

Ministry of Energy, Mines & Petroleum Resources

Mining & Minerals Division BC Geological Survey Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geological

TOTAL COST: 653,532

AUTHOR(S): Bob Lane	SIGNATURE(S):
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-9-054	YEAR OF WORK: 2009
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	4578531
PROPERTY NAME: Nonda	
CLAIM NAME(S) (on which the work was done): 607427-607431	
COMMODITIES SOUGHT: quartz sandstone, quartzite, frac sand	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094N 011	
MINING DIVISION: Liard	NTS/BCGS: 094N/13
25 <u>31 47</u> 25NG11852. 120	36 " (at centre of work)
OWNER(S): Stikine Gold Corporation	2)
WAILING ADDRESS: 490 - 1122 Mainland Street	
Vancouver, BC V6B 5L1	- 1
OPERATOR(S) [who paid for the work]: 1) Stikine Gold Corporation	2)
MAILING ADDRESS: 490 - 1122 Mainland Street	
Vancouver, BC V6B 5L1	-
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Quartz sandstone, arenite, Cambrian unnamed formation	a, alteration, mineralization, size and attitude):

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping 500 ha		607427-607431	16,432
Photo interpretation 500 ha		607427-607431	1,000
GEOPHYSICAL (line-kilometres) Ground Magnetic			

Airborne			
GEOCHEMICAL number of samples analysed for)			1000
Soil			
Rock			
Other SG 21		607430-607431	1,000
ORILLING total metres; number of holes, size)			
Core 934 m in 9 HQ holes		607430-607431	606,600
Non-core			
RELATED TECHNICAL			
Sampling/assaying 41		607430-607431	16,000
Petrographic 44		607430-607431	7,500
Mineralographic			
Metallurgic			
PROSPECTING (scale, area) 500 ha		607427-607431	5,000
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tr	rail		
28. 1.7			
Other			
		TOTAL COST:	653,532

BC Geological Survey Assessment Report 31621

2009

DIAMOND DRILLING ASSESSMENT REPORT FOR THE

GHOST RIDGE AREA, NONDA PROPERTY

LIARD MINING DIVISION BRITISH COLUMBIA

NTS Map 094N/13E
LATITUDE 59.8629°N AND LONGITUDE 125.6001°W
STATEMENT OF WORK EVENT #: 4578531

PREPARED FOR: STIKINE GOLD CORPORATION

490 – 1122 MAINLAND STREET VANCOUVER, BC CANADA V6B 5L1

PREPARED BY: BOB LANE, PGEO

PLATEAU MINERALS CORP

DATE: JULY 30, 2010

TABLE OF CONTENTS

1		EXECUTIVE SUMMARY	1
2		Introduction	2
	2.1	LOCATION AND ACCESS	2
	2.2	Physiography and Climate	3
	2.3	PROPERTY STATUS AND OWNERSHIP	3
	2.4	EXPLORATION HISTORY	3
	FIGURE	2: Nonda Property - Mineral Tenure	6
3		REGIONAL GEOLOGY	7
4		PROPERTY GEOLOGY	7
5		MINERALIZATION AND GEOLOGICAL MODEL	12
6		2009 EXPLORATION PROGRAM	12
	6.1	SURFACE SAMPLES	12
	6.2	DIAMOND DRILLING	12
7		DRILL RESULTS	15
8		SAMPLING METHOD AND APPROACH	16
9		SAMPLE PREPARATION, ANALYSES AND SECURITY	19
10)	INTERPRETATION AND CONCLUSIONS	19
11	L	RECOMMENDATIONS	20
12	2	ITEMIZED COST STATEMENT – NONDA PROPERTY	21
13	3	REFERENCES	22
14	1	STATEMENT OF QUALIFICATIONS	23
.IS	T OF	TABLES	
	TABLE	1: NONDA PROPERTY MINERAL CLAIMS	5
	TABLE	2: SUMMARY OF 2009 DRILLHOLES, GHOST RIDGE AREA, NONDA PROPERTY	13
	TABLE	3: LIST OF CORE SAMPLES SUBMITTED FOR PETROGRAPHIC ANALYSES	16
	TABLE	4: 2009 DRILL CORE GEOCHEMICAL RESULTS	17
	TABLE	5: RESULTS FROM SPECIFIC GRAVITY (SG) MEASUREMENTS ON 21 PIECES OF DRILL CORE	18
LI	ST OF	FIGURES	
	FIGUR	E 1: LOCATION OF THE NONDA PROPERTY	4
	FIGUR	E 2: NONDA PROPERTY - MINERAL TENURE	6
	FIGUR	E 3: REGIONAL GEOLOGY OF THE VIZER CREEK – SCATTER RIVER AREA	9
		E 4: VIEW LOOKING NORTH ALONG THE BARREN SPINE OF GHOST RIDGE, NONDA PROPERTY	
		E 5: CROSS-BEDDING IN PALE GREY QUARTZ ARENITE, GHOST RIDGE AREA, NONDA PROPER	
		E 6: TYPICAL OUTCROP OF PALE GREY QUARTZ ARENITE, GHOST RIDGE AREA, NONDA PROP	
	FIGUR	7: 2009 DIAMOND DRILLHOLE LOCATIONS, NONDA PROPERTY	
	FIGUR	8: DRILLHOLE GR09-01 IN PROGRESS WITH OUTCROP IN FOREGROUND	15

FIGURE 9:	PHOTOMICROGRAPH C	OF TYPICAL ANGULAR	TO SUB-ROUNDED,	TIGHTLY-PACKED	QUARTZ
GRAINS IN	I SAMPLE OF QUARTZ AR	ENITE FROM GHOST F	RIDGE AREA, NONDA	PROPERTY	18
FIGURE 10	: 3D WIREFRAME MODEL	OF AREA DRILLED OF	n ghost ridge, not	NDA DEPOSIT	20

APPENDICES

APPENDIX A. Geological Drillhole Logs and Cross Sections

APPENDIX B. Recovery and RQD

APPENDIX C. Drillhole Analytical Results

APPENDIX D. 2009 Laboratory Certificates

1 EXECUTIVE SUMMARY

In 2009 Stikine Gold Corporation (Stikine) recognized the need for a northeast BC source of frac sand for the region's developing unconventional gas exploration and production sector. In April and May of 2009, an assessment of central and northern British Columbia's potential lode sources of quartz arenite and quartz arenite was conducted. The research identified a number of prospective targets northwest of Fort Nelson and northeast of Prince George and staking of many of these areas ensued. A total of 17 properties were staked, including the Nonda property.

The Nonda property is located in a remote area of northeast British Columbia in the Liard Mining Division, approximately one-half hour by air north of Liard Hot Springs. The property is comprised of 38 mineral claims that cover 14,986 ha.

In July, 2009 Stikine Gold Corporation completed an initial reconnaissance of the Nonda property and identified a north-trending belt of quartz arenite more than 11 km long by approximately 1 km wide. Initial observations and positive results from preliminary testing of samples from the Ghost Ridge area of the Nonda property determined it to be a priority for focused follow-up exploration. The company followed the initial reconnaissance program with a 9-hole HQ diamond drilling program that ran from September to early October 2009.

The 2009 exploration drilling campaign was conducted over a 2.2 km strike length and 0.9 km width of the formation to test the thickness of the desirable unit. A total of 9 HQ diameter diamond drillholes, with an aggregate length of 934 m, were completed in the Ghost Ridge area of the Nonda property. Drilling was completed to depths of between 70 and 168 m. Each hole was collared and terminated in quartz arenite.

Results from drilling, 3D wire-frame modeling and rock volumetric estimation outline a horizontal sheet of quartz arenite that covers 2,349,100 square metres and is 70-165 metres thick. The sheet of quartz arenite has a volume of 256,907,000 cubic metres.

It is recommended that exploration of the Nonda property continue. Future work should consist of additional mapping and systematic sampling along the trend, particularly to the south. Additional diamond drilling of 6 holes should be considered for areas along trend, to further define the thickness of the deposit. A program of bulk sampling should be entertained in order to provide sufficient sample for full scale processing. Should these studies continue to generate positive results, then an evaluation of potential road access options should be undertaken along with requisite archaeological and environmental assessments as part of a scoping and/or pre-feasibility study.

The estimated cost of the recommended helicopter-supported mapping, diamond drilling and sampling program is \$2,200,000.

2 Introduction

This report has been prepared at the request of Stikine Gold Corporation (Stikine) to summarize results from an initial 9-hole diamond drilling program completed in the fall of 2009 on its Nonda property. The current report was prepared by independent Qualified Person Bob Lane, PGeo, who conducted the initial reconnaissance in July and managed the fall drilling program.

Stikine recognized the need for a northeast BC source of frac sand for the region's developing unconventional gas exploration and production sector and set out to identify potential lode sources. In April and May of 2009, an assessment of central and northern British Columbia's potential sources of quartz arenite and quartz arenite was conducted. The research identified a number of prospective targets northwest of Fort Nelson and northeast of Prince George and staking of many of these areas ensued. A total of 17 properties were staked, including the Nonda property. Helicopter-supported reconnaissance of each property was completed in July and August, 2009. Samples collected were submitted for geochemical and petrographic analysis. Following the reconnaissance program additional claims were staked to provide more adequate coverage of prospective geology. Stikine owns a 100% interest in the 17 properties that are comprised of 231 claims and cover a total of 83,691 ha.

Initial observations and positive results from preliminary testing of samples from the Ghost Ridge area of the Nonda property determined it to be a priority for focused follow-up exploration and diamond drilling. The results of a 9-hole HQ diamond drilling program are the principal subject of this report.

2.1 LOCATION AND ACCESS

The Nonda property is located in a remote area of northeast British Columbia in the Liard Mining Division, approximately one-half hour by air north of Liard Hot Springs (Figure 1). It is centred at Latitude 59.8629° N and Longitude 125.6001° W. The nearest populated centers are Fort Nelson, 190 km to the southeast and Watson Lake, 180 km to the northwest.

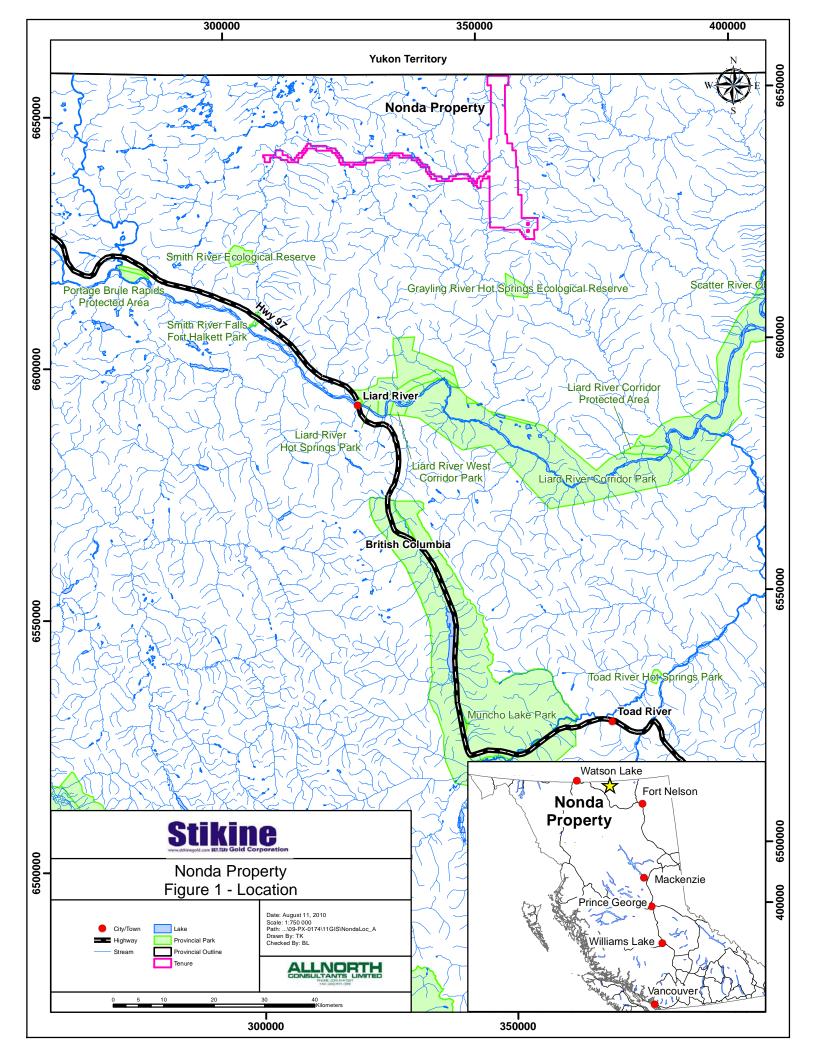
The property is not presently accessible by road, but numerous overgrown seismic lines and oil and gas exploration roads occur to the east. Brushing, upgrading and connecting of these existing discontinuous linear trails could form part of an access route that would link the property to existing all-season industrial roads that reach to within approximately 70 km of the property. These latter roads provide direct access to the Horn River gas basin located approximately 150 km east of the Nonda property.

Air strips initially developed to support the WWII effort, construction of the Alaska Highway (Highway 97), or remote fly-in guide-outfitter posts, are located within 50 to 75 km east, west and south of the property.

2.2 PHYSIOGRAPHY AND CLIMATE

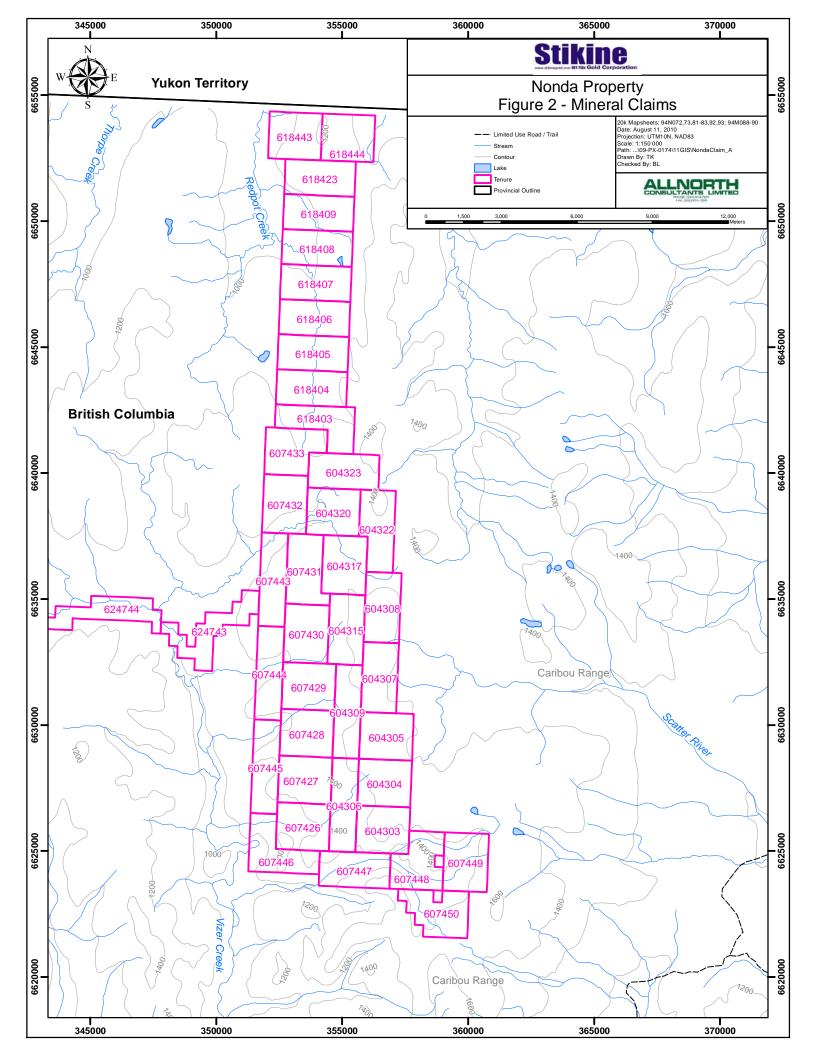
The Nonda property lies in the Liard Plateau physiographic region and occurs within the Northern Boreal Mountains Ecoprovince. The area of interest, Ghost Ridge, covers a small part of the Caribou Range, along the western edge of the Liard Plain Ecosection, a broad, rolling inter-mountain plain with a cold, sub-Arctic climate. Topography within the claim group is relatively subdued, with elevations ranging from about 1040 to 1640 meters.

The Ghost Rdige area is in the alpine were vegetation consists of lichen, moss, grasses and buck brush with sparse stunted pine and spruce. Vizer Creek, and the treed valley that it occupies, occurs 3 km west of Ghost Ridge, and the headwaters of the Scatter River occur approximately 5 km to the east. Outcrop and sub-outcrop account for 20-25% of the Ghost Ridge area.


Seasonal temperatures for the property are not available, but those for Watson Lake average daily highs of 21°C in July and average daily lows of -29°C in January. A record high temperature of 34°C was set in May 1983 and a record low temperature of -59°C was set in January 1947. Watson Lake has an average annual snowfall of 197 cm and average rainfall of 26 cm.

2.3 PROPERTY STATUS AND OWNERSHIP

The property is comprised of 38 mineral claims that cover 14,986 ha (Table 1 and Figure 2). The property extends southward from the BC-Yukon border for approximately 30 kilometres. The claims were acquired by staking and are 100%-owned by Stikine. The claims are not subject to any underlying interests, nor are they encumbered by any provincial or national parks, or other protected areas.


2.4 EXPLORATION HISTORY

The area of interest on the property has not been the subject of any recorded exploration and therefore no historical information exists for the area of interest.

Table 1: Nonda Property Mineral Claims

Tenure Number	Claim Name	Owner	Tenure Type	Map Number	Issue Date	Good To Date	Area (ha)
604303		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	391.630
604304		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	391.367
604305		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	391.164
604306		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	391.493
604307		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	390.913
604308		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	390.591
604309		145114 (100%)	Mineral	094N	2009/may/10	2011/oct/11	391.071
604315		145114 (100%)	Mineral	094N	2009/may/11	2011/oct/11	390.724
604317		145114 (100%)	Mineral	094N	2009/may/11	2011/oct/11	406.630
604320		145114 (100%)	Mineral	094N	2009/may/11	2011/oct/11	390.132
604322		145114 (100%)	Mineral	094N	2009/may/11	2011/oct/11	406.425
604323		145114 (100%)	Mineral	094N	2009/may/11	2011/oct/11	389.956
607426		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	391.589
607427		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	391.363
607428		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	391.169
607429		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	390.975
607430		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	407.039
607431		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	406.696
607432		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	406.377
607433		145114 (100%)	Mineral	094N	2009/jul/09	2011/oct/11	389.892
607443		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	390.489
607444		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	390.924
607445		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	391.312
607446		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	408.008
607447		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	391.800
607448		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	408.122
607449		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	408.110
607450		145114 (100%)	Mineral	094N	2009/jul/10	2011/oct/11	408.328
618403	NONDA NORTH	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.770
618404	NONDA NORTH 2	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.627
618405	NONDA NORTH 3	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.497
618406	NONDA NORTH 4	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.384
618407	NONDA NORTH 5	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.238
618408	NONDA NORTH 6	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	389.092
618409	NONDA NORTH 7	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	388.946
618423	NONDA NORTH 8	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	388.800
618443	NONDA NORTH 9	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	388.630
618444	NONDA NORTH 10	145114 (100%)	Mineral	094N	2009/aug/12	2011/oct/11	388.620
TOTAL			38				14,985.890

3 REGIONAL GEOLOGY

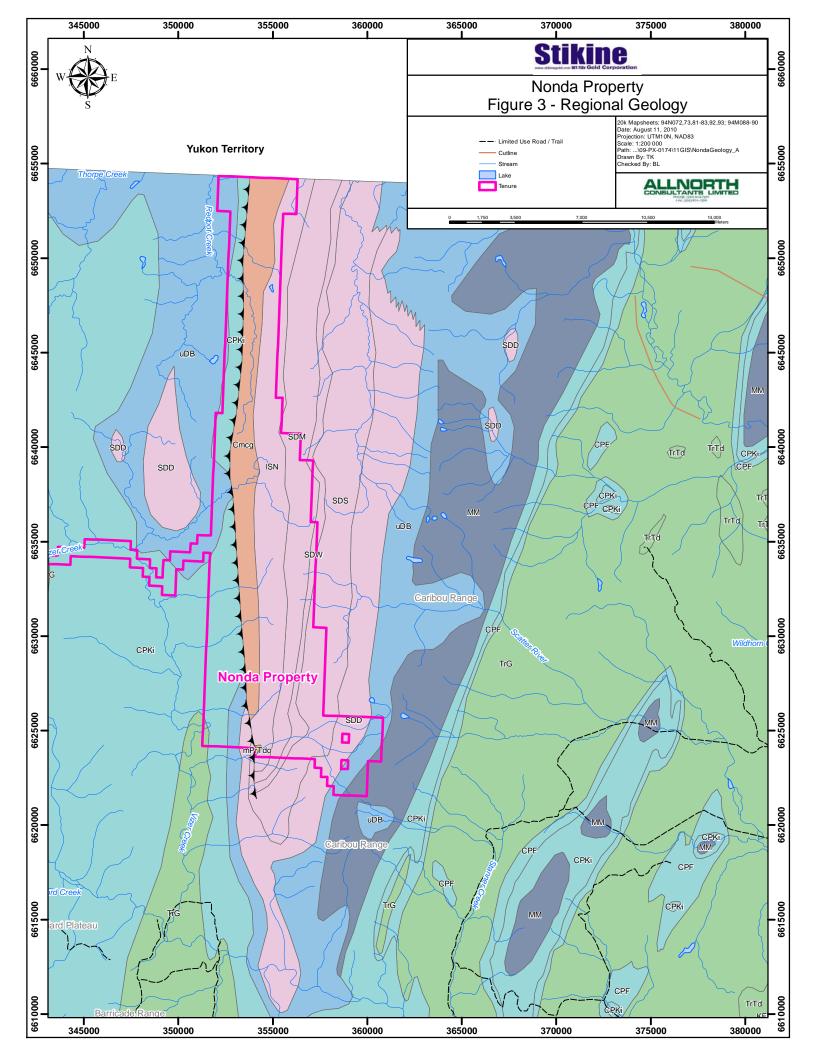
The regional geology of the area is presented in Figure 3 (Walsh, 2004; Massey et al., 2005). In general the area is underlain by a north-northeast trending clastic and carbonate sedimentary rock sequence that range from Pre-Cambrian to Triassic in age. The succession is deformed by numerous north-northeast trending folds and thrust faults, typical of the western foothills of the Rocky Mountains.

The oldest rocks exposed in the central part of the map area, and on the Nonda property, are quartz-pure sandstones (quartz arenite) of an unnamed Cambrian(?) succession. To the east these rocks are overlain by limy siltstones and limestones of the Silurian Nonda Formation. The Silurian rocks are in turn overlain by a generally eastward-younging succession that is dominated by dolomitic carbonate and limy fine-grained clastic rocks of the Silurian-Devonian Wokkpash, Stone, Muncho-McConnell and Dunedin formations. These rocks are overlain by shale of the Devonian Besa Formation and are capped by fine-grained quartz sandstone to quarztite of the Mississippian Mattson Formation. Locally, Mattson Formation is exposed in the core of several northeast oriented anticlines, and are flanked by overlying chert, siliceous argillite and siliciclastic rocks of the Permian Fantasque Formation and coarse clastic sedimentary rocks of the Carboniferous and Permian Kindle Formation.

Recessive-weathering fine-grained clastic rocks of the Triassic Grayling and Toad formations occupy broad areas of the region. The area well east of the Nonda property is dominated by generally weakly lithified clastic sediments of the Lower Cretaceous Scatter, Lepine and Garbutt formations (Fort St. John Group).

A series of north-northeast oriented anticline-syncline fold axes and east-verging thrust faults are typical of the region (Walsh, 2004; Massey et al., 2005). Older rocks are exposed in the core of many of the anticlinal features and on the upper plate of several thrust faults.

4 Property Geology


The initial field assessment of the Nonda property took place in July and identified a well-exposed, homogeneous and remarkably continuous belt of pale grey to bone-white pre-Silurian (Cambrian?) quartz-pure sandstone or quartz arenite. The quartz arenite crops out along a rounded, subdued alpine plateau over a distance of approximately 11.5 kilometres (Figure 4).

The minimum width of the belt of quartz arenite is approximately 1000 m, but it may extend well to the east beneath thin cover. Several west-trending incised gullies provide continuous exposures of quartz arenite over widths of more than 1000 m and over a vertical distance of more than 140 metres. The quartz arenite displays vague to locally pronounced bedding with shallow dips ranging from 8 to 20 degrees to the west-northwest.

North of the central Ghost Ridge area, the belt of quartzite appears to terminate abruptly, and may be offset by late brittle faulting. To the south, the quartz arenite becomes interbedded with a grey to black slaty shale. The quartz arenite is bound to the west by a steeply dipping reverse fault. The

quartz arenite extends eastward beneath a layer of pebble conglomerate, a unit less than 2 metres thick whose base marks the plane of a gently east-dipping erosional unconformity. Pale orange, limy shale and sandstone and grey to black fossiliferous limestone comprise the overlying, gently east-dipping Silurian Nonda Formation.

In hand sample, the quartz arenite is pale grey to white and visually pure, with cm-scale bedding defined by slight variations in the size of the quartz grains (Figure 6). Individual quartz grains are sub-angular to sub-rounded and impurities are rare. Minor euhedral pyrite occurs locally and, where oxidized, imparts a pale orange stain that typically coats fractures and follows more porous and permeable beds.

Property Geology Legend

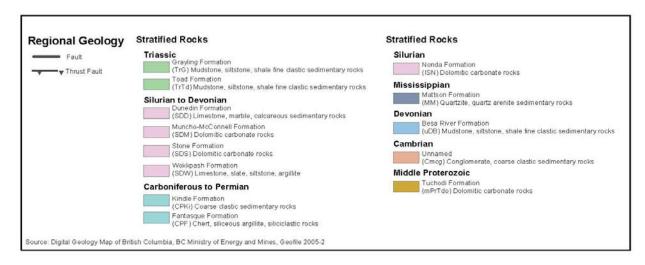


Figure 4: View looking north along the barren spine of Ghost Ridge, Nonda Property.

Figure 5: Cross-bedding in pale grey quartz arenite, Ghost Ridge area, Nonda property.



Figure 6: Typical outcrop of pale grey quartz arenite, Ghost Ridge area, Nonda property.

5 MINERALIZATION AND GEOLOGICAL MODEL

The Nonda property was staked to cover a sedimentary formation that had been identified on regional geological maps to have potential to include significant thicknesses of quartz-rich sandstone, quartz arenite or quartz arenite. These rock types are regarded to be potential lode sources of high-value frac sand, a commodity that is used in the extraction of hydrocarbons, and in particular shale-hosted natural gas.

6 2009 EXPLORATION PROGRAM

The 2009 exploration program at the Nonda property was comprised of an initial reconnaissance assessment, and a follow-up diamond drilling exploration program. The reconnaissance program, conducted in July, 2009, was designed to examine, verify and sample bedrock exposures for quartz-rich sedimentary and/or metamorphic rock formations. On the Nonda property, this initial evaluation identified a belt of quartz arenite more than 11 km long by approximately 1 km wide. Several representative samples collected from the property were submitted for whole rock analysis and petrographic examination. Positive laboratory results led to the design, implementation and completion of a diamond drilling program.

6.1 SURFACE SAMPLES

Following completion of the reconnaissance program three large samples of quartz arenite were collected from outcrop (Figure 7). Each sample was estimated to weigh approximately 1000 lb. The three samples were trucked by Canadian Freightways to SGS Laboratories in Vancouver for bench-scale testing purposes.

6.2 DIAMOND DRILLING

In the fall of 2009, Stikine completed a nine-hole, 934 m diamond drilling program on the Ghost Ridge area of its Nonda property (Table 2; Figure 7). Drill crews were mobilized to the property daily from the Northern Rockies Lodge at Muncho Lake. The diamond drill, provided by Hy-Tech Drilling, was flown up to the exploration site from a staging area located on an abandoned airstrip just east of Liard Hot Springs. The first drill hole was collared on September 13 and the last hole was completed on October 9. The area that was drilled lies in the northern half of the 11.5 km belt and represents less than 20% of Ghost Ridge. Drilling consisted of three 3-hole fences that evaluated the quartz arenite over a strike length of approximately 2.2 km and over a width of up to approximately 0.9 km (Appendix B). Drillhole GR09-01 was drilled on an azimuth of 090 with a dip of -80 degrees (Figure 8). Drillholes GR09-02 through GR09-09 were vertical.

Table 2: Summary of 2009 Drillholes, Ghost Ridge area, Nonda property.

DDH ID	Easting	Northing	Error	Elevation	Azimuth	Dip	EOH (m)
GR09-01	353111	6635785	5	1397	90	-80	90.00
GR09-02	353542	6635790	5	1415	vertical	-90	137.16
GR09-03	353616	6633566	3	1384	vertical	-90	94.00
GR09-04	353300	6633572	5	1351	vertical	-90	97.50
GR09-05	354138	6633561	4	1353	vertical	-90	70.00
GR09-06	353695	6634829	3	1387	vertical	-90	168.00
GR09-07	353439	6634833	4	1394	vertical	-90	96.00
GR09-08	353169	6634846	4	1383	vertical	-90	90.00
GR09-09	354013	6635787	3	1369	vertical	-90	91.45
						TOTAL	934.11

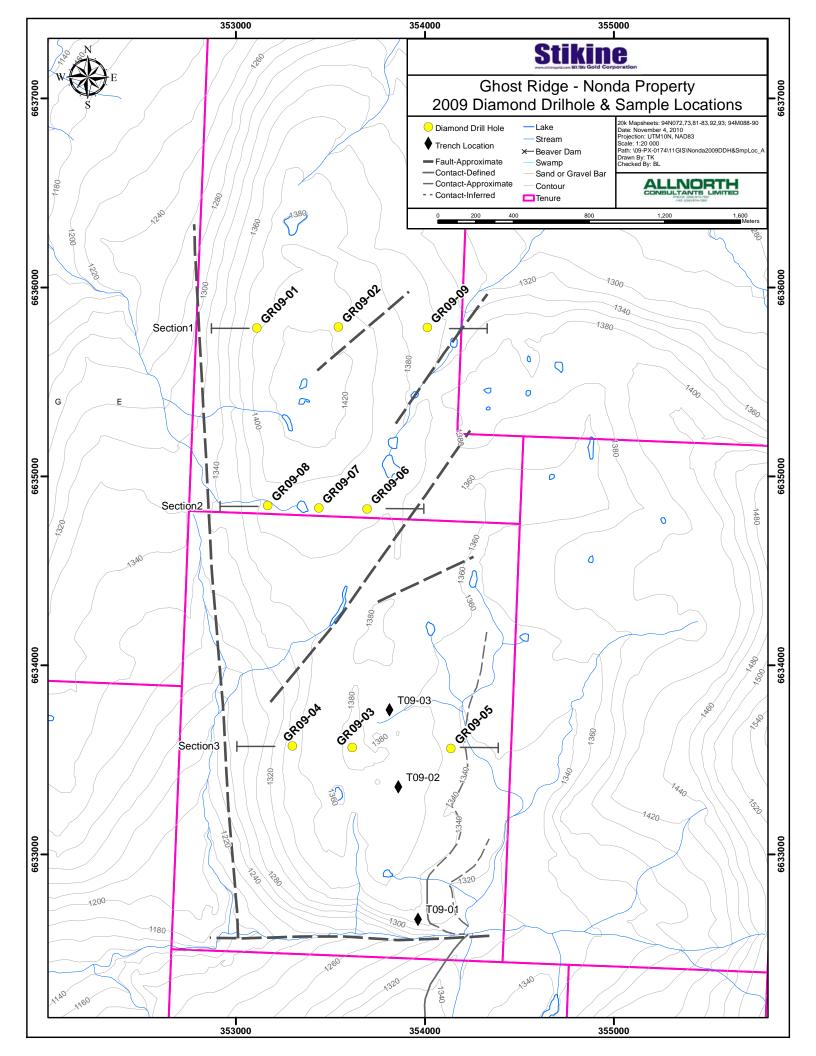


Figure 8: Drillhole GR09-01 in progress with outcrop in foreground

7 DRILL RESULTS

Each hole collared in quartz arenite and terminated in quartz arenite with hole depths ranging from 70 m to 168 m. The quartz arenite encountered in each hole was pale grey to white, thin to medium bedded, and fine to medium grained. Near surface oxidation of trace amounts of pyrite locally stains the quartz arenite to pale rust shades, however locally moderate to intense fracturing and jointing carries oxidation to much deeper levels. The drilling outlined an area of quartz arenite with monotonous consistency and homogeneity, and impressive continuity. No other lithologies were encountered with the exception of one narrow interbed of red-brown siltstone (2.24 m) in drillhole GR09-06.

Geological drillhole logs and interpreted cross sections are presented in Appendix A. Core recovery and RQD measurements are presented in Appendix B. Core photographs are presented in Appendix C.

Petrographic examination of 41 drill core samples (and 3 hand trench samples) show that the quartz arenites are comprised of > 97% sub-angular to sub-rounded, tightly-packed quartz grains (Figure 10). The large majority of the quartz grains are single-crystal detrital grains. The grains typically lack quartz overgrowths, are not highly strained, and typically have smooth to weakly sutured contacts. Average quartz grain sizes range from 0.110 to 0.356 mm with a maximum of 0.670 mm. Fine-grained polycrystalline aggregates of quartz comprise 1 to 5% of the grains. Impurities include up to 2% sericite, that commonly occurs along the margins of quartz grains, and

trace amounts of chlorite, Fe oxide, pyrite, rutile, tourmaline, zircon also occur, primarily as interstitial grains.

Table 3: List of core samples submitted for petrographic analyses

Drill Hole	Depth (m)	Sample ID	Drill Hole	Depth (m)	Sample ID
GR09-01	5.93	0901001P	GR09-06	8.54	0906001P
	24.20	0901002P		25.59	0906002P
	46.10	0901003P		57.80	0906003P
	68.19	0901004P		83.20	0906004P
	87.94	0901005P		109.19	0906005P
				132.27	0906006P
GR09-02	18.93	0902001P		146.33	0906007P
	51.48	0902002P		165.31	0906008P
	85.51	0902003P			
	133.30	0902005P	GR09-07	12.06	0907001P
				41.85	0907002P
GR09-03	7.65	0903001P		69.30	0907003P
	32.55	0903002P		92.21	0907004P
	57.30	0903003P			
	80.87	0903004P	GR09-08	7.20	0908001P
				32.57	0908002P
GR09-04	7.47	0904001P		60.00	0908003P
	32.82	0904002P		89.50	0908004P
	55.88	0904003P			
	81.20	0904004P	GR09-09	12.36	0909001P
	96.74	0904005P		41.62	0909002P
				64.84	0909003P
GR09-05	9.00	0905001P		86.91	0909004P
	33.30	0905002P			
	56.82	0905003P			

Whole rock analysis (by XRF) of 41 drill core samples determined that the average silica content of Nonda quartz arenite is $98.16 \, \text{SiO}^2$ within a range of $95.40 - 99.18\% \, \text{SiO}^2$ (Table 4 and Appendix D). Two samples exceeded $2.20\% \, \text{Fe}^2\text{O}^3$, but the other 38 quartz arenite samples averaged only $0.31\% \, \text{Fe}^2\text{O}^3$. The only other major oxide of note was Al^2O^3 which averaged 0.59%. Trace element analysis identified anomalous lead ($242 - 895 \, \text{ppm}$) in three samples and consistently elevated chromium ($66 - 227 \, \text{ppm}$). Petrographic examination did not identify any lead or chromium bearing minerals.

Specific gravity (SG) tests were performed on 21 pieces of core selected from the nine drillholes (Table 5). The measurements range from 2.5636 to 3.1794 and have a mean average of 2.705.

8 SAMPLING METHOD AND APPROACH

Core from each drillhole was systematically logged on site for geology, recovery and RQD (refer to Appendices A and B) by Bob Lane, PGeo, with the assistance of Jack Denny, between September 16 and October 10, 2009. Because of the homogeneity of the quartz arenite, samples of core were collected at regular (20 to 30 m) depth intervals from each drillhole. Each sample was broken up

into three sub-samples; the first two sub-samples were submitted for petrographic examination (Table 3), and for whole rock and trace element geochemical analysis (Table 4), and the remaining sub-sample was retained as a representative sample and/or in anticipation of other laboratory and bench-scale tests. A total of 120 samples of core were collected for these analyses.

Table 4: 2009 Drill Core Geochemical Results

Drillhole	Depth	Sample ID	SiO ²	TiO ²	Al ² O ³	Fe ² O ³	MnO	MgO	CaO	Na ² O	K ² O	P ² O ⁵	Ba	LOI	Total
	(m)		%	%	%	%	%	%	%	%	%	%	%	%	%
GR09-01	5.65	0901001G	98.93	0.03	0.48	0.29	<0.01	<0.01	<0.01	0.01	0.10	<0.01	<0.01	0.08	99.97
01100 01	24.97	0901002G	98.77	0.03	0.40	0.31	<0.01	<0.01	<0.01	<0.01	0.09		<0.01	0.05	99.71
	46.20	0901003G	99.18	0.03	0.34	0.25	<0.01	<0.01	<0.01	<0.01	0.10		<0.01		100.05
	68.29	0901004G	99.13	0.04	0.47	0.26	<0.01	<0.01	<0.01		0.13	<0.01			100.20
GR09-02	19.06	0902001G	99.06	0.03	0.46	0.26	<0.01	<0.01	<0.01	0.03	0.11	<0.01	<0.01	0.09	100.09
	51.60	0902002G	98.50	0.05	0.68	0.29	<0.01	<0.01	<0.01	0.01	0.15	<0.01	<0.01	0.12	99.85
	85.63	0902003G	98.65	0.04	0.68	0.26	<0.01	0.02	< 0.01	< 0.01	0.12	<0.01	<0.01	0.12	99.94
	110.30	0902004G	98.29	0.05	0.80	0.25	<0.01	0.07	0.02	0.02	0.16	< 0.01	<0.01	0.17	99.86
	133.45	0902005G	98.41	0.05	0.76	0.29	<0.01	0.02	< 0.01	< 0.01	0.18	<0.01	<0.01	0.14	99.90
GR09-03	7.35	0903001G	98.09	0.05	0.73	0.33	<0.01	0.04	< 0.01	< 0.01	0.16	<0.01	<0.01	0.17	99.62
	32.25	0903002G	98.45	0.04	0.59	0.27	<0.01	0.03	< 0.01	0.02	0.11	< 0.01	<0.01	0.14	99.69
	56.70	0903003G	97.67	0.06	0.79	0.76	<0.01	0.05	< 0.01	< 0.01	0.11	<0.01	<0.01	0.30	99.79
	80.50	0903004G	97.45	0.04	0.93	0.94	<0.01	0.07	< 0.01	0.07	0.11	< 0.01	<0.01	0.35	100.00
GR09-04	7.62	0904001G	97.62	0.03	0.58	0.20	< 0.01	0.02	< 0.01	0.02	0.12	< 0.01	<0.01	0.12	98.75
	32.24	0904002G	98.94	0.01	0.47	0.22	<0.01	0.02	< 0.01	0.02	0.09	< 0.01	<0.01	0.11	99.92
	55.45	0904003G	98.21	0.02	0.58	0.17	<0.01	< 0.01	< 0.01	0.02	0.11	<0.01	<0.01	0.15	99.31
	81.45	0904004G	99.08	0.03	0.56	0.19	<0.01	0.02	< 0.01	0.03	0.09	< 0.01	<0.01	0.12	100.16
	96.44	0904005G	98.96	0.02	0.40	0.22	<0.01	< 0.01	< 0.01	0.01	0.07	< 0.01	<0.01	0.08	99.81
GR09-05	8.41	0905001G	98.12	0.04	0.78	0.36	<0.01	0.03	< 0.01	0.05	0.17	< 0.01	<0.01	0.17	99.76
	33.44	0905002G	98.79	0.02	0.55	0.23	<0.01	0.03	< 0.01	< 0.01	0.10	< 0.01	<0.01	0.11	99.88
	56.52	0905003G	98.48	0.03	0.69	0.24	<0.01	0.06	< 0.01	0.02	0.10	< 0.01	<0.01	0.11	99.77
GR09-06	9.30	0906001G	98.25	0.04	0.50	0.48	< 0.01	0.02	< 0.01	< 0.01	0.08	< 0.01	<0.01	0.15	99.57
	25.12	0906002G	95.94	0.04	0.46	2.36	<0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	<0.01	0.56	99.45
	58.70	0906003G	97.71	0.03	0.52	0.37	<0.01	< 0.01	< 0.01	< 0.01	0.11	< 0.01	<0.01	0.16	98.96
	82.30	0906004G	98.05	0.06	0.74	0.27	<0.01	0.03	< 0.01	0.04	0.13	< 0.01	<0.01	0.16	99.52
	108.92	0906005G	98.45	0.05	0.67	0.34	<0.01	0.06	< 0.01	< 0.01	0.11	< 0.01	<0.01	0.14	99.87
	132.00	0906006G	52.13	1.09	18.62	17.61	0.01	0.71	0.07	0.21	4.79	0.05	0.02	4.15	99.46
	146.44	0906007G	98.49	0.04	0.58	0.30	<0.01	0.10	< 0.01	0.02	0.02	<0.01	<0.01	0.11	99.70
	165.13	0906008G	98.29	0.02	0.58	0.36	< 0.01	0.09	< 0.01	0.04	0.02	< 0.01	<0.01	0.11	99.55
GR09-07	12.12	0907001G	97.95	0.03	0.51	0.27	<0.01	< 0.01	<0.01	< 0.01	0.15	<0.01	<0.01	0.10	99.07
	42.00	0907002G	97.95	0.04	0.52	0.28	<0.01	0.02	< 0.01	0.02	0.12	< 0.01	<0.01	0.09	99.08
	69.38	0907003G	96.49	0.03	0.59	2.20	<0.01	0.01	<0.01	< 0.01	0.15	<0.01	<0.01	0.39	99.91
	92.31	0907004G	98.41	0.05	0.71	0.29	<0.01	0.02	<0.01	< 0.01	0.16	<0.01	<0.01	0.13	99.82
GR09-08	6.97	0908001G	98.62	0.03	0.65	0.26	<0.01	0.02	< 0.01	< 0.01	0.16	<0.01	<0.01	0.10	99.89
	32.69	0908002G	98.67	0.03	0.52	0.25	<0.01	< 0.01	<0.01	0.01	0.14	<0.01	<0.01	0.10	99.77
	60.07	0908003G	98.69	0.02	0.49	0.22	<0.01	0.02	<0.01	< 0.01	0.12	<0.01	<0.01	0.08	99.69
	89.10	0908004G	95.78	0.03	0.59	0.22	<0.01	< 0.01	<0.01	0.05	0.14	<0.01	<0.01	2.30	99.16
GR09-09	12.00	0909001G	95.40	0.03	0.65	0.23	<0.01	0.07	<0.01	0.01	0.10	< 0.01	<0.01	2.37	98.90
	41.12	0909002G	98.28	0.04	0.68	0.29	<0.01	0.08	<0.01	0.03	0.09	<0.01	<0.01	0.11	99.64
	64.63	0909003G	97.80	0.03	0.54	0.68	<0.01	0.06	<0.01	0.03	0.07	<0.01	<0.01	0.16	99.41
	86.70	0909004G	98.55	0.04	0.56	0.26	<0.01	0.05	<0.01	0.04	0.08	<0.01	<0.01	0.10	99.72
	Minimum o	detection	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Maximum		100	100	100	100	100	100	100	100	100		100	100	105
	Method		XRF	XRF	XRF	XRF	XRF	XRF	XRF		XRF			1000C	XRF
Welled															

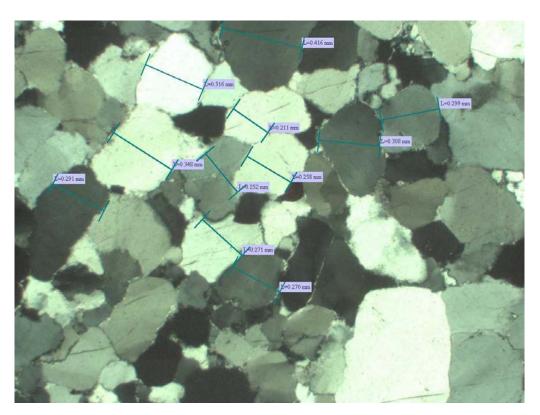


Figure 9: Photomicrograph of typical angular to sub-rounded, tightly-packed quartz grains in sample of quartz arenite from Ghost Ridge area, Nonda property.

Table 5: Results from Specific Gravity (SG) measurements on 21 pieces of drill core.

Sample ID	Hole ID	From (m)	To (m)	SG
0901001T	GR-09-01	8.00	8.30	2.7207
0901002T	GR-09-01	25.00	25.20	2.6271
0902002R	GR-09-02	69.90	72.06	2.6310
0902003G	GR-09-02	96.70	97.00	2.8556
0903001R	GR-09-03	7.80	8.05	2.7320
0903003R	GR-09-03	57.00	57.30	3.0661
0904002R	GR-09-04	32.54	32.82	2.6392
0904005R	GR-09-04	96.12	96.37	2.6372
0905001R	GR-09-05	8.70	8.90	2.6350
0905003R	GR-09-05	57.00	57.26	2.6383
0906001R	GR-09-06	9.00	9.30	2.6533
0906002R	GR-09-06	25.42	25.59	3.1794
0906003R	GR-09-06	57.94	58.24	2.6453
0906004R	GR-09-06	82.07	82.30	2.7295
0906005R	GR-09-06	109.26	109.42	2.8143
0907002R	GR-09-07	46.50	47.00	3.0186
0907003R	GR-09-07	72.30	72.55	2.6451
0908001R	GR-09-08	6.81	6.97	2.7251
0908004R	GR-09-08	89.31	89.50	2.6310
0909001R	GR-09-09	12.22	12.36	2.6334
0909003R	GR-09-09	64.51	64.63	2.5636

9 SAMPLE PREPARATION, ANALYSES AND SECURITY

All 2009 rock and core samples were packed thick poly bags and assigned a label that in part carried the drillhole number. Each poly bag was closed and secured with a zap strap. All samples were then placed into heavy rice bags that were secured with zap straps. All core samples were driven from the base in the author's 4x4 pick-up truck and placed in a locked private garage prior to shipping. Samples selected for analysis were then repackaged into heavy cardboard boxes and transported via commercial courier to either the Inspectorate-IPL laboratory in Richmond, BC, for analysis, or to Vancouver Petrographics in Langley, BC, for preparation of thin sections.

All 2009 core samples to be geochemically analyzed were crushed and pulverized and the resulting sample pulps were analyzed. The rock samples were jaw crushed until 70% passed through a -10 mesh (2 mm) screen. Each sample was split and a 250 g riffle split sample was then pulverized in a mild-steel ring-and-puck mill until 95% passed through a 150 mesh (100 μ m) screen. The resulting sample pulp was analyzed for major oxides by XRF and for 30 elements by four acid ICP-MS. The remaining coarse reject portions of the samples remain in storage at Inspectorate-IPL.

10 Interpretation and Conclusions

In July, 2009 Stikine Gold Corporation completed an initial reconnaissance of the Nonda property and identified a north-trending belt of quartz arenite more than 11 km long by approximately 1 km wide. Initial observations and positive results from preliminary testing of samples from the Ghost Ridge area of the property determined it to be a priority for focused follow-up exploration. The ensuing 9-hole HQ diamond drilling program, completed in early October 2009, was conducted over a 2.2 km strike length to test the thickness of the desirable unit. Mostly vertical holes were drilled to depths of between 70 and 168 m, approximately orthogonal to the gently northwest dipping quartz arenite beds.

A geological model was created for the area drilled. The dimensions used for geologic modeling were determined by surface work and 9 HQ diameter drillholes that were distributed over a 2.2 km strike length and 0.9 km width. Hand-held GPS field units provide location information that is accurate to +/- 5 metres. Digital elevation model (DEM) data was used to accurately represent the surface topography of the area drilled. Results from drilling, 3D wire-frame modeling and rock volumetric estimation outline a horizontal sheet of quartz arenite that covers 2,349,100 square metres and is 70-165 metres thick (Figure 10). The sheet of quartz arenite has a volume of 256,907,000 cubic metres. Specific gravity (SG) tests performed on 21 pieces of core yielded an average of 2.705, typical for this type of rock. Using this SG, the volume of rock outlined by the 3D wireframe model corresponds to a 700 million tonne sheet of raw, unprocessed quartz arenite. Note that this tonnage is not to be mistaken for a 43-101 compliant resource estimate. The deposit is open in all directions, but particularly to the south were it crops out for another seven kilometres.

Figure 10: 3D Wireframe Model of Area Drilled on Ghost Ridge, Nonda deposit

The Ghost Ridge area of the Nonda property hosts an impressive volume and tonnage of white to pale grey, homogenous fine-grained quartz arenite that may be a suitable lode source of frac sand. Further detailed field, laboratory and metallurgical assessment of the Nonda property is warranted.

11 RECOMMENDATIONS

It is recommended that exploration of the Nonda property continue and build upon the very encouraging exploration that was completed in 2009. Future work should consist of additional mapping and systematic sampling along the trend of the prospective geology in order to further define areas for more detailed exploration. Additional diamond drilling of 6 holes should be considered for areas along trend, particularly to the south, to further define the thickness of the deposit. A program of bulk sampling should be entertained in order to provide sufficient sample for full scale processing. Should these studies continue to generate positive results, then an evaluation of potential road access options should be undertaken along with requisite archaeological and environmental assessments as part of a scoping and/or pre-feasibility study.

The estimated cost of the recommended helicopter-supported mapping, diamond drilling and sampling program is \$2.2 million.

12 ITEMIZED COST STATEMENT – NONDA PROPERTY

Exploration Work type	Comment	Days			Totals
Personnel (Name) / Position	Field Days	Days	Rate	Subtotal*	
Bob Lane, Geologist	July 9, 11; Sept 9- 20; Oct 1-10	21	\$650.00	\$13650.00	
Scott Atherton, Assistant	July 9, 11	0.5	\$250.00	\$125.00	
Jack Denny, Prospector	Sept 20-30	11	\$500.00	\$5500.00	
John Mirko, Prospector	July 9; Sept 15-16, 26-27	4	\$800.00	\$3200.00	
John Mirko, 1103pector	3dly 7, 3ept 13 10, 20 27		ψοσο.σσ	\$22475.00	\$22,475.00
Office Studies	List Personnel				
Bob Lane	Project Preparation	3	\$650.00	\$1950.00	
John Mirko	Project Preparation & Management	3	\$800.00	\$2400.00	
Tina Kwitkoski	Preparation of field maps	1.5	\$560.00	\$840.00	
				\$5190.00	\$5,190.00
Geochemical Costs	Type of Analysis	No.	Rate	Subtotal	
IPL Inspectorate	Whole Rock and Trace Element	41	56.46	\$2315.00	
Acme Labs	Specific Gravity	21	11.05	\$232.05	
				\$2547.05	\$2,547.05
Diamond Drilling		Units	Rate	Subtotal	
All-in Costs, HQ dia	Hy-Tech Drilling (934m in 9 holes)	934	265.03	\$247542.96	
Pad Building	CJL Enterprises Ltd.	1	20634.74	\$20634.74	
v v				\$268177.70	\$268,177.70
Other Operations	Clarify	Units	Rate	Subtotal	
Courier / Shipping Costs	DHL	4.0	\$25.00	\$100.00	
Thin Section Preparation	Vancouver Petrographics	44	41.39	\$1821.20	
Petrographic Services	Micron Geological Ltd	44	\$84.87	\$3734.31	
Report Preparation	Plateau Minerals Corp.	4.0	650.00	\$2600.00	
				\$8255.51	\$8,255.51
Transportation		Units	Rate	Subtotal	
Travel to/from Field (B.Lane, J.Denny,					
J.Mirko – wages)	Sept 9-Oct 11	6	\$650.00	\$3900.00	
Meals - Travel		1.0	260.00	\$260.00	
Fuel for Vehicles	Two 4x4 Pickups	1.0	\$500.00	\$500.00	
Kilometre Charges – Vehicles	Two 4x4 Pickups	4,400	\$0.65	\$2860.00	
				\$7520.00	\$7,520.00
Accommodation & Food		Units	Rate	Subtotal	
Muncho Lake Lodge (geologist,					
prospectors, pad builder, drillers,					
pilots)	Sept 9-Oct 10 (238 man-days)	238	\$185.00	\$44030.00	
				\$44030.00	\$44,030.00
Helicopter		Units	Rate	Subtotal	
Hours Flown For Nonda Project	Interior Helicopters (204, 206)	1	variable	\$276150.89	
Hours Flown for Nonda Project	Bailey Helicopters (A-Star)	1	variable	\$16513.19	
(incl Jet Fuel)					
				\$292664.08	\$292,664.08
Equipment & Supplies		Units	Rate	Subtotal	
IPL - Prince George	Rice Bags, Poly Bags, Zip Ties,				
	Crack Hammers, Chisels, PPE, FA	1.00	\$1000.00	\$1000.00	
Communications	Radios, Phone Charges	1.00	\$1672.27	\$1672.27	
				\$2672.27	\$2672.27

TOTAL Expenditures \$653,531.61

13 REFERENCES

Le Couteur, P. (2010): Petrographic Report on Forty-Four Thin Sections of Quartz arenite; Private Report for Stikine Gold Corporation, 76 p.

Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T. (2005): Geology of British Columbia (compilation); *BC Ministry of Energy, Mines and Petroleum Resources*; Geoscience Map 2005-3.

Ross, K. (2009): Petrographic Study of Quartzites, Northeastern British Columbia; Private Report for Stikine Gold Corporation, 21 p.

Walsh, W. (2004): Geology of the Liard Basin (compilation); *BC Ministry of Energy, Mines and Petroleum Resources*.

STATEMENT OF QUALIFICATIONS

- I, Robert (Bob) A. Lane, PGeo, residing in Prince George, B.C., do hereby certify that:
 - 1. I am currently employed as a consulting geologist by Plateau Minerals Corp, located at 2606 Carlisle Way, Prince George, British Columbia, Canada, V2K 4H9.
 - 2. I obtained a Master of Science degree with Specialization in Geology in 1990 from the University of British Columbia.
 - 3. I have worked as a geologist for more than 20 years since my graduation from university.
 - 4. I am a Professional Geoscientist (PGeo) registered with the Association of Professional Engineers and Geoscientists of British Columbia, license #18993, and have been a member in good standing since 1992.
 - 5. I participated in the 2009 exploration surface sampling and diamond drilling programs that took place in July 2009 and in September and October, 2009. This report presents and summarizes the data acquired during the 2009 field season.
 - 6. I am the author of this report on the Nonda property entitled "2009 Diamond Drilling Assessment Report for the Ghost Ridge Area, Nonda Property" dated July 30, 2010.

Dated this 30th day of July, 2010, at Prince George, British Columbia.

Robert (Bob) A. Lane, MSc, PGeo

A. LANE

APPENDIX A

AND CROSS SECTIONS

Company: Stikine Gold Corporation Date(s) Drilled: Sept. 13-16/09 Project: Date(s) Logged: Sept. 16-17/09 Ghost Ridge, Nonda Property

GR09-01 Site A Hole:

Azimuth: Start of Hole: 2.45 m 90 Dip: -80

Azimutn:		050444	0005705	Dip:	-80	Start of Hole: 2.45 m
Collar Loca	tion:	353111	6635785	Elevation:		End of Hole: 90.00 m
Lithology:	Quartzite					
		Colour	Texture	Mm Grade	Mineralogy	Notes:
2.45	90.00	white to pale grey	thick to thin bedded			fine-grained, thick to thin-bedded, white to pale grey quartzite; narrow beds (1 - cm thick) of medium-grained quartzite are common; local cross-bedding
						core is generally moderately to strongly broken; local zones of poor core recovery are marked by intervals of 'milled' core (quartzite pebbles)
						faults are interpreted to coincide with intervals intense fracturing and of 'milled' core
						weak development of oxidation (limonite) is controlled by fractures; locally Feoxide stains quartzite pale orange
						individual fine to medium-grained quartz granules are subrounded and spherical cemented by silica; impurities are rare and consist of traces of limonite and blac lithic grains
	Structure:					
		To	Туре	TCA	Condition	Notes:
	10.95			unknown	broken	intensely fractured/broken rock
	12.75	15.10	Fault	unknown	broken	intensely fractured/broken rock
	15.80		Joint	85		
	22.08	22.90	Fault	unknown	broken	zone of rubble
	22.90	33.80	Joint	30, 45		zone of moderately broken core
	25.20		Bedding	72	planar	
	27.85	28.20	Bedding	73	planar	
	27.85	28.20	Fault - Minor	0		with 1.7 cm right lateral offset
	33.80	38.71	Fault	unknown		zone of rubble; small pieces of core 'milled' during drilling
	46.20	46.45	Joint	30, 45		also joints at 80-90 to CA and sub-parallel to CA
	57.35		Bedding	80		
	Alteration:					
		То	Assemblage	Mineral (%)		Notes:
	FIUIII	10	Assemblage	iviii letat (70)		Fe-oxidation in the form of limonite, forms on joint and fracture planes and
	2.45	90.00	Oxidation	limonite (tr)		locally stains quartzite a pale orange
0	-1- 0		0 ! . #	D		
Core Interva		J:	Sample #:	Purpose:		(0)
5.65	5.93		0901001G		nd Trace Elemen	t Geochemistry
5.93	6.00		0901001P	Petrography		
6.00	10.95		0901001T	Bench-Scale	l estwork	

Core Interv	als Sampled	l: Samp	ple #: F	⊃urpose:		
24.20	24.35	0901	002P F	Petrography		
24.97	25.43	0901	002G V	Whole Rock a	nd Trace Elemen	t Geochemistry
46.10	46.20	0901	003P F	Petrography		
46.20	46.45	0901	003G V	Whole Rock and Trace Element Geochemistry		
68.19	68.29	0901	004P F	Petrography		
68.29	68.63	0901	004G V	Whole Rock a	nd Trace Elemen	t Geochemistry
80.85	81.00	Repr	esentative S	Sample		
87.94	88.07	0901	005P F	Petrography		

Company: Stikine Gold Corporation Date(s) Drilled: Sept. 17-19/09

Project: Ghost Ridge, Nonda Property Date(s) Logged: Sept. 19 & Oct. 5/09

Hole: GR09-02 Site B

Azimuth: Vertical Dip: -90 Start of Hole: 3.00 m

Collar Location: 353542 6635790 Elevation: End of Hole: 137.16 m

Collar Loca		353542	6635790	Elevation:	-90	End of Hole: 137.16 m
Oonar Looc	dioii.	000042	0000100	Lievation.		End of Floic. 107.10 III
Lithology:		1	1	•		
	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
3.00	15.20	cream to pale orange- brown	thick to thin bedded		qz	manganese oxide and iron oxide lined fractures and joints extend from the collar to depth of 5.20 m; iron oxide staining of quartzite locally (heavily oxidized, and traces of remnant pyrite)
						fine-grained, thick to thin-bedded, white to pale grey quartzite; narrow beds of medium-grained quartzite are common; local cross-bedding
						core is generally weakly to moderately broken with local zones of poor core recovery
						individual fine to medium-grained quartz granules are subrounded and spherical; cemented by silica; impurities are rare and consist of traces of limonite and black lithic grains
Lithology:	Quartzite					
15.20	26.51	pale grey to white	thick to thin bedded			less oxidized interval
Lithology:	Quartzite					
26.51	31.83	pale grey to pale orange	thick to thin bedded			
Lithology:	Quartzite					
31.83	54.5	pale grey	thick to thin bedded			speckled, spotted pale grey quartzite with traces of very fine grained pyrite as disseminations and on fractures; increased concentrations of pyrite result in pervasively orange (limonite-stained) sections of core; locally limonite-stained alteration envelopes occur;
			bedded, massive			fine-grained, thin to medium bedded with thin interbeds that are slightly more coarse-grained; sub-rounded quartz grains cemented by a matrix of silica; grains area tightly packed and quartzite is grain-supported

54.5	72.5	pale grey	bedded, massive			only weak development of limonite; near 100% recovery; massive with vague bedding fabric; local granular/sandy-texture granular
72.5	93.4		bedded, massive		bedded, massive	bedding at 76-78 to CA; generally f-grained beds with narrow beds from 0.5 - 2 cm of medium-grained quartzite; numerous fractures weakly healed with limonite; rare traces of remnant pyrite
		pale grey - orange	bedded, massive			zone of increased oxidation of pyrite to limonite; primarily fracture-controlled
93.4	114.15	pale grey	bedded, massive			
114.15	134.5	pale grey	bedded, massive			continuation of massive, thinnly bedded quartzite with vague bedding
134.5		pale grey - orange	bedded, massive			
Core Interv	als Sampled	d:	Sample #:	Purpose:		
18.93			0902001P	Petrography		
19.06			0902001G		nd Trace Elemen	t Geochemistry
						, and the second
51.48	51.60		0902002P	Petrography		
51.60	51.85		0902002G	Whole Rock a	nd Trace Elemen	t Geochemistry
						, and the second
85.51	85.63		0902003P	Petrography		
85.63			0902003G	Whole Rock a	nd Trace Elemen	t Geochemistry
96.70	97.00		0902003R	Representativ	e Sample	
107.75			0902004P	Petrography		
109.04			0902004R	Representativ	e Sample	
110.30	110.60		0902004G			
133.30			0902005P	Petrography		
133.45			0902005G		nd Trace Elemen	t Geochemistry
136.16	136.44		0902005R	Representativ	e Sample	
	0					
	Structure:	_	-		0 ""	
		То	Type	TCA	Condition	Notes:
	4.50		Joint	0, 45, 60		
	36.10		Bedding	/5	planar	

46.90		Bedding	76	planar	
31.83	51.15	Joint	30, 45	broken	locally also 10 to CA and rare 85 to CA
51.15	72.50	Joint	45, 60		less commonly 0 and 80 to CA
81.70		Bedding	76		
83.30		Bedding	78		alternating f and m-gr beds
96.35		Bedding	75		
119.00		Bedding	80		
119.80		Bedding	78		
136.50		Bedding	78		
Alteration:					
From	То	Assemblage	Mineral (%)		Notes:
3.00	15.20	Oxidation	limonite (tr)		Fe-oxidation in the form of limonite, forms on joint and fracture planes and locally stains quartzite a pale orange
26.51	31.83	Oxidation	limonite (tr)		
83.5	89	Oxidation	limonite (tr)		
	·				

Company: Stikine Gold Corporation Date(s) Drilled: Sept 19-21/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 4/09

Hole: GR09-03 Site E

Azimuth: Vertical Dip: -90 Start of Hole: 2.87 m Collar Location: 353616 6633566 Elevation: End of Hole: 94.00 m

of iron and manganese oxides on fractures massive, thick to thin bedded massive, thick to thin bedded, white to pale grey quartzite, grains are tightly packed and quartzite has a granular texture with little matrix; quartzite is grain supported; matrix is silica; few noticeable impuritie generally massive, local vague bedding 6.30 8.40 pale grey shattered 8.40 15.55 pale grey fractured interval of shattered core interval of moderately fractured core; includes narrow, bone white quartz veinlets parallel to CA; strongly fractured to shattered; abundant limonite on all fracture faces; includes zone of healed crackle breccia from 19.00 - 19.22 m; 22.10 30.00 pale grey fractured moderately to strongly fractured; fractures at 12 - 25 to CA; fractures coatewith limonite 30.00 34.00 pale grey fractured strongly fractured to shattered; abundant limonite on all fractures catewith limonite strongly fractured to shattered; abundant limonite on all fractures coatewith limonite interval of shattered core with narrow zones of clay gouge 36.00 36.20 pale grey shattered, interval of shattered core with narrow zones of clay gouge 36.20 56.50 pale grey fractured moderately fractured to strongly fractured with accompanying limonite and manganese oxide fractured core crackled, brecciated manganese oxide crackle breccia and micro breccia healed with earthy hematite and manganese oxide continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	Collar Loca	ition:	353616	6633566	Elevation:		End of Hole: 94.00 m
From To Colour Texture Mm Grade Mineralogy Notes: 2.87 6.30 pale grey	l ithology:	Quartzite					
2.87 6.30 pale grey			Colour	Texture	Mm Grade	Mineralogy	Notes:
to thin bedded grains are tightly packed and quartzite has a granular texture with little matrix; quartzite is grain supported; matrix is silica; few noticeable impuritie generally massive, local vague bedding 6.30 8.40 pale grey shattered interval of shattered core interval of moderately fractured core; includes narrow, bone white quartz veinlets parallel to CA; 15.55 pale grey fractured strongly fractured to shattered; abundant limonite on all fracture faces; includes zone of healed crackle breccia from 19.00 - 19.22 m; 22.10 30.00 pale grey fractured moderately to strongly fractured; fractures at 12 - 25 to CA; fractures coated with limonite strongly fractured to shattered; abundant limonite on all fractures at 30.00 at 34.00 pale grey shattered, gouge interval of shattered core with narrow zones of clay gouge gouge interval of shattered core with narrow zones of clay gouge gouge interval of shattered core moderately fractured with accompanying limonite and manganese oxide or crackle breccia and micro breccia healed with earthy hematite and manganese oxide; local oxidized pyrite continuation of strongly fractured quartzite with limonite and manganese oxide or continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry							moderately fractured on 15 - 30 cm intervals commonly at 45 to CA; traces
8.40 15.55 pale grey fractured interval of moderately fractured core; includes narrow, bone white quartz veinlets parallel to CA; 15.55 22.10 pale grey fractured strongly fractured to shattered; abundant limonite on all fracture faces; includes zone of healed crackle breccia from 19.00 - 19.22 m; 22.10 30.00 pale grey fractured moderately to strongly fractured; fractures at 12 - 25 to CA; fractures coated with limonite 30.00 34.00 pale grey fractured strongly fractured to shattered; abundant limonite on all fractures strongly fractured to shattered; abundant limonite on all fractures interval of shattered core with narrow zones of clay gouge interval of shattered core moderately fractured with accompanying limonite and manganese oxide 56.50 pale grey fractured moderately fractured to strongly fractured with accompanying limonite and manganese oxide; local oxidized pyrite 60.20 pale grey fractured core moderately fractured quartzite with limonite and manganese oxide; local oxidized pyrite Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry							grains are tightly packed and quartzite has a granular texture with little matrix; quartzite is grain supported; matrix is silica; few noticeable impurities;
veinlets parallel to CA; 15.55	6.30	8.40	pale grey	shattered			interval of shattered core
includes zone of healed crackle breccia from 19.00 - 19.22 m; 22.10 30.00 pale grey fractured moderately to strongly fractured; fractures at 12 - 25 to CA; fractures coated with limonite 30.00 34.00 pale grey fractured strongly fractured to shattered; abundant limonite on all fractures 34.00 35.00 pale grey shattered, gouge interval of shattered core with narrow zones of clay gouge 35.00 36.20 pale grey shattered moderately fractured to strongly fractured with accompanying limonite and manganese oxide 56.50 60.20 pale grey crackled, brecciated moderately fractured to strongly fractured with earthy hematite and manganese oxide; local oxidized pyrite continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sampled: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	8.40	15.55	pale grey	fractured			
with limonite 30.00 34.00 pale grey fractured strongly fractured to shattered; abundant limonite on all fractures 34.00 35.00 pale grey shattered, gouge interval of shattered core with narrow zones of clay gouge 35.00 36.20 pale grey shattered interval of shattered core 36.20 56.50 pale grey fractured moderately fractured to strongly fractured with accompanying limonite and manganese oxide 56.50 60.20 pale grey crackled, brecciated core moderately fractured to strongly fractured with accompanying limonite and manganese oxide 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	15.55	22.10	pale grey	fractured			1
34.00 35.00 pale grey shattered, gouge interval of shattered core with narrow zones of clay gouge 35.00 36.20 pale grey shattered interval of shattered core moderately fractured to strongly fractured with accompanying limonite and manganese oxide 56.50 pale grey crackled, brecciated crackled precciated manganese oxide; local oxidized pyrite 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	22.10	30.00	pale grey	fractured			moderately to strongly fractured; fractures at 12 - 25 to CA; fractures coated with limonite
35.00 36.20 pale grey shattered interval of shattered core 36.20 56.50 pale grey fractured moderately fractured to strongly fractured with accompanying limonite and manganese oxide 56.50 60.20 pale grey crackled, brecciated moderately fractured to strongly fractured with accompanying limonite and manganese oxide 60.20 94.00 pale grey fractured crackled, breccia and micro breccia healed with earthy hematite and manganese oxide; local oxidized pyrite 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	30.00	34.00	pale grey	fractured			strongly fractured to shattered; abundant limonite on all fractures
36.20 56.50 pale grey fractured moderately fractured to strongly fractured with accompanying limonite and manganese oxide 56.50 60.20 pale grey crackled, brecciated brecciated manganese oxide; local oxidized pyrite 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	34.00	35.00	pale grey	,			interval of shattered core with narrow zones of clay gouge
manganese oxide 56.50 60.20 pale grey crackled, brecciated crackle breccia and micro breccia healed with earthy hematite and manganese oxide; local oxidized pyrite 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	35.00	36.20	pale grey	shattered			interval of shattered core
brecciated manganese oxide; local oxidized pyrite 60.20 94.00 pale grey fractured continuation of strongly fractured quartzite with limonite and manganese oxide on all fracture surfaces Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	36.20	56.50	pale grey	fractured			
Core Intervals Sampled: Sample #: Purpose: 7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	56.50	60.20	pale grey	· · · · · · · · · · · · · · · · · · ·			•
7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	60.20	94.00	pale grey	fractured			
7.35 7.65 0903001G Whole Rock and Trace Element Geochemistry	Coro Inton	role Comple	d:	Comple #:	Durnoss		
						I and Trace Flemen	t Geochemistry
	7.65			0903001G	Petrography	Trace Lienien	

7.80	8.05		0903001R	Representativo	e Sample	
32.00	32.25		0903002R	Representative	e Sample	
32.25	32.55			Whole Rock a	nd Trace Elemen	t Geochemistry
32.55	32.70		0903002P	Petrography		
56.70	57.00		0903003G		nd Trace Elemen	t Geochemistry
57.00	57.30		0903003R	Representative	e Sample	
57.30	57.45		0901003P	Petrography		
80.50	80.80				nd Trace Elemen	t Geochemistry
80.87	81.00			Petrography		
81.00	81.30		0903004R	Representative	e Sample	
	Structure:		_			
	From	То	Type	TCA	Condition	Notes:
	6.30		Fault	unknown		zone of shattered core
	8.70		Bedding	70		
	9.85		Bedding	70		
	11.19		Veinlets	0		
	29.10		Veinlets	45		minor quartz veinlets
	29.43		Bedding	68		narrow, medium-grained beds of quartzite
	30.00		Fault Zone	unknown		centered on ~1 m of ground qzte and clay gouge from 34-35m
	38.90		Bedding	70		discrete beds of fine-grained quartzite
	45.80		Bedding	70		
	A1((' -					
	Alteration:	т.	Λ a a a mala la -: -	Minoral (0/)		Notes
	From	То	Assemblage	Mineral (%)		Notes:
	2.87	94.00	Oxidation	limonite (tr)		weak to locally moderate iron and manganese oxides occupy joint and
				` ′		fracture surfaces

Company: Stikine Gold Corporation Date(s) Drilled: Sept. 22-24/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 4/09

Hole: GR09-04 Site D

Azimuth: Vertical Dip: -90 Start of Hole: 3.00 m
Collar Location: 353300 6633561 Elevation: End of Hole: 97.50 m

Collar Loca	ition:	353300	6633561	Elevation:		End of Hole: 97.50 m
Lithology:	Quartzite					
	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
3.00	33.42	pale grey to mottled pale orange	massive, thick to thin bedded		qz	fine-grained pale grey quartzite with occasional thin medium-grained interbeds; grains are tightly packed and quartzite has a granular texture with little matrix; quartzite is grain supported; matrix is silica; a chalky texture/alteration occurs midway down the hole; local areas of minor quartz veining; bedding is locally emphasized by iron oxide staining of select (more permeable) beds; joints typically at 60 and 30 to CA
33.42	33.55	pale orange	brecciated		qz	minor clay gouge with brecciated quartzite
33.55	36.47	pale grey to white	fractured			interval of moderately fractured core between enclosing structures
36.47	36.53	pale orange	fractured			narrow interval with minor clay gouge
36.53	42.00	pale grey to white	fractured			moderately to strongly fractured; includes white to pale grey chalky zone from 38.00-39.00 m
42.00	43.20	pale grey	fractured			interval of rubble
43.20	79.50	pale grey	fractured			interval of moderately to strongly broken quartzite; includes narrow zone at 64 m that is fine-grained quartzite with 0.5% disseminated reddish brown mineral apatite(?)
79.50	97.50	white to pale grey	fractured			intensity of fracturing has diminsished; at 80 m: micro-fractures lined with hematite and manganese oxide amplifying zone of crackle breccia; at 82.5 m: chalky dull white (clay-altered) quartzite with pronounced banding/bedding and local cross-bedding
Core Interva	als Samnle	od.	Sample #:	Purpose:		
7.47			0904001P	Petrography		
7.62	7.92		0904001G		nd Trace Elemer	nt Geochemistry
7.92	8.22		0904001R	Representativ		
32.24	32.54	ļ.	0904002G	Whole Rock a	I ind Trace Elemer	I tt Geochemistry

55.45	55.75		0904003G	Whole Rock a	nd Trace Elemen	t Geochemistry
55.88	56.03			Petrography		
56.67	56.82		0904003R	Representativ	e Sample	
80.79	81.00		0904004R	Representativ	e Sample	
81.20	81.35		0904004P	Petrography		
81.45	81.75		0904004G	Whole Rock a	nd Trace Elemen	t Geochemistry
96.12	96.37			Representativ		
96.44	96.74		0904005G		nd Trace Elemen	t Geochemistry
96.74	96.89		0904005P	Petrography		
	Structure:					
			Type	TCA	Condition	Notes:
	11.50		Bedding		planar	fine-grained quartzite with minor medium-grained interbeds
	33.42	33.55		60		
	36.47	36.53		70		
	41.00		Joint	0		
	51.30		Bedding		planar	
	80.34		Bedding	80		
	83.20		Bedding	80		with local cross-bedding
	88.00		Bedding	80		
	Alteration:	_		I	T	
	From (@)	То		Mineral (%)		Notes:
	3.00	97.50	Oxidation	limonite (tr); manganese oxide (tr)		weak to locally moderate iron and manganese oxides occupy joint and fracture surfaces
	38.00	39.00	Argillic	clay (2-3%)		core is a pale, dull white and chalky; softer than surrounding unaltered/less altered quartzite
	82.50	97.50	Argillic	clay (2-3%)		core is a pale, dull white and chalky; softer than surrounding unaltered/less altered quartzite

Company: Stikine Gold Corporation Date(s) Drilled: Sept. 25-27/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 4-5/09

Hole: GR09-05 Site F

Azimuth: Vertical Dip: -90 Start of Hole: 2.44 m

Collar Location: 354138 6633561 Elevation: End of Hole: 70.00 m

Collar L	ocati	on:	354138	6633561	Elevation:		End of Hole: 70.00 m
Litholog	ıv: C	Quartzite					
From		Го	Colour	Texture	Mm Grade	Mineralogy	Notes:
2	2.44	6.33		thick to thin bedded		qz	fine-grained to locally medium-grained quartzite; thickly to thinnly bedded; white to pale grey; locally stained a pale orange by limonite or pale red by hematite commonly accompanied by manganese oxide; pyrite (commonly oxidized) occurs in trace amounts as disseminated cubic crystals and lining fractures; quartzite is grain supported; matrix is silica; core is typically badly broken with mulitple orientations of joints / fractures
6	5.33	6.47	pale brown	granular / sandy - gouge		qz cy	narrow fault zone
6	5.47	25.96	pale grey	thick to thin bedded		qz	vague bedding; oxidized disseminated pyrite locally results in a spotted appearance
25	5.96	28.20	pale grey to pale	fractured		qz	strongly fractured to shattered; limonite lines fractures;
28	3.20	29.81	pale grey	fractured		qz	moderately to strongly fractured; trace to 0.5% oxidized pyrite
29).81	39.00	pale grey	fractured		qz	low level of fracturing, but locally fracturing parallel to CA; disseminated and fracture-controlled pyrite in trace amounts; medium-grained quartzite at 35 m
39	0.00	42.00	pale grey	fractured; shattered		qz	strongly fractured to shattered; limonite lines fractures;
42	2.00	43.00	pale grey	fractured		qz	zone of intact core weak fracturing
43	3.00	46.30	pale grey	fractured; shattered		qz	strongly fractured to shattered; limonite lines fractures;
46	6.30	47.60	pale grey	fractured		qz	interval of moderately broken core; sparse traces of limonite past 47 m
47	7.60	49.50	pale grey	fractured		qz	strongly fractured;
49	9.50	50.10	pale grey	fractured		qz	interval of intact core;
50).10	70.00	pale grey	fractured		qz	thick bedded with bedding define by vague bands of slightly finer and coarser- grained quartz granules;

Core Interva	als Sampled	d:	Sample #:	Purpose:		
8.41	8.70		0905001G		nd Trace Elemen	t Geochemistry
8.70	8.90		0905001R	Representativ		,
9.00	9.15		0905001P	Petrography		
				9 1 3		
33.00	33.30		0905002R	Representativ	e Sample	
33.30	33.44		0905002P	Petrography		
33.44	33.74		0905002G		nd Trace Elemen	t Geochemistry
56.52	56.82		0905003G	Whole Rock a	nd Trace Elemen	t Geochemistry
56.82	57.00		0905003P	Petrography		
57.00	57.26		0905003R	Representativ	e Sample	
	Structure:					
	From		Type	TCA		Notes:
	3.25		Bedding		planar	
	13.00		Bedding	60		
	19.60		Bedding	65		
	31.00		Bedding	75		thin beds
	32.00		Joint	30, 45		
	39.00				planar	joints parallel to CA
	57.50		Bedding	73		
	58.40		Bedding	58		could be cross-bedding
	62.90		Veinlet	45		1 cm quartz vein
	Alteration:	_		I	Т	
	From (@)	То	Assemblage	Mineral (%)		Notes:
	2.44	47.00	Oxidation	limonite (tr); hematite (tr) manganese oxide (tr)		weak to locally moderate iron and manganese oxides occupy joint and fracture surfaces; spots of limonite occur locally as a reuslt of oxidized disseminated pyrite

Company: Stikine Gold Corporation Date(s) Drilled: Sept. 27 - Oct. 1/09

Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 2-3/09

Hole: GR09-06 Site O

Azimuth: Vertical Dip: -90 Start of Hole: 0.61 m

Collar Location: 353695 6634829 Elevation: End of Hole: 168.00 m

Collar Locat	tion:	353695	6634829	Elevation:		End of Hole: 168.00 m
_ithology:	Quartzite					
	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
0.61	5.62	pale grey	thick to thin bedded		qz	fine-grained to locally medium-grained quartzite; thickly to thinnly bedded; pale grey; locally stained a pale orange by limonite or pale red by hematite commonly accompanied by manganese oxide; pyrite (commonly oxidized) occurs in trace amounts as disseminated cubic crystals and lining fractures; quartzite is grain supported; silica matrix/cement; core is typically badly broken with mulitple orientations of joints / fractures
5.62	9.68	pale greenish- grey	thick to thin bedded		qz	interval of primarily medium-grained quartzite;
9.68	59.53	pale grey	thick to thin bedded; fractured		qz	pale grey; fine-grained to locally medium-grained quartzite; thickly to thinnly bedded; limonite commonly lines joints nad fractures; includes interval of shattered quartzite from 48.50 - 50.00 m;
59.53	68.00	pale grey	thick to thin bedded		qz	interval of weakly fractured, competant quartzite;
68.00	70.00	pale grey	fractured		qz	strongly fractured interval
70.00	86.00	pale grey	thick to thin bedded			fine-grained to locally medium-grained quartzite; thickly to thinnly bedded;
86.00	120.65	pale grey	thick to thin bedded		qz	fine-grained to locally medium-grained quartzite; thickly to thinnly bedded;
120.65	131.31	pale grey	thick to thin bedded		qz	fine-grained to locally medium-grained quartzite; thickly to thinnly bedded; hematite more common than limonite beyond 120.65 m;
129.00	131.31	pale grey to pale maroon	fractured		qz ep py	HW to fault gouge; quartzite is strongly fractured to shattered; stained with hematite; narrow stringers of epidote, pyrite and quartz cut the contact
131.31	131.79	maroon- brown	clay gouge		qz	narrow zone of fault gouge

131.79	133.45	maroon- brown	bedded		qz	hematite stained quartz-rich sandstone
133.45	135.28	pale maroon- grey	brecciated; healed		qz	fine-grained quartzite crackle-breccia healed with earthy hematite; includes narrow vein/fracture of specular hematite cutting quartzite at 0 to CA from 134.46 - 135.59
135.28	168.00	pale grey	fractured;		qz py	common zones of hematite-healed crackle breccia within intervals of competant, unbrecciated fine- to medium-grained quartzite; local weakly to strongly oxidized disseminated pyrite; also rare zones of 'boxwork' from completely weathered pyrite
Core Interva	ıls Samnlad		Sample #:	Purpose:		
8.54	8.70		0906001P	Petrography		
9.00	9.30		0906001P	Representativ	e Sample	
9.30	9.60		0906001K		and Trace Elemen	t Coochamistry
9.50	9.00		0900001G	WHOLE ROCK A	Trace Lienien	
25.12	25.42		0906002G	Whole Rock a	ind Trace Elemen	it Geochemistry
25.42	25.59		0906002R	Representativ		
25.59	25.76		0906002P	Petrography		
				3 -1 7		
57.80	57.94		0906003P	Petrography		
57.94	58.24		0906003R	Representativ	e Sample	
58.70	29.00		0906003G	Whole Rock a	ind Trace Elemen	t Geochemistry
82.07	82.30		0906004R	Representativ		
82.30	82.63		0906004G	Whole Rock a	ind Trace Elemen	t Geochemistry
83.20	83.35		0906004P	Petrography		
108.92	109.19		0906005G		ind Trace Elemen	nt Geochemistry
109.19	109.26		0906005P	Petrography		
109.26	109.42		0906005R	Representativ	e Sample	
				_		
129.03	129.15		0906006R	Representativ		
132.00	132.27		0906006G		nd Trace Elemen	t Geochemistry
132.27	132.37		0906006P	Petrography		
					<u> </u>	
134.46	134.59		0906007R	Representativ	e Sample	
146.33	146.44		0906007P	Petrography		
146.44	146.69		0906007G	Whole Rock a	nd Trace Elemen	t Geochemistry

162.00	162.43		0906008R	Representative	e Sample	
165.13	165.31		0906008G	Whole Rock a	nd Trace Elemen	t Geochemistry
165.31	165.44		0906008P	Petrography		
	Structure:					
	From	To	Type	TCA	Condition	Notes:
	49.50	50.00	Fault	unknown		shattered zone
	59.23		Bedding	65	planar	
	133.45		Contact	65	planar	contact at base of hematitic sandstone
	134.46	134.59	Vein	0		0.5 mm veinlet/fracture of specular hematite
	162.00	162.43	Bedding	75		medium-grained bed of quartzite
	Alteration:					
	From (@)	To	Assemblage	Mineral (%)		Notes:
	0.61	59.53		limonite (tr); manganese oxide (tr)		weak to locally moderate iron and manganese oxides occupy joint and fracture surfaces; locally limonite has stained more permeable quartzite beds; minor traces of limonite on fractures below 59.5 m

Company: Stikine Gold Corporation Date(s) Drilled: Oct. 2-4/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 5/09

Hole: GR09-07 Site N

Azimuth: Vertical Dip: -90 Start of Hole: 0.61 m Collar Location: 353439 6634833 Elevation: End of Hole: 96.00 m

Collar Locat	tion:	35343	9 6634833	Elevation:		End of Hole: 96.00 m
Lithology:	Quartzi	te				
From	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
0.61	44	.50 pale gre	thick to thin bedded		qz	pale grey, fine-grained to locally medium-grained well-bedded quartzite; generally wide-spaced fracturing; only weak development of limonite on fracture surfaces (noticeably less than most of the other drillholes); core locally displays a spotted or blotchy appearance due to presence of oxidized disseminated cubic pyrite; pyrite also locally occurs in trace amouts on fractures; quartzite is grain supported; silica matrix/cement;
44.50	50	0.00 pale gre	thick to thin bedded		qz	interval of increased density of fracturing with zone of rubble from from 44.50 to 45.10 m; then strongly fractured quartzite to 50.00 m;
50.00	55	5.71 pale gre	thick to thin bedded; fractured		qz	moderately to strongly fractured;
55.71	69	0.00 pale gre	ey thick to thin bedded;			interval with regular medium to thin bedding;
69.00	72	2.00 pale gre	ey thick to thin bedded;		qz py	interval of increased disseminated pyrite to 1-2%
72.00	86	5.00 pale gre	ey thick to thin bedded;		qz	interval with regular medium to thin bedding;
86.00	96	5.00 pale gre	ey thick to thin bedded;		qz py he	microfractures filled with earthy hematite and accompanied by very fine- grained pyrite
93.00	93	to pale maroon	crackle-			interval includes micro-breccia or crackle breccia healed with earthy hematite
93.50	96	5.00 pale gre	bedded; fractured		qz cy	intensely fractured zone with minor clay gouge and some core loss
Core Interva	als Sam	oled:	Sample #:	Purpose:		

12.06	12.12		0907001P	Petrography		
12.12	12.45		0907001G		nd Trace Elemen	t Geochemistry
30.50	12.40		0907001R	Representative		Coconomicaly
30.50			030700110	representative	Coampic	
41.85	42.00		0907002P	Petrography		
42.00	42.37		0907002G		nd Trace Elemen	t Geochemistry
46.50	47.00		0907002R	Representative		t Geochemiatry
+0.00	47.00		000700210	representativ	o Gampio	
69.30	69.38		0907003P	Petrography		
69.38	69.62		0907003G		nd Trace Elemen	t Geochemistry
72.30	72.55		0907003R	Representative		
50				27:230:100		
88.06	88.26		0907004R	Representative	e Sample	
92.21	92.31		0907004R	Petrography	'	
92.31	92.59		0907004G		nd Trace Elemen	t Geochemistry
						,
	Structure:					
		То	Туре	TCA	Condition	Notes:
	0.61	96.00		0, 10, 30	smooth	
	6.25		Bedding	80	planar	
	6.25		Cross-bedding	70	planar	
	15.00		Bedding	70	planar	cross-bedding?
	32.90		Bedding	78	planar	-
	62.30		Bedding	58	planar	
	72.50		Bedding	55	planar	
	86.22		Bedding		planar	
			_		_	
	Alteration:					
	From (@)	То	Assemblage	Mineral (%)		Notes:
	0.61	96.00	Oxidation	limonite (tr); hematite (tr)		weak development of iron oxides (limonite and lesser hematite; local traces of manganese oxide) occupy joint, fracture, and crackle zones; locally limonite has stained more permeable quartzite beds; oxidation of dissmeinated pyrite results in orange spotted colouration locally

Company: Stikine Gold Corporation Date(s) Drilled: Oct. 4-6/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 7/09

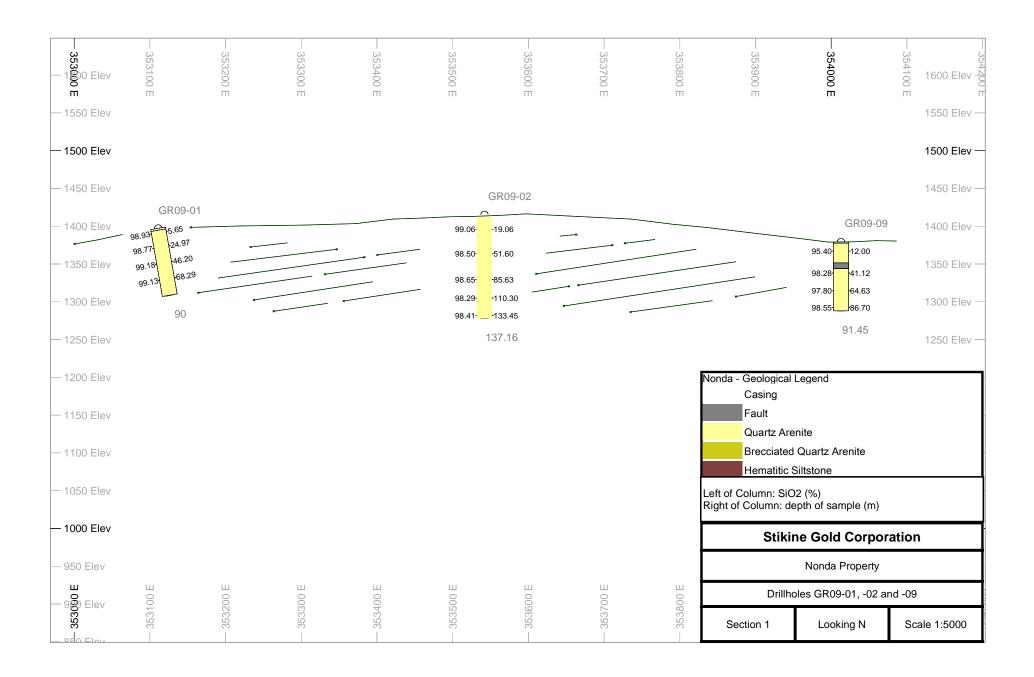
Hole: GR09-08 Site M

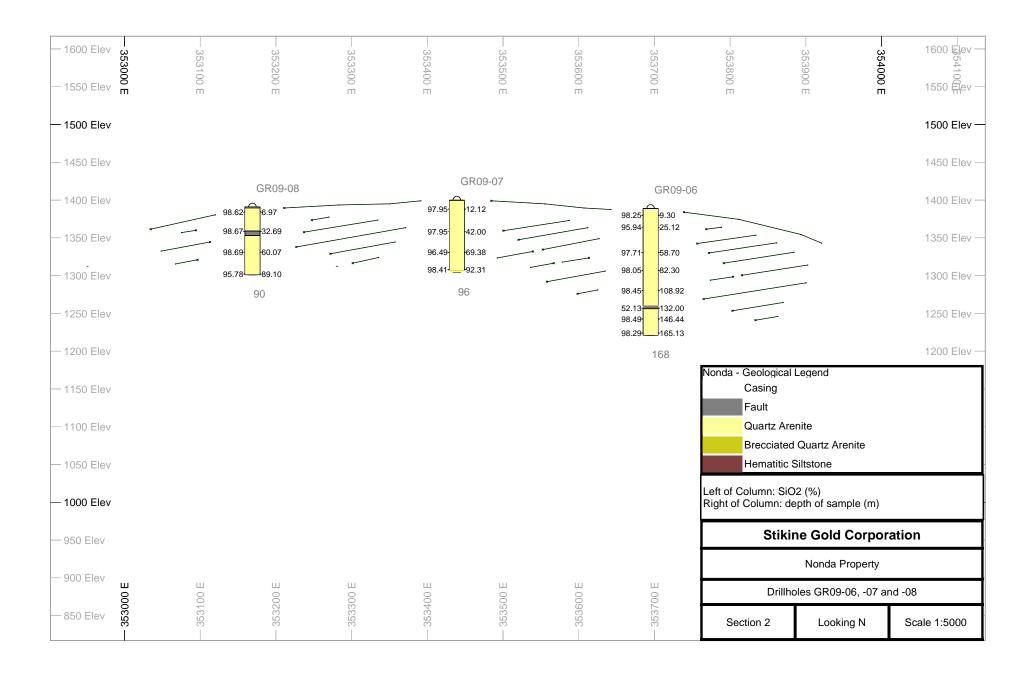
Azimuth: Vertical Dip: -90 Start of Hole: 1.52 m

Collar Location: 353169 6634846 Elevation: End of Hole: 90.00 m

Collar Locat	tion:	353169	6634846	Elevation:		End of Hole: 90.00 m
Lithology:	Quartzite					
	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
1.52	90.00	pale grey to white	thick to thin bedded		qz	pale grey, fine-grained to locally medium-grained well-bedded quartzite; generally wide-spaced fracturing typically at 25-30, 45 and 70-80 to CA; good core recovery; weak development of limonite on fracture surfaces; quartzite is grain supported; silica matrix/cement;
12.00	13.00	pale grey to white	bedded; fractured		qz	interval of strongly fractured quartzite; no gouge
13.89	14.40	pale grey to white	bedded; fractured		qz	interval of strongly fractured quartzite
16.80	17.80	pale grey to white	bedded; fractured		qz cy	interval of strongly fractured quartzite; includes narrow zone of ground qzte and clay gouge at 17.55 m;
19.00	19.70	pale grey to white	bedded; fractured		qz	interval of strongly fractured quartzite
21.4	54.70	pale grey to white	bedded; fractured		qz cy	interval of strongly fractured quartzite; includes narrow zone of ground qzte and clay gouge at 28.73 m, from 32.0 - 38.0 m and at 54.0 m; weakly limonite healed microfractures from 36.0 - 39.0 m;
54.70	90.00	pale grey	thick to thin bedded;		qz py se	more competant quartzite with rare traces of fine-grained disseminated and fracture-controlled pyrite; slight coarsening of quartz grains at bottom of hole; traces of sericite on bedding-parallel planes at bottom of hole
Core Interva	als Sample	d:	Sample #:	Purpose:		
6.81	· · · · · · · · · · · · · · · · · · ·		0908001R	Representativ	e Sample	
6.97	7.20		0908001G		and Trace Elemen	t Geochemistry
7.20			0908001P	Petrography		
30.95 32.57 32.69	32.69)	0908002R 0908002P 0908002G	Representative Petrography	/e Sample 	t Geochemistry
60.00					11400 21011101	
00.00	00.07		0908003P	Petrography		

60.07	60.27		0907003G	Whole Rock and Trace Element Geochemistry				
89.10	89.31		0908004G	Whole Rock a	nd Trace Elemen	t Geochemistry		
89.31	89.50		0908004R	Representative	e Sample			
89.50	89.60		0908004P	Petrography				
	Structure:							
	From	To	Type	TCA	Condition	Notes:		
	6.70		Bedding	76	planar			
	32.64		Bedding	70	planar	beds are typically thin: 2 - 15 mm		
	46.8		Bedding	78	planar			
	Alteration:							
	From (@)	To	Assemblage	Mineral (%)		Notes:		
	1.52	90.00	Oxidation	limonite (tr);		weak development of limonite; occupy joint, fracture, and crackle zones;		


Company: Stikine Gold Corporation Date(s) Drilled: Oct. 8-9/09
Project: Ghost Ridge, Nonda Property Date(s) Logged: Oct. 9-10/09


Hole: GR09-09 Site C


Azimuth: Vertical Dip: -90 Start of Hole: 1.29 m Collar Location: 354013 6635787 Elevation: End of Hole: 91.45 m

Collar Loca	tion:	354013	6635787	Elevation:		End of Hole: 91.45 m
Lithology:	Quartzite					
	То	Colour	Texture	Mm Grade	Mineralogy	Notes:
1.75	25.00	pale grey	thin bedded		qz	pale grey, fine-grained, thin-bedded quartzite; banding/bedding defined by subtle variations in grain size; moderately to strongly fractured and broken core with local zones of shattering
						uniform, fine to medium-grained narrow beds of quartzite; sub-rounded quartz grains set in a cement of silica; rare grains approach 1 mm in diameter, but generally are < 0.5 mm in diameter
25.00	26.00	pale grey- orange				minor pervasive limonite resulting in pale orange staining of quartzite
27.50	33.80	pale grey				interval of shattered core; includes a rubble zone from 31.85-33.10 m; 4 cm thick medium-grained quartzite bed at 33.5 m
35.35	46.00	pale grey				much more competant interval; limonite prevalent on fractures
48.59	54.00	pale grey				earthy hematite-healed micro-fractures
58.5	62.00	pale grey- orange				local pervasive limonite
76.5	78.70	pale grey				hematite-lined micro-fractures with dendritic manganese oxide locally; sparsely disseminated fine-grained pyrite; locally oxidized pyrite leaves 'boxwork' texture -euhedral pits in quartzite;
78.7	91.45	pale grey orange				interbedded, very fine-grained quartzite with common narrow beds of fine to medium grained quartzite; common strong limonite-stained alteration envelopes 3-5 mm wide to fractures that run sub-parallel to CA;
Core Interv	als Sample	d:	Sample #:	Purpose:		
12.00			0909001G		and Trace Elemen	nt Geochemistry
12.22	12.36		0909 Rep 1	Representativ	/e Sample	
12.36	12.48		0909001P	Petrography		
41.12	41.39)	0909002G	Whole Rock a	I and Trace Elemen	I t Geochemistry
41.39	41.52		0909 Rep 2	Representativ		

41.62	41.75		0909002P	Petrography		
71.02	71.75		03030021	Cirography		
64.51	64.63		0909 Rep 3	Representativ	e Samnle	
64.63			0909003G		nd Trace Elemen	I of Geochemistry
64.84			0909003P	Petrography	na made Elemen	
04.04	04.00		0000001	retrography		
78.22	78.60		0909 Rep 5	Representativ	e Sample	
70.22	7 0.00		000011000	rtoprocontair	o campio	
86.59	86.70		0909 Rep 4	Representativ	e Sample	
86.70			0909004G		nd Trace Elemen	t Geochemistry
86.91	87.00		0909004P	Petrography		
				J 1 7		
	Structure:					
		То	Type	TCA	Condition	Notes:
	1.75		Bedding	72		
	1.29	11.11		10, 30, 85	planar	
	11.80		Bedding		planar	
	11.80			30, 45, 60	planar	traces of limonite on most fractures
	14.20		Fracture	0		also abundant micro-fractures
	16.68		Bedding	65		
	34.40		Bedding	70		
	41.50		Bedding	64		
	42.00		Fracture	20, 40, 85		
	48.80		Bedding	65		
	56.50		Joint	0		
	59.00		Bedding	68		
	76.80		Bedding	76		
	77.00		Bedding	69		
	83.30		Bedding	68		
	83.50	91.45	Joint	0 - 10		locally limonite-stained
	Alteration:			<u> </u>		
		То	Assemblage	Mineral (%)		Notes:
			•	` '		Fe-oxidation in the form of limonite, forms on joint and fracture planes and
	25.00	26.00	Oxidation	limonite (tr)		locally stains quartzite a pale orange
	58.5	62.00	Oxidation	limonite (tr)		Fe-oxidation in the form of limonite, forms on joint and fracture planes and
			Oxidation	iiiiioiiile (ii)		locally stains quartzite a pale orange
	78.7	91.45	Oxidation	limonite (tr)		Fe-oxidation in the form of limonite, forms on joint and fracture planes and locally stains quartzite a pale orange
L						ı

NONDA	DDODEDTV	2009 A	SSESSMENIT	REDORT

APPENDIX B

CORE RECOVERY AND RQD

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-01 PROPERTY/ZONE: Nonda / Ghost Ridge DATE: Sept. 15/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0		2.45	3.00			0.55	0.45	81.8	18.2
1		3.00	6.00			3.00	2.06	68.7	41.0
2		6.00	9.00			3.00	2.81	93.7	80.0
3		9.00	12.00			3.00	2.60	86.7	46.3
4		12.00	15.00			3.00	1.94	64.7	22.0
5		15.00	18.00			3.00	2.58	86.0	16.7
6		18.00	21.00			3.00	1.98	66.0	12.7
7		21.00	24.00			3.00	2.35	78.3	32.3
8		24.00	27.00			3.00	2.42	80.7	25.0
9		27.00	30.00			3.00	2.48	82.7	38.0
10		30.00	33.00			3.00	1.74	58.0	7.0
11		33.00	36.00			3.00	0.66	22.0	3.7
12		36.00	39.00			3.00	1.90	63.3	5.3
13		39.00	42.00			3.00	2.91	97.0	39.3
14		42.00	45.00			3.00	2.65	88.3	8.7
15		45.00	48.00			3.00	2.77	92.3	32.7
16		48.00	51.00			3.00	2.72	90.7	28.0
17		51.00	54.00			3.00	2.87	95.7	8.7
18		54.00	57.00			3.00	2.74	91.3	11.3
19		57.00	60.00			3.00	2.30	76.7	24.0
20		60.00	63.00			3.00	2.44	81.3	38.0
21		63.00	66.00			3.00	2.52	84.0	29.7
22		66.00	69.00			3.00	2.96	98.7	18.7
23		69.00	72.00			3.00	2.25	75.0	7.0
24		72.00	75.00			3.00	2.78	92.7	23.3
25		75.00	78.00			3.00	2.72	90.7	45.3
26		78.00	81.00			3.00	2.72	90.7	19.3
27		81.00	84.00			3.00	2.98	99.3	71.0
28		84.00	87.00			3.00	2.67	89.0	49.7
29		87.00	90.00			3.00	2.28	76.0	12.3
		EOH	90.00						

CORE RECOVERY FORM

PAGE 1 OF 2

HOLE #: GR09-02 PROPERTY/ZONE: Nonda / Ghost Ridge DATE: Sept. 19/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0		2.88	3.00			0.12	0.12	100.0	100.0
1		3.00	6.00			3.00	2.32	77.3	9.7
2		6.00	9.00			3.00	3.00	100.0	51.7
3		9.00	12.00			3.00	3.00	100.0	63.7
4		12.00	15.00			3.00	3.00	100.0	71.0
5		15.00	18.00			3.00	3.00	100.0	90.3
6		18.00	21.00			3.00	3.00	100.0	84.3
7		21.00	24.00			3.00	3.03	101.0	94.0
8		24.00	27.00			3.00	3.00	100.0	99.7
9		27.00	30.00			3.00	3.00	100.0	49.7
10		30.00	33.00			3.00	3.04	101.3	58.3
11		33.00	36.00			3.00	2.95	98.3	79.7
12		36.00	39.00			3.00	2.99	99.7	89.0
13		39.00	42.00			3.00	3.00	100.0	78.3
14		42.00	45.00			3.00	3.00	100.0	97.7
15		45.00	48.00			3.00	3.00	100.0	50.0
16		48.00	51.00			3.00	3.00	100.0	69.7
17		51.00	54.00			3.00	2.97	99.0	50.3
18		54.00	57.00			3.00	3.00	100.0	65.7
19		57.00	60.00			3.00	3.00	100.0	54.7
20		60.00	63.00			3.00	3.00	100.0	38.7
21		63.00	66.00			3.00	3.00	100.0	88.7
22		66.00	69.00			3.00	3.00	100.0	87.7
23		69.00	72.00			3.00	3.00	100.0	89.7
24		72.00	75.00			3.00	3.00	100.0	91.7
25		75.00	78.00			3.00	3.00	100.0	98.3
26		78.00	81.00			3.00	3.00	100.0	88.0
27		81.00	84.00			3.00	2.95	98.3	83.3
28		84.00	87.00			3.00	3.00	100.0	51.0
29		87.00	90.00			3.00	3.00	100.0	81.7
30	_	90.00	93.00			3.00	3.00	100.0	84.3
31		93.00	96.00			3.00	3.00	100.0	87.0
32		96.00	99.00			3.00	3.00	100.0	97.0
33		99.00	102.00			3.00	3.00	100.0	94.7

PAGE 2 OF 2

HOLE #: GR09-02 PROPERTY/ZONE: Nonda / Ghost Ridge DATE: Sept. 19/09

DATE: Sept. 19/09

CUT Recovery Recovery

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
34		102.00	105.00			3.00	3.00	100.0	79.3
35		105.00	108.00			3.00	3.00	100.0	82.0
36		108.00							
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									
50									
51									
52									
53									
54									
55									
56									
57									
58									
59									
60									
61									
62									
63									
64									
65									
66									
67									

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-03 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Sept. 24/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0		0.00	3.66			casing			
1		3.66	6.00			2.34	1.78	74.0	28.0
2		6.00	9.00			3.00	2.52	84.0	47.3
3		9.00	12.00			3.00	2.70	90.0	61.3
4		12.00	15.00			3.00	2.90	96.7	47.0
5		15.00	18.00			3.00	2.88	96.0	23.0
6		18.00	21.00			3.00	2.82	94.0	0.0
7		21.00	24.00			3.00	2.59	86.3	16.7
8		24.00	27.00			3.00	2.82	94.0	49.0
9		27.00	30.00			3.00	2.80	93.3	55.3
10		30.00	33.00			3.00	2.75	91.7	0.0
11		33.00	36.00			3.00	2.91	97.0	0.0
12		36.00	39.00			3.00	2.73	91.0	22.7
13		39.00	42.00			3.00	2.67	89.0	15.0
14		42.00	45.00			3.00	3.00	100.0	67.3
15		45.00	48.00			3.00	2.83	94.3	54.0
16		48.00	51.00			3.00	2.87	95.7	18.3
17		51.00	54.00			3.00	2.70	90.0	4.3
18		54.00	57.00			3.00	2.60	86.7	6.7
19		57.00	60.00			3.00	2.11	70.3	29.3
20		60.00	63.00			3.00	1.90	63.3	3.7
21		63.00	66.00			3.00	1.24	41.3	0.0
22		66.00	69.00			3.00	1.66	55.3	0.0
23		69.00	72.00			3.00	2.25	75.0	0.0
24		72.00	75.00			3.00	2.85	95.0	0.0
25		75.00	78.00			3.00	1.46	46.7	0.0
26		78.00	81.00			3.00	1.58	52.7	0.0
27		81.00	84.00			3.00	1.26	42.0	0.0
28		84.00	87.00			3.00	1.67	55.7	0.0
29		87.00	90.00			3.00	0.94	31.3	0.0
30		90.00	93.00			3.00	0.40	13.3	0.0
31		93.00	94.00			1.00	0.22	22.0	0.0
32		EOH							
33									

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-04 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Sept. 25/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0		0.00	3.00			3.00	casing		
1		3.00	6.00			3.00	2.90	96.7	91.0
2		6.00	9.00			3.00	2.95	98.3	78.0
3		9.00	12.00			3.00	3.00	100.0	100.0
4		12.00	15.00			3.00	3.00	100.0	100.0
5		15.00	18.00			3.00	3.00	100.0	100.0
6		18.00	21.00			3.00	2.92	97.3	69.7
7		21.00	24.00			3.00	3.00	100.0	100.0
8		24.00	27.00			3.00	3.00	100.0	100.0
9		27.00	30.00			3.00	2.95	98.3	96.7
10		30.00	33.00			3.00	3.00	100.0	90.0
11		33.00	36.00			3.00	2.97	99.0	96.7
12		36.00	39.00			3.00	2.94	98.0	78.3
13		39.00	42.00			3.00	2.90	96.7	52.3
14		42.00	45.00			3.00	2.92	97.3	86.7
15		45.00	48.00			3.00	3.00	100.0	37.7
16		48.00	51.00			3.00	2.50	83.3	31.7
17		51.00	54.00			3.00	2.35	78.3	9.3
18		54.00	57.00			3.00	2.74	91.3	18.0
19		57.00	60.00			3.00	2.72	90.7	13.0
20		60.00	63.00			3.00	2.48	82.3	3.3
21		63.00	66.00			3.00	2.20	73.3	6.3
22		66.00	69.00			3.00	2.45	81.7	0.0
23		69.00	72.00			3.00	1.79	59.7	6.0
24		72.00	75.00			3.00	2.73	91.0	15.0
25		75.00	78.00			3.00	2.94	98.0	32.7
26		78.00	81.00			3.00	2.91	97.0	45.7
27		81.00	84.00			3.00	3.00	100.0	71.0
28		84.00	87.00			3.00	3.00	100.0	100.0
29		87.00	90.00			3.00	3.00	100.0	94.7
30		90.00	93.00			3.00	2.78	92.7	56.0
31		93.00	96.00			3.00	2.93	97.7	58.7
32		96.00	97.50			3.00	1.20	80.0	73.0
33		EOH							

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-05 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Sept. 30/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0	Dopari	0.00	2.44	•••		casing		70	
1		2.44				0.66	0.66	100.0	56.0
2		3.00	6.00			3.00	3.00	100.0	90.7
3		6.00	9.00			3.00	2.85	95.0	60.7
4		9.00	12.00			3.00	3.00	100.0	90.0
5		12.00	15.00			3.00	2.82	94.0	74.7
6		15.00	18.00			3.00	3.00	100.0	72.3
7		18.00	21.00			3.00	3.00	100.0	42.3
8		21.00	24.00			3.00	3.00	100.0	51.0
9		24.00	27.00			3.00	2.57	85.7	29.0
10		27.00	30.00			3.00	2.76	92.0	18.7
11		30.00	33.00			3.00	3.00	100.0	78.7
12		33.00	36.00			3.00	3.00	100.0	100.0
13		36.00	39.00			3.00	3.00	100.0	96.0
14		39.00	42.00			3.00	2.50	83.3	5.0
15		42.00	45.00			3.00	1.80	60.0	24.7
16		45.00	48.00			3.00	2.02	67.3	24.0
17		48.00	51.00			3.00	2.85	95.0	25.0
18		51.00	54.00			3.00	2.43	81.0	9.7
19		54.00	57.00			3.00	3.00	100.0	51.0
20		57.00	60.00			3.00	2.06	68.7	50.0
21		60.00	63.00			3.00	1.51	50.3	16.0
22		63.00	66.00			3.00	2.62	87.3	0.0
23		66.00	69.00			3.00	2.91	97.0	17.0
24		69.00	70.00			1.00	0.97	97.0	80.0
		EOH							

CORE RECOVERY FORM

PAGE 1 OF 2

HOLE #: GR09-06 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Sept. 30/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
0		0.00	0.61			casing			
1		0.61	3.00			2.39	1.97	82.4	20.0
2		3.00	6.00			3.00	3.00	100.0	56.0
3		6.00	9.00			3.00	2.79	93.0	49.3
4		9.00	12.00			3.00	2.67	89.0	36.7
5		12.00	15.00			3.00	3.00	100.0	49.3
6		15.00	18.00			3.00	3.00	100.0	46.7
7		18.00	21.00			3.00	2.84	94.7	62.7
8		21.00	24.00			3.00	2.87	95.7	63.3
9		24.00	27.00			3.00	2.70	90.0	22.0
10		27.00	30.00			3.00	2.55	85.0	12.0
11		30.00	33.00			3.00	2.20	73.3	4.0
12		33.00	36.00			3.00	1.92	64.0	0.0
13		36.00	39.00			3.00	2.91	97.0	15.0
14		39.00	42.00			3.00	3.00	100.0	18.7
15		42.00	45.00			3.00	2.47	82.3	15.0
16		45.00	48.00			3.00	2.72	90.7	13.0
17		48.00	51.00			3.00	2.46	82.0	0.0
18		51.00	54.00			3.00	2.18	72.7	12.0
19		54.00	57.00			3.00	2.93	97.7	38.0
20		57.00	60.00			3.00	3.00	100.0	65.0
21		60.00	63.00			3.00	3.00	100.0	60.0
22		63.00	66.00			3.00	2.90	96.7	51.7
23		66.00	69.00			3.00	2.88	96.0	38.7
24		69.00	72.00			3.00	2.49	83.0	11.7
25		72.00	75.00			3.00	2.83	94.3	32.0
26		75.00	78.00			3.00	2.78	92.7	43.0
27		78.00	81.00			3.00	2.85	95.0	46.0
28		81.00	84.00			3.00	3.00	100.0	75.0
29		84.00	87.00			3.00	2.97	99.0	45.7
30		87.00	90.00			3.00	2.98	99.3	63.0
31		90.00	93.00			3.00	2.88	96.0	85.0
32		93.00	96.00			3.00	2.65	88.3	42.0
33		96.00	99.00			3.00	2.82	94.0	11.0

HOLE #: GR09-06 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Oct. 3/09

Run #	Run Depth	From	То	From	То	CUT	Recovery	Recovery	BOD.
Kull#	Kuli Deptii	m	m	m	m	m	m	%	RQD
34		99.00	102.00			3.00	2.87	95.7	23.3
35		102.00	105.00			3.00	2.65	88.3	26.7
36		105.00	108.00			3.00	2.74	91.3	26.3
37		108.00	111.00			3.00	2.80	93.3	63.3
38		111.00	114.00			3.00	2.84	94.7	41.7
39		114.00	117.00			3.00	2.91	97.0	53.7
40		117.00	120.00			3.00	2.92	97.3	38.7
41		120.00	123.00			3.00	2.91	97.0	32.3
42		123.00	126.00			3.00	2.85	95.0	5.7
43		126.00	129.00			3.00	2.80	93.3	11.7
44		129.00	132.00			3.00	2.80	93.3	4.0
45		132.00	135.00			3.00	3.00	100.0	76.7
46		135.00	138.00			3.00	2.98	99.3	31.7
47		138.00	141.00			3.00	2.98	99.0	36.0
48		141.00	144.00			3.00	2.97	99.7	17.7
49		144.00	147.00			3.00	2.99	100.0	46.3
50		147.00	150.00			3.00	3.00	100.0	51.7
51		150.00	153.00			3.00	3.00	100.0	78.0
52		153.00	156.00			3.00	3.00	100.0	39.3
53		156.00	159.00			3.00	3.00	100.0	25.7
54		159.00	162.00			3.00	3.00	100.0	32.0
55		162.00	165.00			3.00	3.00	100.0	38.3
56		165.00	168.00			3.00	3.00	100.0	47.7
		EOH							

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-07 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Oct. 5-6/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
		111	111	1111	111	111	111	76	
1		0.61	3.00			2.39	1.43	59.8	39.3
2		3.00	6.00			3.00	3.43	114.3	88.0
3		6.00	9.00			3.00	3.05	101.7	39.3
4		9.00	12.00			3.00	3.11	103.7	34.7
5		12.00	15.00			3.00	2.89	96.3	67.0
6		15.00	18.00			3.00	2.95	98.3	79.0
7		18.00	21.00			3.00	2.96	98.7	68.3
8		21.00	24.00			3.00	2.91	97.0	58.7
9		24.00	27.00			3.00	2.89	96.3	17.7
10		27.00	30.00			3.00	2.96	98.7	48.3
11		30.00	33.00			3.00	3.02	100.7	58.7
12		33.00	36.00			3.00	2.97	99.0	70.7
13		36.00	39.00			3.00	2.99	99.7	78.3
14		39.00	42.00			3.00	2.87	95.7	45.7
15		42.00	45.00			3.00	2.50	83.3	29.3
16		45.00	48.00			3.00	3.00	100.0	10.0
17		48.00	51.00			3.00	2.37	79.0	12.3
18		51.00	54.00			3.00	2.84	94.7	15.0
19		54.00	57.00			3.00	2.74	91.3	26.0
20		57.00	60.00			3.00	3.00	100.0	29.0
21		60.00	63.00			3.00	3.00	100.0	77.7
22		63.00	66.00			3.00	2.75	91.7	55.3
23		66.00	69.00			3.00	2.86	95.3	35.0
24		69.00	72.00			3.00	2.90	96.7	73.0
25		72.00	75.00			3.00	2.88	96.0	54.3
26		75.00	78.00			3.00	2.60	86.7	26.0
27		78.00	81.00			3.00	2.91	97.0	41.7
28		81.00	84.00			3.00	2.66		21.3
29		84.00	87.00			3.00	2.95	98.3	88.7
30		87.00	90.00			3.00	3.09	103.0	96.0
31		90.00	93.00			3.00	2.90	96.7	87.3
32		93.00	96.00			3.00	2.57	85.7	16.0
		EOH							

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-08 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Oct. 7/09

Run #	Run Depth	From m	To m	From m	To m	CUT m	Recovery m	Recovery %	RQD
1		1.52	3.00			1.48	1.48	100.0	77.0
2		3.00	6.00			3.00	3.00	100.0	50.7
3		6.00	9.00			3.00	3.00	100.0	73.3
4		9.00	12.00			3.00	2.83	94.3	32.7
5		12.00	15.00			3.00	2.95	98.3	54.3
6		15.00	18.00			3.00	2.69	89.7	30.3
7		18.00	21.00			3.00	2.94	98.0	48.7
8		21.00	24.00			3.00	2.98	99.3	14.3
9		24.00	27.00			3.00	2.97	99.0	20.0
10		27.00	30.00			3.00	2.68	89.3	4.7
11		30.00	33.00			3.00	2.96	98.7	10.0
12		33.00	36.00			3.00	2.90	96.7	4.0
13		36.00	39.00			3.00	2.87	95.7	3.3
14		39.00	42.00			3.00	2.85	95.0	3.3
15		42.00	45.00			3.00	2.85	95.0	15.0
16		45.00	48.00			3.00	2.95	98.3	25.7
17		48.00	51.00			3.00	2.98	99.3	11.7
18		51.00	54.00			3.00	2.98	99.3	26.3
19		54.00	57.00			3.00	2.71	90.3	49.7
20		57.00	60.00			3.00	2.82	94.0	35.7
21		60.00	63.00			3.00	2.99	99.7	66.0
22		63.00	66.00			3.00	3.00	100.0	40.0
23		66.00	69.00			3.00	3.00	100.0	59.3
24		69.00	72.00			3.00	3.00	100.0	90.7
25		72.00	75.00			3.00	2.95	98.3	43.7
26		75.00	78.00			3.00	3.00	100.0	15.0
27		78.00	81.00			3.00	2.94	98.0	34.0
28		81.00	84.00			3.00	3.00	100.0	27.7
29		84.00	87.00			3.00	3.00	100.0	32.0
30		87.00	90.00			3.00	3.00	100.0	15.0
31		EOH							

CORE RECOVERY FORM

PAGE 1 OF 1

HOLE #: GR09-09 PROPERTY/ZONE: Nonda / Ghost Ridge

DATE: Oct. 8/09

Run # Run Depth m <			From	То	From	То	CUT	Recovery	Recovery	
2 3.00 6.00 3.00 2.83 94.3 37 3 6.00 9.00 3.00 3.00 100.0 31 4 9.00 12.00 3.00 2.97 99.0 15 5 12.00 15.00 3.00 3.01 100.3 55 6 15.00 18.00 3.00 3.04 101.3 33 7 18.00 21.00 3.00 2.84 94.7 28 8 21.00 24.00 3.00 2.83 94.3 19 9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 2 13 36.00 39.00 3.00 3.00 100.0 2	Run #	Run Depth						•		RQD
3 6.00 9.00 3.00 3.00 100.0 31 4 9.00 12.00 3.00 2.97 99.0 15 5 12.00 15.00 3.00 3.01 100.3 55 6 15.00 18.00 3.00 3.04 101.3 33 7 18.00 21.00 3.00 2.84 94.7 22 8 21.00 24.00 3.00 2.83 94.3 15 9 24.00 27.00 3.00 3.00 10.0 27 10 27.00 30.00 3.00 3.00 10.0 27 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.00 100.0 7	1		1.29	3.00			1.71	1.69	98.8	36.3
4 9.00 12.00 3.00 2.97 99.0 15 5 12.00 15.00 3.00 3.01 100.3 55 6 15.00 18.00 3.00 3.04 101.3 33 7 18.00 21.00 3.00 2.84 94.7 28 8 21.00 24.00 3.00 2.83 94.3 19 9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 20 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.00 100.0 7 16 45.00 48.00 3.00 2.73 91.0 54 <	2		3.00	6.00			3.00	2.83	94.3	37.0
5 12.00 15.00 3.00 3.01 100.3 55 6 15.00 18.00 3.00 3.04 101.3 33 7 18.00 21.00 3.00 2.84 94.7 28 8 21.00 24.00 3.00 2.83 94.3 12 9 24.00 27.00 3.00 3.00 100.0 2.72 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 2 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 2.73 91.0 54	3		6.00	9.00			3.00	3.00	100.0	31.0
6 15.00 18.00 3.00 3.04 101.3 33 7 18.00 21.00 3.00 2.84 94.7 28 8 21.00 24.00 3.00 2.83 94.3 19 9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 12 12 33.00 36.00 3.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 20 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.00 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 3.00 2.79	4		9.00	12.00			3.00	2.97	99.0	15.3
7 18.00 21.00 3.00 2.84 94.7 28 8 21.00 24.00 3.00 2.83 94.3 19 9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 C 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 57.00 3.00 3.00 3.0 3.0	5		12.00	15.00			3.00	3.01	100.3	55.3
8 21.00 24.00 3.00 2.83 94.3 19 9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 7 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.67 89.0 49 18 51.00 51.00 3.00 2.67 89.0 50 19 54.00 57.00 3.00 3.04 3.0 3.0 20 57.00 60.00 3.00 3.0 3.0 3.0	6		15.00	18.00			3.00	3.04	101.3	33.7
9 24.00 27.00 3.00 3.00 100.0 27 10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.00 3.00 100.0 7 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 3.00 3.00 3.0 20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.00 3.03 102.3 51 22 63.00 66.00 3.00 3.00 <td>7</td> <td></td> <td>18.00</td> <td>21.00</td> <td></td> <td></td> <td>3.00</td> <td>2.84</td> <td>94.7</td> <td>28.3</td>	7		18.00	21.00			3.00	2.84	94.7	28.3
10 27.00 30.00 3.00 2.72 90.7 8 11 30.00 33.00 3.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 7 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.0 93.0 3 20 57.00 60.00 3.00 3.0 3.0 47 21 60.00 63.00 3.00 3.0 3.0	8		21.00	24.00			3.00	2.83	94.3	19.7
11 30.00 33.00 2.93 97.7 7 12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 0 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.03 102.3 51 23 66.00 66.00 3.00 3.00 3.00 <td>9</td> <td></td> <td>24.00</td> <td>27.00</td> <td></td> <td></td> <td>3.00</td> <td>3.00</td> <td>100.0</td> <td>27.3</td>	9		24.00	27.00			3.00	3.00	100.0	27.3
12 33.00 36.00 3.00 3.00 100.0 20 13 36.00 39.00 3.00 3.00 100.0 0 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 </td <td>10</td> <td></td> <td>27.00</td> <td>30.00</td> <td></td> <td></td> <td>3.00</td> <td>2.72</td> <td>90.7</td> <td>8.3</td>	10		27.00	30.00			3.00	2.72	90.7	8.3
13 36.00 39.00 3.00 3.00 100.0 0 14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 </td <td>11</td> <td></td> <td>30.00</td> <td>33.00</td> <td></td> <td></td> <td>3.00</td> <td>2.93</td> <td>97.7</td> <td>7.7</td>	11		30.00	33.00			3.00	2.93	97.7	7.7
14 39.00 42.00 3.00 3.00 100.0 7 15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 3.00 100.0 36 25 72.00 75.00 3.00 3.00 3.00 100.0 36 27 78.00 81.00<	12		33.00	36.00			3.00	3.00	100.0	20.3
15 42.00 45.00 3.00 3.05 101.7 52 16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 3.00 100.0 3 26 75.00 78.00 3.00 3.00 3.00 100.0 22 <	13		36.00	39.00			3.00	3.00	100.0	0.0
16 45.00 48.00 3.00 2.73 91.0 54 17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.07 116.0 26 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 3.00 100.0 12 28 84.00 87.00<	14		39.00	42.00			3.00	3.00	100.0	7.7
17 48.00 51.00 3.00 2.67 89.0 49 18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.01 100.0 12 49 84.00 87.00 3.00 3.00	15		42.00	45.00			3.00	3.05	101.7	52.7
18 51.00 54.00 3.00 2.79 89.0 50 19 54.00 57.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 3.0	16		45.00	48.00			3.00	2.73	91.0	54.7
19 54.00 57.00 3.00 3.00 93.0 3 20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	17		48.00	51.00			3.00	2.67	89.0	49.7
20 57.00 60.00 3.00 3.48 100.0 47 21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	18		51.00	54.00			3.00	2.79	89.0	50.3
21 60.00 63.00 3.00 3.07 116.0 26 22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	19		54.00	57.00			3.00	3.00	93.0	3.7
22 63.00 66.00 3.00 3.03 102.3 51 23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	20		57.00	60.00			3.00	3.48	100.0	47.7
23 66.00 69.00 3.00 3.00 100.0 12 24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	21		60.00	63.00			3.00	3.07	116.0	26.0
24 69.00 72.00 3.00 3.00 100.0 3 25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	22		63.00	66.00			3.00	3.03	102.3	51.3
25 72.00 75.00 3.00 3.00 100.0 16 26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.45 100.0 25	23		66.00	69.00			3.00	3.00	100.0	12.3
26 75.00 78.00 3.00 3.00 100.0 36 27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.00.0 25	24		69.00	72.00			3.00	3.00	100.0	3.3
27 78.00 81.00 3.00 3.00 100.0 22 28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 1.00.0 25	25		72.00	75.00			3.00	3.00	100.0	16.7
28 81.00 84.00 3.00 2.97 99.0 48 29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 100.0 25	26		75.00	78.00			3.00	3.00	100.0	36.7
29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 100.0 25	27		78.00	81.00			3.00	3.00	100.0	22.3
29 84.00 87.00 3.00 3.01 100.3 55 30 87.00 90.00 3.00 3.00 100.0 12 31 90.00 91.45 1.45 1.45 100.0 25	28		81.00	84.00			3.00	2.97	99.0	48.3
31 90.00 91.45 1.45 1.45 100.0 25	29		84.00	87.00			3.00	3.01		55.7
	30		87.00	90.00			3.00	3.00	100.0	12.7
EOH	31		90.00	91.45			1.45	1.45	100.0	25.5
			EOH							

NONDA	DDODEDTV	2000	ASSESSMENIT.	D EDODT

APPENDIX C

CORE PHOTOGRAPHS

SSESSMENT REPORT			
	CODE DUO	TOC DADUC	
	CORE PHOT	UGRAPHS	
	DRILLHOLI	E GR09-01	

onda Property 2009 Ass	ESSMENT REPORT			
SIND AT ROTERT 2003 713	- SAMERY REPORT			
		CORE PHO	TOC DADUC	
		CORE PHO	IOGKAPHS	
		DRILLHOL	E GR09-02	

nda Property 2009 As:	ESSMENT REPORT			
		CORE PHO	TOGRAPHS	
		CORLITIO	TOGICALLIS	
		DRILLHOI	E GR09-03	

Nonda Property 2009 Assessment Report
CORE PHOTOGRAPHS
CORE FIIOTOGRAFIIS
DRILLHOLE GR09-04

sessment Report				
	CORE PH	OTOGRAPH	S	
	DRILLHO	OLE GR09-05	5	

CORE PHOTOGRAPHS DRILLHOLE GR09-06			
	onda Property 2009 Assessment Report		
		CORE PHOTOGRAPHS	
DRILLHOLE GR09-06		CORETTIOTOGRATTIS	
		DRILLHOLE GR09-06	

nda Property 2009 As	SESSMENT REPORT			
		CORE PHOT	OGRAPHS	
		DRILLHOLE	GR09-07	

INDA PROPERTY 2009 AS	SESSMENT REPORT			
		CORF PHO	TOGRAPHS	
		DRILLHOL	E GR09-08	

	CORE DHO	TOGRAPHS	
	DRILLHOL	E GR09-09	

NONDA	PROPERTY	2009	ASSESSMENIT	REPORT

APPENDIX D

LABORATORY CERTIFICATES

11620 Horseshoe Way Richmond, B.C., Canada V7A 4V5 P: (604) 272-7818

P: (604) 272-7818 F: (604) 272-0851

E: ipl@inspectorate.com

A member of the Inspectorate group of companies

CERTIFICATE OF ANALYSIS iPL 0912705

Plateau Minerals Corp

7 Samples

Print: Oct 28, 2009 In: Sep 25, 2009

[270508:40:59:90102809:0017

Project : None Given	.	*	Sampi	cs Frint: Oct 20, 2009 In: Sep 25,	2009	[270508:40:59:90	105803:001]
Shipper: Bob Lane Shipment: PO#:	CODE B31100		TYPE Pulp	PREPARATION DESCRIPTION Pulp received as it is, no sample prep.	20	PULP 12M/Dis	REJECT 00M/Dis
Comment:			LI ARRES EN		NS=No Sample R€	ep=Replicate M=Month I	
		alytical S	The state of the s		1-7.0		
	Ana	lysis: Wh	ole Rock	Analsysis by XRF			
	## Code	Method	Units	Description	Element	Limit Lir	mit
	01 0401	XRF	0/	C400 Uhala Daala ku VDE	C * 000	VALUE DATE OF THE PROPERTY OF	igh
Document Distribution————	02 0407	XRF	/o 9/	SiO2 Whole Rock by XRF	Si02	0.01 100	
1 Plateau Minerals Corp	03 0405		% %	TiO2 Whole Rock by XRF Al2O3 Whole Rock by XRF	Ti02	0.01 100	
2606 Carlisle Way	04 0409		% %	Fe203 Whole Rock by XRF	A1203	0.01 100	*** 1.5m 133
Prince George BC V2K 4H9	05 0404	XRF	%	Mn0 Whole Rock by XRF	Fe203 - Mn0	0.01 100 0.01 100	
Canada	06 0402	XRF	%	MgO Whole Rock by XRF	Mg0	0.01 100	00
Att: Bob Lane	07 0406		%	CaO Whole Rock by XRF	CaO	0.01 100	
Ph:250-640-4690			%	Na20 Whole Rock by XRF	Na20	0.01 100	
Em:blane.plateauminerals@gmail.com		XRF	%	K20 Whole Rock by XRF	K20	0.01 100	
	10 0411	XRF	%	P205 Whole Rock by XRF	P205	0.01 100	
	11 0408	XRF	%	Ba Whole Rock by XRF	Ba	0.01 100	00
	12 0417	1000 C	%		Loss on Ignition		MARKET MARKET
	13 0420	XRF	%	Total Whole Rock by XRF	Total	0.01 105	
							j
	1 1						

* Our liability is limited solely to the analytical cost of these analyses. ID=C128401

BC Certified Assayer: David Chiu

Signature: ____

P: (604) 272-7818 F: (604) 272-0851

E: ipl@inspectorate.com

A member of the Inspectorate group of companies

CERTIFICATE OF ANALYSIS iPL 0912705

Client : Plateau Minerals Corp		7 Cassallas		>		
Project: None Given	Chi-ull	7 Samples	Print: Oct 28, 2009	Page	1 of	1
Troject. None diven	Ship#	7=Pu1p	[270508405990102809001] In: Sep 25, 2009	Section	1 of	1

				<i>1</i> =r	uip					[2/0	50840599	010280900	1] In:	Sep 25, 2009	Section 1 of 1
Sample Name	Туре	Si02 %	Ti02 %	A1203	Fe203	Mn0 %	Mg0 %	Ca0 %	Na20 %	K20 %	P205	Ba %	LOI %	Total %	
0901001G 0901002G 0901003G 0901004G 0902001G	Pulp Pulp Pulp Pulp Pulp	98.93 98.77 99.18 99.13 99.06	0.03 0.03 0.03 0.04 0.03	0.48 0.40 0.34 0.47 0.46	0.29 0.31 0.25 0.26 0.26	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 <0.01 <0.01 0.02 0.03	0.10 0.09 0.10 0.13 0.11	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.08 0.05 0.09 0.10 0.09	99.97 99.71 100.05 100.20 100.09	
0902002G 0902003G	Pulp Pulp	98.50 98.65	0.05	0.68	0.29	<0.01 <0.01	<0.01 0.02	<0.01 <0.01	0.01 <0.01	0.15 0.12	<0.01 <0.01	<0.01 <0.01	0.12 0.12	99.85 99.94	

ENGLISH CONTRACTOR OF THE PROPERTY OF THE CONTRACTOR OF THE CONTRA	577742 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					- SW							
Minimum Detection	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0 01	0 01
Maximum Detection	100.00	100.00	100.00									0.01	0.01
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	105.00
Method	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	1000 C	XRF
—=No Test Ins=Insufficient Sample	- 1817-417-551		-25		77 175 075 1500				20431.20	MM	VIXI	TOOC C	VIZE
110 rest ms-msumerem sample	Del-Delay Max=	=No Estima	te Kec=1	<i>(eCheck)</i>	m = x1000	%=Estuna	ate % NS	=No Samp	le				

P: (604) 272-7818 F: (604) 272-0851

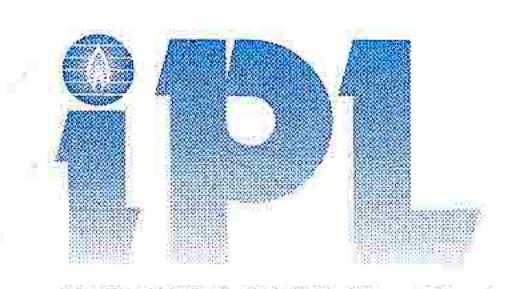
E: ipl@inspectorate.com

A member of the Inspectorate group of companies

CERTIFICATE OF ANALYSIS iPL 09J2980

Plateau Minerals Corp Project: Nonda-Ghost Ridge Shipper: Bob Lane

Samples 34


Print: Oct 29, 2009 In: Oct 16, 2009

[298013:40:04:90102909:001]

Shipper: Bob Lane Shipment: PO#: Comment:	Bá		AMOUNT 34 lytical S	ummai	crush ry——	ARATION DESCRIPTION 1, split & pulverize to -150 mesh. ysis by XRF	NS=No Sample	Rep=Replicate	PULP 12M/Dis M=Month Dis	REJECT 03M/Dis s=Discard
Prince George	01 02 03 04	· ·		Units %	Desci Si02 Ti02 A120	Whole Rock by XRF	Element Si02 Ti02 Al203 Fe203 Mn0	Limi 0.0 0.0 0.0 0.0	OW High 01 100.00 01 100.00 01 100.00))))
BC V2K 4H9 Canada Att: Bob Lane Ph:250-640-4690 Em:blane.plateauminerals@gmail.com	07 08 109 10	0403 0411 0408	XRF XRF XRF XRF XRF	% % % % % % %	K20 P205 Ba	Whole Rock by XRF on Ignition @ 1000 C	Mg0 Ca0 Na20 K20 P205 Ba Loss on Igniti	0.0 0.0 0.0 0.0 0.0	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	0 0 0
		0417	1000 C XRF	%		1 Whole Rock by XRF	Total	0.1	강''''''' 프린션, 프림''' (12))	50R

* Our liability is limited solely to the analytical cost of these analyses. ID=C128401

BC Certified Assayer: David Chiu

11620 Horseshoe Way Richmond, B.C., Canada V7A 4V5 P: (604) 272-7818 F: (604) 272-0851

CERTIFICATE OF ANALYSIS iPL 0912704

STIKINE

www.inspectorate.com

ISO 9001:2000 Certified

E: ipl@inspectorate.com

A member of the Inspectorate group of companies

Plateau Minerals Corp	7	Sampl	l es Print: Oct 02, 2009 In: Sep 2	5, 2009 Page 1	of 2 [270417:06:31:90100209	9:002]
Project: None Given Shipper: Bob Lane Shipment: PO#: Comment:	CODE AMOUNT B21100 B84100	TYPE Rock Repeat	PREPARATION DESCRIPTION crush, split & pulverize to -150 mesh. Repeat sample - no Charge	NS=No Samole	12M/Dis 03	REJECT BM/Dis DM/Dis
	Analytica Analysis: IC		id Digested by Aqua Regia		incp incpredect it notice bis bi	Jour u
	## Code Method	d Units	Description	Element	Limit Limit	
2606 Carlisle Way Prince George BC V2K 4H9	01 0801 Spec 02 5534 ICPMS-7 03 5506 ICPMS-7 04 5523 ICPMS-7 05 5542 ICPMS-7	A ppm A ppm A ppm	Weight in Kilogram (1 decimal place) ICP-MS Aqua Regia Silver ICP-MS Aqua Regia Aluminium ICP-MS Aqua Regia Arsenic ICP-MS Aqua Regia Barium	Wt Silver Aluminium Arsenic Barium	Low High 0.1 9999.0 0.01 999.00 0.01 25.00 0.1 9999.0 10 9999	
Ph:250-640-4690 Em:blane.plateauminerals@gmail.com		ppm % A ppm	ICP-MS Aqua Regia Beryllium ICP-MS Aqua Regia Bismuth ICP-MS Aqua Regia Calcium ICP-MS Aqua Regia Cadmium ICP-MS Aqua Regia Cerium	Beryllium Bismuth Calcium Cadmium Cerium	0.05 999.00 0.01 9999.00 0.01 25.00 0.01 999.00 0.02 999.00	
	11 5517 ICPMS-/ 12 5514 ICPMS-/ 13 5541 ICPMS-/ 14 5519 ICPMS-/ 15 5516 ICPMS-/	A ppm A ppm A ppm	ICP-MS Aqua Regia Cobalt ICP-MS Aqua Regia Chromium ICP-MS Aqua Regia Caesium ICP-MS Aqua Regia Copper ICP-MS Aqua Regia Iron	Cobalt Chromium Caesium Copper Iron	0.19999.0199990.05999.000.29999.00.0150.00	5
	16 5521 ICPMS-/ 17 5522 ICPMS-/ 18 5557 ICPMS-/ 19 5565 ICPMS-/ 20 5571 ICPMS-/	ppm A ppm A ppm	ICP-MS Aqua Regia Gallium ICP-MS Aqua Regia Germanium ICP-MS Aqua Regia Hafnium ICP-MS Aqua Regia Mercury ICP-MS Aqua Regia Indium	Gallium Germanium Hafnium Mercury Indium	0.05 9999.00 0.05 999.00 0.02 999.00 0.01 999.00 0.005 999.000	
	21 5509 ICPMS-/ 22 5543 ICPMS-/ 23 5501 ICPMS-/ 24 5505 ICPMS-/ 25 5515 ICPMS-/	A ppm A ppm A %	ICP-MS Aqua Regia Potassium ICP-MS Aqua Regia Lanthanum ICP-MS Aqua Regia Lithium ICP-MS Aqua Regia Magnesium ICP-MS Aqua Regia Manganese	Potassium Lanthanum Lithium Magnesium Manganese	$egin{array}{cccc} 0.01 & 10.00 \\ 0.2 & 9999.0 \\ 0.1 & 9999.0 \\ 0.01 & 50.00 \\ 5 & 49999 \\ \hline \end{array}$	
	26 5531 ICPMS-7 27 5504 ICPMS-7 28 5530 ICPMS-7 29 5518 ICPMS-7 30 5508 ICPMS-7	A ppm	ICP-MS Aqua Regia Molybdenum ICP-MS Aqua Regia Sodium ICP-MS Aqua Regia Niobium ICP-MS Aqua Regia Nickel ICP-MS Aqua Regia Phosphorus	Molybdenum Sodium Niobium Nickel Phosphorus	0.05 9999.00 0.01 10.00 0.05 999.00 0.2 9999.0 10 9999	
	31 5567 ICPMS-7 32 5572 ICPMS-7 33 5560 ICPMS-7 34 5573 ICPMS-7 35 5538 ICPMS-7	A ppm ppm %	ICP-MS Aqua Regia Lead ICP-MS Aqua Regia Rubidium ICP-MS Aqua Regia Rhenium ICP-MS Aqua Regia Sulphur ICP-MS Aqua Regia Antimony	Lead Rubidium Rhenium Sulphur Antimony	$\begin{array}{ccc} 0.2 & 9999.0 \\ 0.1 & 9999.0 \\ 0.001 & 99.000 \\ 0.01 & 10.00 \\ 0.05 & 9999.00 \end{array}$	
* Our liability is limited solely to the analytical cost of these analyses	36 5511 ICPMS-/	7. S.	ICP-MS Aqua Regia Scandium	Scandium	0.1 9999.0	

* Our liability is limited solely to the analytical cost of these analyses. ID=C128401

BC Certified Assayer: David Chiu

P: (604) 272-7818

F: (604) 272-0851 E: ipl@inspectorate.com

A member of the Inspectorate group of companies

CERTIFICATE OF ANALYSIS iPL 0912704

Plateau Minerals Corp Project: None Given

Samples

Print: Oct 02, 2009 In: Sep 25, 2009 Page 2 of 2 [270417:06:31:90100209:002]

Shipper : Bob Lane Shipment: PO#:	## Code Method	Units	Description	Element	Limit	Limit
Comment:	37 5525 ICPMS-A	ppm	ICP-MS Aqua Regia Selenium	Selenium	0.2	High 999.0
	38 5537 ICPMS-A	ppm	ICP-MS Aqua Regia Tin	Tin	0.2	999.0
	39 5527 ICPMS-A	ppm	ICP-MS Aqua Regia Strontium	Strontium	0.2	9999.0
	40 5558 ICPMS-A	ppm	ICP-MS Aqua Regia Tantalum	Tantalum	0.01	99.00
	41 5539 ICPMS-A	ppm	ICP-MS Aqua Regia Tellurium	Tellurium	0.01	999.00
	42 5569 ICPMS-A	ppm	ICP-MS Agua Regia Thorium	Thorium	0.2	9999.0
Document Distribution————	43 5512 ICPMS-A	%	ICP-MS Aqua Regia Titanium	Titanium	0.005	10.000
1 Plateau Minerals Corp	44 5566 ICPMS-A	ppm	ICP-MS Agua Regia Thallium	Thallium	0.02	9999.00
2606 Carlisle Way Prince George	45 5570 ICPMS-A	ppm	ICP-MS Aqua Regia Uranium	Uranium	0.05	9999.00
BC V2K 4H9	AC FE10 TODUC A	5 %-7005	7.65 (98. January Branch & Albandary 11.	CARLOS MICON		
	46 5513 ICPMS-A	ppm	ICP-MS Aqua Regia Vanadium	Vanadium	1	9999
Canada	47 5559 ICPMS-A	ppm	ICP-MS Aqua Regia Tungsten	Tungsten	0.05	9999.00
Att: Bob Lane	48 5528 ICPMS-A	ppm	ICP-MS Aqua Regia Yttrium	Yttrium	0.05	999.00
Ph:250-640-4690	49 5520 ICPMS-A	ppm	ICP-MS Aqua Regia Zinc	Zinc	2	9999
Em:blane.plateauminerals@gmail.com	1 50 5529 ICPMS-A	ppm	ICP-MS Aqua Regia Zirconium	Zirconium	0.5	999.0

* Our liability is limited solely to the analytical cost of these analyses. ID=C128401

BC Certified Assayer: David Chiu

P: (604) 272-7818

F: (604) 272-0851 E: ipl@inspectorate.com

A member of the Inspectorate group of companies

CERTIFICATE OF ANALYSIS iPL 0912704

Client: Plateau Minerals Corp Project: None Given	Shin#	7 Samples	M DEESCH	Print: Oct 02, 2009	Page	1 of	0.14.25.01
	Ship#	7=Rock	1=Repeat	[270417063190100209002] In: Sep 25, 2009	Section	2 of	4

The state of the s				31 3100	#25	.pcut					0031301	00203002	i iii. och	23, 2003		Section	2014
Sample Name	Ga ppm	Ge ppm	Hf ppm	Hg ppm	In ppm	K %	La ppm	Li	Mg %	Mn ppm	Mo ppm	Na %	Nb	Ni ppm	P ppm	Pb	Rb ppm
0901001G 0901002G 0901003G 0901004G 0902001G	0.16 0.14 0.17 0.18 0.17	<0.05 <0.05 <0.05 <0.05	0.03 0.03 0.03 0.04 0.03	<0.01 <0.01 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 <0.005	0.02 0.02 0.03 0.03	2.0 3.1 4.2 2.6 3.4	<0.1 0.2 0.1 0.2 0.2	<0.01 <0.01 <0.01 <0.01 <0.01	20 21 15 17 16	0.53 0.50 0.43 0.41 0.46	<0.01 <0.01 <0.01 <0.01 <0.01	0.06 0.05 0.06 0.05	4.9 3.7 4.0 3.6 3.9	11 11 <10 18 15	3.0 1.8 2.6 2.0 1.6	0.3 0.3 0.3 0.3
0902002G 0902003G RE 0901001G	0.16 0.17 0.17	<0.05 <0.05 <0.05	0.04 0.02 0.03	<0.01 <0.01 <0.01	<0.005 <0.005 <0.005	0.03 0.03 0.02	5.2 10.4 2.0	0.1 0.1 <0.1	<0.01 <0.01 <0.01	19 16 19	0.45 0.45 0.53	<0.01 <0.01 <0.01	<0.05 <0.05 0.06	3.6 4.1 4.9	21 27 11	1.1 1.4 3.0	0.4 0.4 0.3

11620 Horseshoe Way Richmond, B.C., Canada V7A 4V5 P: (604) 272-7818 F: (604) 272-0851

CERTIFICATE OF ANALYSIS iPL 09J2979

ISO 9001:2000 Certified

E: ipl@inspectorate.com

A member of the Inspectorate group of companies

Plateau Minerals Corp Project: Nonda-Ghost Ridge		34	Sample	es Print: Oct 27, 2009 In: Oct 16	5, 2009	[297909:59:06:90102709:001]
Shipper: Bob Lane Shipment: PO#: Comment:	CODE B21100 B84100	AMOUNT 34 2	TYPE Rock Repeat	PREPARATION DESCRIPTION crush, split & pulverize to -150 mesh. Repeat sample - no Charge	NS-No Samolo	PULP REJECT 12M/Dis 03M/Dis 12M/Dis 00M/Dis Rep=Replicate M=Month Dis=Discard
	The second secon		Summa (Multi-A		No-No Sampre	Rep-Repricate m-month bis-biscard
	## Code	Method	Units	Description	Element	Limit Limit
1 Plateau Minerals Corp 2606 Carlisle Way Prince George BC V2K 4H9	01 0801 02 0771 03 0761 04 0764 05 0780	Spec ICPM ICPM ICPM ICPM	ppm ppm ppm ppm	Weight in Kilogram (1 decimal place) Ag ICP(Multi-Acid) Cu ICP(Multi-Acid) Pb ICP(Multi-Acid) Depressed Zn ICP(Multi-Acid)	Wt Silver Copper Lead Zinc	Low High 0.1 9999.0 0.5 500.0 1 20000 2 10000 1 10000
Canada Att: Bob Lane Ph:250-640-4690 Em:blane.plateauminerals@gmail.com		ICPM ICPM ICPM ICPM	ppm ppm ppm ppm	As ICP(Multi-Acid) Depressed Sb ICP(Multi-Acid) Depressed Hg ICP(Multi-Acid) Mo ICP(Multi-Acid) Tl ICP(Multi-Acid)	Arsenic Antimony Mercury Molydenum Thallium	5 10000 5 2000 3 10000 1 1000 2 1000
	11 0755 12 0757 13 0760 14 0768 15 0754	ICPM ICPM ICPM ICPM	ppm ppm ppm	Bi ICP(Multi-Acid) Cd ICP(Multi-Acid) Co ICP(Multi-Acid) Ni ICP(Multi-Acid) Ba ICP(Multi-Acid)	Bismuth Cadmium Cobalt Nickel Barium	2 2000 0.2 2000.0 1 10000 1 10000 2 10000
	16 0777 17 0759 18 0779 19 0766 20 0763	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm	W ICP(Multi-Acid) Cr ICP(Multi-Acid) V ICP(Multi-Acid) Mn ICP(Multi-Acid) La ICP(Multi-Acid)	Tungsten Chromium Vanadium Manganese Lanthanum	5 1000 1 10000 1 10000 1 10000 2 10000
	21 0773 22 0781 23 0786 24 0776 25 0751	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm %	Sr ICP(Multi-Acid) Zr ICP(Multi-Acid) Sc ICP(Multi-Acid) Ti ICP(Multi-Acid) Al ICP(Multi-Acid)	Strontium Zirconium Scandium Titanium Aluminum	1 10000 1 10000 1 10000 0.01 10.00 0.01 5.00
	26 0758 27 0762 28 0765 29 0770 30 0772	ICPM ICPM ICPM ICPM ICPM	% % % %	Ca ICP(Multi-Acid) Fe ICP(Multi-Acid) Mg ICP(Multi-Acid) K ICP(Multi-Acid) Na ICP(Multi-Acid)	Calcium Iron Magnesium Potassium Sodium	0.01 10.00 0.01 5.00 0.01 10.00 0.01 10.00 0.01 10.00
	31 0769	ICPM	%	P ICP(Multi-Acid)	Phosphorus	0.01 5.00

* Our liability is limited solely to the analytical cost of these analyses. ID=C128401

BC Certified Assayer: David Chiu

Minimum Detection

Maximum Detection

Method

11620 Horseshoe Way Richmond, B.C., Canada V7A 4V5

P: (604) 272-7818 F: (604) 272-0851

E: ipl@inspectorate.com

CERTIFICATE OF ANALYSIS iPL 09J2979

A member of the Inspectorate group of companies

Client : Plateau Minerals Corp Project: Nonda-Ghost Ridge	Shij)#	34 S	ample 34	es 4=Rock	2=Rep	eat				[2979095	90690102	All the second s	nt: Oct 27, 2009 In: Oct 16, 2009	5/52/7	age ection	1 of 2 of	
Sample Name	Mn	La ppm	Sr ppm	Zr	Sc	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %					
0902004G 0902005G 0903001G 0903002G 0903003G	19 22 25 21 77	7 8 6 5	3 2 3 10	10 10 10 8 13	<1 <1 <1 <1	0.01 0.01 0.01 0.01	0.35 0.35 0.26 0.34	0.02 0.01 0.01 0.01	0.20 0.21 0.24 0.19 0.52	0.03 0.03 0.03 0.03	0.17 0.19 0.16 0.11 0.12	0.01 0.01 0.01 0.01	<0.01 <0.01 <0.01 <0.01 0.01					
0903004G 0904001G 0904002G 0904003G 0904004G	26 13 15 13	7 5 4 5 5	7 2 2 3 2	12 6 6 8 7	<1 <1 <1 <1	0.01 0.01 0.01 0.01	0.38 0.26 0.21 0.26 0.22	0.01 0.01 0.01 0.01	0.62 0.16 0.16 0.14 0.14	0.04 0.02 0.02 0.02 0.02	0.12 0.13 0.09 0.11 0.10	0.01 0.01 <0.01 0.01 0.01	0.01 <0.01 <0.01 <0.01 <0.01					
0904005G 0905001G 0905002G 0905003G 0906001G	15 14 14 14 21	5 5 6 5	3 2 2 4	6 16 11 12 8	<1 <1 <1 <1	0.01 0.01 0.01 0.01	0.16 0.38 0.24 0.25 0.24	0.01 0.01 0.01 0.01	0.18 0.25 0.19 0.17 0.34	0.02 0.04 0.03 0.03	0.07 0.18 0.10 0.11 0.08	0.01 0.01 0.01 0.01	<0.01 <0.01 <0.01 <0.01					
0906002G 0906003G 0906004G 0906005G 0906006G	129 25 15 18 86	9 5 6 18	6 3 2 74	17 9 12 12 4	<1 <1 <1 43	0.01 0.01 0.01 0.45	0.24 0.27 0.32 0.29 9.29%	0.01 0.01 0.01 0.02 0.05	1.67 0.28 0.19 0.25 13%	0.01 0.02 0.03 0.03 0.40	0.03 0.12 0.14 0.11 4.05	<0.01 0.01 0.01 0.01 0.20	<0.01 <0.01 <0.01 <0.01 0.02					
0906007G 0906008G 0907001G 0907002G 0907003G	16 19 15 17 20	6 4 5 7	2 2 2 2	8 8 9 9	<1 <1 <1 <1	0.01 <0.01 0.01 0.01 0.01	0.16 0.13 0.28 0.27 0.30	0.03 0.01 0.02 0.01 0.01	0.23 0.23 0.19 0.20 1.53	0.04 0.03 0.02 0.03	0.02 0.15 0.13 0.15	0.01 0.01 <0.01 0.01 <0.01	<0.01 <0.01 <0.01 <0.01 0.01					
0907004G 0908001G 0908002G 0908003G 0908004G	16 15 14 14	7 6 4 5	2 3 4 2 3	14 12 9 8 10	<1 <1 <1 <1	0.01 0.01 0.01 0.01	0.35 0.33 0.28 0.26 0.29	0.01 0.02 0.02 0.01 0.01	0.21 0.22 0.19 0.17 0.16	0.03 0.03 0.02 0.02	0.17 0.17 0.14 0.13 0.15	0.01 0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01					
0909001G 0909002G 0909003G 0909004G RE 0902004G	15 16 19 15 18	7 7 6 5	2 4 2 3	9 10 11 11	<1 <1 <1 <1	0.01 0.01 0.01 0.01	0.25 0.24 0.22 0.22	0.01 0.01 0.01 0.02	0.18 0.20 0.46 0.18 0.19	0.03 0.03 0.03 0.03	0.10 0.09 0.07 0.08 0.17	0.01 0.01 0.01 0.01	<0.01 <0.01 <0.01 <0.01 <0.01					
RE 0906006G	86	18	75	5	43	0.45	9.28%	0.05	13%	0.40	4.06	0.20	0.02					

0.01

5.00

ICPM

10.00

ICPM

0.01

0.01

ICPM

—=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample