

Ministry of Energy & Mines Energy & Minerals Division

Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

2009 Diamond Drilling and Geophysical Report on the Sphinx Prope	rty	TOTAL COST \$227,071.00			
AUTHOR(S) Chris S. Gallagher, M. Sc.	SIGNATURE(S)	<u> </u>			
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) MX-5-557	YEAI	R OF WORK			
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE	(S)				
PROPERTY NAME_SPHINX					
CLAIM NAME(S) (on which work was done) see attached report					
COMMODITIES SOUGHT Mo, W, Au, Ag, Pb, Zn, Cu					
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN MINFILE	082FNE004, 094, 095, 132,				
	NTS082F057, 067				
LATITUDE 49° 38' N LONGITUDE 116°40'W (at centre of work)					
	2)				
MAILING ADDRESS					
Suite 200, 16-11th Ave. S.					
Cranbrook, B.C., V1C 2P1					
OPERATOR(S) [who paid for the work]					
1) Touchdown Capital Inc.	2)				
MAILING ADDRESS					
3102-788 Richards St Vancouver, BC V6B 0C7					
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, struc	ture, alteration, mineralization, size and attitude	a):			
Middle Proterozoic Purcell Supergroup, Upper Paleozoic Windermere	Supergroup; western flank of the Purcell Anticli	norium;homoclinal north-south			
trending sequence of sediments; Toby Formation quartzite, limestone,	arkose,pebble conglomerate; Dutch Creek, M	ount Nelson			
Formation laminated argillite, phyllite, quartzite, dolomite, minor amphib	<u>olite;quartz monzonite plug; IOCG, molybdenu</u>	m; significant mineralization			
1000 x 300m; airborne, high resolution Time Domain Electro Magnetic	<u>geophysical survey; phyllitic, argillic, low F-typ</u>	e, CXIimax type, skarn			
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSM	ENT REPORT NUMBERS MEMPR ASSRPT	7416,8628,11604,12935			
MINFILE 082FNE004, 094, 095, 132.					

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization <u>18.7 line km</u>	1		\$57,307.82
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Suit			
RUCK	ant ICD plus Ma assau finish		¢0 002 70
			\$9,003.70
(total metres; number of holes, size)			
Core 617m, 2 holes, NQ		Drilling Costs only	\$49,779.77
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COS T	\$227,071.00

2009 DIAMOND DRILLING AND GEOPHYSICAL REPORT FOR THE SPHINX PROPERTY

VOLUME I

Nelson / Fort Steele Mining Division, Southeastern B.C. Mapsheets 82F057, 82F067 Latitude 49°38' N, Longitude 116°40'W

Prepared for:

BC Geological Survey Assessment Report 31878

Touchdown Capital Inc. 3102-788 Richards St Vancouver BC, V6B 0C7 and Eagle Plains Resources Ltd.

Suite 200 16-11th Ave. South Cranbrook, BC V1C2P1

By

C. S. Gallagher, M, Sc. Chief GeoTechnologist Bootleg Exploration Inc.

February 5th, 2010

SUMMARY

The Sphinx Mo-W porphyry system has been defined by 46 diamond drill holes for a total of 13621.7m of drilling and consists of a tabular, steeply-west dipping Cretaceous (?) quartz monzonite intrusive body with a true thickness of 85m and a strike length of 230m. A pervasive phyllic + local potassic alteration system, 700m by 350m in size, is developed in the host Mt. Nelson pelitic rocks and the intrusive itself. Mo mineralization, open to depth and to the west, is hosted in a qtz-py stockwork and fractures within the alteration zone and it should be noted that best grades on the property are located along the contact zone of the property. An NI43-101 compliant inferred resource estimate of 53Mt @ 0.035% Mo with a cutoff of 0.01% Mo was completed in early 2006. Future drilling will concentrate on increasing the grade of the deposit and exploring for secondary porphyry systems.

The Sphinx property consists of 15218.9 hectares located in the Grey Creek / Baker Creek area 60 km west of Kimberley, in southeastern British Columbia. The claims are owned 100% by Eagle Plains Resources Ltd, with part of the property carrying an underlying NSR.

The property is underlain by a northerly trending sequence of argillite and quartzite units of the Mount Nelson Formation. This assemblage abuts the older conglomerate unit of the Toby formation to the west.

The Sphinx claims cover four known Minfile occurrences. Three of the occurrences (Five Metals, Grey Creek Iron North and South) are iron formation or specular hematite, probably hosted by schistose conglomerate; the other (Jodi or Sly) is molybdenum mineralization that occurs in a stockwork of thin quartz veins in a shattered white quartzite unit.

A high resolution VTEM geophysical survey was flown over the property in early 2004. A total of 99 line km were completed, and three significant geophysical anomaly areas were outlined. The geophysics was followed up with a three day field program to assess the geology and mineralization, and to attempt to locate the historic Minfile occurrences.

In 2005, Eagle Plains optioned the Jodi claims which cover the historic Jodi or Sly Minfile occurrence. The Jodi claims overly brittle sedimentary units that have been intruded by Cretaceous (?) ganitoid rocks. Molybdenum and associated tungsten mineralization occurs as disseminations and within quartz-pyrite stockwork veins hosted by both sedimentary and intrusive rocks. Chemical alteration of rock units suggests the presence of a substantial porphyry-style mineralizing system. The area was first identified by Cominco Ltd. in 1978, which carried out surface work and limited diamond drilling from 1978 to 1984. Cominco completed a soil geochemical survey which resulted in the delineation of a 1700m x 500m tungsten-moly soil anomaly. Five drill holes were completed by Cominco, but no results were released. In 1997, Barkhor Resources drilled 10 holes into the soil anomaly and encountered significant molybdenum mineralization over a 1000m x 300m area.

After acquiring the Jodi claims, Eagle Plains retained David Pighin, P.Geo. who was involved with the original Cominco and Barkhor work, to undertake due diligence and data confirmation related to the historic work. All core from the 1997 Barkhor program was secured and examined and available assay results were compiled and interpreted. Some of the unsampled core was split and sent for analysis.

Based on the results from the historic work and the due diligence, Eagle Plains completed a total of 14 diamond drill holes, for a total of 10,921' (3,330m), in 2005. The area outlined by this and past diamond drilling programs measures approximately 400 x 1000m. Most holes intersected significant molybdenum mineralization over a broad area, with the mineralized zone open to depth and to the west. Analytical results include 47.0m grading .10% Mo (.167% MoS₂).Other fieldwork on the Sphinx property in 2005 included soil geochemical sampling, geological mapping and reinterpretation of airborne geophysics data. A 1.5km exploration trail was completed in order to provide access to future drill sites.

2006 exploration work on the property involved a two phase program consisting of groundwork during August of 2006 and a diamond drill program during September and October of 2006. The ground program involved geologic mapping and channel sampling along the exploration trail constructed in 2005. To the north of the deposit, along the power line, work included prospecting and geochemical surveys (soils) (Figures 7a to d). The ground program provided valuable information pertaining to post-mineralization faulting within the deposit (Sphinx fault). The 24 day, 4 hole diamond drill program totaled 1700m and was successful in intersecting high-grade Mo mineralization. Results included hole SX06015 grading 0.042% Mo over it's entire length (481.89m) including 79m @ 0.068% and hole SX06016 grading 47.0m @ 0.045% Mo including 6.0m @ 0.135% Mo along the contact zone of the quartz monozite intrusive body. The drill program also provided valuable information pertaining to the geometry and magmatic evolution of the intrusive system.

The 2007 exploration program focused on higher grade Mo mineralization along the intrusive contact and in structurally controlled fault zones to the south. The program included eight diamond drillholes totalling 2,343.7m in length. The program was successful in intersecting higher grade Mo mineralization including hole SX07022 which intersected .077% Mo over 30.0m including 9.0m @ 0.104% Mo and SX07025 which intersected .085% Mo over 29.0m including 19.0m @ 0.104% Mo and also including 3.0m @ 0.276% Mo. Total expenditures for the 2007 exploration project were \$866,263.82.

In 2008, Moose Mountain Technical Services was commissioned to complete an upto date resource calculation on the Sphinx deposit. A total of 38 diamond drill holes, from 1980 to 2007, were utilized in the calculation. A three dimensional solid was built to constrain the mineralized portion of the deposit. Using cross sections and drill hole information the limits of the mineralization were determined and modeled using MineSight software. The deposit is estimated to contain an indicated resource

of 41,450,000 tonnes at 0.041% Mo and an inffered resource of 37,180,000 tonnes at 0.040% Mo with a 0.03% Mo cutoff. See tables below for details.

SPHINX PROJECT - INDICATED RESOURCE						
Mo Cutoff	Tonnes> Cutoff	Grade > Cutoff				
(%)	(tonnes)	Mo %	Million Ibs Mo			
0.02	61,920,000	0.036	49.20			
0.03	41,450,000	0.041	37.50			
0.04	17,040,000	0.051	19.20			
0.05	7,640,000	0.060	10.10			
0.06	2,750,000	0.070	4.20			
0.07	800,000	0.083	1.50			
0.08	300,000	0.098	0.60			

SPHINX PROJECT - INFERRED RESOURCE						
Tonnes> Cutoff	Gr	ade > Cutoff				
(tonnes)	Mo %	Million lbs Mo				
57,150,000	0.035	44.10				
37,180,000	0.040	32.80				
13,660,000	0.050	15.10				
5,830,000	0.057	7.30				
1,370,000	0.065	2.00				
140,000	0.078	0.20				
40,000	0.090	0.10				
	X PROJECT - INFER Tonnes> Cutoff (tonnes) 57,150,000 37,180,000 13,660,000 5,830,000 1,370,000 140,000 40,000	X PROJECT - INFERRED RES Tonnes> Cutoff (tonnes) Gr 57,150,000 0.035 37,180,000 0.040 13,660,000 0.057 5,830,000 0.065 140,000 0.078 40,000 0.090				

The 2009 exploration program was designed to test for the presence of deep seated (>300m below surface) intrusive bodies, the presence of which, would best explain the development of strong mineralization / alteration south of the known intrusive stock. The program involved two phases consisting of an 18.7 km deep penetrating IP survey and two diamond drill holes (617m) from a single pad on section 4700N. Unfortunately, the IP survey did not acquire the planned depth or resolution and was not particularly useful in delineating deeply buried targets. Although no significant intrusive body was intersected in drilling, both holes were successful in intersecting well developed Mo mineralization and pervasive intense Si + Ser + Py alteration.

Hole SX09027 intersected 53.30m @ 0.07% Mo including 7.15m @ 0.11% Mo

Hole SX09028 intersected 5.00m @ 0.08% Mo

Total expenditures for the 2009 exploration program were \$224,008.50

It is believed that the Sphinx property has extremely high potential to host both an economic porphyry stockwork style molybdenum deposit and Iron Oxide Copper Gold (IOCG) mineralization. Further work on the property is recommended including field truthing of geophysical and geochemical anomalies, more geological mapping in areas of interest and diamond drilling, both in the area of the resource and to continue to test for deeply burries / satellite intrusive bodies to the south. A budget for this proposed work is included with this report.

To date, EPL has spent approximately \$2.00M in exploration on the property.

Chris Gallagher, M.Sc. Chief GeoTechnologist, Bootleg Exploration

TABLE OF CONTENTS

1.0 LOCATION, ACCESS AND INFRASTRUCTURE	1
2.0 TENURE	3
3.0 HISTORY AND PREVIOUS WORK	6
4.0 GEOLOGY	7
4.1 Regional Geology	7
4.2 Property Geology	9
4.3 MINERALIZATION	10
5.0 2009 WORK PROGRAM	12
5.0 2009 RESULTS	12
7.0 CONCLUSIONS	18
8.0 RECOMMENDATIONS	18
8.0 REFERENCES	22

LIST OF FIGURES

FIGURE 1 – PROPERTY LOCATION	2
FIGURE 2 - TENURE	5
FIGURE 3 – REGIONAL GEOLOGY	8
FIGURE 4 – PROPERTY GEOLOGY	11
FIGURE 5 – 2009 IP GRID	14
FIGURE 6 – DDH PLAN MAP	16
FIGURE 7 – SECTION 4700N	Pocket

LIST OF TABLES

TABLE 1 – TENURE DETAILS	3
TABLE 2 – 2009 DDH COLLAR LOCATIONS	12
TABLE 3 – 2009 DDH SIGNIFICANT INTERCEPTS	15
TABLE 4A – 2010 PHASE I EXPLORATION BUDGET	20
TABLE 4B – 2010 PHASE II EXPLORATION BUDGET	21

LIST OF APPENDICES

Appendix I:	Statement of Qualifications
Appendix II	Statement of Expenditures
Appendix III	Geochemical Protocol
Appendix IV	DDH Strip Logs, Logs and Sampling
Appendix V	Analytical Certificates
Appendix VI	Geophysical Report by SJ Geophysics

1.0 LOCATION, ACCESS AND INFRASTRUCTURE

The Sphinx property consists of 15218.9 hectares located in the Grey Creek / Baker Creek area 60 km west of Kimberley, 15 km east of Crawford Bay, in southeastern British Columbia. The claims are centered at approximately Latitude 49°38' N, Longitude 116°40'W on NTS Mapsheets 082F057 and 067.

The property area is road-accessible from both the east and west via the Grey Creek Pass, a seasonally maintained secondary road, and a number of logging and historical exploration trails established on the property. Elevations range from 1700 - 2500 meters. Tree cover consists of mature stands of fir, spruce and larch and part of the property has been logged. The property area is subject to moderate precipitation, and the lower parts of the property are free of snow cover from June to October. The Sphinx claims straddle a a high-voltage hydro-electric line. Rail facilities are located at Marysville, 60km east of the property, which could be used to ship ore to the Teck-Cominco smelter at Trail, B.C., approximately 100 kilometers west of the Sphinx property.

60°0"0"N

50°0'0"N

120°0'0"W

2.0 TENURE

The property consists of both 2 post and four post legacy claims and MTO claims located in the Nelson and Fort Steele Mining divisions on NTS Mapsheets 082F057 and 067. Total property area is 15218.9 hectares owned 100% by Eagle Plains Resources Ltd. Part of the property carries a 2% NSR. A list of all pertinent tenure details follows.

Table 1 – Tenure Details

Tenure Number	Owner	Tenure Name	Good To Date (YYYY/MM/DD)	Mining District	Area (Ha)	Tag Number
561360	100% EPL	SX	2011/11/30	12 Nelson	523.447	
561361	100% EPL	SX	2011/11/30	12 Nelson	523.617	
561362	100% EPL	SX	2011/11/30	12 Nelson	314.109	
561364	100% EPL	SX	2011/11/30	12 Nelson	502.75	
561365	100% EPL	SX	2011/11/30	12 Nelson	523.797	
561367	100% EPL	SX	2011/11/30	12 Nelson	524.105	
561368	100% EPL	SX	2011/11/30	12 Nelson	146.62	
561370	100% EPL	SX	2011/11/30	12 Nelson	523.958	
561371	100% EPL	SX	2011/11/30	12 Nelson	524.369	
561372	100% EPL	SX	2011/11/30	12 Nelson	62.845	
561374	100% EPL	SX	2011/11/30	12 Nelson	20.946	
561375	100% EPL	SX	2011/11/30	12 Nelson	523.626	
561376	100% EPL	SX	2011/11/30	12 Nelson	523.898	
561378	100% EPL	SX	2011/11/30	12 Nelson	524.517	
561379	100% EPL	SX	2011/11/30	12 Nelson	523.784	
561380	100% EPL	SX	2011/11/30	12 Nelson	524.193	
561381	100% EPL	SX	2011/11/30	12 Nelson	524.776	
561382	100% EPL	SX	2011/11/30	12 Nelson	523.397	
561383	100% EPL	SX	2011/11/30	12 Nelson	524.251	
561384	100% EPL	SX	2011/11/30	12 Nelson	524.001	
561387	100% EPL	SX	2011/11/30	12 Nelson	524.722	
561388	100% EPL	SX	2011/11/30	12 Nelson	523.488	
561390	100% EPL	SX	2011/11/30	12 Nelson	524.522	
561392	100% EPL	SX	2011/11/30	12 Nelson	515.137	
561394	100% EPL	SX	2011/11/30	12 Nelson	524.378	
561395	100% EPL	SX	2011/11/30	12 Nelson	523.756	
561563	100% EPL	SX	2011/11/30	12 Nelson	20.934	

Tenure Number	Owner	Tenure Name	Good To Date (YYYY/MM/DD)	Mining District	Area (Ha)	Tag Number
522992	100% EPL	SPHINX SE	2018/01/10	5 Fort Steele	83.791	
522989	100% EPL	SPHINX SW	2018/01/10	5 Fort Steele	20.946	
412989	100% EPL	JODI NO 11	2018/07/30	5 Fort Steele	25	
503970	100% EPL		2018/07/30	5 Fort Steele	377.026	
511094	100% EPL		2018/07/30	5 Fort Steele	104.711	
511095	100% EPL		2018/07/30	5 Fort Steele	41.892	
503166	100% EPL	DLP (Pighin claim)	2018/11/25	12 Nelson	209.402	
503813	100% EPL	JODI 20	2018/11/25	5 Fort Steele	83.753	
411441	100% EPL	SPHINX 10	2018/11/25	12 Nelson	25	726764M
411445	100% EPL	SPHINX 14	2018/11/25	12 Nelson	25	726768M
411446	100% EPL	SPHINX 15	2018/11/25	12 Nelson	25	724971M
411447	100% EPL	SPHINX 16	2018/11/25	12 Nelson	25	724972M
411448	100% EPL	SPHINX 17	2018/11/25	12 Nelson	25	724973M
411449	100% EPL	SPHINX 18	2018/11/25	12 Nelson	25	724974M
411436	100% EPL	SPHINX 5	2018/11/25	12 Nelson	25	726759M
411438	100% EPL	SPHINX 7	2018/11/25	12 Nelson	25	726761M
411439	100% EPL	SPHINX 8	2018/11/25	12 Nelson	25	726762M
411440	100% EPL	SPHINX 9	2018/11/25	12 Nelson	25	726763M
512459	100% EPL	SPHINX NE	2018/11/25	12 Nelson	501.821	
511054	100% EPL	SPHINX TOP	2018/11/25	12 Nelson	292.946	
505368	100% EPL		2018/11/25	12 Nelson	1339.73	
505381	100% EPL		2018/11/25	12 Nelson	41.88	

3.0 HISTORY AND PREVIOUS WORK

The original Sphinx claims were staked by Eagle Plains Resources in 2002 to cover the Five Metals (Minfile 082FNE132) occurrence. Subsequently, more claims have been acquired to cover the Grey Creek Iron North and South (Minfile 082FNE094, 095) and Jodi-Sly (Minfile 082FNE004) occurrences.

Most of the current Sphinx claims have seen very limited work in the past. The Grey Creek Iron showings have seen a small amount of trenching, with a shallow adit developed at the Grey Creek North occurrence. This work is believed to have been carried out in the early 1900's.

At the Five Metals occurrence, iron ore with values in silver, lead and copper was reported to occur at the head of Houghton Creek (EMPR AR 1902-163). By 1905, over \$10,000 was spent in development by the Five Metals Company At this time, men were still engaged in "running a deep level to tap the main ledge". This "ledge" was reported to be 30 metres wide. A furnace with 40 tonnes/day capacity was planned.

This occurrence has been created based on its given location at the head of Houghton Creek and on the north side of Sphinx Mountain (The Nelson Miner, 1905). Although in the same vicinity, the Gray Creek occurrences are well defined by J.T. Fyles in a 1956 report (Property File) as being to the south of Sphinx Mountain. Three Crown grants exist near the location at which the Five Metals should occur: Palouser (Lot 8797), Spokane (Lot 8796) and Tekoa (Lot 8798).

Mineralization in the area of the Jodi-Sly occurrence was first identified by Cominco Ltd. in 1978, which carried out surface work and limited diamond drilling from 1978 to 1984. Cominco completed a soil geochemical survey which resulted in the delineation of a 1700m x 500m tungsten-moly anomaly. 4-6 drill holes were completed, but no results were released. In 1997, Barkhor Resources drilled 10 holes into the soil anomaly and encountered significant mineralization over a 1000m x 300m area. Results from only one hole were ever released (DDH JI97-06), but a private consultant reported that "typical drill intersections are averaging 0.03-0.038% Mo over core lengths ranging from 90 to 230m".

The 2004 work program consisted of an airborne, high resolution Time Domain Electro Magnetic geophysical survey, followed by a short field program. Geophysical data collection was done by Geotech Ltd. and data processing and interpretation was contracted to SJ Geophysics and Condor Consulting. The survey area covered 8.12 square kilometers and comprised 26 lines and 8 tie lines, for a total of 99 line kilometers. The survey was flown in early March 2004 with helicopter support provided by Bighorn Helicopters using an AStar 350B2.

The field program was carried out over a period of three days from June 22 - 242004. Two field technicians collected a total of 21 rock samples. The rock samples were shipped to Eco-Tech Laboratories in Kamloops, B.C. for analysis. The samples were analyzed for 30 element ICP using aqua-regia digestion. All samples were collected, handled, cataloged and prepared for shipment by Bootleg Exploration Inc.

Overall project supervision was by C.C. (Chuck) Downie, P.Geo Exploration Manager, Bootleg Exploration.

All exploration and reclamation work was carried out in accordance to Ministry of Environment, Ministry of Mines and WCB regulations.

Total expenditures by Eagle Plains Resources on the property in 2004 were \$31,389.32.

Of the 21 rock samples collected, six returned anomalous values. Sample S-12, dolomitic float with fractures containing galena and sphalerite returned values of 2180 ppm Zn. Sample S-13,, a 45 cm wide zone of quartz veins, returned 1836 ppm Zn. Sample S-14, a 30 cm wide quartz shear, returned 112 g/T Ag, 240 ppm Bi, and 1.23 % Pb and S-15, from the same location returned 1198 ppm Pb. Sample S-17, a 1 meter wide quartzite band, returned 1.28% Cu and S-16, from the same location, returned 2458 ppm Pb.

2005 exploration by Eagle Plains Resources Ltd. has concentrated on the zone of molybdenum mineralization in the area of the Jodi – Sly Minfile occurrence. Eagle Plains completed 14 diamond drill holes, for a total of 10,921' (3,330m), in 2005. The area outlined by this and past diamond drilling programs measures approximately 400 x 1000m. Most holes intersected significant molybdenum mineralization over a broad area, with the mineralized zone open to depth and along strike in one direction. Analytical results include 47.0m grading 0.10% Mo (0.167% MoS2). Other fieldwork on the Sphinx property in 2005 included soil geochemical sampling (1138 samples) and geological mapping. A 1.5km exploration trail was completed in order to provide access to future drill sites. Total 2005 exploration expenditures by Eagle Plains Resources on the Sphinx property was \$559,146.75

In April 2006, Eagle Plains retained Barry Price P.Geo. to prepare a resource estimate on the Sphinx mineralization. Based on a thorough review of the geological and analytical data, Price arrived at a resource estimate of approximately 60 million tonnes with an average grade of 0.035% Mo. Within this envelope of very consistent fracture and vug-controlled molybdenite mineralization, are numerous intercepts of higher grade, up to 1.1% Mo. within 1-3 meter intercepts. Prices' resource estimate corresponds to the NI 43-101 category of an Inferred Mineral Resource.

2006 exploration work on the property involved a two phase program consisting of groundwork during August of 2006 and a diamond drill program during September and October of 2006. The ground program involved geologic mapping and channel sampling along the exploration trail constructed in 2005. To the north of the deposit, along the power line, work included prospecting and geochemical surveys (soils). The ground program provided valuable information pertaining to post-mineralization faulting within the deposit (Sphinx fault). The 24 day, 4 hole diamond drill program totaled 1700m and was successful in intersecting high-grade Mo mineralization. Results included hole SX06015 grading 0.042% Mo over it's entire length (481.89m) including 79m @ 0.068% and hole SX06016 grading 47.0m @ 0.045% Mo including 6.0m @ 0.135% Mo along the contact zone of the quartz monozite intrusive body. The drill program also provided valuable information pertaining to the geometry and magmatic evolution of the intrusive system.

The 2007 exploration program focused on higher grade Mo mineralization along the intrusive contact and in structurally controlled fault zones to the south. The program included eight diamond drillholes totalling 2,343.7m in length. The program was successful in intersecting higher grade Mo mineralization in the majority of holes. Total expenditures for the 2007 exploration project were \$866,263.82.

4.0 GEOLOGY

4.1 REGIONAL GEOLOGY

Regionally the area is underlain by rocks of the Middle Proterozoic Purcell Supergroup and by Upper Paleozoic rocks of the Windermere Supergroup. The area is located on the western flank of the Purcell Anticlinorium, a broad, north-plunging arch-like structure in Helikian and Hadrynian aged rocks. The anticlinorium is allocthonous, carried eastward and onto the underlying cratonic basement by generally north trending thrusts throughout the Laramide orogeny during late Mesozoic and early Tertiary time.

The oldest rocks exposed in the area are greenish, rusty weathering thin bedded siltites and quartzites of the greater than 4000m thick Lower Aldridge Formation, along with the facies-related, dominantly fluvial Fort Steele Formation (the base of which is unexposed). The Sullivan deposit is located some 20-30m below the upper contact of the Lower Aldridge Formation. Overlying the Lower Aldridge is a continuous section of Middle Aldridge quartz wackes, subwackes and argillites some 3000+ m thick. Within the Middle Aldridge formation, fourteen varied marker horizons can be correlated over hundreds of kilometres. These represent the only accurate stratigraphic control. A number of aerial extensive, locally thick gabbroic sills are present within the Lower and Middle Aldridge Formations. These sills and dykes; the "Moyie Sills", locally were intruded into wet, unconsolidated sediments, and have been dated to 1445 Ma, providing a minimum age for Aldridge sedimentation and formation of the Sullivan deposit. The Middle Aldridge is overlain conformably by the Upper Aldridge, 300 to 400 meters of thin, fissile, rusty weathering siltite/argillite.

Conformably overlying the Aldridge Formation is the Creston Formation, comprising approximately 1800 meters of grey, green and maroon, cross-bedded and ripple marked platformal quartizes and mudstones. The Kitchener-Siyeh Formation, which includes 1200 to 1600 meters of grey-green and buff coloured dolomitic mudstone are shallow water sediments overlying the Creston Formation.

The upper portion of the Purcell Supergroup consists of the Dutch Creek and Mount Nelson Formations. The Dutch Creek formation consists of approximately 1200 meters of dark grey, calcareous dolomitic mudstones. Overlying the Dutch Creek formation is the Mount Nelson formation, 1000 meters of grey-green and maroon mudstone and calcareous mudstones. This unit marks the top of the Purcell Supergroup.

Overlying the Purcell Supergroup is the Windermere Supergroup. Regionally, the Windermere Supergroup varies in thickness from 80 metres to over 3 kilometres and is in sharp contact with the underlying Belt-Purcell Supergroup across an unconformity with considerable topography, interpreted as a result of a local basement high, the "Windermere High" (Reesor 1973). The Windermere Supergroup was deposited above this unconformity and consists of a basal conglomeratic unit, the Toby Formation, and the overlying argillite and pebble conglomerate dominated Horsethief Creek Formation.

The Sphinx property in a regional sense is crudely surrounded by large granitic batholiths. These large granitic bodies are mapped as the White Creek batholith, the Fry Creek batholith, the Nelson Batholith and the Bayonne batholith. Small plutons, plugs and dykes are widely scattered throughout the area. Age determinations on these granitic bodies suggest that they range in age from early to mid-Cretaceous.

Structure in the region is dominated by intensely developed north trending, steeply dipping foliation that sub-parallels the strike and dip of the meta-sediments. Small scale asymmetrical and isoclinal folds are commonly found at outcrop large folds on a scale of kilometers have been mapped in the region by government workers. The dominant fault in the area is the Redding Creek fault. Two kilometers west of the Redding Creek fault a similar fault cuts the eastern part of the Sphinx property. These structures appear to be high angle reverse faults that dip to the west. Leclair and Reesor estimate that the Redding Creek fault may have 1000 meters of reverse movement, west side up.

4.2 PROPERTY GEOLOGY

The Sphinx property sits astride an angular unconformity which marks the contact between mid-Proterozoic and upper Proterozoic sediments. The upper Proterozoic Toby Formation and Horsethief Group sediments occupy the west half property, the mid-Proterozoic, Mt. Nelson, Dutch Creek and Kitchener sedimentary formations occupy the east half of the property. A small quartz monzonite cupola intrudes the Mt. Nelson meta-sediments near the center of the known molybdenite mineralization.

The southern part of the Sphinx property hosts widespread molybdenite mineralization and most geological work is currently focused in and around the mineralized area. Outcrop in the area underlain by the moly mineralization is very rare. However, drill hole data coupled with outcrop data from the surrounding ridges is sufficient to provide a preliminary geological map for the southern part of the Sphinx property (Figure 4).

In the southern part of the property intense thermal alteration has totally recrystallized the Mt. Nelson sediments, such that original sedimentalogical characteristics are totally destroyed. However, geological mapping has sub-divided the meta-sediments into three distinct metamorphic facies. All the known moly mineralization on the property is hosted by the following alteration assemblages and the associated altered quartz monzonite cupola.

A calc-silicate interlayered diopside-garnet skarn facies is traceable throughout the southern part of the Sphinx property. In drill holes this unit ranges between 20 and 75 meters in thickness. The calc-silicate is generally finely layered by green, white and black banding. These layers are formed by actinolite, sericite, biotite and aphanitic quartz. The diopside-garnet skarn is generally a very calcareous, coarsely crystalline, apple green, orange and black rock. The skarn occurs in layers from 20 cm to 200 cm in thickness. The skarn is composed mainly of crystalline diopside, pyrite, grossularite, calcite and magnetite. The skarn is coarsely crystalline and typically vuggy.

The sericitic quartzite facies occurs irregularly throughout the mineralized area in well defined bands with drill indicated thickness from 2.0 meters to 50 meters. The sericitic quartzite is a massive, hard, white to light green rock, with an aphanitic, glossy texture with a composition of roughly 90% quartz and 10% sericite. The irregular thickness and distribution of this facies may be the result of a late stage thermal metamorphic event that altered much of the original sericitic quartzite phyllite facies described below.

The dominant metamorphic facies in the area of interest is a sericite-quartz phyllite. This rock is generally light yellowish white in colour and is composed of approximately 60% sericite and 40% quartz. The sericite-quartz phyllite has a finely laminated texture formed by thin alternating layers of finely crystalline sericite and aphanitic quartz. Contact relationships between the sericite-quartz phyllite facies and the adjacent metamorphic facies suggest that much of the sericite-quartz phyllite was formed at the expense of the older facies. Drilling indicates that the sericite-quartz phyllite facies is increasing in width and intensity at depth.

A quartz monzonite cupola and numerous monzonite and aplitic dykes intrude the above molybdenite bearing meta-sediments. In plan the cupola has a near surface measurement of 100 meters by 180 meters elongated northerly parallel to the dominant foliation pattern. Drilling shows that the intrusive dips steeply west parallel to the dip of the dominant foliation. Drilling also indicates that quartz monzonite body is widening at depth. The quartz monzonite consists of light gray aphanitic quartz surrounding white and light green feldspar, with rare pink feldspar and abundant orange feldspar developed near moly-quartz veinlets. Texturally the quartz monzonite consists of equigranular, coarsely crystalline sub-hedral feldspar, with rare large phenocrysts, in an aphanitic quartz matrix, with some of the quartz forming "quartz eyes". Core from the 2006 drill program reveals banded quartz textures within the intrusive similar to that of 'Brain Rock' documented at other deposits such as Climax and Henderson. Miarolitic cavities are abundant through out the intrusive. Argillic alteration is well developed throughout the quartz monzonite, with of the feldspar altered to kaolinite. Original biotite is altered to sericite and chlorite, with strong development of late stage potassic feldspar in areas adjacent to quartz-moly veinlets.

Structure

Structure on the property is dominated by a South striking, moderate- to steeply-dipping transposition foliation, S_{0-1} , defined by compositional layering and preferentially oriented phylosilicates. This transposition fabric defines the map pattern for lithologic units on the property. Small scale, gently-north-plunging asymmetric folds are common in phyllitic argillite outcrops and thin bedded siltstones which are outside the zone of intense thermal alteration. The axial plane cleavage for these small folds is parallel to S_{0-1} . A second north striking cleavage, S_2 which dips 40 to 50 degrees to the east is also noted. The youngest cleavage on the property, S_3 , was noted during 2006 mapping of the access trail. This well developed cleavage strikes east and dips steeply (55 to 80 degrees) to the south. It is important to note that these three cleavages, present in the host rocks, are the dominant control on mineralized veins and fractures in the system.

A major north striking reverse fault cuts the Sphinx claim block 900 meters east of the known molybdenite mineralization. This fault dips west and moves upper Dutch Creek sediments over upper Kitchener sediments. This fault appears to have cut away 1800 meters of the Dutch Creek formation.

4.3 MINERALIZATION

Molybdenite mineralization on the Sphinx property has been outlined by soil geochemistry and verified by diamond drilling. This work has discovered a zone of molybdenite mineralization that in plan has a surface measurement of at least 1000 meters by 250 to 300 meters wide and depth of at least 300 meters. Mineralization remains open to the east, west and to to depth.

The molybdenum mineralization is hosted in quartz-molybdenite-pyrite stockworks. This mineralized stockwork is the latest geological event on the Sphinx claims and is developed only in the area of intense thermal alteration. Mineralization is best developed within a 50m thick zone defined by the quartz monzonite contact. Ore grade mineralization is also present in the quartz monzonite body itself, in the sericitic quartzite, in the sericite-quartz phyllite, and is poorly developed in the calc-silicate-skarn facies.

At least three fracture sets form the quartz-moly-pyrite stockwork. The dominant set parallels the north striking trend of the regional cleavage, a second set of fractures strikes east-west and dips south between 60° and 80° , a third set fractures strike north-east and dips to the north at 80° .

The stockwork is formed mainly by a white, drusy quartz gangue with lesser K-feldspar and rare fluorite. The principle sulphides molybdenite and pyrite are deposited mainly as selvages along the vein contacts. Molybdenite and pyrite also line quartz crystal druses in the veins. The quartz molybdenite-pyrite veins also host magnetite that is locally abundant. Rare yellow sphalerite and scheelite also occur in some of the moly bearing veins.

Where the mineralized stockwork is developed in the meta-sediments, phyllic alteration is also well developed forming quartzsericite envelopes around the molybdenite-pyrite bearing veins. Within the quartz monzonite, strong phyllic and potassic alteration is developed as quartz sericite and k-feldspar envelopes around molybdenite-pyrite bearing veins. Argillic alteration of feldspar in the monzonite is well developed in areas of good molybdenite mineralization.

The best molybdenum grades occur in drill holes which are drilled in or near the quartz monzonite cupola. To date a total of 30 drill holes have tested molybdenite bearing stockwork. In nearly all of the holes molybdenite occurs continuously from the top to the bottom of the hole.

5.0 2009 WORK PROGRAM

Phase I of the exploration program involved an 18.7 km ground based IP survey designed to characterize known mineralization / alteration around the intrusive as well as to define targets which possibly represent deeply buried / offset mineralized intrusives or their alteration haloes. A total of 18.7 km of line cutting was completed over 18 days by Geotronix of Surey, BC; crews stayed at camp put up by Bootleg Exploration at Grey Creek. The ground IP survey was conducted by Scott Geophysics of Vancouver, BC from October 10th to 24th, 2009. A pole – dipole array was used for the survey with an "A" spacing of 100m and "N" separations of 1 to 12. Geophysical inversions were also completed by Scott Geophysics

Phase II of the exploration program involved two diamond drill holes on section 4700N, where strong Mo mineralization and Qtz + Ser + Py alteration occurs, but no intrusive body has been intersected by drilling. A total of 617m of NQ drilling was completed by FB Drilling of Cranbrook, BC, from November 5th to November 12th, 2009. Drill crews stayed in Cranbrook and drove to the site each day. Table 2 is a summary of hole orientations, both holes were drilled from the same pad. Core was shipped daily to Bootleg Exploration's core facility in Cranbrook BC where it was geoteched, logged and sampled. Core was split in half and sampled, all fine grained material was also sampled from the interval and half was put in the sample bag. Samples were shipped to Eco-Tec Laboratories in Kamloops, British Columbia for analysis. The samples were analyzed via AR / 28 element ICP-OES (code BICP-11); samples exceeding 300 ppm Mo were also assayed using an AAS finish (code BOGA-37)

A total of \$227,071.00 was spent on the program under BC Mines Permit MX-5-557 (See Appendix II for details).

Hole Number	Length (m)	Azimuth (Dea)	Dip (Dea)	UTM NAD83 Zone 11N		Elevatio	Location Method	Hole Status	Finish Date	Core Size	Geologist
	(,	(==9)	(209)	Easting	Northing					0.20	
SX09027	429.15	270	-60	524872	5494706.7	1758	DGPS-COR	Complete	05/11/09	NQ	Bronwyn Wallace
SX09028	187.5	0	-90	542872	5494706.7	1758	DGPS-COR	Complete	10/11/09	NQ	Bronwyn Wallace

Table 2 – 2009 DDH Collar Locations

6.0 2009 RESULTS

IP Survey

Results of the inversion modeling for the IP survey remain inconclusive. Comparison of the inverted chargeability / resistivity results in section with known mineralization / alteration suggests there is no correlation between the two.

A detailed description of each hole follows (refer to Appedix IV for logs).

SX09027

Diamond Drill hole SX09027 was drilled by FB Drilling Limited between November 5 and November 10, 2009. It was located on Pad G of section 4700N of the Sphinx complete map with UTM units of the collar being 524872E and 5494706.7N in zone 11N at an elevation of 1758 m. The hole ended at a depth of 429.15 m on a 270° azimuth and -60° dip using NQ size core rods. This hole was planned to test for a buried intrusive body south of the known QM quartz monzonite plug. The hole was logged by Bronwen Wallace.

Lithology: SX09027 collared into meta-siltstone (unit 2) at 3.05 m. The meta-siltstone unit is characterized by green-grey colour with black speckles of fresh biotite. This unit is fine-grained with weak compositional layering and continues to a depth of 6.98 m, reoccurring between 8.20-10.51 m and 45.20-46.92 m. From 6.98 m to 429.15 m (end of the hole) there are alternating intervals, on a 1 cm to 25 m scale, of sericitic meta-siltstone (unit 1) and sericitic quartzite (unit 4) which are intruded by a dark amphibolite unit (unit 20) and quartz monzonite dykes/sills (unit 21). The sericitic meta-siltstone is similar to the meta-siltstone but is characterized by yellow speckles of sericite which have replaced the black biotite. The compositional layering in the sericitic meta-siltstone becomes more distinct with depth. This compositional layering, which is thought to be So-1, sits at an average of 17° to core axis but is slightly variable with angles of 0° to 20° to core axis throughout the hole. The sericitic quartzite is mainly light grey in colour, massive, and has patches of mottled dark green-grey quartzite in places. The mottled dark green-grey rock commonly contains small amounts of calcite and disseminated pyrite. The 6 dark amphibolite dykes (unit 20) which intrude the meta-sediments range in width from 1.07 to 10.41 m and occur in the hole between 24.48 and 386.88 m. The amphibolite is dark green in colour with some lighter grey wispy speckles, fine to medium grained, equigranular, and often contains minor amounts of disseminated pyrite. The quartz monzonite (unit 21) dykes which intrude the meta-sediments occur between 204.38 and 331.74 m and range from 0.03 to 8.35 m in width. This unit is characterized by a light grey matrix, with light

Alteration: The alteration in the unit 2 meta-siltstone is the normal regional metamorphism (code NR) which includes minor biotization, sericitization, and silicification. The unit 1 meta-siltstone has hydrothermal sericitization (code S) with sericite replacing biotite grains and alternating bands in the compositional layering. The alteration in the unit 4 quartzite is characterized by the SS code, which means that it is highly altered and in most places completely overprinted by silica and sericite alteration (little or no primary textures are preserved). The quartz monzonite intrusive dykes are variably altered from near fresh rock to intense potassic alteration (code SK). The potassic alteration assemblage includes replacement by fine to medium-grained silver-grey sericite, cream-pink coloured potassic overprinting, replacement of biotite grains with soft greenish clay minerals (chlorite?), and replacement of feldspar grains with white sericite-kaolinite phenocrysts.

Mineralization and Veining: Veining is present throughout the hole and is highly variable. The meta-sediments have between 1 to 12 mm size veins per meter and between 1 to 6 cm size veins per meter. The veins are all white to grey quartz with rare orthoclase and muscovite. The largest quartz vein is 125 cm of core length at 234.58 m. The veins occur in all orientations from 0° to 90° to core axis and there are numerous crosscutting relationships which are evidence of multiphase veining. The highest density veining occurs in the SS altered rock, where a 30 cm width of stockwork veining occurs at 245.65 m. Molybdenite comprises 0.1-50% (average 1%) of most veins and occurs as envelopes and vug fill. Strong Mo mineralization occurs from 234.58 to 279.81 m where there are 1-2 mm stringers of molybdenite through the meta-sediments and some cm blobs of molybdenite in the fault zone at 267.41 m. Mo mineralization decreases in veins to 0.1-5% towards the end of the hole. Pyrite is abundant in most veins and magnetite occurs in some veins and is always associated with pyrite.

SX09028

Diamond Drill hole SX09028 was drilled by FB Drilling Limited between November 10 and November 12, 2009. It was located on Pad G of section 4700N of the Sphinx complete map with UTM units of the collar being 524872E and 5494706.7N in zone 11N at an elevation of 1758 m. The hole ended at a depth of 187.45 m on a 0° azimuth and -90° dip using NQ size core rods. This hole was planned to test the mineralization between holes SX05002 and SX05003. The hole was logged by Bronwen Wallace.

Lithology: SX09028 collared into meta-siltstone (unit 2) at 2.13 m. The meta-siltstone unit is characterized by green-grey colour with black speckles of fresh biotite. This unit is fine-grained with thin compositional layering, is commonly phyllitic, and has wispy black and grey bands. The entire hole is alternating intervals of the unit 2 meta-siltstone and sericitic meta-siltstone (unit 1). The sericitic meta-siltstone is similar to the meta-siltstone but is characterized by yellow speckles of sericite which have replaced the black biotite and a medium grey-green colour from sericite replacement of compositional layers. The compositional layering, which is thought to be So-1, varies from 5° to 40° to core axis and is somewhat convoluted in places.

Alteration: The alteration in the unit 2 meta-siltstone is the normal regional metamorphism (code NR) which includes minor biotization, sericitization, and silicification. The unit 1 meta-siltstone has hydrothermal sericitization (code S) with sericite replacing biotite grains and alternating bands in the compositional layering. There is some silicification from 182.27 m to end of hole.

Mineralization and Veining: Veining in hole SX09028 ranges from 1 to 6 veins per meter with an average size of 5-10 mm. The veins are white to grey quartz and commonly occur in clusters of several veins within 10 cm followed by no veining over the next m. The veins occur in all orientations from 0° to 90° to core axis with a mode of 45° to core axis and there are numerous crosscutting relationships. Molybdenite comprises 0-5% (average 0.1%) of some veins and occurs as envelopes and vug fill. Pyrite is common in veins and magnetite occurs in some veins and is always associated with pyrite.

Table 3 – 2009 DDH Significant Intercepts

DDH	From (m)	To (m)	Intersection
SX09027	11.05	19.05	8.00m @ 342.5 ppm Mo
	27.75	81.05	53.30m @ 707.1 ppm Mo
	138.8	152.2	13.40m @ 548.7 ppm Mo
	158.2	165.35	7.15m @ 1084.0 ppm Mo
Including	160.35	163.35	3.00m @ 2016.7 ppm Mo
	192.7	199.7	7.00m @ 738.6 ppm Mo
Including	192.7	197.7	5.00m @ 907.8 ppm Mo
	232.8	268.85	36.05m @ 397.6 ppm Mo
	273.85	347.1	73.25m @ 612.9 ppm Mo
Including	277.85	283.2	5.35m @ 2504.0 ppm Mo
Including	322.7	327.5	4.80m @ 1457.7 ppm Mo
	359.1	364.45	5.35m @ 381.6 ppm Mo
	374	379	5.00m @ 443.2 ppm Mo
SX09028	30.07	35.07	5.00m @ 846.o ppm Mo

7.0 CONCLUSIONS

- 1) Mineralization is spatially associated with an altered Cretaceous (?) aged quartz monzonite intrusive that has hydrothermally altered Mt. Nelson pelitic sediments to brittle, sericitic quartz-rich rocks.
- 2) Mo mineralization, hosted in fractures and quartz-pyrite veins and stockwork, is defined by a 700m by 350m zone within the altered rocks and is open to the west and to depth; although the best grade is encountered along the contact zone of the intrusive.
- 3) Subsurface geometry of the intrusive appears to be tabular and steeply-dipping to the west and sub-parallel to the regional transposition fabric; the intrusive has a strike length of ~230m and a true thickness of 85m; it also appears to thicken at depth.
- 4) North and Southern extensions of the mineralized intrusive end abruptly between sections suggesting the possibility of post-mineralization faulting that may have offset the southern portion of the intrusive body.
- 5) Intense sericite and silica alteration of pelitic sediments associated with moderate to intense Mo mineralization extends at least 350m to the south of the known intrusive; this cannot easily be explained by present extents of the quartz monzonite body and is consistent with either a secondary or sibling mineralized intrusive at depth or post-mineral strike-slip fault movement of the quartz monzonite body to the south.
- 6) The 2009 drill program was unsuccessful in intersecting the suspected deeply buried / offset intrusive body to the south of the known intrusive but did intersect an approximately 30 m interval of variably altered quartz monzonite dykes associated with strong Mo mineralization (32.50m @ 0.05% Mo).
- The 2009 drill program was also successful in intersecting some of the better mineralization to date including 53.30m @ 0.07% Mo including 7.15m @ 0.11% Mo.
- 8) Interpreted chargeability and resistivity derived from the IP pseudo sections is not consistent with the known geology / mineralization on the property. The survey was not useful in confidently delineating any deep targets that might represent significant alteration / mineralization zones.

8.0 RECOMMENDATIONS

Continued exploration should focus on defining new mineralized targets such as satellite or deeply buried mineralized intrusives and increasing the grade of the existing inferred and indicated resource. Future exploration efforts should also focus on grassroots exploration on the rest of the property. A two phase exploration program, with a significant pre-field component is recommended.

Phase 1 - Pre-Field

Significant advancements in the understanding of the property can be made prior to commencement of Phase I field work. This includes reanalysis of the 2004 airborne VTEM survey, Re-Os dating of Mo mineralization, PIMA characterization of the related alteration system and geochemical orientation utilizing a portable XRF analyzer.

Reanalysis of the 2004 VTEM survey is required as there is a much better understanding of the deposit and is an excellent first order tool for evaluating the presence of satellite intrusive bodies / structures that may host further molybdenum mineralization.

Reanalysis of core in the search for deeply buried secondary intrusive could include several techniques:

- Dating of the different phases of molybdenum mineralization using Re-Os analyses could shed light on the multi-episodic evolution of the mineralized system.
- Lithologic / geochemical studies should be focused on various phases of the intrusive and the related alteration system in order to develop an alteration index for vectoring exploration drillholes.
- The use of a hand held spectrometer, such as a PIMA, would characterize the geochemistry and crystallinity of phyllic and potassic alteration assemblages in the drill core and could prove valuable for targeting further intrusions at depth.
- Crystallinity is a function of temperature and can be used to determine proximity to a heat source.
- K / Al ratios of sericite and illite can be used to differentiate regional versus hydrothermal alteration.

Reanalysis of pulp material from the SX property via portable XRF analysis will allow property specific calibration of the unit and enable a significant reduction in sample submission to the lab for wet geochemical analysis.

Phase I - Groundwork

Phase I of the work program consists primarily of ground work on the property including detailed geologic mapping, a geochemical orientation survey over the known deposit, and recce soil geochemical surveys utilizing portable XRF technology.

Geologic mapping should examine a number of major structures that have been mapped on surface to the south of the deposit. These structures may be spatially associated with the southern termination of the quartz monzonite intrusive (syn- to post-intrusive?). As well, they are spatially associated with higher grade mineralization. Associated intense alteration south of these structures occurs in the absence of any major intrusive bodies, possibly representing the cupola of a down dropped deeply buried intrusive. Structural mapping with a focus on brittle – cataclastic kinematic indicators could shed light onto this theory and should be completed prior to any deep drilling.

A surface geochemical orientation should be completed over the known deposit in an attempt to maximize response ratios and efficiency of the program. Recce soil geochemical surveys should be utilized to evaluate mineral potential on the rest of the property such as the new ground staked to the south.

Phase II

Phase II of the exploration program, consisting of 1000m of drilling, should be focused on increasing the grade of the indicated and inferred resources to at least 0.05% Mo; infill drilling should be focused on the contact zone of the quartz monzonite intrusive where the best grades have been encountered.

To facilitate this, a number of north – south trending holes should be collared to:

- Gain increased knowledge of the intrusives geometry, especially at depth;
- Test the presence of a possible fault to the south between sections F and G;
- Test the dominant grain of mineralization in the meta-sedimentary host rocks.

Total cost of Phase I groundwork and reinterpretation, including prefield work, 14 days field work, airborne geophysical analysis, Re-Os dating and PIMA work is estimated to be \$110,000. Phase II of the drill program is estimated to cost approximately \$220,000. A detailed break down of cost estimates follows in Tables 4a and 4b.

Table 4a – 2010 Phase I Exploration Budget

Personnel:					No of persons	rate	days		
		Project Manag	jer / Senior Geolog	jist	1	\$525	10	\$5,25	50.00
		Project Geolog	gists		1	\$475	10	\$4,75	50.00
		Geological Te	chnicians		2	\$375	14	\$10,50	00.00
		Geological Te	chnician with First	Aid	1	\$375	14	\$5,25	50.00
						TOTAL P	ERSONNEL:	\$25,75	50.00
Analytical:		Soils / Silts (P	rep)			100	\$3.00	\$30	00.00
		Soils / Silts (30 MS)) Element ICP-			100	\$16.00	\$1,60	00.00
		Rocks (Prep)				25	\$6.00	\$15	50.00
		Rocks (30 Ele	ment ICP-OES)			25	\$12.00	\$30	00.00
						TOTAL A	NALYTICAL:	\$2,3	50.00
Helicopter Support:		Туре	Wet Rate (/hr)	Hrs					
		Long Ranger	\$1,200.00	4				\$4,80	00.00
Geophysical Interpret	tation:							\$15,00	00.00
Re-Os Dating:								\$10,00	00.00
PIMA Survey:								\$5,00	00.00
Equipment Rental:									
Innov-X Omega Explor	e Portable XRF	analyzer				\$325.00		16 \$5,20	00.00
trucks, ATVs								\$3,00	00.00
communication includir	ng radios, satell	ite phone						\$2,00	00.00
Pre-Field:									
Base Map preparation								\$2,00	00.00
ongoing compilation of	data into GIS o	database includ	ding structural anal	ysis				\$2,00)0.00
Meals/groceries:					persons	rate	days		
	=				6	\$40.00	14	\$3,36	30.00
Accommodation:	Field Personn	el in Cranbrook	(\$3,00)0.00
Shipping:								\$2,00)0.00
Fuel:								\$2,00)0.00
Supplies: office and f	ield							\$2,50)0.00
Reclamation of explo	ration site as r	equired:						\$50	00.00
Filing fees:								\$5,00	JU.00
Report writing and re	production:							\$5,00	JO.00
							Subtotal :	\$100,46	30.00
							10% contingency:	\$10,04	46.00
							TOTAL:	\$110,50	6.00

Table 4b – 2010 Phase II Exploration Budget

			no. of		no. of	
Personnel:			persons	rate	days	
	Project Manag	er / Senior Geologist	1	\$500	10	\$5,000.00
	Project Geolog	lists	1	\$450	21	\$9,450.00
	GIS Techniciar	n	1	\$350	30	\$10,500.00
	Geological Teo	chnician with First Aid	1	\$450	14	\$6,300.00
					TOTAL PERSONNEL:	\$31,250.00
Analytical:	Core (Prep)			1,000	\$7.00	\$7,000.00
	Core (30 Elem	ent ICP-MS)		1,000	\$12.00	\$12,000.00
	Core (Mo Assa	ay)		500	\$10.00	\$5,000.00
					TOTAL ANALYTICAL:	\$24,000.00
Helicopter Support:	Туре	Wet Rate (/hr)	Hrs			
	Long Ranger	\$ 1,200.00	0			\$0.00
Drilling:				Meters	Rate (/meter)	
Including Mob / DeMob				1(000 \$100.00	\$100,000.00
Equipment Rental:						
trucks, ATVs						\$6,000.00
communication including r	adios, satellite pho	one				\$2,000.00
Pre-Field:						
Base Map preparation						\$2,000.00
ongoing compilation of da	ta into GIS databa	se including structura	al analysis			\$5,000.00
Meals/groceries:			persons	rate	days	
			8	\$40.00	10	\$3,200.00
Accommodation:	Field Personne	l in Cranbrook				\$5,000.00
Shipping:						\$2,000.00
Fuel:						\$5,000.00
Supplies: office and field						\$2,500.00
Reclamation of exploration site as required:						\$500.00
Filing fees:						\$5,000.00
Report writing and reprodu	uction:					\$5,000.00
					Subtotal :	\$198,450.00
					10% contingency:	\$19,845.00
					TOTAL:	\$218,295.00

8.0 References

Cooke, David L.(1983) : Geological, Geochemical Report Baker Mineral Claims; Cominco Ltd; MEMPR AR # 11604

Downie, C.C. And Pighin, D. (2005): 2005 Geological Report for the Sphinx Property, Eagle Plains Resources Ltd., MEMPR AR #27990; Link

Downie, C.C. And Gallagher, C.S., 2006 Geological Report for the Sphinx Property, Eagle Plains Resources Ltd., MEMPR AR #29126;

Kimura, E. (1997) : personnel communication to Barkhor Resources;

Wright, R.L (1978) : Geological, Geochemical Report Baker Mineral Claims; Cominco Ltd.; MEMPR AR # 7416

Wright, R.L (1980) : Diamond Drilling Report Baker Mineral Claims; Cominco Ltd. MEMPR AR # 8628

Wright, R.L (1984) : Reverse Circulation Drilling Report Baker Mineral Claims; Cominco Ltd. MEMPR AR # 12935 EMPR AR 1902-163

EMPR PF (*Article in The Nelson Miner, January 28, 1905; Report by J.T. Fyles, Oct.5, 1956 (in 082FNE094 file)) MEMPR Minfile # 082FNE004, 094, 095, 132,

Appendix I

Statements of Qualifications

CERTIFICATE OF QUALIFICATION

I, Christopher Shannon Gallagher, hereby certify that:

I am an employee of Bootleg Exploration Inc. residing at 616 Nelson St., Kimberley, B.C. with my office at Suite 200, 16-11th Ave South, Cranbrook, B.C., V1C 2P1 (Office Telephone: 250-426-0749)

I graduated from Carleton University, Ottawa, Ont., in 1997 with a Bachelors Degree in Science (B.Sc.), in the field of Geology, and received a further Degree of Master of Science (M.Sc.) in Structural Geology from the same University in 1999.

I have practiced my profession as a Geologist for the past 10 years since graduation, in the fields of Mining Exploration, Environmental Geology, and Geological Consulting. I have written a considerable number of Qualifying and Technical Reports for junior companies in the past 10 years.

I have worked both in Canada and Mexico. I have previously co-authored assessment reports for similar Mo porphyry deposits in Canada.

I was project manager for the 2005 and 2006 exploration programs on the Sphinx Property.

I have co-authored this technical report titled "2010 GEOLOGICAL REPORT FOR THE SPHINX PROPERTY" and dated February 05, 2010 relating to the 2009 technical program conducted by Eagle Plains Resources.

I have based this report partly on field observations while working on the property, as well as from a number of Assessment Reports written for Eagle Plains Resources Ltd. by various authors, and other materials obtained from my own files, from the literature and from the Internet.

I am not aware of any material fact or material change with respect to the subject matter of the Report, which is not reflected in the report, the omission of which would make the Report incomplete or misleading.

Dated at Cranbrook B.C. this 5th day of February, 2009

Christopher Shannon Gallagher, M.Sc.

Appendix II

Statements of Expenditures

2009 Sphinx Expenditures	5				
Exploration Work type	Comment	Days			Totals
		1	1		
Personnel / Position	Field Days	Days	Rate	Subtotal	
Hunter Corrigal, core splitter	Dec 1-3, 2009	1.50	325	\$487.50	
Simon Farquharson, field technician (IP)	Oct 11-24, 2009	14.00	390	\$5,460.00	
KC Fedun, core splitter	Dec 1-6, 2009	5.44	325	\$1,768.00	
Wes Ketsch, core splitter	Nov 30, Dec 2-5, 2009	3.88	325	\$1,261.00	
Jason Turner, field technician and core					
splitter (IP)	Oct 9-25, 2009, Nov 11-15	21.00	325	\$6,825.00	
Vanya Schepkowski, field technician (IP)	Oct 11-24, 2009	14.00	390	\$5,460.00	
Alan Roberts, core splitter	Dec 7-12, 2009	6.00	\$325.00	\$1,950.00	
Bronwen Wallace, Junior Geologist: Drill					
Management and Core logging	Nov 6-25, 2009	20.00	\$475.00	\$9,500.00	
Jim Ryley, Senior Geologist: Drill					
Management	Oct 30, Nov 5,6, 12, 2009	3.40	\$600.00	\$2,040.00	
Aaron Higgs, Senior Geologist: Drill					
Management	Nov 8, 9, 10, 12-14, 16-17, 2009	5.40	\$601.00	\$3,245.40	
Chris Gallagher, Chief Geotechnologist:					
Drill Management	Nov 7-8, 2009	2.00	\$720.00	\$1,440.00	
				\$39,436.90	\$39,436.90
Office Studies	List Personnel				
	Chuck Downie, VP Exploration, Eagle				
Project Management	Plains Resources	1.30	\$750.00	\$975.00	
	Jesse Campbell, General Manager,		1.00.00	10.000	
Poriect Planning and Management	Bootleg Exploration	5 63	\$600.00	\$3 378 00	
Data management and report		5.05	4000.00	\$3,370.00	
nrenaration	Glen Hendrickson, GIS technician	9 25	¢475 00	¢4 393 75	
Data entry and report preparation	Bronwen Wallace Junior Geologist	4 00	¢475.00	\$1,900.00	
Project Planning, Management and	Chris Gallagher, Chief	00	μη 3 .00	\$1,500.00	
report preparation	Centechnologist	18.00	¢720.00	¢12.060.00	
Project Planning and Management	lim Pyloy, Sonior Coologist	15.00	\$720.00	¢0 120 00	
Project Planning and Management and		15.20	φ000.00	\$9,120.00	
roport proparation	Aaron Higgs, Sonier Coologist	4 00	4E2E 00	¢2 100 00	
	Aaron niggs, Senior Geologist	4.00	\$525.00	\$2,100.00	¢24 926 75
Contractors and Subcontractors		1	1	\$34,820.75	\$34,820.75
	Line or differen			+1C 2C4 00	
Geotronics Consulting	Linecutting			\$16,264.00	
Moose Mountain Technical Services	Resource Calculation			\$1,045.00	
	database management, GIS work,	2.00	475	+000.00	
Legacy GIS Solutions	equipement management	2.08	4/5	\$988.00	+ 10 000 00
				\$18,297.00	\$18,297.00
Ground geophysics	Line Kilometres / Enter total amount inv	oiced list p	ersonnel		
IP - Scott Geophysics				\$41,043.82	
			1	\$41,043.82	\$41,043.82
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Drill (cuttings, core, etc.)				\$9,803.70	
		1	r	\$9,803.70	\$9,803.70
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond				\$46,644.86	
Driling Supplies and maintenance				\$134.91	
				\$46,779.77	\$46,779.77
Transportation		No.	Rate	Subtotal	
truck rental	IP: 9 days, DDH:11	20.00	\$100.00	\$2,000.00	
kilometers	IP: 1130, DDH: 1892	3022.00	\$0.30	\$906.60	
fuel				\$1,051.50	
				\$3,958.10	\$3,958.10

Accommodation & Food	Rates per day				
Hotel				\$3,144.00	
Meals				\$301.52	
				\$3,445.52	\$3,445.52
Geological and Geochemical					
Map Plotting				\$93.60	
Geological Supplies				\$342.40	
Sampling Consumables	sample bags, tags, flagging, etc			\$242.18	
				\$678.18	\$678.18
Equipment Rentals			per day		
Field Gear (IP:17 days, 4 units)	pack with gear, GPS, palm, etc	68.00	\$35.00	\$2,380.00	
Sat Phone		11.00	\$15.00	\$165.00	
Sat Phone Minutes				\$25.28	
Hand Held Radios	IP: 17 days 4 units	68.00	\$10.00	\$680.00	
Core Splitter		20.00	\$15.00	\$300.00	
First Aid Transport Vehicle				\$1,976.83	
Generators				\$1,153.46	
Reflex Downhole Survey Tool		9.00	\$80.00	\$720.00	
Level III First Aid Kit		9.00	\$5.00	\$45.00	
Core Logging Shack		31.0	\$75.00	\$2,325.00	
				\$9,770.57	\$9,770.57
Freight					
Byers Transport	Samples to lab			\$455.46	
				\$455.46	\$455.46
Bootleg Exploration Handling and	Adminstration Fees on Disburseme	ents			
				\$18,575.23	\$18,575.23
TOTAL Expenditure	95				\$227,071.00

Appendix III

Geochemical Protocol

3.1 – Analytical Procedures

APPENDIX 3.1 - ANALYTICAL PROCEDURES

Analytical work was contracted in 2009 to Eco Tech Laboratories, 10051 Dallas Dr., Kamloops, BC. T Drill core was analyzed using BICP-11 for 28 element ICP, and BOGA-37 wet assay for Mo.

Sample Preparation

Samples (minimum sample size 250g) are cataloged and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Rock and core samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

28 Element ICP-AES Analysis (BICP-11)

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

MOLYBDENUM ORE GRADE SINGLE ELEMENT ASSAY (BOGA-37)

2.0 g of Sample under-goes an oxidizing digestion in 200 ml phosphoric flasks with final solution in aqua regia. Appropriate standards and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet. The digested solutions are made to volume with RO water and allowed to settle. An aliquot of sample is analyzed on a Thermo IRIS Intrepid II XSP ICP unit. (Detection limit 0.001 %)

The instrument calibration is verified by the analysis of the certified reference material, which has undergone the same digestion as the samples. Results are collated and are printed along with accompanying quality control data (repeats, re-splits, and standards).
Appendix III

Geochemical Protocol

3.2 – Core Sampling Procedures

APPENDIX 3.2 – SAMPLING TECHNIQUES

All 2009 samples were collected by Bootleg Exploration Inc. employees. The sampling process is standardized and continually monitored for quality assurance and quality control. Only drill core samples were collected during this program.

Core Samples

Drill core samples were laid out by geologists in 1 m intervals where possible. Lithological and alteration breaks were inserted where necessary to ensure sample continuity. Sampling was only undertaken where mineralization was present. All core was transfered to a new box and the old box was swept to collect unconsolidated material for each interval. Drill core was split in half using a core splitter, one half being put in a labeled poly bag while the other got put back in the core box. The unconsolodated material was also split, half being put in the poly bag and half back in the core box. The samples were then put in a rice bag and sent away for geochemical analysis.

QAQC Procedures

Blanks were insterted into the sample chain every 50 samples and Cu – Mo standards were inserted every 35 samples.

Sample Handling and Shipping Procedure

Each shipping bag was kept under 25 kg. The list of samples was compared to the database and any discrepancies investigated. Once the list of samples to be shipped matched the database's records, the bags were sealed with a zip tie security seal. The bags were then sent by Greyhound Transport to Eco Tech Laboratories in Kamloops for geochemical analysis.

Appendix IV

DDH Strip Logs, Logs and Sampling

4.1 – DDH Logs

Appendix 4.1.1 - Alteration

			Alt		Alt 1		Alt 2		Alt 3	
	From		Assembl		Degr		Degr		Degre	
Hole #	(m)	To (m)	age	Alt Type 1	ee	Alt Type 2	ee	Alt Type 3	е	Alteration Note
SX09027	3.05	6.98	NR							
										ser alteration following
SX09027	6.98	8.2	S							comp layering
SX09027	8.2	10.51	NR	SERICITE	2					
SX09027	10.51	11.86	S	SERICITE	4					
SX09027	11.86	14.93	SS	SILICA	4	SERICITE	3			
SX09027	14.93	24.48	S	SERICITE	4					
SX09027	24.48	25.82	AMP							
SX09027	25.82	30	S	SERICITE	4	SILICA	2			
SX09027	30	32.21	SS	SILICA	4	SERICITE	2	POTASSIC	2	
SX09027	32.21	45.2	S	SERICITE	4	SILICA	2			
SX09027	45.2	46.92	NR	SERICITE	2					
SX09027	46.92	63.48	S	SERICITE	5	POTASSIC	2			
SX09027	63.48	66.82	AMP							
										ser variable from mod
0)/00007				05510175	_					replacement of bio to
SX09027	66.82	70.98	S	SERICITE	3					pervasive alt
SX09027	70.98	72.05	S	SERICITE	3					
SX09027	76.72	79.54	SS	SILICA	4					
	-									ser variable from mod
										replacement of bio to
SX09027	79.54	103.36	S	SERICITE	4	SILICA	1			pervasive alt
										105.87m 65cm section
SV00007	100.00	101 40	<u></u>		F	DOTACCIC	4			of S alt, other cm scale
SX09027	103.30	121.40	33 6		о 4	PUTASSIC	1			sections of 5 throughout
5X09027	121.48	151.01	3 66	SERICITE	4	SILICA	1			
SX09027	151.01	101.21	55 C		4	PUTASSIC	1			
5709027	151.21	160.34	3	SERICITE	4					ser alt speckles, rest of
SX09027	160 34	167 46	SS	SILICA	4	SEBICITE	3	POTASSIC	1	rock silicified
SX09027	167.46	185.7	S	SERICITE	3	0202	0		•	
SX09027	185.7	202.84	SS	SILICA	5	POTASSIC	1			
SX09027	202.84	218.64	S	SERICITE	4	SILICA	2	POTASSIC	1	
SX09027	218.64	219.51	SS	SILICA	4	SERICITE	3			
SX09027	219.51	219.93	20 22		5	SERICITE	3			
SX09027 SX09027	223.21	225.88	SK		5	SENIONE	5			
0/10001										areas of ser alt of
										speckles and comp
										layering, areas of
SX09027	225.88	237.83	S	SILICA	3	SERICITE	4			intense silicification
SX09027	237.83	261.94	SS	SILICA	4	SERICITE	3	POTASSIC	1	
SX09027	261.94	279.81	S	SERICITE	5	SILICA	2	POTASSIC	1	
SX09027	279 81	282 18	AMP	SEBICITE	1					
ON000L1	270.01	202.10		OLIMOITE						some fractures coated in
										clor, extensive alt of pvr
										to Fe oxides in some
SX09027	282.18	299.09	S	SILICA	3	SERICITE	4			veins
SX09027	299.09	307.44	SK							
SX09027	307.44	317.36	S	SILICA	3	SERICITE	4	POTASSIC	1	

	_		Alt		Alt 1		Alt 2		Alt 3	
Holo #	From (m)	$T_{O}(m)$	Assembl	Alt Type 1	Degr	Alt Type 2	Degr	Alt Type 2	Degre	Altoration Noto
SV00027	217.26	219.40	aye Sk	АПТУРЕТ	ee	All Type 2	ee	All Type 5	E	Alteration Note
SX09027	219 /0	220.20	SR CC		Б					
SX09027	220.20	320.29	55 ev	SILIUA	5					
5709027	320.29	323.9	SN		-					
5X09027	323.9	324.59	55	SILICA	5					
SX09027	324.59	325.51	SK		_					
SX09027	325.51	330.49	S	SILICA	3	SERICITE	4			
SX09027	330.49	331.75	SK							
SX09027	331.75	337.15	S	SERICITE	5					
SX09027	337.15	348.1	SS	SILICA	5	POTASSIC	1			
SX09027	348.1	363.5	S	SERICITE	4	SILICA	1	POTASSIC	1	
SX09027	363.5	373.91	AMP							
SX09027	373.91	380.66	S	SERICITE	4	SILICA				
SX09027	380.66	386.88	AMP							
SX09027	386.88	415.79	S	SILICA	3	SERICITE	4			
SX09027	415.79	429.15	S	SERICITE	4					
SX09028	2.13	10.86	NR	SERICITE	2					
SX09028	10.86	17.13	S	SERICITE	4					ser alt replacing bio and comp layering
SX09028	17.13	20.81	NR	SERICITE	2					
SX09028	20.81	81.73	S	SERICITE	4					
SX09028	81.73	90.08	NR	SERICITE	2					
SX09028	90.08	101.69	S	SERICITE	4					
SX09028	101.69	129.5	NR	SERICITE	2	POTASSIC	1			some ser alt over 1m intervals
SX09028	129.5	187.45	S	SERICITE	3	SILICA	2			

Appendix 4.1.2 - Lithology

				Major	Minor					
	From		Unit	Rock	Rock	Colour	Colour			
Hole #	(m)	To (m)	#	Type	Type	1	2	Grainsize	Texture	Note
SX09027	0	3.05		Casing	. , po		_		. oktorio	
	-			easing					compositi	
				Meta-		arev			onal	
SX09027	3.05	6.98	2	siltstone		areen	black	fine	lavering	bio speckles
						5			compositi	
				Meta-		arev			onal	
SX09027	6.98	8.2	1	siltstone		green	yellow	fine	layering	ser speckles
						Ŭ	-		, ,	·
										bio speckles, wispy
										layers, contact @35
				Phy				fine-		deg to CA (sharp
SX09027	8.2	10.51	2	Siltstone		grey	black	medium	wispy	contact)
									compositi	
				Meta-		grey			onal	
SX09027	10.51	11.86	1	siltstone		green	yellow	fine	layering	ser speckles
							yellowis	fine-		
SX09027	11.86	14.93	4	Quartzite		grey	h	medium		
									compositi	
				Meta-		grey			onal	
SX09027	14.93	24.48	1	siltstone		green	yellow	fine	layering	
										lighter grey wispy
0.100.00-				Amphibolit						speckles, sharp
SX09027	24.48	25.82	20	е		green	dark	medium	massive	contact
									compositi	
01/0007	05.00			Meta-		grey		Car	onal	ser speckles, some
SX09027	25.82	30	1	siltstone		green	yellow	fine	layering	darker grey patches
SV00027	20	20.01	1	Quartzita		arov	light	line-	maaaiya	
3709027	30	32.21	4	Quartzite		grey	ligni	medium	compositi	
				Mota-		arov			onal	
SX09027	32 21	45 2	1	siltstone		areen	vellow	fine	lavering	
0//00027	02.21	+0.L	•	Silistone		green	ychow		compositi	
				Meta-		arev			onal	
SX09027	45.2	46.92	2	siltstone		areen	black	fine	lavering	bio speckles
			_			3			compositi	
				Meta-		arev			onal	
SX09027	46.92	63.48	1	siltstone		green	vellow	fine	layering	
				Amphibolit		Ŭ	,		, ,	
SX09027	63.48	66.82	20	e		green	dark	medium	massive	
									compositi	
				Meta-		grey			onal	
SX09027	66.82	70.98	1	siltstone		green	yellow	fine	layering	
				Amphibolit						
SX09027	70.98	72.05	20	e		green	dark	medium	massive	
									compositi	
a) (5.5.5			Ι.	Meta-		grey			onal	
SX09027	72.05	76.72	1	siltstone		green	yellow	tine	layering	
0)/00/00		—						tine-		
SX09027	76.72	79.54	4	Quartzite		grey	light	medium	massive	
				M. 1					compositi	
0.000007		100.00		Meta-		grey		£	onal	
SX09027	/9.54	103.36	1	siitstone		green	yellow	TINE	layering	
0.00007	100.00	101 10		Outer to the			linkt	Tine-	magain -	
5709027	103.36	121.48	4	Quartzite		grey	light	meaium	massive	

				Major	Minor					
	From		Unit	Rock	Rock	Colour	Colour			
Hole #	(m)	To (m)	#	Туре	Туре	1	2	Grainsize	Texture	Note
									compositi	
SV0007	101 40	107.05	4	Meta-		grey	vollow	fine	onal	
3709027	121.40	137.00		SILSIONE		green	yenow	line	layenng	
										patches of green-
							arev	fine-		arev mottled with diss
SX09027	137.85	151.21	4	Quartzite		grey	green	medium	massive	pyr and some cal
							0		compositi	
				Meta-		grey			onal	
SX09027	151.21	160.34	1	siltstone		green	yellow	fine	layering	
										1. O ana hanala an
						arov				1-8cm bands or
SX09027	160.34	167 46	4	Quartzite		areen	liaht	fine	natchy	areen/light arev rock
0/00027	100.04	107.40	-	Quartzite		green	iigin		compositi	green/light grey rook
				Meta-		grey			onal	
SX09027	167.46	185.7	1	siltstone		green	yellow	fine	layering	
										1-8cm bands or
										patches of dark
										green/light grey rock,
0.00007	105 7	000.04		0		grey	l'arlad	f	a at a lass	after 191m massive
5X09027	185.7	202.84	4	Quartzite		green	light	tine	patchy	light grey
				Meta-		arev			onal	
SX09027	202 84	218 64	1	siltstone		areen	vellow	fine	lavering	
0,10002,	202.01	210101				arev	Jenen		layonng	
SX09027	218.64	219.51	4	Quartzite		green	light	fine	patchy	
							Ŭ			
										plag+qtz+bio where
										less alterered, k-
				0						spar+clor+hem+py+cl
SV00027	210 51	210.02	01	Quartz		arov	light	000100	nornhuritio	ay where more
3709027	219.01	219.93	21	wonzonite		grey	lignt	COarse	рогрнунис	allereu
SX09027	219.93	223.21	4	Quartzite		areen	liaht	fine	patchy	
			-			9			p	
										plag+qtz+bio where
										less alterered, k-
										spar+clor+hem+pyr+
01/0007	000.04	005.00	0 1	Quartz			P . 1.1			clay where more
SX09027	223.21	225.88	21	Monzonite		grey	light	coarse	porphyritic	altered
										∕l₋10cm alternating
					Meta-	arev				sections of meta-
SX09027	225.88	237.83	1+4	Quartzite	siltstone	areen	vellow	fine		siltstone and aztite
SX09027	237.83	261.94	4	Quartzite		grey	light	fine	massive	
									compositi	
				Meta-					onal	
SX09027	261.94	279.81	1	siltstone		grey	mid	fine	layering	
0.000007	070.04	000 10	00	Amphibolit		grey	ا م م	C		equigranular, no
SXU9U27	2/9.81	282.18	20	е	Moto	green	oark	line	mottled	phenocrysts, bio
SXNQN27	282 19	290 00	1_1	Quartzito	siltetone	green	vellow	fine		
5703021	202.10	233.09	1 + 4	Quartere	311310116	green	yenow			
				Quartz						
SX09027	299.09	307.44	21	Monzonite		grey	light	coarse	porphyritic	

	From		Unit	Major Rock	Minor Rock	Colour	Colour			
Hole #	(m)	To (m)	#	Туре	Туре	1	2	Grainsize	Texture	Note
SX09027	307.44	317.36	1+4	Quartzite	Meta- siltstone	grey green	vellow	fine		
						Ŭ	, 			
				Quartz						
SX09027	317.36	318.49	21	Monzonite		grey	light	coarse	porphyritic	
5709027	318.49	320.29	4	Quartzite		grey	lignt	line	massive	
				Quartz						
SX09027	320.29	323.9	21	Monzonite		grey	light	coarse	porphyritic	
SX09027	323.9	324.59	4	Quartzite		grey	light	fine	massive	
SX00027	224 50	225 51	21	Quartz		arov	liaht	oparco	norphyritia	
3709027	324.39	325.51	21	WONZONILE	Meta-	arev	light	CUAISE	рогрнунис	
SX09027	325.51	330.49	1+4	Quartzite	siltstone	green	yellow	fine		
						Ŭ	Í			
				Quartz						
SX09027	330.49	331.75	21	Monzonite		grey	light	coarse	porphyritic	
				Moto					compositi	
SX09027	331 75	337 15	1	siltstone		arev	mid	fine	lavering	
SX09027	337.15	348.1	4	Quartzite		grey	light	fine	massive	
							Ŭ		compositi	
				Meta-					onal	
SX09027	348.1	363.5	1	siltstone		grey	mid	fine	layering	
				Amphihalit						weathered in some
SX09027	363.5	373 91	20	Amphibolit		areen	dark	medium	mottled	difuse contact
0/10002/	000.0	0/0101	_0	0		groon	dant	incalain	compositi	
				Meta-					onal	
SX09027	373.91	380.66	1	siltstone		grey	mid	fine	layering	
0.00007	000.00	000.00	~~	Amphibolit			ما م برا م			1.2m transitional
SX09027	380.66	386.88	20	е		green	dark	meaium	mottled	base contact
										1-50cm cycles of
										siltstone and qtzite,
					Meta-					some cm size areas
SX09027	386.88	415.79	1+4	Quartzite	siltstone	grey	mid	fine		of mottled grey-green
				Mata					compositi	
SX09027	415 79	429 15	1	siltstone		arev	vellow	fine	lavering	natches bio
SX09028	0	2.13	•	Casing		grey	ychow		ayenng	
				J					compositi	
				Phy					onal	black bio speckles,
SX09028	2.13	10.86	2	Siltstone		grey	mid	fine	layering	thinly bedded
				Moto					compositi	vellow/white cor
SX09028	10.86	17 13	1	siltstone		arev	mid	fine	lavering	speckles and hands
57.00020	10.00	17.10		5		9.97			compositi	
				Phy					onal	black wispy layers
SX09028	17.13	20.81	2	Siltstone		grey	mid	fine	layering	common
										some 5-30cm
				Mota					compositi	sections of darker,
SX09028	20.81	81.73	1	siltstone		arev	mid	fine	lavering	siltstone
			1			1.0 - 1		-		

	From		Unit	Major Rock	Minor Rock	Colour	Colour			
Hole #	(m)	To (m)	#	Туре	Туре	1	2	Grainsize	Texture	Note
									compositi	
				Phy					onal	
SX09028	81.73	90.08	2	Siltstone		grey	mid	fine	layering	
									compositi	
				Meta-					onal	3-10mm black
SX09028	90.08	101.69	1	siltstone		grey	mid	fine	layering	banding in places
				Phy						
SX09028	101.69	129.5	2	Siltstone		grey	dark	fine	banded	black speckles
										cm black bands in
									compositi	places, 158.07 to
				Meta-	Phy				onal	172.53m black
SX09028	129.5	187.45	1	siltstone	Siltstone	grey	mid	fine	layering	speckles

Appendix 4.1.3 - Structure

	_			Structure
	From			Angle (to
Hole #	(m)	To (m)	Structure Type	CA)
SX09027	3.05	6.98	compositional layering	17
SX09027	7.28	7.53	tault plane	
SX09027	19.35	19.4	fault plane	
SX09027	47.25	49.25	rubble zone	
SX09027	63.15	63.35	fault plane	
SX09027	101.79	101.89	fault plane	
SX09027	105.87	109.39	rubble zone	
SX09027	121.84	124.77	rubble zone	
SX09027	121.84	137.85	compositional layering	15
SX09027	138.07	138.12	rubble zone	
SX09027	139.6	141.3	rubble zone	
SX09027	151.21	160.34	compositional layering	17
SX09027	157.6	157.8	rubble zone	
SX09027	159.9	160.3	rubble zone	
SX09027	182.81	182.96	fault plane	
SX09027	194.61	194.71	fault plane	12
SX09027	207.81	210.99	fault plane	0
SX09027	215.82	216.12	fault plane	0
SX09027	219.41	219.51	fault plane	10
SX09027	219.51	219.93	dyke	30
SX09027	223.21	225.88	dyke	15
SX09027	225.68	225.88	fault plane	
SX09027	225.88	226.38	fault plane	0
SX09027	225.88	237.83	compositional layering	0
SX09027	239.14	239.29	fault plane	
SX09027	245.05	245.15	Dyke	
SX09027	249	249.65	Dyke	15
SX09027	254.12	254.24	Dyke	
SX09027	254.48	254.68	Dyke	30
SX09027	260.77	261.22	Dyke	20
SX09027	267.41	267.71	rubble zone	
SX09027	279.81	282.18	dyke	40
SX09027	295.25	295.55	fault plane	12
SX09027	299.09	307.44	dyke	8
SX09027	307.44	317.36	compositional layering	15
SX09027	317.36	318.49	dyke	12
SX09027	320.29	323.9	dyke	10
SX09027	324.59	325.51	dyke	10
SX09027	325.51	330.49	compositional layering	17
SX09027	330.49	331.75	dyke	25
SX09027	344.65	345.1	fault plane	
SX09027	345.95	346.4	fault plane	
SX09027	415.79	429.15	compositional layering	20
SX09028	16.88	17.13	fault plane	
SX09028	34.21	34.71	fault plane	
SX09028	55.62	55.68	fault plane	20
SX09028	65.6	65.85	shear zone	15
SX09028	73.3	73.65	shear zone	
SX09028	78.8	79.19	fault plane	
SX09028	81.73	90.08	compositional layering	15
SX09028	90.08	101.69	compositional layering	30
SX09028	97.89	97.99	fault plane	
SX09028	101.69	129.5	compositional layering	40
SX09028	129.5	187.45	compositional layering	40
SX09028	142.35	144.35	fault plane	13
SX09028	182	182.2	fault plane	13

Appendix 4.1.4 - Veining Intervals

			Vein		Average			Vein	
	From	То	width	Veins/	Vein			Compositi	
Hole #	(m)	(m)	(cm)	m	Angle	Colour	Grainsize	on	Note
							medium-		
SX09027	3.05	6.98	0.3	6	35	white	coarse	Quartz	2-10mm, 5-8vn/m
o							medium-	•	
SX09027	6.98	8.2	0.3	3	45	white	coarse	Quartz	
0)/0007				_			medium-		
SX09027	8.2	10.51	0.7	/		white	coarse	Quartz	5-10mm
0,00007	10 51	11.00	0.7	-			meaium-	Quarte	F 10mm
5X09027	10.51	11.86	0.7	/		white	coarse	Quartz	5-10mm
SV00027	11 06	14 02	0.1	5		white	medium-	Quartz	1 mm $4 Gym/m$ $1 Form$ $1 ym/m$
3709027	11.00	14.95	0.1	5		writte	modium	Quartz	111111 = 4-6011/111, 1.30111 = 1011/111
SX00027	1/ 03	24 48	0.1	6	30	white		Quartz	1mm = 5-7yn/m $3cm = 1yn/m$
3703027	14.95	24.40	0.1	0		writte	medium-	Quartz	$\frac{1}{1000} = \frac{1}{1000} = 1$
SX09027	24 48	25.82	0.2	11		white		Quartz	1-3mm – 10-12vn/m
0//00027	24.40	20.02	0.2			write	medium-	Quartz	3-10 mm $= 4-6$ vn/m high angle
SX09027	25 82	30	0.5	5	35	white	coarse	Quartz	veins cut low angle
0/10002/	20.02		0.0			to	medium-	dualtz	3-10mm = $4-6$ vn/m.many cross-
SX09027	30	32.21	0.5	5	35	white	coarse	Quartz	cutting veins, multiphase
							medium-		
SX09027	32.21	45.2	1	2		white	coarse	Quartz	mm = 2-5vn/m, cm = 1-3vn/m
							medium-		,
SX09027	45.2	46.92	1	2		white	coarse	Quartz	mm = 2-5vn/m, cm = 1-3vn/m
							medium-		
SX09027	46.92	56.4	0.4	4		white	coarse	Quartz	3-5mm = 4-6vn/m
									3-5mm = 10-12vn/m, low angle
							medium-		cuts high angle, some 5-30cm
SX09027	56.4	63.48	0.4	11		white	coarse	Quartz	vuggy qtz vns
							medium-		
SX09027	63.48	66.82	0.4	8		white	coarse	Quartz	3-5mm = 5-10vn/m
							medium-		
SX09027	66.82	70.98	0.1	2		white	coarse	Quartz	mm = 1-3vn/m
0)/0007							medium-		
SX09027	70.98	/2.05	0.1	3		white	coarse	Quartz	mm = 3-4vn/m
01/00007	70.05	70 70				1.11.	medium-		
SX09027	72.05	76.72	1	4		white	coarse	Quartz	cm = 3-5vn/m, 0-40 deg to CA
SV00007	76 70	70 E 4	0.5	F	05	white	medium-	Quartz	2.10 mm E $G_{\rm M}$ m
5709027	/0./2	79.54	0.5	5	30	white	coarse	Quartz	3-1011111 = 3-6011/111
							modium		follow comp layoring, low angle
SX00027	70 54	103 /	0.2	1	17	white		Quartz	cuts high angle
3703027	73.54	100.4	0.2		17	winte	coarse	Quartz	3-10mm – 1-5vn/m low angle cuts
							medium-		high angle vns range 0-90 deg to
SX09027	103.4	121.5	02	3		white	coarse	Quartz	CA
0//00027	100.4	121.0	0.2	0		WHILE	medium-	Quartz	0/1
SX09027	121.5	137.9	0.5	3	17	white	coarse	Quartz	1-10mm = 1-4vn/m
0,10001			0.0				medium-		1-10mm = 5-7vn/m. 0-70 deg to
SX09027	137.9	151.2	0.5	6	45	white	coarse	Quartz	CA
							medium-		mm = 2-6vn/m, cm = 1-2vn/m, 0-
SX09027	151.2	160.3	0.1	5		white	coarse	Quartz	90 deg to CA
									1-20mm = 4-5vn/m, many 0 deg to
							medium-		CA, also set at 60 deg to CA,
SX09027	160.3	167.5	1	4	0	white	coarse	Quartz	multiphase
							medium-		1-20mm = 4-6vn/m, most 25-70
SX09027	167.5	185.7	1	5	25	white	coarse	Quartz	deg to CA

			Vein		Average			Vein	
	From	То	width	Veins/	Vein			Compositi	
Hole #	(m)	(m)	(cm)	m	Angle	Colour	Grainsize	on	Note
							medium-		cm = 4-6vn/m, high angle cuts low
SX09027	185.7	202.8	3	4	0	white	coarse	Quartz	angle stringers
									0.5-2cm = $3-7$ vn/m, high angle vns
0.1/00.007				_			medium-		cuts low angle vns cuts low angle
SX09027	202.8	218.6	0.5	5		white	coarse	Quartz	stringers, multiphase
0.00007	010.0	010 5	0	0			medium-	Quanta	
5709027	218.6	219.5	2	3		white	coarse	Quariz	2-3 cm = 3 vn/m
							medium-		cm = 5-6vn/m, most 15 to 45 deg to CA, multiphase, high angle cuts
SX09027	219.9	223.2	1	5	15	white	coarse	Quartz	low angle cuts stringers
							medium-	-	5
SX09027	223.2	225.9	1	1	45	white	coarse	Quartz	1-1.5cm = 1vn/m
							medium-		cm = 4-6vn/m, 10-90 deg to CA, vns crosscutting each other all
SX09027	225.9	237.8	1	5		white	coarse	Quartz	over the place
									1-10mm = 10-20vn/m, 1-10cm = 1- 3vn/m, multiphase, med angle
							medium-		cuts Mo stringers cuts large high
SX09027	237.8	261.9	5	2		white	coarse	Quartz	angle vns
									1-10mm = 2-4vn/m, 5-35cm =
SX09027	261.9	279.8	0.5	3		white	coarse	Quartz	1vn/m
							medium-		1-3cm = 1-2vn/m, veinlets of pyr,
SX09027	279.8	282.2	2	1		white	coarse	Quartz	also 3 major fractures/m
							medium-		3cm+ = 1-2vn/m, 2-20mm = 3-
SX09027	282.2	299.1	1	5		white	coarse	Quartz	8vn/m, low angle cuts high angle
							medium-		
SX09027	299.1	307.4	1	4		white	coarse	Quartz	mm-5cm = 3-5vn/m
0.1/00.007		o / - /		_			medium-		
SX09027	307.4	317.4	0.5	5		white	coarse	Quartz	1-10mm = 3-7vn/m
SV0007	0174	010 E	4	1		white	mealum-	Quartz	mm-cm = 4vn/m, base contact is
2209021	317.4	310.0	1	4		writte	modium	Quartz	cut by high angle k-spar vh
SX00027	318 5	320 3	1	5		white	coarse	Quartz	mm-cm - 5vn/m, most low angle
3703027	510.5	520.5	I	5		WIIIE	medium-	Qualiz	mm-cm = 500/m, most low angle
SX09027	320.3	323.9	1	1		white	coarse	Quartz	cm – 1-2vn/m
0//03027	020.0	020.0				write	medium-	Quartz	
SX09027	323.9	324.6	1.5	2		white	coarse	Quartz	
							medium-		
SX09027	324.6	325.5	1	3		white	coarse	Quartz	
							medium-		cm = 2vn/m, 1-5mm = 2-8vn/m,
SX09027	325.5	330.5	0.5	7	17	white	coarse	Quartz	many vns follow comp layering
							medium-		
SX09027	330.5	331.8	0.3	9		white	coarse	Quartz	1-20mm = 9vn/m
							medium-		cm = 2-4vn/m, veinlets/fractures =
SX09027	331.8	337.2	1	3		white	coarse	Quartz	3-6/m
							medium-		veining inconsistant, mm-cm = 1-
SX09027	337.2	348.1	1	3		white	coarse	Quartz	8vn/m
0.100.007	0.40.4	000 F	0.5				medium-		1-10mm = $3-10$ vn/m, most veins
SX09027	348.1	363.5	0.5	6	20	wnite	coarse	Quartz	TOHOW COMP layering
							modium		$1 - 10 \text{ cm} \text{ ql} \mathbb{Z} = 1 \text{ vn/m}, \text{ mm and pyr}$
SYDODOZ	262 F	272 0		1		white		Quartz	wisps = $1 - 0 \times 1/11$, fiffi $q_1 2 + p_1 y = 1 - 6 \times p/m$
3703027	505.5	513.9	0.5	4		winte	medium-	Qualiz	1-20mm - $5-10$ vn/m low angle
SX09027	373 0	380 7	0.5	6		white	coarse	Quartz	cuts high angle
57.000L1	5, 5.5	555.7	0.0	J J			304.00		eare man angle

			Vein		Average			Vein	
	From	То	width	Veins/	Vein			Compositi	
Hole #	(m)	(m)	(cm)	m	Angle	Colour	Grainsize	on	Note
							medium-		cm = 3vn/m, many pyr
SX09027	380.7	386.9	1	3		white	coarse	Quartz	vns/wisps/blobs
									1-5cm = 0.5-2vn/m, 1-10mm = 2-
							medium-		6vn/m, 0-90 deg to CA, low angle
SX09027	386.9	415.8	0.5	5	40	white	coarse	Quartz	cuts high angle
							medium-	_	
SX09027	415.8	429.2	1	2		white	coarse	Quartz	5-20mm = 2-6vn/m
							medium-	_	5-10 mm = $1-2$ vn/m, $0-60$ deg to
SX09028	2.13	10.86	0.7	1		white	coarse	Quartz	CA
									5-40mm = 2-3vn/m, large vns avg
									45 deg to CA, small vns avg 15-25
							medium-		deg to CA, large high angle cuts
SX09028	10.86	17.13	1	2	45	white	coarse	Quartz	low angle cuts small high angle
0)/00000							medium-		
SX09028	17.13	20.81	0.7	2		white	coarse	Quartz	5-10mm = 2-3vn/m
									1-20mm = $2-6$ vn/m, vns often in
0.1/00.000	00.04	04 70					medium-		clusters, low angle cuts high angle
SX09028	20.81	81.73	0.5	4		white	coarse	Quartz	most common
0,00000	04 70	00.00	0.7			1.21.5	meaium-		5-10 mm = $1-2$ Vn/m, $30-45$ deg to
SX09028	81.73	90.08	0.7	1		white	coarse	Quartz	CA common
									5-20 mm = $1-4$ vn/m, vns often in
									clusters 20cm over 1.5m, most 10-
0,00000	00.00	101 7				1.21.5	meaium-		45 deg to CA, high angle cuts low
SX09028	90.08	101.7	1	2		white	coarse	Quartz	angle
0.1/00.000	404 7	100 5			05		meaium-		mm = 3-6Vn/m, 1-4cm =5-
SX09028	101.7	129.5	2	1	25	white	coarse	Quartz	1vn/m, low angle cuts high angle
0,000000	100 5	107 5				1.1.	medium-		1-8 cm = $1-6$ vn/m avg 1, mm
SX09028	129.5	187.5	1	1	30	white	coarse	Quartz	veinlets, range 0-70 deg to CA

Appendix	4.1.5	- Vein	Points
----------	-------	--------	--------

		Vein	Vein							
	Depth	Width	Angle to				Composition	Composit	Composit	
Hole #	(m)	(cm)	ČA	Colour	Grainsize	Texture	1	ion 2	ion 3	Note
					medium-					
SX09027	13.05	20		white	coarse		Quartz			
					medium-					
SX09027	31.24	10		white	coarse		Quartz			
					medium-					
SX09027	38.85	8		white	coarse		Quartz	K-spar	Garnet	
					medium-					
SX09027	39.26	4		white	coarse		Quartz			
					medium-					
SX09027	50.1	30		white	coarse		Quartz			
					medium-					
SX09027	65.85	12		white	coarse		Quartz			
0.100.007					medium-					
SX09027	66.82	8		white	coarse		Quartz			
0.100007	70.00	10			medium-					
SX09027	/6.06	12		white	coarse		Quartz			
0.00007	045			1.11.	medium-					set of vein unmineralized, but there is 2%
SX09027	94.5	3	90	white	coarse		Quartz			dissem pyr in nost rock
0.00007	151 07	4	10	white	mealum-		Quarte			
5X09027	151.87	4	13	white	coarse	COMB	Quartz			
SX00007	204.20	2	40	arou	mealum-	oguigropulor	Disginalasa	Quartz	Diatita	intrucivo dutvolot
5709027	204.38	3	40	grey	coarse	equigranular	Plagioclase	Quartz	DIOLILE	
SX00027	219.05	2	40	arov		oquiarapular	Plagioglass	Quartz	Biotito	intrucivo dykolot
3709027	210.95	2	40	grey	coarse modium	equigrariular	Flagiociase	Quartz	DIULILE	
SX09027	228 58	18	30	whita	coarse		Quartz			
5703027	220.30	10	50	WHILE	medium-		Quartz			
SX09027	234 58	125		white	coarse		Quartz			hosts good Mo veins within
0/(00027	204.00	120		Winto	medium-	STOCKWO	Quartz			
SX09027	245 65	30		white	coarse	BK	Quartz			
	2.0.00	00			medium-		ddditz			
SX09027	292.65	60	12	white	coarse	VUGGY	Quartz			
					medium-					
SX09027	309.2	4	10	arev	coarse	equigranular	Plagioclase	Quartz	Biotite	intrusive dykelet
				<u>,</u>	medium-		<u> </u>		-	, , , , , , , , , , , , , , , , , , ,
SX09027	313.43	7	15	white	coarse		Quartz			follows comp layering
					medium-					
SX09027	314.58	10	90	grey	coarse	equigranular	Plagioclase	Quartz	Biotite	intrusive dykelet

		Vein	Vein							
	Depth	Width	Angle to				Composition	Composit	Composit	
Hole #	(m)	(cm)	CA	Colour	Grainsize	Texture	1	ion 2	ion 3	Note
					medium-					
SX09027	320.29	7		white	coarse	VUGGY	Quartz			marks upper contact of intrusive dyke
					medium-					
SX09027	323.9	3		white	coarse	VUGGY	Quartz			marks lower contact of intrusive dyke
					medium-					
SX09027	325.51	10		white	coarse		Quartz			marks lower contact of intrusive dyke
					medium-					
SX09027	340.97	7	17	white	coarse		Quartz			
					medium-					
SX09027	362.68	25	45	white	coarse		Quartz			
					medium-					
SX09027	374.25	20		white	coarse		Quartz			
					medium-					
SX09027	417.43	20	70		coarse		Quartz			
						~ -				
					medium-	SEMI-				
SX09027	425.3	10		metallic	coarse	MASSIVE	Pyrite			
					medium-					
SX09027	426.11	10	5		coarse		Quartz			

Appendix 4.1.6 - Mineralization

	From	То						
Hole #	(m)	(m)	Туре	Min 1	Min 2	Min 3	Note	
							1-2% Mo in veins, (vugs, envelopes,	
SX09027	3.05	6.98	VEINED	pyrite	moly		matrix)	
SX09027	6.98	8.2	VEINED	pyrite	moly		4% Mo in veins	
							locally 3% dissem pyr, veining has up to	
SX09027	8.2	10.51	VEINED	pyrite	moly		semi-massive pyr and minor Mo	
							locally 3% dissem pyr, veining has up to	
SX09027	10.51	11.86	VEINED	pyrite	moly		semi-massive pyr and minor Mo	
SX09027	11.86	14.93	VEINED	pyrite	moly		Mo up to 2% vein envelopes	
					veins 2-5% Mo, envelopes, pyr			
SX09027	14.93	24.48	VEINED	pyrite	moly		in small veins	
SX09027	24.48	25.82	VEINED	pyrite	moly		veins 15-30% pyr, trace Mo	
0.00007	05.00	20		io wito	malu		some Mo on vein margins (0.5%), 3-8%	
5709027	25.82	30	VEINED	pyrite	moly		pyr, avg 5% in veins	
SV00027	20	20.01		n vrita	moly		2-10% avg $2%$ wo on vein margins and in	
5709027	30	32.21	VEINED	pyrite	пор		Vugs, pyr avg 5% in veins	
SX00027	22.21	45.2		ovrito	moly		2-3% NO ON VEIN Margins and in Vugs, py	
3709027	32.21	40.2	VEINED	рупе	поту	1	2-3% Mo on voin marging and in vugs, pyr	
SX09027	15.2	16 92		nvrite	moly		in center of some veins	
SX09027	46 92	63 48		pyrite	moly		Mo common in veins 1-30% avg 5%	
SX09027	63 48	66 82	VEINED	pyrite	moly		1% Mo and 5% pyr in yeins	
0/10002/	00.10	00.02	VENTED	pynto	mory	1	1-5% Mo, pyr common 5-10% in veins.	
SX09027	66.82	70.98	VEINED	pvrite	molv		also some dissem pyr	
SX09027	70.98	72.05	VEINED	pyrite	moly		10-50% pyr in veins, trace Mo	
				17	, í		1-10% avg 5% Mo in veins, some mm Mo	
SX09027	72.05	76.72	VEINED	pyrite	moly		stringers	
							0-10% avg 2% Mo in veins, small amount	
SX09027	76.72	79.54	VEINED	pyrite	moly		of dissem pyr at 77.57m	
							Mo in stringers and on vein margins, 10-	
							40% of veins, pyr 10% in veins and some	
SX09027	79.54	103.4	VEINED	pyrite	moly		cm blebs	
			DISSEM					
SX09027	94.5	99.77	INATED	pyrite			no min in veins, 2% dissem pyr in host	
0.100.007	100.00	101 5					Mo mostly stringers, commonly 0 deg to	
SX09027	103.36	121.5		pyrite	moly		CA, pyr in some stringers and 5% in veins	
5X09027	121.48	137.9		pyrite	moly		0-10% avg 3% into in veins, 10% pyr	
SX00027	107.05	151 0		nurita	moly		nio mostly in min veiniets, 5-10% of veins,	
3709027	137.00	101.2	13	pynte	пор		some dissem pyr at 150.00m	
							and along marging, mm veing have 10-	
SX09027	151 21	160.3		nvrite	moly		30% Mo. 0-30% avg 5% pvr	
CROOOLI	101.21	100.0	VENILD	pynte	mory		5-10% Mo in veins and vug fill pyr more	
SX09027	160 34	167 5	VEINED	pyrite	molv		in clumps 5-10%	
0/10002/	100101	10710	TENTED	pjiito			1mm Mo bands along 30% of vein	
							margins, scattered Mo in some, 5% pyr in	
SX09027	167.46	185.7	VEINED	pyrite	moly		clumps in veins	
				17	, í		cm clots of pyr in veins (5-15%), most Mo	
							in 1-3mm veins (20-40%), larger veins	
							often barren, some veins 5-10% mag with	
SX09027	185.7	202.8	VEINED	pyrite	moly	magnetite	pyr	
						-	Mo in 1/2 of veins (5-20%) with more in	
							smaller veins, pyr 5-30% in most veins,	
							some mag in larger veins with pyr, minor	
SX09027	202.84	218.6	VEINED	pyrite	moly	magnetite	Mo and pyr in faults	

Hole #	From (m)	To (m)	Type	Min 1	Min 2	Min 3	Note
	()	()	. , , , , , , , , , , , , , , , , , , ,				20% pyr in veins, not really any Mo - tiny
SX09027	218.64	219.5	VEINED	pyrite			bit on fractures in rubble
			DICOLM				
SV00007	010 51	010.0		n wite			1 EQ nur in altered areas
3709027	219.01	219.9	INATED	рупе			2-5% Mo in voins mostly stringors 5-10%
SX09027	219 93	223.2		nvrite	moly	snhalerite	2-5% we miss hose 1 speck of sph
0//03027	210.00	220.2		pynic		Spriaiente	1-2% Mo on vein margins, pvr dissem in
SX09027	223.21	225.9	VEINED	pyrite	molv		altered areas 2-3%
							5-10% Mo in vuggy veins, 10-50% pyr in
SX09027	225.88	234.6	VEINED	pyrite	moly		veins
			VEINLE				
SX09027	234.58	237.8	TS	moly	pyrite		Mo in 1-2mm veins 100%, pyr <1%
							Mo in mm veins 50-100%, big veins 10-
							20% pyr with little Mo, pyr dissem in dark
SX09027	237.83	261.9	VEINED	pyrite	moly		mottled areas 5-10%
							Mo 0-5% avg 2% in large veins, 5-10% in
SV00027	261.04	270.0		nurita	moly	magnetite	small, 1-10% pyr in large veins, trace mag
3709027	201.94	219.0		рупе	пор	maynetite	with pyr, Schrinassive pyr at 277.10h
			MASSIV				
SX09027	267.31	267.6	E	molv			chunks of Mo in rubble (2% overall)
							Mo on fracture surfaces up to 1mm, pyr in
							mm veinlets and 2-10% blebby and wispy
SX09027	279.81	282.2	VEINED	pyrite	moly		in host, pyr also 10% in cm veins
							Mo 1-25% avg 10% of veins as clots,
							blebs, stringers, pyr 5-15% in veins,
0.1/00.007	000.40	000 4				chalcopyrit	beautiful cubic grains in vugs (3-9mm),
SX09027	282.18	299.1	VEINED	pyrite	moly	е	mag 1% with pyr, also trace cpy with pyr
							Mo 1 10% in voine come 0 Emm Mo
							stringers 3-6/m, rare Me with stringers 3-6/m, rare 3-6/m, r
SX09027	299 09	307.4		nvrite	moly		5% pyr in yeins and 1% dissem in host
0//00027	200.00	007.4		pynte			Mo $1-10\%$ in veins (1% in large to 10% in
							mm), pvr 2-10% in veins, 1-5% pvr
SX09027	307.44	317.4	VEINED	pyrite	moly		dissem
SX09027	317.36	318.5	VEINED	pyrite	moly		M0 1-5% in veins, pyr 5-20% in veins
							Mo in mm stringers 3/m, 5-10% pyr in cm
SX09027	318.49	320.3	VEINED	pyrite	moly		veins
o							Mo in <mm 10-50%="" 4-5="" in<="" m,="" pyr="" stringers="" td=""></mm>
SX09027	320.29	323.9	VEINED	pyrite	moly		veins, vein at 323.90m has 3cm of 1% Mo
							Mo 1%, pyr 50% in veins, pyr grains cubic
SV00027	202.0	224 6		nurita	moly	arsenopyri	up to 1cm in size, few crystals of rod
3709027	323.9	324.0	VEINED	рупе	ПОГУ	le	Mo 3% on voin marging, pyr 5-20% in
SX09027	324 59	325.5	VEINED	ovrite	moly		veins
0/(0002/	02 1.00	020.0	VENTED	pynto	litoty		Mo 2-25% avg 2% in big veins, 2-5% in
							small, pyr 5-30% in veins, 1% dissem in
SX09027	325.51	330.5	VEINED	pyrite	moly		places
							Mo 1-10% avg 4% in veins, pyr 1-10% in
SX09027	330.49	331.8	VEINED	pyrite	moly		veins and trace dissem
							Mo 1-10% in veins, pyr 5-20% in veins,
SX09027	331.75	337.2	VEINED	pyrite	moly	magnetite	mag 0.5% with pyr

	From	То					
Hole #	(m)	(m)	Туре	Min 1	Min 2	Min 3	Note
							Mo 0-5% in veinlets and vein margins, pyr
SX09027	337.15	348.1	VEINED	pyrite	moly		0-5% in veins
		ſ'			T	T	Mo 0-5% in veinlets and vein margins, pyr
SX09027	348.1	363.5	VEINED	pyrite	moly		0-25% avg 5% in veins
	Γ I	ſ '			T	Т	Mo rare in vein margins 0-1%, pyr 1-10%
		1					dissem, blebs, wisps in host, semi-
		1					massive in veins, mag common 0-10%
SX09027	363.5	373.9	VEINED	pyrite	moly	magnetite	with pyr in semi-massive pyr veins
							Mo 0.1-3% in veins, clumps and wisps,
							pyr 5-20% in veins, mag 1-10% with pyr in
SX09027	373.91	380.7	VEINED	pyrite	moly	magnetite	1/2 veins
							Mo rare in veins 0-0.5%, pyr 5-10%
		1					dissem, wisps, semi-massive, mag
			DISSEM				common 1-3% in veins and dissem with
SX09027	380.66	386.9	INATED	pyrite	moly	magnetite	pyr
						_	Mo 0.1-5% in veins, locallized 10cm
		1					sections of concentrated Mo mm veins,
							but overall low, pyr 1-5% in most veins,
SX09027	386.88	415.8	VEINED	pyrite	moly	magnetite	mag 1% with pyr
						Ť	Mo 0-5% in veins on margins, pyr 5-20%
SX09027	415.79	429.2	VEINED	pyrite	moly	magnetite	within veins, mag rare with pyr
-					<u> </u>	Ĭ	Mo trace <0.1% in veins, pyr 10% in veins
		1					with 0.5% dissem in places, mag 1% with
SX09028	2.13	10.86	VEINED	pyrite	moly	magnetite	pvr
					<u> </u>	Ť	Mo 0.5-1% in veins, pyr common in veins
SX09028	10.86	17.13	VEINED	pyrite	moly		and 0.5% dissem in places
	<u> </u>						Mo 0.1% in 1/2 veins, pyr 1-5% in 1/2
SX09028	17.13	20.81	VEINED	pyrite	moly		veins
	<u> </u>						Mo 0.1-5% in 1/2 veins and good in fault
							at 34.21m, pvr 0.5-25% in veins, mag
SX09028	20.81	81.73	VEINED	pyrite	moly	magnetite	occassionally with pyr
			•=	P J ·····			Mo 0.1-3% in 1/4 veins, pyr 0.5-15% in
SX09028	81.73	90.08	VEINED	pvrite	molv	magnetite	1/2 veins. some mag with pyr
	-						Mo rare on vein margins <0.1%, pyr 1-
		1					20% avo 5% in veins, mag 0.1-5% with
SX09028	90.08	101.7	VEINED	ovrite	molv	magnetite	nvr
0,000120	00.02		V	PJ::::		Inagricuit	Mo rare on vein margins and dissem
		1					$\sim 0.1\%$ nvr 1-20% avg 5% in veins mag
SX09028	101 69	129.5	VEINED	ovrite	moly	magnetite	0.1-5% with nyr
0//00020	101.00	120.0		pyrite		Inagriotito	Momm bands on rare vein margins
		1					avorall trace, pyr $0-10\%$ avo 2% in veins
SV00028	120.5	1975		ovrito	moly	magnotito	0^{10} of 10^{10} avg 2^{10} in volue,
3709020	129.0	107.0		pynie	Inory	magnetite	mag minor with pyr

Appendix IV

DDH Strip Logs, Logs and Sampling

4.2 – DDH Strip Logs

Hole	Hole Name :SX09027 Project Nan			Sphinx Project Code: Sphinx			Geologist :Aaron Higgs				
Length	n(m) :429.15	A	zimuth(Deg) :2	270	70 Dip(Deg) :-60						
Eastin	g :524872	N	orthing :54947	94706.7 Elevation(m) :1758							
Depth At	Rock Type	Notes	Alt Assemblage	Mineralizati Style	Note		Mo_ppm	Intersection	Including	Also Including	Elevation
	Meta-siltstone Meta-siltstone Phy Siltstone Quartzite Meta-siltstone Meta-siltstone Meta-siltstone Quartzite	bio speckles ser speckles bio speckles, wispy layers, contact @35 deg (sharp contact) ser speckles ? ? lighter grey wispy speckles, sharp contact ser speckles, some darker grey patches ?	to CA	ノッソノフ・ノリ	1-2% Mo in veins, (vugs, envelope 4% Mo in veins locally 3% dissem pyr, veining has locally 3% dissem pyr, veining has Mo up to 2% vein envelopes veins 2-5% Mo, envelopes, pyr co veins 15-30% pyr, trace Mo some Mo on vein margins (0.5%), 2-10% avg 2% Mo on vein margins	es, matrix) up to semi-massive pyr and minor Mo up to semi-massive pyr and minor Mo ommon in small veins , 3-8% pyr, avg 5% in veins s and in vugs, pyr avg 5% in veins	- 4000 - 3000 - 2000 - 1000 - 0	8.00m @ 342.5 ppm Mo			
—50	Meta-silistone	? bio speckles ? ? ?	S NR S AMP	1), 1, 1, 1, 1	2-3% Mo on vein margins and in v 2-3% Mo on vein margins and in v Mo common in veins, 1-30% avg : 1% Mo and 5% pyr in veins 1-5% Mo, pyr common 5-10% in vi	vugs, pyr in center of some veins ugs, pyr in center of some veins 5% eins, also some dissem pyr		53.30m @ 707.1 ppm Mo			1714.70-
—100	Quartzite Quartzite Quartzite	? ? ?	S SS SS SS SS		10-50% pyr in veins, trace Mo 1-10% avg 5% Mo in veins, some 0-10% avg 2% Mo in veins, small a Mo in stringers and on vein margi and some cm blebs no min in veins, 2% dissem pyr in Mo mostly stringers, commonly 0 in veins	mm Mo stringers amount of dissem pyr at 77.57m ns, 10-40% of veins, pyr 10% in veins host deg to CA, pyr in some stringers and 5%					1671.40-
—150	Quartzite Quartzite	? patches of green-grey mottled with diss pyr a some cal ? 1-8cm bands or patches of dark green/light g rock	Ind SS Ind SS Irey SS		0-10% avg 3% Mo in veins, 10% p Mo mostly in mm veinlets, 5-10% cm veins have minor Mo (0.5%) in have 10-30% Mo, 0-30% avg 5% 5-10% Mo in veins and vug fill, py	pyr of veins, some dissem pyr at 150.88m n vugs and along margins, mm veins pyr r more in clumps 5-10%		13.40m @ 548.7 ppm Mo 7.15m @ 1084.0 ppm Mo	7 ppm Mo		1628.10-
—200	Quartzite	? 1-8cm bands or patches of dark green/light g rock, after 191m massive light grey ? ? /? plag+qtz+bio where less alterered, k-spart-clor+hem+py+clay where more alterer P	rey SS s S d S S S S S S S S S S S S S S S	1.11.11.11.11	1mm Mo bands along 30% of veir in clumps in veins cm clots of pyr in veins (5-15%), r veins often barren, some veins 5- Mo in 1/2 of veins (5-20%) with m veins, some mag in larger veins w /20% pyr in veins, not really any Mo 1-5% pyr in altered areas 2-5% Mo in veins, mostly stringers	n margins, scattered Mo in some, 5% pyr nost Mo in 1-3mm veins (20-40%), larger 10% mag with pyr ore in smaller veins, pyr 5-30% in most vith pyr, minor Mo and pyr in faults p - tiny bit on fractures in rubble s, 5-10% pyr in veins, poss. 1 speck of		7.00m @ 738.6 ppm Mo	5.00m @ 907.8 ppm Mo		1584.79-
-250	Quartzite Quartzite	phag-qu2+00 where news allefered, k=spart-clot-themp-pyr-clogw where more allerer 4-10cm alternating sections of meta-siltstone qztite ?	ed S sand S SS SS		1-2% Mo on vein margins, pyr diss 5-10% Mo in vuggy veins, 10-50% Mo in 1-2mm veins 100%, pyr <19 Mo in mm veins 50-100%, big vei in dark mottled areas 5-10% Mo 0-5% avg 2% in large veins, 5 trace mag with pyr, 5cm massive chunks of Mo in rubble (2% overal	sem in altered areas 2-3% 6 pyr in veins % ns 10-20% pyr with little Mo, pyr dissem -10% in small, 1-10% pyr in large veins, pyr at 277.18m I)		36.05m @ 397.6 ppm Mo			1541.49-
-300	Ambelai Pille Quartzite Quartzite X X X X Quartzite Quartzit	equigranular, no phenocrysts, bio ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	AMP S SK SK SK	1/1°,1/1/1/1/1/1/1	who on fracture surfaces up to 1mi and wispy in host, pyr also 10% in Mo 1-25% avg 10% of veins as cli beautiful cubic grains in vugs (3-9 with pyr Mo 1-10% in veins, some 0.5mm host, 2-5% pyr in veins and 1% di Mo 1-10% in veins (1% in large to pyr dissem /M0 1-5% in veins, pyr 5-20% in ve Mo in rmm stringers 3/m, 5-10% py Mo in <rmm 10-50<br="" 4-5="" m,="" stringers="">3cm of 1% Mo</rmm>	m, pyr in mm veinlets and 2-10% blebby a cm veins ots, blebs, stringers, pyr 5-15% in veins, imm), mag 1% with pyr, also trace cpy Mo stringers 3-6/m, rare Mo with qtz in ssem in host o 10% in mm), pyr 2-10% in veins, 1-5% ins rr in cm veins 0% pyr in veins, vein at 323.90m has		73.25m @ 612.9 ppm Mo	5.35m @ 2504.0 ppm Mo 4.80m @ 1457.7 ppm Mo		1498.19-
-350	Quartzite Quartzite Quartzite Meta-silistone	Y Y	ontact	1111111	Mo 170, pyr 00% in Veins, pyr grai of rod shape, silver, brittle mineral Mo 3% on vein margins, pyr 5-20% Mo 2-25% avg 2% in big veins, 2- dissem in places Mo 1-10% avg 4% in veins, pyr 1- Mo 1-10% in veins, pyr 5-20% in v Mo 0-5% in veinlets and vein marg Mo 0-5% in veinlets and vein marg Mo rare in vein margins 0-1%, pyr semi-massive in veins, mag comn veins	for veins for veins		5.35m @ 381.6 ppm Mo			1454.89-
-400	Quartzite	? 1.2m transitional base contact 1-50cm cycles of siltstone and qtzite, some c areas of mottled grey-green some black mottled patches, bio	m size S S		Mo 0.1-3% in veins, clumps and w with pyr in 1/2 veins Mo rare in veins 0-0.5%, pyr 5-10 common 1-3% in veins and disser Mo 0.1-5% in veins, locallized 100 veins, but overall low, pyr 1-5% in Mo 0-5% in veins on margins, pyr	visps, pyr 5-20% in veins, mag 1-10% % dissem, wisps, semi-massive, mag m with pyr cm sections of concentrated Mo mm most veins, mag 1% with pyr 5-20% within veins, mag rare with pyr		5.00m @ 443.2 ppm Mo			1411.59-
Scale 1:	:1205		Da	te: 02	//12/10		Time: 10:32:4	45	<u> </u>	<u> </u>	I

-							1		_				
Hole	Hole Name :SX09028Project Name: SphinxProject Code: Sphinx		Geologist :Aaron Higgs										
Length	ı(m) :187.5		Azimı	uth(Deg) :0			Dip(Deg) :-90						
Eastin	g :524872		Northi	Jorthing :5494706.7			Elevation(m) :1758						
Depth At	Rock Type	Notes		Alt Assemblage	Mineralizati Style	Note		Mo_ppm	Intersed	ction	Including	Also Including	Elevation
	13500	?											
	Phy Siltstone	black bio speckles, thinly bedded		NR		Mo trace <0.1% in veins, pyr 10% mag 1% with pyr	6 in veins with 0.5% dissem in places,	4000 2000 0					
	Meta-sit/stone	yellow/white ser speckles and bands		S	1	Mo 0.5-1% in veins, pyr common	in veins and 0.5% dissem in places						
	Phy Siltstone	black wispy layers common		NR	/	Mo 0.1% in 1/2 veins, pyr 1-5% ir	n 1/2 veins						
—25 —50	Metà-silistone	some 5-30cm sections of darker, less ser siltstone	r altered	S		Mo 0.1-5% in 1/2 veins and good mag occassionally with pyr	in fault at 34.21m, pyr 0.5-25% in veins,		5.00m (ppm	@ 846.o n Mo			1733.00-
—75	Phy Silisione	?		NR		Mo 0.1-3% in 1/4 veins, pyr 0.5-1	5% in 1/2 veins, some mag with pyr						1683.00-
—100		3-10mm black banding in places		S		Mo rare on vein margins <0.1%, j with pyr	pyr 1-20% avg 5% in veins, mag 0.1-5%						1658.00-
-125	Phy Sitistone	black speckles		NR		Mo rare on vein margins and diss mag 0.1-5% with pyr	em <0.1%, pyr 1-20% avg 5% in veins,						1633.00-

Scale ²	:527		Date: 0	02/12/10		Time: 10:32:	45		
150	cm black bands in pla speckles	ces, 158.07 to 172.53m black		Momm bands on rare vein margins, overall trace, pyr 0-10% avg 2 veins, mag minor with pyr	% in				1608.00-

Legend - C	Global - Lithology	
А (4 К. К. К	Albite	
>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>	Amphibolite	
	Andesite	
	Anhydrite	
·>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>	Aplite	
<u></u>	Arg Dolomite	
AHV - AHV - AHV - AHV - AHV AHV - AHV -	Argillaceous Limestone	
<u></u>	Argillite	
	Arkosic Grit	
	Breccia	
	Calc-silicate	
	Casing	
····· ··· ···	Chert	
	Clay	
	Collar	
	Dacite	
	Diorite	
	Dolomite	
	Dolomitic Mudstone	
	Dolomitic Sandstone	
	Dolomitic Siltstone	
<pre></pre>	FeOx	
1 4 7 7 7 7 2 2 7 7 2 2 3 4 7 7 7 2 4 7 7 7 7	Felsic Intrusive	
	Fragmental	
	Gabbro	
	Gneiss	
	Granite	
	Granodiorite	
	Greenstone	
	Greywacke	

Lege	Legend - SX - AltAss					
	АМР					
	cs					
	NR					
	S					
	SK					
	SS					

Legend - SX - Mo Cutoff				
	Waste			
	Ore			

Legend - Glo	Legend - Global - Mineralization				
	?				
	arsenopyrite				
	azurite				
	chalcopyrite				
	galena				
	gold				
	hematite				
	ilmenite				
	magnetite				
	malachite				
	moly				
	none				
	pyrite				
	pyrrhotite				
	quartz				
	scheelite				
	sphalerite				
	tetrahedrite				
	wolframite				

Legend - Gl	Legend - Global - Min Style					
	BLEBBY					
	BRECCIATED					
	DISSEMINATED					
	FRACTURES					
	MASSIVE					
	NODULAR					
	NONE					
	SEMIMASSIVE					
	STOCKWORK					
	TRACE					
	VEINED					
	VEINLETS					

Appendix IV

DDH Strip Logs, Logs and Sampling

4.3 – Core Samples

Appendix 4.3 - Diamond Drill Samples

Hole #	Sample #	From (m)	To (m)	Length (m)	Sample Method
SX09027	SX09027-001	3.05	4.05	1	SPLIT
SX09027	SX09027-002	4.05	5.05	1	SPLIT
SX09027	SX09027-003	5.05	6.05	1	SPLIT
SX09027	SX09027-004	6.05	7.05	1	SPLIT
SX09027	SX09027-005	7.05	8.05	1	SPLIT
SX09027	SX09027-006	8.05	9.05	1	SPLIT
SX09027	SX09027-007	9.05	10.05	1	SPLIT
SX09027	SX09027-008	10.05	11.05	1	SPLIT
SX09027	SX09027-009	11.05	12.05	1	SPLIT
SX09027	SX09027-010	12.05	13.05	1	SPLIT
SX09027	SX09027-011	13.05	14.05	1	SPLIT
SX09027	SX09027-012	14.05	15.05	1	SPLIT
SX09027	SX09027-013	15.05	16.05	1	SPLIT
SX09027	SX09027-014	16.05	17.05	1	SPLIT
SX09027	SX09027-015	17.05	18.05	1	SPLIT
SX09027	SX09027-016	18.05	19.05	1	SPLIT
SX09027	SX09027-017	19.05	20.05	1	SPLIT
SX09027	SX09027-018	20.05	21.05	1	SPLIT
SX09027	SX09027-019	21.05	22.05	1	SPLIT
SX09027	SX09027-020	22.05	23.05	1	SPLIT
SX09027	SX09027-021	23.05	24.45	1.4	SPLIT
SX09027	SX09027-022	24.45	25.75	1.3	SPLIT
SX09027	SX09027-023	25.75	26.75	1	SPLIT
SX09027	SX09027-024	26.75	27.75	1	SPLIT
SX09027	SX09027-025	27.75	28.75	1	SPLIT
SX09027	SX09027-026	28.75	29.75	1	SPLIT
SX09027	SX09027-027	29.75	30.75	1	SPLIT
SX09027	SX09027-028	30.75	32.2	1.45	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-029	32.2	33.2	1	SPLIT
SX09027	SX09027-030	33.2	34.2	1	SPLIT
SX09027	SX09027-031	34.2	35.2	1	SPLIT
SX09027	SX09027-032	35.2	36.2	1	SPLIT
SX09027	SX09027-033	36.2	37.2	1	SPLIT
SX09027	SX09027-034	37.2	39.2	2	SPLIT
SX09027	SX09027-035	39.2	40.2	1	SPLIT
SX09027	SX09027-036	40.2	41.2	1	SPLIT
SX09027	SX09027-037	41.2	42.2	1	SPLIT
SX09027	SX09027-038	42.2	43.2	1	SPLIT
SX09027	SX09027-039	43.2	44.2	1	SPLIT
SX09027	SX09027-040	44.2	45.2	1	SPLIT
SX09027	SX09027-041	45.2	46.2	1	SPLIT
SX09027	SX09027-042	46.2	47.2	1	SPLIT
SX09027	SX09027-043	47.2	48.2	1	SPLIT
SX09027	SX09027-044	48.2	49.2	1	SPLIT
SX09027	SX09027-045	49.2	50.2	1	SPLIT
SX09027	SX09027-046	50.2	51.2	1	SPLIT
SX09027	SX09027-047	51.2	52.2	1	SPLIT
SX09027	SX09027-048	52.2	53.2	1	SPLIT
SX09027	SX09027-049	53.2	54.2	1	SPLIT
SX09027	SX09027-050	54.2	55.2	1	SPLIT
SX09027	SX09027-051	55.2	56.2	1	SPLIT
SX09027	SX09027-052	56.2	57.2	1	SPLIT
SX09027	SX09027-053	57.2	58.2	1	SPLIT
SX09027	SX09027-054	58.2	59.2	1	SPLIT
SX09027	SX09027-055	59.2	60.2	1	SPLIT
SX09027	SX09027-056	60.2	61.2	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-057	61.2	62.2	1	SPLIT
SX09027	SX09027-058	62.2	63.5	1.3	SPLIT
SX09027	SX09027-059	63.5	64.5	1	SPLIT
SX09027	SX09027-060	64.5	65.5	1	SPLIT
SX09027	SX09027-061	65.5	66.75	1.25	SPLIT
SX09027	SX09027-062	66.75	67.75	1	SPLIT
SX09027	SX09027-063	67.75	68.75	1	SPLIT
SX09027	SX09027-064	68.75	69.75	1	SPLIT
SX09027	SX09027-065	69.75	70.95	1.2	SPLIT
SX09027	SX09027-066	70.95	72.05	1.1	SPLIT
SX09027	SX09027-067	72.05	73.05	1	SPLIT
SX09027	SX09027-068	73.05	74.05	1	SPLIT
SX09027	SX09027-069	74.05	75.05	1	SPLIT
SX09027	SX09027-070	75.05	76.05	1	SPLIT
SX09027	SX09027-071	76.05	77.05	1	SPLIT
SX09027	SX09027-072	77.05	78.05	1	SPLIT
SX09027	SX09027-073	78.05	79.05	1	SPLIT
SX09027	SX09027-074	79.05	80.05	1	SPLIT
SX09027	SX09027-075	80.05	81.05	1	SPLIT
SX09027	SX09027-076	81.05	82.05	1	SPLIT
SX09027	SX09027-077	82.05	83.05	1	SPLIT
SX09027	SX09027-078	83.05	84.05	1	SPLIT
SX09027	SX09027-079	84.05	85.05	1	SPLIT
SX09027	SX09027-080	85.05	86.05	1	SPLIT
SX09027	SX09027-081	86.05	87.05	1	SPLIT
SX09027	SX09027-082	87.05	88.05	1	SPLIT
SX09027	SX09027-083	88.05	89.05	1	SPLIT
SX09027	SX09027-084	89.05	90.05	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-085	90.05	91.05	1	SPLIT
SX09027	SX09027-086	91.05	92.05	1	SPLIT
SX09027	SX09027-087	92.05	93.05	1	SPLIT
SX09027	SX09027-088	93.05	94.05	1	SPLIT
SX09027	SX09027-089	94.05	95.05	1	SPLIT
SX09027	SX09027-090	95.05	96.05	1	SPLIT
SX09027	SX09027-091	96.05	97.05	1	SPLIT
SX09027	SX09027-092	97.05	98.05	1	SPLIT
SX09027	SX09027-093	98.05	99.05	1	SPLIT
SX09027	SX09027-094	99.05	100.05	1	SPLIT
SX09027	SX09027-095	100.05	101.05	1	SPLIT
SX09027	SX09027-096	101.05	102.05	1	SPLIT
SX09027	SX09027-097	102.05	103.05	1	SPLIT
SX09027	SX09027-098	103.05	104.05	1	SPLIT
SX09027	SX09027-099	104.05	105.05	1	SPLIT
SX09027	SX09027-100	105.05	106.05	1	SPLIT
SX09027	SX09027-101	106.05	107.05	1	SPLIT
SX09027	SX09027-102	107.05	108.05	1	SPLIT
SX09027	SX09027-103	108.05	109.05	1	SPLIT
SX09027	SX09027-104	109.05	110.05	1	SPLIT
SX09027	SX09027-105	110.05	111.05	1	SPLIT
SX09027	SX09027-106	111.05	112.05	1	SPLIT
SX09027	SX09027-107	112.05	113.05	1	SPLIT
SX09027	SX09027-108	113.05	114.05	1	SPLIT
SX09027	SX09027-109	114.05	115.05	1	SPLIT
SX09027	SX09027-110	115.05	116.05	1	SPLIT
SX09027	SX09027-111	116.05	117.05	1	SPLIT
SX09027	SX09027-112	117.05	118.05	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-113	118.05	119.05	1	SPLIT
SX09027	SX09027-114	119.05	120.05	1	SPLIT
SX09027	SX09027-115	120.05	121.5	1.45	SPLIT
SX09027	SX09027-116	121.5	122.5	1	SPLIT
SX09027	SX09027-117	122.5	123.5	1	SPLIT
SX09027	SX09027-118	123.5	124.5	1	SPLIT
SX09027	SX09027-119	124.5	125.5	1	SPLIT
SX09027	SX09027-120	125.5	126.5	1	SPLIT
SX09027	SX09027-121	126.5	127.5	1	SPLIT
SX09027	SX09027-122	127.5	128.5	1	SPLIT
SX09027	SX09027-123	128.5	129.5	1	SPLIT
SX09027	SX09027-124	129.5	130.5	1	SPLIT
SX09027	SX09027-125	130.5	131.5	1	SPLIT
SX09027	SX09027-126	131.5	132.5	1	SPLIT
SX09027	SX09027-127	132.5	133.5	1	SPLIT
SX09027	SX09027-128	133.5	134.5	1	SPLIT
SX09027	SX09027-129	134.5	135.5	1	SPLIT
SX09027	SX09027-130	135.5	136.5	1	SPLIT
SX09027	SX09027-131	136.5	137.8	1.3	SPLIT
SX09027	SX09027-132	137.8	138.8	1	SPLIT
SX09027	SX09027-133	138.8	139.8	1	SPLIT
SX09027	SX09027-134	139.8	140.8	1	SPLIT
SX09027	SX09027-135	140.8	141.8	1	SPLIT
SX09027	SX09027-136	141.8	143	1.2	SPLIT
SX09027	SX09027-137	143	144.55	1.55	SPLIT
SX09027	SX09027-138	144.55	145.55	1	SPLIT
SX09027	SX09027-139	145.55	146.55	1	SPLIT
SX09027	SX09027-140	146.55	14 <u>7.5</u> 5	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-141	147.55	148.55	1	SPLIT
SX09027	SX09027-142	148.55	149.55	1	SPLIT
SX09027	SX09027-143	149.55	151.2	1.65	SPLIT
SX09027	SX09027-144	151.2	152.2	1	SPLIT
SX09027	SX09027-145	152.2	153.2	1	SPLIT
SX09027	SX09027-146	153.2	154.2	1	SPLIT
SX09027	SX09027-147	154.2	155.2	1	SPLIT
SX09027	SX09027-148	155.2	156.2	1	SPLIT
SX09027	SX09027-149	156.2	157.2	1	SPLIT
SX09027	SX09027-150	157.2	158.2	1	SPLIT
SX09027	SX09027-151	158.2	159.2	1	SPLIT
SX09027	SX09027-152	159.2	160.35	1.15	SPLIT
SX09027	SX09027-153	160.35	161.35	1	SPLIT
SX09027	SX09027-154	161.35	162.35	1	SPLIT
SX09027	SX09027-155	162.35	163.35	1	SPLIT
SX09027	SX09027-156	163.35	164.35	1	SPLIT
SX09027	SX09027-157	164.35	165.35	1	SPLIT
SX09027	SX09027-158	165.35	166.35	1	SPLIT
SX09027	SX09027-159	166.35	167.45	1.1	SPLIT
SX09027	SX09027-160	167.45	168.45	1	SPLIT
SX09027	SX09027-161	168.45	169.45	1	SPLIT
SX09027	SX09027-162	169.45	170.45	1	SPLIT
SX09027	SX09027-163	170.45	171.45	1	SPLIT
SX09027	SX09027-164	171.45	172.45	1	SPLIT
SX09027	SX09027-165	172.45	173.45	1	SPLIT
SX09027	SX09027-166	173.45	174.45	1	SPLIT
SX09027	SX09027-167	174.45	175.45	1	SPLIT
SX09027	SX09027-168	175.45	176.45	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-169	176.45	177.45	1	SPLIT
SX09027	SX09027-170	177.45	178.45	1	SPLIT
SX09027	SX09027-171	178.45	179.45	1	SPLIT
SX09027	SX09027-172	179.45	180.45	1	SPLIT
SX09027	SX09027-173	180.45	181.45	1	SPLIT
SX09027	SX09027-174	181.45	182.45	1	SPLIT
SX09027	SX09027-175	182.45	183.45	1	SPLIT
SX09027	SX09027-176	183.45	184.45	1	SPLIT
SX09027	SX09027-177	184.45	185.7	1.25	SPLIT
SX09027	SX09027-178	185.7	186.7	1	SPLIT
SX09027	SX09027-179	186.7	187.7	1	SPLIT
SX09027	SX09027-180	187.7	188.7	1	SPLIT
SX09027	SX09027-181	188.7	189.7	1	SPLIT
SX09027	SX09027-182	189.7	190.7	1	SPLIT
SX09027	SX09027-183	190.7	191.7	1	SPLIT
SX09027	SX09027-184	191.7	192.7	1	SPLIT
SX09027	SX09027-185	192.7	193.7	1	SPLIT
SX09027	SX09027-186	193.7	194.7	1	SPLIT
SX09027	SX09027-187	194.7	195.7	1	SPLIT
SX09027	SX09027-188	195.7	196.7	1	SPLIT
SX09027	SX09027-189	196.7	197.7	1	SPLIT
SX09027	SX09027-190	197.7	198.7	1	SPLIT
SX09027	SX09027-191	198.7	199.7	1	SPLIT
SX09027	SX09027-192	199.7	200.7	1	SPLIT
SX09027	SX09027-193	200.7	201.7	1	SPLIT
SX09027	SX09027-194	201.7	202.84	1.14	SPLIT
SX09027	SX09027-195	202.84	203.84	1	SPLIT
SX09027	SX09027-196	203.84	204.84	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-197	204.84	205.84	1	SPLIT
SX09027	SX09027-198	205.84	206.84	1	SPLIT
SX09027	SX09027-199	206.84	207.79	0.95	SPLIT
SX09027	SX09027-200	207.79	208.79	1	SPLIT
SX09027	SX09027-201	208.79	209.79	1	SPLIT
SX09027	SX09027-202	209.79	211	1.21	SPLIT
SX09027	SX09027-203	211	212	1	SPLIT
SX09027	SX09027-204	212	213	1	SPLIT
SX09027	SX09027-205	213	214	1	SPLIT
SX09027	SX09027-206	214	215	1	SPLIT
SX09027	SX09027-207	215	216	1	SPLIT
SX09027	SX09027-208	216	217	1	SPLIT
SX09027	SX09027-209	217	218	1	SPLIT
SX09027	SX09027-210	218	218.65	0.65	SPLIT
SX09027	SX09027-211	218.65	219.6	0.95	SPLIT
SX09027	SX09027-212	219.6	220	0.4	SPLIT
SX09027	SX09027-213	220	221	1	SPLIT
SX09027	SX09027-214	221	222	1	SPLIT
SX09027	SX09027-215	222	223.15	1.15	SPLIT
SX09027	SX09027-216	223.15	224.15	1	SPLIT
SX09027	SX09027-217	224.15	225.15	1	SPLIT
SX09027	SX09027-218	225.15	225.8	0.65	SPLIT
SX09027	SX09027-219	225.8	226.8	1	SPLIT
SX09027	SX09027-220	226.8	227.8	1	SPLIT
SX09027	SX09027-221	227.8	228.8	1	SPLIT
SX09027	SX09027-222	228.8	229.8	1	SPLIT
SX09027	SX09027-223	229.8	230.8	1	SPLIT
SX09027	SX09027-224	230.8	231.8	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-225	231.8	232.8	1	SPLIT
SX09027	SX09027-226	232.8	233.8	1	SPLIT
SX09027	SX09027-227	233.8	234.8	1	SPLIT
SX09027	SX09027-228	234.8	235.8	1	SPLIT
SX09027	SX09027-229	235.8	236.8	1	SPLIT
SX09027	SX09027-230	236.8	237.8	1	SPLIT
SX09027	SX09027-231	237.8	238.8	1	SPLIT
SX09027	SX09027-232	238.8	239.8	1	SPLIT
SX09027	SX09027-233	239.8	240.8	1	SPLIT
SX09027	SX09027-234	240.8	241.8	1	SPLIT
SX09027	SX09027-235	241.8	242.8	1	SPLIT
SX09027	SX09027-236	242.8	243.8	1	SPLIT
SX09027	SX09027-237	243.8	244.8	1	SPLIT
SX09027	SX09027-238	244.8	245.8	1	SPLIT
SX09027	SX09027-239	245.8	246.8	1	SPLIT
SX09027	SX09027-240	246.8	247.8	1	SPLIT
SX09027	SX09027-241	247.8	248.8	1	SPLIT
SX09027	SX09027-242	248.8	249.8	1	SPLIT
SX09027	SX09027-243	249.8	250.8	1	SPLIT
SX09027	SX09027-244	250.8	251.8	1	SPLIT
SX09027	SX09027-245	251.8	252.8	1	SPLIT
SX09027	SX09027-246	252.8	253.8	1	SPLIT
SX09027	SX09027-247	253.8	254.8	1	SPLIT
SX09027	SX09027-248	254.8	255.8	1	SPLIT
SX09027	SX09027-249	255.8	256.8	1	SPLIT
SX09027	SX09027-250	256.8	257.8	1	SPLIT
SX09027	SX09027-251	257.8	258.8	1	SPLIT
SX09027	SX09027-252	258.8	259.8	1	SPLIT

		From	_	Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-253	259.8	260.8	1	SPLIT
SX09027	SX09027-254	260.8	261.85	1.05	SPLIT
SX09027	SX09027-255	261.85	262.85	1	SPLIT
SX09027	SX09027-256	262.85	263.85	1	SPLIT
SX09027	SX09027-257	263.85	264.85	1	SPLIT
SX09027	SX09027-258	264.85	265.85	1	SPLIT
SX09027	SX09027-259	265.85	266.85	1	SPLIT
SX09027	SX09027-260	266.85	267.85	1	SPLIT
SX09027	SX09027-261	267.85	268.85	1	SPLIT
SX09027	SX09027-262	268.85	269.85	1	SPLIT
SX09027	SX09027-263	269.85	270.85	1	SPLIT
SX09027	SX09027-264	270.85	271.85	1	SPLIT
SX09027	SX09027-265	271.85	272.85	1	SPLIT
SX09027	SX09027-266	272.85	273.85	1	SPLIT
SX09027	SX09027-267	273.85	274.85	1	SPLIT
SX09027	SX09027-268	274.85	275.85	1	SPLIT
SX09027	SX09027-269	275.85	276.85	1	SPLIT
SX09027	SX09027-270	276.85	277.85	1	SPLIT
SX09027	SX09027-271	277.85	278.85	1	SPLIT
SX09027	SX09027-272	278.85	279.8	0.95	SPLIT
SX09027	SX09027-273	279.8	281	1.2	SPLIT
SX09027	SX09027-274	281	282.2	1.2	SPLIT
SX09027	SX09027-275	282.2	283.2	1	SPLIT
SX09027	SX09027-276	283.2	284.2	1	SPLIT
SX09027	SX09027-277	284.2	285.2	1	SPLIT
SX09027	SX09027-278	285.2	286.2	1	SPLIT
SX09027	SX09027-279	286.2	287.2	1	SPLIT
SX09027	SX09027-280	287.2	288.2	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-281	288.2	289.2	1	SPLIT
SX09027	SX09027-282	289.2	290.2	1	SPLIT
SX09027	SX09027-283	290.2	291.2	1	SPLIT
SX09027	SX09027-284	291.2	292.2	1	SPLIT
SX09027	SX09027-285	292.2	293.2	1	SPLIT
SX09027	SX09027-286	293.2	294.2	1	SPLIT
SX09027	SX09027-287	294.2	295.2	1	SPLIT
SX09027	SX09027-288	295.2	296.2	1	SPLIT
SX09027	SX09027-289	296.2	297.2	1	SPLIT
SX09027	SX09027-290	297.2	298.2	1	SPLIT
SX09027	SX09027-291	298.2	299.1	0.9	SPLIT
SX09027	SX09027-292	299.1	300.1	1	SPLIT
SX09027	SX09027-293	300.1	301.1	1	SPLIT
SX09027	SX09027-294	301.1	302.1	1	SPLIT
SX09027	SX09027-295	302.1	303.1	1	SPLIT
SX09027	SX09027-296	303.1	304.1	1	SPLIT
SX09027	SX09027-297	304.1	305.1	1	SPLIT
SX09027	SX09027-298	305.1	306.1	1	SPLIT
SX09027	SX09027-299	306.1	307.4	1.3	SPLIT
SX09027	SX09027-300	307.4	308.4	1	SPLIT
SX09027	SX09027-301	308.4	309.4	1	SPLIT
SX09027	SX09027-302	309.4	310.4	1	SPLIT
SX09027	SX09027-303	310.4	311.4	1	SPLIT
SX09027	SX09027-304	311.4	312.4	1	SPLIT
SX09027	SX09027-305	312.4	313.4	1	SPLIT
SX09027	SX09027-306	313.4	314.4	1	SPLIT
SX09027	SX09027-307	314.4	315.4	1	SPLIT
SX09027	SX09027-308	315.4	316.4	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-309	316.4	317.37	0.97	SPLIT
SX09027	SX09027-310	317.37	318.5	1.13	SPLIT
SX09027	SX09027-311	318.5	319.4	0.9	SPLIT
SX09027	SX09027-312	319.4	320.3	0.9	SPLIT
SX09027	SX09027-313	320.3	321.5	1.2	SPLIT
SX09027	SX09027-314	321.5	322.7	1.2	SPLIT
SX09027	SX09027-315	322.7	323.9	1.2	SPLIT
SX09027	SX09027-316	323.9	324.5	0.6	SPLIT
SX09027	SX09027-317	324.5	325.5	1	SPLIT
SX09027	SX09027-318	325.5	326.5	1	SPLIT
SX09027	SX09027-319	326.5	327.5	1	SPLIT
SX09027	SX09027-320	327.5	328.5	1	SPLIT
SX09027	SX09027-321	328.5	329.5	1	SPLIT
SX09027	SX09027-322	329.5	330.35	0.85	SPLIT
SX09027	SX09027-323	330.35	331.6	1.25	SPLIT
SX09027	SX09027-324	331.6	332.6	1	SPLIT
SX09027	SX09027-325	332.6	333.6	1	SPLIT
SX09027	SX09027-326	333.6	334.6	1	SPLIT
SX09027	SX09027-327	334.6	335.6	1	SPLIT
SX09027	SX09027-328	335.6	336.9	1.3	SPLIT
SX09027	SX09027-329	336.9	337.9	1	SPLIT
SX09027	SX09027-330	337.9	338.9	1	SPLIT
SX09027	SX09027-331	338.9	339.9	1	SPLIT
SX09027	SX09027-332	339.9	340.9	1	SPLIT
SX09027	SX09027-333	340.9	341.9	1	SPLIT
SX09027	SX09027-334	341.9	342.9	1	SPLIT
SX09027	SX09027-335	342.9	343.9	1	SPLIT
SX09027	SX09027-336	343.9	344.9	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-337	344.9	345.9	1	SPLIT
SX09027	SX09027-338	345.9	347.1	1.2	SPLIT
SX09027	SX09027-339	347.1	348.1	1	SPLIT
SX09027	SX09027-340	348.1	349.1	1	SPLIT
SX09027	SX09027-341	349.1	350.1	1	SPLIT
SX09027	SX09027-342	350.1	351.1	1	SPLIT
SX09027	SX09027-343	351.1	352.1	1	SPLIT
SX09027	SX09027-344	352.1	353.1	1	SPLIT
SX09027	SX09027-345	353.1	354.1	1	SPLIT
SX09027	SX09027-346	354.1	355.1	1	SPLIT
SX09027	SX09027-347	355.1	356.1	1	SPLIT
SX09027	SX09027-348	356.1	357.1	1	SPLIT
SX09027	SX09027-349	357.1	358.1	1	SPLIT
SX09027	SX09027-350	358.1	359.1	1	SPLIT
SX09027	SX09027-351	359.1	360.1	1	SPLIT
SX09027	SX09027-352	360.1	361.1	1	SPLIT
SX09027	SX09027-353	361.1	362.1	1	SPLIT
SX09027	SX09027-354	362.1	363.45	1.35	SPLIT
SX09027	SX09027-355	363.45	364.45	1	SPLIT
SX09027	SX09027-356	364.45	365.45	1	SPLIT
SX09027	SX09027-357	365.45	366.45	1	SPLIT
SX09027	SX09027-358	366.45	367.45	1	SPLIT
SX09027	SX09027-359	367.45	368.45	1	SPLIT
SX09027	SX09027-360	368.45	369.45	1	SPLIT
SX09027	SX09027-361	369.45	370.45	1	SPLIT
SX09027	SX09027-362	370.45	371.45	1	SPLIT
SX09027	SX09027-363	371.45	372.45	1	SPLIT
SX09027	SX09027-364	372.45	374	1.55	SPLIT
		From		Length	Sample
---------	-------------	--------	--------	--------	--------
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-365	374	375	1	SPLIT
SX09027	SX09027-366	375	376	1	SPLIT
SX09027	SX09027-367	376	377	1	SPLIT
SX09027	SX09027-368	377	378	1	SPLIT
SX09027	SX09027-369	378	379	1	SPLIT
SX09027	SX09027-370	379	380.66	1.66	SPLIT
SX09027	SX09027-371	380.66	381.66	1	SPLIT
SX09027	SX09027-372	381.66	382.66	1	SPLIT
SX09027	SX09027-373	382.66	383.66	1	SPLIT
SX09027	SX09027-374	383.66	384.66	1	SPLIT
SX09027	SX09027-375	384.66	385.66	1	SPLIT
SX09027	SX09027-376	385.66	386.66	1	SPLIT
SX09027	SX09027-377	386.66	387.66	1	SPLIT
SX09027	SX09027-378	387.66	388.66	1	SPLIT
SX09027	SX09027-379	388.66	389.66	1	SPLIT
SX09027	SX09027-380	389.66	390.66	1	SPLIT
SX09027	SX09027-381	390.66	391.66	1	SPLIT
SX09027	SX09027-382	391.66	392.66	1	SPLIT
SX09027	SX09027-383	392.66	393.66	1	SPLIT
SX09027	SX09027-384	393.66	394.66	1	SPLIT
SX09027	SX09027-385	394.66	395.66	1	SPLIT
SX09027	SX09027-386	395.66	396.66	1	SPLIT
SX09027	SX09027-387	396.66	397.66	1	SPLIT
SX09027	SX09027-388	397.66	398.66	1	SPLIT
SX09027	SX09027-389	398.66	399.66	1	SPLIT
SX09027	SX09027-390	399.66	400.66	1	SPLIT
SX09027	SX09027-391	400.66	401.66	1	SPLIT
SX09027	SX09027-392	401.66	402.66	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09027	SX09027-393	402.66	403.66	1	SPLIT
SX09027	SX09027-394	403.66	404.66	1	SPLIT
SX09027	SX09027-395	404.66	405.66	1	SPLIT
SX09027	SX09027-396	405.66	406.66	1	SPLIT
SX09027	SX09027-397	406.66	407.66	1	SPLIT
SX09027	SX09027-398	407.66	408.66	1	SPLIT
SX09027	SX09027-399	408.66	409.66	1	SPLIT
SX09027	SX09027-400	409.66	410.66	1	SPLIT
SX09027	SX09027-401	410.66	411.66	1	SPLIT
SX09027	SX09027-402	411.66	412.66	1	SPLIT
SX09027	SX09027-403	412.66	413.66	1	SPLIT
SX09027	SX09027-404	413.66	414.66	1	SPLIT
SX09027	SX09027-405	414.66	415.66	1	SPLIT
SX09027	SX09027-406	415.66	416.66	1	SPLIT
SX09027	SX09027-407	416.66	417.66	1	SPLIT
SX09027	SX09027-408	417.66	418.66	1	SPLIT
SX09027	SX09027-409	418.66	419.66	1	SPLIT
SX09027	SX09027-410	419.66	420.66	1	SPLIT
SX09027	SX09027-411	420.66	421.66	1	SPLIT
SX09027	SX09027-412	421.66	422.66	1	SPLIT
SX09027	SX09027-413	422.66	423.66	1	SPLIT
SX09027	SX09027-414	423.66	424.66	1	SPLIT
SX09027	SX09027-415	424.66	425.66	1	SPLIT
SX09027	SX09027-416	425.66	426.66	1	SPLIT
SX09027	SX09027-417	426.66	427.66	1	SPLIT
SX09027	SX09027-418	427.66	429.17	1.51	SPLIT
SX09028	SX09028-001	30.07	31.07	1	SPLIT
SX09028	SX09028-002	31.07	32.07	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09028	SX09028-003	32.07	33.07	1	SPLIT
SX09028	SX09028-004	33.07	34.07	1	SPLIT
SX09028	SX09028-005	34.07	35.07	1	SPLIT
SX09028	SX09028-006	63.4	64.4	1	SPLIT
SX09028	SX09028-007	64.4	65.4	1	SPLIT
SX09028	SX09028-008	65.4	66.4	1	SPLIT
SX09028	SX09028-009	66.4	67.4	1	SPLIT
SX09028	SX09028-010	67.4	68.4	1	SPLIT
SX09028	SX09028-011	68.4	69.4	1	SPLIT
SX09028	SX09028-012	69.4	70.4	1	SPLIT
SX09028	SX09028-013	70.4	71.4	1	SPLIT
SX09028	SX09028-014	71.4	72.4	1	SPLIT
SX09028	SX09028-015	72.4	73.4	1	SPLIT
SX09028	SX09028-016	73.4	74.4	1	SPLIT
SX09028	SX09028-017	74.4	75.4	1	SPLIT
SX09028	SX09028-018	129.5	130.5	1	SPLIT
SX09028	SX09028-019	130.5	131.5	1	SPLIT
SX09028	SX09028-020	131.5	132.5	1	SPLIT
SX09028	SX09028-021	132.5	133.5	1	SPLIT
SX09028	SX09028-022	133.5	134.5	1	SPLIT
SX09028	SX09028-023	134.5	135.5	1	SPLIT
SX09028	SX09028-024	135.5	136.5	1	SPLIT
SX09028	SX09028-025	136.5	137.5	1	SPLIT
SX09028	SX09028-026	137.5	138.5	1	SPLIT
SX09028	SX09028-027	138.5	139.5	1	SPLIT
SX09028	SX09028-028	139.5	140.5	1	SPLIT
SX09028	SX09028-029	140.5	141.5	1	SPLIT
SX09028	SX09028-030	141.5	142.5	1	SPLIT

		From		Length	Sample
Hole #	Sample #	(m)	To (m)	(m)	Method
SX09028	SX09028-031	173.3	174.3	1	SPLIT
SX09028	SX09028-032	174.3	175.3	1	SPLIT
SX09028	SX09028-033	175.3	176.3	1	SPLIT
SX09028	SX09028-034	176.3	177.3	1	SPLIT
SX09028	SX09028-035	177.3	178.3	1	SPLIT
SX09028	SX09028-036	112.17	113.17	1	SPLIT
SX09028	SX09028-037	113.17	114.17	1	SPLIT
SX09028	SX09028-038	114.17	115.17	1	SPLIT
SX09028	SX09028-039	115.17	116.17	1	SPLIT
SX09028	SX09028-040	116.17	117.17	1	SPLIT

Appendix V

Analytical Certificates

5.1 - AR / ICP-OES Analysis

23-Dec-09

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 42 Sample Type: Rock Shipment #: SX09-003 Submitted by: B. Wallace

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	SX09028-001	<0.2 0.34	<5	55	<5	0.75	<1	7	53	26	1.78	<10	0.35	224	473	0.02	6	150	4	<5	<20	27	<0.01	<10		<10	<u> </u>	21
2	SX09028-002	<0.2 0.33	<5	65	<5	0.28	<1	11	43	17	1.56	<10	0.25	137	359	0.02	8	160	<2	<5	<20	9	<0.01	<10	4	<10	ä	21
3	SX09028-003	<0.2 0.54	<5	70	<5	0.20	<1	6	72	8	1.37	<10	0.25	130	360	0.02	8	160	<2	<5	<20	7	0.02	<10	7	~10	3	38
4	SX09028-004	<0.2 0.55	<5	80	<5	0.22	<1	7	54	11	1.31	<10	0.30	169	409	0.02	6	160	4	<5	<20	6	0.02	<10	7	<10	3	20
5	SX09028-005	<0.2 0.33	<5	80	<5	0.07	<1	4	91	13	0.90	<10	0.07	38	2604	0.01	6	110	14	<5	<20	6	< 0.01	<10	5	<10	2	45
-																									-		-	
6	SX09028-006	<0.2 0.17	<5	35	<5	0.27	<1	3	93	9	0.82	<10	0.12	99	232	0.02	3	40	<2	<5	<20	9	<0.01	<10	2	<10	1	5
7	SX09028-007	<0.2 0.36	<5	75	<5	0.57	<1	4	80	7	0.99	10	0.31	272	294	0.01	5	50	<2	<5	<20	14	<0.01	<10	4	<10	3	20
8	SX09028-008	<0.2 0.24	<5	50	<5	0.14	<1	4	70	5	0.61	10	0.10	64	63	0.02	4	40	<2	<5	<20	7	<0.01	<10	3	<10	2	5
9	SX09028-009	<0.2 0.23	<5	50	<5	0.39	<1	6	100	13	0.88	<10	0.19	113	488	0.02	4	40	<2	<5	<20	11	<0.01	<10	3	<10	2	7
10	SX09028-010	<0.2 0.28	<5	50	<5	0.27	<1	6	52	13	1.14	<10	0.17	108	78	0.02	З	50	<2	<5	<20	8	<0.01	<10	3	<10	2	8
11	SX09028-011	<0.2 0.31	<5	60	<5	0.28	-1	Л	70	13	0.08	~10	0.20	100	015	0.00		40	.0		.00	•	0.04	40				
12	SX09028-012	<0.2 0.25	<5	55	<5	0.14	-1	3	63	10	0.30	10	0.20	00	107	0.02	4	40	<2	<0 .E	<20	8	<0.01	<10	4	<10	2	10
13	SX09028-013	<0.2 0.25	<5	55	~5	0.13	~1	5	60	6	0.71	~10	0.14	30	107	0.02	4	40	<2	<5 .F	<20	Ö	<0.01	<10	2	<10	2	8
14	SX09028-014	<0.2 0.27	<5	65	5	0.10	~1	7	46	12	1 20	~10	0.12	00	74	0.02	4	40	<2	<5	<20	0	<0.01	<10	3	<10	2	6
15	SX09028-015	<0.2 0.21	~5	135	-5	0.10	~1	2	40 57	12	0.65	10	0.10	00 77	110	0.02	4	30	0	<5	<20	6	<0.01	<10	2	<10	1	107
	0,100020 010	40.2 0.01	~0	100	~0	0.04		5	57	4	0.05	10	0.00	//	110	0.01	3	40	<2	<5	<20	6	<0.01	<10	2	<10	2	67
16	SX09028-016	<0.2 0.24	<5	60	10	0.31	<1	6	58	12	1.08	<10	0.15	111	67	0.01	5	40	8	<5	<20	13	<0.01	~10	2	~10	2	71
17	SX09028-017	<0.2 0.34	<5	75	<5	0.49	<1	5	52	7	1.20	<10	0.28	212	158	0.02	5	100	-2	<5	~20	20	~0.01	~10	7	~10	2	10
18	SX09028-018	<0.2 0.29	<5	50	<5	0.19	<1	9	37	15	1.82	<10	0.19	95	163	0.02	9	130	-2	<5	<20	10	<0.01	~10	4	~10	2	10
19	SX09028-019	<0.2 0.40	<5	50	<5	0.42	<1	10	49	9	1.53	<10	0.27	140	27	0.02	ğ	140	~2	<5	~20	13	0.01	<10	5	<10	2	14
20	SX09028-020	<0.2 0.36	<5	50	<5	0.25	<1	10	41	19	1.53	<10	0.17	73	189	0.02	9	80	<2	<5	<20	92	0.01	<10	5	<10	2	14
																	•		-			02	0.01	10	Ŭ		2	0
21	SX09028-021	<0.2 0.39	<5	55	<5	0.31	<1	8	56	16	1.84	<10	0.18	68	459	0.02	11	150	<2	<5	<20	52	0.02	<10	8	<10	2	9
22	SX09028-022	<0.2 0.28	<5	50	<5	0.19	<1	8	37	20	2.18	<10	0.17	79	402	0.02	7	210	<2	<5	<20	41	< 0.01	<10	6	<10	2	11
23	SX09028-023	<0.2 0.30	<5	60	<5	0.21	<1	8	40	6	1.91	<10	0.23	113	46	0.02	9	160	<2	<5	<20	80	< 0.01	<10	5	<10	2	16
24	SX09028-024	<0.2 0.25	<5	40	<5	0.63	1	6	41	4	2.23	<10	0.18	299	180	0.02	7	130	6	<5	<20	19	< 0.01	<10	3	<10	2	87
25	SX09028-025	<0.2 0.29	<5	80	15	0.27	<1	6	62	10	1.46	10	0.20	120	334	0.03	6	110	10	<5	<20	17	< 0.01	<10	5	<10	2	13
															-		~			-		••			· ·			.0

ICP CERTIFICATE OF ANALYSIS AK 2009-0869

BOOTLEG EXPLORATION INC.

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Ph	Sh	Sn	Sr	Ti %	14	v	w	v	7
26	SX09028-026	<0.2 0.33	<5	60	<5	0.21	<1	7	44	12	1 29	10	0.21	01	72	0.03	7	100			-00	- 10	11 /0				<u> </u>	<u></u>
27	SX09028-027	<0.2 0.37	<5	65	<5	0.47	<1	6	82	14	1 12	<10	0.21	103	158	0.03	6	100	<2	<0	<20	12	<0.01	<10	6	<10	2	10
28	SX09028-028	<0.2 0.37	<5	65	<5	0.45	<1	7	48	7	1 28	10	0.15	100	230	0.02	6	70	<2	<5 25	<20	21	<0.01	<10	5	<10	2	26
29	SX09028-029	<0.2 0.31	<5	55	<5	0.22	1	6	60	3	1.66	<10	0.10	100	200	0.02	7	110	<2	<5 .E	<20	10	<0.01	<10	5	<10	2	10
30	SX09028-030	<0.2 0.29	<5	35	<5	0.45	<1	9	45	16	2 72	<10	0.17	100	111	0.02	11	190	<2	<5	<20	11	< 0.01	<10	5	<10	2	137
							-	-					0.14	100		0.02		100	<2	<0	<20	11	<0.01	<10	4	<10	2	10
31	SX09028-030S	8.8 0.30	5	135	<5	0.77	<1	1	104	4223	0.89	<10	0.08	237	813	0.03	3	220	-0	20	.00	000	.0.01	40	40			. .
32	SX09028-031	<0.2 0.34	<5	55	<5	0.27	<1	7	59	10	1 49	<10	0.00	12/	27	0.00	6	110	<2	20	<20	230	<0.01	<10	10	<10	2	31
33	SX09028-032	<0.2 0.33	<5	55	<5	0.91	<1	6	55	6	1 63	<10	0.10	107	240	0.00	6	100	<2	<0	<20	9	<0.01	<10	5	<10	2	11
34	SX09028-033	<0.2 0.45	<5	55	<5	0.17	<1	6	45	3	1.35	10	0.22	65	240	0.02	0	160	<2	<5 .E	<20	20	< 0.01	<10	4	<10	2	15
35	SX09028-034	<0.2 0.38	<5	50	<5	0.15	<1	6	44	2	1.34	10	0.10	76	30	0.03	97	100	<2	<5 .E	<20	6	0.02	<10	8	<10	2	10
					-			·	••	-	1.04		0.20	70	09	0.03	1	90	<2	<5	<20	6	0.02	<10	1	<10	2	9
36	SX09028-035	<0.2 0.30	<5	40	<5	0.33	<1	17	55	39	2 75	<10	0 17	95	220	0.02	0	110	-0	.E	.00	40	0.01	40	-		-	
37	SX09028-035B	<0.2 0.69	<5	205	<5	0.17	<1	4	10	<1	1 45	~10	0.23	328	~1	0.02	3	210	<2	<5	<20	13	< 0.01	<10	5	<10	2	11
38	SX09028-036	<0.2 0.44	<5	60	<5	0.23	<1	7	46	29	1 76	10	0.20	122	85	0.10	0	150	-0	<0 .E	<20	10	0.08	<10	21	<10	9	21
39	SX09028-037	<0.2 0.35	<5	50	20	0.31	<1	7	42	20	1 84	<10	0.24	112	285	0.02	9	140	<2 10	<5 .E	<20	10	<0.01	<10	8	<10	2	18
40	SX09028-038	<0.2 0.44	<5	55	<5	0.20	<1	11	50	27	1.58	<10	0.20	97	166	0.02	10	140	10	<0 .E	<20	12	<0.01	<10	4	<10	2	31
									•••			~10	0.22	31	100	0.02	10	90	<2	<0	<20	20	0.02	<10	6	<10	2	10
41	SX09028-039	<0.2 0.52	<5	60	<5	0.10	<1	8	37	10	1.53	<10	0.23	80	264	0.02	11	80	~0	-5	-00	20	0.00	10			~	
42	SX09028-040	<0.2 0.52	<5	60	<5	0.15	<1	6	38	5	1 45	<10	0.20	114	204	0.02	10	100	~2	<5 -E	<20	20	0.03	<10	-	<10	2	13
								-		-			0.20	114	24	0.02	10	100	~ ∠	<0	<20	0	0.03	<10	/	<10	2	14
OC DATA																												
Repeat:																												
1	SX09028-001	<0.2 0.35	<5	55	<5	0.7 9	<1	8	56	23	1.87	<10	0.36	234	476	0.02	6	160	2	~5	-20	00	-0.01	.10	-	10	~	~
10	SX09028-010	<0.2 0.28	<5	45	<5	0.27	<1	6	51	13	1.15	<10	0.17	108	78	0.02	3	50	~2	<5	~20	20	<0.01	<10	5	<10	3	21
19	SX09028-019	<0.2 0.39	<5	50	<5	0.42	<1	9	50	9	1.51	<10	0.27	140	27	0.02	a	140	~2	<5	<20	10	<0.01	<10	4	<10	2	8
36	SX09028-035	<0.2 0.31	<5	45	<5	0.33	<1	17	59	41	2.86	<10	0.17	99	235	0.02	a	110	~2	<5	<20	14	-0.01	<10	5	<10	2	15
													••••		200	U.UL	5	110	~2	~5	<20	14	<0.01	<10	5	<10	2	13
Resplit:																												
1	SX09028-001	<0.2 0.32	<5	50	<5	0.76	<1	9	42	23	1.79	<10	0.34	219	448	0.02	6	160	-2	~5	-20	27	-0.01	.10		10	~	~~
36	SX09028-035	<0.2 0.30	<5	40	<5	0.32	<1	21	52	44	2.75	<10	0.17	98	203	0.02	å	120	~2	<5	<20	12	<0.01	<10	4	<10	3	20
													0.17	00	200	0.02	3	120	~~	<0	<20	10	<0.01	<10	5	<10	2	11
Standard:																												
Pb129a		11.8 0.86	<5	60	<5	0.47	53	6	12 1	377	1.52	<10	0.67	349	2	0.03	5	410 6	5214	15	-20	30	0.02	~10	17	-10	<u> </u>	000
Pb129a		11.8 0.83	5	65	<5	0.44	57	6	12 1	448	1.65	<10	0.66	376	2	0.03	5	430 6	5144	15	~20	33	0.03	<10	10	<10	29	923
								-					0.00	5.5	-	0.00	0	-100 (, , , , , ,	10	~20	33	0.03	<10	19	<10	- 29	9/3

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer 6-Jan-10

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2009-0870

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 140 Sample Type: Core Shipment #: SX09-001 Submitted by: B. Wallace

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	SX09027-001	<0.2 0.69	<5	60	<5	0.14	<1	7	98	6	1.22	10	0.38	117	115	0.02	11	180	2	<5	<20	5	0.04	<10	11	<10	4	23
2	SX09027-002	<0.2 0.74	<5	45	<5	0.13	<1	6	87	10	1.40	10	0.39	102	216	0.02	12	140	<2	<5	<20	4	0.05	<10	11	<10	8	19
3	SX09027-003	<0.2 0.70	<5	35	<5	0.12	<1	5	65	6	1.20	10	0.34	117	34	0.02	11	140	2	<5	<20	4	0.05	<10	9	<10	8	20
4	SX09027-004	<0.2 0.60	<5	40	<5	0.09	<1	6	85	4	1.28	20	0.26	101	65	0.02	11	200	<2	<5	<20	2	0.03	<10	7	<10	10	21
5	SX09027-005	<0.2 0.50	<5	35	<5	0.06	<1	5	83	5	0.91	20	0.16	82	126	0.02	7	130	<2	<5	<20	2	0.01	<10	6	<10	4	28
6	SX09027-006	<0.2 0.89	<5	60	<5	0.27	<1	6	98	11	1.33	<10	0.71	286	16	0.02	7	120	8	<5	<20	14	0.04	<10	11	<10	5	53
7	SX09027-007	<0.2 0.79	<5	40	<5	0.09	<1	7	90	24	1.69	10	0.57	169	142	0.02	8	100	4	<5	<20	5	0.04	<10	11	<10	6	35
8	SX09027-008	<0.2 0.50	<5	40	<5	0.43	<1	7	84	15	1.01	20	0.22	56	137	0.02	8	130	<2	<5	<20	7	0.02	<10	7	<10	6	14
9	SX09027-009	<0.2 0.36	<5	60	<5	0.36	<1	10	97	27	1.16	<10	0.29	105	367	0.02	7	90	<2	<5	<20	8	< 0.01	<10	7	<10	3	12
10	SX09027-010	<0.2 0.24	<5	45	<5	0.25	<1	15	113	27	1.26	<10	0.13	79	179	0.02	6	100	<2	<5	<20	6	<0.01	<10	4	<10	2	8
11	SX09027-011	<0.2 0.30	<5	35	<5	0.39	<1	22	116	80	1.90	<10	0.25	163	692	0.02	13	80	<2	<5	<20	9	0.01	<10	6	<10	4	20
12	SX09027-012	<0.2 0.58	<5	65	<5	0.41	<1	7	104	10	1.08	10	0.48	266	148	0.02	7	110	<2	<5	<20	11	0.02	<10	9	<10	5	32
13	SX09027-013	<0.2 0.34	<5	40	<5	0.22	<1	5	74	8	1.00	10	0.17	79	740	0.02	6	110	<2	<5	<20	6	< 0.01	<10	5	<10	2	17
14	SX09027-014	<0.2 0.31	<5	45	<5	0.16	<1	3	90	4	0.80	10	0.18	98	111	0.02	7	90	<2	<5	<20	5	< 0.01	<10	4	<10	2	16
15	SX09027-015	<0.2 0.36	<5	60	<5	0.22	<1	3	67	5	0.87	10	0.29	125	74	0.02	7	100	<2	<5	<20	6	0.01	<10	5	<10	2	14
16	SX09027-016	<0.2 0.40	<5	60	<5	0.29	<1	4	98	14	0.95	<10	0.21	106	353	0.02	7	110	6	<5	<20	7	<0.01	<10	5	<10	2	34
17	SX09027-017	<0.2 0.35	<5	60	<5	0.41	<1	з	77	6	0.75	<10	0.18	93	200	0.02	5	150	6	<5	<20	8	<0.01	<10	4	<10	3	35
18	SX09027-018	<0.2 0.34	<5	65	<5	0.23	<1	5	72	4	0.71	10	0.16	81	56	0.02	6	90	<2	<5	<20	5	< 0.01	<10	4	<10	2	9
19	SX09027-019	<0.2 0.46	<5	45	<5	0.23	<1	4	82	12	0.90	<10	0.24	101	223	0.02	8	100	<2	<5	<20	5	0.02	<10	6	<10	2	12
20	SX09027-020	<0.2 0.35	<5	60	<5	0.14	<1	4	75	8	0.94	10	0.21	69	54	0.03	7	60	<2	<5	<20	6	0.01	<10	5	<10	2	9
21	SX09027-021	<0.2 0.31	<5	50	<5	0.33	<1	6	66	27	1.40	<10	0.24	128	169	0.02	7	80	-2	<5	<20	13	<0.01	<10	4	<10	2	31
22	SX09027-022	<0.2 0.92	<5	50	<5	0.70	<1	6	104	17	1.86	<10	0.91	394	82	0.02	7	110	2	<5	<20	12	0.03	<10	12	<10	6	45
23	SX09027-023	<0.2 0.41	<5	45	<5	0.09	<1	5	80	6	0.70	10	0.19	56	203	0.02	7	70	<2	<5	<20	4	0.02	<10	6	<10	2	11
24	SX09027-024	<0.2 0.32	<5	40	<5	0.08	<1	5	94	6	0.86	<10	0.12	54	57	0.02	7	90	~2	<5	<20	3	0.01	<10	4	<10	2	10
25	SX09027-025	<0.2 0.21	<5	65	<5	0.19	<1	4	99	7	0.61	<10	0.13	56	447	0.02	4	80	<2	<5	<20	6	<0.01	<10	3	<10	2	7

<u> </u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr Ti%	U	V	W	Y	Zn
26	SX09027-026	<0.2 0.25	<5	60	<5	0.11	<1	3	92	13	0.83	<10	0.16	51	350	0.02	6	50	<2	<5	<20	4 < 0.01	<10	4	<10	1	6
27	SX09027-027	<0.2 0.19	<5	50	<5	0.16	<1	4	108	10	0.85	<10	0.13	63	776	0.02	5	50	<2	<5	<20	6 <0.01	<10	4	<10	2	7
28	SX09027-028	<0.2 0.16	<5	80	<5	0.30	<1	3	124	8	0.68	<10	0.12	71	464	0.03	4	80	<2	<5	<20	11 <0.01	<10	3	<10	3	4
29	SX09027-029	<0.2 0.33	<5	20	<5	0.25	2	27	70	189	6.06	<10	0.78	136	247	0.02	27	290	4	<5	<20	11 <0.01	<10	14	<10	3	34
30	SX09027-030	<0.2 0.25	<5	90	<5	0.27	<1	5	79	13	0.89	10	0.14	87	486	0.02	5	90	<2	<5	<20	14 <0.01	<10	3	<10	2	6
. .																											
31	SX09027-031	<0.2 0.17	<5	50	<5	0.08	<1	4	99	12	0.75	<10	0.06	28	459	0.02	4	70	<2	<5	<20	4 <0.01	<10	3	<10	2	3
32	SX09027-032	<0.2 0.19	<5	35	<5	0.10	<1	23	111	234	3.41	<10	0.06	35	491	0.02	10	50	<2	<5	<20	3 <0.01	<10	4	<10	2	8
33	SX09027-033	<0.2 0.35	<5	45	<5	0.52	<1	4	88	7	0.91	<10	0.27	184	179	0.02	5	80	<2	<5	<20	8 <0.01	<10	4	<10	3	11
34	SX09027-034	<0.2 0.34	<5	110	<5	0.39	<1	3	107	6	0.77	20	0.26	157	552	0.02	6	140	<2	<5	<20	10 <0.01	<10	6	<10	4	12
35	SX09027-034S	8.7 0.32	10	135	<5	0.76	<1	1	109	4310	0.88	<10	0.08	235	808	0.04	3	320	<2	20	<20	242 <0.01	<10	10	<10	2	31
36	SX09027-231	<02 0 17	<5	50	~5	0.14	-1	1	100	5	0 42	-10	0.09	10	501	0.01	2	50	2	۰E	-00	4 -0.01	.10	2	.10	4	0F
37	SX09027-232	<0.2 0.20	<5	35	<5	0.23	-1	5	100	8	2 35	~10	0.00	76	529	0.01	3 1	40	12	<5 ~5	<20	4 < 0.01	<10	ა ი	<10	4	20 15
38	SX09027-233	<0.2 0.26	<5	75	<5	0.37	~1	2	90	8	0.76	~10	0.17	78	470	0.02	2	70	-0	<5	<20	9 <0.01	<10	ວ ວ	<10	2	40
39	SX09027-234	<0.2 0.12	<5	45	<5	0.06	-1	2	107	5	0.70	~10	~0.01	12	202	0.01	2	220	<2	<0	<20	0 < 0.01	<10	ა ი	<10	3	14
40	SX09027-235	<0.2 0.13	<5	50	<5	0.00	-1	1	111	3	0.40	~10	<0.01	10	690	0.01	2	230	~2	<0	<20	2 < 0.01	<10	2	<10	4	14
				00		0.02				0	0.07	<10	\U.UI	12	000	0.01	3	00	<۷	<0	<20	2 <0.01	<10	2	<10	1	117
41	SX09027-236	<0.2 0.31	<5	50	<5	0.07	<1	5	35	7	0.64	<10	0.02	10	405	0.02	з	290	<2	<5	<20	2 <0.01	<10	3	<10	3	39
42	SX09027-237	<0.2 0.20	<5	30	<5	0.44	3	5	98	7	2.36	<10	0.17	141	312	0.02	3	60	6	<5	<20	13 < 0.01	<10	3	<10	2	391
43	SX09027-238	<0.2 0.34	<5	75	<5	0.42	<1	2	72	8	0.83	<10	0.28	147	406	0.02	2	50	<2	<5	<20	12 < 0.01	<10	4	<10	2	26
44	SX09027-239	<0.2 0.29	<5	40	<5	0.02	<1	2	67	2	1.06	<10	0.02	10	461	0.02	3	50	<2	<5	<20	1 < 0.01	<10	3	<10	1	126
45	SX09027-240	<0.2 0.12	<5	35	<5	0.02	<1	<1	81	3	0.34	<10	<0.01	9	448	0.01	2	40	<2	<5	<20	<1 <0.01	<10	2	<10	<1	37
46	SX00027 025	.0.0.0.07	-	76	-			_	~ ~	-																	
40	SX09027-035	<0.2 0.27	<5	/5	<5	0.30	<1	5	86	8	0.92	20	0.12	141	447	0.02	6	110	<2	<5	<20	6 <0.01	<10	4	<10	3	5
47	SX09027-030	<0.2 0.30	<5	80	<5	0.35	<1	2	58	4	0.88	10	0.22	119	473	0.02	4	100	<2	<5	<20	6 <0.01	<10	4	<10	3	14
40	SX09027-038	<0.2 0.38	<0	90	<5 -E	0.59	<1	7	62	31	1.32	<10	0.90	1/0	109	0.02	6	80	<2	<5	<20	8 0.02	<10	9	<10	4	31
50	SX09027-030	<0.2 0.42	<0	80	<0 ~E	1.12	<1		10	21	1.42	<10	0.64	347	657	0.02	5	100	<2	<5	<20	18 0.01	<10	5	<10	5	36
00	0/03027-003	NU.2 0.20	<0	00	<0	0.29	<1	3	111	8	0.79	10	0.24	84	546	0.02	1	70	<2	<5	<20	8 <0.01	<10	5	<10	3	12
51	SX09027-040	<0.2 0.27	<5	75	<5	0.37	<1	2	76	8	1.07	<10	0.21	92	1510	0.02	5	90	<2	<5	<20	6 <0.01	<10	5	~10	з	11
52	SX09027-041	<0.2 0.32	<5	90	<5	0.07	<1	2	73	4	0.81	10	0.18	66	1293	0.02	6	50	<2	<5	<20	3 0.01	<10	6	<10	2	9
53	SX09027-042	<0.2 0.28	<5	170	<5	0.17	<1	2	71	4	0.67	<10	0.16	79	633	0.02	5	60	2	<5	<20	7 < 0.01	<10	5	<10	2	10
54	SX09027-043	<0.2 0.20	<5	170	<5	1.00	6	4	106	11	0.92	<10	0.37	303	790	0.01	5	90	118	<5	<20	21 < 0.01	<10	3	<10	3	887
55	SX09027-044	<0.2 0.18	<5	155	<5	1.02	<1	2	78	6	0.76	<10	0.37	229	376	0.01	4	60	8	<5	<20	20 < 0.01	<10	2	<10	2	20
50	0.100007-0.15		_		_																						
50	SX09027-045	<0.2 0.30	<5	140	<5	0.31	<1	2	63	5	0.73	10	0.14	115	789	0.02	4	80	4	<5	<20	11 <0.01	<10	3	<10	2	16
57	SX09027-046	<0.2 0.21	<5	100	<5	0.41	<1	1	102	8	0.64	10	0.15	109	903	0.02	4	70	14	<5	<20	14 <0.01	<10	3	<10	2	27
50	SX09027-047	<0.2 0.33	<5	60	<5	0.75	<1	5	79	28	1.40	10	0.32	138	352	0.02	7	100	<2	<5	<20	11 <0.01	<10	4	<10	4	13
59	SX09027-048	<0.2 0.35	<5	60	<5	0.47	<1	4	66	20	1.26	<10	0.23	81	279	0.02	6	70	<2	<5	<20	6 <0.01	<10	5	<10	2	12
00	3709027-049	<0.2 0.29	<5	70	<5	0.35	<1	4	74	7	1.03	<10	0.15	86	338	0.02	6	70	<2	<5	<20	10 <0.01	<10	4	<10	2	8
61	SX09027-050	<0.2 0.24	<5	55	<5	0.19	<1	5	54	8	1.45	<10	0.18	78	443	0.02	6	80	<2	<5	<20	4 -0.01	<10	3	<10	2	8
62	SX09027-050B	<0.2 0.88	<5	195	<5	0.21	<1	4	11	<1	1.35	<10	0.21	304	2	0.27	5	190	14	<5	<20	19 0.07	<10	22	<10	10	22
63	SX09027-051	<0.2 0.45	<5	55	<5	0.35	<1	6	62	8	1.56	<10	0.26	106	147	0.02	7	120	<2	<5	<20	6 < 0.01	<10	7	<10	3	18
64	SX09027-052	<0.2 0.34	<5	75	<5	0.45	<1	4	72	4	1.18	<10	0.21	138	511	0.02	5	110	<2	<5	<20	12 < 0.01	<10	, 4	<10	3	17
65	SX09027-053	<0.2 0.52	<5	65	<5	0.54	<1	3	72	7	1.12	10	0.51	201	778	0.02	6	70	<2	<5	<20	8 0.02	<10	8	<10	4	38
																	-			. –				-		•	~~

<u>Et</u> #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Ph	Sb	Sn	Sr	Ti %		v	w	v	Zn
66	SX09027-054	<0.2 0.27	5	75	<5	0.53	<1	2	123	11	0.77	10	0.27	155	2227	0.02	5	60		<5	-20	13	<0.01	<10	<u> </u>	<10	5	23
67	SX09027-055	<0.2 0.23	<5	85	<5	0.32	<1	2	77	5	0.90	<10	0.14	82	1256	0.02	5	- 00 - 00	~2	~5	~20	12	<0.01	<10	4	<10	2	10
68	SX09027-056	<0.2 0.20	<5	100	<5	0.34	<1	2	121	6	0.68	20	0.13	82	736	0.02	6	60	-2	~5	~20	14	<0.01	<10	4	<10	5	0
69	SX09027-057	<0.2 0.23	<5	75	<5	0.49	<1	2	99	6	0.83	<10	0.19	105	1500	0.02	5	80	-2	~5	~20	17	<0.01	~10		~10	3	10
70	SX09027-058	<0.2 0.32	<5	55	<5	1.34	<1	12	73	30	2.36	<10	0.58	375	1476	0.00	13	190	-2	~5	~20	43	<0.01	~10	à	~10	4	60
								-		00	2.00	~10	0.00	0/0	1470	0.00	10	130	~~	~0	~20	40	<0.01	<10	3	<10	4	00
71	SX09027-059	<0.2 3.15	<5	45	<5	2.82	2	46	40	91	6.18	<10	3.08	1107	168	0.02	50	650	12	<5	-20	38	0 14	~10	196	~10	7	229
72	SX09027-060	<0.2 2.43	<5	40	<5	3.57	2	36	31	74	5.16	<10	2.68	1053	683	0.02	48	570	8	<5	~20	50	0.14	~10	148	~10	7	180
73	SX09027-061	0.2 1.68	<5	35	<5	2.05	8	31	50	53	4.79	<10	1.63	682	170	0.05	38	530	216	<5	<20	39	0.00	<10	117	~10	6	037
74	SX09027-062	<0.2 0.40	<5	70	<5	0.29	<1	5	82	5	1.02	10	0.31	148	247	0.02	7	80	<2	<5	<20	6	0.02	<10	8	<10	2	18
75	SX09027-063	<0.2 0.33	<5	45	<5	0.55	<1	6	92	11	2.07	<10	0.33	238	311	0.02	7	100	2	<5	<20	10	<0.01	<10	5	<10	2	32
																	•		-		~~~~	10	-0.01	~	Ŭ	~10	6	02
76	SX09027-064	<0.2 0.29	5	95	<5	0.36	<1	3	93	6	1.04	10	0.29	120	2357	0.02	7	100	8	<5	<20	8	< 0.01	<10	7	<10	5	45
77	SX09027-065	<0.2 0.49	<5	25	<5	1.41	2	48	76	184	5.66	<10	1.03	440	900	0.03	29	250	4	<5	<20	31	0.02	<10	26	<10	4	87
78	SX09027-066	<0.2 1.98	<5	25	<5	1.88	2	32	37	74	4.52	<10	1.73	712	43	0.05	42	620	6	<5	<20	22	0.11	<10	133	<10	6	144
79	SX09027-067	<0.2 0.57	<5	65	<5	0.54	<1	6	92	23	1.31	10	0.38	211	83	0.03		160	<2	<5	<20	9	0.04	<10	12	<10	3	22
80	SX09027-068	<0.2 0.26	5	65	<5	0.58	<1	4	75	19	1.44	<10	0.23	167	2717	0.02	6	130	<2	<5	<20	14	< 0.01	<10	5	<10	3	15
																	-		-			•••			Ŭ		Ŭ	
81	SX09027-069	<0.2 0.30	<5	70	<5	0.32	<1	5	83	27	1.11	10	0.24	119	465	0.02	6	120	<2	<5	<20	7	<0.01	<10	5	<10	3	13
82	SX09027-070	<0.2 0.23	<5	75	5	0.53	<1	4	80	11	1.13	<10	0.20	214	875	0.02	6	290	10	<5	<20	13	< 0.01	<10	3	<10	3	116
83	SX09027-070S	8.8 0.32	10	130	<5	0.78	<1	1	102	4234	0.84	<10	0.07	219	818	0.04	2	310	<2	20	<20	217	< 0.01	<10	11	<10	2	34
84	SX09027-071	<0.2 0.21	<5	65	<5	0.38	<1	3	118	11	0.86	<10	0.13	86	1537	0.02	5	70	<2	<5	<20	9	< 0.01	<10	4	<10	2	8
85	SX09027-072	<0.2 0.17	<5	80	<5	0.43	<1	2	116	10	0.68	<10	0.17	125	1043	0.02	4	50	<2	<5	<20	9	< 0.01	<10	3	<10	2	26
86	SX09027-073	<0.2 0.22	<5	65	<5	0.47	<1	4	104	16	1.00	<10	0.18	134	408	0.02	4	60	<2	<5	<20	8	<0.01	<10	3	<10	З	8
87	SX09027-074	<0.2 0.19	<5	70	<5	0.47	<1	2	89	19	0.68	<10	0.12	107	213	0.02	4	70	<2	<5	<20	10	<0.01	<10	3	<10	2	4
88	SX09027-075	<0.2 0.27	<5	70	<5	0.37	<1	2	87	6	0.87	<10	0.18	119	366	0.02	5	90	<2	<5	<20	8	<0.01	<10	4	<10	3	10
89	SX09027-076	<0.2 0.38	<5	90	<5	0.78	<1	6	78	18	1.42	<10	0.26	215	184	0.02	7	60	4	<5	<20	13	<0.01	<10	5	<10	З	23
90	SX09027-077	<0.2 0.21	<5	105	<5	1.05	<1	2	112	7	0.90	<10	0.38	328	122	0.02	3	70	10	<5	<20	23	<0.01	<10	3	<10	З	60
01	SY00027-079	-0.2 0.01	.E	60		0.05																						
92	SX09027-078	<0.2 0.21	<0 .E	70	<5	0.35	<1	14	85	10	0.99	<10	0.11	74	108	0.02	4	30	2	<5	<20	8	<0.01	<10	3	<10	2	14
03	SX09027-079	<0.2 0.19	<5	70	<5	0.61	<1	3	115	8	0.71	<10	0.19	220	248	0.02	3	70	4	<5	<20	12	<0.01	<10	3	<10	3	9
94	SX00027-081	<0.2 0.10	<0	00	<0	0.40	<1	2	95	4	0.66	<10	0.13	143	196	0.02	4	80	<2	<5	<20	9	<0.01	<10	3	<10	2	7
95	SX09027-087	<0.2 0.19	<0	20 45	<5 .E	0.21	<1	4	95	11	3.13	<10	0.07	62	293	0.02	5	60	6	<5	<20	4	<0.01	<10	3	<10	2	23
30	0709027-002	<0.2 0.29	<5	45	<5	0.14	<1	6	65	4	1.16	10	0.13	74	154	0.02	6	120	<2	<5	<20	2	<0.01	<10	4	<10	З	12
96	SX09027-083	<0.2 0.32	~5	55	-5	0.50	-1	4	104	14	1 10	.10	0.07	000	100	0.00	~	~~	-	-							_	
97	SX09027-084	<0.2 0.02	~5	55 65	<5	0.59	<i .1</i 	4	104	14	1.13	<10	0.27	269	166	0.02	6	80	<2	<5	<20	9	0.01	<10	5	<10	3	18
98	SX09027-085	<0.2 0.29	~5	75	<5	0.12	<1 -1	3	74	17	0.88	20	0.18	109	91	0.02	7	80	<2	<5	<20	4	<0.01	<10	5	<10	2	16
99	SX09027-086	<0.2 0.34	<0	75	<0	0.20	<1	4	74	17	1.01	10	0.21	111	125	0.02	6	80	<2	<5	<20	5	<0.01	<10	4	<10	3	12
100	SX00027-087	<0.2 0.34	<0	55 55	ح >	0.09	<1	3	/3	10	0.97	10	0.18	83	183	0.02	6	80	<2	<5	<20	3	0.01	<10	6	<10	2	11
100	5709027-007	<0.2 0.31	<0	55	<5	0.26	<1	4	89	14	1.10	10	0.19	143	83	0.02	6	100	<2	<5	<20	5	<0.01	<10	4	<10	2	21
101	SX09027-088	< 0.2 0.28	<5	50	<5	0.14	-1	А	70	15	0 00	10	0.16	00	E A	0.00	~	100	.0	-			0.01	4.0	~	40	~	
102	SX09027-089	<0.2 0.27	<5	30	~5	0.14	~1	4 2	104	10	1.09	10	0.10	80	54	0.02	5	130	<2	<5 -	<20	4	<0.01	<10	3	<10	2	11
103	SX09027-090	<0.2 0.24	<5	45	~5	0.20	~1	с С	02	0	1.09	<10	0.14	89	30	0.02	5	50	<2	<5	<20	5	<0.01	<10	4	<10	2	8
104	SX09027-091	<0.2 0.10	~5	55	~5	0.00	~1	3 2	30	3	1.30	<10	0.26	250	88	0.02	4	50	4	<5	<20	13	<0.01	<10	4	<10	2	69
105	SX09027-092	<0.2 0.19	~5	55	~0	0.23	~1	ა ი	70	1	1.14	<10	0.08	84 170	92	0.02	5	40	12	<5	<20	7	<0.01	<10	3	<10	2	57
	0//00/21-032	-U.L U.LU	N 0	55	<0	0.75	<1	3	70	11	1.01	<10	0.26	172	124	0.02	5	110	6	<5	<20	9	<0.01	<10	3	<10	2	21

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	v	w	Y	Zn
106	SX09027-093	<0.2 0.25	<5	65	<5	0.18	<1	4	48	4	0.78	<10	0.12	89	73	0.02	6	170	-2	-5	<20	4 < 0.01	<10		<10	· 2	20
107	SX09027-094	<0.2 0.25	<5	45	<5	0.33	<1	3	79	9	0.80	<10	0.14	81	71	0.02	5	170	~2	<5	<20	5 <0.01	<10	3	~10	2	8
108	SX09027-095	<0.2 0.20	<5	55	<5	0.69	<1	3	133	10	0.88	<10	0.20	158	107	0.02	5	50	-2	~5	~20	10 < 0.01	~10	3	<10	2	10
109	SX09027-096	<0.2 0.20	<5	55	<5	0.20	<1	1	103	8	0.70	<10	0.06	46	253	0.02	3	40	<2	~5	~20	4 < 0.01	<10	2	~10	1	3
110	SX09027-097	<0.2 0.19	<5	55	<5	0.14	<1	1	133	5	0.55	<10	0.03	37	265	0.02	4	50	~2	<5	<20	3 < 0.01	<10	3	<10	2	2
										-				φ,		0.02	•			~0	~~~0	0 (0.01	10	Ŭ	10	*	~
111	SX09027-098	<0.2 0.15	<5	75	<5	0.17	<1	2	128	6	0.69	<10	0.05	55	271	0.02	3	40	<2	<5	<20	5 <0.01	<10	2	<10	1	2
112	SX09027-099	<0.2 0.24	<5	45	<5	0.96	<1	3	145	17	1.32	<10	0.34	260	145	0.02	4	50	<2	<5	<20	14 <0.01	<10	3	<10	3	25
113	SX09027-100	<0.2 0.26	<5	40	<5	0.72	<1	3	110	5	0.99	<10	0.24	248	160	0.02	3	50	<2	<5	<20	8 <0.01	<10	3	<10	2	14
114	SX09027-100B	<0.2 0.84	<5	185	<5	0.20	<1	4	11	<1	1.38	<10	0.20	312	<1	0.24	4	180	10	<5	<20	18 0.07	<10	23	<10	10	23
115	SX09027-101	<0.2 0.21	<5	50	<5	0.22	<1	1	111	6	0.49	10	0.05	82	21	0.02	4	20	<2	<5	<20	3 <0.01	<10	2	<10	2	5
116	SX00027-102	~0.2 0.15	-5	70	-E	0.15	.4		104	0	0.40	40							-	_				-			
117	SX09027-102	$< 0.2 \ 0.13$	<0	70	<5 .5	0.15	<1	1	124	6	0.42	<10	0.04	44	149	0.01	3	30	<2	<5	<20	4 <0.01	<10	2	<10	1	2
118	SY09027-103	<0.2 0.14	<0 .E	05	<0	0.10	<1	2	140	4	0.60	<10	0.03	31	52	0.01	4	50	<2	<5	<20	4 <0.01	<10	2	<10	2	<1
110	SX09027-104	<0.2 0.20	<0 ~E	70	<5 .F	0.18	<1	1	103	3	0.53	10	0.06	60	107	0.02	3	40	<2	<5	<20	4 <0.01	<10	3	<10	3	2
120	SY00027-105	25 4 0 21	<0 05	22	<5 -	0.65	<1	2	145	/	0.79	<10	0.21	147	111	0.02	4	50	<2	<5	<20	9 <0.01	<10	3	<10	3	8
120	0703027-1033	20.4 0.31	20	95	5	0.85	<1	1	73	>10000	0.94	<10	0.05	179	389	0.03	2	230	<2	45	<20	121 <0.01	<10	11	<10	2	24
121	SX09027-106	<0.2 0.46	<5	40	<5	1.06	<1	5	117	30	1 76	<10	0.65	287	52	0.02	4	50	~2	~5	~20	10 -0.01	~10	6	~10	5	26
122	SX09027-107	<0.2 0.18	<5	55	<5	0.52	<1	2	146	9	0.71	<10	0.20	142	60	0.02	4	40	~2	~5	~20	8 < 0.01	<10	3	<10	2	7
123	SX09027-108	<0.2 0.14	<5	80	<5	0.19	<1	1	149	4	0.67	<10	0.05	57	181	0.02	т Л	30	~2	~5	~20	5 <0.01	<10	2	~10	1	2
124	SX09027-109	<0.2 0.11	<5	50	<5	0.04	<1	3	164	4	0.79	<10	0.01	24	159	0.01	4	40	~2	~5	~20	2 <0.01	<10	3	<10	4	
125	SX09027-110	<0.2 0.19	<5	75	<5	0.17	<1	1	110	4	0.64	<10	0.04	49	262	0.01	4	30	~2	~5	~20	6 < 0.01	<10	1	<10	1	2
								•		·	0.07		0.04	40	LUL	0.02	-	00	~2	~0	~~0	0 \0.01	<10	4	<10	-4	2
126	SX09027-111	<0.2 0.18	<5	65	<5	0.13	<1	1	140	7	0.59	<10	0.04	48	93	0.02	4	30	<2	<5	<20	5 <0.01	<10	3	<10	2	1
127	SX09027-112	<0.2 0.11	<5	70	<5	0.07	<1	1	156	4	0.59	<10	0.02	29	376	0.01	4	30	<2	<5	<20	3 < 0.01	<10	3	<10	1	<1
128	SX09027-113	<0.2 0.13	<5	55	<5	0.14	<1	2	165	7	1.28	<10	0.04	51	392	0.02	5	40	<2	<5	<20	5 < 0.01	<10	3	<10	1	54
129	SX09027-114	<0.2 0.16	<5	40	<5	0.55	<1	3	105	10	1.31	<10	0.20	147	196	0.01	4	40	<2	<5	<20	15 < 0.01	<10	3	<10	2	26
130	SX09027-115	<0.2 0.18	<5	45	<5	0.93	<1	2	122	6	0.90	<10	0.29	261	79	0.02	3	40	<2	<5	<20	19 <0.01	<10	3	<10	2	29
121	SV00007 116	-0.0.0.10	-	40	-																						
122	SX09027-110 SX00007 117	<0.2 0.12	<5	40	<5	0.03	<1	1	120	4	1.35	<10	0.01	14	187	0.02	3	40	<2	<5	<20	2 <0.01	<10	2	<10	1	37
102	SX09027-117	<0.2 0.18	<5	65	<5	0.13	<1	3	119	6	1.24	<10	0.04	38	376	0.02	5	30	<2	<5	<20	5 <0.01	<10	3	<10	3	10
134	SX09027-116 SX00007 110	<0.2 0.19	<5	50	<5	0.47	<1	3	103	5	1.39	<10	0.14	100	412	0.02	3	40	<2	<5	<20	6 <0.01	<10	3	<10	2	7
135	SX09027-119 SX00027 120	<0.2 0.23	<5	40	<5	0.35	<1	2	130	5	0.87	10	0.13	120	95	0.02	5	70	<2	<5	<20	7 <0.01	<10	4	<10	3	12
100	5709027-120	<0.2 0.24	<0	40	<5	0.23	<1	4	60	8	1.19	10	0.11	55	168	0.02	6	40	<2	<5	<20	5 <0.01	<10	3	<10	2	6
136	SX09027-121	<0.2 0.25	<5	60	<5	0.19	<1	3	97	3	0.83	10	0 12	61	228	0.02	5	40	-2	~5	~20	5 -0.01	~10	٨	-10	2	7
137	SX09027-122	<0.2 0.23	<5	55	<5	0.22	<1	2	72	4	0.60	20	0.11	64	75	0.02	4	60	~2	~5	~20	5 < 0.01	<10	2	~10	2	6
138	SX09027-123	<0.2 0.20	<5	35	<5	0.12	<1	3	111	10	0.76	<10	0.06	45	78	0.02	4	60	~2	~5	~20	4 <0.01	<10	3	<10	2	3
139	SX09027-124	<0.2 0.19	<5	35	10	0.17	<1	2	80	8	1.26	<10	0.04	43	56	0.02	3	<u>00</u>	12	~5	~20	4 <0.01	<10	2	<10	2	10
140	SX09027-125	<0.2 0.23	<5	50	<5	0.18	<1	2	72	2	0.70	10	0.11	69	189	0.02	4	60	<2	<5	<20	5 <0.01	<10	3	<10	2	7
																			-		-20	0 (0.01		0		4	•
QC DATA	<u>\:</u>																										
nepeat:	SY00007 004	.0.0.0.00	-		_	• • •		_	. .	_																	
10	SAU9027-001	<0.2 0.68	<5	60	<5	0.14	<1	7	96	6	1.19	10	0.37	115	120	0.02	11	180	4	<5	<20	5 0.04	<10	11	<10	4	24
10	SX09027-010	<0.2 0.23	<5	40	<5	0.25	<1	15	115	27	1.27	<10	0.13	80	189	0.02	6	90	<2	<5	<20	6 <0.01	<10	4	<10	2	8
19	SX09027-019	<0.2 0.46	<5	45	<5	0.23	<1	4	86	13	0.94	<10	0.24	106	236	0.02	8	100	<2	<5	<20	5 0.02	<10	6	<10	2	12
30 AE	SX03027-231	<0.2 0.17	<5	50	<5	0.14	<1	1	98	5	0.43	<10	0.08	42	495	0.01	3	50	2	<5	<20	4 <0.01	<10	3	<10	1	23
40 E /	SX09027-240	<0.2 0.12	<5	35	<5	0.01	<1	<1	80	3	0.34	<10	<0.01	9	479	0.01	2	40	<2	<5	<20	<1 <0.01	<10	2	<10	<1	39
54	5709027-043	<0.2 0.19	<5	160	<5	0.99	6	4	103	11	0.90	<10	0.35	298	760	0.01	4	90	114	<5	<20	22 <0.01	<10	3	<10	3	897

Et #	Tag #	Ag Al%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti	% L	j,	v	w	Y	7n
71	SX09027-059	<0.2 3.11	<5	45	<5	2.75	2	45	39	91	6.17	<10	3.02	1089	166	0.02	49	640	10	<5	<20	37 01	$\frac{1}{3} < 10$	10	<u> </u>	<10	6	227
80	SX09027-068	<0.2 0.25	5	55	<5	0.58	<1	4	71	18	1.44	<10	0.22	165	2704	0.02	6	130	-2	~5	~20	14 -0.0	1 -10	1 134	5 2	~10	2	16
89	SX09027-076	<0.2 0.37	<5	80	<5	0.80	<1	6	79	19	1.45	<10	0.26	220	185	0.02	7	60	~~~	~5	~20	17 -0.0	1 10) . 	5 5	~10	2	24
106	SX09027-093	<0.2 0.26	<5	65	<5	0.18	<1	4	50	4	0.79	<10	0.12	88	75	0.02	6	170	-2	~5	~20	10 < 0.0	1 <10))	2 2	~10	ა ი	24
115	SX09027-101	<0.2 0.22	<5	50	<5	0.22	<1	1	112	6	0.50	10	0.05	81	20	0.02	4	20	~2	~5	~20	2 -0.0	1 <10	, , , ,	2 2	~10	2	20 5
124	SX09027-109	<0.2 0.11	<5	50	<5	0.04	<1	3	169	4	0.78	<10	0.02	25	162	0.02	4	40	<2	<5	<20 <20	2 <0.0	1 <10) (3 <	<10	1	5 <1
Resplit:																												
1	SX09027-001	<0.2 0.69	<5	65	<5	0.14	<1	7	85	6	1.23	10	0.36	116	128	0.02	11	190	2	<5	<20	5 00	4 ~10) 1·	1 -	-10	5	23
36	SX09027-231	<0.2 0.17	<5	55	<5	0.13	<1	1	106	5	0.42	<10	0.08	43	500	0.01	3	50	-2	<5	~20	4 < 0 0	1 ~10	· ·	 	~10	2	23
71	SX09027-059	<0.2 3.12	<5	45	<5	2.65	2	42	39	87	6.12	<10	2.88	1062	165	0.02	48	630	10	~5	~20	34 0 1	3 ~10	1 201	0	~10	6	220
106	SX09027-093	<0.2 0.27	<5	75	<5	0.18	<1	4	58	4	0.76	<10	0.12	91	65	0.02	6	180	<2	<5	<20	4 < 0.0	1 <10) 200	3 <	<10	2	223
Standard	:																							-			-	
PB129a		11.8 0.83	5	65	<5	0.47	53	6	12	1384	1.54	<10	0.65	356	2	0.04	5	410	6194	15	<20	32 0.0	3 <10) 1(9 <i>c</i>	-10	2	0060
PB129a		12.2 0.84	5	65	<5	0.44	55	6	12	1459	1.52	<10	0.69	341	3	0.04	5	430	6222	15	<20	28 0.0	4 <10) 2(ñ 2	-10	2 -	10000
PB129a		11.8 0.84	5	65	<5	0.43	54	6	12	1481	1.54	<10	0.69	344	2	0.04	5	410	6124	15	<20	28 0.0	3 <10	1 2	1 -	-10	2	10000
PB129a		11.8 0.86	5	70	<5	0.46	57	6	12	1420	1.55	<10	0.65	350	2	0.04	5	410	6114	15	<20	29 0.0	4 <10	2	1 <	<10	2	9959

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw df/2_4161S/2_870S XLS/09 6-Jan-10

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 149 Sample Type: Core Shipment #: SZ09-002 Submitted by: B. Wallace

Values in ppm unless otherwise reported

<u> </u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr Ti%	U	v	W	Y	Zn
1	SX09027-126	<0.2 0.47	<5	40	<5	0.72	<1	6	124	25	1.62	<10	0.38	305	66	0.02	6	90	4	<5	<20	10 0.01	<10	6	<10	4	17
2	SX09027-127	<0.2 0.24	<5	50	<5	0.30	<1	4	98	8	1.44	<10	0.15	91	624	0.02	5	130	2	<5	<20	7 < 0.01	<10	3	<10	2	9
3	SX09027-128	<0.2 0.24	<5	30	<5	0.65	<1	5	83	8	0.95	<10	0.19	114	75	0.02	5	160	<2	<5	<20	10 < 0.01	<10	3	<10	3	8
4	SX09027-129	<0.2 0.16	<5	65	<5	0.23	<1	1	119	4	0.67	<10	0.10	53	226	0.02	4	40	<2	<5	<20	7 < 0.01	<10	2	<10	1	12
5	SX09027-130	<0.2 0.15	<5	65	<5	0.15	<1	1	110	4	0.55	<10	0.05	35	228	0.02	3	40	<2	<5	<20	4 < 0.01	<10	2	<10	1	<1
6	SX09027-131	<0.2 0.17	<5	60	<5	0.12	<1	1	109	6	0.74	<10	0.05	38	173	0.02	3	30	<2	<5	<20	4 <0.01	<10	2	<10	2	<1
7	SX09027-132	<0.2 0.14	<5	75	<5	0.16	<1	2	136	4	0.51	<10	0.05	39	220	0.02	4	30	<2	<5	<20	6 <0.01	<10	2	<10	1	<1
8	SX09027-133	<0.2 0.18	<5	55	<5	0.55	<1	23	132	22	1.67	<10	0.24	139	442	0.02	6	40	36	<5	<20	13 <0.01	<10	3	<10	2	55
9	SX09027-134	<0.2 0.17	<5	25	5	0.33	1	6	120	11	2.82	<10	0.14	105	352	0.02	5	40	34	<5	<20	10 <0.01	<10	3	<10	2	98
10	SX09027-135	<0.2 0.15	<5	60	5	0.21	<1	4	122	21	1.04	<10	0.08	61	535	0.02	6	50	<2	<5	<20	6 <0.01	<10	2	<10	1	58
11	SX09027-136	<0.2 0.16	<5	80	<5	0.22	<1	2	102	7	0.72	<10	0.09	48	1153	0.01	4	40	<2	<5	<20	9 <0.01	<10	З	<10	1	4
12	SX09027-137	<0.2 0.45	<5	40	<5	1.20	<1	3	146	13	1.46	<10	0.69	288	75	0.02	5	60	2	<5	<20	19 <0.01	<10	5	<10	4	37
13	SX09027-138	<0.2 0.14	<5	80	5	0.17	<1	2	148	3	0.63	<10	0.05	46	878	0.02	4	50	<2	<5	<20	6 <0.01	<10	3	<10	1	5
14	SX09027-139	<0.2 0.12	<5	130	<5	0.14	<1	<1	187	3	0.46	<10	0.04	42	226	0.01	5	40	<2	<5	<20	7 <0.01	<10	3	<10	1	<1
15	SX09027-140	<0.2 0.14	<5	65	<5	0.11	<1	2	116	4	0.73	<10	0.03	24	442	0.02	3	40	<2	<5	<20	4 <0.01	<10	2	<10	1	<1
10	01/00007 4 400																										
10	SX09027-140S	24.6 0.29	25	90	15	0.91	<1	1	68	>10000	1.00	<10	0.07	186	390	0.03	3	230	<2	50	<20	116 <0.01	<10	11	<10	2	22
17	SX09027-141	<0.2 0.18	<5	55	<5	0.20	<1	1	147	6	0.75	<10	0.07	37	367	0.02	4	30	<2	<5	<20	7 <0.01	<10	3	<10	1	<1
18	SX09027-142	<0.2 0.21	<5	50	5	0.20	<1	4	121	6	1.29	<10	0.11	61	175	0.02	4	50	2	<5	<20	8 <0.01	<10	3	<10	1	6
19	SX09027-143	<0.2 0.25	<5	45	10	0.33	<1	3	129	7	1.40	<10	0.22	114	1199	0.02	5	40	4	<5	<20	13 <0.01	<10	4	<10	2	75
20	SX09027-144	<0.2 0.24	<5	50	<5	0.55	<1	2	124	5	0.70	<10	0.20	84	552	0.02	5	60	<2	<5	<20	11 <0.01	<10	4	<10	3	5
01	CV00007 145		-	45	-	0.50		•		_							_										
21	SX09027-145	<0.2 0.28	<5	45	<5	0.59	<]	2	103	5	1.04	<10	0.24	131	88	0.02	5	130	<2	<5	<20	10 <0.01	<10	3	<10	2	11
22	SX09027-146	<0.2 0.30	<5	40	<5	0.51	<1	4	92	12	1.09	<10	0.26	89	152	0.02	5	80	<2	<5	<20	8 <0.01	<10	4	<10	2	11
23	SX09027-147	<0.2 0.24	<5	30	15	0.34	<1	3	95	8	0.87	<10	0.13	78	51	0.02	5	70	6	<5	<20	5 <0.01	<10	3	<10	2	9
24	SX09027-148	<0.2 0.33	<5	40	<5	0.49	<1	3	89	4	1.08	<10	0.29	103	289	0.02	5	70	<2	<5	<20	7 <0.01	<10	4	<10	2	15
25	SX09027-149	<0.2 0.45	<5	45	<5	0.93	<1	3	119	8	1.12	<10	0.53	206	98	0.02	5	110	2	<5	<20	12 0.01	<10	6	<10	3	33

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	SX09027-150	<0.2 0.42	<5	25	<5	1.16	<1	3	112	8	1.20	<10	0.53	230	68	0.02	5	90	2	<5	<20	13	0.01	<10	5	<10	3	31
27	SX09027-150B	<0.2 0.74	<5	185	<5	0.17	<1	4	11	<1	1.42	<10	0.23	321	<1	0.20	3	200	10	<5	<20	16	0.08	<10	23	<10	11	21
28	SX09027-151	<0.2 0.30	<5	40	5	0.47	<1	5	110	13	0.99	<10	0.17	69	629	0.02	6	120	<2	<5	<20	7	<0.00	<10	4	<10	3	1
29	SX09027-152	<0.2 0.21	<5	10	25	0.41	4	6	92	14	5.81	<10	0.15	96	276	0.02	6	110	28	<5	<20	10	<0.01	<10	3	<10	2	382
30	SX09027-153	<0.2 0.15	5	40	10	0.74	<1	2	177	8	1.84	<10	0.31	254	3085	0.02	6	30	<2	<5	<20	21	<0.01	<10	5	<10	4	66
																	-		-				-0.01		Ũ	~10	-	00
31	SX09027-154	<0.2 0.28	<5	25	5	0.93	<1	6	108	28	2.20	<10	0.55	206	881	0.02	6	50	2	<5	<20	23	< 0.01	<10	4	<10	3	40
32	SX09027-155	<0.2 0.33	<5	35	5	0.85	<1	5	169	20	1.90	<10	0.49	188	1868	0.02	7	40	<2	<5	<20	17	<0.01	<10	6	<10	3	40
33	SX09027-156	<0.2 0.44	<5	35	<5	0.89	<1	3	149	11	1.12	<10	0.55	141	416	0.02	6	50	2	<5	<20	13	0.01	<10	7	<10	4	21
34	SX09027-157	<0.2 0.33	<5	30	<5	0.74	<1	2	143	7	0.84	<10	0.40	137	316	0.02	5	60	<2	<5	<20	12	< 0.01	<10	4	<10	3	12
35	SX09027-158	<0.2 0.32	<5	25	5	0.60	<1	3	142	12	1.02	<10	0.39	114	166	0.02	5	50	2	<5	<20	8	<0.01	<10	4	<10	2	12
																	-		_		-20	Ŭ			-	10	-	16
36	SX09027-159	<0.2 0.29	<5	30	<5	0.64	<1	3	161	11	1.14	<10	0.41	146	275	0.02	6	50	<2	<5	<20	9	<0.01	<10	4	<10	3	14
37	SX09027-160	<0.2 0.25	<5	40	5	0.41	<1	8	92	14	1.19	<10	0.24	99	263	0.02	6	100	<2	<5	<20	8	<0.01	<10	2	<10	3	6
38	SX09027-161	<0.2 0.27	<5	60	<5	0.40	<1	5	85	7	0.81	<10	0.30	101	317	0.02	5	100	<2	<5	<20	9	< 0.01	<10	3	<10	3	8
39	SX09027-162	<0.2 0.29	<5	35	5	0.28	<1	9	101	8	1.30	<10	0.24	104	436	0.02	6	100	<2	<5	<20	6	<0.01	<10	3	<10	3	10
40	SX09027-163	<0.2 0.27	<5	35	5	0.69	<1	9	94	12	1.20	<10	0.41	153	161	0.02	6	110	2	<5	<20	12	< 0.01	<10	3	<10	3	11
																	-		_						Ŭ		Ŭ	
41	SX09027-164	<0.2 0.27	<5	45	5	0.46	<1	9	100	11	1.07	<10	0.34	116	258	0.02	6	100	2	<5	<20	11	<0.01	<10	3	<10	3	12
42	SX09027-165	<0.2 0.25	<5	50	5	0.48	<1	7	88	7	0.99	<10	0.27	128	342	0.02	5	100	2	<5	<20	12	< 0.01	<10	3	<10	3	10
43	SX09027-166	<0.2 0.27	<5	40	5	0.81	<1	6	94	4	1.20	<10	0.37	258	220	0.02	5	150	2	<5	<20	18	< 0.01	<10	3	<10	3	15
44	SX09027-167	<0.2 0.26	<5	40	5	0.47	<1	8	68	14	0.98	<10	0.25	139	140	0.02	6	220	<2	<5	<20	10	< 0.01	<10	2	<10	3	10
45	SX09027-168	<0.2 0.25	<5	35	15	0.72	2	7	102	14	1.34	<10	0.31	267	289	0.02	6	140	10	<5	<20	17	< 0.01	<10	3	<10	3	246
																									-		Ũ	2.10
46	SX09027-169	<0.2 0.26	<5	40	5	1.25	1	11	78	15	1.18	<10	0.50	412	41	0.02	6	90	4	<5	<20	19	<0.01	<10	2	<10	4	193
47	SX09027-170	<0.2 0.29	<5	40	5	0.68	<1	8	93	25	1.25	<10	0.34	198	412	0.02	7	50	<2	<5	<20	11	<0.01	<10	3	<10	3	21
48	SX09027-171	<0.2 0.26	<5	50	<5	0.35	<1	7	67	5	0.78	<10	0.24	126	63	0.02	5	80	<2	<5	<20	7	<0.01	<10	2	<10	2	15
49	SX09027-172	<0.2 0.28	<5	50	30	0.73	<1	7	97	20	1.41	<10	0.33	251	127	0.02	6	70	20	<5	<20	14	<0.01	<10	3	<10	3	60
50	SX09027-173	<0.2 0.23	<5	35	<5	0.73	<1	6	70	9	1.20	<10	0.32	210	197	0.02	5	80	2	<5	<20	15	<0.01	<10	2	<10	3	12
51	SX09027-174	<0.2 0.25	<5	45	<5	0.62	<1	6	96	11	0.9 9	<10	0.28	130	154	0.02	6	120	2	<5	<20	12	<0.01	<10	2	<10	З	8
52	SX09027-175	<0.2 0.24	<5	45	<5	0.49	<1	5	67	9	0.81	<10	0.20	134	134	0.02	5	100	<2	<5	<20	9.	<0.01	<10	2	<10	3	10
53	SX09027-175S	8.7 0.31	10	120	10	0.80	<1	1	101	4275	0.83	<10	0.08	232	831	0.04	3	330	<2	20	<20	238 -	<0.01	<10	10	<10	З	30
54	SX09027-176	<0.2 0.23	<5	40	5	0.13	<1	5	65	3	1.20	<10	0.15	99	85	0.02	5	100	2	<5	<20	6	<0.01	<10	2	<10	2	12
55	SX09027-177	<0.2 0.22	<5	30	5	0.15	<1	5	53	5	1.47	<10	0.10	89	246	0.02	5	50	4	<5	<20	4	<0.01	<10	3	<10	2	29
56	SX09027-178	<0.2 0.58	<5	30	<5	0.69	<1	5	126	17	1.58	<10	0.60	186	118	0.02	6	60	2	<5	<20	8	0.03	<10	7	<10	5	25
57	SX09027-179	<0.2 0.51	<5	30	<5	1.11	<1	5	106	14	1.36	<10	0.50	280	52	0.02	6	50	2	<5	<20	16	0.03	<10	5	<10	5	28
58	SX09027-180	<0.2 0.53	<5	35	<5	0.93	<1	4	134	12	1.05	<10	0.50	205	145	0.02	6	60	<2	<5	<20	12	0.02	<10	7	<10	5	21
59	SX09027-181	<0.2 0.61	<5	35	<5	0.95	<1	8	121	32	2.01	<10	0.77	192	63	0.02	7	60	4	<5	<20	14	0.03	<10	8	<10	5	31
60	SX09027-182	<0.2 0.47	<5	30	5	0.88	<1	5	134	15	2.35	<10	0.65	242	205	0.02	7	50	4	<5	<20	19	0.02	<10	6	<10	5	45
61	SX09027-183	<0.2 0.20	<5	60	5	0.42	<1	2	104	7	0.83	<10	0.15	110	235	0.02	5	60	<2	<5	<20	13 -	<0.01	<10	3	<10	2	14
62	SX09027-184	<0.2 0.21	<5	65	<5	0.20	<1	3	74	20	0.93	<10	0.08	99	262	0.02	4	50	<2	<5	<20	9.	<0.01	<10	3	<10	2	9
63	SX09027-185	<0.2 0.12	<5	40	35	0.44	<1	20	132	59	1.96	<10	0.12	70	1359	0.02	9	40	20	<5	<20	8 -	<0.01	<10	4	<10	2	4
64	SX09027-186	<0.2 0.20	<5	65	10	0.17	1	8	97	20	1.08	<10	0.06	61	941	0.02	5	50	4	<5	<20	6.	<0.01	<10	3	<10	2	224
65	SX09027-187	<0.2 0.22	<5	55	5	0.62	<1	6	104	24	1.43	<10	0.24	91	438	0.01	6	60	<2	<5	<20	14 •	<0.01	<10	3	<10	2	7

ICP CERTIFICATE OF ANALYSIS AK 2009-0871

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	v	7n
66	SX09027-188	<0.2 0.21	<5	55	5	0.63	<1	4	116	10	1.10	<10	0.27	96	259	0.01	6	60	4	<5	<20	12	<0.01	<10		<10	<u> </u>	<u>Q</u>
67	SX09027-189	<0.2 0.16	<5	85	<5	0.21	<1	2	103	7	0.51	<10	0.07	37	1550	0.01	4	50	<2	<5	<20	5	<0.01	<10	3	<10	2	~1
68	SX09027-190	<0.2 0.22	<5	75	<5	0.41	<1	2	116	6	0.79	<10	0.17	67	201	0.02	4	40	4	<5	<20	7	<0.01	<10	3	<10	2	11
69	SX09027-191	<0.2 0.25	<5	50	<5	0.67	<1	3	116	6	0.95	<10	0.34	94	415	0.01	4	40	6	<5	<20	18	<0.01	<10	3	<10	2	22
70	SX09027-192	<0.2 0.18	<5	55	<5	0.33	<1	з	99	6	1.02	<10	0.13	51	251	0.02	4	30	6	<5	<20	10	<0.01	<10	2	<10	1	13
																	•		Ū		-20		-0.01	<10	~	<10	ſ	13
71	SX09027-193	<0.2 0.16	<5	60	10	0.26	<1	2	123	7	0.70	<10	0.10	86	171	0.02	4	40	10	<5	<20	9	<0.01	~10	2	~10	1	28
72	SX09027-194	<0.2 0.25	<5	55	<5	0.75	<1	4	124	13	1.07	<10	0.30	158	231	0.02	6	60	2	<5	<20	13	<0.01	<10	4	<10	2	10
73	SX09027-195	<0.2 0.22	<5	60	<5	0.37	<1	З	87	36	1.05	<10	0.16	72	276	0.02	5	70	<2	<5	<20	7	<0.01	~10	3	~10	2	0
74	SX09027-196	<0.2 0.33	<5	60	<5	0.50	<1	4	94	9	1.02	<10	0.25	95	158	0.02	6	130	<2	<5	<20	ģ	<0.01	<10	4	<10	3	10
75	SX09027-197	<0.2 0.32	<5	45	<5	0.66	<1	З	131	7	1.37	<10	0.29	146	240	0.02	6	90	<2	<5	<20	10	<0.01	<10	4	<10	3	12
																	-		-		-20			10	-	~10	0	12
76	SX09027-198	<0.2 0.29	<5	40	<5	0.49	1	7	118	17	1.85	<10	0.27	149	98	0.02	7	90	4	<5	<20	9	<0.01	<10	4	<10	2	73
77	SX09027-199	<0.2 0.26	<5	35	10	0.23	1	8	102	19	1.90	<10	0.21	81	579	0.02	8	100	8	<5	<20	5	< 0.01	<10	3	<10	2	78
78	SX09027-200	<0.2 0.21	<5	80	<5	0.48	<1	3	66	4	0.80	<10	0.14	132	244	0.02	4	110	<2	<5	<20	10	<0.01	<10	2	~10	2	16
79	SX09027-200B	<0.2 0.69	<5	175	<5	0.16	<1	5	11	<1	1.48	<10	0.23	323	<1	0.17	3	200	4	<5	<20	14	0.08	<10	22	~10	10	24
80	SX09027-201	<0.2 0.23	<5	65	<5	0.46	<1	4	67	4	1.22	<10	0.12	117	134	0.02	5	90	2	<5	<20	9	<0.00	<10	22	<10	2	10
																	-	•••	-		~20	Ũ	-0.01	10	~	<10	2	15
81	SX09027-202	<0.2 0.22	<5	60	<5	0.28	<1	7	75	7	1.05	<10	0.10	91	83	0.02	5	140	4	<5	<20	5	<0.01	<10	2	<10	2	26
82	SX09027-203	<0.2 0.22	<5	50	<5	0.18	<1	3	78	4	0.97	<10	0.07	77	126	0.02	5	130	<2	<5	<20	3	<0.01	~10	2	~10	2	16
83	SX09027-204	<0.2 0.30	<5	55	<5	0.54	<1	2	104	5	0.81	<10	0.23	153	200	0.02	5	150	-2	<5	~20	ğ	~0.01	~10	1	~10	2	10
84	SX09027-205	<0.2 0.33	<5	30	10	0.82	<1	3	116	6	1.24	<10	0.34	203	66	0.02	5	170	8	~5	~20	16	<0.01	<10	4	<10	2	21
85	SX09027-206	<0.2 0.30	<5	75	5	0.47	2	4	106	7	0.78	<10	0.24	141	188	0.02	5	190	6	<5	<20	15	<0.01	<10	4	<10	2	210
																	•		Ũ	~0	~20	.0	-0.01		0	<10	0	310
86	SX09027-207	<0.2 0.35	<5	30	<5	1.28	1	9	121	80	2.68	<10	0.65	291	46	0.03	7	110	4	<5	<20	23	<0.01	~10	Δ	~10	З	40
87	SX09027-208	<0.2 0.21	<5	25	<5	0.54	<1	6	135	42	2.03	<10	0.19	139	475	0.02	7	100	6	<5	<20	14	<0.01	~10	2	<10	3	18
88	SX09027-209	<0.2 0.21	<5	25	<5	0.22	1	12	94	53	3.56	<10	0.10	90	405	0.03	7	120	<2	<5	~20	8	<0.01	~10	4	<10	2	26
89	SX09027-210	<0.2 0.24	<5	40	<5	0.18	<1	3	103	8	1.15	<10	0.10	66	33	0.02	6	90	-2	<5	~20	7	<0.01	~10	2	<10	2	20
90	SX09027-210S	25.1 0.29	25	85	<5	0.97	<1	1	68	>10000	1.01	<10	0.06	193	397	0.03	3	230	~2	45	<20	133	<0.01	~10	10	<10	2	9 24
																	-				-20		-0.01	10	10	~10	2	24
91	SX09027-211	<0.2 0.39	<5	35	30	1.18	1	6	139	24	2.45	<10	0.65	315	141	0.03	8	60	28	<5	<20	34	0.01	<10	6	<10	4	69
92	SX09027-212	<0.2 0.44	<5	70	5	1.07	<1	1	113	3	0.76	<10	0.13	111	6	0.02	4	330	10	<5	<20	32	< 0.01	<10	4	<10	7	28
93	SX09027-213	<0.2 0.42	<5	35	10	1.73	1	4	121	12	1.88	<10	0.86	504	69	0.02	7	70	4	<5	<20	26	0.02	<10	6	<10	6	193
94	SX09027-214	<0.2 0.29	<5	30	30	1.24	1	6	126	16	2.79	<10	0.62	352	57	0.02	7	70	22	<5	<20	34	<0.01	<10	4	<10	ă	117
95	SX09027-215	<0.2 0.28	<5	55	<5	1.22	<1	4	146	14	1.54	<10	0.54	341	69	0.02	7	70	4	<5	<20	32 -	< 0.01	<10	4	<10	4	55
																											,	00
96	SX09027-216	<0.2 0.31	<5	50	50	0.84	2	3	113	17	1.08	<10	0.16	149	169	0.02	4	270	50	<5	<20	26	<0.01	<10	5	<10	6	307
97	SX09027-217	<0.2 0.33	<5	45	10	0.67	1	3	135	4	1.35	<10	0.09	70	76	0.03	5	290	12	<5	<20	18 -	<0.01	<10	4	<10	6	192
98	SX09027-218	<0.2 0.68	<5	100	<5	1.06	<1	1	117	2	1.17	20	0.30	138	52	0.02	4	320	8	<5	<20	17	<0.01	<10	7	<10	Ř	21
99	SX09027-219	<0.2 0.27	<5	50	5	0.37	1	3	108	6	1.24	<10	0.14	122	121	0.02	7	150	6	<5	<20	10	<0.01	<10	3	<10	3	184
100	SX09027-220	<0.2 0.42	<5	45	<5	0.51	<1	3	106	17	1.33	<10	0.35	162	328	0.02	7	130	<2	<5	<20	10	0.01	<10	4	<10	4	10
																	•		-				0.01			-10	7	10
101	SX09027-221	<0.2 0.48	<5	35	<5	0.59	<1	4	145	14	1.74	<10	0.33	197	359	0.02	8	100	4	<5	<20	12	0.02	<10	6	<10	6	45
102	SX09027-222	<0.2 0.26	<5	30	5	0.24	3	3	95	7	1.41	<10	0.08	92	183	0.02	5	130	8	<5	<20	8 .	<0.01	<10	3	<10	2	478
103	SX09027-223	<0.2 0.29	<5	50	<5	0.61	<1	5	135	9	1.32	<10	0.19	156	172	0.03	5	160	4	<5	<20	16	<0.01	<10	4	~10	4	31
104	SX09027-224	<0.2 0.26	<5	50	<5	0.38	<1	3	91	11	0.86	<10	0.17	98	137	0.03	4	130	<2	<5	<20	ā.	<0.01	<10	3	<10	2	10
105	SX09027-225	<0.2 0.29	<5	50	<5	0.40	<1	5	146	11	1.25	<10	0.17	111	82	0.02	6	180	~2	<5	<20	12	-0.01	~10	3	~10	2	8
								-	-			. –					•		-	-0			-0.01	~10	0	~10	0	0

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	7n
106	SX09027-226	<0.2 0.36	<5	45	<5	0.39	<1	5	105	12	1.76	<10	0.25	98	373	0.02	7	60	<2	<5	<20	10	<0.01	<10	4	<10	· 2	11
107	SX09027-227	<0.2 0.21	<5	50	<5	0.07	<1	1	166	8	0.91	<10	0.02	30	979	0.02	6	50	<2	<5	<20	3	<0.01	~10		<10	2	10
108	SX09027-228	<0.2 0.09	<5	25	<5	0.31	<1	1	203	12	0.85	<10	0.12	80	193	0.02	5	20	<2	<5	<20	8	<0.01	~10	- - -	<10	- 1	8
109	SX09027-229	<0.2 0.25	<5	70	<5	0.47	<1	2	125	8	0.75	<10	0.17	78	485	0.02	4	50	~2	<5	<20	11	<0.01	~10	3	<10	2	5
110	SX09027-230	<0.2 0.15	<5	40	<5	0.03	<1	9	194	6	1.52	<10	0.01	24	947	0.02	5	40	<2	<5	<20	2	<0.01	~10	3	<10	1	_1
															• • •	0.02	Ũ	10	~	~0	~~~	2	-0.01	~10	0	<10	'	
111	SX09027-241	<0.2 0.11	<5	40	<5	0.04	<1	3	181	9	0.71	<10	<0.01	20	129	0.02	4	50	<2	<5	<20	1	<0.01	~10	2	~10	1	10
112	SX09027-242	<0.2 0.60	<5	35	<5	0.30	<1	7	190	21	2.55	<10	0.63	179	164	0.03	6	40	2	<5	<20	11	0.03	10	8	<10	2	64
113	SX09027-243	<0.2 0.14	<5	45	<5	0.05	<1	2	149	7	0.64	<10	0.01	22	328	0.02	4	40	4	<5	<20	2	<0.00	<10	2	~10	1	8
114	SX09027-244	<0.2 0.13	<5	50	<5	0.02	<1	1	184	6	0.54	<10	< 0.01	20	312	0.02	5	40	<2	<5	<20	2	<0.01	<10	2	<10	1	21
115	SX09027-245	<0.2 0.14	<5	80	<5	0.15	<1	3	167	6	0.65	<10	0.04	45	448	0.02	4	50	<2	<5	<20	6	< 0.01	<10	2	<10	1	7
																			_			•					•	,
116	SX09027-245S	9.1 0.33	5	135	<5	0.88	<1	<1	101	4293	0.90	<10	0.08	251	797	0.04	3	340	<2	20	<20	258	<0.01	<10	10	<10	3	34
117	SX09027-246	<0.2 0.18	<5	85	<5	0.11	<1	2	168	8	0.65	<10	0.03	47	383	0.02	5	60	<2	<5	<20	5	< 0.01	<10	3	<10	2	15
118	SX09027-247	<0.2 0.30	<5	40	<5	0.25	2	8	152	46	1.97	<10	0.20	92	400	0.02	5	100	<2	<5	<20	9	<0.01	<10	5	<10	2	293
119	SX09027-248	<0.2 0.23	<5	55	<5	0.25	<1	2	146	7	0.68	<10	0.08	63	324	0.02	4	60	<2	<5	<20	9	<0.01	<10	3	<10	2	20
120	SX09027-249	<0.2 0.22	<5	40	<5	0.13	1	8	141	7	1.13	<10	0.06	58	220	0.02	4	60	2	<5	<20	5	<0.01	<10	3	<10	2	156
																									_		_	
121	SX09027-250	<0.2 0.26	<5	40	<5	0.12	<1	12	131	14	1.31	<10	0.03	35	409	0.02	5	70	<2	<5	<20	5	<0.01	<10	3	<10	2	35
122	SX09027-250B	<0.2 0.71	<5	175	<5	0.18	<1	5	11	<1	1.53	<10	0.23	344	<1	0.18	2	200	4	<5	<20	15	0.08	<10	22	<10	10	24
123	SX09027-251	<0.2 0.18	<5	45	<5	0.10	<1	2	132	7	0.67	<10	0.03	26	310	0.02	4	70	<2	<5	<20	4	<0.01	<10	2	<10	2	5
124	SX09027-252	<0.2 0.20	<5	45	<5	0.17	<1	3	160	10	0.96	<10	0.08	45	162	0.02	5	60	<2	<5	<20	6	<0.01	<10	3	<10	2	3
125	SX09027-253	<0.2 0.27	<5	40	<5	0.28	<1	4	145	11	1.55	<10	0.19	51	297	0.02	4	40	<2	<5	<20	6	<0.01	<10	4	<10	2	10
126	SX09027-254	<0.2 0.42	<5	35	<5	0.28	<1	12	182	35	2.37	<10	0.31	88	401	0.03	8	40	<2	<5	<20	9	0.01	<10	6	<10	З	16
127	SX09027-255	<0.2 0.24	<5	35	<5	0.21	<1	20	116	19	2.39	<10	0.12	81	239	0.03	8	170	<2	<5	<20	5	<0.01	<10	3	<10	2	6
128	SX09027-256	<0.2 0.47	<5	50	<5	0.82	<1	8	113	21	1.60	<10	0.41	176	213	0.02	9	290	<2	<5	<20	15	0.01	<10	5	<10	5	16
129	SX09027-257	<0.2 0.34	<5	45	<5	0.67	<1	9	111	21	1.82	<10	0.33	161	248	0.02	8	120	<2	<5	<20	15	<0.01	<10	4	<10	3	17
130	SX09027-258	<0.2 0.31	<5	60	<5	0.23	<1	7	95	23	1.39	10	0.20	115	17	0.02	7	170	2	<5	<20	6	<0.01	<10	3	<10	2	13
101	0100007.050		-	4.0	_			-																				
131	SX09027-259	<0.2 0.28	<5	40	<5	0.40	<1	3	85	15	0.88	10	0.15	111	116	0.02	5	200	<2	<5	<20	9	<0.01	<10	3	<10	3	8
132	SX09027-260	0.2 0.33	<5	15	5	0.46	2	8	116	14	6.19	<10	0.19	127	1459	0.04	8	60	16	<5	<20	10	<0.01	<10	4	<10	2	62
133	SX09027-261	<0.2 0.24	<5	25	<5	0.45	1	9	105	25	2.98	<10	0.21	106	309	0.03	8	320	4	<5	<20	16	<0.01	<10	3	<10	3	23
104	SX09027-262	<0.2 0.30	<5	35	<5	0.68	1	10	143	46	2.87	<10	0.44	144	47	0.03	8	170	<2	<5	<20	19	<0.01	<10	4	<10	3	20
135	5709027-203	<0.2 0.24	<5	45	<5	0.71	1	5	111	13	1.72	<10	0.26	335	172	0.02	7	90	4	<5	<20	21	<0.01	<10	3	<10	2	131
126	SY00027 264	-0.2 0.24	-5	20		0.40	.4	44	445	40	0.00	.10	0.00	104	101	0.00	-	~~	•	-	~~				-		_	_
130	SY00027-204	<0.2 0.24	<0	30	<0	0.42	<1	11	110	10	2.00	<10	0.20	104	191	0.02		80	<2	<5	<20	20	<0.01	<10	2	<10	2	9
130	SX09027-205	<0.2 0.20	<0 ~E	30	<0	0.43	<1	3	120	12	1.73	<10	0.13	141	209	0.02	6	/0	<2	<5	<20	16	<0.01	<10	3	<10	2	12
130	SX09027-200	<0.2 0.20	<0 ~5	40	40	0.51	< I -1	2	105	10	1.05	<10	0.12	1/5	231	0.02	6	130	38	<5	<20	14	< 0.01	<10	3	<10	3	69
140	SX09027-207	<0.2 0.20	<0	30	<0 E	0.49	< I 1	0	100	12	2.77	<10	0.13	133	598	0.03	5	100	<2	<5	<20	16	<0.01	<10	3	<10	2	13
140	3709027-208	<0.2 0.27	<0	25	Э	0.90	1	0	102	23	3.22	<10	0.58	450	653	0.03	1	160	4	<5	<20	32	<0.01	<10	3	<10	3	33
141	SX09027-269	<0.2 0.25	<5	85	<5	0.53	-1	5	65	12	0 02	~10	0.50	127	97	0.02	Ē	120	~?	~5	~20	2 5	-0.01	-10	0	-10	0	15
142	SX09027-270	<0.2 0.27	<5	15	5	0.00	2	14	95	23	5 20	~10	0.20	122	80	0.02	5 7	50	~~ 1	<0 ~F	<20 200	20 21	~0.01	<10	2	<10	2	10
143	SX09027-271	<0.2 0.12	<5	40	10	0.21	1	4	180	16	2 95	<10	0.02	68	8536	0.04	7	30	4 ~0	<0 ~5	~20	21 0	~0.01	<10 210	4	<10	י 2	30 6
144	SX09027-272	<0.2 0.25	<5	30	<5	0.57	1	14	100	29	3.37	<10	0.10	132	2958	0.00	، ۵	100	~2	~5	~20	91 21	~0.01	~10	с 6	~10	2	16
145	SX09027-273	0.2 0.59	<5	20	<5	3.63	4	43	44	90	6 10	~10	2.57	725	135	0.00	31 -	1230	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~5	~20	£1 1	0.01	~10	0 77	~10	4	10
							•		• •		0.10			. 20		0.04	51	200	-	~0	~20	04	0.02	~10	57	~10	0	110

ICP CERTIFICATE OF ANALYSIS AK 2009-0871

BOOTLEG EXPLORATION INC.

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni		D Dh	Sh	Sn	e.			v		v	-	
146	SX09027-274	0.4 0.48	<5	20	<5	2.18	4	27	48	281	7 49	<10	2.35	601	607	0.05	25	110		- 50	-20	31	0.01	10	<u>v</u>		<u> </u>	Zn	_
147	SX09027-275	<0.2 0.29	<5	40	<5	0.54	<1	5	123	99	2.19	<10	0.40	136	740	0.00	10	130	J <2	<0	<20	49	-0.01	<10	33	<10	6	98	
148	SX09027-276	<0.2 0.26	<5	30	15	1.80	1	17	90	37	2.88	<10	0.10	316	251	0.02	12	24/	J <2	<0	<20	24	<0.01	<10		<10	2	24	
149	SX09027-277	<0.2 0.22	<5	20	15	0.42	1	4	122	10	3.55	<10	0.21	103	258	0.03	6	6	J 10	<0	<20	52 20	<0.01	<10		<10	3	56	
													0.21		200	0.00	U		5 10	<5	~20	20	<0.01	<10	3	<10	2	14	
QC DATA	<u>A:</u>																												
nepeat:	SV00007 106	.0.0.0.50	-	45	_																								
10	SX09027-126	<0.2 0.50	<5	45	<5	0.73	<1	6	125	25	1.54	<10	0.39	310	67	0.02	7	90) 4	<5	<20	10	0.01	<10	6	<10	5	16	
10	SX09027-135	<0.2 0.16	<5	65	5	0.21	<1	4	130	20	1.04	<10	0.08	64	544	0.02	6	40) 2	<5	<20	6	<0.01	<10	3	<10	2	52	
19	SX09027-143	<0.2 0.27	<5	50	10	0.35	<1	2	135	7	1.41	<10	0.23	120	1277	0.02	5	40) 4	<5	<20	13	<0.01	<10	5	<10	2	72	
30	SX09027-159	<0.2 0.30	<5	30	5	0.64	<1	3	169	11	1.13	<10	0.41	146	277	0.02	6	50) 2	<5	<20	9	<0.01	<10	4	<10	3	14	
43	SX09027-108	<0.2 0.25	<5	35	15	0.69	2	7	99	13	1.32	<10	0.31	250	307	0.02	6	140	8	<5	<20	17	<0.01	<10	3	<10	3	248	
04 71	SX09027-176	<0.2 0.24	<5	45	5	0.13	<1	4	67	3	1.20	<10	0.15	98	84	0.02	5	100) 4	<5	<20	6	<0.01	<10	2	<10	2	13	
20	SX09027-193	<0.2 0.15	<5	55	10	0.25	<1	2	119	7	0.68	<10	0.10	81	166	0.02	4	4() 10	<5	<20	9	<0.01	<10	2	<10	1	27	
80	SX09027-201	<0.2 0.23	<5	60	<5	0.48	<1	4	67	3	1.28	<10	0.11	121	138	0.02	5	90) 2	<5	<20	8	<0.01	<10	2	<10	2	20	
106	SX09027-210	<0.2 0.24	<5	45	<5	0.18	<1	3	103	8	1.21	<10	0.09	68	35	0.02	6	90) <2	<5	<20	7	<0.01	<10	3	<10	2	9	
115	SX09027-220	<0.2 0.35	<5 .C	45	<5	0.38	<1	5	103	12	1.73	<10	0.25	96	373	0.02	7	60) <2	<5	<20	10	<0.01	<10	4	<10	2	10	
12/	SX09027-243	<0.2 0.14	<5 -5	40	<5	0.15	<1	3	160	6	0.64	<10	0.04	44	436	0.02	4	50) <2	<5	<20	6	<0.01	<10	2	<10	1	7	
1/1	SX09027-252	<0.2 0.20	<5	40	<5	0.17	<1	3	159	10	0.97	<10	0.0 9	44	163	0.02	5	60) <2	<5	<20	6	<0.01	<10	3	<10	2	3	
141	3709027-209	<0.2 0.20	<0	85	<5	0.53	<1	5	69	13	0.95	<10	0.21	142	84	0.02	5	120) 2	<5	<20	26	<0.01	<10	З	<10	3	15	
Resplit:																													
1	SX09027-126	<0.2 0.53	<5	40	<5	0.76	<1	7	114	30	1.55	<10	0.39	336	66	0.02	7	<u>م</u>	1	-5	-20	10	0.01	.10	~	10	_	10	
36	SX09027-159	<0.2 0.29	<5	30	<5	0.63	<1	3	149	10	1.18	<10	0.00	143	303	0.02	6	50	· 4	<5	<20	10	0.01	<10	0	<10	5	16	
71	SX09027-193	<0.2 0.17	<5	60	10	0.26	<1	2	131	7	0.76	<10	0.09	83	185	0.02	4	10	1 12	<0	<20	9	<0.01	<10	4	<10	3	13	
106	SX09027-226	<0.2 0.33	<5	45	<5	0.36	<1	5	114	12	1.59	<10	0.25	90	393	0.02	7	60	12	<5	<20	10	<0.01	<10	2	<10		33	
141	SX09027-269	<0.2 0.25	<5	75	<5	0.54	<1	5	71	12	0.90	<10	0.22	141	80	0.02	5	120	2	~5	~20	26	<0.01	<10	4	<10	2	9	
										•=	0.00		U.LL	141	00	0.02	5	120	2	<5	<20	20	<0.01	<10	2	<10	3	15	
Standard	:																												
Pb129a		11.8 0.89	5	65	5	0.43	60	6	12	1429	1.55	<10	0.65	374	2	0.04	5	410	6216	15	~20	31	0.03	~10	21	-10	0	0040	
Pb129a		12.0 0.86	5	65	5	0.43	61	6	12	1404	1.54	<10	0.67	364	2	0.04	5	420	6286	15	~20	30	0.03	<10	21	<10	2	9942	
Pb129a		11.7 0.82	<5	70	<5	0.44	56	6	12	1356	1.66	<10	0.66	375	2	0.04	5	400	6140	15	~20	27	0.03	~10	20 19	<10	2	9920	
Pb129a		11.6 0.83	5	70	<5	0.46	56	6	12	1450	1.61	<10	0.67	367	2	0.04	5	410	6204	15	~20	32	0.03	~10	20	~10	2.	3912	`
Pb129a		11.6 0.86	5	70	<5	0.44	55	6	11	1435	1.56	<10	0.66	356	2	0.04	5	400	6122	15	~20	32	0.03	~10	10	~10	23	>10000	,
															-	J. J .	•				~~~~	50	0.00	~10	13	< IV	۷	2203	

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/ df/2_871AS/1_871BS XLS/09 30-Dec-09 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC

V1C 2P1

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 149 Sample Type: Core Shipment #: SX09-002 Submitted by: B. Wallace

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	р	Ph	Sh	Sn	Sr T	i %	п	v	۱۸/	v	7
1	SX09027-278	<0.2 0.34	<5	50	<5	0.49	<1	2	51	4	0.64	10	0.23	134	166	0.01		80	1	-5	-200	10 -0	/0	.10	<u> </u>		<u> </u>	
2	SX09027-279	<0.2 0.25	<5	20	5	0.62	<1	7	61	11	1.87	10	0.30	137	805	0.01	3	40	4	<5	<20	19 <0	.01	<10	3	<10	3	22
3	SX09027-280	<0.2 0.32	<5	35	20	0.26	<1	12	57	22	1.30	<10	0.00	54	1749	0.01	2	40	19	<0	<20	19 <0	.01	<10	3	<10	3	25
4	SX09027-280S	8.8 0.30	10	120	<5	0.78	<1	1	100	4291	0.83	<10	0.09	236	812	0.01	2	320	-0	20	<20	040 .0	.01	<10	4	<10	2	14
5	SX09027-281	<0.2 0.24	<5	30	<5	0.31	2	3	53	11	1.09	<10	0.00	103	304	0.04	2	50	~2	20	<20	240 <0	.01	<10	9	<10	2	32
													0.10	100	004	0.01	0	50	4	<5	<20	13 <0	.01	<10	2	<10	2	235
6	SX09027-282	<0.2 0.24	<5	45	<5	0.26	<1	3	55	18	0.86	<10	0 14	42	277	0.01	2	40	~2	-5	~20	10 .0	01	.10	~	10	~	
7	SX09027-283	<0.2 0.29	<5	40	<5	0.33	<1	3	42	11	0.85	<10	0.20	46	498	0.01	3	40	~2	<5	<20	12 <0	.01	<10	2	<10	2	11
8	SX09027-284	<0.2 0.29	<5	25	<5	0.20	<1	2	40	6	0.74	<10	0.19	41	400	0.01	2	40	~2	<0	<20	7 -0	.01	<10	2	<10	2	8
9	SX09027-285	<0.2 0.16	<5	5	<5	0.13	<1	6	108	85	3.58	<10	0.25	76	231	0.01	<u> </u>	20	~2	<5	<20	/ <0	.01	<10	2	<10	2	(
10	SX09027-286	<0.2 0.29	<5	10	<5	0.03	2	13	79	62	6.92	<10	0.15	107	1053	0.02	4	30	10	<0 ~5	<20	0 < 0	.01	<10	4	<10	<1	24
													0.10	107	1000	0.02	-	50	10	<0	<20	2 <0	.01	<10	1	<10	3	57
11	SX09027-287	<0.2 0.26	<5	30	<5	0.36	<1	5	72	11	2.47	<10	0 17	137	284	0.01	3	30	6	-5	~20	10 -0	01	.10	~	10	•	47
12	SX09027-288	<0.2 0.37	<5	45	<5	1.14	<1	1	49	3	0.74	<10	0.28	112	64	0.01	2	40	2	<5	~20	10 <0	01	<10	3	<10	2	4/
13	SX09027-289	<0.2 0.26	<5	10	<5	0.40	2	16	57	119	5.03	<10	0.18	83	103	0.01	1	30	6	<5	<20	15 <0	.01	<10	3	<10	2	21
14	SX09027-290	<0.2 0.27	<5	30	30	0.19	<1	6	50	60	1.38	<10	0.11	45	213	0.02	2	40	26	<5	~20	14 <0	01	<10	3	<10	1	94
15	SX09027-291	<0.2 0.22	<5	10	50	0.33	6	26	55	354	4.99	<10	0.07	82	427	0.01	5	40	50	<5	<20	0 <0	01	<10	ۍ ا	<10	2	20
													0.07	UL.	767	0.02	5	40	50	<0	<20	11 <0	.01	<10	4	<10	2	822
16	SX09027-292	<0.2 0.31	<5	85	<5	0.67	<1	3	78	6	0.67	10	0 10	74	1290	0.02	Δ	350	1	-5	~20	12 -0	01	.10	-	.10	~	00
17	SX09027-293	<0.2 0.25	<5	105	<5	0.95	<1	4	61	5	0.72	10	0.16	86	127	0.02	2	360	Q	<5	<20	100 -0	01	<10	5	<10	0	96
18	SX09027-294	<0.2 0.24	<5	85	<5	0.78	<1	3	69	5	0.72	<10	0.09	95	151	0.00	3	330	1	<5	<20	54 -0	01	<10	<u>৩</u>	<10	5	10
19	SX09027-295	<0.2 0.26	<5	50	<5	0.60	<1	4	68	6	1.14	<10	0.09	74	257	0.02	4	320	4	~5	~20	24 <0	01	<10	3	<10	5	80
20	SX09027-296	<0.2 0.27	<5	55	<5	0.37	1	3	85	5	0.84	<10	0.05	48	258	0.02	4	200	9 8	<5	~20	21 -0	01	<10	3	<10	4	35
										-			0.00	.0	200	0.0L	-	200	0	~ 5	~20	21 <0.	01	<10	3	<10	5	223
21	SX09027-297	<0.2 0.30	<5	80	<5	0.97	2	3	77	7	0.66	<10	0.07	95	177	0.02	4	370	8	~5	~20	48 -0	01	-10	2	.10	~	000
22	SX09027-298	<0.2 0.32	<5	25	75	0.40	<1	9	92	27	2.36	<10	0.05	39	1619	0.02	5	280	62	~5	~20	40 <0.	01 ·	<10	3	<10	5	293
23	SX09027-299	<0.2 0.25	<5	20	<5	0.44	1	13	58	8	2.30	<10	0.04	47	211	0.02	3	200	02	<5	~20	10 <0.	01	10	5	<10	5	58
24	SX09027-300	0.2 0.23	<5	30	130	0.24	1	5	53	51	1.39	<10	0.09	54	- 11	0.02	3	120	110	<0 ~5	<20	10 <0.	01 ·	<10	3	<10	4	83
25	SX09027-300B	<0.2 0.78	<5	180	<5	0.18	<1	4	9	<1	1.36	<10	0.25	318	20	0.01	2	200	10	<0	<20	9 < 0.	01 .	<10	2	<10	2	136
			-			2		•	v	~ 1	1.00	~10	0.20	010	2	0.21	3	200	10	<0	<20	10 0.	08 .	<10	21	<10	10	24

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009-0872

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	v	w	v	Zn
26	SX09027-301	<0.2 0.23	<5	60	<5	0.51	<1	2	37	6	1.01	<10	0.14	69	655	0.01	2	60	<u>-2</u>	-5	<20	14 < 0.01	<10		<10	0	
27	SX09027-302	<0.2 0.27	<5	85	<5	0.70	<1	<1	48	3	0.56	<10	0.29	125	305	0.01	2	40	4	<5	<20	22 <0.01	<10	2	~10	2	9 16
28	SX09027-303	<0.2 0.24	<5	35	<5	0.40	<1	8	40	33	1.74	<10	0.18	44	123	0.01	3	30	8	<5	<20	7 <0.01	~10	2	~10	1	8
29	SX09027-304	<0.2 0.32	<5	35	<5	0.42	<1	2	59	13	1.06	<10	0.28	51	106	0.01	3	40	4	<5	<20	9 < 0.01	<10	2	~10	2	8
30	SX09027-305	<0.2 0.22	<5	25	<5	0.25	<1	3	46	9	0.78	<10	0.10	45	665	0.01	2	30	<2	<5	<20	7 < 0.01	<10	3	<10	2	5
																	-		-		-20	7 30.01	-10	0	<10	<u>r</u>	5
31	SX09027-306	<0.2 0.21	<5	40	<5	0.08	<1	<1	75	4	0.35	<10	0.05	31	164	0.01	2	40	<2	<5	<20	2 < 0.01	<10	2	<10	2	7
32	SX09027-307	<0.2 0.25	<5	25	<5	0.16	<1	4	32	9	2.08	<10	0.06	34	539	0.02	2	30	8	<5	<20	6 < 0.01	<10	2	<10	1	, 7
33	SX09027-308	<0.2 0.28	<5	65	<5	0.42	<1	2	41	6	0.49	<10	0.20	61	123	0.01	2	40	8	<5	<20	15 < 0.01	<10	2	<10	2	, 8
34	SX09027-309	<0.2 0.29	<5	50	<5	0.50	<1	4	43	7	0.55	<10	0.28	76	129	0.01	3	50	<2	<5	<20	21 < 0.01	<10	2	<10	2	q
35	SX09027-310	<0.2 0.26	<5	30	<5	0.38	<1	4	51	4	1.60	<10	0.04	58	249	0.02	3	350	6	<5	<20	13 < 0.01	<10	3	<10	5	74
																			_	-				•		Ŭ	
36	SX09027-311	<0.2 0.27	<5	35	<5	0.41	<1	2	41	4	0.85	<10	0.19	108	669	0.02	3	50	8	<5	<20	15 <0.01	<10	3	<10	2	28
37	SX09027-312	<0.2 0.30	<5	35	<5	0.48	<1	4	42	13	1.22	<10	0.27	114	135	0.02	З	40	2	<5	<20	18 < 0.01	<10	3	<10	2	22
38	SX09027-313	<0.2 0.19	<5	25	<5	0.11	1	7	98	6	2.06	<10	0.03	25	135	0.02	4	200	6	<5	<20	4 < 0.01	<10	3	<10	4	148
39	SX09027-314	<0.2 0.30	<5	65	<5	0.77	<1	4	43	12	0.80	10	0.10	60	306	0.02	2	420	6	<5	<20	34 < 0.01	<10	3	<10	6	85
40	SX09027-315	<0.2 0.27	<5	20	15	0.25	1	7	68	8	1.85	<10	0.05	41	803	0.02	4	260	18	<5	<20	10 < 0.01	<10	4	<10	5	89
																										•	
41	SX09027-315S	9.1 0.33	10	120	<5	0.79	<1	1	99	4268	0.81	<10	0.09	235	832	0.04	3	310	<2	20	<20	220 <0.01	<10	10	<10	з	34
42	SX09027-316	<0.2 0.28	<5	40	80	0.83	<1	6	52	27	1.37	<10	0.37	167	93	0.02	3	50	72	<5	<20	29 < 0.01	<10	3	<10	4	18
43	SX09027-317	<0.2 0.29	<5	55	<5	0.79	<1	5	73	18	1.13	<10	0.08	82	201	0.02	4	310	8	<5	<20	33 < 0.01	<10	3	<10	5	47
44	SX09027-318	<0.2 0.25	<5	15	15	0.75	6	9	70	21	2.28	<10	0.04	80	400	0.02	4	270	20	<5	<20	32 <0.01	<10	2	<10	5	766
45	SX09027-319	<0.2 0.24	10	50	<5	0.37	1	8	62	15	1.32	<10	0.18	94	5331	0.02	4	50	2	<5	<20	12 <0.01	<10	5	<10	4	93
46	SX09027-320	<0.2 0.37	<5	55	<5	0.23	<1	7	28	12	0.81	<10	0.10	79	178	0.02	5	130	4	<5	<20	11 <0.01	<10	4	<10	3	21
47	SX09027-321	<0.2 0.39	<5	35	10	0.68	<1	10	58	34	1.79	<10	0.32	163	563	0.02	6	60	10	<5	<20	17 <0.01	<10	4	<10	4	18
48	SX09027-322	<0.2 0.33	<5	50	5	0.78	<1	8	38	17	1.37	<10	0.27	221	265	0.02	5	90	8	<5	<20	32 <0.01	<10	3	<10	4	22
49	SX09027-323	<0.2 0.29	<5	70	<5	0.88	<1	4	92	15	0.86	<10	0.07	114	473	0.02	5	260	10	<5	<20	44 <0.01	<10	3	<10	5	56
50	SX09027-324	<0.2 0.31	<5	50	<5	0.26	<1	5	35	16	0.96	<10	0.10	112	527	0.02	4	90	2	<5	<20	12 <0.01	<10	3	<10	3	8
51	SV00007 005	.0.0.0.00		CF.		0.05			40	•							_										
57	SX09027-325	<0.2 0.33	<5 .E	60	<5 .r	0.35	<1	4	48	6	0.74	<10	0.21	106	208	0.02	5	110	4	<5	<20	10 <0.01	<10	3	<10	З	9
52	SX09027-320	<0.2 0.30	<0	45	<0 25	0.45	<1	0	33	14	0.88	<10	0.19	90	137	0.02	5	80	4	<5	<20	15 < 0.01	<10	2	<10	2	7
50	SX09027-327	<0.2 0.37	<0	40	<0	0.37	<1	8	47	18	1.20	<10	0.13	11/	228	0.02	5	70	4	<5	<20	12 < 0.01	<10	3	<10	3	14
55	SX09027-328	<0.2 0.37	<0	20 55	<0 ~E	0.54	<1	12	28	50	2.13	<10	0.25	125	4/1	0.02	4	90	6	<5	<20	16 < 0.01	<10	3	<10	3	15
55	3703027-329	CO.2 0.20	<0	55	<0	0.65	<1	4	04	24	1.03	<10	0.25	156	151	0.02	3	50	4	<5	<20	18 <0.01	<10	2	<10	3	10
56	SX09027-330	< 0.2 0.19	<5	40	<5	0.26	-1	10	61	22	1.05	~10	0.04	64	162	0.00	S	40	6	_E	~00	6 .0.04	.10	~	.10	4	4.4
57	SX09027-331	<0.2 0.10	~5	40	~5	0.20	2	10	82	10	0.72	<10	0.04	04	724	0.02	3	40	70	<5	<20	6 < 0.01	<10	2	<10	1	14
58	SX09027-332	<0.2 0.20	~5	65	~5	0.20	1	2	65	8	0.72	<10	0.00	31	250	0.02	3 0	40	70	<0 .E	<20	7 < 0.01	<10	3	<10	2	318
59	SX09027-333	<0.2 0.20	~5	65	~5	0.00	-1	2	52	5	0.42	<10	0.03	31	209	0.02	2	40	30	<5 	<20	3 < 0.01	<10	2	<10	1	118
60	SX09027-334	<0.2 0.01	~5	20	10	0.03	~1	0	70	5 07	1.65	<10	0.04	44	300	0.02	ა ი	40	14	<5	<20	3 < 0.01	<10	3	<10	2	56
00	0/03021-004	V.2 V.24	<0	20	10	0.02	<1	0	70	21	001	<10	0.02	10	870	0.02	3	30	12	<5	<20	<1 <0.01	<10	3	<10	2	20
61	SX09027-335	<0.2 0.22	<5	75	<5	0.09	<1	2	69	5	0.46	<10	0.04	59	418	0.02	3	40	16	~5	-20	3 <0.01	~10	2	~10	1	37
62	SX09027-336	<0.2 0.21	<5	25	<5	0.06	1	21	87	10	1.89	<10	0.03	35	513	0.02	4	40	24	<5	<20	2 -0.01	<10	2	~10	1	56
63	SX09027-337	2.4 0.24	<5	45	5	0.16	1	4	79	17	1.12	<10	0.07	55	223	0.02	4	70	322	<5	~20	4 -0.01	<10	3	~10	2	73
64	SX09027-338	>30 0.17	<5	25	85	0.09	123	5	100	340	1.36	<10	0.05	35	355	0.02	5	30	9876	10	~20	4 ~0.01	~10	2	~10	<u> </u>	10000
65	SX09027-339	0.6 0.22	<5	50	50	0.35	3	9	56	39	0.99	<10	0.13	88	186	0.02	3	40	246	~5	~20	13 -0.01	~10	3	~10	י	074
						2.00	•	~			0.00	-10	0.10	00	.00	0.02	0	40	240	-0	~20	10 <0.01	< 10	2	~10	4	214

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009-0872

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni P	Pb	Sb	Sn	Sr Ti	% U	v	w	Y	Zn
66	SX09027-340	<0.2 0.32	<5	60	<5	0.20	<1	6	32	15	0.76	<10	0.09	51	85	0.02	5 130	24	<5	~20	10 <00	1 <10	3	<10	- 2	24
67	SX09027-341	<0.2 0.33	<5	70	<5	0.30	<1	5	44	6	0.70	<10	0.14	77	216	0.02	6 110	6	~5	~20	11 -0.0	1 <10	1	<10	2	0
68	SX09027-342	<0.2 0.36	<5	65	<5	0.54	<1	12	38	21	0.88	<10	0.20	74	121	0.02	6 100	6	~5	~20	/1 -0.0	1 ~10	4	<10	2	3 10
69	SX09027-343	<0.2 0.41	<5	40	<5	0.54	<1	11	47	30	1 49	<10	0.29	76	163	0.02	6 80	6	~5	~20	9 -0 0	1 <10	4	<10	3	0
70	SX09027-344	<0.2 0.46	<5	25	<5	0.83	1	13	40	98	2 57	<10	0.44	101	98	0.02	7 70	6	~5	~20	J ∕ ∠0.0	1 <10	4	<10	3	10
						0.00	•			00	2.01	10	0.44	101	30	0.02	1 10	0	<5	<20	14 <0.0	1 <10	4	<10	4	13
71	SX09027-345	<0.2 0.26	<5	65	<5	0.49	<1	5	71	26	1 07	~10	0.20	90	146	0.01	5 70	10	~5	~20	0 -0 0	1 -10	。	-10	0	17
72	SX09027-346	<0.2 0.24	<5	60	<5	0.23	<1	5	70	17	0.90	~10	0.10	66	207	0.01	5 70	10	<5	~20	9 < 0.0	1 <10	3	<10	3	1/
73	SX09027-347	<0.2 0.26	<5	80	<5	0.28	<1	4	54	۰. ۹	0.60	~10	0.13	51	125	0.01	5 120	10	<5	~20		1 <10	3	<10	ა ი	10
74	SX09027-348	<0.2 0.25	<5	120	<5	0.62	-1	6	65	12	0.02	~10	0.10	07	280	0.01	5 140	50	<0	<20	9 < 0.0	1 <10	2	<10	3	28
75	SX09027-349	<0.2 0.38	<5	45	~5	0.68	2	5	7/	32	1 00	~10	0.24	97 Q/	209	0.01	2 40	50	<0	<20	12 < 0.0	1 <10	3	<10	3	100
, 0	0,0002, 040	NO.2 0.00	~0	-40	-5	0.00	2	5	/4	52	1.00	<10	0.34	04	94	0.01	5 40	0	<5	<20	13 <0.0	1 <10	4	<10	3	162
76	SX09027-349B	<0.2 0.81	<5	185	~5	0 17	~1	5	10	1	1 20	~10	0.22	227	-1	0 10	2 100	10	.E	-00	10 00	0 .10	04	.10	10	00
77	SX09027-350	<0.2 0.23	~5	25	~5	0.17	1	12	85	97	2 22	~10	0.23	112	140	0.19	5 190	12	<0 .5	<20	13 0.0	9 <10	24	<10	12	22
78	SX09027-350S	86 0.33	10	135	~5	0.31	-1	1	00	4221	2.00	<10	0.41	050	000	0.01	0 00	0	<5	<20	22 <0.0	1 <10	3	<10	3	21
79	SX09027-351	<0.2 0.16	~5	40	~5	0.02	~1	5	104	4001	0.74	<10	0.00	200	00Z	0.04	3 290	0	20	<20	191 <0.0	1 <10	10	<10	3	32
80	SX09027-352	<0.2 0.10	~5	30	~5	0.21	~1	10	104	10	1.66	<10	0.05	70	300	0.01	3 40	<2	<5	<20	0 <0.0	1 <10	2	<10	2	5
00	0/00027-002	<0.2 0.10	-5	00	<0	0.51	<1	13	100	19	1.00	<10	0.11	12	253	0.01	4 30	4	<5	<20	11 <0.0	1 <10	2	<10	1	16
81	SX09027-353	<0.2 0.19	~5	20	~5	0.61	1	12	118	37	2 50	~10	0.24	110	1/2	0.01	F 60	e	.E	-00	00 -0 0	4 .10	~	.10	~	00
82	SX09027-354	<0.2 0.10	~5	10	~5	0.01	2	16	83	10	5.47	<10	0.24	102	546	0.01	5 00	10	<5 .F	<20	22 <0.0	1 <10	3	<10	2	29
83	SX09027-355	<0.2 0.14	~5	25	~5	2.07	2	10	79	105	6.00	<10	1 56	271	540	0.02	01 400	10	<5 .F	<20	12 <0.0	1 <10	3	<10	2	23
84	SX09027-356	<pre>\0.2 0.00</pre>	~5	23 75	<5	2.07	3	43 62	10	100	6.00	<10	1.50	015	004 06	0.03	21 420	10	<5	<20	50 0.0	5 <10	45	<10		62
85	SX09027-357	0.2 2.00	~5	70	~5	2.97	4	20	49	61	5.00	<10	2.74	1070	90	0.02	39 1220	10	<5 .F	<20	60 0.2	3 40	166	<10	9	131
00	0709027-007	0.2 0.22	<5	70	<0	2.99	4	39	55	01	5.92	<10	2.02	1070	5	0.02	44 1120	16	<5	<20	55 0.2	4 10	178	<10	5	139
86	SX09027-358	<0.2 3.22	<5	50	<5	1.55	3	55	49	116	9.21	<10	2.60	173	55	0.02	44 1180	14	<5	<20	15 0 2	6 ~10	136	~10	4	134
87	SX09027-359	<0.2 3.24	<5	50	<5	1.25	3	36	56	55	5.41	<10	2.61	691	11	0.03	37 1220	14	<5	~20	10 0.2	1 10	179	~10	4	118
88	SX09027-360	<0.2 2.48	<5	25	<5	1.20	3	34	47	39	4.48	<10	1.94	622	<1	0.04	35 1180	12	<5	~20	10 0.1	1 10 8 ~10	133	<10	4	01
89	SX09027-361	<0.2 2.36	<5	35	<5	1.21	3	33	54	57	5.21	<10	1.90	618	5	0.01	39 1190	14	~5	~20	10 0.1	0 10	150	<10	-7 5	104
90	SX09027-362	0.4 2.52	<5	25	<5	1.45	3	37	58	246	6.79	<10	2 13	603	12	0.00	45 960	14	~5	~20	13 0.1	0 -10 9 -10	140	<10	1	03
					-		•	•.		2.0	0.70		20	000	1 444	0.01	40 000	14	-0	~20	10 0.1	5 10	140	<10	~	90
91	SX09027-363	<0.2 2.71	<5	35	<5	1.47	3	37	63	86	5.85	<10	2.32	709	17	0.03	48 1020	14	<5	<20	12 0.1	9 <10	148	<10	4	98
92	SX09027-364	0.2 2.82	<5	50	<5	2.86	3	47	50	112	7.23	<10	2.57	992	28	0.03	40 1110	16	<5	<20	40 0.2	1 <10	178	<10	5	141
93	SX09027-365	<0.2 0.18	<5	25	<5	0.68	<1	6	105	43	1.43	<10	0.06	191	503	0.02	6 40	4	<5	<20	43 <0.0	1 <10	4	<10	6	7
94	SX09027-366	<0.2 0.19	<5	20	<5	0.24	<1	6	68	22	1.02	<10	0.07	64	206	0.01	4 70	<2	<5	<20	9 <0.0	1 <10	2	<10	2	7
95	SX09027-367	<0.2 0.23	<5	45	<5	0.34	<1	7	77	54	1.72	<10	0.15	73	640	0.01	5 70	<2	<5	<20	9 < 0.0	1 <10	3	<10	2	11
96	SX09027-368	<0.2 0.16	<5	30	<5	0.23	<1	12	61	82	2.62	<10	0.07	15	497	0.01	4 50	<2	<5	<20	6 <0.0	1 <10	2	<10	2	8
97	SX09027-369	<0.2 0.24	<5	30	<5	0.20	<1	10	79	27	2.00	<10	0.11	49	340	0.01	5 50	4	<5	<20	7 <0.0	1 <10	3	<10	2	7
98	SX09027-370	<0.2 0.23	<5	25	<5	0.25	1	17	60	5 9	3.42	<10	0.11	45	209	0.02	8 90	4	<5	<20	9 <0.0	1 <10	3	<10	2	7
99	SX09027-371	0.2 2.30	<5	45	<5	1.46	3	63	64	238	8.08	<10	2.10	365	94	0.03	38 870	12	<5	<20	21 0.1	5 <10	136	<10	7	84
100	SX09027-372	0.2 3.01	<5	45	<5	1.27	4	44	52	211	8.33	<10	2.73	498	62	0.03	43 1150	14	<5	<20	15 0.1	7 <10	156	<10	6	97
101	SX09027-373	0.4 2.67	<5	20	<5	1.18	4	50	57	444	8.55	<10	2.55	556	11	0.03	56 1100	14	<5	<20	16 0.1	4 <10	128	<10	5	89
102	SX09027-374	0.4 3.05	<5	45	<5	2.40	3	61	58	203	8.68	<10	2.71	595	59	0.04	45 1210	16	<5	<20	31 0.1	9 <10	188	<10	6	108
103	SX09027-375	0.6 2.84	<5	50	<5	2.11	4	33	51	495	9.28	<10	2.74	754	61	0.03	41 1170	14	<5	<20	48 0.1	9 <10	160	<10	7	124
104	SX09027-376	0.2 0.27	<5	20	<5	0.55	2	44	68	152	5.60	<10	0.24	140	311	0.02	12 90	4	<5	<20	13 <0.0	1 <10	9	<10	3	16
105	SX09027-377	<0.2 0.42	<5	25	<5	0.73	<1	11	69	61	2.27	<10	0.43	95	286	0.02	6 80	2	<5	<20	10 0.0	1 <10	5	<10	3	25

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009-0872

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	D	Dh	<u>e</u> h	<u>e</u> n	C. T. 0/		.,		v	
106	SX09027-378	<0.2 0.32	<5	35	<5	0.41	<1	9	41	10	1 30	<10	0.17	40	74	0.00		110	ru	30	- 311	31 11%	<u> </u>	<u>v</u>	W	Y	<u></u>
107	SX09027-379	<0.2 0.23	<5	25	<5	0.49	<1	10	42	11	1.60	~10	0.17	52	000	0.02	4	110	<2	<5	<20	8 < 0.01	<10	3	<10	2	4
108	SX09027-380	<0.2 0.37	<5	30	<5	0.56	<1	5	36	28	1.02	~10	0.19	75	200	0.02	4	90	<2	<5	<20	9 < 0.01	<10	2	<10	2	4
109	SX09027-381	<0.2 0.26	<5	30	<5	0.65	<1	5	30	17	0.89	~10	0.20	70 60	100	0.02	5	150	4	<5	<20	11 0.01	<10	4	<10	3	9
110	SX09027-382	<0.2 0.26	<5	35	<5	0.65	-1	3	30	6	0.00	~10	0.22	09	120	0.02	4	150	<2	<5	<20	12 <0.01	<10	2	<10	3	5
				00	-0	0.00		0	00	0	0.73	<10	0.24	12	105	0.01	3	140	2	<5	<20	11 <0.01	<10	2	<10	3	5
111	SX09027-383	<0.2 0.27	<5	25	<5	0.56	-1	7	22	28	1 25	-10	0.00	74	00	0.00	-	440	•	_							
112	SX09027-384	<0.2 0.24	<5	20	-5	0.83	~1	7	20	20	1.20	<10	0.23	/1	80	0.02	5	110	2	<5	<20	12 <0.01	<10	3	<10	2	16
113	SX09027-385	<0.2 0.22	<5	25	~5	0.00	~1	5	71	32	1.20	<10	0.27	90	/5	0.02	5	150	<2	<5	<20	14 <0.01	<10	2	<10	3	8
114	SX09027-385S	24.6 0.29	25	80	~5	0.00	~1	1	70	~10000	1 02	<10	0.30	100	00	0.01	4	80	<2	<5	<20	21 < 0.01	<10	3	<10	3	8
115	SX09027-386	<0.2 0.26	~5	20	~5	0.54	~1	10	26	>10000	1.03	<10	0.06	193	386	0.03	3	220	<2	40	<20	129 <0.01	<10	10	<10	2	24
		40.E 0.E0	~0	20	~5	0.00	~1	10	30	33	1.29	<10	0.21	62	201	0.02	5	110	<2	<5	<20	15 <0.01	<10	2	<10	З	6
116	SX09027-387	<0.2 0.28	-5	30	-5	0.87	-1	0	20	17	1 60	.10	0.40	440	450												
117	SX09027-388	<0.2 0.20	~5	20	~5	0.07	< I .1	9 15	30	17	1.63	<10	0.43	116	152	0.02	6	70	<2	<5	<20	17 <0.01	<10	3	<10	3	12
118	SX09027-389	<0.2 0.40	~5	20	<5	0.35	<1	15	39	25	2.53	<10	0.34	68	338	0.02	4	60	<2	<5	<20	11 0.01	<10	5	<10	2	22
119	SX09027-390	<0.2 0.27	~5	20	<0	0.30	< I .1	14	00	9	1.71	<10	0.18	/2	287	0.02	3	50	<2	<5	<20	8 <0.01	<10	3	<10	2	8
120	SX00027-301	<0.2 0.20	<0	20	<5	0.38	<1	14	40	11	2.00	<10	0.17	78	187	0.02	3	40	<2	<5	<20	12 <0.01	<10	2	<10	2	15
120	0/03027-031	<0.2 0.17	<0	25	<0	0.27	<1	5	54	10	1.18	<10	0.11	47	172	0.01	5	40	<2	<5	<20	10 <0.01	<10	2 -	<10	1	5
121	SY00027-302	-0.2 0.21	-5	25	.E	0.07		~																			
122	SX09027-392	<0.2 0.21	<0 .E	35	<5	0.37	<1	2	58	10	0.55	<10	0.13	55	23	0.01	2	40	<2	<5	<20	10 <0.01	<10	2 -	<10	1	5
122	SX09027-393	<0.2 0.28	<0 .r	85 45	<5	0.09	<1	3	20	8	0.54	<10	0.04	20	94	0.01	3	40	<2	<5	<20	5 <0.01	10	2 -	<10	2	2
120	SX09027-394	<0.2 0.28	<5	15	10	0.10	1	14	32	39	3.08	<10	0.05	15	1212	0.02	6	40	8	<5	<20	4 <0.01	<10	4 .	<10	2	18
124	SX09027-395	<0.2 0.26	<5	55	<5	0.14	<1	2	19	11	0.42	<10	0.06	48	113	0.01	3	40	<2	<5	<20	5 <0.01	<10	2 ·	<10	2	3
125	3709027-390	<0.2 0.26	<5	20	<5	0.09	<1	11	31	9	2.09	<10	0.03	28	101	0.02	4	50	<2	<5	<20	2 <0.01	<10	2 .	<10	1	3
126	SX09027-397	<0.2 0.30	~5	40	-5	0.04	.4	4	00		0 70																
127	SX09027-398	<0.2 0.30	<5	40 60	<0	0.04	<1	4	23	11	0.79	<10	0.03	16	156	0.02	3	50	<2	<5	<20	2 <0.01	10	2 ·	<10	2	<1
128	SX09027-390	<0.2 0.25	<0 .E	40	<5 .r	0.04	<1	1	35	4	0.37	<10	0.02	15	391	0.01	2	40	<2	<5	<20	3 <0.01	<10	2 •	<10	1	<1
120	SX09027-399	<0.2 0.18	<0 .E	40	<5	0.30	<1	4	55	4	0.94	<10	0.13	97	30	0.01	3	40	<2	<5	<20	9 <0.01	<10	2 •	<10	2	8
120	SY00027-400	<0.2 0.16	<0 .E	100	<5 .r	0.20	<1	3	51	2	0.56	<10	0.09	71	48	0.01	2	50	<2	<5	<20	6 <0.01	<10	2.	<10	1	34
100	3703027-4000	<0.2 0.75	<0	190	<5	0.16	<1	4	11	<1	1.46	<10	0.22	324	<1	0.1 9	2	190	8	<5	<20	12 0.08	<10	22 •	<10	10	23
131	SX09027-401	<0.2 0.20	<5	45	~5	0.43	-1	Λ	55	6	0.70	-10	0.17	70	100	0.01	•	40	•	_							
132	SX09027-402	<0.2 0.23	<5	45	10	0.18	21	-	50	11	0.79	<10	0.17	12	103	0.01	3	40	<2	<5	<20	14 < 0.01	<10	2 •	<10	2	11
133	SX09027-403	<0.2 0.22	<5	45	<5	0.62	-1	3	73	12	0.90	<10	0.07	40	07	0.01	3	50	10	<5	<20	/ <0.01	<10	2 •	<10	1	31
134	SX09027-404	< 0.2 0.23	<5	45	<5	0.02	-1	2	54	7	0.02	<10	0.23	02 14	2/	0.01	3	50	<2	<5	<20	18 < 0.01	<10	2 <	<10	2	12
135	SX09027-405	<0.2 0.41	<5	25	~5	0.00	~1	0	54	, 20	1.00	<10	0.03	14 E0	200	0.01	2	40	2	<5	<20	3 < 0.01	<10	2 <	<10	2	<1
			~0	20	~0	0.00	~1	3	54	20	1.99	<10	0.27	53	2/3	0.02	6	40	<2	<5	<20	12 <0.01	<10	5 -	<10	3	16
136	SX09027-406	<0.2 0.34	<5	35	<5	0.63	<1	10	26	16	1 18	~10	0 32	05	136	0.02	6	00	-0	Æ	.00	00 .0.01	10	•		~	
137	SX09027-407	<0.2 0.24	<5	25	<5	0.17	<1	4	74	6	0.40	~10	0.02	55	60	0.02	0	70	<2	<0 .r	<20	20 < 0.01	<10	3 <	<10	3	14
138	SX09027-408	<0.2 0.28	<5	30	<5	0.45	<1	8	32	23	0.43	~10	0.07	70	160	0.01	4	70	4	<5	<20	/ <0.01	<10	3 <	<10	1	7
139	SX09027-409	< 0.2 0.24	<5	35	<5	0.40	~1	8	12	20	1 21	<10	0.17	19	100	0.02	0	90	<2	<5	<20	16 < 0.01	<10	2 <	-10	2	10
140	SX09027-410	<0.2 0.26	<5	30	~5	0.04	~1	5		15	2.00	<10	0.21	115	290	0.02	5	80	<2	<5	<20	15 < 0.01	<10	3 <	-10	2	7
		U.LU	-0	00	~0	0.34	~1	5	61	10	2.00	<10	0.00	115	60	0.02	5	90	<2	<5	<20	31 <0.01	<10	2 <	:10	2	16
141	SX09027-411	<0.2 0.27	<5	20	<5	0.29	<1	6	35	14	2.20	<10	0.19	37	98	0.02	6	90	<2	<5	<20	13 <0.01	-10	2	-10	2	5
142	SX09027-412	<0.2 0.25	<5	30	<5	0.70	<1	8	34	8	1.07	<10	0.26	108	69	0.02	5	110	<2	<5	<20	24 -0.01	~10	2.	~10	2 0	10
143	SX09027-413	<0.2 0.23	<5	15	<5	0.54	1	12	56	9	3,29	<10	0.23	142	85	0.02	ñ	110	4	~5	~20		~10	2 <	-10	2	10
144	SX09027-414	<0.2 0.43	<5	25	<5	0.49	<1	4	36	15	1.57	<10	0.29	90	62	0.02	5	- GO	~2	~5	~20	16 0.01	~10	~ <	-10	2	23
145	SX09027-415	<0.2 0.25	<5	10	10	0.60	4	36	36	15	9.83	<10	0 17	70	568	0.02	11	40	26	~J ~F	~20	10 0.01	<10	4 <	-10	3	20
				-	-		•				0.00	- 10	0.17		000	0.00		0	50	~ 0	~20	0 <0.01	<10	> ک	10	2	28

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2009-0872

BOOTLEG EXPLORATION INC.

146 SX09027-415S 24.8 0.28 25 90 <5 0.91 <1 1 66 >10000 0.96 <10 0.06 181 397 0.03 3 220 <2 40 <20 125 <0.01 40 40	10 0 00
147 SX09027-416 <0.2 0.20 <5 10 10 0.46 2 22 57 21 4 79 <10 0.20 109 130 0.03 6 70 10 -5 -20 15 -0.01 <10 10	<10 2 23
148 SX09027-417 <0.2 0.30 <5 40 <5 0.77 <1 4 33 10 1.38 <10 0.35 99 96 0.02 4 110 -2 -5 -20 15 0.01 <10 -3	<10 3 109
149 SX09027-418 <0.2 0.26 <5 25 <5 0.79 <1 7 45 17 1.17 <10 0.25 71 153 0.02 3 90 <2 <5 <20 31 <0.01 <10 2	<10 3 14
	<10 2 8
<u>QC DATA:</u> Repeat:	
10 SX09027-286 <0.2 0.30 <5 10 <5 0.03 2 13 79 61 6.80 <10 0.15 107 1055 0.01 3 80 4 <5 <20 18 <0.01 <10 3	<10 3 22
19 SX09027-295 <0.2 0.27 <5 55 <5 0.60 <1 4 69 7 1.16 <10 0.10 70 050 0.02 4 30 8 <5 <20 2 <0.01 <10 7	<10 3 54
36 SX09027-311 <0.2 0.28 <5 30 <5 0.43 <1 2 43 5 0.82 <10 0.19 110 680 0.00 0 5 0.0 4 <5 <20 34 <0.01 <10 3	<10 4 35
45 SX09027-319 <0.2 0.26 15 55 <5 0.38 1 8 67 15 1.24 <10 0.18 119 680 0.02 2 50 8 <5 <20 15 <0.01 <10 3	<10 3 25
54 SX09027-328 <0.2 0.39 <5 25 <5 0.54 <1 12 29 50 2.08 <10 0.26 105 474 0.00 4 100 0 5 20 12 <0.01 <10 5	<10 4 95
71 SX09027-345 <0.2 0.25 <5 65 <5 0.48 <1 5 67 26 102 10 0.07 120 0.01 5 70 10 6 <5 <20 16 <0.01 <10 3	<10 3 15
80 SX09027-352 <0.2 0.15 <5 25 <5 0.30 <1 14 97 19 1.67 <10 0.11 70 246 0.01 4 00 4 5 20 14 0.01 <10 3	<10 3 20
89 SX09027-361 <0.2 2.37 <5 35 <5 1.16 2 31 49 54 5.10 <10 1.00 504 4 0.04 20 1050 10 5 20 0 0.01 <10 2	<10 1 15
106 SX09027-378 <0.2 0.31 <5 35 <5 0.41 <1 9 40 10 1 20 <10 0.18 30 77 0.02 4 100 0 5 20 9 0.18 <10 143	<10 4 101
115 SX09027-386 <0.2 0.24 <5 20 <5 0.65 <1 9 34 33 128 <10 0.21 52 109 0.02 5 110 <2 <5 20 8 <0.01 <10 3	<10 2 4
124 SX09027-395 <0.2 0.25 <5 55 <5 0.14 <1 3 18 10 0.37 <10 0.06 48 111 0.01 3 10 <2 <5 <20 15 <0.01 <10 2	<10 3 7
141 SX09027-411 <0.2 0.29 <5 20 <5 0.29 <1 6 35 14 2.32 <10 0.10 36 114 0.00 6 20 2 <5 220 5 2.001 <10 2	<10 1 3
	<10 2 5
Resplit:	
	10 0 00
36 SX09027-311 <0.2 0.27 <5 35 5 0.44 <1 2 49 5 0.77 <10 0.17 125 734 0.02 3 50 2 <5 <20 18 <0.01 <10 3	<10 3 26
71 SX09027-345 <0.2 0.22 <5 60 <5 0.48 <1 5 63 26 119 <10 0.2 145 0.01 4 80 8 <5 <20 15 <0.01 <10 3	<10 3 26
106 SX09027-378 <0.2 0.28 <5 35 <5 0.44 <1 9 36 9 1.52 <10 0.18 41 74 0.02 4 100 -2 -5 -20 0 -0.01 40 2	<10 2 17
141 SX09027-411 <0.2 0.27 <5 20 <5 0.32 <1 7 31 17 2.41 <10 0.21 41 100 0.02 6 100 <2 <5 <20 9 <0.01 <10 3	<10 2 5
	<10 2 8
Standard:	
Pb129a 11.8 0.85 5 60 <5 0.46 54 6 11 1377 1.57 <10 0.67 333 2 0.04 5 430 6226 15 <20 20 0.02 <10 18	-10 0 0000
Pb129a 11.8 0.89 <5 65 <5 0.48 61 7 12 1443 1.60 <10 0.68 385 3 0.04 6 410 6176 15 <20 31 0.04 <10 20	<10 2 9923
Pb129a 11.8 0.85 <5 60 <5 0.45 58 6 12 1443 1.67 <10 0.67 354 2 0.04 5 420 6256 15 <20 26 0.02 <10 10	<10 3 9999
Pb129a 11.8 0.88 5 60 <5 0.47 53 6 11 1400 1.52 <10 0.66 344 2 0.04 5 410 6138 15 <20 28 0.03 <10 17	<10 2 >10000
Pb129a 11.4 0.82 5 65 <5 0.44 55 6 13 1405 1.65 <10 0.63 365 2 0.04 5 420 6218 15 <20 20 0.03 <10 10	<10 2 99/1
Pb129a 11.5 0.80 5 65 <5 0.46 54 6 12 1489 1.57 <10 0.65 346 2 0.04 5 430 6140 15 <20 28 0.03 <10 18	~10 2 2000

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

Appendix V

Analytical Certificates

5.2 – AR / AA Mo Assay

CERTIFICATE OF ASSAY AK 2009-0869

23-Dec-09

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 42 Sample Type: Rock Shipment #: SX09-003 Submitted by: B. Wallace

		Мо	
 ET #.	Tag #	(%)	
1	SX09028-001	0.048	
2	SX09028-002	0.035	
3	SX09028-003	0.035	
4	SX09028-004	0.040	
5	SX09028-005	0.265	
9	SX09028-009	0.047	
21	SX09028-021	0.046	
22	SX09028-022	0.039	
25	SX09028-025	0.033	
27	SX09028-027	0.044	
31	SX09028-030S	0.083	

QC DATA:

Repeat:		
1	SX09028-001	0.045
22	SX09028-022	0.039

S	Star	ndard:	
	40	0	

MP-2

0.28

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

NM/nw XLS/09

> All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada.

CERTIFICATE OF ASSAY AK 2009-0870

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

6-Jan-10

No. of samples received: 140 Sample Type: Core Shipment #: SX09-001 Submitted by: B. Wallace

ET #.	Tag #	Mo (%)	Cu (%)	
9	SX09027-009	0.039	(/0)	
11	SX09027-011	0.009		
13	SX09027-013	0.075		
16	SX09027-016	0.070		
25	SX09027-025	0.004		
26	SX09027-026	0.044		
27	SX09027-027	0.037		
28	SX09027-028	0.046		
30	SX09027-030	0.040		
31	SX09027-031	0.040		
32	SX09027-032	0.042		
34	SX09027-034	0.056		
35	SX09027-034S	0.082		
36	SX09027-231	0.052		
37	SX09027-232	0.055		
38	SX09027-233	0.045		
39	SX09027-234	0.037		
40	SX09027-235	0.067		
41	SX09027-236	0.038		
42	SX09027-237	0.030		
43	SX09027-238	0.041		
44	SX09027-239	0.047		
45	SX09027-240	0.046		
46	SX09027-035	0.044		
47	SX09027-036	0.046		
49	SX09027-038	0.068		
50	SX09027-039	0.058		
51	SX09027-040	0.159		Ban
52	SX09027-041	0.135		
53	SX09027-042	0.065		FCOTECH

LABORATORY LTD. Norman Monteith B.C. Certified Assayer

BOOTLEG EXPLORATION INC. AK09-0870 6-Jan-10 Мо Cu ET #. Tag # (%) (%) 54 SX09027-043 0.082 55 SX09027-044 0.035 56 SX09027-045 0.079 57 SX09027-046 0.090 58 SX09027-047 0.034 60 SX09027-049 0.034 61 SX09027-050 0.042 64 SX09027-052 0.050 65 SX09027-053 0.078 66 SX09027-054 0.228 67 SX09027-055 0.131 68 SX09027-056 0.076 69 SX09027-057 0.153 70 SX09027-058 0.154 72 SX09027-060 0.064 75 SX09027-063 0.031 76 SX09027-064 0.243 77 SX09027-065 0.088 SX09027-068 80 0.280 81 SX09027-069 0.048 82 SX09027-070 0.091 83 SX09027-070S 0.081 84 SX09027-071 0.162 85 SX09027-072 0.111 86 SX09027-073 0.040 88 SX09027-075 0.037 120 SX09027-105S 0.040 1.05 127 SX09027-112 0.038 128 SX09027-113 0.037 132 SX09027-117 0.039 133 SX09027-118 0.043 QC DATA: Repeat: 9 SX09027-009 0.038 30 SX09027-030 0.047 39 SX09027-234

(An	~
(Xm	/
×_ /////	

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assaver

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada. Page 2 of 3

SX09027-044

SX09027-054

SX09027-068

SX09027-112

55

66

80

127

0.036

0.037

0.230

0.278

0.039

BOOTLEG E	870		6-Jan-10	
ET #.	Tag #	Mo (%)	Cu (%)	
Standard:				
MP2		0.281		
MP2		0.279		
Cu120			1.52	

NM/nw XLS/09

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2009-0871

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 149 Sample Type: Core Shipment #: SZ09-002 Submitted by: B. Wallace

ET #	Tog #	Mo	Cu
		(%)	(%)
2	SX09027-127	0.061	
8	SX09027-133	0.043	
9	SX09027-134	0.034	
10	SX09027-135	0.053	
11	SX09027-136	0.111	
13	SX09027-138	0.084	
15	SX09027-140	0.042	
16	SX09027-140S	0.040	1.05
17	SX09027-141	0.037	
19	SX09027-143	0.122	
20	SX09027-144	0.056	
28	SX09027-151	0.063	
30	SX09027-153	0.321	
31	SX09027-154	0.091	
32	SX09027-155	0.193	
33	SX09027-156	0.043	
34	SX09027-157	0.033	
38	SX09027-161	0.032	
39	SX09027-162	0.044	
42	SX09027-165	0.032	
47	SX09027-170	0.040	
53	SX09027-175S	0.083	
63	SX09027-185	0.135	
64	SX09027-186	0.093	
65	SX09027-187	0.041	
67	SX09027-189	0.159	
69	SX09027-191	0.043	
77	SX09027-199	0.059	An 1
87	SX09027-208	0.048	L'HM/m

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamioops, BC V2H 159 Ganada 1 of 2

8-Jan-10

BOOTLEG EXPLORATION INC. AK09-0871

BOOTLEG	EXPLORATION INC. AK09-0871			8-Jan-10
		Мо	Cu	
ET #.	Tag #	(%)	(%)	
88	SX09027-209	0.042		
90	SX09027-210S	0.040	1.06	
100	SX09027-220	0.033		
101	SX09027-221	0.037		
106	SX09027-226	0.037		
107	SX09027-227	0.098		
109	SX09027-229	0.046		
110	SX09027-230	0.092		
113	SX09027-243	0.031		
114	SX09027-244	0.032		
115	SX09027-245	0.045		
116	SX09027-245S	0.081		
117	SX09027-246	0.036		
118	SX09027-247	0.038		
119	SX09027-248	0.031		
121	SX09027-250	0.039		
123	SX09027-251	0.030		
125	SX09027-253	0.030		
126	SX09027-254	0.040		
132	SX09027-260	0.147		
133	SX09027-261	0.032		
139	SX09027-267	0.061		
140	SX09027-268	0.067		
143	SX09027-271	0.871		
144	SX09027-272	0.303		
146	SX09027-274	0.073		
147	SX09027-275	0.077		
QC DATA: Repeat:				
2	SX09027-127	0.062		
34	SX09027-157	0.034		
100	SX09027-220	0.034		
117	SX09027-246	0.036		
143	SX09027-271	0.872		
144	SX09027-272	0.302		
Standard:				
MP2		0.285		
MP2		0.284		
MP2		0.279		
Cu120			1.53	Mark
				ECO TECH LABORATORY LTD

NM/nw

XLS/09

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada. Page 2 of 2

CO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2009-0872

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

4-Jan-10

No. of samples received: 149 Sample Type: Core Shipment #: SX09-002 Submitted by: B. Wallace

	_	Ag	Ag	Cu	Мо	Zn
<u> </u>	Tag #	(g/t)	(oz/t)	(%)	(%)	(%)
2	SX09027-279				0.091	
3	SX09027-280				0.180	
4	SX09027-280S				0.083	
5	SX09027-281				0.032	
7	SX09027-283				0.051	
10	SX09027-286				0.105	
15	SX09027-291				0.044	
16	SX09027-292				0.133	
22	SX09027-298				0.167	
26	SX09027-301				0.068	
27	SX09027-302				0.031	
30	SX09027-305				0.069	
32	SX09027-307				0.056	
36	SX09027-311				0.068	
39	SX09027-314				0.031	
40	SX09027-315				0.080	
41	SX09027-315S				0.084	
44	SX09027-318				0.039	
45	SX09027-319				0.539	
47	SX09027-321				0.054	
49	SX09027-323				0.045	
50	SX09027-324				0.054	
54	SX09027-328				0.045	
57	SX09027-331				0.072	
59	SX09027-333				0.039	
60	SX09027-334				0.087	
61	SX09027-335				0.041	\sim 1

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada, Page 1 of 2

BOOTLEG	EXPLORATION IN	IC. AK09-0872				4-Jan-10	
		Ag	, Ag	Cu	Мо	Zn	
<u> </u>	Tag #	(g/t)) (oz/t)	(%)	(%)	(%)	
62	SX09027-336				0.049		
64	SX09027-338	35.4	1.03		0.036	1.55	
78	SX09027-350S				0.084		
79	SX09027-351				0.038		
82	SX09027-354				0.053		
83	SX09027-355				0.055		
93	SX09027-365				0.049		
95	SX09027-367				0.065		
96	SX09027-368				0.052		
97	SX09027-369				0.035		
104	SX09027-376				0.030		
108	SX09027-380				0.037		
114	SX09027-385S			1.09	0.041		
117	SX09027-388				0.032		
123	SX09027-394				0.117		
127	SX09027-398				0.038		
139	SX09027-409				0.030		
145	SX09027-415				0.056		
146	SX09027-415S			1.07	0.041		
QC DATA:							
Repeat:							
2	SX09027-279				0.090		
16	SX09027-292				0.127		
40	SX09027-315				0.079		
79	SX09027-351				0.038		
139	SX09027-409				0.031		
Resplit:							
36	SX09027-311				0.074		
Standard:							
Cu120				1.54			
MP2					0.280		
MP2					0.281		
MP2					0.281		
PB104		105	3.06		0	1.48	

1.48

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamtoops, BC V2H 159 Canada. Page 2 of 2

Appendix VI

Geophysical Report by SJ Geophysics

LOGISTICAL REPORT

INDUCED POLARIZATION SURVEY

SPHINX PROPERTY, KIMBERLEY AREA, B.C.

on behalf of

BOOTLEG EXPLORATION INC. Suite 200, 16 11th Avenue South Cranbrook, B.C. V1C 2P1

Survey performed: October 10 to 24, 2009

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

November 2, 2009

TABLE OF CONTENTS

1	Introduction	page 1
2	Survey coverage and procedures	1
3.	Personnel	1
4.	Instrumentation	1

Appendix

Statement of	Qualifications
--------------	----------------

rear of report

Accompanying Maps (pdf format)

Chargeability/Resistivity Pseudosections	
Lines 100N, 200N, 300N and 400N	(1:10000)
Lines 500N, 600N, 700N and 800N	(1:10000)
Lines 900N, 1000N, and 1100N	(1:10000)
Chargeability contour plan – UTM coordinates	(1:5000)
Resistivity contour plan – UTM Coordinates	(1:5000)

Accompanying Data Files

One (1) compact disk with all survey data and maps

1. INTRODUCTION

An induced polarization (IP) survey was performed at the Sphinx Property, Kimberley Area, B.C., within the period October 10 to 24, 2009.

The surveys were performed by Scott Geophysics Ltd. on behalf of Bootleg Exploration Inc. This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE AND PROCEDURES

A total of 18.7 km of IP survey was performed at the Sphinx Property.

The pole dipole array was used for the IP survey with an "a" spacing of 100 metres and "n" separations of 1 to 12. The on line current electrode was located to the east of the potential electrodes on all survey lines.

The chargeability and resistivity results are presented on the accompanying pseudosections and contour plan maps. The station locations on the contour map are plotted at the GPS derived UTM coordinates (WGS84).

3. PERSONNEL

Brad Scott was the crew chief on the survey on behalf of Scott Geophysics Ltd. Jim Riley was the representative on behalf of Bootlaeg Exploration Inc.

4. INSTRUMENTATION

A GDD Rx8 receiver and two GDD TxII transmitters were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plan maps is for the interval 690 to 1050 msecs after shutoff.

Respectfully Submitted,

Carry

Alan Scott, Geophysicist

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Bootleg Exploration Inc., at the Sphinx Property, Kimberley Area, B.C., and as presented in this report of November 2, 2009.

The work was performed by individuals qualified for its performance.

I have no material interest in the property under consideration in this report.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970 and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Carry

Alan Scott, P.Geo.

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12Current electrode east of potential electrodes

RES2DINV true depth inverted sections

Resistivity (Ωm)

1N

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12Current electrode east of potential electrodes

RES2DINV true depth inverted sections

(Ω**m)**

Resistivity

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12Current electrode east of potential electrodes

RES2DINV true depth inverted sections

1400

Lines 1N-6N

Date: October 2009 Drawn By: B Scott

Scott Geophysics Ltd.

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12Current electrode east of potential electrodes

RES2DINV true depth inverted sections

Cjargeability (mV/V)

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Grid coordinates: WGS84 UTM

5495200 Resistivity **(**Ω**m)** 5495100 10000 7000 5000 5495000 3000 2000 1500 5494900 1000 700 5494800 500 300 200 5494700 150 100 5494600 500 Bootleg Exploration Inc. Sphinx Property Kimberley area, B.C. Induced Polarization Survey **RES2DINV** inverted resistivity data 500 m depth plan Date: October 2009 Scott Geophysics Ltd.

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Grid coordinates: WGS84 UTM

5495200 Resistivity **(**Ω**m)** 5495100 10000 7000 5000 5495000 3000 2000 1500 5494900 1000 700 5494800 500 300 200 5494700 150 100 5494600 500 Bootleg Exploration Inc. Sphinx Property Kimberley area, B.C. Induced Polarization Survey **RES2DINV** inverted resistivity data 300 m depth plan Date: October 2009 Scott Geophysics Ltd.

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Grid coordinates: WGS84 UTM

5495200 Resistivity **(**Ω**m)** 5495100 10000 7000 5000 5495000 3000 2000 1500 5494900 1000 700 5494800 500 300 200 5494700 150 100 5494600 500 Bootleg Exploration Inc. Sphinx Property Kimberley area, B.C. Induced Polarization Survey **RES2DINV** inverted resistivity data 100 m depth plan Date: October 2009 Scott Geophysics Ltd.

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

Grid coordinates: WGS84 UTM

5495200 Resistivity **(**Ω**m**) 5495100 10000 7000 5000 5495000 3000 2000 5494900 1500 1000 700 5494800 500 300 200 5494700 150 100 5494600 500 Bootleg Exploration Inc. Sphinx Property Kimberley area, B.C. Induced Polarization Survey **RES2DINV** inverted resistivity data 50 m depth plan Date: October 2009 Scott Geophysics Ltd.

Survey Specifications

Survey performed: October 2009

Receiver: GDD GRx8 Transmitter: GDD TxII (x2, 8.6kW) Pulse time: 2 sec Mx receive window: 690-1050 msec

Array: pole-dipole a spacing, n separations: a = 100m, n = 1-12

Current electrode east of potential electrodes

RES2DINV inverted data

