ASSESSMENT REPORT

Rock and Soil Geochemical Sampling and Diamond Drilling CZ Property, Cluculz Lake area Central British Columbia

BC Geological Survey Assessment Report 31760

Mineral Tenures: 512724, 512726, 512729, 512732, 512737, 512738, 515927, 515928 (CZ 1-6, 9, 10)

> Omineca Mining Division Latitude 53° 53' 14" N Longitude 123° 26' 23" W ZN 10 471122E, 5971044N NTS Map Sheet 93G/14W

> > **Owner and Operator**

Porpoise Bay Minerals PO Box 1974 Sechelt, BC, Canada V0N 3A0

Report by: Don MacIntyre, Ph.D., P.Eng.

June 25, 2010

TABLE OF CONTENTS

Table of Contents	2
Figures	3
Tables	3
Photos	3
1.0 Introduction	4
2.0 Location and Access	4
3.0 Physiography and Climate	6
4.0 Property Status & Ownership	6
5.0 Exploration History	7
6.0 Regional Geology	10
7.0 Property Geology	11
8.0 Work Done in 2010	12
8.1 Soil geochemistry	12
8.1.1 Procedure	12
8.1.2 Results	14
8.1.3 Interpretation	15
8.2 Lithogeochemistry	15
8.2.1 Procedure	15
8.2.2 Results	18
8.2.3 Interpretation	19
8.3 Diamond Drilling	19
8.3.1 Procedure	19
8.3.2 Results	20
8.3.3 Interpretation	20
9.0 Conclusions and Recommendations	21
10.0 References	22
11.0 Statement of Qualifications	24
Appendix A. Analytical Certificates – Soil Geochemistry	26
Appendix B. Soil Sample location Information and Selected Analytical Results	37
Appendix C. Analytical Certificates – Lithogeochemistry	40
Appendix D. Drill Hole Log	46
Appendix E. Analytical Certificates - Drill Core Samples	48

FIGURES

Figure 1. Location map, CZ Property, British Columbia	5
Figure 2. Access routes and nearby infrastructure for the CZ property	5
Figure 3. Mineral tenure map, CZ property	7
Figure 4. Regional geological setting, CZ Property.)
Figure 5. Property geology, CZ claims. Map compiled by D.G. MacIntyre from historical data1	1
Figure 6. Location of soil samples collected in April 201012	3
Figure 6. Proportional symbol plot for Au concentrations in soil, CZ property10	5
Figure 7. Proportional symbol plot for Cu concentrations in soil, CZ property17	7
Figure 8. Location of lithogeochemical samples collected in 2010, CZ property18	3
Figure 9. Drill hole location map, CZ property	1
Figure 10. 1:2,500 scale map showing location of soil samples and values for Au in ppb54	1
Figure 11. 1:2,500 scale map showing location of soil samples and values for Cu in ppm55	5

TABLES

Table 1. Mineral tenures in good standing, CZ property.	6
Table 2. Summary of analytical results	14
Table 3. Soil samples with Au concentrations >90 th percentile	15
Table 4. Analytical results for lithogeochemical samples.	18
Table 5. Analytical results for drill core samples collected from DDH CZ-10-2	20
Рнотоя	
Plate 1. Drill site CZ-10-2 after drilling was completed	19

Plate 1. Drill core of strongly foliated and tectonized graphitic mudstone and siltstone from drill hole CZ-10-2, CZ property					
	Plate 1. Drill core of strongl	y foliated and tectonized	graphitic mudstone	and siltstone from	n drill hole
	0		0 1		

1.0 INTRODUCTION

The CZ mineral exploration property is comprised of 8 contiguous mineral claims that cover an area of 1773 hectares between Cluculz and Bednesti Lakes in central British Columbia. These tenures cover the Jen showing (MINFILE No. 093G 043) which was discovered in 1984. Access is provided by Highway 16 and the all-weather Bobtail Forest Service Road. The CZ property is owned by Porpoise Bay Minerals Ltd. (Porpoise Bay), a private mineral exploration company with its main office located in Sechelt, BC.

Soil sampling by Porpoise Bay Minerals and previous operators has defined an area of anomalous gold values that straddles Highway 16. An additional 109 soil and 9 rock chip samples were collected from this area between April 7-22, 2010. One short, 36.27 metre drill hole located approximately 3 kilometres south of the area of anomalous soils was also completed and this intersected unmineralized, metamorphosed siltstone, mudstone and chert presumably of the Permian to Triassic Cache Creek formation. Three selected drill core samples were also submitted for assay. The total cost of the work done on the property as documented in this report was \$15,837.50. On May 10, 2010 Porpoise Bay filed a Statement of Work (SOW) with the BC Ministry of Energy, Mines and Petroleum Resources for \$15,827.62 (MTO event no. 4631412) to be applied against the claims. This assessment report has been prepared in support of this filing.

2.0 LOCATION AND ACCESS

The CZ property is located approximately 45 kilometres west of Prince George and 42 kilometres east of Vanderhoof, within the Nechako Plateau region (Figure 1) of central British Columbia. The property is situated on NTS mapsheet 93G/14W. The center of the area discussed in this report is located at approximately Latitude 53° 53' 14" N Longitude 123° 26' 23" W. The property covers the area between Cluculz and Bednesti lakes. These are popular recreational lakes with numerous cabins located along the shoreline. Highway 16, a paved two lane highway, cuts east-west through the northern part of the claim block. Two gravel roads, Lloyd drive and the Bobtail Forest Service Road (FSR) connect with Highway 16 and provide access to the central and southern parts of the claims. A number of old logging roads and trails are also present and provide additional access where they are not too overgrown. Recently the Bobtail FSR has been realigned to use a new concrete overpass that crosses Highway 16. Also, a major hydro power line cuts across the northern part of the property and provides additional access.

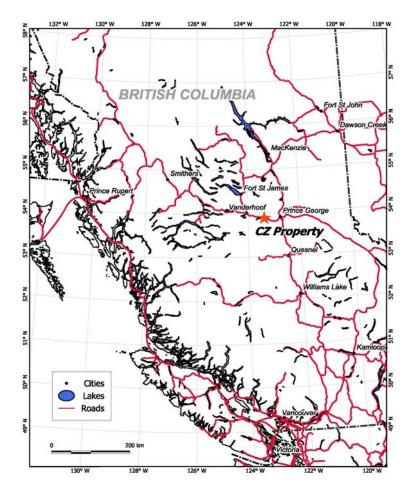


Figure 1. Location map, CZ Property, British Columbia

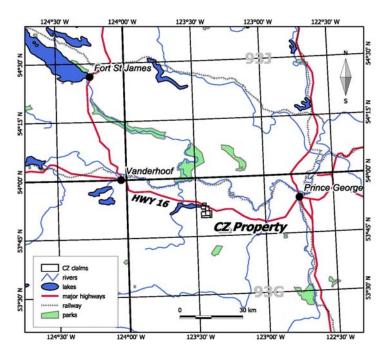


Figure 2. Access routes and nearby infrastructure for the CZ property.

3.0 PHYSIOGRAPHY AND CLIMATE

The CZ property is within the Nechako Plateau sub-unit of the Interior Plateau and is characterized by subdued relief and rounded or flat-topped mountains with long, straight slopes. This topography is largely the result of the recessive nature of the metasedimentary rocks composing this belt, and the slow and continuous erosion over most of the past 100 million years.

The CZ property lies in an area of heavy glacial overburden cover, with the exception of what appears to be an old river channel to the east of Cluculz Lake. This has produced a steep scarp to the north, visible along the highway and a gentler slope on the south scarp. This cut has exposed some outcrop along the highway and to the east of Cluculz Lake. Throughout this area, the overburden cover is fairly thin and amenable to soil geochemistry.

The area is covered by second growth fir and pine which in some areas has been logged. Most of the pine on the property has been killed by the recent Mountain Pine beetle infestation.

Elevations on the property range from 767 metres above sea level at Cluculz Lake to 880 metres near the center of the claims.

The area has been glaciated as evidenced by extensive glacial deposit which have left a thin veneer of unconsolidated glacio-fluvial material which mantles bedrock resulting in less than 5% exposed bedrock.

This area supports several species of wildlife, including wolf, black bear and ungulates. Moose and deer are present throughout the area.

The climate of the property is strongly influenced by its location in the Coast Mountain rainshadow and is characterized by cold, dry winters and warm, dry, short summers. The average maximum and minimum temperatures recorded at Vanderhoof are 8.9° C and -3.9° C, respectively. Precipitation is mainly in the form of snow with average annual accumulation of between 1.0 and 2.0 metres. The average annual snowfall for Vanderhoof is 196.9 cm whereas the annual number of frost free days is 54 days. Similar climatic conditions are assumed to apply to the CZ property.

Tenure	Claim	Good	
Number	Name	Until	Area (ha)
512724	CZ 1	02-Jul-11	19.062
512726	CZ 2	02-Jul-11	57.187
512729	CZ 3	02-Jul-11	285.994
512732	CZ 4	02-Jul-11	381.363
512737	CZ 5	02-Jul-11	381.571
512738	CZ 6	02-Jul-11	476.94
515927	CZ 9	02-Jul-11	19.062
515928	CZ 10	02-Jul-11	152.477
			1773 656

Table 1. Mineral tenures in good standing, CZ property.

1773.656

4.0 PROPERTY STATUS & OWNERSHIP

The CZ property is comprised of eight (8) contiguous mineral claims totaling 1773.66 hectares of subsurface rights in the Omineca Mining Division (Figure 2). The individual claims and their

respective anniversary dates are shown in Table 1. All of the claims are owned 100% by Porpoise Bay Minerals Ltd., a private junior exploration company formed by Rupert Seel and several partners.

There are no known surface tenure rights over the mineral dispositions. There is a forest tenure for a broad area that encompasses the CZ property. There may also be private woodlots in the area but forest tenure would not be expected to preclude timber removal or inhibit future mineral development.

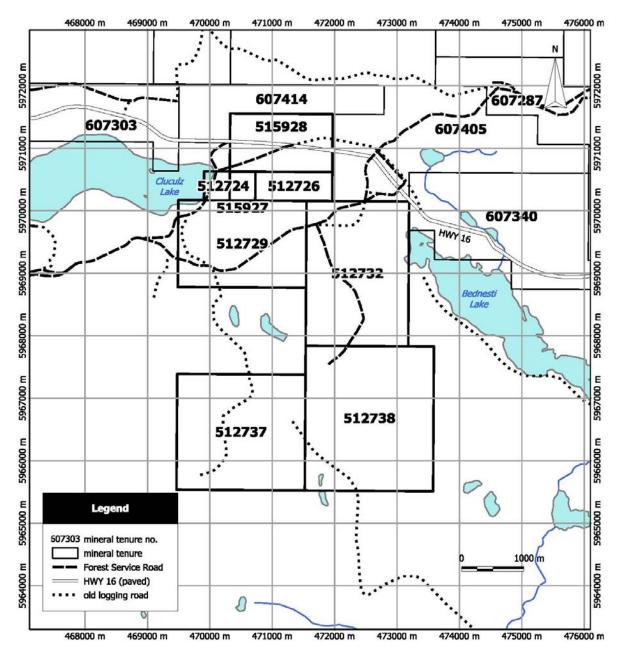


Figure 3. Mineral tenure map, CZ property. Map prepared by D.G. MacIntyre from B.C. Ministry of Energy, Mines and Petroleum Resources Mineral Titles On-Line website.

5.0 EXPLORATION HISTORY

The following summary of exploration history for the CZ (Jen) property is modified from the BC Minfile database.

On the Jen property, Geologic mapping outlined several areas of vuggy quartz veining within phyllitic and andesitic units in the area of the structural trend. The area is underlain by Pennsylvanian to Triassic rock of the Cache Creek Complex. Drilling outlined several highly altered, bleached zones with 2-15 per cent vuggy chalcedonic quartz veining with very low gold values. The highest drill hole assay from 1988 was 1.8 grams per tonne gold over 1.0 meters (Maxwell and Bradish, 1989). Chip sampling yielded an assay of 4.6 grams per tonne gold over 1.5 meters (Maxwell and Bradish, 1989).

The Jen claims were originally staked by Colin Campbell in 1984 to cover an area that indicated anomalous gold geochemistry in soil and rocks. The property was optioned from the owner in 1987 by Noranda Exploration Company, Limited. An exploration program consisting of 60 kilometres of flagged grid line was established, 50 kilometres of mag survey, 2 kilometres of I.P. survey, 286 "B" horizon soil samples and detail mapping was completed in 1988. Further follow up work was conducted later in the year which included geologic mapping, collecting 407 "B" horizon soil samples, 30 kilometres of ground magnetic survey, 4.7 kilometres of further I.P. survey all on a 60 kilometre flagged grid. Work on the property also included the drilling of 8 diamond drill holes totalling 655.0 meters. The grid surveys identified a strong northeast-trending structure at 070° outlined by gold soil geochemistry anomalies scattered over 800 meters of strike length and 200 meters wide. The magnetic survey also identified a northwest trending fault structure. However, results of the diamond drilling program were disappointing and Noranda dropped the claims. In 2006, Seel Enterprises Ltd collected 12 rock and 538 soil samples on its CZ claims, which covered the old Jen claim area (Seel, 2006). In 2008, a total of 366 metres of percussion drilling in 26 holes was done on the property mainly to test some anomalous concentrations of gold in soil samples (Seel, 2008). Assay results for the 57 chip samples collected from this reconnaissance drilling program were generally low.

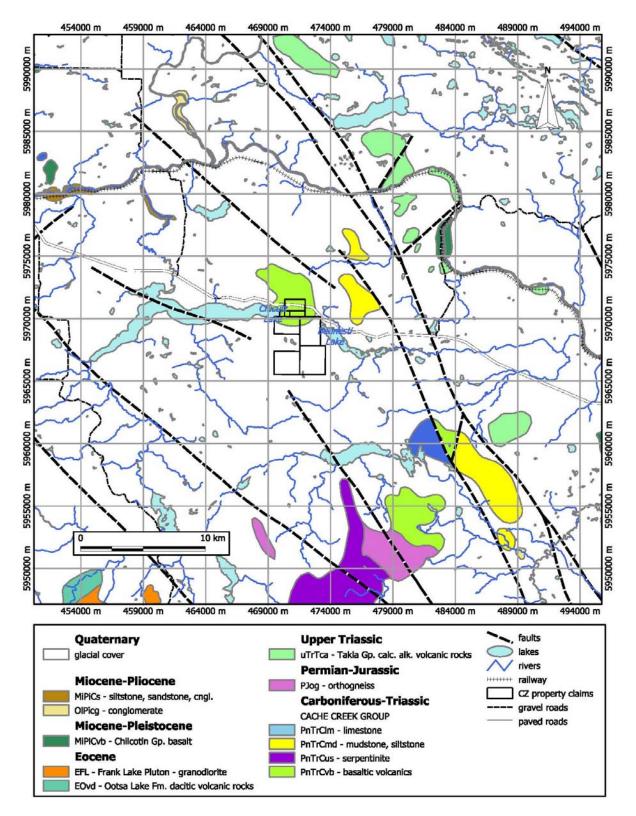


Figure 4. Regional geological setting, CZ Property. Map prepared by D.G. MacIntyre from the Digital Geology Map of British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources Geofile 2005-2.

6.0 REGIONAL GEOLOGY

The regional geological setting of the CZ property is shown in Figure 4. The CZ property is located within the Intermontane Superterrane which is comprised of several unrelated terranes (including the Stikine, Quesnel, Slide Mountain and Cache Creek terranes) that were amalgamated approximately 180 million years ago, prior to their emplacement onto western North America.

Stikinia is composed of a linear belt of mainly Upper Paleozoic to Early Jurassic volcanic rocks that formed in an island arc setting. Quesnellia is an early Mesozoic accretionary complex composed of sedimentary and volcanic rocks that are the same age and similar to those in Stikinia. The Slide Mountain and Cache Creek terranes are composed of volcanic rocks that formed on the oceanic sea floor, as well as overlying successions of chert, limestone and shale. These terranes are similar in age and range from 320 to 190 million years old. The Slide Mountain Terrane represents the remnants of an ocean floor that once separated the Quesnel Terrane from North America. Similarly, the Cache Creek Terrane represents the remnants of an ocean floor that once existed between the Stikine and Quesnel terranes. The boundary between the Cache Creek and Quesnel terranes is believed to be marked by deep-seated crustal faults such as the Pinchi Fault, a long regional fault system that is associated with a variety of mineral deposits. Northwest and northeast trending high angle faults occur throughout the region and form prominent lineaments. These faults are mostly related to Eocene or younger block faulting.

Some rock assemblages mapped in the Intermontane Superterrane are believed to be postaccretionary. The post-accretionary assemblages are generally granitic plutonic rocks that intrude two or more terranes, or volcanic or sedimentary rocks that are deposited on or across two or more terranes. The granitic plutonic rocks are grouped into suites according to their age and composition. Overlap sedimentary rocks (less than 150 million years old) are composed of coarse clastic rocks deposited locally on rocks belonging to the Stikine and Quesnel terranes.

The region's youngest volcanic rocks are undeformed plateau basalts that occur as thin cover on older rocks in the region. The Chilcotin Group basalts are typically less than 25 m thick but locally can be much thicker depending on the paleo-drainage relief.

The Cache Creek Terrane (CCT) in central British Columbia, forms a fault-bounded, north-trending tectonically intercalated package of sedimentary rocks, limestone and subordinate oceanic metavolcanic and plutonic ultramafic rocks. These rocks are believed to occupy the Pinchi suture zone between the Stikine and Quesnel terranes (Struik et al, 2001). The eastern margin of the CCT is marked by the Pinchi Fault. This structure appears to be an early Tertiary strike-slip fault that follows the approximate trace of the contact between the CCT and Quesnel terrane and may be controlled by the deeper-seated lithospheric discontinuity of the Pinchi Suture.

The CCT in the area of the CZ property consists mainly of Upper Carboniferous to Lower Jurassic limestone, basalt, ribbon chert, ultramafite, gabbro, greywacke, siltstone and slate of the Cache Creek formation that is thrust westward over rocks of the Stikine Terrane. The Cache Creek formation is interpreted to be the remnants of a Triassic–Jurassic subduction complex which was caught between the colliding blocks of the Quesnel and Stikine terranes. The complex appears to be rooted in the Pinchi Suture and have been thrust westward over Stikine Terrane along an east-dipping fault (Simandl and Ogden, 1999; Hora, 1997).

Several large ultramafic bodies are exposed within the Cache Creek formation and typically consist of harzburgite with subordinate dunite and pyroxenite or their serpentinized equivalents. These rock units are believed to represent residual upper mantle material that was tectonically emplaced. The ultramafic bodies tend to form topographic highs and may represent relatively flat-lying thrust sheets.

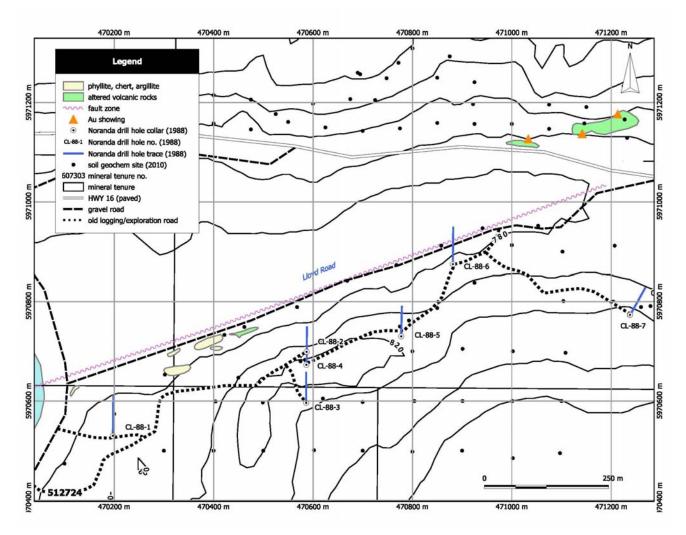


Figure 5. Property geology, CZ claims. Map compiled by D.G. MacIntyre from historical data.

7.0 PROPERTY GEOLOGY

The CZ claims are underlain by altered andesitic volcanics and highly tectonized pelitic sediments that are interpreted to be part of the Carboniferous to Triassic Cache Creek formation. The volcanics are predominately andesites whereas the metasediments consist mainly of thin-bedded chert, siliceous and graphitic phyllite, mudstone and siltstone. A few thin mafic and felsic dykes have also been reported (Maxwell and Brandish, 1989)

The Pinchi Fault which trends northwest, is situated 10 kms east of the property. What appears to be a parallel splay of the Pinchi cuts across the property and is manifested mainly by the magnetic data. A prominent topographic lineament trending at 070 degrees extends from the end of Cluculz lake to the Lloyd Road-Highway 16 junction, a distance of approximately 1.4 kilometres. Northwest of the lineament and parallel to Lloyd road is a low lying, swampy area. The lineament is interpreted to be the surface expression of a fault zone. Outcrops along Lloyd road are altered and cut by quartz veins that are probably emplaced in the fault zone. Anomalous concentrations of Au and Cu occur in soil and talus fines collect along Lloyd road, near the base of the scarp. Noranda recognized this fault zone and the potential for Au veins within the zone (Maxwell and Brandish, 1989). They drilled 8 diamond drill holes south of the fault zone most of which were drilled at azimuth 360° and inclination

-45°. However, most of these holes were too short to intersect the fault zone and the Au potential of this zone is still largely unknown.

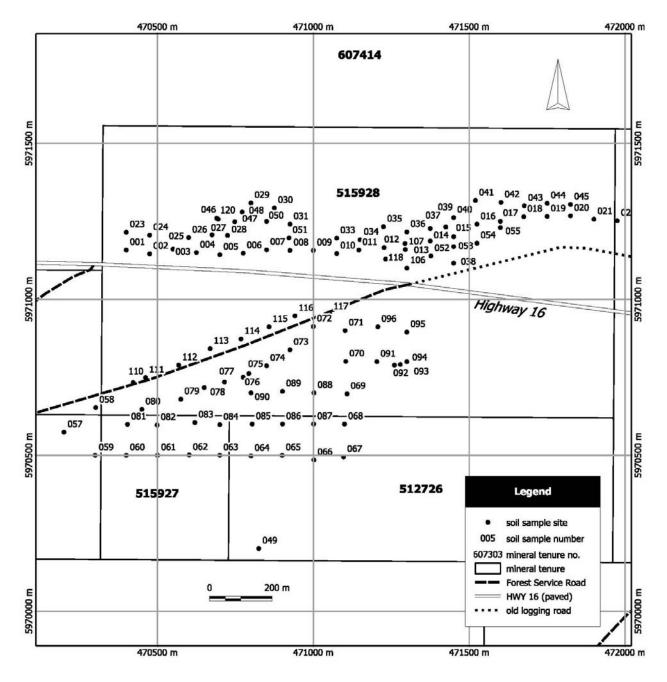
The Cache Creek formation andesites are typically pale to light green massive to strongly foliated with weak to moderate pervasive carbonate alteration. These are sometimes interbedded with thin beds of strongly foliated argillite. The largest outcrop of andesite occurs immediately adjacent to the highway at the bottom of Cluculz hill (Figure 5). Here the andesite is cut by numerous thin (1-2 cm) quartz veins trending 070 degrees.

The phyllites are usually light to dark grey, well foliated with 0-25% cherty laminations, weakly to moderately graphitic with numerous quartz and calcite veinlets. The best exposure of these is along the south Cluculz Lake access road where these trend 070 degrees and dip shallowly to the south. Here a series of pinched and swelled quartz veins appear within the strongly foliated phyllite. In addition, a small unit of highly calcareous phyllite (marble?) is found further to the east between lines 5000E and 5100E and between 4550N and 4800N.

Maxwell and Brandish (1989) report the occurrence of a highly altered unit of buff to brown quartz, ankerite and mariposite altered rock termed listwanite between lines 5100E and 5300E and between 4700N to 4900N. Similar alteration zones are known to occur along splays of the Pinchi Fault further to the east.

Several structures transect the property, the most notable is an east-west trending fault zone which parallels the main swamp to the east of Cluculz Lake (Figure 5). This structure appears to offset a northwest trending structure, which is believed to be a parallel splay of the Pinchi Fault. Exact location of these structures is difficult to determine due to the lack of outcrop.

According to Maxwell and Brandish (1989), the most economically important rocks are carbonatealtered andesites. Boulders and outcrops of quartz-ankerite-mariposite and pyrite (listwanites) are reported to occur east of Cluculz Lake. Black pyritiferous argillite is exposed in a road cut. It appears to be underlain by a sometimes layered, crystal tuff of andesitic composition which weathers to a brown colour. Quartz veins up to 1 foot wide by 20 feet long containing calcite, muscovite and pyrite are also reported to occur in the Highway 16 road cut (Figure 5). Areas between these quartz veins are often altered to ankerite, sericite and small quartz veinlets; these areas of alteration contain the best gold values (Maxwell and Brandish, 1989).


8.0 WORK DONE IN 2010

8.1 Soil geochemistry

8.1.1 Procedure

Porpoise Bay collected a total of 109 soil samples from the CZ property in 2010. The location of these samples is shown in Figure 6. Analytical certificates and a table of sample locations with selected analytical results are included in Appendices A and B respectively All soil samples were collected using a mattock or grub hoe from the B or C horizon. The samples were placed in standard Kraft paper bags and labeled with the appropriate sample number. After the samples were dried in the field they were shipped to Acme's preparation laboratory in Smithers B.C. Here the samples were first dried at 60°C before 100 grams of the sample is sieved to -80 mesh. This fraction was then sent to Acme Analytical Laboratories Ltd. in Vancouver B.C. where a 30 gram sample was digested in Aqua Regia and analyzed for 36 elements using ICP-MS. The analytical packaged requested was 1DX30 which has appropriate detection limits for soil samples. This analytical package returns

results for 36 elements including the standard base and precious metal elements of economic interest. Detection limits are indicated on the analytical certificates included in Appendix A. A number of standards and duplicate samples were run by the lab for quality control purposes as indicated on the analytical certificate in Appendix A. Porpoise Bay did not include any duplicates with the samples sent to the laboratory.

Figure 6. Location of soil samples collected in April 2010. Sample number corresponds to the map number given in Appendix B.

8.1.2 Results

The analytical results of the 2010 soil sampling program are summarized in Table 2. A number of significant multi-element anomalies have been identified. The most anomalous sample, CZ-S111 (map no. 111, Figure 5), is reported to contain 5808.4 PPB Au (5.8 grams per tonne). This sample is also anomalous in Mo, Cu, Zn and As. Other samples with Au values greater than the 90th percentile are listed in Table 3. Figure 7 and Figure 10 (1:2,500 scale map, page 54) are proportional symbol plots that show the location of anomalous Au samples. Similar plots for Cu are shown in Figure 8 and Figure 11 (1:2,500 scale map, page 55).

Element	Min	Max	Mean	99 th ptile	95 th ptile	90 th ptile
Ag PPM	< 0.1	18.1	< 0.1	11.8	1.125	0.55
Al %	0.05	2.81	1.12	2.7316	1.8	1.562
As PPM	0.8	412.6	3.3	164.996	40.22	18.26
Au PPB	< 0.5	5808.4	2.4	999.562	190.815	99.48
B PPM	<1	25	1	12.4	5	4
Ba PPM	30	465	112	250.84	225.6	186.8
Bi PPM	< 0.1	0.8	< 0.1	0.8	0.53	0.33
Ca %	0.08	6.41	0.28	3.3052	1.32	0.482
Cd PPM	< 0.1	2.3	0.1	2.078	1.03	0.6
Co PPM	5	71	8.9	51.804	33.18	18.58
Cr PPM	9	568	37	378.68	87.2	67
Cu PPM	6	274.4	14.3	196.212	94.84	54.36
Fe %	0.59	7.66	2.49	6.9316	5.176	4.178
Ga PPM	<1	9	4	7.88	5.7	5
Hg PPM	< 0.01	1.65	0.02	0.5972	0.123	0.09
K %	0.02	0.44	0.1	0.29	0.246	0.21
La PPM	<1	19	10	18	16	14.3
Mg %	0.07	3.29	0.31	1.726	0.98	0.55
Mn PPM	180	5518	402	2241.64	1326.6	849.6
Mo PPM	0.4	49.1	0.9	16.08	6.76	3.62
Na %	0.002	0.034	0.013	0.03376	0.029	0.026
Ni PPM	10.8	1135.8	29.5	404.704	115.1	87.42
Р%	0.031	0.344	0.08	0.22976	0.1752	0.1592
Pb PPM	0.9	36.7	4.9	27.904	11.86	9.02
S %	< 0.05	0.19	< 0.05	0.189	0.185	0.18
Sb PPM	0.1	9.7	0.4	9.224	3.9	3
Sc PPM	0.2	17.5	2.7	11.852	7.78	5.86
Se PPM	< 0.5	4	< 0.5	3.74	2.97	2.48
Sr PPM	11	158	29	135.36	49	42.4
Te PPM	< 0.2	0.9	< 0.2	0.896	0.88	0.86
Th PPM	< 0.1	3.8	2.1	3.594	3.2	2.84
Ti %	0.003	0.188	0.099	0.17228	0.1462	0.1314
TI PPM	< 0.1	0.2	< 0.1	0.2	0.2	0.2
U PPM	0.2	7.8	0.4	1.092	0.7	0.6
V PPM	11	106	54	83.68	73.2	67.2
W PPM	< 0.1	52.6	< 0.1	36.056	0.9	0.46
Zn PPM	3	259	76	252.84	206.6	172.4

Table 2. Summary of analytical results.

8.1.3 Interpretation

The linear distribution of anomalous soil samples suggests that the source of metals is most likely a mineralized fault zone trending at 070°. The fault zone parallels the trend of Lloyd road (Figure 5) and is marked by a prominent topographic lineament. The highest Au and Cu values in soils occur near the inferred fault, close to outcrops that have known quartz veining and listwanite alteration. This suggests a local, nearby source for the anomalous metal concentrations in soils. Down-ice dispression of the anomalous soils by glaciation is not, in this case, considered to be significant.

There is a slight offset of the soil anomalies north of Highway 16 in the vicinity of altered and mineralized outcrop at the base of Cluculz hill. The inferred fault zone here, which is also trending at 070 °, might be displaced along a northwest trending fault and could be the same fault that parallels Lloyd road south of the highway. Noranda tested this northwest trending fault zone with one drill hole in 1988 (Hole CL-88-8).

The soil samples collected in 2010 corroborate previous work done by Noranda in 1988 and confirm that the main exploration target is Au bearing mesothermal quartz veins emplaced into a northeast-trending fault zone. This fault zone is at least 1.5 kilometres long and could be significantly longer. Soil samples collected away from the inferred trace of these faults zones generally have lower metal concentrations again suggesting a structural control to the distribution of mineralization.

						-						-				
MapNo	SampleNo	Au PPB	Mo PPM	Cu PPM	MAG dq	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	Sb PPM	Cr PPM	Ba PPM	Hg PPM
111	CZ-S111	5808.4	16.4	274.4	28.8	228	4.1	85	52.7	1519	7.66	412.6	7.2	39	63	0.53
113	CZ-S113	281.0	5.2	80.2	13.2	127	0.2	52.2	13.4	696	4.29	66.2	4.4	38	208	0.09
011	CZ-S011	275.9	0.7	124.4	5.5	86	0.3	55.7	36.6	949	5.67	66	2.9	88	138	0.04
110	CZ-S110	226.7	4.5	201.9	36.7	178	1.2	97.3	32.7	1812	6.95	171.9	9.7	52	63	0.26
012	CZ-S012	191.2	1	104.6	13.7	82	0.1	47.5	33.3	1666	4.42	31.4	1	58	465	0.1
052	CZ-S052	190.1	0.6	11.8	3.8	83	< 0.1	31.9	8.4	256	2.53	2.4	0.2	36	105	0.02
112	CZ-S112	139.2	9.5	119.3	17.6	209	0.7	60.9	13.9	849	5.01	85.6	9.4	51	131	0.13
072	CZ-S072	126.1	2.2	21.2	5	65	0.1	20.5	6.5	292	2.52	9.9	1.2	31	68	0.02
073	CZ-S073	119.5	2.6	35.7	6.8	100	0.4	38	13.7	621	3.25	15.8	1.5	49	132	0.04

Table 3. Soil samples with Au concentrations >90th percentile.

8.2 Lithogeochemistry

Porpoise Bay collected a total of 9 rock samples from the CZ property in April 2010. These rock samples were random grab samples from outcrops along Lloyd Road and Highway 16, at the base of Cluculz hill. The location of these samples is shown in Figure 8. Table 4 summarizes the analytical results for selected elements of interest. A copy of the analytical certificates for these samples is included in Appendix C.

8.2.1 Procedure

Rock samples were collected directly from outcrop and placed in labeled plastic bags. Sample sites were marked with flagging ribbon and a sample tag was placed in the sample bags before they were closed. The rock samples ranged from 0.52 to 1.23 kilograms in weight according to the analytical certificates included in Appendix C. At the end of the program the rock samples were shipped to the ACME preparatory laboratory in Smithers where they were crushed, split and pulverized to produce 250 grams of -200 mesh material. This material was then shipped to the ACME laboratory in Vancouver where a 30 gram aliquot was dissolved in Aqua Regia and then analyzed for 36 elements using ICP-MS. The analytical package requested was the same as that for soil samples - 1DX30. This

package is considered to have appropriate detection limits for reconnaissance lithogeochemical sampling.

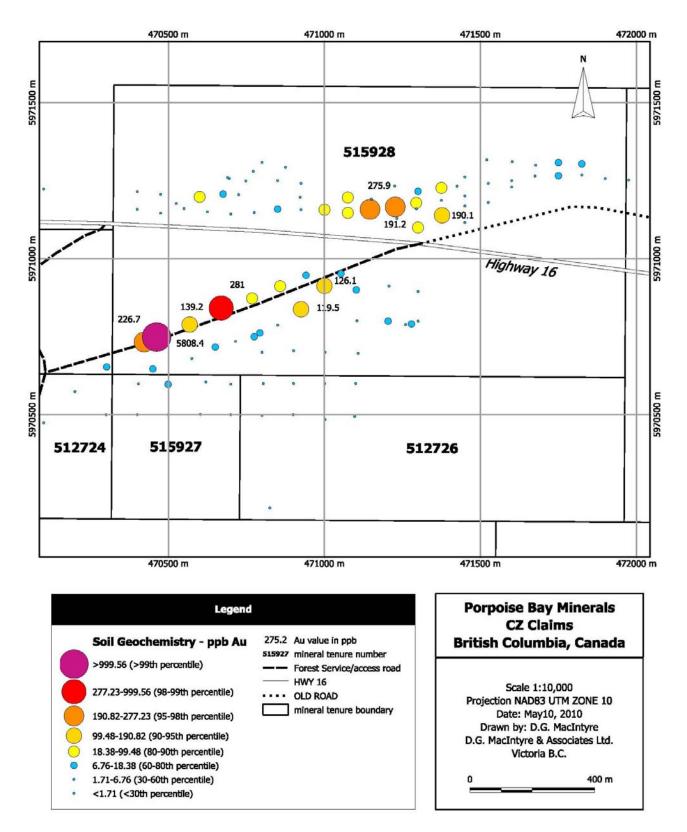


Figure 6. Proportional symbol plot for Au concentrations in soil, CZ property.

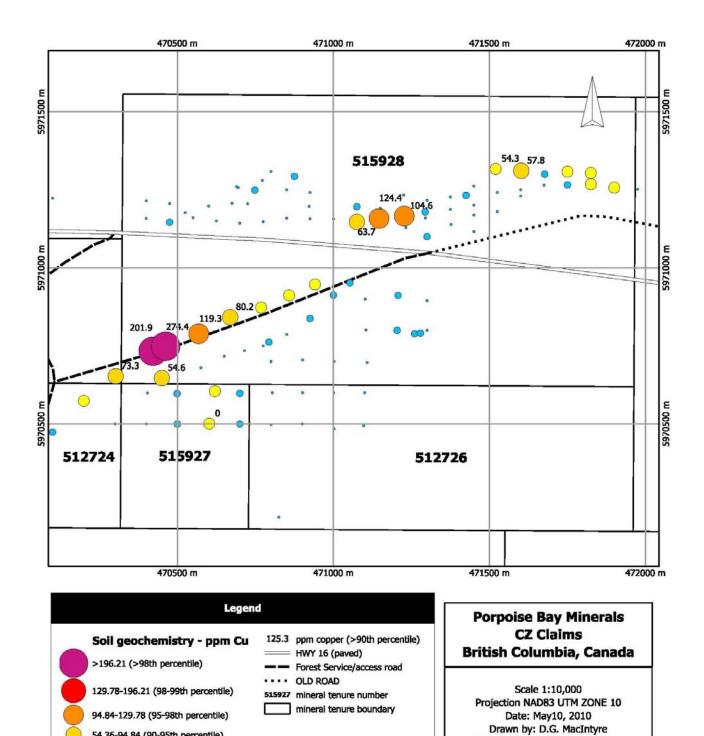


Figure 7. Proportional symbol plot for Cu concentrations in soil, CZ property.

D.G. MacIntyre & Associates Ltd.

Victoria B.C.

400 m

0

54.36-94.84 (90-95th percentile)

36.98-54.36 (80-90th percentile)

17.68-36.98 (60-80th percentile)

11.5-17.68 (30-60th percentile)

<11.5 (<30th percentile)

•

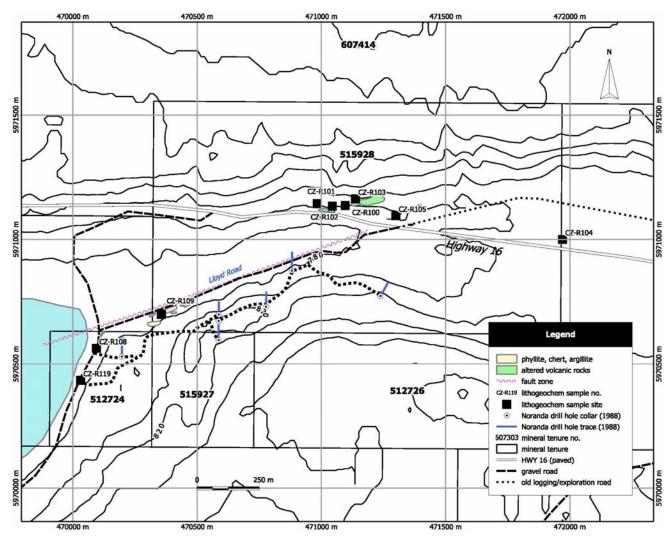


Figure 8. Location of lithogeochemical samples collected in 2010, CZ property.

8.2.2 Results

The analytical results for selected elements of interest are given in Table 4. Only 3 of the 9 samples (CZ-R100, 103 and 105) are slightly anomalous in Au – others are slightly above or below the detection limit (0.5 ppb Au). One sample, CZ-R109 is anomalous in Zn at 855 ppm, and sample CZ-R105 is anomalous in both Ni at 946.9 ppm and As at 122.7 pppm.

			~-•		-,							P				
Sample	Easting	Northing	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	As PPM	Au PPB	M PPM	Hg PPM	Fe %	S %
CZ-R100	471096	5971136	0.3	23.5	0.8	28	< 0.1	12.9	10.3	572	13.7	177.5	0.3	0.02	2.16	< 0.05
CZ-R101	470984	5971144	0.5	54.1	0.9	105	< 0.1	42	36.4	1303	15.6	4.3	< 0.1	0.61	6.61	$<\!0.05$
CZ-R102	471044	5971134	0.5	15.8	1.2	12	< 0.1	5.5	1.5	275	6.1	< 0.5	0.2	$<\!0.01$	1.11	$<\!0.05$
CZ-R103	471137	5971163	0.4	32.9	0.7	34	< 0.1	26.6	18.6	774	50.1	67.3	< 0.1	0.01	3.26	0.05
CZ-R104	471970	5971000	0.6	62.2	10	77	< 0.1	39.4	10.1	1603	1.2	0.5	< 0.1	0.02	1.88	$<\!0.05$
CZ-R105	471300	5971095	1.4	22.1	2.9	15	< 0.1	946.9	38.4	1049	122.7	31.8	0.6	0.03	4.34	$<\!\!0.05$
CZ-R108	470095	5970563	0.9	31	2.6	108	< 0.1	363.3	35.9	1330	35.3	1.3	< 0.1	0.08	4.41	$<\!0.05$
CZ-R109	470356	5970700	9.2	106.1	5.8	855	0.6	132.2	24.6	348	26	< 0.5	0.2	0.41	8.06	0.06
CZ-R119	470031	5970434	1	19.4	4.6	43	< 0.1	13.6	3.7	496	4.3	0.8	< 0.1	< 0.01	0.9	$<\!0.05$

8.2.3 Interpretation

Lithogeochemical samples collected from the CZ property in April 2010 did not contain any economically significant concentrations of precious or base metals. For the most part these samples contained metal concentrations that were lower or similar to those collected by Noranda and other property operators from the same outcrops. This type of random sampling is probably not very effective in evaluating the overall metal concentration within the altered fault zones that are exposed on the property. A more rigorous approach involving hand trenching and detailed chip sampling might be more appropriate for this style of mineralization.

Plate 1. Drill site CZ-10-2 after drilling was completed.

8.3 Diamond Drilling

Falcon Drilling completed one short 39.62 metre vertical diamond drill hole between April 7-May 6th 2010. The location of this hole, CZ-10-2, is shown in Figure 9. This hole was drilled along a logging road (Plate 1) at UTM coordinates 472236E, 5967950N and is located approximately 3.3 kilometres southeast of the main area of economic interest. A number of short percussion holes were drilled along the same access road in 2008. Cost of the 2010 drilling program was \$4,750 all inclusive (\$119.89 per metre drilled).

8.3.1 Procedure

Hole CZ-10-2 was drilled using a truck mounted diamond drill operated by Falcon Drilling Ltd. of Prince George, B.C. The truck was driven onto the property from Falcon's Prince George headquarters. The size of core recovered was BQ (Plate 2). As indicated in the drill hole log, there was significant core loss in some of the 10 foot intervals. Core was placed in wooden core boxes at the drill site and transported to Sechelt B.C. where it is stored at the home of Rupert Seel. The core was logged in Sechelt by D. MacIntyre on May 4, 2010 and this log is included in Appendix D. The core was not split and sampled because there was no visible sulphide mineralization. However, three random samples were selected for analyses at depths of 14.02, 36.27 and 39.32 metres respectively. The analytical certificates for these samples are included in Appendix E and the analytical results for selected elements are given in Table 5. The selected samples were placed in plastic bags and submitted to Acme Analytical Laboratories in Vancouver for processing. The procedure used by Acme for preparing and analyzing the drill core was the same as that described above for

lithogeochemical samples from the property. Quality control employed by Acme includes the analyses of duplicate and standard samples to determine analytical precision and accuracy.

Plate 1. Drill core of strongly foliated and tectonized graphitic mudstone and siltstone from drill hole CZ-10-2, CZ property. Note orange to brown Fe oxide on fracture faces and foliation planes in core below mechanical pencil.

8.3.2 Results

Analytical results for selected elements for the three samples collected from drill hole CZ-10-2 are presented in Table 5. Sample 46 was a banded chert, sample 119 was an orange siltstone and sample 129 was a fine-grained grey andesite dyke with some disseminated pyrite along the dyke contact. None of the samples contained anomalous precious or base metal concentrations. Sample 129 was slightly elevated in Ni and Cr and had higher Ca, Mg and S content than the other two samples. These differences reflect the fact that sample 129 is an altered, post-deformation andesitic dyke with minor disseminated pyrite.

Sample No.	Depth (m)	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm	Sb ppm	Ni ppm	Cr ppm	Co ppm	Mn ppm	Fe %	Ca %	P %	Mg %	AI %	S %
46	14.02	4.3	71	9	56	0.2	3.1	7.5	1.3	30.6	19	15.6	889	2.15	0.04	0.042	0.12	0.4	< 0.05
119	36.27	2	89.1	5.9	80	< 0.1	0.6	4	0.1	83.5	109	30.8	2006	6.89	2.62	0.126	0.64	0.98	< 0.05
129	39.32	1.4	61	1.1	104	< 0.1	1.2	1.9	0.3	197.9	248	41.7	1944	7.53	6.7	0.288	4	2.75	0.25

 Table 5. Analytical results for drill core samples collected from DDH CZ-10-2

8.3.3 Interpretation

Drill hole CZ-10-2 failed to intersect any significant sulphide mineralization. Most of the hole was banded, strongly foliated mudstone, siltstone and graphitic argillite with foliation planes dipping at 45° to the core axis (vertical hole). Similar rocks were intersected in nearby percussion holes drilled in 2008 (Seel, 2008). There appears to be very low potential for significant mineralization on this part of the property.

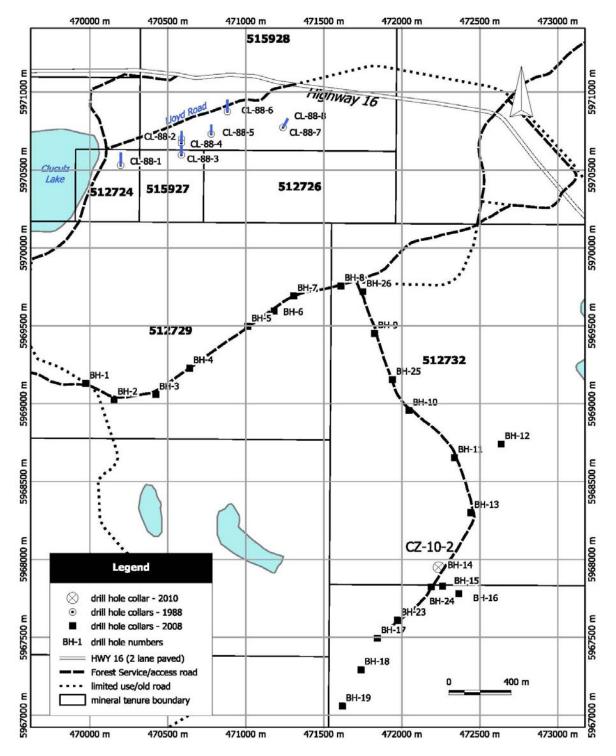


Figure 9. Drill hole location map, CZ property.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Soil and rock geochemical sampling on the CZ property has corroborated the work done by earlier operators, in particular Noranda (Maxwell and Brandish, 1988). Noranda recognized two main exploration targets;

- 1. a zone of listwanite alteration and quartz veining that corresponds to a 070° trending fault zone that parallels Lloyd road for at least 800 metres and;
- 2. a similar trending zone exposed in outcrop north of Highway 16 at the start of Cluculz hill (original Jen showing).

Noranda drilled 8 holes south of the first target in 1988, 6 of which were oriented at azimuth 360° and inclination -45° but, for some reason, only one of the holes (CL-88-6) was drilled deep enough to actually intersect the fault. This hole did not contain any significant mineralization. Hole CL-88-8 was drilled at azimuth 030° and inclination -45° to intersect a northwest trending fault but this hole also had low metal values. The best intersections from the Noranda drilling were hole CL-88-3, 1.5 m. of 1320 ppb Au and hole CL-88-5, 1.0 metres of 1800 ppb Au. These Au values were associated with quartz veins cutting highly tectonized metasediments of the Cache Creek formation.

Target 2 may be offset from the Lloyd road fault zone by sinistral movement along a northwest trending fault. Chip sampling at this outcrop in the past has returned some anomalous Au values and this was the original showing on the property. However, rock samples collected by Porpoise Bay from these outcrops in 2010 did not contain significant concentrations of precious or base metals. This indicates Au values may be distributed erratically within the fault zone, with local higher grade concentrations occurring locally. To date this target has still not been tested by drilling.

The northeast trending fault zones on the CZ property are strongly altered and contain numerous quartz veins that may be Au bearing. Soil samples collected along the trend of the fault zones are strongly anomalous in Au in places and suggest the presence of Au in the fault zones. This Au is mostly likely contained within quartz veins that are associated with the fault. The presence of listwanite alteration is a favourable indicator as this type of alteration typically occurs with Aubearing mesothermal quartz veins in fault zones elsewhere within the Cache Creek formation. Insufficient work has been done on the CZ property to rule out the occurrence of a significant zone of Au concentration within the altered fault zones. Diamond drilling will ultimately be required to determine if such concentrations exist or not. In particular, the fault zone that parallels Lloyd road should be drill tested especially in the area of the 5,808.4 ppb Au soil anomaly collected by Porpoise Bay in 2010. However, prior to any further drilling, a program of hand trenching and chip sampling across the trend of the fault zone should be considered. This work might help identify where the anomalous Au values in soil are coming from.

10.0 REFERENCES

- Hora, Z.D. (1997): Ultramafic-hosted Chrysotile Asbestos, in Geological Fieldwork 1997, British Columbia Ministry of Employment and Investment, Paper 1998-1, pages 24K-1 to 24K-4.
- Maxwell, Gordon and Bradish, Lyndon (1989): Report of work for 1988 on the Nation River Property (Jen 1-12 Mineral Claims); B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 19112, 15 pages.
- Seel, R. (2006): C Z Group Mineral Claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 28432, 37 pages.
- Seel, R. (2008): C Z Group Mineral Claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 29973, 37 pages.
- Simandl, G.J. and Ogden, D. (1999): Ultramafic-hosted Talc-Magnesite; in Selected British Columbia Mineral Deposit Profiles, Volume 3, Industrial Minerals, G.J. Simandl, Z.D. Hora and D.V. Lefebure, Editors, British Columbia Ministry of Energy and Mines

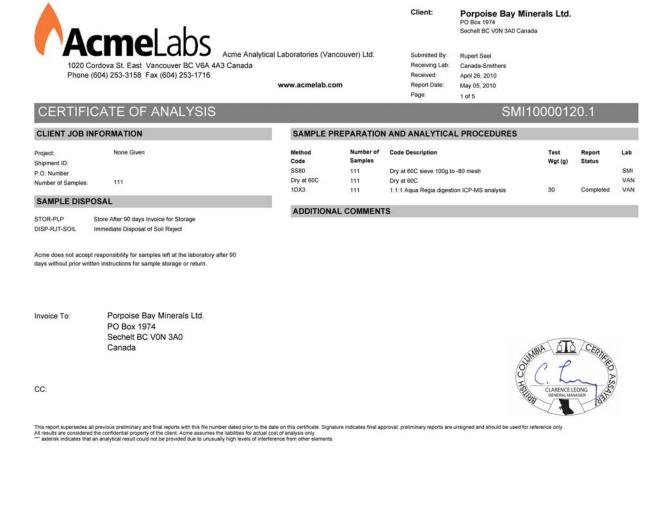
Struik, L.C.; Schiarizza, P.; Orchard, M.J.; Cordey, F.; Sano, H.; MacIntyre, D.G.; Lapierre, H. and Tardy, M. (2001): Imbricate Architecture of the upper Paleozoic to Jurassic oceanic Cache Creek Terrane, central British Columbia, Canadian Journal of Earth Sciences, Vol. 38, p495-514

11.0 STATEMENT OF QUALIFICATIONS

I, Donald George MacIntyre, Ph.D., P.Eng., do hereby certify that:

- 1. I am a Consulting Geologist, with residence and business address at 4129 San Miguel Close, Victoria, British Columbia, Canada.
- 2. I graduated with a B.Sc. degree in geology from the University of British Columbia in 1971. In addition, I obtained M.Sc. and Ph.D. degrees specializing in Economic Geology from the University of Western Ontario in 1975 and 1977 respectively.
- 3. I have been registered with the Association of Professional Engineers and Geoscientists of British Columbia since September, 1979, registration number 11970.
- 4. I have practiced my profession as a geologist, both within government and the private sector, in British Columbia and parts of the Yukon for over 35 years. Work has included detailed geological investigations of mineral districts, geological mapping, mineral deposit modeling and building of geoscientific databases. I have directly supervised and conducted geologic mapping and mineral property evaluations, published reports and maps on different mineral districts and deposit models and compiled and analyzed data for mineral potential evaluations.
- 5. The work described in this report was done under contract to Porpoise Bay Minerals
- 6. I have no previous involvement with Porpoise Bay Minerals on the CZ or any other property held by Porpoise Bay.

Dated this 25th day of June, 2010


D. MacIntyre, Ph.D., P.Eng.

12.0. STATEMENT OF EXPENSES

Statement of Costs - CZ claims - April 7-May 6, 2010

Labour:		
R. Seel	7 days @ \$400/day	\$2,800.00
A. Spicer	5 days @ \$200/day	\$1,000.00
Accommodation/Travel		·
R. Seel	7 days @ \$110/day	\$770.00
Other		·
4 x 4 truck	7 days @ \$150/day with fuel	\$1,050.00
Sample bags and supplies		\$140.00
Small tools	7 days @ \$25/day	\$175.00
Falcon Drilling		\$4,750.00
Acme Analytical Laboratories	109 soil, 10 rock, 3 drill core samples	\$2,900.00
D. MacIntyre	Core logging	\$752.50
D. MacIntyre	Report and map prep.	\$1,500.00
	Total	\$15,837.50

APPENDIX A – ANALYTICAL CERTIFICATES – SOIL GEOCHEMISTRY

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Project: Report Date:

Page:

None Given May 05, 2010

CERTIFICATE OF ANALYSIS

2 of 5 Part 1 SMI10000120.1

	M	lethod	WGHT	1DX30																		
	Ar	nalyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		Unit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
		MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
CZ-S001	Soil			0.6	14.3	6.3	41	<0.1	30.9	9.9	448	2.37	1.8	0.7	⊲0.5	2.4	30	<0.1	0.3	<0.1	52	0.29
CZ-S002	Soil			0.9	21.4	5.0	48	<0.1	33.0	10.1	398	2.71	3.2	0.5	<0.5	2.7	33	<0.1	0.3	<0.1	61	0.38
CZ-S003	Soil			0.4	14.4	4.5	49	<0.1	25.3	8.1	332	2.28	1.7	0.5	<0.5	2.4	30	<0.1	0.3	<0.1	52	0.30
CZ-S004	Soil			0.5	11.5	3.8	45	<0.1	20.5	6.5	210	2.21	1.7	0.5	⊲0.5	2.1	25	<0.1	0.2	<0.1	55	0.26
CZ-S005	Soil			0.6	17.2	4.5	47	0.1	28.9	9.0	319	2.46	2.5	0.6	<0.5	2.4	31	<0.1	0.3	<0.1	55	0.37
CZ-S006	Soil			0.6	12.2	4.1	48	<0.1	23.5	7.1	315	2.33	3.3	1.1	<0.5	2.0	26	<0.1	0.3	<0.1	62	0.27
CZ-S007	Soil			1.0	9.0	5.7	60	<0.1	22.6	7.0	339	2.17	1.4	0.5	9.5	1.7	28	0.1	0.2	<0.1	51	0.32
CZ-S008	Soil			0.6	14.0	8.0	37	<0.1	23.3	8.8	426	2.29	2.4	0.6	<0.5	2.1	36	0.1	0.2	<0.1	54	0.48
CZ-S009	Soil			0.7	9.6	4.8	48	<0.1	25.4	7.5	362	2.27	1.5	0.4	50.3	1.8	24	<0.1	0.2	<0.1	54	0.27
CZ-S010	Soil			0.8	63.7	4.6	50	<0.1	41.3	18.5	574	3.43	7.1	0.5	26.4	2.8	49	0.1	1.0	<0.1	84	1.45
CZ-S011	Soil			0.7	124.4	5.5	86	0.3	55.7	36.6	949	5.67	66.0	0.3	275.9	1.2	46	0.3	2.9	<0.1	106	1.40
CZ-S012	Soil			1.0	104.6	13.7	82	0.1	47.5	33.3	1666	4.42	31.4	0.3	191.2	1.1	105	0.4	1.0	<0.1	80	1.73
CZ-S013	Soil			0.8	27.6	5.0	259	<0.1	38.9	10.5	666	2.66	8.3	0.3	26.4	1.9	46	0.6	0.4	<0.1	56	0.49
CZ-S014	Soil			0.7	10.9	4.1	53	<0.1	23.5	7.5	544	2.22	1.8	0.5	0.7	1.9	31	<0.1	0.2	<0.1	53	0.29
CZ-S015	Soil			0.6	10.2	4.4	114	<0.1	27.6	7.4	474	2.17	1.7	0.3	<0.5	1.8	31	0.1	0.2	<0.1	48	0.24
CZ-S016	Soil			1.1	14.7	4.6	72	0.2	30.1	8.6	424	2.51	3.4	0.7	<0.5	1.7	24	0.2	0.8	0.1	56	0.27
CZ-S017	Soil			2.6	13.0	4.1	171	0.2	22.9	7.0	314	2.22	3.6	0.3	<0.5	1.4	26	0.6	0.8	<0.1	44	0.26
CZ-S018	Soil			0.8	10.3	3.5	59	<0.1	34.5	7.7	278	2.18	2.3	0.3	<0.5	1.6	20	0.1	0.3	<0.1	52	0.24
CZ-S019	Soil			2.6	31.2	5.7	109	0.1	104.6	16.0	413	4.15	14.8	0.3	12.7	1.9	28	0.3	1.3	0.2	65	0.22
CZ-S020	Soil			2.3	45.0	5.9	108	<0.1	97.1	19.2	716	3.65	7.1	0.4	1.8	2.0	35	0.2	0.8	0.1	69	0.40
CZ-S021	Soil			2.5	47.7	5.5	87	0.2	346.1	41.5	849	3.89	8.2	0.4	1.5	1.8	30	0.3	1.7	0.2	53	0.40
CZ-S022	Soil		_	1.3	13.7	5.3	118	0.1	23.3	6.0	466	1.83	2.7	0.3	<0.5	1.8	33	0.3	0.6	0.1	44	0.33
CZ-S023	Soil			0.6	10.0	3.9	52	<0.1	21.5	7.4	300	2.49	1.4	0.4	<0.5	2.1	32	<0.1	0.2	<0.1	59	0.29
CZ-S024	Soil			0.6	6.6	3.8	48	<0.1	17.7	5.6	272	1.93	0.8	0.3	<0.5	1.6	25	<0.1	0.2	<0.1	48	0.20
CZ-S025	Soil			0.7	12.4	4.8	45	<0.1	23.2	8.7	472	2.25	1.4	0.4	<0.5	2.1	35	<0.1	0.2	<0.1	51	0.38
CZ-S026	Soil			0.6	10.7	4.2	52	<0.1	20.1	7.4	359	2.25	1.3	0.5	48.9	2.0	34	<0.1	0.2	<0.1	55	0.35
CZ-S027	Soil			0.5	9.9	3.9	70	<0.1	20.7	6.2	404	2.37	1.2	0.4	11.3	1.9	35	<0.1	0.2	<0.1	58	0.32
CZ-S028	Soil			0.5	8.9	3.7	44	<0.1	17.5	7.0	244	2.24	1.2	0.4	<0.5	2.0	26	<0.1	0.2	<0.1	54	0.24
CZ-S029	Soil			0.5	9.0	3.6	40	<0.1	19.7	8.7	271	2.43	2.2	0.4	2.4	1.9	35	<0.1	0.2	<0.1	57	0.39
CZ-S030	Soil			0.5	20.5	4.9	58	<0.1	33.0	10.9	540	2.85	2.3	0.5	0.6	2.6	42	0.1	0.3	<0.1	61	0.43

Project:

Page:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

None Given May 05, 2010

2 of 5 Part 2

Report Date:

CERTIFICATE OF ANALYSIS

SMI10000120.1

		ethod	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30											
	Ar	nalyte	P	La	Cr	Mg	Ba	TI	в	AI	Na	к	w	Hg	Sc	т	S	Ga	Se	Te
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
CZ-S001	Soil		0.049	10	32	0.48	73	0.095	2	0.97	0.025	0.09	<0.1	0.01	3.0	<0.1	<0.05	3	<0.5	<0.2
CZ-S002	Soil		0.077	13	41	0.48	88	0.102	2	1.23	0.024	0.15	<0.1	0.02	4.4	<0.1	<0.05	4	<0.5	<0.
CZ-S003	Soil		0.060	12	32	0.33	85	0.099	1	1.06	0.012	0.18	<0.1	0.01	3.4	<0.1	<0.05	3	<0.5	<0.3
CZ-S004	Soil		0.063	11	31	0.30	55	0.111	1	0.89	0.025	0.17	<0.1	< 0.01	2.7	<0.1	<0.05	3	<0.5	<0.1
CZ-S005	Soil		0.066	12	35	0.39	65	0.106	2	1.11	0.012	0.14	<0.1	0.02	3.6	<0.1	<0.05	3	<0.5	<0.2
CZ-S006	Soil		0.091	10	43	0.31	70	0.110	1	0.99	0.014	0.11	0.1	0.01	2.8	<0.1	<0.05	3	<0.5	<0.3
CZ-S007	Soil		0.107	8	30	0.27	91	0.112	1	1.07	0.020	0.14	0.1	0.02	2.0	<0.1	<0.05	3	<0.5	<0.1
CZ-S008	Soil		0.070	10	37	0.35	82	0.104	3	0.89	0.029	0.24	0.1	0.02	2.8	<0.1	<0.05	3	<0.5	<0.2
CZ-S009	Soil		0.051	7	29	0.31	83	0.098	<1	0.95	0.014	0.10	0.1	0.01	2.0	<0.1	<0.05	3	<0.5	<0.2
CZ-S010	Soil		0.080	13	50	0.63	95	0.141	2	1.32	0.029	0.10	0.1	0.02	6.5	<0.1	<0.05	4	<0.5	<0.2
CZ-S011	Soil		0.089	8	88	1.23	138	0.099	5	2.06	0.009	0.19	0.1	0.04	17.5	<0.1	<0.05	6	0.7	<0.3
CZ-S012	Soil		0.133	9	58	0.98	465	0.103	10	2.02	0.014	0.29	0.1	0.10	11.9	<0.1	<0.05	6	0.8	<0.3
CZ-S013	Soil		0.160	9	43	0.43	249	0.116	5	1.50	0.012	0.22	<0.1	0.05	3.6	<0.1	<0.05	5	<0.5	<0.3
CZ-S014	Soil		0.074	11	34	0.28	125	0.113	1	0.98	0.020	0.09	<0.1	0.01	2.8	<0.1	<0.05	3	<0.5	<0.2
CZ-S015	Soil		0.152	7	34	0.25	198	0.111	1	1.43	0.014	0.07	<0.1	0.01	2.1	<0.1	<0.05	5	<0.5	<0.2
CZ-S016	Soil		0.031	10	34	0.30	98	0.092	2	1.17	0.016	0.10	<0.1	0.03	2.8	<0.1	<0.05	4	<0.5	<0.1
CZ-S017	Soil		0.150	7	25	0.25	129	0.051	2	1.02	0.010	0.11	<0.1	0.02	2.3	<0.1	<0.05	3	0.7	<0.2
CZ-S018	Soil		0.061	7	39	0.30	80	0.103	1	1.02	0.014	0.10	<0.1	0.02	2.1	<0.1	<0.05	3	<0.5	<0.3
CZ-S019	Soil		0.071	13	81	0.41	118	0.041	3	1.14	0.010	0.16	0.1	0.03	5.7	<0.1	<0.05	4	0.8	<0.2
CZ-S020	Soil		0.085	13	86	0.53	251	0.067	3	1.61	0.014	0.26	0.1	0.03	7.0	<0.1	<0.05	4	<0.5	<0.2
CZ-S021	Soil		0.120	12	383	3.29	190	0.034	7	1.27	0.008	0.13	0.1	0.04	5.5	<0.1	<0.05	4	0.6	<0.2
CZ-S022	Soil		0.061	12	29	0.25	123	0.064	3	0.77	0.007	0.17	<0.1	0.02	1.7	<0.1	<0.05	3	<0.5	<0.1
CZ-S023	Soil		0.054	9	39	0.27	96	0.147	1	1.13	0.024	0.21	<0.1	0.01	2.7	<0.1	<0.05	4	<0.5	<0.2
CZ-S024	Soil		0.046	6	27	0.22	106	0.116	1	1.00	0.016	0.07	<0.1	< 0.01	1.8	<0.1	<0.05	3	<0.5	<0.3
CZ-S025	Soil		0.045	12	31	0.31	109	0.114	2	0.97	0.018	0.23	<0.1	<0.01	3.1	<0.1	<0.05	3	<0.5	<0.2
CZ-S026	Soil		0.047	10	32	0.29	106	0.125	1	0.93	0.020	0.15	<0.1	0.01	2.8	<0.1	<0.05	3	<0.5	<0.3
CZ-S027	Soil		0.055	8	36	0.24	120	0.150	1	1.10	0.023	0.16	<0.1	<0.01	2.6	<0.1	<0.05	4	<0.5	<0.2
CZ-S028	Soil		0.041	10	31	0.24	77	0.128	<1	0.92	0.021	0.15	<0.1	<0.01	2.6	<0.1	<0.05	3	<0.5	<0.2
CZ-S029	Soil		0.107	9	37	0.35	83	0.124	1	1.01	0.034	0.09	<0.1	0.01	2.4	<0.1	<0.05	3	<0.5	<0.3
CZ-S030	Soil	-	0.076	14	42	0.45	117	0.117	5	1.36	0.028	0.44	<0.1	0.02	4.7	<0.1	<0.05	4	0.5	<0.2

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd. Project: Report Date:

www.acmelab.com

None Given May 05, 2010

CERTIFICATE OF ANALYSIS

Page: 3 of 5 Part 1

SMI10000120.1

	Meth	od	WGHT	1DX30																		
	Anal	te	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	U	nit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
	M	DL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
CZ-S031	Soil			0.6	13.7	4.3	64	<0.1	25.0	7.9	402	2.69	1.2	0.5	⊲0.5	2.3	39	<0.1	0.2	<0.1	63	0.31
CZ-S032	Soil			0.6	7.3	3.5	49	<0.1	18.3	6.1	333	1.96	0.9	0.3	<0.5	1.7	26	<0.1	0.1	<0.1	46	0.26
CZ-S033	Soil			1.0	35.0	4.6	168	0.1	54.6	18.9	510	3.50	4.6	0.4	19.9	1.9	42	0.3	0.4	<0.1	64	0.48
CZ-S034	Soil			0.5	10.0	3.8	76	<0.1	25.7	8.1	273	2.52	1.7	0.4	5.2	2.0	24	<0.1	0.2	<0.1	64	0.22
CZ-S035	Soil			0.5	6.0	2.9	76	<0.1	21.6	6.0	180	1.90	1.0	0.4	<0.5	1.9	18	<0.1	0.2	<0.1	45	0.17
CZ-S036	Soil			0.7	17.0	4.7	48	<0.1	28.9	9.0	353	2.52	2.0	0.5	9.7	2.4	40	0.1	0.2	<0.1	59	0.41
CZ-S037	Soil			0.5	11.1	3.5	52	<0.1	22.8	6.7	351	2.19	1.2	0.5	25.6	2.0	24	0.1	0.2	<0.1	52	0.24
CZ-S038	Soil			0.9	7.7	5.1	112	<0.1	15.4	7.4	909	1.88	0.8	0.3	1.6	1.6	19	0.3	0.2	<0.1	45	0.20
CZ-S039	Soil			0.5	27.4	4.5	104	<0.1	34.8	11.4	831	2.92	5.3	0.4	2.6	2.4	49	0.2	0.4	<0.1	58	0.44
CZ-S040	Soil			0.5	10.4	3.7	40	<0.1	21.8	7.1	207	2.33	1.2	0.5	1.1	2.2	27	<0.1	0.2	<0.1	59	0.28
CZ-S041	Soil			7.0	54.3	11.8	109	0.2	42.6	10.8	1777	3.13	7.9	0.8	4.2	3.8	30	0.4	2.0	0.3	35	0.23
CZ-S042	Soil			12.4	57.8	10.3	218	0.9	32.5	7.0	506	3.91	13.2	0.6	4.4	1.7	35	1.0	2.6	0.1	24	0.33
CZ-S043	Soil			1.1	22.6	4.6	70	<0.1	39.3	12.3	807	2.79	2.5	0.4	1.2	2.2	28	0.2	0.5	<0.1	61	0.29
CZ-S044	Soil			3.2	40.8	6.2	78	0.1	65.4	14.3	475	3.57	12.5	0.4	11.5	2.1	30	0.1	1.1	0.2	58	0.29
CZ-S045	Soil			2.9	45.3	5.4	80	<0.1	409.8	29.2	619	4.54	17.0	0.2	15.5	2.4	24	0.2	3.0	0.1	72	0.31
CZ-S046	Soil			0.6	8.1	3.6	80	<0.1	24.7	6.5	491	1.98	1.2	0.3	0.7	1.7	23	<0.1	0.2	<0.1	48	0.22
CZ-S047	Soil			0.6	21.6	4.9	48	<0.1	36.2	11.6	498	2.83	3.4	0.5	1.6	2.6	49	<0.1	0.4	<0.1	68	0.54
CZ-S048	Soil			0.6	15.8	4.2	47	<0.1	31.5	9.7	274	2.75	2.4	0.5	0.8	2.5	29	<0.1	0.3	<0.1	63	0.32
CZ-S049	Soil			0.5	7.1	4.0	41	<0.1	19.9	6.7	225	2.16	1.4	0.5	1.5	1.7	31	<0.1	0.2	<0.1	52	0.32
CZ-S050	Soil			7.9	7.8	0.9	3	<0.1	10.8	5.0	5518	0.59	16.0	7.8	1.3	<0.1	138	0.4	0.4	<0.1	18	3.41
CZ-S051	Soil			1.1	14.2	4.9	46	<0.1	25.3	9.5	379	2.78	3.0	0.5	1.5	2.4	39	<0.1	0.3	<0.1	67	0.39
CZ-S052	Soil			0.6	11.8	3.8	83	<0.1	31.9	8.4	256	2.53	2.4	0.4	190.1	2.0	26	<0.1	0.2	<0.1	60	0.26
CZ-S053	Soil			0.9	7.4	5.1	123	<0.1	29.2	7.8	501	1.89	1.2	0.3	1.2	1.9	31	0.2	0.2	<0.1	46	0.36
CZ-S054	Soil			1.1	15.2	4.8	123	<0.1	50.6	13.0	401	2.96	4.6	0.4	4.9	2.1	28	0.1	0.5	0.1	63	0.30
CZ-S055	Soil			2.0	13.9	4.7	128	0.2	35.1	9.0	269	2.43	4.3	0.3	2.0	1.6	20	0.4	0.7	<0.1	52	0.22
CZ-S056	Soil			1.6	29.3	5.6	86	0.2	27.4	10.3	394	2.53	5.7	0.5	1.0	2.7	22	0.2	0.9	0.2	47	0.22
CZ-S057	Soil			4.2	39.5	9.1	107	0.1	22.4	6.6	607	2.27	10.1	0.4	2.6	1.4	15	0.3	1.4	0.2	18	0.12
CZ-S058	Soil			6.4	73.3	11.9	203	0.4	33.4	16.7	351	5.26	16.9	0.3	16.1	1.4	18	2.0	3.5	0.4	50	0.14
CZ-S059	Soil			1.7	14.0	4.5	124	0.3	15.9	6.4	284	1.56	2.5	0.3	1.3	2.3	11	0.3	0.3	0.1	22	0.08
CZ-S060	Soil			3.5	13.5	5.1	128	<0.1	19.7	6.4	248	2.22	5.1	0.4	3.0	2.0	21	0.3	3.2	0.2	37	0.14

Page:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd. A3 Canada Project: None Given Report Date: May 05, 2010

www.acmelab.com

110,00,2010

3 of 5 Part 2

CERTIFICATE OF ANALYSIS

SMI10000120.1

	Meth	od 1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30										
	Anal	te F	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Hg	Sc	т	S	Ga	Se	Те
	U	nit %	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	M	DL 0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
CZ-S031	Soil	0.047	10	42	0.30	149	0.164	2	1.24	0.029	0.18	<0.1	<0.01	3.3	<0.1	<0.05	4	<0.5	<0.2
CZ-S032	Soil	0.052	7	27	0.23	99	0.107	2	0.97	0.015	0.12	<0.1	0.01	1.9	<0.1	<0.05	3	<0.5	<0.2
CZ-S033	Soil	0.217	7	56	0.77	240	0.145	3	2.79	0.012	0.15	0.1	0.02	5.1	<0.1	<0.05	8	<0.5	<0.2
CZ-S034	Soil	0.045	7	34	0.31	112	0.115	1	1.48	0.011	0.07	<0.1	0.02	2.1	<0.1	<0.05	4	<0.5	⊲0.2
CZ-S035	Soil	0.054	7	21	0.26	82	0.084	1	1.08	0.012	0.08	<0.1	0.01	1.7	<0.1	<0.05	3	<0.5	<0.2
CZ-S036	Soil	0.060	11	39	0.34	94	0.120	1	1.18	0.026	0.23	<0.1	0.02	3.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S037	Soil	0.044	9	33	0.27	92	0.109	2	0.98	0.021	0.10	<0.1	< 0.01	2.8	<0.1	<0.05	3	<0.5	<0.2
CZ-S038	Soil	0.147	7	28	0.17	173	0.091	2	1.03	0.012	0.07	<0.1	0.01	1.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S039	Soil	0.090	12	48	0.35	246	0.134	4	1.64	0.023	0.25	<0.1	0.01	5.3	<0.1	<0.05	5	<0.5	<0.2
CZ-S040	Soil	0.050	11	35	0.27	60	0.120	1	1.03	0.018	0.16	<0.1	< 0.01	3.0	<0.1	<0.05	3	<0.5	<0.2
CZ-S041	Soil	0.062	15	21	0.16	140	0.037	3	0.73	0.007	0.14	<0.1	0.10	3.5	0.1	<0.05	2	<0.5	<0.2
CZ-S042	Soil	0.061	12	10	0.12	120	0.004	3	0.71	0.004	0.21	<0.1	0.21	5.1	0.1	<0.05	1	2.9	<0.2
CZ-S043	Soil	0.055	11	47	0.40	174	0.103	3	1.26	0.025	0.20	<0.1	0.11	4.3	<0.1	<0.05	4	<0.5	<0.2
CZ-S044	Soil	0.049	16	51	0.28	142	0.064	4	1.12	0.011	0.25	0.1	0.03	4.7	<0.1	<0.05	3	<0.5	<0.2
CZ-S045	Soil	0.053	18	329	0.98	116	0.038	4	1.53	0.008	0.29	0.1	0.04	7.1	<0.1	<0.05	5	<0.5	<0.2
CZ-S046	Soil	0.088	7	25	0.22	130	0.100	2	1.09	0.014	0.09	<0.1	0.01	1.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S047	Soil	0.075	15	39	0.55	114	0.113	2	1.39	0.034	0.16	<0.1	0.04	4.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S048	Soil	0.059	13	46	0.35	78	0.130	2	1.36	0.026	0.16	<0.1	< 0.01	4.4	<0.1	<0.05	4	<0.5	<0.2
CZ-S049	Soil	0.105	8	42	0.28	97	0.123	2	1.15	0.023	0.14	<0.1	0.01	2.5	<0.1	<0.05	4	<0.5	<0.2
CZ-S050	Soil	0.046	<1	9	0.43	165	0.003	8	0.05	0.010	0.02	<0.1	0.05	0.2	<0.1	0.14	<1	1.5	<0.2
CZ-S051	Soil	0.167	11	45	0.33	112	0.130	2	1.20	0.031	0.10	0.1	0.02	3.2	<0.1	<0.05	4	<0.5	<0.2
CZ-S052	Soil	0.128	8	36	0.29	105	0.109	1	1.46	0.014	0.08	<0.1	0.02	2.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S053	Soil	0.109	9	37	0.24	145	0.120	2	1.28	0.014	0.14	<0.1	0.02	2.3	<0.1	<0.05	4	<0.5	<0.2
CZ-S054	Soil	0.167	9	47	0.48	105	0.097	2	1.93	0.015	0.14	0.1	0.04	3.0	<0.1	<0.05	6	<0.5	<0.2
CZ-S055	Soil	0.147	8	35	0.28	113	0.072	2	1.40	0.010	0.12	<0.1	0.03	2.4	<0.1	<0.05	4	<0.5	<0.2
CZ-S056	Soil	0.133	10	34	0.24	152	0.069	<1	0.77	0.006	0.10	<0.1	0.02	2.6	<0.1	<0.05	3	<0.5	<0.2
CZ-S057	Soil	0.071	16	11	0.07	102	0.013	1	0.34	0.002	0.09	<0.1	0.02	1.4	<0.1	<0.05	1	<0.5	<0.2
CZ-S058	Soil	0.128	7	32	0.12	98	0.042	<1	0.79	0.005	0.06	0.1	0.03	2.2	0.1	<0.05	4	0.8	0.3
CZ-S059	Soil	0.052	11	17	0.13	71	0.022	1	0.54	0.003	0.10	<0.1	0.01	1.4	<0.1	<0.05	2	<0.5	<0.2
CZ-S060	Soil	0.086	11	21	0.10	181	0.038	1	0.59	0.005	0.07	0.1	0.02	2.1	0.1	<0.05	3	<0.5	<0.2

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Report Date: May 05, 2010

Project:

Page:

None Given

CERTIFICATE OF ANALYSIS

4 of 5 Part 1 SMI10000120.1

	Met	bod	NGHT	1DX30																		
	Ana	yte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	ı	Init	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
	N	IDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
CZ-S061	Soil			4.1	30.3	8.6	135	0.1	26.6	8.3	438	2.22	7.7	0.6	1.5	3.1	24	0.5	1.4	0.2	24	0.11
CZ-S062	Soil			2.1	53.5	11.5	86	<0.1	37.2	8.2	852	2.61	14.7	0.4	2.8	2.5	31	0.2	3.4	0.2	61	0.21
CZ-S063	Soil			0.8	33.7	2.7	57	<0.1	29.5	12.9	280	3.41	43.9	0.3	0.7	1.5	23	0.1	3.9	<0.1	65	0.37
CZ-S064	Soil			0.7	10.3	4.0	60	<0.1	28.1	8.3	342	2.29	2.7	0.4	1.3	1.7	21	<0.1	0.3	<0.1	52	0.21
CZ-S065	Soil			0.8	8.6	3.9	92	<0.1	32.5	8.4	717	2.14	1.7	0.3	0.9	1.8	21	0.1	0.3	<0.1	51	0.24
CZ-S066	Soil			0.5	9.7	3.4	54	<0.1	24.0	7.8	244	2.24	1.8	0.4	1.9	2.1	18	<0.1	0.2	<0.1	57	0.21
CZ-S067	Soil			0.9	8.3	5.9	74	<0.1	22.1	6.5	366	1.97	1.6	0.3	1.7	1.7	16	0.1	0.2	<0.1	46	0.15
CZ-S068	Soil			0.7	13.1	3.5	41	<0.1	35.8	9.5	283	2.39	2.2	0.4	1.2	1.8	20	<0.1	0.4	<0.1	59	0.20
CZ-S069	Soil			0.7	9.3	5.4	117	0.2	21.8	7.0	286	2.18	2.4	0.3	0.8	1.7	34	0.1	0.2	<0.1	54	0.35
CZ-S070	Soil			1.2	11.8	4.7	91	<0.1	20.4	8.9	650	2.04	2.8	0.4	<0.5	1.8	23	0.2	0.6	<0.1	49	0.26
CZ-S071	Soil			1.0	16.8	4.6	72	<0.1	117.3	15.2	339	3.03	6.9	0.5	9.6	2.7	28	0.1	0.4	0.1	70	0.36
CZ-S072	Soil			2.2	21.2	5.0	65	0.1	20.5	6.5	292	2.52	9.9	0.3	126.1	2.0	19	0.2	1.2	0.2	54	0.20
CZ-S073	Soil			2.6	35.7	6.8	100	0.4	38.0	13.7	621	3.25	15.8	0.5	119.5	2.2	25	0.2	1.5	0.2	65	0.23
CZ-S074	Soil			0.8	11.7	5.0	85	0.1	29.0	8.2	341	2.18	2.6	0.4	4.4	2.0	23	0.1	0.4	0.1	50	0.22
CZ-S075	Soil			1.1	17.8	5.1	79	0.2	29.5	10.1	436	2.54	6.0	0.5	13.2	2.2	29	0.2	0.9	0.1	60	0.25
CZ-S076	Soil			1.3	16.5	5.4	111	0.2	28.7	8.6	529	2.47	5.9	0.4	8.2	2.3	26	0.2	1.5	0.1	53	0.21
CZ-S077	Soil			1.3	11.3	5.0	79	0.2	28.2	8.9	332	2.35	3.6	0.4	3.3	2.2	32	0.5	0.4	0.1	56	0.30
CZ-S078	Soil			1.6	15.7	5.6	255	0.2	20.8	7.9	433	2.56	6.1	0.3	11.7	1.7	23	1.3	0.8	0.1	52	0.19
CZ-S079	Soil			0.9	10.9	5.8	115	0.1	17.3	5.7	447	1.61	2.2	0.3	2.7	1.7	26	0.2	0.4	<0.1	35	0.17
CZ-S080	Soil			2.9	54.6	8.9	186	0.2	42.3	13.0	723	2.77	24.4	0.4	10.3	3.6	30	0.4	1.3	0.3	32	0.19
CZ-S081	Soil			2.2	13.0	5.6	75	0.4	15.2	5.1	743	1.66	4.5	0.3	3.9	2.2	35	0.2	1.1	0.2	30	0.23
CZ-S082	Soil			0.9	18.9	5.8	70	0.2	35.7	9.9	346	2.62	4.3	0.6	9.5	2.7	40	0.1	0.6	0.1	52	0.41
CZ-S083	Soil			0.9	38.9	6.7	191	0.1	35.8	10.0	645	2.84	4.7	0.6	4.6	2.3	37	0.3	0.5	0.2	56	0.28
CZ-S084	Soil			1.3	21.0	4.9	75	<0.1	32.0	10.1	312	2.84	3.5	0.5	1.6	2.4	31	<0.1	0.7	0.1	55	0.29
CZ-S085	Soil			0.8	10.2	4.5	84	<0.1	23.8	8.4	248	2.29	2.5	0.4	2.6	1.9	22	0.1	0.3	0.1	46	0.18
CZ-S086	Soil			0.6	11.9	4.8	57	<0.1	32.0	9.2	221	2.33	2.3	0.4	2.5	1.8	21	<0.1	0.2	0.1	53	0.21
CZ-S087	Soil			0.8	8.6	4.2	68	<0.1	29.6	7.4	457	2.22	1.6	0.4	2.4	1.9	22	<0.1	0.2	<0.1	53	0.20
CZ-S088	Soil			0.8	12.2	3.8	73	<0.1	24.3	8.1	313	2.28	2.4	0.4	1.5	1.6	33	0.2	0.3	<0.1	53	0.31
CZ-S089	Soil			1.0	14.2	6.1	191	0.4	25.8	10.7	398	2.58	2.5	0.4	1.8	2.1	30	0.4	0.4	0.1	53	0.28
CZ-S090	Soil			1.0	14.4	4.7	105	<0.1	28.5	9.2	339	2.15	2.2	0.4	1.7	2.1	27	0.2	0.4	<0.1	49	0.28

Project:

Page:

Report Date:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd. V6A 4A3 Canada

www.acmelab.com

None Given May 05, 2010

4 of 5 Part 2

CERTIFICATE OF ANALYSIS

SMI10000120.1

		Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX3											
		Analyte	P	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Hg	Sc	т	S	Ga	Se	т
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppr
		MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.
CZ-S061	Soil		0.063	15	13	0.07	115	0.018	1	0.43	0.003	0.10	<0.1	0.01	1.9	<0.1	<0.05	2	0.5	⊲0.
CZ-S062	Soil		0.049	18	29	0.13	89	0.055	1	0.76	0.005	0.16	<0.1	0.02	2.2	<0.1	<0.05	3	<0.5	<0
CZ-S063	Soil		0.066	6	32	0.23	75	0.052	2	0.86	0.010	0.11	0.5	0.02	8.7	<0.1	<0.05	3	<0.5	<0
CZ-S064	Soil		0.159	7	32	0.28	199	0.079	<1	1.21	0.009	0.04	<0.1	0.02	1.9	<0.1	<0.05	4	<0.5	⊲0.
CZ-S065	Soil		0.120	7	32	0.25	113	0.089	<1	1.28	0.010	0.05	<0.1	0.01	2.0	<0.1	<0.05	4	<0.5	<0
CZ-S066	Soil		0.075	8	32	0.26	100	0.100	<1	1.25	0.011	0.07	<0.1	0.01	1.9	<0.1	<0.05	4	<0.5	<0
CZ-S067	Soil		0.157	7	32	0.16	107	0.093	<1	1.30	0.008	0.04	<0.1	0.02	1.8	<0.1	<0.05	5	<0.5	<0.
CZ-S068	Soil		0.042	7	49	0.37	86	0.115	<1	0.97	0.013	0.06	<0.1	< 0.01	2.2	<0.1	<0.05	3	<0.5	<0
CZ-S069	Soil		0.146	7	32	0.25	144	0.102	1	1.35	0.009	0.09	<0.1	0.01	2.0	<0.1	<0.05	5	<0.5	⊲0.
CZ-S070	Soil		0.065	10	33	0.30	110	0.075	2	0.85	0.008	0.09	<0.1	0.02	2.2	<0.1	<0.05	4	<0.5	<0.
CZ-S071	Soil		0.125	9	83	0.48	115	0.133	2	1.88	0.014	0.07	0.1	0.02	3.2	<0.1	<0.05	5	<0.5	<0
CZ-S072	Soil		0.061	11	31	0.16	68	0.066	2	0.47	0.005	0.08	<0.1	0.02	2.1	<0.1	<0.05	3	<0.5	0.
CZ-S073	Soil		0.113	9	49	0.40	132	0.099	1	1.33	0.013	0.10	<0.1	0.04	2.8	<0.1	<0.05	4	0.6	<0.
CZ-S074	Soil		0.097	9	39	0.41	109	0.118	<1	1.52	0.014	0.08	0.1	0.02	2.1	<0.1	<0.05	4	0.5	<0
CZ-S075	Soil		0.071	8	45	0.40	105	0.131	<1	1.36	0.017	0.09	<0.1	0.02	2.7	<0.1	<0.05	4	<0.5	<0.
CZ-S076	Soil		0.106	8	37	0.33	130	0.091	1	1.18	0.012	0.08	0.1	0.02	2.5	<0.1	<0.05	3	<0.5	<0.
CZ-S077	Soil		0.115	8	40	0.35	107	0.135	<1	1.39	0.016	0.10	<0.1	0.02	2.1	<0.1	<0.05	4	<0.5	<0
CZ-S078	Soil		0.094	8	33	0.25	105	0.075	2	1.01	0.009	0.08	<0.1	0.02	2.1	<0.1	<0.05	4	0.9	<0
CZ-S079	Soil		0.077	7	29	0.20	126	0.082	<1	0.95	0.015	0.07	<0.1	0.02	1.7	<0.1	<0.05	3	<0.5	<0.
CZ-S080	Soil		0.106	17	24	0.14	216	0.031	1	0.74	0.005	0.12	0.1	0.03	3.5	0.1	<0.05	3	0.9	<0.
CZ-S081	Soil		0.051	12	26	0.12	113	0.049	2	0.52	0.007	0.10	<0.1	0.04	1.9	<0.1	<0.05	2	<0.5	<0
CZ-S082	Soil		0.202	10	45	0.42	153	0.121	<1	1.68	0.022	0.09	<0.1	0.02	2.7	<0.1	<0.05	5	<0.5	⊲0.
CZ-S083	Soil		0.168	10	38	0.45	107	0.084	2	1.61	0.013	0.09	<0.1	0.02	2.9	<0.1	<0.05	5	0.5	<0
CZ-S084	Soil		0.090	8	41	0.47	69	0.102	2	1.35	0.009	0.08	<0.1	0.02	2.4	<0.1	<0.05	4	<0.5	<0
CZ-S085	Soil		0.344	7	37	0.27	232	0.084	<1	1.48	0.010	0.05	0.1	0.03	2.2	<0.1	<0.05	5	0.6	<0.
CZ-S086	Soil		0.121	6	42	0.30	130	0.113	<1	1.55	0.013	0.06	<0.1	<0.01	2.3	<0.1	<0.05	5	<0.5	<0
CZ-S087	Soil		0.122	7	35	0.25	103	0.098	2	1.26	0.012	0.06	<0.1	0.02	1.7	<0.1	<0.05	4	<0.5	<0.
CZ-S088	Soil		0.163	7	37	0.35	101	0.093	<1	1.20	0.012	0.07	<0.1	0.02	1.9	<0.1	<0.05	4	0.5	<0
CZ-S089	Soil		0.180	8	39	0.35	184	0.088	1	1.42	0.012	0.11	<0.1	0.02	2.3	<0.1	<0.05	5	<0.5	<0
CZ-S090	Soil		0.082	9	41	0.32	128	0.111	1	1.35	0.013	0.12	<0.1	0.02	2.4	<0.1	<0.05	4	<0.5	<0.

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

- 32 -

Client: P

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

04) 253-1716 www.acmelab.com Report Date: M

Project:

Page:

None Given May 05, 2010

CERTIFICATE OF ANALYSIS

5 of 5 Part 1 SMI10000120.1

		Method	WGHT	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
		Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
		Unit	kg 0.01	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.1	ppm 0,1	ppm 0.1	ppm 1	0.01	ppm 0.5	ppm 0.1	ppb 0.5	ppm 0.1	ppm 1	ppm 0,1	ppm 0.1	ppm 0.1	ppm 2	0.01
CZ-S091	Soil	mer	0.01	1.4	24.7	5.6	59	<0.1	42.8	10.8	351	2.75	8.3	0.6	12.4	2.6	26	0.1	1.0	0.2	56	0.31
CZ-S092	Soil			1.4	31.2	4.5	106	0.3	108.7	36.0	1038	6.72	6.9	0.5	4.1	2.2	39	0.3	1.4	<0.1	74	0.74
CZ-S093	Soil		2	1.1	20.8	5.5	213	0.1	111.8	13.1	669	3.21	8.2	0.7	12.7	2.3	44	0.5	0.8	0.1	55	0.40
CZ-S094	Soil			0.7	10.0	5.3	54	0.1	43.9	8.3	288	2.01	2.6	0.4	1.4	1.8	17	0.1	0.3	0.1	51	0.17
CZ-S095	Soil			0.6	13.8	1.9	15	0.2	220.9	10.2	531	0.69	1.8	1.0	6.4	<0.1	158	0.8	4.6	<0.1	11	6.41
CZ-S096	Soil			1.1	27.6	6.8	75	<0.1	59.6	11.9	355	2.93	5.0	0.7	4.1	2.9	20	0.1	0.9	0.2	62	0.28
CZ-S106	Soil			1.3	23.6	10.0	69	0.2	1136	71.0	856	5.45	34.2	0.4	41.2	2.6	33	0.3	3.9	0.1	76	0.44
CZ-S107	Soil			0.5	11.5	4.3	56	<0.1	21.8	8.1	344	2.60	1.5	0.4	1.8	2.9	30	<0.1	0.3	0.1	69	0.27
CZ-S110	Soil		8	4.5	201.9	36.7	178	1.2	97.3	32.7	1812	6.95	171.9	0.5	226.7	3.2	69	0.7	9.7	0.8	51	2.10
CZ-S111	Soil			16.4	274.4	28.8	228	4.1	85.0	52.7	1519	7.66	412.6	0.7	5808	3.2	57	2.3	7.2	0.8	24	1.06
CZ-S112	Soil			9.5	119.3	17.6	209	0.7	60.9	13.9	849	5.01	85.6	0.9	139.2	3.3	32	1.1	9.4	0.6	50	0.20
CZ-S113	Soil			5.2	80.2	13.2	127	0.2	52.2	13.4	696	4.29	66.2	0.6	281.0	3.2	24	0.3	4.4	0.4	55	0.17
CZ-S114	Soil			2.6	50.3	8.3	104	0.1	37.7	11.2	569	3.36	23.3	0.5	90.9	2.8	32	0.3	2.3	0.2	61	0.30
CZ-S115	Soil		2	2.8	43.1	9.0	162	0.1	30.6	11.0	507	3.93	34.7	0.5	76.3	2.7	18	0.4	2.6	0.3	59	0.15
CZ-S116	Soil		2	1.0	42.6	5.6	57	0.1	64.8	15.5	453	3.47	11.4	0.5	9.8	3.5	41	0.2	3.0	0.2	76	0.45
CZ-S117	Soil			0.9	20.7	5.3	52	<0.1	43.3	11.5	396	2.86	5.8	0.6	15.5	3.1	34	0.1	0.5	0.2	67	0.43
CZ-S118	Soil		0	0.6	14.1	4.7	80	0.2	40.4	9.7	278	2.47	4.1	0.4	4.1	2.1	24	0.1	0.3	<0.1	53	0.28
CZ-S120	Soil			0.4	6.3	2.1	32	<0.1	12.9	5.6	221	1.61	3.4	0.4	<0.5	1.8	18	<0.1	0.2	<0.1	37	0.24
CZ-S122	Soil			49.1	130.8	7.9	121	18.1	166.6	33.0	2279	5.05	13.8	0.4	1.1	2.2	42	0.2	1.7	0.1	44	1.20
G1	Soil	6	8	1.3	13.3	6.8	36	<0.1	24.5	7.1	185	2.54	31.7	0.4	7.4	1.8	21	<0.1	2.3	0.2	74	0.14
G2	Soil		8	2.8	59.2	19.2	152	4.0	69.8	23.3	509	10.55	3948	0.4	2538	1.0	26	0.2	100.5	<0.1	18	0.24

Client: Po

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

None Given

Project: Non Report Date: May

Page:

www.acmelab.com

May 05, 2010

5 of 5 Part 2

CERTIFICATE OF ANALYSIS

SMI10000120.1

	M	lethod	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30											
	A	nalyte	P	La	Cr	Mg	Ba	ті	в	AI	Na	к	w	Hg	Sc	т	S	Ga	Se	Te
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
CZ-S091	Soil		0.079	10	49	0.47	94	0.116	1	1.17	0.016	0.13	<0.1	0.03	3.2	<0.1	<0.05	3	0.7	<0.2
CZ-S092	Soil		0.103	19	94	1.45	133	0.065	2	2.81	0.015	0.17	<0.1	0.03	6.6	<0.1	<0.05	9	<0.5	<0.2
CZ-S093	Soil		0.230	9	79	0.55	186	0.075	2	1.51	0.012	0.08	0.1	0.03	3.7	<0.1	<0.05	4	0.5	<0.2
CZ-S094	Soil		0.059	8	58	0.32	98	0.108	<1	0.95	0.012	0.05	<0.1	0.01	1.9	<0.1	<0.05	4	<0.5	<0.2
CZ-S095	Soil		0.101	2	141	1.31	139	0.012	25	0.33	0.008	0.04	0.9	0.12	0.6	<0.1	0.19	<1	3.0	<0.2
CZ-S096	Soil		0.227	10	55	0.50	172	0.125	1	1.65	0.016	0.11	0.2	0.01	2.9	<0.1	<0.05	6	<0.5	<0.2
CZ-S106	Soil		0.148	10	568	1.75	137	0.087	2	0.97	0.021	0.13	0.9	1.65	7.9	0.2	<0.05	3	0.6	<0.2
CZ-S107	Soil		0.037	11	47	0.33	86	0.188	<1	1.02	0.031	0.16	<0.1	<0.01	3.0	<0.1	<0.05	3	<0.5	<0.2
CZ-S110	Soil		0.053	14	52	0.40	63	0.007	4	0.73	0.004	0.13	0.3	0.26	11.3	<0.1	<0.05	2	1.2	0.5
CZ-S111	Soil		0.078	14	39	0.27	63	0.008	3	0.51	0.004	0.15	0.1	0.53	10.5	0.2	<0.05	1	2.2	0.8
CZ-S112	Soil		0.114	15	51	0.27	131	0.040	1	0.87	0.008	0.15	0.2	0.13	5.5	0.1	0.06	3	4.0	0.9
CZ-S113	Soil		0.080	14	38	0.42	208	0.062	<1	0.98	0.009	0.12	0.1	0.09	4.8	<0.1	<0.05	3	1.4	<0.2
CZ-S114	Soil		0.061	13	39	0.37	140	0.075	<1	0.97	0.012	0.09	<0.1	0.04	3.7	<0.1	<0.05	3	<0.5	<0.2
CZ-S115	Soil		0.110	10	34	0.30	110	0.060	1	0.86	0.009	0.11	0.1	0.01	2.8	<0.1	<0.05	4	0.7	<0.2
CZ-S116	Soil		0.064	14	64	0.58	112	0.151	<1	1.37	0.029	0.09	<0.1	0.04	7.6	<0.1	<0.05	4	<0.5	<0.2
CZ-S117	Soil		0.098	13	62	0.53	133	0.173	<1	1.20	0.026	0.09	<0.1	0.02	3.2	<0.1	<0.05	4	<0.5	<0.2
CZ-S118	Soil		0.119	8	40	0.43	92	0.110	2	1.45	0.017	0.11	<0.1	< 0.01	2.5	<0.1	<0.05	4	<0.5	<0.2
CZ-S120	Soil		0.037	7	37	0.30	30	0.068	<1	0.48	0.014	0.06	<0.1	< 0.01	1.4	<0.1	<0.05	2	<0.5	<0.2
CZ-S122	Soil		0.114	16	81	0.45	138	0.004	2	0.53	0.004	0.08	52.6	0.09	4.7	0.1	<0.05	2	0.6	<0.2
G1	Soil	-	0.011	8	34	0.36	157	0.134	<1	1.12	0.011	0.04	<0.1	0.01	1.8	<0.1	<0.05	5	<0.5	<0.2
G2	Soil	-	0.051	9	13	0.13	68	0.008	2	0.62	0.006	0.05	0.9	0.43	11.2	0.4	<0.05	1	0.6	<0.2

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada Client:

1 of 1 Part 2

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Project: Report Date:

Page:

None Given May 05, 2010

QUALITY CONTROL REPORT

SMI10000120.1

	Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
	Analyte	P	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Hg	Sc	п	S	Ga	Se	Те
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																			
CZ-S016	Soil	0.031	10	34	0.30	98	0.092	2	1.17	0.016	0.10	<0.1	0.03	2.8	<0.1	<0.05	4	<0.5	<0.2
REP CZ-S016	QC	0.031	10	33	0.30	102	0.087	2	1.16	0.014	0.10	<0.1	0.02	2.7	<0.1	<0.05	4	<0.5	<0.2
CZ-S029	Soil	0.107	9	37	0.35	83	0.124	1	1.01	0.034	0.09	⊲0.1	0.01	2.4	<0.1	<0.05	3	<0.5	⊲0.2
REP CZ-S029	QC	0.104	10	38	0.34	84	0.131	1	1.02	0.034	0.09	<0.1	0.01	2.5	<0.1	<0.05	3	<0.5	<0.2
CZ-S042	Soil	0.061	12	10	0.12	120	0.004	3	0.71	0.004	0.21	<0.1	0.21	5.1	0.1	<0.05	1	2.9	<0.2
REP CZ-S042	QC	0.065	13	9	0.12	142	0.006	5	0.76	< 0.001	0.26	0.2	0.21	5.4	0.2	<0.05	1	2.5	<0.2
CZ-S064	Soil	0.159	7	32	0.28	199	0.079	<1	1.21	0.009	0.04	<0.1	0.02	1.9	<0.1	<0.05	4	<0.5	<0.2
REP CZ-S064	QC	0.159	7	33	0.28	195	0.081	1	1.21	0.010	0.04	<0.1	0.02	1.9	<0.1	<0.05	4	<0.5	<0.2
CZ-S087	Soil	0.122	7	35	0.25	103	0.098	2	1.26	0.012	0.06	<0.1	0.02	1.7	<0.1	<0.05	4	<0.5	<0.2
REP CZ-S087	QC	0.132	7	37	0.25	107	0.101	<1	1.29	0.012	0.06	<0.1	0.02	1.8	<0.1	<0.05	4	<0.5	<0.2
CZ-S111	Soil	0.078	14	39	0.27	63	0.008	3	0.51	0.004	0.15	0.1	0.53	10.5	0.2	<0.05	1	2.2	0.8
REP CZ-S111	QC	0.075	14	36	0.26	59	0.006	2	0.46	0.004	0.16	0.1	0.50	10.0	0.1	<0.05	1	2.9	0.5
CZ-S122	Soil	0.114	16	81	0.45	138	0.004	2	0.53	0.004	0.08	52.6	0.09	4.7	0.1	<0.05	2	0.6	<0.2
REP CZ-S122	QC	0.116	17	83	0.46	136	0.004	2	0.53	0.004	0.08	55.9	0.11	4.7	0.2	<0.05	2	0.8	<0.2
Reference Materials																			
STD DS7	Standard	0.077	12	193	1.05	412	0.124	43	0.99	0.088	0.47	3.9	0.24	2.4	4.4	0.19	5	3.4	1.1
STD DS7	Standard	0.080	13	225	1.09	445	0.150	40	1.10	0.101	0.50	4.0	0.23	2.8	4.1	0.20	5	3.5	1.1
STD DS7	Standard	0.082	14	216	1.13	424	0.134	43	1.13	0.103	0.50	3.8	0.23	2.6	4.1	0.22	5	3.9	1.2
STD DS7	Standard	0.081	16	218	1.11	418	0.136	42	1.15	0.104	0.49	3.8	0.22	3.0	4.1	0.21	5	3.4	1.1
STD DS7 Expected		0.08	12	179	1.05	370	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.08
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	⊲0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<0.001	<1	<1	< 0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<0.001	<1	<1	< 0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<0.001	<1	<1	< 0.01	<1	< 0.001	<1	<0.01	< 0.001	<0.01	<0.1	< 0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

Client: Porpoi

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

1 of 1 Part 1

Acme Analytical Laboratories (Vancouver) Ltd.

Project: Report Date:

Page:

None Given May 05, 2010

www.acmelab.com

Date: May 05, 20

QUALITY CONTROL REPORT

SMI10000120.1

	Method	WGHT	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30								
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
Pulp Duplicates																					
CZ-S016	Soil		1.1	14.7	4.6	72	0.2	30.1	8.6	424	2.51	3.4	0.7	<0.5	1.7	24	0.2	0.8	0.1	56	0.27
REP CZ-S016	QC		1.2	14.7	5.0	73	0.2	30.6	7.9	417	2.43	3.4	0.7	3.5	1.8	25	0.3	0.8	<0.1	54	0.28
CZ-S029	Soil	-	0.5	9.0	3.6	40	<0.1	19.7	8.7	271	2.43	2.2	0.4	2.4	1.9	35	<0.1	0.2	<0.1	57	0.39
REP CZ-S029	QC		0.6	9.1	3.5	41	<0.1	20.1	9.0	287	2.51	2.2	0.4	<0.5	2.0	35	<0.1	0.2	<0.1	58	0.40
CZ-S042	Soil		12.4	57.8	10.3	218	0.9	32.5	7.0	506	3.91	13.2	0.6	4.4	1.7	35	1.0	2.6	0.1	24	0.33
REP CZ-S042	QC		12.7	58.5	9.9	221	0.9	33.2	7.1	507	3.92	13.1	0.6	1.7	1.8	38	1.0	2.9	0.1	25	0.35
CZ-S064	Soil		0.7	10.3	4.0	60	<0.1	28.1	8.3	342	2.29	2.7	0.4	1.3	1.7	21	<0.1	0.3	<0.1	52	0.21
REP CZ-S064	QC	2	0.7	10.7	3.8	59	<0.1	28.6	8.4	346	2.33	2.7	0.3	<0.5	1.8	22	<0.1	0.3	<0.1	53	0.21
CZ-S087	Soil		0.8	8.6	4.2	68	<0.1	29.6	7.4	457	2.22	1.6	0.4	2.4	1.9	22	<0.1	0.2	<0.1	53	0.20
REP CZ-S087	QC		0.7	8.4	4.5	69	<0.1	30.6	7.8	461	2.23	1.2	0.4	1.3	1.9	22	<0.1	0.2	<0.1	52	0.21
CZ-S111	Soil		16.4	274.4	28.8	228	4.1	85.0	52.7	1519	7.66	412.6	0.7	5808	3.2	57	2.3	7.2	0.8	24	1.06
REP CZ-S111	QC		16.4	259.6	28.1	232	4.2	84.0	50.6	1549	7.68	399.1	0.7	5536	3.4	58	2.1	7.0	0.7	23	1.04
CZ-S122	Soil		49.1	130.8	7.9	121	18.1	166.6	33.0	2279	5.05	13.8	0.4	1.1	2.2	42	0.2	1.7	0.1	44	1.20
REP CZ-S122	QC		52.3	137.0	7.4	120	18.4	167.3	34.2	2345	5.07	13.6	0.4	2.6	2.2	42	0.3	1.8	0.2	45	1.18
Reference Materials																					
STD DS7	Standard		19.6	111.2	69.7	395	1.1	54.3	9.4	631	2.38	53.3	4.9	77.6	4.5	77	6.5	6.2	4.8	79	0.93
STD DS7	Standard		22.2	118.8	72.7	415	1.0	57.6	10.0	672	2.49	53.9	5.0	90.5	4.8	88	6.5	6.2	4.9	88	1.00
STD DS7	Standard		21.5	115.1	64.0	407	1.0	57.6	9.9	638	2.42	54.7	4.7	76.0	4.8	78	6.7	6.0	4.7	87	1.02
STD DS7	Standard		21.2	111.1	64.4	398	1.0	59.8	9.9	662	2.48	52.8	4.9	72.4	5.0	81	6.4	6.0	4.6	87	1.04
STD DS7 Expected			20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4.4	69	6.4	4.6	4.5	84	0.93
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	⊲0.1	<0.1	<2	<0.01
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01
BLK	Blank	-	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01

APPENDIX B. SOIL SAMPLE LOCATION INFORMATION AND SELECTED ANALYTICAL RESULTS

MapNo	SampleNo	Easting	Northing	Mo PPM	Cu PPM	Mdd dd	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	Au PPB	Sb PPM	Ba PPM	Hg PPM
001	∽ CZ-S001	470400	5971158	0.6	14.3	6.3	41	< 0.1	30.9	9.9	448	2.37	1.8	< 0.5	0.3	73	0.01
002	CZ-S002	470475	5971146	0.9	21.4	5	48	<0.1	33	10.1	398	2.71	3.2	<0.5	0.3	88	0.01
002	CZ-S003	470550	5971140	0.4	14.4	4.5	49	<0.1	25.3	8.1	332	2.28	1.7	<0.5	0.3	85	0.02
004	CZ-S004	470625	5971150	0.5	11.5	3.8	45	<0.1	20.5	6.5	210	2.21	1.7	<0.5	0.2	55	< 0.01
005	CZ-S005	470700	5971143	0.6	17.2	4.5	47	0.1	28.9	9	319	2.46	2.5	<0.5	0.3	65	0.02
006	CZ-S006	470775	5971148	0.6	12.2	4.1	48	< 0.1	23.5	7.1	315	2.33	3.3	< 0.5	0.3	70	0.01
007	CZ-S007	470850	5971159	1	9	5.7	60	< 0.1	22.6	7	339	2.17	1.4	9.5	0.2	91	0.02
008	CZ-S008	470925	5971157	0.6	14	8	37	< 0.1	23.3	8.8	426	2.29	2.4	< 0.5	0.2	82	0.02
009	CZ-S009	471000	5971157	0.7	9.6	4.8	48	< 0.1	25.4	7.5	362	2.27	1.5	50.3	0.2	83	0.01
010	CZ-S010	471075	5971147	0.8	63.7	4.6	50	< 0.1	41.3	18.5	574	3.43	7.1	26.4	1	95	0.02
011	CZ-S011	471146	5971158	0.7	124.4	5.5	86	0.3	55.7	36.6	949	5.67	66	275.9	2.9	138	0.04
012	CZ-S012	471227	5971166	1	104.6	13.7	82	0.1	47.5	33.3	1666	4.42	31.4	191.2	1	465	0.1
013	CZ-S013	471294	5971179	0.8	27.6	5	259	< 0.1	38.9	10.5	666	2.66	8.3	26.4	0.4	249	0.05
014	CZ-S014	471375	5971187	0.7	10.9	4.1	53	< 0.1	23.5	7.5	544	2.22	1.8	0.7	0.2	125	0.01
015	CZ-S015	471450	5971201	0.6	10.2	4.4	114	< 0.1	27.6	7.4	474	2.17	1.7	< 0.5	0.2	198	0.01
016	CZ-S016	471525	5971241	1.1	14.7	4.6	72	0.2	30.1	8.6	424	2.51	3.4	< 0.5	0.8	98	0.03
017	CZ-S017	471600	5971250	2.6	13	4.1	171	0.2	22.9	7	314	2.22	3.6	< 0.5	0.8	129	0.02
018	CZ-S018	471675	5971265	0.8	10.3	3.5	59	< 0.1	34.5	7.7	278	2.18	2.3	< 0.5	0.3	80	0.02
019	CZ-S019	471750	5971266	2.6	31.2	5.7	109	0.1	104.6	16	413	4.15	14.8	12.7	1.3	118	0.03
020	CZ-S020	471825	5971268	2.3	45	5.9	108	< 0.1	97.1	19.2	716	3.65	7.1	1.8	0.8	251	0.03
021	CZ-S021	471900	5971257	2.5	47.7	5.5	87	0.2	346.1	41.5	849	3.89	8.2	1.5	1.7	190	0.04
022	CZ-S022	471975	5971252	1.3	13.7	5.3	118	0.1	23.3	6	466	1.83	2.7	< 0.5	0.6	123	0.02
023	CZ-S023	470400	5971215	0.6	10	3.9	52	< 0.1	21.5	7.4	300	2.49	1.4	< 0.5	0.2	96	0.01
024	CZ-S024	470475	5971206	0.6	6.6	3.8	48	< 0.1	17.7	5.6	272	1.93	0.8	< 0.5	0.2	106	< 0.01
025	CZ-S025	470525	5971177	0.7	12.4	4.8	45	< 0.1	23.2	8.7	472	2.25	1.4	< 0.5	0.2	109	< 0.01
026	CZ-S026	470600	5971198	0.6	10.7	4.2	52	< 0.1	20.1	7.4	359	2.25	1.3	48.9	0.2	106	0.01
027	CZ-S027	470675	5971207	0.5	9.9	3.9	70	< 0.1	20.7	6.2	404	2.37	1.2	11.3	0.2	120	< 0.01
028	CZ-S028	470725	5971205	0.5	8.9	3.7	44	< 0.1	17.5	7	244	2.24	1.2	< 0.5	0.2	77	< 0.01
029	CZ-S029	470800	5971309	0.5	9	3.6	40	<0.1	19.7	8.7	271	2.43	2.2	2.4	0.2	83	0.01
030	CZ-S030	470875	5971293	0.5	20.5	4.9	58	<0.1	33	10.9	540	2.85	2.3	0.6	0.3	117	0.02
031 032	CZ-S031 CZ-S032	470925 470100	5971241 5971223	0.6	13.7 7.3	4.3 3.5	64 49	<0.1 <0.1	25 18.3	7.9 6.1	402 333	2.69	1.2 0.9	<0.5	0.2 0.1	149 99	< 0.01
032	CZ-S032 CZ-S033	470100	5971225 5971196	0.6 1	7.5 35	5.5 4.6	49 168	<0.1 0.1	18.5 54.6	0.1 18.9	555 510	1.96 3.5	0.9 4.6	<0.5 19.9	0.1	99 240	0.01 0.02
033	CZ-S033 CZ-S034	471150	5971190 5971191	0.5	10	3.8	76	<0.1	25.7	8.1	273	2.52	4.0	5.2	0.4	112	0.02
035	CZ-S034	471225	5971233	0.5	6	2.9	76	<0.1	23.7	6	180	1.9	1.7	<0.5	0.2	82	0.02
036	CZ-S035	471300	5971235 5971216	0.7	17	4.7	48	<0.1	28.9	9	353	2.52	2	<0.5 9.7	0.2	94	0.01
037	CZ-S037	471375	5971227	0.5	11.1	3.5	52	<0.1	22.8	6.7	351	2.19	1.2	25.6	0.2	92	< 0.01
038	CZ-S038	471450	5971116	0.9	7.7	5.1	112	<0.1	15.4	7.4	909	1.88	0.8	1.6	0.2	173	0.01
039	CZ-S039	471425	5971232	0.5	27.4	4.5	104	<0.1	34.8	11.4	831	2.92	5.3	2.6	0.4	246	0.01
040	CZ-S040	471450	5971262	0.5	10.4	3.7	40	< 0.1	21.8	7.1	207	2.33	1.2	1.1	0.2	60	< 0.01
041	CZ-S041	471520	5971317	7	54.3	11.8	109	0.2	42.6	10.8	1777	3.13	7.9	4.2	2	140	0.1
042	CZ-S042	471602	5971311	12.4	57.8	10.3	218	0.9	32.5	7	506	3.91	13.2	4.4	2.6	120	0.21
043	CZ-S043	471677	5971300	1.1	22.6	4.6	70	< 0.1	39.3	12.3	807	2.79	2.5	1.2	0.5	174	0.11
044	CZ-S044	471750	5971308	3.2	40.8	6.2	78	0.1	65.4	14.3	475	3.57	12.5	11.5	1.1	142	0.03
045	CZ-S045	471825	5971304	2.9	45.3	5.4	80	< 0.1	409.8	29.2	619	4.54	17	15.5	3	116	0.04
046	CZ-S046	470695	5971257	0.6	8.1	3.6	80	< 0.1	24.7	6.5	491	1.98	1.2	0.7	0.2	130	0.01
047	CZ-S047	470748	5971249	0.6	21.6	4.9	48	< 0.1	36.2	11.6	498	2.83	3.4	1.6	0.4	114	0.04
048	CZ-S048	470772	5971280	0.6	15.8	4.2	47	< 0.1	31.5	9.7	274	2.75	2.4	0.8	0.3	78	< 0.01

MapNo	SampleNo	Easting	Northing	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	Au PPB	Sb PPM	Ba PPM	Mqg PPM
049	CZ-S049	470825	5970201	0.5	7.1	4	41	< 0.1	19.9	6.7	225	2.16	1.4	1.5	0.2	97	0.01
050	CZ-S050	470823	5971250	0.5 7.9	7.8	0.9	3	< 0.1	10.8	5	5518	0.59	1.4	1.3	0.2	165	0.01
051	CZ-S051	470922	59711250	1.1	14.2	4.9	46	<0.1	25.3	9.5	379	2.78	3	1.5	0.3	112	0.02
052	CZ-S052	471377	5971139	0.6	11.8	3.8	83	<0.1	31.9	8.4	256	2.53	2.4	190.1	0.2	105	0.02
053	CZ-S053	471450	5971169	0.9	7.4	5.1	123	< 0.1	29.2	7.8	501	1.89	1.2	1.2	0.2	145	0.02
054	CZ-S054	471525	5971180	1.1	15.2	4.8	123	< 0.1	50.6	13	401	2.96	4.6	4.9	0.5	105	0.04
055	CZ-S055	471600	5971230	2	13.9	4.7	128	0.2	35.1	9	269	2.43	4.3	2	0.7	113	0.03
056	CZ-S056	470100	5970474	1.6	29.3	5.6	86	0.2	27.4	10.3	394	2.53	5.7	1	0.9	152	0.02
057	CZ-S057	470200	5970574	4.2	39.5	9.1	107	0.1	22.4	6.6	607	2.27	10.1	2.6	1.4	102	0.02
058	CZ-S058	470302	5970653	6.4	73.3	11.9	203	0.4	33.4	16.7	351	5.26	16.9	16.1	3.5	98	0.03
059	CZ-S059	470300	5970500	1.7	14	4.5	124	0.3	15.9	6.4	284	1.56	2.5	1.3	0.3	71	0.01
060	CZ-S060	470400	5970500	3.5	13.5	5.1	128	< 0.1	19.7	6.4	248	2.22	5.1	3	3.2	181	0.02
061	CZ-S061	470500	5970500	4.1	30.3	8.6	135	0.1	26.6	8.3	438	2.22	7.7	1.5	1.4	115	0.01
062	CZ-S062	470602	5970501	2.1	53.5	11.5	86	< 0.1	37.2	8.2	852	2.61	14.7	2.8	3.4	89	0.02
063	CZ-S063	470700	5970500	0.8	33.7	2.7	57	< 0.1	29.5	12.9	280	3.41	43.9	0.7	3.9	75	0.02
064	CZ-S064 CZ-S065	470800 470900	5970498 5970500	0.7 0.8	10.3	4 3.9	60 92	<0.1 <0.1	28.1 32.5	8.3 8.4	342 717	2.29 2.14	2.7 1.7	1.3 0.9	0.3 0.3	199 113	0.02 0.01
065 066	CZ-S065 CZ-S066	470900	5970300 5970485	0.8	8.6 9.7	3.9 3.4	92 54	< 0.1	52.5 24	8.4 7.8	244	2.14	1.7	0.9 1.9	0.5	115	0.01
067	CZ-S060 CZ-S067	471002	5970485 5970495	0.5	8.3	5.4 5.9	54 74	< 0.1	24	7.8 6.5	244 366	2.24 1.97	1.6	1.9	0.2	100	0.01
068	CZ-S068	471100	5970600	0.7	13.1	3.5	41	<0.1	35.8	9.5	283	2.39	2.2	1.2	0.2	86	< 0.02
069	CZ-S069	471108	5970697	0.7	9.3	5.4	117	0.2	21.8	7	286	2.18	2.4	0.8	0.2	144	0.01
070	CZ-S070	471104	5970801	1.2	11.8	4.7	91	< 0.1	20.4	8.9	650	2.04	2.8	< 0.5	0.6	110	0.02
071	CZ-S071	471102	5970900	1	16.8	4.6	72	< 0.1	117.3	15.2	339	3.03	6.9	9.6	0.4	115	0.02
072	CZ-S072	471000	5970913	2.2	21.2	5	65	0.1	20.5	6.5	292	2.52	9.9	126.1	1.2	68	0.02
073	CZ-S073	470925	5970838	2.6	35.7	6.8	100	0.4	38	13.7	621	3.25	15.8	119.5	1.5	132	0.04
074	CZ-S074	470850	5970787	0.8	11.7	5	85	0.1	29	8.2	341	2.18	2.6	4.4	0.4	109	0.02
075	CZ-S075	470793	5970762	1.1	17.8	5.1	79	0.2	29.5	10.1	436	2.54	6	13.2	0.9	105	0.02
076	CZ-S076	470775	5970750	1.3	16.5	5.4	111	0.2	28.7	8.6	529	2.47	5.9	8.2	1.5	130	0.02
077	CZ-S077	470715	5970735	1.3	11.3	5	79	0.2	28.2	8.9	332	2.35	3.6	3.3	0.4	107	0.02
078	CZ-S078	470650	5970717	1.6	15.7	5.6	255	0.2	20.8	7.9	433	2.56	6.1	11.7	0.8	105	0.02
079	CZ-S079	470575	5970680	0.9	10.9	5.8	115	0.1	17.3	5.7	447	1.61	2.2	2.7	0.4	126	0.02
080	CZ-S080	470450	5970647	2.9	54.6	8.9	186	0.2	42.3	13	723	2.77	24.4	10.3	1.3	216	0.03
081 082	CZ-S081 CZ-S082	470404 470499	5970599 5970597	2.2 0.9	13 18.9	5.6 5.8	75 70	0.4 0.2	15.2 35.7	5.1 9.9	743 346	1.66 2.62	4.5 4.3	3.9 9.5	1.1 0.6	113 153	0.04 0.02
082	CZ-S082 CZ-S083	470499	5970597 5970605	0.9	38.9	5.8 6.7	191	0.2	35.7	9.9 10	645	2.84	4.3	9.5 4.6	0.0	107	0.02
084	CZ-S083	470700	5970598	1.3	21	4.9	75	<0.1	32	10.1	312	2.84	3.5	1.6	0.5	69	0.02
085	CZ-S085	470804	5970600	0.8	10.2	4.5	84	<0.1	23.8	8.4	248	2.29	2.5	2.6	0.3	232	0.02
086	CZ-S086	470901	5970600	0.6	11.9	4.8	57	< 0.1	32	9.2	221	2.33	2.3	2.5	0.2	130	< 0.01
087	CZ-S087	471001	5970600	0.8	8.6	4.2	68	< 0.1	29.6	7.4	457	2.22	1.6	2.4	0.2	103	0.02
088	CZ-S088	471002	5970700	0.8	12.2	3.8	73	< 0.1	24.3	8.1	313	2.28	2.4	1.5	0.3	101	0.02
089	CZ-S089	470901	5970705	1	14.2	6.1	191	0.4	25.8	10.7	398	2.58	2.5	1.8	0.4	184	0.02
090	CZ-S090	470800	5970700	1	14.4	4.7	105	< 0.1	28.5	9.2	339	2.15	2.2	1.7	0.4	128	0.02
091	CZ-S091	471204	5970800	1.4	24.7	5.6	59	< 0.1	42.8	10.8	351	2.75	8.3	12.4	1	94	0.03
092	CZ-S092	471260	5970789	1.4	31.2	4.5	106	0.3	108.7	36	1038	6.72	6.9	4.1	1.4	133	0.03
093	CZ-S093	471279	5970791	1.1	20.8	5.5	213	0.1	111.8	13.1	669	3.21	8.2	12.7	0.8	186	0.03
094	CZ-S094	471300	5970800	0.7	10	5.3	54	0.1	43.9	8.3	288	2.01	2.6	1.4	0.3	98	0.01
095	CZ-S095	471300	5970895	0.6	13.8	1.9	15	0.2	220.9	10.2	531	0.69	1.8	6.4	4.6	139	0.12
096 106	CZ-S096	471207	5970912 5971100	1.1	27.6	6.8	75 60	<0.1	59.6	11.9 71	355	2.93	5 24 2	4.1	0.9	172	0.01
106 107	CZ-S106	471300	5971100 5971160	1.3	23.6	10 4.3	69 56	0.2	1135.8	71 8.1	856 344	5.45 2.6	34.2	41.2	3.9 0.3	137	1.65
107 110	CZ-S107 CZ-S110	471295 470422	5971160 5970733	0.5 4.5	11.5 201.9	4.3 36.7	56 178	<0.1 1.2	21.8 97.3	8.1 32.7	344 1812	2.6 6.95	1.5 171.9	1.8 226.7	0.3 9.7	86 63	<0.01 0.26
110	CZ-S110 CZ-S111	470422	5970733 5970749	4.5 16.4	201.9	28.8	228	4.1	97.5 85	52.7 52.7	1512	0.93 7.66	412.6	5808.4	9.7 7.2	63	0.20
112	CZ-S111 CZ-S112	470568	5970749 5970789	9.5	119.3	28.8 17.6	209	0.7	60.9	13.9	849	5.01	85.6	139.2	7.2 9.4	131	0.33
113	CZ-S113	470669	5970842	5.2	80.2	13.2	127	0.2	52.2	13.4	696	4.29	66.2	281	4.4	208	0.09
114	CZ-S114	470768	5970873	2.6	50.3	8.3	104	0.1	37.7	11.2	569	3.36	23.3	90.9	2.3	140	0.04
115	CZ-S115	470858	5970912	2.8	43.1	9	162	0.1	30.6	11	507	3.93	34.7	76.3	2.6	110	0.01

MapNo	SampleNo	Easting	Northing	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	As PPM	Au PPB	Sb PPM	Ba PPM	Hg PPM
116	CZ-S116	470941	5970947	1	42.6	5.6	57	0.1	64.8	15.5	453	3.47	11.4	9.8	3	112	0.04
117	CZ-S117	471053	5970952	0.9	20.7	5.3	52	< 0.1	43.3	11.5	396	2.86	5.8	15.5	0.5	133	0.02
118	CZ-S118	471232	5971129	0.6	14.1	4.7	80	0.2	40.4	9.7	278	2.47	4.1	4.1	0.3	92	< 0.01
120	CZ-S120	470690	5971260	0.4	6.3	2.1	32	< 0.1	12.9	5.6	221	1.61	3.4	< 0.5	0.2	30	< 0.01
122	CZ-S122	472236	5967950	49.1	130.8	7.9	121	18.1	166.6	33	2279	5.05	13.8	1.1	1.7	138	0.09

Page:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC V0N 3A0 Canada

Rupert Seel

www.acmelab.com

Submitted By: Receiving Lab: Canada-Smithers Received: Report Date: May 10, 2010 1 of 2

April 26, 2010

CERTIFICATE OF ANALYSIS

None Given

11

SMI10000121.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	11	Crush, split and pulverize 250 g rock to 200 mesh			SMI
1DX3	11	1:1:1 Aqua Regia digestion ICP-MS analysis	30	Completed	VAN

ADDITIONAL COMMENTS

STOR-PLP Store After 90 days Invoice for Storage DISP-RJT

Project:

Shipment ID:

P.O. Number

Number of Samples: SAMPLE DISPOSAL

CLIENT JOB INFORMATION

Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC V0N 3A0 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. "" asterish indicates that an analysical result could not be provided due to unsuash right evels of interference from other elements.

Project:

Page:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

None Given Report Date: May 10, 2010

CERTIFICATE OF ANALYSIS

2 of 2	Part 1	
	SMI10000	121.

	Method	WGHT	1DX30	1DX3																	
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	C
	Unit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
CZ-R100	Rock	0.73	0.3	23.5	0.8	28	<0.1	12.9	10.3	572	2.16	13.7	<0.1	177.5	<0.1	264	<0.1	1.3	<0.1	38	7.47
CZ-R101	Rock	0.52	0.5	54.1	0.9	105	<0.1	42.0	36.4	1303	6.61	15.6	0.3	4.3	0.2	295	<0.1	0.3	<0.1	137	5.89
CZ-R102	Rock	0.87	0.5	15.8	1.2	12	<0.1	5.5	1.5	275	1.11	6.1	<0.1	<0.5	0.2	10	<0.1	0.7	<0.1	5	0.39
CZ-R103	Rock	0.88	0.4	32.9	0.7	34	<0.1	26.6	18.6	774	3.26	50.1	<0.1	67.3	<0.1	203	<0.1	0.5	<0.1	42	7.37
CZ-R105A	Rock	0.71	0.6	62.2	10.0	77	<0.1	39.4	10.1	1603	1.88	1.2	0.2	0.5	1.6	14	0.1	0.3	0.2	8	0.41
CZ-R105B	Rock	0.60	1.4	22.1	2.9	15	<0.1	946.9	38.4	1049	4.34	122.7	0.6	31.8	<0.1	3	<0.1	5.8	<0.1	50	0.02
CZ-R108	Rock	0.78	0.9	31.0	2.6	108	<0.1	363.3	35.9	1330	4.41	35.3	0.1	1.3	0.3	124	0.3	1.0	<0.1	72	4.24
CZ-R109	Rock	0.73	9.2	106.1	5.8	855	0.6	132.2	24.6	348	8.06	26.0	1.3	<0.5	1.4	8	56.0	9.1	0.2	24	0.09
CZ-R119	Rock	0.47	1.0	19.4	4.6	43	<0.1	13.6	3.7	496	0.90	4.3	0.4	0.8	2.0	21	0.5	0.6	<0.1	8	0.19
CZ-R121	Rock	1.23	0.2	9.5	0.3	12	<0.1	974.6	45.6	455	2.50	1.2	<0.1	<0.5	<0.1	52	<0.1	0.4	<0.1	13	3.73
G3	Rock	0.70	0.5	19.3	3.5	44	<0.1	39.6	10.3	716	3.02	77.8	0.1	18.9	0.6	41	0.1	5.5	<0.1	20	1.60

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada

Project: None Given

Report Date:

Page:

May 10, 2010

CERTIFICATE OF ANALYSIS

2 of 2 Part 2 SMI10000121.1

	Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
	Analyte	Р	La	Cr	Mg	Ba	ті	в	AI	Na	к	W	Hg	Sc	т	S	Ga	Se	Te
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
CZ-R100	Rock	0.014	<1	23	1.00	16	0.056	2	0.70	0.007	0.05	0.3	0.02	3.6	<0.1	⊲0.05	2	0.6	<0.2
CZ-R101	Rock	0.060	5	77	2.35	63	0.005	1	2.06	0.025	0.14	<0.1	0.61	18.4	<0.1	<0.05	8	<0.5	<0.2
CZ-R102	Rock	0.004	2	10	0.13	27	<0.001	2	0.08	0.002	0.05	0.2	< 0.01	0.9	0.1	<0.05	<1	<0.5	<0.2
CZ-R103	Rock	0.039	2	36	2.06	40	0.042	5	1.14	0.014	0.21	<0.1	0.01	9.3	<0.1	0.05	3	<0.5	<0.2
CZ-R105A	Rock	0.033	8	13	0.29	122	0.001	2	0.39	0.008	0.11	<0.1	0.02	1.6	<0.1	<0.05	1	<0.5	<0.2
CZ-R105B	Rock	0.038	2	387	0.04	163	<0.001	<1	0.09	0.001	0.02	0.6	0.03	5.8	<0.1	<0.05	<1	<0.5	<0.2
CZ-R108	Rock	0.042	3	300	5.04	33	<0.001	2	1.59	0.004	0.08	<0.1	0.08	13.1	<0.1	<0.05	3	0.6	<0.2
CZ-R109	Rock	0.058	5	15	0.08	67	0.017	2	0.51	0.008	0.09	0.2	0.41	2.8	0.2	0.06	1	7.1	0.3
CZ-R119	Rock	0.097	5	5	0.09	64	0.002	1	0.37	0.001	0.16	<0.1	<0.01	0.9	0.1	<0.05	<1	⊲0.5	<0.2
CZ-R121	Rock	0.004	1	240	10.95	50	0.002	5	0.06	0.003	< 0.01	0.4	0.58	3.6	<0.1	<0.05	<1	<0.5	<0.2
G3	Rock	0.058	11	18	0.60	79	0.001	3	1.03	0.095	0.10	<0.1	0.12	6.4	<0.1	<0.05	3	<0.5	<0.2

www.acmelab.com

Client:	Porpoise Bay Minerals Ltd. PO Box 1974

Project:

Sechelt BC V0N 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

None Given May 10, 2010

www.acmelab.com

Report Date:

						***	w.acm	erab.cc				Page:		1 of 1	P	art 1					
QUALITY CO	ONTROL	REP	OR	Г								, agei				and the second second	11100	0001	121.	1	
	Method Analyte Unit	WGHT Wgt kg	1DX30 Mo ppm	1DX30 Cu ppm	1DX30 Pb ppm	1DX30 Zn ppm	1DX30 Ag ppm	1DX30 Ni ppm	1DX30 Co ppm	1DX30 Mn ppm	1DX30 Fe %	1DX30 As ppm	1DX30 U ppm	1DX30 Au ppb	Th ppm	1DX30 Sr ppm	1DX30 Cd ppm	1DX30 Sb ppm	1DX30 Bi ppm	V ppm	
Dula Dualisatas	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0
Pulp Duplicates CZ-R100	Rock	0.73	0.3	23.5	0.8	28	<0.1	12.9	10.3	572	2.16	13.7	<0.1	177.5	<0.1	264	<0.1	1.3	<0.1	38	7.
REP CZ-R100	QC		0.4	22.6	0.8	27	<0.1	12.9	10.3	579	2.11	13.2	<0.1	172.4	<0.1	238	<0.1	1.2		37	7.
Reference Materials																		10000	0.000		
STD DS7	Standard		20.8	106.0	67.4	409	1.0	55.4	9.3	627	2.37	51.5	4.5	79.4	4.3	68	6.4	5.5	4.6	81	0.
STD DS7	Standard		21.8	109.7	70.1	398	1.0	55.2	9.3	649	2.39	51.7	4.8	121.4	4.7	71	5.9	5.5	4.6	84	0.
STD DS7 Expected			20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4.4	69	6.4	4.6	4.5	84	0.
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.
Prep Wash		(
G1	Prep Blank		0.3	7.2	3.7	47	<0.1	5.4	4.4	605	2.06	0.9	1.7	<0.5	5.4	74	<0.1	<0.1	<0.1	37	0.
G1	Prep Blank		0.2	6.1	3.7	47	<0.1	3.9	4.5	619	2.13	0.8	1.9	<0.5	6.3	70	<0.1	<0.1	<0.1	39	0.

Client:	Porpoise Bay Minerals Ltd. PO Box 1974
	Sechelt BC V0N 3A0 Canada

Project:

None Given May 10, 2010

www.acmelab.com

Report Date:

Page:

1 of 1 Part 2

QUALITY	CONTROL	REPORT	

SMI10000121.1

	Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
	Analyte	P	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Hg	Sc	п	S	Ga	Se	те
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																			
CZ-R100	Rock	0.014	<1	23	1.00	16	0.056	2	0.70	0.007	0.05	0.3	0.02	3.6	<0.1	<0.05	2	0.6	<0.2
REP CZ-R100	QC	0.015	1	22	0.99	16	0.059	2	0.69	0.007	0.04	0.3	0.02	3.6	<0.1	<0.05	2	<0.5	<0.2
Reference Materials		3																	
STD DS7	Standard	0.071	12	190	1.06	396	0.119	39	1.01	0.088	0.45	3.6	0.23	2.5	4.1	0.19	5	2.8	0.7
STD DS7	Standard	0.075	13	191	1.07	404	0.122	38	1.04	0.092	0.49	3.4	0.21	2.3	4.2	0.20	4	3.1	1.2
STD DS7 Expected		0.08	12	179	1.05	370	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.08
BLK	Blank	<0.001	<1	<1	< 0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	<0.1	< 0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																			
G1	Prep Blank	0.071	13	9	0.54	185	0.132	2	1.04	0.124	0.50	0.2	< 0.01	1.7	0.4	<0.05	5	<0.5	<0.2
G1	Prep Blank	0.078	13	8	0.56	197	0.141	2	1.08	0.122	0.56	0.2	< 0.01	1.9	0.4	<0.05	4	<0.5	<0.2

APPENDIX D. DRILL HOLE LOG

From (Ft)	To (Ft)	From (m)	To (m)	Length (m)	Description
0.00	20.00	0.00	6.10	6.10	casing
20.00	35.00	6.10	10.67	4.57	rubble, rounded pebbles
35.00	38.00	10.67	11.58	0.91	mostly broken core, some breccia with calcite cement, siliceous light grey cherty bands alternating with fault breccia with carbonate cement
38.00	40.00	11.58	12.19	0.61	highly attenuated mudstone and siltone with elongate drawn out clasts; strong micofabric going to breccia with angular clasts and calcite cement; relatively soft
40.00	47.00	12.19	14.33	2.13	broken rubbly core; only 20% core recovery; some light grey cherty patches and bands
47.00	49.83	14.33	15.19	0.86	highly attenuated mudstone and siltone with wispy bands and microfraturing throughout; some cavities due to solution of calcite; strong tectonic fabric flowing around highly fractured, more reisistive clasts
49.83	50.00	15.19	15.24	0.05	light grey cherty bands @45° to core axis
50.00	53.33	15.24	16.26	1.02	broken core, only 33% recovery; mostly pieces similar to previous intervals; brown to orange strongly banded @45° to the core axis; solution cavities common
53.33	55.00	16.26	16.76	0.51	possible tuff band with 35-40% circular 1 mm light orange accretionary lapilli (or oolites?) in darker fine grained mud or ash matrix; 1 darker, highly attenuated band; clasts are partly dissolved producing pitted surface; soft rock
55.00	57.00	16.76	17.37	0.61	same as 14.33-15.19; highly attenuated bands @45° to core axis; numerous solution cavities; orange weathering rind on microfractures
57.00	57.50	17.37	17.53	0.15	light grey cherty rock; fractured and rubbly; may be some core loss
57.50	70.00	17.53	21.34	3.81	interval of major core loss; only 15% recovery; broken rubbly core; anular resistive clasts in carbonate-clay gouge matrix; some cherty pieces toward end o the interval
70.00	75.00	21.34	22.86	1.52	soft, light grey to light red ash or mudstone; wispy, highly attenualted bands
75.00	90.00	22.86	27.43	4.57	broken core; only 25% core recovery; fragments mostly highly attenuated tuff or mudstone; some fault breccia with angular clasts in a clay carbonate rich matrix; breccia clasts coated with orange Fe oxide; rocks is soft with banding @70-80° to core axis
90.00	91.00	27.43	27.74	0.30	orange weathering ash tuff, weakly banded; similar to 21.34-22.86 interval
91.00	92.00	27.74	28.04	0.30	light grey cherty bands in dark grey attenuated mudstone; bedding @45° to the core axis
92.00	104.00	28.04	31.70	3.66	broken core, mostly orange weathering tectonized mustone and siltstone similar to previous intervals; approximately 60% core recovery

From (Ft)	To (Ft)	From (m)	To (m)	Length (m)	Description
104.00	107.50	31.70	32.77	1.07	highly attenuated mudstone and siltstone; orange to dary grey bands, angular rotated clasts; mudstone bands flow around light grey cherty bands
107.50	108.00	32.77	32.92	0.15	faintly banded, light grey chert; banding @45° to core axis
108.00	114.00	32.92	34.75	1.83	same as 31.7-32.77 interval; broken core; only 15% core recovery
114.00	116.00	34.75	35.36	0.61	rubbly core; fault breccia; Fe oxide healed angular clast in clay-iron oxide-carbonate cement gouge
116.00	119.00	35.36	36.27	0.91	orange, faintly banded siltstone; some wispy siliceous 1 mm bands; strongly folded and attenuated; some carbonate; soft
119.00	120.00	36.27	36.58	0.30	fault breccia gouge with resistive angular clasit in a clay rich matrix; approximately 15% core recovery
120.00	123.00	36.58	37.49	0.91	broken core; Fe oxide on fracture faces; highly tectonized mudstone and siltstone; some cherty beds
123.00	125.00	37.49	38.10	0.61	light and dark banded tectonized mudstone and siltstone
125.00	126.00	38.10	38.40	0.30	light grey cherty bands @70-80° to core axis
126.00	129.00	38.40	39.32	0.91	light and dark grey tectonized siltstone and mudstone
129.00	129.67	39.32	39.52	0.20	light grey fine grained andesitic dyke; 1-2% disseminated pyrite; post deformation
129.67	130.00	39.52	39.62	0.10	light and dark grey banded tectonized siltstone, some mudstone

APPENDIX E. ANALYTICAL CERTIFICATES FOR DRILL CORE SAMPLES

Page:

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC V0N 3A0 Canada

Rupert Seel Canada-Vancouver

www.acmelab.com

Submitted By: Receiving Lab: Received: May 06, 2010 Report Date: May 14, 2010 1 of 2

CERTIFICATE OF ANALYSIS

CZ

3

CLIENT JOB INFORMATION

Project:

Shipment ID:

P.O. Number

DISP-PLP

DISP-RJT

Number of Samples: SAMPLE DISPOSAL

VAN10001865.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	3	Crush split and pulverize 250g drill core to 200 mesh			VAN
1DX3	3	1:1:1 Aqua Regia digestion ICP-MS analysis	30	Completed	VAN

ADDITIONAL COMMENTS

Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Invoice To: Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC V0N 3A0 Canada

CC: Don MacIntyre

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. "" asterish indicates that an analysical result could not be provided due to unsuash right evels of interference from other elements.

Client:	Porpoise Bay Minerals Ltd. PO Box 1974
	Sechelt BC V0N 3A0 Canada

Canada

Project: CZ Report Date: May 14, 2010

Page:

www.acmelab.com

1 of 1 Part 2

QUALITY CONTROL REPORT

VAN10001865.1

	Method Analyte	1DX30	1DX30 La	1DX30 Cr	1DX30 Mg	1DX30 Ba	1DX30 Ti	1DX30 B	1DX30 AI	1DX30 Na	1DX30 K	1DX30 W	1DX30 Hg	1DX30 Sc	1DX30 TI	1DX30	1DX30 Ga	1DX30 Se	1DX30 Te
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																			
STD DS7	Standard	0.086	13	191	1.07	405	0.116	45	1.06	0.089	0.49	3.7	0.22	2.5	4.0	0.20	5	3.8	1.1
STD DS7	Standard	0.087	13	196	1.06	417	0.119	41	1.04	0.092	0.47	3.9	0.23	2.4	4.3	0.20	5	3.7	1.0
STD DS7 Expected		0.08	12	179	1.05	370	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.08
BLK	Blank	<0.001	<1	<1	< 0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																			
G1	Prep Blank	0.083	15	17	0.54	178	0.129	1	1.06	0.114	0.56	<0.1	< 0.01	2.3	0.3	<0.05	5	<0.5	<0.2

MDI

Drill Core

Drill Core

Drill Core

46

119 129

0.01

0.41 4.3 71.0 9.0 56 0.2 30.6 15.6 889

0.35

0.36 1.4 89.1 61.0

5.9 1.1

2.0

Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada Client:

CZ

2.5 4 1.1 1.3 0.1 12 0.04

1.4

108

0.3 <0.1 2

148

2.62

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

<0.1 <0.1 83.5 30.8 41.7

197.9

80

104

Project: Report Date:

> 7.5 0.4

1.9 0.3

1 0.01

2006

1944

2.15

6.89 4.0

7.53

May 14, 2010

3.1

0.6 0.5 30 <0.1 0.1 0.1 <0.1 91

0.4

Page: 2 of 2 Part 1 CERTIFICATE OF ANALYSIS VAN10001865.1 Method WGHT 1DX30 Mo Cu Fe % Cd Analyt Wgt Pb Zn Ag Ni Co Mn As U Au Th Sr Sb Bi v с Uni kg ppm 0.1 ppm 0.1 ppm 0.1 ppm 1 ppm 0.1 ppm 0.5 ppb 0.5 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm % 0.01

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

- 51 -

Client:	Porpoise Bay Minerals Ltd. PO Box 1974
	Sechelt BC V0N 3A0 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

CZ Report Date: May 14, 2010

www.acmelab.com

Page:

Project:

2 of 2 Part 2

CERTIFICATE OF ANALYSIS

VAN10001865.1

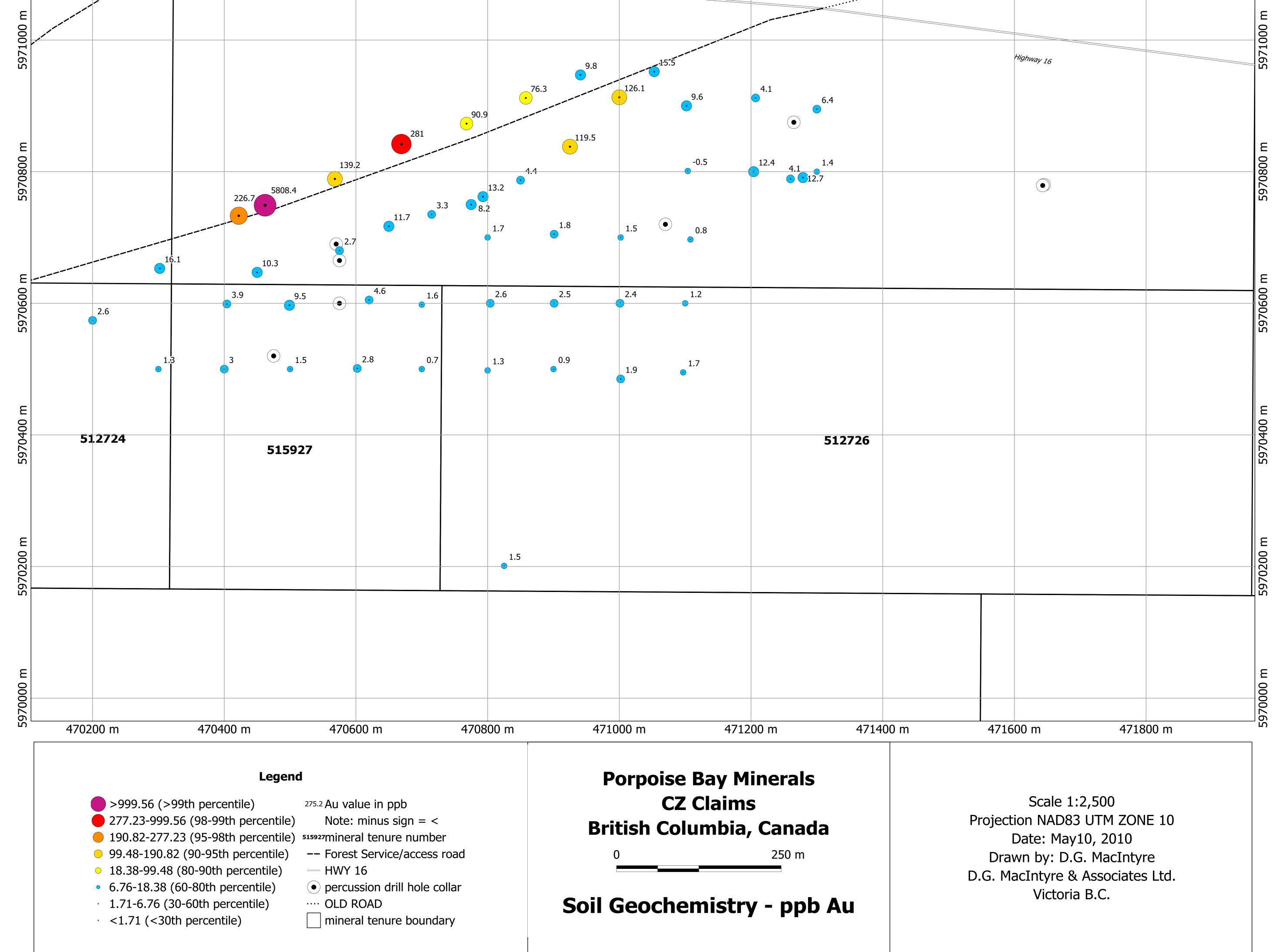
	Method	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX3								
	Analyte	P	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Hg	Sc	т	S	Ga	Se	T
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
46	Drill Core	0.042	5	19	0.12	172	0.002	3	0.40	0.002	0.17	<0.1	0.05	1.1	0.3	<0.05	1	<0.5	<0.2
119	Drill Core	0.126	13	109	0.64	107	0.004	6	0.98	0.001	0.25	<0.1	0.04	7.6	<0.1	<0.05	3	2.5	<0.2
129	Drill Core	0.288	34	248	4.00	117	0.008	4	2.75	< 0.001	0.17	<0.1	0.34	8.9	0.3	0.25	8	1.0	<0.2

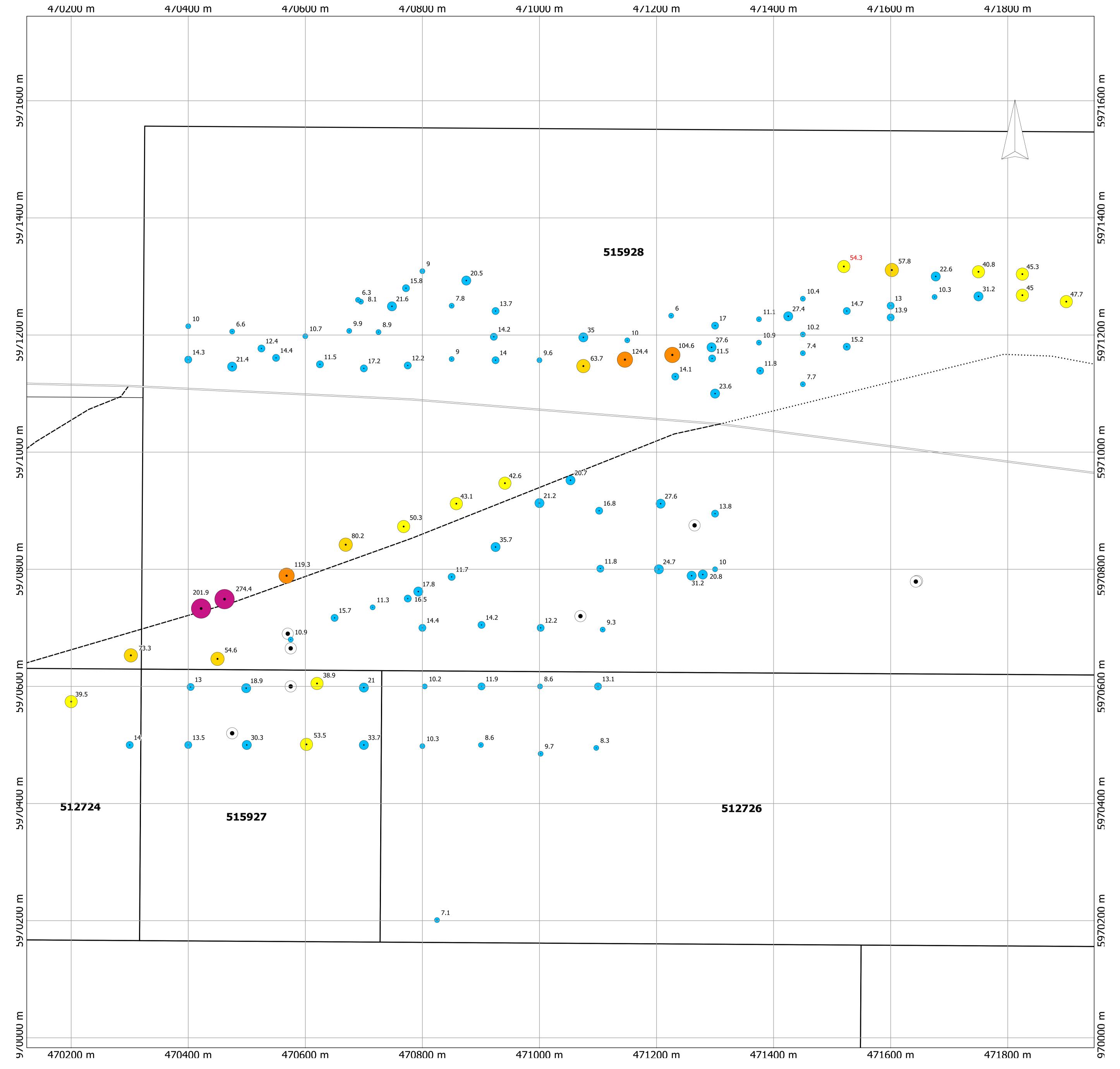
Client: Porpois PO Box 197 Sechelt BC

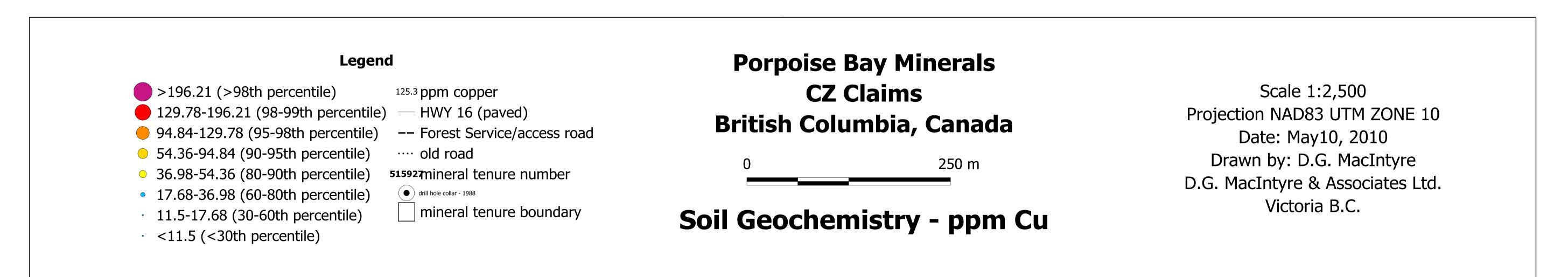
Porpoise Bay Minerals Ltd. PO Box 1974 Sechelt BC VON 3A0 Canada CZ May 14, 2010

www.acmelab.com

Report Date: May 14,


Project:


QUALITY CONTROL REPORT


Page: 1 of 1 Part 1 VAN10001865.1

CALL I I O	ONTROL															٧A	1410	001	000.		
	Method	WGHT	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX3								
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	c
	Unit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm								
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.0
Reference Materials																					
STD DS7	Standard		20.7	113.8	68.4	410	1.0	59.8	9.0	615	2.42	53.6	4.7	73.8	4.6	73	6.5	5.9	4.6	82	0.9
STD DS7	Standard		21.4	112.4	71.4	409	1.0	56.9	9.6	664	2.39	53.8	5.0	67.4	4.7	73	6.7	6.2	4.8	81	0.9
STD DS7 Expected			20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4.4	69	6.4	4.6	4.5	84	0.9
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.1	<0.5	<0.1	<1	<0.1	⊲0.1	<0.1	<2	<0.0
Prep Wash																					
G1	Prep Blank	<0.01	0.9	9.1	3.3	48	<0.1	3.6	4.2	638	2.14	<0.5	1.8	1.0	6.3	70	<0.1	⊲0.1	<0.1	38	0.5

470200 m	470400 m	470600 m	470800 m	471000 m	471200 m	471400 m	471600 m	471800 m
E 00								
5971600								
5971400 m								
ε	-0.5 -0.5	-0. • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	2.4 0.8 0.8 0.7 0.7 0.6 1.3 0.6 0.6	-0.5 •		9.7 • ^{25.6} • ^{2.6} -0.5	4.2 • 4.4 • 1.2 • -0.5 • -0.5 • -0.5 • 2 • -0.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2971200	-0.5 -0.1	-0.5	• •0.5 •0.5 • •	1.5 • • • • • • • • • • • • •	5.4 • 275.9 • 191.2 • 4.1	26.4 1.8 • 190.1 41.2 • 190.1 • 1.6 • 1.6	4.9 •	

