BC Geological Survey Assessment Report 31797

ASSESSMENT REPORT

DIAMOND DRILLING REPORT MIRACLE PROSPECT

Miocene Project

Cariboo Mining Division

NTS93A5

Latitude 52° 29', Longitude 121°45' UTM 10 5816981N, 584670E

For

EAGLE PEAK RESOURCES INC

413 - 595 Burrard St

Vancouver, BC

By

P. E. Fox, PhD., P.Eng

November 22, 2010

Events No.4796653, 4796637, 4796719

Table of Contents

SUMMARY
INTRODUCTION2
LOCATION2
CLAIMS2
HISTORY
REGIONAL GEOLOGY
GEOLOGY
MINERALIZATION
WORK PROGRAM10
Drill Program10
CONCLUSIONS AND RECOMMENDATIONS
COST STATEMENT15
STATEMENT OF QUALIFICATIONS
BIBLIOGRAPHY
APPENDECES18
TABLES
TABLE 1: CLAIM LIST6
TABLE 2: DRILL TABLE12
TABLE 3: EXPENDITURES15

FIGURES

FIGURE 1: LOCATION MAP	
FIGURE 2: CLAIM MAP5	
FIGURE 3: WORK AREA7	7
FIGURE 4: REGIONAL GEOLOGICAL MAP	9
FIGURE 5: GEOLOGICAL MAP AND DRILL PLAN1	1
APPENDECES	
APPENDIX 1: DRILL LOGS1	9
APPENDIX II: ASSAY CERTIFICATES1	9
APPENDIX III: CROSS SECTIONS	21

SUMMARY

This report documents work done by Eagle Peak Resources Inc in 2010 on the Miracle prospect, part of the Miocene project claim block.

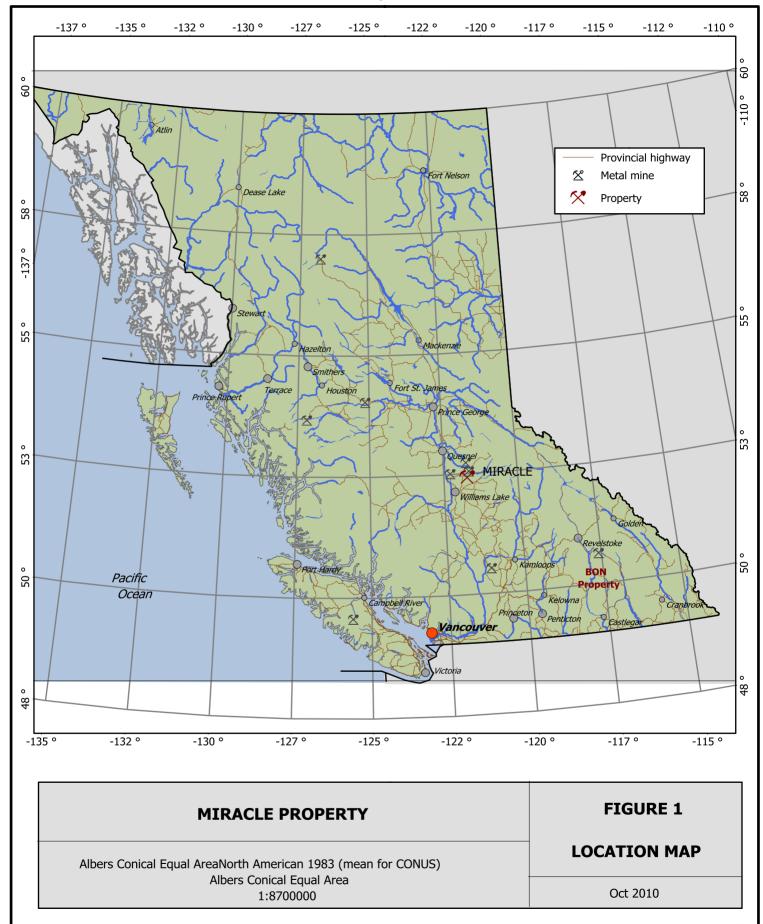
The 2010 program comprised 981 metres recovering NQ core set out to test a zone of quartz veins and stockworks at the Miracle showing, a regional copper soil anomaly trending northwest from the Miracle zone for some 900 metres and a Th/K anomaly farther north (North zone). Holes M10-1 and 2 were drilled at the north end of the property to test the North target, holes M10-3, 4, 5 and 8 were drilled on widely spaced centers to assess the copper soil anomaly, and holes M10-6, 7 and 9 were drilled in the Miracle vein zone. Hole M10-1 and 2 failed to reach their target and were terminated in gouge and clay seams at 25 and 87.8 m respectively. Holes M10-3, 4, and 5 cored pyritic siltstones and thin quartz-iron carbonate breccia zones at the north end of the regional copper soil anomaly.

Hole M10-6 cored the Miracle vein and pyritic, clay-altered porphyritic quartz monzonite from 54m to the bottom of the hole at 176.3m. Hole M10-7 collared at the same site was lost in gouge at 36.9m. Hole M10-8 was drilled at 175° to test the copper soil anomaly 100m west of the Miracle vein zone. It cored porphyry style quartz-K feldspar-pyrite stockworks in propylitic basaltic rocks and altered dikes of porphyritic quartz monzonite to the end of the hole at 159.7m. Hole M10-9, designed to test the Miracle vein zone at depth, intersected basaltic breccia and quartz monzonite dikes to the end of the hole at 274.3m. The drilling program returned background contents of copper, gold, molybdenum and silver throughout the core samples except for two intervals in M10-6, which returned 28.1 ppm Ag and 1344 ppm Pb from 86 to 88m and 17.7 ppm Ag and 709 ppm Pb from 158 to162m. The copper soil anomaly has been adequately tested and no further work is warranted on this target. The two Ag-Pb intervals in Hole M10-6 should be tested further.

Expenditures total \$172,382.

INTRODUCTION

This report documents work done by Eagle Peak Resources Inc in 2010 on the Miracle prospect, part of a large claim block comprising 64 claims collectively known as the Miocene project. Work comprised diamond drilling of 981 m on the Miracle prospect to test the Miracle vein and geochemical soil anomalies outlined by the 2009 soil sampling program. Results of the work program are detailed herein. Work was paid for by Eagle Peak Resources. Expenditures total \$ 172,382.

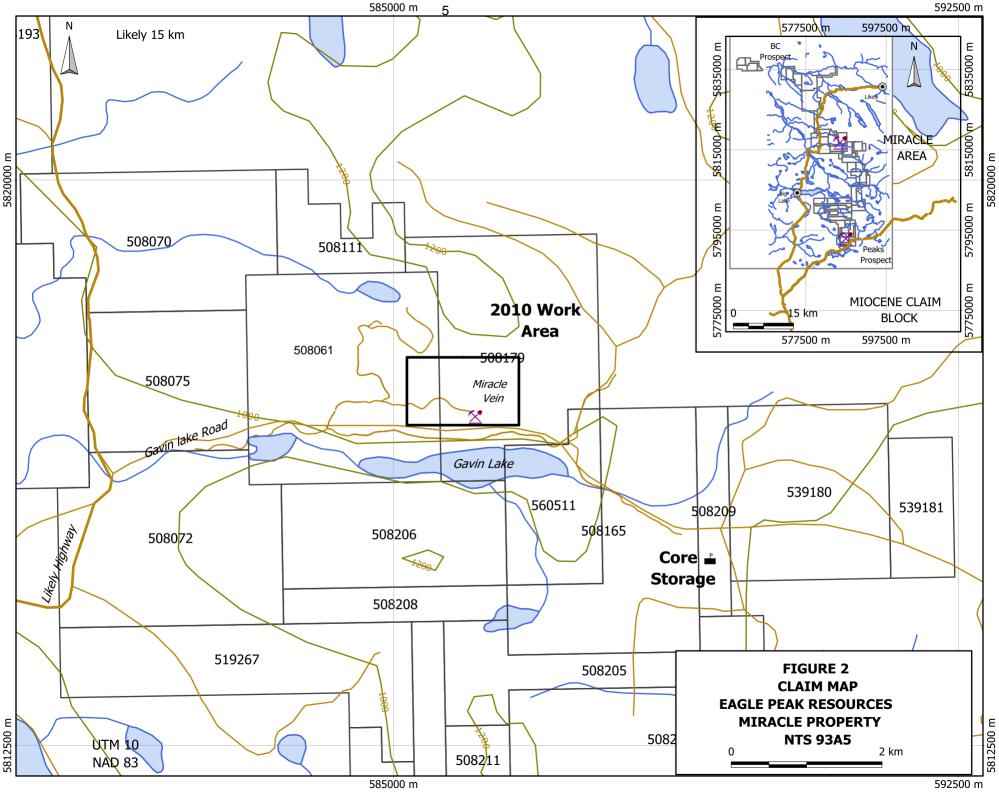

LOCATION

The Miracle property lies in the Cariboo Mining Division on map sheet 093A/5 (Figure 1). The approximate centre of the Miocene claim group is at 5802000N, 588000E (UTM Zone 10). The claim block extends some 48 kilometers north-south and 15 kilometers east-west. The Miracle prospect lies two kilometers north of Gavin Lake 20 km southwest of Likely BC. The Miracle prospect is reached via the Gavin Lake road 5 km from the Likely Highway.

The claims lie in the Quesnel Highlands physiographic region of the Interior Plateau which is characterized by numerous lakes, broad valleys and low rolling hills and rocky escarpments. Local vegetation consists of pine, spruce, birch, alder and poplar interspersed with meandering streams, shallow lakes, grasslands and boggy wetlands. Glacial till, often thick, predominates and outcropping bedrock, generally Roche moutonee and rocky rubble, is rare.

CLAIMS

The Property consists of 64 mineral tenures covering an area of 26,244 hectares (Figure 2 inset map, Table 1). Expiry dates assume the work documented herein is



accepted for assessment requirements. Work was filed on September 29, 2010 under events # 4796653, 4796637, 4796719. Work was completed between August 21, 2010 and September 29, 2010 under Mine Permit MX-10-211 and was ongoing throughout that period. Core from the Miracle property is stored in a Company core storage facility on Teasdale Creek road two km east of Gavin Lake (Figure 2).

HISTORY

Placer and bedrock exploration of the region began with the discovery or placer gold deposits in 1859. Subsequent placer discoveries were made at Cedar Creek, Antler Creek, Keithley Creek and along the Quesnel River. The Likely- Horsefly region was extensively prospected and there is evidence of gold prospecting within the claim area along Teasdale and Wiggins creeks. Government sponsored airborne geophysical surveys and regional geochemical surveys prompted extensive exploration activity. The QR gold deposit was discovered in 1975 and the Mount Polley mine, a few kilometers to the northeast of the claim area, was discovered in 1966 and commenced production in 1997.

Interest in the Miracle prospect at Gavin Lake, also known as the Wet and Gavin copper-molybdenum prospects, was prompted by the discovery of Mount Polley and later the QR gold deposit. Numerous exploration programs have been carried out in the region around Gavin Lake since then. Much of the work was carried out by Amax Exploration in 1970 (Hodgson, 1970), Zubex Resources in 1973 (Westervelt, 1974) and Brican Resources (Crandall 1979), who collectively targeted the copper-molybdenum mineralization immediately north and west of Gavin Lake. Amax completed an extensive program of geological mapping, trenching, and soil rock and silt sampling. Soil sampling by Zubex and later by Longboat Resources (Carter and Barclay, 1984) covered the area west of the Gavin prospect. Brican completed soil sampling and induced polarization surveys west of the main showings in 1979 and soil surveys, sampling and mapping on the Miracle vein in 1984 (Gilmour 1984). More recently, a compilation report on the nearby Z property was completed by Wallis in 1995 (Wallis, 1995). The Miracle vein was drilled by L. Tattersall, the original owner of the prospect,

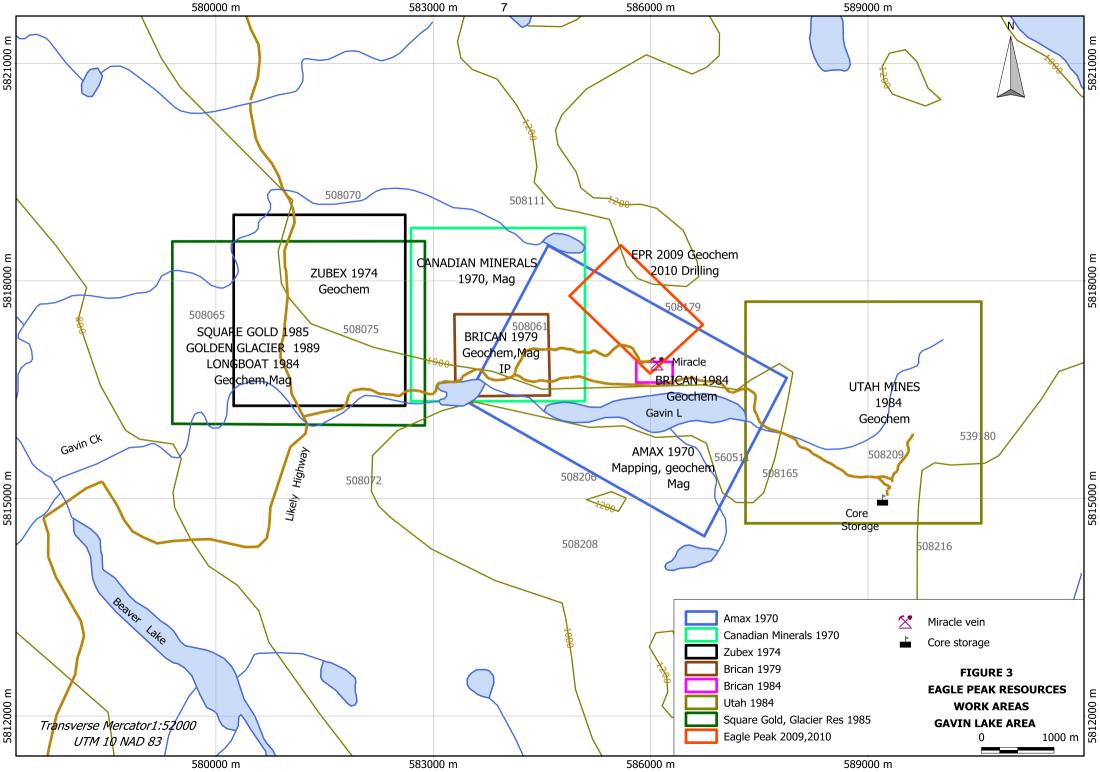
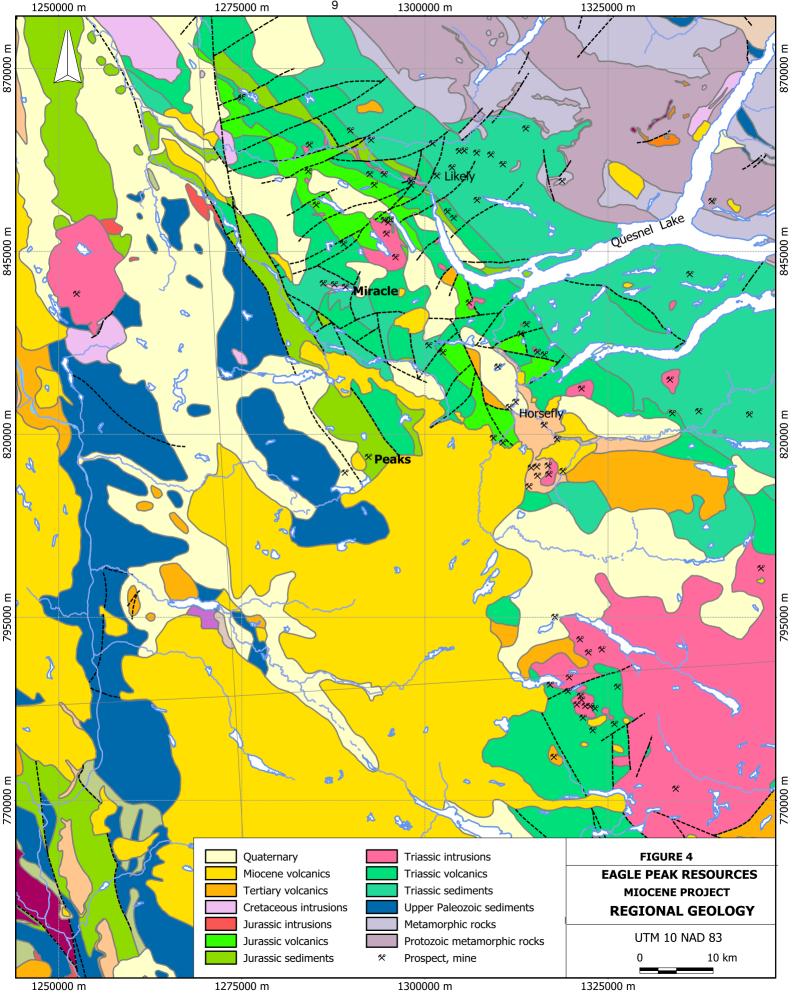


TABLE 1. CLAIM LIST

Tenure #	Name	Expiry	Area
590946	BC1	Nov 30 2011	372.4
590956	BC2	Nov 30 2011	294.1
590963	BC3	Nov 30 2011	313.6
590967	BC4	Nov 30 2011	450.9
590968	BC5	Nov 30 2011	137.3
591517	BC6	Nov 30 2011	98.0
539180	CREAM 1	Nov 30 2011	492.2
539181	CREAM 2	Nov 30 2011	157.5
508216	Gold 3	Nov 30 2011	78.772
515234	GOLD A	Nov 30 2011	492.7
515235	GOLD B	Nov 30 2011	492.7
515236	GOLD C	Nov 30 2011	433.5
519269	GOLD G	Nov 30 2011	473.2
524804	GOLD H	Nov 30 2011	433.7
524807	GOLD J	Nov 30 2011	157.8
508112	MIRACLE 10	Nov 30 2011	19.7
508206	MIRACLE 11	Nov 30 2011	413.5
508208	MIRACLE 12	Nov 30 2011	137.8
508209	MIRACLE 13	Nov 30 2011	118.1
508211	MIRACLE 14	Nov 30 2011	78.8
560511	MIRACLE 14	Nov 30 2011	255.9
508111	MIRACLE 9	Nov 30 2011	157.4
515606	PEAKS	Nov 30 2011	296.7
518840	PEAKS 2	Nov 30 2011	454.9
554110	QR SE	Nov 30 2011	333.5
507500	VEITH	Nov 30 2011	394.9
507502	VEITH 2	Nov 30 2011	395.0
516428	VEITH 5	Nov 30 2011	493.3
516431	VEITH 6	Nov 30 2011	493.3
563532	MT-AC4	Jun 30 2011	490
563534	MT-AC5	Jun 30 2011	549
563535	MT-AC6	Jun 30 2011	569

	1		T
Tenure #	Name	Expiry	Area
518120	VEITH 15	Nov 30 2011	494.0
518122	VEITH 16	Nov 30 2011	493.9
518124	VEITH 17	Nov 30 2011	493.8
518126	VEITH 18	Nov 30 2011	493.7
518128	VEITH 19	Nov 30 2011	493.6
518129	VEITH 20	Nov 30 2011	454.1
518130	VEITH 21	Nov 30 2011	494.1
518131	VEITH 22	Nov 30 2011	98.9
518132	VEITH 23	Nov 30 2011	493.6
518133	VEITH 24	Nov 30 2011	98.7
518859	VEITH 25	Nov 30 2011	494.2
518860	VEITH 26	Nov 30 2011	494.2
518861	VEITH 27	Nov 30 2011	118.6
519169	VEITH 28	Nov 30 2011	494.6
524859	VEITH 34	Nov 30 2011	473.7
524861	VEITH 35	Nov 30 2011	355.3
526957	VEITH 36	Nov 30 2011	236.6
529760	VEITH 37	Nov 30 2011	473.7
556151	VEITH 38	Nov 30 2011	19.7
831923	VEITH 38	Nov 30 2011	19.7
508061		Nov 30 2011	708.5
508065		Nov 30 2011	669.1
508070		Nov 30 2011	550.8
508072		Nov 30 2011	649.8
508075		Nov 30 2011	393.6
508165		Nov 30 2011	531.6
508179		Nov 30 2011	629.7
508204		Nov 30 2011	591.0
508205		Nov 30 2011	315.1
576464	MC1	Jun 30 2011	1491
576465	MC2	Jun 30 2011	2160
554110	QR SE	Jun 30 2011	353

in 1966 (213m X-ray core). A grab sample taken from the Miracle vein in 1978 returned 18.5 gpt gold and 10 gpt silver (Minfile report). Eagle Peak Resources completed a soil sampling program in 2009. Work areas for various programs are noted in Figure 3.


REGIONAL GEOLOGY

The Miocene claim group (Figure 4) lies along the Central Quesnel Terrane, a complex continent-margin basin forming a regional synclinal structure west of the North American plate during the Triassic-Jurassic (Panteleyev, 1996). Oldest strata are black shale, argillite, siltstone and sandstone of Middle Triassic age. These rocks underlie much of the Miocene claim area. Overlying this older unit are basaltic pillow lava and breccia of Norian age and still younger fault-bounded blocks of Lower Jurassic felsic breccia. Extensive beds of Jurassic pebble conglomerate, shale, siltstone and sandstone with thin red bed units underlie the southwest corner of the Miocene claim area and part of the Peaks property. These rocks are cut by numerous Cretaceous(?) granitic bodies and are overlain by regionally extensive flat lying Chilcotin group basalt flows of Miocene age. Geology of the Miracle prospect is given below.

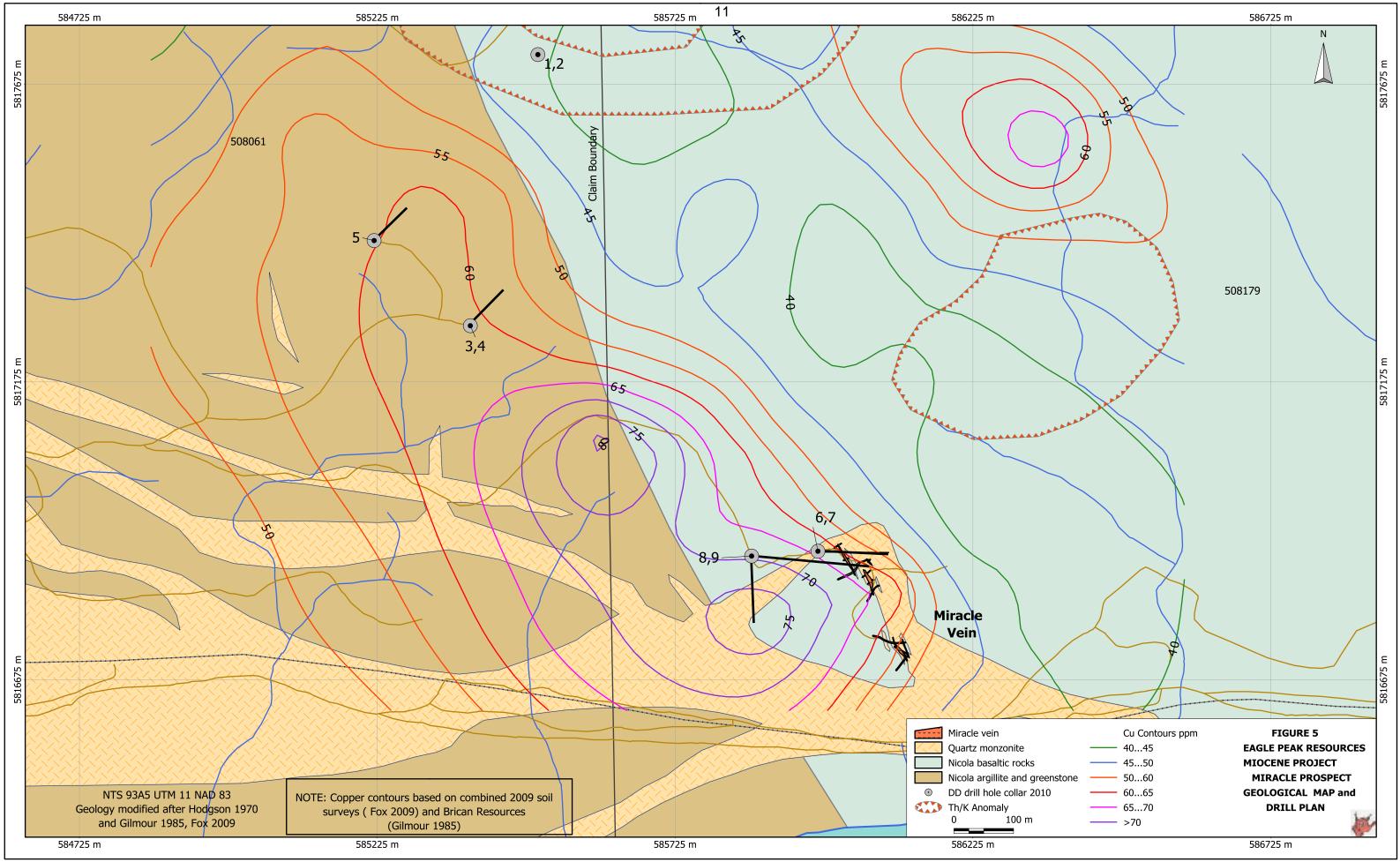
GEOLOGY

Bedrock consists of pyritic siltstones of the Quesnel terrane and basaltic strata cut by a westerly striking dike complex of porphyritic quartz monzonite (Figure 5). Copper and molybdenite showings in these rocks attracted attention to the claim area originally as a porphyry target. Local geology is given in Figure 5 in part compiled from Hodgson (1970) and others. Pyritic siltstones form bedrock units on the western portion of the property and coarse basaltic tuffs and breccias lie to the east.

Copper contours for combined soil surveys completed by Eagle Peak Resources in 2009 (Fox, 2009) and Brican Resources in 1984 (Gilmour, 1984) are given in Figure 5. Elevated copper in the Miracle soils forms a northwest trending anomaly some 250 by 900 metres in part coincident with dikes of porphyritic quartz monzonite at the southern end of the anomaly. Source rocks are thought to represent a possible porphyry copper target related to the dike swarms. Accordingly four diamond drill holes were set out to test the anomaly, holes 10-3, 4, 5 and 8. Holes 10-1 and 2 were designed to test a Th/K regional geophysical target (Figure 5).

MINERALIZATION

The Miracle vein occurs within the basalt unit and local tuff and thin siltstone interbeds along the sheared contact of a north-striking body of porphyritic quartz monzonite. The The veins form a complex zone of stockwork and massive quartz veins several metres thick and is exposed over a vertical distance of some 50 m. The zone strikes north and dips steeply west. It consists of ribboned quartz, chalcedony and lesser calcite, iron carbonate, greenish mica and disseminated pyrite, galena, sphalerite and rare bornite. Silicification, clay and iron carbonate alteration of the host rocks are common. Drusy vugs often contain lamellar calcite.


Quartz-iron carbonate zones are common throughout the region and well exposed along local access roads. Several of these zones were intersected in drill holes M10-3, 4 and 5. Elsewhere the volcanic units are pyritic and locally hornfelsed, propylitically altered and contain disseminated chalcopyrite and rare bornite associated with porphyry style quartz-K feldspar stockworks and K feldspar potassic alteration marginal to dikes of porphyritic quartz monzonite.

WORK PROGRAM

The 2010 work program comprised 981 metres of diamond drilling in nine holes (10-1 to 10-9). Drilling was done by R.J. Beaupre Inc recovering NQ core. The latter was collected and transported to the Company's core storage facility at Gavin Lake. All return water was collected in sumps and drill sites reclaimed and collars marked at the end of the program. Core samples (450 samples) were collected over 2-m intervals, split, tagged and submitted to Assayers Canada in Telkwa, BC. Drill logs are given in Appendix I and assay certificates in Appendix II. Analyses were done by aqua regia digestion with atomic absorption finish. Gold was determined by fire assay/atomic absorption. Cross sections are given in Appendix III.

Drill Program

The 2010 program comprised 981 metres of diamond drilling recovering NQ core set out to test a Th/K anomaly to the north (North zone), a zone of quartz veins and stockworks at the Miracle showing and a regional copper soil anomaly trending

northwest from the Miracle zone for some 900 metres. Holes M10-1 and 2 were drilled at the north end of the property to test the North target, holes M10-3, 4, 5 and 8 were drilled in the copper soil anomaly, and holes M10-6, 7 and 9 were drilled in the Miracle vein zone (Figure 5). A drill summary is given in Table 2.

TABLE 2: Drill Summary

Hole	UTM E	UTM N	Zone	Az	Dip	Length m
M10-1	585494	5817725	North	090	-45	25.0
M10-2	585494	5817725	North	090	90	87.8
M10-3	585365	5817271	Soil	045	-60	17.1
M10-4	585365	5817271	Soil	045	-45	98.8
M10-5	585218	5817412	Soil	045	-45	113.7
M10-6	585956	5816890	Miracle	085	-45	167.3
M10-7	585956	5816890	Miracle	085	-60	36.9
M10-8	585853	5816882	Soil	175	-45	159.7
M10-9	585853	5816882	Miracle	094	-45	274.3
						980.6

M10-1, 2

Hole M10-1 (-45°) cored 25 m of epidote-rich basalt and terminated in clay gouge. Most of the core is rubbly and ridden with gouge seams. Hole M10-2 (-90°) was drilled at the same location and cored epidote-rich basalt and thin tuff beds to 58.6m were the hole was lost in fault gouge and terminated at this point. Quartz veinlets are common throughout, generally 5 veins/m, sharp-walled and containing 1-2% disseminated pyrite.

M10-3

Hole M10-3 (-60°) was collared 425 m southwest to test the north end of the copper soil anomaly. Carbonate-altered siltstone containing 1 cm quartz veinlets and quartz breccia was cored to a gouge zone at 17.1m where the hole was abandoned.

M10-4

Hole M10-4 was drilled northeast at the same location at -45° and cored carbonatealtered siltstone and siliceous breccia to 19 m and pyritic siltstone and interlayered basalt to the bottom of the hole at 98.8m. Quartz veinlets containing pyrite and trace amounts of chalcopyrite are common (4 veins/m). Bedding angles to core vary from 10° to 60°.

M10-5

Hole M10-5 was collared 200 metres to the northwest at the end of a small logging road and drilled northeast at -45° to a depth of 113.7m. Pyritic grey-green sandstone, brown siliceous (iron) carbonate and vuggy, colliform-banded quartz breccia was cored to 31.1m. Interbedded sandstone and basalt were cored from a gouge zone at 28m to the end of the hole at 113.7m. Thin quartz veins, 1 cm thick, are common throughout.

M10-6, 7

Hole M10-6 was drilled to test the Miracle vein near its northern exposure in trenches excavated and sampled by Brican Resources in 1984 (Gilmour 1984). Hole M10-6 drilled easterly (085°) at -45° was collared in weakly pyritic porphyritic quartz monzonite and interlayered basalt and hornfelsed siltstone to 88m and massive porphyritic quartz monzonite to end-of-hole at 167.3m. Vein stockworks and massive quartz veins were intersected 54-62m, 84-88.4 and 141-143.6. In addition, highly clay-altered, silicified quartz monzonite porphyry and numerous ribboned quartz veins and stockwork >10/m were intersected from 144 to 176.3m. Locally disseminated galena, sphalerite and chalcopyrite and pale green mica are common throughout the mineralized intervals. Silicified porphyry locally contains lamellar calcite in colliform vugs containing drusy quartz. The mineralized interval 86 to 88m assayed 28.1 ppm Ag and 1344 ppm Pb and the silicified zone 158-162m returned 17.7 ppm Ag and 709 ppm Pb.

Hole M10-7 was collared at the same site and drilled east at -60° to test the Miracle vein(s) at depth. This hole terminated in clay-rich gouge in basalt at 36.9m.

M10-8

Hole M10-8 was collared 103 metres west and drilled southerly (175°) at -45° to a depth of 159.7m. The purpose of this hole was to test a copper soil anomaly just west of the Miracle veins and extending northwest for 900 metres. This hole intersected grey-green, pyritic propyllitic basalt and porphyry style quartz-Kfeldspar stockworks from the collar to 152m where vein intensity decreases. Veinlets vary from 5 to 10 veins/m, are 1cm thick or less and comprise granular quartz, pink K feldspar, pyrite, magnetite and trace biotite. K feldspar envelopes and vein selvages are common throughout. Dikes of porphyritic quartz monzonite were intersected 64-71, 70-76, 96-104 and 130-141m.

M10-9

Hole M10-9 was drilled easterly at -45° to test the possible depth extent of the Miracle veins intersected in hole M10-6. Drill hole M10-9 intersected basaltic tuff, lapillistone breccia and thin siltstone interbeds to the bottom of the hole at 274.3m. Thin dikes of porphyritic quartz monzonite were intersected at 120-140, 154-176 and 188-202m. Quartz-Kfeldspar-pyrite veinlets to 1 cm are common to 50m and decrease in intensity downhole and are rare beyond 200m. The veinlets contain pyrite, magnetite and trace amounts of chalcopyrite.

CONCLUSIONS AND RECOMMENDATIONS

Drill holes M10-1 and 2 failed to test their target in the North zone. Holes M10-3, 4 and 5 cored barren pyritic siltstone units. Drill holes M10-6 and 7 tested the Miracle vein(s) near surface and returned two zones of silver and lead at 86m and near the end of the hole at 158m. Prior high grade gold assays (Minfile report) were not confirmed. Gold contents are similar to those obtained from trench sampling reported by Gilmour (1984). Hole M10-8, drilled to test several surface showings near the drill collar and a weak copper soil anomaly, returned background copper contents throughout. Hole M10-9, drilled to test the possible depth extent of the Miracle vein showings did not intersect the veins at depth. Background levels of copper, gold and silver were returned.

The 2010 drilling program intersected two mineralized intervals in M10-6, which returned 28.1 ppm Ag and 1344 ppm Pb from 86 to 88m and 17.7 ppm Ag and 709 ppm Pb from 158 to 162m. The copper soil anomaly has been adequately sampled and no further work is warranted on this target. The two Ag-Pb intervals in Hole M10-6 should be tested further.

COST STATEMENT

Work expenditures are tabulated below in Table 3.

TABLE 3. EXPENDITURES

Miracle Project				
Drilling	Beaupre Drilling, Princeton BC	981 m NQ		112,000
Labour, report prep	P Fox PhD P.Eng, Geologist	21 days@500	10,500	
	S Kania, sampler	30 days@275	8,250	
	G, MuLoin helper	30 days@230	6,900	
	L.Tattersall, logistics	10 days@500	5,000	30,650
Accomodation,board	Sandman Hotel ,Williams lake	91 mandays	@125/day	11,375
Bach hoe	T Warkentin, contractor	52 hrs	@100/hr	5,200
Truck rentals	2 4wd trucks	51 days @ 134/d		6,834
Assays	Assayers Canada, Telkwa, BC	450 samples		6,323
	Total Miracle Project			\$172,382

Prepared by

P.E. Fox PhD., P.Eng

November 22, 2010

STATEMENT OF QUALIFICATIONS

- I, Peter E. Fox of Richmond, British Columbia do hereby certify that I:
 - am a graduate of Queens University in Kingston, Ontario with a Bachelor of Science and Master of Science degrees in Geological Sciences in 1959 and 1962, and a graduate of Carleton University, Ottawa, Ontario with a degree of Doctor of Philosophy in 1966.
 - am a member of the Association of Professional Engineers and Geoscientists of British Columbia #8133.
 - have practiced my profession since 1966.
 - .am the author of the report entitled "Assessment Report, Diamond Drilling Report, Miracle Prospect" and supervised all of the work therein.

Dated at Richmond, British Columbia this 22nd Day of November, 2010.

Respectfully submitted,

Peter E. Fox PhD.,P.Eng.

November 22, 2010

BIBLIOGRAPHY

Bailey, D.G., 1990: Geology of the Central Quesnel Belt, British Columbia; B.C. Ministry Energy, Mines and Petroleum Resources, Open File 1990-31.

Crandall, J. T., 1979: Soil Geochemical Report on the Gavin Property, Brican Resources Ltd. Aris report 7333.

Carter, Dr. N. C. and Barclay, R J., 1984. Geochemical and Geophysical Report Have Claim Group, Longboat Resources Inc. Aris report 12683.

Fox, P.E., 2009. Geological, Geochemical and Diamond Drilling Report, Miracle and Peaks Prospects. Aris Report 31168

Gilmour, W. R, 1984: Geochemical and Geological Assessment Report on the Gavin Property, Brican Resources Ltd. Aris report 12693

Hodgson, C. J., 1970 Report on the Gavin Lake Cu-Mo Property, Amax Inc. Aris report 2733.

Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock, K.D., 1996: Geology and mineral deposits of the Quesnel River - Horsefly map area, central Quesnel Trough, British Columbia; B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, Bulletin 97, 155p.

Shore, Greg, 1979: Geophysical Surveys of the Gavin Lake Property, Brican Resources. Aris report 7396.

Wallis, J.E., 1995. Compilation and Evaluation Report Z Mineral Property. Aris report 23942.

Westervelt, R D., 1974: Geochemical Report on the GT 25-60 Mineral Claims Zubex Resources Ltd. Aris report 5105.

APPENDECES

APPENDIX I: DRILL LOGS

APPENDIX II: ASSAY CERTIFICATES

APPENDIX III: CROSS SECTIONS

APPENDIX I

MIRACLE PROPERTY

DRILL LOGS

EAGLE DEAK DESCRIBEES CORDODATION

Project:	Miracle	EAGLE PEAK	RESOURCES	S CORPORAT	TON	_			
HOLE#	M10-1					Dip Tests	М	Obs	Corr
Location	585494E 5817725N	Section		Started	Sept 8 2010				
Azimuth	045	Elevation	1140	Completed	Sept 9 2010				
Dip	-55	Date logged	Sept 12 2010	Logged by	PF				
Length	25m	Core	NQ	Sampled by	SK				
Purpose	North anomaly							'	

From	То	Description	Rk	Sample	to	length	Ср	Ру	Qv	Ер	Cu ppm	Au ppb	
0	12.8	Casing											
12.8	25	<u>BASALT</u>	Ва	59451	14	1.2		1	1	1	102	<2	
		Medium garined augite basalt - 40% epidotized augite in	Ва	59452	16	2	1	1	1	1	117	2	
		epidote-rich matrix. Mottled grey-green.	Ba	59453	18	2		1	1	1	104	<2	
		Quartz veinlets to 1 cm thick throughout 60° CA, sharp-walled to	Ba	59454	20	2	1	1	1	1	129	<2	
		1 cm, dissmenated pyrte and chacopyrite - 1%. Chloritic, on	Ва	59455	22	2		1	1	1	117	<2	
		fractures and seams. Hematite 22-25m. Rubbly core and gouge	Ва	59456	24	2		1		1	132	3	
		<u>to 25m.</u>	Ba,g	59457	25	2		1		1	161	<2	
		Lost hole at 25m in fault gouge.											

EAGLE DEAK DESCHIDGES CORDODATION

Project:	Miracle	EAGLE PEAK RES	SOURCES CORPORATION	ON	_		
HOLE#	M10-4				Dip Tests	М	Obs
Location	585365E 5817271N	Section	Started Se	ept 15 2010			
Azimuth	045	Elevation 1171	Completed Se	ept 17 2010			
Dip	-45°	Date logged 16-Sep	ep-10 Logged by	PF			
Length	98.8	Core NQ	Sampled by Sk	K			
Purpose	Test geochem anomaly					1	

From	То	Description	Rk	Sample	to	length	Ca	Sil	Ру	v/i	Cu ppm	Au ppb	
0	3.7	Casing	ob										
3.7	12.5	<u>Sandstone</u>	Vs	59496	6	2.3	2	1	1	7	124	4	
		Mottled grey-white, orange brown, brown carbonate alteration	Vs	59497	8	2	3	1	1	2	192	8	
		moderate to intense - total replacement at 10m.	Vs	59498	10	2	5	1	1	5	121	31	
		Sandstone massive to poorly bedded. Intensely replaced by	Vs	59499	12	2	5	4	1		138	42	
		sideritic carbonate and quartz stockworks. Trace pyrite.	Bx,g	59500	14	2	1	5	1		112	4	
12.5	14.3	Gouge, fragments quartz-carbonate-pyrite veinlets	Bx	59501	16	2	0	5	1		18	4	
14.3	19.2	Siliceous Breccia	Bx	59502	18	2	0	5	1		81	8	
		White to buff, massive, siliceous zone of quartz and black seams,	Bx,g	59503	20	2	0	1	1		114	9	
		local breccia. Core rubbly and thin gouge zones to 19.2m.	Vs	59504	22	2		0		8	124	4	
19.2	98.8	<u>Sandstone</u>	Vs	59505	24	2		0		8	164	6	
		Massive, grey-green sanstone. Poorly bedded	Vs	59506	26	2			1	7	175	4	
		Quartz-carbonate veinlets common 1/foot, containing	Vs	59507	28	2				6	147	2	
		pyrite and chalcopyrite locally - narrow selvage of disseminated	Vs	59508	30	2			1	6	182	5	
		sulphides.	Vs	59509	32	2				5	127	5	
			Vs	59510	34	2				2	60	5	
			Vs	59511	36	2			1	7	126	10	
			Vs	59512	38	2				7	123	4	
			Vs	59513	40	2				9	112	3	
			Vs	59514	42	2				12	125	4	
			Vs	59515	44	2			1	12	120	3	

From	То	Description	Rk	Sample	to	length	Ca	Sil Py	v/i Cu	ppm	Au ppb	
			Vs	59516	46	2			17	117	5	
			Vs	59517	48	2		1	8	137	2	
			Vs	59518	50	2			10	144	2	
			Vs,g	59519	52	2		1	17	167	2	
		52-54 Intense silicification, white hard with 1% disseminated	Vs	59520	54	2			15	191	27	
		pyrite.	Vs	59521	56	2			14	218	4	
			Vs	59522	58	2			10	203	4	
			Vs	59523	60	2		1	13	126	3	
			Vs	59524	62	2			8	246	3	
			Vs	59525	64	2			4	233	2	
			Vs,g	59526	66	2			3	252	3	
			Vs	59527	68	2		1	10	225	3	
			Vs	59528	70	2			14	277	3	
			Vs	59529	72	2		1	13	258	4	
			Vs	59530	74	2		1	11	253	3	
			Vs	59531	76	2			6	238	2	
			Vs,g	59532	78	2			0	202	3	
		81.5-80 Gouge	Vs,g	59533	80	2			0	187	3	
			Vs,g	59534	82	2			0	132	4	
			Vs	59535	84	2			0	154	3	
		84-86 Gouge, lost core	g	59536	86	2			0	167	5	
			Vs	59537	88	2			0	148	5	
			Vs	59538	90	2			0	142	4	
			Vs	59539	92	2			0	139	<2	
			Vs	59540	94	2			0	131	<2	
			Vs	59541	96	2			0	47	<2	
		ЕОН	Vs	59542	98.8	2.8			0	38	2	

FAGI F PEAK RESOURCES CORPORATION

Project:	Miracle	EAGLE PEAK RESOURCES (CORPORATION	_			
HOLE#	M10-3			Dip Tests	М	Obs	Corr
Location	585365E 5817271N	Section	Started 17-Sep				
Azimuth	045	Elevation 1191	Completed 19-Sep				
Dip	-60	Date logged	Logged by Fox				
Length	17.1	Core NQ	Sampled by SK				
Purpose	Test geochem anomaly						

From	То	Description	Rk	Sample	to	length	Car S	Sil P	/ v/i	Cu ppm	Au ppb	
0	3.7	Casing	ob									
3.7	13.7	<u>SANDSTONE</u>	Vs	59544	6	2.3	2	1	15	195	<2	
		Grey, mottled orange/brown, iron carbonate alteration along	Vs	59545	8	2	4	1 1	10	172	4	
		fractures and quartz veinlets	Vs	59546	10	2	5	2 1	9	134	17	
		Bedding 30° CA	Vs	59547	12	2	5	5 1	8	132	5	
13.7	17.1	BRECCIA	Vs	59548	14	2	1	5 3	7	157	<2	
		Grey, intense silicification of sandstone unit, broken core, gouge	Bx	59549	16	2		1		144	5	
		seams.	Bx,g	59550	17.1	1.1		1		181	3	
		Disseminated pyrite 1%.										
		Gouge, abandon hole										

FAGI F PEAK RESOURCES CORPORATION

Project	: Miracle	EAGLE PEAK RESOUR	CES CORPORATION	_			
HOLE#	M10-2			Dip Tests	М	Obs	Corr
Location	585494E 5817725N	Section	Started Sept 11 2010				
Azimuth		Elevation 1140	Completed Sept 12 2010				
Dip	-90	Date logged Sept 13 2010	Logged by PF				
Length	87.8m	Core NQ	Sampled by SK				
Purpose							

From	То	Description	Rk	Sample	to	length	Ср	Ру	v/i	Ер С	u ppm	Au ppb	
0	9.1	Casing	ob								• •		
9.1	58.6	<u>BASALT</u>	Ва	59458	10	0.9	1	1	4	1	100	<2	
		Mottled grey-green, massive, medium grained. 50% augite	Ва	59459	12	2		1	7	1	126	26	
		in eoidite-ricg granular matrix. Volcanic fragments common	Ва	59460	14	2		1	10	1	119	125	
		3-15 cm, often vesicular.	Ва	59461	16	2	1	1	10	1	110	81	
		13.2-15 Bleached white, massive pyritic tuff(?) or dike. 50° CA.	Ва	59462	18	2	1	1	11	1	101	4	
		Disseminated pyrite, chalcopyrite throughout - common near	Ва	59463	20	2		1	7	1	113	<2	
		<u>quartz veinlets.</u>	Ва	59464	22	2		1	16	1	122	<2	
		Quartz veinlets 1-2/foot, 20° CA, sharp walled, with white K	Ва	59465	24	2	1	1	1	1	103	<2	
		feldspar or albite. Local chalcopyrite and pyrite. Decrease at	Ва	59466	26	2		1	9	1	124	<2	
		36m to >>1/foot	Ва	59467	28	2		1	17	1	116	2	
		22-23.5 Gouge and ground core.	Ва	59468	30	2	1	1	10	1	121	<2	
			Ва	59469	32	2	1	1	14	1	133	2	
			Ва	59470	34	2	1		12	1	140	<2	
			Ва	59471	36	2		1	1	1	127	<2	
			Ва	59472	38	2			5	1	154	2	
			Ва	59473	40	2		1	3	1	147	2	
			Ва	59474	42	2		1	4	1	139	3	
			Ва	59475	44	2			1	1	150	<2	
			Ва	59476	46	2			2	1	143	8	
			Ва	59477	48	2		1	4	1	143	<2	

From	To	Description	Rk	Sample	to	length	Ср	Py v/i	Ер	Cu ppm	Au ppb	
			Ва	59478	50	2		5	1	156	<2	
			Ва	59479	52	2		6	1	163	27	
			Ва	59480	54	2		7	1	124	18	
			Ва	59481	56	2		3	1	139	12	
58.6	74.1	TUFF AND BASALT	Ва	59482	58	2		2	1	97	4	
		Mottled grey-green, massive to well bedded tuff and interbedded	Ва	59483	60	2		3	1	98	4	
		basalt breccia and conglomerate. Bedding 45° CA.	Ва	59484	62	2		2	1	104	<2	
		Tuffs medium to fine grained, I,ocally cherty. 1% disseminated	Ва	59485	64	2		2	1	108	<2	
		pyrite, quartz veinlets >> 1/foot,	Ва	59486	66	2		4	1	106	<2	
		Epidote common throughout, chlorite on fractures.	Ва	59487	68	2		2	1	104	7	
		74.1 Gouge	Ва	59488	70	2		2	1	92	<2	
741.1	82.7	PORPHYRY	Ва	59489	72	2		1	1	103	2	
		Blocky green-grey with 40% altered plagioclase phenocrysts.	Ва	59490	74	2		5	1	98	9	
		Very fine grained matrix. Broken core, rubbly.	Ва	59491	76	2		1	1	84	12	
		Barren.	Ва	59492	78	2		0	1	119	<2	
82.7	87.8	Gouge and highly broken core, chloritic gouge.	Ва	59493	80	2		0	1	114	7	
		Pieces white siltstone.	Ва	59494	82	2				111	3	
		Lost hole at 87.8m	g	59495	84	2				85	9	
			g	ns	86							
			g	ns	88							

EAGLE PEAK RESOURCES CORPORATION

HOLE#	M10-5					
Location	585218E 5817412N	Section		Started	19-Sep	
Azimuth	045	Elevation	1163	Completed	22-Sep	
Dip	-45	Date logged	20-Sep-10	Logged by	PF	
Length	113.7	Core	NQ	Sampled by	SK	
Purpose	Test geochem anomaly					

Dip Tests	М	Obs	Corr
	114		41°

From	То	Description	Rk	Sample	to	length	Ca Sil	Ру	v/i	Cu ppm	Au ppb	
0	8	Casing										
8	23.2	SANDSTONE	ob	59551	8	2			7	177	<2	
		Grey-green, massive poorly bedded medium grained sandstone.	Vs	59552	10	2			8	185	3	
		Broken core, trace amounts disseminated pyrite. Few quartz	Vs	59553	12	2		1	5	176	<2	
		veinlets	Vs	59554	14	2			4	202	<2	
			Vs	59555	16	2			9	183	2	
			Vs	59556	18	2				153	<2	
23.2	24	CARBONATE ZONE	Vs	59557	20	2			10	154	<2	
		Orange-brown sideritic alteration of sandstone unit.	Vs	59558	22	2				96	2	
24	31.1	QUARTZ BRECCIA	QBx	59559	24	2	5 1	1		135	<2	
		Highly broken core and gouge intervals. Colliform banding in	QBx	59560	26	2	5			36	<2	
		quartz breccia - grey vuggy quartz and angular crabonate	QBx,g	59561	28	2				63	8	
		fragments	Vs	59562	30	2				78	76	
		26-28 Gouge	Vs	59563	32	2			7	29	6	
31.1	74.7	SANDSTONE	Vs	59564	34	2			7	160	<2	
		Mottled grey, green maroon massive to weakly bedded.	Vs	59565	36	2			8	87	<2	
		Bedding 60° CA	Vs	59566	38	2			15	100	3	
		45.4 gouge	Vs	59567	40	2			6	107	4	
			Vs	59568	42	2			10	111	4	
			Vs	59569	44	2			13	110	5	
			Vs	59570	46	2			3	100	6	

Project: Miracle

From	То	Description	Rk	Sample	to	length	Ca	Sil Py	v/i	Cu ppm	Au ppb	
			Vs	59571	48	2			10	108	8	
			Vs	59572	50	2			5	126	5	
			Vs	59573	52	2			7	110	8	
			Vs	59574	54	2			11	89	4	
		55.0 Gouge	Vs	59575	56	2			9	101	6	
			Vs	59576	58	2			9	24	3	
			Vs	59577	60	2			2	62	3	
			Vs	59578	62	2			8	55	5	
			Vs	59579	64	2		1	10	139	6	
			Vs	59580	66	2		2	9	212	10	
			Vs	59581	68	2		2	12	162	9	
74.7	87	<u>BASALT</u>	Vs	59582	70	2		3	10	143	8	
		Massive, medium grained basaltic tuff or massive flow unit.	Vs	59583	72	2		2	8	122	5	
		60% subhedral to angular augite crystals in epidotized	Vs	59584	74	2		2	10	154	6	
		plagioclase-rich matrix	Ва	59585	76	2		3	11	121	5	
		Disseminated pyrite common and local fine grained chalcopyrite	Ва	59586	78	2		1	9	131	4	
			Ba	59587	80	2		2	12	121	5	
			Ва	59588	82	2		3	11	124		
87	90.5	<u>SILTSTONE</u>	Ва	59589	84	2		2	11	123		
		Grey, well bedded to cherty sediments. Bedding 60° CA	Ba	59590	86	2		2	9	129	4	
		89-90 gouge	Vs	59591	88	2			8	123	4	
			Vs	59592	90	2			8	126	3	
90.5	96.6	<u>BASALT</u>	Ва	59593	92	2			7	113	12	
		Augte-rich unit in epidote-rich matrix.	Ba	59594	94	2			13	124	6	
		Disseminated pyrite throughout	Ва	59595	96	2			12	118	7	
96.6	113.7	PYRITIC SILTSTONE	Vs	59596	98	2			12	114	20	
		diseminated pyrite throughout - 2%	Vs	59597	100	2			15	120	11	
		Bedding 10° CA	Vs	59598	102	2			8	98	8	
			Vs	59599	104	2			10	98	8	

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-5 Page 2

From	To	Description	Rk	Sample	to	length Ca Sil	Ру	v/i	Cu ppm	Au ppb	
			Vs	59600		2		9			
			Vs	59601		2		8	78	7	
			Vs	59602		2		12			
			Vs	59603		2			66		
		EOH	Vs	59604					63		

EAGLE PEAK RESOURCES CORPORATION

Project:	Miracle	EAGLE PEAK	RESOURCE	S CORPORAT	ION	
HOLE#	M10-6	_				
Location	585956E 5816890N (10)	Section		Started	22-Sep	
Azimuth	085	Elevation	1140	Completed	25-Sep	
Dip	<u>-45°</u>	Date logged	sept 23-25	Logged by	PF	
Length	167.3	Core	NQ	Sampled by	SK	
Purpose	Test Miracle vein					

Dip Tests	М	Obs	Corr
	107		42°
	167		41°

From	To	Description	Rk	Sample	to	length	Sil	Cp Py	v/i Cu	ppm	Au ppb	Ag ppm	Pb ppm
0	2.8	Casing	ob										
2.8	15.8	PORPHYRY (PQM)	PQM	59605	4	1.2		1	2	22		0.2	7
		Massive grey, local weathering oxide - rusty to 10m. 25% quartz	PQM	59606	6	2		1	6	31		0.2	7
		phenocrysts to 5mm in feldspathic equigranular matrix. 10%	PQM	59607	8	2		1	8	9		0.2	6
		subhedral biotite flakes. Desseminated fine grained pyrite	PQM	59608	10	2		1	3	4		<0.2	8
		throughout. Few quartz veinlets 2mm 40 ° CA.	PQM	59609	12	2		1	1	6	26	0.2	8
		Shear zone at 15.8 45° CA	g	59610	14	2		1	0	4		<0.2	8
15.8	24.2	<u>BASALT</u>	Ва	59611	16	2		1	1	22		0.2	7
		Massive, dark grey to greenish, 3mm blocky plagioclase 40% in	Ва	59612	18	2		1	13	110	12	0.5	5
		augite-rich matrix. Disseminated pyrite common with trace	g	59613	20	2		1	8	145	15	0.4	5
		chalcopyrite. 1cm qurtz veinlets common 40° CA	Ва	59614	22	2		1	6	138	5	0.3	2
		Shear and gouge 23.4, 19-19.8	Ва	59615	24	2		1	6	141	14	0.4	5
24.2	29.1	SILTSTONE	Vs	59616	26	2		1	16	159	787	2.6	3
		Bedded siltstone and massive sandstone/wacke. Bedding 40°	Vs	59617	28	2		1	17	167	113	0.5	<2
		CA. Dark grey to grey, Disseminated pyrite throughout.	PQM	59618	30	2		1	13	144	74	0.6	<2
29.1	36.8	PORPHYRY (PQM)	PQM	59619	32	2		1	4	20	85	0.6	10
		Massive quartz porphyry, brecciated 29.1-30. Contact 45° CA	PQM	59620	34	2		1	5	6	26	0.2	8
		1% dissmeninated pyrite and trace chalcopyrite. Rare quartz	PQM	59621	36	2		1	5	19	29	0.2	15
		veinlets 40° CA	Vs	59622	38	2		1		103	26	0.3	11
36.8	38.7	SILTSTONE	Ва	59623	40	2		1		91	5	0.3	<2
		Siliceous, black shears 45° CA	Ва	59624	42	2		1		84	6	0.3	3

From	To	Description	Rk	Sample	to	length	Sil	Ср	Ру	v/i	Cu ppm	Au ppb	Ag ppm	Pb ppm
38.7	49	<u>BASALT</u>	Ва	59625	44	2			1		126	87	0.4	3
		Massive, dark grey to greenish, 3mm blocky plagioclase 40% in	Ва	59626	46	2			1	9	61	10	0.2	3
		augite-rich matrix. Disseminated pyrite common	Ва	59627	48	2			1	10	69	7	<0.2	5
49	54.5	SILTSTONE	Vs	59628	50	2	2	1	1	>10	63	12	0.2	4
		Massive to bedded, grey to pale brown hornfels and plagioclase-	Vs	59629	52	2	2	1	1	>10	147	23	0.4	4
		tuff. Sheared 30° CA.	Vs	59630	54	2	3	1	2		44	9	0.2	5
54.5	62.4	MINERALIZED ZONE	MIN	59631	56	2	5	2	3		38	10	0.5	<2
		Intensely sheared volcanic sediments, silicified, Green Cr-mica	MIN	59632	58	2	5	1	2		41		0.4	<2
		common throughout. Disseminated pyrite, chalcopyrite 1%.	MIN	59633	60	2	5	2	3		46		0.5	<2
62.4	71	PORPHYRY (PQM)	MIN	59634	62	2	2	2	2		48	11	0.8	4
		Broken, rubbly core, sheared. Plagioclase altered to greenish	PQM	59635	64	2	1	1	1		14	7	0.2	3
		mineral. Disseminated pyrite 1%.	PQM	59636	66	2	1		1		10	8	<0.2	6
		Gouge 68-69.5	PQM	59637	68	2	1		1		98	98	4.1	24
71	77.6	<u>BASALT</u>	PQM	59638	70	2			2		24	12	0.6	4
		Dark grey, mottled, disseminated pyrite 1%.	Ва	59639	72	2			1		37	3	<0.2	2
77.6	84	PORPHYRY (PQM)	Ва	59640	74	2			1		38	2	0.2	<2
		Grey-green quartz-feldspar porphyry. 20% quartz phenocrysts	Ва	59641	76	2			2		50	4	0.2	7
		5mm 30% plagioclase phenocrysts 3mm in fine grained matrix.	PQM	59642	78	2	1		1		40	5	0.3	3
		Locally silicified, plagioclase altered to clay.	PQM	59643	80	2	2		1		13	17	0.6	33
84	88.4	<u>VEIN STOCKWORK</u>	PQM	59644	82	2	1		1		<1	3	<0.2	15
		Mineralized section- massive vein quartz 10cm and srockworks	PQM	59645	84	2	1		1		13	34	1.5	75
		of 1 cm quartz veinlets. Notable green mica throughout.	MIN	59646	86	2	5	2	2	3	69	141	9	177
		Disseminated sphalerite, galena, chalcopyrite, pyrite. Total	MIN	59647	88	2	5	2	3	2	362	44	28.1	1344
		sulphides 2-3%. Conatct at 84m 40° CA. Quartz veinlets	PQM	59648	90	2	1	1	1	3	5	62	0.5	17
		commonly 40° CA	PQM	59649	92	2	1		1		<1	29	0.3	17
88.4	133.5	PORPHYRY (PQM)	PQM	59650	94	2	1		1		3	111	0.4	15
		Grey-green quartz-feldspar porphyry. 20% quartz phenocrysts	PQM	59651	96	2	2		1		1	73	0.3	12
		5mm 30% plagioclase phenocrysts 3mm in fine grained matrix.	PQM	59652	98	2	1		1		1	128	0.4	9
		Locally silicified, plagioclase altered to clay.	PQM	59653	100	2	1		1		9	95	0.4	11

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-6 Page 2

From	To	Description	Rk	Sample	to	length	Sil	Cp Py	v/i	Cu ppm	Au ppb	Ag ppm P	b ppm
		119.7 Bladed calcite in colliform vug.	PQM	59654	102	2	1	1		5	4	0.2	5
		Intense argillic alteration to 130m	PQM	59655	104	2	2	1		<1	4	<0.2	6
			PQM	59656	106	2	1	1		<1	3	<0.2	6
			PQM	59657	108	2	1	1		<1	6	<0.2	5
			PQM	59658	110	2	1	1		<1	5	<0.2	6
			PQM	59659	112	2	1	1		<1	3	<0.2	7
133.5	143.6	SILTSTONE/HORNFELS	PQM	59660	114	2	1	1		1	4	<0.2	5
		Mottled green-brown-black hornfelsed sediment unit.Quartz	PQM	59661	116	2		1		1	4	0.2	5
		veinlets throughout, 1 cm. 40° CA	PQM	59662	118	2		1		<1	3	0.2	8
		Green mica at 136.4, trace galena in 2cm quartz veinlets	PQM	59663	120	2		1		2	3	0.2	7
		Probably east vein.	PQM	59664	122	2		1		11	4	0.2	6
		Quartz stockwark 141-143.6	PQM	59665	124	2		1		<1	2	<0.2	9
		Contact at 143.6 30° CA	PQM	59666	126	2		1		<1	3	<0.2	5
			PQM	59667	128	2		1		<1	3	<0.2	7
			PQM	59668	130	2		1		<1		<0.2	5
			PQM	59669	132	2		1		17	4	<0.2	7
			Vs	59670	134	2	2	1 2	2	64			
			MIN	59671	136	2	4	1 2	3	95	5	<0.2	8
143.6	167.3	ALTERED PORPHYRY (PQM)	Vs	59672	138	2	4	1 2	2	69	4	0.3	58
		Intensely silicified and clay-altered porphyritic quartz monzonite.	Vs	59673	140	2	1	2	1	83	5	0.4	3
		Grey to pale green, green Cr mica throughout to EOH at	Vs	59674	141	1	3	2	3	84	2	<0.2	10
		167.3. Numerous ribboned quartz veins and quartz stockwork	Vs	59675	142	1	3	2	2	52	6	0.2	2
		> 10/m. at 159.1, 160.5.	Vs	59676	144	2	3	3	3	41	12	0.3	3
		Locally disseminated galena, sphalerite and chalcopyrite.	PQM	59677	146	2	5	3	2	32	96	1.9	9
		1-4% pyrite throughout.	PQM	59678	148	2	5	2	1	<1	41	1	7
		Veins at 20° CA	PQM	59679	150	2	5	2	3	<1	<2	<0.2	6
		ЕОН	PQM	59680	152	2	3	3	2		<2	<0.2	2
			PQM	59681	154	2	2	2	1	<1	<2	<0.2	3
		NB Intensely clay altered and silicified 140 to EOH - rock	PQM	59682	156	2	3	1 3	1	<1	2	<0.2	9

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-6 Page 3

From	To	Description	Rk	Sample	to	length	Sil Cp	Ру	v/i	Cu ppm	Au ppb	Ag ppm	Pb ppm
		entirely replaced -	PQM	59683	158	2	5 1	4	2	36	5	0.4	<2
			MIN	59684	160	2	1 1	3	3	94	20	20.8	801
			MIN	59685	162	2	2 1	3	2	93	42	14.6	475
			PQM	59686	164	2	2	2	4	45	2	0.3	<2
			PQM	59687	166	2	2	3	1	29	3	0.2	
			PQM	59688	167.3	1.3	2	2	2	41	3	0.3	<2

FAGI F PEAK RESOURCES CORPORATION

Project:	Miracle E	AGLE PEAK	RESOURCE	S CORPORAT	ΓΙΟΝ	_			
HOLE#	M10-7					Dip Tests	М	Obs	Corr
Location	585956E 5816890N	Section		Started	25-Sep				
Azimuth	085	Elevation		Completed	27-Sep				
Dip	-60	Date logged	d	Logged by	pf				
Length	36.9	Core	NQ	Sampled by	y NONE				
Purpose	Test Miracle vein to depth abandoned at 36.9								

From	То	Description	Rk	Sample	to	length	ру	ср	v/i		
0	3.6	Casing	ob								
3.6	4.9	PORPHRITIC QUARTZ MONZONITE	PQM	Ν	6				5		
		Massive porphyry quartz phenocrysts 25% 4mm, 2mm	Vs	0	8		1		12		
		plagioclase phenocrysts 20% in medium garin equigranular	PQM	Т	10				4		
		matrix. 5-10% 2mm biotite crystals. Trace pyrite, quartz veinlets	PQM		12		1		5		
		2mm 40° CA 3/m	PQM	S	14				4		
4.9	8	SILTSTONE	PQM	Α	16		1		5		
		Mottled grey-green, trace pyrite. Quartz veinlets 40° CA	PQM	М	18				6		
8	18.3	PORPHRITIC QUARTZ MONZONITE	Vs	Р	20				4		
		Massive porphyry quartz phenocrysts 25% 4mm, 2mm	PQM	L	22				8		
		plagioclase phenocrysts 20% in medium garin equigranular	Ва	Е	24				7		
		Becoming argillic at 17.8	Ва	D	26						
18.3	20	SILTSTONE	Ва		28		1				
20	21.4	PORPHRITIC QUARTZ MONZONITE	Ва		30		1				
21.4	36.9	<u>BASALT</u>	Ва		32						
		34.7 Gouge	Ва		34						
21.4	36.9	LOST HOLE IN CLAY SEAM EOH	Ва		36.9						

EAGLE PEAK RESOURCES CORPORATION

Project:	Miracle	EAGLE PEAK	RESOURCES	S CORPORAT	ION	
HOLE#	M10-8					
Location	585853E 5816882N	Section		Started	27-Sep	
Azimuth	175	Elevation	1140	Completed	29-Sep	
Dip	-45	Date logged	29-Sep-10	Logged by	PF	
Length	159.7	Core	NQ	Sampled by	SK	
Purpose	Test geochem soil anomaly					

Dip Tests	М	Obs	Corr
	159		42

From	То	Description	Rk	Sample	to	length	Ру Ср	v/i	Cu ppm	Au ppb	
0	4.3	<u>CASING</u>	ob								
4.3	63.7	<u>VOLCANICS</u>	Ва	59689	6	1.7	2	5	114	3	
		Mottled grey-green, massive, medium to fine grained with	Ва	59690	8	2	1 1	16	111	4	
		intense propylitic alteration throughout - epidote/chlorite, cut by	Ва	59691	10	2	3	13	130	23	
		numerous quartz-kfeldspar-magnetite-biotite-sulfide stockwork	Ва	59692	12	2	2	17	107	2	
		>5/m. Disseminated pyrite-chalcopyrite throughout to 3%.	Ва	59693	14	2	2	15	228	10	
		Veinlets 20-40° CA, sharpy-walled with sulfide-rich selvages.	Ва	59694	16	2	3	21	114	9	
		Chalcopyrite disseminated and in veinlets with pyrite, pyrite>>	Ва	59695	18	2	1	19	100	3	
		chalcopyrite (5:1).	Ва	59696	20	2	1	8	90	2	
		Moderately magnetitic, magetite common in stockworks.	Ва	59697	22	2	5	15	106	16	
		Locally plagioclase phenocrysts to 4mm	Ва	59698	24	2	3	5	66	3	
		Trace disseminated bornite.	Ва	59699	26	2	3	15	111	<2	
		Banding at 47.2 20° CA.	Ва	59700	28	2	2	17	131	9	
			Ва	59701	30	2	2	10	105	8	
			Ва	59702	32	2	3	17	98	<2	
			Ва	59703	34	2	2 1	10	118	3	
			Ва	59704	36	2	1	17	131	2	
		Plagioclase altered to pink K feldspar 66.5-68.5	Ва	59705	38	2	2 1	16	103	2	
			Ва	59706	40	2	2	8	101	<2	
			Ва	59707	42	2	1	9	100	3	
			Ва	59708	44	2	3	12	73	<2	

From	To	Description	Rk	Sample	to	length	Ру	Cp v/i	Cu ppm	Au ppb	
			Ва	59709	46	2	2	1 7	153	3	
			Ва	59710	48	2	2	12	108	<2	
			Ва	59711	50	2	3	17	160	<2	
			Ва	59712	52	2	1	12	98	<2	
			Ва	59713	54	2	1	10	109	<2	
			Ва	59714	56	2	5	12	110	2	
			Ва	59715	58	2	2	16	117	2	
			Ва	59716	60	2	2	6	103	3	
			Ва	59717	62	2	2	14	107	<2	
		Quartz-feldspar dikes 65-65.4, 66.5-66.7	Ва	59718	64	2	2	16	70	<2	
63.7	70.6	QUARTZ PORPHYRY	PQM	59719	66	2	3	21	90	<2	
		Coarse grained quartz porphyry dike - 30% 1 cm quartz	PQM	59720	68	2	2	12	! 111	<2	
		phenocrysts in medium grained equigranular matrix of quartz and	PQM	59721	70	2	1	15	38	7	
		fleldspar. Contact 40° CA	Ва	59722	72	2	2	22	89	5	
70.6	75.9	<u>VOLCANICS</u>	Ba	59723	74	2	2	13	118	<2	
		Dark green to dark grey and black, K-altered. Quartz-feldspar	PQM	59724	76	2	1	20	148	13	
		veinlets throughout and irregular aggregates of quartz and	PQM	59725	78	2	3	21	40	10	
		pink K feldspar. Strong propylitic alteration -epidote+chlorite cut	Ba	59726	80	2	2	16	47	4	
		by stockworks of quartz-K feldspar-magnetite-pyrite veins.	Ba	59727	82	2	2	8	150	5	
75.9	79.6	QUARTZ PORPHYRY	Ba	59728	84	2	3	12	161	14	
		Massive grey coarse grained quartz porphyry. Quartz phenocrysts	Ba	59729	86	2	1	20	266	4	
		1cm, 5% biotite. Disseminated pyrite.	Ba	59730	88	2	1	12	190	3	
79.6	90.2	<u>VOLCANICS</u>	Ba	59731	90	2	5	18	159	3	
		Grey green, medium grained volcanic intensely propylitic -	Ba	59732	92	2	3	17	100	88	
		epidote+chlorite. Weak K feldspar alteration	PQM	59733	94	2	3	16	23	24	
90.2	92.7	BRECCIA	Ва	59734	96	2	2	3	37	8	
		Massive quartz breccia - compact fragments of fine grained	Ва	59735	98	2	2	(130	2	
		quartz 2-4 cm and irregular blocks of argillic K feldspar	Ва	59736	100	2	3	2	121	5	
		2-4% disseminated pyrite.	Ва	59737	102	2	2	17	180	2	

From	То	Description	Rk	Sample	to	length	Ру	Ср	v/i	Cu ppm	Au ppb	
92.7	95.7	QUARTZ PORPHYRY	Ba	59738	104	2	1		14	108	2	
		Intense argillic alteration of feldspar-seams of grey silica.	Ba	59739	106	2	2		6	121	2	
95.7	106.4	<u>VOLCANICS</u>	PQM	59740	108	2	2		8	65	4	
		Dark green - grey mottled chloritic with quartz veinlets 40°CA	PQM	59741	110	2	1		4	16	9	
		Irregular contact at 106.4. Weakly disseminated pyrite and	PQM	59742	112	2	3		14	7	3	
		trace chalcopyrite.	PQM	59743	114	2	2		6	7	4	
106.4	119.4	QUARTZ PORPHYRY	PQM	59744	116	2	2		7	10	4	
		Quartz-feldspar porphyry with blocky quartz phenocrysts 3mm.	PQM	59745	118	2	3		11	18	5	
		argillic plagioclase 2mm. Disseminated pyrite and trace	PQM	59746	120	2	1		9	64	2	
		chalcopyrite.	Ва	59747	122	2	1		11	131	<2	
119.4	130	VOLCANICS	Ва	59748	124	2	5		10	118	<2	
		Motteld green, propyllitic throughout epidote-chlorite altered	Ва	59749	126	2	2		14	131	2	
		augite, vague fragments >5cm. Pyrite trace to 1%.	Ba	59750	128	2	2		11	126	<2	
		trace chalcopyrite.	PQM	59751	130	2	2	1	8	132	<2	
130	141.2	QUARTZ PORPHYRY	PQM	59752	132	2	2		5	59	<2	
		Quartz phenocrysts >1cm - 30% in feldspathic matrix.	PQM	59753	134	2	3		9	34	2	
		Disseminated chalcopyrite, trace molybdenite. Pyrite <1%.	PQM	59754	136	2	2		7	34	4	
		Quartz-Kfeldspar veinlets common. Biotite altered to chlorite/	PQM	59755	138	2	1	1	10	22	<2	
		sericite in vein selvages throughout.	PQM	59756	140	2	2			20	<2	
141.2	159.7	<u>VOLCANICS</u>	Ва	59757	142	2	3		10	120	<2	
		Motteld green, fragmental with 1cm mafic to basaltic fragments	Ва	59758	144	2	2	1	12	151	<2	
		in epidotized medium grained matrix. Disseminated pyrite	Ва	59759	146	2	1		10	156	3	
		chalcopyrite.	Ва	59760	148	2	1	1	8	119	2	
		Bedding 142-148 40° CA	Ва	59761	150	2	2		7	120	<2	
			Ва	59762	152	2	2		6	180	<2	
			Ва	59763	154	2	1	1	8	224	3	
			Ва	59764	156	2	2			109	2	
			Ва	59765	158	2	2	1		107	<2	
		EOH	Ba	59766	159.7	1.7	2	1		114	<2	

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-8 Page 3

EAGLE PEAK RESOURCES CORPORATION

Project:	Miracle	EAGLE PEAK	RESOURCES	S CORPORAT	ION
HOLE#	M10-9				
Location	585850E 5816882N	Section		Started	30-Sep
Azimuth	094°	Elevation	1140	Completed	3-Oct
Dip	-45°	Date logged	Oct 1-Oct 3	Logged by	PF
Length	274.3	Core	NQ	Sampled by	SK
Purpose	Test Miracle vein at depth				

Dip Tests	М	Obs	Corr
	274		42°

From	To	Description	Rk	Sample	to	length	ру	ср	v/i	Cu ppm	Au ppb	
0	3	Casing	ob									
3	117.3	<u>VOLCANICS</u>	Ва	59767	4	1	1		12	145	<2	
		Predominantly massive compact basaltic coarse tuff, lapillistone	Ва	59768	6	2	2		8	107	<2	
		breccia and local interbeds of bedded material. Bedding 20°CA	Ва	59769	8	2	2	1	10	215	<2	
		Mottled green, with numerous coarse baslatic fragments to	Ва	59770	10	2	1		9	140	<2	
		3cm. Propyllitic with extensive epidote aggregates in the	Ва	59771	12	2	1		10	123	<2	
		matrix. 40% remnant augite altered to chlorite, 30% blocky	Ва	59772	14	2	1		11	140	<2	
		pagioclase 2mm.	Ва	59773	16	2	1		7	128	<2	
			Ва	59774	18	2	1		10	131	<2	
		Quartz-Kfeldspar-pyrite veinlets 2mm common throughout 40°CA	Ва	59775	20	2	1		9	133	<2	
		1-3% pyrite trace chalcopyrite in veinlets and disseminated in	Ва	59776	22	2	1		6	125	<2	
		matrix.	Ва	59777	24	2	2		12	137	2	
		Gouge 23.8	Ва	59778	26	2	1		11	141	3	
			Ва	59779	28	2	1		12	119	10	
			Ва	59780	30	2	1		10	124	<2	
			Ва	59781	32	2	1		12	137	<2	
			Ва	59782	34	2	2		12	107	<2	
			Ва	59783	36	2	1	1	11	176	10	
			Ва	59784	38	2	1	2	11	137	<2	
			Ва	59785	40	2	1	1	10	135	2	
			Ва	59786	42	2	1	1	12	111	33	

From	То	Description	Rk	Sample	to	length	ру	cp v/	Cu ppm	Au ppb	
			Ва	59787	44	2	2	1 1	2 164	16	
			Ва	59788	46	2	1		3 151	6	
			Ва	59789	48	2	1		2 118	3	
		Bedding 52-53.7 25°CA	Ва	59790	50	2	1		1 119	3	
		Tuffaceous, local graded beds, top up hole.	Ва	59791	52	2	1		93	2	
			Ва	59792	54	2	1		2 136	7	
			Ва	59793	56	2	2		3 133	2	
			Ва	59794	58	2	1		109	3	
			Ва	59795	60	2	1		5 134	<2	
			Ва	59796	62	2	1		3 139	<2	
			Ва	59797	64	2	2		110	4	
		66-68 siltstone	Ва	59798	66	2	2	1	91	5	
		70-72 Siltstone	Ва	59799	68	2	1		3 131	9	
			Ва	59800	70	2	1		107	13	
			Ва	59801	72	2	1		7 185	3	
			Ва	59802	74	2	1		9 114	6	
		79.2 Bedding 20°CA	Ва	59803	76	2	1	1	135	4	
			Ва	59804	78	2	1	1	2 127	14	
			Ва	59805	80	2	1	1	1 131	2	
			Ва	59806	82	2	2	1	2 141	16	
			Ва	59807	84	2	1	1	1 117	4	
			Ва	59808	86	2	2	1	122	13	
			Ва	59809	88	2	1	1	164	8	
			Ва	59810	90	2	2	1	131	3	
			Ва	59811	92	2	2		3 125	5	
			Ва	59812	94	2	1		3 138	9	
			Ва	59813	96	2	2		39	5	
			Ва	59814	98	2	1	1	32	5	
			Ва	59815	100	2	1		7 48	7	

From	To	Description	Rk	Sample	to	length	ру	ср	v/i	Cu ppm	Au ppb	
			Ва	59816	102	2	2		13	47	6	
			Ва	59817	104	2	1		12	135	2	
			Ва	59818	106	2	1	1	10	194	7	
			Ва	59819	108	2	1	1	15	160	18	
			Ва	59820	110	2	1	1	11	150	22	
			Ва	59821	112	2	1		10	164	7	
117.3	139.6	PORPHYRITIC QUARTZ MONZONITE	Ва	59822	114	2	2		15	46	20	
		White/grey coarse grained, 35% quartz phenocrysts 4mm in	Ва	59823	116	2	1		11	39	22	
		medium grained granular matrix. 1% disseminated pyrite	Ва	59824	118	2	1	1	6	40	18	
		throughout. Weak argillic alteration of plagioclase.	PQM	59825	120	2	1		4	28	34	
			PQM	59826	122	2	2		2	33	22	
			PQM	59827	124	2	2		2	38	19	
			PQM	59828	126	2	1		1	39	18	
			PQM	59829	128	2	1	1	2	23	24	
			PQM	59830	130	2	1		2	3	26	
139.6	153	<u>BASALT</u>	PQM	59831	132	2	1		0	5	24	
		Mottled green, fragmental 148-153. Pyritic 2%, disseminated	PQM	59832	134	2	1	1	4	22	23	
		and in quartz-rich veinlets 2mm with rare K feldspar selvages.	PQM	59833	136	2	1		4	10	21	
		Trace chalcopyrite in veinlets and along selvages.	PQM	59834	138	2	1		3	1	18	
		Contact 153m 45° CA	PQM	59835	140	2	1		3	37	12	
			Ва	59836	142	2	1		15	134	21	
			Ва	59837	144	2	1		12	126	4	
			Ва	59838	146	2	1		15	112	7	
			Ва	59839	148	2	2	1	11	120	5	
			Ва	59840	150	2	1	1	10	150	8	
		155m gouge	Ва	59841	152	2	1		9	126	7	
153	175.9	PORPHYRITIC QUARTZ MONZONITE	PQM	59842	154	2	1		10	64	11	
		Grey-white coarse grained, crumbly to blocky core. Gouge	g	59843	156	2	1		2	10	14	
		158-159, poor recovery in clay seam.	PQM	59844	158	2	1		1	5	10	

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-9 Page 3

From	To	Description	Rk	Sample	to	length	ру	ср	v/i	Cu ppm	Au ppb	
		Clay-sericite altered, feldspars altered to clay.	PQM	59845	160	2	2		2	4	13	
		Siltstone 171.4 - 172.2	PQM	59846	162	2	1			1	5	
			PQM	59847	164	2	1			3	8	
			PQM	59848	166	2	1			6	14	
175.9	186.5	<u>BASALT</u>	PQM	59849	168	2	2			3	14	
		Mottled green, fragmental 148-153. Pyritic 2%, disseminated	PQM	59850	170	2	2			2	14	
		and in quartz-rich veinlets 2mm with rare K feldspar selvages.	PQM	59851	172	2	1			45	11	
		Trace chalcopyrite in veinlets and along selvages.	PQM	59852	174	2	1			38	13	
		Veinlets 40° CA	PQM	59853	176	2	1			8	16	
			Ва	59854	178	2	1		8	103	9	
186.5	202.4	PORPHYRITIC QUARTZ MONZONITE	Ва	59855	180	2	1	1	8	105	8	
		Disseminated pyrite 1%, trace chalcopyrite to barren.	Ba	59856	182	2	1		9	107	14	
		Contact at 202 45° CA	Ba	59857	184	2	1	1	10	122	6	
			Ba	59858	186	2	1	1	15	154	7	
			PQM	59859	188	2	1		7	40	6	
			PQM	59860	190	2	1		4	8	5	
			PQM	59861	192	2	1		3	4	8	
			PQM	59862	194	2	1		2	3	2	
			PQM	59863	196	2	1		7	7	3	
			PQM	59864	198	2	1		4	5	6	
202.4	274.3	<u>BASALT</u>	PQM	59865	200	2	2		2	3	6	
		Mottled green, fragmental 148-153. Pyritic 2%, disseminated	PQM	59866	202	2	1		8	5	<2	
			Ва	59867	204	2	1		10	101	2	
			Ва	59868	206	2	1		7	111	<2	
			Ва	59869	208	2	1		10	118	2	
			Ва	59870	210	2	1			134	<2	
			Ва	59871	212	2	1			115	27	
			Ва	59872	214	2	1			131	<2	
			Ва	59873	216	2	1			122	3	

Eagle Peak Resources Prepared by P.E. Fox 11/25/2010 Hole M10-9 Page 4

From	To	Description	Rk	Sample	to	length	ру	cp v/i Cu ppm	Au ppb	
			Ва	59874	218	2	1	130	<2	
			Ва	59875	220	2	1	143	<2	
			Ва	59876	222	2	1	156	28	
			Ва	59877	224	2	1	153	88	
			Ва	59878	226	2	2	131	<2	
			Ва	59879	228	2	1	141	<2	
			Ва	59880	230	2	1	143	8	
			Ва	59881	232	2	1	165	2	
			Ва	59882	234	2		178	6	
			Ва	59883	236	2		171	10	
			Ва	59884	238	2		199	7	
			Ва	59885	240	2	1	172	9	
			Ва	59886	242	2	1	155	7	
			Ba	59887	244	2	1	153	7	
			Ba	59888	246	2	1	118	6	
			Ba	59889		2	1	115	7	
			Ва	59890		2	1	170	7	
			Ва	59891	252	2	1	121	6	
			Ва	59892		2	1	129	4	
			Ва	59893		2	2	151	6	
			Ba	59894	258	2	1	119	7	
			Ва	59895	260	2	1	164	7	
			Ва		262	2	1	176	10	
			Ва	59897	264	2		130	4	
			Ва	59898		2		113	8	
			Ва			2		139	23	
			Ва		270	2		132	9	
			Ва		272	2		163	12	
		EOH	Ba	59902	274.3	2.3		173	6	

APPENDIX II

Assay certificates

CERTIFICATE OF ANALYSIS

0S-0121-RG1

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	Kg	
59451	<2	6	4.0	·····
59452	2 <2		4.0	
59453	<2		3.5	
59454	<2		3.0	
59455	<2		4.0	
59456	<2 3 <2		2.0	
59457	<2		1.0	
59458	<2		1.5	
59459	26		4.0	
59460	125	119	3.0	
59461	81		3.0	
59462	4		4.0	
59463	<2		4.0	
59464	<2		5.0	
59465	<2		3.0	
59466	<2		4.0	
59467	2		5.0	
59468	<2		4.0	
59469	2		5.0	
59470	<2		4.0	
59471	<2		4.0	
59472	2		5.0	
*OXF65	769		·	
*BLANK	<2			

Au 15g F.A. AA finish

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0121RJ

Date : Nov-18-10

Sample type : CORE

Eagle Peak Resources Inc

Project : Miracle

Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo Na ppm %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm		Ti %		_		W ppm		Zr ppm
59451	<0.2	2.12	<5	155	<0.5	8	3.67	<1	22	103	102	4.65	<1	1.41	<10	2.64	800	<2 0.04	24	0.185	2	0.19	<5	12	262	<5	0.28	14	<10	169	<10	33	9
59452	<0.2	2.13	<5	223	<0.5	6	3.07	<1	22	97	117	4.20	<1	1.59	<10	2.61	759	<2 0.05	24	0.198	3	0.15	<5	10	204	<5	0.25	14		152	-	38	8
59453	<0.2	2.16	<5	156	0.5	10	4.69	<1	22	95	104	4.89	<1	1,77	<10	3.22	1041	<2 0.04	23	0.196	2	0.15	<5	15	398	<5	0.21	15	<10	169	-	42	7
59454	<0.2	2.46	< 5	234	0.5	12	3.73	<1	25	83	129	5.35	<1	1.44	<10	2.66	926	<2 0.04	23	0.210	4	0.17	<5	12	323	<5	0.21	14	13	183	-	41	7
59455	<0.2	1.95	< 5	181	<0.5	10	4.19	<1	24	82	117	5.37	<1	1.37	<10	2.55	922	<2 0.04	22	0.197	4	0.23	< 5	13	311	<5	0.23	14	12	204		34	7
59456	< 0.2	2.04	<5	139	< 0.5	11	2.96	<1	28	88	132	5.55	<1	1.48	<10	3.05	970	<2 0.04	23	0.228	4	0.34	<5	11	253	<5	0.26	15	16	236	<10	43	7
59457	<0.2	2.30	<5	180	< 0.5	9	1.91	<1	28	84	161	6.20	<1	1.91		2.89	965	<2 0.05	25	0.268	5	0.13	<5	7	161	<5	0.30	14	21	267		53	8
59458	< 0.2	2.04	<5	316	0.5	7	3.75	<1	22	117	100	4.42	<1	1.41	<10	3.02	894	<2 0.06	25	0.184	2	0.20	<5	12	205	<5	0.23	13	<10	163	<10	47	9
59459	<0.2	1.94	8	320	0.6	12	5.23	<1	27	117	126	5.39	<1	1.37	<10		1220	<2 0.05	26	0.201	5	0.49	6	18	290	<5	0.17	12	12	194		49	5
59460	<0.2	1.46	39	274	8.0	11	6.64	<1	26	90	119	5.40	<1	1.05	<10	3.63	1308	2 0.03	24	0.152	5	0.59	23	26	415	<5	0.09	10	10	163		50	2
59461	< 0.2	1.45	7	97	0.8	9	6.84	<1	30	108	110	6.26	<1	0.61	<10	4.18	1686	17 0.03	31	0.165	11	0.75	15	31	462	<5	0.04	<10	13	169	<10	56	<1
59462	< 0.2	2.03	<5	211	0.6	13	5.74	<1	23	147	101	5.05	<1	1.22	<10	3.44	1256	<2 0.04	28	0.169	3	0.32	<5	20	363	<5	0.19	14	10	203		35	6
59463	< 0.2	2.16	<5	263	0.5	8	3.81	<1	21	119	113	4.79	<1	1.63	<10	3.23	983	<2 0.05	24	0.182	4	0.19	< 5	11	296	<5	0.22	13		186		38	7
59464	<0.2	2.03	<5	237	0.5	11	4.23	<1	22	115	122	4.80	<1	1.65	<10	3.23	947	4 0.05	24	0.190	3	0.23	<5	11	314	< 5	0.19	13	10	167		41	6
5 9465	<0.2	1.49	<5	113	0.7	10	6. 9 8	<1	22	84	103	4.43	<1	1.07	<10	3.74	1157	<2 0.03	20	0.169	4	0.11	6	17	562	< 5	0.10	_		140		38	5
59466	<0.2	1.78	<5	156	0.5	6	3. 73	<1	22	110	124	4.19	<1	1.45	<10	2.82	914	<2 0.04	23	0.201	3	0.15	<5	13	312	< 5	0.20	12	<10	144	<10	43	7
59467	< 0.2	1.81	< 5	158	<0.5	7	3.00	<1	19	107	116	3.80	<1	1.36	<10	2.40	714	<2 0.05	22	0.185	3	0.14	< 5	8	199	< 5	0.23		<10	137	-	39	7
59468	<0.2	1.76	<5	123	<0.5	<5	3.64	<1	18	115	121	3.53	<1	1.24	<10	2.33	759	2 0.04	23	0.187	2	0.07	<5	9	227	<5	0.22	_				39	7
59469	< 0.2	2.23	<5	142	0.5	7	3.81	<1	26	118	133	5.07	<1	1.65	<10	2.92		<2 0.04	25	0.202	4	0.19	<5	10	286	<5	0.26	13				54	7
59470	<0.2	2.34	<5	178	0.5	7	3.21	<1	26	138	140	5.30	<1	1.74	<10	3.14	1063	<2 0.05	37	0.212	4	0.17	<5	9	251	<5	0.29	14	14	218		51	7
59471	< 0.2	2.20	<5	214	< 0.5	6	2.07	<1	25	165	127	4.11	<1	1.46	<10	2.97	784	<2 0.05	48	0.207	2	0.04	<5	6	197	<5	0.24	13	11	155	<10	49	7
59472	< 0.2	2.09	<5	107	< 0.5	8	3.16	<1	22	136	154	4.11	<1	1.07	<10	2.79	812	<2 0.05	37	0.189	3	0.06	<5	7	253	<5	0.25	13	<10	144	<10	43	7
59473	< 0.2	1.98	<5	93	< 0.5	7	1.48	<1	25	264	147	4.10	<1	1.18	<10	2.89	595	<2 0.09	71	0.174	2	0.03	<5	4	151	<5		<10	11	146	_	35	4
59474	< 0.2	1.89	< 5	93	< 0.5	7	1.96	<1	25	250	139	3.92	<1	0.90	<10	3.27	577	<2 0.07	71	0.173	2	0.03	<5	5	206	<5		<10		125		33	4
59475	<0.2	2.20	<5	152	<0.5	9	1.95	<1	26	276	150	4.41	<1	1.36		3.31	635	<2 0.07	75	0.177	3	0.04	<5	6	190	< 5		<10	12		<10	32	4
59476	<0.2	2.22	<5	218	< 0.5	6	2.86	<1	28	255	143	4.69	<1	1.38	<10	3.14	735	<2 0.07	76	0.175	3	0.14	<5	7	192	< 5	0.16	10	<10	146	<10	31	4
59477	< 0.2	2.38	<5	307	<0.5	6	2.49	<1	27	172	143	4.63	<1	1.50		3.15		<2 0.05	47	0.295	2	0.11	<5	6	200	<5	0.10	12		155		37	7
59478	<0.2	2.56	<5	273	<0.5	6	2.90	<1	25	73	156	5.27	<1	1.69	<10	2.48		<2 0.05	21	0.304	4	0.09	<5	7	196	< 5	0.20	13		192		59	6
59479	< 0.2	1.77	14	867	0.5	10	4.58	<1	22	12	163	5.52	<1		<10	2.36		2 0.04	7	0.197	7	0.35	14	11	272	<5		<10	13	149		56	1
59480	<0.2	2,47	14	497	0.6	8	6.36	<1	31	170	124	5.64	<1	1.26		3.72		3 0.06	59	0.173	5	0.28	6	18	563	<5		<10	-			42	3

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0121RJ

Date : Nov-18-10

Sample type : CORE

Eagle Peak Resources Inc

Project : Miracle
Attention : Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	к	La	Mg	Mn	Mo Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti	TI	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm			ppm		ppm		ppm		ppm		ppm	_			ppm				_		ppm		
50.404			_			_																											
59481	< 0.2	2.26		133		8	4.34	<1	23	108	139	4.40	<1	0.97		2.69	900	<2 0.10		0.155	3	0.21	<5		326	< 5	0.15					31	7
59482	<0.2	2.60	28	196		11		<1	23	35	97	5.57	<1	1.58		2.27		<2 0.07	18	0.153	3	0.49	< 5	12		< 5	0.25	16		214		79	8
59483	< 0.2	2.17	16	260		8	6.72	<1	21	33	98	5.10		1.36		2.34		3 0.07	16	0.150	4	0.67	5	10	296	<5	0.27			197		64	8
59484	< 0.2	2.70	10	336		8	4.20	<1	24	23	104	5.35		1.95		2.13		<2 0.07	13	0.158	< 2	0.30	<5	8	248	< 5	0.31	14		192		63	7
59485	<0.2	2.43	5	1//	<0.5	9	3.67	<1	25	27	108	4.81	<1	0.80	<10	2.24	943	<2 0.06	15	0.151	2	0.22	<5	8	203	<5	0.29	14	11	156	<10	60	9
59486	<0.2	2.29	<5	171	<0.5	9	5.26	<1	22	22	106	4.96	<1	0.71	<10	1.99	1133	<2 0.04	13	0.148	3	0.17	7	11	304	<5	0.10	10	<10	147	<10	53	4
59487	< 0.2	2.31	<5	175	< 0.5	7	4.89	<1	23	25	104	5.00	<1	0.44		2.24		<2 0.06	14	0.144	3	0.22	<5		189	<5	0.25	15		155		56	10
59488	< 0.2	2.46	<5	262	< 0.5	7	4.27	<1	25	28	92	4.90	<1	0.90	<10	2.36		<2 0.05	15	0.140	3	0.12	< 5	8	228	<5	0.22	13				59	8
59489	< 0.2	2.28	<5	374	< 0.5	7	3.47	< 1	27	29	103	5.03	<1	1.07	<10			<2 0.04	17	0.142	3	0.10	< 5	9	250	<5	0.23	14		161		63	8
59490	< 0.2	1.57	18	488	0.5	12	5.82	<1	27	26	98	5.63	<1	1.01	<10	2.96		2 0.04	20	0.124	5	0.23	11	17	404	<5	0.06	<10		145		56	3
59491	< 0.2	0.62	42	974	0.7	9	11.06	<1	27	60	84	5.01	<1	0.39	<10	5.13	1412	56 0.03	47	0.103	6	0.35	12	18	722	<5	<0.01	<10	11	104	<10	38	1
59492	< 0.2	1.84	<5	453	0.7	12	8.17	<1	35	213	119	5.58	<1	1.05	<10	4.94	1422	<2 0.03	82	0.159	6	0.06	7	30	726	<5	0.04	<10	10	167	<10	29	2
59493	< 0.2	1.82	5	180	0.6	11	8.02	<1	45	226	114	5.44	<1	0.84	<10	4.88	1421	3 0.04	99	0.155	5	0.23	6	25	548	<5	0.05	<10	10	161	<10	35	<1
59494	< 0.2	1.52	12	210	0.6	11	8.42	<1	32	169	111	5.30	<1	0.92	<10	4.45	1350	<2 0.06	72	0.140	4	0.12	7	26	498	<5	0.04	<10	<10	153	<10	31	1
59495	<0.2	1.74	7	139	0.6	11	4.45	<1	30	85	85	4.83	<1	0.83	<10	2.75	1124	<2 0.04	47	0.175	5	0.16	9	18	471	<5	0.05	<10	<10	158	<10	39	3
59496	<0.2	1.16	145	410	0.8	6	4.83	<1	23	45	124	4.88	<1	0.85	<10	1.36	1418	9 0.03	67	0.217	9	0.50	19	10	359	<5	0.03	<10	<10	120	<10	92	5
59497	<0.2	0.81	137	877	1.1	11	3.49	<1	21	9	192	5.07	<1	0.36	<10	1.20	1325	3 0.03	19	0.291	10	0.19	27	7	149	< 5	< 0.01	<10	<10	78	<10	67	4
59498	<0.2	0.57	79	476		8	6.48	<1	14	16	121	4.26	<1	0.18	<10	2.19	1331	6 0.02	13	0.180	9	0.71	31	4	206	< 5	<0.01	<10	<10	53	<10	39	4
59499	<0.2	0.84	100	602		11	4.60	<1	18	11	138	4.73	<1	0.35	<10	0.96	1233	2 0.02	20	0.200	8	0.46	31	6	133	<5	< 0.01	<10	<10	56	<10	49	6
59500	<0.2	0.63	62	1157	8.0	8	6.61	<1	15	10	112	4.21	<1	0.19	<10	2.98	1181	3 0.02	13	0.036	6	0.19	28	5	126	<5	<0.01	<10	<10	69	<10	35	3
59501	<0.2	0.20	12	46	<0.5	Ω	13.15	<1	6	44	18	3.56	<1	0.06	<10	7.24	956	3 0.03	10	0.008	2	0.06	12	4	163	, e	< 0.01	-10	<10	75	<10	16	2
59502	<0.2	0.31	23	348		7	6.70	<1	11	55	81	3.16	<1	0.16		3.21	849	2 0.02	9	0.009	4	0.11	31	6	129				<10	62		28	2
59503	<0.2	1.42	13	392		10	4.30	<1	19	21	114	4.62	<1		<10	2.68		3 0.03	9		4	0.07	25	9	75	<5	0.02					54	2
59504		1.70	10	951	0.9	8	3.02	<1	21	21	124	5.31	<1	1.26		2.47		2 0.05	10	0.269	6	0.06	8	11	95	<5		<10		119		59	6
59505		1.07	16	523		8	4.83	<1	19	17	164	4.75	<1	0.75	10	2.53		3 0.04	7	0.204	10	0.40	9	7	123	<5				100		41	5
		2.07		DEB	0.0	ŭ				-,	10.	.,, 3		0., 3		2133	1334	5 0.04	•	0.204	10	0.40	•	•	123		0.02	-10	10	100	110	71	- 1
59506	< 0.2	1.85	8	367	0.6	8	3.70	<1	18	24	175	4.83	<1	1.41	15	1.75	1264	2 0.05	11	0.241	6	0.09	5	7	142	<5	0.07	10	<10	105	<10	51	7
59507	< 0.2	2.24	<5	303	0.6	8	3.60	<1	19	24	147	4.79	<1	1.59	15	1.88	1236	3 0.05	9	0.258	8	0.24	6	7	145	< 5	0.09	10	<10	109	<10	57	7
59508	<0.2	2.92	<5	412	0.5	7	2.59	<1	19	24	182	4.98	<1	2.19	16	1.94	1205	6 0.06	9	0.284	7	0.04	6	6	111	<5	0.12	11	<10	112	<10	5 9	7
59509	< 0.2	2.75	< 5	530	0.5	8	2.80	<1	22	33	127	5.37	<1	2.23	14	2.24	1176	13 0.06	13	0.254	9	0.11	6	8	134	<5	0.13	12	<10	142	<10	53	9
59510	< 0.2	1.90	<5	362	< 0.5	5	1.67	<1	15	25	60	3.68	<1	1.52	<10	1.62	685	<2 0.03	9	0.166	4	0.02	<5	7	67	<5	0.08	<10	<10	93	<10	37	7

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0121RJ

Date : Nov-18-10

Sample type: CORE

Eagle Peak Resources Inc

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Mo Na	Ni	Р	Рb	S	Sb	Sc	Sr	Th	Ti	ΤI	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	% p	opm (ppm %	ppm	% _I	ppm	%	ppm (ppm	ppm	ppm	%	ppm	ppm	ppm	ppm		
59511	<0.2	2.45	8	730	0.9	12	4.68	<1	28	54	126	6.06	<1	1 71	<10	2.91 1	170	5 0.13	20	0.216	7	0.12	9		101		0.45	4.5		405			
59512	<0.2	2.81	< 5	616	0.9	10	3.54	<1	30	55	123	6.42	<1		<10	2.75 1		<2 0.25	23	0.216	7		_		181	<5	0.12	12	12	195	-	50	15
59513	<0.2	2.70	<5	640	0.8	8	3.25	<1	29	55	112	6.27	<1	1.78		2.51 1		<2 0.23	23	0.231	7	0.04	-5	12		<5	0.19	14	14	217	_	54	21
59514	<0.2	2.60	<5	584	0.7	14	4.02	<1	33	53	125	6.66	<1	1.99	<10	2.45 1		<2 0.23	24	0.234	7	0.04	<5	10	165	<5	0.20	13	14	225		55	20
59515		2.56	<5	727	0.8	15	4.03	<1	31	53	120	6.33	<1	2.06		2.75 1		<2 0.12	22	0.234	7	0.31	7 5	12		<5 -5	0.21	14	16	228		61	16
		2.50	,,	, _ ,	0.0	13	.,03	••	31	33	120	0.55	-1	2.00	~10	2.73 1	270	<2 U.12	22	0.230	,	0.08	5	14	217	<5	0.17	13	13	193	<10	61	14
59516	< 0.2	1.71	14	949	1.0	11	5.55	< 1	33	43	117	6.54	<1	1.32	<10	2.99 1	458	<2 0.06	21	0.201	7	0.17	19	20	265	<5	0.08	10	14	185	<10	59	9
59517	<0.2	2.65	<5	779	0.9	12	4.48	<1	31	51	137	6.41	<1	2.06	10	3.07 1	462	<2 0.11	21	0.241	8	0.03	7	16	241	<5	0.15	13	15	207		67	17
59518	< 0.2	2.66	<5	886	0.7	5	3.84	<1	25	36	144	5.38	<1	1.73	10	2.62 1	378	<2 0.08	14	0.272	7	0.03	8	9	224	<5	0.13		<10		<10	68	12
59519	< 0.2	3.21	<5	775	8.0	8	5.40	<1	33	45	167	6.66	<1	2.01	11	3.24 1	648	<2 0.10	19	0.274	8	0.05	7	16	314	<5	0.19	15	14		<10	70	20
59520	< 0.2	1.34	80	682	1.0	10	5.28	<1	25	17	191	5.52	<1	0.78	<10	2.34 1	428	<2 0.06	11	0.241	8	0.30	45	10	243	<5	0.04		<10	104		62	10
59521	<0.2	2.84	<5	629	1.0	12	3.68	<1	29	43	218	6.14	<1	2.06	12	2.59 1	357	<2 0.10	19	0.340	8	0.08	9	12	168	<5	0.13	12	10	171	<10	75	12
59522	< 0.2	2.70	<5	833	1.4	14	5.81	<1	36	58	203	7.02	<1	1.59	11	2.98 1	524	<2 0.23	28	0.293	10	0.14	8	19	302	<5	0.16	15	16	236	<10	70	20
59523	<0.2	3.04	<5	797	0.9	11	4.27	<1	32	59	126	6.33	<1	2.19	10	2.75 1	184	<2 0.21	24	0.290	9	0.04	6	13	182	< 5	0.21	14	10	214	<10	69	20
59524	<0.2	2.84	<5	1189	1.0	9	4.02	<1	28	43	246	6.36	<1	2.22	13	2.46 1	516	<2 0.12	21	0.319	9	0.10	7	12	291	<5	0.15	14	13	179	<10	66	11
5 9 5 25	< 0.2	2.97	<5	935	1.4	14	2.90	<1	33	51	233	7.15	<1	2.49	13	2.98 1	399	<2 0.08	23	0.348	10	0.03	13	1.7	168	<5	0.12	13	15	180	<10	67	9
50536			_			_																											
59526	<0.2	2.41	<5	887	1.1	9	1.99	<1	23	23	252	5.67	<1	1.81	<10	2.16 1		<2 0.07	13	0.329	7	0.04	10	9	101	< 5	80.0	<10	12	132	<10	59	4
59527	< 0.2	2.08		986	1.4	13	4.17	<1	26	31	225	6.59	<1	1.35		2.78 1		<2 0.05	18	0.298	9	0.10	33	13	174	< 5	0.05	10	12	142	<10	54	4
59528	< 0.2	2.97		1123	0.9	9	2.95	<1	22	27	277	5.62	<1	2.20	11	2.06 1		<2 0.13	13	0.347	7	0.05	10	7	168	<5	0.14	13	11	139	<10	64	11
59529		2.88		742	1.0	6	3.71	<1	24	29	258	5.94	<1	2.08	13	2.04 1		<2 0.16	13	0.343	9	0.10	6	9	223	<5	0.15	13	11	167	<10	69	14
59530	<0.2	3.09	<5	1015	1.1	10	3.98	<1	25	39	253	6.05	<1	2.06	10	2.21 1	256	<2 0.21	14	0.335	9	0.11	8	10	198	<5	0.16	14	12	181	<10	69	20
59531	<0.2	3.17	<5	822	1.2	12	3.91	<1	27	43	238	6.00	<1	1.94	<10	2.39 1	776	<2 0.24	16	0.316		0.00	_					4.5					
59532		3.24		835	1,2	12	3.91	<1	28	46	202	6.05	<1		<10	2.55 1		<2 0.24	18		8	0.06	5	11	174	< 5	0.14	13	12	177		72	22
59533	<0.2	3.18		1588	1.5	16	5.41	<1	37	191	187	7.57	<1	1.89	20	4.00 1		<2 0.21	107	0.316 0.397	6	0.04	5		170	< 5	0.17	14	12			67	24
59534		2.88		2341	1.5	6	5.17	<1	34	226	132	6.88	<1	1.79	22	4.42 1		<2 0.15	142	0.397	8 8	0.26	5		431	5	0.23	20	16			71	29
5 9 5 35		2.20		494	1.2	12	5.10	<1	32	61	154	6.66	<1	0.89	11	2.82 1					_	0.16	<5		563	< 5	0.29	21	10	232	-	64	27
	-0.2	2.20		151			3,10		JŁ	01	134	0.00	~1	0.03	11	2.02 1	.370	2 0.13	41	0.239	7	0.16	10	19	450	<5	0.09	12	12	204	<10	70	12
59536	<0.2	3.03	30	355	1.3	11	3.54	< 1	36	90	167	7.15	<1	1.67	11	3.20 1	362	<2 0.05	42	0.234	8	0.57	12	18	433	<5	0.14	13	17	210	<10	66	14
59537	< 0.2	3.34	<5	216	0.6	8	3.33	<1	29	53	148	5.55	<1	2.66	12	3.21 1		<2 0.05	29	0.243	6	0.24	7	9	283	<5	0.13	12	11	157		55	8
59538	< 0.2	3.19	13	279	0.6	8	3.22	<1	27	56	142	5.50	<1	2.74	11	3.61 1		<2 0.05	29	0.243	5	0.28	7	11	312	<5	0.13	11	11		<10	50	7
59539	<0.2	3.10	< 5	121	0.5	7	1.88	<1	25	57	139	4.57	<1	2.58	<10	3.03 1		<2 0.05	30	0.180	5	0.23	5	8	156	<5	0.14	10	13			60	7
59540	< 0.2	2.84	<5	83	0.7	<5	2.17	<1	23	50	131	4.46	<1	2.05	10	2.66 1	069	<2 0.04	29	0.179	3	0.19	7	8	236	<5	0.10	-		117		58	7
																					-		•		2.50	~2	5.15	~10	10	11,	~10	50	,

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0121RJ

Date : Nov-18-10

Sample type : CORE

Eagle Peak Resources Inc

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	Αl	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Mo Na	Ni	þ	Рb	s	Sb	Sc	Sr	Th	Ti	TI	U	V	w	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm		ppm	%	ppm	~	ppm		ppm	·%	ppm	_			ppm							ppm (
5954 1	<0.2	1.41	10	440	0.7	9	3.45		4.4		47	2.00	_																		•		
59542	<0.2	1.41	12		0.8	7	3.45 4.36	<1	11 10	10 12	47	2.89	<1	0.84		1.93		2 0.03	5	0.124	6	0.15	6	3	158	<5		<10	<10	59	<10	61	5
59543	<0.2			117	0.5	5	2.15	<1	11		38	3.10	<1	0.78		2.12		2 0.03	5	0.140	4	0.09	9	4	176	<5	0.03	<10	<10	61	<10	53	5
59544	<0.2	2.15	22		0.5	12	3.83	<1 <1	25	13	39	3.04	<1	1.11		1.49	-	<2 0.04	4	0.151	4	0.05	6	4	134	<5	_	<10	<10	69	<10	60	6
59545	<0.2	1.06	44	416	1.0	10	4.09	<1		61	195	5.55	<1	1.77	15	1.93		18 0.06	38	0.297	5	0.48	7	10	371	< 5		13	12		<10	83	5
37373	~0.2	1.00	44	410	1.0	10	4.09	<1	24	26	172	5.68	<1	0.67	11	1.33	1529	6 0.03	19	0.249	8	0.19	12	10	253	< 5	0.03	<10	12	128	<10	65	4
59546	< 0.2	0.70	65	704	1.0	12	8.32	< 1	29	29	134	6.50	<1	0.35	<10	2.81	1807	6 0.02	38	0.200	11	0.50	46	15	266	< 5	<0.01	~10	<10	115	<10	59	,
59547	< 0.2	0.78	193	555	1.0	12	6.65	< 1	27	27	132	5.70	<1	0.34		1.50		8 0.03	76	0.196	9	0.44	19	13	219		< 0.01		<10		<10	71	3
59548	< 0.2	0.85	72	470	0.8	11	5.22	<1	18	14	157	4.77	<1			2.64		9 0.03	22	0.166	8	0.59	20	6	177	<5			<10			68	4 3
59549	< 0.2	2.03	5	279	1.1	14	6.92	<1	26	124	144	5.23	<1	1.29	<10	2.52	1348	6 0.03		0.229	3	0.12	12	15	344	<5	0.10	11	<10			41	1
59550	< 0.2	2.46	< 5	89	0.6	11	4.01	<1	24	102	181	5.42	<1	1.96	<10	2.44	1106	5 0.05	71	0.277	3	0.15	<5	10	143	<5		14	10		<10	48	3
																							-				0.61			133	110	70	3
595 51	<0.2	2.57	<5	90	0.5	10	3.39	<1	24	99	177	5.13	<1	2.09	<10	2.52	1133	4 0.07	76	0.295	3	0.15	<5	8	109	<5	0.23	14	12	202	<10	51	3
59552	< 0.2	2.30	<5	58	0.6	9	2.93	<1	24	87	185	5.03	<1	1.85	<10	2.52	978	3 0.05	50	0.289	2	0.14	<5	9	83	<5	0.24	16			<10	50	5
59553	<0.2	2.37	<5	69	0.5	10	2.83	<1	25	107	176	5.27	<1	1.92	<10	2.29	991	<2 0.05	54	0.258	3	0.20	<5	7	86	<5	0.26	16		203	<10	49	4
59554	<0.2	2.09	<5	50	0.7	11	4.39	<1	21	65	202	4.60	<1	1.28	<10	2.04	1069	2 0.03	40	0.243	3	0.17	<5	9	140	<5	0.17	12		152		50	4
59555	<0.2	2.13	12	91	0.8	9	4.67	<1	24	98	183	5.22	<1	1.69	<10	3.04	1205	2 0.03	72	0.253	3	0.13	17	12	186	< 5	0.15	11	10	156	<10	41	1
59556	<0.2		< 5		<0.5	7	2.81	<1	23	112	153	4.57	<1	1.90	<10	2.84	1028	3 0.04	73	0.201	2	0.18	<5	9	124	< 5	0.22	13	10	195	<10	43	3
59557	<0.2	2.42	<5	226	0.7	6	2.69	<1	31	274	154	4.87	<1	1.64	<10	3.10	891	<2 0.06	126	0.273	3	0.13	<5	8	115	< 5	0.18	12	12	155	<10	51	4
59558	< 0.2	1.79	< 5		1.3	12	7.11	<1	43	294	96	6.55	<1	0.81	<10	4.65	1389	9 0.05	181	0.166	6	0.10	10	28	176	< 5	0.05	10	14	182	<10	37	5
59559	<0.2	1.48	24	204	1.1	14	6.64	<1	37	136	135	6.21	<1	0.55	<10	3.75	1238	3 0.03	115	0.167	6	0.25	16	21	149	<5	0.03	<10	13	218	<10	40	4
59560	<0.2	0.37	18	625	0.6	11	10.61	<1	13	71	36	3.52	<1	0.06	<10	5.74	972	2 0.03	42	0.009	2	0.08	12	8	185	<5	< 0.01	<10	<10	102	<10	27	2
59561	<0.2	0.31	E 2	749	0.6		13.44	-4	24																								
59562	<0.2	0.32		102	0.0		13.44 12.50	<1	21	57	63	4.14	<1	0.09	<10	6.67		7 0.03	39	0.008	3	0.21	24		178	<5		10	<10	90	<10	40	3
59563	<0.2	0.59		821	0.7	12	6.34	<1	23	60	78	4.66	<1	0.22	<10	6.39		5 0.02	49	0.009	4	0.75	28	20	334			<10	<10	92	<10	27	1
59564	<0.2	0.58		1432	0.9	14	6.61	<1	29 29	33	29	5.82	<1	0.42		3.60		8 0.02	27	0.131	7	0.19	16	18	137			<10	<10	157	<10	50	1
59565	<0.2	1.69		579	0.9	9		<1	29 34	27	160	5.56	<1		<10	3.68		<2 0.02	21	0.165	8	0.13	18	18	200			<10	<10	161	<10	62	1
33303	~0. 2	1.09	-5	3/5	U. 9	9	6.47	<1	34	41	87	5.77	<1	0.69	<10	4.04	1414	<2 0.03	32	0.188	6	0.07	15	16	270	<5	0.03	<10	11	145	<10	58	3
Duplicates:																																	
59451	<0.2	1.91	<5	147	<0.5	8	3.35	<1	21	10 0	99	4.39	<1	1.35	<10	2.54	731	<2 0.04	22	0.176	<2	0.18	<5	11	235	<5	0.22	13	<10	160	<10	32	7
59460	<0.2	1.41	38	259	8.0	11	6.56	<1	25	82	113	5.38	<1	1.06	<10	3.53	1259	2 0.03	22	0.138	7	0.52	23	24	405	<5	0.08		_		<10	41	2
59470	<0.2	2.33	<5	181	0.5	11	3.19	<1	25	134	147	5.29	<1	1.75	<10	3.14	1000	<2 0.05	35	0.201	4	0.16	<5	9	249	<5	0.26	15	14		<10	42	7
59473	<0.2	1.93	<5	93	<0.5	6	1.49	<1	25	244	142	4.10	<1	1.15	<10	2.93	607	<2 0.09	71	0.172	3	0.03	<5	4	153	<5		<10	<10	136		35	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0121RJ

Date

: Nov-18-10

Sample type : CORE

Eagle Peak Resources Inc

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm		Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	M g %	Mn ppm	Mo N ppm %	a N 6 ppm		P PI % ppn	_		bw t	Sc pm	Sr ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm p	Zr ppm
59482	< 0.2	2.51	28	184	<0.5	10	5.14	<1	22	33	91	5.32	<1	1.52	<10	2.14	1082	<2 0.0	7 16	0.14	12	3 0	.44	5	12	247	<5	0.24	15	11	201	<10	71	7
59492	<0.2	1.83	<5	433	0.7	15	7.97	<1	35	202	122	5.45	<1	1.06	<10	4.81	1330	<2 0.0	3 78	0.1	1 !	5 0.	.06	7	29	720	<5	0.04	<10	< 10	159	<10	27	2
59495	< 0.2	1.79	8	150	0.7	7	4.83	<1	31	89	89	5.09	<1	0.86	<10	2.73	1166	<2 0.0	1 48	0.18	30 !	5 0.	.15	12	19	494	<5	0.05	<10	<10	169	<10	37	3
59504	< 0.2	1.64	7	878	0.9	10	3.02	<1	21	20	116	5.08	<1	1.20	<10	2.46	1179	<2 0.0	5 9	0.2	72 (5 0.	.06	8	10	94	<5	0.04	<10	<10	112	<10	57	5
59514	<0.2	2.64	< 5	583	8.0	11	4.08	<1	32	53	126	6.61	<1	1.96	<10	2.44	1262	<2 0.1	2 24	0.24	12	7 0	.30	5	13	244	<5	0.21	15	15	230	<10	56	17
59517	<0.2	2.68	< 5	745	0.9	10	4.40	<1	31	49	129	6.36	<1	2.03	10	2.99	1482	<2 0.1	L 20	0.23	35	7 0.	.03	9	15	243	<5	0.15	13	11	197	<10	57	16
59526	<0.2	2.57	<5	894	1.2	7	2.04	<1	23	23	251	5.91	<1	1.89	<10	2.22	1360	<2 0.0	7 13	0.32	9	7 0.	.04	12	9	103	<5	0.08	<10	11	132	<10	60	4
59536	<0.2	3.33	24	386	1.4	13	3.83	<1	36	91	179	7.84	<1	1.85	11	3.40	1346	<2 0.00	5 42	0.24	4 1:	1 0.	.56	9	19	473	<5	0.14	15	19	217	<10	48	14
5953 9	<0.2	3.38	<5	133	0.6	5	2.06	<1	26	62	153	5.17	<1	2.89	<10	3.36	1082	<2 0.00	3 3 2	0.19	95 (5 0.	.23	5	9	170	<5	0.13	12	13	141	<10	54	7
59548	<0.2	0.82	73	463	0.7	11	4.97	<1	18	13	143	4.57	<1	0.27	<10	2.50	1249	10 0.0	3 21	0.19	58 t	3 0.	.56	20	6	170	<5	<0.01	<10	<10	87	<10	64	3
59558	<0.2	1.76	<5	273	1.3	14	6.97	<1	42	293	94	6.60	<1	0.81	<10	4.36	1294	8 0.03	5 177	0.19	57 (5 0.	.09	7	27	173	<5	0.05	10	14	180	<10	31	5
59561	<0.2	0.31	52	736	0.6	9	13.24	<1	20	48	62	4.05	<1	0.09	<10	6.76	1239	4 0.03	3 37	0.00	7 <	2 0.	.20	24	8	174	<5	<0.01	<10	<10	92	<10	37	3
Standards:																																		
Blank	<0.2	<0.01	<5	<10	< 0.5	<5	< 0.01	<1	<1	<1	<1	<0.01	<1	< 0.01	<10	< 0.01	<5	<2 0.03	<1	<0.00	01 <	2 <0.	.01	<5	<1	<1	<5	< 0.01	<10	<10	<1	<10	<1	<1
CH-4	2.5	1.77	5	288	<0.5	8	0.62	<1	23	108	202 6	4.67	<1	1.47	14	1.25	346	3 0.0	5 55	0.0	6 1	1 0.	.68	<5	7	8	<5	0.19	13	12	94		203	8

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

CERTIFICATE OF ANALYSIS

0S-0121-RG2

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name	Au ppb	Au-Check ppb	Sample-wt Kg	
59473	2	4	5.0	
59474	3		4.0	
59475	2 3 <2		6.0	
59476	8		4.0	
59477	<2		4.0	
59478	<2		6.0	
59479	27		4.0	
59480	18		5.0	
59481	12		3.0	
59482	4	6	5.0	
59483	4		3.0	
59484	<2		3.0	
59485	<2		4.0	
59486	<2		4.0	
59487	7		3.0	
59488	<2		4.0	
59489	2 9		5.0	
59490	9		4.0	
59491	12		4.0	
59492	<2		3.0	
59493	7		4.0	
59494	3		4.0	
*OXF65	784			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0121-RG3

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample		Au-Check	Sample-wt	
Name	ppb	ppb	Kg	
59495	9	8	3.0	
59496	4		4.0	
59497	8		3.0	
59498	31		4.0	
59499	42		3.0	
59500	4		1.0	
59501	4		3.0	
59502	. 8		1.0	
59503	9		1.0	
59504	4		4.0	
59505	6	· · · · · - · · · · · ·	4.0	
59506	4		5.0	
59507	2		5.0	
59508	5		4.0	
59509	5		5.0	
59510	5		4.0	
59511	10		5.0	
59512	4		5.0	
59513	3		5.0	
59514	4	3	5.0	
59515	3		5.0	
59516	5		5.0	
*OXF65	769		3.0	
*BLANK	2			

Au 15g F.A. AA finish

Certified by	

CERTIFICATE OF ANALYSIS

0S-0121-RG4

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	Kg	
59517	2	3	4.0	
59518	2 2 2		3.0	
59519			5.0	
59520	27		5.0	
59521	4		4.0	
59522	4		4.0	
59523	3		5.0	
59524	3 3 2 3		3.0	
59525	2		5.0	
59526	3		3.0	
59527	3		3.0	
59528	3 3 4 3		4.0	
59529	4		4.0	
59530			4.0	
59531	2		4.0	
59532	3		4.0	
59533	3		5.0	
59534	4		5.0	
59535	3		3.0	
59536	5	4	1.0	
59537	5		3.0	
59538	4		2.0	
*OXF65	769			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0121-RG5

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name		Au-Check	Sample-wt	
59539	ppb	ppb	Kg	
59540	<2	2	3.0	
59541	<2		3.0	
59542	<2		3.0	
	2		4.0	
59543	<2		1.0	
59544	<2		5.0	
59545	4		4.0	
59546	17		4.0	
59547	5		3.0	
59548	<2		3.0	
59549	5		2.0	
59550	3		$\frac{1}{4}$. 0	
59551	5 3 <2		4.0	
59552	3		3.0	
59553	<2		3.0	
59554	<2		3.0	
59555	2		3.0	
59556	<2		4.0	
59557	<2		3.0	
59558	2	Λ		
			4.0	
59559	<2		4.0	
59560	<2		4.0	
*OXF65	788			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0121-RG6

Company:

Eagle Peak Resources Inc

Nov-18-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 5 core samples submitted Oct-12-10

Sample	Au Ai	ı-Check	Sample-wt	
Name	ppb	ppb	Kg	
59561	8	13	3.0	
59562	76		1.0	
59563	6		1.0	
59564	<2		4.0	
59565	<2		3.0	
*OXF65	785			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0122-RG1

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au Au-Check	Sample-wt	
Name	ppb ppb	Kg	
59566	3 <2	4.0	
59567	4	3.0	
59568	4	4.0	
59569	5	5.0	
59570	6	3.0	
59571	8	5.0	
59572	5	4.0	
59573	8	4.0	
59574	4	4.0	
59575	6	5.0	
59576	3	5.0	
59577	3	4.0	
59578	5	5.0	
59579	6	5.0	
59580	10	4.0	
59581			
59582	8	4.0	
59583	o 5	4.0	
59584	6	5.0 4.0	
59585	5 3		
		5.0	
59586	4	4.0	
59587	5	5.0	
*OXF65	782		
*BLANK	<2		

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0122-RG2

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name	Au ppb	Au-Check	Sample-wt Kg	
59588		<u>ppb</u>		
59589	3 4	3	5.0 5.0	
59590	4		5.0	
59591	4		6.0	
59592	3		5.0	
59593	12		4.0	
59594	6 7		5.0	
59595 59596			5.0	
	20		6.0	
59597	11		4.0	
59598	8		3.0	
59599	8		5.0	
59600	8		4.0	
59601	7		3.0	
59602			3.0	
59603	9		2.0	·
59604	6		1.5	
59605	26		3.0	
59606	22		5.0	
59607	28	29	5.0	
59608	25		5.0	
59609	26		5.0	
*OXF65	738			
*BLANK	2			· - ·

Au 15g F.A. AA finish

the

Certified by_

CERTIFICATE OF ANALYSIS

0S-0122-RG3

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	- ppb	Kg	
59610	18		5.0	
59611	20		5.0	
59612	12		5.0	
59613	15		5.0	
59614	5		4.0	
59615	14		5.0	
59616	787		5.0	
59617	113		5.0	
59618	74		5.0	
59619	85	89	3.0	
59620	26		5.0	
59621	29		5.0	i.
59622	26		5.0	
59623	5		5.0	
59624	6		5.0	
59625	87		4.0	
59626	10		5.0	
59627	7		4.0	
59628	12		5.0	
59629	23	23	5.0	
59630	9		5.0	
59631	10		6.0	
*OXF65	791			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0122-RG4

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	Kg	
59632	5	2	5.0	
59633	3		5.0	
59634	11		5.0	
59635	7		5.0	
59636	8		4.0	
59637	98		5.0	
59638	12		4.0	
59639	3		5.0	
59640	2		6.0	
59641	4		5.0	
59642	5		5.0	
59643	17		4.0	
59644	3		5.0	
59645	34		6.0	
59646	141		5.0	
59647	44		5.0	
59648	62		5.0	
59649	29		4.0	
59650	111		5.0	
59651	73	69	5.0	
59652	128		5.0	
59653	95		3.0	
*OXF65	749			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0122-RG5

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au Au-Chec		
Name	ppb pp	b Kg	
59654	6	4.0	
59655	4	4.0	
59656	4	6.0	
59657	3	4.0	
59658	6	4.0	
59659	5	5.0	
59660	3	6.0	
59661	4	5.0	
59662	4	4.0	
59663	3	5.0	
59664	3	4.0	
59665	4	5.0	
59666	2	5.0	
59667	3	5.0	
59668	3	5.0	
COMP 59669-70	4	9.0	
59671	5	6.0	
59672	4	5.0	
59673	5	5.0	
59674	2	3.0	
59675	6	4.0	
*OXF65	776		
*BLANK	<2		

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0122-RG6

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 4 core samples submitted Oct-12-10

Sample	Au	Au-Cheek	Sample-wt	
Name	ppb	ppb	Kg	
59676	12	14	5.0	
59677	96		6.0	
59678	41		5.0	
59679	<2		5.0	
*OXF65	748			
*BLANK	<2			

Au 15g F.A. AA finish

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0122RJ

Date

: Nov-22-10

Sample type : CORE

Eagle Peak Resources Inc.

Project : Miracle
Attention : Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Mo Na	Ni	Р	Рb	s	Sb	Sc	Sr	Th	Τì	TI	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm				ppm	%	ppm				ppm						ppm		
50565			_																									•	• •	•			
59566		1.68	<5			11	3.54	1	32	67	100	5.36		1.40			1320	<2 0.06		0.220	<2	0.12	6	18	231	<5	0.06	<10	<10	145	<10	86	5
59567		1.53	11		1.0	13	4.36	2	33	62	107	5.78		1.10			1637	<2 0.04	27	0.206	<2	0.23	11	18	195	< 5	0.04	<10	<10	155	<10	87	6
59568	<0.2		<5		1.0	12	4.09	2	34	62	111	5.61		1.14	<10		1638	<2 0.05		0.207	<2	0.15	11	20	206	<5	0.04	<10	<10	171	<10	83	5
59569		1.77	<5		1.3	13	5.06	2	36	74	110	6.10	8	1.42	<10	2.61	1642	<2 0.05	29	0.218	<2	0.18	< 5	18	233	<5	0.10	<10	<10	196	<10	90	9
59570	0.5	0.52	47	1002	1.0	12	5.84	1	30	37	100	5.78	10	0.23	<10	2.73	1533	<2 0.02	25	0.037	<2	0.40	35	15	104	<5	<0.01	<10	<10	125	<10	81	3
59571	0.4	1.56	9	633	1.1	14	4.08	2	29	38	108	5.86	6	1.11	<10	2.23	1534	<2 0.02	18	0.204	<2	0.30	8	15	142	<5	0.07	<10	<10	152	<10	89	4
595 7 2	0.2	2.43	< 5	676	1.1	14	3.22	2	35	59	126	7.24	5	1.90	12	2.39	1489	<2 0.04	23	0.239	<2	0.33	<5	16	194	< 5	0.18	<10	<10	212	<10	98	6
59573	< 0.2	1.44	7	562	1.0	9	4.30	1	25	113	110	4.20	6	1.08	21	2.34	1083	<2 0.05	62	0.259	<2	0.46	<5	10	213	5	0.07	<10	<10	100	<10	68	8
59574	< 0.2	1.91	< 5	855	0.9	9	5.04	1	26	142	89	4.45	8	1.56	20	3.30	1020	6 0.05	101	0.318	<2	0.45	< 5	9	264	5	0.16	<10	<10	111	<10	72	9
59575	<0.2	2.43	<5	730	0.6	7	2. 69	1	27	455	101	3.69	5	1.74	12	3.37	562	9 0.07	134	0.222	3	0.14	<5	6	159	< 5	0.21	<10	<10	89	<10	29	10
59576	<0.2	2.64	<5	859	0.7	6	3.41	1	26	338	24	3.17	6	1.58	31	3.96	681	<2 0.13	202	0,329	5	0.11	<5	5	212	7	0.25	<10	<10	92	<10	45	22
59577	< 0.2	2.18	< 5	819	0.6	<5	2.14	1	22	260	62	2.60	3	1.38	29	3.32	457	<2 0.13	171	0.367	5	0.07	<5	4	184	6	0.23	<10	<10	73	<10	38	17
59578	< 0.2	2.55	<5	1018	0.7	5	2.98	1	27	309	55	3.18	5	1.75	31	3.76	599	<2 0.11	203	0.321	5	0.13	<5	5	225	7	0.25	<10		_	<10	45	17
59579	<0.2	2.11	9	325	0.6	8	4.01	1	26	185	139	4.08	6	1.54	15	3.07	663	2 0.07	99	0.201	2	0.73	<5	8	258	< 5	0.20	<10	<10	118	<10	51	8
59580	0.3	2.16	35	243	<0.5	11	5.11	1	26	25	212	5.48	8	1.36	<10	1.96	869	<2 0.08	17	0.167	<2	1.23	6	11	224	<5	0.19	<10			<10	61	4
59581	0.2	2.82	13	512	<0.5	10	4.56	2	23	27	162	5.47	8	2.21	<10	2.20	1093	<2 0.07	14	0.193	3	0.64	<5	13	257	<5	0.26	<10	<10	223	<10	92	4
59582	0.2	3.20	17	588	< 0.5	12	5.08	2	27	28	143	6.49	8	2.37	10	2.49	1240	<2 0.09	15	0.176	4	0.99	<5	17	241	<5	0.27	<10				106	3
59583	0.2	2.45	100	406	0.6	11	4.35	2	21	16	122	5.02	7	1.56	14	2.32	1184	4 0.07	7	0.197	<2	0.62	<5	11	279	<5			<10		<10	86	5
59584	0.2	2.58	55	508	< 0.5	10	3.58	2	22	27	154	5.13	6	1.81	<10	2.22	942	<2 0.08	12	0,188	2	0.77	<5	11	194	<5	0.19				<10	82	3
59585	0.2	3.21	42	693	<0.5	12	5.00	2	29	38	121	5.82	8	2.38	<10	2.61	1177	<2 0.08	16	0.154	<2	0.38	<5	9	258	<5	0.25		<10		<10	83	3
59586	<0.2	2.99	<5	655	<0.5	11	3.60	2	31	41	131	5.79	7	2.36	<10	2.56	1073	<2 0.07	16	0.168	<2	0.38	<5	5	167	<5	0.33	<10	<10	183	<10	80	5
59587	0.3	2.28	<5	201	< 0.5	10	4.15	1	29	35	121	5.21	7	1.90	<10		1071	<2 0.04	15	0.153	4	0.44	<5		135	<5	0.32				<10	81	6
595 8 8	< 0.2	2.22	<5	153	< 0.5	9	2.38	1	30	36	124	4.96	4	1.91	<10		841	<2 0.04	15	0.163	5	0.37	<5	4	95	<5	0.32		<10		<10	83	6
59589	< 0.2	2.94	<5	329	0.5	12	2.45	2	32	34	123	6.17	4	2.40	<10		1038	<2 0.04	15	0.165	5	0.23	<5		119	<5	0.35					90	7
59590	< 0.2	3.06	<5	305	0.5	12	2.41	2	32	43	129	6.01	3	2.38	<10	2.76		<2 0.05		0.171	6	0.18	<5		138	<5	0.37	<10			<10	93	7
										,,,		0.01	Ü	2.00	-10	_,,,	100,	12 0.03	10	0.17.1	v	0.10	~3	Ū	130	\3	0.37	10	10	107	\10	93	,
59591		2.38	14			8	3.21	1	24	25	123	4.45	4	1.76	<10	2.08	890	<2 0.05	9	0.152	5	0.25	<5	4	153	<5	0.28	<10	<10	116	<10	79	6
59592		2.15	<5		0.6	- 8	3.28	1	24	17	126	4.37	4	1.17	<10	1.79	948	<2 0.04	6	0.158	4	0.14	<5	5	228	<5	0.18	<10	<10	89	<10	76	6
59593	0.2	2.02	72		0.7	12	6.30	2	32	31	113	5.75	8	1.12	<10	2.97	1304	4 0.03	16	0.143	<2	0.81	5	17	421	<5	0.12	<10	<10	146	<10	78	5
59594		2.87	12		<0.5	12	4.51	2	32	35	124	6.12	6	1.93	<10	2.36	1216	<2 0.06	14	0.163	4	0.36	<5	9	243	<5	0.25	<10	<10	186	<10	84	6
59595	0.2	3.12	8	773	<0.5	14	4.83	2	32	36	118	6.98	6	2.39	<10	2.77	1532	<2 0.06	15	0.160	3	0.31	<5	12	275	< 5	0.28	<10	<10	247	<10	87	5

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0122RJ

Date

: Nov-22-10

Sample type : CORE

Eagle Peak Resources Inc.

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Нg	K	La	Mg	Mn	Mo Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ϋ́i	ΤI	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%	ppm		ppm	%	ppm	%	ppm (_	ppm		ppm	
59596	0.3	1.63	195	220	0.7	15	C 50	-	22	3.0			_		4.0																		
59597	0.3	1.63 0.81	94	339 333	0.7	15 9	6.59	3	32	26	114	6.38	8	1.21		-	1641	5 0.03	18	0.137	2		9	19	325	<5		<10		137	<10		4
59598	<0.2		32		0.6	-	4.30	1	16	17	120	4.30	5	0.56	17		1449	5 0.04	9	0.182	4	0.80	<5	8	310	<5	0.03		-	58	<10	95	4
59599	0.2	1.23 0.51	32 77	109	0.6	8 7	2.74	1	13	18	98	3.78	2	0.59	19		1009	3 0.05	5	0.144	12	0.50	<5	5	254	5	0.04		-	65	<10	88	5
59600	0.2	0.51	52	192 406	0.6 0.7	7	3.13	1	12	17	98	3.28	3	0.25	13	1.28	890	4 0.04	6	0.086	16	0.52	8	5	200				-	26	<10	68	4
39000	0.3	0.51	32	400	0.7	,	2.97	1	10	10	63	3.29	2	0.22	<10	1.46	982	15 0.01	4	0.008	6	0.43	9	4	145	< 5	<0.01	<10	<10	19	<10	80	3
59601	<0.2	1.22	127	94	0.8	8	2.37	1	10	21	78	3.85	1	0.67	22	1.28	1062	7 0.05	4	0.113	11	0.58	< 5	3	161	6	0.06	<10	<10	58	<10	99	7
59602	<0.2	1.58	44	90	1.0	7	2.45	1	10	20	52	3.71	2	0.82	28	1.15	1182	2 0.07	2	0.146	7	0.53	<5		143	5				83			9
59603	<0.2	1.65	10	38	1.1	11	3.00	2	15	21	66	5.23	2	0.60	27	1.37	1378	<2 0.06	3	0.177	6	1.02	<5		144	5	0.12			127	<10		8
59604	<0.2	1.68	5	57	1.1	10	2.80	1	12	24	63	4.71	1	0.43	31	1.12	1421	<2 0.07	3	0.153	6	0.74	<5		122	6	0.10			134			8
59605	0.2	0.28	7	589	<0.5	< 5	1.18	<1	2	64	22	1.20	<1	0.16	<10	0.24	237	5 0.05	3	0.035	7	0.32	<5	2	57	<5	<0.01	<10		5	<10	23	12
59606	0.2	0.27	9	673	<0.5	< 5	1.38	<1	2	60	31	1.24	1	0.18	<10	0.27	210	6 0.05	2	0.023	7	0.40	6	1	74	<5	< 0.01	<10	<10	2	<10	2 2	9
59607	0.2	0.24	< 5	666	<0.5	<5	1.54	<1	1	67	9	1.11	1	0.17	<10	0.28	212	7 0.05	2	0.016	6	0.32	<5	1	78	< 5	<0.01	<10	<10	2	<10	19	В
59608	<0.2	0.26	<5	584	<0.5	<5	1.63	<1	2	60	4	1.21	1	0.17	<10	0.30	213	4 0.05	2	0.017	8	0.52	<5	1	98	<5	<0.01	<10	<10	1	<10	17	7
59609	0.2	0.22	<5	450	<0.5	<5	1.43	<1	2	69	6	1.16	<1	0.15	<10	0.28	207	3 0.06	2	0.022	8	0.55	<5	1	93	<5	< 0.01	<10	<10	<1	<10	15	7
59610	<0.2	0.27	<5	596	<0.5	< 5	1.51	<1	2	65	4	1.07	2	0.17	10	0.33	223	2 0.05	2	0.037	8	0.36	<5	1	85	<5	< 0.01	<10	<10	2	<10	20	7
50011		0.40	. e	454		_							_																				
59611 59612	0.2	0.48	<5 -5	451	0.5	< 5	1.38	<1	4	97	22	1.64	3	0.26				6 0.05	8	0.046		0.51	<5	3	74	<5	0.01		<10	16	<10	29	11
59613		2.19		1189	0.7	9	4.58	2	26	124	110	4.82	7	1.87		2.64	953	21 0.07	53	0.198	5	0.31	<5	7	349	<5	0.23	-		183	<10	56	4
59614	0.4 0.3	2.62	<5 <5	706	1.2	12 11	4.48	2	29	132	145	5.54	7	1.88		3.17		34 0.06	53	0.182	5	0.36	<5	12	227	<5		<10	-	213	<10	64	5
59615	0.3	1.67	<5	697 923	0.6 1.0	13	5.00	1	28 30	79	138	5.22	8	1.33			1093	15 0.09	30	0.180	2	0.33	<5	11	201	<5		<10	-	191		58	8
	0.4	1.67	(3	923	1.0	13	5.94	3	30	59	141	5.90	9	1.17	<10	2.96	1536	<2 0.05	25	0.175	5	0.50	<5	20	213	<5	0.08	<10	<10	193	<10	82	4
59616	2.6	0.82	61	190	1.0	11	5.38	2	23	21	159	4.69	10	0.59	<10	2.34	1287	9 0.02	12	0.142	3	1.85	29	9	190	<5	0.01	<10	<10	73	<10	64	3
59617	0.5	1.65	15	514	0.9	13	5.37	1	32	30	167	5.49	9	1.18	<10	2.61	1303	4 0.04	12	0.156	<2	0.93	11	13	214	<5	0.13	<10	<10	156	<10	74	5
59618	0.6	0.66	50	484	1.1	13	4.31	1	29	43	144	6.26	8	0.47	<10	2.12	1653	34 0.02	25	0.071	<2	0.82	31	18	160	<5	0.01	<10	<10	100	<10	92	2
59619	0.6	0.29	7	406	< 0.5	< 5	1.18	2	4	76	20	1.75	2	0.22	<10	0.56	360	22 0.01	6	0.002	10	0.73	10	2	43	<5	< 0.01	<10	<10	9	<10	37	8
59620	0.2	0.29	<5	487	<0.5	< 5	0.98	1	2	67	6	1.11	2	0.22	<10	0.38	215	3 0.01	2	0.003	8	0.49	<5	1	39					<1	<10	17	7
59621		0.37	<5	561	0.5	< 5	1.65	1	2	63	19	1.18	3	0.20	<10	0.62	256	2 0.03	2	0.028	15	0.47	8	1	60	<5	<0.01	<10	<10	1	<10	23	7
. 59622		1.16	6	605	.0.7	10	3.09	2	22	49	103	4.36	6	0.68	<10	1.83	890	14 0.06	12	0.105	11	0.58	5	12	96	- <5	0.05	<10	<10	137	<10	79	8
59623		1.57	23	753	0.7	11	5.50	1	33	125	91	5.42	8	1.15	<10	3.09	1178	6 0.04	64	0.174	<2	0.58	<5	17	213	<5	0.11	<10	<10	176	<10	76	4
59624	0.3	2.28	<5	689	8.0	11	5.01	1	31	140	84	5.41	8	1.96	<10	3.36	1134	8 0.07	60	0.170	3	0.69	<5	13	324	<5	0.19	<10	<10	199	<10	86	5
59625	0.4	1.68	<5	412	0.7	11	4.53	1	29	109	126	4.96	8	1.26	<10	3.00	990	23 0.06	48	0.156	3	0.96	< 5	14	203	<5	0.12	<10	<10	151	<10	68	5

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

gned: _____

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0122RJ

Date : Nov-22-10

Sample type: CORE

Eagle Peak Resources Inc.

Project : Miracle
Attention : Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ba	Вe	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Mo f	la	Ni	Р	Рb	S	Sb	Sc	Sr	Th	Ti	TI	Ų	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm p	ppm	%	ppm	ppm	ppm	ppm	% _I	ppm	%	ppm	%	ppm	ppm	% рр	m	% r	pm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm p	ppm
50636		4.45		534			2.50			455			_											_			_							
59626	0.2	1.42	9		0.8	9	3.59	1	23	152	61	4.13	6	1.12	10		914	14 0.0		61	0.135	3	0.65	7		183	<5			<10		-		6
59627	< 0.2	2.23	61	619	1.2	11	3.88	2	39	293	69	4.92	7	1.70	<10		1034	23 0.0		29	0.180	5	0.60	5	13	291	<5		<10	-	124		67	6
59628	0.2	2.23	13		1.2	12	4.53	2	40	311	63	4.78	7	1.72	<10	5.18		5 0.0		43	0.148	4	0.46	<5	15	429	<5	0.15			123		5 6	6
59629	0.4	1.37	21	284	0.7	13	4.94	2	32	111	147	5.22	8	0.98	<10		1030	51 0.0		34	0.129	4	1,43	7	18	236	<5	0.07	<10	<10	158		72	8
59630	0.2	2.10	11	800	1.1	8	7.65	1	44	427	44	4.17	11	1.62	23	5.90	1024	9 0.0	J3 41	89	0.240	5	0.46	<5	11	584	6	0.19	<10	<10	98	14	69	10
59631	0.5	0.72	71	309	0.6	10	9.28	1	77	398	38	4.28	13	0.21	<10	9.85	1192	<2 0.0	1 10	91	0.024	<2	0.73	<5	9	668	<5	0.01	<10	<10	36	<10	13	2
59632	0.4	0.65	21	241	0.8	11	5.77	1	73	310	41	4.35	8	0.09	<10	11.76	1175	5 0.0	1 9	76	0.029	< 2	0.91	<5	10	539	<5	< 0.01	<10	<10	40	<10	12	1
59633	0.5	0.96	9	47	0.6	10	6.58	1	71	666	46	4.07	9	0.16	<10	11.05	1122	<2 0.	01 9	35	0.021	<2	0.80	<5	10	553	<5	0.01	<10	<10	40	<10	15	1
59634	8.0	0.82	6	201	0.9	10	5.55	1	57	284	48	4.02	8	0.53	<10	9.04	1215	12 0.	02 68	85	0.060	4	0.55	<5	13	416	· <5	0.03	<10	<10	50	<10	33	5
59635	0.2	0.47	11	639	0.5	<5	2.69	<1	15	84	14	1.72	2	0.22	15	2.70	410	<2 0.)4 1	74	0.046	3	0.36	<5	4	171	5	< 0.01	<10	<10	15	<10	37	15
																															•			
59636	< 0.2	0.68	9	675	0.5	<5	2.08	<1	6	66	10	1.33	1	0.27	20	1.23	280	<2 0.)5 4	43	0.062	6	0.19	<5	3	110	6	0.01	<10	<10	14	<10	40	20
59637	4.1	0.52	30	680	0.6	5	3.81	ı	10	62	98	1.62	5	0.24	<10	2.05	364	<2 0.)3 (80	0.019	24	0.56	48	4	215	< 5	< 0.01	<10	< 10	14	<10	60	13
59638	0.6	0.23	252	630	0.9	9	7.70	1	54	189	24	4.00	10	0.13	< 10	7.48	1212	9 0.0	01 6	02	0.004	4	0.72	<5	11	474	<5	< 0.01	<10	<10	34	<10	30	4
59639	<0.2	1.96	16	503	1.1	11	3.52	1	58	347	37	4.69	5	1.58	<10	9.46	951	<2 0.)2 7·	43	0.098	2	0.26	<5	15	330	<5	0.09	<10	<10	82	<10	30	5
59640	0.2	1.89	7	604	0.8	11	4.17	1	60	419	38	4.70	6	1.41	<10	10.27	1103	2 0.)2 7	72	0.084	<2	0.29	<5	13	285	<5	0.09	<10	<10	79	<10	26	4
59641	0.3	2.00		1276	Λ.	10	7.00	2	- ~	270	50	4.55	-		-10		041	2.0			0.000	-	0.20			225	-							
59642	0.2 0.3	2.06 1.22	27	1376 748	0.8 1.1	10 10	3.68 4.08	2	57 41	378 191	50 40	4.55 3.90	5 5	1.51 0.79	<10	8.97 6.27	941 854	2 0.		73	0.098	7 3	0.36	<5	14		< 5	0.10			87		29	4
59643	0.5	0.40	9	_	0.6	< 5	3.07	1 2	41	43	13		4			1.59		8 0.		76	0.047	_	0.48	5	14	364	< 5	0.03	< 10	-	63	-	49	6
59644	<0.2	0.40		1038		<5	1.42	<1	<1	41	<1	1.19 0.70	1	0.21		0.58	311 216	17 0.1 3 0.1		61 4	0.005 0.003	33 15	0.52 0.08	<5 <5	1	160 74		<0.01 <0.01				<10	48 17	7
59645	1.5	0.39	23		0.5	<5	2.23	1	3	49	13	0.70	2	0.30	<10	1.14		5 O.		43	0.003	75	0.25	<5	2		_	<0.01			<1 3		29	9 8
33043	1.5	0.55	23	700	0.5	~,	2.23	1	,	7,7	13	0.53	2	0.50	~10	1.17	230	3 0.	,	45	0.004	73	0.23	\)	2	104	ν,	VU.UI	<10	<10	3	<10	29	٥
59646	9.0	0.25	40	202	0.7	15	6.55	3	58	191	69	3.60	10	0.18	<10	8.82	1164	4 0.	01 7	41	0.005	177	1.07	7	9	733	<5	< 0.01	<10	<10	40	<10	69	2
59647	28.1	0.47	95	296	1.0	54	2.69	6	45	252	362	3.32	8	0.31	<10	7.24	760	6 0.	01 5	78	0.008 1	344	0.88	57	8	435	<5	0.01	<10	<10	41	<10	119	3
59648	0.5	0.39	5	358	0.5	<5	2.17	<1	3	36	5	1.15	2	0.24	<10	1.23	257	<2 0.)2	22	0.004	17	0.78	<5	2	129	<5	< 0.01	<10	<10	3	<10	16	7
59649	0.3	0.38	<5	647	< 0.5	<5	1.25	<1	1	49	<1	0.77	<1	0.28	<10	0.62	196	<2 0.)3	6	0.004	17	0.38	<5	1	85	<5	< 0.01	<10	<10	1	<10	15	12
59650	0.4	0.39	12	477	< 0.5	<5	1.86	<1	3	45	3	1.03	2	0.25	<10	1.04	233	2 0.	03 .	30	0.003	15	0.70	<5	1	122	<5	< 0.01	<10	<10	3	<10	19	10
59651	0.3	0.36	<5	432	<0.5	<5	1.15	<1	2	72	1	1.00	<1	0.23	<10	0.65	180	3 0.)2	6	0.003	12	0.71	<5	1	64	<5	<0.01	<10	<10	1	<10	14	8
59652	0.4	0.31	8	353	<0.5	< 5	1.19	<1	2	59	1	1.01	<1	0.20	<10	0.60	205	<2 0.)1	5	0.002	9	0.68	<5	1	53	<5	< 0.01	<10	<10	<1	<10	15	7
59653	0.4	0.35	5	851	0.5	<5	2.61	<1	2	53	9	1.10	2	0.26	<10	1.20	315	3 0.	01	15	0.002	11	0.30	<5	1	90	< 5	<0.01	<10	<10	1	<10	23	7
59654	0.2	0.34	<5		0.5	<5	1.38	<1	1	41	5	0.70	1	0.28	<10	0.57	203	<2 0.	01	3	0.001	5	0.07	<5	1	52	<5	<0.01	<10	<10	1	< 10	15	8
59655	<0.2	0.36	<5	1383	0.5	<5	1.64	<1	<1	41	<1	0.91	1	0.28	<10	0.65	261	<2 0.)1	5	0.002	6	0.09	<5	1	68	<5	< 0.01	<10	<10	1	<10	25	8

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95° C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0122RJ

Date : Nov-22-10

Sample type : CORE

Eagle Peak Resources Inc.

Project: Miracle Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	Al		Ва		Bi	Ca		Co	Cr			Hg	K		Mg			a Ni	i P	Pb	S	Sb	Sc	Sr	Τh	Ti	TI	U	V	W	Zn	Zτ
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	% (ppm	%	ppm	%	ppm	ppm '	% ppm	% ا	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm (
59656	< 0.2	0.37	<5	1002	0.5	< 5	1.41	<1	1	48	<1	0.82	1	0.24	<10	0.53	220	<2 0.0	1 3	0.002	6	0.07	<5	1	57	<5	<0.01	<10	<10	1	<10	22	8
59657	< 0.2	0.42	<5	1155	<0.5	<5	1.54	<1	1	48	<1	0.96	1	0.24	<10	0.56	259	<2 0.0	3 4			0.07	<5	1	62		<0.01	<10		1		27	8
59658	<0.2	0.38	<5	1074	0.5	<5	1.36	<1	1	49	<1	0.91	1	0.27	<10	0.44	242	<2 0.0	4 3		6	0.07	<5	1	70		< 0.01	<10		_	<10	25	10
59659	< 0.2	0.37	<5	1364	0.5	<5	1.75	<1	1	58	<1	1.01	1	0.26	<10	0.67	269	<2 0.0	2 5				<5	1	85		< 0.01	<10		1		24	8
59660	<0.2	0.31	<5	1408	<0.5	<5	2.13	<1	1	52	1	0.95	1	0.24	<10	0.93	237	<2 0.0			5	0.10	<5	1	83	_	<0.01			3	<10	18	6
59661	0.3	0.25		4257		_	.		_																								
59662	0.2	0.35		1257		<5	3.61	<1	2	60	1	1.33	4	0.24		1.73		<2 0.0	_				<5	1	123	<5	< 0.01	<10	<10	5	<10	29	6
59663	0.2	0.29		2648		< 5	4.46	<1	1	60	<1	1.43	5	0.18	-	2.18	369	6 0.0			8	0.20	<5	1	211	<5	< 0.01	<10	<10	6	<10	27	5
59664	0.2	0.34		2936	0.5	<5	4.06	<1	<1	47	2	1.12	5	0.22		1.79	349	<2 0.0			7	0.20	<5	1	224	<5	<0.01	<10	<10	5	<10	16	5
	0.2	0.43	< 5	931	0.5	< 5	1.58	<1	1	5i	11	0.95	1	0.22		0.65	230	<2 0.0		0.022	6	0.07	5	1	83	<5	<0.01	<10	<10	4	<10	28	9
59665	< 0.2	0.50	<5	1105	<0.5	<5	1.02	<1	1	70	<1	1.06	<1	0.17	11	0.46	218	<2 0.0	5 3	0.044	9	0.06	<5	2	79	5	0.01	<10	<10	10	<10	32	12
59666	< 0.2	0.47	<5	961	0.6	<5	1.63	<1	1	37	<1	0.91	1	0.21	<10	0.65	236	<2 0.0	2 4	0.021	5	0.07	<5	2	79	<5	<0.01	<10	<10		<10	23	6
59667	< 0.2	0.41	<5	1114	0.5	< 5	1.38	<1	1	63	<1	0.98	<1	0.22		0.45	242	<2 0.0			7		<5	2	79 89	-	<0.01	<10		7		23 31	_
59668	< 0.2	0.49	<5	1362	0.5	<5	1.76	<1	1	37	<1	0.99	1	0.24	<10	0.70	237	<2 0.0			5		<5	2	89		< 0.01	<10		3	<10		9
COMP 59669-70	< 0.2	0.87		1010		<5	1.99	<1	5	81	17	1.65	1	0.46		1.23	360	8 0.0			7	0.09	<5	3	181	<5	0.02	<10	<10	22	<10	24	7
59671	< 0.2	3.35	< 5	764	<0.5	11	3.55	1	54	389	64	4.68	5	1.72		5.89	670	4 0.0			8	0.39	<5	8	247	<5	0.02		<10	116	<10 <10	44 48	9 3
	-							_			•			2., _	-10	5.05	0,0	- 0.0	300	0.030	Ů	0.53	\)		247	\ J	0.13	<10	<10	110	<10	40	3
59672	0.3	2.20	<5	95	<0.5	10	6.35	1	71	707	95	4.14	9	0.12	<10	5.98	989	<2 0.0	2 1004	0.067	58	0.67	<5	8	383	<5	0.01	<10	<10	67	<10	25	2
59673	0.4	1.78	95	597	< 0.5	8	6.93	1	56	390	69	4.00	8	0.54	<10	5.51	924	<2 0.0	3 668	0.060	3	0.51	<5	9	467	<5	0.03	<10	<10	70	<10	30	2
59674	<0.2	2.83	<5	760	<0.5	12	3.51	1	35	274	83	5.76	4	2.20	<10	5.47	884	3 0.0	9 146	0.095	10	0.25	<5	15	231	<5	0.19	<10	<10	155	<10	61	4
59675	0.2	1.97	17	502	< 0.5	11	5.22	1	50	465	84	5.24	5	1.15	<10	8.48	1086	3 0.0	2 466	0.077	2	0.37	<5	15	383	<5	0.06	<10	<10	96	<10	40	3
59676	.0.3	0.95	14	648	8.0	10	3.89	1	31	181	52	4.13	5	0.59	<10	5.96	908	8 0.0	4 224	0.099	3	0.48	5	13	497	<5	0.03	<10	<10	69	<10	37	6
59677	4.0			~~~	•			_																									
	1.9	0.41		236	0.9		4.55	1	67	240	41	4.44	6	0.16		10.26		7 0.0			9	1.43	5	11	565	<5	< 0.01	<10	<10	52	<10	26	2
59678	1.0	0.36	38	234	0.7	6	4.02	<1	30	83	32	2.49	5	0.23	<10	5.37	667	3 0.0			7	0.73	7	5	319	<5	< 0.01	<10	<10	18	<10	25	4
59679	<0.2	0.38	<5	876	<0.5	<5	1.63	<1	1	52	<1	0.64	1	0.29	<10	0.82	212	<2 0.0	1 9	0.001	6	0.08	< 5	1	65	<5	<0.01	<10	<10	1	<10	14	8
Duplicates:																																	
59566	<0.2	1.80	<5	813	0.9	12	3.68	2	33	69	107	5.77	5	1.49	<10	3.10	1381	<2 0,0	6 26	0.215	<2	0.12	6	19	241	<5	0.06	<10	-10	152	<10	87	6
59575	<0.2	2.48	<5	763	0.7	7	2.73	1	27	454	98	3.78		1.74	12	3.45	567	9 0.0			3	0.14	<5	6	156	<5	0.22			90	<10	29	10
59585	0.2	3.21	41	716	0.5	12	5.26	2	31	39	120	6.07	9	2.36	<10	-	1210	<2 0.0	_		3	0.40	<5	9	258	<5	0.26	<10		222	<10	89	4
59588	< 0.2	2.47	<5	155	0.5	10	2.40	1	29	39	130	5.08		2.12		2.39	854	<2 0.0			4	0.37	<5	4	97	<5	0.33	<10		146	<10	79	6
59597	<0.2	0.81			0.5	8	3.89	1	14	16	114	4.13	3	0.56	16	1.66	1326	5 0.0	4 7	0.156	4	0.70	<5	7	301	<5	0.03	<10	<10	55	<10	83	4
59607	<0.2	0.26	< 5	623	<0.5	<5	1.48	<1	1	66	10	1.10	1	0.18	<10	0.29	210	7 0.0	5 2	0.016	6	0.32	<5	1	80	<5	<0.01	<10	<10	2	<10	18	7

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0122RJ

Date

Sample type: CORE

: Nov-22-10

Eagle Peak Resources Inc.

Project : Miracle Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm		Be ppm	Bi ppm	Ca %	Cd ppm (Co ppm		Cu ppm	Fe % p	Hg opm	K %	La ppm	M g %	Mn ppm	Mo Na ppm %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm (Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm p	Zr ppm
59610	< 0.2	0.28	<5	601	<0.5	<5	1.55	<1	2	65	4	1.10	2	0.18	10	0.35	230	2 0.06	3	0.037	7	0.37	<5	1	88	<5	< 0.01	<10	<10	2	<10	19	8
59619	0.5	0.30	6	405	< 0.5	<5	1.22	2	4	76	19	1.77	3	0.23	<10	0.57	362	22 0.01	6	0.002	10	0.71	9	2	43	<5	< 0.01	<10	<10	9	<10	32	8
59629	0.3	1.44	19	236	0.8	14	4.84	1	30	105	142	5.13	8	1.02	<10	3.55	1016	48 0.06	135	0.122	3	1.38	6	17	237	<5	0.07	<10	<10	149	<10	63	8
59632	0.4	0.65	21	248	0.9	12	5.80	1	71	318	40	4.39	8	0.10	<10	11.75	1180	4 0.01	9 9 7	0.028	<2	0.89	<5	10	527	<5	<0.01	<10	<10	41	<10	12	1
59641	<0.2	2.12	<5	1248	0.9	11	3.75	1	53	378	51	4.61	4	1.53	<10	9.20	932	2 0.02	670	0.094	6	0.33	<5	14	331	< 5	0.11	<10	<10	87	<10	30	4
59651	0.3	0.37	<5	381	<0.5	<5	1.12	<1	2	65	1	0.96	1	0.23	<10	0.64	176	3 0.02	6	0.002	12	0.69	<5	1	65	<5	<0.01	<10	<10	1	<10	13	8
59654	0.2	0.38	<5	817	0.6	< 5	1.49	<1	<1	44	6	0.72	1	0.31	<10	0.59	213	<2 0.01	4	0.002	5	0.07	<5	2	55	<5	< 0.01	<10	<10	1	<10	15	9 /
59663	0.2	0.34	<5	2900	0.5	<5	3.96	<1	<1	49	3	1.10	4	0.22	<10	1.78	350	<2 0.01	15	0.005	6	0.19	<5	1	227	<5	< 0.01	<10	<10	5	<10	15	5
59673	0.3	1.83	93	588	<0.5	9	6.56	1	55	397	73	3.83	8	0.55	<10	5.42	897	<2 0.03	665	0.057	3	0.50	<5	9	480	<5	0.03	<10	<10	71	<10	27	2
59676	0.2	0.91	15	641	8.0	9	3.91	1	31	182	52	4.14	5	0.57	<10	5.91	905	9 0.04	226	0.099	2	0.47	5	13	477	<5	0.03	<10	<10	68	<10	38	6
Standards:																																	
Blank	<0.2	< 0.01	<5	<10	<0.5	<5	<0.01	<1	<1	<1	<1	< 0.01	<1	<0.01	<10	<0.01	< 5	<2 0.01	<1	< 0.001	<2	< 0.01	<5	<1	<1	<5	< 0.01	<10	<10	<1	<10	<1	<1
CH-4	2.4	1.59	< 5	257	<0.5	9	0.55	2	24	98	2139	4.34	1	1.32	12	1.09	294	2 0.04	50	0.069	7	0.60	<5	6	7	<5	0.18	<10	<10	64	<10	199	8

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed: ____

CERTIFICATE OF ANALYSIS

0S-0123-RG1

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name		Au-Check	Sample-wt	
	ppb		Kg	
59680	<2	3	5.0	
59681	<2		5.0	
59682	2 5		4.0	
59683			5.0	
59684	20		5.0	
59685	42		6.0	
59686	2		5.0	
59687	3 3 3		5.0	
59688	3		3.0	
59689	3	4	4.0	
59690	4		5.0	
59691	23		5.0	
59692	2		6.0	
59693	10		5.0	
59694	9		5.0	
59695	3		5.0	
59696	2		5.0	
59697	16		5.0	
59698	3		4.0	
59699	<2		5.0	
59700	9		5.0	
59701	8	•	5.0	
*OXF65	756			
*BLANK	2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0123-RG2

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	Kg	
59702	<2		5.0	
59703	3		5.0	
59704	2 2		5.0	
59705	2		5.0	
59706	<2		5.0	
59707	3		5.0	
59708	<2		5.0	
59709	3		5.0	
59710	<2		5.0	
59711	<2	2	5.0	
59712	<2		5.0	
59713	<2		5.0	
59714	2		5.0	
59715	2		5.0	
59716	3		5.0	
59717	<2		5.0	
59718	<2		5.0	
59719	<2		6.0	
59720	<2		5.0	
59721	7	8	5.0	
59722	5		5.0	
59723	<2		5.0	
*OXF65	754			
*BLANK	<2		·	

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0123-RG3

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name	Au ppb	Au-Check ppb	Sample-wt Kg	
59724	13	7.7	5.0	
59725	10		5.0	
59726	4		5.0	
59727	5		5.0	
59728	14		5.0	
59729	4		5.0	
59730	3		4.0	
59731	3 3		5.0	
59732	88		5.0	
59733	24	27	5.0	
59734	8		5.0	······································
59735	2		5.0	
59736	2 5		4.0	
59737	2		5.0	
59738	2		6.0	
59739	2		5.0	
59740	4		5.0	
59741	9		5.0	
59742	3		5.0	
59743	4	5	5.0	
59744	4		5.0	
59745	5		4.0	
*OXF65	763			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0123-RG4

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name	Au ppb	Au-Check ppb	Sample-wt Kg	
59746	2	7	5.0	
59747	<2		4.0	
59748	<2		6.0	
59749	2		6.0	
59750	<2		40.0	
59751	<2		5.0	
59752	<2		5.0	
59753	2		5.0	
59754	4		5.0	
59755	<2		5.0	
59756	<2		4.0	
59757	<2		5.0	
59758	<2 3 2		5.0	
59759	3		4.0	
59760	2		5.0	
59761	<2		6.0	
59762	<2		5.0	
59763	3 2 <2		5.0	
59764	2		6.0	
59765	<2	2	5.0	
59766	<2		5.0	
59767	<2		3.0	
*OXF65	786		0.0	
*BLANK				

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0123-RG5

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name		Au-Check	Sample-wt	
59768	ppb <2	ppb	Kg 5.0	
59769	<2		5.0	
59770	<2		5.0	
59771	<2		5.0	
59772	<2		5.0	
59773	<2		5.0	· · · · · · · · · · · · · · · · · · ·
59774	<2		5.0	
59775	<2		5.0	
59776	<2		5.0	
59777	2	5	5.0	
59778	3	• • • • • • • • • • • • • • • • • • • •	5.0	
59779	10		5.0	
59780	<2		5.0	
59781	<2		5.0	
59782	<2		5.0	
59783	10		5.0	
59784	<2		5.0	
59785	2		5.0	
59786	33		5.0	
59787	16	18	5.0	
59788	6		4.0	
59789	3		5.0	
*OXF65	786			
-*BLANK		-	-	

Au 15g F.A. AA finish

Certified by	1/1
certified by	

CERTIFICATE OF ANALYSIS

0S-0123-RG6

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 4 core samples submitted Oct-12-10

Sample Name	ppb	Au-Check ppb	Sample-wt Kg	
59790	3	6	5.0	
59791	2		5.0	
59792	7		4.0	
59793	2		5.0	
*OXF65	749			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0124-RG1

Company: Eagle Peak Resources Inc.

Nov-22-10

Project: Miracle
Attn: Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	· kg	
59794	3	<2	5.0	
59795	<2		5.0	
59796	<2		5.0	
59797	4		5.0	
59798	5		5.0	
59799	9		5.0	
59800	13		4.0	
59801	3		4.0	
59802	6		5.0	
59803	4		5.0	
59804	14		5.0	
59805	2		5.0	
59806	16		4.0	
59807	4		5.0	
59808	13		5.0	
59809	8		5.0	
59810	3		5.0	
59811	5		5.0	
59812	9		5.0	
59813	5	6	4.0	
59814	5		5.0	
59815	7		5.0	
*OXF65	742			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0124-RG2

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	kg	
59816	6	8	5.0	
59817	2		5.0	
59818	7		5.0	
59819	18		5.0	
59820	22		5.0	
59821	7		5.0	
59822	20		5.0	
59823	22		5.0	
59824	18		5.0	
59825	34		5.0	
59826	22		5.0	
59827	19	-	5.0	
59828	18		5.0	
59829	24		5.0	
59830	26		5.0	
59831	24		5.0	
59832	23		5.0	
59833	21		5.0	
59834	18		5.0	
59835	12	16	5.0	
59836	21		5.0	··
59837	4		5.0	
*OXF65	808			
*BLANK	<2			

Au 15g F.A. AA finish

Certified by

CERTIFICATE OF ANALYSIS

0S-0124-RG3

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample Name	Au ppb	Au-Check ppb	Sample-wt kg	
59838	7	4	5.0	
59839	5		5.0	
59840	8		5.0	
59841	7		5.0	
59842	11		5.0	
59843	14		4.0	
59844	10		5.0	
59845	13		5.0	
59846	5		5.0	
59847	8		5.0	
59848	14		5.0	
59849	14		4.0	
59850	14		4.0	
59851	11		4.0	
59852	13		5.0	
59853	16		4.0	
59854	9		5.0	
59855	8		5.0	
59856	14		5.0	
59857	6	4	5.0	
59858	7		5.0	
59859	6		5.0	
*OXF65	765			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0124-RG4

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	kg	
59860	5	8	5.0	
59861	8		5.0	
59862	2		5.0	
59863	3		5.0	
59864	6		5.0	
59865	6		5.0	
59866	<2		5.0	
59867	2		5.0	
59868	<2		5.0	
59869	2	4	5.0	
59870	<2		5.0	
59871	27		6.0	
59872	<2		5.0	
59873	3		5.0	
59874	<2		5.0	
59875	<2		5.0	
59876	28		5.0	
59877	88		5.0	
59878	<2		5.0	
59879	<2		4.0	
59880	8		5.0	
59881	2		5.0	
*OXF65	811			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0124-RG5

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 22 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	kg	
59882	6	4	5.0	
59883	10		5.0	
59884	7		5.0	
59885	9		5.0	
59886	7		5.0	
59887	7.		5.0	
59888	6		5.0	
59889	7		6.0	
59890	7		5.0	
59891	6		5.0	
59892	4		5.0	
59893	6		5.0	
59894	7		5.0	
59895	. 7	-	5.0	
59896	10		5.0	
59897	4		5.0	
59898	8		5.0	
59899	23		5.0	
59900	9		5.0	
59901	12	9	5.0	
59902	6		5.0	
59903	222			
*OXF65	749			
*BLANK	<2			

Au 15g F.A. AA finish

CERTIFICATE OF ANALYSIS

0S-0124-RG6

Company:

Eagle Peak Resources Inc.

Nov-22-10

Project:

Miracle

Attn:

Peter Fox

We *hereby certify* the following geochemical analysis of 4 core samples submitted Oct-12-10

Sample	Au	Au-Check	Sample-wt	
Name	ppb	ppb	kg	
59904	270	255		
59905	302			
59906	256			
59907	252			
*OXF65	786			
*BLANK				

Au 15g F.A. AA finish

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0124RJ

Date : Nov-22-10

Sample type : CORE

Eagle Peak Resources Inc.

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ва	Вe	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	K	La	Mg	Mn	Mo Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Τŀ	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	% p		%	ppm	%	ppm	ppm %	ppm	%	ppm	%			ppm				_		ppm		
59794	0.2	7.16		454	40 F				25		400															-				•			
59795	0.2 0.3	2.16 1.76	<5 <5		< 0.5	7	1.61	1	25	37	109	3.52	4		<10	2.03		42 0.06	20	0.143	3	0.29	<5		148	<5		<10	<10	92	<10	50	4
59796	0.3	1.92	<5		<0.5 <0.5	6	1.64	1	24	45	134	2.72	4		<10	1.76		2 0.06	20	0.142	< 2	0.33	<5	3		<5	0.18	<10	<10		<10	41	5
59797						6	2.76	1	24	39	139	2.95	5		<10	1.86		23 0.06	19	0.129	<2	0.41	<5	4	136	<5	0.20	<10	<10	85	<10	43	5
59798	0.3	1.79	< 5		< 0.5	6	2.16	1	26	37	110	2.72	4	0.98	<10	1.76		2 0.07	19	0.135	<2	0.41	< 5	4	131	<5	0.18	<10	<10	76	<10	39	5
39790	0.2	2.12	<5	303	<0.5	5	1.81	1	24	36	91	3.05	4	1.38	<10	2.07	535	8 0.07	20	0.133	2	0.18	<5	3	154	<5	0.19	<10	<10	85	<10	45	5
59799	0.9	2.66	< 5	324	<0.5	9	3.34	1	26	29	131	4.70	6	1.41	<10	1.82	794	3 0.15	18	0.167	3	0.63	<5	5	345	<5	0.19	<10	<10	157	<10	54	3
59800	0.4	2.30	<5	345	< 0.5	9	7.10	1	26	72	107	4.58	11	1.56		2.23		5 0.08	37	0.166	<2	0.61	<5		268	<5	0.19					50	3
59801	0.2	2.43	<5	223	< 0.5	10	1.37	1	21	26	185	4.70	3	1.56	<10	1.84	850	9 0.10	11	0.209	2		<5		130	<5	0.17		<10	151	-	72	3
59802	0.3	2.09	<5	268	< 0.5	7	2.49	1	25	43	114	3.90	5	1.40	<10	2.03	673	4 0.06	23	0.144	2	0.45	<5	4	132	<5		-		110		53	4
59803	0.2	2.31	< 5	329	< 0.5	7	3.23	1	27	60	135	4.16	6	1.69	<10	2.19	757	15 0.10	26	0.136	2	0.40	<5_		142		. 0,24 -		-			- 55	4
																	-				_		-		- 1-		. 012-7		~10	2-0-		. 33	7
59804	0.3	2.43	<5	518	<0.5	9	3.74	1	29	97	127	4.67	7	1.62	<10	2.30	846	14 0.15	32	0.153	2	0.52	<5	6	225	<5	0.25	<10	<10	171	< 10	52	4
59805	0.3	2.66	<5	339	0.5	9	4.21	1	29	74	131	4.95	8	1.61	<10	2.21	917	6 0.19	26	0.166	2	0.42	<5	6	196	<5	0.24	<10	<10	187	<10	63	4
59806	0.5	2.53	<5	188	0.9	9	5.10	1	29	90	141	4.93	9	1.38	<10	2.12	930	17 0.15	25	0.210	2	0.57	<5	13	317	<5	0.19		<10		<10	62	4
59807	0.3	1.88	<5	266	1.1	9	4.85	1	24	89	117	4.14	8	1.25	<10	2.04	945	90 0.11	35	0.172	<2	0.51	<5		279	<5	0.16		<10		<10	79	4
59808	0.4	1.83	< 5	186	1.0	7	5.07	1	24	107	122	3.86	8	1.18	<10	1.93	860	30 0.11	51	0.164	<2	0.51	<5	7	294	<5	0.17		<10			57	4
																																•	,
59809	0.3	2.00	<5	253	1.9	8	5.17	1	26	113	164	4.01	9	1.21	<10	2.45	988	65 0.15	50	0.155	<2	0.60	<5	9	377	<5	0.14	<10	<10	169	<10	60	5
59810	0.2	2.64	< 5	373	1.7	7	5.26	1	27	108	131	4.56	9	1.51	<10	2.10	917	37 0.22	42	0.159	5	0.73	<5	9	457	<5	0.18	<10	<10	172	14	74	5
59811	0.3	2.41	< 5	231	1.1	10	4.62	1	26	54	125	4.94	7	1.22	<10	1.72	811	46 0.21	18	0.205	4	0.66	<5	7	500	<5	0.19	<10	<10	193	<10	61	4
59812	0.2	2.51	< 5	323	<0.5	11	3.32	1	23	19	138	5.21	6	1.78	<10	1.95	979	25 0.16	7	0.178	<2	0.59	<5	8	290	<5	0.24	<10	<10	226	<10	64	4
59813	<0.2	1.28	<5	242	0.5	<5	1.52	<1	14	119	39	2.59	3	0.84	<10	1.57	461	14 0.08	46	0.151	<2	0.23	<5	3	224	<5	0.20	<10	<10	83	<10	39	8
59814	<0.2	1.23	<5	244	0.9	5	1.82	<1	14	129	32	2.61	3	0.81	<10	1.70	498	24 0.09	44	0.146	<2	0.31	<5	5	121	<5	0.21	<10	<10	91	<10	45	11
59815	<0.2	0.86	<5	136	0.8	6	2.64	<1	18	107	48	2.83	4	0.44	<10	1.44	544	28 0.07	47	0.146	< 2	0.68	<5	6	263	<5	0.14	<10	<10	68	<10	40	7
59816	<0.2	1.15	<5	298	0.7	5	2.34	<1	16	137	47	2.93	4	0.68	<10	1.66	561	24 0.08	50	0.159	6	0.48	<5	5	186	<5	0.21	<10	<10	93	<10	48	10
59817	0.3	2.05	<5	400	0.7	10	3.63	1	27	108	135	4.74	6	1.55	<10	2.36	877	26 0.08	47	0.174	6	0.86	<5	9	167	<5	0.23	<10	<10	171	<10	63	7
59818	0.4	2.02	<5	534	0.6	12	3.58	1	29	613	194	6.02	6	1.60	<10	2.16	1218	12 0.07	27	0.182	4	0.74	5	7	649	<5	0.23	<10	<10	187	<10	72	6
#00.4 5		_	_																														
59819		1.39		252	0.8	12	4.45	1	26	22	160	5.40	8	1.05	<10	2.06	1161	201 0.04	7	0.150	5	1.26	16	9	302	<5	0.12	<10	<10	130	<10	75	5
59820		1.95	<5	394	0.6	11	4.34	1	24	18	150	5.45	8	1.44		1.89		7 0.09	6	0.181	8	0.86	10	9	229	<5	0.19	<10	<10	193	<10	77	4
59821	0.3	2.11	<5	345	0.5	8	2.84	1	23	24	164	4.47	5	1.41	<10	1.89		4 0.08	6	0.180	6	0.47	<5	5	209	<5	0.26	<10	<10	155	<10	67	7
59822		1.32	<5	146	0.7	5	2.40	1	15	113	46	2.88	4	0.59	<10	1.80	619	13 0.11	42	0.146	5	0.36	<5	6	558	<5	0.17	<10	<10	96	<10	42	11
59823	<0.2	1.38	<5	651	0.9	6	2.32	1	16	140	39	3.03	4	0.85	10	2.02	614	4 0.09	50	0.149	4	0.35	<5	7	984	<5	0.18	<10	<10	99	<10	48	10

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0124RJ

Date : Nov-22-10

Sample type: CORE

Eagle Peak Resources Inc.

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI		-	-	Bi	Ca	Cd	Co		Cu	Fe	Hg	K		Mg		Mo Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm %	ppm	%	ppm	%	ppm p	pm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
59824	0.2	0.86	<5	404	0.6	<5	1.99	<1	9	95	40	2.20	4	0.50	<10	1.14	464	12 0.07	24	0.084	12	0.48	<5	5	795	<5	0.06	<10	~10	46	<10	42	9
59825	0.3	0.24	6	340	<0.5	< 5	1.53	1	2	49	28	1.15	2	0.17	<10	0.32	235	9 0.05	1	0.041	18	0.53	7		136		< 0.01		<10	2		32	6
59826	0.3	0.25	6	378	<0.5	< 5	1.54	2	2	56	33	1.14	3	0.15	<10	0.29	244	19 0.05	1	0.047	35	0.49	5		145		< 0.01	<10		5		55	8
59827	0.2	0.27	7	413	< 0.5	< 5	1.56	<1	2	57	38	1.06	3	0.18	<10	0.26	238	9 0.05	1	0.047	13	0.41	<5		150	-	<0.01	<10		3		31	8
59828	<0.2	0.26	11	486	<0.5	< 5	1.65	<1	1	51	39	1.09	3	0.18	<10	0.27	222	10 0.05	1	0.039	11	0.43	<5		151		< 0.01			1		27	7
59829	0.2	0.27		513			1.56	<1	2	73	23	1.05	3	0.17	<10	0.29	219	5 0.05	2	0.034	10	0.38	<5	1	146	<5	< 0.01	<10	<10	4	<10	21	9
59830	0.2	0.24	<5		<0.5	<5	1.57	1	1	66	3	0.92	3	0.17	<10	0.28	226	<2 0.04	2	0.020	19	0.38	<5	1	145	<5	<0.01	<10	<10	1	<10	23	7
59831	0.2	0.26	<5		<0.5	<5	1.18	2	2	78	5	0.98	2	0.16	<10	0.32	210	5 0.03	2	0.011	18	0.45	<5	1	148	<5	<0.01	<10	<10	<1	<10	29	6
59832	0.3	0.21	<5	348		<5	1.49	<1	1	62	22	0.97	3	0.15	<10	0.29	208	14 0.05	1	0.017	9	0.57	7	1	143	<5	< 0.01	<10	<10	1	<10	15	6
59833	02	0.21 -	<-5	406-	-≪0.5	< 5	-1:44	<1	2	66	10	0.96	3	0.16	<10	0.29	202	6 0.05	2	0.012	10	0.54	<5	1-	137	<5	<0.01	<10	<10	<1	<10	14	6
50004	-0.0		_			_																											
59834	<0.2	0.23	<5		<0.5	< 5	1.45	<1	1	62	1	0.92	2	0.17	<10	0.30	214	<2 0.04	1	0.013	11	0.32	< 5	1	131	<5	< 0.01	<10	<10	1	<10	16	7
59835	<0.2	0.55	<5	558		<5	1.86	<1	6	60	37	1.57	3	0.30		0.55	323	4 0.05	4	0.057	6	0.20	<5	2	133	<5	0.05	<10	<10	31	<10	29	9
59836	0.3	1.57	<5		<0.5	6	2.42	1	20	28	134	3.13	4	0.64	<10	1.26	603	3 0.07	7	0.154	5	0.24	< 5	3	106	<5	0.21	<10	<10	101	<10	49	6
59837	0.3	1.92	< 5		<0.5	7	3.67	1	21	32	126	3.70	7	1.01	<10	1.64	816	9 0.08	13	0.159	5	0.41	< 5	5	187	<5	0.22	<10	<10	121	<10	56	7
59838	0.2	1.96	<5	171	<0.5	8	3.44	1	26	119	112	4.18	5	1.51	<10	2.23	727	<2 0.06	56	0.196	6	0.20	<5	4	377	<5	0.22	<10	<10	129	<10	46	6
59839	0.2	1.87	< 5	248	0.5	8	3.74	1	27	114	120	4.40	5	1.50	<10	2.21	809	<2 0.06	51	0.202	5	0.30	- 5	-	1474			-40	.40	4.40			_
59840	0.3	2.15	<5	541	0.5	10	4.09	1	29	25	150	5.10	5	1.47		2.30		2 0.06	10	0.202	9	0.45	<5		1474	<5	0.21				<10	51	6
59841	0.3	1.71	<5	525		7	2.90	1	22	28	126	3.93	3	0.91	<10	1.53	833	2 0.07	7	0.173	4	0.43	<5 <5		259 232	< 5	0.24	-		158	_	77	8
59842	0.2	1.06	<5	438	0.5	6	2.38	<1	11	36	64	2.68	3	0.66		0.96	538	7 0.07	3	0.108	7	0.32	<5	4	156	<5 <5	0.21	<10		123		57	8
59843	0.2	0.45	<5	721	0.6	< 5	1.54	<1	1	37	10	1.05	1	-	<10	0.56	259	14 0.02	1	0.026	10	0.43	<5	_	211	-	<0.01		<10	60 3	<10 <10	43	8
													_	0.27		0.50		11 0,02	•	0.020	10	0.55	\)	1	211	~,	\0.01	<10	<10	3	<10	24	5
59844	0.2	0.36	<5	999	0.6	<5	1.43	<1	1	65	5	0.97	1	0.16	<10	0.50	218	17 0.03	2	0.015	13	0.28	<5	1	162	~ 5	<0.01	<10	-10	3	<10	22	5
59845	0.3	0.36	< 5	643	0.6	<5	1.49	1	1	59	4	0.95	1	0.15	<10	0.58	210	3 0.02	2	0.009	9	0.27	<5		149		<0.01				<10	26	4
59846	< 0.2	0.34	<5	803	0.6	<5	1.45	<1	1	71	1	0.98	1	0.17	<10	0.54	215	2 0.02	2	0.008	8	0.27	<5		154		< 0.01				<10	19	5
59847	0.2	0.31	<5	729	0.7	< 5	1.28	<1	1	75	3	0.95	1	0.18	<10	0.43	208	2 0.01	2	0.004	9	0.25	<5		119		< 0.01			1		19	6
59848	< 0.2	0.35	< 5	521	0.6	<5	1.09	1	1	81	6	0.90	<1	0.17	<10	0.41	187	8 0.01	2	0.006	17	0.31	<5		130		< 0.01			<1		17	5
																						0.00		-	130		40.01	110	- 10	~*	~20	1,	,
59849	0.2	0.37	<5	630	0.6	<5	1.63	<1	1	62	3	0.96	1	0.16	<10	0.63	226	2 0.01	1	0.004	8	0.24	<5	1	94	<5	<0.01	<10	<10	2	<10	18	5
59850	0.2	0.35	<5	842	0.6	<5	1.73	<1	1	78	2	1.05	_1	0.18	<10	0.71	231	8 0.01	2	0.003	7	0.33	<5	_1_	106		<0.01				<10	18	-6
59851	0.2	1.21	< 5	682	1.2	7	2.62	<1	12	31	45	3.46	3	0.63	<10	1.41	655	2 0.03	7	0.091	6	0.25	6	10	216	<5	0.02		<10	73		48	8
59852	0.3	0.41	< 5	523	0.8	< 5	3.20	<1	7	67	38	2.08	5	0.19	<10	1.24	490	19 0.02	6	0.012	5	0.42	9	5	154		< 0.01		<10	30		31	4
59853	<0.2	0.40	<5	817	0.7	<5	1.75	<1	2	73	8	1.19	2	0.21	<10	0.66	225	7 0.02	2	0.013	6	0.32	< 5	2	125		< 0.01			4	<10	19	7

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0124RJ

Date : Nov-22-10

Sample type: CORE

Eagle Peak Resources Inc.

Project: Miracle
Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Number ppm % ppm ppm ppm ppm ppm ppm ppm ppm p	56 6 0 46 5 0 50 7 1 49 7 0 50 8
59854 0.3 2.02 <5 737 0.6 12 3.93 1 28 93 103 4.49 4 1.49 <10 2.25 783 14 0.06 42 0.176 9 0.24 <5 7 297 <5 0.19 <10 <10 131 <5 59855 0.2 1.94 <5 673 <0.5 7 4.09 1 26 95 105 4.25 5 1.45 <10 2.10 761 4 0.07 38 0.169 5 0.28 <5 5 287 <5 0.21 <10 <10 126 <5 59856 0.3 1.81 <5 594 0.6 7 3.24 1 23 129 107 3.95 3 1.28 <10 2.11 705 9 0.05 50 0.200 6 0.29 <5 5 367 <5 0.22 <10 <10 125 <	56 6 0 46 5 0 50 7 1 49 7 0 50 8
59855 0.2 1.94 <5 673 <0.5 7 4.09 1 26 95 105 4.25 5 1.45 <10 2.10 761 4 0.07 38 0.169 5 0.28 <5 5 287 <5 0.21 <10 <10 131 < 5 59856 0.3 1.81 <5 594 0.6 7 3.24 1 23 129 107 3.95 3 1.28 <10 2.11 705 9 0.05 50 0.200 6 0.29 <5 5 367 <5 0.22 <10 <10 125 <	46 5 50 50 7 49 7 50 8
59855 0.2 1.94 <5 673 <0.5 7 4.09 1 26 95 105 4.25 5 1.45 <10 2.10 761 4 0.07 38 0.169 5 0.28 <5 5 287 <5 0.21 <10 <10 126 <	46 5 50 50 7 49 7 50 8
59856 0.3 1.81 <5 594 0.6 7 3.24 1 23 129 107 3.95 3 1.28 <10 2.11 705 9 0.05 50 0.200 6 0.29 <5 5 367 <5 0.22 <10 <10 125 <	50 7 1 49 7 50 8
	1 49 7 1 50 8
59857 0.3 1.98 <5 396 0.5 8 3.30 1 26 70 122 4.36 3 1.28 <10 1.90 714 4 0.09 29 0.175 5 0.31 <5 5 171 <5 0.24 <10 <10 135 <	50 8
59858 0.4 2.09 <5 742 0.5 10 5.05 1 28 31 154 5.37 6 1.24 <10 1.74 818 11 0.10 12 0.146 4 0.47 <5 8 190 <5 0.28 <10 <10 169 <	
	38 6
59859 <0.2 1.08 <5 659 <0.5 <5 2.00 <1 9 51 40 2.43 1 0.66 11 0.86 443 14 0.09 6 0.086 7 0.46 <5 4 418 <5 0.08 <10 <10 57 <	
59860 <0.2 0.36 <5 1045 <0.5 <5 1.78 <1 1 67 8 1.18 3 0.24 10 0.32 257 19 0.06 2 0.058 11 0.33 <5 1 158 <5 <0.01 <10 <10 4 <	_
59861 <0.2 0.34 <5 781 <0.5 <5 1.78 <1 1 60 4 1.16 2 0.23 <10 0.30 259 8 0.06 2 0.058 11 0.38 <5 1 153 <5 <0.01 <10 <10 2 <	
59862 <0.2 0.37 <5 680 <0.5 <5 1.65 <1 2 63 3 1.18 2 0.23 12 0.30 261 3 0.06 2 0.057 10 0.35 <5 1 132 5 <0.01 <10 <10 4 <	
59863	
	_, ,
59864 <0.2 0.34 <5 619 <0.5 <5 1.53 <1 1 69 5 1.15 2 0.21 11 0.29 239 9 0.06 2 0.056 8 0.33 <5 1 117 <5 <0.01 <10 <10 5 <	26 6
59865 <0.2 0.35 <5 766 <0.5 <5 1.60 <1 1 83 3 1.09 2 0.23 11 0.30 249 <2 0.06 2 0.054 10 0.24 <5 1 118 <5 <0.01 <10 <10 2 <	
59866 <0.2 0.40 <5 744 <0.5 <5 1.61 <1 1 68 5 1.05 2 0.23 11 0.28 244 <2 0.06 2 0.052 10 0.23 <5 1 166 <5 <0.01 <10 <10 5 <	
59867 0.2 1.74 <5 655 0.5 7 3.07 1 20 85 101 3.96 5 1.13 <10 1.65 693 <2 0.09 25 0.159 4 0.25 <5 5 235 <5 0.18 <10 <10 117 <	
59868 0.2 2.37 <5 522 0.5 8 3.50 1 28 57 111 4.67 6 1.44 <10 2.50 767 6 0.06 21 0.179 6 0.19 <5 6 201 <5 0.28 <10 <10 142 <	
59869 0.4 2.30 <5 410 0.6 11 3.56 1 30 54 118 4.86 6 1.26 <10 2.29 831 51 0.05 16 0.180 6 0.65 <5 8 194 <5 0.27 <10 <10 150 <	60 8
59870 0.3 2.14 <5 268 0.5 9 2.92 1 27 39 134 4.37 5 1.31 <10 2.05 726 167 0.06 14 0.181 8 0.54 <5 6 156 <5 0.28 <10 <10 140 <	58 8
59871 <0.2 2.11 <5 224 <0.5 8 3.10 1 27 41 115 4.26 5 1.36 <10 2.07 694 8 0.05 16 0.173 5 0.19 <5 4 168 <5 0.27 <10 <10 131 <	53 6
59872 0.2 2.70 <5 367 <0.5 8 1.96 1 32 36 131 5.07 4 1.95 <10 2.47 893 9 0.05 18 0.181 6 0.19 <5 5 131 <5 0.28 <10 <10 145 <	70 6
59873 0.3 2.27 <5 307 0.6 34 2.97 1 32 38 122 4.58 5 1.33 <10 2.06 742 17 0.06 19 0.175 6 0.44 <5 5 208 <5 0.27 <10 <10 132 <	60 8
59874 0.3 1.94 <5 312 0.5 9 2.27 1 28 36 130 4.44 4 1.12 <10 1.77 600 27 0.06 16 0.182 3 0.43 <5 4 127 <5 0.26 <10 <10 128 <	52 8
59875 0.3 2.38 <5 311 0.5 8 1.94 1 24 29 143 4.34 3 1.58 <10 2.01 801 5 0.07 12 0.212 6 0.33 <5 4 111 <5 0.22 <10 <10 124 <	58 6
59876 0.9 2.46 <5 245 0.8 10 3.70 1 28 31 156 5.25 6 1.73 <10 2.22 1049 78 0.05 14 0.187 9 0.74 6 9 225 <5 0.20 <10 <10 138 <	66 5
59877 1.0 2.23 <5 270 0.6 9 2.54 1 25 27 153 4.59 5 1.60 <10 2.03 951 4 0.06 11 0.212 6 0.59 6 5 174 <5 0.20 <10 <10 108 <	62 5
59878 <0.2 2.45 <5 248 0.5 9 2.71 1 26 27 131 4.56 4 1.49 <10 1.91 827 <2 0.06 12 0.194 6 0.35 <5 5 178 <5 0.22 <10 <10 121 <	60 6
59879 0.4 2.60 <5 294 0.7 32 3.07 1 27 32 141 5.09 5 1.57 <10 2.03 827 17 0.05 12 0.192 15 0.74 <5 7 305 <5 0.19 <10 <10 160 <	62 5
59880 0.5 1.68 6 269 0.8 11 4.39 1 25 30 143 5.11 7 1.03 <10 1.95 1034 6 0.05 11 0.197 7 0.96 16 10 223 <5 0.15 <10 <10 128 <	64 5
59881 0.3 1.89 <5 304 0.6 8 2.49 1 24 31 165 4.24 4 0.98 <10 1.67 709 4 0.06 8 0.219 4 0.35 <5 4 181 <5 0.30 <10 <10 140 <	58 8
59882 <0.2 2.07 <5 242 0.5 8 2.16 1 24 27 178 4.41 3 1.11 <10 1.73 716 3 0.06 8 0.216 <2 0.32 <5 5 197 <5 0.29 <10 <10 149 <	60 8
59883 0.3 2.26 <5 292 0.5 8 2.23 1 27 31 171 4.63 3 1.49 <10 1.90 794 7 0.05 9 0.226 3 0.41 <5 5 181 <5 0.32 <10 <10 157 <	67 7

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0124RJ

Date : Nov-22-10

Sample type : CORE

Eagle Peak Resources Inc.

Project: Miracle Attention: Peter Fox

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample	Ag	ΑI	As	Ba	Ве	Bi	Ca	Cd	Со	Cr	Си	Fe	Hg	Κ	La	Mg	Mn	Mo Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti	ΤI	u	V	w	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm		ppm		ppm		ppm		ppm		ppm				ppm							bbw t	
59884	0.4	2.44	<5	333	0.5	9	2.16	1	29	23	199	4.94	3	1.60	<10	2.07	856	2 0.06	9	0.233	,	0.63	-6	-	160								
59885	0.4	2.22	<5	292		10	3.11	1	28	28	172	5.21	4		<10	2.07	958	15 0.06	9	0.233	2 <2	0.62 0.81	<5 <5	5 6	-	<5 <5	0.33		<10 <10			77 72	7
59886	0.2	2.42	< 5	395		9	3.34	1	28	24	155	5.06	5	1.59		2.05		11 0.05	8	0.244	<2	0.38	<5		195	<5				178		72 72	8 7
59887	< 0.2	2.58	<5	360		11	2.36	1	29	27	153	5.65	2		<10	2.19	983	6 0.06	9	0.240	2	0.42	<5		148	<5						80	6
59888	< 0.2	2.16	<5	265	0.5	8	2.63	1	26	24	118	4.37	3	1.36		1.82		21 0.05	9	0.254	2	0.32	<5	4	187	<5	0.31					66	7
																		,-•			_	0.52			10,		0.51	~20	110	13,	110	00	,
59889	0.3	2.37	<5	352	0.5	10	3.21	1	28	26	115	4.87	4	1.76	<10	2.03	925	21 0.05	9	0.250	4	0.49	<5	5	188	<5	0.32	<10	<10	172	<10	72	7
59890	0.2	2.29	< 5	421	<0.5	11	2.17	1	30	27	170	5.90	2	1.89	<10	2.25	977	8 0.06	11	0.229	<2	0.56	<5	5	134	<5	0.34	<10	<10	197	<10	78	8
59891	0.2	2.43	< 5	464	<0.5	9	3.31	1	30	29	121	5.03	4	1.84	<10	2.16	998	<2 0.05	9	0.238	<2	0.48	<5	6	199	<5	0.30	<10	<10	16 6	<10	71	7
59892	0.2	2.48	<5	441	<0.5	10	2.92	1	29	23	129	5.15	4	1.90	<10	2.19	950	10 0.05	9	0.238	<2	0.38	< 5	4	529	<5	0.32	<10	<10	16 6	<10	71	7
59893	0.3	2.57	<5	971	<0.5	8	3.06	1	27	22	151	4.64	4	2.01	<10	2.22	1055	4 0.06	9	0.210	2	0.33	<5	5	22 2	<5	0.30	<10	<10	148	<10	74	7
59894	0.2	2.47	<5	608	<0.5	9	3.15	1	26	20	119	4.74	4	1.93	<10	2.15	1028	8 0.06	9	0.198	2	0.36	<5	5	179	< 5	0.28	<10	<10	153	<10	74	6
59895	0.3	2.11	<5	539	0.5	7	3.01	1	26	22	164	4.87	3	1.48	<10	1.92	902	4 0.07	8	0.228	<2	0.39	<5	4	181	<5	0.29	<10	<10	159	11	71	8
59896	0.2	2.45	< 5	645	0.5	12	3.72	1	29	25	176	6.10	4	1.99	<10	2.36	1186	<2 0.06	10	0.221	<2	0.37	<5	7	172	<5	0.32	<10	<10	232	<10	78	7
59897	0.3	2.75	< 5	505	<0.5	11	3.48	1	28	21	130	5.44	5	2.12	<10	2.41	1130	<2 0.05	9	0.214	<2	0.28	<5	6	192	<5	0.32	<10	<10	192	<10	74	7
59898	0.2	2.50	<5	414	0.6	8	3.71	1	26	14	113	4.60	6	1.86	<10	2.15	1105	<2 0.04	7	0.198	2	0.24	9	6	232	<5	0.21	<10	<10	134	<10	68	6
50000																																	
59899	0.4	1.84	6	461	1.1	11	4.40	1	28	20	139	5.17	9	1.35		2.36		<2 0.04	7	0.192	<2	0.55	24	11	233	< 5	0.11	<10	<10	137	<10	70	5
59900	0.2	2.16	< 5			10	2.60	1	25	18	132	4.59		1.55		2.06		<2 0.06	7	0.196	< 2	0.23	<5	4	191	<5	0.25	<10	<10	150	< 10	74	8
59901	0.3	1.90	<5		< 0.5	8	2.40	1	23	26	163	4.42		1.27		1.78		<2 0.06	6	0.205	2	0.34	<5	3	221	<5	0.24	<10	<10	116	<10	72	9
59902	0.3	1.91	<5	404	0.5	8	2.33	1	24	23	173	4.28	2			1.84	869	<2 0.07	5	0.210	<2	0.32	<5	3	376	<5	0.25	<10	<10	125	<10	70	10
59903	3.1	1.24	25	160	0.5	11	0.96	3	21	71	2582	3.58	<1	0.55	23	0.72	223	268 0.04	10	0.063	46	1.80	6	5	49	14	0.05	<10	<10	37	<10	328	5
59904	3.1	1 14	21	177	<0.5	10	0.01	-	10		2626	2.20		0.50	20	0.66	244	222 6 62	_				_		_			_					
59905	3.1	1.14	22	127	<0.5	10	0.91	2	19		2626	3.30	1	0.52	20	0.66	211		8	0.055	43	1.63	5	4	43	12	0.04	<10	<10	33	<10	295	4
59906	3.1	1.15	22		<0.5	11	0.94	3	20	-	2735	3.57	2	0.54	21	0.67	218	241 0.03	9	0.058	46	1.73	5	4	44	13	0.04	<10		34	<10	307	4
59907	-	1.19				11	0.97	3	21		2848	3.56	1	0.56	21	0.70	226	251 0.03	9	0.061	47	1.80	5	5	46	14	0.04	<10		35		318	5
59907	3.1	1.16	21	120	<0.5	10	0.94	3	21	63	2788	3.58	1	0.54	21	0.68	21/	249 0.03	9	0.060	46	1.71	5	4	45	13	0.04	<10	<10	33	<10	304	4
Duplicates:																																	
59794	0.2	2.25	<5	466	< 0.5	7	1.65	1	26	38	112	3.65	3	1.52	<10	2.09	619	43 0.06	20	0.145	3	0.31	<5	3	147	<5	0.21	<10	<10	94	<10	51	4
59803	0.2	2.38	<5	308	0.5	8	3.15	1	25	58	130	4.04	6	1.72	<10	2.17	749	14 0.10	24	0.129	<2	0.38	< 5		144	<5		_		134		50	4
59813	<0.2	1.32	<5	232	0.5	<5	1.49	<1	14	118	39	2.51	3	0.85	<10	1.56	455	13 0.08	44	0.144	<2	0.22	<5		227	<5	0.21	<10		83		36	9
59816	< 0.2	1.14	<5	276	0.8	5	2.16	<1	15	129	44	2.77	4	0.67	<10	1.59	526	23 0.08	46	0.151	5	0.45	<5		176	<5	0.19					42	9
																																	-
59825	0.2	0.24	7	338	< 0.5	<5	1.53	1	2	52	29	1.15	3	0.18	<10	0.32	240	9 0.05	1	0.043	19	0.55	7	1	136	<5	<0.01	<10	<10	2	<10	34	6

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0S0124RJ

Date

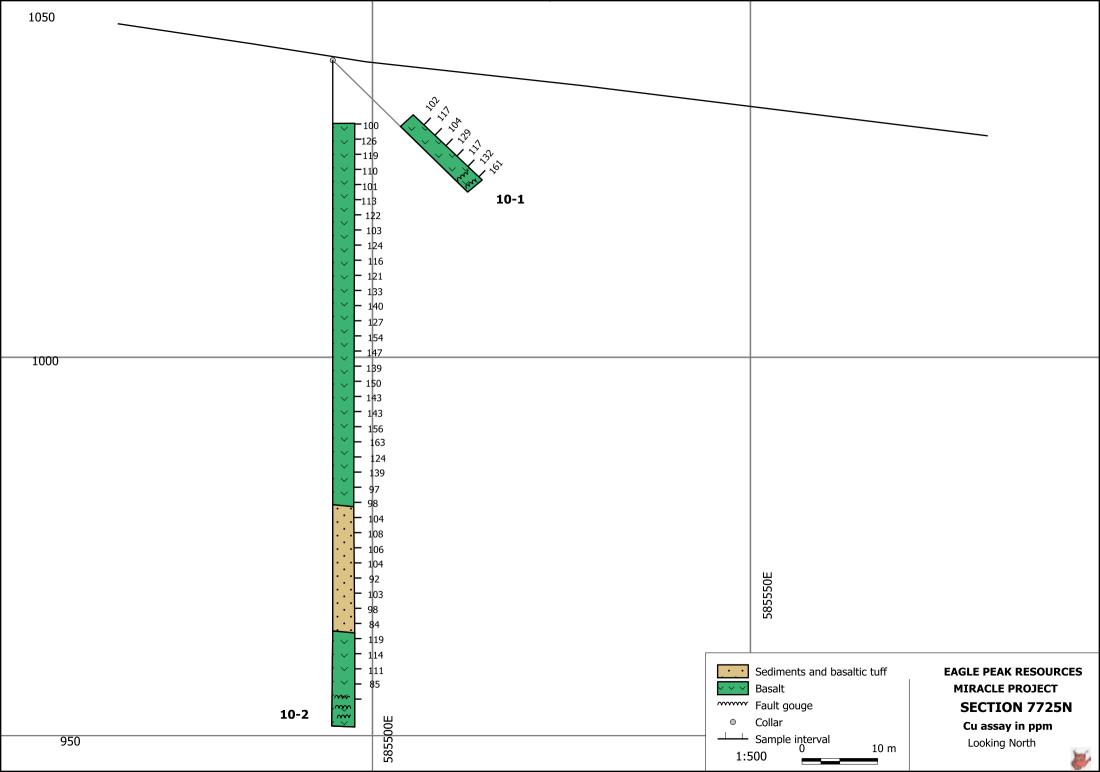
: Nov-22-10

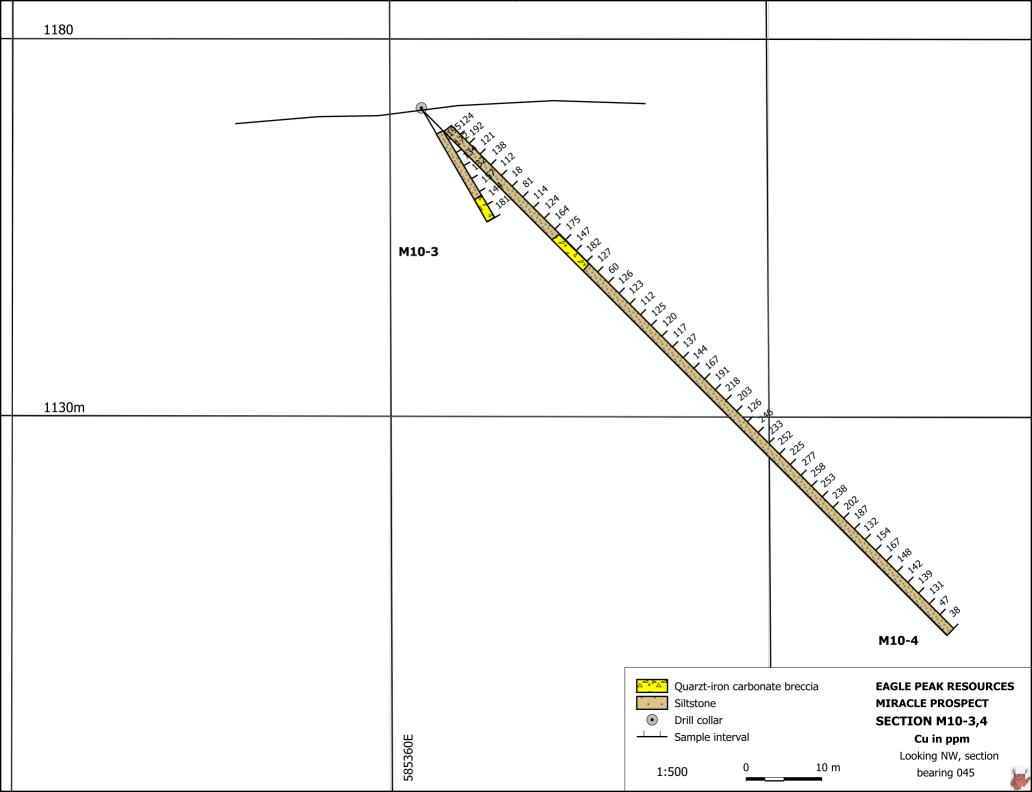
Sample type : CORE

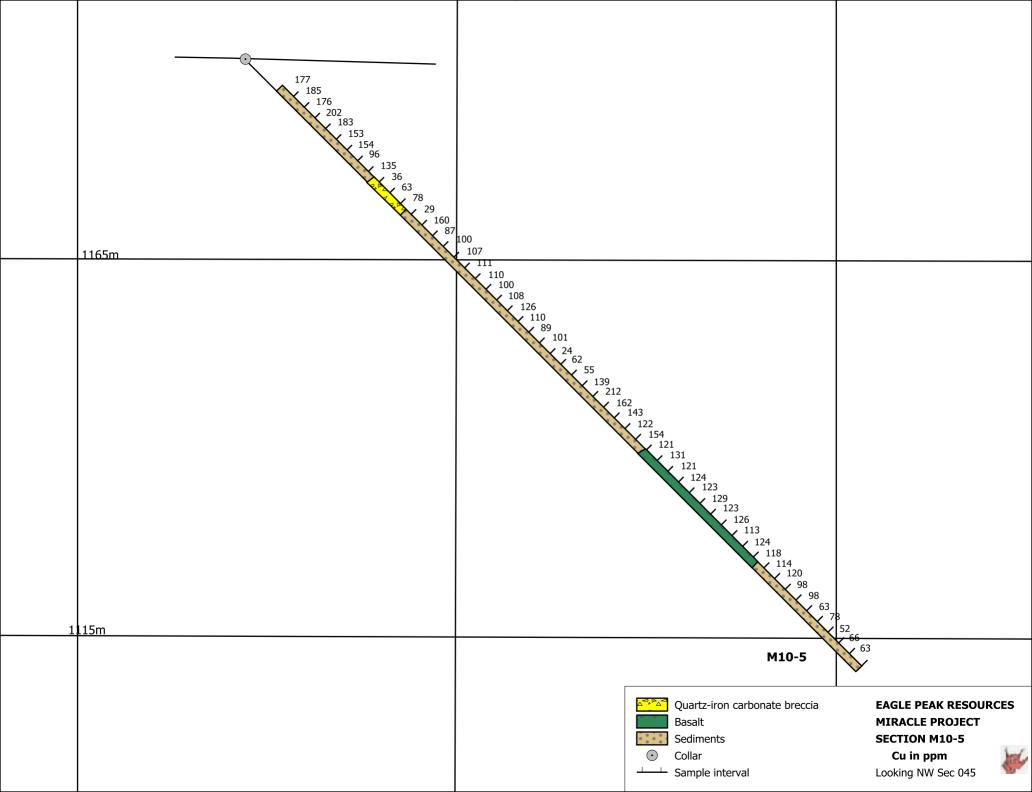
Eagle Peak Resources Inc.

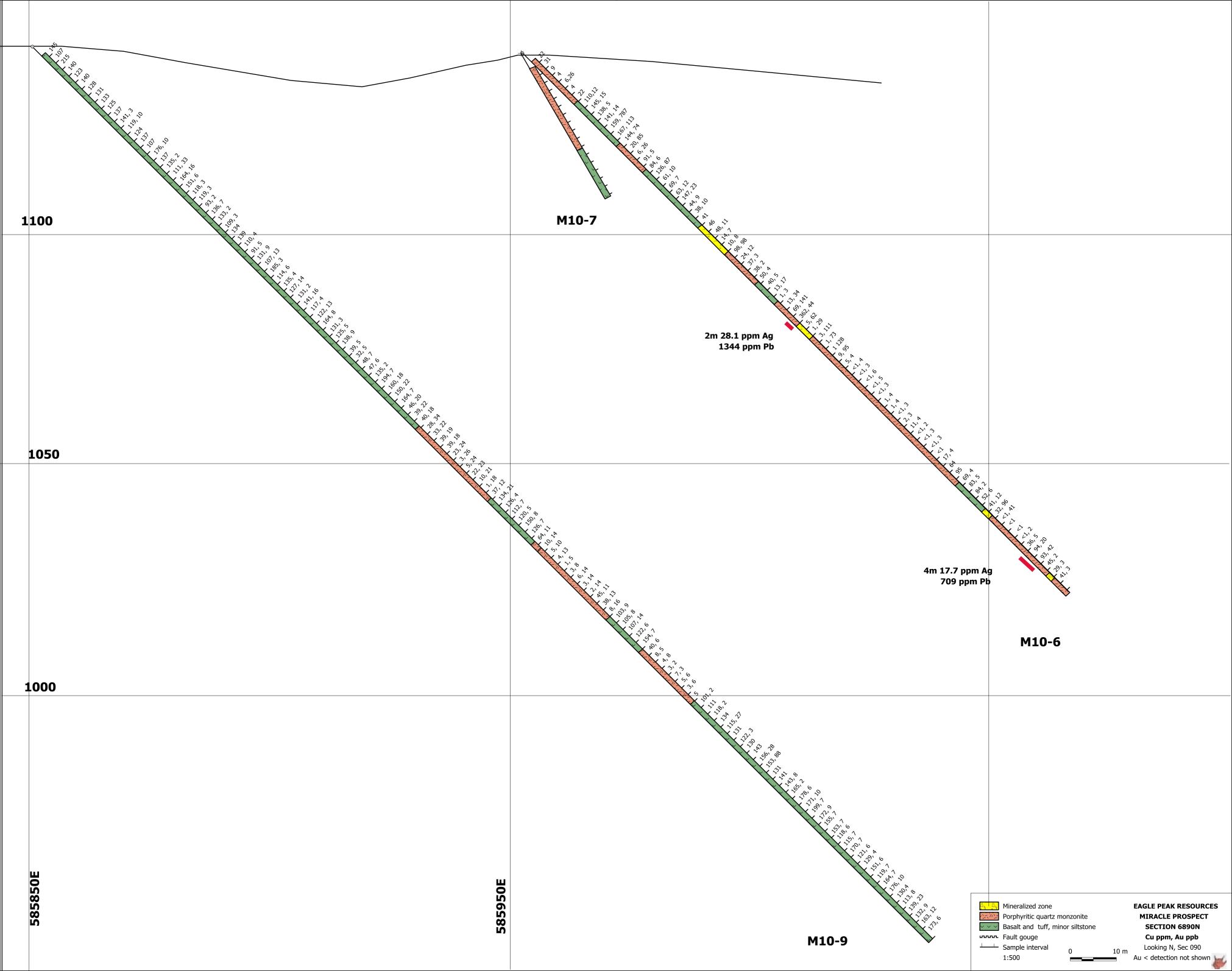
Project: Miracle
Attention: Peter Fox

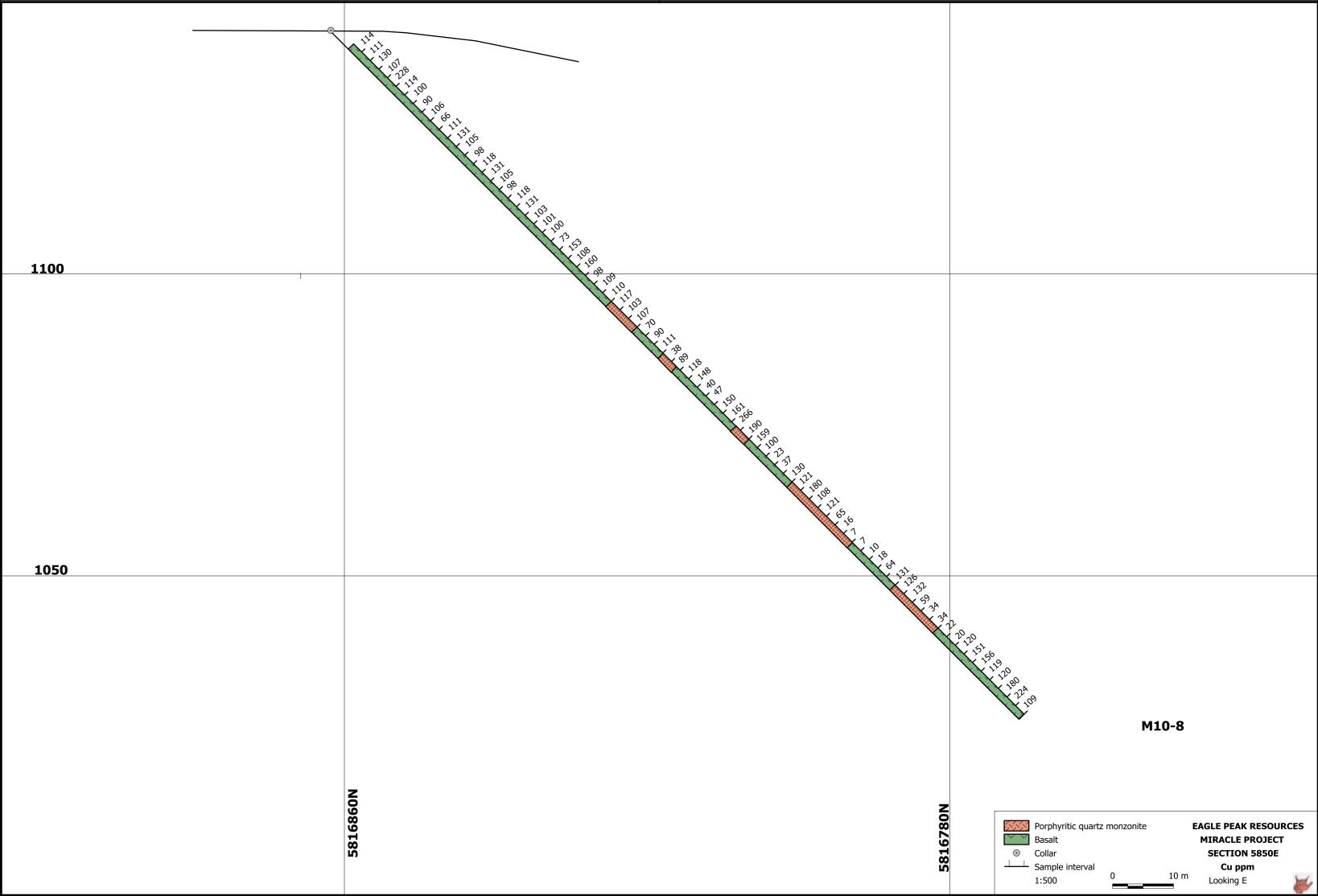
Multi-Element ICP-AES Analysis


Aqua Regia Digestion


Sample Number	Ag ppm	AI %	As ppm		Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo Na ppm %	Ni ppm	P %	Pb ppm	s %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm	Zr ppm
59835	0.2	0.56	< 5	565	<0.5	< 5	1.96	< 1	6	61	37	1.65	3	0.30	<10	0.56	339	3 0.06	3	0.060	7	0.21	< 5	2	136	< 5	0.05	<10	<10	33	<10	31	9
59838	0.2	1.95	< 5	172	0.5	7	3.34	1	26	118	111	4.03	3	1.52	<10	2.16	709	<2 0.06	56	0.192	6	0.20	< 5	4	370	< 5	0.22	<10	<10	129	<10	48	6
59847	0.2	0.32	<5	758	0.7	< 5	1.32	<1	1	77	3	0.97	<1	0.18	<10	0.43	213	2 0.01	2	0.005	8	0.26	< 5	1	120	< 5	<0.01	<10	<10	1	<10	20	6
59857	0.3	2.03	<5	405	0.5	8	3.37	1	26	72	125	4.40	4	1.30	<10	1,93	732	4 0.09	29	0.174	6	0.32	< 5	6	176	<5	0.25	<10	<10	139	<10	50	8
59860	< 0.2	0.35	< 5	945	< 0.5	<5	1.78	<1	1	56	8	1.13	3	0.24	<10	0.31	251	18 0.06	2	0.056	10	0.33	<5	1	155	<5	< 0.01	<10	<10	4	<10	24	5
59869	0.3	2.31	<5	409	0.6	11	3.57	1	30	43	119	4.82	6	1.27	<10	2.29	837	53 0.05	16	0.184	6	0.66	<5	8	195	< 5	0.27	<10	<10	152	<10	60	8
59879	0.4	2.64	< 5	314	0.7	35	3.29	1	29	34	145	5.45	5	1.59	<10	2.14	877	18 0.05	13	0.210	16	0.81	< 5	7	315	<5	0.20	<10	<10	171	<10	68	5
59882	< 0.2	1.92	< 5	250	0.5	9	2,20	1	26	26	175	4.48	2	1.06	<10	1.71	726	3 0.06	8	0.228	<2	0.34	< 5	5	182	<5	0.27	<10	<10	146	<10	67	7
59891	0.2	2.45	< 5	463	0.5	9	3.26	1	29	24	117	5.00	5	1.83	<10	2.15	1000	<2 0.05	9	0.230	<2	0.45	<5	6	206	<5	0.31	<10	<10	170	< 10	70	8
59901	0.3	1.91	< 5	557	< 0.5	8	2.45	1	23	21	163	4.49	2	1.26	<10	1.80	891	<2 0.06	5	0.205	2	0.34	< 5	3	227	<5	0.25	<10	<10	118	<10	72	10
59904	3.3	1.16	23	123	<0.5	11	0.93	3	20	65	2725	3.38	1	0.53	21	0.67	223	238 0.03	9	0.058	48	1.73	5	5	46	13	0.04	<10	<10	35	<10	312	5
Standards:																																	
Blank	<0.2	<0.01	< 5	<10	<0.5	< 5	<0.01	< 1	<1	<1	<1	< 0.01	<1	< 0.01	<10	< 0.01	<5	<2 0.01	< 1	< 0.001	5	< 0.01	<5	<1	<1	<5	< 0.01	<10	<10	<1	<10	<1	<1
CH-4	2.2	1.57	<5	256	<0.5	8	0.56	2	24	100	2000	4.50	1	1.24	12	1.10	305	2 0.04	50	0.066	12	0.58	<5	6	7	<5	0.18	<10	<10	66	<10	205	10


A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.


APPENDIX III


Cross sections

