2010 ASSESMENT REPORT ON SURFACE EXPLORATION OF THE CHU CHUA SHENUL (CCS) PROPERTY, KAMLOOPS MINING DIVISION, B.C.

(32 CLAIMS: 529302, 528569, 517072, 523837, 523839, 52341, 523843, 523836, 517010, 528700, 508580, 508581, 508582, 508583, 508584, 508586, 508587, 508589, 508590, 530073, 530075, 530076, 530077, 533944, 528570, 526296, 526297, 523838, 523844, 523835, 529890, 530072)

OWNER #s: 115892 & 107608

OWNERS

KEN ELLERBECK & GEROLD LOCKE KAMLOOPS, B.C. BC Geological Survey Assessment Report 31773

OPERATOR

SHENUL CAPITAL INC. 3707 WEST 34TH AVENUE VANCOUVER, B.C. V6N 2K9

MINE MANAGER

PETER A. CHRISTOPHER Phd., P. Eng. PAC GEOLOGICAL CONSULTING INC 3707 WEST 34TH AVENUE VANCOUVER, B.C. V6N 2K9

2010 November 17

2010 ASSESSMENT REPORT ON SURFACE EXPLORATION-CCS PROPERTY TABLE OF CONTENTS

1.0 SUMMARY	3
1.1 Conclusions and Recommendations	4
2.0 INTRODUCTION	4
3.0 LOCATION, ACCESS, PHYSIOGRAPHY AND CLIMATE	4
Figure 3.1. Location Map for Chu Chua Shenul ("CCS") Property (from Raffl	e and
Dufresne, 2010)	6
Figure 3.2. Claim map for CCS Property.	7
Table 3.1 Pertinent claim data CCS Property.	8
4.0 HISTORY	9
Figure 4.1 EM1 Geophysical Anomaly (From Raffle and Dufresne, 2010)	10
5.0 GEOLOGICAL SETTING (Figure 5.1)	11
5.1 Grid Geology	11
6.0 MINERALIZATION	12
Figure 5.1 Geology of the CCS (from Raffle and Dufresne, 2010)	13
7.0 2010 SURFACE EXPLORATION (Figure 7.1)	14
Figure 7.1 CCS EM 1 Grid Location	15
8.0 GEOPHYSICAL PROGRAM (Figures 8.1-8.4)	16
8.1 Interpretation and Conclusions	16
Figure 8.1 VLF-EM Profiles for Annapolis Station.	17
Figure 8.2 VLF-EM Profiles for Seattle Station	18
Figure 8.3 Interpretations of VLF-EM Conductors for Annapolis	19
Figure 8.4 Interpretations of VLF-EM Conductors for Seattle	20
9.0 GEOCHEMICAL PROGRAM	21
9.1 Analytical Methods and QA/QC	21
9.2 Interpretation and Conclusions	21
Figure 9.1 Cu & Au Soil Geochemistry EM1 Grid Area.	22
Figure 9.2 Geology and Silt and Rock Samples.	23
10.0 INTERPRETATION AND CONCLUSIONS	24
11.0 RECOMMENDATIONS	24
12.0 PERSONNEL AND CONTRACTORS	24
Table 12.1 List of Contractors.	24
13.0 STATEMENT OF COSTS	25
14.0 References	26
15.0 CERTIFICATE OF AUTHOR Error! Bookmark not de	efined.
APPENDIX A: ACME CERTIFICATES OF ANALYSIS AND QA/QC	28
APPENDIX B ACME Quality Assurance & Certification	59
APPENDIX C ASSESSMENT REPORT TITLE PAGE & SUMMARY	61

1.0 SUMMARY

The Chu Chua Shenul (CCS) property consists of 32 contiguous mineral claims with a total area of 7,810 ha (19,300 acres), in the Kamloops Mining Division and centered approximately 24km northeast of Barriere, British Columbia. The CCS property was acquired by Shenul Capital Inc. ("Shenul") from the owners Ken Ellerbeck and Gerald Locke by agreement dated March 10, 2010. The agreement gives Shenul the option to earn 100% interest in the CCS property subject to payments, expenditure requirements and a 2% NSR. The CCS project was acquired by Shenul to test coincident Aero TEM III airborne magnetic and electromagnetic anomalies (2) with the anomaly selected for grid geochemical and VLF-EM surveying entirely within claim 508587 and the other anomaly extending southerly off claim 508589 onto third party holdings.

The CCS property is underlain by rocks of the Mississippian to Permian Fennell Formation (Schiarizza and Preto, 1987). The Fennel Formation consists of a lower division consisting of complex interbedded and thrust imbricated massive basalt and clastic sedimentary rocks and the upper division, underlying most of the CCS property, consisting of pillow to massive basalt, diabase sills, argillite and chert. The Fennel Fm is intruded and locally contact metamorphosed by the Baldy Batholith. Regionally the Fennel Fm has been metamorphosed to lower greenschist facies but textures and bedding are preserved in volcanic and sedimentary units.

The claim are is believed to have potential for Cyprus type volcanic massive sulphide (VMS) like the Chu Chua deposit, Kuroko or Noranda type VMS associated with acidic volcanic layers and epithermal quartz veins hosting base and/or precious metals with a number of epithermal vein occurrence known in areas surrounding the CCS property (Raffle and Dufresne, 2010).

Shenul retained PAC Geological Consulting Inc. to conduct the Phase 1 exploration program recommended by Raffle and Dufresne (2010). Dr. Peter A. Christopher P. Eng. ("Christopher" or "PAC") field supervised and worked on the grid construction, VLF-EM survey and geochemical sampling. Geological observations were made during prospecting, geochemical and VLF-EM traverses but detailed geological mapping was planned to coincide with Phase 1 drilling. Christopher is president and exploration manager of Shenul.

The ground survey work was conducted between June xx and June xx, 2010 when a number of attempts to access the grid area failed because of late snow melt. Survey work was conducted between July 19 and July 28, 2010 and August 18 and August 25, 2010. A UTM N-S 1.4km baseline was constructed and surveyed with VLF-EM and cross-line run at 100m interval along the length of the baseline to investigate a coincident airborne magnetic and VLF-EM anomaly. The baseline was marked with tagged cedar pickets at 25m intervals and soil lines were marked at 25m or 50m intervals with tagged cedar pickets and all lines and 25m stations flagged with grid locations marked on flags.

The geochemical sampling program consisted of 5 rock, 5 silt and 216 soil samples with all samples located using a UTM grid and UTM coordinates established with Garmin GPS instruments generally with 5m accuracy. The geochemical samples were analyzed by certified laboratory Acme Analytical Laboratories Ltd. (Acme) in Vancouver, B.C. Quality control and quality assurance procedures are conducted by Acme to insure accurate analytical results but standard, blanks and re-runs were not conducted by the writer because of the prospecting nature of the samples which were collected in an area of no known showings.

A total of about 15 line kilometers was surveyed with VLF-EM using two stations, generally Annapolis and Seattle and a total of 5.4 line kilometers were soil sampled. The geochemical and VLF-EM data was drafted by Chong Drafting in Vancouver, B.C. with VLF-Em conductors selected using methods suggested by Geonics.

1.1 Conclusions and Recommendations

The soil sampling has produced some moderately anomalous copper values (150-270ppm range) in a trend with similar historic results. The anomalous soil results are mainly outside the airborne magnetic and EM anomaly. The VLF-EM survey has suggested a number of weak to moderate strength conductive zones within the airborne geophysical target. The writer recommends that the EM1 grid be surveyed by ground magnetics (~18KM) and the use of 3 or 4 diamond dill holes from existing roads to test the VLF-EM conductor within the airborne anomaly and/or the moderate strength anomalous copper. If the first holes testing the EM anomaly do not intersect significant mineralization, then a hole to test the area with copper in soil response should be considered.

2.0 INTRODUCTION

Shenul acquired an option to obtain 100% interest in the CCS from Ken Elderbeck and Gerald Locke of Kamloops, B.C. through an agreement dated March 10, 2010. Shenul engaged Apex Geoscience Ltd. (APEX) to prepare a geological compilation leading to a NI 43-101 compliand technical report on the potential of the CCS (Raffle and Dufresne, 2010). The compilation report is available in a company profile of Shenul at <u>www.sedar.com</u>. This report described work completed by Shenul on one of the coincident airborne magnetic and electromagnetic anomalies selected by Apex for further ground surveys need to position drill holes to test the anomaly. The work described in this report was completed in June, July and August of 2010 and provides the basis for selection of drill sites.

3.0 LOCATION, ACCESS, PHYSIOGRAPHY AND CLIMATE

The CCS (Figures 3.1 & 3.2) is located 24 kilometers (km) northeast of Barriere, B.C. and centered on the Chu Chua deposit at 120° 03' 42"W longitude and 56° 22' 51"N latitude (704480E and 5696320N Nad 83, Zone 10) . From Barriere, the nearest center with supplies and services, access is along the paved Barriere Lakes Road to the North Bariere Lake and Birk Creek forest service road (BCFSR). The BCFSR heads westerly at KM 8 from the North Barriere Lake road and at ~KM 17.5, the Newhykulston Creek FSR (NCFSR) which is sign posted FSR RD 3300 (KM 10.5) provides access to the grid area. The exploration grid uses UTM coordinates with the baseline extending south from 707000E-5690000N to 707000E-5688600N (1.4Km). Pertinent claim data is presented in Table 3.1 with the CCS location shown on Figures 3.1 and 3.2.

Figure 3.1. Location Map for Chu Chua Shenul ("CCS") Property (from Raffle and Dufresne, 2010).

Figure 3.2. Claim map for CCS Property.

Claim	#	Owner ¹	#	%	Acres	Hectares	Expiry ²
G&G	529302	GTL	115892	100	99.71	40.35	30-Sep-11
GERRY AND GERRY	528569	GTL/KCE	115892/107608	100	149.57	60.53	30-Sep-10
INMETEAST	517072	GTL/KCE	115892/107608	100	199.44	80.71	30-Sep-10
KC GL1	523837	GTL/KCE	115892/107608	100	946.96	383.22	30-Sep-11
KEGL4	523839	GTL/KCE	115892/107608	100	149.55	60.52	30-Sep-11
KC GL5	523841	GTL/KCE	115892/107608	100	49.84	20.17	30-Sep-11
KC GK7	523843	GTL/KCE	115892/107608	100	149.55	60.52	30-Sep-10
KC GL2	523836	GTL/KCE	115892/107608	100	847.25	342.87	30-Sep-10
INMETINFILL	517010	GTL/KCE	115892/107608	100	349.09	141.27	30-Sep-11
CC FRACTION	528700	GTL/KCE	115892/107608	100	49.84	20.17	30-Sep-10
	508580	GTL/KCE	115892/107608	100	1197.15	484.47	30-Sep-11
Deposit1	508581	GTL/KCE	115892/107608	100	997.32	403.60	30-Sep-10
Deposit2	508582	GTL/KCE	115892/107608	100	996.90	403.43	30-Sep-10
South1	508583	GTL/KCE	115892/107608	100	1247.34	504.78	30-Sep-11
North1	508584	GTL/KCE	115892/107608	100	797.21	322.62	30-Sep-10
	508586	GTL/KCE	115892/107608	100	1197.74	484.71	30-Sep-11
Southpark	508587	GTL/KCE	115892/107608	100	1248.00	505.05	30-Sep-11
Insure	508589	GTL/KCE	115892/107608	100	1148.40	464.74	30-Sep-11
Ants	508590	GTL/KCE	115892/107608	100	1197.59	484.65	30-Sep-11
YES	530073	GTL	115892	100	49.89	20.19	30-Sep-10
MORE TO GO	530075	GTL	115892	100	548.13	221.82	30-Sep-10
AND MORE	530076	GTL	115892	100	1195.32	483.73	30-Sep-10
AND MORE	530077	GTL	115892	100	299.37	121.15	30-Sep-10
DIXIE4	533944	GTL	115892	100	199.19	80.61	30-Sep-10
ROCKNORTH	528570	GTL/KCE	115892/107608	100	249.23	100.86	30-Sep-10
CHUCHUAEAST	526296	KCE	107608	100	1047.50	423.91	30-Sep-11
CHUSOUTHWEST	526297	KCE	107608	100	1197.42	484.58	30-Sep-10
CHU CHUA 7777	523838	GTL/KCE	115892/107608	100	99.71	40.35	30-Sep-10
CHU CHUA 888	523844	GTL/KCE	115892/107608	100	99.71	40.35	30-Sep-10
CHU CHUA 777	523835	GTL/KCE	115892/107608	100	1196.83	484.34	30-Sep-11
CAVEATEMPTOR	529890	KCE	107608	100	49.89	20.19	30-Sep-11
CARPEDIEM	530072	KCE	107608	100	49.87 19.300 4	20.18	30-Sep-10
TOTAL	32 claims				acres	7,810.64 h	a

Table 3.1 Pertinent claim data CCS Property.

1. GLT= Gerald T. Locke; KCE=Kenneth C. Ellerbeck.

2. Expiry Date Before Recording 2010 Work.

Elevations on the CCS vary from 900 to over 2200 meters with snow remaining at higher elevation and northern slopes in July. The climate varies from -30°C in winter to +30°C in summers. The area experiences heavy winter snowfalls and trails are used for winter sports. The work season generally extends from mid-June to mid October but in 2010 roads had snow till late June and the initial work

attempt from June 8-12, 2010 failed for lack of road access to the proposed grid area.

Vegetation varies from clear cuts with thick second growth with dense spruce, pine and cedar stands at lower elevations and sub-alpine and alpine vegetation above 1800m. Logging operations are presently active along Birk, Leonie, Delta and Sprague creeks. Local ranches have summer grazing rights but the grid area was not actively grazed by cattle in 2010.

Barriere, inhabited by about 3,450 persons, is the closest town to the property with accommodations, RCMP and a health center. Kamloops, the nearest major center with drilling, mining and airport services, is located 64km south of Barriere along the Yellowhead Highway 5.

4.0 HISTORY

The CCS claims were acquired through online staking during 2005 and 2006 by Ken Elderbeck and Gerald Locke of Kamloops, B.C. to cover possible extensions of the units hosting the Chu Chua deposit. The Chu Chua deposit, presently on ground held by Reva Resource Corp. (Reva), was defined by drilling programs conducted by Craigmont Mines Ltd. (1978-1982), Falconbridge Copper Corp. (Falconbridege (1985-1986) and Minova Inc. (1987-1991). A historic mineral inventory for the Chu Chua deposit was stated by Heberlein (1990) at 2.7 million tones grading 1.67%Cu, 0.31% Zn, 7.4g/t Ag and 0.31 g/t Au.

In 1995, Eighty Eight Resources conducted soil and rock geochemical sampling on the KB group of claims to the south of the Chu Chua deposit and found favourable geology and alteration (Belick, 1995). No follow-up work was reported.

Strongbow Exploration Inc. (Strongbow) acquired the claims overlying the Chu Chua deposit by online staking on March 2nd, 2006. Strongbow completed a soil sampling program of 302 samples with 264 of the samples collected from the CCS property area. The soil survey found multi-element geochem response with anomalous soils related to Em conductors (Gale, 2007). The 2008 field program for the Chu Chua property was conducted by APEX for Longview Capital Partners and consisted of a property examination by Mr. Kris Raffle and an Aeroquest Limited, 839.7 line km helicopter-borne Aero TEM III survey covering the CCS and surrounding area. A compilation of airborne geophysical anomalies and copper in soils provided by APEX (2010) is presented as Figure 4.1. Shenul targeted anomaly EM1 for grid soil and VLF-EM follow-up.

2010 ASSESSMENT REPORT ON SURFACE EXPLORATION-CCS PROPERTY

Figure 4.1 EM1 Geophysical Anomaly (From Raffle and Dufresne, 2010)

5.0 GEOLOGICAL SETTING (Figure 5.1)

The geology of the CCS property has been mapped at 1:100,000 scale by Schiarizza and Preto (1987) as part of the Adams Plateau Clearwater-Vaveby map area. The regional geological description is after Schiarizza and Preto (1987). The CCS, at the western edge of the Omineca Belt, is underlain by the Fennell Formation of and the Slide Mountain Assemblage to the west and Eagle Bay Assemblage to the east (Figure 5.1). The Homestake and Rea VMS deposits occur in intermediate to felsic metavolcanic rocks of the Lower Devonian to Mississippian Eagle Bay Assemblage and the Chu Chua VMS depsit occurs in the Devonian to Middle Permian Fennell Formation.

The Fennell Formation is an oceanic sequence divided by Schiarizza and Preto (1987) into a structurally lower, easerly division consisting of bedded chert, gabbro, diabase, pillowed basalt, clastic metasediments, quartz-feldspar rhyolite porphyry and intraformational conglomerate. The upper, westerly division is host to the Chu Chua deposit and consists mainly of pillowed and massive tholeiitic basalt with gabbro, diabase sills and lessor bedded chert and argillite. The generally near vertically tilted sequence has tops consistently facing west.

Cretaceous granodiorite and quartz monzonite of the Raft and Baldy batholiths intrudes both the Fennell Formation and the Eagle Bay Assemblage with intrusive rocks underlying the northeasterly part of the CCS. The package is locally overlain or in fault contact with Kamloops Group volcanic and sedimentary rocks and Miocene lavas. Deformation in the Fennell is not intense but units have been rotated into a verticall dipping west facing position interpreted by Schiarizza and Preto (1987) to be the western limb of a thrust-dismemberede anticline. Late, north and east trending normal faults cause local offsets of the Upper Fennell stratigraphy and truncation or offset of strong magnetic patterns. . A west dipping thrust zone is inferred to separate the upper and lower Fenell Fm and was based by Schiarizza and Preto (1987) on conodont ages from chert beds.

The upper and lower Fennel divisions are regionally metamorphosed to lower greenschist facies with overprint of contact metamorphism to hornblende hornfels grade near contact of the Baldy Batholith.

5.1 Grid Geology

The geology of the EM 1 grid area was observed by the writer during grid construction, soil sampling and VLF-EM surveying but has not been mapped in detail. The general N-S trending and steep dip to units was confirmed and favors testing of anomalies with low angle east or west directed drill holes. Pyritic cherty units are associated with some of the EM anomalous trends and should be considered when selecting the drill method.

Strong magnetite concentration occurs along a gabbroic ridge to the west of the EM 1 Grid Area. A less or non-magnetic diorite to gabbroic body occurs in the

2010 ASSESSMENT REPORT ON SURFACE EXPLORATION-CCS PROPERTY northeast sector of the grid to the east of a major thrust zone mapped across the property.

6.0 MINERALIZATION

Exploration on the CCS property is directed toward location of Chu Chua type mineralization that is found on the enclosed Chu Chua property of Reva and description of this mineralization is pertinent to exploration of the CCS property. The Chu Chua deposit mineralization consists of massive sulphides with pyrite composing 90% of the massive sulphide. The strike extent of the surface mineralization is approximately 300m with thickness ranging up to 80m. Chalcopyrite is the main ore mineral occurring as massive streaks up to 25cm thick, as small inclusions in pyrite and magnetite and as fracture fillings and interstices in coarse angular pyrite. Covellite, chalcocite, sphalerite (and possible trace galena) and magnetite are economic minerals identified in drillcore with cubanite and stannite present (Aggarwal, 1982). Magnetite content is reported to increase toward the footwall. The matrix or gangue is likely mainly quartz and barite. Other possible by-products include gold (< 1 g/t), silver (commonly 10-30 g/t), cobalt 300-475ppm) and trace amounts of tin (stannite), platinum and palladium (Aggarwal, 1982).

The CCS property is reported by Schiarizza and Preto (1987) to be west of the Enargite occurrence (82M-065 (at 1600m @ sw slope of upper Birk Creek)), a sulphide-bearing quartz vein which cuts sheared rocks along the Fennell-Eagle Bay fault contact. The occurrence comprises a system of quartz veins and lenses with pods of course grained galena and pyrite with lesser sphalerite and chalcopyrite. A small high-grade shipment was reported to be made to Cominco Ltd. in 1972 (George Cross Newsletter, January 5, 1983).

Pyrite is present in nearly all rock types in the CCS prospect area and arsenopyrite and magnetite have been identified in chert and gabbro, respectively within the grid area but no copper mineralization has been identified.

Figure 5.1 Geology of the CCS (from Raffle and Dufresne, 2010).

7.0 2010 SURFACE EXPLORATION (Figure 7.1)

Shenul retained Apex Geoscience Ltd. to review the Chu Cha property and prepare a NI43-101 compliant technical report with recommendations for Phase 1 and success contingent Phase 2 exploration to test the mineral potential of airborne magnetic and electromagnetic anomalies (Raffe and Dufrese, 2010; see Shenul in www.sedar.com). Shenul retained PAC Geological Consulting Inc. to conduct the Phase 1 exploration program recommended by Raffle and Dufresne (2010). Dr. Peter A. Christopher P. Eng. ("Christopher" or "PAC") field supervised and worked on the grid construction, VLF-EM survey and geochemical sampling. Geological observations were made during prospecting, geochemical and VLF-EM traverses but detailed geological mapping was planned to coincide with Phase 1 drilling. Christopher is president and exploration manager of Shenul.

The ground survey work was conducted between June 8 and June 12, 2010 when a number of attempts to access the area of the EM1 anomaly failed because of late snow melt. Survey work was conducted onb the EM1 grid (Figure 7.1) between July 19 and July 28, 2010. A UTM N-S 1.4km baseline was constructed south from UTM coordinate 707000E and 5690000N (Figure 7.1) and surveyed with VLF-EM along cross-lines run at 100m interval along the length of the baseline to investigate a coincident airborne magnetic and VLF-EM anomaly (see Rafle and Dufresne, 2010). The baseline was marked with aluminum tagged cedar pickets at 25m intervals and soil lines were marked at 25m or 50m intervals with tagged cedar pickets and all lines and 25m stations flagged with stations marked. The EM survey was extended between August 18 and August 25, 2010 during an aborted attempt to start a drilling program within the EM 1 grid area.

The geochemical sampling program consisted of 5 rock, 5 silt and 216 soil samples with all samples located using grid and UTM coordinates established with Garmin GPS instruments generally with 5m accuracy. The geochemical samples were submitted by Christopher on July 30, 2010 to certified laboratory Acme Analytical Laboratories Ltd. (Acme) in Vancouver, B.C for analysis. A total of about 18 line kilometers was surveyed with VLF-EM using two stations Annapolis and Seattle (with Cutler or Hawaii substituted if desired station was down). The geochemical and VLF-EM data was drafted by Chong Drafting in Vancouver, B.C. Strength of VLF-Em conductors was estimated by comparison of In Phase and Quaadrature value at cross overs as suggested by Geonics for their EM-16.

Figure 7.1 CCS EM 1 Grid Location.

8.0 GEOPHYSICAL PROGRAM (Figures 8.1-8.4)

The VLF-EM survey used a Geonics EM-16 with reading normally taken using Annapolis (21.4 kHz) and Seattle (18.6 kHz) but Annapolis (17.4 kHz) or Hawaii (23.4 kHz) substituted when a station was off-air. Readings were collected for In-Phase (dip angle) and quadrature null (Out-of-Phase) at 25m stations along picketed cross lines used for soil sampling and at flagged stations when lines were not soil sampled. A total of about 18 line-kilometers were surveyed and results plotted in cross-section and an interpretation plan of the grid area prepared showing weak to moderate strength conductors. The Results are shown on Figures 8.1 to 8.4 with interpretation after Paterson and Ronka (1969) and Geonics Limited EM16 VLF Electromagnetic Unit Operating Instructions.

An attempt to use a Scintrex MP-2 magnetometer to conduct a magnetic survey failed because the instrument could not produce consistent readings on a number of successive days at the base stations. Over a 1,000 gamma difference in readings were obtained for reading spaced by a few seconds and could not be attributed to diurnal variation. Further testing suggested that the variation was caused by a faulty staff mounted sensor. The writer concluded that a different magnetometer should be obtained to survey the geophysical grid area.

8.1 Interpretation and Conclusions

The VLF-EM conductors are targeted for proposed drill holes to test the large coincident magnetic and VLF-EM anomaly designated EM1 and MAG2 on Figure 4.1. The VLF-EM conductors could represent sulphide zones but conductive zones cold also be caused by wet contacts and/or fault zone or graphitic, pyritic argillite horizons within the Fennell Fm. Anomalies generally trend sub-parallel to the general N-S strike and contact zones between units are often occupied by creeks or small ponds. The proposed scout drill program should provide better understanding of the cause of the airborne and ground electromagnetic anomalies.

Figure 8.1 VLF-EM Profiles for Annapolis Station.

Figure 8.2 VLF-EM Profiles for Seattle Station.

Figure 8.3 Interpretations of VLF-EM Conductors for Annapolis.

Figure 8.4 Interpretations of VLF-EM Conductors for Seattle.

9.0 GEOCHEMICAL PROGRAM

The geochemical program consisted of 5 rock, 5 silt and 216 soil samples with soils collected at 25 meter intervals along selected sections of the geophysical grid. Soil samples were collected from the B-soil horizon generally at 15-20cm below the surface. A mattock was used for sampling. Samples were placed in a kraft soil bag which was marked with the grid station. Samples were dried before delivery to Acme Laboratory in Vancouver. Significant values, weakly anomalous values for copper and gold, were plotted by Chong and are presented as Figure 9.1. Rock sample and silt sample locations are shown in Figure 9.2 but no significant rock or silt values were obtained.

9.1 Analytical Methods and QA/QC

Acme analytical results are presented in Appendix A (VAN10003581.1-rock; VAN10003582.1-soil; and VAN10003583.1-silt) with QA/QC procedures used by Acme summarized in Appendix B. Silt, soli and rock samples were prepared by ACME using standard crushing and sieving procedures as required. The 1DX2, ICP-MS method, was used for to analyze 15g of prepared sample that are leached in hot (95°) aqua regia. Detection limits for Copper of 0.1ppm to 10,000ppm and gold of 0.5ppb to 100ppm are obtained using the 1DX2 method. No samples requiring over limit analysis were obtained. The sample rejects and pulps were not stored for further use because sample results were only weakly anomalous.

9.2 Interpretation and Conclusions

The maximum copper in soils value of 252.9ppm was obtained at station 707425E on line 5689800N and the maximum gold in soils value of 34.7ppb was obtained at station 706800E on line 5689900N. A total of 66 copper values \geq 30ppm and 19 gold values above 5ppb were plotted on Figure 9.1. Four of the six anomalous copper values (>100ppm) occur in a cluster at the NE corner of the EM1 grid and are outside the EM1 target. All six of the >100ppm copper values occur outside the EM1 airborne target and the soil results did not help define targets to test the coincident airborne EM and magnetic anomaly.

Figure 9.1 Cu & Au Soil Geochemistry EM1 Grid Area.

Figure 9.2 Geology and Silt and Rock Samples.

10.0 INTERPRETATION AND CONCLUSIONS

The maximum copper in soils value of 252.9ppm and the maximum gold in soils value of 34.7ppb are weakly anomalous compared to background of <30ppm for copper and <1ppb for gold within the CCS property boundary. Weakly anomalous copper and gold values plotted on Figure 9.1 are mainly outside the are of the EM1 and MAG2 airborne anomalies shown on Figure 4.1 The soil results did not help define targets to test the coincident airborne EM and magnetic anomaly.

The VLF-EM conductors are targeted for proposed drill holes to test the large coincident magnetic and VLF-EM anomaly designated EM1 and MAG2 on Figure 4.1. The VLF-EM conductors could represent sulphide zones but conductive zones cold also be caused by wet contacts and/or fault zone or graphitic, pyritic argillite horizons within the Fennell Fm. Anomalies generally trend sub-parallel to the general N-S strike and contact zones between units are often occupied by creeks or small ponds. A proposed scout drill program of 3-4 diamond drill holes totaling 500-600m should provide better understanding of the cause of the airborne and ground electromagnetic anomalies. A ground magnetic surveys conducted over the EM1 grid area should help define the rock type and cause of the airborne magnetic anomaly.

11.0 RECOMMENDATIONS

The writer recommends a Part 2 2010 program of ~18 line kilometers of ground magnetics to survey the EM1 grid area and define the cause of the airborne magnetic anomaly. A recommended scout drill program of 3-4 diamond drill holes totaling 500-600m should provide better understanding of the cause of the airborne and ground electromagnetic anomalies. The 2010 Part 2 program is estimated to require 15 field days to complete. A budget of \$100,000 should be allowed for completion of the program.

12.0 PERSONNEL AND CONTRACTORS

Contractor	Type of Work	Address
ACME Analytical	Geochemical Analysis	852 East Hastings Street
Laboratories Ltd.	-	Vancouver, B.C. V6C 2B3
PAC Geological Consulting	Grid Construction,	3707 W. 34 th Ave
Inc.	Geochemical Sampling,	Vancouver, B.C. V6N 2K9
	Geophysical Surveys,	
	Reporting	
Chong Drafting Services	Drafting	5990 Nelson Ave.
	_	Burnaby, B.C. V5H 3H9

Table 12.1 List of Contractors.

13.0 STATEMENT OF COSTS

Table 10.1 Statement of Costs for 2010 Part 1 Chu Chua Program Expenditures.

Item	Description	Amount
Mobalization	Review of Property Reports, Acquire Maps,	\$2800.00
	Preparation of Equipment, Supplies and	
	Permits	
Personnel 23	Geologist Dr. Peter A. Christopher P.Eng	\$23,000.00
Field Days	Geophy. Operator Gerry Hayne B.Sc.	9,200.00
	June 8-12; July 19-28; August 18-25, 2010	
Truck Rental	25 days @ \$100/day including insurance &	\$2,500.00
	7,000km	
Fuel		\$749.54
Equipment	23 Days @ \$224/day: Chain Saw, GPS (3	\$5152.00
Rentals	units), VLF-Em & Magnetometer, Cell	
	Phones, Computer & Printer, & 2 person	
	field equipment	
Hotels	23 days	\$1587.75
Board	46 man days @\$67.20/day	\$3091.20
Geochemical	ACME Laboratory Charges	\$4773.70
Costs		
Drafting	Chong Drafting Services	\$857.50
Consumables	Flagging, Hip Chain, Maps & Reports,	\$800.00
	Sample Bags, 300 Aluminum Tagged	
	Pickets, Truck Repairs & Service, & misc.	
Office Charges	Phone, Copying, Word Processing, etc.	\$560.00
Assessment		\$3,360.00
Report		
Total Costs	Chu Chua Part 1 2010 Program	\$58, 431.69

Funded by Shenul Capital Inc. From June 8, 2010 to September 1, 2010

"Dr. Peter A. Christopher P.Eng"

14.0 References

Aggarwal, P.K., 1982. Geochemistry of the Chu Chua Deposit, British Columbia. Unpublished University of Alberta, M.Sc. Thesis.

Gale, D.F., 2007. 2006 Report on Exploration activities, Chu Chua Property, Kamloops Mining Division. For Strongbow Exploration Inc., BCMEMPAssessment Report 28895.

Heberlein, D., 1990. Assessment Report on the 1990 Diamond Drilling Program, Chu 1-3 (9019, 9110, 9112), CC 1-3, CC10-11 (1154, 1373, 1374, 1459, 1460), Ch-1 (1461), Kamloops Mining Division, NTS 92P/8E, Lat. 51°22'N, Long. 120°04'W. BCMEMPR Assessment Report No. 20670.

Paterson, N.R. and Ronka, V., 1969. Five Years of Surveying with the VLF-E.M Method. For Geonics Limited, presented at the 1969 Annual international Meeting, Soc. Exp. Geophysicists.

Raffle, K., and Dufresne, M., 2010. Technical Report on the Base and Precious Metal Potential of the Chu Chua Property, British Columbia.

Raffle, K., 2008. 2008 Report on the Exploration Activities Chu Chua Property, Kamloops Mining Division, NTS 92P/8E, British Columbia. For Strongbow Exploration Inc., BCMEMR Assessment Report.

Schiarizza, P., and Preto, V.A., 1987. Geology of the Adams Plateau-Clearwater-Vavenby Area. BCDM Paper 1987-2, 88p.

Schiarizza, P. et al., 1983. Geology of the Barriere River-Clearwater Area.BCEMPR Preliminary Map No. 53, November 1983.

15.0 CERTIFICATE OF AUTHOR

I, Peter A. Christopher, with business address at 3707 West 34th Avenue, Vancouver, British Columbia, do hereby certify that:

1. I am a Consulting Geological Engineer registered (#10,474) with the Association of Professional Engineers and Geoscientists of British Columbia since 1976.

2. I hold a B.Sc. (1966) from the State University of New York at Fredonia, a M.A. (1968) from Dartmouth College and a Ph.D. (1973) from the University of British Columbia.

3. I have been practicing my profession as a Geologist for over 35 years and as a Consulting Geological Engineer since June 1981. I have authored over 300 qualifying engineering and exploration reports, and over 20 professional publications. I have work experience in most areas of the United States, Canada, Papua New Guinea, Madagascar, Mexico, Philippines and several other Latin American countries. I have worked on copper deposits in Canada, United States, Chile, Philippines, Mexico, Spain, Portugal and Albania. As a result of my experience and qualifications.

4. I am president and exploration manager of Shenul Capital Inc.

5. I am responsible for preparation of this report entitled "Assessment Report on Surface Exploration of the Chu Chua Shenul (CCS) Property, Kamloops Mining Division, B.C." dated November 17, 2010. I have based this Assessment Report on previous copper exploration experience, review of references listed in Section 14.0 and field supervision of all of the 2010 Part 1 program but have no prior experience on the property.

6. I consent to the filing of the CCS Report by Shenul for assessment purposes.

Dated at Vancouver, British Columbia, the 17th day of November 2010.

Original Signed and Sealed "Peter A. Christopher" Peter A. Christopher, PhD., P.E

PAC GEOLOGICAL CONSULTING INC.

NOVEMBER 2010 27

PAC GEOLOGICAL CONSULTING INC.

NOVEMBER 2010 27

APPENDIX A: ACME CERTIFICATES OF ANALYSIS AND QA/QC

Λ.	mo l abc			Client:	PAC Geological 3707 W. 34th Ave. Vancouver BC VSN 2C9	Consulting Canada	Inc.	
1020 C	ordova St. East Vancouver BC V6A 4A3 Cana	Analytical Laboratories (Vano ada www.acmelab.co	couver) Ltd. m	Submitted By: Receiving Lab: Received: Report Date: Page:	Peter Christopher Canada-Vancouver July 29, 2010 August 19, 2010 1 of 2			
CERTIFI	CATE OF ANALYSIS				VAN	100035	83.1	
CLIENT JOB IN	IFORMATION	SAMPLE PR	REPARATION	AND ANALYTICA	L PROCEDURES			
Project: Shipment ID: P.O. Number Number of Samples:	SHENUL-PAC	Method Code SS80 Dry at 60C 1072	Number of Samples S S	Code Description Dry at 60C sieve 100g to Dry at 60C	-60 mesh	Tect Wat (a)	Report Status	Lab VAN VAN
SAMPLE DISP	OSAL							
DISP-RJT-SOIL Acme does not accept days without prior writ	Immediate Disposal of Soil Reject responsibility for samples left at the laboratory after 90 ten instructions for sample storage or return.							
Involce To: CC:	PAC Geological Consulting Inc. 3707 W, 34th Ave. Vancouver BC V6N 2C9 Canada				ANT CO.	ANDIA OT	EDWG BAL	AD
This report supersedes al Al neults are considered "" asterisk indicates that	I previous preliminary and final reports with this file number dated the confidential poppety of the client. Acros assumes the liabilities an analytical result could not be provided due to unusually high le	ptor to the date on this certificate. Signat a for actual cost of analysis only. wis of interference from other elements.	ure indicates final ap	provel; preliminary reports are	unsigned and should be used fo	r telerence only.		

	Client:	PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	SHENUL-PAC August 19, 2010
www.acmelab.com		
	Page:	1 of 1 Part 1
QUALITY CONTROL REPORT		VAN10003583.1

	Method	1DX16																			
	Analyte	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	AG	U	Au	Th	8r	Cd	8b	B	v	Ca	P
	Unit	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Reference Materials																					
STD D87	Standard	20.2	90.5	58.4	410	1.0	55.3	7.8	608	2.36	41.0	3.9	70.4	4.0	70	5.0	4.6	3.8	84	0.95	0.060
STD DS7 Expected		20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4,4	69	6.4	4.6	4.5	84	0.93	0.08
BLK	Blank	₹.1	⊴.1	<0.1	<1	⊲0.1	<0.1	⊲.1	1	⊲.01	⊲0.5	⊲0.1	⊲0.5	₹.1	1	⊲0.1	⊲0.1	⊲.1	4	<0.01	<0.001

This report supermedies all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

	Client:	PAC (3707 W. Vancouv	Geolog 34th Ave er BC V6	gical Consulting Inc. N 209 Canada
ACTINELADS Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (664) 253-3158 Eax (664) 253-1716	Project: Report Date:	SHENUL August 1	-PAC 19, 2010	
www.acmelab.com				
	Page:	1 of 1	Part	2
QUALITY CONTROL REPORT			١	VAN10003583 1

	Method	1DX16	10016	1DX16	100016	100016	100016	100(16	1DX16	1DX15	1DX15	1DX16	1DX15	1DX16	1DX16	1DX16	10X16	10X16
	Analyte	La	Cr	Mg	Ba	Π	B	A	Na	ĸ	W	Hg	80	Π	8	Ga	80	Te
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	56	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																		_
STD DS7	Standard	12	209	1.06	392	0.125	35	1.00	0.098	0.46	4.0	0.22	1.9	4.1	0.23	5	3.0	1.5
STD DS7 Expected		12	179	1.05	410	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.08
BLK	Blank	<1	<1	<0.01	<	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

This report supervises all previous preliminary and that reports with the file number detect prior to be date on this cetificate. Signature indicates that approved; preliminary reports are unequed and should be used for relevance only.

	Client:	PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC VEN 209 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East. Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-11716	Project: Report Date:	SHENUL-PAC August 19, 2010
www.acmelab.com		
	Page:	2 of 2 Part 2
CERTIFICATE OF ANALYSIS		VAN10003583.1

		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16									
		Analyte	La	Cr	Mg	Ba	п	в	A	Na	ĸ	w	Hg	80	п	8	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
L890+00N 72+70E	SIR		9	31	0.60	137	0.132	1	1.85	0.013	0.04	⊲0.1	0.04	1.9	⊲.1	0.10	5	1.1	⊲0.2
L89706 74+63E	SIR		12	51	0.62	427	0.052	2	2.51	0.008	0.04	⊲0.1	0.14	2.5	⊲.1	0.21	5	4.2	₹.2
L898+32N 66+54E	SIR		5	33	0.54	63	0.157	<1	1.43	0.010	0.03	0.1	0.08	2.2	⊴1	0.08	5	0.5	₽.2
L900+00N 67+10E	SIR		8	41	0.64	115	0.156	1	1.56	0.010	0.05	0.1	0.06	2.7	⊲0.1	0.07	5	0.9	<0.2
L900+00N 68+50E	SIR		14	26	0.25	200	0.024	2	1.48	0.009	0.04	- 40.1	0.16	0.9	⊴1	0.28	3	1.9	₹.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

www.acmelab.com

Client: PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC VEN 2C9 Canada

Project: SHENUL-PAC Report Date: August 19, 2010

													Page:		2 of 3	2 F	Part 1					
CERTIFICATE OF ANALYSIS VAN10003															3583	.1						
		Method	1DX16	100016	1DX16	1DX16	1DX15	1DX16	10016	1DX16	1DX16	1DX16	1DX16	1DX16								
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	BI	v	Ca	P
		Unit	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L890+00N 72+70E	Sit		0.8	32.0	8.5	55	0.1	30.8	8.8	230	1.89	5.0	0.8	1.6	0.5	10	0.2	0.2	0.1	47	0.53	0.044
L89706 74+63E	SIL		1.4	58.3	12.1	187	0.4	51.4	24.2	1905	2.89	23.6	2.5	2.0	0.2	24	1.0	0.4	0.1	71	1.11	0.091
L898+32N 66+54E	SIR		0.8	31.4	7.4	45	0.3	25.8	9.0	381	2.06	2.8	0.5	3.7	0.5	9	0.3	0.1	<0.1	43	0.52	0.037
L900+00N 67+10E	SIR		0.9	31.5	9.8	52	0.2	29.6	11.2	435	2.45	6.4	0.6	6.6	0.9	10	0.3	0.3	0.1	67	0.45	0.033
L900+00N 68+50E	SIL		1.1	42.3	5.9	22	0.8	17.8	4.8	181	0.77	2.1	1.5	4.2	<0.1	24	0.4	0.2	<0.1	19	0.60	0.093

report supermedies all previous preliminary and final reports with this file number dated prior to the date on this cetificate. Signature indicates final approval; preliminary reports are unalgoed and should be used for reference only.

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this perificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acres assumes the labilities for social cost of analysis only. "" address in closes that can analyze and close provided lies to unsually file level of inference tom other elements. Lab

VAN

VAN

VAN

1		٨			٦ŀ										Ciler	nt:	PA 3707 Vanc	C Geo W. 34th ouver BC	logica Ave. 2 VEN 20	al Con 9 Canada	sultin 1	g Inc.		
	1	020 Cord	10va St. Ea	St Vanco 8 Fax (6	QVer BC 04) 253	V6A 4 1716	Acme A3 Car	e Analyi Iada	tical La	boratori	les (Va	ncouve	r) Ltd.		Projec Repor	tt t Date:	SHE! Augu	NUL-PAC Ist 23, 20) 10					
			·		1				ww	w.acme	elab.co	m												
															Page:		2 of 9	9 F	Part 1					
	CERT	TIFIC	ATE C)F AN	IALY	'SIS													VA	N10	0003	3582	.1	
				Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX1
				Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mo	Fe	Ac	U	Au	Th	8r	Cd	8b	B	v	Ca	
				Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	,
				MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.00
	L890+00N	70+00E	Soli		0.9	37.0	10.3	45	0.3	26.5	10.1	258	3.98	6.0	0.7	2.4	1.3	6	0.2	0.4	0.2	88	0.12	0.04
	L890+00N	70+25E	Soli		2.3	26.5	16.5	38	0.4	15.9	5.2	213	2.59	6.9	0.6	1.2	0.3	11	0.3	0.4	0.3	82	0.11	0.06
	L890+00N	70+50E	Soll		7.3	28.0	11.0	40	1.9	14.4	4.5	165	2.38	3.7	0.9	1.9	0.3	8	0.8	0.4	0.2	61	0.08	0.06

L890+00N 70+50E	Soll	7.3	28.0	11.0	40	1.9	14.4	4.5	165	2.38	3.7	0.9	1.9	0.3	8	0.8	0.4	0.2	61	0.08	0.06
L890+00N 70+75E	Soli	6.8	46.2	14.4	62	1.9	27.6	9.0	261	2.32	4.7	1.2	2.1	0.1	9	0.7	1.0	0.3	54	0.11	0.09
L890+00N 71+00E	Soll	2.2	26.3	12.8	46	1.0	18.4	5.4	184	2.58	3.2	0.8	18.0	0.4	9	1.1	0.3	0.2	77	0.13	0.06
L890+00N 71+25E	Soll	1.2	18,4	10.3	52	0.4	20.7	10.5	499	3.11	4.0	0.6	1.3	0.5	9	0.5	0.4	0.2	92	0.13	0.05
L890+00N 71+50E	Soll	0.6	26.7	7.2	17	1.9	8.0	2.2	44	0.45	0.7	1.4	1.9	⊲0.1	8	0.3	0.2	0.1	12	0.09	0.22
L890+00N 71+75E	Soll	1.3	29.9	12.2	33	0.5	14.8	5.7	178	1.80	3.8	1.5	1.0	0.1	9	0.4	0.2	0.3	47	0.18	0.07
L890+00N 72+00E	Soll	1.2	13.8	10.8	15	0.2	5.7	2.1	49	1.17	1.0	0.7	2.2	0.3	5	0.2	0.1	0.2	39	0.06	0.04
L890+00N 72+25E	Soll	0.6	10.8	14.3	16	⊲0.1	8.3	2.5	102	1.56	0.9	0.4	<0.5	0.5	7	0.2	0.3	0.2	71	0.11	0.03
L890+00N 72+50E	Soli	0.9	12.8	10.6	16	0.2	8.4	2.6	67	1.65	1.3	0.6	<0.5	0.7	6	0.1	0.2	0.2	68	0.09	0.03
L890+00N 72+75E	Soll	1.8	74.6	9.2	22	0.7	21.5	17.3	445	1.37	2.5	1.1	2.0	0.1	13	0.2	0.3	0.2	50	0.52	0.07
L890+00N 73+00E	Soll	0.9	13.9	11.9	23	0.2	10.2	3.6	126	1.83	1.7	0.6	1.1	0.6	8	0.2	0.2	0.2	65	0.17	0.03
L890+00N 73+25E	Soll	1.1	18.8	11.1	37	0.2	9.8	3.6	179	2.05	2.1	0.7	1.3	0.7	10	0.2	0.3	0.3	68	0.15	0.04
L890+00N 73+50E	Soll	0.8	10.9	9.7	20	0.1	7.3	2.6	125	2.14	1.2	0.5	0.7	0.6	4	0.2	0.2	0.2	61	0.06	0.02
L890+00N 73+75E	Soll	1.0	22.6	13.6	37	0.1	17.4	13.7	537	2.46	5.5	0.8	0.8	0.9	6	0.3	0.3	0.2	76	0.13	0.03
L890+00N 74+00E	Soll	0.8	42.7	12.7	69	0.3	25.9	11.1	594	2.59	7.8	1.1	<0.5	1.0	13	0.3	0.2	0.3	76	0.64	0.04
L891+00N 70+00E	Soll	0.8	9.1	11.8	19	0.1	8.1	2.6	139	1.89	1.7	0.4	0.5	0.3	4	0.2	0.2	0.3	59	0.05	0.03
L891+00N 70+25E	Soll	0.9	21.2	10.8	49	0.3	21.7	7.9	339	3.20	3.8	0.5	1.7	0.7	8	0.3	0.3	0.2	75	0.16	0.04
L891+00N 70+50E	Soll	1.2	10.1	10.4	11	1.1	4.2	1.0	22	0.83	0.7	0.6	2.1	<0.1	4	0.3	0.2	0.3	29	0.03	0.03
L891+00N 70+75E	Soll	1.9	16.5	10.8	23	0.7	12.9	3.0	79	1.94	2.7	0.6	0.7	0.4	6	0.3	0.2	0.2	62	0.08	0.03
L891+00N 71+00E	Soll	0.9	19.4	11.1	31	0.5	13.5	4.1	158	2.38	2.5	0.5	3.0	0.4	5	0.2	0.2	0.2	70	0.07	0.03
L891+00N 71+25E	Soll	1.2	22.2	12.6	41	0.5	17.1	5.4	286	3.26	3.3	0.6	1.0	0.6	7	0.3	0.3	0.2	86	0.10	0.04
L891+00N 71+50E	Soll	0.7	13.6	9.5	33	0.2	16.3	5.3	182	2.58	3.0	0.4	1.1	1.0	5	0.1	0.2	0.2	80	0.12	0.04
L891+00N 71+75E	Soll	1.0	19.5	9.4	45	0.1	21.0	9.0	371	2.81	3.9	0.5	0.8	0.5	8	0.3	0.2	0.2	77	0.16	0.03
L891+00N 72+00E	Soll	0.6	20.1	7.8	44	0.2	23.2	10.3	471	2.95	4.3	0.4	3.8	0.6	9	0.2	0.2	0.2	82	0.20	0.04
L891+00N 72+25E	Soll	1.0	18.4	7.3	7	0.7	11.5	2.0	37	1.81	3.2	0.6	<0.5	<0.1	32	0.3	0.2	<0.1	26	0.37	0.18
L891+00N 72+50E	Soll	0.8	11.5	12.0	14	0.4	5.2	1.8	45	0.88	0.8	0.7	1.2	0.2	9	0.2	<0.1	0.2	33	0.09	0.03
L891+00N 72+75E	Soli	0.8	11.0	11.8	16	0.2	5.7	2.0	75	1.89	1.3	0.5	1.0	0.7	4	0.3	0.2	0.3	67	0.05	0.02
L891+00N 73+00E	Soll	0.7	16.4	10.7	20	0.2	8.7	2.4	95	2.11	1.1	0.5	<0.5	0.7	5	0.2	0.1	0.2	77	0.09	0.02
		-																			

This report supermedee all previous preliminery and final month with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

(Acı	me	ał)S	Aam	. Analui	fortin	hamiari	0.0		es s for		Clien	ıt:	PA 3707 Vano	C Geo W. 34th ouver BC	logica Ave. 2 VEN 20	al Con 9 Canadi	sultir a	ıg Inc.
					AGIN	e Analy	uGai La	Donaton	es (vai	couve	i) Liu.		Projec	L	SHEP	NUL-PAC				
	1020 Cordov	a St. East Vanc	ouver BC	V6A 4	A3 Car	lada							Report	t Date:	Augu	st 23, 20	10			
	Phone (604)	253-3158 Fax (6	504) 253	-1716																
							ww	w.acme	alab.co	m										
													Page:		2 of 9	9 F	Part 2			
	CERTIFICA	TE OF AN	NALY	'SIS													VA	N10	000	3582.1
_		Method	1DX16	1DX16	1DX16	10016	100016	1DX16	1DX16	1DX16	1DX16	100016	1DX16	1DX16	1DX16	1DX16	1DX16	100016	1DX16	
		Analyte	La	Cr	Mo	Ba	п	в	AI	Na	к	w	Ha	80	п	8	Ga	80	Те	
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	
1	L890+00N 70+00E	Soll	7	51	0.62	85	0.218	<1	2.12	0.009	0.04	0.1	0.07	2.6	⊲0.1	0.05	8	0.5	<0.2	
	L890+00N_70+25E	Sol	9	38	0.28	113	0.117	<1	0.95	0.011	0.04	<0.1	0.08	14	<01	0.07	8	0.5	<0.2	

LOSUTUUN /UTUUE	001	1	21	0.62		0.210	21	2.12	0.005	0.04	0.1	0.07	2.0	20.1	0.05	•	0.5	
L890+00N 70+25E	Soll	9	38	0.28	113	0.117	<1	0.95	0.011	0.04	<0.1	0.08	1.4	⊲.1	0.07	8	0.5	<.
L890+00N 70+50E	Sol	7	32	0.30	96	0.120	<1	1.49	0.009	0.03	⊲0.1	0.09	1.5	⊴.1	0.08	8	1.3	
L890+00N 70+75E	Sol	8	43	0.42	204	0.068	<1	1.73	0.015	0.08	⊲0.1	0.09	1.5	⊲.1	0.11	8	3.9	<0.
L890+00N 71+00E	Soll	8	36	0.33	168	0.174	<1	1.36	0.013	0.04	<0.1	0.11	1.9	⊲.1	0.08	9	1.1	<.
L890+00N 71+25E	Sol	9	48	0.47	105	0.183	<1	1.63	0.010	0.04	⊲0.1	0.07	2.4	⊴.1	0.06	9	⊲0.5	
L890+00N 71+50E	Sol	12	18	0.11	86	0.008	1	1.66	0.017	0.04	⊲0.1	0.19	0.6	0.1	0.19	3	5.3	<0.
L890+00N 71+75E	Sol	12	30	0.26	102	0.079	<1	2.33	0.019	0.05	⊲0.1	0.07	1.9	0.1	0.10	10	1.4	0
L890+00N 72+00E	Soll	7	18	0.14	56	0.116	<1	1.45	0.012	0.02	⊲0.1	0.06	1.2	<0.1	<0.05	9	⊲0.5	<0.
L890+00N 72+25E	Soll	5	25	0.19	69	0.176	<1	0.82	0.014	0.03	⊲0.1	0.07	1.2	⊲.1	0.05	8	⊲0.5	_ ₽
L890+00N 72+50E	Sol	7	32	0.24	44	0.212	<1	1.42	0.010	0.02	⊲0.1	0.04	1.5	⊲.1	<0.05	9	⊲0.5	0
L890+00N 72+75E	Sol	12	28	0.26	103	0.091	1	1.83	0.016	0.04	⊲0.1	0.07	1.7	⊲.1	0.10	8	14	<
L890+00N 73+00E	Sol	7	30	0.24	130	0.172	<1	1.12	0.010	0.04	<0.1	0.10	1.4	<0.1	0.06	8	<0.5	<.
L890+00N 73+25E	Soll	6	27	0.21	224	0.199	1	0.87	0.013	0.04	⊲0.1	0.09	1.3	⊲0.1	<0.05	11	⊲0.5	<
L890+00N 73+50E	Soll	4	21	0.15	43	0.144	<1	1.14	0.008	0.02	⊲0.1	0.06	0.9	⊲.1	0.06	8	⊲0.5	0.
L890+00N 73+75E	Soll	8	38	0.37	104	0.179	<1	1.43	0.008	0.04	0.1	0.09	2.0	⊲.1	<0.05	8	⊲0.5	_ <0
L890+00N 74+00E	Soll	7	45	0.43	125	0.107	1	2.12	0.016	0.05	0.1	0.10	2.9	⊲0.1	<0.05	9	⊲0.5	<
L891+00N 70+00E	Soll	5	21	0.15	48	0.118	<1	0.80	0.007	0.02	⊲0.1	0.06	0.8	⊲0.1	0.05	7	⊲0.5	<.
L891+00N 70+25E	Soll	6	42	0.50	98	0.155	<1	1.42	0.006	0.04	<0.1	0.08	1.6	⊲.1	<0.05	7	⊲0.5	<
L891+00N 70+50E	Soll	6	10	0.03	73	0.061	<1	0.81	0.008	0.02	<0.1	0.04	0.3	⊲0.1	<0.05	6	⊲0.5	<.
L891+00N 70+75E	Sol	5	26	0.19	136	0.169	<1	1.04	0.007	0.02	⊲0.1	0.07	1.1	<0.1	<0.05	8	⊲0.5	<
L891+00N 71+00E	Soll	5	27	0.25	98	0.149	<1	1.14	0.006	0.03	⊲0.1	0.06	1.1	⊲0.1	<0.05	7	⊲0.5	0.
L891+00N 71+25E	Soll	5	36	0.32	163	0.173	<1	1.18	0.007	0.04	⊲0.1	0.08	1.3	⊲0.1	0.06	9	⊲0.5	<.
L891+00N 71+50E	Sol	6	34	0.38	104	0.212	1	1.23	0.007	0.03	⊲0.1	0.06	1.7	<0.1	<0.05	7	⊲0.5	<
L891+00N 71+75E	Soll	8	43	0.48	145	0.143	1	1.45	0.008	0.03	⊲0.1	0.04	2.0	⊲0.1	<0.05	8	⊲0.5	<
L891+00N 72+00E	Soll	7	42	0.50	146	0.166	1	1.28	0.007	0.04	<0.1	0.05	2.0	⊲0.1	<0.05	6	⊲0.5	<.
L891+00N 72+25E	Soll	14	11	0.09	313	0.007	2	1.01	0.010	0.04	<0.1	0.14	0.7	⊲0.1	0.24	1	6.8	_ ⊲
L891+00N 72+50E	Soll	5	13	0.08	96	0.108	<1	0.81	0.012	0.03	⊲0.1	0.10	1.1	⊲0.1	0.06	5	⊲0.5	<
L891+00N 72+75E	Soll	5	19	0.11	49	0.180	<1	0.82	0.009	0.02	⊲0.1	0.04	1.0	<0.1	<0.05	9	⊲0.5	<
L891+00N 73+00E	Soll	6	26	0.14	71	0.200	<1	0.99	0.009	0.02	<0.1	0.04	1.4	<0.1	<0.05	9	<0.5	<.

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

ACC 1020 Cordova Phone (604) 2	meL	ak uver BC 04) 253)S V6A 4	Acm A3 Car	e Analyi nada	tical La	boratori	es (Va	ncouve	r) Ltd.		Ciller Projec Repor	nt: :t t Date:	PA 3707 Vanc SHE! Augu	C Geo W. 34th ouver BC NUL-PAC st 23, 20	Nogica Ave. V6N 20	al Con 9 Canad	sultin	g Inc.		
						ww	w.acme	lab.co	m												
												Page:		3 of 9	9 F	Part 1					
CERTIFICA	TE OF AN	IALY	′SIS													VA	N10	0003	3582	2.1	
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	BI	v	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm.	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L891+00N 73+25E	Soll	0.9	91.1	7.3	46	3.2	19.4	3.6	71	0.66	1.0	8.6	2.8	⊲0.1	14	0.7	0.2	0.1	19	0.20	0.169
L891+00N 73+50E	Soll	1.1	35.8	10.4	60	0.3	20.9	11.8	822	2.32	9.2	1.2	0.5	0.3	12	0.3	0.2	0.2	73	0.49	0.067
L891+00N 73+75E	Soll	0.8	38.4	11.2	73	0.2	28.8	13.7	712	2.46	9.6	1.0	1.0	0.7	14	0.4	0.3	0.1	68	0.67	0.050
L891+00N 74+00E	Soll	0.9	23.3	9.6	30	0.6	12.5	4.4	175	1.83	2.6	0.8	0.9	0.4	7	0.3	0.1	0.2	58	0.14	0.044
L892+00N 70+00E	Soll	1.0	23.6	9.5	40	0.7	17.0	5.9	271	3.13	3.4	0.7	3.8	0.7	6	0.4	0.3	0.2	76	0.09	0.038
L892+00N 70+25E	Soll	LNR.	LN.R.	LNR.	LNR.	LNR.	LNR.	L.N.R.	LNR.	LNR.	LNR.	LN.R.	LNR.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LNR.
L892+00N 70+50E	Soll	1.0	21.6	9.0	34	0.6	18.0	6.1	215	3.72	3.3	0.6	1.2	1.2	7	0.4	0.3	0.2	90	0.12	0.040
L892+00N 70+75E	Soll	1.5	18.9	10.6	24	0.8	8.9	2.8	99	1.91	2.2	0.7	1.2	0.2	4	0.2	0.2	0.2	53	0.04	0.035
L892+00N 71+00E	Soll	1.2	16.3	12.3	19	0.2	6.9	2.2	125	2.43	2.1	0.5	1.9	0.4	6	0.2	0.2	0.3	74	0.08	0.055
L892+00N 71+25E	Soli	0.9	40.5	8.9	25	0.7	15.2	4.6	108	1.90	3.4	0.8	1.1	0.2	5	0.6	0.2	0.2	44	0.07	0.047
L892+00N 71+50E	Soll	0.6	19.2	10.5	42	0.6	17.3	5.7	266	2.66	3.1	0.4	0.7	0.7	7	0.5	0.2	0.2	82	0.14	0.048
L892+00N 71+75E	Soll	0.9	25.1	10.7	42	0.6	15.7	5.7	187	2.60	3.4	0.7	0.7	0.4	6	0.2	0.2	0.2	63	0.08	0.038
L892+00N 72+00E	Soll	0.8	19.4	9.6	49	0.5	18.5	7.5	340	2.89	3.4	0.5	8.0	1.1	6	0.2	0.3	0.2	82	0.12	0.035
L892+00N 72+25E	Soll	1.0	22.0	10.5	34	0.4	16.9	5.0	162	2.66	3.8	0.6	4.9	0.5	6	<0.1	0.3	0.2	76	0.12	0.035
L892+00N 72+50E	Soll	0.9	17.7	11.3	23	0.4	9.2	2.9	132	2.15	1.5	0.5	<0.5	0.6	5	0.2	0.2	0.2	69	0.08	0.028
L892+00N 72+70E	Soll	1.0	12.8	11.4	25	0.8	72	2.6	78	2.06	1.9	0.6	1.1	0.6	6	0.3	0.2	0.2	64	0.06	0.032
L892+00N 73+00E	Soll	0.9	37.6	10.6	59	0.6	33.6	12.8	311	3.10	5.3	0.9	3.6	1.5	7	0.2	0.3	0.2	78	0.13	0.031
L892+00N 73+25E	Soll	0.9	17.4	8.3	43	0.4	15.5	5.7	296	2.81	3.2	0.6	4.5	0.7	7	0.3	0.2	0.2	66	0.11	0.035
1.000-001-70-005	Owli		75.0	40.0		0.4	72.6	47.4	C 24	2.04	4.0	0.7	2.7		40	0.4	0.2		72	0.72	0.040

2.70 2.96

180 2.61

653 2.60 8.1

2.2 0.6 0.6 0.7

13.4

2.4 1.0 4.2 0.9

3.9 1.3 1.3 0.9

22

1.0 1.9

L893+00N 71+00E Soll 2.1 30.9 10.5 14 2.6 4.6 1.4 37 1.24 2.9 1.1 9.2 ⊲0.1 0.3 0.4 0.3 8 23.0 12.6 0.2 L893+00N 71+25E Soll 1.2 7.4 16 6.2 1.9 51 1.16 4.7 1.0 0.8 ⊲0.1 0.1 2.7 0.2 1.1 0.3 L893+00N 71+50E Soll 1.2 11.4 22 8.2 3.2 128 2.87 2.7 0.4 1.3 1.4 5 0.4 L893+00N 71+75E Sol 0.9 16.7 13.7 21 0.1 7.6 23 98 1.74 3.2 0.4 2.3 0.4 9 0.2 0.4 0.4 L893+00N 72+00E 0.9 10.9 14.1 0.7 0.3 0.4 0.3 22.2 43 0.6 289 2.98 0.6 13.9 Sol 4.3 4.5 9

14.1

25.0 13.6

0.4 40.2

1.5

1.4

3.6 156

14.2 562

4.0

of supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

22 0.9 6.4 2.0 61 1.48 2.3 0.6 4.0 <0.1

45 1.4 19,4 13.0 421 2.75

L892+00N 73+75E

L892+00N 74+00E

L893+00N 70+00E

L893+00N 70+25E

L893+00N 70+50E

L893+00N 70+75E

Soli

Soll

Soli

Soli

Sol

Soli

1.0 15.1

0.8 69.6

1.4 22.0 14.5

1.0 29.1

1.5

1.1

47.0

33.4 13.9 83

8.3 30 0.1 10.4

10.7

12.6 31 0.2

0.5 0.4

0.1 0.2 67

0.3 0.2

0.7

5

10

12 0.2 0.4 0.4

10 0.7 0.3 0.2

16 0.5

0.4

0.3

0.11 0.032

0.31 0.056

0.09 0.059

0.12 0.051

0.08 0.059

0.13 0.065

0.04 0.060

0.06 0.03

0.06 0.04

0.14 0.046

75

50

81

72

39

31 0.03 0.06

85

67

73

0.3

0.3 72

	Client:	PAC 0 3707 W.: Vancouve	Seological Cor 34th Ave. rr BC V6N 2C9 Canad	sulting Inc.
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	SHENUL August 2	-PAC 3, 2010	
www.acmelab.com				
	Page:	3 of 9	Part 2	
CERTIFICATE OF ANALYSIS			VAN1	0003582.1

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	La	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	п	8	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
L891+00N 73+25E Sol		75	19	0.15	429	0.006	1	1.49	0.010	0.05	<0.1	0.21	0.8	0.1	0.19	3	8.7	<0.2
L891+00N 73+50E Sol		10	40	0.39	155	0.092	<1	1.84	0.012	0.05	<0.1	0.09	2.2	<0.1	0.05	8	⊲0.5	<0.2
L891+00N 73+75E Sol		9	45	0.59	206	0.138	1	1.85	0.009	0.04	0.1	0.05	3.0	⊲0.1	<0.05	6	⊲0.5	<0.2
L891+00N 74+00E Sol		8	28	0.28	114	0.116	1	1.47	0.011	0.03	0.1	0.06	1.6	⊲.1	<0.05	8	⊲0.5	<0.2
L892+00N 70+00E Sol		6	34	0.33	154	0.200	<1	1.55	0.014	0.03	<0.1	0.10	1.6	<0.1	<0.05	9	⊲0.5	<0.2
L892+00N 70+25E Sol		L.N.R.	LNR.	LNR.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LNR.	LN.R.	LNR.	L.N.R.	LNR.	LNR.	LNR.	L.N.R.	L.N.R.
L892+00N 70+50E Sol		7	40	0.40	84	0.240	<1	1.68	0.007	0.04	<0.1	0.07	2.1	⊲0.1	<0.05	9	⊲0.5	<0.2
L892+00N 70+75E Sol		5	14	0.13	133	0.074	1	1.12	0.008	0.03	<0.1	0.06	0.6	⊲.1	<0.05	7	⊲0.5	<0.2
L892+00N 71+00E Sol		5	22	0.14	129	0.132	<1	0.89	0.012	0.03	<0.1	0.06	0.9	<0.1	<0.05	10	⊲0.5	0.2
L892+00N 71+25E Sol		6	25	0.25	134	0.102	1	1.68	0.009	0.03	⊲0.1	0.10	1.2	⊲.1	<0.05	7	⊲0.5	<0.2
L892+00N 71+50E Sol		7	36	0.38	96	0.179	1	1.22	0.007	0.04	<0.1	0.06	1.6	⊲0.1	<0.05	7	⊲0.5	<0.2
L892+00N 71+75E Sol		6	31	0.30	162	0.131	1	1.36	0.008	0.03	⊲0.1	0.08	1.5	⊲.1	<0.05	8	⊲0.5	<0.2
L892+00N 72+00E Sol		8	39	0.41	138	0.228	<1	1.44	0.008	0.03	<0.1	0.03	2.0	<0.1	<0.05	8	⊲0.5	<0.2
L892+00N 72+25E Sol		7	37	0.37	124	0.164	1	1.52	0.007	0.03	<0.1	0.07	1.6	⊲0.1	<0.05	7	⊲0.5	<0.2
L892+00N 72+50E Sol		7	25	0.17	129	0.171	<1	1.21	0.008	0.03	<0.1	0.04	1.1	⊲.1	<0.05	9	⊲0.5	<0.2
L892+00N 72+70E Sol		7	18	0.10	133	0.141	1	1.00	0.008	0.03	<0.1	0.05	1.1	<0.1	<0.05	8	⊲0.5	<0.2
L892+00N 73+00E Sol		11	58	0.76	268	0.193	1	2.20	0.009	0.06	0.1	0.06	3.6	⊲0.1	<0.05	7	0.6	<0.2
L892+00N 73+25E Sol		7	33	0.32	132	0.169	<1	1.56	0.009	0.03	⊲0.1	0.06	1.6	⊲.1	<0.05	8	⊲.5	<0.2
L892+00N 73+50E Sol		9	42	0.52	223	0.176	1	1.62	0.007	0.04	<0.1	0.07	2.4	⊲.1	<0.05	7	⊲0.5	<0.2
L892+00N 73+75E Sol		7	30	0.23	47	0.181	1	1.71	0.009	0.03	<0.1	0.06	1.7	<0.1	<0.05	9	⊲0.5	<0.2
L892+00N 74+00E Sol		11	57	0.66	171	0.132	2	2.49	0.012	0.07	0.1	0.06	4.1	⊲0.1	<0.05	8	⊲0.5	<0.2
L893+00N 70+00E Sol		5	19	0.08	263	0.063	1	0.64	0.007	0.03	<0.1	0.10	0.4	⊲0.1	0.08	6	0.5	<0.2
L893+00N 70+25E Sol		7	35	0.38	224	0.201	2	1.64	0.009	0.05	<0.1	0.06	2.0	<0.1	0.06	8	0.9	<0.2
L893+00N 70+50E Sol		6	29	0.26	153	0.144	<1	1.38	0.009	0.03	<0.1	0.11	1.3	⊲0.1	0.05	8	0.7	<0.2
L893+00N 70+75E Sol		7	23	0.28	359	0.098	1	1.18	0.009	0.04	<0.1	0.07	1.4	⊲0.1	0.06	8	1.5	<0.2
L893+00N 71+00E Sol		5	16	0.05	217	0.037	<1	0.76	0.007	0.03	- 40.1	0.11	0.3	⊴.1	<0.05	5	1.3	<0.2
L893+00N 71+25E Sol		6	13	0.10	207	0.052	<1	1.50	0.012	0.03	<0.1	0.08	0.6	<0.1	<0.05	7	0.8	<0.2
L893+00N 71+50E Sol		6	25	0.16	71	0.240	<1	0.90	0.009	0.03	<0.1	0.06	1.2	<0.1	<0.05	10	⊲0.5	<0.2
L893+00N 71+75E Sol		6	19	0.10	230	0.109	<1	0.65	0.006	0.03	<0.1	0.07	0.9	<0.1	<0.05	7	⊲0.5	<0.2
L893+00N 72+00E Soll		7	29	0.28	302	0.145	<1	1.26	0.009	0.04	<0.1	0.09	1.4	⊲0.1	<0.05	9	0.6	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

		ak)S	Acme A3 Car	e Analyi Iada	ical Lat	poratori	es (Va	ncouver	r) Ltd.		Ciller Projec Repor	t: t Date:	PA(3707 Vanc SHEP	C Geo W. 34th/ ouver BC NUL-PAC st 23, 20	Iogica Ave. : V6N 2C	al Con 9 Canad	asultin	g Inc.		
Phone (604	4) 253-3158 Fax (504) 253	-1716											-							
						WW	w.acme	lab.co	m												
												Page:		4 of 9	F	art 1					
CERTIFICA	ATE OF AI	NALY	'SIS													VA	N10	0003	3582	1	
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	100016	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Unit	0000	DOM	PD DOM	20	POM DOM	DOM	DOM	DOM	~	DOM	pom	pob	DOM	pom	DOM	DOM	DOM	ppm	- Ca - S	5
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L893+00N 72+25E	Soll	1.0	41.4	10.4	31	1.3	15.2	6.6	177	2.40	3.4	0.8	1.9	0.7	9	0.5	0.3	0.3	74	0.11	0.038
L893+00N 72+50E	Soll	1.5	95.8	13.1	66	1.4	29.9	11.5	256	3.68	5.6	1.5	2.9	1.2	7	0.3	0.4	0.3	94	0.08	0.034
L893+00N 72+75E	Soll	1.0	21.1	10.6	34	0.8	12.2	5.0	309	3.94	2.9	0.6	5.3	1.0	8	0.4	0.3	0.3	91	0.11	0.043
L893+00N 73+00E	Soll	1.1	17.1	9.2	24	1.1	9,4	3.0	104	2.47	3.0	0.6	1.0	0.5	6	0.2	0.2	0.2	73	0.07	0.047
L893+00N 73+25E	Soll	1.9	23.2	16.0	60	0.7	16.6	6.4	349	2.96	4.5	0.7	4.6	0.7	14	0.4	0.5	0.2	79	0.23	0.065
L893+00N 73+50E	Soli	1.1	61.1	8.8	57	0.4	34.9	16.6	506	3.21	8.9	0.7	7.3	2.0	10	0.2	0.7	0.1	82	0.30	0.064
L895+00N 70+00E	Soli	0.7	14.3	11.0	60	0.4	19.7	8.9	392	2.82	4.7	0.3	3.5	1.2	15	0.2	0.3	0.2	98	0.23	0.044
L895+00N 70+25E	Sol	1.3	26.7	10.4	56	2.6	17.5	5.6	255	3.29	8.5	0.6	27	1.4	15	0.5	0.7	0.2	94	0.15	0.047
L895+00N 70+50E	Soli	1.2	21.9	14.9	45	0.5	16.3	7.6	258	196	3.2	0.6	4.6	0.9	11	0.2	0.4	0.3	50	0.16	0.048
L895+00N 71+00E	Sol	1.6	60.5	12.0	67	0.5	19.2	9.0	510	2.71	33	1.3	4.0	0.5	35	0.6	0.2	0.3	74	0.23	0.062
L895+00N 71+25E	Soli	1.1	16.3	11.2	28	0.2	9.6	2.9	112	2.96	3.1	0.6	2.2	0.7	12	0.4	0.2	0.2	81	0.13	0.045
L895+00N 71+50E	Soli	0.8	18.3	11.8	16	0.2	7.0	1.8	49	1.71	1.4	0.7	2.7	0.2	7	0.3	0.1	0.3	40	0.06	0.043
L895+00N 71+75E	Soll	0.9	25.5	16.6	22	<0.1	10.1	2.2	106	1.38	2.6	0.4	4.2	<0.1	9	0.2	0.2	0.3	49	0.12	0.084
L895+00N 72+00E	Soll	0.8	15.8	13.3	34	0.3	10.1	3.6	218	2.38	3.4	0.4	1.7	0.6	8	0.2	0.3	0.3	75	0.11	0.043
L895+00N 72+25E	Soll	0.8	17.8	10.2	42	0.4	18.1	6.7	262	2.61	4.6	0.5	2.6	0.8	7	0.3	0.3	0.2	76	0.10	0.049
L895+00N 72+50E	Soll	0.8	16.8	13.0	42	0.3	14.6	6.3	284	2.18	4.3	0.4	4.6	0.3	9	0.2	0.3	0.2	68	0.14	0.066
L895+00N 72+75E	Soll	0.9	24.1	10.1	52	0.3	16.2	10.4	913	2.95	4,4	0.7	4.2	0.5	10	0.4	0.2	0.2	77	0.14	0.053
L895+00N 73+00E	Soli	0.7	15.2	10.1	50	0.3	15.2	6.8	636	2.67	4.5	0.4	7.7	0.6	12	0.2	0.3	0.2	83	0.21	0.062
L895+00N 73+25E	201	1.1	33.0	12.2	60	0.6	25.6	10.2	441	3.09	5.5	0.8	4.5	1.1	17	0.3	0.3	0.2	8/	0.20	0.048
L895+00N 70+25E	Soli	0.5	237	12.2	65	0.4	18.4	8.0	454	2.13	4.1	0.5	32	13	10	0.5	0.3	0.2	83	0.24	0.047
L896+00N 70+50E	Soli	0.7	10.6	10.1	39	0.7	10.4	3.9	221	2.04	2.2	0.4	1.6	0.9	10	0.2	0.2	0.2	85	0.16	0.035
L896+00N 70+75E	Soll	0.6	13.9	14.5	28	0.2	8.2	3.4	115	1.40	3.0	0.4	2.5	0.3	15	0.2	0.3	0.3	60	0.16	0.040
L896+00N 71+00E	Soll	0.7	16.3	13.3	40	⊲0.1	11.2	4.3	138	1.87	2.9	0.5	1.6	0.5	16	0.2	0.3	0.2	78	0.22	0.038
L896+00N 71+25E	Soll	0.8	16.1	12.5	29	0.1	12.3	4.3	252	2.85	2.8	0.5	10.2	0.9	7	0.2	0.2	0.3	75	0.12	0.039
L896+00N 71+50E	Soll	0.9	17.2	11.2	36	0.2	12.5	4.7	261	2.77	3.0	0.5	2.5	0.6	7	0.2	0.3	0.2	73	0.11	0.040
L896+00N 71+75E	Soll	0.8	31.1	12.2	27	0.5	7.8	2.3	134	1.27	2.0	0.5	4.3	0.1	9	0.2	0.2	0.3	35	0.07	0.044
L896+00N 72+00E	Soll	0.7	11.9	11.1	22	0.4	5.5	1.8	132	1.49	0.9	0.4	2.3	0.1	7	0.2	0.2	0.3	49	0.09	0.037
L896+00N 72+25E	Sol	0.8	18.8	10.7	40	0.2	16.2	6.1	244	2.35	4.2	0.5	1.7	0.6	11	0.1	0.3	0.2	66	0.18	0.041

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

SHENUL-PAC

Part 2

Phone (604) 253-3158 Fax (604) 253-1716

Report	Date:	ł

www.acmelab.com

August 23, 2010

4 of 9

CERTIFICATE OF ANALYSIS

	\mathbf{n}	0.0			
10			651	к./	
	~~				

	Method	1DX16	1DX15	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX15	1DX16	1DX16						
	Analyte	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga	80	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
L893+00N 72+25E Soll		10	35	0.37	435	0.174	<1	1.79	0.011	0.03	<0.1	0.09	2.5	<0.1	<0.05	9	1.0	<0.2
L893+00N 72+50E Soll		10	52	0.62	468	0.152	<1	2.70	0.011	0.07	<0.1	0.08	4.9	⊲0.1	<0.05	12	1.7	<0.2
L893+00N 72+75E Soll		7	33	0.27	88	0.217	<1	1.29	0.009	0.03	⊴0.1	0.08	1.5	⊲0.1	<0.05	11	⊲0.5	<0.2
L893+00N 73+00E Soll		6	28	0.17	80	0.155	<1	1.61	0.009	0.03	⊴0.1	0.10	1.4	⊲0.1	<0.05	9	0.6	<0.2
L893+00N 73+25E Soll		8	38	0.37	263	0.189	1	1.27	0.008	0.05	<0.1	0.11	1.8	<0.1	<0.05	7	0.6	<0.2
L893+00N 73+50E Soll		11	50	0.78	242	0.204	<1	1.88	0.009	0.05	⊲0.1	0.05	3.6	⊲0.1	<0.05	5	0.9	<0.2
L895+00N 70+00E Soll		7	44	0.42	158	0.255	<1	0.98	0.008	0.05	⊴0.1	0.06	2.2	⊲0.1	<0.05	7	0.6	<0.2
L895+00N 70+25E Soll		7	39	0.31	164	0.258	<1	1.36	0.008	0.05	⊲0.1	0.12	2.0	⊲0.1	<0.05	8	0.8	<0.2
L895+00N 70+50E Soll		7	37	0.36	141	0.199	2	1.12	0.014	0.05	<0.1	0.11	1.6	<0.1	<0.05	10	<0.5	<0.2
L895+00N 70+75E Soll		8	33	0.39	357	0.121	1	1.42	0.010	0.05	⊲0.1	0.12	1.3	⊲0.1	<0.05	8	0.8	<0.2
L895+00N 71+00E Soll		8	36	0.35	380	0.165	1	1.70	0.012	0.05	⊲0.1	0.14	1.9	⊲0.1	<0.05	10	0.6	<0.2
L895+00N 71+25E Soll		6	28	0.19	122	0.175	<1	1.03	0.010	0.03	⊴0.1	0.12	1.1	<0.1	<0.05	10	0.6	<0.2
L895+00N 71+50E Soll		6	18	0.09	104	0.096	<1	1.28	0.012	0.02	<0.1	0.12	1.0	<0.1	0.05	9	<0.5	<0.2
L895+00N 71+75E Soll		7	24	0.15	215	0.090	2	0.85	0.007	0.05	⊲0.1	0.13	0.8	⊲0.1	0.08	7	⊲0.5	<0.2
L895+00N 72+00E Soll		8	27	0.25	114	0.136	<1	1.06	0.009	0.04	<0.1	0.08	1.4	⊲0.1	<0.05	9	<0.5	<0.2
L895+00N 72+25E Soll		8	37	0.44	144	0.159	<1	1.17	0.009	0.05	<0.1	0.08	2.0	<0.1	<0.05	7	<0.5	<0.2
L895+00N 72+50E Soll		7	31	0.35	108	0.144	<1	1.05	0.010	0.05	<0.1	0.07	1.4	⊲0.1	<0.05	8	⊲0.5	<0.2
L895+00N 72+75E Soll		8	32	0.37	202	0.159	<1	1.47	0.012	0.03	<0.1	0.06	1.9	⊲0.1	<0.05	9	0.5	<0.2
L895+00N 73+00E Soll		8	34	0.37	186	0.174	<1	1.05	0.010	0.04	<0.1	0.07	1.6	⊲0.1	<0.05	8	<0.5	<0.2
L895+00N 73+25E Soll		9	50	0.66	146	0.189	<1	1.79	0.010	0.05	<0.1	0.07	3.0	<0.1	<0.05	6	0.7	<0.2
L896+00N 70+00E Soll		7	31	0.34	239	0.189	<1	1.19	0.009	0.05	<0.1	0.11	1.8	⊲0.1	<0.05	7	0.6	<0.2
L896+00N 70+25E Soll		8	39	0.40	234	0.223	<1	1.40	0.012	0.05	<0.1	0.08	2.3	⊲0.1	<0.05	8	<0.5	<0.2
L896+00N 70+50E Soll		7	28	0.24	170	0.242	1	0.88	0.008	0.04	<0.1	0.06	1.3	<0.1	<0.05	8	<0.5	<0.2
L896+00N 70+75E Soll		7	23	0.20	319	0.164	<1	0.74	0.012	0.05	<0.1	0.05	1.0	⊲0.1	0.06	7	⊲0.5	<0.2
L896+00N 71+00E Soll		7	28	0.29	172	0.188	<1	0.95	0.014	0.05	- 41	0.05	1.3	⊴.1	<0.05	7	⊲0.5	<0.2
L896+00N 71+25E Soll		8	30	0.30	83	0.169	<1	1.26	0.012	0.03	- 41	0.06	1.6	⊴1.0	<0.05	9	⊲0.5	<0.2
L896+00N 71+50E Soll		8	32	0.31	73	0.161	<1	1.47	0.009	0.04	<0.1	0.05	1.5	⊲0.1	<0.05	9	<0.5	<0.2
L896+00N 71+75E Soll		6	17	0.14	223	0.101	2	0.72	0.010	0.03	0.1	0.07	0.5	⊲0.1	0.19	6	<0.5	<0.2
L896+00N 72+00E Soll		5	17	0.10	103	0.113	<1	0.66	0.011	0.02	<0.1	0.06	0.5	<0.1	0.09	7	<0.5	<0.2
L896+00N 72+25E Sol		9	32	0.36	229	0.185	2	0.92	0.008	0.04	0.2	0.07	1.2	⊲0.1	<0.05	6	<0.5	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

 <u>e 1</u>	I۵	n	۴-
 6	16		٤.

Project:

Page:

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

VAN10003582.1

SHENUL-PAC

Part 1

Phone (604) 253-3158 Fax (604) 253-1716

Report	Date

te:

5 of 9

www.acmelab.com

August 23, 2010

CERTIFICATE OF ANALYSIS

	Met	thod	1DX16	1DX16	1DX16	10016	1DX16															
	Ana	alyte	Mo	Cu	Pb	Zn	Aq	N	Co	Mn	Fe	AG	U	Au	Th	8r	Cd	Sb	BI	v	Ca	P
		Unit	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L896+00N 72+50E	Soll		0.8	22.5	10.3	52	0.1	20.1	8.0	398	2.87	5.8	0.5	10.2	0.6	10	0.2	0.3	0.2	76	0.19	0.055
L896+00N 72+75E	Soll		1.1	69.3	11.0	45	0.8	22.9	17.7	898	2.27	6.3	1.2	2.3	0.2	21	0.7	0.3	0.2	60	0.31	0.081
L896+00N 73+00E	Soll		0.7	42.3	10.0	65	0.2	36.5	16.8	572	3.12	8.6	0.6	13.5	2.0	10	0.2	0.4	0.2	75	0.28	0.058
L896+00N 73+25E	Soli		1.2	15.3	10.3	35	0.3	15.0	6.1	284	2.72	11.1	0.5	5.4	0.6	8	0.3	0.4	0.2	64	0.15	0.046
L896+00N 73+50E	Soll		0.4	8.5	11.9	14	<0.1	4.6	1.9	160	0.59	<0.5	0.2	<0.5	0.4	5	0.1	0.1	0.2	37	0.08	0.024
L896+00N 73+75E	Soll		0.9	11.9	9.8	29	0.3	10.7	3.6	410	1.96	4.1	0.5	3.6	0.3	9	0.4	0.2	0.2	62	0.17	0.048
L896+00N 74+00E	Soll		1.1	18.4	12.5	70	0.3	17.2	8.7	580	2.87	11.6	0.7	1.7	0.3	10	0.3	0.3	0.3	71	0.19	0.056
L896+00N 74+25E	Soli		1.3	30.2	8.7	101	0.2	23.0	12.2	755	2.98	9.2	1.3	9.6	0.3	11	0.6	0.2	0.2	73	0.24	0.058
L896+00N 74+50E	Soll		1.1	55.8	9.7	187	0.4	43.5	21.0	1401	2.90	16.4	2.4	1.4	0.5	15	1.1	0.2	0.2	68	0.33	0.079
L896+00N 74+75E	Soll		1.5	51.9	10.2	76	0.4	24.3	12.8	631	2.54	21.8	2.5	3.0	0.1	7	0.7	0.2	0.3	64	0.10	0.082
L896+00N 75+00E	Soll		1.0	13.1	9.6	34	0.3	5.1	2.9	208	1.71	3.5	0.7	<0.5	0.2	6	0.4	0.1	0.3	44	0.13	0.050
L896+00N 75+25E	Soll		0.7	8.5	9.7	18	0.2	5.0	1.9	143	1.32	1.2	0.3	1.6	⊲0.1	5	0.2	0.1	0.3	55	0.07	0.042
L896+00N 75+50E	Soll		0.8	27.9	8.1	40	0.2	18,4	6.4	334	2.23	5.0	0.4	2.0	0.4	8	0.4	0.3	0.2	62	0.14	0.040
L896+00N 75+75E	Soll		0.7	8.1	15.3	17	0.2	6.6	2.1	75	1.29	1.8	0.3	3.1	0.2	7	0.2	0.3	0.2	59	0.09	0.037
L896+00N 76+00E	Soli		0.7	13.6	7.9	18	0.2	5.9	1.9	109	1.50	1.2	0.4	<0.5	⊲0.1	7	0.2	0.1	0.2	54	0.09	0.040
L897+00N 66+00E	Soll		1.6	27.7	10.6	42	0.2	16.2	6.8	204	3.43	3.4	0.6	0.5	0.8	9	0.3	0.2	0.3	89	0.18	0.047
L897+00N 66+25E	Soll		0.9	27.6	7.2	42	0.1	22.9	10.4	325	3.37	4.0	0.5	1.8	0.9	8	0.2	0.2	0.2	95	0.20	0.038
L897+00N 66+50E	Soll		0.8	27.0	8.9	28	0.5	12.5	5.2	149	2.01	2.5	1.1	<0.5	0.2	8	0.2	0.1	0.2	42	0.12	0.053
L897+00N 66+75E	Soll		0.8	36.4	10.3	35	0.9	19.3	5.3	209	1.57	3.3	1.7	1.4	⊲0.1	14	0.3	0.2	0.2	38	0.25	0.137
L897+00N 67+00E	Soll		1.4	57.2	9.1	48	0.6	23.2	41.3	1171	2.22	3.2	1.7	1.3	0.3	16	0.6	0.2	0.2	57	0.24	0.067
L897+00N 67+25E	Soll		1.2	25.8	15.3	35	0.7	15.9	6.0	293	1.38	2.7	1.2	1.8	<0.1	28	0.4	0.2	0.2	41	0.44	0.082
L897+00N 67+50E	Soli		1.5	43.7	13.0	52	0.7	22.8	10.1	170	2.19	5.9	1.9	2.5	1.0	12	0.4	0.2	0.3	86	0.19	0.035
L897+00N 67+75E	Soll		0.9	30.9	16.6	73	0.4	31.6	10.0	207	1.75	3.0	1.3	2.0	0.4	21	0.3	0.1	0.3	53	0.23	0.044
L897+00N 68+00E	Soll		2.4	45.2	11.3	85	0.6	34.1	12.0	426	2.51	4.9	2.2	7.4	0.6	22	0.4	0.2	0.3	70	0.32	0.056
L897+00N 68+25E	Soll		3.5	34.1	17.0	70	0.8	23.6	20.5	731	2.18	7.5	2.0	2.0	0.1	43	0.7	0.3	0.3	63	0.45	0.114
L897+00N 68+50E	Soli		1.0	52.8	9.0	36	0.5	15.8	5.5	177	2.68	4.0	1.2	1.5	0.6	13	0.3	0.2	0.2	54	0.14	0.045
L897+00N 68+75E	Soll		1.4	34.8	10.9	51	0.5	19.1	7.4	219	2.91	6.0	1.0	6.7	1.0	11	0.4	0.2	0.2	74	0.19	0.043
L897+00N 69+00E	Soll		0.6	14.7	16.0	39	0.6	10.3	4.8	443	1.32	2.5	0.4	2.2	0.3	17	0.3	0.2	0.2	47	0.30	0.059
L897+00N 69+25E	Soli		0.6	13.6	12.4	26	0.3	9.5	4.6	358	1.51	2.5	0.4	5.2	0.5	7	0.2	0.2	0.2	55	0.12	0.036
L897+00N 69+50E	Soll		1.1	16.9	10.2	13	0.2	5.0	2.4	81	1.89	2.1	0.7	<0.5	0.3	5	0.3	0.1	0.2	43	0.06	0.044

ides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. of supers

	mol	٦ŀ										Clier	ıt:	PA 3707 Vanc	C Geo W. 34th ouver BC	Ave. S VEN 20	al Con 9 Canad	sultir a	ng Inc.
1020 Core Phone (60	dova St. East Vance 04) 253-3158 Fax (6	OUVER BC 504) 253-	JS : V6A 4 -1716	Acme A3 Car	e Analyi Iada	tical La	boratori	les (Var	ncouve	r) Ltd.		Projec Repor	t t Date:	SHE) Augu	NUL-PAC Ist 23, 20	с Н0			
						ww	w.acme	alab.co	m			Page							
CERTIFIC	ATE OF AN	NALY	'SIS									-		501	, ,	VA	AN1(000	3582.1
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
	Analyte	La	Cr	Mg	Ba	п	в	A	Na	ĸ	w	Hg	80	П	8	Ga	Se	Те	
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	ļ
L896+00N 72+50E	Soll	6	40	0.49	265	0.160	<1	1.19	0.007	0.04	0.1	0.05	2.0	⊲0.1	0.08	7	⊲0.5	<0.2	
L896+00N 72+75E	Sol	17	30	0.26	389	0.077	1	1.70	0.009	0.05	0.1	0.07	2.3	<0.1	0.09	7	1.8	<0.2	
L896+00N 73+00E	Soll	9	54	0.79	158	0.179	2	1.76	0.007	0.04	0.2	0.05	3.3	⊲0.1	<0.05	6	⊲0.5	<0.2	

L896+00N 73+00E	301	9	54	0.79	158	0.179		1./6	0.007	0.04	0.2	0.05	3.3	40.1	<0.05		<u.5< th=""><th><u.< th=""></u.<></th></u.5<>	<u.< th=""></u.<>
L896+00N 73+25E	Soll	7	30	0.35	127	0.139	<1	1.35	0.009	0.02	0.1	0.08	1.4	⊲1	<0.05	8	<0.5	<0.
L896+00N 73+50E	Soll	6	13	0.08	85	0.133	1	0.42	0.008	0.02	-0.1	0.03	0.5	⊲1.1	<0.05	7	<0.5	<0.
L896+00N 73+75E	Soll	6	27	0.26	77	0.130	<1	0.78	0.009	0.03	⊲0.1	0.07	0.8	⊲0.1	<0.05	8	<0.5	<0.
L896+00N 74+00E	Soll	4	30	0.33	141	0.107	<1	1.11	0.009	0.04	⊲0.1	0.06	1.1	⊲1	0.05	9	<0.5	<0.
L896+00N 74+25E	Soll	6	37	0.41	180	0.109	1	1.97	0.010	0.04	<0.1	0.06	1.5	<0.1	<0.05	9	0.8	<0.
L896+00N 74+50E	Soll	12	44	0.46	348	0.104	1	3.23	0.012	0.04	⊲0.1	0.09	3.3	⊲0.1	<0.05	8	1.2	<0.2
L896+00N 74+75E	Soll	9	54	0.27	127	0.057	2	1.78	0.010	0.04	⊴0.1	0.07	1.7	⊲1	<0.05	8	1.3	<0.
L896+00N 75+00E	Soll	4	15	0.10	93	0.103	<1	1.18	0.011	0.03	0.1	0.07	1.0	⊲1	<0.05	9	<0.5	<0.
L896+00N 75+25E	Soll	4	19	0.08	68	0.104	1	0.50	0.009	0.02	<0.1	0.05	0.6	<0.1	<0.05	6	<0.5	<0.
L896+00N 75+50E	Soll	5	35	0.40	109	0.172	1	0.99	0.011	0.05	-4.1	0.03	1.5	⊲0.1	<0.05	6	<0.5	<0.
L896+00N 75+75E	Soll	5	23	0.13	89	0.178	1	0.73	0.009	0.03	⊲0.1	0.07	0.8	⊲0.1	<0.05	8	<0.5	<0.
L896+00N 76+00E	Soll	3	20	0.08	73	0.098	<1	0.74	0.014	0.02	⊲0.1	0.07	0.4	⊲1.1	<0.05	5	<0.5	<0.
L897+00N 66+00E	Soll	5	29	0.38	71	0.223	1	1.43	0.011	0.03	0.1	0.04	1.6	⊲1.1	<0.05	11	<0.5	<.
L897+00N 66+25E	Soll	6	44	0.57	83	0.265	1	1.53	0.009	0.03	<0.1	0.04	2.5	<0.1	<0.05	7	<0.5	<0.
L897+00N 66+50E	Soll	7	26	0.25	62	0.093	<1	1.83	0.015	0.03	-41	0.08	1.6	⊲1	0.06	8	0.6	
L897+00N 66+75E	Soll	10	37	0.32	122	0.049	3	1.90	0.012	0.06	⊲0.1	0.16	1.9	⊲0.1	0.14	7	0.6	<0.
L897+00N 67+00E	Soll	20	40	0.35	244	0.085	2	2.35	0.011	0.05	-0.1	0.13	2.9	⊲0.1	<0.05	7	1.1	<0.
L897+00N 67+25E	Soll	10	28	0.31	250	0.043	2	1.47	0.013	0.06	-40.1	0.11	1.0	⊲1	0.08	7	0.7	<.
L897+00N 67+50E	Soll	12	53	0.44	216	0.210	1	2.45	0.012	0.05	⊲0.1	0.07	4.3	⊲0.1	<0.05	11	0.8	<0.
L897+00N 67+75E	Soll	8	50	0.47	443	0.128	2	2.58	0.014	0.08	<0.1	0.07	2.7	0.1	<0.05	13	0.8	<0.
L897+00N 68+00E	Soll	9	55	0.57	394	0.158	2	2.24	0.014	0.06	<0.1	0.09	4.0	<0.1	<0.05	10	0.8	<.
L897+00N 68+25E	Soll	10	39	0.40	495	0.069	3	1.71	0.013	0.07	-41	0.11	1.9	⊲1	0.10	7	1.0	<.
L897+00N 68+50E	Soll	8	36	0.29	194	0.166	<1	1.86	0.015	0.04	⊲0.1	0.09	2.9	⊲.1	<0.05	9	0.6	<0.
L897+00N 68+75E	Soll	9	44	0.50	148	0.214	1	2.03	0.010	0.05	-0.1	0.11	3.1	⊲1.1	<0.05	8	0.8	<.
L897+00N 69+00E	Soll	6	21	0.25	180	0.148	2	0.82	0.009	0.05	⊲0.1	0.11	1.1	⊲0.1	0.06	5	<0.5	<0.
L897+00N 69+25E	Soll	6	25	0.23	69	0.177	<1	1.01	0.010	0.04	⊲0.1	0.06	1.2	⊲0.1	<0.05	7	<0.5	<0.
L897+00N 69+50E	Soll	6	21	0.11	45	0.118	<1	2.21	0.013	0.02	⊲0.1	0.09	1.3	<0.1	<0.05	10	0.7	<0.

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	AC 1020 Cord Phone (60	14) 253-3158 Fa	ancou ax (60	ak Juver BC D4) 253-)S V6A 4/ 1716	Acme A3 Can	e Analyt ada	ical La	boratori w.acme	ies (Var elab.co	ncouve	r) Ltd.		Ciller Projec Repo	nt: t: t Date:	PA(3707 Vano SHE7 Augu	C Geo W. 34th ouver BC NUL-PAC st 23, 20	logic: Ave. : V6N 2C	al Con 9 Canada	sultin	g Inc.		
														Page		6 of 9		Part 1					
CERT	TIFIC		۸N		212															1003	582	1	
OLIN					313													v /-		000	J02	- 1	
		Mot	thod	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Ana	alyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	B	v	Ca	P
		1	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
			MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L897+00N	69+75E	Soli		0.5	4.5	9.6	10	<0.1	3.4	1.0	39	0.70	<0.5	0.3	0.8	0.1	8	<0.1	<0.1	0.2	34	0.08	0.020
L897+00N	70+00E	Soli		0.6	9.1	9.6	14	0.4	4.5	1.5	70	1.65	0.7	0.4	10.9	0.2	6	0.2	0.1	0.2	52	0.08	0.032
L897+00N	1 70+25E	Soli		0.6	10.3	9.7	16	0.2	4.4	2.1	95	1.61	0.5	0.3	2.9	0.3	8	0.1	0.1	0.2	62	0.08	0.032
L897+00N	1 70+50E	Soli	\rightarrow	0.9	9.2	12.4	22	0.4	8.2	3.2	92	1.52	2.3	0.3	3.0	1.0	10	0.2	0.3	0.3	80	0.12	0.025
L897+00N	70+75E	Soli	_	1.6	34.9	11.5	39	0.6	12.7	6.9	802	2.21	2.6	0.7	1.8	0.6	44	0.4	0.2	0.2	69	0.40	0.042
L897+00N	71+00E	Soli	\rightarrow	1.5	21.0	10.7	50	0.3	21.6	8.6	429	4.18	5.1	0.8	3.6	1.7	11	0.3	0.3	0.2	92	0.17	0.043
L897+00N	1 71+25E	Soli	_	1.8	27.9	12.1	66	0.3	22.3	8.7	467	4.20	8.2	0.8	1.8	1.8	12	0.2	0.7	0.2	96	0.18	0.058
L897+00N	1 71+50E	Soli	\rightarrow	0.9	27.8	11.9	56	0.2	21.1	8.6	280	3.18	5.8	0.6	16.7	1.2	9	0.3	0.4	0.2	81	0.18	0.046
L897+00N	1 71+75E	Soli	\rightarrow	0.7	25.3	9.2	69	<0.1	31.9	11.7	319	3.46	9.6	0.7	10.7	2.4	10	0.2	0.5	0.1	82	0.32	0.064
L897+00N	72+00E	Soli	\rightarrow	0.7	10.5	11.0	20	1.1	5.7	2.3	129	1.75	2.1	0.5	1.6	0.5	7	0.1	0.2	0.2	59	0.10	0.036
L897+00N	72+25E	Soli	\rightarrow	0.8	33.5	8.7	77	0.1	35.8	14.1	336	3.52	13.7	0.6	17.5	3.2	10	0.2	0.7	0.1	83	0.35	0.053
L897+00N	72+50E	Soli	\rightarrow	0.8	22.1	16.3	36	1.7	15.7	5.5	247	1.76	3.8	0.5	3.5	0.5	10	0.2	0.4	0.2	55	0.17	0.059
L897+00N	72+75E	Soli	\rightarrow	1.0	18.3	9.2	47	0.1	23.5	9.1	276	3.91	6.6	0.6	8.5	2.1	8	0.3	0.3	0.2	85	0.20	0.044
L897+00N	73+00E	Soli	\rightarrow	0.7	9.7	16.5	19	0.3	6.6	2.1	85	1.13	2.2	0.4	1.2	0.2	7	0.3	0.3	0.3	53	0.11	0.044
L897+00N	73+25E	Soli	\rightarrow	0.7	8.5	13.7	25	<0.1	8.4	2.7	142	1.80	2.6	0.4	1.5	0.3	8	0.1	0.2	0.2	70	0.14	0.038
L897+00N	73+50E	Soli	\rightarrow	0.8	11.0	9.7	25	0.1	9.4	4.0	207	2.05	3.9	0.5	1.1	0.5	7	0.2	0.2	0.2	64	0.11	0.038
L897+00N	73+75E	SOI	\rightarrow	0.9	24.0	11.1		0.2	26.7	10.5	597	2.86	7.3	0.6	1.3	0.8	9	0.4	0.3	0.2	/6	0.20	0.053
L897+00N	74+00E	Soli	\rightarrow	0.9	12.7	9.2	22	0.1	7.7	2.5	195	2.11	1.9	0.5	2.0	0.2	10	0.2	0.1	0.2	56	0.23	0.040
L897+00N	74+25E	Soli	\rightarrow	0.9	12.6	11.0	25	0.1	6.2	2.8	276	1.82	1.5	0.5	<0.5	0.1	1	0.2	0.1	0.3	57	0.07	0.047
L897+00N	74+50E	Soli	\rightarrow	1.0	34.3	12.5	58	0.4	21.0	8.7	499	3.02	8.7	0.6	7.3	0.5	9	0.4	0.3	0.3	85	0.15	0.051
L897+00N	1 74+75E	SOI	\rightarrow	1.6	30.7	11.5	61	0.4	21.2	5.6	364	2.81	6.1	0.7	<0.5	0.2	10	0.7	0.3	0.3	69	0.23	0.059
L89/+00N	75+00E	801	\rightarrow	1.6	23.5	11.5		0.3	9.8	3.2	163	1.81	3.5	0.8	1.0	0.2	9	0.4	0.2	0.3	49	0.18	0.060
L89/+00N	754258	3011 Soli	+	1.3	100.7	17.2	214	1.3	128.2	30.6	1851	9./1	47.0	4.5	1.4	0.8	52	2.9	0.7	0.3	100	0.33	0.160
1.897+00N	75+755	Soli	\rightarrow	1.3	53.3	15.5	84	11	34.1	98	368	3.04	7.8	1.0	1.5	0.6	10	0.0	0.5	0.3	81	0.32	0.065

40 minary and final reports with this file number dated prior to the date on this certificate. Signature in minary reports are unsigned and should be used for reference only es all pre us pre des final app val; pre

17

34 0.7 17.0 5.1

53

14.0

0.3 6.7 2.4 42 0.86 0.7 0.5 1.7 0.4

0.7 20.5 8.2 241 2.89 4.3 1.7 2.2 0.3

0.3 25.3

1.0

1.0 19.3 12.1

1.2 53.1 12.2

1.5 40.0

1.7 34,4 10.2

10.8 8.5 24 0.1

Soli

Soli

Soli

Soli

Soli

L898+00N 66+00E

L898+00N 66+25E L898+00N 66+50E

L898+00N 66+75E

00N 67+00E

9.3

3.8 109 2.68

90 2.19

152 3.00

6.3

1.8 0.5 12

5.2 1.8 2.4 0.3

7.4

0.7

3.0 0.6

1.1

7

15 0.4 0.2 0.2 49

8

12

9

0.3 0.2

0.3 0.2

0.4 0.2 0.3

0.2 0.2 0.2

0.2 90

0.3

50

77 0.37 0.038

74 0.14 0.059

0.12 0.033

0.64 0.035

0.16 0.079

	Acı	me	ał)5									Clien	t	PA(3707 Vano	C Geo W. 34th ouver BC	logica Ave. : V6N 20	al Con 9 Canad	sultir	ng Inc.
			- MN	//	Acme	e Analyt	ical La	boratori	es (Var	ncouve	r) Ltd.		Project	t	SHEP	NUL-PAC	•			
	1020 Cordov	a St. East Vanco	ouver BC	V6A 4	A3 Car	ada							Report	Date:	Augu	st 23, 20	10			
	Phone (604) :	253-3158 Fax (6	i04) 253-	-1716																
							ww	w.acme	alab.co	m										
													Page:		6 of 9) F	Part 2			
	CERTIFICA		NALY	'SIS													VA	N10)003	3582.1
		Method	1DX16	1DX16	1DX16	100016	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
		Analyte	La	Cr	Mg	Ba	п	в	AI	Na	к	w	Hg	80	п	8	Ga	80	Те	
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	
_ [L897+00N 69+75E	Soll	- 4	10	0.04	60	0.117	<1	0.42	0.012	0.02	<0.1	0.03	0.3	<0.1	<0.05	7	<0.5	<0.2	
	L897+00N 70+00E	Soll	4	14	0.08	56	0.140	<1	0.68	0.011	0.02	<0.1	0.04	0.5	<0.1	<0.05	8	<0.5	<0.2	
- [L897+00N 70+25E	Soll	4	14	0.09	70	0.178	<1	0.58	0.010	0.03	<0.1	0.04	0.7	⊲0.1	<0.05	7	⊲0.5	<0.2	
	L897+00N 70+50E	Soll	7	19	0.12	98	0.208	1	0.53	0.009	0.03	<0.1	0.04	1.0	<0.1	<0.05	6	<0.5	<0.2	
	1897+00N 70+75E	Sol	9	25	0.24	507	0.167	1	1.36	0.012	0.02	<0.1	0.06	1.6	<0.1	<0.05	9	<0.5	<0.2	

L897+00N 70+25E	30	4	14	0.09	70	0.178	<1	0.58	0.010	0.03	40.1	0.04	0.7	<0.1	<0.05	7	⊴0.5	<0.2
L897+00N 70+50E	Soll	7	19	0.12	98	0.208	1	0.53	0.009	0.03	⊲0.1	0.04	1.0	<0.1	<0.05	6	⊲0.5	<0.2
L897+00N 70+75E	Soll	9	25	0.24	507	0.167	1	1.36	0.012	0.02	⊲0.1	0.06	1.6	<0.1	<0.05	9	<0.5	<0.2
L897+00N 71+00E	Soll	8	48	0.49	157	0.240	2	1.75	0.010	0.04	⊲0.1	0.06	2.5	⊲0.1	<0.05	10	⊲0.5	<0.2
L897+00N 71+25E	Soll	9	48	0.51	158	0.248	2	1.71	0.010	0.05	0.1	0.06	2.4	⊲0.1	<0.05	9	⊲0.5	⊲.2
L897+00N 71+50E	Soll	10	43	0.49	118	0.191	1	1.83	0.009	0.04	⊲0.1	0.05	2.4	<0.1	<0.05	7	⊲0.5	<0.2
L897+00N 71+75E	Soll	13	52	0.82	116	0.203	2	2.26	0.009	0.04	0.1	0.04	3.4	<0.1	<0.05	6	0.6	<0.2
L897+00N 72+00E	Soll	8	20	0.15	74	0.152	<1	0.82	0.011	0.03	⊲0.1	0.05	0.8	⊲0.1	<0.05	8	⊲0.5	<0.2
L897+00N 72+25E	Soll	12	59	0.88	148	0.223	<1	2.32	0.009	0.05	0.1	0.03	3.7	⊲0.1	<0.05	5	⊲0.5	<0.2
L897+00N 72+50E	Soll	9	27	0.32	197	0.124	1	1.04	0.009	0.05	<0.1	0.07	1.3	⊲0.1	<0.05	5	<0.5	<0.2
L897+00N 72+75E	Soll	9	49	0.62	115	0.233	1	1.84	0.009	0.03	0.1	0.07	2.5	⊲1.1	<0.05	7	⊲0.5	<0.2
L897+00N 73+00E	Soll	6	20	0.14	152	0.122	<1	0.65	0.009	0.03	⊲0.1	0.06	0.7	<0.1	<0.05	7	⊲0.5	<0.2
L897+00N 73+25E	Soll	8	25	0.20	77	0.144	1	0.80	0.010	0.03	⊲0.1	0.06	1.0	⊲0.1	<0.05	8	⊲0.5	<0.2
L897+00N 73+50E	Soll	8	26	0.23	58	0.151	1	1.66	0.012	0.02	0.1	0.05	1.3	⊲0.1	<0.05	8	⊲0.5	0.2
L897+00N 73+75E	Soll	8	50	0.57	97	0.162	1	1.89	0.012	0.04	⊴.1	0.06	2.3	⊲0.1	<0.05	8	⊲0.5	⊲.2
L897+00N 74+00E	Soll	4	30	0.15	54	0.093	<1	0.86	0.011	0.02	⊲0.1	0.08	0.7	⊲0.1	<0.05	8	⊲0.5	<0.2
L897+00N 74+25E	Soll	4	16	0.12	62	0.083	1	0.86	0.015	0.03	⊲0.1	0.05	0.5	⊲0.1	<0.05	9	⊲0.5	<0.2
L897+00N 74+50E	Soll	6	45	0.44	163	0.155	2	1.43	0.010	0.05	0.2	0.08	2.0	⊲0.1	<0.05	9	⊲0.5	<0.2
L897+00N 74+75E	Soll	4	62	0.39	140	0.107	2	1.07	0.012	0.04	0.1	0.11	1.1	⊲0.1	0.05	10	⊲0.5	<0.2
L897+00N 75+00E	Soll	5	26	0.15	129	0.077	1	1.07	0.013	0.03	0.1	0.09	0.8	⊲0.1	0.07	9	⊲0.5	<0.2
L897+00N 75+25E	Soll	20	124	0.92	636	0.063	2	3.75	0.014	0.12	⊴0.1	0.11	10,4	⊲1	0.08	9	1.9	<0.2
L897+00N 75+50E	Soll	19	102	0.61	425	0.133	2	4,47	0.020	0.09	0.2	0.14	15.3	0.1	<0.05	11	1.2	<0.2
L897+00N 75+75E	Soll	11	64	0.63	282	0.097	2	2.24	0.014	0.08	0.1	0.05	3.9	⊲0.1	<0.05	9	⊲0.5	<0.2
L898+00N 66+00E	Soll	5	26	0.21	49	0.235	2	1.25	0.011	0.02	⊲0.1	0.04	1.7	⊲0.1	<0.05	9	⊲0.5	<0.2
L898+00N 66+25E	Soll	5	20	0.13	68	0.147	1	0.76	0.011	0.02	⊲.1	0.05	1.2	⊲1	0.09	6	⊲0.5	0.2
L898+00N 66+50E	Soll	11	41	0.20	77	0.065	2	2.15	0.010	0.04	⊲0.1	0.12	3.1	<0.1	0.09	9	1.1	<0.2
L898+00N 66+75E	Soll	7	45	0.35	153	0.113	2	1.88	0.010	0.05	0.1	0.06	2.9	⊲0.1	<0.05	10	0.6	<0.2
L898+00N 67+00E	Soll	10	46	0.36	192	0.084	1	2.19	0.010	0.05	⊲0.1	0.13	3.1	<0.1	0.06	8	1.2	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

ACC 1020 Cords Phone (604		ak)S	Acme A3 Car	e Analyt Iada	tical Lat	boratori	ies (Vai	ncouver	r) Ltd.		Ciller Projec Repor	it: t t Date:	PA(3707 Vanc SHEr Augu	C Geo W. 34th ouver BC NUL-PAC st 23, 20	Hogica Ave. 2 V6N 20 2	al Con 9 Canadi	sultin	g Inc.		
	,					ww	w.acmr	alab.co	m												
												Page:		7 of 9		Part 1					
CERTIFICA	CERTIFICATE OF ANALYSIS Wethod 10x16 10x1															8582	.1				
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX15	1DX15	1DX16	1DX16	1DX16	1DX16	1DX15	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	BI	v	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L898+00N 67+25E	Soll	2.0	35.6	12.3	67	0.6	28.5	11.4	159	2.51	4.3	1.9	2.1	0.4	10	0.3	0.1	0.2	72	0.16	0.054
L898+00N 67+50E	Soll	3.2	34.5	12.3	57	1.1	24.1	21.4	1594	2.26	5.1	1.6	1.1	0.1	29	0.5	0.2	0.2	65	0.38	0.097
L898+00N 67+75E	Soll	5.4	60.5	16.3	87	0.5	43.1	29.4	1364	4.49	10.6	1.8	2.8	0.9	28	0.5	0.4	0.3	101	0.35	0.068
L898+00N 68+00E	Soll	0.9	23.1	11.0	22	0.5	9.0	3.2	69	1.01	1.4	0.8	1.8	0.4	9	0.3	0.1	0.2	51	0.13	0.031
L898+00N 68+25E	Soll	1.2	18.7	9.7	28	0.5	8.9	5.1	160	1.82	2.9	0.7	3.1	0.5	15	0.3	0.1	0.2	61	0.32	0.037
L898+00N 68+50E	Soll	3.7	58.4	13.8	80	1.2	27.8	14.4	954	2.35	21.4	3.7	1.8	0.2	21	0.6	0.3	0.3	81	0.38	0.122
L898+00N 68+75E	Soll	3.1	13.3	11.6	50	0.2	12.7	7.1	362	2.55	6.1	0.8	1.5	1.0	10	0.2	0.2	0.3	84	0.17	0.037
L898+00N 69+00E	Soll	1.8	37.0	12.0	41	0.9	13.0	6.5	185	1.50	2.8	1.4	3.2	0.1	25	0.3	0.2	0.2	50	0.41	0.076
L898+00N 69+25E	Soll	1.2	57.8	13.2	48	0.3	13.8	21.9	997	1.96	2.9	1.0	2.3	0.3	20	0.5	0.3	0.2	52	0.29	0.061
L898+00N 69+50E	Soll	1.3	54.9	10.5	37	0.3	11.7	33.0	743	2.22	2.4	0.9	1.8	0.2	21	0.3	0.2	0.2	61	0.31	0.058
L898+00N 69+75E	Soli	0.7	14.9	15.7	24	0.2	8.3	3.6	134	1.27	1.7	0.4	2.1	0.2	10	0.2	0.2	0.2	49	0.15	0.042

7.4

10.5 452 2.84

27.6

5.5 292 2.34 3.0 0.5 2.4

3.6 156 2.28

6.7 242

5.3 179 4.05

347 2.90

129

2.06

3.74

812 3.09

2.5 1.0 3.0 0.3

4.7 0.6

6.6 0.9

7.5 1.4 2.7 0.8 26 0.4 0.3 0.2

3.0 0.5 2.2 0.5

4.1 0.4 8.6 0.6

7.7 0.6 11.2 2.1

2.2 0.6 1.7 0.4

5.4

4.7 0.6 <0.5 1.0

4.3 0.8 3.6 1.7

0.4

1.5 0.7

1.8

1.9

0.9

0.6

22

9 0.5 0.2 0.2

16 0.4

16 0.4 0.3 0.2

10 0.3 0.2 0.2

10 0.3 0.3 0.2

10 0.4 0.3 0.1

8

6

5 0.3 0.3 0.3

6 0.3 0.3 0.3

0.3 0.2

0.2 0.2 0.3

0.3 0.3

0.2

0.2

0.2

0.2

53

86

82

77

75 0.14 0.050

68

70

86

56

94

85

89

0.11 0.041

0.21 0.041

0.23 0.043

0.30 0.050

0.16 0.038

0.18 0.068

0.31 0.050

0.11 0.046

0.09 0.049

0.10 0.049

0.09 0.039 0.11 0.036 0.10 0.053 0.09 0.037 0.05 0.037 0.06 0.033 0.16 0.058

0.13 0.092

L898+00N 73+00E	Soli	0.9	10.6	10.0	17	<0.1	5.9	2.3	105	2.09	1.9	0.5	1.2	0.4	6	0.1	0.2	0.2	- 63
L898+00N 73+25E	Soll	1.0	15.2	8.7	26	0.1	14.0	5.6	176	3.53	4.3	0.5	2.4	0.9	6	0.2	0.2	0.2	91
L898+00N 73+50E	Soli	1.1	20.8	8.2	35	0.1	15.4	6.6	279	4.30	4.1	0.6	2.1	1.1	6	0.4	0.2	0.2	106
L898+00N 73+75E	Soli	0.9	11.1	7.6	21	0.1	10.4	4.3	139	2.62	3.1	0.6	1.6	0.7	5	0.2	0.2	0.2	59
L898+00N 74+00E	Soli	0.8	12.9	9.5	12	0.1	5.8	2.0	96	2.09	1.4	0.4	2.4	0.2	5	0.3	0.1	0.2	54
L898+00N 74+25E	Soli	1.0	14.1	9.6	13	0.1	5.0	1.7	81	1.80	1.7	0.5	0.9	0.2	4	0.3	<0.1	0.2	52
L898+00N 74+50E	Soll	1.6	48.4	10.6	54	0.4	18.3	9.8	574	2.59	8.3	1.3	0.6	0.3	8	0.6	0.2	0.2	58

This report supersedue all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

36 0.3 10.9 17.0 611 1.82

55

38 0.2 10.9

33 0.8 8.9

21 0.5 6.2 2.1

40

23 0.3 8.8 3.6 208 3.30

38 0.1 12.9

0.4 18.6

0.2 17.1

21.4

31.2

9.6

9.6 53 0.6

8.5 68 1.0

9.2

8.3 42 1.4 11.9 6.2 477 2.76

7.7 74 0.2 33.1 15.0 364 3.82

11.0

9.7

L898+00N 70+00E

L898+00N 70+25E

L898+00N 70+50E

L898+00N 70+75E

L898+00N 71+00E

L898+00N 71+25E

L898+00N 71+50E

L898+00N 71+75E

L898+00N 72+00E

L898+00N 72+25E

L898+00N 72+50E

L898+00N 72+75E

Soli

Soll

Soli

Soli

Soli

Soll

Sol

Soll

Soll

Soli

Soll

Soli

1.4 37.9 10.3

1.3 25.8

1.3 38.4

1.8 66.2

1.0 16.0

1.1 15.5 8.7

0.9 17.1

0.8 25.2

1.0

0.9 13.3

1.1 11.6 11.7

1.2 13.6 11.2

11.0

	Client:	PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC VEN 3C9 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordiova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	SHENUL-PAC August 23, 2010
www.acmelab.com		
	Page:	7 of 9 Part 2
CERTIFICATE OF ANALYSIS		VAN10003582.1
Middled appear appear appear appear appear appear appear appear appear	annes annes	ADVAS ADVAS ADVAS ADVAS

	Mounda	IDA IO	100.10	IDA IO	IDA IO	100.10	10416	IDA IO	10416	IDA 19	100.10	IDA IO	IDA IO	IDA IO	IDA IO	100.10	IDA 10	IDA IO
	Analyte	La	Cr	Mg	Ba	п	в	A	Na	ĸ	w	Hg	80	п	8	Ga	80	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
-	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
L898+00N 67+25E Soll		12	56	0.41	286	0.091	1	2.37	0.013	0.05	<0.1	0.08	3.3	<0.1	<0.05	8	0.9	<0.2
L898+00N 67+50E Sol		12	40	0.38	376	0.041	2	1.92	0.010	0.06	<0.1	0.10	1.6	<0.1	0.09	6	1.2	<0.2
L898+00N 67+75E Sol		10	77	0.62	449	0.093	1	2.76	0.008	0.09	0.1	0.11	5.0	<0.1	<0.05	7	0.8	<0.2
L898+00N 68+00E Soll		7	26	0.18	122	0.190	<1	1.11	0.010	0.03	<0.1	0.06	1.6	<0.1	<0.05	7	⊲0.5	<0.2
L898+00N 68+25E Sol		7	29	0.22	138	0.179	1	1.23	0.011	0.03	<0.1	0.05	1.8	<0.1	<0.05	7	<0.5	<0.2
L898+00N 68+50E Sol		13	53	0.38	309	0.050	2	3.04	0.012	0.06	<0.1	0.11	1.9	<0.1	0.06	7	0.8	<0.2
L898+00N 68+75E Soll		7	32	0.26	102	0.181	1	1.28	0.012	0.04	<0.1	0.04	1.7	<0.1	<0.05	8	⊲0.5	<0.2
L898+00N 69+00E Soll		10	28	0.28	271	0.064	2	1.50	0.013	0.04	<0.1	0.11	1.5	<0.1	0.08	7	0.8	<0.2
L898+00N 69+25E Sol		9	26	0.28	238	0.104	2	1.35	0.010	0.04	<0.1	0.11	2.1	<0.1	<0.05	7	0.5	<0.2
L898+00N 69+50E Sol		9	21	0.24	211	0.131	1	1.09	0.012	0.03	<0.1	0.08	1.8	<0.1	<0.05	7	0.6	<0.2
L898+00N 69+75E Soll		5	19	0.16	103	0.129	<1	0.77	0.010	0.03	<0.1	0.06	0.8	<0.1	<0.05	6	⊲0.5	<0.2
L898+00N 70+00E Soll		9	28	0.24	176	0.123	1	1.67	0.011	0.03	0.1	0.07	1.5	⊲0.1	<0.05	7	0.5	<0.2
L898+00N 70+25E Soll		6	42	0.42	228	0.221	1	1.37	0.008	0.03	<0.1	0.06	1.8	<0.1	<0.05	7	⊲0.5	<0.2
L898+00N 70+50E Soll		8	46	0.50	222	0.198	1	1.70	0.009	0.03	<0.1	0.05	2.5	<0.1	<0.05	7	0.7	<0.2
L898+00N 70+75E Soll		9	57	0.66	357	0.174	2	2.19	0.010	0.04	0.1	0.07	3.7	⊲0.1	<0.05	7	1.1	<0.2
L898+00N 71+00E Soll		6	32	0.25	124	0.203	<1	1.06	0.008	0.04	0.1	0.04	1.3	<0.1	<0.05	7	⊲0.5	<0.2
L898+00N 71+25E Soll		5	27	0.19	121	0.179	<1	1.05	0.008	0.03	<0.1	0.05	1.0	<0.1	<0.05	7	⊲0.5	<0.2
L898+00N 71+50E Soll		5	33	0.28	151	0.166	<1	1.24	0.008	0.03	<0.1	0.08	1.4	<0.1	<0.05	6	⊲0.5	<0.2
L898+00N 71+75E Soll		9	66	0.88	101	0.261	<1	2.60	0.008	0.03	0.1	0.06	3.2	⊲0.1	<0.05	6	⊲0.5	<0.2
L898+00N 72+00E Soll		6	21	0.13	75	0.115	1	0.93	0.012	0.03	<0.1	0.07	0.8	<0.1	<0.05	8	⊲0.5	<0.2
L898+00N 72+25E Sol		6	40	0.44	65	0.265	<1	1.59	0.008	0.03	0.2	0.04	1.9	<0.1	<0.05	10	⊲0.5	<0.2
L898+00N 72+50E Soll		6	33	0.21	43	0.169	<1	1.41	0.009	0.03	0.1	0.06	1.4	⊲0.1	<0.05	11	⊲0.5	<0.2
L898+00N 72+75E Soll		8	38	0.38	43	0.163	<1	2.00	0.010	0.03	0.1	0.05	1.8	<0.1	<0.05	11	⊲0.5	<0.2
L898+00N 73+00E Soll		6	22	0.13	41	0.153	<1	1.15	0.010	0.02	<0.1	0.06	1.0	<0.1	<0.05	9	⊲0.5	<0.2
L898+00N 73+25E Soll		7	42	0.36	44	0.215	<1	1.80	0.008	0.02	<0.1	0.04	1.9	⊲0.1	<0.05	9	⊲0.5	<0.2
L898+00N 73+50E Soll		5	50	0.41	41	0.257	<1	1.67	0.008	0.02	<0.1	0.07	1.7	⊲0.1	<0.05	11	0.6	<0.2
L898+00N 73+75E Soll		6	34	0.24	36	0.157	<1	2.19	0.010	0.02	<0.1	0.07	1.6	<0.1	<0.05	8	0.5	<0.2
L898+00N 74+00E Soll		4	29	0.11	36	0.108	<1	1.06	0.013	0.02	<0.1	0.03	0.8	<0.1	<0.05	9	⊲0.5	<0.2
L898+00N 74+25E Soll		4	25	0.08	47	0.098	<1	0.94	0.014	0.02	<0.1	0.05	0.8	<0.1	<0.05	8	<0.5	<0.2
L898+00N 74+50E Sol		7	33	0.25	95	0.075	<1	2.03	0.011	0.03	0.1	0.07	1.5	⊲0.1	<0.05	9	0.8	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Acmol	٦ŀ	<u>م</u>									Clier	ıt:	PA 3707 Vano	C Geo W. 34th ouver BC	logica Ave. 2 VEN 20	al Con 9 Canada	sultin a	g Inc.		
1020 Cordova St. East Vance Phone (604) 253-3158 Fax (6	Ouver BC 504) 253	V6A 4 -1716	Acme A3 Can	e Analyi ada	ical Lai	borator	les (Var	ncouve	r) Ltd.		Projec Repor	t: t Date:	SHE? Augu	NUL-PAC st 23, 20	2 10					
					ww	w.acm	alab.co	m												
											Page:		8 of 9) F	Part 1					
CERTIFICATE OF AN	NALY	'SIS													VA	N10	0003	3582	.1	
Method	1DX16	1DX16 Cu	1DX15 Pb	1DX16 Zn	1DX16	1DX16	1DX16 Co	1DX16 Mo	1DX16 Fe	1DX16	1DX16	1DX16 Au	1DX16 Th	1DX16 Sr	1DX16 Cd	1DX16 Sb	1DX16 BI	1DX16 V	1DX16 Ca	1DX16

	Analyte	Mo	Cu	Pb	Zn	Aq	N	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	B	v	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L898+00N 74+75E Soll		1.5	52.8	10.4	84	0.3	24.7	9.6	455	2.99	9.7	1.4	0.9	0.5	6	0.5	0.3	0.2	68	0.10	0.057
L898+00N 75+00E Soll		1.3	73.3	11.0	149	0.4	51.0	24.9	1329	3.44	16.8	2.2	2.2	0.8	9	0.8	0.4	0.2	73	0.21	0.083
L898+00N 75+25E Soll		1.7	70.5	13.4	149	0.3	57.7	27.2	1973	2.95	34.6	3.1	12.5	0.5	18	1.0	1.0	0.2	64	0.48	0.110
L898+00N 75+50E Soll		1.2	185.5	9.9	134	1.2	80.6	32.6	1857	3.51	26.9	3.6	23.3	0.6	14	1.3	0.4	0.2	89	0.48	0.080
L898+00N 75+75E Soli		1.5	167.6	12.4	79	1.1	59.6	11.5	257	3.19	11.8	2.8	2.3	0.5	14	0.7	0.4	0.3	68	0.40	0.081
L898+00N 76+00E Soll		2.2	98.1	11.8	55	0.6	28.2	19.5	1263	3.25	12.2	2.2	2.6	1.1	13	1.3	0.3	0.2	87	0.43	0.042
L899+00N 66+00E Soll		1.5	26.8	8.8	44	⊲0.1	19,4	9.9	265	3.22	5.3	1.1	2.4	3.1	7	0.2	0.2	0.3	90	0.19	0.026
L899+00N 66+25E Soll		0.5	23.5	6.5	41	<0.1	29.4	15.5	364	2.55	3.4	0.6	2.5	2.3	8	0.1	0.2	0.2	77	0.36	0.016
L899+00N 66+50E Soll		0.8	20.8	8.1	35	0.3	14.0	4.9	167	1.38	2.3	0.4	0.9	0.3	7	0.2	0.2	0.1	46	0.18	0.037
L899+00N 66+75E Soll		0.8	11.3	8.7	34	0.1	10.5	3.9	130	2.17	2.8	0.4	<0.5	0.7	7	<0.1	0.2	0.2	67	0.13	0.030
L899+00N 67+00E Soll		0.8	16.0	8.7	42	0.2	12.9	6.7	318	2.58	2.8	0.4	<0.5	0.8	6	0.1	0.2	0.2	68	0.13	0.028
L899+00N 67+25E Soll		2.0	28.6	11.8	51	0.7	21.7	7.8	210	1.96	4.0	1.3	0.6	0.2	17	0.3	0.2	0.3	59	0.21	0.083
L899+00N 67+50E Soll		1.3	28.7	8.2	36	0.3	15.0	7.4	232	1.68	1.9	1.0	6.8	0.4	10	0.2	0.2	0.2	56	0.15	0.043
L899+00N 67+75E Soll		1.2	21.1	7.2	49	⊲0.1	24.0	13.1	289	2.68	4.0	0.6	1.7	1.8	10	0.2	0.2	0.1	85	0.21	0.027
L899+00N 68+00E Soll		1.5	12.4	9.3	31	0.1	14.2	8.6	319	1.85	2.1	0.6	34.7	1.1	10	0.2	0.2	0.2	76	0.19	0.025
L899+00N 68+25E Soll		3.8	29.0	9.7	59	0.4	21.5	9.5	475	2.13	2.8	0.8	4.0	1.0	18	0.4	0.2	0.2	68	0.39	0.039
L899+00N 68+50E Soll		2.1	10.3	13.6	35	0.1	9.5	3.2	218	1.79	2.2	0.7	0.9	0.8	12	0.2	0.2	0.3	63	0.28	0.036
L899+00N 68+75E Soll		2.3	17.9	10.2	44	0.3	13.1	7.9	660	1.88	2.7	0.7	1.3	0.3	17	0.3	0.1	0.2	61	0.33	0.046
L899+00N 69+00E Soll		1.7	66.4	10.7	51	0.3	20.8	21.1	729	2.25	4.1	1.1	0.9	0.5	14	0.3	0.2	0.2	70	0.29	0.059
L899+00N 69+25E Soll		1.1	23.3	13.2	40	0.2	10.5	6.1	571	1.74	2.2	0.5	2.0	0.4	14	0.3	0.3	0.2	59	0.27	0.046
L899+00N 69+50E Soll		1.4	56.5	11.5	55	0.4	22.9	21.4	522	2.70	4.2	0.8	10.7	0.5	9	0.3	0.3	0.2	70	0.19	0.054
L899+00N 69+75E Soll		0.9	25.9	8.0	20	0.3	7.8	3.3	72	1.20	1.1	0.7	1.8	0.2	7	0.3	⊲0.1	0.2	37	0.11	0.044
L899+00N 70+00E Soll		1.7	57.2	9.4	68	0.7	28.3	17.6	654	3.25	5.6	1.4	1.8	0.6	29	0.4	0.3	0.2	77	0.31	0.056
L900+00N 66+00E Soll		0.9	17.7	13.0	30	0.3	15.1	6.2	134	1.81	3.1	0.4	2.1	0.8	15	0.4	0.2	0.2	63	0.44	0.043
L900+00N 66+25E Soll		0.9	36.9	10.3	62	0.5	24.3	10.2	369	2.27	2.9	0.9	3.1	0.4	13	0.4	0.1	0.2	65	0.45	0.065
L900+00N 66+50E Soll		1.1	43.1	11.8	45	0.5	19.1	11.7	348	1.86	2.8	0.9	1.0	0.2	12	0.4	0.2	0.2	60	0.29	0.066
L900+00N 66+75E Soll		1.0	13.3	8.7	40	0.1	12.4	4.7	164	2.69	2.8	0.4	3.0	0.9	10	0.3	0.2	0.2	83	0.29	0.044
L900+00N 67+00E Soll		1.1	38.2	11.5	87	0.3	27.1	12.0	648	3.47	8.1	1.1	1.0	0.8	14	0.3	0.3	0.3	73	0.29	0.040
L900+00N 67+25E Soll		0.8	24.0	10.7	37	0.2	17.3	8.7	245	2.34	5.2	0.6	1.4	0.8	8	0.2	0.2	0.2	68	0.15	0.037
L900+00N 67+50E Soll		0.7	6.2	12.4	19	⊲0.1	4.1	2.2	180	0.71	1.5	0.2	6.8	0.8	9	0.1	0.2	0.2	58	0.16	0.021

This report supersedues all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

		mol	٦ŀ	<u>، د</u>									Clien	t:	PA 3707 Vanc	C Geo W. 34th ouver BC	logica Ave. S VEN 209	el Con 9 Canada	sultir 1	ng Inc.
	1020 Cord Phone (604	DVA St. East Vance 4) 253-3158 Fax (6	OUVER BC 504) 253	V6A 4	Acme A3 Car	e Analyt Iada	tical La	boratori	les (Va	ncouve	r) Ltd.		Projec Repor	t t Date:	SHE? Augu	NUL-PAC Ist 23, 20) 10			
							ww	w.acme	elab.co	m			Page:		8 of 9		Part 2			
I	CERTIFIC/	ATE OF AN	NALY	'SIS													VA	N10)003	3582.1
		Method	1DX16	1DX16	1DX16	1DX16	10X16	1DX16	1DX16	1DX16	1DX16	10X16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
		Unit	ppm	ppm	Mg %	Ba ppm	п %	ppm	AI %	Na %	к %	ppm	Ppm	So ppm	PPm	*	Ga ppm	Se ppm	Te ppm	
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	
	LOOD COMPLEXANTING	Coll.								A A A A	-					-				

	MUL	-		0.01		0.001		0.01	0.001	0.01	9.1	0.01	9.1	9.1	0.00		0.0	
L898+00N 74+75E	Sol	6	45	0.36	114	0.099	<1	2.15	0.009	0.04	<0.1	0.12	1.8	<0.1	<0.05	8	0.9	<0.
L898+00N 75+00E	Sol	10	63	0.59	186	0.108	1	3.24	0.010	0.05	0.1	0.12	3.6	<0.1	<0.05	8	0.9	<0.
L898+00N 75+25E	Sol	18	75	0.51	254	0.074	1	2.95	0.008	0.05	0.1	0.09	3.6	⊲0.1	0.10	5	2.0	<.
L898+00N 75+50E	Sol	16	127	0.75	365	0.086	2	3.24	0.011	0.06	0.1	0.09	8.4	0.1	0.12	8	1.3	<0.
L898+00N 75+75E	Sol	13	91	0.57	273	0.073	2	3.70	0.013	0.06	0.2	0.11	4.8	<0.1	0.10	12	1.4	<0.
L898+00N 76+00E	Sol	14	94	0.54	210	0.147	<1	2.32	0.011	0.04	0.2	0.06	6.7	⊲0.1	0.09	10	1.1	<.
L899+00N 66+00E	Sol	12	52	0.56	63	0.232	1	2.14	0.005	0.03	0.3	0.06	5.2	<0.1	0.06	7	0.6	<0.
L899+00N 66+25E	Sol	9	51	0.71	67	0.238	<1	1.63	0.007	0.03	0.2	0.02	3.4	⊲0.1	<0.05	5	⊲0.5	<.
L899+00N 66+50E	Sol	6	29	0.28	83	0.106	1	1.11	0.007	0.03	<0.1	0.03	1.7	<0.1	0.11	6	⊲0.5	<0.
L899+00N 66+75E	Soli	5	28	0.27	46	0.191	<1	1.05	0.011	0.03	<0.1	0.06	1.3	<0.1	0.12	8	0.6	<0.
L899+00N 67+00E	Sol	5	33	0.34	60	0.201	<1	1.33	0.009	0.02	⊲0.1	0.04	1.7	Q 1	0.07	7	⊲0.5	<.
L899+00N 67+25E	Sol	9	43	0.43	243	0.111	<1	1.79	0.010	0.05	0.1	0.08	2.7	<0.1	0.17	8	1.0	<0.
L899+00N 67+50E	Sol	7	36	0.33	127	0.131	1	1.36	0.012	0.04	0.1	0.06	2.2	<0.1	0.07	7	<0.5	0.
L899+00N 67+75E	Soll	9	50	0.64	92	0.268	1	1.57	0.009	0.04	0.1	0.02	2.6	<0.1	<0.05	8	⊲0.5	<0.
L899+00N 68+00E	Soli	8	33	0.41	99	0.256	<1	1.21	0.008	0.03	<0.1	0.03	1.9	<0.1	0.06	7	⊲0.5	<0.
L899+00N 68+25E	Sol	9	40	0.53	195	0.168	1	1.58	0.010	0.04	0.1	0.04	2.5	<0.1	0.05	7	<0.5	<0.
L899+00N 68+50E	Soll	7	23	0.20	123	0.152	1	0.82	0.008	0.04	<0.1	0.07	1.0	<0.1	0.08	8	⊲0.5	0.
L899+00N 68+75E	Soll	8	26	0.27	172	0.114	1	1.14	0.009	0.04	⊲0.1	0.04	1.4	⊲0.1	0.06	8	⊲0.5	 0.
L899+00N 69+00E	Soll	10	37	0.44	181	0.119	2	1.89	0.013	0.04	0.1	0.07	2.7	<0.1	0.07	8	⊲0.5	<0.
L899+00N 69+25E	Soli	6	21	0.22	213	0.141	2	0.93	0.011	0.04	<0.1	0.08	1.4	<0.1	0.06	7	⊲0.5	<0.
L899+00N 69+50E	Soll	9	37	0.54	150	0.137	2	1.81	0.010	0.06	0.1	0.06	2.5	<0.1	0.05	8	0.6	<0.
L899+00N 69+75E	Soll	7	19	0.14	83	0.102	1	1.21	0.012	0.02	<0.1	0.07	1.2	<0.1	<0.05	6	0.5	<0.
L899+00N 70+00E	Sol	13	50	0.56	253	0.141	1	2.26	0.010	0.05	<0.1	0.08	3.7	<0.1	0.05	9	1.3	<0.
L900+00N 66+00E	Sol	8	32	0.37	102	0.198	2	1.08	0.009	0.04	0.1	0.07	2.2	<0.1	0.09	6	⊲0.5	<0.
L900+00N 66+25E	Soll	10	50	0.50	149	0.096	1	2.26	0.013	0.06	<0.1	0.06	3.7	<0.1	0.05	8	0.5	<0.
L900+00N 66+50E	Soli	10	35	0.34	121	0.098	2	1.79	0.012	0.07	<0.1	0.07	2.5	<0.1	0.08	8	⊲0.5	_⊲.
L900+00N 66+75E	Soll	6	32	0.25	111	0.214	<1	0.97	0.007	0.03	<0.1	0.05	1.4	<0.1	0.05	7	⊲0.5	<0.
L900+00N 67+00E	Soll	9	44	0.43	268	0.148	1	1.99	0.014	0.05	<0.1	0.07	3.7	<0.1	0.05	9	1.3	<.
L900+00N 67+25E	Soll	8	38	0.48	80	0.212	<1	1.49	0.009	0.03	0.2	0.06	2.5	<0.1	0.08	6	0.9	<0.
L900+00N 67+50E	Soll	8	14	0.08	116	0.181	2	0.42	0.008	0.03	<0.1	0.04	0.9	<0.1	0.06	6	⊲0.5	<0.
																		_

Acmol	٦ŀ										Ciler	nt:	PA 3707 Vanc	C Geo W. 34th ouver BC	Ave. S VEN 20	al Con 9 Canada	sultin a	g Inc.		
1020 Cordova St. East Vance Phone (604) 253-3158 Fax (6	QUVER BC 04) 253)) V6A 4 -1716	Acme A3 Can	Analyt ada	ical La	boratori	les (Va	ncouve	r) Ltd.		Projec Repor	t: t Date:	SHE) Augu	NUL-PAC Ist 23, 20) HD					
					ww	w.acme	alab.co	m												
											Page:		9 of 9	9 F	Part 1					
CERTIFICATE OF AN	IALY	'SIS													VA	N10	0003	3582	.1	
Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	100016	1DX16	1DX16	1DX16	1DX16	1DX16
Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	U	Au	Th	8r	Cd	8b	B	v	Ca	P
Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%

MD	L 0.	1 0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001
L900+00N 67+75E Soll	1.	2 16.4	10.6	21	0.3	7.8	3.1	88	1.22	1.5	0.5	2.2	0.7	9	0.2	0.2	0.2	51	0.16	0.034
L900+00N 68+00E Soll	6.	5 104.3	9.4	48	1.0	27.7	31.8	1656	2.02	5.5	1.9	2.4	0.2	21	0.5	0.4	0.1	63	0.37	0.122
L900+00N 68+25E Soli	LINE	LNR	LNR.	LNR.	LN.R.	LNR.	LNR.	LNR.	LNR.	LNR.	LN.R.	LNR.	LNR.	LNR.	LN.R.	LNR.	L.N.R.	LNR.	LNR.	LNR
L900+00N 68+50E Soli	1.	9 60.9	11.8	41	0.5	21.9	11.9	342	2.18	4.2	1.6	3.4	0.4	11	0.2	0.2	0.2	58	0.19	0.059
L900+00N 68+75E Soll	1.	4 136.4	8.7	51	0.5	32.2	19.9	528	2.85	7.5	2.0	2.7	0.4	15	0.3	0.3	0.2	67	0.26	0.071
L900+00N 69+00E Soli	1.	2 92.6	8.9	55	0.3	33.1	33.0	954	3.52	6.8	1.3	4.0	1.1	14	0.2	0.3	0.2	87	0.30	0.056
L900+00N 69+25E Soll	1.	27.9	10.3	47	0.2	21.7	9.4	375	2.76	4.6	0.6	5.0	1.0	20	0.2	0.2	0.2	84	0.38	0.037
L900+00N 69+50E Soli	1.	3 28.0	9.6	48	0.3	21.6	14.2	1008	2.63	4.7	0.6	2.1	0.9	20	0.3	0.2	0.2	80	0.35	0.045
L900+00N 69+75E Soll	1.	3 21.1	9.3	35	0.2	15.7	7.4	267	2.42	3.5	0.6	4.3	0.7	19	0.2	0.2	0.2	73	0.22	0.037
L900+00N 70+00E Soli	0.	9 41.5	8.4	52	0.1	37.6	18.9	570	3.40	7.5	0.8	2.6	2.2	12	0.2	0.3	0.2	91	0.32	0.041

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this cetificate. Signature inclusive final approval; preliminary reports are unalgoed and should be used for reference only.

	Client:	PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC VEN 2C9 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	SHENUL-PAC August 23, 2010
www.acmelab.com		
	Page:	9 of 9 Part 2
CERTIFICATE OF ANALYSIS		VAN10003582.1

		Method	1DX16	1DX16	1DX16	1DX16	10X16	1DX16											
		Analyte	La	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	п	8	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
L900+00N 67+75E	Soll		8	20	0.15	77	0.184	<1	0.95	0.012	0.03	<0.1	0.05	1.3	⊲0.1	0.06	8	⊲0.5	<0.2
L900+00N 68+00E	Soll		17	42	0.32	185	0.031	1	2.52	0.010	0.05	0.1	0.16	2.6	0.1	0.12	5	1.5	<0.2
L900+00N 68+25E	Soll		LNR.	LN.R.	LNR.	L.N.R.	LNR.	LNR.	LNR.	L.N.R.	LN.R.								
L900+00N 68+50E	Sol		11	46	0.38	216	0.092	1	2.62	0.014	0.06	⊲0.1	0.11	2.9	⊲0.1	0.06	10	1.1	<0.2
L900+00N 68+75E	Soll		11	52	0.44	229	0.081	2	2.56	0.021	0.06	<0.1	0.08	4.6	⊲0.1	0.05	9	1.0	<0.2
L900+00N 69+00E	Sol		12	60	0.72	156	0.183	1	2.15	0.011	0.05	⊲0.1	0.07	4.2	⊲0.1	<0.05	8	0.6	0.3
L900+00N 69+25E	Sol		9	49	0.60	199	0.197	1	1.36	0.010	0.07	⊲0.1	0.06	2.5	⊲0.1	0.06	7	⊲0.5	0.3
L900+00N 69+50E	Soli		11	43	0.58	173	0.195	1	1.57	0.010	0.06	<0.1	0.06	2.5	⊲0.1	0.06	7	0.5	<0.2
L900+00N 69+75E	Sol		9	36	0.38	181	0.157	<1	1.78	0.012	0.04	<0.1	0.05	2.2	⊲0.1	<0.05	7	⊲0.5	<0.2
L900+00N 70+00E	Sol		11	65	0.85	145	0.258	<1	2.02	0.009	0.05	<0.1	0.03	4.3	<0.1	<0.05	7	0.7	0.3

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and ebusid be used for reference only.

Client:

Project

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

SHENUL-PAC

Report Date: August 23, 2010

www.acmelab.com

												Page:		1 of 2	Pa	nt 1					
QUALITY CO	NTROL	REP	OR	Г												VA	N10	003	5 82 .	1	
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX1												
	Analyte	Mo	Cu	Pb	Zn	Aq	NI	Co	Mn	Fe	As	U	Au	Th	3r	Cd	Sb	BI	v	Ca	, r
	Unit	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	5							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.00
Pulp Duplicates																					
L890+00N 72+00E	Soll	12	13.8	10.8	15	0.2	5.7	2.1	49	1.17	1.0	0.7	2.2	0.3	5	0.2	0.1	0.2	39	0.06	0.04
REP L890+00N 72+00E	00	1.1	13.1	10.2	16	0.3	5.3	2.1	46	1.14	1.1	0.7	<0.5	0.3	5	0.2	0.2	0.2	44	0.07	0.04
L891+00N 70+25E	Soll	0.9	21.2	10.8	49	0.3	21.7	7.9	339	3.20	3.8	0.5	1.7	0.7	8	0.3	0.3	0.2	75	0.16	0.04
REP L891+00N 70+25E	QC	0.8	20.1	10.8	47	0.3	21.4	7.5	321	3.24	4.4	0.5	5.7	0.6	9	0.3	0.3	0.2	76	0.17	0.04
L892+00N 71+50E	Soll	0.6	19.2	10.5	42	0.6	17.3	5.7	266	2.66	3.1	0.4	0.7	0.7	7	0.5	0.2	0.2	82	0.14	0.04
REP L892+00N 71+50E	QC	0.9	19,4	10.3	48	0.6	16.9	6.0	296	2.82	3.5	0.5	1.2	0.7	8	0.4	0.3	0.2	86	0.15	0.05
L893+00N 71+00E	Soll	2.1	30.9	10.5	14	2.6	4.6	14	37	1.24	2.9	1.1	9.2	⊲.1	8	0.3	0.4	0.3	39	0.04	0.06
REP L893+00N 71+00E	QC	2.0	29,4	10.3	14	2.6	4.6	1.4	35	1.20	2.8	1.1	3.9	<0.1	7	0.4	0.4	0.3	38	0.04	0.06
L893+00N 73+50E	Soll	1.1	61.1	8.8	57	0.4	34.9	16.6	506	3.21	8.9	0.7	7.3	2.0	10	0.2	0.7	0.1	82	0.30	0.06
REP L893+00N 73+50E	00	1.2	61.0	8.7	61	0.4	36.7	16.6	523	3.16	9.0	0.8	7.5	2.0	11	0.3	0.8	0.1	83	0.31	0.06
L896+00N 71+75E	Soll	0.8	31.1	12.2	27	0.5	7.8	2.3	134	1.27	2.0	0.5	4.3	0.1	9	0.2	0.2	0.3	35	0.07	0.04
REP L896+00N 71+75E	QC	1.8.	1.8.	LS.	LS.	1.8.	1.8.	LS.	LS.	LS.	LS.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	13
L897+00N 69+75E	Soll	0.5	4.5	9.6	10	<0.1	3.4	1.0	39	0.70	<0.5	0.3	0.8	0.1	8	⊲0.1	⊲0.1	0.2	34	0.08	0.02
REP L897+00N 69+75E	QC	0.5	4.6	9.5	9	<0.1	3.1	1.0	39	0.70	<0.5	0.3	<0.5	0.1	8	⊲.1	⊲0.1	0.2	36	0.09	0.02
L897+00N 71+00E	Soll	1.5	21.0	10.7	50	0.3	21.6	8.6	429	4.18	5.1	0.8	3.6	1.7	11	0.3	0.3	0.2	92	0.17	0.04
REP L897+00N 71+00E	00	1.7	22,4	10.4	52	0.4	23.1	8.6	444	4.42	5.3	0.8	2.2	1.7	11	0.4	0.4	0.2	89	0.18	0.04
L897+00N 74+00E	Soll	0.9	12.7	9.2	22	0.1	7.7	2.5	195	2.11	1.9	0.5	2.0	0.2	10	0.2	0.1	0.2	56	0.23	0.04
REP L897+00N 74+00E	QC	0.9	14.6	9.6	25	0.1	7.9	2.7	209	2.16	2.1	0.5	<0.5	0.1	12	0.2	0.2	0.2	60	0.23	0.05
L898+00N 70+50E	Soll	1.3	38.4	9.6	53	0.6	21.4	10.5	452	2.84	6.6	0.9	1.8	0.9	16	0.4	0.3	0.2	82	0.23	0.04
REP L898+00N 70+50E	QC	1.5	39.5	9.7	51	0.6	21.7	10.8	454	2.88	6.6	0.9	10.1	0.9	16	0.3	0.3	0.2	80	0.23	0.04
L898+00N 74+00E	Soll	0.8	12.9	9.5	12	0.1	5.8	2.0	96	2.09	1.4	0.4	2.4	0.2	5	0.3	0.1	0.2	54	0.05	0.03
REP L898+00N 74+00E	QC .	0.7	11.5	8.3	11	0.1	5.2	2.0	91	2.00	1.4	0.4	0.8	0.2	5	0.2	0.1	0.2	50	0.05	0.03
L899+00N 68+75E	Soll	2.3	17.9	10.2	44	0.3	13.1	7.9	660	1.88	2.7	0.7	1.3	0.3	17	0.3	0.1	0.2	61	0.33	0.0
REP L899+00N 68+75E	QC	2.4	18.5	10.6	42	0.3	13.0	7.5	644	1.86	2.9	0.7	0.7	0.3	17	0.3	0.2	0.2	62	0.33	0.04
L900+00N 69+00E	Soll	1.2	92.6	8.9	55	0.3	33.1	33.0	954	3.52	6.8	1.3	4.0	1.1	14	0.2	0.3	0.2	87	0.30	0.05
REP L900+00N 69+00E	QC	1.3	96.0	8.4	56	0.3	32.5	32.1	925	3.48	6.7	1.3	4.9	1.2	14	0.3	0.3	0.2	85	0.29	0.05
Reference Materials																					
STD DS7	Standard	22.2	118.5	77.6	385	1.0	51.3	9.1	612	2.18	50.4	4.7	60.9	4.7	72	6.4	6.1	4.9	87	0.91	0.07

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this cetificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client:	

Project:

Page:

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

Report Date:	August 23, 2010

www.acmelab.com

1 of 2

SHENUL-PAC

QUALITY CONTROL REPORT

Part	2	
<u>\</u>	AN10003582.1	

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	100016	1DX16	1DX15	1DX16	1DX16							
	Analyte	La	Cr	Mg	Ba	п	в	A	Na	ĸ	w	Hg	80	п	8	Ga	3e	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2
Puip Duplicates																		
L890+00N 72+00E	Sol	7	18	0.14	56	0.116	<	1.45	0.012	0.02	₹.1	0.06	1.2	⊲.1	<0.05	9	⊲.5	9 2
REP L890+00N 72+00E	QC .	8	18	0.15	58	0.135	<1	1.67	0.014	0.02	<0.1	0.07	1.4	<0.1	0.06	9	⊲0.5	<0.2
L891+00N 70+25E	Sol	6	42	0.50	98	0.155	<1	1.42	0.006	0.04	⊲.1	0.08	1.6	⊲0.1	<0.05	7	⊲.5	<0.2
REP L891+00N 70+25E	0C	6	41	0.49	100	0.157	<	1.40	0.007	0.04	0.1	0.07	1.7	⊲0.1	<0.05	7	⊲.5	<0.2
L892+00N 71+50E	Sol	7	36	0.38	96	0.179	1	1.22	0.007	0.04	<0.1	0.06	1.6	<0.1	<0.05	7	⊲0.5	<0.2
REP L892+00N 71+50E	90	8	39	0.43	101	0.218	3	1.35	0.008	0.04	⊲.1	0.05	1.9	⊲0.1	<0.05	7	⊲.5	<0.2
L893+00N 71+00E	Sol	5	16	0.05	217	0.037	<	0.76	0.007	0.03	⊲.1	0.11	0.3	⊲0.1	<0.05	5	1.3	₹0.2
REP L893+00N 71+00E	QC .	5	15	0.05	208	0.034	<	0.76	0.008	0.03	<0.1	0.11	0.2	⊲0.1	<0.05	5	0.9	<0.2
L893+00N 73+50E	Sol	11	50	0.78	242	0.204	<	1.88	0.009	0.05	<0.1	0.05	3.6	<0.1	<0.05	5	0.9	<0.2
REP L893+00N 73+50E	90	12	52	0.77	254	0.215	<1	1.82	0.008	0.05	⊲.1	0.05	3.3	⊲0.1	<0.05	6	1.2	<0.2
L896+00N 71+75E	Sol	6	17	0.14	223	0.101	2	0.72	0.010	0.03	0.1	0.07	0.5	⊲0.1	0.19	6	⊲0.5	<0.2
REP L896+00N 71+75E	QC .	LS.	LS.	LS.	LS.	LS.	LS.	LS.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.
L897+00N 69+75E	Sol	4	10	0.04	60	0.117	<	0.42	0.012	0.02	<0.1	0.03	0.3	<0.1	<0.05	7	⊲0.5	<0.2
REP L897+00N 69+75E	90	4	10	0.04	61	0.118	<1	0.43	0.012	0.02	⊲.1	0.04	0.4	<0.1	<0.05	7	⊲0.5	<0.2
L897+00N 71+00E	Sol	8	48	0.49	157	0.240	2	1.75	0.010	0.04	<.1	0.06	2.5	⊲0.1	<0.05	10	⊲0.5	<0.2
REP L897+00N 71+00E	QC .	8	46	0.49	160	0.249	<	1.77	0.011	0.04	<0.1	0.06	2.4	⊲0.1	<0.05	10	0.5	<0.2
L897+00N 74+00E	Sol	4	30	0.15	54	0.093	<	0.86	0.011	0.02	⊴.1	0.08	0.7	⊲0.1	<0.05	8	⊲.5	<0.2
REP L897+00N 74+00E	90	5	31	0.16	58	0.120	2	0.95	0.013	0.03	0.2	0.07	0.9	<0.1	0.07	9	⊲0.5	0.2
L898+00N 70+50E	Sol	8	46	0.50	222	0.198	1	1.70	0.009	0.03	<.1	0.05	2.5	⊲0.1	<0.05	7	0.7	<0.2
REP L898+00N 70+50E	90	8	47	0.51	228	0.206	<	1.71	0.010	0.03	⊲.1	0.05	2.7	⊲0.1	<0.05	7	0.9	<0.2
L898+00N 74+00E	Sol	4	29	0.11	36	0.108	<	1.06	0.013	0.02	⊴.1	0.03	0.8	⊲0.1	<0.05	9	⊲.5	<0.2
REP L898+00N 74+00E	90	4	28	0.10	33	0.109	<	0.99	0.012	0.02	⊲.1	0.05	0.8	⊲0.1	<0.05	8	⊲0.5	<0.2
L899+00N 68+75E	Sol	8	26	0.27	172	0.114	1	1.14	0.009	0.04	⊲.1	0.04	1.4	⊲0.1	0.06	8	⊲0.5	<0.2
REP L899+00N 68+75E	QC .	8	27	0.28	177	0.120	1	1.12	0.013	0.04	⊲.1	0.04	1.5	<0.1	0.06	8	⊲.5	<0.2
L900+00N 69+00E	Sol	12	60	0.72	156	0.183	1	2.15	0.011	0.05	<0.1	0.07	4.2	<0.1	<0.05	8	0.6	0.3
REP L900+00N 69+00E	90	11	60	0.69	151	0.177	1	2.12	0.020	0.05	⊲.1	0.06	4.4	⊲0.1	<0.05	7	⊲.5	<0.2
Reference Materials																		
STD DS7	Standard	13	200	1.03	388	0.120	39	0.99	0.092	0.47	3.5	0.23	2.9	4.0	0.20	5	3.4	1.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

Acmol	٦h	~~									Clien	t	PAC 3707 V Vanco	Geol N. 34th A uver BC	l ogica l we. VEN 2C9	Canada	sulting	Inc.		
ACCINEL 1020 Cordova St. East. Vanco Depre (604) 253 3158. East. (6		V6A 4/	Acme A3 Can	e Analyt Iada	ical Lat	oratori	es (Van	couver) Ltd.		Project Report	: Date:	SHEN Augus	UL-PAC t 23, 201	0					
Phone (004) 255-5155 Pax (0	04) 200-	1710			ww	w.acm	elab.co	m												
											Page:		2 of 2	P	art 1					
QUALITY CONTROL	REP	OR	Г												VA	N10	003	5 82 .	1	
	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX16	1DX16	1DX16	1
	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	8r	Cd	Sb	BI	V	Ca	
	ppm.	P-P-F	P-P-F	ppin	Ppin	Ppin	Ppin	Ppm	76	P.P.III	P P I I	ppo	P P I I	Ppin	P.P.	Photo:	P-P-F		74	

		0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
STD DS7	Standard	20.9	107.1	68.1	386	0.9	54.5	9.1	622	2.29	47.2	4.8	63.2	4.8	76	5.6	5.6	4.6	83	0.97	0.067
STD DS7	Standard	23.0	118.7	65.4	397	1.0	56.9	9.7	642	2.40	52.1	4.9	135.6	4.8	75	6.4	6.1	4.5	87	0.99	0.078
STD DS7	Standard	20.3	110.3	66.5	404	1.0	54.4	9.2	630	2.39	54.7	4.7	61.3	4.5	81	6.2	6.0	4.5	86	0.94	0.079
STD DS7	Standard	21.0	114.7	67.1	434	1.1	58.9	10.2	667	2.53	56.1	5.0	85.2	5.0	86	7.4	6.8	5.0	89	1.00	0.081
STD DS7	Standard	21.9	116.9	74.3	418	1.0	58.8	9.3	713	2.64	57.9	5.2	65.7	5.2	86	7.1	6.8	5.0	93	1.07	0.085
STD DS7	Standard	20.6	104.1	68.7	377	1.0	53.6	9.3	621	2.34	51.0	5.0	74.2	4.6	75	6.4	5.9	4.7	84	0.93	0.074
STD DS7	Standard	21.6	111.3	69.2	402	1.0	58.6	9.8	627	2.41	49.1	4.9	66.1	4.8	74	6.1	5.7	4.5	85	0.95	0.071
STD DS7	Standard	20.8	109.8	67.1	396	1.0	53.4	9,4	664	2.46	55.9	4.6	85.6	4.9	78	6.7	6.2	4.7	86	0.96	0.079
STD DS7	Standard	22.7	122.3	73.2	410	1.1	59.2	10.0	624	2.39	51.6	5.0	68.2	5.0	79	6.2	6.4	4.7	89	0.89	0.075
STD DS7 Expected		20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4,4	69	6.4	4.6	4.5	84	0.93	0.08
BLK	Blank	<0.1	⊲0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<1	⊲0.01	<0.5	⊲0.1	<0.5	⊲0.1	<1	<0.1	<0.1	⊲0.1	<2	<0.01	<0.001
BLK	Blank	⊲0.1	₹.1	<0.1	<	⊲0.1	<0.1	⊲0.1	4	₹.01	⊲0.5	⊲0.1	<0.5	¢1	<1	⊲0.1	⊲0.1	⊲.1	Ŷ	<0.01	₹.001
BLK	Blank	<0.1	⊴.1	<0.1	<1	⊲0.1	<0.1	⊲0.1	1	⊲.01	⊲0.5	⊲0.1	<0.5	⊴.1	<1	⊲0.1	⊲0.1	⊲.1	2	<0.01	<0.001
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<	<0.01	<0.5	⊲0.1	<0.5	⊲.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	⊲0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<1	⊲0.01	<0.5	<0.1	<0.5	⊲0.1	<1	<0.1	<0.1	⊲0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	⊴.1	<0.1	<	⊲0.1	<0.1	⊲.1	4	⊴0.01	⊲0.5	⊲0.1	<0.5	41	<1	⊲0.1	⊲0.1	⊴.1	Ŷ	<0.01	<0.001
BLK	Blank	<0.1	⊲0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<1	<0.01	<0.5	⊲0.1	<0.5	⊲.1	<1	⊲0.1	<0.1	⊲0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	⊲0.1	<0.1	<1	⊲0.1	<0.1	⊲.1	<1	⊲0.01	<0.5	⊲0.1	<0.5	⊲.1	<1	⊲0.1	⊲0.1	⊲0.1	~	<0.01	<0.001
BLK	Blank	<0.1	⊲0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<1	<0.01	<0.5	⊲0.1	<0.5	⊲0.1	<1	<0.1	<0.1	⊲0.1	<2	<0.01	<0.001
BLK	Blank	<0.1	⊲0.1	<0.1	<1	<0.1	<0.1	⊲0.1	<1	⊲0.01	<0.5	⊲0.1	<0.5	⊴.1	<1	⊲0.1	<0.1	⊲0.1	<2	<0.01	<0.001

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this cetificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only

	ACI 1020 Cordov Phone (604)	mel	ak ouver BC 104) 253-)S V6A 4/	Acme A3 Can	Analyt ada	ical Lat	ooratori	ies (Van	couver) Ltd.		Cilient Project Report	: Date:	PAC 3707 V Vanco SHEN Augus	Ceol N. 34th A uver BC UL-PAC t 23, 201	ogical we. VEN 2C9 0	Canada	sulting	j Inc.
							ww	w.acm	elab.co	m										
													Page:		2 of 2	P	art 2			
Q	UALITY C	ONTROL	REP	OR	Г												VA	N10	003	582.1
			1DX16	1DX16	1DX16	1DX16	10016	100016	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
			La	Cr	Mg	Ba	п	в	AI	Na	к	w	Hg	80	п	8	Ga	Se	Те	
			ppm	ppm	%	ppm	%	ppm	%	%	%	ppm.	ppm	ppm	ppm	%	ppm	ppm	ppm	
			1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	
ST	TD D87	Standard	14	211	1.05	411	0.133	35	1.01	0.094	0.45	3.8	0.19	2.5	4.0	0.21	5	2.5	1.4	
ST	TD D87	Standard	14	221	1.05	399	0.127	37	1.08	0.106	0.48	3.6	0.21	2.5	4.2	0.22	5	3.0	1.2	
ST	TD D87	Standard	13	205	1.06	387	0.129	38	1.05	0.103	0.49	3.5	0.22	2.5	4.3	0.20	5	3.5	1.5	
ST	TD DS7	Standard	14	217	1.13	424	0.137	41	1.11	0.114	0.49	4.1	0.25	2.7	4.1	0.18	5	3.6	0.9	
		Diama da se di							4.47											

810 087	SISTING TO BE	14	21/	1.13	444	0.137	41	1.11	0.114	0.49	4.1	0.25	21	1	U.18	-	3.5	U.
STD DS7	Standard	14	232	1.10	437	0.138	43	1.12	0.109	0.51	3.9	0.23	2.7	4.2	0.16	5	3.1	0.
STD DS7	Standard	13	210	1.03	387	0.125	40	1.02	0.102	0.48	3.9	0.22	2.6	4.1	0.18	5	3.1	1.
STD DS7	Standard	14	223	1.04	387	0.136	38	1.04	0.102	0.47	3.8	0.22	2.4	3.9	0.20	5	3.2	0.
STD DS7	Standard	14	209	1.04	419	0.128	38	1.02	0.103	0.48	3.7	0.24	2.7	4.3	0.19	5	3.8	0.
STD DS7	Standard	14	201	1.02	408	0.137	39	1.00	0.099	0.47	3.8	0.22	2.3	4.0	0.19	5	2.6	1.
STD DS7 Expected		12	179	1.05	410	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.0
BLK	Blank	<1	<1	<0.01	1	<0.001	<	<0.01	<0.001	<0.01	⊲.1	<0.01	<0.1	<0.1	<0.05	<1	⊲.5	<0.
BLK	Blank	<1	<	<0.01	4	<0.001	<	<0.01	⊲.001	<0.01	₹1	<0.01	⊲0.1	⊲0.1	<0.05	<	₹.5	<0.
BLK	Blank	<1	<1	<0.01	<	<0.001	<	<0.01	⊲.001	<0.01	- €1	<0.01	⊲0.1	⊲0.1	<0.05	<	⊲.5	<0.
BLK	Blank	<1	<1	<0.01	<	<0.001	<1	<0.01	<0.001	<0.01	⊲0.1	<0.01	<0.1	<0.1	<0.05	<1	⊲0.5	<0.
BLK	Blank	<1	<1	<0.01	1	<0.001	<	<0.01	<0.001	<0.01	- ₹.1	<0.01	<0.1	<0.1	<0.05	<1	⊴.5	<.
BLK	Blank	<1	<1	<0.01	 	<0.001	<	<0.01	⊲.001	<0.01	- €.1	<0.01	⊲0.1	⊲0.1	<0.05	<1	⊲.5	<0.
BLK	Blank	<1	<1	<0.01	1	<0.001	<1	<0.01	<0.001	<0.01	⊲.1	<0.01	<0.1	<0.1	<0.05	<1	⊲.5	<0.
BLK	Blank	<1	<1	<0.01	<	<0.001	<	<0.01	<0.001	<0.01	⊲0.1	<0.01	<0.1	<0.1	<0.05	<1	⊲0.5	<0.
BLK	Blank	<1	<1	<0.01	<	<0.001	<	<0.01	<0.001	<0.01	- 4.1	<0.01	<0.1	<0.1	<0.05	<1	⊲.5	<0
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	-41.1	<0.01	<0.1	<0.1	<0.05	<1	-015	<0

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

Client

Page:

3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

PAC Geological Consulting Inc.

VAN10003581.1

Submitted By: Peter Christopher Receiving Lab: Canada-Vancouver Received: July 29, 2010 Report Date: August 11, 2010 1 of 2

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION SAMPLE PREPARATION AND ANALYTICAL PROCEDURES SHENUL-PAC Method Number of Code Decoription Test Lab Project Report Samples Shipment ID: Code Wat (a) Status R200-250 5 Crush, split and pulverize 250 g rock to 200 mesh VAN P.O. Number 1002 5 1:1:1 Aqua Regia digestion ICP-MS analysis 15 Completed VAN Number of Samples: 5 SAMPLE DISPOSAL ADDITIONAL COMMENTS RTRN-PLP Return DISP-RJT Dispose of Reject After 90 days Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

www.acmelab.com

Involce To:

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

CC:

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signs All results are considered the confidential property of the date. Acros assumes the labilities for schall cost of analysis only. "* antenix induction that an analysical result cost of cobe provided due to unusually final level of therefores from other elements. de. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

AcmeLabs	Acme Analytical Laboratories (Vancouver) Ltd. A3 Canada
Phone (604) 253-3158 Fax (604) 253-1716	

Client:	PAC Geological Consulting Inc.
	3707 W. 34th Ave.
	Vancouver BC V6N 2C9 Canada

Project: SHENUL-PAC Report Date: August 11, 2010

www.acmelab.com

.

												Page:		2 of 3	2 1	Part 2			
CERTIFICATE	OF AN	NALY	′SIS													VA	N10	0003	581
	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16												
	Analyte	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga	Se	Те
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
138301 F	Rock	0.069	2	326	1.43	137	0.208	2	1.91	0.109	0.08	<0.1	<0.01	10.9	⊲01	0.77	5	<0.5	₹2
138302 F	Rock	0.048	1	57	0.80	20	0.407	1	1.20	0.055	⊲0.01	<0.1	<0.01	1.1	⊲1	<0.05	3	<0.5	₹2
138303 F	Rock	0.067	3	193	3.16	179	0.010	<1	2.98	0.081	0.02	<0.1	0.01	22.9	<0.1	0.06	11	<0.5	⊲2
138304 F	Rock	0.226	7	50	0.47	928	0.014	<1	0.71	0.029	0.06	0.8	0.01	1.8	<0.1	0.28	3	2.7	<22
138305 F	Rock	0.007	6	35	0.21	2136	0.003	1	0.37	0.006	0.11	<0.1	0.09	1.0	<0.1	0.17	2	5.1	⊲2
		-																	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

	Client:	PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC VEN 2C9 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	SHENUL-PAC August 11, 2010
www.acmelab.com		
	Page:	2 of 2 Part 1
CERTIFICATE OF ANALYSIS		VAN10003581.1
Method WGHT 1DX16	1DX16 1DX16	1DX16 1DX16 1DX16 1DX16 1DX16 1DX16 1DX16 1DX16
Phone (604) 253-3158 Fax (604) 253-1716 www.acmelab.com CERTIFICATE OF ANALYSIS Wethod WOHT 10X16 1	Page:	2 of 2 Part 1 VAN10003581.1 10x16 10x16 10

													-								
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.6	0.1	1	0.1	0.1	0.1	2	0.01
138301	Rock	0.64	0.2	7.7	1.6	46	⊴.1	79.2	25.0	734	5.38	29.8	⊲0.1	<0.5	0.2	6	0.2	0.3	⊲0.1	125	0.39
138302	Rock	0.84	0.1	24.3	1.7	32	⊲.1	32.3	15.2	314	1.91	3.8	⊲0.1	<0.5	⊲0.1	7	0.2	0.1	⊲0.1	58	1.12
138303	Rock	1.05	- ₹.1	1.3	0.8	48	⊲.1	100.1	37.4	1180	6.78	8.8	<0.1	1.5	<0.1	37	0.1	⊲0.1	<0.1	165	2.70
138304	Rock	0.86	13.3	38.4	1.5	17	0.2	21.1	3.8	122	1.89	1.9	2.5	1.3	2.1	10	<0.1	0.2	⊲0.1	180	0.44
138305	Book	1.60	14	23.8	4.6	29	13	10.9	15	39	0.83	6.5	0.8	12	12	24	0.1	0.9	01	37	0.02

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates that approval, preliminary reports are unsigned and should be used for reference only.

Client:

PAC Geological Consulting Inc. 3707 W. 34th Ave. Vancouver BC V6N 2C9 Canada

Project SHENUL-PAC Report Date: August 11, 2010

Phone (604) 253-3158 Fax (604) 253-1716

vepon.

www.acmelab.com

												Page:		1 of 1	Pa	art 1					
QUALITY	CONTROL	REP	OR	Т												VA	N10	003	581.	.1	
	Method	WOHT	1DX16	1DX16	1DX16	1DX15	1DX16	1DX16	1DX16	1DX16											
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	Ac	U	Au	Th	8r	Cd	Sb	B	v	Ca
	Unit	kg	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
Reference Materials																					
STD DS7	Standard		21.8	111.7	68.5	420	1.1	60.5	9.7	684	2.55	55.7	4.8	71.5	4.7	74	6.7	5.5	4.5	88	1.03
STD DS7	Standard		21.3	114.2	68.2	423	1.1	60.3	10.0	671	2.52	55.0	4.6	71.5	4.5	77	6.4	5.8	4.4	88	1.05
STD DS7 Expected			20.5	109	70.6	411	0.9	56	9.7	627	2.39	48.2	4.9	70	4.4	69	6.4	4.6	4.5	84	0.93
BLK	Blank		⊲.1	<0.1	<0.1	<1	<0.1	⊲0.1	<0.1	<	<0.01	<0.5	<0.1	⊲.5	⊲0.1	<1	<0.1	⊲0.1	⊲0.1	4	<0.01
Prep Wash																					
G1	Prep Blank	<0.01	⊴.1	4.0	11.1	72	<0.1	3.1	4.9	613	2.06	1.7	1.8	0.6	6.4	54	0.1	<0.1	0.2	40	0.53

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Acme Analytical Laboratories (Vancouver) Ltd.	Cilent: Project: Report Date:	PAC 0 3707 W. 3 Vancouve SHENUL- August 11	eological Cons Hith Ave. r BC V6N 2C9 Canada PAC 1, 2010	sulting Inc
www.acmelab.com				
	Page:	1 of 1	Part 2	
QUALITY CONTROL REPORT			VAN10	003581

	Method	10X16	10X16	1DX16	10016	10X16	10X16	10X16	1DX16	1DX16	1DX16	10X16	1DX16	10X16	1DX16	10X16	10X16	10X16	10X16
	Analyte	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga	Se	Те
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
Reference Materials																			
STD DS7	Standard	0.080	13	224	1.13	453	0.125	44	1.11	0.104	0.50	4.3	0.25	2.4	4.2	0.21	5	3.0	1.9
STD DS7	Standard	0.083	13	227	1.13	445	0.134	40	1.14	0.106	0.50	4.1	0.25	2.7	4.2	0.21	5	2.8	1.3
STD DS7 Expected		0.08	12	179	1.05	410	0.124	39	0.959	0.089	0.44	3.4	0.2	2.5	4.2	0.19	5	3.5	1.08
BLK	Blank	<0.001	<1	<1	<0.01	<	<0.001	<	<0.01	<0.001	<0.01	⊲0.1	⊲.01	⊲0.1	⊲0.1	<0.05	<	<0.5	<0.2
Prep Wash																			
G1	Prep Blank	0.087	13	9	0.56	194	0.126	<	1.06	0.128	0.56	<0.1	<0.01	2.0	0.4	<0.05	5	<0.5	<0.2

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

APPENDIX B ACME Quality Assurance & Certification

Acme Analytical Laboratories has dedicated itself to providing a high quality service to the mining and exploration industry.

Quality Management System and ISO Registration

Foreseeing the need for a globally recognized mark of quality in 1994, Acme began adapting its Quality Management System to an ISO 9000 model. Acme implemented a quality system compliant with the International Standards Organization (ISO) 9001 Model for Quality Assurance and ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories. On November 13, 1996, Acme became the first commercial geochemical analysis and assaying lab in North America to be accredited under ISO 9001. The laboratory has maintained its registration in good standing since then. Vancouver expanded the scope of it's registration to include the Smithers preparation facility in June of 2009, Yellowknife in April 2010 and Whitehorse in May 2010.

In 2005 the Santiago, Chile laboratories received ISO 9001:2000 registration with the preparation facilities in Mendoza, Argentina and Georgetown, Guyana following in 2006 and Acme's Lima, Peru facility in 2009. As of July 2010 Chile's new Copiapo facility has been added to the Sanitago registration and shortly Acme anticipates the addition of both Medellin Colombia and Goiania Brazil.

Both the Vancouver and Santiago hub laboratories are working toward ISO 17025:2005 accreditation and are expected to complete the accreditation process within the next year.

Acme has for many years regularly participated in the CANMET and Geostats round robin proficiency tests. Acme is recognized as a participant in the CALA Proficiency Testing Program and is registered by the BC Ministry of Water Land and Air Protection under the Environmental Data Quality Assurance (EDQA) Regulation.

All laboratories fall under the Quality Management Scope helping to ensure the same practices and procedures are followed throughout the organization.

Quality Control in Testing

Samples submitted are analyzed with the strictest quality control. Blanks (analytical and method), duplicates and standard reference materials inserted in the sequences of client samples provide a measure of background noise, accuracy and precision. QA/QC protocol incorporates a granite or quartz sample-prep blank(s) carried through all stages of preparation and analysis as the first sample(s) in the job. Typically an analytical batch will be comprised of 34-36 client samples, a pulp duplicate to monitor analytical precision, a -10 mesh reject duplicate to monitor sub-sampling variation (drill core only), a reagent blank to measure background and an aliquot of Certified Reference Material (CRM) or Inhouse Reference Material to monitor accuracy. In the absence of suitable CRMs Inhouse Reference Materials are prepared and certified against internationally certified reference materials such as CANMET and USGS standards where possible and will be externally verified at a minimum of 3 other commercial laboratories. Using these inserted quality control samples each analytical batch and complete job is rigorously reviewed and validated prior to release.

Acme has always prided itself on providing the highest level of quality control data to its clients. Recent implementation of Acme new laboratory information management system (LIMS) and AcmeAccess provides clients with even greater access to quality control data.

APPENDIX C ASSESSMENT REPORT TITLE PAGE & SUMMARY

2010 ASSESSMENT REPORT ON SURFACE EXPLORATION-CCS PROPERTY

APPENDIX C ASSESSMENT REPORT TITLE PAGE & SUMMARY

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT:

TOTAL COST:\$58,431.69

AUTHOR(S):DR. PETER A. CHRISTOPHER P.ENG. SIGNATURE(S): NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-4-570 STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): ATTACHED

YEAR OF WORK:2010 PROPERTY NAME: CHU CHUA SHENUL CLAIM NAME(S) (on which work was done): Southpark (#508587)

COMMODITIES SOUGHT: COPPER AND GOLD

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: N/A Chu Chua Deposit on internal third party claims.

MINING DIVISION: NTS / BCGS: 92P-8; 92P040 & 92P050 LATITUDE: __51° 18' 00" LONGITUDE: __120° 02_' 00" (at centre of work) UTM Zone: 10 EASTING:707000

NORTHING:5689300

OWNER(S): (1) Ken Ellerbeck & (2) Gerald Locke

MAILING ADDRESS: (1) 255 West Battle Street Kamloops, B.C. V2C 1G8 (2) 775 Sequoia Place Kamloops, B.C. V2C 5W3

OPERATOR(S) [who paid for the work]:Shenul Capital Inc.

MAILING ADDRESS: 3707 West 34th Ave. Vancouver, B.C. V6N 2K9

PAC GEOLOGICAL CONSULTING INC.

NOVEMBER 2010 61 RF

⁶¹ REPOR

PAC GEOLOGICAL CONSULTING INC.

NOVEMBER 2010 62

T KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

The Chu Chua Shenul (CCS) property is underlain by oceanic, mafic volcanic and sedimentary rocks of the Fennel Formation of the Slide Mountain Assemblage. The Fenell Formation hosts the Chu Chua volcanic massive sulphide deposit, discovered by Craigmont in 1978 and drilled to estimate a small historic resource. The Chua deposit contains massive magnetite and pyrite which parallel the N-S stratigraphic trend of the Fennel Formation. The exploration targets on the CCS are airborne magnetic and EM anomalies established by the previous operator.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 19540A, 26752, 22039, 20670

TYPE OF WORK IN EXTENT OF WORK THIS REPORT (in metric units)			ON WHICH (CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	1:1,000	2km sq	Southpark	#508587	\$7,000
Ground, mapping					
GEOPHYSICAL (line-kilometres)					
Ground					\$1,000
Magnetic	Equipment Failure		Southpark	#508587	
Electromagnetic	VLF 15 line km		Southpark	#508587	\$20,000
Induced Polarization					_
Radiometric					
Seismic					
Other					
Airborne					
GEOCHEMICAL (number of samp	les analysed for)		Southpark	#508587	\$25,000
Soil			Oodinpark	#300307	φ25,000
Silt			Southpark	#508587	\$1,000
Rock			Southpark	#508587	\$1,000
Other					
DRILLING (total metres, number o	f holes, size, storage loca	ition)			
Core					
Non-core					

RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL	15 line km	Southpark	\$3,431.69
Line/grid (km)			
Topo/Photogrammetric (sca	le, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trai	il		
Trench (number/metres)			
Underground development	(metres)		
Other			
		TOT CO	AL \$58,431.69 ST

Mineral Titles Online Viewer

Exploration and Development Work / Expiry Date Change Event Detail

Event Number ID

Recorded Date

Work Type Technical Items Technical Work (T) Geological (G), Geophysical (P), Geochemical (C)

4789356

2010/sep/01

Work Start Date Work Stop Date Total Value of Work Mine Permit Number 2010/jun/08 2010/aug/25 \$ 58000.00 MX-4-570

Summary of the work value:

Tenure Numbers	508581
Claim Name/Property	Deposit1
Issue Date	2005/mar/10
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	403.60
Applied Work Value	\$ 3223.85
Submission Fee	\$ 161.44
Tenure Numbers	508582
Claim Name/Property	Deposit2
Issue Date	2005/mar/10
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	403.43
Applied Work Value	\$ 3222.54
Submission Fee	\$ 161.37
Tenure Numbers	508584

Claim Name/Property	North1
Issue Date	2005/mar/10
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	322.62
Applied Work Value	\$ 2577.04
Submission Fee	\$ 129.05
Tenure Numbers	517072
Claim Name/Property	INMETEAST
Issue Date	2005/iul/12
Work Performed Index	N
Old Good To Date	2010/sep/30
Now Good To Date	2010/sep/30
Numbers of Davs Forward	2011/360/30
Area in Lla	305
	6U.71
	\$ 645.28
Submission Fee	\$ 32.28
	523836
Claim Name/Property	KCGL2
Issue Date	2005/dec/13
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	342.87
Applied Work Value	\$ 2742.93
Submission Fee	\$ 137.15
Tenure Numbers	523838
Claim Name/Property	CHU CHUA 7777
Issue Date	2005/dec/13
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	40.35
Applied Work Value	\$ 322.79
Submission Fee	\$ 16.14
Tenure Numbers	523843
Claim Name/Property	KCGK7
Issue Date	2005/dec/13
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	60.52
Applied Work Value	\$ 484.12

Submission Fee	\$ 24.21
Tenure Numbers	523844
Claim Name/Property	CHU CHUA 888
Issue Date	2005/dec/13
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2015/sep/30
Numbers of Days Forward	1826
Area in Ha	40.35
Applied Work Value	\$ 1613 96
	\$ 1013.90
	\$ 00.74 526297
Issue Date	2006/Jah/26
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	484.58
Applied Work Value	\$ 3876.67
Submission Fee	\$ 193.83
Tenure Numbers	528569
Claim Name/Property	GERRY AND GERRY
Issue Date	2006/feb/20
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	60.53
Applied Work Value	\$ 483.40
Submission Fee	\$ 24.21
Tenure Numbers	528570
Claim Name/Property	ROCKNORTH
Issue Date	2006/feb/20
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
	100.86
Applied Work Value	\$ 805 50
	\$ 305.50
	\$ 40.34 E 28.700
	528700
Claim Name/Property	
Issue Date	2006/teb/21
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365

Area in Ha	20.17
Applied Work Value	\$ 161.09
Submission Fee	\$ 8.07
Tenure Numbers	530072
Claim Name/Property	CARPEDIEM
Issue Date	2006/mar/15
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	20.18
Applied Work Value	\$ 161.18
Submission Fee	\$ 8.07
Tenure Numbers	530073
Claim Name/Property	YES
Issue Date	2006/mar/15
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2012/sep/30
Numbers of Days Forward	731
Area in Ha	20.19
Applied Work Value	\$ 323.01
Submission Fee	\$ 16.17
Tenure Numbers	530075
Claim Name/Property	MORE TO GO
Issue Date	2006/mar/15
Work Performed Index	N
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	221 82
Applied Work Value	\$ 1771 94
Submission Fee	\$ 88 73
Tenure Numbers	530076
Claim Name/Property	AND MORE
Issue Date	2006/mar/15
Work Performed Index	N
Old Good To Date	2010/sen/30
New Good To Date	2010/sep/30
Numbers of Days Forward	365
Area in Ha	/83 73
And Work Value	\$ 3864.04
Submission Eco	\$ 102 /0
	\$ 193.49 530077
Claim Name/Property	
	2006/mar/15
Work Performed Index	2000/mai/15
Old Good To Date	2010/sen/20
	2010/300/00

New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	121.15
Applied Work Value	\$ 967.78
Submission Fee	\$ 48.46
Tenure Numbers	533944
Claim Name/Property	DIXIE 4
Issue Date	2006/may/11
Work Performed Index	Ν
Old Good To Date	2010/sep/30
New Good To Date	2011/sep/30
Numbers of Days Forward	365
Area in Ha	80.61
Applied Work Value	\$ 644.16
Submission Fee	\$ 32.24
Tenure Numbers	508587
Claim Name/Property	Southpark
Issue Date	2005/mar/10
Work Performed Index	Y
Old Good To Date	2012/sep/30
New Good To Date	2015/sep/30
Numbers of Days Forward	1095
Area in Ha	505.05
Applied Work Value	\$ 12115.10
Submission Fee	\$ 606.06
Tenure Numbers	508589
Claim Name/Property	Insure
Issue Date	2005/mar/10
Work Performed Index	Y
Old Good To Date	2012/sep/30
New Good To Date	2014/sep/30
Numbers of Days Forward	730
Area in Ha	464.74
Applied Work Value	\$ 7435.84
Submission Fee	\$ 371.79
Tenure Numbers	517010
Claim Name/Property	INMETINFILL
Issue Date	2005/jul/12
Work Performed Index	Ν
Old Good To Date	2011/sep/30
New Good To Date	2016/sep/30
Numbers of Days Forward	1827
Area in Ha	141.27
Applied Work Value	\$ 5651.36
Submission Fee	\$ 282.84
Tenure Numbers	523839
Claim Name/Property	KEGL4
Issue Date	2005/dec/13

Work Performed Index	Ν
Old Good To Date	2011/sep/30
New Good To Date	2016/sep/30
Numbers of Days Forward	1827
Area in Ha	60.52
Applied Work Value	\$ 2420.87
Submission Fee	\$ 121.16
Tenure Numbers	529302
Claim Name/Property	G & G
Issue Date	2006/mar/03
Work Performed Index	Ν
Old Good To Date	2011/sep/30
New Good To Date	2016/sep/30
Numbers of Days Forward	1827
Area in Ha	40.35
Applied Work Value	\$ 1614.39
Submission Fee	\$ 80.78
Tenure Numbers	523841
Claim Name/Property	KCGL5
Issue Date	2005/dec/13
Work Performed Index	Ν
Old Good To Date	2011/sep/30
New Good To Date	2016/sep/30
Numbers of Days Forward	1827
Area in Ha	20.17
Applied Work Value	\$ 807.05
Submission Fee	\$ 40.39

Financial Summary:

Total Applied Work Value:	\$ 57935.89
PAC name	PETER ALLEN CHRISTOPHER
Debited PAC amount	\$ 0.00
Credited PAC amount	\$ 64.11
Total Submission Fees	\$ 2899.01
Total Paid	\$ 2899.03

Related Summary:

Existing Work Program Event Numbers