

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: New Exploration (Prospecting, Geology and Geochemistry) in Southern portion of Flan-Consolidated Group

TOTAL COST:\$6,135.61

AUTHOR(S): Mikkel Schau, B.Geo. Sile SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): SOW 4786403-August 20, 2010

YEAR OF WORK: 2010 PROPERTY NAME: Flan Consolidated Claims CLAIM NAME(S) (on which work was done): Tenures 509012, 553495, 590156, 622623, 622643, and 622663

COMMODITIES SOUGHT: Gold & Copper

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Nanaimo Mining Division NTS / BCGS: NTS 092L/01 LATITUDE: _____50___°___06___'____" LONGITUDE: ____126___°___13___'____" (at centre of work) UTM Zone: EASTING: NORTHING:

OWNER(S): Mikkel Schau Interwest Enterprises Ltd

MAILING ADDRESS: 3919 Woodhaven Terrace, Victoria BC V8N1S7 (Schau)

2838 Birch Street, Vancouver BC V6H 2T6 (Interwest) OPERATOR(S) [who paid for the work]: Mikkel Schau MAILING ADDRESS: 3919 Woodhaven Terrace, Victoria BC V8N1S7

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Contact, Sediment-sill unit, Karmutsen basalt, Triassic, two mica granite, hornblende-biotite-granodiorite; shearzones; electrum chalcopyrite sphalerite and galena; till fragments and in situ showings

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 23546, 26793, 27311, 28382, 29360, 29551, 30009, 30471, 31046, 31679

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)	
GEOLOGICAL (scale, area)				
Ground, mapping Photo interpretation	30ha At 1:10000	590156 622623	\$1,000.00	
GEOPHYSICAL (line-kilometres) Ground				
Magnetic				
Electromagnetic				
Induced Polarization				
Radiometric				
Seismic				
Magnetic	45 at 14	All six	\$85.61	
Other	sites			
GEOCHEMICAL (number of sam Acme	oles analysed for) 2 Aqua regia 32 elements	All six	See below	
Soil Acme	leach ICP-ES 27 Aqua regia 32 elements	All six	See below	
Silt Rock Acme	leach ICP-ES 9 Aqua regia 32 elements	All six	See below	
Till Acme	leach ICP-ES 2 Aqua regia 32 elements	All six	Total:	
	leach ICP-ES		\$3,450.00	
DRILLING (total metres, number Core Non-core	of holes, size, storage location)			
RELATED TECHNICAL				
Sampling / Assaying	40 FA for Au, Pt, Pd; 3 AA for Cu; 3 Grav FA for Au	All six	\$600.00	
Petrographic				
Mineralographic Metallurgic				
PROSPECTING (scale/area)	50 1:10,000 ha	All six	\$1,000.00	
PREPATORY / PHYSICAL Line/grid (km)				
Topo/Photogrammetric (se	cale, area)			
Legal Surveys (scale, area	a)			
Road, local access (km)/tr	ail			
Trench (number/metres)				
Underground developmen	t (metres)			
Other				
		TOTAL COST	\$6,135.61	

New Exploration (Prospecting, Geology and Geochemistry)

in

Southern portion

BC Geological Survey Assessment Report 31786

of

Flan-Consolidated Group

(Tenures 509012, 553495, 590156, 622623, 622643, and 622663)

in the

Nanaimo Mining Division

in

092L/01

at 50 deg 06 min North and 126 deg 13 min West

for

Mikkel Schau,

by

Mikkel Schau, P.Geo.

August 20, 2010 (submitted November 22, 2010)

SUMMARY

The Flan showing is a high grade gold showing, consisting of boulder sized, basal till fragments, carrying up to 135 gm/mt Au in the form of small grains of electrum, trapped in chalcopyrite blebs in a pyrrhotite rich matrix to a fault breccia. (AR29360 and 30009) It is located within the Schoen Creek drainage basin, south of Schoen Lake Provincial Park in northern Vancouver Island. It is reached by active logging roads. It is near deep water ports at Kelsey Bay and Port McNeil, and a short distance from truck transportation along Highway 19.

Central claims (covering 2444.944 ha.) are owned 80% by Mikkel Schau and 20% by Interwest Enterprises, and three bounding claims to the south (covering 1533.9 ha) are owned 100% by Mikkel Schau. Currently, an "earn-in" contract between Schau and Interwest Enterprises is in effect.

New work reported herein includes:

A newly located northern extension of Hornblende-Biotite Granodiorite batholith (Hb-bio granodiorite) from White River, into the southeast part of the claim area, to locations very near the small Hb -bio granodiorite outcrops found last year (2009) near Mount Adam. This new set of granodiorite locations are magnetic and coupled with the extent of a large magnetic anomaly in the south east claims, suggests that the top of the batholith is just below surface in the Mt Adam Ridge region. The granodiorite is seen to intrude host rocks with previous steep and complex northerly trending faulting. These factors are very auspicious for concentrating potential mineralization.

New intrusive and structural contacts of the Two Mica Granite have been located suggesting the granite extends southward, and that this intrusion predates northerly directed faults and EW faulting.

The mineralized basal till fragments from Flan location continue to be eroded and replaced by new freshly exposed fragments (as they have been for at least 10 years). They continue to return **very anomalous results** as shown below:

Sample ID	Туре	Gold*	Copper #
006954	Fragment in till	47.20 gm/t	1.528%
006955	Fragment in till	46.07 gm/t	1.149%
006956	Talus below till	40.98 gm/t	2.031%

* Gold by Gravimetric Fire Assay, #Copper by AAS,

Stream Silt samples suggest anomalous gold and possibly copper values are found in the headwaters of Kokummi Creek in a narrow band trending NNW in the vicinity of the western contact of the newly located granodiorite extension.. Poorly localized anomalous results are also found in the headwaters of Schoen Creek.

A small operation would follow up geochemical anomalies and continue prospecting; a larger exploration operation would cover the claim group with an airborne magnetometer and EM survey to help focus the exploration activity.

Table of Contents

SUMMARY	2
Introduction	5
Property location, access and title	5
Previous work	6
Figure 1 Location	8
Figure 2 Claim map	9
Summary of work done	10
Detailed data and interpretation	10
Purpose	10
General Surficial Geology	10
Regional Geology	11
Figure 3 Regional Geology	14
Figure 4 Regional Aeromagnetic map	15
Figure 5 Property Geology on Southeastern part of the Flan Property	16
Property geology	17
Mineralization	18
Exploration Target	19
Detailed sampling results	19
New Results	19
Figure 6 Sample locations	20
Figure 7 Gold values	21
Figure 8 Copper values	22
Figure 9 Magnetic Susceptibility measurements (median value, in SI x 10-3)	23
Interpretations and conclusions	24
Results from outcrops	24
Results from secondarily dispersed media:	25
Recommendations for future work	27
Mineral deposit Models	27
Geochemical survey for copper anomalies in southern part of claim:	27
Magnetic and electromagnetic surveys:	27
Hand based technologies:	28
Systematic Surveys	28
Budget	28
References	29
Author's qualifications	31
Itemized cost statement	32
Appendix A-sample descriptions, locations and selected assays	33
TABLE A-1, Outcrop samples	33
TABLE A-2a Comparison of major elements among 2 mica granite and Hb-bio Granodiorite	34
TABLE A-2b Trace elements determined with above whole rock analyses	35
TABLE A-3 Rock fragment from till and talus	35
TABLE A-4 Till matrix	36
TABLE A-5-Soil	36

TABLE A-6 Stream Sediments (silts).	
Appendix B-magnetic susceptibilities of selected sites	
Appendix C-Assay certificates	40

Introduction

Ongoing work in the Flan-Consolidated Claim Block covering the Schoen Creek drainage basin south of Schoen Lake Provincial Park, on Northern Vancouver Island has focused on extending the Flan showing east and southward The complete drainage basin of Schoen Creek is now under claim as well as a small region in the headwaters of Kokummi Creek

Property location, access and title

The Flan Showing is found in tenure 509012 within the Flan-Consolidated Claims located on Northern Vancouver Island and is within the Nanaimo Mining District jurisdiction. The Flan-Consolidated Group claims are located in the Schoen Creek valley at the foot of the western flank of Mount Adam, about 30 km east-southeast of Woss, on Vancouver Island B.C. (Figures 1, 2). They are located in the Vancouver Island Ranges within NTS 092L/01 and are centered at approximately 50 deg 06 min North and 126 deg 16 min West (Fig. 2, 3).

Access to the claims is via a logging main branching off the Island Highway and continuing along subsidiary logging roads that pass through Schoen Lake Provincial Park, south, into the area of interest. Two and four wheel drive vehicles can closely approach the showing. The main logging road is the one leading to Gold River, and at a junction marked Schoen (with the label "this is not the road to Schoen Lake Provincial Park") the road passes along the south of the Davies River and through the Park into the headwaters of Schoen Creek. This road proceeds upstream along the west side of the creek until, several km along, the road splits and several parts of the claims are accessible. New roads are planned as logging progresses.

Tenure Number	New Due date	Ownership	Area, ha.
507295	MAY 10 2016	80% Schau 20% Interwest	517.912
509012 #	NOV 18, 2016	80% Schau 20% Interwest	165.753
513281	MAY 10 2016	80% Schau 20% Interwest	497.218
543699	MAY 10 2016	80% Schau 20% Interwest	227.868
553495 #	MAY 10 2016	80% Schau 20% Interwest	518.106
590156 #	MAY 10, 2016	80% Schau 20% Interwest	518.087
622623 #	OCT 21 2011	100% Schau	497.3
622643 #	OCT 21 2011	100% Schau	518.34
622663 #	OCT 21 2011	100% Schau	518.26

Claims on which work was done.

The area of tenures owned in part by Interwest Enterprises totals 2444.944 ha. An additional 1533.9 ha are owned 100% by Schau, for a total of 3978.85 ha. Currently, an "earn-in" contract between Schau and Interwest Enterprises is in effect.

The land situation is typical of BC; I have claimed the mineral rights in a lawful manner. According to the MTOnline website:

"...Any subsequent activities, permits, approvals or decisions related to exploration or development work on mineral or placer claims will require the Province British Columbia to meet applicable legal obligations to consult with, and if appropriate, accommodate, affected First Nations". There is no record, available to me, that this provincial consultation has been carried out for these claims.

To the best of my knowledge the Land Claim Treaty Process has not directly discussed these lands although they are under general claim by several groups. The SOI of 'Namgis Nation covers the majority of the claim group which is in the Nimpkish watershed, but the lands near and east of the height of land including Mt Adam are subject to a competing SOI of the several First Nations. Contact has been made with all the nations as recommended by the Ministry. In particular, I have been in contact with the Treaty Office of the 'Namgis: they are aware of details of my current and upcoming work.

There has been no impediment to my claiming or working the land to time of writing. Local people have told me they would like there to be more exploration, and possibly mining in the region, to shore up their local economy.

Previous work

This report is an update of previous assessment reports in this area. There are many similarities with earlier reports written by the author, but this version is the most up to date. Earliest reports from this area reported locations in NAD 27, later ones, as well as this one, report locations in NAD83. All locations are found in UTM Zone 9.

The general area has had a sparse history of mineral exploration. Previous mapping by government sponsored regional mapping programs conducted and summarized by J.E. Muller et al. (1974) (Fig. 4) and made available in digital form by N.W. Massey (1995, 2004). A government sponsored regional geochemical survey (RGS23) indicate that creeks in the Schoen Lake watershed are anomalous, showing values up to 160 ppb Au. (MapPlace, 2010). An adjacent creek valley and a hill crest to the west of the Schoen Creek valley were staked in 1993 and shown to carry anomalous concentrations of several economic elements, including Cu, Zn, Ag, Pb, Mo and Au (AR 23546). A rock sample with 1 gm/mt Au was recorded. Those claims have since lapsed. Claims to the east of Mount Adam have been explored over the years, but have currently lapsed and are not held at this time.

In 2000, a sample with about 60 gm/mt gold was found at the Flan showing by the current owner, prospecting for precious metals under the Prospector's Assistance Program, and it was staked in late 2000 based on results of the initial assay reports. A granite was recognized in the course of later mapping and an area was staked to cover the apparent edges of this granite. Anomalous stream sediments prompted the staking of the complete watershed. The current owners are conducting grass-roots exploration and looking at the possibility of enlarging the showing to become a viable prospect. Previous assessment work done by owner on the claims is listed below:

AR Number	Date off confidential	Operator
31679	Late 2011	Interwest Enterprises and Self
31046	2010 – 10 - 09	Self and Interwest Enterprises
30471	2009 – 06 - 30	Self
30009	2009-03-02	Self
29551	2008-10-18	Self
29360	2008-07-28	Self
28382	2007-02-14	Self
27311	2004-08-26	Self
26793	2002-11-15	Self

AR 26793 produced data on the surrounds of the original gold discovery location

AR 27311 discussed veins in a nearby, hitherto unknown, 2 mica granite thought to be a possible source of mineralization

AR 28382 added geological information on basalts and veins on on the west side of Maquilla Ridge.

AR 29360 focused on new high grade sulphide grab samples from basal till at the original location. Gold assays on 500 gm samples yielded up to 4 oz/mt from pyrrhotite rich copper bearing basal till boulders.

AR 29551 discussed alteration on the claims and conclude that low grade regional metamorphism affected Triassic basalts and shales. Local phyllic alteration has affected the 2 mica pluton, showing a local chlorite rich zone and a sericite rich zone. The granite was thought to have been emplaced in a high strain zone. The possibility that the west of the creek was displaced with regard to the east side was suggested.

AR30009 presents evidence that the gold at Flan Showing is found in small grains of electrum (range 5 to 72 micron grains; median and mode is 15 microns) along with small grains of BiTe in chalcopyrite, and less so in pyrrhotite and sphalerite.

AR300471 Provided more instances of mineralized boulders as well as locating in situ copper rich zones located within the sediment-sill unit, (also called the Daonella Beds). These rocks were compared with other mineralized black shales.

AR31046 presented a lineament study of a high quality orthophoto, and added more assay values from the area. Provided graphite analyses of black shales.

AR31679 presented results of a prospecting, geological, geophysical and geochemical program which located two potential exploration targets based on overlapping anomalies.

Figure 1: Location Map

Summary of work done

The work reported herein is located near 50 deg 06 min North and 126 deg 13 min West

Prospected (100 ha) and mapped a small area (30 ha) not previously visited.

Assays (Acme Analytical Labs)

Methods preparation and analyses by Acme methods

Rock specimens

9 R200-250, grinding 250 gm to 200 mesh

3 3B03, Fire assay fusion Au, Pt, and Pd by ICP-MS (30 gm) (Au, Pt, Pd)

3 8TD 4 acid digest AAS finish (Vancouver) (0.5 gm) (Cu)

6 Geo4 FA fusion Au Pt Pd, 1:1:1 AR digestion ICP-ES analysis (30gm) (32 elements)

2 4A4B Whole Rock Analysis Majors and trace elements (0.2 gm) (62 elements)

3 Lead collection fire assay, gravimetric finish, (30 gm).(Au)

"Silt" specimens

31 dry, dry sieve,

31 Geo4 FA fusion Au, Pt Pd, 1:1:1 AR digestion ICP-ES analysis (30gm)(32 elements) Magnetic Susceptibility measurements 14 stations/45 determinations

Detailed data and interpretation

Purpose

The work recorded herein presents new Information on the distribution of plutons, more stream silt results, as well as continuing documentation of the presence of mineralized boulders in the basal till.

General Surficial Geology

The claims are mainly located in the Schoen Creek drainage basin. The mineralized boulders (FLAN showing) are located about the junction of a sharply incised tributary from the south east (informally called "Jackpot Creek by logging companies") with the main U-shaped Schoen Creek valley. The eastern and western ridge of the main creek is largely steep and rugged and shows outcrop near the mountain tops. The valleys are filled with downward thickening glacial deposits and post glacial stream and talus deposits. The mapped road outcrops are technically subcrops; only a few knobs of bedrock crop out on the lower slopes; only at the upper steeper slopes are steep cliff forming outcrops present. Very large blocks of material from the upper slopes have cascaded down the hill. In virgin forest such blocks are difficult to distinguish from actual outcrop. The depth of till generally increases downhill, as does colluvium. The bottoms of the valleys are occupied by creeks cutting through their own, earlier fluvial sediments.

According to Howes (1981, 1983) there are two glacial periods and interglacials recorded on northern Vancouver Island. The earliest glacial episode occurred some 50,000 years ago, and has left only sporadic evidence of its presence, but it was probably as extensive as the Fraser Glaciation. Only limited dated interglacial sediments have been preserved (ibid). The later Fraser Glaciation was widespread and consisted of three stages. An early stage (prior to 25,000 years before present) includes glaciers forming in valleys draining the Vancouver Island Ranges. At maximum (some 16,000 years ago, the ice from the coast mountains, on the mainland, spread over the the early valley glaciers of Vancouver Island and spread southwest ward. At deglaciation, starting at 12,000 years ago, the valley glaciers re-established themselves to fade away by 9000 years before the present. Later streams reworked the tills and outwash materials in the valley bottoms.

In the general area, glacial striae on subcrops indicate that the valley glacier in the Schoen Creek drainage scraped debris from south to north, toward Schoen Lake. Howes (1981) reports that on the nearby Mount Victoria, at 1550 m elevation, glacial striae linked with the Fraser maximum, flowed from NE to SW.

It is concluded that the basal till observed at Flan is associated with the valley glaciers. The basal tills are probably associated with the early valley glaciers and not with the late, short lived Fraser Glaciation Maximum ice cover. The later, upper portions of the till cover may possibly reflect some interaction with debris from the Fraser maximum glaciation.

The Flan showing is on the western side of the Schoen Creek, on the northern edge of a small subsidiary creek ("Jackpot Creek, according to local logging lore"). Glacial debris was likely carried by this smaller creek and would join with the debris of the main down valley ice flow somewhat to the west of the current surface. Striae were noted on the southern most subcrops near the Flan showing, where the surficial debris had been washed away after the road had been pushed through. Striae indicated ice movement was parallel with the valley wall and to the north, down valley to the lake. Presumably these striae mark early, pre-maximum glaciation and indicate that up-ice for glacial basal till boulders would be at the headwaters of Schoen Creek and its tributaries (cf Hicock, 1986). Hence the basal till at the showing is likely associated with the tributary glacier descending "Jackpot Creek". This is relevant, because the direction of ice flow is important for tracing the mineralized boulders back to source.(Proudfoot et al, 1995)

The high grade samples are located in the interface between bedrock and basal till. The samples are loose and are part of the basal till package. "...most studies on gold dispersal trains show that distances of transport of detectable materials are rather short. ..." (p. 45, Plouffe, 1995) and Proudfoot et al, (1995) indicates that till fragments rise in the glacier as the distance from the source increases. Fragments, such as those at Flan, which are at the base of the till are said to be very close to the source.(ibid, p.25).

The road cuts are unstable, and between the summer of 2007 and 2010, several ten or so metres wide slides brought down trees, soil and till over previously exposed till and bedrock sections. Erosion thus continuously exposes new sulphide rich fragments the surface. These mineralized fragments quickly disappear since the pyrrhotite is quickly oxidized to porous and loosely consolidated rusty material and fine talus.

Regional Geology

The regional geology was mapped by Muller et al 1974, (Fig 4) prior to the construction of current logging roads, and as such, suffers from not having access to the subcrops now exposed. Observations gained while prospecting in the region after the logging roads were available, indicate that a small two mica granite stock occurs along Schoen Creek. The contacts of this stock are seen in several places, both

intrusive and faulted, and its general elongate shape can be deduced from distribution of talus and subcrops in the region. This type of granite is typically a result of crustal melting in a thickened continental crust which has been affected by crustal shearing (Barbarin, 1996). The detailed placement of faults in the claim area is still uncertain, but the general presence of profound steep northerly fault zone/complex is without doubt (Massey (2005), Mueller (1974)).

This season has shown that in the southeast, an extension of a Jurassic Batholith from headwaters of the White River along the Kokummi Creek drainage towards the Jackpot Creek headwater area has a composition of granodiorite.

Regional geology of the immediate area is simple. Late Paleozoic limestone is exposed in low lying areas east of the claims. They are overlain by the informally named Daonella beds, a middle Triassic unit of black shale and siliceous tuffaceous cherts which in turn is overlain by the Karmutsen basalts, a thick pile of pillowed and massive sub-aqueous to sub-aerial lavas. Intrusive rocks include early late Triassic gabbro sills (emplaced mainly in the Daonella beds), and later, large Jurassic granodiorite plutons to the northwest and to the south east as well as the two mica granite.

Regional faults affect area. Although there is not a single north directed fault surface, there is a wide heavily fracture cleaved and complexly veined zone trending in that direction (called Lacy rocks as a field term). The apparent sense of movement on the mostly steeply east dipping north south faults is west side up, but associated slickensides indicate largely horizontal displacement. It would appear that regionally, Jurassic plutons postdate some of the NS faulting; on the other hand the two mica granite is faulted both in NS and EW directions. Steep, later?, east west faults are associated with abundant alteration and a possible dextral sense of displacement. Local, later, Tertiary? dykes that cross the east west faults, and stocks are noted within this same general region (near Mt Cain).

The geology in Schoen Creek is incompletely known, and deep till and fluvial material cover much of the valley at the base of the U shaped creek valley precluding a detailed map of even this small claim group. Nevertheless, a cross-section from east to west, across the Schoen Creek valley, in the vicinity of Mt Adam, would include these features from east to west:

East

	East dipping Karmutsen Basalts overlying Daonella beds, and Paleozoic Limestone intruded to the south
	easi by a surassic granoulonite
Mt Ad	dam Ridge
	Mt Adam cut by a fault (steep and northerly trending)-shown on Muller's map.(west side up)
	Mt Adam west flank, underlain by Karmutsen basalts (with shallow west dip),
	Middle Triassic black shales and cherts/gabbro sills faulted against Karmutsen Basalts
	Thicker Gabbro sills in tuffaceous cherts (cf. FLAN Showing)
Scho	en Creek valley, mainly underlain by 2 mica granite, also locally underlain M.Tr black shales and local cherts/qabbro sills
Acros	ss the Schoen Creek, and up the hill.
	Unnamed 2 mica granitic Stock emplaced in black shale/gabbro, in north and east, Karmutsen basalt in west
Rida	9
	Karmutsen feldspar phyric basalt flows with shallow west? dip. near top of hill
	Nimpkish Pluton intruding the western edge of the claims
West	

Age	#	Unit	Lithology	Relationship with unit below	Comments
Holocene (post glacial)		Alluvium	Country rock of high hills and ridges	unconformity	Thickness increases to valley bottom
Holocene several? Glacial episodes		Moraine, basal till	Comminuted country rock, up ice, larger boulders	unconformity	Thickness increases to valley bottom,
Late Tertiary				UNCONFORMITY	
later Mesozoic or Tertiary	7a,b		local alteration of 2 mica granite	Faulting, mainly strike slip? Also minor cross faults ,	(copper-gold mineralization event?)
Early Mid Mesozoic	5	Island Intrusions (Mgd)	Magnetite bearing granodiorites	Intrudes all previous Units unknown w/ respect to 2mg	Local metamorphic halos (copper-gold mineralization event?)
Mesozoic??	6	Unnamed granite in Schoen Creek	2 mica Granite, (2mg)	intrudes shales, gabbro, and Karmutsen unknown w/ respect to grnd	Carries minor molybdenite in quartz veins
Mesozoic	4			Normal faulting, west side down? affects all older units	(copper-gold mineralization event?)
Triassic (Karnian?)	3b	Karmutsen sub-Group TrKb	Basalts with feldspar phenocrysts	Upper contact not seen in this area; lower contact, disconformable?	Thick section
Triassic (Karnian?)	3а	Unnamed gabbro TrGb	gabbro	Sills, intrusive into shales	Widespread and thin
Mid Triassic	2	"Daonella" Beds TrDb	Black shale and siliceous tuff and chert	Upper contact with Karmutsen, disconformable;	Recessive unit, possible source of sulphides in area
Latest Paleozoic				UNCONFORMITY	
Late Paleozoic	1	Buttle Lake Formation	Bioclastic Limestone and local limy siltstone	Contact not seen, unconformable?.	

New Exploration, Sourthern portion, Flan-Consolidated

Schau, August 2010

Property geology

Figure 5 shows the preliminary geology for the south-eastern tenures of the Flanconsolidated claims. As shown on the preliminary map the geology of these claims is relatively simple. Logging roads on the headwaters of Kokummi Creek show the continuance of the Jurassic pluton from the southeast. The faulted contact is locally exposed and intruded by small granodiorite/andesite dykes.

The rest of the area is summarized below. New logging roads high up on the eastern side of Schoen Creek expose faulted black shale in subcrop; these are the so called Daonella beds Complex The beds dip to the east, and are locally foliated and cut by fault surfaces with slickensides. It appears that a small anticline has developed against the fault, perhaps in response to west side up movement on a major east dipping fault. Along strike of this fault, Jurassic intrusion seals the fault trace, but locally rocks show structures indicative of long lived faulting.

Cliffs and outcrops on the east side of main creek are mainly formed in fine-grained diabase of the sills. A small area near the headwaters of Jackpot Creek is known to be underlain by Karmutsen basalts. A small stock of Hb-bio granodiorite is partially exposed in this general area.

Lower in the valley, the subcrops exposed on the logging roads to the east of the creek are of gabbro, cut by major steeply dipping NS and minor EW faults and veins. Large truck sized talus pieces of Karmutsen pillow basalt are locally abundant. Presumably these fragments are derived from basalt on the East side of the major NS fault mapped along the west flank of Mt Adam. The subcrops exposed by logging, show that local NS faulting cut by later cross faults and veins are widely distributed.

2 mica granite has been located in Jackpot Creek and a thin dyke is seen to intrude cherts, argillites and diabase sills. The Jackpot south mineral showing is located in fault breccia located at the tectonic contact between these same two units.

The area from the road to the creek is covered by till overlain by soil and talus. A few chips of black slate in the till, and chip fragments in the creek, raise the possibility that these slates may, as shown by Muller (op cit), underlie part of the valley. Outcrops of 2 mica granite are locally present in creek bed.

Crossing Schoen Creek and coming up the western slope, subcrops and abundant talus are of 2 mica granite, widely chloritic, locally phyllic/argillic, veined and faulted. In the northern part of the claims patches of metasediment and metagabbro crop out. Widespread talus of chert is noted here as well. The contact between Hornblende-Hornfels/metagabbro and granite is also marked by an east west fault in which metasediments are caught up as fragments. The possibility that the elongate 2 mica granite stock predates the early faulting has not been ruled out, but it is currently considered to be of much later age since it is, in part, emplaced in the fault zone.

The lower western slopes Schoen Creek are underlain by 2 mica granite. The fresh granite is a medium grained muscovite biotite granite with about equal amounts of quartz and microcline and minor normally zoned oligoclase to albite. The biotite and mica appear in small clots together, surrounding small accessory monazite and/or zircon and less abundantly, pyrite. The biotite is partially converted to chlorite, the plagioclase core is altered to very fine clay/white mica. Local, very thin chlorite veins traverse the rock. In some instances thin carbonate veins cut the chlorite veins. Modal proportions of minerals indicate that it is peraluminous as would be expected from the micaceous nature. Portions of the stock are deformed by

small faults sub-parallel to northerly trending steeply dipping regional ones, and these zones, and small subsidiary sets at right angles have been silicified, chloritized and locally epidotized. Ductile faulting, with the foliation merging into the high strain zone are noted in several locations. A later period of cataclastic faulting has also taken place, generating crush zones. The earlier ductile zones carry pyrite, whereas the later crush zones generate fault surfaces on which the sulphides are smeared. The surrounding granite has been argillically altered to various degrees. Pyrite and minor amounts of other sulphides are locally present. Veining is parallel and also normal to foliation; it is marked by chlorite, locally epidote, or quartz with or without small amounts of ankeritic carbonate. The veins are locally mineralized with pyrite and very minor amounts of other sulphides. Adjacent to the veins are argillically altered zones in which feldspars, mainly plagioclase, is reduced to clay or white mica. These zones are barren. Some veins are a bluish colour and are composed of very fine grained guartz with very fine grained pyrite disseminated throughout. These veins are seen to have elevated lead concentrations. Chlorite veins cut the ductilely deformed guartz veins, and are cut by carbonate carrying veins, and both are cut by the crush zones. The paragenesis and geographical distribution of alteration has not been fully explained yet. A few veins, rich in iron and manganese, contain many pathfinder elements. The current state, i.e. a very dark plastic chlorite rich muck, is presumably due to near surface weathering of carbonate/ankerite/rhodochrosite/ chlorite. In the southern part, along an east west fault, surfaces developed in the granite show several mm thick veins of rhodonite.

This type of granite is generally thought to have formed at a relatively shallow depth from a "dry" granite magma emplaced in crustally sheared thickened continental crust. The meridional (northerly trending) faults seen at surface are part of a long-lived and deeply penetrating fault system.

High on the western slope, outcrops of Karmutsen basalts provide talus fragments to lower slopes. There is thus a contact near the western edge of claims between metasediments and Karmutsen, as shown by Muller (op cit).

Mineralization

The mineralization is of several types:

At Flan showing, east of the Schoen Creek:

I/ Early, green, poly-metallic, epidote-chlorite-sulphide veins with irregular pods of quartz, and tens of cm wide, replace a fault zone cutting a gabbro sill. Sphalerite, chalcopyrite and pyrite are common sulphides, but analyses suggest molybdenite and galena are present in small measure as well. Gold is variably anomalous.

II/ A later, thin, white weathering, apparently cross cutting, quartz-sulphide (pyrite and chalcopyrite) vein assemblage with local Au concentration developed in gabbro. Seems to carry best gold values near the earlier veins. Adjacent basal till fragments of pyrrhotite, chalcopyrite, pyrite, quartz and chlorite veins apparently cutting gabbro carry interesting amounts of electrum.

At Jackpot south showing (south of Flan) the matrix of a fault breccia with angular granite fragments is composed of various proportions of chlorite, quartz, chalcopyrite, sphalerite and minor galena.

At Jackpot south extension, located in Jackpot Creek, quartz rich fault zones carry irregularly distributed chalcopyrite.

Elsewhere, east of Schoen Creek, scarce outcrops of black shales and sills are pyritic and pyrrhotitic and locally carry copper minerals, including chalcopyrite and sparse malachite

West of the Schoen Creek

A polymetallic vein with pyrite, chalcopyrite, sphalerite, galena and anomalous gold cuts Karmutsen country rock near the northern and western contact of 2 mica granite and Karmutsen Basalts (AR23546).

In the 2-mica granite the mineralization is of four types:

i/ molybdenite bearing quartz veins.

ii/ pyrite in altered granite with no elevated gold values.

iii/ pyrite, minor galena in quartz veining with minor elevated gold values (blue veins).

iv/ rusty manganiferous alteration zones/ex-veins? rich in pathfinder elements.

Exploration Target

The exploration is at early stages and fixing on a single mineral deposit model is premature. Nevertheless, although there are a number of possibilities; one mineral deposit model seems to fit the limited amount of information currently available. This model is selected from the BC Mineral Deposit Suite: category I02; *INTRUSION RELATED Au PYRRHOTITE VEINS* (Aldrick, 1996).

A capsule Description is given below:

...Parallel tabular to cymoid veins of massive sulphide and/or bull quartz carbonate with native gold, electrum, chalcopyrite are emplaced in a set of en echelon fractures around the periphery of a subvolcanic pluton... Flan may fulfil the requirements of this model type, but more data is needed .

Two BC examples of this model are the Snip Mine (a recent major gold producer), and Rossland Veins, (historically, one of BC's large gold camps). Typical grades are 10-20 g/t Au.

Detailed sampling results

New Results

See appendix A-1 to A-5 for descriptions and partial elemental listing and Figure 6 for position of samples, and Figures 7 and 8 for location of Au and Cu assays respectively. Appendix B gives magnetic susceptibility values and Figure 9 shows the location of median values of magnetic susceptibility. Appendix C presents Assay certificates. Reference to these appendices will provide rationale for statements made in the body of the report.

New Exploration, Sourthern portion, Flan-Consolidated

Schau, August 2010

Interpretations and conclusions

Results from outcrops

Geological Results

Two more contact regions have been located. One in the south east of the claims in headwaters of Kokummi Creek is between a granodiorite batholith previously mapped as terminating in the White River drainage but now seen to extend up the Kokummi Creek to the headwaters where it is seen in contact with fracture cleaved and (hornfelsed) Karmutsen basalt. (see Figure 5 for details) The other contact is in the south near Schoen Creek and is between 2 mica granite to the east and hosting Karmutsen basalts to the west. This area is not yet well characterized.

Chemical analyses

Comparing the two analyses shows the great differences between the two intrusions.(see Tables A-1-2a and 2b in Appendix A) The major components' differences accentuate the alkali rich feldspars in the granite; the difference in minor components such as FeOt and MgO reflects the mineralogy of minor components the rocks, cf. muscovite and biotite in granite vs hornblende and biotite in granodiorite.

Comparison of the aqua regia extracts of powders of the whole rock are also shown. Immediately obvious is that alkalic feldspars are not soluble in aqua regia, as is shown by low amounts of Ba, K, Na in that extraction. The greater amounts and proportions of these elements extracted from the granodiorite is probably a measure of clay alteration (possibly as montmorillonite/illite).

Comparison of selected trace elements among the the two types also show the difference between the rock types. The differences are those expected of a leucocratic granite being compared with a high colour index (CI - 40) granodiorite. The 2 mica granite shows its more alkalic nature with high Rb/Sr, more radioactivity, a steeper REE curve and a lower Hf/Nb. The granodiorite contains more V as a result of its tenor of biotite and hornblende, shows a less steep REE curve but with an Europium anomaly, reflecting plagioclase content. As well, a larger amount of Zr reflects zircon as an accessory mineral.

Only three of the trace elements shown, have been assayed both by total fusion and by aqua regia extraction. It is of interest that only 8% of the V is soluble in the biotite bearing granite whereas 72% of the V is soluble in the hornblende and biotite bearing granodiorite. V is often found in hornblendes and perhaps a high %-soluble-V is a proxy for Hornblende. Th on the other hand seems to well extracted in both rocks.

Conclusion

The granitic rocks are easily distinguishable. The significance of 2 mica granite is uncertain, although there is a large literature that suggests it is a sign of shallow crystallization of dry granite magma. Generally such plutons are found inland in more continental settings than the Schoen Creek body. The Hbbio Granodiorite near Kokummi Creek is typical of the Jurassic granodiorite batholiths of Vancouver Island.

Possible difference in age of Intrusions based on structural history

The two intrusions, based on scarce information, seem to have had a different structural

history.

The two mica granite has been intruded into the Karmutsen and older rocks. Local intrusive contact has been seen, It is locally brecciated, and previously, thin dykes have been noted cutting the Daonella beds. The pluton is widely deformed along northerly directed steep fracture zones and cleavage as well steep east faulting with unknown amounts of offsets. Previously, Jackpot south mineral showing has been located in a northerly directed fault zone that acts as a tectonic eastern contact for the 2 mica granite.

The hornblende-bio granodiorite is less altered, less faulted, is known to intrude a northerly directed fault zone.

It is possible that the granodiorite is younger than the 2 mica granite.

Significance of postulated position of granodiorite roof

The position of the newly located extension of granodiorite pluton is mainly in the valley of Kokummi Creek, and is contrasted with the previous mapping of the surrounding ridges as Karmutsen Basalt. This position suggests the possibility that the roof of the pluton is along the upper edge of Kokummi Creek and below the higher ridges. A large magnetic anomaly has been shown on MapPlace extending northward from the main body of the pluton in the southeast and extending northwestward to encompass the area near Jackpot Creek. The magnetic susceptibility measured on the newly located granodiorite confirms the magnetic nature of the pluton (Appendix C). Hence it is likely that the pluton underlies at a shallow depth much of the area encompassed by the magnetic anomaly.

The possibility of the top of a pluton at shallow depth below the claims enhances the mineral potential of the claims.

Results from secondarily dispersed media:

Fragments from till

The bank from which mineralized basal till samples (FLAN locality) have been withdrawn is actively eroded and slides of overlying debris regularly change the face yearly. Nevertheless, mineralized samples continue to be extracted. This year, 2 samples from the face of the till outcrop and a piece of talus collected below these two samples continue to exhibit their gold and copper rich nature. The three samples mentioned return gold ranging from 40-48 gm/t and copper ranging from 1.1 to 2.0% as shown in the table below:

Sample	Au	Ag, ppm	Cu	Bi, ppm	Sb, ppm	As,ppm
006954	47.20 gm/t	22.8	1.528%	22	<3	10
006955	46.07 gm/t	20.5	1.149%	20	<3	12
006956	40.98 gm/t	37.7	2.031%	14	<3	21

*Assay values are from ICP-MS except high Au (gravimetric fire assay) and high Cu (AA assays)

The above table shows that mineralized fragments with copper, silver and gold, share a common characteristic in that Bi is elevated, As is present, whereas Sb is not, as has been shown in previous reports. This suggests the mineralizing source is relatively proximal to the vein(s) and common to all the fragments, although not all fragments tap exactly the same part of the vein(s).

Stream sediment results

The streams drain a large area and cobbles give a hint to what bedrock might lie upstream. Cobbles in Kokummi Creek suggest that the granodiorite shown in subcrops along roads are available for erosion above the road until the contact is reached, whereupon dark aphanites of the Karmutsen basalts become common. A easily recognized pilotaxitic diabase is also locally abundant.

Cobbles from Schoen Creek headwaters vary. From the east, big apartment-sized blocks of Karmutsen pillow basalts are noted, along with hyaloclastite from the middle of the Karmutsen Group, and locally, the same pilotaxitic diabase noted above. From the south, creeks show a mix of black chips of argillite and chert, dark aphanites of the Karmutsen, minor 2 mica granite (2mg) cobbles, and rare quartz veins w/ minor sulphides and leached pits. From the west, rusty pillow basalts, small black chips of siltstone and local pink granite and 2 mica granite. It would seem there is more 2 mica granite in the south west claims but its location is not known.

Stream sediments show anomalous values in two places. The Kokummi Creek headwaters show elevated Au (7 to 36 to ppb) compared to low backgrounds (<2 to 6) in a small area trending NNW in the vicinity of the contact of the granodiorite intruding Karmutsen Basalts. Similarly, Cu values (90 to 124 ppm compared to usual 20-50 ppm) outline the same area. Headwaters of Schoen Creek show local anomalous values in Cu (178 to 299 to ppm) and less so in Au (<2 to 19 ppb). The Schoen Creek anomaly area is not clearly delineated. As shown, local mineralized cobbles in the local creeks carry copper assays (259 to 565 ppm) and local gold values of 64 to 66 ppb.

Results from petrophysics

Magnetic susceptibility

Granodiorite is magnetic, and a detailed magnetic survey should outline the area of granodiorite exposed or near surface.

Results from magnetic susceptibility measurements indicate that Hb-bio granodiorite is magnetic (from 26 to 62.7 with a median of 36 10⁻³ SI units, see Appendix C). Previously it has been established that the 2 mica granite is diamagnetic (gives small negative values on MS meter).

The "magnetic" rocks are exposed at surface in a smaller area than an aerial aeromagnetic anomaly covers. (Compare Figure 8 and Figure 4).

A possible conclusion is that the Hb-bio granodiorite underlies a larger but near surface area outlined partially by magnetic anomaly.

Summary

The extension of magnetic granodiorite into the claims, especially in the topographically lower valley portion of the Kokummi drainage, along with the presence of a small copper anomaly at the contact, coupled with the previously known regional aeromagnetic anomaly raises the possibility that mineralized granodiorite may underlie part of the claims.

The two mica granite extends further south than previously known.

Recommendations for future work

Mineral deposit Models

Exploration guides for the current choice of *Intrusion Related Au Pyrrhotite Vein Mineral Deposit Model* include:

Locate a geochemical footprint of elevated Au, Ag, Cu, (minor As and Zn),

A geophysical electromagnetic signature revealed by (ABEM or VLF-EM) and a magnetic signature shown by linear magnetic anomalies, *as well as*

Geological observations which include the finding of small 'hairline' fractures which are good indicators that a major vein is nearby (Aldrick, 1996).

These criteria should be actively sought. More prospecting along creek banks and along new road cuts should be actively explored for thin (hairline) sulphide veinlets and an effort made to quantify the variability in their abundance.

Geochemical survey for copper anomalies in southern part of

claim:

At Kokummi headwaters, an anomalous area has been defined, and more prospecting and several lines of contour soil sampling in this area is needed to locate the source of anomaly. It is near the contact of the granodiorite pluton. To follow up this work, contour soil sampling in the vicinity of the contact would seem appropriate.

In the southern Schoen Creek silt samples, the anomalous values are not well delineated and will require more stream and soil sampling to better localize anomalies.

Magnetic and electromagnetic surveys:

The granodiorite is magnetic, the 2 mica granite is diamagnetic, the country rock is very weakly magnetic, the pyrrhotite veins are variably magnetic and shear zones are less magnetic than country rocks. These attributes would make an integrated airborne geophysical survey an ideal method to help focus attention of now hidden accumulations of magnetic bodies.

Hand based technologies:

A prospector based exploration program could include visiting known anomalous areas and conducting a Beep Mat survey to outline near surface conductors, conducting a small soil/basal till survey within such an area, and hand trenching on the most prominent anomaly.

Systematic Surveys

A junior company would perform larger, more systematic geochemical and geophysical surveys on well established grids to find anomalous regions. The claim group is a good candidate for an integrated airborne geophysical survey. Current mineralization is largely near logging roads. An aerial survey would designate areas of interest based on measured physical parameters rather than on ease of access.

Budget

No budget is provided as the project can be configured in many different ways depending on available resources and personnel.

References

Aldrick, D.J. 1996

Intrusion Related Au Pyrrhotite Veins, in Selected British Columbia Mineral Deposit Profiles – Volume 2 – Metallic Deposits; Lefebure D.V. and Hoy, T, Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 57-58.

Anon, 2008

RGS23, NTS092L/102I, BCGS, available at BCGS website MapPlace, available at BCGS website

Assibey-Bonsu, W. 1996

Summary of present knowledge on the representative sampling of ore in the mining industry, in South African Institute of Mining and Metallurgy, vol 96, no. 6, pages 289-293.

Bradshaw, P.M.D., 1994

Assessment Report; Maquilla Property; BC Gov., Geological Branch Assessment Report 23546.

Hicock S.R. 1986

Pleistocene Glacial Dispersal and History in the Buttle Valley, Vancouver Island: A feasibility Study for Alpine Drift Studies; Can Journ Earth Sciences, vol 23, pg 1867-1879.

Howes, D.E., 1981

Late Quaternary Sediments and Geomorphic History of North-Central Vancouver Island, British Columbia: Can Journ Earth Sciences, vol 18, pg 1-12.

Howes, D.E., 1983

Late Quaternary Sediments and Geomorphic History of Northern Vancouver Island, British Columbia: Can Journ Earth Sciences, vol 20, pg 167-65.

Levson, V.M. and Giles T.R., 1995

Glacial Dispersal Patterns of Mineralized Bedrock: with examples from the Nechako Plateau, Central British Columbia; in ed Bobrowsky P.T., Sibbick, S.J., Newell, J.M., and Matysek, P.F. Drift Exploration in the Canadian Cordillera, BC Government, Mineral Resources Division, Geological Survey Branch, Paper 1995-2, pg 67 – 76.

Massey, N.W.D., compiler, with Desjardin and Grunsky, 1994, Vancouver Island Digital Geology, BCGS OF 1994-6

Massey N.W.D, 2004

Vancouver Island Digital BCGS Open File 2005

Muller, J.E., Northcote, K.E., and Carlisle, D. 1974

Geology and mineral deposits of Alert-Cape Scott map-area, Vancouver Island, BC;Geological Survey of Canada, Paper 74-8, 77pg., 1 map, 1:250000.

Plouffe, A. 1995

Drift Prospecting, Sampling Methods; in ed Bobrowsky P.T., Sibbick, S.J., Newell, J.M., and Matysek, P.F. Drift Exploration in the Canadian Cordillera, BC Government, Mineral Resources Division, Geological Survey Branch, Paper 1995-2, pg 43-52.

Proudfoot, D.N., Bobrowsky, P.T., and Meldrum, D. 1995

Drift Exploration Potential Maps Derived from Terrain Geology Maps; in ed Bobrowsky P.T., Sibbick, S.J., Newell, J.M., and Matysek, P.F. Drift Exploration in the Canadian Cordillera, BC Government, Mineral Resources Division, Geological Survey Branch, Paper 1995-2, pg 23-33.

Schau, Mikkel, 2001

Prospector's Report on PAP2000-95, unpublished manuscript lodged with BCGS

Schau, Mikkel, 2002

Prospector's Report on PAP2001-91, unpublished manuscript lodged with BCGS

Schau, Mikkel, 2003

Preliminary Geology, Petrography and Petrophysics of the Flan Group; BC Gov., Geological Branch Assessment Report 26793

Schau, Mikkel, 2004

Preliminary Geology, Petrography and Petrophysics of the Xanga Group; BC Gov., Geological Branch Assessment Report 27311

Schau, Mikkel, 2006

Prospector's Report on part of the Flan-Consolidated Group of claims (507295 and 513281).BC Gov., Geological Branch Assessment Report 28382.

Schau, Mikkel, 2007

New Results from the FLAN showing on part of the Flan-Consolidated Group of Claims (Tenure 509012) in the Nanaimo Mining Division;; Geological Branch Assessment Report; 29360.

Schau, Mikkel, 2007

Alteration Studies on the Flan Consolidated Claims (Tenures 507295, 509012, 513281, 543699). BC Gov., Geological Branch Assessment Report; *29551*.

Schau, Mikkel, 2008

Mineralography of selected samples from FLAN Showing on part of the Flan-Consolidated Group of Claims (Tenures 509012 and 553495) in the Nanaimo Mining Division in 092L/01 at 50 deg 07 min North and 126 deg 15 min 30 sec West: BC Gov., Geological Branch Assessment Report 30009

Schau, Mikkel, 2009

Continuing exploration on the FLAN showing in the Flan Consolidated Claims (Tenures 509012, 507285, 543699, and 553495)... BC Gov., Geological Branch Assessment Report 30471

Schau, Mikkel, 2009

Orientation and Lineament Studies (Tenures 509012, 507285, 543699, 553495 and 590156) in the on the FLAN Consolidated Claims; BC Gov., Geological Branch Assessment Report 31046

Schau, Mikkel, 2010

Ongoing exploration on the Flan Consolidated Claims (Geology, Geochemistry, and geophysics) in *Tenures 509012, 507285, 543699, 553495 and 590156:* BC Gov., Geological Branch Assessment Report 31679

Author's qualifications

I, Mikkel Schau

have been a rock hound, prospector and geologist for over 50 years. My mineral exploration experience has been with Shell, Texas Gulf Sulfur, Kennco, Geophoto, Cogema and several public and private mining juniors. I have worked 10 years in southern BC and spent 23 years with the GSC as a field officer focused on regional mapping in northeastern Arctic Canada before retiring. For the last 13 years I have prospected and mapped in Nunavut, Nunavik, Yukon, Ontario and BC.

I reside at 3919 Woodhaven Terrace, Victoria, BC, V8N 1S7

My formal education is that of a geologist, I graduated with an honours B.Sc. in 1964 and Ph.D. in Geology in 1969, both, from UBC.

My experience in geochemical exploration spans half a century. I was on a follow up crew for a province wide Kennco geochemical survey in the early sixties. Later I was a teaching assistant to Dr Delavault's Exploration Geochemistry course at UBC. Subsequently, I was the geochemist for a major exploration focused geochemical survey in NE BC. Hence, I lectured on the subject of Aqueous Geochemistry, a fourth year course at University of Manitoba. I currently use geochemical methods in my exploration work.

I am a P.Geo (25977) in BC. I am currently a BC Free Miner, # 142134.

The claims are owned in part by Interwest Enterprises (20%) total 2444.944 ha and 80% by Schau. An additional 1533.9 ha are owned 100% by Schau, for a total of 3978.85 ha. Currently, an "earn-in" contract between Schau and Interwest Enterprises is in effect.

I am an author of the report entitled *"New Exploration (Prospecting, Geology and Geochemistry) in Southern portion of Flan-Consolidated Group (Tenures 509012, 553495, 590156, 622623, 622643, and 622663) in the Nanaimo Mining Division in 092L/01 at 50 deg 06 min North and 126 deg 13 min West"*, dated August 20, 2010, and submitted November 22, 2010

ulle Sile

Signed

Mikkel Schau, P. Geo. (25977)

, dated , August 20, 2010 and submitted November 22, 2010

Itemized cost statement

Field Work	
MS @\$500.00, August 7-12, 2010	3,000.00
Alec Tebbutt (as per invoices for August 7-12)	1,736.22
Room and board (at H'Kusam Lodge, 10 man days)	
(August 7 to 12) invoice 5x55+5x80 (no HST)	675.00
Analytical work	
Geochemical	
Acme VAN10004248.1	360.72
Acme VAN10004248.2	49.95
Acme VAN10004249.1	723.31
Magnetic Susceptibility	
14 stations, 45 determinations @\$5/ station	70.00
Report writing (10 hrs @50.00/hr)	500.00
Total	7,115.20
TOTAL claimed	6,135.61

Note: Arithmetic errors were made when submitting Change of Due Date form. NOTE These costs do NOT include HST

Appendix A-sample descriptions, locations and selected assays

Sample locations are shown in Figure 6; gold (ppb) in Figure 7 and Cu (ppm) in Figure 8

Table A-1	Bedrock samples (N= 4)
Table A-2a	Comparison of major elements among 2 mica granite and Hb-bio Granodiorite
Table A-2b	Trace elements determined with above whole rock analyses
Table A-3	Fragments not in bedrock; Till Fragments in till and talus (N= 5)
Table A-4	Till Matrix (N= 2)
Table A-5	Soil Samples (N= 2)
Table A-6	Stream samples (N= 27)

TABLE A-1, Outcrop samples

Sample	UTME	UTMN		Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6951 201R	699037	555345 4	Sheared diabase/siltstone hornfels with minor po, cpy at contact with Hb-bio granodiorite	3	0.8	275	<3
6952 202R	695699	555201 7	Fresh 2 mica granite	<2	<0.3	4	<3
6953 202AR	699339	555325 4	Fresh Hb-bio grnd	<2	0.6	5	<3
6957 204R	695469	555254 4	dark grey to black hornfels w/ minor sulphides, at contact with 2 mica granite	222	1.2	846	<3

TABLE A-2a Comparison of major elements among 2 mica granite and Hb-bio Granodiorite

	2 mica	granite	Hb-bio gr	anodiorite
	#6	952	#6	953
	695699E	5552017N	699339E	5553254N
SiO2	77	7.81	63	3.26
TiO2	0.08	/ 0.02	0.55	/ 0.24
AI2O3	12.27	' / 0.30	16.05	5 / 1.58
Fe2O3t	0.93	/ 0.59	6.07	/ 3.03
MnO	0.03 / 2	236 ppm	0.12 / 4	413 ppm
MgO	0.13	/ 0.07	2.34	/ 0.77
CaO	0	.96	5	.44
Na2O	3.62	1 0.05	3.24	/ 0.16
K2O	3.48	1 0.07	1.86	/ 0.57
P2O5	0.03 / 0	0.003 (P)	0.14 / ().057 (P)
LOI	0	.05	0	.08
sum	99	9.85	99	9.83
Ва	134	0 / 40	637	/ 256

(also showing results of aqua regia extraction in italics)

(Bold is higher value of the pair)

Element	2 mica granite	hb-bio-granodiorite
Hf	1.9	2.7
Nb	4.8	3.9
Rb	81.9	37.8
Sr	139.2 / 11	351.3 / 41
Th	6.8 / 6	2.7 / 2
U	2.9	1.0
Zr	49.6	95.2
Ce	28.8	23.2
Eu	0.40	0.80
Yb	1.20	1.80
Ce/Y	24	13
Y	10.6	16.6
V	25.0/2	144 / 104

TABLE A-2b Trace elements determined with above whole rock analyses

(also showing results of aqua regia extraction in italics)

(Bold is higher value of the pair)

TABLE A-3 Rock fragment from till and talus

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6954	696572	5554958	Mineralized fault breccia fragment, in situ in till	47.20 gm/t*	22.8	1.528%#	22
6955	696572	5554958	Mineralized fault breccia fragment, in situ in till	46.07 gm/t*	20.5	1.149%#	20
6956	696572	5554958	Mineralized fault breccia fragment, in talus below above samples	40.98 gm/t*	37.7	2.031%#	14
6958 206R 609	696393	5551431	Creek cobble of Karmutsen volcanic with rust and minor sulphides	66+	1.2	259	<3
6959 297R	696503	5551409	creek cobble of Karmutsen volcanic with rust and minor sulphides	64+	0.8	565	<3

Samples assayed by ;+ Au by FA fusion ,ICP-MS, 30 gm; # Cu by method 8TD, * Au by method G6,

TABLE A-4 Till matrix

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6558	699003	5553320	Fresh till, no oxidation, meter thick, light grey, with black aphanite fragments	4	<0.3	282	<3
6566	696117	5050552	Fresh till, bluey grey, med fine grain	3	< 0.3	116	<3

TABLE A-5-Soil

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6565	696042	5552393	Rusty brown soil, bank cut, Schoen creek, med dry, no slumping sand 20%, pebbles 30%, org 20%, depth 20 cm, Minor sulphide (S 0.05%)	5	0.5	168	<3
6567	696224	5551738	Orange brown, med dry, some clumps, depth 15 cm, pebbles 10%, sand 20%, silt 30%, clay 20%, organic 5%	4	<0.3	170	<3

TABLE A-6 Stream Sediments (silts)

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6553	699721	5553216	Small 2 m wide creek, trickle, light grey, 60% pebbles, 20% organic, , mainly under large rocks	<2	<0.3	21	<3
6554	699354	5553356	Ck, 4 m wide, 20% organic, pebbles 20%, rest, med grey brown fine silt local granodiorite fragments	5	<0.3	55	<3
6555	699127	5553449	2.5 m wide, flow present, 60% cobbles, 20% organic, more Karmutsen in creek than last time (contact above?)	36	<0.3	122	<3

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6556	699027	5553449	2 m wide creek, pebbles 20%, org 5 % col med grey, some seepage from rock,	4	<0.3	106	<3
6557	698920	5553451	Minor S (.05%) small dribble, some seepage from country rock, here heavily veined rock	4	<0.3	62	<3
6559	698990	5553319	Dry creek, , sample from small pool, mainly organic, few pebbles, med grey brown silt, S (0.25%)	4	0.4	38	<3
6560	699104	5553342	Silt 8 m upstream from road,4 m wide, medium flow, pebbles 40%, org 5%, silt brn gry	14	<0.3	124	<3
6561	699263	5553257	2 m wide, flow medium, pebbles 80%, no org, dk gry silt,	11	<0.3	109	<3
6562	699341	5553254	Creek 4 m wide, in grnd, pebbles 60%, sand 10%, no org, brn grey silt	<2	<0.3	59	<3
6563	696206	5551626	Schoen Creek above bridge, 20 w, flow good, col dk grey, pebbles 40%, no org	6	<0.3	178	<3
6564	696148	5551974	Small dry creek bottom, pebbles 30%, sand 50%, dk gry brn silt	8	<0.3	284	<3
6568	695800	5551881	Small dry Creek bottom, med grey brn, peb 60%, sand 20%, org 5%	2	<0.3	225	<3
6569	695772	5551910	Dry, creek a meter wide, sample med mixed, ¹ / ₂ dark, ¹ / ₂ brown (deeper and finer silt), peb 30%, sand 40%, org 5%,	3	<0.3	299	<3
6570	695723	5551978	Small creek west of landslide, no creek cut, but surface flow, out of dense bush patch, sample 30% pebbles, sand 30%, 5% org, col med grey,	19	0.3	242	<3
6571	695441	5552602	Creek at bridge over Schoen Creek, 12 m wide, good flow, sample upstream 15 meters, peb 40%, org 5%, col grey to tan	3	<0.3	228	<3

Sample	UTME	UTMN	Descriptor	Au, ppb	Ag, ppm	Cu, ppm	Bi, ppm
6572	699473	5553469	30 m up from road, Creek 4 m wide, mod flow, peb 40%, sand 10%, org 10%, col grey with brown and white patches in silt	10	<0.3	40	<3
6573	699501	5553468	30 m upstream from road, 2 m wide, trickle flow, peb 40%, org 25%, sand 10%,	10	<0.3	16	<3
6574	699638	5553496	30 m upstream, 1 m width, trickle flow, peb 70%, sand 5%, org 20%, lt grey – white in granodiorite) not good sample	<2	<0.3	24	<3
6575	699630	5553040	20 m upstream, 3 m wide, good flow, col black to dk grey, peb 50% sand 20%, org 5%,	<2	<0.3	67	<3
6576	699589	5553010	4 m wide creek, good flow, grey to black colour, peb 40%, sand 20%, org 5%	<2	<0.3	56	<3
6577	699239	5553057	Same creek as 6559, 2 m wide good flow, med grey brown, peb 40%, sand 20%, org 10%	30	<0.3	98	<3
6578	699333	5554049	10 m up from road, 2 m wide med flow, grey-brn, peb 60%, sand 20 %, org 5%	7	<0.3	107	<3
6579	696286	5553049	Drainage on a delta of gravel, with hemlock forest col med grey, peb 70%, sand 20% and org 10%, probably not a good sample	<2	<0.3	193	<3
6580	696318	5551425	Other fork, 4 m wide, good flow, pebbles 20%, sand 20% org 30%, col dk grey-brn and black	<2	0.7	193	<3
6581	696377	5551429	Major creek dry 12 m wide, mostly grey sed, peb 25%, sand 40%, org 5%, med grey brown	3	0.7	184	<3
6582	696529	5551378	Up 125 degrees, Creek feeds 6581, 15 m wide, small flow, grey-tan, peb 20%, sand 40%, org 10%	<2	0.9	202	<3
6583	696527	5551323	Up 144 degrees, Creek width 15 m dry, col med grey brown, peb 30%, sand 40%, org 10%	<2	0.8	187	<3

Appendix B-magnetic susceptibilities of selected sites

Magnetic Susceptibilities of samples reported in SI (10⁻³) units. Site locations are on Figure 8, and Median sample values are shown on figure 8. Median values reported for a station site.

Fault zone (Fie "StationID"," "AT1_129 "AT1_129",	eld name Lacy rocks) NAD83E" ,"NAD83N" , ",698920, 5553451, 698920, 5553451	"Elev_m" Rock Type", 810.8,," irk w/ small veining; not on vans", 810.8,," irk w/ small veining; on veins (white)"	"MS1", 0.53, 0.26,	"MS2", "MS3", 0.51, 0.57,, 0.4, 0.15,,
At Contact bet "StationID"," "AT1_127",	ween Granodiorite and NAD83E", "NAD83N", 699039, 5553450, contac contac	d hornblende Mafic rocks "Elev_m" Rock Type", 799.5,1," ct; Mik wpt 575","granodiorite", ct; Mik wpt 575","Karmutsen", ct; Mik wpt 575","Karmutsen, feldsparphyric	"MS1", 0.28, 0 0.92, 1 0.6, 0	"MS2", "MS3",), 0.14,, 1.82,1.35,, .57, 0.67,,
"StationID"," "AT1_132",	NAD83E", "NAD83N", 699038, 5553333, grano Karmi	"Elev_m" RockType", 767.2,1," diorite" utsen?",	"MS1", 0.89, 0.71,	"MS2", "MS3", 1.04, 0.86,, 0.72, 0.63,,
"StationID"," "AT1_123",	NAD83E" ,"NAD83N" , 699515, 5553245,	"Elev_m" RockType", 731.8,1,"hornblende granodiorite; ,	"MS1", 26,	"MS2", "MS3", 31.7, 30.9
"AT1_135", "AT1_135",	699341 ,5553254, 699341, 5553254,	,733,1,"granodiorite" 733,2,, "med gry/blk inclusions in granodiorite",	33.9, 51.6,	35.6, 38.4,, 54.8, 62.7,,
"AT1_148", "AT1_148", (48, 35.7)	699471, 5553449, 699471, 5553449,	784.9,1,,"grnd intrusive", 784.9,2,,"grnd inclusions",	35.2, 50.8,	30.3, 27.2,, 38, 18.6,
"AT1_151", "AT1_151",	699652, 5553490,, 699652, 5553490,	807.1,1,,"grnd intrusive", 807.1,2,,"grnd inclusions"	36.1, 37.9,	42.9, 36.4,, 45.7, 35.2,,

Appendix C-Assay certificates

Acme VAN10004248.2.

Acme VAN10004249.1

CERTIFICATE OF ANALYSIS

Client:

Schau, Mikkel 1007 Barkway Terrace Brentwood Bay BC V8M 1A4 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Submitted By: Mikkel Schau Receiving Lab: Canada-Vancouver Received: August 30, 2010 Report Date: November 05, 2010 Page: 1 of 2

VAN10004248.2

CLIENT JOB INFORMATION

Project:	FLAN WRAP
Shipment ID:	
P.O. Number	
Number of Samples:	9

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
DISP-RJT	Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	9	Crush, split and pulverize 250 g rock to 200 mesh			VAN
3B03	3	Fire assay fusion Au Pt Pd by ICP-MS	30	Completed	VAN
8TD	3	4 Acid Digest AAS Finish Vancouver	0.5	Completed	VAN
GEO4	6	FA fusion Au Pt Pd; 1:1:1 AR digestion ICP-ES analysis	30	Completed	VAN
4A4B	2	Whole Rock Analysis Majors and Trace Elements	0.2	Completed	VAN
G6	3	Lead collection fire assay fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

Version 2: G601-G612 for Sample IDs 006954 to 006956 included

Schau, Mikkel Invoice To:

1007 Barkway Terrace Brentwood Bay BC V8M 1A4 Canada

CLARENCE LEONG GENERAL MANAGER

CC:

Page:

Schau, Mikkel

1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FL
Report Date:	No

LAN WRAP ovember 05, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2 Part 1 VAN10004248.2

CERTIF	CERTIFICATE OF ANALYSIS VAN10004248.2																					
		Method Analyte	WGHT Wgt	3BMS Au	3BMS Pt	3BMS Pd	8TD Cu	3B Au	3B Pt	3B Pd	1D Mo	1D Cu	1D Pb	1D Zn	1D Ag	1D Ni	1D Co	1D Mn	1D Fe	1D As	1D Au	1D Th
		Unit MDI	kg	ppb 1	ppb 0 1	ppb	% 0.001	ppb 2	ppb 3	ppb 2	ppm 1	ppm 1	ppm 3	ppm 1	ppm 03	ppm 1	ppm 1	ppm 2	% 0.01	ppm 2	ppm 2	ppm 2
006951	Rock	MDL	1 17	NA	N A	N A	N A	3	6	15	<1	275	<3	23	0.5	47	21	215	2 50	3	<2	<2
006952	Rock		1.18	N.A.	N.A.	N.A.	N.A.	<2	<3	<2	<1	4	<3	8	<0.3	<1	<1	236	0.59	<2	<2	6
006953	Rock		0.43	N.A.	N.A.	N.A.	N.A.	<2	<3	<2	<1	5	<3	39	0.6	2	9	413	3.03	<2	<2	2
006954	Rock		0.79	>10000	0.7	6.0	1.528	N.A.	N.A.	N.A.	13 :	>10000	<3	883	22.8	38	195	890	19.11	10	32	<2
006955	Rock		1.33	>10000	0.6	6.9	1.149	N.A.	N.A.	N.A.	3	9554	<3	1014	20.5	50	239	973	26.00	12	39	<2
006956	Rock		0.08	>10000	1.5	16.6	2.031	N.A.	N.A.	N.A.	26 3	>10000	<3	688	37.7	15	76	817	11.65	21	42	<2
006957	Rock		0.28	N.A.	N.A.	N.A.	N.A.	222	<3	4	<1	846	<3	41	1.2	17	40	167	2.65	30	<2	<2
006958	Rock		0.54	N.A.	N.A.	N.A.	N.A.	66	5	17	<1	259	<3	179	1.2	34	13	1533	2.25	13	<2	<2
006959	Rock		0.63	N.A.	N.A.	N.A.	N.A.	64	<3	29	2	565	4	19	0.8	97	130	129	7.05	2	<2	<2

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

AcmeLabs

CERTIFICATE OF ANALYSIS

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FI
Report Date:	Ν

FLAN WRAP November 05, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

^{2 of 2} Part ² VAN10004248.2

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	10
	Analyte	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	w	S	Sc	Ga
	Unit	t ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
	MDL	. 1	0.5	3	3	1	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05	5	5
006951	Rock	65	<0.5	<3	<3	63	1.47	0.062	3	22	0.55	60	0.22	<20	1.65	0.24	0.06	<2	0.71	6	<5
006952	Rock	11	<0.5	<3	<3	2	0.06	0.003	7	<1	0.07	40	0.02	<20	0.30	0.05	0.07	<2	<0.05	<5	<5
006953	Rock	41	<0.5	<3	<3	104	0.85	0.057	9	3	0.77	256	0.24	<20	1.58	0.16	0.57	<2	<0.05	<5	<5
006954	Rock	<1	11.6	<3	22	157	0.09	0.032	2	<1	0.95	11	0.03	<20	2.01	<0.01	<0.01	<2	12.89	9	ę
006955	Rock	1	14.9	<3	20	126	0.12	0.027	2	<1	0.78	1	0.02	<20	1.59	<0.01	<0.01	<2	17.69	8	7
006956	Rock	2	8.4	<3	14	146	0.09	0.026	3	4	0.87	7	0.11	<20	1.94	<0.01	<0.01	<2	5.69	10	ę
006957	Rock	39	0.5	<3	<3	36	1.11	0.012	<1	7	0.34	4	0.09	<20	1.11	0.01	0.01	<2	0.86	<5	5
006958	Rock	58	1.2	<3	<3	88	1.55	0.063	3	29	0.74	17	0.28	<20	1.72	0.22	0.05	<2	0.08	7	<5
006959	Rock	98	0.8	<3	<3	54	3.47	0.030	2	14	0.23	21	0.18	<20	5.32	0.33	0.04	<2	5.61	<5	19

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FLAN WRAP
Report Date:	November 05

vember 05, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2 Part 3 VAN10004248.2

CERTIFICATE OF ANALYSIS

	Method	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B										
	Analyte	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ва	Be	Co	Cs	Ga
	Unit	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1	0.5
006951 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006952 Ro	ock	77.81	12.27	0.93	0.13	0.96	3.62	3.48	0.08	0.03	0.03	<0.002	<20	2	0.5	99.85	1340	<1	0.8	0.4	10.3
006953 Ro	ock	63.26	16.05	6.07	2.34	5.44	3.24	1.86	0.55	0.14	0.12	<0.002	<20	15	0.8	99.83	637	<1	13.5	0.6	15.4
006954 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006955 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006956 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006957 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006958 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										
006959 Ro	ock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.										

Project:

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

VAN10004248.2

FLAN WRAP Report Date:

November 05, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

CERTIFICATE OF ANALYSIS

	Method	4A-4B																			
	Analyte	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb
	Unit	ppm																			
	MDL	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05	0.01
006951 Roc	k	N.A.																			
006952 Roc	k	1.9	4.8	81.9	<1	139.2	0.3	6.8	2.9	25	0.5	49.6	10.6	14.9	28.8	2.93	10.7	1.75	0.40	1.73	0.28
006953 Roc	k	2.7	3.9	37.8	<1	351.3	0.3	2.7	1.0	144	<0.5	95.2	16.6	11.0	23.2	2.80	11.8	2.35	0.80	2.67	0.46
006954 Roc	k	N.A.																			
006955 Roc	k	N.A.																			
006956 Roc	k	N.A.																			
006957 Roc	k	N.A.																			
006958 Roc	k	N.A.																			
006959 Roc	k	N.A.																			

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

2 of 2 Part 4

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FLAN
Report Date:	Nove

N WRAP ember 05, 2010

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 5 VAN10004248.2

CERTIF	ICATE O	FAN	JALY	SIS													VA	N10	0004	248	.2	
		Method	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B :	2A Leco 2	A Leco	1DX											
		Analyte	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppb	ppm									
		MDL	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01
006951	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006952	Rock		1.57	0.36	1.02	0.18	1.20	0.21	<0.02	<0.02	0.3	4.2	1.1	8	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	1.7	<0.01
006953	Rock		2.57	0.55	1.79	0.27	1.80	0.30	<0.02	<0.02	0.2	5.5	0.8	32	1.9	0.5	<0.1	<0.1	<0.1	<0.1	0.7	<0.01
006954	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006955	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006956	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006957	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006958	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
006959	Rock		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Project: Report Date:

Page:

FLAN WRAP November 05, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

2 of 2 Part 6

CERTIFICATE OF ANALYSIS

		Method	1DX	1DX	G6Gr
		Analyte	ті	Se	Au
		Unit	ppm	ppm	gm/t
		MDL	0.1	0.5	0.17
006951	Rock		N.A.	N.A.	N.A.
006952	Rock		<0.1	<0.5	N.A.
006953	Rock		<0.1	<0.5	N.A.
006954	Rock		N.A.	N.A.	47.20
006955	Rock		N.A.	N.A.	46.07
006956	Rock		N.A.	N.A.	40.98
006957	Rock		N.A.	N.A.	N.A.
006958	Rock		N.A.	N.A.	N.A.
006959	Rock		N.A.	N.A.	N.A.

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 1

VAN10004248.2

Project:	FLA
Report Date:	Nov

Client:

Page:

FLAN WRAP November 05, 2010

1 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

QUALITY CONTROL REPORT

	Method	WGHT	3BMS	3BMS	3BMS	8TD	3B	3B	3B	1D	1D	1D	1D	1D							
	Analyte	Wgt	Au	Pt	Pd	Cu	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th
	Unit	kg	ppb	ppb	ppb	%	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm							
	MDL	0.01	1	0.1	0.5	0.001	2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	2
Pulp Duplicates																					
REP G1	QC					0.001															
006958	Rock	0.54	N.A.	N.A.	N.A.	N.A.	66	5	17	<1	259	<3	179	1.2	34	13	1533	2.25	13	<2	<2
REP 006958	QC									<1	261	<3	178	1.1	34	14	1504	2.24	12	<2	<2
Reference Materials																					
STD CDN-ME-3	Standard																				
STD CDN-PGMS-15	Standard						403	104	433												
STD CSC	Standard																				
STD CU148	Standard					1.124															
STD DS7	Standard																				
STD DS7	Standard									21	109	69	425	1.3	54	9	640	2.42	53	<2	5
STD OREAS132A	Standard					0.045															
STD OREAS45PA	Standard																				
STD OREAS45PA	Standard									<1	647	15	123	1.0	320	112	1120	17.04	7	<2	6
STD OREAS76A	Standard																				
STD PD1	Standard		545	452.8	550.0																
STD PD1	Standard		363	453.3	548.6																
STD PD1	Standard						530	461	565												
STD SO-18	Standard																				
STD SO-18	Standard																				
STD SO-18 Expected																					
STD DS7 Expected										21	109	71	411	0.9	56	10	627	2.39	48	0.07	4
STD OREAS45PA Expected										0.9	600	19	119	0.3	281	104	1130	16.559	4.2	0.043	6
STD CU148 Expected						1.12															
STD OREAS132A Expected						0.0458															
STD CSC Expected																					
STD OREAS76A Expected																					
STD PD1 Expected			542	456	563		542	456	563												
STD CDN-PGMS-15							410	98	428												

Page:

Schau, Mikkel

1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 2

VAN10004248.2

Acme	abs
	_UNJ

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FLAN WRAP
Report Date:	November 05

nber 05, 2010

1 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	S	Sc	Ga
	Unit	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
	MDL	1	0.5	3	3	1	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05	5	5
Pulp Duplicates																					
REP G1	QC																				
006958	Rock	58	1.2	<3	<3	88	1.55	0.063	3	29	0.74	17	0.28	<20	1.72	0.22	0.05	<2	0.08	7	<5
REP 006958	QC	58	1.2	<3	<3	88	1.55	0.063	3	29	0.73	17	0.27	<20	1.70	0.22	0.05	<2	0.08	7	<5
Reference Materials																					
STD CDN-ME-3	Standard																				
STD CDN-PGMS-15	Standard																				
STD CSC	Standard																				
STD CU148	Standard																				
STD DS7	Standard																				
STD DS7	Standard	79	6.2	4	4	88	1.02	0.076	13	195	1.07	421	0.12	43	1.07	0.10	0.46	3	0.20	<5	<5
STD OREAS132A	Standard																				
STD OREAS45PA	Standard																				
STD OREAS45PA	Standard	14	1.1	<3	<3	239	0.25	0.036	16	869	0.11	185	0.14	<20	3.82	<0.01	0.08	<2	<0.05	56	15
STD OREAS76A	Standard																				
STD PD1	Standard																				
STD PD1	Standard																				
STD PD1	Standard																				
STD SO-18	Standard																				
STD SO-18	Standard																				
STD SO-18 Expected																					
STD DS7 Expected		68	6.4	5	5	84	0.93	0.08	13	179	1.05	410	0.124	39	0.959	0.073	0.44	4	0.19		
STD OREAS45PA Expected		14	0.09	0.13	0.18	221	0.2411	0.034	16.2	873	0.095	187	0.124		3.34	0.011	0.0665	0.011	0.03		
STD CU148 Expected																					
STD OREAS132A Expected																					
STD CSC Expected																					
STD OREAS76A Expected																					
STD PD1 Expected																					
STD CDN-PGMS-15																					

Acme Analytical Laboratories (Vancouver) Ltd.

Brentwood Bay BC V8M 1A4 Canada	

1 of 2

Report Date:

Client:

Project:

Page:

FLAN WRAP November 05, 2010

Part 3

VAN10004248.2

Schau, Mikkel 1007 Barkway Terrace

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

	Method	4A-4B																			
	Analyte	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ва	Be	Co	Cs	Ga
	Unit	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1	0.5
Pulp Duplicates																					
REP G1	QC																				
006958	Rock	N.A.																			
REP 006958	QC																				
Reference Materials																					
STD CDN-ME-3	Standard																				
STD CDN-PGMS-15	Standard																				
STD CSC	Standard																				
STD CU148	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD OREAS132A	Standard																				
STD OREAS45PA	Standard																				
STD OREAS45PA	Standard																				
STD OREAS76A	Standard																				
STD PD1	Standard																				
STD PD1	Standard																				
STD PD1	Standard																				
STD SO-18	Standard	58.17	14.07	7.60	3.35	6.37	3.67	2.15	0.69	0.83	0.40	0.552	45	25	1.9	99.76	500	<1	25.7	6.8	17.4
STD SO-18	Standard	58.12	14.10	7.57	3.36	6.38	3.70	2.14	0.69	0.82	0.40	0.553	43	25	1.9	99.75	497	<1	26.0	6.8	17.9
STD SO-18 Expected		58.47	14.23	7.67	3.35	6.42	3.71	2.17	0.69	0.83	0.39	0.55	44	25			514		26.2	7.1	17.6
STD DS7 Expected																					
STD OREAS45PA Expected																					
STD CU148 Expected																					
STD OREAS132A Expected																					
STD CSC Expected																					
STD OREAS76A Expected																					
STD PD1 Expected																					
STD CDN-PGMS-15																					

Client:

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 4

VAN10004248.2

Project:	FLAN WRAP
Report Date:	November 05

vember 05, 2010

1 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

QUALITY CONTROL REPORT

Method 4A-4B Analvte U w Zr Y Ce Tb Hf Nb Rb Sn Sr Та Th ν La Pr Nd Sm Eu Gd Unit ppm MDL 0.1 0.1 0.1 1 0.5 0.1 0.2 0.1 8 0.5 0.1 0.1 0.1 0.1 0.02 0.3 0.05 0.02 0.05 0.01 Pulp Duplicates REP G1 QC 006958 Rock N.A. REP 006958 QC **Reference Materials** STD CDN-ME-3 Standard STD CDN-PGMS-15 Standard Standard STD CSC Standard STD CU148 STD DS7 Standard STD DS7 Standard STD OREAS132A Standard STD OREAS45PA Standard STD OREAS45PA Standard STD OREAS76A Standard STD PD1 Standard STD PD1 Standard STD PD1 Standard STD SO-18 Standard 9.4 19.7 28.1 14 405.9 6.8 11.1 16.4 198 14.1 285.3 30.5 11.9 26.1 3.21 13.0 2.73 0.84 2.69 0.48 STD SO-18 Standard 9.3 19.8 27.8 14 400.9 6.7 10.5 15.9 193 13.7 278.7 30.5 11.6 25.7 3.19 12.5 2.64 0.82 2.74 0.47 STD SO-18 Expected 98 21.3 28.7 407.4 16.4 200 12.3 27.1 0.89 2.93 0.53 15 7.4 9.9 14.8 280 31 3.45 14 3 STD DS7 Expected STD OREAS45PA Expected STD CU148 Expected STD OREAS132A Expected STD CSC Expected STD OREAS76A Expected STD PD1 Expected STD CDN-PGMS-15

QUALITY CONTROL REPORT

Acme Analytical Laboratories (Vancouver) Ltd.

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Project:	FLAN WRAP
Report Date:	November 05, 2010

Client:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page: 1 of 2 Part 5 VAN10004248.2

	Method	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B 2	A Leco 2	A Leco	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm
	MDL	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01
Pulp Duplicates																					
REP G1	QC																				
006958	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP 006958	QC																				
Reference Materials																					
STD CDN-ME-3	Standard																				
STD CDN-PGMS-15	Standard																				
STD CSC	Standard							3.05	4.00												
STD CU148	Standard																				
STD DS7	Standard									18.3	118.0	59.9	383	55.1	47.4	5.5	4.2	3.9	0.9	56.4	0.19
STD DS7	Standard																				
STD OREAS132A	Standard																				
STD OREAS45PA	Standard									0.9	566.2	16.1	108	273.6	4.0	<0.1	0.1	0.2	0.3	44.4	0.03
STD OREAS45PA	Standard																				
STD OREAS76A	Standard							0.14	17.01												
STD PD1	Standard																				
STD PD1	Standard																				
STD PD1	Standard																				
STD SO-18	Standard	2.74	0.60	1.76	0.27	1.69	0.27														
STD SO-18	Standard	2.76	0.59	1.73	0.26	1.66	0.26														
STD SO-18 Expected		3	0.62	1.84	0.27	1.79	0.27														
STD DS7 Expected										20.5	109	70.6	411	56	48.2	6.4	4.6	4.5	0.9	70	0.2
STD OREAS45PA Expected										0.9	600	19	119	281	4.2	0.09	0.13	0.18	0.3	43	0.03
STD CU148 Expected																					
STD OREAS132A Expected																					
STD CSC Expected								2.94	4.25												
STD OREAS76A Expected								0.16	18												
STD PD1 Expected																					
STD CDN-PGMS-15																					

QUALITY CONTROL REPORT

Acme Analytical Laboratories (Vancouver) Ltd.

Schau,	Mikkel
1007 Barkv	vay Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 6

Project:	FLAN WRAP
Report Date:	November 05, 2010

1 of 2

Client:

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

VAN10004248.2

	Method	1DX	1DX	G6Gr
	Analyte	ті	Se	Au
	Unit	ppm	ppm	gm/t
	MDL	0.1	0.5	0.17
Pulp Duplicates				
REP G1	QC			
006958	Rock	N.A.	N.A.	N.A.
REP 006958	QC			
Reference Materials				
STD CDN-ME-3	Standard			9.63
STD CDN-PGMS-15	Standard			
STD CSC	Standard			
STD CU148	Standard			
STD DS7	Standard	3.7	2.8	
STD DS7	Standard			
STD OREAS132A	Standard			
STD OREAS45PA	Standard	<0.1	0.8	
STD OREAS45PA	Standard			
STD OREAS76A	Standard			
STD PD1	Standard			
STD PD1	Standard			
STD PD1	Standard			
STD SO-18	Standard			
STD SO-18	Standard			
STD SO-18 Expected				
STD DS7 Expected		4.2	3.5	
STD OREAS45PA Expected		0.07	0.54	
STD CU148 Expected				
STD OREAS132A Expected				
STD CSC Expected				
STD OREAS76A Expected				
STD PD1 Expected				
STD CDN-PGMS-15				

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 1

VAN10004248.2

Project:	FLAN WRAP
Report Date:	November 05

Client:

Page:

er 05, 2010

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

TY CONTROL REPORT

		WGHT	3BMS	3BMS	3BMS	8TD	3B	3B	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Wgt	Au	Pt	Pd	Cu	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th
		kg	ppb	ppb	ppb	%	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		0.01	1	0.1	0.5	0.001	2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	2
STD CDN-ME-3 Expected																					
BLK	Blank																				
BLK	Blank																				
BLK	Blank									<1	<1	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<2	<2
BLK	Blank					<0.001															
BLK	Blank																				
BLK	Blank		<1	<0.1	<0.5																
BLK	Blank		<1	<0.1	<0.5																
BLK	Blank						<2	<3	<2												
BLK	Blank						<2	<3	<2												
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	<0.01	14	<0.1	<0.5		25	<3	<2	<1	11	<3	49	0.3	3	4	606	2.02	<2	<2	5
G1	Prep Blank					0.001															

Acme Analytical Laboratories (Vancouver) Ltd.

Schau,	Mikkel
1007 Barkw	vay Terrace

Brentwood Bay BC V8M 1A4 Canada

Project:	FLAN WRAP
Report Date:	November 05, 2010

Client:

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2 Part 2 VAN10004248.2

QUALITY CONTROL REPORT

		1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	S	Sc	Ga
		ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
		1	0.5	3	3	1	0.01	0.001	1	1	0.01	1	0.01	20	0.01	0.01	0.01	2	0.05	5	5
STD CDN-ME-3 Expected																					
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<1	<0.5	<3	<3	<1	<0.01	<0.001	<1	<1	<0.01	<1	<0.01	<20	<0.01	<0.01	<0.01	<2	<0.05	<5	<5
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	62	<0.5	<3	<3	36	0.52	0.074	9	6	0.58	202	0.13	<20	1.00	0.07	0.46	<2	<0.05	<5	<5
G1	Prep Blank																				

Acme Analytical Laboratories (Vancouver) Ltd.

1007 Barkway Terrac	ce
Brentwood Bay BC V	8M 1A4 Canada

2 of 2

Project:	FLAN WRAP
Report Date:	November 05

Client:

Page:

05, 2010

Part 3

VAN10004248.2

Schau, Mikkel

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

4A-4B Al2O3 Fe2O3 Na2O K20 TiO2 P2O5 Cr2O3 LOI Ga SiO2 MgO CaO MnO Ni Sc Sum Ва Be Co Cs % % % % % % % % % % % % ppm ppm % ppm ppm ppm ppm ppm 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002 20 1 -5.1 0.01 1 1 0.2 0.1 0.5 STD CDN-ME-3 Expected BLK Blank BLK Blank < 0.01 < 0.01 < 0.04 < 0.01 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01 <0.002 <20 <1 0.0 < 0.01 <1 <1 <0.2 <0.1 < 0.5 BLK Blank Prep Wash G1 Prep Blank 67.62 15.73 3.37 1.11 3.34 3.52 3.67 0.39 0.18 0.10 < 0.002 <20 5 0.7 99.76 1029 3 4.4 4.0 19.9 G1 Prep Blank

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 4

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Projeci.	FLAN WRAP
Report Date:	November 05

Project:

Page:

vember 05, 2010

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

VAN10004248.2

		4A-4B																			
		Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	ть
		ppm																			
		0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05	0.01
STD CDN-ME-3 Expected																					
BLK	Blank																				
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	1.0	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02	<0.05	<0.01
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	3.8	22.2	133.7	1	703.2	1.4	8.1	3.3	75	<0.5	129.1	16.3	27.1	56.3	6.18	22.1	3.65	1.00	2.99	0.47
G1	Prep Blank																				

Client:

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 5

VAN10004248.2

Acme Analytical Laboratories (Vancouver) Ltd.	Project:
3 Canada	Report D

FLAN WRAP ort Date: November 05, 2010

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

		4A-4B	4A-4B	4A-4B	4A-4B	4A-4B	4A-4B 2	A Leco 2	A Leco	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
		Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg
		ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm
		0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01
STD CDN-ME-3 Expected																					
BLK	Blank									<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.01
BLK	Blank	< 0.05	<0.02	<0.03	<0.01	<0.05	<0.01														
BLK	Blank																				
BLK	Blank																			-	
BLK	Blank							<0.02	<0.02												
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	2.37	0.51	1.63	0.26	1.60	0.29	<0.02	<0.02	0.1	10.5	2.7	43	3.2	<0.5	<0.1	<0.1	<0.1	<0.1	24.2	<0.01
G1	Prep Blank																				

Acme Analytical Laboratories (Vancouver) Ltd.

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 6

Project:	FLAN WRAP
Report Date:	November 05, 2010

2 of 2

Client:

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

VAN10004248.2

QUALITY CONTROL REPORT

		1DX	1DX	G6Gr
		ті	Se	Au
		ppm	ppm	gm/t
		0.1	0.5	0.17
STD CDN-ME-3 Expected				9.97
BLK	Blank	<0.1	<0.5	
BLK	Blank			<0.17
Prep Wash				
G1	Prep Blank	0.3	<0.5	N.A.
G1	Prep Blank			

CERTIFICATE OF ANALYSIS

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Submitted By:Mikkel SchauReceiving Lab:Canada-VancouverReceived:August 30, 2010Report Date:September 30, 2010Page:1 of 3

VAN10004249.1

CLIENT JOB INFORMATION

Project:	FLAN WRAP
Shipment ID:	
P.O. Number	
Number of Samples:	31

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
DISP-RJT-SOIL	Immediate Disposal of Soil Reject

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

		_
101/	~ ~ ~ ~	10.
1111/1		

Schau, Mikkel 1007 Barkway Terrace Brentwood Bay BC V8M 1A4 Canada

CC:

CLARENCE LEONG GENERAL MANAGER

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Client:

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
SS80	31	Dry at 60C sieve 100g to -80 mesh			VAN
Dry at 60C	31	Dry at 60C			VAN
GEO4	31	FA fusion Au Pt Pd; 1:1:1 AR digestion ICP-ES analysis	30	Completed	VAN

ADDITIONAL COMMENTS

Page:

Schau, Mikkel

1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FL
Report Date:	Se

LAN WRAP eptember 30, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 3 Part 1

CERTIF	ICATE O	F AN	IALY	SIS													VA	N10	0004	249	.1	
		Method	3B	3B	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
		Analyte	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v
		Unit	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		MDL	2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	2	1	0.5	3	3	1
006553	Silt		<2	<3	<2	1	21	<3	39	<0.3	6	12	1139	2.72	<2	<2	3	36	<0.5	<3	<3	80
006554	Silt		5	<3	8	<1	55	<3	36	<0.3	22	11	343	2.60	5	<2	2	39	<0.5	<3	<3	90
006555	Silt		36	<3	45	<1	122	<3	42	<0.3	31	16	332	2.77	35	<2	4	32	<0.5	<3	<3	92
006556	Silt		4	<3	15	<1	106	<3	29	<0.3	22	32	800	2.71	9	<2	3	27	<0.5	<3	<3	86
006557	Silt		5	5	18	1	62	<3	30	<0.3	22	35	1540	2.87	9	<2	3	20	<0.5	<3	<3	137
006558	Silt		4	3	21	<1	282	<3	37	<0.3	23	16	242	2.57	3	<2	6	65	<0.5	<3	<3	81
006559	Silt		4	4	7	5	38	<3	49	0.4	13	10	127	1.54	7	<2	3	23	0.9	<3	<3	82
006560	Silt		14	<3	13	<1	124	<3	85	<0.3	45	19	487	3.14	14	<2	5	45	<0.5	<3	<3	100
006561	Silt		11	<3	10	<1	109	<3	57	<0.3	29	13	309	2.86	5	<2	5	51	<0.5	<3	<3	98
006562	Silt		<2	<3	6	<1	59	<3	49	<0.3	28	11	315	2.57	3	<2	4	41	<0.5	<3	<3	86
006563	Silt		6	4	13	3	178	11	75	<0.3	80	23	522	3.69	22	<2	6	59	<0.5	<3	<3	92
006564	Silt		8	4	20	2	284	<3	69	<0.3	129	44	633	3.70	21	<2	5	51	<0.5	<3	<3	88
006565	Silt		5	4	14	1	168	<3	40	0.5	133	17	189	3.28	9	<2	<2	13	<0.5	<3	<3	59
006566	Silt		3	3	12	<1	116	<3	26	<0.3	34	10	266	1.51	<2	<2	4	31	<0.5	<3	<3	48
006567	Silt		4	3	18	1	170	<3	39	<0.3	52	10	266	4.55	8	<2	3	22	<0.5	<3	<3	85
006568	Silt		2	3	18	<1	225	5	94	<0.3	97	32	912	5.57	7	<2	5	47	0.6	<3	<3	161
006569	Silt		3	<3	27	<1	299	12	107	<0.3	85	50	1461	5.33	24	<2	5	55	0.6	<3	<3	158
006570	Silt		19	3	28	<1	242	4	83	0.3	72	34	1560	5.04	24	<2	4	38	0.8	<3	<3	146
006571	Silt		3	4	15	<1	228	24	120	<0.3	74	31	1007	5.30	16	<2	5	56	0.7	<3	<3	149
006572	Silt		10	<3	4	<1	40	<3	44	<0.3	19	11	370	3.06	6	<2	3	43	<0.5	<3	<3	100
006573	Silt		10	<3	<2	<1	16	<3	33	<0.3	6	8	589	3.05	<2	<2	3	30	<0.5	<3	<3	93
006574	Silt		<2	<3	3	<1	24	<3	39	<0.3	7	10	368	3.25	<2	<2	4	49	<0.5	<3	<3	111
006575	Silt		<2	<3	8	<1	67	<3	33	<0.3	15	8	241	2.09	<2	<2	4	34	<0.5	<3	<3	74
006576	Silt		<2	<3	4	<1	56	<3	59	<0.3	23	11	351	2.69	3	<2	4	42	<0.5	<3	<3	89
006577	Silt		30	<3	11	1	98	<3	68	<0.3	35	20	573	2.77	15	<2	5	46	<0.5	<3	<3	88
006578	Silt		7	<3	16	<1	107	<3	35	<0.3	20	14	476	2.83	8	<2	4	35	<0.5	<3	<3	104
006579	Silt		<2	5	19	<1	193	6	82	<0.3	82	34	830	5.05	21	<2	6	69	0.6	<3	<3	152
006580	Silt		<2	<3	14	1	193	15	65	0.7	62	27	487	2.75	25	<2	<2	61	0.9	<3	<3	82
006581	Silt		3	4	13	2	184	13	84	0.7	97	26	572	4.04	22	<2	<2	53	0.7	<3	<3	113
006582	Silt		<2	<3	14	3	202	17	79	0.9	95	28	595	4.15	34	<2	<2	61	0.7	<3	<3	114

Page:

Schau, Mikkel 1007 Barkway Terrace

VAN10004249.1

Brentwood Bay BC V8M 1A4 Canada

September 30, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com	

Acme Analytical Laboratories (Vancouver) Ltd.

2 of 3 Part 2

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	S	Sc	Ga
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	5	5
006553 Silt		0.59	0.029	3	7	0.42	70	0.106	<20	1.88	0.02	0.05	<2	<0.05	<5	<5
006554 Silt		0.61	0.048	5	24	0.67	54	0.156	<20	3.43	<0.01	0.04	<2	<0.05	<5	<5
006555 Silt		1.15	0.057	5	45	0.56	40	0.174	<20	5.08	0.01	0.03	<2	<0.05	<5	<5
006556 Silt		0.83	0.062	4	22	0.42	36	0.165	<20	4.07	0.02	0.04	<2	<0.05	<5	<5
006557 Silt		0.73	0.036	3	36	0.47	24	0.363	<20	3.53	<0.01	0.02	<2	0.05	<5	6
006558 Silt		1.96	0.061	7	16	0.83	44	0.126	<20	3.84	<0.01	0.07	<2	<0.05	<5	6
006559 Silt		0.91	0.085	4	26	0.26	15	0.069	<20	2.13	<0.01	0.01	<2	0.23	<5	<5
006560 Silt		1.63	0.035	3	62	1.03	40	0.260	<20	3.33	0.02	0.05	<2	<0.05	6	<5
006561 Silt		1.17	0.038	6	35	0.77	62	0.222	<20	2.84	0.02	0.05	<2	<0.05	<5	<5
006562 Silt		0.74	0.032	4	31	0.70	65	0.165	<20	2.06	0.03	0.06	<2	<0.05	<5	<5
006563 Silt		1.81	0.036	5	94	1.40	16	0.154	<20	3.47	0.03	0.04	<2	<0.05	<5	<5
006564 Silt		1.25	0.045	3	131	1.35	22	0.185	<20	3.74	0.03	0.03	<2	<0.05	5	<5
006565 Silt		0.27	0.056	2	189	1.03	22	0.189	<20	7.69	<0.01	0.01	<2	0.05	8	<5
006566 Silt		1.03	0.039	5	41	0.51	12	0.184	<20	1.94	0.09	0.02	<2	<0.05	<5	<5
006567 Silt		0.56	0.042	4	144	0.62	23	0.268	<20	9.21	<0.01	0.01	<2	<0.05	11	<5
006568 Silt		1.45	0.052	2	189	2.29	15	0.509	<20	3.70	<0.01	0.03	<2	<0.05	7	<5
006569 Silt		1.48	0.076	5	144	1.81	23	0.432	<20	4.29	<0.01	0.03	<2	<0.05	8	<5
006570 Silt		0.97	0.083	5	114	1.49	20	0.448	<20	4.45	<0.01	0.02	<2	<0.05	7	7
006571 Silt		1.50	0.055	6	95	1.99	20	0.464	<20	3.70	<0.01	0.03	<2	<0.05	7	<5
006572 Silt		0.73	0.031	5	20	0.63	84	0.150	<20	2.84	0.02	0.07	<2	<0.05	<5	<5
006573 Silt		0.56	0.025	3	8	0.44	66	0.115	<20	1.75	0.02	0.06	<2	<0.05	<5	<5
006574 Silt		0.78	0.025	3	10	0.63	67	0.162	<20	2.31	0.01	0.07	<2	<0.05	<5	<5
006575 Silt		0.88	0.046	4	19	0.44	57	0.153	<20	2.29	0.04	0.04	<2	<0.05	<5	<5
006576 Silt		0.73	0.037	5	26	0.69	81	0.161	<20	2.13	0.04	0.07	<2	<0.05	<5	<5
006577 Silt		1.60	0.036	6	43	0.82	40	0.207	<20	3.61	0.01	0.05	<2	<0.05	<5	<5
006578 Silt		0.82	0.055	6	21	0.52	52	0.154	<20	2.86	0.02	0.04	<2	<0.05	<5	<5
006579 Silt		2.33	0.052	5	135	2.06	12	0.414	<20	4.54	<0.01	0.03	<2	<0.05	9	<5
006580 Silt		1.95	0.039	2	72	1.04	15	0.170	<20	3.56	0.04	0.05	<2	<0.05	<5	9
006581 Silt		1.64	0.044	2	119	1.77	15	0.254	<20	3.60	0.05	0.04	<2	<0.05	6	9
006582 Silt		1.89	0.043	2	118	1.70	17	0.255	<20	4.12	0.05	0.05	4	<0.05	6	10

	Client:	Schau, Mikkel 1007 Barkway Terrace Brentwood Bay BC V8M 1A4 Canada
ACTICLADS Acme Analytical Laboratories (Vancouver) Ltd.	Project:	FLAN WRAP
1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Report Date:	September 30, 2010
www.acmelab.com		
	Page:	3 of 3 Part 1

												Page:		3 of 3	Р	art 1					
CERTIF	ICATE OF A										VA	N10)004	249	.1						
	Metho	I 3B	3B	3B	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D							
	Analyte	e Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v
	Uni	t ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm							
	MDI	. 2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	2	1	0.5	3	3	1
006583	Silt	13	<3	14	3	187	15	79	0.8	92	28	591	4.01	23	<2	<2	68	0.8	<3	<3	111

Client:

Page:

Schau, Mikkel 1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 2

Project: FLAN WRAP Report Date: September 30, 2010

3 of 3

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

VAN10004249.1

CERTIFICATE OF ANALYSIS

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	κ	w	S	Sc	Ga
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	5	5
006583	Silt	2.06	0.044	2	114	1.65	18	0.255	<20	4.24	0.05	0.05	<2	<0.05	5	10

Page:

Schau, Mikkel

1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 1

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FLAN WRAP
Report Date:	September 3

tember 30, 2010

1 of 1

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT VAN10004249.1 Method 1D 3B 3B 3B 1D Analyte Pb Ni Bi Au Pt Pd Мо Cu Zn Ag Co Mn Fe As Au Th Sr Cd Sb v Unit ppb ppb ppb ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm 2 2 MDL 3 2 1 1 3 1 0.3 1 2 0.01 2 2 0.5 3 3 1 1 Pulp Duplicates 006559 Silt 4 4 7 5 38 <3 49 0.4 13 127 1.54 7 <2 3 23 0.9 <3 82 10 <3 7 REP 006559 QC 5 37 <3 48 0.4 12 10 126 1.52 <2 3 22 0.9 <3 <3 81 006572 Silt 10 <3 4 <1 40 <3 44 < 0.3 19 11 370 3.06 6 <2 3 43 <0.5 <3 <3 100 QC REP 006572 <2 <3 3 Silt <2 006580 <3 14 1 193 15 65 0.7 62 27 487 2.75 25 <2 <2 61 0.9 <3 <3 82 QC 2 <3 87 REP 006580 238 18 67 0.7 69 33 582 2.99 27 <2 <2 59 0.8 <3 **Reference Materials** STD DS7 Standard 21 105 66 418 1.3 57 9 650 2.47 53 <2 4 75 6.4 6 5 88 79 STD DS7 Standard 19 98 60 381 0.8 52 8 596 2.28 48 <2 8 70 5.7 <3 <3 STD OREAS45PA Standard <1 621 12 121 1.0 306 112 1104 16.69 7 <2 7 14 <0.5 4 <3 236 214 STD OREAS45PA Standard <1 564 8 114 0.3 286 102 1076 16.68 3 <2 8 14 1.3 <3 <3 STD PD1 Standard 521 549 449 STD PD1 Standard 522 435 543 STD DS7 Expected 21 0.07 68 5 5 84 109 71 411 0.9 56 10 627 2.39 48 4 6.4 STD OREAS45PA Expected 0.9 600 19 119 0.3 281 104 1130 16.559 4.2 0.043 6 14 0.09 0.13 0.18 221 STD PD1 Expected 542 456 563 BLK Blank <1 <1 <3 < 0.3 <2 < 0.01 <2 <2 <2 <0.5 <3 <3 <1 <1 <1 <1 <1 BLK Blank <1 <1 <3 <1 < 0.3 <1 <1 <2 < 0.01 <2 <2 <2 <1 <0.5 <3 <3 <1 BLK Blank <2 <3 <2 BLK <2 <3 <2 Blank

Schau, Mikkel

1007 Barkway Terrace

Brentwood Bay BC V8M 1A4 Canada

Part 2

AcmeLabs 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	FLAN V
Report Date:	Septem

Page:

NRAP

nber 30, 2010

1 of 1

www.acmelab.com

ITY CONTROL REPORT

Phone (604) 253-3158 Fax (604) 253-1716

	Method	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D	1D
	Analyte	Ca	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	ĸ	w	S	Sc	Ga
	Unit	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm
	MDL	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	5	5
Pulp Duplicates																
006559	Silt	0.91	0.085	4	26	0.26	15	0.069	<20	2.13	<0.01	0.01	<2	0.23	<5	<5
REP 006559	QC	0.89	0.084	5	26	0.26	14	0.070	<20	2.09	<0.01	0.01	<2	0.23	<5	<5
006572	Silt	0.73	0.031	5	20	0.63	84	0.150	<20	2.84	0.02	0.07	<2	<0.05	<5	<5
REP 006572	QC															
006580	Silt	1.95	0.039	2	72	1.04	15	0.170	<20	3.56	0.04	0.05	<2	<0.05	<5	9
REP 006580	QC	1.85	0.048	3	79	1.15	16	0.174	<20	3.66	0.04	0.05	<2	<0.05	<5	9
Reference Materials																
STD DS7	Standard	0.98	0.078	12	198	1.10	440	0.121	40	1.06	0.09	0.49	2	0.20	<5	5
STD DS7	Standard	0.90	0.071	13	187	0.99	396	0.109	33	0.97	0.08	0.44	<2	0.19	<5	<5
STD OREAS45PA	Standard	0.25	0.036	16	847	0.10	183	0.131	<20	3.47	<0.01	0.08	<2	<0.05	54	15
STD OREAS45PA	Standard	0.24	0.029	14	778	0.10	173	0.131	<20	3.25	<0.01	0.07	<2	<0.05	49	15
STD PD1	Standard															
STD PD1	Standard															
STD DS7 Expected		0.93	0.08	13	179	1.05	410	0.124	39	0.959	0.073	0.44	4	0.19		
STD OREAS45PA Expected		0.2411	0.034	16.2	873	0.095	187	0.124		3.34	0.011	0.0665	0.011	0.03		
STD PD1 Expected																
BLK	Blank	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<5	<5
BLK	Blank	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<5	<5
BLK	Blank															
BLK	Blank															

VAN10004249.1