2007) Mineral Titles Online; British Columbia Ministry of Energy, Mines and Petroleum Resources; online at <u>http://www.mtonline.gov.bc.ca/</u> [accessed October 1, 2007].
- Belik, G. and Associates Ltd. (1981) Trenching, geophysical and geochemical report on the Mt. Sicker Property; Victoria Mining Division, British Columbia (NTS 92B/13W) for Treasury Metals Inc., 49 pp.
- Blyth, H.E. and Rutter, N.W. (1993) Quaternary Geology of Southeastern Vancouver Island and Gulf Islands (92B/5, 6, 11, 13 and 14); *in* Geological Fieldwork 1992, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, p. 209-220.
- Breakwater Resources Ltd. (2004) NVI Mining Ltd., A Wholly-owned subsidiary of Breakwater Resources Ltd. Myra Falls Operation; Vancouver Island, British Columbia, NI-43101 Technical Report. July 30, 2004 by Torben Jensen, 54 pp.
- Breakwater Resources Ltd. (2007a) 2006 Annual Report, <u>www.breakwater.ca</u> [accessed September 26, 2007].
- Breakwater Resources Ltd. (2007b) Operations: Myra Falls. <u>www.breakwater.ca/operations/myra.cfm</u> [accessed October 1, 2007].
- Broughton, L.J. (1987) Exploratory Metallurgical Testwork, Report No. 1; Prepare for Abermin Corporation, Lara Property by Coastech Research Inc., 39 pp.
- Earle, Steven (2004) The Geology and Geological History of Vancouver Island; a Powerpoint Presentation, accessed online at <u>http://web.mala.bc.ca/geoscape/</u> [accessed October 1, 2007].
- Chong, A., Becherer, M., Sawyer, R., Wasteneys, H., Baldwin, R., Bakker, F. and McWIlliams, I. (2005) Massive Sulphide Deposits at Myra Falls Operations, Vancouver Island, British Columbia *in* GAC Field Trip Guide (Part 1) Cordilleran Round-Up Field Trip, January 2005, Geological Association of Canada Geofile 2005-20; B.C. Ministry of Energy, Mines and Petroleum Resources, GeoFile 2006-07, 42 pp.
- Crick, D. B. (2003) Vancouver Island Opportunities Junior Custom Feed Exploration Unpublished report to Treasury Metals Inc.

- Franklin, J. M. (1996) Volcanic-Associated Massive Sulphide Base Metals; Geology of Canadian Mineral Deposit Types, (ed.) O.R. Eckstrand, W. D. Sinclair and R. I. Thorpe; Geological Survey of Canada, no. 8, p.158-183.
- Franklin, J. M. (1999). Systematic Analysis of Lithogeochemical Data in. Exploration Tools for Volcanogenic Massive Sulphide Deposits short course sponsored by Mineral Deposits Research Unit, University of British Columbia.
- Franklin, J. M., Gibson, H. L., Jonasson, I. R., and Galley, A. G. (2005) Volcanogenic Massive Sulphides; Economic Geology 100th Anniversary Volume p. 523-560.
- Galley, A.G., Hannington, M.D., and Jonasson, I.R. (2007) Volcanogenic Massive Sulphide Deposits in Goodfellow, W.D., ed. Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, The Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 141-161.
- Harris, M.W. (1989) Observations on the Geology, Structure and Mineralization of the Coronation Zone Polymetallic Horizon Lara Project, 1988 Underground Exploration Program. 112 pp.
- Hart, T. R., Gibson, H. L. and Lesher, C.M. (2004) Trace Element Geochemistry and Petrogenesis of Felsic Volcanic Rocks Associated with Volcanogenic Massive Cu-Zn-Pb Sulfide Deposits; Economic Geology, v.99, p. 1003-1013.
- Höy, T. (1991) Volcanogenic Massive Sulphide Deposits in British Columbia; Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, W.J. McMillan, Coordinator, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, p. 89-123.
- Kapusta, J.D. (1991) 1990 Diamond Drilling Report on the Lara Group II: Solly, T.L., Jennie, Ugly, Wimp, Nero, Face and Plant claims, B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment File #20980, 50 pp.

Treasury Resources Inc (2007). 2006 Annual Report, available online at <u>www.Treasury.com</u>.

- Lesher, C. M., Goodwin, A. M., Campbell, I. H., Gorton, M. P. (1986) Rare element geochemistry of oreassociated and barren, felsic metavolcanic rocks in the Superior Province Canada; Canadian Journal of Earth Sciences, v.23, p. 222-237.
- Lithoprobe Geoscience Project (2007) <u>http://www.lithoprobe.ca/media/studies/terrane.asp</u> [accessed October 1, 2007].
- Long, S. D. (2003): Assay Quality Assurance-Quality Control Program for Drilling Projects at the Pre-Feasibility to Feasibility Level (3rd Ed.). Amec Mining Consulting Group.
- Massey, N.W.D. and Friday, S.J. (1989) Geology of the Alberni-Nanaimo Lakes Area, Vancouver Island (92F/1W, 92F/2E and part of 92F/7); *in* Geological Fieldwork 1988; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, p. 61-74.
- Massey, N.W.D. (1992) Geology and Mineral Resources of the Duncan Sheet, Vancouver Island (92B/13); British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1992-4, 124 pp.
- Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J., and Cooney, R.T. (2005a) Geology of British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Geoscience Map 2005-3, (3 sheets), scale 1:1 000 000.

- Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T. (2005b) Digital Map of British Columbia: Tile NM9 Mid Coast, B.C. Ministry of Energy and Mines, GeoFile 2005-2, scale 1:250,000.
- Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T. (2005c) Digital Geology Map of British Columbia: Tile NM10 Southwest British Columbia, B.C. Ministry of Energy and Mines, GeoFile 2005-3, scale 1:250,000.
- MINFILE (1990a) Lara, Coronation, 262, Coronation Extension, NTS 092B13W (1990/08/10), MinFile Number 092B-129; British Columbia Ministry of Energy, Mines and Petroleum Resources, MINFILE data.
- MINFILE (1990b) Anita NTS 092B 13W (1990/10/13), Minfile Number 092B-037; British Columbia Ministry of Energy, Mines and Petroleum Resources, MINFILE data.
- MINFILE (1990c). Sharon Copper NTS NTS 092B 13W (1990/08/02), Minfile Number 092B-040; British Columbia Ministry of Energy, Mines and Petroleum Resources, MINFILE data.
- MINFILE (1997) Mount Sicker Mine: Lenora (L.35G), Twin J Mine, Mount Sicker, Lenora-Tyee, Tyee, Richard III, barite Ore, NTS092B13W (1997/04/30), MinFile Number 092B-001; British Columbia Ministry of Energy, Mines and Petroleum Resources, MINFILE data.
- Mortensen, J. (2006) Stratigraphic and Paleotectonic Studies of the middle Paleozoic Sicker Group, Poster presented at Roundup 2006; Association for Mineral Exploration in British Columbia
- Nucanolan Resources Ltd. (1998) Update on the Lara Project in British Columbia, Press Release December 11, 1998.
- Peatfield, G. R. and Walker, R.R. (1994) Review of Technical Reports and Field Observations with a Reinterpretation of Geological Relationships on the Cowichan Uplift Polymetallic Mineral Property, Treasury Resources Summary Report; Victoria Mining Divisions, British Columbia (NTS 93B/13W; 93 C/16E.
- Roberts, S.A. (2007) Lara Project Order of Magnitude Study, Vancouver Island, BC for Treasury Resources Limited, Unpublished report by Watts, Griffis and McQuat Limited, Toronto, Canada, 46 pp.
- Roscoe, W. (1988) Report on the Lara Project, Vancouver Island, B.C. for Treasury Resources. Roscoe Postle Associates Inc., Toronto, Ontario, 46 pp.
- Roscoe and Postle Associates (1988) Report on the Lara Project, Vancouver Island, British Columbia, for Treasury Metals Inc.
- Spitz, G. and Darling, R. (1978) Major and Minor Element Lithogeochemical Anomalies Surrounding the Louvern Copper Deposit, Val d'Or, Quebec, Canadian Journal of Earth Sciences, 15, 7, 1161-1169.
- Stewart, R. (1991) Project 116: Project Summary of Chemainus Property (NTS 92B/13 and 92C/16), Falconbridge Ltd.
- Wells, G.S. and Kapusta, J.D. (1990a) 1989 Exploration Program, Lara Property, Victoria Mining Division (NTS 92B/13W), Minnova Inc.
- Wells, G.S. (1990b) Summary Report, Mount Sicker Property: 1983-1990. Minnova Inc.

Wells, G.S. and Kapusta, J.D. (1991) 1990 Exploration Program, Lara Property, Victoria Mining Division (NTS 92B/13W), Minnova Inc.

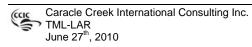
Certificates of Author

Stephen William Wetherup 34176 Cedar Ave Abbotsford, British Columbia Canada, V2S 2W1 Telephone: 604-617-5955 Email: swetherup@cciconline.com

CERTIFICATE OF AUTHOR

I, Stephen Wetherup, do hereby certify that,

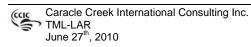
- 1. I am the General Manager of and senior geologist for the geological consulting form of Caracle Creek International Consulting Inc. (CCIC).
- 2. I am a graduate of the University of Manitoba ((Winnipeg) with a B.Sc. Honours in Geology.
- 3. I am a member of the Association of Association of Professional Engineers and Geoscientists of British Columbia (APEGBC, #27770). I am a member of the Society of Economic Geologists, Geological Association of Canada, and the Vancouver Mining Exploration Group.
- 4. I have been operating a business as a geological consultant under my own name since June 2001, and under the name of Caracle Creek International Consulting Inc. since March 2004.
- 6. I am not aware of any material fact or material change with respect to the subject matter of the Assessment Report that is not reflected in the Assessment Report, the omission to disclose which makes the Assessment Report misleading.
- I am responsible for the preparation of the Assessment Report titled "Assessment Report: Structural Mapping and Whole Rock Geochemcial Sampling, Lara Polymetallic Property, British Columbia, Canada", (the "Technical Report"), dated June 27th, 2010.
- 11. I last visited the Lara Polymetallic Property, Vancouver Island, British Columbia on December 9th, 2009.


Dated this 27th Day of June, 2010.

SIGNED AND SEALED

"Stephen Wetherup"

Stephen William Wetherup, BSc., P.Geo. (APEGBC, #27770)


Sample Number	WP	UTM East	UTM North	From	То	Comments		CaO (wt%)	Fe2O3 (wt%)		MgO (wt%)	Na2O (wt%)	Spitz- Darling	Alkali Index	Hashimoto Index
2989	71	429915	5418972			Andesitic tuff, fine grained phyllitic rock with sericite sheen; just south of Lady A showing	22.57	0.6	7.8	5.13	4.02	0.79	28.57	0.213	0.660
2990	72	429166	5417430			Mafic volcanic rock (possibly gabbro) with few carbonate veins and mm scale plag phenos. Weak foliation	12.34	11.74	12.84	0.17	8.56	1.69	7.30	0.988	0.600
2991	73	428614	5417825			quartz eye felsic tuff, 1-3 mm quartz augen within alive green sericite matrix floiation layer parallel	13.14	2.3	2.59	2.29	0.88	4.75	2.77	0.755	0.746
2992	74	429437	5417558			sericite schist, light green with light greenish white augen which look to be sercitized feldspar crystals; local quartz eyes 1-3 mm	12.92	2.01	2.06	2.51	1.44	2.45	5.27	0.640	0.589
2993	76	429137	5417546			Mafic volcanic flow with 1-3% 1mm plag phenos, locally tuffaceous basaltic zones	13.89	9.9	14.18	0.47	7.45	1.96	7.09	0.962	0.656
2994	77	429113	5417575			Rhyolite with 20% feldspar augen which are not sericitized; interlayered with mafic volcanic units; locally decimeter scale folds	14.13	1.03	2.31	2.62	1	3.36	4.21	0.626	0.698
2995	80	428822	5418015			chloritic-feldpsar augen schist (inermediate tuff) finely laminated and well foliated with some sericite sheen; local felsic layers	18.71	1.28	10.82	2.7	4.58	2.77	6.75	0.600	0.703
2996	81		5418276			Mafic volcanic flow (pillowed?) with cpx phenos 10-15% and 2-4 mm; highly chloritic and sheared	13.49		11.13		6.3			0.979	
2997	82		5418763			sericite-chlorite schist in old trench; few quartz augen	16.98				1.26				
2998 2999			5418460 5418442			fine grained chlorite-sericite schist; fine grained mafic tuff with few feldspar phenos	17.49				4.37 1.54			0.814 0.673	
						quartz-eye rhyolite tuff; weakly sericitic with 10% feldspar and quartz phenos; chlorite common massive fine grained rhyolite with small quartz phenos/augen ~ 1mm; light green colour and slightly	13.55								
3000	85	427694	5418691			sericitic; not schistose and very competent	14.81	1.14	2.3	2.1	0.57	4.04	3.67	0.712	0.801
3001	86	427496	5418572			fine graiend sericite-feldspar schist; 10% 1-2 mm feldspar phenos	10.81	2	2.68	2.36	0.81	1.46	7.40	0.595	0.768
3002	87	428886	5418071			sericite-quartz-schist; talcy; phenos cpompletely sericitized; light green fine grained sericite throughout; possibly some weathered pyrite (rusty grains) disseminated throughout	11.96	0.43	1.64	3.34	1.1	0.67	17.85	0.248	0.599
3003		429591	5418759			andesite/basalt; poorly foliated with chlorite/epidote alteration; large outcrop with some foliated tuffaceous zones	18.14	5.44	6.72	0.45	2.74	6.29	2.88	0.963	0.710
3004	90	428866	5418291			sericite schist; possible feldspar augen completely sericitized; 1-2% pyrite	14.01	0.19	2.17	2.13	0.77	2.91	4.81	0.593	0.738
3005			5418634			andesite flow (?) poorly foliated with abundant epidote and 5-8% plagioclase phenos	18.96	6	9.96		5.2				
3006	92	428727	5418469			Intermediate flow/tuff; 5-10% feldspar augen/phenos; epidote-chlorite alteration of matix quartz-sericite-schist; interbanded quartz-sericite layers with local chloritic layers 1-4 mm thick; some	16.8	4.82	12.65	0.01	3.16	3.68	4.57	0.999	0.800
3007	93	430203	5417636			hematitic layers look to be weather pyrite or chalcopyrite (darker brown the typical py oxidation); locally feldspar-quartz phenos Poorly foliated dacite (?); siliceous and weakly sericitic; this layer is ~ 1m thick and flanked above	13.31	2.32	4.56	1.04	2.1	3.88	3.43	0.856	0.685
3008	95	433580	5413869			and below by andesite tuff which is slightly pyritic; 10-20 % feldspar phenos but silicification makes ID difficult	13.58	1.89	3.54	1.4	1.09	4.71	2.88	0.825	0.765
3009	96	432726	5415389			Felsic quartz-eye feldspar crystal tuff, well foliated and medium grained with 60-80% qtz-feld crystals (augen) and 1-2% weather pyrite	13.95	1.73	2.44	1.33	0.91	4.57	3.05	0.826	0.728
3010	97	432518	5415760			Sericite schist; 20-25% feldspar augen 1-2 mm; rare quartz; highly friable and foliated with minor hematite staining	15.58	0.57	2.46	3.02	2.03	3.06	5.09	0.546	0.548
3011	98	432353	5415910			quartz-feldspar augen gneiss, intensely foliated into pencil cleavage; intensely stretched and likely a fold hinge zone; little sericite mostly siliceous and very competent	13.3	1.8	2.06	1.81	1.74	3.36	3.96	0.740	0.542
3012	99	431983	5416255			Sericite schist, almost talcy, 3-5% hematitic augen; rock is 80-90% sericite; few cross-cutting undeformed quartz-Fe carbonate veins	11.05	2.99	2.72	2.5	1.97	1.23	8.98	0.628	0.580
3013	100	431873	5416319			Sericite-chlorite schist, 5-8% pyrite disseminated throughout; 20-30% 1-2 mm feldspar augen	14.77	0.13	2.65	3.43	2.11	2.2	6.71	0.405	0.557
3014	101	431802	5416413			Highly silicified quartz-eye sericite schist, well foliated with highly siliceous layers and local sulphidic layers and streaks; blasted outcrop on poweline	14.1	1.66	1.69	2.37	0.92	3.95	3.57	0.703	0.648
3015	102	431083	5417030			sericite-feldspar augen schist, 20-30% feldspar augen with rare quartz eyes, matrix light green sericite, few rusty brown streaks ~ 1mm in thickness; strong Mn oxide staining on weathered joint surfaces and associated with pyrite layers	11.4	0.41	1.67	1.59	0.9	2.43	4.69	0.641	0.650
3016	103	430713	5417403			Quartz-feldspar sericite schist, 0.5-1 mm feldspar and quartz augen in rock mainly composed of sericite; few limonitic zones and streaks within rock; near contact with gabbro 20 m to north	13.61	0.17	3.66	1.89	2.02	2.67	5.10	0.600	0.644
3017	104	431515	5416669			Sericite-feldspar augen schist, with Mn oxide along fractures, 10-15% feldspar and quartz augen 1 mm in size; 1-3% limonite spots	15.28	0.16	2.61	3.61	0.82	2.93	5.22	0.461	0.761
3018	105	425281	5419277			Siltstone with abundant hematite staining along fractures, siliceous with greenish grey weathering	15.43	2.82	7.37	2.26	2.46	4.26	3.62	0.758	0.750
3019		430400	5417247			Sericite-quartz eye schist, 3-5% quartz augen 2-5 mm in size; numerous crenulation folds 2-3 cm wide and 4-5 cm apart (total wavelngth 6-8 cm)	12.64	2.74	1.65	2.67	0.51	3.59	3.52	0.703	0.764
3020	108	430485	5417111			Sericite-feldspar-quartz augen schist, 10-15% 1 mm feldspar augen, 5% 2-4 mm quartz; foliation folded with closed folds (80degree closure)	13.46	0.28	2.03	2.91	0.97	3.96	3.40	0.593	0.677

Sample Number	WP	UTM East	UTM North	From	То	Comments	Al2O3 (wt%)	CaO (wt%)	Fe2O3 (wt%)	K2O (wt%)	MgO (wt%)		Spitz- Darling	Alkali Index	Hashimoto Index
3021	110	430768	5416662			Chlorite-sericite schist, (intermediate tuff) 5% large chlorite clots/lenses 3-5 mm in size possibly altered hornblende/pyroxene phenos, 10-15% 1 mm chlorite lenses	16.02	2.49	4.73	1.65	2.23	4.22	3.80	0.803	0.680
3022	111	430629	5416905			Mafic volcanic schist, chlorite schist; 4-8 mm chlorite augen with fine grained chlorite groundmass	15.08	4.88	11.46	0.5	7.31	2.71	5.56	0.938	0.611
3023	112	433893	5414517			quartz-eye sericite schist, 2-5 mm quartz augen comprising 10-15% of the rock; rare sulphide augen/clots and generally along foliation planes	12.61	1.82	1.01	3.7	0.67	2.71	4.65	0.550	0.601
3024	113	435160	5414425			Sericite-pyrite-quartz schist, 2-5% disseminated and lenses of pyrite; 5-10% quartz augen 1-2 mm in size	11.93	0.04	2.52	3.54	1.43	0.05	238.60	0.025	0.638
3025	114	435707	5415303			Felsic to intermediate tuff, very fine grained and laminated; sericite-chlorite schist with no phenos	11.18	9.39	3.88	2.45	1.66	1.41	7.93	0.815	0.700
3026	115	434166	5414724			Siliceous sericite schist, no phenos with 1-2% pyrite in a fine grained silica-sericite matrix; rare 10 cm amplitude crenulation folds	9.48	0.03	1.02	3.15	0.47	0.005	1896.00	0.011	
3027	116	434480	5414619			Fine grained quartz sericite schist, siliceous rock with sericite layers/laminae; 1% pyrite Siliceous sericite schist, ~80-90% very fine grained siliceous white groundmass with 10-20% sericite	11.46	0.03	1.06	3.7	1.15	0.02	573.00	0.013	0.480
3028	117	434550	5414635			lenses and layers; 1-3% disseminated pyrite Siliceous sericite pyrite schist, very fine grained white to light gret siliceous matrix with 10-20%	11.09	0.07	1.11	2.82	0.93	1.29	8.60	0.325	0.544
3029	118	434617	5414602			sericite and 1-5% finely disseminated pyrite which is also alingned along foliation; few crenulation folds locally 5-10 cm in amplitude	9.21	0.04	1.28	2.54	1.59	0.4	23.03	0.148	0.446
3030	119	434510	5414671			Siliceous sericite schist, 2-5% pyrite disseminated and along foliation planes	13.78	0.6	3.93	1.88	3.36	3.4	4.05	0.680	0.539
3031	120		5414880			sericite-chlorite schist, 30-40% 0.5-1 mm feldspar augen; limonite common along foliation planes, 1- 3% pyrite	17.41	0.1			1.97	1.81	9.62	0.304	
3032 3033			5415513 5415807			Chlorite-feldspar schist, 10-20%, 1-2 mm feldspar augen, 1-3% wathered pyrite Coarse grained sericite schist, mostly sericite; crenulation folds common	12.81 13.88			2.37 0.94	0.52 1.21	3.11 2.12	4.12 6.55		
3034			5415226			Sericite schist, appeart to be 10-20%,1-2 mm feldspar augen now sericite with a siliceous sericite matrix	13.34				2.02				
3035	124	434270	5415384			Sericite-feldspar-quartz schist, 10-20% 1-2 mm feldspar augen and 5% quartz augen; feldspar mainly sericite and matrix appears to be mainly silica and sericite with trace pyrite	18.67	0.09	3.41	3.81	1.28	3.48	5.36	0.484	0.727
3036	125	434134	5415561			Quartz-feldspar-sericite gneiss, 10% quartz and 10-15% feldspar augen 1-3 mm in size with trace pyrite; very competent rock	14.13	0.38	1.6	3.21	0.57	2.54	5.56	0.476	0.737
3037			5416253			Pyritic sericite schist, possibly sericitic feldpsar augen but difficult t determine due to alteration; generally massive foliated white sericite with 1-5% pyrite	14.25						38.51	0.261	0.916
3038	128	434212	5415069			Sericite quartz schist, 5% 1-3 mm quartz augen, 10-20% white (sericitic feldspar) augen	11.24	1.07	1.73	2.45	0.83	1.99	5.65	0.555	0.676
3039	89-235	433285	5415010	180.4	181.	1 sericite schist, 1-5% quartz augen 1-2 mm, 10-15% feldspar augen, trace pyrite	13.75	1.63	3.42	3.75	1	2.51	5.48	0.525	0.774
3040	89-243	433250	5414959	232.5	233.	5 andesiic crystal tuff, chlorite-sericite feldspar schist 25-35%, 1-3 mm feldspar augen	13.87	1.87	2.61	2.84	1.67	2.76	5.03	0.620	0.610
3041	98-307	433989	5414854	247.7	248.	7 sericite-chlorite schist, siliceous with some highly deformed quartz bands, rare feldspar	14.32	0.74	3.62	1.58	2.95	4.38	3.27	0.764	
3042	89-236	433285	5415010	298.1	299.1	1 sericite-chlorite schist, 15-20% feldspar augen, 1-2 mm rare quartz	12.78	2.51	2.64	2.84	1.81	1.9	6.73	0.608	0.593
3043	90-295	437986	5413556	135.63	136.6	3 chlorite-feldspar schist, mafic volcanic (possibly gabbro), 20-25% 2-3 mm plag augen, 1-2%pyrite	16.56	3.84	7.33	0.23	5.59	5.02	3.30	0.975	0.567
3044	90-285	436767	5413811	216.35	217.2	5 chlorite schist, aphyric	16.24	3.85	8.8	1.98	6.24	2.82	5.76	0.771	0.585
3045	87-181	433782	5414566	47.85	48.7	5 quartz-feldspar sericite schist, 5% quartz, 25-35% feldspar augen and trace disseminated pyrite	12.85	1.71	1.76	1.33	0.74	5.29	2.43	0.840	0.704
3046	90-274	435951	5414182	290.99	291.69	9 Mafic chlorite-schist with 10-15% plag, 0.5 mm	16.17	9.61	9.35	0.53	3.93	3.18	5.08	0.960	0.704
3047	130	438873	5413903			quartz-eye feldspar schist, 5-10% 3-9 mm quartz, 20-30% 1-2 mm feldspar, 1-3% pyrite along foliation planes	13.26	0.39	2.41	2.99	1.91	1.85	7.17	0.428	0.558
3048	131	439161	5413975			quartz-feldspar-pyrite schist, 5% 1-5 mm quartz, 10-20% 1 mm sericitic feldspar, 2-5% disseminated pyrite	10.43	0.2	3.32	3.43	0.69	0.12	86.92	0.085	0.828
3049	132	439307	5414099			Mafic volcanic, siliceous chlorite schist, aphyric and hgihly silicified (cherty) 5-15% chlorite and 3-5 mm pyrite cubes along fractures	6.44	0.11	11.27	0.72	3.06	0.005	1288.00	0.138	0.786
3050	133	439306	5414039			Pillowed basalt, generally aphyric, locally 5% 1-2 mm plag. Pillows common and attenuated 3:1 to 5:1 flattening; locally 3-5 mm pyrite cubes along layers and between pillows	20.92	1.14	9.99	2.06	7.17	4.35	4.81	0.727	0.582
3051	134	435817	5414312			Mafic volcanic outcrop; chlorite schist with some relict chloritized cpx or hornblende, 5% 1mm plag, pillowed with epidote along margins, poorly foliated	15.67	9.24	9.54	0.03	5.18	1.96	7.99	0.997	0.648

WP	UTM East	UTM North	Elev	UTM Datun	UTM n Zone	Feature	Strike	dip	Trend	Plunge	Comment
50		5417111	56	66 WGS8	4 10	F1	111	62			
72	429166	5417430	53	89 WGS8	4 10	F1	294	65			
73	428614	5417825		WGS8	4 10	F1	283	70			
74	429437	5417558		WGS8	4 10	F1	302	80			
76	429137	5417546	57	76 WGS8	4 10	F1	128	82			
77	429113	5417575	57	2 WGS8	4 10	F1	286	85			
77	429113	5417575	57	2 WGS8	4 10	F1	346	45			
80	428822	5418015	65	54 WGS8	4 10	F1	122	86			
81	428362	5418276	64	15 WGS8	4 10	F1	154	78			
82	427973	5418763	70)2 WGS8	4 10	F1	126	76			
87	428886	5418071	62	28 WGS8	4 10	F1	111	89			
92	428727	5418469	72	27 WGS8	4 10	F1	114	65			
93	430203	5417636	58	33 WGS8	4 10	F1	304	75			
95	433580	5413869	60	0 WGS8	4 10	F1	138	80			
96	432726	5415389	66	59 WGS8	4 10	F1	307	73			
97	432518	5415760	71	8 WGS8	4 10	F1	301	75			
98	432353	5415910	71	3 WGS8	4 10	F1	291	80			
98	432353	5415910	71	L3 WGS8	4 10	F1	298	45			
99	431983	5416255	72	22 WGS8	4 10	F1	298	64			
100	431873	5416319	71	15 WGS8	4 10	F1	295	76			
101	431802	5416413	71	3 WGS8	4 10	F1	286	80			
102	431083	5417030	64	19 WGS8	4 10	F1	275	55			
103	430713	5417403	65	52 WGS8	4 10	F1	310	58			
104	431515	5416669	64	13 WGS8	4 10	F1	291	86			
106	430400	5417247	57	73 WGS8	4 10	F1	308	74			
106	430400	5417247	57	73 WGS8	4 10	F1	122	84			
108	430485	5417111	56	6 WGS8	4 10	F1	275	55			
108	430485	5417111	56	6 WGS8	4 10	F1	111	62			
110	430768	5416662	55	55 WGS8	4 10	F1	126	60			
110	430768	5416662	55	55 WGS8	4 10	F1	325	70			
112	433893	5414517	62	20 WGS8	4 10	F1	304	83			
113	435160	5414425	69	2 WGS8	4 10	F1	286	69			
114	435707	5415303	78	39 WGS8	4 10	F1	289	88			
115	434166	5414724	68	87 WGS8	4 10	F1	305	65			
115	434166	5414724	68	37 WGS8	4 10	F1	55	75			
116	434480	5414619	69	95 WGS8	4 10	F1	94	88			
117	434550	5414635		L5 WGS8		F1	288	60			
118		5414602	71	lo WGS8	4 10	F1	305	82			
119		5414671	73	84 WGS8	4 10	F1	290	78			
120		5414880	74	2 WGS8	4 10	F1	116	84			
121		5415513	77	2 WGS8	4 10	F1	265	64			
121		5415513	77	2 WGS8	4 10	F1	270	84			
122		5415807	79	99 WGS8		F1	110	81			
122				99 WGS8		F1	151				
123				6 WGS8		F1	102				
124)7 WGS8		F1	272				
125)6 WGS8		F1	291				
128				6 WGS8		F1	297				
129				26 WGS8		F1	312				
129				26 WGS8		F1	55				limb of fold
130				WGS8		F1	114				
130				WGS8		F1	143				
131				WGS8		F1	114				
132				WGS8		F1	288				
132				WGS8		F1	138				
133				WGS8 WGS8		F1	295 141				
133	424104	5418747		00000	14 IU	F1	141	79			

limb of fold due to drag folding

WP	UTM East	UTM North	Elev	UTM Datum	UTM Zone	Feature	Strike	dip	Trend	Plunge	Comment
134	435817	5414312		WGS84	10	F1	332	85			
134	425326	5419297		WGS84	10	F1	115	82			
135	424354	5420462		WGS84	10	F1	156	72			
136	425190	5421314		WGS84	10	F1	109	55			
137	427086	5420081		WGS84	10	F1	134	35			
138	427283	5419624		WGS84	10	F1	153	26			
139	427249	5419719		WGS84	10	F1	137	30			
140	426399	5418721		WGS84	10	F1	14	12			
141		5418690		WGS84	10	F1	129	42			
142				WGS84		F1	134				
143				WGS84		F1	110				
144				WGS84		F1	126				
145				WGS84		F1	106				
146				WGS84		F1	125				
147				WGS84		F1	114				
148				WGS84		F1	116				
149				WGS84		F1	107				
150				WGS84		F1	128				
151				WGS84		F1	142				
152				WGS84		F1	117 92				
153				WGS84		F1					
154 155				WGS84 WGS84		F1 F1	117 101				
155				WGS84 WGS84		F1	101				
150				WG384 WGS84		F1	124				
158				WG584 WG584		F1	88				
159				WG584 WG584		F1	110				
160				WGS84		F1	90				
161				WGS84		F1	153				
162				WGS84		F1	104				
129				WGS84		FT	135				
110				WGS84	10		31				
73				WGS84		L1			283	14	Ļ
80	428822	5418015	654	WGS84	10	L1			122	g)
87	428886	5418071	628	WGS85	11	L1			291	6	5
98	432353	5415910	713	WGS84	10	L1			291	. 4	Ļ
99	431983	5416255	722	WGS84	10	L1			298	C)
101	431802	5416413	713	WGS84	10	L1			286	C)
106		5417247	573	WGS84	10	L1			122	13	}
112		5414517	620	WGS84	10	L1			294	8	3
117		5414635	715	WGS84	10	L1			116	33	3
118				WGS84		L1			134		
121				WGS84		L1			270		
128				WGS84		L1			297		
129				WGS84		L1			132		
77				WGS84		L2			72		
77				WGS84		L2			101		
108				WGS84		L1			294		
110				WGS84		L1			307		
115				WGS84		L2	1 17	70	79	57	,
105	425281	5419277	005	WGS84	10	S0	237	70			
129		5414822	626	WGS84	10	SLKS			267	38	B HW up sinistral
129	433562	5414822	626	WGS84	10	V1	312	52			

Geo Labs JOB#: 09-0474

Date:

06/04/2010

XRF-M01

Method Code:

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

13.78

17.41

12.81

13.88

13.34

18.67

14.13

14.25

11.24

13.75

0.6

0.1

0.11

0.33

0.89

0.09

0.38

0.59

1.07

1.63

3.93

3.25

2.04

3.61

1.59

3.41

1.6

2.83

1.73

3.42

1.88

4.37

2.37

0.94

2.23

3.81

3.21

2.72

2.45

3.75

3.23

3.07

1.71

2.6

2.49

2.67

1.9

2.94

2.26

3.02

3.36

1.97

0.52

1.21

2.02

1.28

0.57

0.26

0.83

1

0.14

0.07

0.08

0.08

0.04

0.04

0.05

0.01

0.04

0.02

3.4

1.81

3.11

2.12

2.86

3.48

2.54

0.37

1.99

2.51

0.07

0.07

0.05

0.2

0.06

0.04

0.06

0.07

0.04

0.08

69.01

68.26

78.03

75.52

74.82

66.72

75.59

76.08

79.15

70.5

Client ID	AI2O3	CaO	Fe2O3	К2О	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2	То	
Units	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt	%
Detect Limit	0.01	0.01	0.01	0.01	0.05	0.01	0.01	. 0.01	. 0.01	0.01	0	.01	
2989				5.13								.65	10
2990				0.17	4.06			. 1.69	0.12	47.54	1	.38	10
2991				2.29			0.07	4.75	0.06	71.14	0	.24	10
2992				2.51								.21	10
2993				0.47								.75	10
2994				2.62								.23	10
2995				2.7								.96	10
2996				0.27								.62	10
2997				4.03								.29	10
2998				1.43								.64	10
2999				2.48								.21	10
3000				2.1								.36	10
3001				2.36								.24	10
3002				3.34								.14	10
3003				0.45	2.07							.52	10
3004	14.01			2.13	1.92							.23	10
3005				2.79								.79	10
3006				0.01	3.09							.93	10
3007				1.04								.33	10
3008				1.4								.38	10
3009				1.33								.22	10
3010				3.02								.34	10
3011				1.81								.22	1
3012				2.5								.17	10
3013				3.43	2.38							.23	10
3014				2.37								.22	10
3015	11.4			1.59	1.68							.26	10
3016				1.89	2.27							.23	10
3017 3018				3.61								.25 .66	10 9
3018	15.43 12.64			2.26 2.67								.00 .15	9 10
3019				2.07								.15 .22	10
3020				1.65								.22 .37	10
3021				0.5	2.48 8.47							.69	10
3022	12.61			3.7								.09 .17	10
3023				3.54								.17 .13	10
3024				2.45	9.65							0.4	10
3025				3.15				. <0.01	0.22			0.4 0.1	10
3026				3.15								.12	10
3027				3.7 2.82								.12 .11	10
3028	9.21			2.82								.11 .09	10
3029	9.21	0.04	1.28	2.54	2.03	1.59	0.02	. 0.4	• 0.01	83.41	0	.09	10

100.04 100.65 100.36 101.17 101.03 100.73 100.51 101.21 100.21 100.84 100.86 100.98 101.18 100.47 101.27 101.25 100.49 100.44 100.86 100.74 101.04 100.67 101.3 101.25 100.63 100.86 101.17 100.59 100.36 99.74 101.21 100.58 100.09 100.36 100.03 100.52 100.91 100.14 100.39 100.76

100.61

100.76

101.02

100.78

100.55

100.5

100.28

100.38

100.98 99.94

99.7

0.3

0.37

0.28

0.28

0.24

0.26

0.18

0.27

0.2

0.2

3040 Client:	13.87	1.87 We	2.61 therup	2.84	3.06	1.67	0.07	2.76	0.07	71.24	0.28 100.32
Geo Labs JOB	#:	09-	0474								
Date:			06/04	4/2010							
Method Code	::	XRF	-M01								
	Al2O3 CaO	Fe2		LOI	MgO	MnO					Total
	vt% wt%	wt%		wt%	wt%	wt%	wt%	wt%	wt%		wt%
3041	14.32	0.74	3.62	1.58	2.12	2.95	0.1	4.38	0.08	70.55	0.31 100.74
3042	12.78	2.51	2.64	2.84	3.61	1.81	0.08	1.9	0.07	72.26	0.26 100.73
3043	16.56	3.84	7.33	0.23	3.89	5.59	0.21	5.02	0.12	55.78	0.61 99.19
3044	16.24	3.85	8.8	1.98	5.08	6.24	0.25	2.82	0.13	54.28	0.62 100.3
3045	12.85	1.71	1.76	1.33	2.31	0.74	0.04	5.29	0.07	73.74	0.2 100.04
3046	16.17	9.61	9.35	0.53	8.67	3.93	0.24	3.18	0.18	45.94	0.74 98.54
3047	13.26	0.39	2.41	2.99	2.47	1.91	0.13	1.85	0.05	75.62	0.21 101.29
3048	10.43	0.2	3.32	3.43	2.91	0.69	0.02	0.12	0.02	79.71	0.18 101.03
3049	6.44	0.11	11.27	0.72	5.6	3.06	0.4 < 0.01		0.04	72.61	0.33 100.56
3050	20.92	1.14	9.99	2.06	6.07	7.17	0.39	4.35	0.4	46.31	1.23 100.03
3051	15.67	9.24	9.54	0.03	4.74	5.18	0.35	1.96	0.13	52.85	0.64 100.33

Geo Labs JOB#: 09-0474

Date: 03/26/2010

Method Code: IMC-100

Client ID	Ва	Ве	Bi	(Cd	Ce	Со	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gd	Hf	Но	In	La	Li	Lu	Мо	Nb	Nd
Units	ppm	ppm	ppm	I	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detect Lin	n 0.	.8 0.	04 0.	.15	0.013	0.12	0.13	3	0.013	1.4	0.009	0.007	0.0031	0.04	0.009	0.14	0.0025	0.0018	0.04	0.4	0.002	0.08	3 0.028	3 0.06
2989) 61.	.4 2	2.7 <0.15	5	0.041	20.18	17.92	28	0.754	1.8	1.283	0.637	0.541	21.17	1.494	3.8	0.242	0.051	10.69	22.4	0.066	0.3	8.833	9.19
2990) 115.	.5 0.	48 <0.15	5	0.177	14.62	56.75	363	0.122	137.2	4.039	2.226	1.25	16.37	3.896	2.09	0.787	0.093	5.59	7.8	0.265	0.25	6.291	l 11.23
2991	L 697.	.2 0.	94 <0.15	5	0.061	20.53	4.65	8	1.11	2.9	1.896	1.32	0.524	11.67	1.718	2.49	0.427	0.017	11.12	3.7	0.256	0.37	7 3.77	8.22
2992	2 1026	.9 0.	95 <0.15	5	0.056	15.63	3.1	5	0.634	4.9	1.436	1.141	0.376	11.41	1.202	2.3	0.339	0.016	8.63	7.7	0.248	0.17	7 3.807	6.24
2993	3 258.	.1 0.	58 <0.15	5	0.171	20	56.15	160	0.093	139.1	5.192	2.875	1.519	18.49	4.999	2.89	1.029	0.084	7.87	5.6	0.354	0.24	8.527	7 14.93
2994	841.	.6 0.	87 0.	.16	0.256	23.86	5.08	10	0.761	7.6	1.995	1.379	0.586	12.36	1.782	2.52	0.433	0.018	13.34	4.6	0.27	0.44	4.108	9.32
2995	3 36.	.7 ().9 <0.15	5	0.092	9.89	31.78	43	0.931	85.8	1.93	1.361	0.477	18.08	1.524	1.99	0.417	0.066	4.95	7.4	0.195	0.24	4 3.12	2 5.88
2996	6 6	68 1.	58 <0.15	5	0.303	16.47	47.66	382	0.256	89.8	3.295	1.949	1.055	19.72	3.333	1.21	0.674	0.054	8.69	5.3	0.266	0.42	2 1.624	11.96
2997	1641.	.6 1.	25 <0.15	5	0.079	24.14	2.84	11	1.254	3.5	1.976	1.483	0.66	16.62	1.781	3.32	0.446	0.025	13.62	7.2	0.291	0.63	3 4.819	9.42
2998			67 (0.2	0.159	70.99	22.7	11	0.341	92.3	4.815	2.624	1.951	13.59	5.508	2.81	0.931	0.056	31	9.4	0.353	0.35	5 7.895	
2999	918.	.3 1.	02 <0.15	5	0.078	21.21	5.55	8	0.85	11.8	1.743	1.324	0.487	13.1	1.551	2.43	0.395	0.016	11.91	13.3	0.276	0.45	5 3.714	
3000) 132	.4 1.	12 <0.15	5	0.177	39.72	2.94	6	0.577	1.8	7.034	4.773	1.388	14.91	6.014	5.24	1.54	0.068	18.89	4.2	0.792	0.47	6.203	
3001	L 650.	.4	1 <0.15	5	0.071	26.82	3.89	17	0.594	4.7	3.479	2.406	0.695	10.51	2.783	3.44	0.748	0.036	15.18	7.2	0.42	0.39	9 4.69	
3002			94 <0.15		0.091	12.93	2.05	6	1.282	8.7	0.909	0.806	0.214	10.81	0.819	2.23	0.221	0.007			0.226	0.26		
3003	3 431.	.6 2.	27 <0.15	5	0.164	62.32	28.52	30	0.095	39.4	4.126	2.375	1.741	17.23	4.706	3.1	0.797	0.046	32.08	17.2	0.358	0.4	1 7.276	
3004			92 <0.15	5	0.032	22.96	3.15	6	0.619	15.8	2.05	1.458	0.55	13.01	1.795	2.67	0.452			8.3	0.277	0.22	4.136	
3005	5 1449.	.4	1.4 <0.15	5	0.171	45.76	32.68	12	0.25	49.3	4.907	2.829	1.825	18.22							0.393			
3006			45 <0.15	5	0.029	14.55	37.93	224		16.4	4.404	2.753	1.046							9.2	0.42	0.18	3 2.404	
3007			03 <0.15		0.102		12.06	34		28.5	2.245	1.5	0.677	12.46			0.475				0.261			
3008			09 <0.15		0.041	33.3	6.72	14		13.3	2.256	1.363	0.752								0.226			
3009			81 <0.15		0.112		5.86	10		10.4		1.456	0.678								0.295			
3010			92 <0.15		0.037	30.67	4.73	8				2.74	0.828	14.73							0.472			
3011			99 <0.15		0.036		4.34	12		3		1.5	0.562								0.288			
3012			77 <0.15		0.051		4.35	6		118		1.538	0.92								0.255			
3013			14 <0.15		0.037		3.56	5		9.5	0.59	0.468	0.224	14.05							0.114			
3014			02 <0.15		0.076		4.56	10		7.7	2.118	1.484	0.581	12.8							0.288			
3015			76 <0.15		0.188		3.97	75		22.8		1.376	0.42								0.234			
3016				.16	0.119		4.63	7		5.7	1.05	0.738	0.335	12.26							0.171			
3017			08 < 0.15		0.082		5.62	4		5.2		1.429	0.691	14.22							0.276			
	3 >1740		96 < 0.15		0.18		12.18	17		68.8		4.694	1.953	20.02							0.721			
3019			86 < 0.15		0.072		1.71	23		2.4		1.155	0.466	12.17							0.238			
3020			03 < 0.15		0.064	22.89	2.89	7				1.369	0.565	11.88			0.42				0.269			
3021			92 <0.15		0.113		10.54	50				2.226	0.901	14.82			0.698				0.379			
3022			45 <0.15		0.099		41.19	214		9.8		1.644	0.707	15.04							0.241			
3023	6 85.	.4 0.	85 <0.15)	0.069	18.55	1.38	15	0.337	<1.4	1.667	1.24	0.505	9.54	1.39	2.04	0.37	0.005	11.54	4.1	0.253	0.6	3.423	6.86

Geo Labs JOB#: 09-0474

03/26/2010

Date:

Method Code: IMC-100

	0.002 0.08 0.028 0.06 0.265 3.45 6.266 10.57 0.274 1.23 3.557 12.93 0.278 3.8 4.601 2.47
	0.265 3.45 6.266 10.57 0.274 1.23 3.557 12.93 0.278 3.8 4.601 2.47
3024 1488.9 0.8 0.41 0.029 26.46 0.53 10 0.55 3.2 1.758 1.337 0.226 12.28 1.632 3.33 0.401 0.02 13.65 1.9 0.2	0.2741.233.55712.930.2783.84.6012.47
	0.278 3.8 4.601 2.47
3025 568.8 1.38 <0.15 0.326 24.93 7.08 14 1.1 14 2.676 1.685 1.078 9.79 2.781 1.71 0.562 0.047 12.72 4.8 0.2	
3026 1729 0.49 0.33 0.016 6.04 0.27 4 0.245 11.6 1.282 1.26 0.079 8.8 0.625 2.67 0.343 0.016 3.15 1.1 0.2	0.4FF 0.F0 0.00F 4.4
3027 >1740 0.87 0.21 0.017 3.1 0.26 4 0.335 3.1 0.156 0.333 0.023 11.39 0.097 3.34 0.057 0.01 1.52 1 0.1	0.155 2.53 6.035 1.1
3028 >1740 0.85 0.2 0.023 10.05 0.52 8 0.214 80.2 1.25 0.923 0.205 10.12 0.969 3.16 0.274 0.02 4.6 1.5	0.2 2.65 5.721 4.61
3029 >1740 0.72 0.18 0.018 21.8 0.7 13 0.286 23 1.793 1.362 0.302 8.87 1.544 2.65 0.409 0.015 11.6 3.6 0.2	0.279 3.39 4.543 8.74
3030 >1740 0.89 0.21 0.114 15.41 4.76 11 0.231 307.7 0.83 0.524 0.377 12.11 1.04 3.61 0.168 0.017 8.29 5.6 0.1	0.101 1.27 5.198 6.76
3031 1277.1 1.46 0.16 0.083 32.37 5.03 6 0.502 4.1 3.512 2.491 0.768 16.96 3 4.51 0.784 0.039 16.22 5.5 0.4	0.431 0.61 6.342 14.06
3032 796.3 0.9 <0.15 0.07 23.27 2.98 16 0.322 8.8 1.851 1.304 0.518 11.41 1.658 2.41 0.4 0.014 12.55 2.5 0.2	0.259 1.89 3.836 9.33
3033 825.9 0.91 <0.15 0.055 10.19 4.95 33 0.651 13.4 0.329 0.231 0.143 12.47 0.457 2.14 0.069 0.017 5.96 20 0.0	0.081 0.52 3.339 4.03
3034 1101.1 1.02 <0.15 0.064 27.32 2.98 10 0.296 3.4 1.713 1.197 0.56 12.73 1.665 2.6 0.373 0.019 14.94 5.2 0.2	0.223 0.33 4.104 9.69
3035 1515.6 1.46 <0.15 0.03 15.9 6 8 0.589 6.1 2.68 2.015 0.449 18.94 1.732 3.71 0.619 0.023 8.57 5.9 0.3	0.384 0.37 5.846 6.45
3036 1015.1 0.9 <0.15 0.106 22.08 3.76 13 1.276 16.9 1.876 1.357 0.474 11.51 1.619 2.55 0.406 0.014 11.81 3.3 0	0.27 0.56 4.098 8.48
3037 1232.3 0.78 <0.15 0.026 21.56 1.64 11 0.805 12.1 2.376 1.673 0.505 13.89 1.898 2.63 0.521 0.022 12.17 8.9 0.3	0.306 1.89 4.127 8.58
3038 869.4 0.89 <0.15 0.034 17.83 2.15 7 0.398 12.3 1.564 1.189 0.433 8.99 1.394 2.09 0.354 0.012 10.31 3.4 0.2	0.248 0.19 3.391 7.47
3039 858.1 1.06 <0.15 0.06 30.17 8.38 7 0.563 32.7 2.565 1.812 0.708 13.16 2.123 2.76 0.564 0.025 17.2 5.4 0.3	0.325 1.69 4.713 11.19
3040 634.3 1.02 <0.15 0.059 28.11 4.22 8 0.768 13.1 2.785 1.933 0.712 13.52 2.402 2.83 0.61 0.024 14.55 8.3 0.3	0.362 0.34 5.052 12.18
3041 501.7 0.69 <0.15 0.038 27.21 6.3 8 0.34 14 2.832 1.941 0.67 13.7 2.432 3.23 0.616 0.021 14.56 5.8 0.3	0.342 0.83 5.504 11.81
3042 796.2 0.92 <0.15 0.075 25.58 5.16 8 0.962 19 2.488 1.733 0.65 12.76 2.239 2.65 0.545 0.021 13.5 8.5 0.3	0.322 0.42 4.491 10.91
3043 113.7 0.51 <0.15 0.046 13.59 18.98 31 0.081 7.2 2.399 1.597 0.663 15.65 2.134 1.69 0.513 0.1 6.52 6.1 0.2	0.254 3.58 3.013 7.77
3044 749.2 0.63 <0.15 0.081 14.66 25.05 28 0.911 127.6 2.729 1.835 0.752 16.23 2.374 1.55 0.594 0.06 7 12.5 0.2	0.287 0.32 2.656 8.42
3045 870.5 0.67 <0.15 0.091 24.23 3.03 10 0.311 8.5 1.594 1.104 0.537 10.84 1.486 2.12 0.347 0.015 14.49 4.4 0	0.21 0.57 4.409 8.74
3046 1091.7 0.61 1.26 0.052 21.69 25.7 13 1.388 135.2 3.372 2.028 1.049 16.27 3.323 1.46 0.704 0.1 10.38 12.2 0.2	0.272 0.7 3.788 12.82
3047 908.8 0.69 0.35 0.06 8.05 1.62 21 0.29 39.6 0.68 0.521 0.216 12.2 0.59 2.46 0.156 0.033 4.84 2.2 0.1	0.119 1.33 3.844 3.11
3048 >1740 0.6 1.27 0.019 6.69 1.65 22 0.412 75.1 0.346 0.419 0.062 12.14 0.325 2.08 0.095 0.032 4.23 1.7 0.1	0.151 7.62 3.092 2.23
	0.113 0.86 0.992 6.02
	0.199 0.11 4.079 11.23
3051 48.2 0.53 0.19 0.064 16.66 27.3 67 0.053 27.8 3.346 2.086 0.922 16.43 3.027 1.42 0.717 0.065 7.94 6.7 0.3	0.301 0.34 2.524 10.34

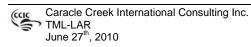
Geo Labs JOB#: 09-0474

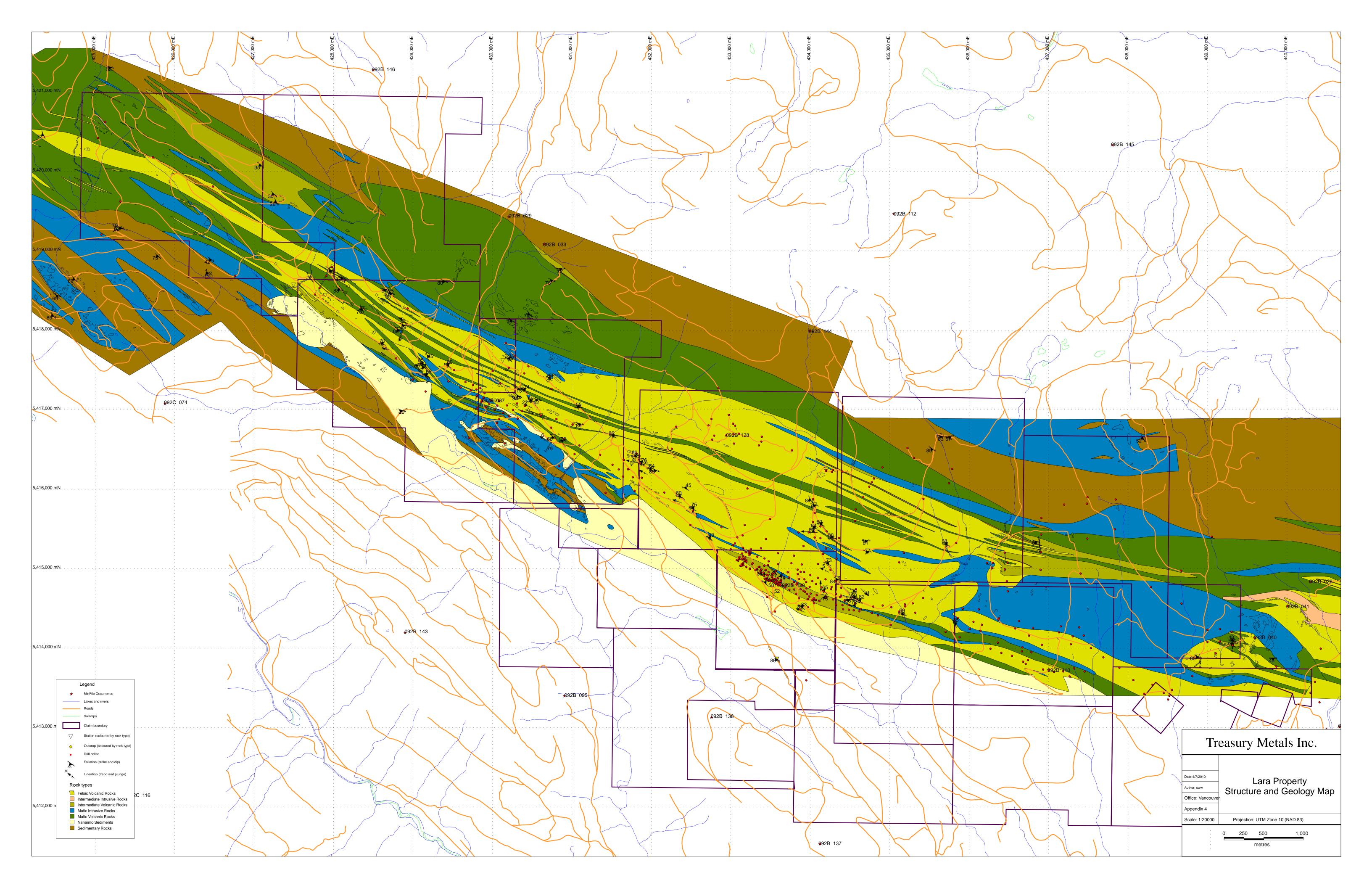
Date:

03/26/2010

Method Code: IMC-100

Client ID	Ni	Pb	Pr	Rb	Sb	Sc	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	v	w	Y	Yb	Zn	Zr
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detect Lin	1 1.	6 0.0	6 0.014	0.23	0.04	1.1	0.012	0.16	0.6	0.023	0.0023	0.018	7	0.005	0.0019	0.011	0.8	0.05	0.05	0.009	7	6
2989	5	2 12.2	2 2.351	7.58	0.64	3.9	1.778	1.22	189.9	0.438	0.217	1.965	4032	0.171	0.083	0.543	171.7	0.44	5.43	0.508	90	166
2990	145.	7 1.	5 2.219	2.38	0.29	47	3.345	0.96	195	0.387	0.64	0.463	8571	0.01	0.307	0.148	353.5	0.24	20.49	1.878	92	76
2991	. 1.	6 4.	5 2.233	30.27	0.2	6.1	1.764	0.67	159.1	0.278	0.285	3.364	1533	0.087	0.215	1.903	36.6	0.34	12.1	1.522	31	98
2992	<1.6	4.	3 1.7	41.96	0.19	4.7	1.238	0.8	125.4	0.279	0.208	3.198	1333	0.146	0.192	1.678	24.8	0.36	10.01	1.428	34	90
2993	110	3 2.	5 3.02	5.97	0.28	47.8	4.329	1.14	221.1	0.539	0.81	0.689	10910	0.031	0.401	0.22	>370	0.31	26.45	2.442	106	106
2994		3 5.2	2 2.545	45.94	0.14	6.1	1.891	0.7	115.5	0.299	0.292	3.66	1471	0.146	0.226	1.825	29.9	0.55	12.75	1.645	45	101
2995	21.	3 2.4	4 1.317	35.04	0.13	14	1.432	0.87	127.4	0.164	0.268	0.92	5692	0.255	0.209	0.636	292.2	0.25	11.43	1.382	93	73
2996	59.	2 20.8	8 2.553	7.02	0.8	59.3	3.184	0.6	680.8	0.082	0.507	1.162	3677	0.042	0.285	0.552	315.9	0.94	18.24	1.788	95	43
2997	<1.6	4	4 2.641			7.2	1.88	1.21	46.9	0.374	0.289	4.583	1889	0.271	0.243	2.5	44.1	0.49	12.76	1.804	42	
2998	4.	4 13.			0.37	15.2	6.236	0.9	207.9	0.318	0.81	5.111	3919	0.111	0.371	2.103	176.4	0.41	24.23	2.382	77	
2999			6 2.252			5.9	1.635	0.84		0.275		3.446					28.8	0.33			52	
3000			5.065			12.4	5.489	2.17		0.393										5.024	62	
3001						7	2.78	1.25		0.284	0.503	3.731					27.5	0.37		2.613	36	
	<1.6	3.				3.2	0.94	1.14		0.255		4.266					12.5	0.45		1.218	24	
3003						17.3	5.458	0.85	738.5	0.351	0.665	5.706					178.7	0.38		2.24	104	
3004		2 3.				5.5	1.925	0.91	91	0.298		3.573					26.4	0.29		1.709	32	
3005						25	5.597	0.71		0.193	0.791	2.694					219.6	0.27		2.602	91	
3006						44.3	3.244	0.49		0.139		0.698		< 0.005	0.414		240.2	0.24			60	
3007						8.1	1.92	0.81	111.6	0.311	0.341	2.24			0.23		58.2	0.31		1.604	55	
3008						9.5	2.561	0.55	344.4	0.761	0.355	4.529			0.209		81.1	0.34		1.411	38	
3009 3010						5.9	2.048	0.68		0.306		3.782					31 47.8	0.33		1.757	59	
3010						10.6	3.209 1.919	1.19 0.6	72.1 225	0.365 0.295		4.355 3.555					47.8	0.39 0.62		2.928 1.687	42	
	. 1.6	o 2.: 13.4				5.4 4.3	2.37	1.12		0.295							27.1	0.82			18 48	
	<1.6	3.8				4.5 2.6	0.727	1.12		0.242	0.438							0.36			40	
3013						2.0	1.985	0.94		0.289							28.1	0.36			47	
3015						8.5	1.842	0.76		0.228							44.4	0.50			94	
3016						4.1	1.195	0.85	75.4	0.29							27.5	0.36			60	
3017	5.	2 5.	5 3.064	65.74	0.23	5.3	2.093	0.91	88.4	0.376	0.31	4.933		0.189	0.23	2.418	32.1	0.57		1.663	58	
3018	19.					27.6	6.287	1.49		0.219		2.284		0.127	0.696		125.4	0.53		4.661	121	
3019	5.	6 4.4	4 2.51	52.63	0.14	3.1	1.615	0.59	123.5	0.272	0.232	5.089	1014	0.121	0.188	1.76	15.4	0.4	10.51	1.384	90	79
3020	<1.6		5 2.447	50.1	0.37	5.6	1.758	0.97	82.4	0.286	0.276	3.498	1443	0.164	0.217	1.901	27.8	0.65	12.61	1.645	55	106
3021	. 13.	2 3.	5 2.985	30.68	0.54	17	2.807	0.89	149.7	0.278	0.475	2.937	2439	0.115	0.337	2.13	74.4	0.45	19.9	2.342	87	105
3022	32.	9 3.	1 1.647	10.24	0.45	40.1	2.082	0.42	108.6	0.105	0.388	0.776	4350	0.031	0.243	0.465	303.2	0.71	15.27	1.612	105	42
3023	<1.6	3.2	2 1.976	44.34	0.22	4.1	1.423	1.14	81.5	0.266	0.239	4.727	1140	0.099	0.21	1.815	15	0.54	11.58	1.513	23	74


Geo Labs JOB#: 09-0474


Date:

03/26/2010

Method Code: IMC-100

Client ID	Ni	Pb	Pr	Rb	Sb	Sc	Sm	Sn	Sr	Та	Tb	Th	Ті	TI	Tm	U	V	W	Y	Yb	Zn	Zr
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detect Lin	n 1.	6 0.	6 0.014	0.23	0.04	1.1	0.012	0.16	0.6	0.023	0.0023	0.018	7	0.005	0.0019	0.011	0.8	0.05	0.05	0.009	7	6
3024	I <1.6	5.	5 2.976	5 28.37	0.38	2.5	2.058	1.47	33.9	0.449	0.258	3.446	888	0.191	0.229	2.277	4.6	0.54	11.56	1.674	27	123
3025	5 5.	53.	5 3.143	46.05	0.35	10.5	2.884	0.65	317.3	0.185	0.416	2.721	2529	0.25	0.257	1.166	114.2	0.24	16.07	1.759	31	71
3026	i <1.6	1.	6 0.673	42.06	0.15	2.6	0.525	0.89	16.7	0.337	0.148	3.629	672	0.208	0.224	1.519	4.7	0.39	11.01	1.678	11	96
3027	/ <1.6		6 0.33	3 24.66	0.33	2.2	0.167	0.93	13.6	0.427	0.017	1.611	990	0.267	0.078	1.825	8.8	0.96	1.74	0.751	24	122
3028	3 <1.6	3.	.3 1.2	2 22.44	0.12	2.3	1.045	1.18	52.7	0.401	0.169	2.356	852	0.188	0.16	2.051	3.6	0.4	7.1	1.198	29	114
3029) <1.6	2.	9 2.367	42.66	0.18	3.4	1.728	0.99	35.4	0.322	0.262	2.566	747	0.189	0.235	1.679	4.4	0.41	12.16	1.7	35	95
3030) <1.6	4.	7 1.77	23.99	0.33	3.4	1.35	0.95	106.1	0.339	0.137	2.132	1989	0.152	0.087	1.835	26.9	0.69	4.75	0.638	53	147
3031					0.13	10.3	3.186		54.9	0.417	0.513	4.655	2408	0.236		2.358				2.768	68	179
	2 <1.6	2.			0.15	4.9	1.877	0.87	84.8	0.281	0.272	3.384	1331	0.115	0.216	1.886		0.42		1.581	25	98
3033					0.22	6.3	0.685	0.71	457.6	0.24	0.056		1784	0.108	0.05	1.456		0.51		0.455	60	83
3034			2 2.707		0.09	5.1	1.864		220.9	0.293	0.262		1373	0.09		1.481		0.18		1.368	28	104
3035					0.16	7.2	1.486		126.1	0.426	0.361	5.157	2008	0.182		2.294		0.56		2.376	58	151
	5 <1.6	4.			0.13	6.4	1.721	1.18	98.1	0.313	0.274	3.862	1596	0.194	0.223	1.958				1.623	27	97
	/ <1.6	8.			0.61	6.7	1.768		77.2	0.31	0.329	3.77	1753	0.306	0.263	2.075		0.75		1.877	21	106
	3 <1.6	3.			0.09	4.6	1.513		76.4	0.237	0.229	2.916		0.082	0.192			0.28		1.441	22	83
3039					1.41	7.6	2.145		72.3	0.312	0.369	3.926		0.494		2.128				2.051	26	105
) <1.6	5. 2 1			0.86	7.8	2.606		186.2	0.345	0.411	4.01	1813	0.37	0.313	1.869		0.54		2.197	46	108
3041	L 2. 2 <1.6		2 3.092 8 2.883		0.08 0.65	8.4 7	2.534 2.289		68.1 136.4	0.356 0.311	0.413 0.374	3.72 3.666	1979	0.076 0.714	0.302 0.278	2.11 1.855		0.58 0.51		2.156	41	130
3042					0.65	, 31.6	1.951		136.4 195.7	0.311	0.374	1.278		0.714	0.278	0.824		0.31		1.997 1.639	45 80	99 65
3043					0.2	31.0	2.21		175.6	0.171	0.338	1.278	3933	0.018		0.824				1.847	132	57
	5 <1.6	3.			0.00	4.5	1.689		175.0	0.145	0.400	4.109	1304	0.122		2.204		0.5		1.847	44	87
3046					0.84	28.6	3.251	0.92	367.9	0.181	0.244	1.525	4454	0.034		0.795				1.886	44	56
3047					0.25	2.8	0.598		56.3	0.285	0.099	2.088		0.034	0.093	2.042					85	100
	3 <1.6	11.			0.52	4.6	0.402		31	0.205	0.033	1.908	1333	0.135		1.404		0.77			20	84
3049					0.32	21.3	1.477		9.4	0.054	0.186		2092	0.048		0.289		0.58			294	20
3050					0.27	13.6	2.623		95.2	0.196	0.357	0.51	7669	0.127	0.218	2.849		1.68			253	74
3051			8 2.296		0.49	40.4	2.811		273.5	0.134	0.501	1.13		<0.005	0.304	0.737		0.5		2.005	99	53
2001		-			0.15			0.07		0.101	0.001	2.15	555E	5.005	0.001	0	010.7	5.5	20.17		55	23

