TECHNICAL ASSESSMENT REPORT GEOCHEMICAL AND VERIFICATION SAMPLING FOR THE HONEYMOON WEST PROPERTY

SOUTH CENTRAL BC

Prepared for
BLACK MOUNTAIN MINING CORP.

Author
CARL A. VON EINSIEDEL, P.GEO.

Effective Date
October 28, 2010

SOW 4781151 and SOW 4781138: recorded July 30, 2010

ITEM 2: TABLE OF CONTENTS

ITEM 1: TITLE PAGE 1
ITEM 2: TABLE OF CONTENTS 2
ITEM 3: SUMMARY 4
ITEM 4: INTRODUCTION AND TERMS OF REFERENCE 7
ITEM 5: RELIANCE ON OTHER EXPERTS 7
ITEM 6: PROPERTY DESCRIPTION AND LOCATION 8
ITEM 7: ACCESSIBILITY, PHYSIOGRAPHY AND INFRASTRUCTURE 9
ITEM 8: HISTORY OF EXPLORATION 10
ITEM 9: GEOLOGICAL SETTING 12
ITEM 10: DEPOSIT TYPES 13
ITEM 11: MINERALIZATION 13
ITEM 12: EXPLORATION WORK COMPLETED IN $2010 \quad 15$
ITEM 12a: STATEMENT OF COSTS 16
ITEM 13: DRILLING 17
ITEM 14: SAMPLING METHOD AND APPROACH 17
ITEM 15: SAMPLE PREPARATION, ANALYSIS AND SECURITY 17
ITEM 16: DATA VERIFICATION 17
ITEM 17: ADJACENT PROPERTIES 17
ITEM 18: MINERAL PROCESSING AND METALLURGICAL TESTING 17
ITEM 19: MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE 17
ITEM 20: OTHER RELEVENT DATA AND INFORMATION 17
ITEM 21: INTERPRETATION AND CONCLUSIONS 18
ITEM 22: RECOMMENDATIONS 18
ITEM 23: SOURCES OF INFORMATION 20
ITEM 24: CERTIFICATE OF QUALIFIED PERSON 21
ITEM 25: ADDITIONAL REQUIREMENTS N/A
ITEM 26: ILLUSTRATIONS 22

ITEM 2.2 LIST OF REPORT TABLES

TABLE 1: LIST OF HONEYMOON WEST MINERAL CLAIMS

ITEM 2.2 LIST OF FIGURES TO ACCOMPANY THE HONEYMOON WEST REPORT

FIGURE 1:	SOUTH CENTRAL BC MAP SHOWING HONEYMOON WEST PROPERTY LOCATION, STAKED
	AREAS, BC PARKS, LOCAL COMMUNITIES AND ACCESS ROADS (1:200,000 scale)
FIGURE 2:	CENTRAL BC MAP SHOWING HONEYMOON WEST PROPERY LOCATION, REPORTED
	LOCATION OF BC MINFILE PROSPECTS HONEYMOON AND NEARBY ADVANCED
	EXPLORATION PROSPECTS AND REGIONAL GEOLOGY (1:200,000 scale)

ITEM 26: ILLUSTRATIONS

ITEM 1.0: SUMMARY

Black Mountain Mining Corp. holds a 100\% interest in 12 contiguous mineral tenures (2,030.3 hectares) covering an irregular shaped block of ground located approximately 15 kilometers south of Clearwater in south central BC. The claims cover two known Prospects identified in the BC Ministry of Mines (BCMEM) Minfile database including a copper occurrence referred to as the McCarthy PROSPECT (Minfile No.092P 187) and a gold occurrence referred to as the HONEYMOON PROSPECT (Minfile No.092P 174).

The property is located in the Adams Plateau - Clearwater exploration area. Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area covers a north to northwest trending package of Fennell Formation (Slide Mountain Terrane) volcanic and sedimentary rocks cut by a series of complex thrust faults. According to the BCMEM the Fennell formation hosts 23 known Minfile occurrences consisting of Cypresstype massive sulphide $\mathrm{Cu}(\mathrm{Zn})$ mineralization, Noranda/Kuroko-type massive sulphide $\mathrm{Cu}-\mathrm{Pb}-$ Zn mineralization, and $\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}+/-\mathrm{Au}$ vein mineralization. The most important Prospects in the vicinity of the Honeymoon West Property include the Chu Chua copper deposit located approximately 17 kilometres to the south of the Property, the former producing Windpass Mine located approximately 10 kilometres to the south of the Property and the Jake Prospect located approximately 10 kilometres to the northwest of the Property.

The Chu Chua copper deposit was initially discovered by soil geochemical surveys in 1977 and was optioned to Craigmont mines in 1978. Drilling in 1978 and 1979 outlined indicated reserves of 2 million tonnes grading 2 per cent copper, 0.4 per cent zinc, 0.1 per cent cobalt, 8 grams per tonne silver and $0.4 \mathrm{~g} / \mathrm{t}$ gold (Paper 1987-2) within basaltic rocks of the Fennel Formation. Open-pit reserves at Chu Chua are estimated at 1,043,165 tonnes grading 2.98 per cent copper, 0.3 per cent zinc, 0.54 gram per tonne gold and 10.2 grams/tonne silver (Canadian Mines Handbook 1992-93, page 203). The reader is cautioned the resource estimate for the Chu Chua is historical in nature and that there is no assurance that mineralization similar to the Chu Chua deposit will be identified on the Honeymoon West Property which is the subject of this report. The information concerning the Chu Chua copper deposit is included solely to provide the reader with an example of the type of mineralization which may be present on the Honeymoon West Property.

The McCarthy Prospect is located in the western part of the Property and consists of a copper rich massive sulfide occurrence partially explored between 1979 and 1993 by Craigmont Mines, various Prospectors, Barrier Reef Resources and Esso Minerals, Kerr Addison Mines and Teck Exploration. Kerr Addison identified exposed copper mineralization consisting of pyrite pyrrhotite - chalcopyrite mineralization in Fennel Formation basaltic rocks which became the Main Grid area of the McCarthy Property. Teck Exploration optioned the claim group in 1992 and carried out a program of soil geochemical and magnetometer surveys, geological mapping and trenching.

According to Teck Exploration, (1992) the discovery trench was sampled; best results were 6.6 metres at 1.1 per cent copper, including 1.0 metre at 2.24 per cent copper and 0.315 gram per tonne gold. During Teck Explorations' option of the property a total of eight trenches were dug along the projected strike of mineralization to the north and south of the main showing covering a strike length of 200 meters. Mapping of the discovery area as well as in the new trenches determined that massive sulphide mineralization occurs as brecciated fragments within a large fault zone. The massive sulphides are locally very copper-rich and enriched in gold. The best results from Teck's trenching program were from Trench C which reportedly intersected an 11.4 meter wide zone with an average copper grade of 1.3%. Trench C is located approximately 60 meters north of discovery area.

In 1993, Teck continued the magnetic surveys and trenching to the south of the original showing however overburden thicknesses are highly variable and Teck was unable to trace the strike extensions of the zone. Teck Explorations' interpretation of the available data suggests that an original syngenetic massive sulphide lens has been brecciated by later faulting. There is no published record of follow up drill testing on the McCarthy Prospect.

Teck Exploration concluded that potential may exist along the mineralized horizon outside of the fault zone for additional massive sulphide mineralization. Based on the stratiform classification proposed by Teck Exploration, the presence of elevated copper values in soils within the main grid area that have not been tested by trenching and the reported presence of magnetic anomalies associated with the mineralized zone it is concluded that the McCarthy zone has potential to host mineralization similar to that developed at the Chu Chua deposit located approximately 17 kilometers to the south.

The Honeymoon West Property covers all of the ground explored by Teck Exploration and covers approximately 8 kilometers of potential strike extensions to the north of the McCarthy Prospect. Potential down dip extensions of the zone are also included within the Honeymoon West Property.

This report describes the results of an exploration program carried out in July 2010. The work program involved completion of a soil geochemical survey designed to verify the exploration work on the McCarthy Prospect reported by Teck (109 samples were collected), geological sampling of a gossan zone located within the soil geochemical survey area (3 samples), compilation of historic exploration work and preparation of this technical report. This exploration work was filed in two separate SOW's (SOW 4781151 and SOW 4781138) as a result of a filing error. All work should have been included on a single SOW. The total cost recorded on the Statements of work was $\$ 9,643$ however this only included the field work portion of the costs. The costs of preparing the report were not included on the Statement of Work.

In addition to the McCarthy Prospect in the western part of the Property BC Minfile records indicate that the Honeymoon Prospect is located in the eastern part of the Honeymoon West Property. According to published technical reports the Honeymoon Prospect consists of two areas (Area 1 and Area 2) which exhibit north trending quartz veins containing chalcopyrite, pyrite, galena, sphalerite, some bornite and locally coarse gold. The best results were reported from the veins identified in Area 2. The mineralized veins in Area 2 were identified by

Prospecting as part of an exploration program carried out in 1988 by Kerr Addison Mines to explore for potential extensions of the Windpass Mine located approximately five kilometres to the south. According to published technical reports Kerr Addison Mines collected 28 rock samples from a series of vein outcrops referred to as "Area 2" which are actually located within the boundaries of the Dunn Peak Park immediately south of the southern boundary of the Honeymoon West Property. Several of the rock samples returned anomalous gold and base metal values including gold values of up to $2.9 \mathrm{~g} / \mathrm{ton}$. No other exploration work is known to have been carried out on the Honeymoon Prospect.

This report summarizes available technical data for the known Prospects and outlines a staged exploration to further evaluate the Honeymoon West Property. It is recommended that Black Mountain Mining Corp. complete an initial exploration program (Stage 1) consisting of geological mapping, rock sampling and soil sampling at the McCarthy and Honeymoon Prospects and if warranted, complete a follow-up program (Stage 2) of detailed geological and geochemical surveys, ground geophysics and trenching.

At the McCarthy Prospect the copper mineralization in the discovery area and the trenches excavated by Teck Exploration should be identified and sampled, detailed soil geochemical surveys using deep penetrating augers should be completed in the area of the known mineralization to determine the "geochemical signature" of the mineralized zone. The geochemical anomalies identified by Teck in the Main grid area should be verified and widely spaced east-west oriented lines extending for at least 3 kilometres to the north should be sampled using the deep penetrating augers to determine if potential extensions of the zone can be traced to the north.

At the Honeymoon Prospect the vein zones sampled by Kerr Addison Mines should be located and several east-west oriented soil survey lines should be completed across the overburden covered area within the Honeymoon West Property to test for north extensions of the veins.

The cost of an initial program of geological work and sampling (Stage 1) is estimated at \$54,000 and the cost of a systematic follow up program (Stage 2), if warranted, is estimated at $\$ 220,000$.

ITEM 4: INTRODUCTION AND TERMS OF REFERENCE

The author was retained by the Board of Directors of Black Mountain Mining Corp. to review available technical reports related to the Honeymoon West Property, and if warranted, to recommend a follow-up exploration program. The author visited the Honeymoon West Property on November 25, 2009.

The available technical reports related to the Honeymoon West Property include assessment reports detailing the exploration work carried out within the current claims which comprise the Honeymoon West Property by Craigmont Mines in 1979, by Barrier Reef Resources and Esso Resources in 1983, by Kerr Addison Mines in 1988 and by Teck Exploration in 1992 and 1993.

ITEM 5: RELIANCE ON OTHER EXPERTS

The author has prepared this report based on information which is believed to be accurate but which is not guaranteed. The available technical data for the Honeymoon West Property consists of regional geological and airborne geophysical information compiled by the BC Ministry of Energy and Mines and documentation regarding field investigations completed within the claim area by various previous workers including Craigmont Mines in 1979, Barrier Reef Resources and Esso Resources in 1983, Kerr Addison Mines in 1988 and Teck Exploration in 1992 and 1993. Sources are listed in the References section of this report and are cited where appropriate in the body of this report. The reports listed in the References section of this report appear to have been completed by competent professionals without any misleading or promotional intent.

To the best of the author's knowledge at the time of writing of this report, the Honeymoon West Property is free of any liens or pending legal actions and is not subject to any underlying royalties, back-in rights, payments or other encumbrances.

To the best of the author's knowledge, there are no known existing environmental liabilities to which the property is subject, other than the requirement to mitigate any environmental impact on the claims that may arise in the course of normal exploration work and the requirement to remove any camps constructed on the Honeymoon West Property or any equipment used in exploration of the claims in the event that exploration work is terminated.

ITEM 6: PROPERTY DESCRIPTION AND LOCATION

Black Mountain Mining Corp. holds a 100\% interest in 12 contiguous mineral tenures (2,030.3 hectares) covering an irregular shaped block of ground located approximately 15 kilometers south of Clearwater in south central BC. The property was acquired for re-imbursement of staking costs and expenses and claim maintenance expenses totalling $\$ 11,422.57$. The centre of the property is at approximately UTM Zone 10 (NAD 83) at approximately 5713400 m North and 702000 m East.

All of the claims which comprise the Honeymoon West Property were staked pursuant to the BC Ministry of Energy and Mines MTO system (Mineral Titles Online System). The earliest expiry date of the claim package is August 01, 2010. Title to the claims is maintained through the performance of annual assessment filings and payment of required fees. For the first three years a minimum of $\$ 4.00$ per hectare in eligible exploration expenditures must be incurred. In subsequent years a total of $\$ 8.00$ per hectare in eligible exploration expenses must be incurred.

To the best of the author's knowledge, government permits will be required to carry out the proposed Stage II exploration program and for any follow up diamond drilling program recommended after completion of this program. These programs will require application to the Ministry of Energy and Mines for permits and the Issuer may be required to post security equivalent to the estimated costs of any reclamation work which will be required after completion of the proposed exploration work.

To the best of the author's knowledge approval from local First Nations communities may also be required to carry out the proposed Stage 2 exploration program. The reader is cautioned that there is no guarantee that the Issuer will be able to obtain approval from local First Nations. However, the author is not aware of any problems encountered by other junior mining companies in obtaining approval to carry out similar programs in nearby areas nor is the author aware of any instances where local First Nations communities have objected to exploration work in the general project area.

To the best of the author's knowledge, none of the claims which comprise the Honeymoon West Property have surface rights. In the event that a significant mineralized zone is identified detailed environmental impact studies will need to be completed prior to initiation of any advanced exploration or mining activities. The reader is cautioned that there is no guarantee that areas for potential mine waste disposal, heap leach pads, or areas for processing plants will be available within the subject property.

Table 1. List of Mineral Claims

Tenure Number	Owner	Tenure Type	Good To Date	Status	Area (ha)
570108	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	20.11
570109	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	20.11
570139	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	60.32
570147	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	20.11
593178	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	160.89
593626	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	100.56
680643	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	482.47
690363	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	180.99
690364	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	261.37
690365	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	421.97
690383	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	220.96
703843	$232802(100 \%)$	Mineral	$2011 / \mathrm{dec} / 30$	GOOD	80.44

ITEM 7: ACCESSIBILITY, PHYSIOGRAPHY AND INFRASTRUCTURE

Access to the property is by Provincial Highway 5, 110 kilometres north from Kamloops, along the north Thompson River to Clearwater. From Clearwater the west side of the property can be accessed by a road on the eastside of the Thompson River heading south along the Dunn Lake FSR. Approximately 12 kilometers south of Clearwater (UTM 5716600N and 699000E) there is a well maintained gravel road heading east to a radio tower near Axel Lake that passes through the McCarthy zone.

Climate in the Clearwater area is typical of the Shushwap Highlands. Climates here range from sub-alpine in the mountains to a semi-arid, more temperate, continental climate. Summer is normally warm and dry and winter is moderate to very cold and dry.

The property is in the Shuswap Highlands physiographic region and encompasses a rugged, hilly upland. The mountain tops range from 1830 to 2130 meters elevation. The slopes are thick with tall, close spaced fir and spruce forest. Open areas are thick with buck brush and similar vegetation. Swamps and small lakes dot the uplands in virtually every depression.

Infrastructure in the general vicinity of the subject property is considered excellent. There are existing roads that can be used to access the McCarthy Prospect. The best access to the Honeymoon Prospect area is via helicopter to the helicopter landing sites utilized by Kerr Addison Mines in 1988.

ITEM 8: HISTORY OF EXPLORATION

The Honeymoon West Project is located within the Adams Plateau - Clearwater exploration area. Exploration on the Honeymoon Claim Groups dates back to 1979. There are two known mineral occurrences on the property referred to as the McCarthy and the Honeymoon Prospects (see figure 1-3). The exploration history for each of these occurrences is discussed below.

Exploration in the McCarthy area began with the 1979 Craigmont Mines airborne electromagnetic, magnetic and resistivity surveys (Fraser and Dvorak, 1979). This EM survey covered the subject property and an extensive tract of ground to the east and south of the subject property and identified a significant north trending EM conductor within the subject property. In 1982, Esso Resources and Barrier Reef Resources carried out a Prospecting and soil geochemical survey covering EM anomaly identified within the claim area by the Craigmont Mine airborne geophysical survey (Everett, 1983).

The 1982, Esso Resources Canada geochemical survey comprised of 223 samples (Everett, 1983). A number of erratically distributed anomalies were identified during Esso Resources Canada 1982 soil geochemical survey. According to Everett (1983) soil geochemistry might have been affected by the deep overburden. Overburden depths are reported to be from 1 to 50 meters. According to the soil geochemical map produced by Everett (1983) the strongest geochemical response occurs just south of the switch back on the road to the microwave tower.

In 1988, Kerr Addison Mines acquired the McCarthy and the Honeymoon Prospect area by staking. According to Whalen et al. (1988) the impetus for staking this area was the geological similarities between the staked ground and the Windpass mine located south of their staked claim group. Kerr Addison Mines carried out an exploration program focussed on locating Windpass-type veins and to sample veins, gossans and outcrops with visible mineralization. It was during this exploration effort in which the original McCarthy occurrence was found. The discovery was described by Whalen et al. (1988) as a shear zone mineralized with pyrite-pyrrhotite-chalcopyrite. According to Whalen et al. (1988) about 4 metres of the shear zone was exposed along an old skid road on a ridge but both sides of the shear were under deeper overburden. They also noted that along strike this material has been picked up in outcrop and frost heaved fragments for 100-150 metres.

In 1992, Teck Corporation optioned the McCarthy Claims. The purpose of Teck' exploration program in 1992 was to better define and extent of the mineralization exposed at the discovery zone. Teck attempted to delineate the zone by carrying out grid-based geological mapping, a ground magnetic survey, a geochemical soil survey and, trenching. The ground magnetic survey completed by Teck was a detailed survey with readings taken every 12.5 meter and a line spacing of 50 m . A total of 8.4 linear kilometres was surveyed by Teck. The survey covered 2 areas; a north grid that is centered on the exposed mineralization identified by Kerr Addison and a south grid centered on the geochemical anomalous area found by Esso Resources Canada in 1982 (see figure 6). Both survey areas registered magnetic anomalies associated with known mineralization. According to Teck detailed ground magnetic surveys can identify mineralization in the McCarthy area, however, due to the erratic distribution of mineralization the magnetic surveys produce a complex signature.

The trenching program completed by Teck Exploration was based primarily on the geophysical signatures associated with the known bedrock mineralization and not on the soil geochemical survey. According to Farmer (1992), four trenches were dug along the projected strike of mineralization to the north and south of the main showing. Mineralization was observed in three out of four of these trenches. The best results from Teck's trenching program were from Trench C which resulted in a 11.4 m wide zone averaging $1.3 \% \mathrm{Cu}$. Trench C is located approximately 60 meters north of the original discovery. The original discovery trench was also sampled results were 6.6 metres at 1.1 per cent copper.

The soil geochemical survey consisted of 352 samples, covering both north and south grids. Samples were taken at 25 m intervals along the same 50 m spaced lines. According to Farmer (1992) the anomalous geochemical signatures from the soil survey are not associated with known mineralization (Kerr Addison and Martin Peters occurrences). Farmer (1992) claims, that the lack of correlation between soil anomalies and known bedrock mineralization is likely resulting from the glacial outwash nature of the soil. Anomalous thresholds determined from a statistical inspection of the soil geochemical values indicate that copper values ranging from 105 to 155 ppm can be considered anomalous and that copper in soil values above 155 ppm can be considered strongly anomalous. Figure 6 and 8 show the location of the anomalous sample sites.

There are 5 assessment reports on the ARIS database recording exploration work carried out in the Honeymoon West Property area. The technical reports that document each of these exploration programs is listed in the References section.

ITEM 9: GEOLOGICAL SETTING

The Honeymoon Project is situated within the Adams Plateau - Clearwater Exploration area which lies near the southern end of the Omineca Crystalline Belt, one of the five morphological belts of the Canadian Cordillera. The Omineca belt refers to variably deformed and metamorphosed rocks of continental affinity, that are exposed east of Mesozoic arc and backarc sequences (i.e., Intermontane belt) and west of deformed Paleozoic continental margin sedimentary rocks (i.e., Foreland belt).

The Adams Plateau - Clearwater Exploration area includes the Fennel Formation of the Slide Mountain Terrane and the Eagle Bay assemblage of the Kootenay Terrane.

Eagle Bay Assemblage

The Eagle Bay assemblage, as described by Schiarizza and Preto (1987), consists of deformed and metamorphosed (greenschist to lower amphibolite facies) Lower Cambrian to Mississippian sedimentary and volcanic rocks. They are intruded by Upper Devonian-Lower Mississippian foliated granite to diorite sills and dikes and by Middle to Upper Jurassic and Cretaceous hornblendebiotite granite to granodiorite, biotite-muscovite granite and biotite monzogranite of the Raft and Baldy batholiths; and they are overlain by Eocene volcanic rocks of the Kamloops Group.

Fennel Formation

The Fennell Formation, as by Schiarizza and Preto (1987) and Schiarizza (1989) divided it into lower and upper structural divisions. The lower structural division consists of a heterogeneous assemblage of bedded chert, gabbro, diabase, pillow basalt, clastic sedimentary rocks, and rare quartz-feldspar-phyric rhyolite and conglomerate. The upper structural division comprises primarily pillowed and massive basalts with minor amounts of bedded chert and gabbro.

The Honeymoon Project lies entirely within the Fennel Formation, which is sandwiched between the Quesnelia Terrane, part of the Intermontane Belt, to the west and the Kootenay Terrane to the east (Figure 4).

The Honeymoon Project straddles the lower and upper structural divisions of the Fennell Formation. The basalts, of the upper division, are aphanitic to fine-grained medium to dark grey or green in colour, and rarely display a tectonic foliation. Microscopically, they consist of relict clinopyroxene and plagioclase variably altered to an assemblage of chlorite, actinolite, epidote, leucoxene, titanite, and minor carbonates and quartz (Schiarizza and Preto, 1987). The diabase and gabbro, of the lower division, are coarser grained than the volcanic rocks, but they have the same composition. Un-pillowed and pillowed basalt flows of the upper structural division host the stratabound Chu Chua Cu-Zn-Au-Ag sulphide deposit (Paradis et al. 2006).

ITEM 10: DEPOSIT TYPES

The property is located in the Adams Plateau - Clearwater exploration area. Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area covers a north to northwest trending package of Fennell Formation (Slide Mountain Terrane) volcanic and sedimentary rocks cut by a series of complex thrust faults. According to the BCMEM the Fennell formation hosts 23 known Minfile occurrences consisting of Cypresstype massive sulphide $\mathrm{Cu}(\mathrm{Zn})$ mineralization, Noranda/Kuroko-type massive sulphide $\mathrm{Cu}-\mathrm{Pb}-$ Zn mineralization, and $\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}+/-\mathrm{Au}$ vein mineralization. The most important Prospects in the project area include the Chu Chua copper deposit located approximately 17 kilometres to the south of the Property, the former producing Windpass Mine located approximately 10 kilometres to the south of the Property and the Jake Prospect located approximately 10 kilometres to the northwest of the Property.

The Chu Chua copper deposit was initially discovered by soil geochemical surveys in 1977 and was optioned to Craigmont mines in 1978. Drilling in 1978 and 1979 outlined indicated reserves of 2 million tonnes grading 2 per cent copper, 0.4 per cent zinc, 0.1 per cent cobalt, 8 grams per tonne silver and $0.4 \mathrm{~g} / \mathrm{t}$ gold (Paper 1987-2) within basaltic rocks of the Fennel Formation. Open-pit reserves at Chu Chua are 1,043,165 tonnes grading 2.98 per cent copper, 0.3 per cent zinc, 0.54 gram per tonne gold and 10.2 grams/tonne silver (Canadian Mines Handbook 199293, page 203). The reader is cautioned that there is no assurance that mineralization similar to the Chu Chua deposit will be identified on the Honeymoon West Property which is the subject of this report. The information concerning the Chu Chua deposit is included solely to provide the reader with an example of the type of mineralization which may be present on the Property.

ITEM 11: MINERALIZATION

The McCarthy Prospect is located in the western part of the Property and consists of a copper rich massive sulfide occurrence partially explored between 1979 and 1993 by Craigmont Mines, various Prospectors, Kerr Addison Mines Barrier Reef Resources, Esso Minerals and Teck Exploration. The discovery area which consists of exposed, pyrite-pyrrhotite-chalcopyrite mineralization in Fennel Formation basaltic rocks became the Main Grid area of the McCarthy Property. Teck Exploration optioned the claim group in 1992 and carried out a program of magnetometer, soil and geological mapping surveys, and trenching. According to Teck Exploration, (1992) the discovery trench was sampled; best results were 6.6 metres at 1.1 per cent copper, including 1.0 metre at 2.24 per cent copper and 0.315 gram per tonne gold.

According to Teck Exploration (1992), a grab sample of the massive sulphide mineralization from Trench C, located 60 meters north of the original showing, assayed 9.35 per cent copper and 0.411 gram per tonne gold. During Teck Explorations' option of the property a total of eight trenches were dug along the projected strike of mineralization to the north and south of the main showing covering a strike length of 200 meters. Mapping of the discovery area as well as in the new trenches determined that massive sulphide mineralization occurs as brecciated fragments
within a large fault zone. The massive sulphides are locally very copper-rich and enriched in gold. The best results from Teck's trenching program were from Trench C which reportedly intersected an 11.4 meter wide zone with an average copper grade of 1.3%. Trench C is located approximately 60 meters north of the original discovery area. Teck Explorations' interpretation of the available data suggests that an original syngenetic massive sulphide lens has been brecciated by later faulting.

In 1993, Teck continued the magnetic surveys and trenching to the south of the original showing however overburden thicknesses are highly variable and Teck was unable to trace the strike extensions of the zone. There is no record of follow up drill testing on the McCarthy Prospect.

Teck Exploration concluded that potential may exist along the mineralized horizon outside of the fault zone for additional massive sulphide mineralization. Based on the stratiform classification proposed by Teck Exploration, the presence of elevated copper values in soils within the main grid area that have not been tested by trenching and the reported presence of magnetic anomalies associated with the mineralized zone it is concluded that the McCarthy zone has potential to host mineralization similar to that developed at the CHU CHUA deposit located approximately 17 kilometers to the south.

The Honeymoon West Property covers all of the ground explored by Teck Exploration and covers approximately 8 kilometers of potential strike extensions to the north of the McCarthy Prospect. Potential down dip extensions of the zone are also included within the Honeymoon West Property.

BC Minfile records indicate that the Honeymoon Prospect is located in the eastern part of the Honeymoon West Property. According to published technical reports the Honeymoon Prospect consists of two areas (Area 1 and Area 2) which exhibit north trending quartz veins containing chalcopyrite, pyrite, galena, sphalerite, some bornite and locally coarse gold. The best results were reported from the veins identified in Area 2. The mineralized veins in Area 2 were identified by Prospecting as part of an exploration program carried out in 1988 by Kerr Addison Mines to explore for potential extensions of the Windpass Mine located approximately five kilometres to the south.

According to published technical reports Kerr Addison Mines collected 28 rock samples from a series of vein outcrops referred to as "Area 2" which are actually located within the boundaries of the Dunn Peak Park immediately south of the southern boundary of the Honeymoon West Property. Several of the rock samples returned anomalous gold and base metal values including gold values of up to $2.9 \mathrm{~g} / \mathrm{ton}$. No other exploration work is known to have been carried out on the Honeymoon Prospect. The Honeymoon West Property includes a large overburden covered area (comprising approximately 2 square kilometres) that covers potential extensions of the mineralized veins identified in "Area 2".

The former Windpass Mine reportedly covers a series of narrow, north trending veins which were developed between 1934 and 1939. A total of 93,455 tonnes of ore were produced yielding $1,071,684$ grams of gold, 53,469 grams of silver and 78,906 kilograms of copper. The Jake Prospect, located approximately 15 kilometres to the northwest of the Property reportedly
identified mineralization similar to the mineralization developed at the Windpass Mine. Rimfire Minerals (Kiska Metals) and Island Arc Resources reportedly tested co-incident soil geochemical anomalies and geophysical anomalies and intersected surface trenching values of $7.70 \mathrm{~g} / \mathrm{t}$ gold and drill intersections of up $11.3 \mathrm{~g} / \mathrm{t}$ gold over 1.25 meters.

The reader is cautioned that there is no assurance that mineralization similar to the Windpass Mine or the Jake Prospect will be identified on the Honeymoon West Property which is the subject of this report. The information concerning the former Windpass Mine and the Jake Prospect is included solely to provide the reader with an example of the type of mineralization which may be present on the property.

ITEM 12: EXPLORATION WORK COMPLETED IN JULY 2010 (SOW 4781151 and SOW 4781138)

The only previous exploration work carried out on the Honeymoon West claim group by Black Mountain Mining Corp. consisted of a brief property visit by the author and compiling a GIS database for the McCarthy and Honeymoon areas including digitizing the UTM locations of the geochemical samples collected by Barrier Reef Resources and Esso Resources, Kerr Addison Mines and Teck Exploration and entering the geochemical data for zinc, lead, copper, silver and gold into an xls database (see Appendix 1, 2 and 3).

This report describes the results of an exploration program carried out in July 2010. The work program involved completion of a soil geochemical survey designed to verify the exploration work on the McCarthy Prospect reported by Teck (109 samples were collected), geological sampling of a gossan zone located within the soil geochemical survey area (3 samples), compilation of historic exploration work and preparation of this technical report. This exploration work was filed in two separate SOW's (SOW 4781151 and SOW 4781138) as a result of a filing error. All work should have been included on a single SOW. The total cost recorded on the Statements of work was $\$ 9,643$ however this only included the field work portion of the costs. The costs of preparing the report were not included on the Statement of Work.

Soil sampling was completed along 20 meter spaced lines east - west oriented lines. Samples were collected from depths of approximately 30 to 50 cm using soil augers at intervals of 10 meters along the grid lines. Samples were submitted to ALS Chemex for analysis. Figure 6 shows the location of the 2010 samples relative to the historic sampling completed by Teck. Figure 6A is a detailed map showing the sample id numbers. Figure 6B shows the copper values for each of the soil samples. Assay results for the soil samples are included as Appendix A. Assay results for the rock samples are included as Appendix B.

Copper in soil values range from trace levels to a high of $1,370 \mathrm{ppm}$. There is cluster of anomalous values in the north western part of the grid area that appears to reflect the mineralized zone identified by Teck.

ITEM 12A: STATEMENT OF COSTS - SOW 4781151 and SOW 4781138

Project mobilization (Vancouver to Clearwater)
Pro-rated as part of a larger exploration program \$ 300.00
Equipment charges for verification sampling program-GPS, sat phone, radios geochemical sampling supplies, augers etc.500.00
Project layout, project prep. and design -C. von Einsiedel - 1 day @ \$600 600.00
Field Geological personnel
James Thom: 2.5 days including pro-rated mobilization costs 1,120.00
Rhonda Viani: 2.5 days 500.00
C. von Einsiedel: 1.2 days including pro-rated mobilization costs 720.00
ALS Chemex charges for analysis of soil verification samples:
Assay report: VA10104818 1,338.54
Assay report: VA10104817 131.51
Vehicle rentals:
2005 F250 4x4 - 2.5 days @ \$150 375.00
2003 E350 Ford Motorhome - 2.5 days @ \$200 500.00
Crew accommodations, meals, fuel and misc. travel expenses 1,218.62
GIS qualified personnel (preparation of technical drawings)
-Dorian Leslie Mapping: 26 hours @ \$60 1,560.00
Preparation of technical Report
-C. von Einsiedel: 1.5 days including 900.00
Charges for printing large format and client report copies 152.75Total Charges for this filing:\$ 9,916.42

ITEM 13: DRILLING

No drilling was carried out by on the Honeymoon West Property by Black Mountain Mining Corp.

ITEM 14: SAMPLING METHOD AND APPROACH

As noted in Section 12 the only previous exploration work that has been carried out was a site visit and database compilation program designed to provide a statistical assessment of the sample results reported by Teck Exploration in 1992. The objective of the current program was to verify the reported soil geochemical results.

ITEM 15: SAMPLE PREPARATION, ANALYSIS AND SECURITY

The published technical reports which detail previous exploration work on the Honeymoon West Property indicate that standard QA and QC procedures were implemented by the laboratories that analyzed the samples and that the variability of all reported analyses are within acceptable industry standards.

ITEM 16: DATA VERIFICATION

The copper in soil geochemical anomalies identified by the geochemical survey completed by Teck Exploration in the McCarthy Prospect area has effectively been verified by the current program. The reported gold values for vein type mineralization identified by Kerr Addison Mines in the Honeymoon Prospect area have not yet been verified. This verification work will form an important part of the proposed Phase 1 program.

ITEM 17: ADJACENT PROPERTIES

There are no significant adjacent properties adjoining the Honeymoon West Property.

ITEM 18: MINERAL PROCESSING AND METALLURGICAL TESTING

There is no mineral processing or metallurgical testing data available from the Honeymoon West Property.

ITEM 19: MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE

There is no mineral resource compliant with CIM Standards on Mineral Resources and Reserves (CIM, 2000) and therefore no NI 43-101 compliant resource for the Honeymoon West Property

ITEM 20: OTHER RELEVENT DATA AND INFORMATION

There is no other relevant data or information concerning the Honeymoon West Property.

ITEM 21: INTERPRETATION AND CONCLUSIONS

Geological maps available online from the Province of British Columbia confirm that the Honeymoon West Property is underlain by the Fennel Formation volcanic and sedimentary rocks. This is the same geological setting that hosts the Chu Chua copper deposit and the former Windpass mine.

In summary, all of the main areas of interest within the Honeymoon West project appear to warrant additional exploration. The results of the trenching completed by Teck Exploration in 1992 and 1993 confirmed that mineralization similar to that developed at Chu Chua is present within the Honeymoon West Property. The values reported for the "copper in soil" anomalies identified to date in the Main Grid Area are consistent with soil geochemical values encountered in other areas of copper mineralization and obviously warrant detailed follow-up. The reported sampling results for the vein mineralization identified in the Honeymoon Prospect Area are well within the range of values typically encountered in peripheral mineralized zones associated with vein type deposits similar to the former Windpass mine and potential extensions of this mineralization should be evaluated.

ITEM 22: RECOMMENDATIONS

Based on the geochemical survey work completed in 2010 and the computer modeling carried out during 2009 it is recommended that the Black Mountain Mining Corp. complete a new geochemical survey of the McCarthy Prospect area using a maximum line spacing of 25 meters in the vicinity of the previous trenching and wide spaced lines (100 to 200 meters) for a minimum of 2 to 3 kilometers along the projected strike of the known mineralized area. A vertical soil profile geochemical analysis and deep auger based soil surveys are recommended in this area. In addition it is recommended that Black Mountain Mining Corp. confirm the results reported by Kerr Addison Mines in the Honeymoon Prospect area (referred to as Area 2).

At the McCarthy Prospect the copper mineralization exposed in the discovery area and the trenches excavated by Teck Exploration should be identified and sampled, detailed soil geochemical surveys using deep penetrating augers should be completed in the area of the known mineralization to determine the "geochemical signature" of the mineralized zone. The geochemical anomalies identified by Teck in the Main grid area should be verified and widely spaced east-west oriented lines extending for at least 3 kilometres to the north should be sampled using the deep penetrating augers to determine if potential extensions of the zone can be traced to the north.

For the McCarthy Prospect soil geochemistry program the survey area is estimated at 3.0 square kilometers. Using a sample density of 100 samples per square kilometer (equivalent to 50 meter spaced samples along 200 meter spaced lines) a total of approximately 300 additional soil samples will be required to determine if potential strike extensions exist. This survey area can be easily accessed by the existing access road.

At the Honeymoon Prospect the vein zones sampled by Kerr Addison Mines should be located and several east-west oriented soil survey lines should be completed across the overburden covered area within the Honeymoon West Property to test for north extensions of the veins.

For the Honeymoon Prospect soil geochemistry program the survey area is estimated at 1.5 square kilometers. Using a sample density of 100 samples per square kilometer (equivalent to 50 meter spaced samples along 200 meter spaced lines) a total of approximately 150 additional soil samples will be required to determine if potential strike extensions of the vein zones identified by Kerr Addison are present within the Honeymoon west Property. This area should be accessed via helicopter.

The cost of an initial program of geological work and sampling (Stage 1) is estimated at \$54,000 and the cost of a systematic follow up program (Stage 2), if warranted, is estimated at \$220,000.

Proposed Stage 1 Exploration Program

Engineering and project supervision, reports	$\$ 7,500$
Field costs, vehicle rentals accommodation	7,500
McCarthy Prospect	
-compilation of airborne and ground magnetic data	5,000
-soil sample collection for 300 samples	10,000
-soil sample assays	6,000
Honeymoon Prospect	5,000
-provision for helicopter support	5,000
-soil sample collection for 150 samples	3,000
-soil sample assays	5,000
Contingency @ 10\%	
Total estimated cost of Stage 1	$\$ 54,000$

ITEM 23: SOURCES OF INFORMATION

Everett, C.C., 1983. Geological and geochemical report on Foggy F group. ARIS: 11968
Farmer, R. 1992. Assessment report geology, geochemistry, geophysics and trenching on the McCarthy property. Teck Exploration. ARIS: 22686

Farmer, R. 1993. Assessment report geophysics and trenching on the McCarthy property. Teck Exploration. ARIS: 22916

Fraser, D.C., Dvorak, Z., 1979. Airborne geophysical report. ARIS:7659
Logan, J.M. and Mann, R.K., 2000, Geology and mineralization in the Adams-East Barriere lakes area, south-central British Columbia, 82M/04: British Columbia Ministry of Energy and Mines, Open File 2000-7, 1:100,000.

Paradis, S., Bailey, S.L., Creaser, R.A., Piercey, S.J. and Schiarizza, P., 2006, Paleozoic magmatism and syngenetic massive sulphide deposits of the Eagle Bay assemblage, Kootenay terrane, southern British Columbia, in Colpron, M. and Nelson, J.L., eds., Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 383-414.

Press Release 08-06: Rimfire Minerals, March 19, 2008. Jake Project Drilling Results.
Schiarizza, P. and Preto, V.A., 1987, Geology of the Adams Plateau-ClearwaterVavenby area: B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 88 p.

Schiarizza, P., 1989, Structural and stratigraphic relationships between the Fennell Formation and Eagle Bay assemblage, western Omenica belt, south-central British Columbia: Implications for Paleozoic tectonics along the paleocontinental margin of western North America: M.Sc. thesis, University of Calgary, Calgary, Alberta, 343 p.

Whalen, D., Angus, S., Daley, F., 1988. Assessment report on a Prospecting program covering the Honeymoon 1-16 claims. ARIS: 18582

ITEM 24: CERTIFICATE OF QUALIFIED PERSON

I, Carl von Einsiedel, 8888 Shook Rd., Mission, British Columbia, V2V-7N1, hereby certify that:

1. I am a consulting geologist with an office at 1124-470 Granville Street, Vancouver, British Columbia, V6C 1 V5
2. This certificate applies to the "Technical Report on the Honeymoon West Property" north western British Columbia dated January 25, 2010 prepared for Black Mountain Mining Corp.,
3. I am a graduate of Carleton University in Ottawa, Ontario, Canada in 1987 with a BSc. in Geology. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia. I have practiced my profession as a geologist throughout the world continuously since 1987.
4. I visited the Honeymoon West Property on July 26, 2010. I personally supervised all of the soil geochemical sampling completed during July as well as all of the computer modelling and database compilation for the subject property.
5. In the Independent "Technical Report on the Honeymoon West Property", I am responsible for all sections of the report.
6. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of education, experience, independence and affiliation with a professional association, I meet the requirements of an Independent Qualified Person as defined in National Policy 43-101.
7. I have had no prior involvement with the Property that is the subject of this report.
8. I am not aware of any material fact or material change with respect to the subject matter of the technical report that is not reflected in the Technical Report.
9. I have read National Instrument 43-101, Standards for Disclosure of Mineral Properties. This Technical Report has been prepared in compliance with National Instrument 43-101.
10. As of the date of this certificate, to my the best of my qualified knowledge, information and belief, this technical report contains all the scientific and technical information that is required to be disclosed to make the report not misleading.
11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public files on their websites accessible by the public.

Dated at Vancouver, B.C. this 28th day of October, 2010

Carl von Einsiedel, P.Geo.

ITEM 26: ILLUSTRATIONS

APPENDIX A: ALS CHEMEX CERTIFICATE VA10104818: Soil sample analyses

CERTIFICATE VA10104818

Project: Honeymoon West

P.O. No.:

This report is for 112 Soil samples submitted to our lab in Vancouver, BC, Canada on 30-JUL-2010.
The following have access to data associated with this certificate: CARLV. EINSIEDE!

To: RAM EXPLORATION LTD.
ATTN: CARL V. EINSIEDEL
8888 SHOOK ROAD
MISSION BC VZV 7N1

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI-21 Received Sample Weight EXTRA-01 Extra Sample received in Shipment LOG-22 Sample login - Rcd w/o BarCode SCR-41 Screen to-180um and save both ALS CODE ANALYTICAL PROCEDUPTION ME-ICP41 35 Element Aqua RegialCP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

CERTIFICATE OF ANALYSIS VA10104818

| Sample Description | Method Analyte Units LOR | wel-21 Recud Wt kg 0.02 | $\begin{gathered} \mathrm{ME} E-\mathrm{ICP41} \\ \mathrm{Ag} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$ | $\begin{gathered} \text { ME:ICP } 4\} \\ \text { A1 } \\ \% \\ \% .01 \end{gathered}$ | ME-ICP41
 As ppm 2 | ME-ICP41
 B p pm
 10 | ME-ICP4I
 Ba
 ppm
 10 | ME-ICP4
 Be
 ppm
 0.5 | ME-ICP4
 Bi
 ppm
 2 | ME-ICP4
 Ca
 $\%$ | ME-\|CP4|
 cd
 ppm
 0.5 | ME-ICP4
 Co ppm | $\begin{gathered} \text { ME:ICP41 } \\ C r \\ \text { ppim } \end{gathered}$ | ME-1CP4
 Cu ppm | $\begin{gathered} \text { ME-ICP4] } \\ F \mathrm{Fe} \\ \% \\ \% .01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP4 } 1 \\ \text { Ca } \\ \text { ppm } \\ 10 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1250 E 2620 N | | 0.24 | 0.4 | 2.17 | 9 | <10 | 240 | <0.5 | <2 | 0.35 | <0.5 | 12 | 35 | 31 | 2.43 | 10 |
| 1260 E 2620 N | | 0.18 | 0.2 | 1.95 | 6 | <10 | 240 | <0.5 | <2 | 0.48 | 0.7 | 12 | 34 | 59 | 2.41 | 10 |
| 1270E 2620N | | 0.32 | 0.2 | 1.62 | 11 | <10 | 350 | <0.5 | <2 | 0.46 | 0.5 | 22 | 52 | 381 | 3.46 | <10 |
| 1280 E 2620 N | | 0.28 | 0.2 | 1.54 | 8 | <10 | 160 | <0.5 | <2 | 0.43 | <0.5 | 14 | 47 | 50 | 2.54 | <10 |
| 1290 E 2620 N | | 0.32 | 0.4 | 1.81 | 14 | <10 | 440 | <0.5 | <2 | 0.51 | <0.5 | 20 | 54 | 463 | 3.41 | <10 |
| 1300 E 2620 N | | 0.40 | 0.4 | 1.97 | 15 | <10 | 510 | <0.5 | <2 | 0.43 | <0.5 | 28 | 69 | 614 | 4.50 | <10 |
| 1310 E 2620 N | | 0.32 | 0.2 | 1.98 | 16 | <10 | 440 | <0.5 | <2 | 0.43 | <0.5 | 27 | 71 | 752 | 4.36 | 10 |
| 1320 E 2620 N | | 0.26 | 0.5 | 2.01 | 15 | <10 | 250 | <0.5 | <2 | 0.51 | 0.5 | 17 | 52 | 74 | 3.24 | <10 |
| 1330 E 2620 N | | 0.40 | 0.6 | 1.70 | 13 | <10 | 210 | <0.5 | <2 | 0.49 | <0.5 | 13 | 44 | 56 | 2.83 | <10 |
| 1340E 2620 N | | 0.34 | 0.4 | 2.06 | 13 | <10 | 300 | <0.5 | <2 | 0.47 | <0.5 | 14 | 37 | 44 | 2.73 | 10 |
| 1350 E 2620 N | | 0.26 | 0.3 | 1.80 | 9 | <10 | 200 | <0.5 | <2 | 0.35 | <0.5 | 12 | 29 | 16 | 2.25 | 10 |
| 1250 E 2640 N | | 0.25 | 0.5 | 2.03 | 11 | <10 | 280 | <0.5 | <2 | 0.47 | <0.5 | 14 | 47 | 82 | 2.79 | 10 |
| 1260 E 2640 NA | | 0.34 | 0.2 | 1.73 | 9 | <10 | 180 | <0.5 | 2 | 0.31 | <0.5 | 12 | 46 | 38 | 2.83 | <10 |
| 1260 E 2640 NB | | 0.26 | 0.2 | 1.69 | 10 | <10 | 190 | <0.5 | <2 | 0.32 | <0.5 | 12 | 49 | 63 | 2.74 | <10 |
| $1270 E 2640 \mathrm{~N}$ | | 0.26 | 0.5 | 2.00 | 8 | <10 | 340 | <0.5 | <2 | 0.27 | <0.5 | 15 | 34 | 145 | 2.38 | 10 |
| 1280 E 2640 N | | 0.30 | 0.2 | 1.41 | 14 | <10 | 140 | <0.5 | <2 | 0.29 | <0.5 | 15 | 41 | 91 | 2.52 | <10 |
| 1290 E 2640 N | | 0.16 | 0.2 | 1.48 | 5 | <10 | 190 | <0.5 | <2 | 0.49 | <0.5 | 11 | 28 | 13 | 1.82 | 10 |
| 1300 E 2640 N | | 0.22 | <0.2 | 1.25 | 2 | <10 | 130 | <0.5 | <2 | 0.24 | <0.5 | 9 | 19 | 9 | 1.54 | <10 |
| 1310 E 2640 N | | 0.24 | 0.2 | 1.72 | 6 | <10 | 130 | <0.5 | <2 | 0.37 | <0.5 | 14 | 44 | 29 | 2.52 | <10 |
| 1320 E 2640 N | | 0.28 | <0.2 | 1.66 | 12 | <10 | 150 | <0.5 | <2 | 0.39 | <0.5 | 22 | 63 | 74 | 3.55 | <10 |
| 1330 E 2640 N | | 0.22 | 0.6 | 2.56 | 5 | <10 | 310 | 0.5 | <2 | 0.58 | <0.5 | 13 | 38 | 35 | 2.70 | <10 |
| 1340 E 2640 N | | 0.12 | 0.5 | 1.43 | 5 | <10 | 220 | <0.5 | <2 | 0.92 | 0.6 | 9 | 20 | 18 | 1.51 | <10 |
| 1350 E 2640 N | | 0.16 | 0.3 | 2.02 | 9 | <10 | 270 | <0.5 | <2 | 0.55 | <0.5 | 11 | 34 | 19 | 2.31 | <10 |
| 1250 E 2660 N | | 0.18 | 0.5 | 1.86 | 7 | <10 | 210 | <0.5 | <2 | 0.28 | 0.6 | 13 | 23 | 245 | 1.84 | 10 |
| $1260 \mathrm{E}_{2660 \mathrm{~N}}$ | | 0.32 | 0.7 | 1.80 | 11 | <10 | 1310 | <0.5 | <2 | 0.27 | <0.5 | 41 | 41 | 1370 | 3.43 | 10 |
| 1270 E 2660 N | | 0.24 | 0.8 | 1.87 | 7 | <10 | 1280 | <0.5 | <2 | 0.46 | 0.5 | 36 | 52 | 807 | 3.02 | 10 |
| 1280 E 2660 N | | 0.36 | 0.2 | 1.93 | 8 | <10 | 220 | <0.5 | <2 | 0.38 | <0.5 | 13 | 35 | 24 | 2.17 | 10 |
| 1290 E 2660 N | | 0.30 | 0.3 | 2.17 | 8 | <10 | 290 | <0.5 | <2 | 0.34 | <0.5 | 16 | 38 | 22 | 2.49 | 10 |
| 1300 E 2660 N | | 0.20 | 0.2 | 1.42 | 10 | <10 | 140 | <0.5 | <2 | 0.39 | <0.5 | 16 | 45 | 28 | 2.56 | <10 |
| 1310 E 2660 N | | 0.22 | 0.4 | 2.54 | 8 | <10 | 200 | 0.5 | <2 | 0.39 | <0.5 | 20 | 28 | 38 | 2.30 | 10 |
| 1320 E 2660 N | | 0.20 | 0.2 | 2.54 | 13 | <10 | 210 | 0.5 | <2 | 0.28 | 0.6 | 21 | 19 | 19 | 2.58 | <10 |
| 1330E 2660N | | 0.20 | 0.4 | 3.08 | 12 | <10 | 220 | 0.7 | <2 | 0.46 | 0.5 | 11 | 23 | 36 | 2.33 | 10 |
| 1340 E 2660 N | | 0.24 | 0.5 | 2.12 | 8 | <10 | 320 | <0.5 | <2 | 0.61 | 0.6 | 15 | 47 | 67 | 2.90 | 10 |
| 1350E 2560N | | 0.32 | 0.8 | 2.54 | 18 | <10 | 350 | 0.5 | <2 | 0.52 | <0.5 | 17 | 60 | 70 | 3.55 | 10 |
| 1250 E 2680 N | | 0.40 | <0.2 | 2.04 | 11 | <10 | 180 | <0.5 | <2 | 0.41 | <0.5 | 15 | 47 | 611 | 3.06 | 10 |
| 1260E 2680N | | 0.26 | 0.2 | 1.71 | 7 | <10 | 170 | <0.5 | <2 | 0.32 | <0.5 | 13 | 34 | 104 | 2.42 | 10 |
| 1270 E 2680 N | | 0.30 | 0.2 | 2.51 | 10 | <10 | 280 | <0.5 | <2 | 0.31 | <0.5 | 19 | 48 | 266 | 3.41 | 10 |
| 1280 E 2680 N | | 0.38 | 0.3 | 1.99 | 6 | <10 | 290 | <0.5 | <2 | 0.35 | <0.5 | 16 | 31 | 15 | 2.33 | 10 |
| 1290 E 2680 N | | 0.38 | 0.2 | 2.00 | 7 | <10 | 760 | <0.5 | <2 | 0.54 | <0.5 | 35 | 70 | 183 | 4.74 | 10 |
| 1300 E 2680 N | | 0.34 | <0.2 | 1.31 | 5 | <10 | 160 | <0.5 | <2 | 0.24 | <0.5 | 13 | 24 | 12 | 184 | <10 |

CERTIFICATE OF ANALYSIS VA10104818

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \mathrm{~K} \\ \% \\ 0 .[1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ M g \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { MEICP4 } \\ M n \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-FCP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \quad P \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { Ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ 5 \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \text { Sb } \\ \text { pprn } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{ME}-1 \mathrm{CP} 41 \\ \mathrm{Sr} \\ \mathrm{ppm} \\ \vdots \end{gathered}$	$\begin{gathered} \text { ME-ICP } 41 \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$
1250E 2620N		<1	0.08	10	0.46	450	4	0.02	32	570	12	0.02	<2	3	16	<20
1260 E 2620 N		<1	0.10	10	0.45	513	<	0.02	30	620	13	0.02	<2	3	21	<20
1270E 2620N		<1	0.09	10	0.87	551	1	0.01	35	520	16	0.03	<2	6	21	<20
1280E 2620N		1	0.08	10	0.76	377	<1	0.01	28	250	12	0.02	<2	4	17	<20
1290E 2620N		<1	0.09	10	0.86	545	1	0.02	36	370	21	0.04	<2	6	23	<20
1300 E 2620 N		1	0.09	10	1.11	636	1	0.01	45	490	19	0.04	<2	8	21	<20
1310 E 2620 N		1	0.09	10	1.14	693	1	0.01	48	510	20	0.03	<2	8	22	<20
1320E 2620N		<1	0.13	10	0.77	750	1	0.01	38	500	25	0.02	<2	5	25	<20
1330 E 2620 N		1	0.06	10	0.67	537	<1	0.01	32	290	14	0.02	<2	4	21	<20
1340 E 2620 N		<1	0.08	10	0.52	277	<1	0.02	38	750	16	0.02	<2	3	22	<20
1350E 2620N		<1	0.09	10	0.35	369	<1	0.01	24	1100	12	0.02	<2	2	16	<20
1250 E 2640 N		<1	0.07	10	0.71	343	<1	0.02	34	290	12	0.01	<2	5	21	<20
1260E 2640N A		1	0.06	10	0.77	292	<1	0.01	28	200	9	0.01	<2	3	13	<20
1260 E 2640 NB		1	0.06	10	0.81	311	<1	0.02	28	200	10	0.02	<2	4	14	<20
1270E 2640N		1	0.08	10	0.49	397	<1	0.02	31	750	10	0.02	<2	3	13	<20
1280 E 2540 N		<1	0.07	10	0.66	455	<1	0.01	25	500	9	0.01	<2	3	13	¢20
1290 E 2640 N		<1	0.08	10	0.44	553	<1	0.02	26	600	9	0.03	<2	2	20	<20
1300 E 2640 N		<1	0.06	<10	0.25	333	<1	0.02	18	530	7	0.02	<2	1	12	<20
1310 E 2640 N		<1	0.06	10	0.71	539	<1	0.01	30	240	12	0.01	<2	3	16	<20
1320 E 2640 N		<1	0.08	10	0.97	571	1	0.01	33	410	14	0.02	<2	5	19	<20
1330 E 2640 N		1	0.11	10	0.49	613	<1	0.02	37	600	17	0.02	<2	4	26	<20
1340 E 2640 N		<1	0.07	10	0.24	641	<1	0.02	23	680	12	0.06	<2	2	33	<20
1350 E 2640 N		1	0.08	10	0.48	527	<1	0.02	27	620	13	0.02	<2	3	25	<20
1250E 2660N		1	0.06	<10	0.29	162	<1	0.02	32	310	8	0.02	<2	2	13	<20
1260E 2660 N		1	0.06	10	0.57	571	5	0.02	39	410	22	0.09	<2	4	17	<20
1270 E 2660 N		1	0.10	10	0.61	590	7	0.03	46	640	18	0.06	<2	4	21	<20
1280 E 2660 N		1	0.08	10	0.52	274	<1	0.01	30	230	8	0.01	<2	3	17	<20
1290 E 2660 N		1	0.09	10	0.55	418	<1	0.02	39	520	12	0.01	<2	3	17	<20
1300 E 2660 N		<1	0.06	10	0.71	793	<1	0.01	27	400	13	0.02	<2	3	16	<20
1310 E 2660 N		1	0.06	10	0.36	474	1	0.02	45	1010	10	0.03	<2	2	18	<20
1320 E 2660 N		1	0.05	10	0.29	1360	<	0.02	21	2570	10	0.04	<2	2	15	<20
1330 E 2660 N		<1	0.05	10	0.27	974	<1	0.02	25	1890	9	0.04	<2	2	24	<20
1340 E 2660 N		<1	0.10	20	0.61	1620	<1	0.03	42	380	27	0.01	<2	5	27	<20
1350 E 2660 N		<1	0.10	10	0.85	390	<1	0.03	46	300	24	0.01	<2	8	25	<20
1250E 2680N		61	0.04	10	0.72	265	<1	0.02	56	180	16	<0.01	<2	5	17	<20
1260E 2680N		<1	0.06	10	0.52	277	<1	0.02	34	220	12	0.01	<2	2	13	<20
1270E 2680N		<1	0.07	10	0.78	278	<1	0.03	55	320	14	0.01	<2	4	15	<20
1280E 2680N		<1	0.08	<10	0.43	567	<1	0.02	39	490	13	0.01	<2	2	17	<20
1290E 2680N		<1	0.04	<10	1.05	754	1	0.05	48	600	9	0.02	<2	6	28	<20
1300 E 2680 N		<1	0.05	10	0.31	336	<1	0.03	23	520	10	0.01	<2	2	13	<20

ALS Canada Ltd

Sample Description	Method Analyte Units LOR	$\begin{gathered} M E-I C P 41 \\ T i \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \mathrm{~T} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} M E-I C P 41 \\ U \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{V} \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ W \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \mathrm{Zn} \\ \text { ppm } \\ 2 \\ \hline \end{gathered}$
1250 E 2620 N		0.13	<10	<10	46	<10	149
1260 E 2620 N		0.12	<10	<10	48	<10	180
1270E 2620N		0.13	<10	<10	59	<10	118
1280 E 2620 N		0.13	<10	<10	53	<10	68
1290 E 2620 N		0.13	<10	<10	61	<10	130
1300E 2620N		0.13	<10	<10	73	<10	98
1310 E 2620 N		0.13	<10	<10	72	<10	87
1320 E 2620 N		0.12	<10	<10	59	<10	90
1330E 2620N		0.14	<10	<10	53	<10	60
1340 E 2620 N		0.12	<10	<10	52	<10	91
1350E 2620N		0.12	<10	<10	42	<10	113
1250E 2640N		0.15	<10	<10	54	<10	89
1260 E 2640 NA		0.17	<10	<10	55	<10	75
1260 E 2640 NB		0.16	<10	< 10	56	<10	70
1270 E 2640 N		0.12	<10	<10	44	<10	155
1280E 2640N		0.13	<10	<10	51	<10	84
1290 E 2640 N		0.11	<10	<10	38	<10	84
1300 E 2640 N		0.10	<10	<10	34	<10	68
$1310 \mathrm{E}^{2640 N}$		0.14	<10	<10	52	<10	65
1320E 2640 N		0.12	<10	<10	63	<10	54
1330E 2640N		0.12	<10	<10	47	<10	94
1340 E 2640 N		0.08	<10	<10	30	<10	98
1350 E 2640 N		0.11	<10	<10	42	<10	83
1250 E 2660 N		0.11	<10	<10	37	<10	377
1260 E 2660 N		0.13	<10	<10	52	<10	321
1270 E 2660 N		0.12	<10	<10	52	<10	276
1280 E 2660 N		0.14	<10	<10	46	<10	88
1290 E 2660 N		0.13	<10	<10	47	<10	105
1300 E 2660 N		0.13	<10	<10	52	<10	62
1310 E 2660 N		0.13	<10	<10	39	<10	89
1320 E 2660 N		0.12	<10	<10	45	<10	108
1330 E 2660 N		0.11	<10	<10	38	<10	87
1340 E 2660 N		0.11	<10	<10	54	<10	123
1350 E 2660 N		0.15	<10	<10	64	<10	85
1250 E 2680 N		0.17	<10	<10	62	<10	229
1260E 2680N		0.14	<10	<10	54	<10	200
$1270 \mathrm{E}^{2680 N}$		0.15	<10	<10	62	<10	131
1280E 2680N		0.12	<10	<10	47	<10	85
1290 E 2580 N		0.30	<10	<10	94	<10	62
1300 E 2680 N		0.10	<10	<10	42	<10	77

Sample Description	Method Analyte Units LOR	WE:-21 Recve Wit. $\begin{gathered} \mathrm{kg} \\ 0.02 \end{gathered}$	$\mathrm{ME-ICP4} 1$ Ag ppm 0.2	$\begin{gathered} \text { ME-ICP41 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	ME-ICP41 As ppm 2	$\begin{gathered} M E-I C P 41 \\ B \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} M E--C C_{4} \\ \mathrm{Ba} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4I } \\ \text { Be } \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} M E-I C P 4] \\ B i \\ \text { pptm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-fCP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4l } \\ \text { Cd } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-fCP4 } \\ \mathrm{Co} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-CP41 } \\ \text { Cr } \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} M E \cdot!C P 41 \\ C u \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{ME-ICP4} \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Ga } \\ \text { opm } \\ 10 \end{gathered}$
1310 E 2680 N		0.24	0.3	2.24	8	<10	300	<0.5	<2	0.31	<0.5	14	39	20	2.62	10
$1320 E 2580 \mathrm{~N}$		0.16	0.3	2.64	7	<10	200	0.5	<2	0.52	<0.5	12	32	28	2.43	10
1330 E 2680 N		0.20	0.3	2.37	8	<10	370	<0.5	<2	0.78	0.5	15	37	31	2.87	10
1340 E 2680 N		0.26	0.4	2.19	8	<10	210	<0.5	<2	0.46	<0.5	13	45	34	2.78	10
1350E 2680N		0.20	0.6	3.46	11	<10	370	0.7	<2	0.35	<0.5	13	34	23	2.69	10
1250 E 2700 N		0.14	0.2	2.60	9	<10	240	0.5	<2	0.49	0.5	16	40	243	2.82	10
1260 E 2700 N		0.34	0.2	2.17	12	<10	220	<0.5	<2	0.74	0.5	19	50	901	3.21	10
$1270 E^{2700 N}$		0.16	0.3	1.86	9	<10	250	<0.5	<2	0.30	0.6	16	26	48	2.35	10
1280E 2700N		0.16	0.2	1.34	5	<10	170	<0.5	<2	0.30	<0.5	11	22	9	1.79	10
1290 E 2700 N		0.15	0.4	1.91	7	<10	470	<0.5	<2	0.52	1.2	24	39	36	2.44	10
1300 E 2700 N		0.20	0.5	2.05	7	<10	250	<0.5	<2	0.93	0.7	27	38	27	2.74	10
1310E 2700 N		0.20	0.2	2.34	6	<10	200	0.5	<2	0.44	<0.5	27	21	35	2.54	10
1320E 2700N		0.24	0.3	2.52	5	<10	240	0.6	<2	0.25	<0.5	12	31	44	2.59	10
1330E 2700N		0.30	0.2	1.85	10	<10	200	<0.5	<2	0.49	<0.5	14	47	34	2.74	10
1340 E 2700 N		0.20	0.5	1.97	6	<10	270	<0.5	<2	0.90	<0.5	12	26	56	2.11	10
1350 E 2700 N		0.08	0.5	1.90	8	<10	320	<0.5	<2	1.32	0.6	13	31	118	2.08	10
1250E 2720N		0.24	0.5	2.50	23	<10	260	0.5	<2	0.90	<0.5	16	46	175	3.01	10
1260 E 2720 N		0.16	<0.2	1.98	9	<10	170	<0.5	<2	0.74	0.5	13	41	86	2.65	<10
1270 E 2720 N		0.22	0.2	2.52	8	<10	220	0.5	<2	0.65	0.6	17	39	115	2.87	10
1280 E 2720 N		0.34	0.2	1.94	8	<10	170	<0.5	<2	0.51	<0.5	18	38	47	2.62	10
1290E 2720N		0.20	0.2	2.42	18	<10	150	0.5	<2	0.38	<0.5	36	29	30	3.07	10
1300E 2720N		0.14	0.3	1.48	8	<10	220	<0.5	<2	0.52	0.5	8	13	23	1.88	10
1310E 2720N		0.16	0.2	1.51	6	<10	160	<0.5	<2	0.18	<0.5	19	17	17	1.99	10
1320 E 2720 N		0.14	0.3	3.47	13	<10	130	0.7	<2	0.36	<0.5	22	21	39	3.29	10
1330 E 2720 N		0.18	0.3	2.87	13	<10	300	0.5	<2	0.53	<0.5	14	45	48	2.99	10
1340 E 2720 N		0.28	0.3	2.82	10	<10	190	0.6	<2	0.30	<0.5	17	34	48	2.90	10
1350 E 2720 N		0.10	0.6	1.86	7	<10	350	<0.5	<2	1.25	0.9	13	20	92	1.76	<10
1250 E 2740 N		0.10	0.2	1.30	7	<10	110	<0.5	<2	0.33	<0.5	9	18	7	1.74	10
1260 E 2740 N		0.16	0.3	1.88	11	<10	160	<0.5	<2	0.41	<0.5	11	25	11	2.11	<10
1270 E 2740 N		0.12	0.3	1.93	12	<10	140	<0.5	2	0.42	<0.5	12	26	16	2.30	10
1280 E 2740 N		0.20	<0.2	2.15	11	<10	140	<0.5	2	0.43	<0.5	16	47	73	3.19	10
1290 E 2740 N		0.30	<0.2	3.48	13	<10	180	0.7	<2	0.33	<0.5	19	47	78	3.56	10
1300 E 2740 N		0.16	<0.2	3.14	8	<10	170	0.6	2	0.33	<0.5	28	25	26	2.77	10
1310 E 2740 N		0.10	0.2	3.90	9	<10	180	0.8	2	0.41	0.5	27	28	115	2.92	10
1320 E 2740 N		0.16	<0.2	1.33	9	<10	150	<0.5	<2	0.32	<0.5	13	11	11	2.73	10
1330 E 2740 N		0.16	0.2	1.77	10	<10	200	<0.5	<2	0.65	0.5	10	29	29	2.03	10
1340E 2740N		0.18	0.3	3.02	10	<10	170	0.6	<2	0.37	<0.5	14	31	24	2.79	10
1350E 2740N		0.26	0.3	2.30	13	<10	230	<0.5	2	0.55	<0.5	16	53	41	3.26	10
1250 E 2760 N		0.16	<0.2	1.59	9	<10	180	<0.5	<2	0.38	<0.5	11	25	11	1.93	<10
1260E2760N		0.22	0.5	2.53	12	<10	200	0.5	2	0.35	<0.5	14	39	26	2.62	<10

AlS Canada Ltd
TO:RAM EXPLORATION LTD.
8888 SHOOK ROAD
MISSION BC V2V 7N1

CERTIFICATE OF ANALYSIS VA10104818

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Hg} \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	ME-ICPA $M g$ $\%$ 0.01	$\begin{gathered} M E-I C P 4] \\ M n \\ \mathrm{ppm} \\ 5 \end{gathered}$	METCP41 Mo ppm 1	ME-ICP4T Na $\%$ 0.01	$\begin{gathered} \mathrm{ME-ICP4} 1 \\ \mathrm{Ni} \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{P} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \left.M E-1 C_{4}\right\} \\ S \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Sc} \\ \mathrm{ppm} \\ \vdots \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \text { Sr } \\ \text { PPm } \\ \vdots \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$
1310 E 2680 N		<1	0.07	10	0.60	477	<1	0.03	35	890	17	0.01	<2	3	17	<20
1320 E 2680 N		<1	0.06	10	0.49	405	<1	0.02	28	920	15	0.02	<2	3	22	<20
1330 E 2680 N		<1	0.09	10	0.59	1435	<1	0.03	34	1060	19	0.04	<2	4	34	<20
1340 E 2680 N		1	0.09	10	0.66	285	<1	0.02	33	400	18	0.01	<2	4	20	<20
1350 2 2680 N		1	0.09	10	0.42	479	<1	0.03	36	1340	19	0.02	<2	3	20	<20
1250 E 2700 N		<1	0.07	10	0.56	710	<1	0.03	91	350	16	0.02	<2	4	21	<20
1260 E 2700 N		<1	0.08	10	0.77	894	<1	0.02	79	390	19	0.02	<2	8	27	<20
1270 E 2700 N		1	0.06	10	0.26	1735	<1	0.03	29	1430	16	0.02	<2	1	16	<20
1280 E 2700 N		<1	0.06	<10	0.33	525	<1	0.02	25	390	9	0.01	<2	2	13	<20
1290 E 2700 N		<1	0.06	10	0.35	4990	<1	0.04	43	2260	21	0.02	<2	2	24	<20
1300 E 2700 N		<1	0.06	<10	0.47	1215	<1	0.03	51	1650	12	0.05	<2	3	34	<20
1310 E 2700 N		1	0.04	<10	0.27	1880	<1	0.02	29	1820	10	0.03	<2	2	19	<20
1320E 2700N		1	0.06	10	0.42	808	<1	0.03	29	1600	14	0.01	<2	3	15	<20
1330E 2700N		<1	0.06	10	0.71	452	<1	0.02	28	300	18	0.01	<2	5	19	<20
1340 E 2700 N		<1	0.06	10	0.29	861	<1	0.03	31	550	17	0.04	<2	2	34	<20
1350 E 2700 N		<1	0.07	10	0.39	1095	<1	0.04	45	770	20	0.04	<2	3	49	<20
1250E 2720N		<1	0.07	10	0.63	395	<1	0.03	67	420	19	0.03	<2	5	32	<20
1250E 2720N		<1	0.07	10	0.64	706	<1	0.02	44	350	14	0.02	<2	3	26	<20
1270E 2720N		<1	0.07	10	0.53	805	<1	0.03	80	480	16	0.02	<2	4	2	20
1280E 2720N		1	0.06	10	0.57	570	<1	0.02	67	310	11	0.02	<2	3	20	<20
1290E 2720N		1	0.04	<10	0.35	727	<1	0.02	67	2020	7	0.03	<2	2	17	<20
1300 E 2720 N		<1	0.03	<10	0.09	439	<1	0.02	14	1780	9	0.02	<2	1	24	<20
1310 E 2720 N		<1	0.03	<10	0.17	1150	<1	0.02	22	1630	9	0.02	<2	2	10	<20
1320E 2720N		1	0.04	<10	0.43	591	<1	0.02	40	2970	11	0.03	<2	3	16	<20
1330E2720N		<1	0.07	10	0.61	579	<1	0.03	41	490	21	0.02	<2	5	29	<20
1340 E 2720 N		1	0.06	10	0.43	480	<1	0.02	48	1330	31	0.02	<2	4	17	<20
1350E 2720N		1	0.07	10	0.25	2230	<1	0.04	52	990	14	0.05	<2	2	48	<20
1250E2740N		<1	0.05	<10	0.19	433	<1	0.02	18	500	12	0.02	<2	1	13	<20
1260E 2740N		<1	0.06	<10	0.33	873	2	0.02	25	510	13	0.02	<2	2	14	<20
1270E 2740N		<1	0.07	<10	0.31	430	1	0.02	29	470	12	0.02	<2	2	14	<20
1280E 2740N		<1	0.07	10	0.81	379	1	0.02	38	270	14	0.01	2	6	15	<20
1290E 2740N		<1	0.08	20	0.68	444	1	0.02	46	540	17	0.01	<2	6	15	<20
1300E 2740N		<1.	0.04	10	0.24	783	<1	0.02	40	1800	10	0.02	<2	3	17	<20
1310 E 2740 N		<1	0.06	20	0.33	831	<1	0.03	50	1660	17	0.02	3	5	18	<20
1320E 2740 N		<1	0.04	<10	0.18	868	<1	0.02	9	1200	9	0.02	2	2	14	<20
1330E2740N		<1	0.04	10	0.26	1240	<1	0.02	18	1080	12	0.02	<2	2	32	<20
1340E 2740N		<1	0.06	10	0.38	360	<1	0.02	31	1260	14	0.02	2	3	19	<20
1350 E 2740 N		<1	0.08	10	0.76	485	<1	0.02	30	380	18	0.01	<2	6	24	<20
1250E 2760N		<1	0.07	10	0.33	870	<1	0.02	19	820	12	0.02	<2	2	13	<20
1260E 2760N		<1	0.09	10	0.53	383	<1	0.02	32	640	11	0.01	<2	4	14	4

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME- }-C^{C P} 4 \\ \mathrm{Ti} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \mathrm{ME}-\mathrm{ICP} \mathrm{P}_{4} \\ \mathrm{TI} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ U \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4i } \\ V \\ \mathrm{Ppm} \\ 1 \end{gathered}$	$\begin{gathered} M E-I C P 41 \\ W \\ \text { PFm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$
1310E 2680N		0.10	<10	<10	46	<10	107
1320 E 2680 N		0.11	<10	<10	42	<10	89
1330 E 2680 N		0.09	<10	<10	56	<10	103
1340 E 2680 N		0.13	<10	<10	53	<10	65
1350 E 2680 N		0.13	<10	<10	43	<10	105
1250E 2700N		0.15	<10	<10	50	<10	182
1260E 2700N		0.13	<10	<10	54	<10	198
1270 E 2700 N		0.07	<10	<10	44	<10	215
1280E 2700N		0.10	<10	<10	44	<10	94
1290 E 2700 N		0.09	<10	<10	42	<10	262
1300 E 2700 N		0.10	<10	<10	56	<10	142
1310 E 2700 N		0.11	<10	<10	46	<10	108
$1320 E 2700 \mathrm{~N}$		0.11	<10	<10	46	<10	113
1330 E 2700 N		0.14	<10	<10	54	<10	83
1340 E 2700 N		0.09	<10	<10	38	<10	96
7350 E 2700 N		0.07	<10	<10	35	<10	101
1250E 2720N		0.13	<10	<10	55	<10	69
1260E2720N		0.13	<10	<10	51	<10	79
1270 E 2720 N		0.13	<10	<10	51	<10	241
1280E 2720 N		0.13	<10	<10	53	<10	122
1290E 2720N		0.14	<10	<10	59	<10	119
1300E 2720N		0.07	<10	<10	33	<10	77
1310 E 2720 N		0.11	<10	<10	41	<10	96
1320E 2720N		0.16	<10	<10	66	<10	107
1330E 2720N		0.13	<10	<10	63	<10	77
1340E 2720N		0.12	<10	<10	50	<10	113
-1350E 2720N		0.07	<10	<10	32	<10	127
1250E 2740N		0.11	<10	<10	38	<10	88
1260 E 2740 N		0.13	<10	<10	42	<10	87
1270E 2740N		0.14	<10	<10	51	<10	62
1280E 2740N		0.15	<10	<10	66	<10	59
1290E 2740 N		0.16	<10	<10	66	<10	87
1300 E 2740 N		0.16	<10	<10	48	<10	111
1310 E 2740 N		0.12	<10	<10	48	<10	198
1320 E 2740 N		0.12	<10	<10	60	<10	79
1330 E 2740 N		0.10	<10	<10	42	<10	78
1340 E 2740 N		0.12	<10	<10	50	<10	80
1350 E 2740 N		0.14	<10	<10	61	<10	61
1250 E 2760 N		0.10	<10	<10	38	<10	80
1260 E 2760 N		0.15	<10	<10	47	<10	94

CERTIFICATE OF ANALYSIS VA10104818

Sample Description	Method Analyte Units LOR	WEI-21 Recvd W/ kg 0.02 0.02	ME-ICP4 1 Ag ppm 0.2	ME-1CP4 Al 0.0 ?	ME-ICP4 As ppm 2	ME-HCP 41 B ppm 10 10	$\begin{gathered} \mathrm{ME}-\mathrm{ICP} 41 \\ \mathrm{Ba} \\ \mathrm{ppm} \\ 10 \end{gathered}$	ME-ICP4 1 Be ppm 0.5	ME-ICP4I Bi ppm \qquad	$\begin{gathered} \text { ME-ICP4 } \\ C a \\ \% \\ 0.01 \end{gathered}$	ME-:CP4 Cd ppm 0.5	ME-ICP4 1 Co ppm ppm \vdots	ME-ICP4 3 Cr ppm \qquad	ME-ICP41 Cu ppm 1	ME-ICP4: Fe $\%$ 0.01	$\begin{gathered} M E-1 C P 41 \\ G a \\ \text { ppm } \\ 10 \end{gathered}$
$1270 E 2760 \mathrm{~N}$		0.08	0.2	1.34	10	<10	140	<0.5	<2	0.32	<0.5	8	19	9	1.67	<10
1280 E 2760 N		0.16	0.3	2.54	10	<10	220	<0.5	2	0.39	<0.5	14	33	23	2.55	<10
$1290 E 2760 \mathrm{~N}$		0.14	<0.2	1.63	9	<10	240	<0.5	2	0.38	<0.5	12	36	16	2.31	<10
1300 E 2760 N		0.22	0.2	2.91	21	<10	190	0.5	<2	0.61	<0.5	28	45	40	3.40	10
1310E 2760N		0.14	<0.2	1.45	10	<10	210	<0.5	2	0.56	<0.5	18	29	16	2.34	10
1320 E 2760 N		0.14	0.2	1.87	11	<10	110	<0.5	<2	0.35	<0.5	9	13	20	3.05	10
1330 E 2760 N		0.14	<0.2	1.04	8	<10	140	<0.5	<2	0.37	<0.5	9	18	9	2.04	10
1340 E 2760 N		Not Recyd														
1350 E 2760 N		0.14	0.4	3.09	12	<10	240	0.6	2	0.50	<0.5	11	30	20	2.70	10
1250 E 2780 N		0.48	0.5	1.95	26	<10	150	<0.5	<2	0.35	<0.5	22	61	84	4.08	<10
1260 E 2780 N		0.14	0.2	1.58	9	<10	170	<0.5	2	0.43	<0.5	11	30	11	2.05	10
$1270 E 2780 \mathrm{~N}$		0.24	0.3	3.04	14	<10	370	<0.5	2	0.42	<0.5	15	43	25	2.78	10
1280 E 2780 N		0.20	0.4	2.65	13	<10	240	<0.5	2	0.30	<0.5	13	27	18	2.44	10
1290 E 2780 N		0.18	<0.2	1.68	10	<10	190	<0.5	<2	0.65	<0.5	15	40	28	2.60	10
1300 E 2780 N		0.14	0.2	1.85	7	<10	270	<0.5	2	0.93	<0.5	12	34	30	2.47	10
1310E2780N		0.30	0.4	2.28	10	<10	210	<0.5	2	0.50	<0.5	13	30	21	2.35	10
$1320 E 2780 \mathrm{~N}$		0.18	<0.2	1.28	9	<10	90	<0.5	<2	0.25	<0.5	8	29	8	1.90	10
$1330 E 2780 \mathrm{~N}$		0.24	<0.2	1.70	10	<10	190	<0.5	2	0.35	<0.5	12	34	23	2.40	<10
1340 E 2780 N		0.12	0.2	2.81	13	<10	330	0.5	<2	0.88	<0.5	13	37	26	2.93	10
1350E 2780N		0.28	0.4	1.64	12	<10	350	<0.5	2	0.57	0.9	14	36	23	2.39	<10
1250 E 2800 N		Not Recyd														
1260 E 2800 N		0.18	0.3	1.93	13	<10	240	<0.5	2	0.52	<0.5	12	25	14	2.11	10
$1270 \pm 2800 \mathrm{~N}$		0.22	<0.2	1.55	9	<10	140	<0.5	<2	0.43	<0.5	13	47	19	2.61	<10
$1280 \mathrm{E}^{2800 \mathrm{~N}}$		0.26	0.4	2.35	10	<10	250	<0.5	2	0.43	<0.5	14	36	16	2.44	10
1290 E 2800 N		0.14	0.4	1.96	11	<10	250	<0.5	<2	0.60	<0.5	12	23	11	2.08	10
1300 E 2800 N		0.22	0.4	2.45	8	<10	200	<0.5	2	0.66	<0.5	16	42	34	2.72	10
1310 E 2800 N		0.22	0.8	3.59	11	<10	300	0.7	<2	0.72	<0.5	21	57	157	3.55	10
1320 E 2800 N		Not Recud														
1330 E 2800 N		0.14	<0.2	1.63	7	<10	260	<0.5	<2	0.49	0.5	14	46	22	2.52	<10
1340E 2800 N		0.18	<0.2	1.77	8	<10	210	<0.5	<2	0.64	<0.5	12	39	22	2.48	<10
1350E 2800N		0.36	<0.2	1.94	9	<10	160	<0.5	<2	0.32	<0.5	14	51	21	2.81	10
1320E 1200 N		0.22	<0.2	2.01	5	<10	150	<0.5	<2	0.24	<0.5	16	33	20	2.85	10

Sample Description	Method Analyte Units LOR	$\begin{gathered} \mathrm{ME}-\mathrm{ICP} 4! \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} M E-T C P 41 \\ \mathrm{Mg} \\ \% \\ 0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-ICP4. } \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} M E-I C P 4 l \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ P \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Pb} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-ICP4i } \\ S \\ \% \\ 0.01 \end{gathered}$	```ME-{CP41 Sb ppm 2```	$\begin{gathered} \text { ME-ICP4 } 1 \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{ME-ICP4} 4 \\ \mathrm{Sr} \\ \mathrm{ppm} \\ 1 \end{gathered}$	ME-ICP41 Th ppm 20
1270E 2760 N		<1	0.06	<10	0.23	318	<1	0.02	15	400	10	0.01	2	2	10	<20
1280E 2760N		<1	0.09	10	0.45	391	<1	0.03	38	720	13	0.02	2	3	14	<20
1290E 2760N		<1	0.08	10	0.49	925	<1	0.02	24	320	13	0.01	2	3	14	<20
1300 E 2760 N		<1	0.08	10	0.63	585	1	0.02	72	710	14	0.02	2	4	19	<20
1310E 2760N		<1	0.05	<10	0.27	1450	<1	0.02	18	610	12	0.03	<2	2	17	<20
1320 E 2750 N		<1	0.03	<10	0.23	550	1	0.02	8	1580	9	0.03	<2	2	13	<20
1330 E 2760 N		<1	0.04	<10	0.19	780	<1	0.02	8	1510	7	0.02	<2	1	15	<20
1340 E 2760 N																
1350E 2760N		<1	0.07	<10	0.24	371	<1	0.03	24	2230	16	0.02	<2	2	26	<20
1250 E 2780 N		<1	0.07	10	1.04	493	1	0.02	42	530	36	0.01	2	7	14	<20
1260 E 2780 N		<1	0.09	10	0.42	417	1	0.02	25	670	10	0.02	2	2	15	<20
1270E 2780N		<1	0.08	10	0.52	536	<1	0.02	40	780	14	0.02	2	3	18	<20
1280E 2780N		<1	0.06	10	0.35	408	1	0.03	30	940	13	0.02	2	2	14	<20
1290 E 2780 N		<1	0.07	10	0.59	766	1	0.02	25	470	15	0.03	2	3	24	<20
1300 E 2780 N		<1	0.10	10	0.46	931	1	0.02	25	520	20	0.03	3	4	31	<20
1310 E 2780 N		<1	0.07	10	0.36	508	1	0.02	26	470	14	0.02	2	3	22	<20
1320E 2780N		<1	0.04	10	0.37	155	1	0.02	16	190	9	0.01	2	2	10	<20
1330E 2780N		<1	0.05	10	0.53	898	<1	0.02	19	630	12	0.01	<2	3	16	<20
1340 E 2780 N		<1	0.12	10	0.44	672	<1	0.02	30	1720	21	0.03	3	3	39	<20
1350E 2780N		1	0.08	10	0.50	1990	1	0.02	23	570	18	0.02	2	2	28	<20
1250 E 2800 N																
1260E 2800N		<1	0.06	<10	0.25	975	<1	0.02	26	1740	13	0.02	<2	2	21	<20
1270 E 2800 N		<1	0.06	10	0.77	409	<1	0.01	24	230	12	0.01	2	3	15	<20
1280 E 2800 N		1	0.06	10	0.49	636	1	0.02	30	600	13	0.02	<2	3	16	<20
1290 E 2800 N		<1	0.08	<10	0.32	688	<1	0.02	24	900	13	0.03	3	2	21	<20
1300 E 2800 N		1	0.13	10	0.55	524	<1	0.02	42	420	14	0. 02	2	4	24	<20
3310 E 2800 N		<1	0.10	20	0.65	740	1	0.04	234	500	33	0.02	<2	12	29	<20
1320E 2800N																
1330 E 2800 N		<1	0.09	10	0.68	1425	<1	0.02	31	460	18	0.02	<2	3	18	<20
1340 E 2800 N		<1	0.12	10	0.56	624	<1	0.02	27	550	16	0.01	<2	3	24	<20
1350E 2800N		<1	0.07	20	0.76	299	<1	0.02	31	230	18	<0.01	<2	4	14	<20
1320E 1200N		<1	0.05	10	0.37	403	<1	0.02	40	860	11	0.02	<2	3	9	<20

Project: Honeymoon West
CERTIFICATE OF ANALYSIS VA10104818

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME:CP4 } \\ \mathrm{Ti}_{4} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } 1 \\ \mathrm{Tl} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-:[CP4 }] \\ U \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ V \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ W \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Zn} \\ \text { ppm } \\ 2 \end{gathered}$
1270E2760N		0.11	<10	<10	36	<10	75
1280 E 2760 N		0.14	<10	<10	45	<10	97
1290 E 2760 N		0.13	<10	<10	48	<10	76
1300 E 2760 N		0.17	<10	<10	64	<10	71
1310 E 2760 N		0.13	<10	<10	49	<10	82
1320 E 2760 N		0.14	<10	<10	68	<10	67
1330 E 2760 N		0.13	<10	<10	50	<10	55
1340 E 2760 N							
1350 E 2760 N		0.11	<10	<10	45	<10	89
1250E 2780 N		0.17	<10	<10	72	<10	76
1260E 2780 N		0.11	<10	<10	41	<10	79
1270 E 2780 N		0.14	<10	<10	52	<10	96
1280E 2780N		0.13	<10	<10	42	<10	83
129052780 N		0.11	<10	<10	51	<10	59
1300 E 2780 N		0.10	<10	<10	50	<10	67
1310 E 2780 N		0.13	<10	<10	45	<10	61
1320 E 2780 N		0.13	<10	<10	48	<10	35
1330 E 2780 N		0.13	<10	<10	49	<10	58
1340 E 2780 N		0.12	<10	<10	49	<10	66
1350 E 2780 N		0.10	<10	<10	47	<10	101
1250 E 2800 N							
1260 E 2800 N		0.11	<10	<10	39	<10	89
1270 E 2800 N		0.15	<10	<10	55	<10	55
1280 E 2800 N		0.14	<10	<10	46	<10	90
1290 E 2800 N		0.12	<10	<10	40	<10	106
1300 E 2800 N		0.13	<10	<10	49	<10	74
1310E 2800N		0.15	<10	<10	57	<10	332
1320 E 2800 N							
1330 E 2800 N		0.11	<10	<10	50	<10	95
1340 E 2800 N		0.11	<10	<10	51	<10	83
1350 E 2800 N		0.14	<10	<10	59	<10	80
1320E 1200N		0.11	<10	<10	55	<10	98

APPENDIX B: ALS CHEMEX CERTIFICATE VA10104817: Rock sample Analyses

ALS Canada Ltd
TO: RAM EXPLORATION LTD.

CERTIFICATE VA10104817

Project: Honeymoon West
P.O. No.:

This report is for 3 Rock samples submitted to our lab in Vancouver, BC, Canada on 30- JUL- 2010.
The following have access to data associated with this certificate:
carl V. einsiedel

TO: RAM EXPLORATION LTD.
ATTN: CARL V. EINSIEDEL
8888 SHOOK ROAD
MISSION BC V2V 7N1

[^0]Signature:

Colin Ramshaw, Vancouver Laboratory Manager

minerals

Project: Honeymoon West

TO: RAM EXPLORATION LTD.

Project: Honeymoon West

minerals

[^0]: This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

