BC Geological Survey Assessment Report 31963

Exploration 2010

Mineral Tenures 513516 & 606445

Diamond Drill Program & Reconnaissance Donna Gold Project

Vernon Mining Division British Columbia

BCGS Maps 082L018 & 019

Latitude 50°07'57" N, Longitude 118°24'27" W

November 2010

Garrett Paul Ainsworth, B.Tech.

Table Of Contents

1.0	INT	RODUCTION	4
	1.1	Location, Access and Title	4
	1.2	Climate and Topography	5
	1.3	Previous Production and Exploration	5
2.0	GE	OLOGY	8
	2.1	Regional Geology	8
	2.2	Property Geology	9
		2.2.1 Lithology	9
		2.2.2 Structure and Metamorphism	9
		2.2.3 Mineralization	10
3.0	201	0 WORK PROGRAM	11
	3.1	Drill Core	11
		3.1.1 Sampling Method	11
		3.1.2 Sample Preparation, Analysis, and Quality Control	12
		<u>3.1.3</u> <u>Results</u>	12
	3.2	Rock Geochemistry	14
		3.2.1 Sampling Method	14
		3.2.2 Sample Preparation, Analysis, and Quality Control	14
		<u>3.2.3</u> <u>Results</u>	15
4.0	CO	NCLUSIONS	15
5.0	RE	COMMENDATIONS	16
6.0	REI	FERENCES	17
7.0	ST/	ATEMENT OF QUALIFICATIONS	19

LIST OF DRAWINGS

- Figure 1 Location
- Figure 2 Mineral Tenure Location
- Figure 3 Historical Exploration Compilation
- Figure 4 Historical Trenches
- Figure 4 Regional Geology
- Figure 5 Property Geology
- Figure 6 Drill Hole Locations
- Figure 7 Drilling Cross Section
- Figure 8 Rock Geochemical Survey

LIST OF TABLES

Table 1	Drill Hole Summary
Table 2	Drill Core Geochemical Results
Table 3	Rock Geochemical Results

LIST OF APPENDICES

- Appendix A Lumby Climate Normals
- Appendix B BC MINFILE Records
- Appendix C Assessment Cost Statement
- Appendix D Drill Logs
- Appendix E ALS Chemex Analytical Reports

1.0 INTRODUCTION

1.1 Location, Access and Title

The property is located in the Vernon Mining Division in south-central British Columbia, and is approximately 60 km east to southeast of Vernon, BC (Figure 1). The approximate 1080 ha property covers the east flank of Monashee Mountain, and its center is about 3.6 km from Keefer Lake at the headwaters of the Kettle River (Figure 2). ESO Uranium Corp. (ESO) holds additional mineral tenures adjacent to the north and east of mineral tenures 513516 and 606445 that are not part of this technical assessment report. Additional property information is included in the table below:

BCGS Maps	082L018 and 082L019
UTM North	5551174 to 5556282 m (NAD 83, Zone 11N)
UTM East	397561 to 400784 m (NAD 83, Zone 11N)
Mining Division	Vernon
Exploration Area	Monashee Mountain
Project Name	Donna Gold Project

Property Location Information:

The property is readily accessible from Vernon along BC Highway #6 for 85 km to the Keefer Lake Forest Access Road. This forest access road is followed northeasterly for 9 km where a four-wheel drive road branches off to the north before a bridge crossing over the Kettle River, and leads 1 km onto the property.

Vernon is the closest major supply center with drilling and heavy equipment contractors, and helicopter and fixed wing airplane available for charter. Food, fuel and limited supplies are available in Lumby (about 50 km from property), and to a lesser extent in Cherryville (about 30 km from the property).

ESO optioned mineral tenure 513516 from Harold Jones (90% owner) and Matthew Yorke-Hardy (10% owner) as stated in ESO's news release of July 15th, 2009:

"The terms include a payment of a total of \$100,000 over 4 years and the issuance of a total of 300,000 shares over 4 years and total work commitments of \$400,000 over 4 years. A net smelter royalty of 2% is to be paid from production and an advanced royalty of \$30,000 per annum, deductible from the royalty will be due on the anniversary of every year following the exercise of the option. A 50% buyout of the royalty for \$1,000,000 and a right of first refusal for the remaining 50% are agreed."

Mineral tenure 606445 was acquired online by ESO on June 22, 2009. The locations of the tenures are plotted on the BC Mineral Titles online map at

www.mtonline.gov.bc.ca. ESO's mineral tenures are shown on Figure 2, which was created by importing TRIM Positional Map data from the BC Integrated Land Management Bureau into geographic information software Geosoft Target. The table below lists the details of the mineral titles:

Property Title Description

Title Name	Tenure #	Area (ha)	Registered Owner	Expiry				
DONNA	513516 724.85		Harold Jones & Matthew York- Hardy	December 1 st , 2013				
DONNATOO	606445	352.17	Benjamin Ainsworth (for ESO Uranium Corp.)	December 1 st , 2013				

1.2 Climate and Topography

Environment Canada's climate normals recorded at Lumby Sigalet Road between 1971 and 2000 are in Appendix A. Daily average temperatures range from -1.8 to -8.0 degrees Celsuis in January and 10.1 to 25.6 degrees Celsius in July. Annual precipitation averages 628.3 mm, with 164.9 cm falling as snow. The ground is generally clear of snow from early May to early October.

The property is characterized by relatively steep slopes that lead up to a somewhat flat summit with elevations ranging from 1281 to 1712 m. The central part of the property was observed to contain thick brush of second growth fir and hemlock. The north, east and west sections of the property have commercial-sized fir, hemlock, pine and spruce that have been partially logged. Rock outcrops are rather sparse, and are better accessed in road cuts and historical trenches across the property.

1.3 Previous Production and Exploration

The property is situated within an area from Cherryville southeast to Needles which has a gold placer history dating from the 1870's to the present. Limited production came from a number of streams in this area. The Kettle River and Yeoward Creek are adjacent to the south and north of the property, respectively, and are listed on BC MINFILE as a past gold placer producer (Appendix B). Other placer gold placer production was reported for Marsh Creek 5 km to the southwest, Barnes Creek 8 km to the southeast, Monashee Creek 5 km to the northwest, and Cherry Creek 12 km to the northwest of the property (Appendix B).

MINFILE records show intermittent small-scale production occurred at Morgan and St. Paul located about 1.4 km and 1.6 km west of the property, respectively

(Appendix B and Figure 2 & 5). The ore mined at these showings was narrow quartz veins (less than 0.6 meters wide) with occasional native gold, disseminated pyrite, some arsenopyrite and smaller amounts of galena, sphalerite and tetrahedrite. A total of 392 tonnes producing 5630 grams gold, 112,406 grams silver, 3720 kilograms of lead, and 1258 kilograms of zinc were produced between 1914 to 1973 at Morgan and St. Paul (Appendix B).

The Monashee is another record in MINFILE that is located about 5.4 km west of the south end of the property. The ore at Monashee was sulphide rich quartz veins where 2193 tonnes of ore was mined to produce 11,415 grams of gold, 50,916 grams of silver, 706 kilograms of lead, and 190 kilograms of zinc between 1939 and 1940 (Appendix B).

The property was discovered in 1973 as a prospect for polymetallic veins, and is shown on the BC MINFILE as Dona (Appendix B and Figure 2).

Dona was discovered by El Paso Mining and Milling Company through a systematic stream-sediment sampling program (Figure 3). El Paso's initial program indicated anomalous arsenic in sediment content originating from the east end of Monashee Mountain and the northwestern flank of Yeoward Mountain (Mackenzie, 1973). Further work included detailed sediment and soil sampling, selective float rock sampling, and an Electromagnetic (EM) Survey. An area of highly anomalous arsenic values in soils coincident in part with gold, silver and lead anomalies varied from about 60 to 180 m in width, and extended at least 1200 m along a strike of N50°W (Figure 3). Gold in soil assayed up to 4200 ppb (Ryback-Hardy, 1973). Heavy sulfide float rock assayed as high as 22.8 g/t gold, and 1700 g/t silver (Figure 3) (Mackenzie, 1973). A moderately strong conductor displaced slightly to the east of the arsenic anomaly was generated by the EM Survey (Ryback-Hardy, 1973).

In 1974 El Paso completed 13 trenches totaling 1915 m, and 19 percussion drill holes totaling 980 m (Figure 3 and Figure 4). A Self-Potential Survey of approximately 6.1 line kilometers was carried out, but did not define any targets. Trenching exposed numerous narrow quartz veins mineralized in gold and silver. Rock assay values reached 29.7 g/t gold and 90 g/t silver over 2.29 m, and 112.4 g/t gold and 39.3 g/t silver over 0.08 m in Trenches 4 and 8, respectively (Figure 4). The average grade of these veins is approximately 0.69 g/t. Occasional small pods of massive arsenopyrite-stibnite yielded the highest values in gold and silver. The best drilling intersection was 35.2 g/t gold from 23.8 to 24.4 m in P-6 (Figure 4) (Jones, 1974).

In 1982 F. Marshall Smith carried out assessment work that included reopening four of the 1974 El Paso trenches. Smith noted that geophysical work completed on the property had not defined any drill targets. The highest rock assays during the 1982 trenching were 140.3 g/t Au and 1.8 g/t Ag over 2.3 m, and 21.7 g/t Au and 0.34 g/t Ag over 2.1 m in El Paso's Trench 1A. Smith indicated that the grade of the deposit within the mineralized horizons is about 4.1 g/t gold with minor silver

values. He determined that trenching had located 10 mineralized horizons of skarned limy cracked crystal tuff and debris flow that had an average thickness of 6 m, and ranged up to 12.8 m (Smith, 1982).

In 1984 L.A. Bayrock completed a work program that comprised 3 trenches totaling 380 m. No high gold or silver values were encountered, although encouraging alteration minerals and sulfide mineralization were observed (Bayrock, 1984).

In 1988 a limited rock and stream sediment geochemical sampling program was conducted by Hi-Tec Resource Management Ltd. The highest rock assay value was 0.70 g/t gold and 442 g/t silver in a well mineralized phyllite and tuffaceous unit. A sediment sample from a stream that drains off of the mineralized zone of the Donna claims yielded 1020 ppb gold and 70 ppm zinc (Collins, 1988).

In 1992, Phelps Dodge commenced a soil geochemical survey comprising 112 sampled locations (Figure 3) to re-establish El Paso's 1973 gold with coincident pathfinder element anomaly. Phelps survey outlined a coincident gold-arsenic soil anomaly of approximately 1200 m long by 200 m wide with gold values up to 389 ppb (Cameron, 1992).

Phelps Dodge expanded their soil geochemical survey grid, and sampled bedrock in reopened and new trenches in 1993 (Figure 3 and Figure 4). The gold-arsenic soil anomaly was expanded to 2000 m long by up to 300 m wide with gold values up to 3470 ppb. The highest bedrock sample was 8.1 g/t gold and 253.5 g/t silver over a 2 m chip sample in El Paso's Trench 6. Rock samples recovered from trenching contained slightly anomalous gold throughout that was related to low angle shears with high gold values (Fox, 1993).

Cameco Corporation completed geological mapping, geochemical and geophysical surveys, and diamond drilling on Monashee Mountain, which partially extends onto ESO's mineral tenures 513516 and 606445. There soil geochemical survey shows that gold is anomalous to strongly anomalous at several locations on ESO's property. In 1994, Cameco drilled MON4-1 to 99.5 m at an angle of -50° to the northeast on mineral tenure 606445 (Figure 3), which returned a maximum gold concentration of 29 ppb over 0.5 m (Melrose, 1995).

In 1996 James W. McLeod conducted a limited diamond drill hole program. Three AQ-size holes totaling about 180 m were drilled on the property (Figure 3 and Figure 4). The best intersection was 10.1 g/t gold and 6.2 g/t silver over 0.6 m from 14.3 to 14.9 m in hole 96-1 (McLeod, 1996). Very few core samples were analyzed due to the lack of funds.

From 1999 to 2001 Harold M. Jones carried out biogeochemical surveys on the property. The 1999 and 2000 surveys acted as pilot tests to assess the usefulness of a biogeochemical survey on the property. The survey area covered the known gold-base metal mineralized zone established from previous exploration, and confirmed the presence of elevated values of gold pathfinder elements (silver, arsenic, antimony,

cadmium and manganese) from specific foliage sampling (Jones, 2000, 2001). The 2001 survey expanded the area of anomalous pathfinder elements south of the known gold-base metal mineralized zone (Jones, 2002).

2.0 GEOLOGY

2.1 Regional Geology

The oldest rocks in the region belong to the Proterozoic Monashee Complex, which form the basement to the Monashee Mountains. These pericratonic rocks are composed largely of amphibolite and gneiss (Koffyberg, 2006). Figure 5 shows the regional geology of the area.

The Monashee Complex is overlain unconformably by a west-northwest trending inter-layered package of Paleozoic and Mesozoic (Carboniferous to Permian – possibly Triassic) sedimentary and volcanic rocks of the Thompson Assemblage, which was formerly referred to as the Cache Creek Group. This sequence is believed to have undergone sub-greenschist facies metamorphism synchronously with Jurassic to Cretaceous orogenic events with some deformation having occurred before deposition of the Upper Triassic sediments and volcanics (Jones, 2002).

The Thompson Assemblage appears unconformably overlain to the north of Monashee Mountain by Triassic age mixed sediments and volcanics of the Slocan Group, and volcanics of the Nicola Group. These Triassic mixed sediments and volcanics exhibit low grade green schist metamorphism due to regional causes (McLeod, 1996).

The Columbian Orogeny from Middle Jurassic to Cretaceous resulted in calc-alkaline plutonism represented by the Nelson Intrusions. The plutons from this event are exposed to the south of Monashee Mountain. The Nelson Intrusions are found within the Thompson Assemblage as dykes and small intrusive bodies of mostly granodiorite and diorite (rhyodacite to andesite) composition (Koffyberg, 2006; McLeod, 1996).

Tertiary (Miocene to Pliocene) basaltic flows of the Chilcotin Group are present west of Monashee Mountain as cap rock or as valley flows. Fault bounded blocks of basalt are common, as they were likely down-dropped along low angle normal faults adjacent to high grade metamorphic Okanagan and Monashee Complexes (McLeod, 1996).

Precious and base metal deposits in the region are thought to be controlled by Eocene extensional faults. Polymetallic mesothermal quartz veins are lead-rich, and contain associated gold, silver, copper, zinc, antimony and arsenic. In several parts of the region where these polymetallic quartz veins occupy low angle Eocene

structures, they are interpreted to be root zones of listric normal faults. At shallow to intermediate structural levels these faults are potential host structures for epithermal previous metal veins, replacements and stockworks that could support a low grade bulk tonnage deposit (Fox, 1993).

2.2 Property Geology

2.2.1 Lithology

The property has little outcrop exposed, and has been geologically mapped based on knowledge of the regional geology, historical trenching, and geochemical survey traverses by the author. Figure 6 shows the geology of the property. Smith (1986) best summarizes the geology in the area of the historical trenches as quartz latite to dacite flows amongst interbedded sediments with varying calcareous pyritic interbeds, albitic tuffs and tuffaceous limestone that have been intruded by dioritic intrusives.

The southwestern portion of the property is underlain by the Thompson Assemblage, while the north and east portions are underlain by the Slocan and Nicola Groups.

The Thompson Assemblage is observed on the property as interbedded dark grey argillite (calcareous argillite and limestone west of historical trenches), buff to grey felsic volcaniclastic rocks and dacitic tuff (Fox, 1993).

The Slocan Group is observed as interbedded grey, green and buff phyllite and shale that is overlain by hornblende-bearing, massive to poorly bedded latite tuff of the Nicola Group (Fox, 1993).

A fine to medium grained, equigranular, hornblende diorite and quartz diorite forms a northwesterly striking elongate intrusion, which is partially conformable with the enclosing sedimentary rocks. Fine grained biotite-rich diorite dikes and small equigranular granitic dikes cut both the sedimentary rocks and hornblende diorite intrusion (Fox, 1993). Drilling in 2010 expanded the diorite unit into a south facing bowl shape based on diorite intersected and its apparent relationship with a strong arsenic in soil anomaly.

2.2.2 Structure and Metamorphism

Rocks underlying the property are intensely deformed, and the area has undergone a period of cleavage formation and fold development (Thompson, 1988). The Thompson Assemblage rocks have been isoclinally folded about northwesterly-striking axes with folds overturned to the northeast. In proximity to the historical trenches, a northwesterly isoclinal syncline that plunges at about 15° northwest

appears to have been refolded about northeasterly-striking axes. Northwesterlystriking axial planar cleavage from early folding of the Thompson rocks is common, whereas the northeasterly folds area observed without accompanying axial planar fabric (Fox, 1993).

On the northeast portion of the property Slocan Group rocks have a well developed penetrative fabric striking at 80° and dipping moderately southwest. This foliation is cut by a subvertical fracture cleavage striking to the northwest, which is commonly infilled with quartz and calcite (Fox, 1993).

Shear zones exposed in the historical trenches were observed to postdate the folding events. The shear zones are best developed in the hornblende diorite intrusions as shallow dipping structures that contain boudinaged sulphide-bearing quartz veins with elongation in a northerly direction. Poorly preserved cataclastic fabric in shear zone wallrock with a flat to shallow dipping fracture cleavage is common in historical trenches (Fox, 1993).

A northerly-striking fault juxtaposes calcareous argillite and limestone against siliceous siltstone on an exposed road-cut along a trail to the northern trenches (Fox, 1993).

All rocks in the district are partially skarnified with actinolite and clinozoisite the most common alteration mineral in the sediments and limy tuffs. The flows do not appear to be the sole cause of the alteration, as these limy rocks are themselves altered with epidote, clinozoisite, and some muscovite (Smith, 1986). Emplacement of sub-concordant intrusive sections has likely alterated plagioclase feldspars to chlorite and sericite, which are often observed on quartz veinlet walls (McLeod, 1996).

2.2.3 Mineralization

Flat to shallow-dipping shears within the diorite intrusive exposed in some of the trenches host quartz veins, which in places contain pods and irregular masses of sulphides such as arsenopyrite, pyrite, pyrrhotite, stibnite, galena, minor chalcopyrite, tetrahedrite-tennantite, and possibly sphalerite. Thickness of these sulphide bodies ranges from a few millimeters to a maximum of about 10 cm, and do not exceed a few meters in length. Adjacent to the sulphide quartz veins and shears are irregularly distributed silicified zones that contain disseminated pyrite up to 2% (Fox, 1993).

Another location of mineralization occurs at the interface where sediments are overlain by rubble of tuffaceous material rich in lime with varying amounts of sulphides and quartz. The sulphides occur as finely disseminated grains, and in pods or masses parallel to the bedding (Smith, 1986).

Jones (2002) summarizes the mineralization as distinctive hematite-rich, stacked, stockwork-like zones within the intrusive and extrusive units. The sulphide-bearing

quartz veins (or silicified zones) typically strike between N20°E and N45°W, and dip 20-45° west or southwest; a small amount have a very low dip angle. Most of the veins follow the bedding (or shearing parallel to bedding), but some are related to crosscutting fractures or faults. The veins are very irregular, and show offsets from 6 to 60 cm on crosscutting fractures (Jones, 2002).

3.0 2010 WORK PROGRAM

Drilling comprised 850 m of NQ core with NW casing in 7 holes (D10-1 to D10-7) between September 8th and September 19th, 2010. Field preparation for the drill program took place from August 31st to September 4th, 2010. Hardcore Diamond Drilling of Penticton, BC was the contractor, and utilized an Atlas Copco CS-1000 diamond drill for this program. The drill crew worked two 12-hour shifts per day. All holes were tested for dip deviations using acid tests. The core was logged by Garrett P. Ainsworth, project geologist with ESO Uranium Corp. All drill site preparation, road access, and reclamation was performed by the drill contractor's D7 Caterpillar.

The core is located at the Lodge Inn Retreat at 63 Begbie Road in Cherryville, BC. The purpose of the drill program was to test the area of historical trenching (D10-1 to D10-5), and geochemically anomalous areas (D10-6 and D10-7). The drill hole summary is shown in Table 1, and drill hole locations are shown in Figure 7.

In addition, prospecting and reconnaissance rock geochemical sampling was carried out in the area of the East Branch of Yeoward Pup (Figure 9) on September 5th and 6th, 2010. Previous work by ESO in this area identified anomalous gold and pathfinder elements in soil and stream sediments. Three representative rock samples were recovered from bedrock at two different locations.

A Garmin GPSmap 60CSx® was utilized to locate all drill hole and rock sample locations, as well as roads and traverses travelled. The UTM Co-ordinate system was used with map datum NAD83 in zone 11N. The assessment cost statement is in Appendix C.

3.1 Drill Core

3.1.1 Sampling Method

Drill core received to the core logging facility in Cherryville was initially checked to ascertain that all core depths were correct. The core was then logged with a Panasonic Tough Book Laptop where major/minor geology, alteration, structure, mineralization, and sample intervals were recorded. Sampling intervals range from 0.5 to 2 m in core length. The drill logs are included as Appendix D.

Whenever favorable structure, alteration, and/or mineralization was observed in the core it was halved with a core splitter. A total of 313 drill core samples were recovered from 7 drill holes during the drill program from September 8th to 19th, 2010. Each sample was collected in a 12" by 20" six mil poly ore sample bag, which was sealed with a zap strap. The drill core samples were transported with the ESO project geologist to ALS Chemex in North Vancouver for analysis.

3.1.2 Sample Preparation, Analysis, and Quality Control

The drill core samples were logged into ALS Chemex on September 20^{th} , 2010. Sample preparation in the lab involved crushing the samples to 70% passing 2 mm, and then pulverizing a split of up to 250 g to 85% passing 75 μ m.

All samples were fire assayed as a 30 g (nominal) aliquot, and the fire assay beads were analyzed by inductively-coupled plasma mass spectrometry (ICP-MS) techniques (ALS Group Au-ICP21). Samples over 1 ppm gold were re-assayed as a 30 g (nominal) aliquot of the original pulp, and the fire assay bead was measured gravimetrically (ALS Group Au-GRA21).

A 33 element analysis was done on each sample with a four acid digestion followed by ICP-MS techniques (ALS Group ME-ICP61). Samples over 100 ppm silver were analyzed Ore using a higher range of detection limits (ALS Group Ag-OG62). The ALS Chemex certificates of analysis are included in Appendix E.

ALS Chemex has developed and implemented a Quality Management System (QMS) that operates under global and regional quality control teams that execute and monitor ALS Chemex's various quality assurance and quality control programs. These programs are audited both internally and by outside parties in order to meet their stringent accreditation of ISO 9001:2000 for the provision of assay and geochemical services according to QMI-SAI Global Management Systems Registration. The laboratory has also been accredited to ISO 17025 standards for specific laboratory procedures by the Standards Council of Canada (SCC).

3.1.3 Results

Gold and silver mineralization has been identified in 6 out of 7 drill holes as broad anomalous zones (greater than 0.1 ppm gold) with higher grade veining. High grade gold and silver values appear to be confined to narrow sulphide mineralized quartz veins (less than 10 cm) with carbonate rich selvages. Anomalous to low grade gold and silver values are found over several meters in carbonate rich skarn, and diorite. Shale and sandstone units typically have gold and silver values at background levels.

Pathfinder elements that show an association with the gold-silver zones includes a population of anomalous copper, lead, and zinc values and a second population with

anomalous arsenic, antimony, and zinc values. These values are reflected in stream sediment and soil geochemical anomalies shown in the earlier regional and detailed sampling programs. The two populations of pathfinder elements suggest that gold was emplaced in multiple mineralizing events.

D10-1 was drilled to test the numerous narrow gold and silver mineralized quartz veins found in historical Trench 4. Additionally, an unsuccessful attempt was made to intersect the projected Nelson pluton intrusion for gold porphyry potential. The hole collared in skarn that is intruded by diorite to 102.80 m. This is underlain by Triassic Nicola – Slocan Group calcareous shale and sandstone to the end of hole at 297.33 m. Occasional fining upward sequences were noted in the Triassic sediments, which may be indicative of distal turbidite deposition within a deep sea environment. D10-1 contains two anomalous gold zones that include 0.21 ppm Au over 32.1 m (10.4 to 42.5 m), and 0.18 ppm over 4.8 m (64.2 to 69.0 m).

D10-2 was drilled to test numerous narrow gold and silver mineralized quartz veins found at the intersection of historical Trenches 3 and 5. The hole collared in skarn that is intruded by diorite and by younger cross cutting mafic dykes to 58.95 m. This is underlain by calcareous shale to 93.57 m. This drill hole contains three anomalous gold zones that include 0.11 ppm Au over 10.0 m (10.5 to 20.5 m), 0.10 ppm Au over 12.35 m (25.75 to 38.1 m), and 0.12 ppm Au over 17.7 m (41.3 to 59.0 m).

D10-3 was drilled up slope and northwest of D10-2 to test an area where free gold in soil had been discovered by a past employee of El Paso Mining and Milling Company (Harold Jones). The hole collared in skarn that is intruded by diorite to 65.90 m. Skarn and calcareous shale are increasingly intercalated towards their contact, where the hole terminates in calcareous shale at 87.48 m. Only narrow mineralized quartz veins were sampled, so geochemical data to show wide anomalous gold zones is not presently available. The best result in this hole is 0.82 ppm Au over 0.65 m (16.35 to 17.0 m).

D10-4 was drilled to test a west dipping hematite shear with lenses of massive sulphides up to 0.40 m thick, and other mineralized quartz veins in historical Trench 6. The drill hole intersected skarn that is intruded by diorite to 64.25 m. The hematite shear was intersected from 14.8 to 15.3 m, and assayed 19.35 ppm Au and 287 ppm Ag over 0.5 m. The skarn unit is underlain by calcareous sandstone to 77.2 m, which is underlain by calcareous shale to 93.57 m. This drill hole contains several narrow zones anomalous with gold, and two wider anomalous gold zones that include 0.50 ppm Au over 30.8 m (11.7 to 42.5 m), and 1.45 ppm Au over 1.6 m (62.7 to 64.3 m).

D10-5 was drilled as a data infill hole between D10-1 and D10-4 to test for potential gold and silver mineralized quartz veins. The hole collared in skarn and calcareous sediments that are intruded by diorite to 72.6 m. This is underlain by calcareous sandstone to 78.5 m, which is underlain by calcareous shale to 90.53 m. This drill hole contains two anomalous gold zones that include 0.42 ppm Au over 3.6 m (28.0 to 31.6 m), and 1.56 ppm Au over 7.5 m (37.1 to 44.6 m).

D10-6 is located about 800 m west of the historical trenches, and was drilled to test a gold soil anomaly that was delineated in July 2010 by ESO. The hole collared in calcareous shale to the end of the hole at 78.33 m. No significant gold mineralization was intersected in this hole. The best result is 0.04 ppm over 0.5 m (43.5 to 44.0 m).

D10-7 is located about 1000 m west of the historical trenches, and was drilled to test a very strong arsenic soil anomaly with values up to 2750 ppm (Ainsworth, 2010) that was delineated in July 2010 by ESO. The drill hole collared in coarse to medium grained diorite that contains skarn to 102.6 m. This sequence is underlain by a medium grained granodiorite to 108.81 m. The arsenic soil anomaly drilled at this location connects with anomalous arsenic in soils in the area of the historical trenches to the east (Ainsworth, 2010). The mineralized diorite intrusive and skarn units intersected at D10-7 and in the area of historical trenching suggests that the arsenic soil anomaly may be associated with this mineralized geological sequence. This drill hole contained several narrow zones anomalous with gold with a best result of 1.89 ppm Au over 0.5 m (30.75 to 31.25 m).

All of the drill core geochemical results are presented in Table 2. The gold, silver, and pathfinder element results are shown in the drill logs in Appendix D, and the laboratory geochemical assay reports are in Appendix E.

3.2 Rock Geochemistry

3.2.1 Sampling Method

A total of 3 rock samples were recovered in the area of the East Branch of Yeoward Pup (Figure 9) on September 5th and 6th, 2010. Sampling was carried out as grab samples from iron stained quartz vein bedrock with trace pyrite at two locations. The rock samples were transported by the ESO project geologist to ALS Chemex in North Vancouver for analysis.

3.2.2 Sample Preparation, Analysis, and Quality Control

The rock samples were logged into ALS Chemex on September 20th, 2010. Sample preparation and analytical methods are the same as for the drill core in section 3.1.2. The ALS Chemex certificates of analysis are included in Appendix E.

Quality control measures used in the analysis of rock samples are the same as per section 3.1.2.

3.2.3 Results

The rock samples were recovered from quartz vein bedrock (D-10-3 to D-10-5) at two locations adjacent to the East Branch Yeoward Pup. All of the quartz rock samples contained trace pyrite, which has subsequently resulted in strong iron oxide staining on the exposed surfaces and within vugs. All three rock samples returned background levels for gold and all pathfinder elements.

The analytical results of the rock samples are in Table 3.

4.0 CONCLUSIONS

Exploration in September 2010 comprised NQ diamond drilling of 850 m in seven drill holes within mineral tenure 513516, and reconnaissance rock sampling at the East Branch of Yeoward Pup within mineral tenure 606445.

Five drill holes (D10-1 to D10-5) were located in an area that has been historically trenched, and 2 drill holes (D10-6 and D10-7) tested gold and arsenic soil anomalies west of the trenches. Gold mineralization was identified in 6 out of 7 drill holes as broad anomalous zones (greater than 0.1 ppm gold) with higher grade veining. The results indicate a strongly anomalous zone that extends west from the trenching and is open (as yet undrilled) further to the west along the soils anomaly.

Highlights of the September 2010 drill program include:

- D10-1 contains two anomalous gold zones that include 0.21 ppm Au over 32.1 m (10.4 to 42.5 m), and 0.18 ppm over 4.8 m (64.2 to 69.0 m);
- D10-2 contains three anomalous gold zones that include 0.11 ppm Au over 10.0 m (10.5 to 20.5 m), 0.10 ppm Au over 12.35 m (25.75 to 38.1 m), and 0.12 ppm Au over 17.7 m (41.3 to 59.0 m);
- D10-3 contains several narrow zones anomalous with gold with a best result of 0.82 ppm Au over 0.65 m (16.35 to 17.0 m);
- D10-4 contains several narrow zones anomalous with gold, and two wider anomalous gold zones that include 0.50 ppm Au over 30.8 m (11.7 to 42.5 m), and 1.45 ppm Au over 1.6 m (62.7 to 64.3 m);
- D10-5 contains two anomalous gold zones that include 0.42 ppm Au over 3.6 m (28.0 to 31.6 m), and 1.56 ppm Au over 7.5 m (37.1 to 44.6 m);
- D10-7 contained several narrow zones anomalous with gold with a best result of 1.89 ppm Au over 0.5 m (30.75 to 31.25 m).

All drill holes in the area of the historical trenches intersected broad anomalous gold zones with higher grade veining. Drill hole D10-7 is located 1000 m to the west of the historical trenches, and represents a similar geological environment with gold

mineralization. A very strong arsenic in soil anomaly links the area of historical trenches and D10-7.

Rock samples D-10-3 to D-10-5 returned background levels for gold and all pathfinder elements. Reconnaissance rock sampling did not locate the source for anomalous gold and pathfinder elements found in soil and stream sediments in the area of the East Branch of Yeoward Pup.

5.0 **RECOMMENDATIONS**

An induced polarization survey should be completed over the area historically trenched in order to map the subsurface distribution of mineralization beneath the grid coverage. A subsequent induced polarization survey should cover the area between the historical trenches and drill hole D10-7. Drill targets in this area should be selected based on geophysical signatures that confirm mineralization within the area of the historical trenches. The data produced from these geophysical surveys should be used in conjunction with past geochemical data to finalize the selection of diamond drill targets. The arsenic in soil anomaly that connects the historical trenches and D10-7 should be tested further as it may represent the mineralized diorite intrusive and skarn units.

Drill targets should continue to be diamond drilled with at least NQ-size holes to maximize core recovery. Drill holes should only be completed on high priority targets that are developed through the geophysical and geochemical data. Continued attempts should be made to intercept the possible calc-alkaline intrusive pluton unit below the inter-layered sedimentary, extrusive, and intrusive dyke/sill rocks. The rationale to target the intrusive pluton includes the possibility of intercepting mineralized saddle veins at depth within Thompson Assemblage rocks, and to investigate the Nelson pluton intrusion for gold porphyry potential.

A detailed soil geochemical survey should be conducted in the area of the Yeoward Pup East Branch. This area lies between L14 and L19 on the 2010 soil survey grid, and has anomalous gold and pathfinder element concentrations in soils and stream sediments. The proposed soil sample grid is about 500 m by 500 m comprising about 200 sample locations.

6.0 **REFERENCES**

- Ainsworth, G.P. September 2009. Reconnaissance Geochemical Sampling and Physical Work, Donna Project. Unpublished Report by G.P. Ainsworth, B.Tech. Geological Branch Assessment Report.
- Ainsworth, G.P. August 2010. Detailed Soil Geochemical Sampling, Donna Gold Project. Unpublished Report by G.P. Ainsworth, B.Tech. Geological Branch Assessment Report.
- Bayrock, L.A. September 1985. Geological Report, Dona and Irene Claims, Vernon Mining Division, British Columbia, Monashee Mountain Area. Unpublished Report by L.A. Bayrock, Ph.D., P.Geol. British Columbia Geological Branch Assessment Report 14,567.
- Cameron, Robert S. September 28, 1992. Soil Geochemical Report on the Donna 1 to 17 Claims, Vernon Mining Division. Unpublished Report by Phelps Dodge Corporation of Canada Limited. British Columbia Geological Branch Assessment Report 22,538.
- Collins, Denis A. July 1988. Report on the Dona and Irene Claims, Keefer Lake Area, Vernon Mining Division, British Columbia. Unpublished Report by Hi-Tech Resource Management Ltd. British Columbia Geological Branch Assessment Report 17,663.
- Fox Geological Consultants Ltd. February 15, 1993. 1992 Project Report, Donna Property, Vernon Mining Division. Unpublished Report by Phelps Dodge Corporation of Canada Limited. British Columbia Geological Branch Assessment Report 22,931.
- Koffyberg, Agnes. November 30, 2006. Assessment Report on the 2006 Geochemical, Geological and Trenching Program, Morgan Showing, St. Paul Property, Vernon Mining Division, British Columbia. Unpublished Report by Discovery Consultants. British Columbia Geological Branch Assessment Report 29,067.
- Mackenzie, W.J. December 6, 1973. Summary Report 1973 Fieldwork, District Gold Study, Project 186-2603. Unpublished Report by El Paso Mining and Milling Company.
- McLeod, James W. September 16, 1996. Geological Drilling Report on the DNA Mineral Claims, Vernon Mining Division, British Columbia. Unpublished Report by James W. McLeod, P.Geo. British Columbia Geological Branch Assessment Report 24,552.

- Melrose, D.L. February, 1995. 1994 Diamond Drilling Report, Monashee Mountain Project. Unpublished Report by Cameco Corporation. British Columbia Geological Branch Assessment Report 23,916.
- Ryback-Hardy, V. November 21, 1973. Geochemical and Geophysical Report on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining and Milling Company.
- Jones, Harold M. October 21, 1974. Assessment Report of the Percussion Drilling and Physical Work on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining and Milling Company.
- Jones, Harold M. December 4, 1974. Report on the Exploration Program on the Dona Group of Claims, Keefer Lake Area, BC. Unpublished Report by El Paso Mining and Milling Company.
- Jones, Harold M. February 22, 2000. Biogeochemical Report on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,245.
- Jones, Harold M. May 20, 2001. Assessment Report, Additional Biogeochemical Sampling, on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,630.
- Jones, Harold M. May 2, 2002. Assessment Report, Geological Mapping and Biogeochemical Sampling on the DNA 1 & 3 Claims, Keefer Lake, Lumby Area, BC, Vernon Mining Division, 82L1W. Unpublished Report by Harold M. Jones, P.Eng. British Columbia Geological Branch Assessment Report 26,866.
- Smith, F. Marshall. November 28, 1982. Report on the Evaluation with Recommendations of the Dona and Irene Claims, Vernnon Mining Division, Monashee Mountain Area. Unpublished Report by F. Marshall Smith Consulting Geologist Geochemist. British Columbia Geological Branch Assessment Report 10,920.
- Thompson, David A. November 1988. Report on the Dona and Irene Claims, Keefer Lake Area, Vernon Mining Division, British Columbia. Unpublished Report by Hi-Tec Resource Management Ltd. British Columbia Geological Branch Assessment Report 18,147.

7.0 STATEMENT OF QUALIFICATIONS

Garrett Paul Ainsworth 1201-1438 Richards Street Vancouver, BC, V6Z 3B8 Telephone: 604-657-3235

I, Garrett Ainsworth, do hereby certify that:

- 1. I am a geologist in the mineral exploration industry and have been employed by ESO Uranium Corp. since June 2007.
- 2. I graduated from the British Columbia Institute of Technology with a Diploma of Mining in 2000, and a Bachelor of Technology in Environmental Engineering with honours in 2004. In addition, I have completed all of the coursework for a Bachelor of Science in Geology from the University of London, England. I am currently completing my last requirement for this geology degree, which is my dissertation on the Donna Gold Project.
- I have been involved in mineral exploration for gold, copper, uranium, and diamonds in Canada, United States, and West Africa intermittently since 1996. From 2001 to 2007 I conducted environmental investigations for mining companies and other industrial corporations. I have concentrated solely on mineral exploration since June 2007.
- 4. I conducted the 2010 detailed soil geochemical sampling on the property, and am responsible for the preparation of this report.
- 5. I have an interest on this property through ESO Uranium Corp. as stated in the terms of the option in agreement in section 1.1.

Dated at Vancouver, British Columbia, this 30th day of November 2010.

lin R

Garrett Ainsworth, B.Tech.

FIGURES

00											
	URANIUM CORP.										
	1600000										
	1400000										
	1200000										
	1000000										
	800000										
2	600000										
	400000										
00											
	ESO Uranium Corp.										
	Figure 1 - Location Donna Gold Project Monashee Mountain, BC										
	GPA - November 2010										

LE	GE	ND

GPA - November 2010

TABLES

TABLE 1

Drill Hole Summary

Table 1 2010 Drill Hole Summary Donna Gold Project Monashee Mountain

Drill Hole	UTM Easting (NAD83, Z11)	UTM Northing (NAD83, Z11)	Azimuth	Dip	Depth (m)	Target	Notes
D10-1	399520	5554613	270	-75	297.33	Trench #4	47 m NE of main trail
D10-2	399644	5554603	270	-75	93.57	Trench #5	Trench #5 & #3 intersection
D10-3	399606	5554614	270	-75	87.48	Trench #5	NW of Trench #5 & #3 Intersection
D10-4	399352	5554752	90	-60	93.57	Trench #6	Trench 6 Extention
D10-5	399450	5554684	90	-60	90.53	Infill between D10-1 & D10-4	@ intersection with main trail
D10-6	398504	5554814	90	-70	78.33	Au soil anomaly between L11 & L12	
D10-7	398341	5554601	-	-90	108.81	As soil anomaly between L9 & L10	
Total Meters	Drilled =				849.62		

TABLE 2

Drill Core Geochemical Results

Table 2 Drill Core Geochemical Results Donna Gold Project Monashee Mountain, British Columbia

	Sample									1	Paramete	er								
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-1	36001	3.70	5.00	0.004	1.7	6.2	11	520	0.5	<2	13.7	0.6	13	141	34	3	10	0.76	20	1.58
D10-1	36002	5.00	7.00	0.004	1	5.71	20	700	0.6	<2	13.5	0.5	10	91	36	3.02	10	0.96	20	1.55
D10-1	36003	7.00	9.00	0.011	4.3	7.04	188	730	0.6	<2	11.15	0.9	14	98	96	3.93	10	1.28	20	1.84
D10-1	36004	9.00	10.40	0.004	1.7	5.87	11	770	0.7	<2	12.8	< 0.5	10	120	40	3.41	10	1.11	20	1.6
D10-1	36005	10.40	10.90	0.225	20.8	6.27	485	1680	0.8	<2	4.12	1.6	10	30	181	3.06	10	4.92	30	0.87
D10-1	36006	10.90	13.00	0.007	2	6.21	42	1130	0.8	<2	10.65	< 0.5	11	99	61	3.37	10	1.53	20	1.76
D10-1	36007	13.00	15.00	0.012	1.4	6.02	72	790	0.7	<2	11.6	0.6	12	109	37	3.11	10	1.4	20	1.75
D10-1	36008	15.00	17.00	0.355	48	5.39	99	910	0.6	<2	12.4	0.6	10	99	78	2.67	10	1.43	20	1.66
D10-1	36009	17.00	19.00	0.004	0.7	6.87	6	1130	0.8	<2	8.96	< 0.5	13	116	67	3.38	10	1.75	20	1.92
D10-1	36010	19.00	20.00	0.016	4.6	6.04	46	940	0.7	<2	9.3	1.6	11	102	52	3.13	10	1.79	20	1.61
D10-1	36011	20.00	22.00	0.108	4.3	6.36	508	930	0.7	<2	9.5	1.6	14	121	53	3.65	10	1.7	20	1.47
D10-1	36012	22.00	23.00	0.011	2.2	6.4	78	1110	0.7	<2	9.26	< 0.5	12	101	47	3.69	10	1.5	20	1.96
D10-1	36013	23.00	24.40	0.004	1.5	6.02	8	860	0.6	<2	11	< 0.5	12	86	58	3.15	10	1.42	20	1.84
D10-1	36014	24.40	26.00	0.019	1.9	5.7	80	680	0.5	<2	14.7	< 0.5	11	117	40	2.7	10	1.02	20	1.86
D10-1	36015	26.00	28.00	0.006	1.6	6.22	47	1030	0.6	<2	8.65	< 0.5	13	97	46	3.18	10	1.43	20	2.63
D10-1	36016	28.00	30.00	0.121	1.3	6.15	1080	1190	0.8	<2	8.86	0.6	11	86	41	2.85	10	1.88	20	1.9
D10-1	36017	30.00	32.60	0.273	2.4	7.18	2490	1460	1.2	<2	6.96	< 0.5	14	40	74	3.57	10	3.69	30	1.22
D10-1	36018	32.60	34.50	1.33	3.4	5.9	>10000	720	1.1	<2	6.21	< 0.5	15	34	23	5.53	10	2.28	30	1.26
D10-1	36019	34.50	36.60	0.143	1.2	7.3	622	720	1.2	<2	6.26	< 0.5	21	46	37	6.75	20	2.15	30	2.59
D10-1	36020	36.60	38.60	0.028	1.3	4.97	58	510	1	<2	10.7	< 0.5	14	30	56	5.43	10	1.36	30	4.5
D10-1	36021	38.60	39.30	1.3	1.8	7.11	5250	640	1.2	<2	8.67	0.6	19	49	40	5.62	20	1.72	30	1.7
D10-1	36022	39.30	41.40	0.1	2.5	7.37	542	680	1.3	<2	6.04	< 0.5	20	40	47	7.09	20	2.18	30	2.64
D10-1	36023	41.40	42.50	0.518	4.1	8.08	995	610	1.3	<2	6.66	1.4	22	38	39	7.18	20	1.78	30	2.83
D10-1	36024	44.80	46.00	0.45	3.4	7.88	1005	940	1.4	<2	5.55	< 0.5	23	37	47	7.28	20	2.74	30	2.9
D10-1	36025	46.10	47.10	0.23	4.3	7.07	553	820	1.4	<2	5.87	1	23	38	32	7.25	20	2.47	30	2.86
D10-1	36026	50.10	51.20	0.801	3.3	7	4960	570	1.3	<2	6.46	0.5	23	37	25	7.82	20	2.42	30	2.04
D10-1	36027	53.70	54.30	0.113	10	6.6	564	1000	0.9	<2	9.2	1.2	15	84	54	4.76	10	1.75	30	2.81
D10-1	36028	54.80	55.60	0.337	1.8	6.67	1040	960	1.1	<2	9.84	< 0.5	14	84	43	4.66	10	2	10	2.55
D10-1	36029	60.60	61.70	0.84	8.5	7.06	3100	580	1.5	2	5.78	0.9	17	38	45	6.26	10	2.57	20	2.34
D10-1	36030	63.00	63.50	0.319	0.8	7.82	541	1090	1.6	2	5.28	< 0.5	19	33	50	6.76	10	3.24	20	2.62
D10-1	36031	64.20	64.70	1.3	5.8	5.68	5550	490	1.2	2	4.89	0.8	12	32	35	5.09	10	2.19	20	1.24
D10-1	36032	64.70	66.00	0.045	0.7	6.93	296	930	1.1	<2	8.24	< 0.5	14	103	46	4.97	10	1.99	20	2.55
D10-1	36033	66.00	67.00	0.104	0.8	7.68	1290	1290	1	<2	9.08	< 0.5	15	127	52	4.32	10	1.88	10	2.11
D10-1	36034	67.00	68.00	0.005	0.5	7.35	13	1070	0.7	<2	9.93	< 0.5	10	106	49	3.95	10	1.5	10	1.92
D10-1	36035	68.00	69.00	0.021	0.5	7.08	93	960	1	<2	9.29	< 0.5	13	101	49	4.72	10	1.81	10	2.48
D10-1	36036	78.50	79.50	0.006	< 0.5	6.01	23	770	0.8	<2	9.38	< 0.5	12	111	48	3.92	10	0.99	10	2.18
D10-1	36037	81.50	82.50	0.13	1.9	5.32	889	940	0.7	<2	10.85	0.5	11	132	93	4.17	<10	1.33	10	2.03
D10-1	36038	83.00	85.00	0.012	0.8	5.88	50	1020	0.7	<2	11.2	< 0.5	8	89	52	3.11	10	1.53	10	1.85
D10-1	36039	85.00	87.00	0.007	1.2	7.02	24	1180	1.1	<2	7.62	< 0.5	10	75	66	3.67	10	2.52	20	1.68
D10-1	36040	87.00	89.00	0.013	1	6.75	221	1200	1	<2	8.4	< 0.5	10	69	57	3.71	10	2.49	20	1.71
D10-1	36041	89.00	91.00	0.013	0.8	6.21	72	1190	0.9	<2	9.25	< 0.5	11	101	65	3.64	10	1.83	10	1.95
Units		ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%		

Table 2 Drill Core Geochemical Results Donna Gold Project Monashee Mountain, British Columbia

	Sample									I	Paramete	er								
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U	V	W	Zn
D10-1	36001	3.70	5.00	674	2	2.26	61	710	<2	0.46	<5	14	1280	<20	0.33	<10	<10	116	<10	115
D10-1	36002	5.00	7.00	545	8	1.35	54	710	4	0.38	5	14	1290	<20	0.31	<10	10	132	<10	110
D10-1	36003	7.00	9.00	812	5	2.25	55	890	816	1.23	852	15	1300	<20	0.4	<10	<10	144	<10	104
D10-1	36004	9.00	10.40	864	33	1.37	59	770	<2	0.45	<5	14	1100	<20	0.32	<10	<10	205	<10	118
D10-1	36005	10.40	10.90	364	2	1.27	16	760	2010	1.35	1895	11	897	<20	0.22	<10	<10	129	<10	36
D10-1	36006	10.90	13.00	547	30	1.44	59	960	8	0.7	15	16	1110	<20	0.35	<10	10	211	<10	110
D10-1	36007	13.00	15.00	649	20	1.43	64	710	<2	0.46	7	15	1020	<20	0.33	<10	<10	155	<10	101
D10-1	36008	15.00	17.00	647	28	1.24	52	770	33	0.37	35	13	1140	<20	0.29	<10	<10	145	<10	100
D10-1	36009	17.00	19.00	452	17	1.72	70	850	<2	0.7	<5	17	1060	<20	0.39	<10	<10	194	<10	93
D10-1	36010	19.00	20.00	658	18	1.35	64	820	7	0.83	20	16	1010	<20	0.35	<10	<10	203	<10	111
D10-1	36011	20.00	22.00	527	8	1.31	66	760	35	1.35	26	16	911	<20	0.36	<10	<10	168	<10	117
D10-1	36012	22.00	23.00	479	2	1.61	62	850	2	0.92	6	17	1210	<20	0.38	<10	<10	166	<10	125
D10-1	36013	23.00	24.40	489	4	1.43	55	720	<2	0.59	<5	15	1410	<20	0.31	<10	<10	146	<10	98
D10-1	36014	24.40	26.00	633	2	1.58	62	660	<2	0.42	5	13	1620	<20	0.3	<10	<10	110	<10	96
D10-1	36015	26.00	28.00	512	6	1.51	67	730	<2	0.42	7	15	1130	<20	0.35	<10	<10	146	<10	104
D10-1	36016	28.00	30.00	618	6	1.47	52	710	3	0.71	7	14	1030	<20	0.31	<10	10	143	<10	95
D10-1	36017	30.00	32.60	786	4	1.75	19	1710	10	1.7	7	19	902	<20	0.33	<10	10	168	10	50
D10-1	36018	32.60	34.50	1085	2	1.32	9	2280	18	2.54	30	26	612	<20	0.38	<10	<10	214	10	58
D10-1	36019	34.50	36.60	1150	1	1.4	12	3340	3	0.88	9	38	677	<20	0.57	<10	<10	329	<10	109
D10-1	36020	36.60	38.60	1235	4	0.68	14	1790	6	0.9	6	19	752	<20	0.32	<10	<10	189	<10	110
D10-1	36021	38.60	39.30	1065	1	1.48	20	2910	6	2.14	21	30	807	<20	0.5	<10	<10	250	10	80
D10-1	36022	39.30	41.40	1195	1	1.56	7	2880	217	1.2	214	31	819	<20	0.51	<10	<10	287	<10	108
D10-1	36023	41.40	42.50	1240	1	1.69	10	3130	490	0.66	486	33	1040	<20	0.54	<10	<10	304	<10	156
D10-1	36024	44.80	46.00	1115	1	1.82	10	3080	180	1.12	179	35	905	<20	0.56	<10	<10	299	<10	107
D10-1	36025	46.10	47.10	1320	1	1.54	7	3120	904	1.03	912	36	799	<20	0.55	<10	<10	300	<10	108
D10-1	36026	50.10	51.20	1200	1	1.28	11	2930	14	3.57	19	33	615	<20	0.48	<10	<10	281	10	82
D10-1	36027	53.70	54.30	834	3	1.21	49	1850	1130	0.93	1140	27	1030	<20	0.44	<10	<10	252	<10	106
D10-1	36028	54.80	55.60	1345	<1	1.7	64	1740	20	1.55	18	26	937	<20	0.44	<10	<10	265	10	74
D10-1	36029	60.60	61.70	1055	<1	1.95	10	2580	737	1.91	683	29	706	<20	0.42	<10	<10	244	<10	88
D10-1	36030	63.00	63.50	1070	<1	1.91	6	2930	18	2.38	13	32	896	<20	0.47	<10	<10	266	<10	87
D10-1	36031	64.20	64.70	857	<1	1.41	6	1950	626	3.39	597	21	680	<20	0.3	<10	<10	184	10	44
D10-1	36032	64.70	66.00	957	4	1.77	50	1720	11	1.09	13	23	991	<20	0.41	<10	<10	209	<10	92
D10-1	36033	66.00	67.00	754	6	1.84	78	850	37	1.53	29	19	1120	<20	0.42	<10	10	173	<10	76
D10-1	36034	67.00	68.00	695	4	1.78	76	840	7	1.22	5	19	1120	<20	0.43	<10	10	189	<10	83
D10-1	36035	68.00	69.00	886	11	1.72	74	1270	7	1.05	6	19	1065	<20	0.38	<10	<10	183	<10	99
D10-1	36036	78.50	79.50	626	5	1.38	91	910	5	0.65	25	16	924	<20	0.35	<10	<10	158	<10	120
D10-1	36037	81.50	82.50	547	30	1.25	109	710	133	1.66	40	14	979	<20	0.3	<10	<10	143	<10	95
D10-1	36038	83.00	85.00	474	18	1.34	73	720	6	0.33	87	14	1145	<20	0.31	<10	<10	154	<10	118
D10-1	36039	85.00	87.00	462	21	1.9	47	1130	6	1.17	38	15	961	<20	0.31	<10	10	158	<10	76
D10-1	36040	87.00	89.00	598	4	1.75	57	1080	7	1.28	54	16	952	<20	0.32	<10	<10	166	<10	84
D10-1	36041	89.00	91.00	499	7	1.58	79	880	2	0.85	44	16	991	<20	0.34	<10	<10	164	<10	100
Units		ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		

Table 2 Drill Core Geochemical Results Donna Gold Project Monashee Mountain, British Columbia

	Sample	Parameter																		
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-1	36042	96.00	97.00	0.004	0.5	5.95	21	1250	0.8	<2	10.25	< 0.5	11	127	56	3.43	10	1.38	10	2.16
D10-1	36043	97.00	98.00	0.007	0.6	6.05	8	1060	0.8	<2	9.26	< 0.5	13	136	57	3.73	10	1.33	10	2.43
D10-1	36044	103.00	104.00	0.005	0.7	5.74	42	1680	0.6	<2	10.1	< 0.5	12	185	45	3.07	10	1.06	10	2.3
D10-1	36045	108.00	109.00	0.025	1.1	5.18	114	1120	0.7	<2	8.14	1.1	10	136	38	3.09	10	1.56	10	1.32
D10-1	36046	113.00	114.00	0.017	0.9	5.91	37	1200	0.8	<2	9.16	0.7	12	171	57	3.47	10	1.65	10	2.1
D10-1	36047	117.00	118.00	0.021	1	6.34	82	760	0.7	<2	9.26	0.6	11	176	46	3.66	10	1.75	10	1.8
D10-1	36048	121.30	121.80	0.009	0.6	5.6	27	1400	0.7	<2	9.73	< 0.5	10	141	46	3.21	10	1.78	10	2.36
D10-1	36049	123.00	123.50	0.005	0.8	5.48	8	1020	0.5	<2	11.75	0.5	10	155	38	2.96	10	1	10	2.03
D10-1	36050	131.00	132.00	0.004	0.5	7.31	10	1490	0.7	<2	8.59	< 0.5	15	301	29	3.53	10	1.14	10	3.03
D10-1	36051	136.60	137.10	0.009	0.5	6.69	47	790	0.7	<2	5.95	0.5	11	112	47	3.9	10	0.76	10	2.56
D10-1	36052	142.00	143.00	0.013	0.9	5.84	13	1250	0.7	<2	8.83	0.5	12	183	44	3.45	10	1.39	10	2.42
D10-1	36053	147.50	148.50	0.004	0.5	6.57	18	1160	0.5	<2	9.26	< 0.5	15	350	32	3.53	10	0.95	10	2.89
D10-1	36054	153.00	154.00	0.004	< 0.5	6.58	12	1090	0.6	<2	9.64	< 0.5	14	244	27	3.29	10	0.87	10	2.93
D10-1	36055	159.00	160.00	0.008	0.6	5.93	14	1150	0.6	<2	9.07	< 0.5	11	169	31	3.12	10	1.11	10	1.98
D10-1	36056	164.40	164.90	0.006	0.5	6.18	9	1140	0.6	<2	9.63	0.6	10	135	36	3.13	10	1.16	10	2.02
D10-1	36057	170.00	171.00	0.006	0.6	5.94	8	1070	0.7	<2	9.92	0.5	10	138	46	3.16	10	1.29	10	2.01
D10-1	36058	176.00	177.00	0.003	0.8	6.56	<5	1010	0.8	<2	5.9	0.7	13	132	54	3.77	10	1.25	10	2.39
D10-1	36059	182.00	183.00	0.024	0.8	6.99	<5	1160	0.8	<2	5.38	0.7	12	129	49	4.28	10	1.29	10	2.64
D10-1	36060	188.00	189.00	0.003	< 0.5	6.83	8	1500	0.7	<2	6.08	< 0.5	14	280	35	3.75	10	1.18	10	3.37
D10-1	36061	194.00	195.00	0.005	0.7	5.66	<5	1290	0.7	<2	8.86	0.7	10	123	54	3.3	10	1.39	10	2.07
D10-1	36062	201.00	202.00	0.003	0.6	5.6	5	1190	0.7	<2	9.2	0.7	10	120	42	3.07	10	1.38	10	2.6
D10-1	36063	208.00	209.00	0.007	0.6	5.87	<5	1110	0.6	<2	11.1	0.6	14	215	45	3.37	10	1.2	10	2.63
D10-1	36064	214.00	215.00	0.003	< 0.5	4.86	11	820	0.6	<2	10.75	1.1	12	120	40	2.73	10	0.99	10	2.01
D10-1	36065	220.50	221.50	0.004	< 0.5	5.72	<5	1200	0.7	<2	9.4	0.9	11	166	44	3.11	10	1.37	10	2.4
D10-1	36066	226.00	227.00	0.005	< 0.5	5.64	7	1220	0.8	<2	6.66	1.2	12	126	46	3.22	10	1.49	10	2.69
D10-1	36067	232.00	233.00	0.003	< 0.5	5.35	14	1290	0.7	<2	9.16	0.8	13	167	40	3.07	10	1.34	10	2.63
D10-1	36068	238.00	239.00	0.003	< 0.5	5.85	5	1220	0.7	<2	8.36	0.6	13	181	46	3.17	10	1.37	10	2.36
D10-1	36069	245.20	245.70	0.007	< 0.5	4.74	24	750	0.6	<2	9.09	0.9	10	121	49	3.03	10	1.22	10	2.06
D10-1	36070	250.50	251.50	0.007	< 0.5	5.24	<5	1190	0.6	<2	9.66	1	12	143	40	2.99	10	1.07	10	2.24
D10-1	36071	256.40	257.50	0.003	< 0.5	6.03	<5	1260	0.8	<2	7.71	1.1	11	119	46	3.29	10	1.25	10	2.5
D10-1	36072	263.00	263.50	0.005	< 0.5	6.04	<5	1270	0.8	3	7.06	1	13	138	50	3.49	10	1.49	10	2.63
D10-1	36073	269.00	270.00	0.006	< 0.5	5.54	<5	1090	0.7	<2	9.97	1.1	12	123	49	3.11	10	1.16	10	2.48
D10-1	36074	273.50	274.00	0.005	< 0.5	5.84	<5	1180	0.7	2	7.67	1	12	165	46	3.38	10	1.38	10	3.02
D10-1	36075	278.30	279.00	0.004	< 0.5	5.1	<5	1140	0.6	<2	9.41	0.8	13	177	46	3.07	10	1.25	10	2.55
D10-1	36076	283.50	284.50	0.005	< 0.5	5.83	<5	1090	0.6	<2	7.98	1	12	129	44	3.4	10	1.32	10	2.5
D10-1	36077	290.20	291.10	0.003	< 0.5	5.67	<5	1080	0.7	<2	7.8	1.2	12	137	47	3.38	10	1.4	10	2.47
D10-1	36078	295.00	296.00	0.003	< 0.5	5.14	8	880	0.5	<2	11.75	0.7	11	182	34	2.71	10	0.99	10	1.93
D10-2	36079	3.70	4.20	0.009	< 0.5	8.69	22	1640	1.2	<2	9.25	0.5	14	61	54	4.75	20	2.31	10	2.41
D10-2	36080	4.20	4.70	0.005	< 0.5	6.91	71	1240	1.1	<2	4.3	< 0.5	16	30	95	5.18	20	3.37	10	1.71
D10-2	36081	4.70	6.10	0.004	< 0.5	7.9	19	1270	1.2	<2	5.16	< 0.5	17	39	63	5.42	20	3.6	10	2.13
D10-2	36082	6.10	7.50	0.003	< 0.5	8.14	12	1870	1.2	<2	6.21	< 0.5	13	32	42	4.96	20	3.79	20	2.23
Units	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%			
	Sampl]	Paramete	er								
----------	------------	--------	--------	------	-----	------	-----	------	-----	------	----------	-----	------	-----	------	-----	-----	-----	-----	-----
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Tl	U	V	W	Zn
D10-1	36042	96.00	97.00	473	1	1.41	99	800	5	1.01	<5	15	980	<20	0.32	<10	<10	152	<10	113
D10-1	36043	97.00	98.00	434	1	1.47	120	840	2	1.26	<5	17	960	<20	0.34	<10	<10	168	<10	119
D10-1	36044	103.00	104.00	523	1	1.72	108	690	7	0.81	<5	14	1140	<20	0.3	<10	10	124	<10	88
D10-1	36045	108.00	109.00	392	<1	0.87	90	640	5	1	22	14	559	<20	0.27	<10	<10	143	<10	147
D10-1	36046	113.00	114.00	418	<1	0.85	109	760	7	1.27	10	15	765	<20	0.33	<10	<10	157	<10	136
D10-1	36047	117.00	118.00	489	<1	0.7	98	700	5	1.47	40	15	655	<20	0.32	<10	<10	142	10	128
D10-1	36048	121.30	121.80	448	<1	0.88	91	720	6	0.8	<5	15	736	<20	0.33	<10	<10	138	<10	109
D10-1	36049	123.00	123.50	614	<1	1.69	83	600	4	0.99	5	12	1095	<20	0.27	<10	<10	100	<10	78
D10-1	36050	131.00	132.00	614	<1	2.62	136	690	5	0.42	<5	16	853	<20	0.38	<10	10	122	<10	95
D10-1	36051	136.60	137.10	360	<1	2.47	75	690	3	1.07	<5	18	553	<20	0.33	<10	10	148	<10	123
D10-1	36052	142.00	143.00	434	1	1.36	120	750	6	1.05	<5	15	791	<20	0.31	<10	10	149	<10	115
D10-1	36053	147.50	148.50	773	<1	2.15	167	690	3	0.46	<5	15	840	<20	0.34	<10	10	131	<10	94
D10-1	36054	153.00	154.00	625	<1	2.38	131	660	4	0.36	<5	15	783	<20	0.34	<10	10	127	<10	86
D10-1	36055	159.00	160.00	555	<1	1.96	84	670	4	0.88	<5	14	671	<20	0.29	<10	10	120	<10	90
D10-1	36056	164.40	164.90	480	<1	1.96	77	690	4	0.63	<5	15	863	<20	0.31	<10	10	130	<10	109
D10-1	36057	170.00	171.00	511	<1	1.67	76	710	4	0.61	<5	14	765	<20	0.32	<10	<10	139	<10	108
D10-1	36058	176.00	177.00	343	1	1.89	86	720	9	0.83	<5	16	597	<20	0.36	<10	10	170	<10	153
D10-1	36059	182.00	183.00	372	<1	2.03	77	880	6	1.05	<5	19	569	<20	0.37	<10	10	173	<10	138
D10-1	36060	188.00	189.00	519	<1	2.14	149	720	4	0.45	<5	16	650	<20	0.36	<10	10	148	<10	103
D10-1	36061	194.00	195.00	447	<1	1.3	86	750	7	1.03	<5	15	755	<20	0.31	<10	<10	151	<10	115
D10-1	36062	201.00	202.00	401	1	1.05	106	710	4	0.7	<5	14	825	<20	0.3	<10	<10	146	<10	115
D10-1	36063	208.00	209.00	566	1	1.63	144	830	5	0.94	<5	14	962	<20	0.3	<10	10	131	<10	108
D10-1	36064	214.00	215.00	388	2	1.27	93	630	8	0.78	<5	12	868	<20	0.27	<10	10	129	<10	108
D10-1	36065	220.50	221.50	429	2	1.42	104	790	4	0.8	<5	15	787	<20	0.32	<10	10	153	<10	118
D10-1	36066	226.00	227.00	332	2	0.92	91	720	5	0.79	<5	15	632	<20	0.32	<10	10	156	<10	155
D10-1	36067	232.00	233.00	407	3	1.27	116	780	5	0.76	<5	14	884	<20	0.28	<10	10	139	<10	108
D10-1	36068	238.00	239.00	396	2	1.61	107	730	3	0.95	<5	15	842	<20	0.32	<10	10	139	<10	102
D10-1	36069	245.20	245.70	375	2	0.52	83	700	5	0.94	12	13	759	<20	0.26	<10	10	129	<10	132
D10-1	36070	250.50	251.50	419	1	1.55	94	690	10	0.74	<5	14	928	<20	0.29	<10	10	135	<10	131
D10-1	36071	256.40	257.50	388	1	1.6	87	720	8	0.81	<5	16	902	<20	0.33	<10	10	148	<10	141
D10-1	36072	263.00	263.50	397	2	1.48	98	810	5	0.82	<5	17	809	<20	0.35	<10	10	160	<10	132
D10-1	36073	269.00	270.00	410	2	1.66	89	780	6	1.05	<5	14	906	<20	0.29	<10	10	136	<10	140
D10-1	36074	273.50	274.00	400	2	1.26	121	760	7	0.84	<5	15	773	<20	0.32	<10	10	158	<10	127
D10-1	36075	278.30	279.00	415	2	1.14	117	680	6	0.88	<5	13	825	<20	0.27	<10	10	133	<10	110
D10-1	36076	283.50	284.50	473	2	1.63	109	770	4	0.7	<5	15	710	<20	0.32	<10	10	147	<10	118
D10-1	36077	290.20	291.10	413	2	1.39	96	760	3	0.94	<5	15	706	<20	0.32	<10	10	157	<10	168
D10-1	36078	295.00	296.00	542	1	1.81	101	650	2	0.73	<5	13	972	<20	0.28	<10	10	113	<10	99
D10-2	36079	3.70	4.20	780	4	2.08	41	1460	5	0.8	<5	24	1425	<20	0.5	<10	10	204	<10	131
D10-2	36080	4.20	4.70	718	4	1.63	10	1690	6	1.93	7	19	937	<20	0.35	<10	10	168	<10	68
D10-2	36081	4.70	6.10	869	1	1.87	8	2090	6	1.66	<5	23	1085	<20	0.41	<10	10	206	<10	84
D10-2	36082	6.10	7.50	1075	1	1.79	9	2150	6	1.05	<5	24	1190	<20	0.43	<10	10	207	<10	82
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sampl	e]	Paramete	er							
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-2	36083	7.50	9.00	0.006	< 0.5	6.71	14	940	1.1	<2	10.8	0.6	16	111	98	5.37	20	1.26	10	1.81
D10-2	36084	9.00	10.50	0.003	< 0.5	7.24	10	1250	0.9	<2	10.6	0.8	13	84	56	4.34	20	1.4	10	2.32
D10-2	36085	10.50	11.00	0.29	5.8	6.12	5710	810	0.9	<2	7.03	< 0.5	13	35	45	5.54	10	2.09	10	1.61
D10-2	36086	11.00	12.10	0.023	< 0.5	8.05	101	1450	1.2	<2	5.66	0.5	19	35	55	5.81	20	3.27	20	2.51
D10-2	36087	12.10	14.10	0.006	< 0.5	7.59	9	720	1	<2	5.37	< 0.5	24	211	19	5.22	20	1.39	20	4
D10-2	36088	14.10	16.20	0.003	< 0.5	7.58	9	680	1	<2	5.57	< 0.5	24	229	21	5.52	20	1.34	30	4.18
D10-2	36089	16.20	17.90	0.004	< 0.5	7.56	13	970	1.4	<2	5.63	< 0.5	21	41	56	6.83	20	3.02	20	3.04
D10-2	36090	17.90	18.40	1.02	1.4	6.93	2810	870	1.4	<2	5.21	< 0.5	17	46	38	5.32	20	2.87	20	2.39
D10-2	36091	18.40	19.40	0.118	< 0.5	7.11	329	710	1.4	<2	5.08	< 0.5	20	44	48	6.45	20	2.85	20	2.91
D10-2	36092	19.40	20.50	0.257	< 0.5	6.53	1520	710	1.5	<2	6.29	0.9	18	42	44	6.28	20	2.46	20	2.7
D10-2	36093	24.75	25.75	0.006	< 0.5	7.36	5	1050	1.4	<2	5.22	< 0.5	20	42	53	6.42	20	2.95	20	2.82
D10-2	36094	25.75	26.25	0.357	1.1	6.69	3540	1140	1.3	<2	6.22	0.6	17	34	48	5.37	20	3.35	10	1.65
D10-2	36095	26.25	27.25	0.009	< 0.5	7.63	16	1140	1.4	<2	5.41	< 0.5	23	40	68	6.85	20	3.08	20	2.99
D10-2	36096	27.25	29.25	0.013	< 0.5	7.27	80	960	1.4	<2	5.18	< 0.5	21	37	55	6.25	20	2.76	20	2.81
D10-2	36097	29.25	31.00	0.145	< 0.5	7.29	601	1040	1.4	<2	5.33	< 0.5	18	39	58	5.89	20	2.92	20	2.24
D10-2	36098	31.00	31.50	0.037	< 0.5	7.61	510	1050	1.6	<2	5.1	< 0.5	18	34	52	5.91	20	3.18	20	2.51
D10-2	36099	31.50	33.00	0.006	< 0.5	7.57	25	1130	1.5	<2	4.71	< 0.5	18	33	57	5.81	20	3.3	20	2.5
D10-2	36100	33.00	33.50	1.145	2.7	7.53	4340	1110	1.5	<2	5.49	1	14	39	47	5.17	20	3.51	30	2.11
D10-2	36101	33.50	35.00	0.011	< 0.5	7.58	49	1010	1.5	<2	7.86	< 0.5	15	81	45	5.31	20	2.64	30	2.53
D10-2	36102	35.00	36.70	0.006	< 0.5	7.74	7	980	1.6	<2	5.72	< 0.5	19	48	37	6.96	20	2.92	30	2.93
D10-2	36103	36.70	37.20	0.265	1	6.78	1340	880	1.4	<2	5.21	< 0.5	16	44	35	5.57	20	2.89	30	2.15
D10-2	36104	37.20	38.10	0.041	< 0.5	7.66	88	1130	1.6	<2	5.14	< 0.5	14	43	38	5.29	20	3.35	30	2.37
D10-2	36105	38.10	39.10	0.004	< 0.5	7.7	31	680	1	<2	5.47	< 0.5	25	242	22	5.51	20	1.29	30	4.06
D10-2	36106	40.80	41.30	0.003	< 0.5	7.91	8	1090	1.6	<2	4.49	< 0.5	19	86	35	5.87	20	2.8	30	2.87
D10-2	36107	41.30	42.30	0.37	< 0.5	7.89	1340	980	1.8	<2	5.3	< 0.5	15	34	43	5.93	20	2.99	30	2.09
D10-2	36108	42.30	44.40	0.021	< 0.5	7.46	138	1050	1.7	<2	4.85	< 0.5	16	42	61	5.61	20	3.03	30	2.08
D10-2	36109	44.40	45.60	0.06	< 0.5	8.2	456	1200	1.8	<2	4.95	< 0.5	14	38	72	5.52	20	3.59	30	2.02
D10-2	36110	45.60	47.00	0.07	< 0.5	7.96	112	1210	1.8	<2	4.71	< 0.5	14	36	88	5.6	20	3.62	30	2.01
D10-2	36111	47.00	47.50	0.868	1.9	7.38	1750	960	1.7	<2	4.89	0.8	13	33	81	5.11	20	2.99	30	1.77
D10-2	36112	47.50	49.50	0.009	< 0.5	7.92	18	1200	1.9	<2	4.38	< 0.5	12	36	87	4.98	20	3.73	30	1.82
D10-2	36113	49.50	51.10	0.174	< 0.5	7.79	546	1160	2	<2	4.41	< 0.5	12	29	61	4.72	20	3.59	30	1.65
D10-2	36114	51.10	51.60	0.506	2.5	5.14	1750	820	0.7	<2	11.9	3.9	14	191	26	3.04	10	0.9	20	2.02
D10-2	36115	51.60	53.20	0.038	4.7	6.46	213	1450	0.8	<2	8.18	1.2	14	144	60	3.62	20	1.49	20	2.62
D10-2	36116	53.20	53.70	0.064	2.8	6.18	953	1210	0.8	<2	8.02	2	11	126	60	3.59	20	1.55	20	2.36
D10-2	36117	53.70	55.00	0.011	< 0.5	6.39	15	1660	0.8	<2	8.74	0.6	13	135	68	3.78	10	1.66	20	2.48
D10-2	36118	55.00	57.00	0.014	< 0.5	6.26	170	1500	0.7	<2	10.45	0.6	12	140	54	3.7	10	1.12	20	2.33
D10-2	36119	57.00	59.00	0.174	0.9	5.45	1800	1350	0.7	<2	11.65	2.2	10	132	44	3.12	10	1.19	20	2.15
D10-2	36120	59.00	59.50	0.049	< 0.5	5.69	839	920	0.7	<2	7.99	0.6	11	158	51	3.35	10	1.11	20	2.25
D10-2	36121	64.50	65.10	0.136	0.5	3.92	251	1280	0.5	<2	15	< 0.5	8	88	51	2.35	10	1.03	20	1.45
D10-2	36122	73.40	74.80	0.382	8.2	5.37	555	760	0.7	<2	9.64	1.4	12	133	61	4.12	10	1.72	20	1.37
D10-2	36123	81.00	82.00	0.011	< 0.5	5.53	37	1060	0.7	2	10.5	0.8	13	206	44	3.22	10	1.36	20	2.01
Units	•			ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sampl	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T 1	U	v	W	Zn
D10-2	36083	7.50	9.00	792	3	1.47	58	1060	6	2.03	5	17	1210	<20	0.37	<10	10	155	<10	99
D10-2	36084	9.00	10.50	706	4	1.58	52	1050	4	0.65	11	19	1395	<20	0.41	<10	10	195	<10	158
D10-2	36085	10.50	11.00	978	2	1.68	18	1570	93	3.36	60	19	815	<20	0.32	<10	10	176	10	56
D10-2	36086	11.00	12.10	1110	2	1.78	10	2500	7	1.16	7	27	1005	<20	0.45	<10	10	242	<10	101
D10-2	36087	12.10	14.10	1060	1	2.02	44	1580	8	0.2	<5	22	1015	<20	0.53	<10	10	179	<10	87
D10-2	36088	14.10	16.20	1070	2	1.87	48	1590	7	0.2	<5	23	1260	<20	0.53	<10	10	180	<10	89
D10-2	36089	16.20	17.90	1180	2	1.81	8	2870	5	1.25	<5	35	834	<20	0.49	<10	10	292	<10	120
D10-2	36090	17.90	18.40	1085	2	1.64	7	2320	12	1.23	13	28	764	<20	0.4	<10	10	233	<10	91
D10-2	36091	18.40	19.40	1170	2	1.74	7	2650	7	1.07	<5	33	683	<20	0.45	<10	10	256	<10	117
D10-2	36092	19.40	20.50	1170	1	1.63	6	2550	29	1.38	7	31	673	<20	0.41	<10	10	251	<10	134
D10-2	36093	24.75	25.75	1015	<1	1.68	5	2780	5	1.29	<5	34	834	<20	0.46	<10	10	273	<10	96
D10-2	36094	25.75	26.25	972	1	1.54	5	2410	8	2.54	19	28	716	<20	0.39	<10	10	238	10	44
D10-2	36095	26.25	27.25	980	1	1.79	5	2960	7	1.59	<5	35	898	<20	0.48	<10	10	279	<10	91
D10-2	36096	27.25	29.25	945	1	1.7	7	2820	6	1.53	<5	33	881	<20	0.45	<10	10	272	<10	88
D10-2	36097	29.25	31.00	876	2	1.62	5	2670	6	1.6	7	31	832	<20	0.43	<10	10	254	<10	88
D10-2	36098	31.00	31.50	988	1	1.75	5	2670	20	1.3	6	30	888	<20	0.42	<10	10	248	<10	97
D10-2	36099	31.50	33.00	897	<1	1.81	5	2560	6	1.29	<5	29	873	<20	0.41	<10	10	237	<10	85
D10-2	36100	33.00	33.50	994	<1	1.73	7	2420	27	2.06	26	26	784	<20	0.38	<10	<10	222	<10	74
D10-2	36101	33.50	35.00	1190	<1	1.66	40	2120	9	0.94	5	24	1060	<20	0.35	<10	<10	208	<10	92
D10-2	36102	35.00	36.70	1345	<1	1.81	8	3100	12	0.7	<5	34	864	<20	0.51	<10	<10	313	<10	125
D10-2	36103	36.70	37.20	1140	<1	1.43	7	2480	22	1.25	16	28	722	<20	0.4	<10	<10	239	<10	87
D10-2	36104	37.20	38.10	952	<1	1.72	8	2480	13	1.25	<5	26	945	<20	0.41	<10	<10	242	<10	82
D10-2	36105	38.10	39.10	1120	<1	1.88	52	1590	9	0.19	<5	22	1320	<20	0.54	<10	<10	188	<10	90
D10-2	36106	40.80	41.30	989	<1	2.04	12	2320	8	0.67	<5	25	1020	<20	0.47	<10	<10	231	<10	94
D10-2	36107	41.30	42.30	1075	<1	1.86	7	2530	11	1.2	7	26	850	<20	0.41	<10	<10	243	<10	104
D10-2	36108	42.30	44.40	915	<1	1.82	11	2300	9	1.56	<5	25	851	<20	0.39	<10	<10	216	<10	80
D10-2	36109	44.40	45.60	885	<1	1.9	8	2360	10	1.74	<5	25	933	<20	0.38	<10	<10	218	<10	82
D10-2	36110	45.60	47.00	889	<1	1.91	8	2310	11	1.67	<5	23	946	<20	0.38	<10	<10	215	<10	80
D10-2	36111	47.00	47.50	814	<1	1.86	8	2050	17	1.79	12	22	779	<20	0.35	<10	<10	193	<10	79
D10-2	36112	47.50	49.50	788	<1	1.97	6	2060	11	1.39	<5	20	900	<20	0.35	<10	<10	194	<10	72
D10-2	36113	49.50	51.10	900	<1	1.97	6	1910	13	1.05	<5	19	806	<20	0.33	<10	<10	176	<10	80
D10-2	36114	51.10	51.60	762	1	0.94	126	780	16	0.45	64	12	1100	<20	0.27	<10	<10	115	<10	303
D10-2	36115	51.60	53.20	454	4	1.64	109	780	766	0.9	43	16	919	<20	0.36	<10	<10	164	<10	126
D10-2	36116	53.20	53.70	463	1	1.41	102	820	9	1.06	11	16	836	<20	0.35	<10	<10	177	<10	145
D10-2	36117	53.70	55.00	436	2	1.79	115	830	8	1.04	<5	17	971	<20	0.37	10	<10	181	<10	142
D10-2	36118	55.00	57.00	500	3	1.89	117	850	16	0.88	<5	16	1170	<20	0.36	<10	<10	180	<10	146
D10-2	36119	57.00	59.00	595	1	1.48	99	730	21	0.73	65	13	1210	<20	0.3	<10	<10	134	<10	137
D10-2	36120	59.00	59.50	451	<1	1.64	114	710	8	1.25	81	14	768	<20	0.32	<10	<10	156	<10	115
D10-2	36121	64.50	65.10	637	<1	1.03	69	530	9	0.88	<5	9	1190	<20	0.19	<10	10	83	<10	70
D10-2	36122	73.40	74.80	461	<1	0.7	105	730	522	3.04	167	13	672	<20	0.28	<10	<10	143	<10	109
D10-2	36123	81.00	82.00	529	<1	0.9	137	730	7	0.9	10	14	689	<20	0.3	<10	<10	142	<10	120
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sample	e		Parameter									er							
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-2	36124	86.90	87.40	0.015	< 0.5	5.57	28	1110	0.7	<2	9.72	1.6	13	153	66	3.25	10	2.05	20	1.2
D10-2	36125	92.90	93.40	0.009	< 0.5	5.29	35	950	0.6	<2	10	0.8	10	136	43	2.91	10	0.95	20	2
D10-3	36126	4.30	4.90	0.198	2.5	6.17	1700	910	0.8	<2	9.05	0.6	12	91	65	4.54	20	1.5	20	1.72
D10-3	36127	5.75	6.25	0.004	< 0.5	8.23	20	1730	1.3	<2	6.9	< 0.5	11	50	27	4.97	20	3.13	30	2.19
D10-3	36128	7.00	7.50	0.012	< 0.5	7.08	41	780	1.1	<2	10.2	1.3	11	85	31	4	20	0.91	20	1.78
D10-3	36129	9.25	9.75	0.155	< 0.5	7.98	1290	1190	1.4	2	5.83	0.5	18	37	62	6.52	20	2.98	30	2.33
D10-3	36130	11.80	12.30	0.01	< 0.5	7.91	11	1270	1.3	<2	6.78	< 0.5	19	68	81	6.8	20	2.22	20	2.33
D10-3	36131	12.30	13.10	0.325	0.6	7.63	1710	1200	1.2	<2	6.64	< 0.5	17	46	57	6.23	20	2.65	30	2.19
D10-3	36132	16.35	17.00	0.824	3	6.65	3210	880	1.3	<2	6.23	0.7	22	49	43	6.64	20	2.75	30	2.38
D10-3	36133	20.00	21.00	0.189	< 0.5	7.34	583	1030	1.5	<2	5.51	0.5	18	49	63	6.67	20	2.86	30	2.93
D10-3	36134	21.00	22.00	0.768	1.1	7.36	1750	1070	1.4	<2	5.42	0.6	20	37	57	6.57	20	3.01	30	2.45
D10-3	36135	23.85	24.35	0.564	< 0.5	5.99	3670	430	1.2	<2	9.05	< 0.5	18	33	53	5.47	20	2.08	20	1.57
D10-3	36136	26.25	26.75	0.097	< 0.5	7.11	601	990	1.4	<2	6.09	< 0.5	21	42	69	7.3	20	2.94	20	3.22
D10-3	36137	29.00	29.50	0.012	< 0.5	7.26	26	1210	1.4	<2	5.73	< 0.5	21	41	51	6.98	20	3.14	20	3
D10-3	36138	31.25	31.75	0.201	< 0.5	7.01	1410	1010	1.6	<2	5.86	< 0.5	19	41	38	7.03	20	2.91	20	3
D10-3	36139	33.00	33.50	0.455	< 0.5	5.82	7650	860	1.2	<2	6.09	< 0.5	17	37	27	6.27	20	2.64	20	2.15
D10-3	36140	37.40	38.10	0.006	< 0.5	5.64	13	730	1	<2	8.58	< 0.5	14	175	38	4.99	10	1.79	20	3.18
D10-3	36141	40.10	40.60	0.265	1.6	7.03	3460	950	1.4	<2	5.94	0.5	17	36	51	6.78	20	2.89	20	2.58
D10-3	36142	43.20	43.70	0.026	< 0.5	7.82	479	1190	1.8	<2	5.46	< 0.5	16	30	48	5.9	20	3.46	30	2.31
D10-3	36143	47.20	47.70	0.014	< 0.5	7.75	48	1150	1.8	<2	5.31	< 0.5	14	27	39	6.11	20	3.44	20	2.27
D10-3	36144	49.10	49.60	0.254	< 0.5	7.57	1470	1350	1.7	<2	5.35	0.8	14	23	49	5.24	20	3.81	20	1.97
D10-3	36145	50.50	51.50	0.061	< 0.5	7.65	416	1090	1.9	<2	5	< 0.5	14	29	28	5.53	20	3.4	20	2.02
D10-3	36146	51.50	52.50	0.314	0.8	7.29	2860	980	1.6	<2	5.68	0.7	14	39	27	5.36	10	3.07	20	1.9
D10-3	36147	54.50	55.00	0.017	< 0.5	7	29	1470	1.3	<2	8.58	< 0.5	13	93	72	5.06	20	2.43	20	2.52
D10-3	36148	59.00	59.50	0.038	< 0.5	5.99	406	1340	0.8	<2	8.79	0.6	15	174	56	3.71	20	1.63	10	2.55
D10-3	36149	61.50	62.40	0.023	< 0.5	5.58	141	920	0.8	<2	8.97	0.8	13	153	51	3.45	10	1.56	10	2.07
D10-3	36150	62.40	63.00	0.184	8.5	5.65	2370	340	0.9	<2	8.37	4	11	162	57	4.26	10	2.11	20	0.87
D10-3	36151	68.80	69.30	0.221	0.5	5.36	688	1350	0.8	<2	10.35	0.6	11	120	46	3.6	10	1.81	10	3.48
D10-3	36152	72.40	72.90	0.015	< 0.5	5.93	44	1540	0.8	<2	8.48	0.6	13	147	59	3.66	10	1.77	20	2.57
D10-3	36153	79.00	79.50	0.008	< 0.5	3.94	331	280	0.6	<2	12.5	0.5	6	86	32	2.44	10	0.32	10	3.04
D10-3	36154	80.50	81.20	0.005	< 0.5	5.43	19	1200	0.7	<2	12.55	0.5	10	113	43	3.6	10	1.45	10	4.35
D10-3	36155	84.00	84.50	0.009	< 0.5	5.25	19	1160	0.6	<2	10.7	1	11	124	51	3.3	10	1.39	10	2.22
D10-3	36156	86.90	87.50	0.019	< 0.5	5.21	68	770	0.7	<2	14	1	10	117	48	3.29	10	1.38	10	1.84
D10-4	36157	8.00	9.00	0.018	< 0.5	6.46	130	1070	0.9	<2	11.6	2.8	13	96	65	4.29	10	1.51	10	2.1
D10-4	36158	9.00	9.50	0.048	4.6	6.6	499	1210	0.9	<2	8.96	1	12	112	57	3.79	10	1.9	10	1.96
D10-4	36159	11.70	13.00	0.137	0.9	7.5	794	1600	1.2	<2	5.79	< 0.5	12	95	49	4.59	20	3.36	20	1.81
D10-4	36160	13.00	14.00	0.291	1.5	7.04	2500	1450	1.2	<2	4.88	0.8	7	25	31	3.2	10	3.68	20	1.25
D10-4	36161	14.00	14.80	1.775	5.5	6.71	>10000	390	1.2	4	4.24	3.4	9	18	37	5.07	10	3.46	20	0.96
D10-4	36162	14.80	15.30	19.35	287	3.21	>10000	100	0.6	70	4.45	86.3	7	23	426	15.15	<10	0.79	10	0.39
D10-4	36163	15.30	17.00	0.058	4.5	6.98	322	1010	1	<2	7.66	20.1	11	104	48	3.28	10	1.95	20	1.77
D10-4	36164	17.00	18.50	0.018	< 0.5	6.79	109	1200	0.8	<2	12	< 0.5	10	116	38	3.59	10	1.37	10	2.1
Units				ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sampl	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T 1	U	V	W	Zn
D10-2	36124	86.90	87.40	381	1	0.38	113	740	10	1.37	23	15	472	<20	0.33	<10	<10	166	<10	166
D10-2	36125	92.90	93.40	449	<1	1.55	89	650	7	0.94	<5	12	836	<20	0.28	<10	<10	123	<10	109
D10-3	36126	4.30	4.90	712	<1	1.08	56	830	17	1.97	30	15	861	<20	0.35	<10	<10	150	<10	74
D10-3	36127	5.75	6.25	1165	<1	1.75	15	2230	8	0.83	<5	25	1230	<20	0.4	<10	<10	226	<10	83
D10-3	36128	7.00	7.50	729	<1	1.54	54	880	11	0.52	11	16	1230	<20	0.39	<10	<10	171	<10	204
D10-3	36129	9.25	9.75	1115	<1	1.95	10	2670	9	1.68	<5	27	1010	<20	0.44	<10	<10	250	<10	109
D10-3	36130	11.80	12.30	1035	1	2.09	33	2030	8	1.69	12	26	1210	<20	0.48	<10	<10	247	<10	105
D10-3	36131	12.30	13.10	1130	<1	1.75	21	2160	31	2.46	23	25	960	<20	0.44	<10	<10	229	<10	85
D10-3	36132	16.35	17.00	1245	<1	1.35	9	2860	23	2	20	35	653	<20	0.49	10	<10	295	<10	98
D10-3	36133	20.00	21.00	1115	4	1.62	8	2850	10	1.66	<5	34	737	<20	0.48	<10	<10	283	<10	126
D10-3	36134	21.00	22.00	984	<1	1.59	7	2730	13	2.21	9	32	756	<20	0.46	10	<10	272	<10	102
D10-3	36135	23.85	24.35	1215	<1	0.78	8	2550	13	1.86	19	29	776	<20	0.41	<10	<10	264	<10	83
D10-3	36136	26.25	26.75	1035	<1	1.77	13	3130	8	1.61	<5	36	811	<20	0.5	<10	<10	310	<10	106
D10-3	36137	29.00	29.50	987	<1	1.79	6	3070	3	1.77	<5	35	799	<20	0.5	<10	<10	309	<10	93
D10-3	36138	31.25	31.75	1265	<1	1.58	8	2980	7	1.06	<5	35	730	<20	0.47	<10	<10	298	<10	109
D10-3	36139	33.00	33.50	1090	<1	1.3	7	2540	8	1.88	20	30	653	<20	0.41	<10	<10	255	<10	80
D10-3	36140	37.40	38.10	1020	2	1.25	114	1170	6	0.97	128	22	833	<20	0.38	<10	<10	226	<10	95
D10-3	36141	40.10	40.60	1020	2	1.79	6	2770	87	2.19	30	31	809	<20	0.44	<10	<10	259	<10	93
D10-3	36142	43.20	43.70	898	17	1.94	6	2450	97	1.3	9	27	873	<20	0.41	<10	<10	236	<10	82
D10-3	36143	47.20	47.70	1045	<1	1.97	4	2550	5	1.13	<5	26	903	<20	0.41	<10	<10	236	<10	94
D10-3	36144	49.10	49.60	940	<1	1.75	3	2330	13	1.7	7	24	867	<20	0.39	<10	<10	215	<10	81
D10-3	36145	50.50	51.50	1025	<1	2.27	8	2100	12	1.25	<5	22	813	<20	0.37	<10	<10	200	<10	100
D10-3	36146	51.50	52.50	1120	<1	1.98	14	2090	48	1.29	22	23	763	<20	0.37	<10	<10	207	10	94
D10-3	36147	54.50	55.00	720	5	1.76	79	1510	7	1.07	18	21	1010	<20	0.42	<10	<10	208	<10	118
D10-3	36148	59.00	59.50	457	2	1.91	148	790	4	0.87	<5	16	776	<20	0.35	<10	<10	172	<10	129
D10-3	36149	61.50	62.40	458	1	0.99	113	730	2	1.04	14	15	572	<20	0.32	<10	<10	159	50	136
D10-3	36150	62.40	63.00	639	1	1.23	116	860	25	3.17	37	16	506	<20	0.26	<10	<10	179	<10	135
D10-3	36151	68.80	69.30	586	2	1.1	95	690	110	0.9	5	14	876	<20	0.27	<10	<10	145	<10	109
D10-3	36152	72.40	72.90	405	1	1.19	103	820	50	0.91	<5	16	791	<20	0.35	<10	<10	165	<10	110
D10-3	36153	79.00	79.50	511	<1	1.57	59	610	7	0.54	<5	9	910	<20	0.2	<10	<10	93	<10	84
D10-3	36154	80.50	81.20	612	1	1.07	105	750	7	0.87	<5	14	990	<20	0.33	<10	<10	155	<10	116
D10-3	36155	84.00	84.50	470	1	1.06	94	690	6	1.2	16	14	795	<20	0.3	<10	<10	137	<10	117
D10-3	36156	86.90	87.50	632	1	0.47	98	740	15	1.23	49	15	929	<20	0.3	<10	<10	149	10	124
D10-4	36157	8.00	9.00	589	7	1.41	76	990	105	0.78	21	18	1350	<20	0.42	<10	<10	199	<10	247
D10-4	36158	9.00	9.50	611	27	2.02	74	910	28	1.12	52	18	904	<20	0.4	<10	<10	194	<10	92
D10-4	36159	11.70	13.00	818	3	2.14	35	1300	9	1.37	12	19	910	<20	0.34	<10	<10	171	<10	84
D10-4	36160	13.00	14.00	784	6	2.14	10	1040	11	1.12	16	13	831	<20	0.24	<10	<10	113	<10	44
D10-4	36161	14.00	14.80	921	6	1.97	9	1040	87	3.11	48	13	592	<20	0.2	<10	<10	109	<10	63
D10-4	36162	14.80	15.30	675	4	1.45	17	460	2270	>10.0	844	6	309	<20	0.09	<10	<10	41	<10	985
D10-4	36163	15.30	17.00	565	5	2.04	62	860	84	0.99	32	15	875	<20	0.35	<10	<10	139	<10	324
D10-4	36164	17.00	18.50	641	2	1.86	68	910	8	0.65	<5	16	1270	<20	0.38	<10	<10	149	<10	106
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sample	e]	Paramete	er							
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-4	36164	17.00	18.50	0.018	< 0.5	6.79	109	1200	0.8	<2	12	< 0.5	10	116	38	3.59	10	1.37	10	2.1
D10-4	36165	18.50	19.00	0.162	0.5	6.8	1310	1070	0.9	<2	7.13	1	13	84	81	5.27	20	1.79	10	2.73
D10-4	36166	19.00	20.00	0.012	< 0.5	6.58	135	770	0.7	2	12.8	< 0.5	10	109	29	3.05	10	1.05	10	1.78
D10-4	36167	20.00	20.50	0.125	0.8	6.99	1850	960	1.3	<2	7.76	1.2	16	56	52	5.44	20	2.59	20	2.34
D10-4	36168	20.50	21.00	0.167	1.2	6.83	4090	1040	1.2	<2	7.88	1.8	15	87	46	5.04	10	2.57	20	1.91
D10-4	36169	21.00	21.50	0.013	< 0.5	7.95	14	1210	1.9	<2	6.46	< 0.5	6	36	49	3.71	20	1.9	10	1.39
D10-4	36170	21.50	22.75	0.129	< 0.5	7.26	806	880	1.3	<2	10.9	< 0.5	11	67	46	4.55	20	1.5	20	2
D10-4	36171	22.75	24.25	0.007	< 0.5	7.64	15	970	1.7	<2	5.7	< 0.5	19	42	47	6.98	20	2.86	20	3.15
D10-4	36172	24.25	26.35	0.106	4.1	6.45	1525	1070	0.8	<2	11.2	2.5	9	100	47	3.79	10	1.61	10	1.99
D10-4	36173	26.35	27.00	0.335	143	6.42	682	1140	1	3	8.66	13.1	9	89	236	3.48	10	2.82	10	1.28
D10-4	36174	27.00	27.60	0.32	112	7.51	3660	730	1.5	<2	5.83	10.8	14	40	167	5.37	20	3.14	10	1.45
D10-4	36175	27.60	28.10	0.425	6.1	6.04	7710	810	1.3	<2	10.65	7.6	9	45	23	3.85	10	1.85	10	1.04
D10-4	36176	28.10	28.60	1.23	39.6	4.85	>10000	150	1.2	6	7.45	3	4	41	52	11.85	10	1.87	<10	0.79
D10-4	36177	28.60	29.60	0.033	3	5.1	123	900	0.8	<2	11.6	1.5	13	91	119	4.11	10	1.29	10	1.59
D10-4	36178	29.60	31.00	0.009	0.5	6.71	24	1140	1	<2	9.91	1	8	67	38	3.37	10	2.15	10	2.02
D10-4	36179	31.00	33.00	0.024	0.5	6.59	130	1090	0.9	<2	10.5	0.6	11	100	40	3.91	20	1.72	10	1.55
D10-4	36180	33.00	34.50	0.037	0.6	7.36	170	1230	0.9	<2	7.04	0.7	11	97	53	4.41	20	1.91	10	1.74
D10-4	36181	34.50	35.60	0.014	< 0.5	8.07	11	1320	1.9	<2	5.52	< 0.5	6	30	54	3.76	20	3.55	10	1.38
D10-4	36182	35.60	37.00	0.082	1.5	7.79	242	1420	1.5	<2	6.09	0.5	10	43	60	4.81	20	3.05	10	1.37
D10-4	36183	37.00	38.70	0.199	0.8	7.97	543	1160	1.8	<2	5.29	0.6	12	30	79	4.64	20	2.72	10	1.47
D10-4	36184	38.70	39.70	0.123	1.4	7.79	5430	1090	1.8	<2	5.28	0.8	11	100	68	4.41	20	2.51	10	1.27
D10-4	36185	39.70	40.70	0.191	0.7	7.89	3220	480	2	<2	8.38	0.5	8	101	46	3.48	20	0.91	10	1.44
D10-4	36186	40.70	42.00	0.659	0.7	6.93	>10000	750	1.1	<2	10.5	0.5	12	141	21	3.41	20	1.26	10	0.96
D10-4	36187	42.00	42.50	0.014	< 0.5	6.68	881	1250	0.8	<2	8.42	0.5	11	102	49	3.64	10	1.53	10	2.29
D10-4	36188	44.60	45.10	0.009	0.5	6.94	26	1200	1	<2	6.11	0.7	12	91	58	4.14	10	1.71	10	1.69
D10-4	36189	45.10	46.70	0.007	0.5	7.78	66	1500	1.5	<2	5.13	0.5	12	38	104	4.59	20	3.87	10	1.55
D10-4	36190	46.70	47.20	0.013	< 0.5	6.52	134	1040	1	<2	8.43	0.6	11	103	56	4.28	20	1.22	10	1.79
D10-4	36191	49.80	50.30	0.046	< 0.5	5.97	528	1210	0.8	<2	9.09	0.7	10	85	60	3.65	10	1.58	10	1.86
D10-4	36192	51.50	52.00	0.016	0.5	6.29	412	1100	0.6	<2	9.86	0.8	13	75	51	3.88	20	1.41	10	2.51
D10-4	36193	57.00	57.60	0.113	< 0.5	6.5	629	1200	1	<2	7.24	< 0.5	10	145	39	3.49	10	1.72	10	2.01
D10-4	36194	57.90	58.40	0.039	0.5	7.36	816	1480	0.8	<2	6.26	0.5	14	172	36	3.69	20	1.53	10	2.33
D10-4	36195	59.30	59.80	0.066	< 0.5	5.58	678	1080	0.7	<2	5.84	0.5	10	104	37	3.17	10	1.34	10	2.13
D10-4	36196	62.70	63.30	3.57	25.3	5.97	7980	560	0.8	5	5.32	4.7	9	128	48	4.84	10	1.96	10	1.4
D10-4	36197	63.30	64.30	0.173	6.7	6.79	713	900	1	<2	6.17	20.4	11	171	45	3.51	20	2.5	10	1.48
D10-4	36198	65.30	66.00	0.172	60	6.1	379	800	0.8	<2	7.83	13.5	11	157	119	3.29	10	2.02	10	1.31
D10-4	36199	68.60	69.10	0.021	< 0.5	6.24	26	1040	0.7	<2	8.24	0.6	14	369	55	3.51	10	1.04	<10	2.7
D10-4	36200	74.00	75.00	0.008	1.5	6.25	25	1130	0.6	<2	10.1	< 0.5	13	193	40	3.15	10	1.34	20	2.51
D10-4	36201	77.00	77.80	0.008	2.4	11.15	31	2100	1.3	<2	17.3	1	25	325	103	6.11	20	2.65	30	4.32
D10-4	36202	80.25	80.75	0.006	1.3	5.66	12	1040	0.5	<2	11.6	< 0.5	13	179	30	2.8	10	1.22	20	2.16
D10-4	36203	88.90	89.40	0.009	1.1	5.4	17	1220	0.8	<2	6.74	0.9	12	132	51	3.22	10	1.5	30	2.4
D10-4	36204	89.90	90.50	0.01	1.4	5.8	13	1330	0.7	<2	9.83	0.9	13	129	44	3.43	10	1.43	20	2.53
Units				ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sampl	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T 1	U	v	W	Zn
D10-4	36164	17.00	18.50	641	2	1.86	68	910	8	0.65	<5	16	1270	<20	0.38	<10	<10	149	<10	106
D10-4	36165	18.50	19.00	731	4	2.18	58	1270	14	1.57	<5	22	810	<20	0.43	<10	<10	214	<10	100
D10-4	36166	19.00	20.00	886	1	1.66	57	710	5	0.57	8	14	1140	<20	0.34	<10	<10	114	<10	106
D10-4	36167	20.00	20.50	1060	1	1.95	32	2060	13	1.09	8	25	873	<20	0.42	<10	<10	244	<10	101
D10-4	36168	20.50	21.00	1235	3	1.93	27	2210	30	1.38	12	24	980	<20	0.25	<10	<10	196	<10	96
D10-4	36169	21.00	21.50	652	5	3.07	19	810	7	1.37	<5	13	1120	<20	0.16	<10	<10	106	<10	40
D10-4	36170	21.50	22.75	934	3	2.04	44	1190	4	1.62	8	18	1310	<20	0.34	<10	<10	170	<10	66
D10-4	36171	22.75	24.25	1230	1	1.97	8	2880	4	0.54	<5	34	849	<20	0.54	<10	<10	298	<10	111
D10-4	36172	24.25	26.35	781	3	1.03	58	980	42	1.14	18	15	1220	<20	0.34	<10	<10	159	10	127
D10-4	36173	26.35	27.00	1330	5	1.03	36	1290	2500	1.31	285	18	812	<20	0.35	<10	<10	181	20	207
D10-4	36174	27.00	27.60	1365	1	1.06	11	2150	927	2.6	197	25	653	<20	0.37	<10	<10	209	10	133
D10-4	36175	27.60	28.10	1090	2	0.57	32	1170	124	2.24	60	12	779	<20	0.24	<10	<10	109	10	152
D10-4	36176	28.10	28.60	938	2	0.26	24	940	1465	>10.0	250	12	552	<20	0.23	<10	<10	130	<10	49
D10-4	36177	28.60	29.60	683	14	0.12	67	1260	73	2.31	26	15	1120	<20	0.31	<10	<10	220	<10	179
D10-4	36178	29.60	31.00	585	6	1.38	45	1040	9	0.97	<5	14	1290	<20	0.33	<10	<10	156	<10	103
D10-4	36179	31.00	33.00	680	3	1.49	68	890	6	1.24	10	16	1320	<20	0.37	10	<10	168	<10	81
D10-4	36180	33.00	34.50	532	3	1.82	61	890	8	1.45	8	18	1010	<20	0.39	<10	<10	184	<10	80
D10-4	36181	34.50	35.60	542	2	2.41	16	1730	4	1.67	<5	15	1120	<20	0.36	<10	<10	172	<10	36
D10-4	36182	35.60	37.00	639	1	2.11	24	1440	14	2.35	8	15	1140	<20	0.34	<10	<10	159	<10	37
D10-4	36183	37.00	38.70	555	<1	2.39	13	1670	10	2.25	<5	16	1120	<20	0.35	<10	<10	177	<10	40
D10-4	36184	38.70	39.70	472	1	2.8	41	1010	15	2.5	19	13	958	<20	0.33	<10	<10	168	<10	45
D10-4	36185	39.70	40.70	605	2	2.5	40	1310	10	1.57	29	17	1060	<20	0.35	<10	<10	200	<10	47
D10-4	36186	40.70	42.00	706	2	2.75	81	840	13	1.55	37	16	957	<20	0.35	<10	10	184	20	51
D10-4	36187	42.00	42.50	506	6	1.64	70	910	7	1.2	6	16	1100	<20	0.37	<10	<10	169	<10	101
D10-4	36188	44.60	45.10	441	3	1.67	65	820	3	2.02	6	15	818	<20	0.37	<10	<10	173	<10	71
D10-4	36189	45.10	46.70	495	2	1.91	20	1620	4	2.25	<5	17	1020	<20	0.34	<10	<10	182	<10	38
D10-4	36190	46.70	47.20	551	4	1.45	72	940	5	1.66	6	17	876	<20	0.37	<10	<10	195	<10	84
D10-4	36191	49.80	50.30	429	4	1	63	810	3	1.22	<5	15	850	<20	0.34	<10	<10	167	<10	128
D10-4	36192	51.50	52.00	623	6	1.06	58	830	9	0.92	21	18	1010	<20	0.35	<10	<10	187	<10	105
D10-4	36193	57.00	57.60	467	2	1.33	78	740	6	1.08	5	15	708	<20	0.35	10	<10	140	<10	77
D10-4	36194	57.90	58.40	517	2	2.41	104	780	6	1.63	16	17	795	<20	0.4	10	<10	157	<10	81
D10-4	36195	59.30	59.80	396	1	1.55	77	770	6	1.06	5	15	725	<20	0.32	<10	<10	160	<10	101
D10-4	36196	62.70	63.30	784	2	1.21	84	770	1565	3.5	757	15	449	<20	0.32	10	<10	154	<10	98
D10-4	36197	63.30	64.30	796	3	1.06	83	780	112	2.06	49	15	455	<20	0.33	<10	<10	146	<10	290
D10-4	36198	65.30	66.00	782	3	0.96	98	760	89	2.03	78	15	492	<20	0.32	<10	<10	156	<10	200
D10-4	36199	68.60	69.10	533	5	1.65	169	700	11	1.15	<5	14	1020	<20	0.34	<10	<10	115	<10	117
D10-4	36200	74.00	75.00	504	3	1.69	111	600	<2	0.82	<5	14	1030	<20	0.31	<10	<10	106	<10	89
D10-4	36201	77.00	77.80	865	4	2.99	193	1370	6	1.84	5	27	1790	<20	0.56	<10	10	246	<10	201
D10-4	36202	80.25	80.75	519	2	1.81	107	640	<2	0.87	<5	13	948	<20	0.25	<10	<10	95	<10	78
D10-4	36203	88.90	89.40	309	2	1.13	92	710	3	1.07	<5	14	639	<20	0.3	<10	<10	153	<10	136
D10-4	36204	89.90	90.50	428	2	1.37	114	850	2	0.94	<5	16	931	<20	0.33	<10	<10	163	<10	124
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sampl	e]	Paramete	er							
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-4	36205	90.90	91.40	0.002	1.3	5.98	155	670	0.6	<2	11.4	0.6	11	105	22	2.56	10	0.9	20	1.54
D10-5	36206	4.30	5.00	0.012	3.5	6.49	1685	760	1	<2	8.94	0.8	11	83	45	3.02	10	1.73	30	1.45
D10-5	36207	9.35	9.85	0.162	3.5	6.45	1635	760	1	2	8.86	0.8	11	83	44	3.01	10	1.73	30	1.46
D10-5	36208	12.50	13.00	0.003	1.4	7.52	33	940	1.4	<2	8.1	0.7	13	84	35	3.89	10	2.27	30	2.02
D10-5	36209	14.35	14.85	0.187	0.9	6.87	483	1070	1.6	<2	4.13	16.2	9	41	40	3.04	10	2.82	30	1.36
D10-5	36210	15.65	16.15	0.51	2.2	7.59	2590	1090	1.1	<2	5.52	< 0.5	15	127	49	4.11	20	2.45	20	2.14
D10-5	36211	17.60	18.10	0.193	1.4	7.77	899	1250	1.6	<2	5.5	< 0.5	16	41	57	5.38	20	3.06	30	2.03
D10-5	36212	18.90	19.40	0.026	0.9	7.19	1510	890	1.6	<2	5.38	< 0.5	10	34	25	3.7	20	2.5	30	1.33
D10-5	36213	19.70	20.20	0.153	1.4	7.5	2540	910	1.3	<2	5.75	< 0.5	15	30	34	5.09	20	2.5	30	1.84
D10-5	36214	21.35	21.95	0.078	1.5	7.93	403	970	1.8	<2	4.38	< 0.5	12	23	45	5.81	20	3.22	30	1.55
D10-5	36215	23.40	24.10	0.231	1.9	7.53	1225	1120	1.5	<2	5.19	< 0.5	15	46	38	5.56	20	2.63	30	2.18
D10-5	36216	25.70	26.45	0.159	1.7	6.59	666	830	1.2	<2	6.66	< 0.5	20	35	52	6.8	20	1.73	30	2.66
D10-5	36217	27.10	28.00	0.002	1.2	7.53	13	920	1.4	<2	5.39	< 0.5	21	39	28	6.74	20	2.77	30	2.83
D10-5	36218	28.00	28.50	1.535	2.2	7.03	5940	820	1.4	<2	6.61	< 0.5	22	39	30	7.47	20	1.94	30	3.01
D10-5	36219	28.50	29.40	0.591	2	7.31	1655	930	1.3	<2	6.38	< 0.5	22	37	38	7.05	20	2.36	30	2.59
D10-5	36220	29.40	30.00	0.019	1.2	7.91	62	830	1.5	<2	5.99	< 0.5	22	39	40	7.46	20	2.46	30	3.07
D10-5	36221	30.00	30.50	0.062	1.7	7.59	433	780	1.5	<2	5.77	< 0.5	21	35	41	6.95	20	2.43	30	2.82
D10-5	36222	30.50	31.10	0.006	1.2	7.46	46	750	1.4	<2	5.8	< 0.5	22	39	38	7.2	20	2.42	30	3.07
D10-5	36223	31.10	31.60	0.319	1.9	7.03	3160	720	1.5	<2	7.55	0.7	22	38	40	6.46	20	2.19	30	2.1
D10-5	36224	33.25	34.00	0.28	4.9	6.8	1575	710	1.2	<2	6.45	11.5	26	39	46	8.41	20	2.13	30	2.81
D10-5	36225	34.00	34.50	0.026	1.5	7.49	22	920	1.3	<2	5.98	0.5	23	39	63	6.99	20	2.48	30	2.69
D10-5	36226	37.10	38.00	0.682	7.9	6.59	4450	610	1.2	<2	5.9	1.2	22	32	51	6.37	10	2.75	30	2.52
D10-5	36227	38.00	39.00	0.663	3.1	6.98	6750	600	1.3	<2	5.81	0.9	17	28	44	5.95	20	3.42	30	2.51
D10-5	36228	39.00	40.30	5.05	11.2	5.6	>10000	430	1.1	3	3.71	6.9	12	40	34	7.52	10	2.22	20	1.23
D10-5	36229	40.30	41.90	0.34	2	7.68	476	1320	1.6	<2	5.67	1.6	19	49	52	6.25	20	2.67	30	2.43
D10-5	36230	41.90	42.90	0.245	2.1	7.79	917	1200	1.6	<2	4.77	0.5	19	36	64	6.3	20	3.09	30	2.32
D10-5	36231	42.90	43.70	3.55	5.9	5.57	6760	470	1.1	<2	6.92	1.8	15	29	29	4.46	10	2.09	30	0.71
D10-5	36232	43.70	44.60	0.261	2.2	6.93	1015	1030	1.3	<2	5.96	7.1	13	71	37	4.2	10	2.29	30	1.77
D10-5	36233	49.55	50.05	0.008	1.5	6.22	22	1080	0.8	<2	9.09	1.2	12	126	48	3.56	10	1.37	20	2.24
D10-5	36234	52.30	52.80	0.019	1.8	6.42	33	1040	0.9	<2	4.81	1.3	15	139	62	4.19	10	1.52	30	2.98
D10-5	36235	54.80	55.30	0.023	1.5	6.63	14	1580	0.9	<2	6.1	< 0.5	14	117	65	3.92	10	1.85	30	2.75
D10-5	36236	58.50	59.00	0.011	0.6	6.64	205	1330	0.8	<2	5.82	< 0.5	14	160	73	3.86	10	1.66	20	2.69
D10-5	36237	63.20	63.80	0.007	1.3	5.74	7	980	0.7	<2	10.9	< 0.5	13	182	64	3.45	10	1.54	20	2.3
D10-5	36238	67.00	67.50	0.002	1.8	5.44	10	830	< 0.5	<2	14.5	< 0.5	12	128	33	2.95	10	1.05	20	2.11
D10-5	36239	72.00	72.50	0.006	1.1	4.93	10	740	0.6	<2	11.85	< 0.5	10	121	37	2.72	10	1.06	20	1.07
D10-5	36240	77.50	78.00	0.013	1.8	5.32	40	1030	0.6	<2	10.6	< 0.5	11	87	65	2.93	10	1.33	20	1.74
D10-5	36241	79.00	79.50	0.011	1.4	6.3	15	1160	0.8	<2	5.53	< 0.5	14	122	60	3.68	10	1.55	30	2.38
D10-5	36242	85.00	85.50	0.009	1.7	4.97	17	950	0.7	<2	10.65	5.2	11	111	44	3.04	10	1.16	20	2.15
D10-5	36243	90.00	90.50	0.006	0.6	5.84	23	1280	0.7	<2	7.34	3.6	13	128	50	3.27	10	1.53	20	2.18
D10-5	36244	4.50	5.00	0.028	1.6	6.15	17	1400	0.9	<2	8.86	0.7	12	105	59	3.78	10	1.62	30	1.71
D10-5	36245	8.50	9.00	0.035	2.2	6.56	11	1440	0.9	<2	8.03	0.8	13	- 90	58	4.2	10	1.69	20	1.69
Units				ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sample	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U	V	W	Zn
D10-4	36205	90.90	91.40	522	1	1.6	53	850	<2	0.35	11	13	923	<20	0.31	<10	10	106	<10	78
D10-5	36206	4.30	5.00	429	4	2.38	42	670	12	1.1	13	13	942	<20	0.25	<10	10	111	<10	81
D10-5	36207	9.35	9.85	437	3	2.34	44	710	12	1.06	11	13	933	<20	0.25	<10	10	112	<10	80
D10-5	36208	12.50	13.00	714	3	2.17	39	1370	4	0.74	<5	19	1170	<20	0.36	<10	<10	158	<10	84
D10-5	36209	14.35	14.85	465	9	2.04	25	840	<2	0.94	<5	13	691	<20	0.25	<10	<10	115	<10	359
D10-5	36210	15.65	16.15	505	17	2.6	75	930	2	1.74	6	19	886	<20	0.4	<10	10	205	<10	64
D10-5	36211	17.60	18.10	938	3	2.1	13	2270	8	1.81	<5	24	943	<20	0.41	<10	<10	212	<10	67
D10-5	36212	18.90	19.40	716	2	2.47	16	1100	<2	0.9	6	15	926	<20	0.27	<10	10	130	<10	56
D10-5	36213	19.70	20.20	1070	2	2.03	9	2050	4	1.17	<5	23	916	<20	0.37	<10	<10	199	10	85
D10-5	36214	21.35	21.95	874	1	2.22	6	1850	5	2.86	15	19	1050	<20	0.35	<10	10	163	<10	74
D10-5	36215	23.40	24.10	1080	2	2.08	17	2010	6	1.31	<5	24	954	<20	0.39	<10	10	205	<10	88
D10-5	36216	25.70	26.45	1295	2	1.87	10	3010	4	1.95	5	32	744	<20	0.46	<10	<10	269	10	102
D10-5	36217	27.10	28.00	1210	2	2.08	11	3020	3	1.1	<5	34	826	<20	0.49	<10	<10	287	<10	93
D10-5	36218	28.00	28.50	1345	2	1.76	7	3230	6	2.54	15	36	931	<20	0.5	<10	<10	304	10	90
D10-5	36219	28.50	29.40	1220	1	1.68	8	3060	6	2.19	8	33	885	<20	0.48	<10	<10	280	<10	99
D10-5	36220	29.40	30.00	1345	1	1.81	11	3240	<2	1.21	<5	34	978	<20	0.52	<10	<10	296	<10	104
D10-5	36221	30.00	30.50	1235	1	1.82	7	2970	<2	1.46	<5	33	914	<20	0.49	<10	<10	274	<10	92
D10-5	36222	30.50	31.10	1280	1	1.59	9	3210	4	1.15	<5	35	840	<20	0.52	<10	<10	297	<10	104
D10-5	36223	31.10	31.60	1290	1	1.65	9	3080	9	2.57	12	34	710	<20	0.46	<10	<10	276	10	115
D10-5	36224	33.25	34.00	1245	1	1.29	9	3590	218	2.76	14	39	703	<20	0.61	<10	<10	339	<10	318
D10-5	36225	34.00	34.50	1115	1	1.51	10	3110	4	1.51	<5	33	799	<20	0.51	<10	<10	279	<10	104
D10-5	36226	37.10	38.00	1460	1	1.49	9	2660	52	3.04	76	31	589	<20	0.44	<10	<10	272	10	52
D10-5	36227	38.00	39.00	1780	1	0.97	9	2690	23	3.53	24	29	477	<20	0.45	<10	<10	261	10	34
D10-5	36228	39.00	40.30	897	2	1.32	18	1400	280	6.02	112	18	387	<20	0.26	<10	10	144	10	142
D10-5	36229	40.30	41.90	1150	2	1.69	16	2620	12	1.91	30	29	840	<20	0.47	<10	<10	248	<10	115
D10-5	36230	41.90	42.90	970	2	1.79	9	2760	6	2.17	19	29	815	<20	0.45	<10	<10	255	<10	81
D10-5	36231	42.90	43.70	1070	1	1.55	9	2090	52	3.13	35	22	542	<20	0.34	<10	<10	183	10	44
D10-5	36232	43.70	44.60	745	3	1.58	47	1200	48	1.39	12	17	668	<20	0.31	<10	<10	149	10	159
D10-5	36233	49.55	50.05	453	3	1.58	96	830	<2	1.31	<5	16	912	<20	0.32	<10	<10	157	<10	128
D10-5	36234	52.30	52.80	329	2	1.6	128	800	2	1.87	<5	18	561	<20	0.36	<10	10	194	<10	191
D10-5	36235	54.80	55.30	389	3	1.48	97	830	<2	1.42	<5	17	664	<20	0.35	<10	10	166	<10	101
D10-5	36236	58.50	59.00	391	4	1.78	107	750	2	1.34	<5	17	632	<20	0.36	<10	10	150	<10	96
D10-5	36237	63.20	63.80	476	11	1.19	107	700	3	1.29	<5	15	1020	<20	0.3	<10	<10	134	<10	97
D10-5	36238	67.00	67.50	766	5	1.29	88	600	<2	0.52	<5	13	1290	<20	0.29	<10	<10	102	<10	136
D10-5	36239	72.00	72.50	466	3	1.21	87	640	<2	1.26	<5	12	1020	<20	0.25	<10	10	100	<10	99
D10-5	36240	77.50	78.00	473	2	1.53	73	720	3	1.12	<5	14	945	<20	0.29	<10	10	134	<10	95
D10-5	36241	79.00	79.50	304	2	1.45	98	860	2	1.35	<5	18	789	<20	0.36	<10	10	192	<10	129
D10-5	36242	85.00	85.50	496	3	1.07	83	770	6	0.88	12	13	895	<20	0.27	<10	10	131	<10	230
D10-5	36243	90.00	90.50	371	1	1.19	82	730	<2	0.85	<5	17	710	<20	0.35	<10	<10	162	<10	205
D10-6	36244	4.50	5.00	375	3	1.05	55	1200	2	1.09	6	18	1240	<20	0.4	<10	<10	189	<10	179
D10-6	36245	8.50	9.00	374	3	1.4	51	960	<2	1.1	<5	19	1110	<20	0.43	<10	10	186	<10	158
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sample	e		Parameter									er							
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-6	36246	12.50	13.00	0.011	2.1	6.07	12	1390	0.8	<2	11.25	1.2	12	83	49	3.55	10	1.42	20	1.64
D10-6	36247	16.00	16.50	0.005	3.4	2.6	37	810	< 0.5	<2	24.4	0.5	7	32	23	1.76	10	0.6	20	0.83
D10-6	36248	19.80	20.30	0.004	1.3	1.63	17	300	< 0.5	<2	18.9	< 0.5	5	24	24	1.7	10	0.34	20	8.22
D10-6	36249	22.60	23.10	0.007	0.9	6.63	15	1380	0.9	<2	6.83	0.6	15	82	72	4.12	20	1.39	20	1.34
D10-6	36250	28.00	28.50	0.01	1.8	5.36	136	1120	0.7	<2	11.25	1	13	77	54	3.28	10	1.08	20	1.37
D10-6	36251	31.95	32.45	0.007	1.6	5.4	7	1170	0.8	<2	10.35	0.6	10	60	53	3.4	10	1.23	30	1.56
D10-6	36252	37.00	37.50	0.016	1.9	4.91	69	1120	0.6	<2	13.6	0.5	10	65	35	2.66	10	0.89	20	1.4
D10-6	36253	40.90	41.40	0.009	1.7	5.14	20	1070	0.7	<2	10.9	0.9	12	79	50	2.91	10	1.16	20	1.52
D10-6	36254	43.50	44.00	0.038	1.6	5.06	15	1020	0.6	<2	11.65	0.7	12	76	48	3.29	10	1.28	20	1.39
D10-6	36255	47.00	47.50	0.009	1.3	6.34	9	1180	0.8	<2	8.73	0.8	11	72	43	3.4	10	1.57	20	1.4
D10-6	36256	50.90	51.40	0.015	1.6	5.66	18	1120	0.7	<2	9.64	0.6	10	68	44	3.33	10	1.48	20	1.53
D10-6	36257	57.50	58.00	0.005	1.4	7.39	12	1440	0.6	<2	7.78	< 0.5	16	27	54	4.38	10	1.72	20	2.41
D10-6	36258	65.00	65.50	0.016	1.6	5.22	15	1160	0.7	<2	10.05	1	12	92	38	3.04	10	1.18	20	1.52
D10-6	36259	72.00	72.50	0.004	1.8	5.92	7	990	0.6	<2	10.45	0.7	12	114	37	3.13	10	1.13	20	1.78
D10-6	36260	77.80	78.30	0.004	1.4	4.2	19	570	0.5	<2	14.45	0.5	9	67	28	2.33	10	1.06	20	0.83
D10-7	36261	2.00	2.50	0.004	1.1	7.97	30	720	1.2	<2	6.09	< 0.5	27	51	89	8.37	20	2.37	40	2.93
D10-7	36262	5.50	7.00	0.074	1.2	6.07	141	670	0.9	<2	7.98	< 0.5	31	75	120	10.65	20	2.02	40	4.14
D10-7	36263	7.00	8.00	0.008	1	6.17	<5	520	0.9	<2	8.62	< 0.5	35	72	181	11.15	20	1.5	40	3.89
D10-7	36264	8.00	9.00	0.007	1.3	6.63	6	630	1	<2	8.16	< 0.5	31	62	163	10.95	20	1.69	40	4.01
D10-7	36265	9.00	10.10	0.008	1	6.41	10	480	1	<2	11.5	< 0.5	22	69	57	7.74	10	0.91	30	3.66
D10-7	36266	10.10	10.60	0.004	1.4	8.68	<5	910	1.1	<2	7.21	< 0.5	27	44	71	7.43	20	2.26	30	2.86
D10-7	36267	13.00	13.60	0.068	1.5	8	492	800	1.1	<2	7.38	0.9	28	31	103	7.94	20	1.95	30	2.47
D10-7	36268	16.00	16.50	0.006	0.9	6.85	7	870	0.9	<2	8.28	< 0.5	34	91	98	10.1	20	2.14	30	4.54
D10-7	36269	20.40	21.00	0.009	1.1	6.98	7	900	0.9	<2	7.5	< 0.5	30	53	106	9.92	20	2	30	3.93
D10-7	36270	21.00	21.70	0.007	1.3	7.27	<5	890	0.9	<2	7.09	< 0.5	30	50	86	9.31	20	2.29	30	3.95
D10-7	36271	23.70	24.20	0.122	1.1	7.24	892	750	1	<2	6.9	< 0.5	25	54	96	8.4	20	2.51	30	3.46
D10-7	36272	27.50	28.00	0.004	0.5	7.99	<5	1150	1.3	3	8.05	0.8	30	59	58	10.4	20	2.52	30	4.3
D10-7	36273	30.75	31.25	1.89	1.7	7.05	>10000	550	1	2	5.59	0.9	35	25	264	9.08	10	1.41	20	2.23
D10-7	36274	33.25	33.75	0.018	< 0.5	9	20	1030	1.1	3	7.3	< 0.5	25	31	114	9.2	20	2.18	20	3.09
D10-7	36275	34.70	35.30	0.012	1	8.43	4310	820	1.1	4	7.57	< 0.5	21	31	67	7.28	20	2.44	20	1.67
D10-7	36276	35.30	35.80	0.146	0.9	5.53	732	430	0.7	2	11.65	< 0.5	14	17	88	6.52	10	1.11	10	1.68
D10-7	36277	35.80	36.80	0.21	0.8	7.24	174	650	0.9	3	9.67	< 0.5	20	27	139	8.08	20	1.92	20	1.89
D10-7	36278	39.00	39.50	0.016	< 0.5	8.11	22	1660	0.8	2	7.1	0.5	31	54	107	9.61	20	2.51	20	3.94
D10-7	36279	40.75	41.25	0.003	0.5	8.32	17	1810	1	3	8.07	0.6	28	85	95	7.31	20	2.1	20	3.64
D10-7	36280	43.00	43.50	0.003	< 0.5	8.09	8	1580	0.9	5	7.85	0.7	26	50	65	8.99	20	2.3	20	3.73
D10-7	36281	45.30	45.80	0.006	< 0.5	8.01	9	1380	0.9	2	8.06	< 0.5	25	52	89	8.57	20	2.08	20	3.85
D10-7	36282	46.60	47.10	0.029	0.6	8.14	32	1000	1	<2	8.76	< 0.5	23	42	110	7.43	20	1.93	20	2.14
D10-7	36283	47.10	47.60	0.02	0.8	7.93	25	720	1.2	2	8.71	0.5	26	61	90	7.69	20	1.62	20	2.98
D10-7	36284	47.60	48.10	0.051	0.6	6.71	477	680	1	6	10.2	< 0.5	27	78	77	7.44	20	2.12	20	2.59
D10-7	36285	48.10	48.65	0.158	0.5	5.65	1905	540	1	6	8.82	< 0.5	39	75	120	11.45	10	1.55	20	3.41
D10-7	36286	52.00	52.50	0.016	< 0.5	7.32	18	930	1.1	4	8.01	< 0.5	34	76	69	9.47	20	1.88	20	4.46
Units				ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sample	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T 1	U	v	W	Zn
D10-6	36246	12.50	13.00	493	3	1.37	50	1020	2	0.77	7	17	1500	<20	0.38	<10	<10	188	<10	164
D10-6	36247	16.00	16.50	289	1	1.03	20	660	<2	0.59	<5	8	3290	<20	0.14	<10	<10	78	<10	57
D10-6	36248	19.80	20.30	273	5	0.11	16	440	<2	0.41	<5	6	1430	<20	0.09	<10	<10	82	<10	39
D10-6	36249	22.60	23.10	318	3	1.36	53	950	3	1.33	7	20	1030	<20	0.42	<10	<10	198	<10	136
D10-6	36250	28.00	28.50	405	3	1.57	56	830	6	1.07	5	16	1640	<20	0.34	<10	10	167	<10	140
D10-6	36251	31.95	32.45	346	3	0.93	39	730	2	0.97	9	15	1310	<20	0.32	<10	<10	138	<10	138
D10-6	36252	37.00	37.50	331	2	1.48	34	830	2	0.59	<5	14	1580	<20	0.31	<10	<10	126	<10	105
D10-6	36253	40.90	41.40	372	2	1.22	53	840	4	0.78	<5	15	1360	<20	0.33	<10	10	152	<10	139
D10-6	36254	43.50	44.00	410	2	0.87	49	900	<2	0.82	<5	15	1300	<20	0.33	<10	<10	139	<10	117
D10-6	36255	47.00	47.50	334	2	1.22	42	770	2	0.83	<5	17	1200	<20	0.36	<10	<10	151	<10	135
D10-6	36256	50.90	51.40	370	2	0.95	42	840	3	0.83	<5	15	1060	<20	0.33	<10	<10	136	<10	121
D10-6	36257	57.50	58.00	610	3	1.15	22	650	2	0.69	<5	19	1180	<20	0.32	<10	<10	172	<10	79
D10-6	36258	65.00	65.50	385	2	1.13	47	710	<2	0.63	<5	14	1150	<20	0.31	<10	<10	136	<10	121
D10-6	36259	72.00	72.50	461	2	1.53	57	760	<2	0.65	<5	15	1010	<20	0.34	<10	<10	142	<10	105
D10-6	36260	77.80	78.30	531	1	0.7	36	580	<2	0.71	5	12	1070	<20	0.22	<10	<10	107	<10	86
D10-7	36261	2.00	2.50	1225	13	1.5	9	5500	<2	0.73	<5	33	847	<20	0.65	<10	<10	359	<10	108
D10-7	36262	5.50	7.00	1650	3	0.91	13	5920	<2	1.57	<5	46	557	<20	0.76	<10	<10	541	<10	139
D10-7	36263	7.00	8.00	1610	4	0.89	13	7840	<2	1.79	<5	43	684	<20	0.8	<10	<10	611	<10	133
D10-7	36264	8.00	9.00	1640	9	1.03	11	6270	<2	1.52	<5	46	779	<20	0.8	<10	<10	561	<10	142
D10-7	36265	9.00	10.10	1910	5	0.84	21	4280	<2	0.61	5	40	1100	<20	0.36	<10	<10	301	<10	111
D10-7	36266	10.10	10.60	1240	19	1.6	8	3510	<2	0.93	<5	33	1250	<20	0.61	<10	<10	324	<10	106
D10-7	36267	13.00	13.60	1315	11	1.58	8	3200	13	1.68	5	30	1060	<20	0.54	<10	<10	265	<10	142
D10-7	36268	16.00	16.50	1795	1	1.01	18	4390	<2	1.15	<5	51	791	<20	0.73	<10	<10	450	<10	142
D10-7	36269	20.40	21.00	1555	2	1.04	11	5100	<2	1.32	<5	50	844	<20	0.72	<10	<10	435	<10	128
D10-7	36270	21.00	21.70	1540	1	1.21	10	3910	<2	0.95	<5	46	852	<20	0.67	<10	<10	381	<10	132
D10-7	36271	23.70	24.20	1390	2	1.31	18	3400	7	1.26	<5	35	783	<20	0.44	<10	<10	329	<10	113
D10-7	36272	27.50	28.00	2030	8	1.49	11	4960	7	0.88	<5	48	950	<20	0.77	<10	<10	442	<10	156
D10-7	36273	30.75	31.25	1110	2	1.53	4	2680	13	2.4	14	25	771	<20	0.43	<10	<10	248	<10	155
D10-7	36274	33.25	33.75	1375	52	1.61	3	4360	6	1.4	<5	35	1160	<20	0.65	<10	<10	333	<10	121
D10-7	36275	34.70	35.30	1050	6	1.67	5	3640	13	1.53	7	34	939	<20	0.56	<10	<10	318	10	105
D10-7	36276	35.30	35.80	1990	1	1.94	3	2670	6	3.79	16	23	1200	<20	0.38	<10	<10	213	10	20
D10-7	36277	35.80	36.80	1685	<1	1.35	4	3610	6	2.96	5	35	1020	<20	0.5	<10	<10	326	<10	48
D10-7	36278	39.00	39.50	1530	<1	1.35	12	3950	7	1	<5	40	1130	<20	0.62	<10	<10	377	<10	134
D10-7	36279	40.75	41.25	1655	<1	1.6	28	3150	6	0.52	<5	36	1440	<20	0.5	<10	<10	257	<10	111
D10-7	36280	43.00	43.50	1745	<1	1.7	8	3800	7	0.28	<5	41	1350	<20	0.65	<10	<10	383	<10	140
D10-7	36281	45.30	45.80	1670	<1	1.55	9	3540	8	0.97	<5	40	1300	<20	0.6	<10	<10	357	<10	102
D10-7	36282	46.60	47.10	1480	<1	1.58	9	2800	4	1.72	<5	32	1320	<20	0.46	<10	<10	296	10	86
D10-7	36283	47.10	47.60	1470	<1	1.15	17	2760	5	0.92	<5	36	876	<20	0.52	<10	<10	316	<10	115
D10-7	36284	47.60	48.10	1765	<1	0.93	17	2870	10	1.62	7	37	896	<20	0.46	<10	<10	320	20	65
D10-7	36285	48.10	48.65	1785	<1	1.15	17	3350	9	3.41	<5	44	719	<20	0.51	<10	<10	336	<10	89
D10-7	36286	52.00	52.50	1780	<1	1.19	15	4370	7	0.61	<5	47	850	<20	0.67	<10	<10	423	<10	140
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	Sample	e									I	Paramete	er							J
Location	Tag Number	From	То	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La	Mg
D10-7	36287	54.30	55.00	0.068	0.5	7.16	463	810	1.2	3	6.15	0.7	27	75	79	8.3	20	2.69	20	3.97
D10-7	36288	55.00	56.00	0.015	0.5	6.81	481	1050	1	<2	8.54	0.6	33	87	69	9.16	20	1.94	20	4.79
D10-7	36289	58.00	58.50	0.023	0.8	7.14	60	1310	1.1	<2	7.54	< 0.5	41	83	129	8.97	20	2.55	20	3.61
D10-7	36290	59.15	59.65	0.008	0.8	7.16	40	1450	0.9	<2	6.38	< 0.5	27	81	128	8.49	20	2.38	20	3.84
D10-7	36291	60.70	61.20	0.006	0.5	7.35	13	1100	1	2	7.61	< 0.5	26	68	69	8.55	20	2.12	20	3.95
D10-7	36292	61.20	62.00	0.099	0.7	6.94	2990	1170	1.1	2	6.24	0.5	24	53	70	7.55	20	2.31	20	3.08
D10-7	36293	63.05	63.55	0.006	0.8	9.61	24	540	1.2	<2	10.85	< 0.5	21	14	58	6.89	20	1.13	10	2.05
D10-7	36294	66.00	66.50	< 0.001	0.7	8.9	<5	1700	0.9	<2	7.55	< 0.5	30	44	97	8.91	20	2.56	20	3.76
D10-7	36295	68.00	68.50	0.001	< 0.5	8.67	7	1250	0.9	<2	7.21	< 0.5	25	38	61	9.06	20	2.23	20	3.52
D10-7	36296	71.40	71.90	0.002	0.7	6.72	175	1200	0.9	<2	5.37	< 0.5	18	47	44	7.19	20	2.4	20	2.93
D10-7	36297	73.15	74.15	0.003	0.9	8.34	<5	1320	0.8	5	6.72	< 0.5	36	21	128	10.45	20	2.92	20	3.91
D10-7	36298	75.30	76.00	0.009	0.6	9.48	9	1670	1.1	4	4.26	< 0.5	19	30	92	8.41	20	2.59	20	3.32
D10-7	36299	79.85	80.35	0.003	0.6	7.77	8	1400	0.7	2	7.41	< 0.5	30	21	117	9.09	20	2.8	20	3.78
D10-7	36300	81.10	82.00	0.075	0.6	7.01	2200	990	1	3	7.69	< 0.5	29	39	118	9.79	20	2.06	20	3.26
D10-7	36301	82.00	83.00	0.574	0.8	7.04	1625	280	1.1	3	10.8	0.9	24	50	112	8.3	20	0.93	20	3.37
D10-7	36302	84.00	84.50	0.003	0.5	6.91	14	200	1	5	12.95	1.3	19	51	69	6.77	20	0.43	20	2.95
D10-7	36303	85.50	86.50	0.006	0.7	7.63	24	210	1.1	2	11.4	< 0.5	24	70	135	7.76	20	0.57	20	3.26
D10-7	36304	89.25	89.75	0.035	< 0.5	5.82	8810	270	0.9	<2	11	< 0.5	31	86	121	8.62	10	0.61	20	3.52
D10-7	36305	90.60	91.10	0.11	0.8	3.53	2340	140	0.6	4	8.72	< 0.5	13	52	54	4.44	10	0.47	10	1.68
D10-7	36306	91.70	92.20	0.006	0.6	4.21	18	40	0.8	2	14.1	1	23	141	121	8.18	10	0.08	20	3.84
D10-7	36307	93.20	93.70	0.301	0.6	6.36	74	530	0.8	3	9.82	< 0.5	28	61	45	9.29	20	1.52	20	4.29
D10-7	36308	95.65	96.15	0.402	1	6.7	>10000	300	0.8	<2	10.4	< 0.5	27	30	79	7.68	20	0.92	30	2.9
D10-7	36309	99.50	100.00	0.013	0.6	7.37	63	550	1.1	<2	6.88	< 0.5	27	39	52	9.27	20	1.88	30	3.79
D10-7	36310	100.50	101.00	0.005	1.2	7.1	19	620	1	<2	6.92	< 0.5	28	46	56	9.51	20	1.89	30	3.93
D10-7	36311	102.50	103.00	0.009	1.4	8.06	172	730	1.2	<2	7.57	< 0.5	25	42	33	9.19	20	1.82	30	3.67
D10-7	36312	107.30	107.80	0.007	1.2	8.06	15	730	1.1	<2	6.44	< 0.5	24	46	51	8.06	20	1.99	20	3.19
D10-7	36313	108.30	108.80	0.002	1.2	8.75	12	610	1.1	<2	7.75	< 0.5	26	44	43	8.62	20	1.84	30	3.49
Units				ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

	Sample	e]	Paramete	er							
Location	Tag Number	From	То	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U	V	W	Zn
D10-7	36287	54.30	55.00	1370	<1	1.22	12	3700	10	0.72	<5	45	578	<20	0.58	<10	<10	364	<10	167
D10-7	36288	55.00	56.00	1735	<1	0.97	21	3750	6	0.59	<5	43	783	<20	0.63	<10	<10	368	<10	153
D10-7	36289	58.00	58.50	1550	<1	1.05	15	3440	10	2.08	<5	41	901	<20	0.56	<10	<10	363	<10	103
D10-7	36290	59.15	59.65	1395	<1	1.27	14	3640	5	1.64	<5	40	826	<20	0.55	<10	<10	367	<10	103
D10-7	36291	60.70	61.20	1625	<1	1.3	11	3820	6	0.8	<5	43	899	<20	0.6	<10	<10	405	10	142
D10-7	36292	61.20	62.00	1245	1	1.28	9	3530	18	1.14	<5	41	831	<20	0.54	<10	<10	347	<10	143
D10-7	36293	63.05	63.55	1420	1	1.69	5	1720	6	0.53	6	22	1600	<20	0.46	<10	<10	238	<10	75
D10-7	36294	66.00	66.50	1565	<1	1.59	7	4510	7	0.7	<5	39	1480	<20	0.66	<10	<10	377	<10	130
D10-7	36295	68.00	68.50	1615	<1	1.64	5	3830	5	0.69	<5	42	1190	<20	0.69	<10	<10	374	<10	125
D10-7	36296	71.40	71.90	1180	2	1.38	6	3070	7	0.62	<5	35	821	<20	0.52	<10	<10	321	<10	103
D10-7	36297	73.15	74.15	1565	2	1.59	3	4680	6	1.33	<5	52	1080	<20	0.77	<10	<10	435	<10	143
D10-7	36298	75.30	76.00	1135	1	2.19	2	3880	6	1	<5	32	965	<20	0.66	<10	<10	369	<10	108
D10-7	36299	79.85	80.35	1440	3	1.24	4	4940	9	1.2	<5	53	989	<20	0.75	<10	<10	414	<10	132
D10-7	36300	81.10	82.00	1515	1	1.16	14	4470	6	1.76	6	47	870	<20	0.61	<10	<10	374	<10	121
D10-7	36301	82.00	83.00	1690	<1	0.97	20	4050	5	1.3	<5	38	1030	<20	0.38	<10	<10	313	<10	124
D10-7	36302	84.00	84.50	1405	1	0.66	29	2470	3	0.82	<5	28	1230	<20	0.43	<10	<10	258	<10	146
D10-7	36303	85.50	86.50	1595	<1	1.16	41	3040	6	1.46	<5	34	1340	<20	0.3	<10	<10	286	<10	92
D10-7	36304	89.25	89.75	1590	2	1.09	55	3130	7	2.33	8	37	762	<20	0.48	<10	<10	319	<10	99
D10-7	36305	90.60	91.10	1085	2	0.8	31	1370	3	0.88	<5	17	519	<20	0.28	<10	<10	179	10	77
D10-7	36306	91.70	92.20	1570	5	0.31	111	2490	7	1.23	<5	34	991	<20	0.76	<10	<10	374	<10	267
D10-7	36307	93.20	93.70	1710	<1	0.85	11	4260	7	0.98	<5	56	777	<20	0.65	<10	<10	435	<10	98
D10-7	36308	95.65	96.15	1470	2	2.09	15	4070	10	1.5	11	44	801	<20	0.63	<10	<10	365	20	110
D10-7	36309	99.50	100.00	1380	<1	1.48	11	4350	2	0.69	<5	52	723	<20	0.77	<10	<10	436	<10	134
D10-7	36310	100.50	101.00	1460	<1	1.37	12	4340	<2	0.86	5	54	769	<20	0.8	<10	<10	454	<10	131
D10-7	36311	102.50	103.00	1430	1	1.58	9	4240	<2	0.39	<5	50	1030	<20	0.79	<10	<10	442	<10	137
D10-7	36312	107.30	107.80	1195	1	1.43	13	3210	<2	0.78	<5	36	1020	<20	0.67	<10	<10	373	<10	119
D10-7	36313	108.30	108.80	1355	<1	1.51	11	4010	<2	0.55	5	44	1120	<20	0.72	<10	<10	418	<10	121
Units				ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

TABLE 3

Rock Geochemical Results

	Sample					Parameter															
Location	Tag Number	Date	Sample Type	Length (m)	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	К	La	Mg
D-10-1	H540792	July 19, 2010	grab	-	0.006	0.7	4.89	<5	380	0.6	<2	0.09	< 0.5	3	44	46	2.72	10	1.16	10	0.76
D-10-2	H540793	July 19, 2010	grab	-	0.009	0.6	8.27	35	1970	1	3	1.74	0.6	8	77	57	4.31	20	1.8	10	1.99
D-10-3	36314	Sept. 5, 2010	grab	-	0.017	1.3	1.08	20	240	< 0.5	<2	1.62	0.5	5	26	17	1.4	<10	0.29	10	0.18
D-10-4	36315	Sept. 5, 2010	grab	-	0.007	< 0.5	1.04	11	300	< 0.5	<2	1.05	2	3	24	13	13.1	<10	0.15	10	0.11
D-10-5	36316	Sept. 5, 2010	grab	-	0.013	1.6	0.97	6	370	< 0.5	<2	0.24	5.5	4	30	14	1.03	<10	0.35	10	0.08
D-09-01	H540751	Sept. 16, 2009	chip	1.0 H	0.006	1	7.46	86	1420	1	<2	3.08	1.3	12	192	43	4.07	20	1.68	10	2.45
D-09-02	H540752	Sept. 16, 2009	chip	1.0 H	0.002	0.5	8.1	14	2140	0.7	<2	6.57	0.7	12	62	52	3.54	20	1.84	10	1.87
D-09-03	H540753	Sept. 16, 2009	grab	-	0.006	0.8	7.74	22	1710	1	<2	11.15	1.2	12	107	59	4.78	20	1.49	10	2.07
D-09-04	H540754	Sept. 16, 2009	chip	1.0 H	0.006	0.8	8.14	40	1210	1.7	<2	4.32	< 0.5	12	34	88	5.83	20	3.15	20	2.37
D-09-05	H540755	Sept. 16, 2009	chip	3.0 H	12.3	4	0.46	7810	<50	<10	<20	0.26	<10	<10	50	10	2.07	<50	0.1	<50	0.05
D-09-06	H540756	Sept. 16, 2009	grab	-	3.73	68	0.06	5630	<50	<10	<20	0.09	160	<10	30	20	1.69	<50	< 0.1	<50	< 0.05
D-09-07	H540757	Sept. 16, 2009	grab	-	11.45	341	< 0.05	21900	<50	<10	<20	< 0.05	550	<10	10	220	15.8	<50	< 0.1	<50	< 0.05
D-09-08	H540758	Sept. 17, 2009	chip	1.0 H	0.084	4.2	8.51	147	640	< 0.5	<2	3.88	4.2	20	25	154	5.77	20	1.32	10	2.87
D-09-09	H540767	Sept. 17, 2009	grab	-	0.189	9.7	7.23	365	1470	0.9	<2	4.02	11	5	62	44	5.37	20	1.82	10	1.78
D-09-10	H540773	Sept. 18, 2009	grab	-	0.036	0.8	0.36	23	120	< 0.5	<2	2.54	0.7	<1	21	2	0.64	<10	0.09	<10	0.11
D-09-11	H540776	Sept. 18, 2009	chip	0.48 H	0.005	< 0.5	1.81	15	750	< 0.5	<2	0.13	< 0.5	4	24	126	1.48	<10	1.25	<10	0.39
D-09-12	H540781	Sept. 18, 2009	chip	0.32 H	0.009	0.8	3.5	34	510	< 0.5	<2	15	0.5	7	128	20	2.3	<10	0.75	<10	0.68
Units					ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%

Sample					Parameter																
Location	Tag Number	Date	Sample Type	Length (m)	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U	v	W	Zn
D-10-1	H540792	July 19, 2010	grab	-	175	2	0.9	8	160	9	0.04	<5	17	79	<20	0.26	<10	10	151	<10	43
D-10-2	H540793	July 19, 2010	grab	-	303	2	1.75	18	890	6	0.11	9	27	1050	<20	0.56	<10	10	288	<10	122
D-10-3	36314	Sept. 5, 2010	grab	-	241	1	0.28	25	160	16	0.04	<5	4	172	<20	0.04	<10	<10	31	<10	39
D-10-4	36315	Sept. 5, 2010	grab	-	833	6	0.31	90	130	<2	0.05	5	4	149	<20	0.02	<10	<10	18	<10	109
D-10-5	36316	Sept. 5, 2010	grab	-	95	1	0.08	13	200	<2	0.02	<5	3	38	<20	0.04	<10	<10	24	<10	235
D-09-01	H540751	Sept. 16, 2009	chip	1.0 H	360	6	1.73	74	940	8	0.14	<5	20	629	<20	0.42	<10	<10	220	<10	134
D-09-02	H540752	Sept. 16, 2009	chip	1.0 H	608	7	2.5	24	870	5	0.45	<5	19	1180	<20	0.39	<10	10	221	<10	96
D-09-03	H540753	Sept. 16, 2009	grab	-	543	5	1.28	62	1180	5	0.75	<5	22	1860	<20	0.49	<10	10	238	<10	169
D-09-04	H540754	Sept. 16, 2009	chip	1.0 H	887	2	2.18	6	2940	8	1.57	<5	27	950	<20	0.49	<10	<10	274	<10	75
D-09-05	H540755	Sept. 16, 2009	chip	3.0 H	160	<10	0.27	<10	90	50	1	50	<10	50	<50	< 0.05	<50	<50	20	170	<20
D-09-06	H540756	Sept. 16, 2009	grab	-	70	<10	< 0.05	10	<50	44900	3.2	35900	<10	10	<50	< 0.05	<50	<50	<10	<50	4150
D-09-07	H540757	Sept. 16, 2009	grab	-	20	<10	< 0.05	<10	<50	161000	18.6	4250	<10	20	<50	< 0.05	<50	<50	<10	70	15450
D-09-08	H540758	Sept. 17, 2009	chip	1.0 H	661	2	3.36	10	1710	1380	3	449	26	1410	<20	0.74	<10	10	329	<10	201
D-09-09	H540767	Sept. 17, 2009	grab	-	520	6	1.21	16	820	3610	0.34	133	18	838	<20	0.37	<10	<10	236	<10	411
D-09-10	H540773	Sept. 18, 2009	grab	-	137	<1	0.04	7	130	205	0.04	106	1	221	<20	0.01	<10	<10	9	<10	24
D-09-11	H540776	Sept. 18, 2009	chip	0.48 H	257	<1	0.17	5	140	68	0.06	29	2	68	<20	0.04	<10	<10	36	<10	22
D-09-12	H540781	Sept. 18, 2009	chip	0.32 H	627	2	1.28	71	420	111	0.11	10	8	1170	<20	0.1	<10	10	70	<10	82
Units					ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

APPENDICES

APPENDIX A

Lumby Climate Normals

Canada

-

Notices:

As of July 24, 2008 changes were made in how data are accessed at 25 stations. <u>Please click here</u> for further details.

Popular historical Environment Canada publications, studies, and reports from the National Climate Archive library are now available for download as electronic files. They can be accessed by clicking the "Products and Services" link on the left menu bar.

Canadian Climate Normals 1971-2000

The minimum number of years used to calculate these Normals is indicated by a <u>code</u> for each element. A "+" beside an extreme date indicates that this date is the first occurrence of the extreme value. Values and dates in bold indicate all-time extremes for the location.

NOTE!! Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

LUMBY SIGALET RD
BRITISH COLUMBIA

Latitude: 50° 22.000' N	Longitude:	118° 46.000		Elevation: 559.90 m			
Climate ID: 1164730		WMO ID:				TC ID:	
Temperature:	Jan	Feb	Mar	Apr	Мау	Jun	Jul
Daily Average (°C)	-4.9	-2.2	2.3	7.4	11.6	15.3	17.9
Standard Deviation	2.9	2.4	1.6	1.2	1.6	1.5	1.6
Daily Maximum (°C)	-1.8	1.8	7.6	14.1	18.5	22.4	25.6
Daily Minimum (°C)	-8	-6.2	-3	0.6	4.6	8.1	10.1
Extreme Maximum (°C)	14	15	21	29.4	34	35.5	37.2
Date (yyyy/dd)	1989/30	1986/25	1994/30	1977/24	1986/26	1992/26	1974/31
Extreme Minimum (°C)	-30.5	-28	-20	-8	-4	-1	3
Date (yyyy/dd)	1996/30+	1996/01	1976/04	1979/01	1985/12	1988/02	1984/07
Precipitation:							
Rainfall (mm)	11.3	12.7	26.5	40.2	61.3	69.8	58
Snowfall (cm)	48.1	23.5	8.2	0.7	0.1	0	0
Precipitation (mm)	59.5	36.2	34.8	40.8	61.3	69.8	58
Average Snow Depth (cm)	32	29		0	0	0	0
Median Snow Depth (cm)	31	28		0	0	0	0
Snow Depth at Month-end (cm)	33	21	2	0	0	0	0
Extreme Daily Rainfall (mm)	14	23.1	13.4	24.8	29.6	35	32.5
Date (yyyy/dd)	1974/24	1977/11	1996/09	1983/24	1996/30	1990/03	1982/13
Extreme Daily Snowfall (cm)	31	21	10.2	5.3	1.3	0	0

Date (yyyy/dd)	1993/24	1994/08	1975/08	1972/10	1996/08	1971/01+	1971/01+
Extreme Daily Precipitation (mm)	31	23.1	13.4	24.8	29.6	35	32.5
Date (yyyy/dd)	1993/24	1977/11	1996/09	1983/24	1996/30	1990/03	1982/13
Extreme Snow Depth (cm)	76	85	51	21	1	0	0
Date (yyyy/dd)	1982/29	1982/14	1982/01+	1982/01	1996/09	1981/01+	1981/01+
Days with Maximum Tempera	ature:						
<= 0 °C	18.3	8.8	1	0	0	0	0
> 0 ° C	12.7	19.4	30	30	31	30	31
> 10 °C	0.11	0.35	7	22.4	29.7	30	30.9
> 20 °C	0	0	0.04	3.4	9.8	19.4	25.7
> 30 °C	0	0	0	0	0.53	2	6.5
> 35 °C	0	0	0	0	0	0.04	0.73
Days with Minimum Tempera	<u>ture</u> :						
> 0 ° C	0.59	1.6	5.3	14.4	26.8	29.9	30.6
<= 2 °C	30.9	28.1	29.9	21.1	8	0.73	0
<= 0 °C	30.4	26.5	25.6	15.6	3.6	0.09	0
< -2 °C	25	20	16	5.9	0.22	0	0
< -10 °C	9.6	5.8	1.6	0	0	0	0
< -20 °C	1.6	0.72	0	0	0	0	0
< - 30 °C	0.07	0	0	0	0	0	0
Days with Rainfall:							
>= 0.2 mm	3.9	4.2	9	11.8	13.5	13.6	10.2
>= 5 mm	0.66	0.66	1.9	2.5	4.3	4.9	4.1
>= 10 mm	0.03	0.14	0.18	0.54	1.9	2.1	1.9
>= 25 mm	0	0	0	0	0.08	0.18	0.14
Days With Snowfall:							
>= 0.2 cm	11.7	6.9	3.4	0.29	0.04	0	0
>= 5 cm	3.4	1.5	0.43	0.04	0	0	0
>= 10 cm	1.2	0.45	0.11	0	0	0	0
>= 25 cm	0.03	0	0	0	0	0	0
Days with Precipitation:							
>= 0.2 mm	14.6	10.5	11.5	11.9	13.5	13.6	10.2
>= 5 mm	4.3	2.2	2.4	2.6	4.3	4.9	4.1
>= 10 mm	1.3	0.62	0.36	0.54	1.9	2.1	1.9
>= 25 mm	0.03	0	0	0	0.08	0.18	0.14
Days with Show Depth:		25.0		0.4	0.04	0	0
>= 1 cm		20.8 25.1		0.0	0.06	0	0
>= 5 cm		20.1		0.4	0	0	0
>= 10		24.5		0.33	0	0	0
Pegree Days:		20.7		0.07	0	0	0
Above 24 °C	0	0	0	0	0	0	
Above 18 °C	0	0	0	0	22	11 3	
Above 15 °C	0	0	0	0.5	10.2	42.8	
Above 10 °C	0	0	0	10.8	64.4	159.2	
Above 5 °C	02	03	7	74.6	194 7	307.7	
Above 0 °C	0.2 7 R	21 R	, 83 8	211 2	349 5	457.7	
Below 0 °C	160 5	89.7	16 R	0.1	0,7,0	۰., ₁ 37	
Below 5 °C	307.8	209.3	94.9	13 5	02	0	
	557.0	207.0	/ . /	10.0	0.2	0	

Below 10 °C	462.6	350	243	99.6	24.9	1.5
Below 15 °C	617.6	491.1	398	239.4	125.7	35
Below 18 °C	710.6	575.8	491	328.9	210.7	93.6

Year Code

А

А

А

А

NOTE!! Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

BRITISH COLUMBIA										
Latitude: 50° 22.000' N	Longitu	<mark>ude</mark> : 118° 46	6.000' W		Elevation	559.90	m			
Climate ID: 1164730	<u>WMO</u>	<u>ID</u> :		TC ID:						
Temperature:	Aug	Sep	Oct	Nov	Dec	Year	Сс			
Daily Average (°C)	17.6	12.8	6.2	0.2	-4.2					
Standard Deviation	1.4	1.7	1	1.8	2.6					
Daily Maximum (°C)	25.3	19.8	11	3.2	-1.5					
Daily Minimum (°C)	9.9	5.6	1.4	-2.7	-6.9					
Extreme Maximum (°C)	39	34.5	26.1	20.6	15					
Date (yyyy/dd)	1998/04	1987/01	1975/02	1975/04	1980/26					
Extreme Minimum (°C)	0.6	-6	-19	-32	-33					
Date (yyyy/dd)	1973/19	1983/19	1984/31	1985/27	1990/29					
Precipitation:										
Painfall (mm)	18	17 1	15 1	30.3	10.7	163 1				

LUMBY SIGALET PD

Date (yyyy/dd)	1998/04	1987/01	1975/02	1975/04	1980/26		
Extreme Minimum (°C)	0.6	-6	-19	-32	-33		
Date (yyyy/dd)	1973/19	1983/19	1984/31	1985/27	1990/29		
Precipitation:							
Rainfall (mm)	48	47.4	45.1	32.3	10.7	463.4	Α
Snowfall (cm)	0	0	1.7	28.4	54.2	164.9	А
Precipitation (mm)	48	47.4	46.8	60.7	64.9	628.3	А
Average Snow Depth (cm)	0	0	0		14		D
Median Snow Depth (cm)	0	0	0		12		D
Snow Depth at Month-end (cm)	0	0	0	7	24	7	D
Extreme Daily Rainfall (mm)	29.2	25.6	19.3	29.2	16		
Date (yyyy/dd)	1976/16	1993/19	1996/28	1990/09	1972/21		
Extreme Daily Snowfall (cm)	0	0	10.2	24	32.3		
Date (yyyy/dd)	1971/01+	1971/01+	1971/31	1990/08	1971/16		
Extreme Daily Precipitation (mm)	29.2	25.6	19.3	37	32.3		
Date (yyyy/dd)	1976/16	1993/19	1996/28	1995/13	1971/16		
Extreme Snow Depth (cm)	0	0	5	38	56		
Date (yyyy/dd)	1980/01+	1981/01+	1984/31	1996/28	1996/24		
Days with Maximum Temperature:							
<= 0 °C	0	0	0.41	5.9	19.1		Α
> 0 ° C	31	30	30.6	24.1	11.9		Α
> 10 °C	31	29.3	16.8	1.3	0.27		Α
> 20 °C	24.9	14.6	0.94	0.05	0		Α
> 30 °C	5.7	0.12	0	0	0		Α
> 35 °C	0.22	0	0	0	0		Α
Days with Minimum Temperature:							
> 0 ° C	30.7	27.8	18.5	6.3	0.85		Α
<= 2 °C	0.14	4.4	18.2	27.4	30.9		А
<= 0 °C	0	1.6	12.3	23.5	30.2		Α
< -2 °C	0	0.71	5.2	14.2	24.3		Α
< -10 °C	0	0	0.17	2	6.8		Α
< -20 °C	0	0	0	0	1.1		Α
< - 30 °C	0	0	0	0	0.08		Α
Days with Rainfall:							

>= 0.2 mm	9.7	9.9	12.6	10.1	3.6	112	Α
>= 5 mm	3.5	3.4	3.3	2	0.61	31.6	А
>= 10 mm	1.5	1.4	0.81	0.54	0.11	11.1	А
>= 25 mm	0.04	0.04	0	0.07	0	0.55	А
Days With Snowfall:							
>= 0.2 cm	0	0	0.75	7.3	12.2	42.6	А
>= 5 cm	0	0	0.11	1.8	3.8	11.1	А
>= 10 cm	0	0	0.04	0.89	1.2	3.9	А
>= 25 cm	0	0	0	0	0.07	0.1	А
Days with Precipitation:							
>= 0.2 mm	9.7	9.9	13	15.5	15.1	148.8	А
>= 5 mm	3.5	3.4	3.4	3.9	4.5	43.4	А
>= 10 mm	1.5	1.4	0.85	1.5	1.4	15.3	А
>= 25 mm	0.04	0.04	0	0.11	0.11	0.73	А
Days with Snow Depth:							
>= 1 cm	0	0	0.35				D
>= 5 cm	0	0	0.06				D
>= 10	0	0	0				D
>= 20	0	0	0				D
Degree Days:							
Above 24 °C	0.6	0	0	0	0		А
Above 18 °C	36.4	1.1	0	0	0		А
Above 15 °C	93	13.3	0.1	0.1	0		А
Above 10 °C	234.9	95.5	7.9	0.5	0		А
Above 5 °C	389.9	232.3	62.4	4.5	0.3		А
Above 0 °C	544.9	381.6	191.9	50.3	10		А
Below 0 °C	0	0	3.6	41.6	144.3		А
Below 5 °C	0	0.6	29.1	145.8	289.6		А
Below 10 °C	0	13.9	129.5	291.8	444.3		А
Below 15 °C	13.1	81.7	276.7	441.4	599.3		А
Below 18 °C	49.5	159.5	369.7	531.4	692.3		Α

Date Modified: 2009-04-30

APPENDIX B

BC MINFILE Records

		Location/Identif	ication	
MINFILE Number:	082LSE042			
Name(s):	KETTLE RIVER			
Status:	Past Producer		Mining Division:	Vernon
Mining Method	Open Pit		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L008			
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
Latitude:	50 04 36 N		Northing:	5548217
Longitude: Flevation:	118 29 22 W 1200 metres		Easting:	393428
Location Accuracy:	Within 1KM			
Comments:	Approximate location	of occurrence #348 (Geological Survey of	of Canada Open File 637	7).
		Mineral Occurr	ence	
Commodities:	Gold			
Minorals	Significant:	Gold		
while als	Mineralization Age:	Unknown		
	8			
Deposit	Character:	Unconsolidated		
I I	Classification:	Placer		
	Туре:	C01: Surficial placers		
		Strike/Dip:	000/	
		Host Rock	t	
Dominant Host Ro	ck: Sedimentary			
Stratigraphic Age	Group	Formation	Igne	ous/Metamorphic/Other
Recent			Glac	ial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology G	ravel			
Enthology.		<i>C</i> 1 · 10	•	
	Omi:	Geological Se	aing	
i ectonic Belt:	Omineca	Physiographic Are	a: Okanagan I	Highland
Terrane:	Overlap Assemblag	ge		
		Inventory		

No inventory data

Capsule Geology

The Kettle River placer deposit is located on the Kettle River just north of the Vernon-Edgewood highway, about 1.2 kilometres below the bridge and about 70 kilometres southeast of Vernon.

In 1877, gold was discovered at the headwaters of the Kettle River. In 1886, Hollingsworth and McMillan recorded a discovery claim on the Kettle River about 25 kilometres from Monashee Mountain. In 1931, "attractive values" came from the riverbank about 1.2 kilometres below the bridge. In 1933, 2 leases were staked by C.H. Martin, Frank Layman and associates. They conducted small hydraulic operations along the benches.

Bedrock in the area consists of granitic rocks of the Jurassic Nelson Intrusions.

A cut 38 metres long by 7.6 metres high uncovered some well- layered slightly cemented gravel for about 60 centimetres above the granite bedrock. This section was predicted to average 45 cents a cubic yard and contained nuggets up to \$1.50. The gravel on and above the bedrock had all the appearances of an old channel.

Other test pits outlined an area 1.6 kilometres long and 800 metres wide on the east side. Above the road "encouraging prospects" were reported. About 3.2 kilometres below, in and at the mouth of the canyon, coarse gold values were mined.

The origin of most of this gold has been traced to the quartz veins found in the argillites on Monashee Mountain (082LSE010,022).

There is no record of how much placer gold was removed from the Kettle River.

			Bibliography					
EMPR AR 1877-404;	1886-213; *1931-129; *1	933-162						
MPR BULL *28, p. 36								
EMPR FIELDWORK	1987, pp. 55-58; 1988, pp	p. 49-54; 1992, pp. 2	55-257					
EMPR OF 1991-18; 19	994-8							
EMPR RGS 082L, 197	76; 32, 1991							
GSC MAP 7216G; 849	91G							
GSC MEM 296								
GSC OF *637(#348);	658							
GSC P 91-2, pp. 115-1	135							
CJES Vol. 26, No. 2								
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν			
Date Revised:	1994/11/28	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν			

		Location/Identif	ication	
MINFILE Number:	082LSE016			
Name(s):	DONA			
	DONA 1-11 DONNA	DNA IRENE		
	bollin i il, bollin,			
Status:	Prospect		Mining Division:	Vernon
			Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
Latitude:	50 07 57 N		Northing:	5554311
Longitude:	118 24 27 W		Easting:	399408
Elevation:	1585 metres			
Location Accuracy:	Centre of Donna 3 clai	m (Assessment Report 22931)		
Comments:		(155655511611 (16port 22)51).		
		Mineral Occurr	ence	
Commodities:	Silver, Gold, Lead, Zinc, Co	opper, Antimony		
Minorals	Significants	Arsenonvrite Pyrite Stibnite Galena	Chalconvrite Tetrahed	ite Sphalerite Tennantite
Minerais	Significant:	Arsenopyme, Tyme, Subme, Galena,	chalcopyrite, retraited	ne, Sphareme, Teimanne
	Associated:	Qualiz Homotita Silian Ankarita		
	Alteration:			
	Alteration Type:	Usiliation, Propylitic, Silicific n, Carbo	onate	
	Mineralization Age:	Unknown		
Denosit	Character:	Vein, Podiform, Shear		
Deposit	Classification:	Hydrothermal, Epigenetic		
	Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-A	u	
		Strike/Dip:	000/	
		Host Rock		
Dominant Host Ro	ock: Plutonic			
Stratigraphic Age	e Group	Formation	Igne	ous/Metamorphic/Other
Paleozoic-Mesozo	ic Harper Ranch	Undefined Formation		-
Jurassic			Nels	on Intrusions
Isotopic Age		Dating Method	Material Dated	
Lithology: D	viorite, Siliceous Phyllite, Felsi	c Volcanic, Argillite, Quartzite, Tuff, Qu	artz Diorite	
Comments: T	he Harper Ranch Group is Dev	vonian to Triassic.		
		Geological Se	ttina	
Taatania Balti	Omineca	Geologicai Sel	Okanagan J	Lickland
l ectonic Beit:	Unineca	Physiographic Area	: Okanagan F	ligniand
Terrane:	Kootenay			
		Ιμυρατοκυ		
		Inventory		
Ore Zone:	TRENCH			Year: 1990

Category:	Assay/analysis		Report On: 1	
		I	NI 43-101: N	
Sample Type:	Chip			
	Commodity	Grade		
	Silver	207.8000 grams per tonne		
	Gold	0.5110 grams per tonne		
	Copper	0.0160 per cent		
	Lead	0.1350 per cent		
	Zinc	0.0680 per cent		
Comments:	Chip sample, across 2 metres, fro	m Trench 6 on the Donna claims.		
Reference:	Assessment Report 22931.			
Comments: Reference:	Zinc Chip sample, across 2 metres, fro Assessment Report 22931.	m Trench 6 on the Donna claims.		

A agory/omolyaia

Capsule Geology

Dement One N

The Dona showing is located 4.8 kilometres west-northwest of Keefer Lake at the headwaters of Kettle River, 63 kilometres southeast of Vernon.

In 1973, the Dona 1-11 claims were staked and geochemical and VLF surveys were completed. In 1974, trenching and percussion drilling were undertaken. In 1982, the Irene and Dona claims were staked. In 1984, trenching was done and in 1988 geochemical surveys and geological mapping were completed. In 1992, claims were staked and soil sampling, trenching, bedrock sampling and geological mapping were completed. In 1993, geophysical surveys were completed in the area.

The area is underlain by a metamorphosed poly-deformed sequence of metasediments and tuffaceous rocks of the Devonian to Triassic Harper Ranch Group. These predominantly comprise varieties of black, intensely cleaved argillite and dark grey to grey siliceous phyllite and intermixed felsic volcanics. These are intruded by small stocks and plugs of diorite and quartz diorite of the Jurassic Nelson Intrusions.

The diorite is the main host of the mineralization and shallow dipping shears control gold distribution. Boudinaged quartz veins commonly fill the shear zones and contain pods and irregular masses of arsenopyrite, pyrite, stibnite, galena and minor chalcopyrite, tetrahedrite-tennantite and possibly sphalerite. The mineralized pods and masses vary from a few millimetres to a maximum of about 10 centimetres thick and do not exceed a few metres in length. Adjacent to the shears are irregularly distributed zones of silicification which contain up to about 2 per cent pyrite. Quartz veins generally have hematite-rich selvages. Hematite also occurs as fracture fillings. The diorite host is commonly weakly propylitized and, near shears, is pyritic. Strong silicification and ankerite(?) alteration of diorite and adjacent argillaceous sedimentary rocks has been noted in outcrop.

In 1974, Sample P3 assayed 43.9 grams per tonne silver and 1.4 grams per tonne gold (Assessment Report 5220). Trenching and bedrock sampling yielded low values, generally less than 0.5 gram per tonne gold (Assessment Report 22931). A chip sample across 2 metres from Trench 6 on the Donna claims assayed 0.016 per cent copper, 0.135 per cent lead, 0.068 per cent zinc, 207.8 grams per tonne silver and 0.511 gram per tonne gold (Sample 35781, Assessment Report 22931).

Bibliography

Date Revised:	1994/03/21	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν	
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν	
Chevron File						
CJES Vol. 26, No.	2					
GSC P 91-2, pp. 1	15-135					
GSC OF 637(#333); 658					
GSC MEM 296						
GSC MAP 7216G	; 8491G					
EMPR RGS 082L,	1976; 32, 1991					
EMPR PF (Keefer	Resources Prospectus,	, 1988; Dona Property	description, 1974)			
EMPR OF 1991-1	8; 1994-8					
EMPR GEM 1973	-97; 1974-81					
EMPR FIELDWO	RK 1987, pp. 55-58; 1	988, pp. 49-54; 1992, pj	p. 255-257			
EMPR ASS RPT 4	4740, 5220, 10920, 145	667, 17663, 18147, 2159	02, 22538, *22931, 23189			

Location/Identification						
MINFILE Number:	082LSE020					
Name(s):	<u>FOX</u>					
	VERNA, NUGGET,	KELLY				
Status.	Showing		Mining Division:	Vernon		
Status.	2		Electoral District:	Okanagan-Vernon		
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District		
BCGS Map:	082L019					
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)		
Latitude:	50 09 35 N		Northing:	5557309		
Longitude:	118 23 08 W		Easting:	401032		
Elevation:	1966 metres					
Location Accuracy:	Largest mineralized a	area on the Fox 16 claim (Assessment Rer	ort 5066)			
Comments.	Langeot mineralized e					
		Mineral Occuri	rence			
Commodities:	Silver, Lead, Gold, Coppe	r				
Minerals	Significant:	Chalcopyrite, Pyrite, Galena, Pyrrhoti	te, Arsenopyrite			
	Associated:	Quartz				
	Alteration:	Silica				
	Alteration Type:	Silicific'n				
	Mineralization Age:	Unknown				
Deposit	Character:	Vein, Disseminated				
- F	Classification:	Hydrothermal, Epigenetic				
	Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-A	Au			
	Dimension:	1x0x0 metres Strike/Dip:	000/			
	Comments:	Quartz vein at largest mineralized area southeast.	is about 1.2 metres wid	e and dips about 30 degrees to the		
		Host Roc	t			
Dominant Host Ro	ck: Sedimentary		•			
Stratigraphic Age	Group Nicola	Formation Undefined Formation	Igne 	ous/Metamorphic/Other 		
Isotopic Age		Dating Method	Material Dated			
Lithology: A	rgillite, Limy Quartzitic/Qua	artzose Schist, Tuff, Andesite, Quartzite, I	Limestone, Tuffaceous A	ndesite		
		Geological Se	tting			
Tectonic Belt:	Omineca	Physiographic Are	a: Okanagan I	Highland		
Terrane:	Quesnel					
		Inventory	· · · · · · · · · · · · · · · · · · ·			
Ore Zone:	SAMPLE			Year: 1978		
510 20mt.						

Report On: N Assay/analysis Category: NI 43-101: N Sample Type: Grab Commodity Grade Silver 129.6000 grams per tonne Gold 0.2000 grams per tonne Lead 3.3500 per cent Highest assay; sample from the old shaft area. **Comments: Reference:** Assessment Report 7005.

Capsule Geology

The Fox showing is located on the southwestern slope of Yeoward Mountain, about 90 kilometres east of Vernon.

The Fox showings were discovered and investigated in 1974 by David King. There is an older shaft on the northwest corner of the claims from previous unrecorded work. Also in 1974, a geochemical program was completed by Nielsen Geophysics. In 1978, a geochemical sampling program was conducted on these showings now covered by the Verna and Nugget claims for Murray Ranking Developments Ltd. In 1983, a heavy mineral study was completed on the Kelly claims, just to the west of the Fox showings by C.F. Mineral Research Ltd. for David King. In 1993, geophysical surveys were conducted in this area by James McLeod for Harold Arnold.

The area is underlain by Upper Triassic to Lower Jurassic Nicola Group sedimentary and volcanic rocks. In the area of the showings these consist of argillite, tuff, andesite, quartzite and limestone.

The largest mineralized area is on the Fox 16 claim. This area contains chalcopyrite and pyrite in argillites near the exposure of limy quartzose schists. A quartz vein, dipping 30 degrees southeast and about 1.2 metres wide, contains galena and pyrite.

Just to the west of this area, tuffaceous andesite containing minor disseminated pyrite and chalcopyrite is exposed for 61 metres. About 100 metres to the west, an area with small quartz veins contains heavy arsenopyrite and pyrite in "tuff" rock.

The old shaft is about 150 metres to the north of the largest mineralized area on the Fox 16. The shaft is driven 3.6 metres in a large 1.2 to 2.4 metre wide quartz vein containing blobs of galena. Smaller cross veins carry pyrite, pyrrhotite, arsenopyrite, galena and chalcopyrite. The silicified hostrocks contain disseminated sulphides. A sample taken from this area in 1978 assayed 0.2 gram per tonne gold, 129.6 grams per tonne silver and 3.35 per cent lead (Assessment Report 7005).

Bibliography

EMPR ASS RPT *50	MPR ASS RPT *5066, 5099, 7005, 11759, 23189						
MPR EXPL 1978-E87; 1979-96							
EMPR FIELDWORK	MPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257						
EMPR GEM 1974-87	EMPR GEM 1974-87						
EMPR OF 1991-18; 1994-8							
EMPR RGS 082L, 19	EMPR RGS 082L, 1976; 32, 1991						
GSC MAP 7216G; 84	91G						
GSC MEM 296							
GSC OF 637(#334); 6	558						
GSC P 91-2, pp. 115-	135						
CJES Vol. 26, No. 2							
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν		
Date Revised:	1994/11/18	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν		

	Location/Identification						
MINFILE Number:	082LSE037						
Name(s):	YEOWARD CREEK						
	PORCUPINE CREEK						
	Sh		Minin - Dininin	Varnan			
Status:	Snowing		Wining Division:	Okanagan Warnan			
Destance	Pritich Columbia		Electoral District:	Okanagan-Vernon			
Regions:			Forest District:	Okanagan Shuswap Porest District			
BUGS Map: NTS Mont	082L018 082L02F		UTM Zone:	11 (NAD 83)			
N 15 Wap. Latitude:	50 10 23 N		Northing	5558051			
Latitude:	118 30 04 W		Northing:	202800			
Elevation:	800 metres		Easting:	392809			
Location Accuracy:	Within 500M						
Comments:	Occurrence #328 (Geol	ogical Survey of Canada Open File	637).				
	×	•••	,				
Mineral Occurrence							
Commodities:	Gold						
Commounties.							
Minerals	Significant:	Gold					
	Mineralization Age:	Unknown					
	8						
Donosit	Character:	Unconsolidated					
Deposit	Classification:	Placer					
	Type:	C01: Surficial placers					
	- 5 F	Strike/D	ip: 000/				
		Host R	ock				
Dominant Host Ro	ck: Sedimentary						
Stuatiquanhia A qa	Crown	Formation	Ian	our/Motomounhic/Other			
Recent	Group	Formation	Glac	sial/Fluvial Gravels			
Isotonia Ago		Dating Mathed					
isotopic Age		Dating Method	Material Dated				
Lithology: Gr	ravel, Unconsolidated Sedime	nt/Sedimentary					
		Geological	Setting				
Tectonic Belt:	Omineca	Physiographic	Area: Okanagan l	Highland			
Terrane:	Overlap Assemblag	e		-			
		Invent	ory				
			•				
No inventory data							

Capsule Geology

The Yeoward Creek deposit is located on Yeoward Creek near its confluence with Monashee Creek, about 22 kilometres south of Cherryville.

A "little" placer mining was attempted in 1923. An old story states that placer miners in the 1870s found coarse gold at the confluence of Yeoward and Monashee creeks. A 180-metre tunnel was driven but abandoned before they reached their goal. By 1923, the old tunnel was caved in.

Bedrock in the area consists of sedimentary and volcanic rocks of the Upper Triassic to Lower Jurassic Nicola Group and the Devonian to Triassic Harper Ranch Group.

Placer activity is reported from Yeoward Creek (Porcupine Creek) but no production is recorded.

	Bibliography					
EMPR AR *1923-160						
EMPR BULL *28, p. 6	52; 79					
EMPR FIELDWORK	MPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257					
EMPR OF 1990-30; 19	991-18; 1994-8					
EMPR RGS 082L, 197	76; 32, 1991					
GSC MAP 7216G; 849	91G					
GSC MEM 296						
GSC OF *637 (#328);	658					
GSC P 91-2, pp. 115-1	35					
CJES Vol. 26, No. 2						
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν	
Date Revised:	1994/12/19	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν	

		Location/Identif	ication	
MINFILE Number:	082LSE039			
Name(s):	MARSH CREEK			
	PLACER LEASES	291, 1310, 1358		
Status:	Past Producer		Mining Division:	Vernon
Mining Method	Open Pit		Electoral District:	Okanagan-Vernon
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District
BCGS Map:	082L018			
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)
Latitude:	50 06 28 N		Northing:	5551668
Longitude:	118 29 00 W		Easting:	393934
Location Accuracy:	Within 1KM			
Comments:	Approximate center	of Placer Lease 1291 (Assessment Report 7	7485).	
		Mineral Occurr	ence	
Commodities:	Gold			
Minorals	Significant.	Gold		
winer als	Mineralization Age	Unknown		
	Winer anzation Age.			
Deposit	Character:	Unconsolidated		
	Classification:	Placer		
	Туре:	C01: Surficial placers		
		Strike/Dip:	000/	
		Host Rock		
Dominant Host Ro	ock: Sedimentary			
Stratigraphic Age	Group	Formation	Ign	eous/Metamorphic/Other
Recent			Gla	cial/Fluvial Gravels
Isotonic Ago		Dating Mathad	Matarial Datad	
Lithology: G	ravei			
T () D (Ominaaa	Geological Se	tting	
i ectonic Belt:	Oninieca	Physiographic Area	: Okanagan	Highland
Terrane:	Quesnel			
		Inventory		
No inventory data				

Capsule Geology

The Marsh Creek deposits are located about 100 kilometres east of Vernon.

These deposits were originally worked by A. Marsh beginning in 1883 until his death in 1925. Marsh developed an adit, 3 short drifts and sunk a shaft to 13.5 metres. In 1935, an opencut was started. In 1938, the old upper drift was cleaned out and several test pits were dug. In 1941, the shaft was dewatered and it promptly caved. In 1942, the upper section of the creek was worked with a dragline. In 1947, a 4.2-metre shaft was sunk before it caved and then a 6-metre shaft was sunk near it. There was work done in the 1960s and 1970s but little information is available. In 1979, geophysical surveys, hand trenching, sluicing and panning were completed. In 1990, Commonwealth Gold completed geochemical surveys in this area.

The area is underlain by volcanic and sedimentary rocks of the Devonian to Triassic Harper Ranch Group. The creek contains glacial and fluvial gravels which contain placer gold.

It is believed that the source of the placer gold in Marsh Creek is the quartz vein at the foot of the limestone cliffs above the south branch of Marsh Creek. This vein is described in the Monashee showings (082LSE001). The main catchment area for this gold is likely below the falls. The location of the main buried channel remains to be determined.

The amount of gold removed from this creek is unrecorded though A. Marsh was able to survive for at least 15 years on what he recovered.

	Bibliography							
EMPR ASS RPT *748	5, 21592							
EMPR BULL 28	IPR BULL 28							
EMPR FIELDWORK	ЛРR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257							
EMPR OF 1991-18; 19	94-8							
EMPR RGS 082L, 197	6; 32, 1991							
GSC MAP 7216G; 849	1G							
GSC MEM 296								
GSC OF 637 (#330); 63	58							
GSC P 91-2, pp. 115-1	35							
CJES Vol. 26, No. 2								
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν			
Date Revised:	1994/07/11	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν			

	Location/Identification					
MINFILE Number:	082LSE053					
Name(s):	BARNES CREEK					
Status	Past Producer		Mining Division:	Slocan		
Status: Mining Method	Open Pit		Electoral District	Nelson-Creston		
Regions:	British Columbia		Forest District:	Arrow Boundary Forest District		
BCGS Map:	082L009		i oreșt Diștricti	5		
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)		
Latitude:	50 03 44 N		Northing:	5546305		
Longitude:	118 15 23 W		Easting:	410076		
Elevation:	1230 metres		0			
Location Accuracy:	Within 5KM					
Comments:	At the confluence of B	arnes Creek with Eureka Creek (Bulletin	28, #171).			
		Mineral Occurr	ence			
			chec			
Commodities:	Gold					
		C-14				
Minerals	Significant:	Gold				
	Mineralization Age:	Unknown				
		Tu				
Deposit	Character:					
	Classification:	C01: Surficial placers				
	Type.					
		Host Rock	-			
Dominant Host Ro	ck: Sedimentary					
Stratigraphic Age	Group	Formation	Ig	neous/Metamorphic/Other		
Recent			Gl	acial/Fluvial Gravels		
Isotopic Age		Dating Method	Material Dated			
	1					
Lithology: G	ravel					
		Geological Se	tting			
Tectonic Belt:	Omineca	Physiographic Area	Chanagar	1 Highland		
Terrane:	Overlap Assembla	ge				
		Inventory				

No inventory data

Capsule Geology

The Barnes Creek placer deposit is located on Barnes Creek about 11 kilometres west of Whatshan Lake. The exact location of the placer workings is unknown. Geological Survey of Canada Memoir 296 reports that these placer workings are on the tributaries of Barnes Creek which are Eureka Creek (082LSE046) and Holding Creek (082LSE45). B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 28 reports production for Barnes Creek and Eureka Creek. Bedrock in the area consists of granitic rocks of the Cretaceous Whatshan batholith. Glacial and fluvial gravels in the creek contained placer gold.

During 1935 to 1945, reported production from Barnes Creek was 2581 grams of gold. This is probably production from Holding Creek or at least includes production from Holding Creek (Bulletin 28, page 14).

No other information is available.

Bibliography

EMPR BULL *28, p.	14						
EMPR FIELDWORK	1987, pp. 55-58; 1988, p	p. 49-54; 1992, pp. 2	55-257				
EMPR OF 1991-18; 1	994-8						
EMPR RGS 082L, 1976; 32, 1991							
GSC MAP 7216G; 8491G							
GSC MEM *296, p. 1	GSC MEM *296, p. 138						
GSC OF 637; 658							
GSC P 91-2, pp. 115-	135						
CJES Vol. 26, No. 2							
Date Coded:	1994/07/04	Coded By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν		
Date Revised:	1994/07/04	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν		

MINFILE Detail Report BC Geological Survey Ministry of Energy, Mines & Petroleum Resources

Location/Identification						
MINFILE Number:	082LSE059					
Name(s):	MONASHEE CREEK SOUTH FORK CHER	<u>K PLACER</u> RY CREEK, RAMBLER				
Status: Mining Method Regions: BCGS Map: NTS Map: Latitude: Longitude: Elevation:	Past Producer Open Pit British Columbia 082L018 082L02E, 082L01W 50 10 13 N 118 30 23 W 800 metres		Mining Division: Electoral District: Forest District: UTM Zone: Northing: Easting:	Vernon Okanagan-Vernon Okanagan Shuswap Forest District 11 (NAD 83) 5558649 392426		
Location Accuracy: Comments:	Within 5KM Location very approxim	mate (Bulletin 28, symbol 168).				
		Mineral Occurr	rence			
Commodities:	Gold					
Minerals	Significant: Mineralization Age:	Gold Unknown				
Deposit	Character: Classification: Type:	Unconsolidated Placer C01: Surficial placers				
		Host Rock	k			
Dominant Host Ro	ck: Sedimentary					
Stratigraphic Age Recent	Group 	Formation 	Ig Gla	neous/Metamorphic/Other acial/Fluvial Gravels		
Isotopic Age		Dating Method	Material Dated			
Lithology: Gr	avel					
		Geological Se	etting			
Tectonic Belt: Terrane:	Omineca Overlap Assembla	Physiographic Are	a: Okanagan	Highland		
		Inventory	,			

No inventory data

Capsule Geology

The Monashee Creek Placer deposit is located on Monashee Creek, just south of Cherry Creek. Monashee Creek was previously known as the south fork of Cherry Creek (082LSE013) and there is possibly some confusion between the placer activity on these two creeks.

In 1932, several placer miners were working along Monashee Creek and they reported small recoveries. In 1940 and 1941, mining of gold-bearing

gravel in an old channel below the creek bed took place.

Bedrock in this area comprises volcanic and sedimentary rocks of the Devonian to Triassic Harper Ranch Group.

Gravels from this creek are reported to have produced 6749 grams of gold (217 ounces) during the period from 1936 to 1945 (Bulletin 28, page 63). The gold from Monashee Creek and Cherry Creek has a low fineness (695.5 to 700.0).

Bibliography EMPR AR 1932-144; 1940-97; 1941-91 EMPR BULL *28, pp. 62-63 EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257 EMPR OF 1991-18; 1994-8 EMPR RGS 082L, 1976; 32, 1991 GSC MAP 7216G; 8491G; 8501G GSC MEM 296, p. 138 GSC OF 637; 658 GSC P 91-2, pp. 115-135 CJES Vol. 26, No. 2 1994/11/14 Dorthe E. Jakobsen(DEJ) Ν Date Coded: Coded By: Field Check: **Date Revised:** 1994/12/15 Dorthe E. Jakobsen(DEJ) Ν **Revised By:** Field Check:

		Location/Ide	entification	
MINFILE Number: Name(s):	082LSE013 <u>CHERRY CREEK P</u> NORTH FORK, MON	<u>LACER</u> NASHEE CREEK		
Status: Mining Method Regions: BCGS Map: NTS Map: Latitude: Longitude:	Past Producer Open Pit British Columbia 082L028 082L02E 50 13 47 N 118 32 56 W		Mining Division: Electoral District: Forest District: UTM Zone: Northing: Easting:	Vernon Okanagan-Vernon Okanagan Shuswap Forest District 11 (NAD 83) 5565321 389528
Elevation: Location Accuracy: Comments:	667 metres Within 1KM Location of the juncti 62-67).	on of Cherry Creek and Monashee C	Creek where most of the prod	luction came from (Bulletin 28, pages
		Mineral Oc	currence	
Commodities:	Gold			
Minerals	Significant: Mineralization Age:	Gold Unknown		
Deposit	Character: Classification: Type:	Unconsolidated Placer C01: Surficial placers Strike /I	Dip: 000/	
		Host I	Rock	
Dominant Host Ro	ck: Sedimentary	11051 1	lock	
Stratigraphic Age Quaternary	Group 	Formation	Ign Gla	eous/Metamorphic/Other cial/Fluvial Gravels
Isotopic Age		Dating Method	Material Dated	
Lithology: G	ravel, Slate, Shale, Clay			
		Geologica	l Setting	
Tectonic Belt: Terrane:	Omineca Overlap Assemble	Physiographic	e Area: Okanagan	Highland
		Inven	tory	
No inventory data				

Capsule Geology

The Cherry Creek Placer deposit is located at the confluence of Cherry Creek and Monashee Creek (082LSE059). Placer activity centred on the north fork or main stream of Cherry Creek 25 to 32 kilometres east of Lumby. Monashee Creek (082LSE059) was previously known as the south fork of

Cherry Creek and because of this there is some confusion between the placer activity on the two creeks.

Placer deposits on this creek have been worked since 1876 when it was discovered, until 1945 when the last production was recorded. The deposits have been worked by hand, by an elaborate system of flumes, by hydraulics and later by gasoline shovels. Benches 30 metr above the creek were mined in 1876. From 1890 to 1896, 15 people were working on the creek taking out about \$2.00 per day. There was little or no activity between 1905 and 1922, but activity was renewed in 1925.

The valleys were filled with gravel after the retreat of ice and remnants of these gravels have been left in benches up to 91.4 metres high, by the recent stream. Lenticular, irregular gravel beds occur in 12 to 15 metres of a sandy unit. This unit rests on water- worn black slates and shales cut by quartz veins. Boulder clay overlies the sandy unit. Placer gold occurs in the preglacial gravels over several kilometres.

The gold has a low average fineness of 700. Nuggets up to 264 grams (8.5 ounces) have been found. The gold is of 2 types: light, flat, scaly particles, and less commonly, coarse gold pieces.

Most production came from the confluence of Cherry Creek and Monashee Creek, upstream to 5.6 kilometres above the confluence. Production totals 155,158 grams of gold (4989 ounces) (Bulletin 28, page 63).

			Bibliography				
1891-575; 1892-543; 1893-1073; 1894-753; 1896-706; 1901-1127; 1905-192; 1920-187; 1922-145; 1923-160; 1925-184; 1926-200;							
1927-213; 1930-208; 1931-116; 1933-198; 1934-D34							
EMPR BULL *28, pp. 62,67							
EMPR FIELDWORK 1982, pp. 33-36; 1987, pp. 55-58, 401-404, 511-514; 1988, pp. 49-54; 1990, pp. 301-306; 1991, pp. 319-323;							
1992, pp. 255-257	1992, pp. 255-257						
EMPR OF 1990-30; 19	EMPR OF 1990-30; 1991-18; 1994-8						
EMPR PF (Report on Monashee Creek Placers, C.E. Cairnes, 1932)							
EMPR RGS 082L, 197	6; 32, 1991						
GSC MAP 1059A; 721	6G; 8501G						
GSC MEM 296, p. 138							
GSC OF 637(#314)							
GSC P 91-2, pp. 115-13	35						
Placer Dome File							
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν		
Date Revised:	1994/12/12	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν		

		Location/Identifi	cation					
MINFILE Number	: 082LSE022	National M	fineral Inventory Numb	er: 082L1 Au1				
Name(s):	MORGAN							
	MINERVA (L.4187), E YEOWARD 6-7, YEO	MINERVA (L.4187), BLACK BESS (L.4186), SKB, MORNING, GUYSBOROUGH, DAWN, YEOWARD, YEOWARD 9-10						
Status:	Past Producer		Mining Division:	Vernon				
Mining Method	Underground		Electoral District:	Okanagan-Vernon				
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District				
BCGS Map:	082L018							
NTS Map:	082L01W		UTM Zone: 1	1 (NAD 83)				
Latitude:	50 08 29 N		Northing: 5	555362				
Longitude:	118 27 10 W		Easting: 3	96191				
Elevation:	Within 500M							
Comments:	Morgan workings locat	ed on the Minerva claim (Lot 4187) (Pro	perty File - Report on the	St. Paul Property, 1974).				
Comments.			r.,r.	······································				
		Mineral Occurre	ence					
Commodities:	Gold, Silver, Lead, Zinc							
Minerals	Significant:	Gold, Pyrite, Sphalerite, Tetrahedrite, C	alena, Arsenopyrite					
	Associated:	Quartz						
	Mineralization Age:	Unknown						
	······································							
Deposit	Character:	Vein, Disseminated						
	Classification:	Hydrothermal, Epigenetic						
	Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-Au	1					
		Strike/Dip:	000/					
		Host Rock						
Dominant Host R	ock: Metasedimentary	,						
Stratigraphic Ag	e Group	Formation	Igneou	s/Metamorphic/Other				
Paleozoic-Mesozo	oic Harper Ranch	Undefined Formation						
Jurassic			Nelson	Intrusions				
Isotopic Age		Dating Method	Material Dated					
Lithology: S	Slate, Quartzite, Calcareous Tuf	f, Tuff, Dacite Porphyry Dike, Dacite						
Comments:	The Harper Ranch Group is Dev	vonian to Triassic.						
		Geological Set	ting					
Tectonic Belt:	Omineca	Physiographic Area	: Okanagan Hig	hland				
Terrane:	Quesnel							
		Inventory						
a = =	VEDI			1074				
Ore Zone:	VEIN		Ye	ear: 19/4				
Category:	Assay/analysis		Report	On: N				

Sample Type:	Grab				
	Commodity	Grade			
	Silver	13.7000 grams per tonne			
	Gold	3.8000 grams per tonne			
Comments:	Sample from 15 centimetre wide vein.				
Reference:	Property File - Report on the St. Paul Property, 1974.				

Capsule Geology

NI 43-101: N

The Morgan deposit is located on top of Monashee Mountain, 60 kilometres east-southeast of Vernon and about 800 metres southeast of the St. Paul (082LSE010) deposit. A few hundred tons of high-grade gold ore have been produced to date.

The showings were discovered in 1899 and staked as the Morgan, Guysborough, Dawn and Morning claims. The Morgan workings, on what later became the Minerva Crown grant (Lot 4187), were the initial development. Later development was mainly on the Toughnut claim (Lot 4189) (St. Paul deposit) about 800 metres northwest of the Morgan workings. The Cherry Creek Gold Mining Co. Ltd. optioned the Morgan group in 1902 and by 1904 had driven a 10.7-metre adit on the Morning claim. The workings by 1905 consisted of the 10.7 metre adit and two shafts, 24.4 and 10.7 metres deep. The 10.7-metre shaft and the drift from it provided most of the production. After 1907, the property was restaked as the Minerva group of 4 claims.

The Black Bess, Minerva, Zilpah and Toughnut (Lots 4186 to 4189) were Crown granted in 1915. Development work, mainly on the Toughnut claim, during the period 1914-1916 consisted of 2 adits, 6.1 and 106.7 metres in length. In 1927, St. Paul Mines Ltd. acquired the 4 Crown grants and 3 claims. Intermittent development work continued into 1933. The workings in 1930 consisted of 5 adits from 10.7 to 106.7 metres in length, 2 winzes and a number of trenches. The company reportedly carried out some work in 1949. A new adit begun in 1961 was extended to a total length of 61 metres in 1962. A shipment of 7.3 tonnes was reported in 1966. The property in 1971 included the 4 Crown grants and the Snow, Snowshoe and SKB claims. Work during the period 1971-1973 included trenching and stripping. Some crude ore was shipped in 1971 and 1973, and 4.5 tonnes of concentrate were shipped in 1973. In 1973, Coast Interior Ventures Ltd. leased the properties and in 1974 carried out extensive road improvements, reopening and deepening of old trenches, opening and draining adits 4 and 5 at the St. Paul workings, and a metallurgical study on a bulk sample from the St. Paul workings. In 1982, Brican Resources conducted a geochemical survey and a magnetometer survey on the St. Paul and Minerva deposits. In 1983, Brican Resources Ltd. conducted a geochemical survey and geological mapping on the two deposits. In 1990, Commonwealth Gold conducted a geochemical survey over this area. In 1992, Cameco Corp. conducted geochemical and geological surveys in this area.

The area is underlain by sedimentary rocks and greenish volcanics of the Devonian to Triassic Harper Ranch Group intruded by several Jurassic or Cretaceous dikes or small hypabyssal bodies of dacite porphyry. The sediments, striking west to northwest and dipping moderately to steeply south, consist of quartzite, calcareous tuffs and slates.

The Morgan showings consist of 2 or more narrow, north striking quartz veins dipping about 45 degrees southwest and are 36 to 61 centimetres wide. At least one important cross vein is normal to the main veins. The veins occur in quartzite, calcareous tuff and slate which has been intruded by dacite porphyry dikes.

The vein quartz contains, in addition to occasional specks of native gold, disseminated pyrite with some arsenopyrite and locally small amounts of galena, sphalerite and tetrahedrite.

Old reports refer to a vein which is up to 3 metres wide but this vein was not found in 1974. Two veins were noted in the large cleared area south of the caved adit.

A shipment of 10 tonnes of selected material from the veins was sent to Trail in 1973. The shipment graded 44.9 grams per tonne gold, 48 grams per tonne silver, 0.6 per cent lead, 0.4 per cent zinc and 0.02 per cent copper (Property File - Report on the St. Paul Property, 1974). In the 1962 tunnel, one 15-centimetre vein was noted about 46 metres from the portal; one other vein is reported from this tunnel. A grab sample taken from the 15-centimetre vein assayed 3.8 grams per tonne gold and 13.7 grams per tonne silver (Property File - Report on the St. Paul Property, 1974).

Production for the period 1914-1973 totalled 392 tonnes producing 5630 grams of gold, 112,406 grams of silver, 3720 kilograms of lead and 1258 kilograms of zinc for the Morgan and St. Paul deposits. Refer to the St. Paul deposit (082LSE010) for production figures.

Bibliography

EMPR AR 1900-857; 1902-189; 1904-228; 1905-193; 1907-128; 1913- 179; 1914-360,511; 1915-252,446,450; 1916-263; 1923-160; 1927-185, 213; 1928-220; 1930-208; 1931-116; 1932-144; 1933-197; 1934-D34; 1949-138; 1962-66

EMPR ASS RPT 12050, 21592, 22575, 22827, 23110 EMPR BULL 1, p. 79; 20, pp. 3-24 EMPR EXPL 1975-E50 EMPR FIELDWORK 1987, pp. 55-58; 1988, pp. 49-54; 1992, pp. 255-257 EMPR GEM 1971-431; 1972-79; 1973-98; 1974-88 EMPR OF 1991-18; 1994-8 EMPR PF (Sketch of Morgan Mine, c. 1930; Map of the Upper Workings on the Minerva, c. 1952; See also 082LSE010) EMPR RGS 082L, 1976; 32, 1991 GSC MAP 7216G; 8491G GSC MEM 296 GSC OF 637(#332); 658 GSC P 91-2, pp. 115-135 CJES Vol. 26, No. 2 GCNL #17,1983 N Date Coded: 1985/07/24 BC Geological Survey (BCGS) Coded By: Field Check: **Date Revised:** 1994/11/24 Dorthe E. Jakobsen(DEJ) Ν **Revised By:** Field Check:

		Location/Identif	fication			
MINFILE Number	: 082LSE010	National	Mineral Inventory Nun	uber: 082L1 Au1		
Name(s):	ST.PAUL					
	TOUGHNUT (L.4189)), ZILPAH (L.4188), SHEPPARD, SNO	W, SNOWSHOE, PION	EER, IRON HORSE,		
	YEOWARD, YEOWA	RD 9-10, YEOWARD 6-7, MONASHE	E GROUP			
Status:	Past Producer		Mining Division:	Vernon		
Aining Method	Underground		Electoral District:	Okanagan-Vernon		
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District		
BCGS Map:	082L018					
NTS Map:	082L01W		UTM Zone:	11 (NAD 83)		
.atitude:	50 08 52 N		Northing:	5556074		
Longitude:	118 27 16 W		Easting:	396086		
Lievation:	Within 500M					
Comments.	Location of St. Paul we	orkings on the Toughnut claim (Property	File - Report on the St.	Paul Property, 1974).		
comments			Ĩ			
		Mineral Occurr	ence			
Commodities:	Silver, Gold, Lead, Zinc, A	ntimony, Copper				
Minerals	Significant: Arsenopyrite, Jamesonite, Stibnite, Pyrite, Tetrahedrite, Sphalerite, Galena, Chalcopyrite,					
		Freibergite, Pyrrhotite				
	Associated:	Quartz				
	Alteration:	Silica				
	Alteration Type:	Silicific'n				
	Mineralization Age:	Unknown				
Deposit	Character:	Vein, Disseminated, Massive				
	Classification:	Hydrothermal, Epigenetic				
	Туре:	I05: Polymetallic veins Ag-Pb-Zn+/-A	Au			
		Strike/Dip:	000/			
		Host Rock	k			
Dominant Host R	ock: Sedimentary					
Stratigraphic Ag	e Group	Formation	Igne	ous/Metamorphic/Other		
Paleozoic-Mesozo	bic Harper Ranch	Undefined Formation		-		
Triassic-Jurassic	Nicola	Undefined Formation	Nola	-		
Julassic			INCISC	Sir muusions		
Isotopic Age		Dating Method	Material Dated			
Lithology: A	Argillite, Quartzite, Slate, Lime Andesite Tuff	stone, Diorite Sill, Diorite, Feldspar Por	phyry Dike, Dacite Porpl	hyry, Greenstone,		
Comments: 7	The Harper Ranch Group is De	vonian to Triassic.				
		Geological Se	etting			
Tectonic Belt.	Omineca	Physiographic Are	a: Okanagan H	lighland		
rectonic Den.						

			Inventory			
Ore Zone:	LENS			Year:	1974	
Category:	Assay/analysis			Report On:	Ν	
				NI 43-101:	Ν	
Sample Type:	Chip					
	Commodity	Gr	ade			7
	Silver	137	1.0000 grams per tonne	;		
	Gold	6.	5000 grams per tonne			
	Lead	4.	3900 per cent			
	Antimony	3.	8000 per cent			
	Zinc	0.	0300 per cent			
Comments:	A 1-metre sample acros	s one of the massive sulphid	e lenses in a quartz vein.			
Reference:	Property File - Report of	n the St. Paul Property, 1974	4.			
						_
		Su	mmary Production			
		Metri	c	Imperia	ıl	
	Mined:	392	tonnes	432	tons	
	Milled:	0	tonnes	0	tons	
D	~					
Kecovery	Silver	112,406	grams	3,614	ounces	
	Gold	5,630	grams	181	ounces	
	Lead	3,720	kilograms	8,201	pounds	

Capsule Geology

2,773 pounds

The St. Paul mine is located on the steep north face of Monashee Mountain, 60 kilometres east-southeast of Vernon and about 800 metres northwest of the Morgan (082LSE022) deposit.

1,258 kilograms

Development work began on the Toughnut claim in 1913. In 1914, a tramline was constructed and a mill was installed on the Sheppard claim. The mill operated for short periods in 1914 and 1915, milling 200 tonnes. Four claims, the Black Bess, Minerva, Zilpah and Toughnut (Lots 4186 to 4189), were Crown granted in 1915. Development work, mainly on the Toughnut claim during the period 1914-1916, included 2 adits, 6.1 metres and 106.7 metres in length.

In 1927, St. Paul Mines Ltd. acquired the 4 Crown grants and 3 claims (which included the Morgan (082LSE022)). Intermittent development work continued into 1933. The workings in 1930 included 5 adits from 10.7 to 106.7 metres in length, 2 winzes and a number of trenches. The company reportedly carried out some work in 1949.

In 1962, a new adit begun in 1961 was extended to a total length of 61 metres. A shipment of 7.3 tonnes was reported in 1966. The property in 1971 included the 4 Crown grants and the Snow, Snowshoe and SKB claims. Work done during the period 1971-1973 included trenching and stripping. Some crude ore was shipped in 1971 and 1973 and 4.5 tonnes of concentrate were shipped in 1973. In 1973, Coast Interior Ventures Ltd. leased the properties and in 1974 carried out extensive road improvements, reopening and deepening of old trenches, opening and draining adits 4 and 5 at the St. Paul workings and a metallurgical study on a bulk sample from the St. Paul workings.

In 1982, Brican Resources conducted geochemical surveys and magnetometer survey on the St. Paul and Morgan deposits. In 1983, Brican Resources Ltd. conducted a geochemical survey and geological mapping on the two deposits. In 1990, Commonwealth Gold conducted a geochemical survey over this area. In 1992, Cameco Corp. conducted geochemical and geological surveys in this area.

The area is underlain by sedimentary rocks and greenish volcanics of the Devonian to Triassic Harper Ranch Group and the Upper Triassic to Lower Jurassic Nicola Group. These are intruded by a Jurassic diorite sill of the Nelson Intrusions near the St. Paul workings. The sediments consist of black slate and argillite with lesser grey to black limestone, intermediate volcanic tuffs and quartzite. Minor greenstone or andesite tuff occurs near the St. Paul workings. The volcanics and sediments generally strike east and dip south. The intrusion is medium grained, dark grey and carries disseminated pyrite, locally in heavy concentrations. The diorite exhibits chlorite and carbonate alteration and has hornfelsed the surrounding rocks.

Zinc

Mineralization at the St. Paul workings occurs as scattered to sub-massive sulphides in quartz veins within or adjacent to the diorite sill. Varying amounts of disseminated sulphides also occur in the diorite body and in certain of the surrounding hostrocks. There are 2 large quartz veins (61 to 182 centimetres wide), 10 to 15 narrower ones (1 to 15 centimetres wide) and one mineralized "silicified zone". Most of the veins strike northwest and dip moderately to shallowly southwest.

Mineralization in the large quartz veins consists of stringers, bunches and massive to sub-massive lenses of arsenopyrite with occasional massive lenses of jamesonite and stibuite. Minor amounts of the antimony minerals are found as small stringers and disseminated grains. Minor amounts of pyrite, tetrahedrite, sphalerite and chalcopyrite sometimes accompany the arsenopyrite. High silver values indicate the presence of some other sulphosalt, possibly freibergite. At the face of the No. 3 adit, the vein was 91 centimetres to 1.2 metres wide and composed of heavily mineralized diorite. The vein contains about 0.5 to 60 centimetres of nearly solid sulphides, principally a mixture of arsenical iron with streaks and small kidneys of antimony sulphides, mostly jamesonite.

The narrow quartz veins are mineralized with smaller quantities of the above minerals usually as small stringers or disseminated grains.

Other small quartz veins with northeast strikes and southeast dips may represent faulted segments of one vein. These veins are mainly quartz containing sulphides as disseminations or as streaks, bunches or small kidneys of nearly solid mineral. The sulphides are principally arsenopyrite, antimony sulphides, pyrite and pyrrhotite. Very small amounts of galena, sphalerite and copper pyrites are present and native silver occurs in microscopic specks.

A diffuse "silicified zone" occurs adjacent to the footwall or northern contact of the diorite sill. The zone is about 1.2 to 1.5 metres wide and contains scattered to sub-massive pyrite and arsenopyrite. The zone is exposed in a small creek above the portal of adit 4. A representative grab sample of this material assayed 66 grams per tonne silver and 5 grams per tonne gold (Property File - Report on the St. Paul Property, 1974).

The diorite sill commonly contains disseminated pyrite and arsenopyrite and locally these minerals may constitute 5 to 10 per cent of the intrusive rock. Disseminated pyrite and arsenopyrite were also noted in blue-grey limestone and in a feldspar porphyry dike (dacite porphyry) adjacent to the south contact of the diorite body.

A 1-metre chip sample from adit 1 across one of the massive sulphide lenses in a quartz vein assayed 1371 grams per tonne silver, 6.5 grams per tonne gold, 4.39 per cent lead, 0.03 per cent zinc and 3.8 per cent antimony (Property File - Report on the St. Paul Property, 1974). A grab sample, taken from a 1.2 metre quartz vein carrying scattered arsenopyrite, jamesonite and pyrite 12 metres from the portal of adit 1, assayed 381 grams per tonne silver and 3 grams per tonne gold (Property File - Report on the St. Paul Property, 1974).

Recorded production for the period 1914-1973 totals 392 tonnes producing 5630 grams of gold, 112,406 grams of silver, 3720 kilograms of lead and 1258 kilograms of zinc. These figures include production from the Morgan deposit.

			Bibliography					
EMPR AR 1913-179;	1914-360,511; 1915-252,	446,450; 1916-263;	1923-160; 1927-185,213; 1928-220; 1930-208;	1931-116; 1932-144;				
1933-197; 1934-D34;	933-197; 1934-D34; 1949-138; 1962-66							
EMPR ASS RPT 1096	EMPR ASS RPT 10967, 12050, 21592, 22575, 22827, 23110							
EMPR BC METAL MM00442								
EMPR BULL 1, p. 79	9; 20, pp. 3-24							
EMPR FIELDWORK	1987, pp. 55-58; 1988, pp	o. 49-54; 1992, pp. 2	55-257					
EMPR GEM 1971-43	1; 1972-79; 1973-98; 1974	4-88						
EMPR INDEX 3-211								
EMPR OF 1991-18; 1	994-8							
EMPR PF (Plan of St.	Paul (lower) workings, co	opy of 1952 map; *R	eport on the St. Paul Property, Coast Interior V	entures, 1974)				
EMPR RGS 082L, 197	76; 32, 1991							
GSC MAP 1059A; 72	16G; 8502G							
GSC MEM 296, p. 14	7							
GSC OF 637(#331); 6	58							
GSC P 91-2, pp. 115-1	135							
GSC SUM RPT 1930/	A, p. 116							
CJES Vol. 26, No. 2								
GCNL #17, 1983								
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν			
Date Revised:	1994/11/16	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν			

		Location/Identifi	cation					
		Locution/Iucnuji		0001.0 A1				
MINFILE Number:	082LSE001	National M	lineral Inventory Nu	imber: 082L2 Au1				
Name(s):	MONASHEE							
	RISKE (L.192), VERNON (L.193), MCINTYRE (L.194), RISKE (L.195), WITHROW (L.306), MOONBEAM, KETTLE 2, MORNING SUN, FIELD							
Status:	Past Producer		Mining Division:	Vernon				
Mining Method	Underground		Electoral District:	Okanagan-Vernon				
Regions:	British Columbia		Forest District:	Okanagan Shuswap Forest District				
BCGS Map:	082L018							
NTS Map:	082L02E, 082L01W		UTM Zone:	11 (NAD 83)				
Latitude:	50 06 30 N		Northing:	5551766				
Longitude:	118 30 31 W		Easting:	392128				
Elevation:	1265 metres							
Location Accuracy:	Within 500M	withrow aloim (Lat 206) near stamp	uill aita (A agagamant D	ement 11790)				
Comments:	Opper aut (No.1) on th	le withow claim (Lot 500) heat stamp in	iiii site (Assessitietit K	eport 11/67).				
		Mineral Occurre	ence					
Commodities:	Silver, Gold, Lead, Zinc, Co	opper						
Minerals	Significant: Galena, Gold, Pyrite, Sphalerite, Chalcopyrite, Magnetite							
	Associated:	Quartz						
	Alteration:	Silica, Clay, Chlorite						
	Alteration Type:	Silicific'n, Argillic, Chloritic						
	Mineralization Age:	Unknown						
Denesit	Character:	Vein Shear						
Deposit	Classification:	Hydrothermal, Epigenetic						
	Type:	I05: Polymetallic veins Ag-Pb-Zn+/-Au	u					
	Dimension.	760x1x0 metres Strike/Din:	045/34E					
	Commonts:	The voin in the adit on the Withrow alai	m strikes northeast on	d ding 24 degrees couthoast. The voin				
	Comments.	pinches and swells up to 1.5 metres in v	vidth and has reported	ly been traced on surface for 760 metres.				
		Host Rock						
Dominant Host Ro	ck: Metavolcanic							
Stratigraphic Age Paleozoic-Mesozo	Group ic Harper Ranch	Formation Undefined Formation	Ign 	eous/Metamorphic/Other 				
Jurassic			Nel	son Intrusions				
Isotopic Age		Dating Method	Material Dated					
Lithology M	leta Volcanic Argillita Marhl	e Limestone Hornhlanda Riotita Granad	iorite Andesita Sill					
Litilology: IVI			norite, Anacolie Sill					
Comments: T	he Harper Ranch Group is Dev	vonian to Triassic.						
		Geological Set	ting					
Tectonic Belt:	Omineca	Physiographic Area	: Okanagan	Highland				
Terrane:	Quesnel							
		Inventory						

Category: Sample Type:	Assay/analysis		Report On:	Ν	
Sample Type:					
Sample Type:			NI 43-101:	N	
	Grab				
	Commodity	Grade]
	Silver	161.8000 grams per tonne			
	Gold	24.9000 grams per tonne			
	Copper	0.3150 per cent			
	Lead	0.7100 per cent			
Comments:	Selected grab sample of quartz vei	n material from Withrow adit dump.			-
Reference:	Assessment Report 11789.	-			
	1				
		Summary Production			
		Metric	Imperial	I	
	Mined:	2,193 tonnes	2,417	tons	
	Milled:	1,421 tonnes	1,566	tons	
Recovery	Silver	50,916 grams	1,637	ounces	
	Gold	11,415 grams	367	ounces	
	x 1	706 kilograms	1 556	nounds	
	Lead	/00 Kilograms	1,550	pounds	

Capsule Geology

The Monashee deposit is located 20 kilometres south of Cherryville, just north of McIntyre Lake on the east side of Monashee Pass.

Work was initially reported in 1886 but it may have begun earlier. Underground development and stockpiling of ore were carried out each year. The Riske (Lot 192), Vernon (Lot 193), McIntyre (Lot 194) and Riske (Lot 195) claims were Crown granted in 1887; the Withrow (Lot 306) claim was Crown granted in 1890. The stamp mill was completed in and the workings comprised 3 adits: an upper adit at 1265 metres, driven 91 metres; a middle adit driven 10.7 metres; and a lower adit near the bottom of the hill driven 82.3 metres.

In 1900, the Cherry Creek Gold Mining Co. Ltd. acquired the property and the adjoining McPhail (082LSE009) property. Drifting and crosscutting were done in the old adits. A 5-stamp mill operated for a short time in 1903. In 1907, the Fire Valley Gold Mining Co. Ltd. acquired the two properties. The old adits were reopened but no work was reported and the company ceased work in 1915. The Progressive Mining Co. Ltd. acquired the McIntyre, Morning Sun and Monashee claims in 1921. The adit and opencuts on the McIntyre were cleaned out. On the Morning Sun claim a crosscut adit was driven 12 metres. On the Monashee claim the old lower adit was reopened. In the 1920s, New Monashee Mines Ltd. acquired the Withrow, Field, Vernon and Riske claims but no work was reported.

In 1933, Monashee Mines Syndicate Ltd. acquired the Withrow, Vernon, Field and Riske Crown grants and the adjoining McPhail property. The old adits were reopened, a drift adit was extended 230 metres and two new drift adits were completed. A total of 1254 metres of drifting and raising was done by Vidette Gold before work ceased in 1935. In 1939, Monashee Development installed a 50 ton-per-day mill which began operation in October. The mill operated for 55 days before work ceased; all equipment was removed. In 1940, the property was leased to G.M.F. and F.H. Paterson, S. Flodstrom and William McLaren who mined remnants of ore by hand steel methods.

In 1983, reconnaissance geochemical sampling and geological mapping surveys were done on the Monashee and McPhail properties and the Moonbeam claims by I.M. Watson and Associates Ltd. for Nakusp Resources Ltd. In 1989, reconnaissance mapping and geochemical sampling was completed on the Monashee and McPhail properties, which were staked as the Kettle 2 and 1 claims. In 1992, Cameco Corp. conducted geochemical and geological surveys in the area.

The claims are underlain by Devonian to Triassic metavolcanics and metasediments of the Harper Ranch Group, a short distance north of the contact with Jurassic granitic rocks of the Nelson Intrusions. These consist of interdigitating lenses of fine grained, altered volcanics and metasediments. The volcanics are possibly meta-andesites and the metasediments consist of argillites and marbles. The sediments strike west to northwest and dip steeply to moderately north. On the northern part of the property the Monashee Pass marble showing (082LSE049) forms 50 metre cliffs along the crest of the ridge overlooking Highway 6.

The intrusive rocks consist of leucocratic medium to coarse-grained hornblende biotite granodiorite. The generally fractured granitic rocks are locally heavily sheared and altered. The degree of kaolinization and chloritization is relative to the degree of deformation. The contact with the metamorphic rocks trends northwest.

Disseminated pyrite is common along or near the contact with the granites and is associated with fracturing in silicified and rusty metavolcanics and sediments. Pyritized rusty skarn zones, lensoid and less than 10 metres in extent, occur at volcanic/marble contacts exposed in roadside cuts.

Three adits have been driven on the Withrow claim. The upper adit has been driven on a quartz vein which pinches and swells from 30 to 150 centimetres in width, with the widest sections near faults. The vein, traced on surface for 760 metres, strikes northeast and dips 34 degrees southeast. Mineralization consists of pyrite, galena, chalcopyrite, sphalerite, magnetite and native gold. A faulted outcrop containing a 1.8 metre wide quartz vein has been explored by adit but was not described. Just north of the vein outcrop, another adit has been driven on a quartz vein. This vein is 2 to 10 centimetres wide, strikes southeast and may be a stringer in the hangingwall of the main vein. The veins occur in argillites and metamorphosed volcanics. The workings at 1265 metres elevation were sampled in 1983. A selected grab sample of quartz vein material containing disseminated pyrite, galena and chalcopyrite assayed 0.315 per cent copper, 0.71 per cent lead, 161.8 grams per tonne silver and 24.9 grams per tonne gold (Assessment Report 11789). Samples taken in 1989 from this same dump material assayed similar values (Assessment Report 19209). Samples of dump material from the other adits assayed insignificant values. Geochemical sampling indicated a gold anomaly in the area of the old dumps and workings on the Withrow claim.

On the Vernon claim, pyritic, rusty andesite sills occur in marble. Grab samples assayed low gold and silver values (Assessment Report 11789).

Adits on the Moonbeam 5 and 6 claims, about 425 metres south of the Vernon claim, were driven on a strong northwest trending shear. The shear cuts highly silicified and carbonatized volcanics and contains irregular quartz veins and pods. These are weakly to moderately pyritized and contain rare chalcopyrite and galena. Chip and grab samples assayed up to 132 grams per tonne silver and 0.27 gram per tonne gold (Assessment Report 11789). Samples taken in 1989 assayed low values (Assessment Report 19209).

During 1939-1940, 2193 tonnes of ore were milled producing 11,415 grams of gold, 50,916 grams of silver, 706 kilograms of lead and 190 kilograms of zinc.

			Bibliography							
EMPR AR 1886-213;	1887-277; 1889-292; 189	00-378; 1891-576; 18	92- 543; 1893-1073; 1897-609; 1900-857,1128;	1901-1128,1155;						
1902-188; 1903-178	; 1904-228; 1905-193; 19	07-128; 1909-278; 19	913-171; 1914-359,511; 1915-252,446; 1916-26	3; 1921-191; 1933-15	55;					
1934-D11; 1935-D12	3; 1939-37,42; 1940-23,7	1								
EMPR ASS RPT 477	EMPR ASS RPT 4771, 11537, *11789, 19209, 22827, 22575, *23110									
EMPR BC METAL N	4M00433									
EMPR BULL 1, p. 79	; 20, pp. 3-24									
EMPR FIELDWORK 1982, pp. 33-36; 1987, pp. 55-58, 401-404, 511-514; 1988, pp. 49-54; 1990, pp. 301-306; 1991, pp. 319-323;										
1992, pp. 255-257										
EMPR GEM 1973-23	,98									
EMPR INDEX 3-206										
EMPR OF 1991-18; 1	994-8									
EMPR PF (Workings	Plans 1915, 1932)									
EMPR RGS 082L, 19	76; 32, 1991									
EMR CORPFILE (M	onashee Gold Mines Ltd.,	Monashee Mines Sy	ndicate Ltd., Vidette Gold Mines Ltd.)							
EMR MINES BRAN	CH 1934 Report 748-171	#604)								
GSC ANN RPT 1890	, Vol. 5									
GSC MAP 1059A; 72	216G; 8491G; 8501G									
GSC MEM 296, p. 14	7									
GSC OF 637 (#327);	658									
GSC P 91-2, pp. 115-	135									
GSC SUM RPT 1930A, p. 116										
CJES Vol. 26, No. 2										
GCNL #17, 1983										
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν					
Date Revised:	1994/11/17	Revised By:	Dorthe E. Jakobsen(DEJ)	Field Check:	Ν					

APPENDIX C

Assessment Cost Statement

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Garrett Ainsworth / Geologist	August 31-September 19, 2010	20	\$227.27	\$4,545.40	
Greg Galloway / Assistant	August 31-September 19, 2010	20	\$200.00	\$4,000.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	¢0 5/5 /0
Office Studies	List Personnel (note - Office or	alv. do not	t include fi	\$0,040.40	\$0, 343.40
Literature search		ily, do 110		\$0.00	
Database compilation			\$0.00	\$0.00	
	Garrett Ainsworth / Geologist	20.0	\$0.00	\$0.00	
Reprocessing of data		20.0	0.02	00.02	
General research			0.00	00.00	
Report preparation	Garrett Ainsworth / Geologist	10.0	\$227.27	\$2,272,70	
Other (specify)		10.0	ΨΖΖΙ.ΖΙ	\$0.00	
				\$6,818,10	\$6 818 10
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced	amount		\$0,010.10	\$0,010.10
Aeromagnetics		amount	\$0.00	\$0.00	
Radiometrics			\$0.00	\$0.00	
Flectromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
			40.00	\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoiced	amount or I	ist personnel		
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: ex	penditures h	nere	
Reconnaissance		should b	e captured i	n Personnel	
Prospect		field exp	enditures ab	ove	
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amount i	nvoiced list	personnel		
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in	n the field			
SP/AP/EP	should be captured above in Perso	nnel			
	rieia expenditures above				
Resistivity					
Complex resistivity					
Seismic reflection					
	Define by total length				
Coophysical interpretation					
Geophysical interpretation					

Petrophysics					
Other (specify)					
		1	1	\$0.00	\$0.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
	•				
Drill (cuttings, core, etc.)		316.0	\$41.51	\$13,117.53	
Stream sediment			\$35.72	\$0.00	
Soil			\$34.03	\$0.00	
Rock			\$41.51	\$0.00	
Water			\$0.00	\$0.00	
Biogeochemistry			\$0.00	\$0.00	
Whole rock			\$0.00	\$0.00	
Petrology			\$250.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
	1		\$0.00	\$13 117 53	\$13,117,53
Drilling	No. of Holes, Size of Core and Metres	No	Rate	Subtotal	¢10,117.00
Diamond	7 holes NO 850 meters	850.0	\$104.92	\$89 181 60	
Poverse circulation (PC)		030.0	\$0.00	00.02	
Potary air blast (PAR)			00.00	00.00	
Other (specify)			00.00	\$0.00	
Other (specify)			\$0.00	\$0.00 \$00 101 60	¢00 101 40
Other Operations	Clarify	No	Pato	\$07,101.00 Subtotal	Φ07,101.00
		NO.		\$0.00	
Pulk compling			00.00	\$0.00	
Underground development			\$0.00	\$0.00	
			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	¢0.00
Dealamatian	Olarif.	Ne	Data	\$0.00	\$0.00
		INO.			
Arter drilling	Recontouring & Resurfacing	1.0	\$10,000.00	\$10,000.00	
			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
Tuesses estation		Ne	Data	Culstatel	
Transportation		INO.	Rate	Subtotal	
Aintono	Calleurer Cala, Ta Kal, Datum	1.00	¢0/7/0	¢2/7/2	
	Galloway Calg. To Kel. Return	1.00	\$367.62	\$367.62	
		00.00	\$0.00	\$0.00	
	20 truck days	22.00	\$115.00	\$2,530.00	
Kilometers	truck use in vancouver	120.00	\$0.52	\$62.40	
	22 Dirtbike days	22.00	\$50.00	\$1,100.00	
		1.00	\$764.75	\$/64./5	
Helicopter (hours)			\$0.00	\$0.00	
Fuel (litres/hour)			\$0.00	\$0.00	
Other				* 4 00 4 77	* 4 00 4 7 7
	.	1	[\$4,824.77	\$4,824.77
Accommodation & Food	Rates per day	40.00	\$100.10	* 1 000 00	
Hotel	Cherryville Lodge Inn Retreat	42.00	\$103.10	\$4,330.00	
Camp		1.00	\$60.00	\$0.00	
Meals	Groceries	1.00	\$449.02	\$449.02	* 4 330 00
				\$4,779.02	\$4,779.02
		0.07	# 0.0 C -	<i>* 10 5 -</i>	
		3.00	\$20.00	\$60.00	
Uther (Specify)	Satellite Phone		\$1.49	\$0.00	
		1		\$60.00	\$60.00
Equipment Rentals			+ o ·	+ c	
Field Gear (Specify)	Sampling gear, health & safety	1.00	\$3,753.45	\$3,753.45	

Other (Specify)	\$0.00	\$0.00	
		\$3,753.45	\$3,753.45
Freight, rock samples			
	\$0.00	\$0.00	
	\$0.00	\$0.00	
		\$0.00	\$0.00
TOTAL Expenditures			\$131,079.87

APPENDIX D

Drill Logs

ESO Uranium Corporation

Donna Gold Property

Monashee Mountain, British Columbia

Drill Hole: D10-1

Location: Trench #4 UTM Coordinates: 399520E, 5554613N (Garmin GPS, NAD 83, Z11) Date: September 8th to 12th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 270 Dip: -75

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 297.33 m

D10-1 Major Geology

From:	То:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	3.70	Overburden					Overburden and sub-crop
3.70	22.50	Skarn	Light grey to olive green to black	fine	Banded	Calcite 25, Calc-Silicates 55, Chlorite 15, Epidote 5, trace to 5% sulphides	Hardness 3-5 Offset and x-cutting quartz with calcite veins frequent - up to 20 mm Irregular highly fractured sections. Some fractures have chloritization zones surrounding them
22.50	31.05	Skarn	Light grey to cream to olive green to light violet	fine	Breccia	Calcite 30, Calc-Silicates 45, Chlorite 20, Epidote 5, trace sulphides	Hardness 1-3 Some gouge zones up to 100 mm Irregular highly fractured sections
31.05	39.80	Skarn	Light grey to grey to white	fine	Banded	Calcite 20, Calc-Silicates 55, Quartz 15, Chlorite 5, Epidote 3, trace sericite, trace to 10% sulphides	Hardness 4-5 Irregular highly fractured sections. Some fractures have chloritization zones surrounding them Occasional quartz veins with calcite and sulphides up to 150 mm
39.80	65.40	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 38, Hornblende 35, Quartz 5, Biotite 20, Magnetite 1, Calcite 1 trace sulphides (pyrite, pyrrhotite)	Hardness 6-7 Occasional quartz veins with calcite and sulphides up to 70 mm Trace chloritization at inter-mixed contact with skarn unit Occasional banding of chloritized skarn
65.40	71.42	Skarn	Cream white to grey to olive green to light purple	fine	Banded	Calcite 15, Calc-Silicates 64, Hematite 10, Chlorite 5, Epidote 1, Clay 5, trace pyrrhotite & pyrite	Hardness 5-6 Some bleaching, hematization & chloritization throughout Occasional quartz & calcite stringers < 10 mm Weak to moderate silicification?
71.42	78.56	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 35, Hornblende 40, Biotite 15, Quartz 3, Calcite 2, Chlorite 3, trace to 2% pyrrhotite	Hardness 4-6 Pervasive calcite stringers < 1 mm Trace to some chloritization surrounding some micro-fractures
78.56	102.80	Skarn	Olive green to light purple to grey to cream white	fine	Banded	Calcite 20, Calc-Silicates 50, Chlorite 13, Hematite 12, Quartz 3, Epidote 1, trace to 1% pyrrhotite & pyrite	Hardness 3-4 Some hematization & chloritization throughout Offset calcite & quartz stringers common Brecciated and fault gouge sections
102.80	118.40	Shale	Grey to black	fine	Massive	Detrital sediments 80, Calcite 20, trace pyrrhotite & pyrite	Hardness 4-5 X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence
118.40	130.80	Shale	Light grey to grey to black	fine	Banded	Detrital sediments 85, Calcite 15 trace pyrrhotite & pyrite	Hardness 5 Contains minor sandstone & conglomerate units that may represent turbidites (some fining upwards observed) - see Minor Geology X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common

D10-1 Major Geology

From:	То:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
130.80	133.40	Sandstone	Light grey to grey to olive green	fine to medium	Massive	Detrital sediments 75, Chlorite 13, Epidote 2, Calcite 10 trace pyrrhotite	Hardness 4-5 Grains deformed and preferentially orientated Moderately chloritized Occasional x-cutting calcite and quartz stringers Possible turbidite?
133.40	149.85	Shale	Black to grey	fine	Banded	Detrital sediments 85, Calcite 15 trace pyrrhotite & pyrite	Hardness 5 X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common
149.85	159.55	Sandstone	Grey to dark grey	fine to medium	Banded	Detrital sediments 75, Calcite 25, trace pyrrhotite	Hardness 4.5 Grains deformed and preferentially orientated - due to compaction? Fining upwards sequence observed Cross-stratification evident - strata typically at 70-90 degrees to core angle Occasional conglomerate sections up to 0.55 m thick Frequent black shale sections up to 50 mm Possible turbidite? Occasional x-cutting calcite and quartz stringers
159.55	164.00	Shale	Black to grey	fine	Banded	Detrital sediments 85, Calcite 15 trace to 2% pyrrhotite & pyrite	Hardness 4 X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common
164.00	297.33	Sandstone	Grey to dark grey	fine to medium	Banded	Detrital sediments 75, Calcite 25, trace pyrrhotite	Hardness 3.5-4.5 Grains deformed and preferentially orientated - due to compaction? Fining upwards sequence observed Cross-stratification evident - strata typically at 70-90 degrees to core angle Occasional conglomerate sections up to 0.3 m thick Frequent black shale sections up to 0.6 m Trace to 5% pyrrhotite, pyrite, arsenopyrite on black shale fracture planes graphite coated fractures common in black shales Possible turbidite? Occasional x-cutting calcite and quartz stringers

EOH = 297.33 m

D10-4 Minor Geology

From:	To:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
11.70	12.30	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 3% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides Occasional calcite stringer up to 2 mm Moderately chloritized & bleached in sections
21.80	22.75	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, up to 20% pyrrhotite	Hardness 4 Moderate chloritization Dense calcite stringers < 1 mm
26.50	26.65	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 3% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides Occasional calcite stringer up to 2 mm Moderately chloritized & bleached in sections
35.75	35.85	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, trace pyrrhotite	Hardness 4.5 Moderate chloritization
45.10	46.60	Diorite	Grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 30, Sericite 13, Biotite 10, Quartz 5, Magnetite 1, Calcite 1, trace to 20% sulphides	Hardness 6 Weakly bleached Highest sulphide content is at contact with skarn
60.25	60.55	Shale	Black	fine	Massive	Detrital sediments 80, Calcite 20, trace to 2% pyrrhotite & pyrite	Hardness 5
68.25	69.50	Conglomerate	Grey to white	coarse	Massive	Detrital sediments 80, Calcite 20, trace finely disseminated pyrrhotite	Hardness 5-6 Grains deformed and preferentially orientated - due to compaction? Grains up to 9 mm Occasional calcite stringers up to 1 mm
86.35	87.15	Sandstone	Grey to dark grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 5 fining upwards is observed
88.65	89.10	Sandstone	Grey to dark grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 5

EOH = 93.57 m

D10-1 Detailed Structure

At:	Structure:	Angle:	Description:
5.3-6.0	Clots & Stringers		quartz with calcite
7.9-8.05	Gouge		crushed zone
12.6-13.0	Fractures		irregular highly fractured section and crushed rock
13.5	Course	35	20 mm quartz with calcite
20.95-21.1	Gouge	15	2 mm black clay & crushed shale
23.6-24.4	Fractures	10	irregular highly fractured section and crushed rock
24.7-25.3	Fractures		irregular highly fractured section and crushed rock
26.7-27.0	Gouge		chloritic clay and crushed skarn
32.0-32.6	Fractures		irregular highly fractured section and crushed rock
32.95	Vein	70	brecciated quartz vein with calcite and sulphides
33.6-34.4	Veins & Blebs		Intermittent quartz veins & blebs with calcite and sulphides
39.6	Vein	40	offset quartz vein with calcite and outlined by pyrite
41.45-43.25	Fractures	40	irregular highly fractured section and crushed rock
44.95	Stringer	45	15 mm quartz with up to 2% pyrite & pyrrhotite
50.5	Vein	80	45 mm quartz with up to 15% pyrite
52.65	Vein	90	30 mm quartz with up to 2% pyrite - 1-3 mm gouge on either side of quartz vein
52.95	Vein	55	35 mm brecciated quartz and chlorite alterated with up to 2% pyrite
54.85	Stringer	80	10 mm quartz with up to 2% pyrite and pyrihotite
55.35 60.15-60.4	Clots	70	75 mm brecclated quartz with calcite and pyrite & pyrmotite up to 10%
60.85	Stringer		offset calcite stringer with up to 5% pyrrhotite
61.62	Stringer	80	offset calcite stringer with up to 15% pyrite & pyrrhotite
62.7-62.9	Fractures		irregular highly fractured section and crushed rock
63.25	Vein	75	10 mm quartz with calcite and up to 5% pyrite & pyrrhotite
64.45-64.55	Vein	90	100 mm quartz with calcite and up to 5% pyrite & pyrrhotite
70.95-71.3	Fractures		irregular highly fractured section and crushed rock
82.46-82.48	Vein Foult Course	85	20 mm quartz with calcite and up to 2% pyrite & pyrrhotite
83-90.6 96.4-97	Fault Gouge	10	irregular highly fractured section and crushed rock
97.5-103.6	Fractures		irregular highly fractured section and crushed rock
108.3-108.6	Clots & Stringers		quartz with calcite and trace pyrite & pyrrhotite
109.07	Stringer	80	5 mm quartz with trace sulphides
112.9	Stringers		offset irregular calcite stringers up to 8 mm with trace sulphides
113.2	Gouge	35	black clay up to 10 mm
113-114	Fractures		graphite coated slickensided fractures
114.6-114.7	Clots & Stringers	80	duartz with calcite and trace pyrite & pyrmotite
116.9-117.45	Clots & Stringers	00	offset irregular calcite stringers and clots up to 8 mm with trace pyrite & pyrithotite
117.85	Fracture	55	graphite coated slickenside
120.8-121	Clots & Stringers		offset irregular calcite stringers and clots up to 12 mm
121.65	Stringers		offset irregular quartz and calcite stringers up to 14 mm with up to 3% pyrite & pyrrhotite
136.6-137	Fractures		graphite coated slickensided fractures, some fractures coated with pyrite
138.7-139	Fractures		irregular highly fractured section and crushed rock
140.15-140.35	Gouge	45	200 mm black clay and crushed black shale
157 35-157 55	Gouge	40	200 mm black clav and crushed black shale
159.55-162.25	Fractures		irregular highly fractured section and crushed rock - some fractures coated with graphite
162.95-163.15	Fractures		irregular highly fractured section and crushed rock
165.25-166	Fractures		irregular highly fractured section and crushed rock
167.15	Vein	15	offset irregular calcite vein up to 20 mm with quartz, and trace pyrrhotite, chlorite
1/0.5-171.8	Fractures		Irregular highly tractured section and crushed rock with intense calcite clots & stringers
170 1-170 2	Clots & Stringers		rou min plack clay and crushed black shale
188.4	Stringers		offset irregular calcite stringers up to 6 mm with chlorite
189.1-189.2	Gouge		100 mm crushed black shale
191.6	Clots & Stringers		calcite and quartz clots & stringers up to 20 mm with trace pyrrhotite
192.9-193	Stringers		offset calcite stringers and quartz up to 7 mm
193.8-194.4	Clots & Stringers		dense calcite and quartz clots & stringers up to 11 mm with up to 2% pyrrhotite
199.55	Clot		Irregular quartz clot with calcite
201.95-202.1	Stringers		dense calcite stringers up to 5 mm - nost sandstone has been brecciated by stringers
213 9-214 3	Stringers		dense calcite stringers up to 3 mm - host sandstone has been brecciated by stringers
219.5-219.7	Stringers		dense calcite stringers up to 5 mm - host sandstone has been brecciated by stringers
221	Clots & Stringers		Calcite clots & stringers up to 40 mm with brecciated quartz within
235.85	Vein	70	27 mm calcite vein
236.05	Vein	70	22 mm calcite vein
237.05-237.35	Stringers		dense offset irregular calcite stringers up to 3 mm
244.9	Vein	80	135 mm quartz with brecciated black shale within, and trace calcite
240.2-240.7	Stringers		dense irregular caloite stringeres < 1 mm
249.25-249.45	Stringers		dense offset irregular calcite stringeres vin to 3 mm
	5	ı	

D10-1 Detailed Structure

At:	Structure:	Angle:	Description:
251-251.3	Stringers		dense offset irregular calcite stringers up to 3 mm
252.6-252.9	Stringers		dense offset irregular calcite stringers up to 2 mm
256.4-256.8	Stringers		dense offset irregular calcite stringers up to 2 mm
257.9-258.1	Stringers		dense offset irregular calcite stringers up to 4 mm
258.95-259.1	Stringers		dense offset irregular calcite stringers up to 3 mm
263.05-263.3	Gouge		250 mm black clay and crushed black shale
266.1-267	Fractures		irregular highly fractured section and crushed rock
269.15-269.25	Stringers		dense offset irregular calcite stringers up to 5 mm
271-271.6	Fractures		irregular highly fractured section and crushed rock and trace black clay
278.35	Vein	45	5 mm quartz with 5% pyrrhotite
278.6-278.95	Stringers		dense offset irregular calcite stringers up to 6 mm with up to 5% pyrrhotite
283.4-284.85	Fractures		irregular highly fractured section and crushed rock and trace black clay
290.55-291.1	Fractures		irregular highly fractured section and crushed rock and trace black clay
292.80-292.84	Gouge		40 mm black clay and crushed black shale
295.2-295.23	Gouge		30 mm black clay and crushed black shale
295.55-296	Stringers		dense offset irregular calcite stringers up to 8 mm containing trace quartz

D10-1 Mineralization

From:	To:	Mineralization:
6	6.8	pyrite, pyrrhotite, arsenopyrite up to 5% as <1 mm stringers, < 3 mm blebs, fracture coating, and finely disseminated
10.4	10.9	pyrrhotite up to 5% as < 10 mm blebs and finely disseminated - trace arsenopyrite
32.6	34.5	pyrite, pyrrhotite up to 10% as < 1 mm stringers, < 15 mm blebs, and finely disseminated - often along outside of quartz stringers
38.6	39.3	pyrite, pyrrhotite, arsenopyrite up to 5% as <1 mm stringers, < 3 mm blebs, and finely disseminated - often outsite of quartz stringers
44.9	44.92	pyrite, arsenopyrite up to 5% as < 1 mm stringers and finely disseminated with quartz and in surrounding limey skarn
46.2	46.26	pyrite, arsenopyrite up to 5% as < 1 mm stringers and finely disseminated with quartz and in surrounding limey skarn
46.9	46.96	pyrite, arsenopyrite up to 5% as < 1 mm stringers and finely disseminated with quartz and in surrounding limey skarn
50.1	51.2	pyrite, arsenopyrite up to 5% as < 1 mm stringers and finely disseminated with quartz and in surrounding limey skarn
53.6	54	pyrite, arsenopyrite up to 1% as < 2 mm blebs and finely disseminated in limey skarn
54.2	54.3	pyrrhotite up to 2% as < 2 mm blebs and finely disseminated in quartz clot
54.8	55.55	pyrite, pyrrhotite, arsenopyrite up to 10% as < 10 mm blebs and finely disseminated with quartz and in surrounding limey skarn
60.6	61.7	pyrite, pyrrhotite, arsenopyrite up to 5% as <1 mm stringers, < 3 mm blebs, and finely disseminated with quartz and in limey skarn
63	63.01	pyrite, pyrrhotite up to 5% as < 2 mm stringers, < 5 mm blebs, and finely disseminated with quartz and calcite
63.25	63.26	pyrite, pyrrhotite up to 5% as < 2 mm stringers, < 2 mm blebs, and finely disseminated with quartz and calcite
64.45	64.55	pyrite, pyrrhotite, arsenopyrite up to 5% as < 2 mm stringers, < 5 mm blebs, and finely disseminated with quartz and calcite
81.5	82	pyrite, pyrrhotite up to 3% as < 7 mm blebs, and finely disseminated within brecciated chloritized skarn
116.85	118	pyrite, pyrrhotite up to 2% as < 1 mm stringers, < 2 mm blebs, and finely disseminated with quartz and calcite stringers
121.6	121.7	pyrite, pyrrhotite up to 3% as < 4 mm blebs with quartz and calcite stringers
123.1	123.16	pyrite, pyrrhotite up to 3% as < 3 mm stringers and finely disseminated adjacent offset calcite stringers
136.9	137.05	pyrite up to 3% as < 1 mm stringer in calcite and finely disseminated
238	239	pyrrhotite, pyrite, and arsenopyrite up to 3% associated with calcite veins and stringers in black shale strata

DIAMOND DRILL LOG

SAMPLE DATA			CHEMICAL DATA								
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	Sb (ppm)	COMMENTS
3.70	5.00	36001		0.004	1.7	34	<2	115	11	<5	
5.00	7.00	36002	yes	0.004	1	36	4	110	20	5	
7.00	9.00	36003		0.011	4.3	96	816	104	188	852	
9.00	10.40	36004		0.004	1.7	40	<2	118	11	<5	
10.40	10.90	36005	yes	0.225	20.8	181	2010	36	485	1895	
10.90	13.00	36006		0.007	2	61	8	110	42	15	
13.00	15.00	36007		0.012	1.4	37	<2	101	72	7	
15.00	17.00	36008		0.355	48	78	33	100	99	35	
17.00	19.00	36009		0.004	0.7	67	<2	93	6	<5	
19.00	20.00	36010		0.016	4.6	52	7	111	46	20	
20.00	22.00	36011		0.108	4.3	53	35	95	508	26	
22.00	23.00	36012		0.011	2.2	47	2	94	78	6	
23.00	24.40	36013		0.004	1.5	58	<2	93	8	<5	
24.40	26.00	36014		0.019	1.9	40	<2	92	80	5	
26.00	28.00	36015		0.006	1.6	46	<2	91	47	7	
28.00	30.00	36016		0.121	1.3	41	3	90	1080	7	
30.00	32.60	36017		0.273	2.4	74	10	89	2490	7	
32.60	34.50	36018	yes	1.33	3.4	23	18	88	>10000	30	
34.50	36.60	36019		0.143	1.2	37	3	87	622	9	
36.60	38.60	36020		0.028	1.3	56	6	86	58	6	
38.60	39.30	36021	yes	1.3	1.8	40	6	86	5250	21	
39.30	41.40	36022	yes	0.1	2.5	47	217	85	542	214	
41.40	42.50	36023	yes	0.518	4.1	39	490	84	995	486	
44.80	46.00	36024	yes	0.45	3.4	47	180	83	1005	179	
46.10	47.10	36025	yes	0.23	4.3	32	904	82	553	912	
50.10	51.20	36026	yes	0.801	3.3	25	14	81	4960	19	
53.70	54.30	36027	yes	0.113	10	54	1130	80	564	1140	
54.80	55.60	36028	yes	0.337	1.8	43	20	79	1040	18	
60.60	61.70	36029	yes	0.84	8.5	45	737	78	3100	683	
63.00	63.50	36030	yes	0.319	0.8	50	18	77	541	13	
64.20	64.70	36031	yes	1.3	5.8	35	626	76	5550	597	
64.70	66.00	36032		0.045	0.7	46	11	75	296	13	
66.00	67.00	36033		0.104	0.8	52	37	74	1290	29	
67.00	68.00	36034		0.005	0.5	49	7	74	13	5	
68.00	69.00	36035		0.021	0.5	49	7	73	93	6	
78.50	79.50	36036		0.006	<0.5	48	5	72	23	25	
81.50	82.50	36037	yes	0.13	1.9	93	133	71	889	40	
83.00	85.00	36038		0.012	0.8	52	6	70	50	87	
85.00	87.00	36039		0.007	1.2	66	6	69	24	38	
87.00	89.00	36040		0.013	1	57	7	68	221	54	
89.00	91.00	36041		0.013	0.8	65	2	67	72	44	
96.00	97.00	36042		0.004	0.5	56	5	66	21	<5	
97.00	98.00	36043		0.007	0.6	57	2	65	8	<5	
103.00	104.00	36044		0.005	0.7	45	7	64	42	<5	

DIAMOND DRILL LOG

SAMPLE DATA			CHEMICAL DATA								
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	(mqq) gA	Cu (ppm)	(mqq) dA	(mqq) nZ	(wdd) sy	(mqq) dS	COMMENTS
108.00	109.00	36045		0.025	1.1	38	5	63	114	22	
113.00	114.00	36046		0.017	0.9	57	7	62	37	10	
117.00	118.00	36047	yes	0.021	1	46	5	62	82	40	
121.30	121.80	36048	yes	0.009	0.6	46	6	61	27	<5	
123.00	123.50	36049	yes	0.005	0.8	38	4	60	8	5	
131.00	132.00	36050		0.004	0.5	29	5	59	10	<5	
136.60	137.10	36051	yes	0.009	0.5	47	3	58	47	<5	
142.00	143.00	36052		0.013	0.9	44	6	57	13	<5	
147.50	148.50	36053		0.004	0.5	32	3	56	18	<5	
153.00	154.00	36054		0.004	<0.5	27	4	55	12	<5	
159.00	160.00	36055		0.008	0.6	31	4	90	14	<5	
164.40	164.90	36056		0.006	0.5	36	4	109	9	<5	
170.00	171.00	36057		0.006	0.6	46	4	108	8	<5	
176.00	177.00	36058		0.003	0.8	54	9	153	<5	<5	
182.00	183.00	36059		0.024	0.8	49	6	138	<5	<5	
188.00	189.00	36060		0.003	<0.5	35	4	103	8	<5	
194.00	195.00	36061		0.005	0.7	54	7	115	<5	<5	
201.00	202.00	36062		0.003	0.6	42	4	115	5	<5	
208.00	209.00	36063		0.007	0.6	45	5	108	<5	<5	
214.00	215.00	36064		0.003	<0.5	40	8	108	11	<5	
220.50	221.50	36065		0.004	<0.5	44	4	118	<5	<5	
226.00	227.00	36066		0.005	<0.5	46	5	155	7	<5	
232.00	233.00	36067		0.003	<0.5	40	5	108	14	<5	
238.00	239.00	36068	yes	0.003	<0.5	46	3	102	5	<5	arsenopyrite in black shale?
245.20	245.70	36069		0.007	<0.5	49	5	132	24	12	
250.50	251.50	36070		0.007	<0.5	40	10	131	<5	<5	
256.40	257.50	36071		0.003	<0.5	46	8	141	<5	<5	
263.00	263.50	36072		0.005	<0.5	50	5	132	<5	<5	
269.00	270.00	36073		0.006	<0.5	49	6	140	<5	<5	
273.50	274.00	36074		0.005	<0.5	46	7	127	<5	<5	
278.30	279.00	36075		0.004	<0.5	46	6	110	<5	<5	
283.50	284.50	36076		0.005	<0.5	44	4	118	<5	<5	
290.20	291.10	36077		0.003	<0.5	47	3	168	<5	<5	
295.00	296.00	36078		0.003	<0.5	34	2	99	8	<5	

D10-1 Acid Test

Depth	Dip
2.1	-75
96	-76
196.6	-76
297.2	-74

Eastin 399520	STRIP Morthing 5554613.0	LOG RL 1648.0	Azimuth 270.0	0 -1 Dip -75.0	Depth 297.3
STRIP					
1	Geology	PAT	LABEL DRT SDST SHLE SKN SOIL	DESCF diorite sandsto shale skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property Monashee Mountain, British Columbia

Drill Hole: D10-2

Location: Trench #5 & #3 Intersection UTM Coordinates: 399644E, 5554603N (Garmin GPS, NAD 83, Z11) Date: September 13th to 14th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 270 Dip: -75

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 93.57 m

D10-2 Major Geology

From:	То:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:		
0.00	3.70	Overburden					Overburden and sub-crop		
3.70	3.80	Skarn	Cream to olive green to grey	fine	Banded	Calcite 10, Calc-Silicates 75, Chlorite 15, trace sulphides	ardness 6.5 rregular highly fractured sections. Voderate chloritization		
3.80	7.50	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 10% sulphides	Hardness 5-6 Trace irregular highly fractured sections Sulphides consist of pyrite & pyrrhotite Occasional carbonate altered sections associated with more sulphides		
7.50	10.70	Skarn	Cream to olive green to grey	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 15% sulphides	lardness 6.5 regular highly fractured sections. Ioderate chloritization Dccasional quartz veins with calcite and sulphides up to 40mm		
10.70	12.15	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 45, Biotite 13, Magnetite 1, Calcite 1 trace to 10% sulphides	Aardness 5-6 Dccasional quartz veins with calcite and sulphides up to 23 mm Sulphides are finely disseminated or < 2 mm stringers or < 7 mm pods Sulphides consist of pyrite & pyrrhotite Dccasional carbonate altered sections associated with more sulphides		
12.15	16.15	Mafic Dyke	Dark grey to black	fine	Granite	Plagioclase 15, Hornblende 50, Biotite 15, Chlorite 15, Magnetite 3, trace to 3% sulphides	Hardness 2-3 Strongly chloritized mafic dyke? Sulphides consist of pyrite & pyrrhotite		
16.15	38.10	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 45, Biotite 13, Magnetite 1, Calcite 1 trace to 5% sulphides	Hardness 5-6 Occasional quartz veins with calcite and sulphides up to 23 mm Sulphides are finely disseminated or < 2 mm stringers or < 5 mm pods Sulphides consist of pyrite & pyrrhotite Occasional carbonate altered sections associated with more sulphides		
38.10	40.60	Mafic Dyke	Dark grey to black	fine	Granite	Plagioclase 15, Hornblende 50, Biotite 15, Chlorite 15, Magnetite 3, trace to 2% sulphides	Hardness 2-3 Strongly chloritized mafic dyke? Sulphides consist of pyrite & pyrrhotite		
40.60	51.10	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 45, Biotite 13, Magnetite 1, Calcite 1 trace to 5% sulphides	Hardness 5-6 Occasional quartz veins with calcite and sulphides up to 23 mm Sulphides are finely disseminated or < 2 mm stringers or < 5 mm pods Sulphides consist of pyrite & pyrrhotite Occasional carbonate altered sections associated with more sulphides		
51.10	58.95	Skarn	Cream light grey to purple to olive green	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 2% sulphides	Hardness 6.5 Moderate bleaching, weak chloritizatior Occasional quartz veins with calcite and sulphides up to 13 mm		
58.95	93.57	Shale	Black to grey to light grey	fine	Banded	Detrital sediments 75, Calcite 25 trace pyrrhotite & pyrite	Hardness 4 Contains minor sandstone units that may represent turbidites (some fining upwards observed) X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common		

D10-2 Minor Geology

From:	To:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
34.30	34.70	Skarn	Cream to olive green to grey	fine	Banded	Calcite 10, Calc-Silicates 75, Chlorite 12, trace to 3% sulphides	Hardness 6.5 Moderate chloritization
61.00	61.40	Skarn	Light brown to grey	fine	Brecciated	Calcite 10, Calc-Silicates 90, trace sulphides	Hardness 5-6
64.50	65.40	Skarn	Light grey to grey to cream	fine	Banded	Calcite 25, Calc-Silicates 75, trace sulphides	Hardness 6.5 Occasional quartz clots & stringers with trace sulphides and calcite
73.40	74.15	Skarn	Light grey to grey to cream	fine	Banded	Calcite 25, Calc-Silicates 75, trace to 30% sulphides	Hardness 5-6

EOH = 93.57 m

D10-2 Detailed Structure

At:	Structure:	Angle:	Description:
4-4.2	Fractures	Ī	irregular highly fractured section and crushed rock
4.4	Vein	45	30 mm quartz with up to 5% pyrite & pyrrhotite
4.55-4.85	Fractures		irregular highly fractured section and crushed rock
10.05-10.55	Fractures		irregular highly fractured section and crushed rock
10.65	Vein	85	35 mm quartz with up to 5% pyrite & pyrrhotite
10.75	Vein	90	40 mm quartz with up to 5% pyrite & pyrrhotite
18.1	Vein	75	23 mm quartz with up to 5% pyrite & pyrrhotite
19.55	Vein	60	11 mm quartz with up to 10% pyrrhotite
20.35-20.45	Clots & Stringers		quartz with up to 5% pyrite & pyrrhotite, and trace calcite
23.5-23.85	Fractures		irregular highly fractured section and crushed rock
24.7-25.3	Fractures		irregular highly fractured section and crushed rock
33.1	Vein	50	20 mm quartz with up to 5% pyrite & pyrrhotite
36.95	Vein	80	34 mm quartz with up to 5% pyrite & pyrrhotite
43.35-43.85	Fractures		irregular highly fractured section and crushed rock
46.6-46.95	Fractures		irregular highly fractured section and crushed rock
47.25	Vein		25 mm quartz with up to 3% pyrite & pyrrhotite
49.7-50.8	Fractures		irregular highly fractured section and crushed rock
53.45	Vein	85	20 mm quartz with up to 2% pyrite & pyrrhotite
59.1	Gouge		100 mm of black clay and crushed black shale
67.7-68	Clots & Stringers		offset irregular calcite stringers and clots with quartz and trace pyrite & pyrrhotite
71.2-71.7	Fractures		irregular highly fractured section and crushed rock
72.4-74.15	Clots & Stringers		dense offset irregular calcite stringers and clots with up to 30% sulphides
74.15-74.4	Fractures		irregular highly fractured section and crushed rock
80.3	Vein	85	80 mm calcite/quartz vein with brecciated black shale within
86.6	Vein	85	50 mm calcite/quartz vein with brecciated black shale within
88.9-89.15	Fractures		irregular highly fractured section and crushed rock
90.2-92.35	Fractures		irregular highly fractured section and crushed rock
93.1-93.25	Stringers		dense offset irregular calcite stringers up to 3 mm with up to 5% sulphides as blebs & stringers

D10-2 Mineralization

From:	To:	Mineralization:
4.4	4.43	30 mm quartz with up to 5% pyrite & pyrrhotite
7.5	9	Up to 15% arsenopyrite, pyrite, pyrrhotite throughout skarn
10.65	10.68	35 mm quartz with up to 5% pyrite & pyrrhotite
10.75	10.79	40 mm quartz with up to 5% pyrite & pyrrhotite
18.1	18.12	23 mm quartz with up to 5% pyrite & pyrrhotite
19.54	19.55	11 mm quartz with up to 10% pyrrhotite
20.35	20.45	100 mm section of quartz clots & stringers with up to 5% pyrite & pyrrhotite
25.75	26.25	Occasional quartz stringer < 5 mm with alteration halo and pyrite/pyrrhotite up to 3%
33	33.3	Occasional quartz stringer < 20 mm with alteration halo and pyrite/pyrrhotite up to 5%
36.95	36.98	34 mm quartz with up to 5% pyrite & pyrrhotite
41.9	42.1	Occasional quartz < 2 mm with alteration halo and pyrite/pyrrhotite up to 3%
45.05	45.08	Occasional quartz < 4 mm with alteration halo and pyrite/pyrrhotite up to 3%
45.5	45.55	Occasional quartz < 2 mm with alteration halo and pyrite/pyrrhotite up to 3%
47.25	47.28	25 mm quartz with up to 3% pyrite & pyrrhotite
51.1	51.35	14 mm quartz with up to 2% pyrite & pyrrhotite - sulphides up to 4% over 250 mm halo
53.45	53.47	20 mm quartz with up to 5% pyrite & pyrrhotite - sulphides up to 2% over 130 mm halo
74	74.15	150 mm brecciated zone of black shale, calcite & quartz with up to 30% pyrite & pyrrhotite
93.1	93.25	150 mm zone of calcite stringers with up to 5% pyrite & pyrrhotite

DIAMOND DRILL LOG

	CHEMICAL DATA										
FROM	то	SAMPLE	Sulphides > 5%	(mqq) uA	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	Sb (ppm)	COMMENTS
3.70	4.20	36079		0.009	<0.5	54	5	131	22	<5	
4.20	4.70	36080	yes	0.005	<0.5	95	6	68	71	7	
4.70	6.10	36081		0.004	<0.5	63	6	84	19	<5	
6.10	7.50	36082		0.003	<0.5	42	6	82	12	<5	
7.50	9.00	36083	yes	0.006	<0.5	98	6	99	14	5	
9.00	10.50	36084		0.003	<0.5	56	4	158	10	11	
10.50	11.00	36085	yes	0.29	5.8	45	93	56	5710	60	
11.00	12.10	36086		0.023	<0.5	55	7	101	101	7	
12.10	14.10	36087		0.006	<0.5	19	8	87	9	<5	
14.10	16.20	36088		0.003	<0.5	21	7	89	9	<5	
16.20	17.90	36089		0.004	<0.5	56	5	120	13	<5	
17.90	18.40	36090	yes	1.02	1.4	38	12	91	2810	13	
18.40	19.40	36091	yes	0.118	<0.5	48	7	117	329	<5	
19.40	20.50	36092	yes	0.257	<0.5	44	29	134	1520	7	
24.75	25.75	36093		0.006	<0.5	53	5	96	5	<5	
25.75	26.25	36094	yes	0.357	1.1	48	8	44	3540	19	
26.25	27.25	36095		0.009	<0.5	68	7	91	16	<5	
27.25	29.25	36096		0.013	<0.5	55	6	88	80	<5	
29.25	31.00	36097		0.145	<0.5	58	6	88	601	7	
31.00	31.50	36098	yes	0.037	<0.5	52	20	97	510	6	
31.50	33.00	36099		0.006	<0.5	57	6	85	25	<5	
33.00	33.50	36100	yes	1.145	2.7	47	27	74	4340	26	
33.50	35.00	36101		0.011	<0.5	45	9	92	49	5	
35.00	36.70	36102		0.006	<0.5	37	12	125	7	<5	
36.70	37.20	36103	yes	0.265	1	35	22	87	1340	16	
37.20	38.10	36104		0.041	<0.5	38	13	82	88	<5	
38.10	39.10	36105		0.004	<0.5	22	9	90	31	<5	
40.80	41.30	36106		0.003	<0.5	35	8	94	8	<5	
41.30	42.30	36107		0.37	<0.5	43	11	104	1340	7	
42.30	44.40	36108		0.021	<0.5	61	9	80	138	<5	
44.40	45.60	36109	yes	0.06	<0.5	72	10	82	456	<5	
45.60	47.00	36110		0.07	<0.5	88	11	80	112	<5	
47.00	47.50	36111	yes	0.868	1.9	81	17	79	1750	12	
47.50	49.50	36112		0.009	<0.5	87	11	72	18	<5	
49.50	51.10	36113		0.174	<0.5	61	13	80	546	<5	
51.10	51.60	36114	yes	0.506	2.5	26	16	303	1750	64	
51.60	53.20	36115		0.038	4.7	60	/66	126	213	43	
53.20	53.70	36116	yes	0.064	2.8	60	9	145	953	11	
53.70	55.00	36117		0.011	<0.5	68	8	142	15	<5	
55.00	57.00	36118		0.014	<0.5	54	16	146	170	<5	
57.00	59.00	36119		0.174	0.9	44	21	137	1800	65	
59.00	59.50	36120		0.049	<0.5	51	8	115	839	81	
04.50	05.10	36121		0.136	0.5	51	9	/0	251	<5	
73.40	74.80	36122	yes	0.382	8.2	61	522	109	555	167	

DIAMOND DRILL LOG

SAMPLE DATA CHEMICAL DATA Ag (ppm) Cu (ppm) Zn (ppm) (mqq) (mdd) Au (ppm) As (ppm) Sulphides COMMENTS SAMPLE FROM то > 5% B ß 81.00 82.00 36123 0.011 <0.5 44 7 120 37 10 86.90 87.40 10 36124 0.015 <0.5 66 166 28 23 92.90 93.40 36125 yes 0.009 <0.5 43 7 109 35 <5
D10-2 Acid Test

Depth	Dip
2.1	-76
93.57	-75

Eastin 399644	STRIF ng Northing 4.0 5554603	P LOG 9 RL .0 1616.0	Azimuth	0-2 Dip -75.0	Depth 93.6
STRIP					
1	Geology	PAT	LABEL DRT MIRK SHLE SKN SOIL	DESCI diorite mafic in shale skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property Monashee Mountain, British Columbia

Drill Hole: D10-3

Location: NW of Trench #5 & #3 Intersection UTM Coordinates: 399606E, 5554614N (Garmin GPS, NAD 83, Z11) Date: September 14th to 15th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 270 Dip: -75

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 87.48 m

D10-3 Major Geology

From:	To:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	4.30	Overburden					Overburden and sub-crop
4.30	4.97	Skarn	Grey to dark grey to cream to olive green	fine	Banded	Calcite 20, Calc-Silicates 75, Chlorite 5, trace sulphides	Hardness 5-6 Irregular highly fractured sections. Moderate chloritization
4.97	6.55	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 10% sulphides	Hardness 5-6 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides Occasional calcite stringer up to 2 mm
6.55	8.13	Skarn	Olive green to cream to grey	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 2% sulphides	Hardness 4.5 Moderate chloritization and bleaching Occasional calcite stringer up to 2 mm Banding is typically 70-80 degrees from core angle
8.13	54.72	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 45, Biotite 13, Magnetite 1, Calcite 1 trace to 10% sulphides	Hardness 5-6 Occasional quartz veins with calcite and sulphides up to 23 mm Sulphides are finely disseminated or < 2 mm stringers or < 7 mm pods Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides
54.72	61.90	Skarn	Cream light grey to purple to olive green	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 1% sulphides	Hardness 5-6 Moderate bleaching and chloritization Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle
61.90	63.50	Shale	Black to dark grey	fine	Massive	Detrital sediments 75, Calcite 25 trace to 30% pyrrhotite & pyrite	Hardness 3.5 X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common intermingling with skarn is evident
63.50	65.90	Skarn	Cream light grey to purple to olive green	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 1% sulphides	Hardness 5-6 Moderate bleaching and chloritization Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle intermingling with black shale is evident
65.90	87.48	Shale	Black to dark grey to grey	fine	Banded	Detrital sediments 75, Calcite 25 trace pyrrhotite & pyrite	Hardness 3.5 Contains minor sandstone units that may represent turbidites (some fining upwards observed) X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common

EOH = 87.48 m

D10-3 Minor Geology

From:	To:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
10.15	10.30	Skarn	Cream to olive green to grey	fine	Banded	Calcite 10, Calc-Silicates 75, Chlorite 12, trace to 2% sulphides	Hardness 5 Moderate chloritization
11.80	12.05	Skarn	Dark grey to olive green	fine	Brecciated	Calcite 10, Calc-Silicates 90, up to 20% pyrrhotite	Hardness 4 Moderate chloritization Dense calcite stringers < 1 mm
14.55	14.90	Skarn	Light grey to cream to purple	fine	Banded	Calcite 25, Calc-Silicates 75, up to 3% pyrrhotite	Hardness 6.5 Occasional quartz clots & stringers with trace sulphides and calcite
37.40	38.15	Skarn	Grey to cream to olive green to purple	fine	Brecciated	Calcite 15, Calc-Silicates 85, trace to 15% sulphides	Hardness 3.5
64.70	65.30	Shale	Black to dark grey	fine	Massive	Detrital sediments 75, Calcite 25 trace to 30% pyrrhotite & pyrite	Hardness 3.5
69.05	69.55	Skarn	Grey to cream to olive green to purple	fine	Brecciated	Calcite 25, Calc-Silicates 75, trace pyrrhotite	Hardness 2.5
78.35	79.15	Skarn	Grey to cream to olive green	fine	Banded	Calcite 30, Calc-Silicates 70, trace pyrrhotite	Hardness 3.5
80.50	81.10	Skarn	Grey to cream to olive green	fine	Banded	Calcite 30, Calc-Silicates 70, trace pyrrhotite	Hardness 3.5 Bands of black shale up to 60 mm

EOH = 87.48 m

D10-3 Detailed Structure

At:	Structure:	Angle:	Description:
4.3-4.6	Fractures		irregular highly fractured section and crushed rock
4.6-4.9	Stringers		quartz stringers up to 12 mm with up to 20% pyrite & pyrrhotite
6.05	Clot		quartz clot up to 30 mm with up to 10% pyrrhotite
6.55	Vein	45	11 mm quartz vein with up to 10% pyrite & pyrrhotite
7.4	Clot		quartz clot up to 50 mm with up to 10% pyrrhotite
9.5	Vein	65	3 mm quartz vein with up to 10% pyrite & pyrrhotite
12	Vein	50	20 mm offset quartz vein with up to 30% pyrrhotite
13.1	Vein	65	20 mm quartz vein with up to 60% pyrite
13.4-13.6	Fractures		irregular highly fractured section and crushed rock
15.65-15.85	Fractures		irregular highly fractured section and crushed rock
16.65	Clot		35 mm quartz clot with up to 10% pyrite and associated alteration halo
16.8	Vein	90	5 mm quartz vein with up to 5% pyrite and associated alteration halo
20.2	Vein	90	5 mm quartz vein with up to 5% pyrite and associated alteration halo
21.05-21.2	Clots & Stringers		quartz with up to 5% pyrite & pyrrhotite, and trace calcite
23.85-24.35	Veins & Stringers		up to 30 mm quartz veins with up to 5% pyrite, trace to some calcite
26.5	Vein	70	10 mm quartz and calcite vein with up to 5% pyrite
32.6-33.15	Fractures		irregular highly fractured section and crushed rock
33.25-33.35	Clot		100 mm quartz clot with up to 5% pyrite & pyrrhotite and associated alteration halo
41.85	Vein	90	20 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
42.6-43.3	Fractures		irregular highly fractured section and crushed rock
43.4	Vein	90	5 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
43.5-44.05	Fractures		irregular highly fractured section and crushed rock
49.2	Vein	50	4 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
50.6	Vein	50	4 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
51.6	Vein		irregular offset quartz vein up to 35 mm with arsenopyrite, pyrite and associated alteration halo
52	Vein	90	20 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
52.45	Vein	50	10 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
64.7-64.9	Fractures		irregular highly fractured section and crushed rock
65.05-65.4	Fractures		irregular highly fractured section and crushed rock
66.7-66.95	Fractures		irregular highly fractured section and crushed rock
71-71.4	Stringers		dense offset irregular calcite stringers and clots < 2 mm
72.6-72.95	Fractures		irregular highly fractured section and crushed rock
79.15-79.9	Stringers		dense offset irregular calcite stringers and clots < 3 mm
84.05-84.45	Gouge		fractures with up to 50 mm of black clay gouge
86.4-86.45	Gouge		50 mm black clay and crushed black shale gouge
86.9-87.5	Stringers		dense offset irregular calcite stringers and clots < 3 mm, and sulphides up to 3%

D10-3 Mineralization

From:	To:	Mineralization:
4.3	4.9	quartz stringers up to 12 mm with up to 20% pyrite & pyrrhotite
6.05	6.08	quartz clot up to 30 mm with up to 10% pyrrhotite
6.55	6.56	11 mm quartz vein with up to 10% pyrite & pyrrhotite
7.4	7.45	quartz clot up to 50 mm with up to 10% pyrrhotite
9.5	9.51	3 mm quartz vein with up to 10% pyrite & pyrrhotite
12	12.02	20 mm offset quartz vein with up to 30% pyrrhotite
13.1	13.12	20 mm quartz vein with up to 60% pyrite
16.65	16.69	35 mm quartz clot with up to 10% pyrite and associated alteration halo
16.8	16.81	5 mm quartz vein with up to 5% pyrite and associated alteration halo
20.2	20.21	5 mm quartz vein with up to 5% pyrite and associated alteration halo
21.05	21.2	quartz with up to 5% pyrite & pyrrhotite, and trace calcite
23.85	24.35	up to 30 mm quartz veins with up to 5% pyrite, trace to some calcite
26.5	26.51	10 mm quartz and calcite vein with up to 5% pyrite
33.25	33.35	100 mm quartz clot with up to 5% pyrite & pyrrhotite and associated alteration halo
40.35	40.55	quartz stringers up to 6 mm with up to 3% pyrite & arsenopyrite
41.85	41.87	20 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
43.4	43.41	5 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
49.17	49.23	4 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
50.57	50.63	4 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
51.57	51.63	irregular offset quartz vein up to 35 mm with arsenopyrite, pyrite and associated alteration halo
52	52.02	20 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
52.42	52.48	10 mm quartz vein with up to 10% arsenopyrite, pyrite and associated alteration halo
62.5	62.56	60 mm quartz and calcite stringers with up to 60% pyrite
72.37	72.43	60 mm calcite stringer with up to 10% pyrite & pyrrhotite
86.9	87.5	pyrite & pyrrhotite up to 3% in brecciated black shale with dense calcite stringers

DIAMOND DRILL LOG

SAMPLE DATA			CHEMICAL DATA								
FROM	то	SAMPLE	SAMP DESC	Au (ppm)	(mqq) gA	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	(mqq) dS	COMMENTS
4.30	4.90	36126	yes	0.198	2.5	65	65	74	1700	30	
5.75	6.25	36127	yes	0.004	<0.5	27	27	83	20	<5	
7.00	7.50	36128	yes	0.012	<0.5	31	31	204	41	11	
9.25	9.75	36129	yes	0.155	<0.5	62	62	109	1290	<5	
11.80	12.30	36130	yes	0.01	<0.5	81	81	105	11	12	
12.30	13.10	36131	yes	0.325	0.6	57	57	85	1710	23	
16.35	17.00	36132	yes	0.824	3	43	43	98	3210	20	
20.00	21.00	36133	yes	0.189	<0.5	63	63	126	583	<5	
21.00	22.00	36134	yes	0.768	1.1	57	57	102	1750	9	
23.85	24.35	36135	yes	0.564	<0.5	53	53	83	3670	19	
26.25	26.75	36136	yes	0.097	<0.5	69	69	106	601	<5	
29.00	29.50	36137	yes	0.012	<0.5	51	51	93	26	<5	
31.25	31.75	36138	yes	0.201	<0.5	38	38	109	1410	<5	
33.00	33.50	36139	yes	0.455	<0.5	27	27	80	7650	20	
37.40	38.10	36140	yes	0.006	<0.5	38	38	95	13	128	
40.10	40.60	36141	yes	0.265	1.6	51	51	93	3460	30	
43.20	43.70	36142	yes	0.026	<0.5	48	48	82	479	9	
47.20	47.70	36143		0.014	<0.5	39	39	94	48	<5	
49.10	49.60	36144	yes	0.254	<0.5	49	49	81	1470	7	
50.50	51.50	36145	yes	0.061	<0.5	28	28	100	416	<5	
51.50	52.50	36146	yes	0.314	0.8	27	27	94	2860	22	
54.50	55.00	36147		0.017	<0.5	72	72	118	29	18	
59.00	59.50	36148		0.038	<0.5	56	56	129	406	<5	
61.50	62.40	36149		0.023	<0.5	51	51	136	141	14	
62.40	63.00	36150	yes	0.184	8.5	57	57	135	2370	37	
68.80	69.30	36151		0.221	0.5	46	46	109	688	5	
72.40	72.90	36152		0.015	<0.5	59	59	110	44	<5	
79.00	79.50	36153		0.008	<0.5	32	32	84	331	<5	
80.50	81.20	36154		0.005	<0.5	43	43	116	19	<5	
84.00	84.50	36155		0.009	<0.5	51	51	117	19	16	
86.90	87.50	36156	yes	0.019	<0.5	48	48	124	68	49	

D10-3 Acid Test

Depth	Dip
2.1	-76
87.48	-74

Eastin 399606	STRIP Morthing 5554614.0	LOG RL 1628.0	Azimuth 270.0	0-3 Dip -75.0	Depth 87.5
STRIP					
1	Geology	PAT	LABEL DRT SHLE SKN SOIL	DESCF diorite shale skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property

Monashee Mountain, British Columbia

Drill Hole: D10-4

Location: Trench #6 Coordinates: 399352E, 5554752N (Garmin GPS, NAD 83, Z11) Date: September 15th to 16th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 90 Dip: -60

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 93.57 m

D10-4 Major Geology

From:	То:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	6.40	Overburden					Overburden and sub-crop
6.40	20.25	Skarn	Grey to dark grey to cream to olive green to purple	fine	Banded	Calcite 15, Calc-Silicates 75, Chlorite 10, trace sulphides to 50% sulphides	Hardness 6.5 Irregular highly fractured sections. Moderate chloritization & bleaching Quartz and calcite veins & stringers associated with sulphides Quartz veins up to 80mm
20.25	24.23	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 35, Quartz 5, Sericite 5 Biotite 13, Magnetite 1, Calcite 1 trace to 10% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite, galena, stibnite Quartz and calcite veins & stringers associated with sulphides Moderately chloritized & weakly bleached in sections
24.23	34.55	Skarn	Grey to dark grey to cream to olive green to purple	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 20% sulphides	Hardness 5 Moderate chloritization and bleaching Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle Quartz and calcite veins & stringers associated with sulphides Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite, galena, stibnite
34.55	40.70	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 35, Hornblende 30, Biotite 10, Magnetite 1, Calcite 1, Chlorite 13, Sericite 10 trace to 10% sulphides	Hardness 4.5-5.5 Occasional quartz veins with calcite and sulphides up to 23 mm Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite, galena, stibnite Occasional carbonate altered sections associated with more sulphides Moderately chloritized & weakly bleached in sections
40.70	64.25	Skarn	Cream light grey to purple to olive green	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 30% sulphides	Hardness 5-6 Moderate bleaching and chloritization Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle Occasional unaltered black shale bands
64.25	77.20	Sandstone	Light grey to grey to olive green	fine to medium	Massive	Detrital sediments 80, Calcite 15, Chlorite 5, trace pyrrhotite	Hardness 5-6 Grains deformed and preferentially orientated Weakly chloritized Occasional x-cutting calcite and quartz stringers Contains minor conglomerate units that may represent turbidites (some fining upwards observed) Occasional small sections are skarned
77.20	93.57	Shale	Black to dark grey	fine	Banded	Detrital sediments 75, Calcite 25 trace to 5% pyrrhotite & pyrite	Hardness 3.5 Contains minor sandstone units that may represent turbidites (some fining upwards observed) X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common

EOH = 93.57 m

D10-4 Minor Geology

From:	To:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
11.70	12.30	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 3% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides Occasional calcite stringer up to 2 mm Moderately chloritized & bleached in sections
21.80	22.75	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, up to 20% pyrrhotite	Hardness 4 Moderate chloritization Dense calcite stringers < 1 mm
26.50	26.65	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 3% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Occasional carbonate altered sections associated with more sulphides Occasional calcite stringer up to 2 mm Moderately chloritized & bleached in sections
35.75	35.85	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, trace pyrrhotite	Hardness 4.5 Moderate chloritization
45.10	46.60	Diorite	Grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 30, Sericite 13, Biotite 10, Quartz 5, Magnetite 1, Calcite 1, trace to 20% sulphides	Hardness 6 Weakly bleached Highest sulphide content is at contact with skarn
60.25	60.55	Shale	Black	fine	Massive	Detrital sediments 80, Calcite 20, trace to 2% pyrrhotite & pyrite	Hardness 5
68.25	69.50	Conglomerate	Grey to white	coarse	Massive	Detrital sediments 80, Calcite 20, trace finely disseminated pyrrhotite	Hardness 5-6 Grains deformed and preferentially orientated - due to compaction? Grains up to 9 mm Occasional calcite stringers up to 1 mm
86.35	87.15	Sandstone	Grey to dark grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 5 fining upwards is observed
88.65	89.10	Sandstone	Grey to dark grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 5

EOH = 93.57 m

D10-4 Detailed Structure

At:	Structure:	Angle:	Description:
6.4-6.7	Fractures		irregular highly fractured section and crushed rock
9.2	Fracture	70	4 mm sulphide coated fracture
9.3	Fracture	80	4 mm sulphide coated fracture
9.3-10.15	Fractures		irregular highly fractured section and crushed rock
13.8-13.9	Vein	90	100 mm quartz vein with 5% pyrite, arsenopyrite
14.35-14.4	Vein	80	50 mm quartz vein with 15% pyrite, arsenopyrite
21.10-21.35	Vein	0	20 mm quartz vein with 15% pyrite, arsenopyrite, galena, stibnite
27.55-27.6	Vein	75	50 mm quartz vein with 15% pyrite, arsenopyrite
28	Vein	60	10 mm quartz vein with 10% pyrite, arsenopyrite
34.8-35.25	Fractures		irregular highly fractured section and crushed rock
36.35	Clot		irregular calcite clot up to 25 mm wide by 150 mm long
37.3-38.25	Fractures		irregular highly fractured section and crushed rock
38.85	Vein	80	3 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
39.1	Vein	85	5 mm quartz vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration halo
39.94-40	Clots		irregular quartz clot with up to 10% pyrite, arsenopyrite and associated alteration halo
40.25	Vein	75	5 mm quartz & calcite vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration ha
40.35	Vein	75	4 mm quartz & calcite vein with up to 10% arsenopyrite, pyrite, pyrrhotite and associated alteration ha
39.95-40.15	Clots & Stringers		irregular offset quartz with up to 15% arsenopyrite, pyrite and associated alteration halo
46.45-46.55	Clots & Stringers		irregular offset quartz with up to 15% arsenopyrite, pyrite and associated alteration halo
46.9-46.95	Clot		irregular quartz clot with up to 10% pyrite, arsenopyrite and associated alteration halo
51.4-51.5	Gouge		100 mm broken up skarn, clay, and pyrite
51.75-51.9	Gouge		150 mm broken up skarn and clay
57.05	Vein	65	30 mm quartz vein with up to 5% arsenopyrite and associated alteration halo
58.05	Gouge	90	10 mm grey clay and to gravel size skarn
58.1-58.15	Veins	90	two parallel 2 mm quartz veins with up to 15% pyrite, arsenopyrite and associated alteration halo
59.5-59.55	Vein	90	50 mm quartz vein with up to 5% pyrite, arsenopyrite and associated alteration halo
63-63.27	Vein		270 mm brecciated quartz vein with up to 30% pyrite, arsenopyrite
65.6-66	Gouge		400 mm brecciated black shale with calcite stringers, and black clay and broken graphitic black shale
71.9-72.15	Clots & Stringers		irregular offset quartz with no sulphides
74.15-74.3	Fractures		irregular highly fractured section and crushed rock
74.6-74.8	Gouge		200 mm brecciated sandstone and grey clay
77.4-77.5	Gouge		100 mm black clay and crushed black shale
78.95-79.35	Brecciated		intensely brecciated - almost to the point of being gouge
80.3-80.75	Stringers		dense irregular calcite stringers with up to 2% pyrite, pyrrhotite
83.95-84.05	Stringers		dense irregular calcite and quartz stringers
84.75-84.85	Stringers		dense irregular calcite and quartz stringers
89-89.3	Stringers		dense irregular calcite stringers with up to 2% pyrite, pyrrhotite
89.9-90	Stringers		dense irregular calcite and quartz stringers with up to 3% pyrite, pyrrhotite
91.1-91.2	Stringers		dense irregular calcite stringers with up to 2% pyrite, pyrrhotite

D10-4 Mineralization

From:	To:	Mineralization:
12.4	12.65	quartz stringers with up to 15% pyrite, arsenopyrite as stringers & blebs < 3 mm
13.2	15.2	up to 50% pyrite, pyrrhotite, arsenopyrite as stringers, blebs, & finely disseminated
13.8	13.9	100 mm quartz vein with 5% pyrite, arsenopyrite
14.35	14.4	50 mm quartz vein with 15% pyrite, arsenopyrite
18.2	18.21	2 mm quartz vein with up to 5% pyrite, arsenopyrite and associated alteration halo
20.25	20.26	2 mm quartz vein with up to 5% pyrite, arsenopyrite and associated alteration halo
20.9	20.93	30 mm quartz clot with up to 5% pyrite, arsenopyrite and associated alteration halo
21.1	21.35	20 mm quartz vein with 15% pyrite, arsenopyrite
22.15	22.45	up to 15% pyrite, pyrrhotite, arsenopyrite with quartz stringers and clots
24.35	24.55	up to 5% pyrite, pyrrhotite, arsenopyrite with associated with carbonate
25.45	25.47	200 mm quartz stringers with up to 20% pyrite, pyrrhotite, & arsenopyrite
26.35	26.95	up to 20% pyrite, pyrrhotite, arsenopyrite, galena with quartz stringers and clots
27.55	27.6	50 mm quartz vein with 15% pyrite, arsenopyrite
27.6	28.7	up to 30% pyrite, arsenopyrite, galena, stibnite associated with multiple quartz stringers & brecciated host rock
29.1	29.5	up to 20% pyrite, pyrrhotite as < 3 mm stringers & blebs in black shale within skarn unit
38.85	40.7	up to 15% pyrite, pyrrhotite, arsenopyrite with quartz stringers and clots, and finely disseminated
46.45	46.55	irregular offset quartz with up to 15% arsenopyrite, pyrite and associated alteration halo
46.9	49.95	irregular quartz clot with up to 10% pyrite, arsenopyrite and associated alteration halo
57.05	57.08	30 mm quartz vein with up to 5% arsenopyrite and associated alteration halo
58.1	58.15	two parallel 2 mm quartz veins with up to 15% pyrite, arsenopyrite and associated alteration halo
59.5	59.55	50 mm quartz vein with up to 5% pyrite, arsenopyrite and associated alteration halo
63	63.27	270 mm brecciated quartz vein with up to 30% pyrite, arsenopyrite
63.65	63.7	up to 30% pyrite associated with brecciated skarn above contact with sandstone
80.3	80.75	dense irregular calcite stringers with up to 2% pyrite, pyrrhotite
89	89.3	dense irregular calcite stringers with up to 2% pyrite, pyrrhotite
89.9	90	dense irregular calcite and quartz stringers with up to 3% pyrite, pyrrhotite
91.1	91.2	dense irregular calcite stringers with up to 2% pyrite, pyrrhotite

DIAMOND DRILL LOG

SAMPLE DATA			CHEMICAL DATA								
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	Sb (ppm)	COMMENTS
8.00	9.00	36157		0.018	<0.5	65	105	247	130	21	
9.00	9.50	36158	yes	0.048	4.6	57	28	92	499	52	
11.70	13.00	36159		0.137	0.9	49	9	84	794	12	
13.00	14.00	36160	yes	0.291	1.5	31	11	44	2500	16	
14.00	14.80	36161	yes	1.775	5.5	37	87	63	>10000	48	
14.80	15.30	36162	yes	19.35	287	426	2270	985	>10000	844	50% sulphides
15.30	17.00	36163		0.058	4.5	48	84	324	322	32	
17.00	18.50	36164		0.018	<0.5	38	8	106	109	<5	
18.50	19.00	36165	yes	0.162	0.5	81	14	100	1310	<5	
19.00	20.00	36166		0.012	<0.5	29	5	106	135	8	
20.00	20.50	36167	yes	0.125	0.8	52	13	101	1850	8	
20.50	21.00	36168	yes	0.167	1.2	46	30	96	4090	12	
21.00	21.50	36169	yes	0.013	<0.5	49	7	40	14	<5	
21.50	22.75	36170	yes	0.129	<0.5	46	4	66	806	8	
22.75	24.25	36171	yes	0.007	<0.5	47	4	111	15	<5	
24.25	26.35	36172		0.106	4.1	47	42	127	1525	18	
26.35	27.00	36173	yes	0.335	143	236	2500	207	682	285	includes galena
27.00	27.60	36174	yes	0.32	112	167	927	133	3660	197	
27.60	28.10	36175	yes	0.425	6.1	23	124	152	7710	60	
28.10	28.60	36176	yes	1.23	39.6	52	1465	49	>10000	250	
28.60	29.60	36177	yes	0.033	3	119	73	179	123	26	
29.60	31.00	36178		0.009	0.5	38	9	103	24	<5	
31.00	33.00	36179		0.024	0.5	40	6	81	130	10	
33.00	34.50	36180		0.037	0.6	53	8	80	170	8	
34.50	35.60	36181		0.014	<0.5	54	4	36	11	<5	
35.60	37.00	36182		0.082	1.5	60	14	37	242	8	
37.00	38.70	36183		0.199	0.8	79	10	40	543	<5	
38.70	39.70	36184	yes	0.123	1.4	68	15	45	5430	19	
39.70	40.70	36185	yes	0.191	0.7	46	10	47	3220	29	
40.70	42.00	36186	yes	0.659	0.7	21	13	51	>10000	37	
42.00	42.50	36187		0.014	<0.5	49	7	101	881	6	
44.60	45.10	36188	yes	0.009	0.5	58	3	71	26	6	
45.10	46.70	36189	yes	0.007	0.5	104	4	38	66	<5	
46.70	47.20	36190	yes	0.013	<0.5	56	5	84	134	6	
49.80	50.30	36191	yes	0.046	<0.5	60	3	128	528	<5	
51.50	52.00	36192	yes	0.016	0.5	51	9	105	412	21	
57.00	57.00	36193	yes	0.113	<0.5	39	0 C	11	029	5	
57.90	50.40	36194	yes	0.039	0.5	30	0 C	01 101	016 670	16	
09.30 60.70	09.80	36195	yes	0.066	<0.5	31	0	101	٥/٥ 7000	5	
02.70	03.30	36196	yes	3.57	25.3	48 45	1005	98	7980	151	
03.30	04.30	36197	yes	0.173	0.7	45	112	290	713	49	
05.30	00.00	36198	yes	0.172	00	119 FC	89	200	3/9	18	
74.00	75.00	30199		0.021	<0.5	55	11	117	20	<5	
74.00	75.00	36200		0.008	1.5	40	<2	89	25	<5	

DIAMOND DRILL LOG

	CHEMICAL DATA										
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	(mqq) gA	Cu (ppm)	Pb (ppm)	Zn (ppm)	(mqq) sA	(mqq) dS	COMMENTS
77.00	77.80	36201		0.008	2.4	103	6	201	31	5	
80.25	80.75	36202	yes	0.006	1.3	30	<2	78	12	<5	
88.90	89.40	36203	yes	0.009	1.1	51	3	136	17	<5	
89.90	90.50	36204	yes	0.01	1.4	44	2	124	13	<5	
90.90	91.40	36205	yes	0.002	1.3	22	<2	78	155	11	

D10-4 Acid Test

Depth	Dip
2.1	-61
93.57	-64

Eastin 399352	STRIP Morthing 5554752.0	LOG RL 1655.0	Azimuth 90.0	0-4 Dip -60.0	Depth 93.6
STRIP					
1	Geology	PAT	LABEL DRT SDST SHLE SKN SOIL	DESCF diorite sandst shale skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property

Monashee Mountain, British Columbia

Drill Hole: D10-5

Location: South of Trench #6 UTM Coordinates: 399450E, 5554684N (Garmin GPS, NAD 83, Z11) Date: September 16th to 17th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 90 Dip: -60

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 90.53 m

D10-5 Major Geology

From:	То:	Rock Unit	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	4.30	Overburden					Overburden and sub-crop
4.30	17.33	Skarn	Grey to dark grey to cream to olive green to purple	fine	Banded	Calcite 15, Calc-Silicates 75, Chlorite 10, trace sulphides to 2% sulphides	Hardness 4-5 Irregular highly fractured sections. Moderate chloritization & bleaching Quartz and calcite veins & stringers associated with sulphides
17.33	43.58	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 38, Hornblende 32, Quartz 5, Sericite 5, Chlorite 5 Biotite 13, Magnetite 1, Calcite 1 trace to 20% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Quartz and calcite veins & stringers associated with sulphide alteration halo: Moderately chloritized & weakly bleached in sections
43.58	52.55	Skarn	Grey to dark grey to cream to olive green to purple	fine	Banded	Calcite 20, Calc-Silicates 60, Detrital sediments 15, Chlorite 5, trace to 5% sulphides	Hardness 5 Weak chloritization and bleaching Banding is typically 70-80 degrees from core angle Quartz and calcite veins & stringers associated with sulphides Sulphides consist of pyrite & pyrrhotite Sediments are not intensely skarnec
52.55	62.23	Sandstone	Light grey to grey to olive green	fine to medium	Massive	Detrital sediments 80, Calcite 15, Chlorite 5, trace pyrrhotite	Hardness 5-6 Grains deformed and preferentially orientatec Weakly chloritized Occasional x-cutting calcite and quartz stringers Contains minor conglomerate units that may represen turbidites (some fining upwards observed) Frequent small sections are skarned
62.23	69.20	Skarn	Cream light grey to purple to olive green	fine	Banded	Calcite 15, Calc-Silicates 70, Chlorite 15, trace to 10% sulphides	Hardness 5-6 Moderate bleaching and chloritization Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle Occasional unaltered black shale bands
69.20	70.70	Diorite	Grey to cloudy white	medium	Granite	Plagioclase 43, Hornblende 35, Sericite 5, Biotite 10, Quartz 5 Magnetite 1, Calcite 1, trace to 1% pyrrhotite & pyrite	Hardness 5.5 Weakly bleached Highest sulphide content is at contact with skarr
70.70	72.60	Skarn	Cream light grey to purple	fine	Banded	Calcite 25, Calc-Silicates 75, trace pyrrhotite	Hardness 5-6 Moderate bleaching, weak chloritizatior Purple bands are clearly garnets (grossular or andradite?) Banding is typically 70-80 degrees from core angle
72.60	78.50	Sandstone	Light grey to grey to olive green	fine to medium	Massive	Detrital sediments 80, Calcite 15, Chlorite 5, trace pyrrhotite	Hardness 5-6 Grains deformed and preferentially orientatec Weakly chloritized Occasional x-cutting calcite and quartz stringers Contains minor conglomerate units that may represen turbidites (some fining upwards observed) Occasional small sections are skarnec
78.50	90.53	Shale	Black to dark grey	fine	Banded	Detrital sediments 75, Calcite 25 trace to 5% pyrrhotite & pyrite	Hardness 4 Contains minor sandstone units that may represen turbidites (some fining upwards observed) X-cutting pervasive calcite stringers and veins, occasional quartz veins Varying percentages of carbonate throughout sequence graphite coated fractures common

D10-5 Minor Geology

From:	To:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
12.76	13.60	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 45, Hornblende 35, Quartz 5, Biotite 13, Magnetite 1, Calcite 1 trace to 2% sulphides	Hardness 4.5 Sulphides consist of pyrite & pyrrhotite - lesser arsenopyrite Moderately chloritized & bleached in sections
14.30	14.70	Diorite	Grey to dark grey to cloudy white	medium	Granite	Plagioclase 40, Hornblende 30, Quartz 10, Chlorite 5, Sericite 5, Biotite 5, Magnetite 2, trace to 3% sulphides	Hardness 4
19.20	19.55	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, up to 10% pyrrhotite	Hardness 4 Moderate chloritization & bleaching
53.20	53.80	Skarn	Grey to cream to olive green to purple	fine	Brecciated	Calcite 10, Calc-Silicates 90, trace pyrrhotite	Hardness 4.5 Moderate chloritization
58.50	59.00	Skarn	Grey to cream to olive green to purple	fine	Banded	Calcite 10, Calc-Silicates 90, trace pyrrhotite	Hardness 4.5 Moderate chloritization

EOH = 90.53 m

D10-5 Detailed Structure

At:	Structure:	Angle:	Description:
6.1-6.3	Fractures		irregular highly fractured section and crushed rock
9.6-9.85	Clot		irregular brecciated quartz clot with up to 2% pyrite
14.7-14.9	Clot		irregular brecciated quartz clot with up to 2% pyrite at skarn/diorite contact
18.6-18.9	Fractures		irregular highly fractured section and crushed rock
19-19.25	Clots & Stringers		irregular offset quartz with up to 15% arsenopyrite, pyrite at skarn/diorite contact
20-20.1	Clots & Stringers		irregular offset quartz with up to 10% pyrite, pyrrhotite, arsenopyrite, galena
21.4	Vein		offset 10 mm quartz vein with up to 10% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
21.55	Vein	60	offset 8 mm quartz vein with up to 10% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
23.4-23.41	Vein	85	10 mm quartz vein with up to 15% pyrite, arsenopyrite, pyrrhotite and associated alteration halo
24.55-24.6	Vein	85	50 mm quartz vein with up to 10% pyrite, pyrrhotite and associated alteration halo
26.4-26.44	Vein	90	40 mm irregular quartz vein with pyrite, pyrrhotite, arsenopyrite up to 15%
27.2-27.45	Clots & Stringers		irregular quartz clots cross cut by 3 mm calcite stringers with sulphides up to 5%
28-28.2	Stringers		irregular quartz stringers up to 10 mm with up to 15% pyrite, pyrrhotite
28.45-28.48	Vein	90	30 mm quartz vein with up to 20% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
28.75-28.9	Clots & Stringers		irregular quartz clots & stringers up to 12 mm with up to 20% pyrite, pyrrhotite, arsenopyrite and alteration halo
30.14-30.16	Vein	85	20 mm quartz vein with up to 20% pyrite, pyrrhotite and associated alteration halo
31.1-31.6	Stringers		irregular brecciated quartz stringers up to 14 mm with up to 20% pyrite, pyrrhotite with alteration halo
33.7-33.71	Vein	90	5 mm quartz vein with up to 15% pyrite, pyrrhotite and associated alteration halo
33.8-33.9	Vein	90	100 mm brecciated vein with up to 20% pyrite, pyrrhotite and associated alteration halo
34.3-34.4	Stringers	90	two parallel 2-3 mm quartz stringers with up to 10% pyrite, pyrrhotite
39.11-39.13	Vein	80	20 mm quartz vein with up to 20% pyrite, pyrrhotite, arsenopyrite
39.25-39.7	Clots & Stringers		brecciated clots & stringers with up to 25% pyrite, pyrrhotite, arsenopyrite, galena
41.8	Vein	85	5 mm quartz vein with up to 15% pyrite, pyrrhotite and associated alteration halo
42.6	Vein	90	7 mm irregular quartz vein up to 15% pyrite, pyrrhotite, arsenopyrite, and associated alteration halo
43.3-43.4	Vein	75	100 mm quartz with calcite vein and up to 20% pyrite, pyrrhotite, arsenopyrite, galena and alteration halo
46-46.15	Gouge	90	150 mm black clay and crushed black shale
59-59.4	Fractures		irregular highly fractured section and crushed rock
69.7-70.7	Fractures		irregular highly fractured section and crushed rock
72-72.65	Clots & Stringers		irregular, brecciated clots and stringers up to 44 mm - trace pyrrhotite
79.4-79.55	Stringers		dense irregular calcite and quartz stringers
80.15-80.5	Fractures		irregular highly fractured section and crushed rock
85.3	Gouge	85	2 parallel fractures with < 2 mm black clay and crushed black shale
86.1-86.11	Vein	80	5 mm calcite vein that has been offset by about 2 mm
86.25-86.95	Fractures		irregular highly fractured section and crushed rock
87.3-87.31	Vein	90	5 mm calcite vein

D10-5 Mineralization

From:	To:	Mineralization:
9.6	9.85	irregular brecciated quartz clot with up to 2% pyrite
14.7	14.85	irregular brecciated quartz clot with up to 2% pyrite at skarn/diorite contact
17.7	17.85	irregular offset sulphide stringers < 2 mm, and < 4 mm blebs up to 5%
19	19.25	irregular offset quartz with up to 15% arsenopyrite, pyrite at skarn/diorite contact
20	20.1	irregular offset quartz with up to 10% pyrite, pyrrhotite, arsenopyrite, galena
21.4	21.41	offset 10 mm quartz vein with up to 10% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
21.55	21.56	offset 8 mm quartz vein with up to 10% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
21.6	21.95	brecciated quartz/diorite section with up to 20% pyrite, pyrrhotite
23.4	23.41	10 mm quartz vein with up to 15% pyrite, arsenopyrite, pyrrhotite and associated alteration halo
24.55	24.6	50 mm quartz vein with up to 10% pyrite, pyrrhotite and associated alteration halo
23.9	24.1	brecciated quartz/diorite section with up to 10% pyrite, pyrrhotite
25.7	26.1	carbonate rich alteration halo with small quartz clots and sulphides up to 10% as stringers/blebs
26.4	26.44	40 mm irregular quartz vein with pyrite, pyrrhotite, arsenopyrite up to 15%
27.2	27.45	irregular quartz clots cross cut by 3 mm calcite stringers with sulphides up to 5%
28	28.2	irregular quartz stringers up to 10 mm with up to 15% pyrite, pyrrhotite
28.45	28.48	30 mm quartz vein with up to 20% pyrite, pyrrhotite, arsenopyrite and associated alteration halo
28.75	28.9	irregular quartz clots & stringers up to 12 mm with up to 20% pyrite, pyrrhotite, arsenopyrite and alteration halo
30.14	30.16	20 mm quartz vein with up to 20% pyrite, pyrrhotite and associated alteration halo
31.1	31.6	irregular brecciated quartz stringers up to 14 mm with up to 20% pyrite, pyrrhotite with alteration halo
33.7	33.71	5 mm quartz vein with up to 15% pyrite, pyrrhotite and associated alteration halo
33.8	33.9	100 mm brecciated vein with up to 20% pyrite, pyrrhotite and associated alteration halo
34.3	34.4	two parallel 2-3 mm quartz stringers with up to 10% pyrite, pyrrhotite
35.9	35.92	20 mm quartz vein with up to 10% pyrite, pyrrhotite
37.1	40.3	sulphides up to 30% as < 1 mm stringers, blebs, and in quartz clots & stringers
41.8	41.81	5 mm quartz vein with up to 15% pyrite, pyrrhotite and associated alteration halo
42.6	42.61	7 mm irregular quartz vein up to 15% pyrite, pyrrhotite, arsenopyrite, and associated alteration halo
42.9	43.7	sulphides up to 25% as < 1 mm stringers, blebs, and in quartz clots & stringers - associated carbonate-rich alteration halo
52.4	52.8	up to 10% sulphides as < 3 mm stringers, blebs, and finely disseminated in black shale/chloritized skarn

DIAMOND DRILL LOG

010-0

	SAMPLE DATA					CHE					
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	(mqq) dS	COMMENTS
4.30	5.00	36206		0.012	3.5	45	12	81	1685	13	
9.35	9.85	36207	yes	0.162	3.5	44	12	80	1635	11	
12.50	13.00	36208	yes	0.003	1.4	35	4	84	33	<5	
14.35	14.85	36209	yes	0.187	0.9	40	<2	359	483	<5	
15.65	16.15	36210	yes	0.51	2.2	49	2	64	2590	6	
17.60	18.10	36211	yes	0.193	1.4	57	8	67	899	<5	
18.90	19.40	36212	yes	0.026	0.9	25	<2	56	1510	6	
19.70	20.20	36213	yes	0.153	1.4	34	4	85	2540	<5	
21.35	21.95	36214	yes	0.078	1.5	45	5	74	403	15	
23.40	24.10	36215	yes	0.231	1.9	38	6	88	1225	<5	
25.70	26.45	36216	yes	0.159	1.7	52	4	102	666	5	
27.10	28.00	36217	yes	0.002	1.2	28	3	93	13	<5	
28.00	28.50	36218	yes	1.535	2.2	30	6	90	5940	15	
28.50	29.40	36219	yes	0.591	2	38	6	99	1655	8	
29.40	30.00	36220	yes	0.019	1.2	40	<2	104	62	<5	
30.00	30.50	36221	yes	0.062	1.7	41	<2	92	433	<5	
30.50	31.10	36222	yes	0.006	1.2	38	4	104	46	<5	
31.10	31.60	36223	yes	0.319	1.9	40	9	115	3160	12	
33.25	34.00	36224	yes	0.28	4.9	46	218	318	1575	14	
34.00	34.50	36225	yes	0.026	1.5	63	4	104	22	<5	
37.10	38.00	36226	yes	0.682	7.9	51	52	52	4450	76	
38.00	39.00	36227	yes	0.663	3.1	44	23	34	6750	24	
39.00	40.30	36228	yes	5.05	11.2	34	280	142	>10000	112	
40.30	41.90	36229	yes	0.34	2	52	12	115	476	30	
41.90	42.90	36230	yes	0.245	2.1	64	6	81	917	19	
42.90	43.70	36231	yes	3.55	5.9	29	52	44	6760	35	
43.70	44.60	36232	yes	0.261	2.2	37	48	159	1015	12	
49.55	50.05	36233		0.008	1.5	48	<2	128	22	<5	
52.30	52.80	36234	yes	0.019	1.8	62	2	191	33	<5	
54.80	55.30	36235		0.023	1.5	65	<2	101	14	<5	
58.50	59.00	36236		0.011	0.6	73	2	96	205	<5	
63.20	63.80	36237		0.007	1.3	64	3	97	7	<5	
67.00	67.50	36238		0.002	1.8	33	<2	136	10	<5	Strongly bleached section
72.00	72.50	36239		0.006	1.1	37	<2	99	10	<5	
77.50	78.00	36240		0.013	1.8	65	3	95	40	<5	
79.00	79.50	36241		0.011	1.4	60	2	129	15	<5	
85.00	85.50	36242		0.009	1.7	44	6	230	17	12	
90.00	90.50	36243		0.006	0.6	50	<2	205	23	<5	

D10-5 Acid Test

Depth	Dip
4.3	-64
90.53	-64

Eastin 399450	STRIP Morthing 5554684.0	LOG RL 1657.0	Azimuth	0-5 _{Dip} -60.0	Depth 90.5
STRIP					
1	Geology	PAT	LABEL DRT SDST SHLE SKN SOIL	DESCI diorite sandst shale skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property Monashee Mountain, British Columbia

Drill Hole: D10-6

Location: Testing 2010 Au in Soil Anomaly UTM Coordinates: 398504E, 5554814N (Garmin GPS, NAD 83, Z11) Date: September 17th to 18th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: 90 Dip: -70

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 78.33 m

D10-6 Major Geology

From:	То:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	3.05	Overburden					Overburden and sub-crop
3.05	78.33	Shale	Black to dark grey	fine	Massive to Banded	Detrital sediments 80, Calcite 20, trace to 2% pyrrhotite & pyrite	Hardness 5-6 Contains minor sandstone and conglomerate units that may represent turbidites (some fining upwards observed) X-cutting pervasive calcite stringers and veins common Occasional quartz stringers or quartz within calcite stringers & veins Varying percentages of carbonate throughout sequence graphite coated fractures common

EOH = 78.33 m

D10-6 Minor Geology

From:	To:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
20.80	21.45	Sandstone	Grey to light grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 5.5 fining upwards is observed Occasional calcite stringers up to 1 mm Grains deformed and preferentially orientated - due to compaction?
36.00	37.00	Sandstone	Grey to light grey	fine to medium	Massive	Detrital sediments 60, Calcite 40, trace pyrrhotite	Hardness 3.5 fining upwards is observed Occasional calcite stringers up to 1 mm Grains deformed and preferentially orientated - due to compaction?
57.20	58.00	Conglomerate	Grey to white	coarse	Massive	Detrital sediments 80, Calcite 20, trace finely disseminated pyrrhotite	Hardness 4 Grains deformed and preferentially orientated - due to compaction? Grains up to 12 mm Occasional calcite stringers up to 14 mm
66.85	67.35	Sandstone	Grey to light grey	fine to medium	Massive	Detrital sediments 70, Calcite 30, trace pyrrhotite	Hardness 3.5 fining upwards is observed Occasional calcite stringers up to 1 mm Grains deformed and preferentially orientated - due to compaction?

EOH = 78.33 m

D10-6 Detailed Structure

At:	Structure:	Angle:	Description:
3.5-3.8	Fractures		irregular highly fractured section and crushed rock - fractures have limonite coating
4.1-4.25	Fractures		irregular highly fractured section and crushed rock
11.1-11.4	Fractures		irregular highly fractured section and crushed rock
14.33-15	Fractures		irregular highly fractured section and crushed rock
17.55	Vein		very deformed 5 mm calcite vein
19.6-20.8	Stringers		dense irregular offset calcite stringers < 1 mm throughout
22.65	Vein	50	10 mm calcite vein
22.85-22.95	Stringers		dense irregular offset calcite stringers < 1 mm with up to 3% pyrrhotite
29	Vein		very deformed 10 mm calcite vein
31.95-32.35	Vugs		some vugs up to 3 mm and up to 2% pyrrhotite
41-41.2	Gouge		200 mm of black clay and crushed black shale
42.3-42.9	Fractures		irregular highly fractured section and crushed rock
43.4-44	Stringers		dense irregular offset calcite stringers < 2 mm throughout
46.6-47.4	Fractures		irregular highly fractured section and crushed rock - fractures have graphite coating
50-50.6	Fractures		irregular highly fractured section and crushed rock - fractures have graphite coating
50.95-51.45	Stringers		dense irregular offset calcite stringers < 1 mm with up to 1% pyrrhotite
56.9-57.05	Fractures		irregular highly fractured section and crushed rock - fractures have graphite coating
57.7-57.85	Veins		irregular offset calcite veins up to 20 mm with quartz and up to 2% pyrrhotite
65.15-65.4	Veins & Clots		irregular offset quartz veins with calcite and up to 2% pyrrhotite
70.25-70.7	Fractures		irregular highly fractured section and crushed rock - fractures have graphite coating
71.15-71.9	Fractures		irregular highly fractured section and crushed rock - fractures have graphite coating
72.1-72.25	Gouge		100 mm and 50 mm black clay and crushed shale sections
78-78.2	Gouge		200 mm of black clay and crushed black shale

D10-6 Mineralization

From:	To:	Mineralization:
65.15	65.4	irregular offset quartz veins with calcite and up to 2% pyrrhotite

DIAMOND DRILL LOG

	SAM	PLE DATA	CHEMICAL DATA								
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	(mqq) sA	(mqq) dS	COMMENTS
4.50	5.00	36244		0.028	1.6	59	2	179	17	6	
8.50	9.00	36245		0.035	2.2	58	<2	158	11	<5	
12.50	13.00	36246		0.011	2.1	49	2	164	12	7	
16.00	16.50	36247		0.005	3.4	23	<2	57	37	<5	
19.80	20.30	36248		0.004	1.3	24	<2	39	17	<5	
22.60	23.10	36249		0.007	0.9	72	3	136	15	7	
28.00	28.50	36250		0.01	1.8	54	6	140	136	5	
31.95	32.45	36251		0.007	1.6	53	2	138	7	9	
37.00	37.50	36252		0.016	1.9	35	2	105	69	<5	
40.90	41.40	36253		0.009	1.7	50	4	139	20	<5	
43.50	44.00	36254		0.038	1.6	48	<2	117	15	<5	
47.00	47.50	36255		0.009	1.3	43	2	135	9	<5	
50.90	51.40	36256		0.015	1.6	44	3	121	18	<5	
57.50	58.00	36257		0.005	1.4	54	2	79	12	<5	
65.00	65.50	36258		0.016	1.6	38	<2	121	15	<5	
72.00	72.50	36259		0.004	1.8	37	<2	105	7	<5	
77.80	78.30	36260		0.004	1.4	28	<2	86	19	5	

D10-6 Acid Test

Depth	Dip
3.05	-70
78.33	-70

Eastir 398504	STRIP ng Northing 4.0 5554814.0	LOG: D1 RL Azimuth 1687.0 90.0	0-6 Dip Depth -70.0 78.3					
STRIP								
1	Geology	PAT LABEL SHLE SOIL	DESCRIPTION shale soil					
2	Au ppm	BAR PLOT						
3	Carbonate	BAR PLOT						
4	Chlorite	BAR PLOT						
F	SOUr	anium (SO IIUM CORP.					
ESO Uranium Corp.								
Donna Gold Project								

Monashee Mountain, BC GPA - November 2010

ESO Uranium Corporation

Donna Gold Property Monashee Mountain, British Columbia

Drill Hole: D10-7

Location: Testing 2010 As in Soil Anomaly UTM Coordinates: 398341E, 5554601N (Garmin GPS, NAD 83, Z11) Date: September 18th to 19th, 2010 Drill Contractor: Hardcore Drilling Diamond Drill Rig: CS-1000 Core Size: NQ Azimuth: Vertical Hole Dip: -90

Orientation Instrument: Acid Test Logged By: Garrett Ainsworth

* all units are in metres

EOH = 108.81 m
D10-7 Major Geology

From:	То:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
0.00	1.20	Overburden					Overburden and sub-crop
1.20	8.30	Diorite	Black to dark grey to olive green to white	coarse	Granite	Plagioclase 20, Hornblende 20, Pyroxene 20, Chlorite 14, Biotite 13, Quartz 5, Sericite 5, Magnetite 2, Calcite 1 trace to 10% sulphides	Hardness 3.5-4 Sulphides consist of pyrite & pyrrhotite Quartz and calcite veins & stringers associated with sulphide alteration halos Moderately chloritized & weakly bleached in sections Occasional small skarn sections Occasional sections grade to more felsic granite Hornblende laths are up to 10 mm by 3 mm
8.30	81.90	Diorite	Grey to dark grey to olive green to white	medium	Granite	Plagioclase 30, Hornblende 20, Biotite 20, Pyroxene 15, Quartz 5, Chlorite 5, Magnetite 1, Calcite 1, trace to 30% sulphides	Hardness 4-4.5 Sulphides consist of pyrite & pyrrhotite Quartz & calcite stringers & veins associated with sulphide alteration halos Weakly chloritized in sections Occasional small skarn sections Occasional sections grade to more felsic granite Occasional bands of coarse grained diorite observed
81.90	86.55	Skarn	Cream to white to grey to dark grey to olive green	fine to medium	Massive & Granite	Calcite 20, Calc-Silicates 80, trace to 3% sulphides	Hardness 5-6 Sulphides consist of pyrite & pyrrhotite Quartz veins up to 150 mm with up to 5% sulphides Moderately chloritized and bleached in sections This unit consists of exoskarn & endoskarn
86.55	89.25	Diorite	Grey to dark grey to olive green to white	medium	Granite	Plagioclase 30, Hornblende 20, Biotite 20, Pyroxene 15, Quartz 5, Chlorite 5, Magnetite 1, Calcite 1, trace sulphides	Hardness 4-5 Sulphides consist of pyrite & pyrrhotite Quartz & calcite stringers & veins associated with sulphide alteration halos Weakly chloritized in sections Occasional sections grade to more felsic granite
89.25	93.30	Skarn	Cream to white to grey to dark grey to olive green	fine to medium	Massive & Granite	Calcite 20, Calc-Silicates 80, trace to 3% sulphides	Hardness 5-6 Sulphides consist of pyrite & pyrrhotite Quartz veins up to 150 mm with up to 5% sulphides Moderately chloritized and bleached in sections This unit consists of exoskarn & endoskarn
93.30	102.60	Diorite	Grey to dark grey to olive green to white	medium	Granite	Plagioclase 30, Hornblende 20, Biotite 20, Pyroxene 15, Quartz 5, Chlorite 5, Magnetite 1, Calcite 1, trace sulphides	Hardness 4-5 Sulphides consist of pyrite & pyrrhotite Quartz & calcite stringers & veins associated with sulphide alteration halos Weakly chloritized in sections Occasional sections grade to more felsic granite (granodiorite in composition)
102.60	108.81	Granodiorite	White to black to grey	medium	Granite	Plagioclase 45, Hornblende 15, Biotite 15, Pyroxene 10, Quartz 10, Calcite 1, Magnetite 1, trace to 3% pyrrhotite	Hardness 5 Quartz & calcite stringers & veins associated with sulphide alteration halos No clear contact between diorite & granodiorite as it is gradual

EOH = 108.81 m

D10-7 Minor Geology

From:	To:	Rock Unit:	Colour:	Grain Size:	Texture:	Composition:	Description:
9.15	10.05	Skarn	Olive green to white	fine	Massive to Banded	Calcite 10, Calc-Silicates 90, trace pyrite, pyrrhotite	Hardness 4.5 Possible skarned country rock xenolith?
46.80	48.00	Skarn	Cream to white to olive green to grey to purple	fine	Banded	Calcite 25, Calc-Silicates 70, trace to 5% sulphides	Hardness 4 Intermingles with carbonate altered diorite (endoskarn) Possible skarned country rock xenolith?
63.03	63.40	Skarn	Olive green to cream to grey	fine	Massive	Calcite 10, Calc-Silicates 90, trace to 3% sulphides	Hardness 6.5 Possible skarned country rock xenolith?
92.30	92.75	Granodiorite	White to black to olive green	medium	Granite	Plagioclase 45, Hornblende 20, Pyroxene 15, Quartz 10, Biotite 10, trace pyrrhotite, magnetite?	Hardness 4.5
97.25	97.85	Granodiorite	White to black to olive green	medium	Granite	Plagioclase 45, Hornblende 20, Pyroxene 15, Quartz 10, Biotite 10, trace pyrrhotite, magnetite?	Hardness 4.5

EOH = 108.81 m

D10-7 Detailed Structure

At:	Structure:	Angle:	Description:
2.05-2.3	Fractures		irregular highly fractured section and crushed rock - fractures have limonite coating
2-4.4	Fractures	0	several limonite coated fractures that are 0 degrees to the core angle
7.1	Vein	50	25 mm quartz vein with calcite and up to 15% pyrite, pyrrhotite
8.15	Vein	45	6 mm quartz vein with up to 10% pyrite, pyrrhotite
17.45	Vein	40	15 mm brecciated quartz vein - no sulphides
20.5	Vein	45	5 mm quartz vein with up to 10% pyrite, pyrrhotite
25.7	Vein	60	5 mm quartz vein with alteration halo - no sulphides
27.6	Vein	65	3 mm quartz vein with up to 15% pyrite, pyrrhotite and alteration halo
30.9	Vein	45	65 mm quartz vein with up to 20% pyrite, pyrrhotite, arsenopyrite and alteration halo
34.85	Vein	20	10 mm quartz vein with up to 10% pyrite, pyrrhotite and alteration halo
35.2-36.75	Gouge		1.05 m of brecciated skarned diorite and quartz with abundant gouge and sulphides up to 20%
39.2	Stringers	60	parallel 3 mm quartz stringers with up to 10% pyrite, pyrrhotite with associated alteration halo
40.1-40.2	Clot		100 mm quartz clot with no obvious sulphides
45.35	Vein	50	15 mm quartz vein with up to 5% pyrite, pyrrhotite
45.85	Stringer		irregular offset quartz stringer up to 20 mm with epidote/chlorite at margins and up to 5% pyrrhotite
48.45	Vein		irregular offset quartz vein up to 100 mm with up to 60% pyrrhotite
55.6	Vein	65	5 mm quartz vein with up to 5% pyrite, pyrrhotite and associated alteration halo
55.9	Clot		95 mm quartz clot with trace sulphides
56.1	Veins	65	10 mm calcite vein & 7 mm quartz vein parallel to each other
57.8	Vein	50	20 mm quartz vein with no sulphides
58.2	Vein	80	5 mm quartz vein with calcite and up to 5% pyrite, pyrrhotite
58.6	Vein	50	13 mm quartz vein with brecciated country rock? Up to 5% pyrite, pyrrhotite
60.85	Vein	50	6 mm calcite vein with quartz and up to 3% pyrite, pyrrhotite
61.4	Vein	55	100 mm quartz vein with up to 10% pyrite, pyrrhotite
61.95	Vein	45	15 mm quartz vein with up to 5% pyrite, pyrrhotite and associated alteration halo
63.3-63.7	Fractures		irregular highly fractured section and crushed rock
69.5	Vein	50	16 mm quartz and biotite vein - granodiorite?
71.4	Vein	50	4 mm quartz vein with up to 20% pyrrhotite, pyrite
79.25	Xenolith		30 mm average diameter country rock xenolith - black shale little altered
80.65-80.75	Banding	80	100 mm band of granodiorite
81.8	Vein	90	100 mm quartz vein with up to 5% pyrite, pyrrhotite and alteration halo
85.6	Veins	50	two parallel 10 mm calcite veins
89.45	Vein	50	8 mm quartz vein with calcite and up to 5% pyrite, pyrrhotite and large alteration halo
90.5	Vein	45	100 mm quartz vein with calcite and trace sulphides and alteration halo
90.8	Vein	45	100 mm quartz vein with calcite and trace sulphides and alteration halo
92.95	Vein	45	irregular 150 mm quartz vein with calcite and trace sulphides
95.8	Clot		100 mm quartz vein with calcite and up to 5% pyrite, pyrrohotite and associated alteration halo
94.6	Vein	25	4 mm calcite vein
101.5	Vein	60	20 mm calcite vein with brecciated country rock
102.15	Vein	60	10 mm calcite vein
107.6	Vein	45	10 mm quartz vein with up to 10% pyrite, pyrrhotite and alteration halo

D10-7 Mineralization

From:	To:	Mineralization:
7.1	7.15	25 mm quartz vein with calcite and up to 15% pyrite, pyrrhotite
8.15	8.2	6 mm quartz vein with up to 10% pyrite, pyrrhotite
20.5	20.55	5 mm quartz vein with up to 10% pyrite, pyrrhotite
30.9	31.05	65 mm quartz vein with up to 20% pyrite, pyrrhotite, arsenopyrite and alteration halo
34.8	34.9	10 mm quartz vein with up to 10% pyrite, pyrrhotite and alteration halo
35.2	36.75	1.05 m of brecciated skarned diorite and quartz with abundant gouge and sulphides up to 20%
39.2	39.3	parallel 3 mm quartz stringers with up to 10% pyrite, pyrrhotite with associated alteration halo
45.35	45.4	15 mm quartz vein with up to 5% pyrite, pyrrhotite
45.85	45.9	irregular offset quartz stringer up to 20 mm with epidote/chlorite at margins and up to 5% pyrrhotite
46.7	48	exoskarn and endoskarn intermingling with up to 10% pyrite, pyrrhotite
48.45	48.55	irregular offset quartz vein up to 100 mm with up to 60% pyrrhotite
55.45	55.55	5 mm quartz vein with up to 5% pyrite, pyrrhotite and associated alteration halo
58.2	58.25	5 mm quartz vein with calcite and up to 5% pyrite, pyrrhotite
58.6	58.65	13 mm quartz vein with brecciated country rock? Up to 5% pyrite, pyrrhotite
60.85	60.9	6 mm calcite vein with quartz and up to 3% pyrite, pyrrhotite
61.4	61.5	100 mm quartz vein with up to 10% pyrite, pyrrhotite
71.4	71.45	4 mm quartz vein with up to 20% pyrrhotite, pyrite
81.8	81.9	100 mm quartz vein with up to 5% pyrite, pyrrhotite and alteration halo
95.8	95.9	100 mm quartz vein with calcite and up to 5% pyrite, pyrrohotite and associated alteration halo
107.6	107.65	10 mm quartz vein with up to 10% pyrite, pyrrhotite and alteration halo

DIAMOND DRILL LOG

SAMPLE DATA						CHE					
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	(mqq) gA	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	Sb (ppm)	COMMENTS
2.00	2.50	36261		0.004	1.1	89	<2	108	30	<5	
5.50	7.00	36262	ves	0.074	1.2	120	<2	139	141	<5	
7.00	8.00	36263		0.008	1	181	<2	133	<5	<5	
8.00	9.00	36264	yes	0.007	1.3	163	<2	142	6	<5	
9.00	10.10	36265		0.008	1	57	<2	111	10	5	
10.10	10.60	36266		0.004	1.4	71	<2	106	<5	<5	
13.00	13.60	36267		0.068	1.5	103	13	142	492	5	
16.00	16.50	36268		0.006	0.9	98	<2	142	7	<5	
20.40	21.00	36269	yes	0.009	1.1	106	<2	128	7	<5	
21.00	21.70	36270		0.007	1.3	86	<2	132	<5	<5	
23.70	24.20	36271		0.122	1.1	96	7	113	892	<5	
27.50	28.00	36272		0.004	0.5	58	7	156	<5	<5	
30.75	31.25	36273	yes	1.89	1.7	264	13	155	>10000	14	
33.25	33.75	36274		0.018	<0.5	114	6	121	20	<5	
34.70	35.30	36275	yes	0.012	1	67	13	105	4310	7	
35.30	35.80	36276	yes	0.146	0.9	88	6	20	732	16	
35.80	36.80	36277	yes	0.21	0.8	139	6	48	174	5	
39.00	39.50	36278	yes	0.016	<0.5	107	7	134	22	<5	
40.75	41.25	36279		0.003	0.5	95	6	111	17	<5	
43.00	43.50	36280		0.003	<0.5	65	7	140	8	<5	
45.30	45.80	36281	yes	0.006	<0.5	89	8	102	9	<5	
46.60	47.10	36282	yes	0.029	0.6	110	4	86	32	<5	
47.10	47.60	36283	yes	0.02	0.8	90	5	115	25	<5	
47.60	48.10	36284	yes	0.051	0.6	77	10	65	477	7	
48.10	48.65	36285	yes	0.158	0.5	120	9	89	1905	<5	
52.00	52.50	36286		0.016	<0.5	69	7	140	18	<5	
54.30	55.00	36287		0.068	0.5	79	10	167	463	<5	
55.00	56.00	36288	yes	0.015	0.5	69	6	153	481	<5	
58.00	58.50	36289	yes	0.023	0.8	129	10	103	60	<5	
59.15	59.65	36290		0.008	0.8	128	5	103	40	<5	
60.70	61.20	36291	yes	0.006	0.5	69	6	142	13	<5	
61.20	62.00	36292	yes	0.099	0.7	70	18	143	2990	<5	
63.05	63.55	36293		0.006	0.8	58	6	75	24	6	
66.00	66.50	36294		<0.001	0.7	97	7	130	<5	<5	
68.00	68.50	36295		0.001	< 0.5	61	5	125	7	<5	
71.40	71.90	36296	yes	0.002	0.7	44	7	103	175	<5	
73.15	74.15	36297		0.003	0.9	128	6	143	<5	<5	
75.30	76.00	36298		0.009	0.6	92	6	108	9	<5	
79.85	80.35	36299		0.003	0.6	117	9	132	8	<5	
81.10	82.00	36300	yes	0.075	0.6	118	6	121	2200	6	
82.00	83.00	36301		0.574	0.8	112	5	124	1625	<5	
84.00	84.50	36302		0.003	0.5	69	3	146	14	<5	
85.50	86.50	36303		0.006	0.7	135	6	92	24	<5	
89.25	89.75	36304		0.035	<0.5	121	7	99	8810	8	l

DIAMOND DRILL LOG

SAMPLE DATA						CHE					
FROM	то	SAMPLE	Sulphides > 5%	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nZ	As (ppm)	Sb (ppm)	COMMENTS
90.60	91.10	36305		0.11	0.8	54	3	77	2340	<5	
91.70	92.20	36306		0.006	0.6	121	7	267	18	<5	
93.20	93.70	36307		0.301	0.6	45	7	98	74	<5	
95.65	96.15	36308	yes	0.402	1	79	10	110	>10000	11	
99.50	100.00	36309		0.013	0.6	52	2	134	63	<5	
100.50	101.00	36310		0.005	1.2	56	<2	131	19	5	
102.50	103.00	36311		0.009	1.4	33	<2	137	172	<5	
107.30	107.80	36312	yes	0.007	1.2	51	<2	119	15	<5	
108.30	108.80	36313		0.002	1.2	43	<2	121	12	5	

D10-7 Acid Test

Depth	Dip
1.2	88
108.8	90

Eastin 398341	STRIP s Northing 1.0 5554601.0	LOG RL 1676.0	Azimuth	0-7 ^{Dip} -90.0	Depth 108.8
STRIP					
1	Geology	PAT	LABEL DRT GRD SKN SOIL	DESCF diorite granod skarn soil	RIPTION
2	Au_ppm	BAR P	LOT		
3	Carbonate	BAR P	LOT		
4	Chlorite	BAR P	LOT		

ESO Uranium Corp. Donna Gold Project Monashee Mountain, BC GPA - November 2010

APPENDIX E

ALS Chemex Analytical Reports

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 1 Finalized Date: 30- SEP- 2010 Account: ESOURA

CERTIFICATE VA10134524

Project: Monashee

P.O. No.:

This report is for 200 Rock samples submitted to our lab in Vancouver, BC, Canada on 20- SEP- 2010.

The following have access to data associated with this certificate:

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI- 21	Received Sample Weight						
CRU- QC	Crushing QC Test						
PUL-QC	Pulverizing QC Test						
LOG- 22	Sample login - Rcd w/o BarCode						
CRU- 31	Fine crushing - 70% < 2mm						
SPL- 2 I	Split sample - riffle splitter						
PUL- 31	Pulverize split to 85% < 75 um						

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES
Au- GRA21	Au 30g FA- GRAV finish	WST- SIM

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 6 (A) Finalized Date: 30- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI- 23 Recvd Wt. kg 0.02	Au- ICP2} Au ppm 0.001	Au- GRA21 Au ppm 0.05	
36000 36001 36002 36003 36004		Not Recvd 4.26 4.38 4.30 3.26	0.004 0.004 0.011 0.004		
36005 36006 36007 36008 36009		1.26 4,78 4.88 4.44 4,52	0.225 0.007 0.012 0.355 0.004		
36010 36011 36012 36013 36014		2.58 4.90 2.50 2.84 2.78	0.016 0.108 0.011 0.004 0.019		
36015 36016 36017 36018 36019		3.46 3.06 4.98 4.56 4.52	0.006 0.121 0.273 1.330 0.143		
36020 36021 36022 36023 36024		4.64 2.26 4.68 2.74 4.12	0.028 1.300 0.100 0.518 0.450		
36025 36026 36027 36028 36029		3.00 3.06 1.26 1.84 3.14	0.230 0.801 0.113 0.337 0.840		· · · · · · · · · · · · · · · · · · ·
36030 36031 36032 36033 36034		1.38 1.42 3.60 2.62 2.50	0.319 1.300 0.045 0.104 0.005		
36035 36036 36037 36038 36039		3.14 2.12 2.66 1.92 1.72	0.021 0,006 0.130 0.012 0.007		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 3 - A Total # Pages: 6 (A) Finalized Date: 30- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP2 1 Au ppm 0.003	Au- GRA21 Au ppm 0.05	
36040		3.64	0.013		
36041		3.56	0.013		
36042		3.06	0.004		
36043		2.52	0.007		
30044		2.74	0.005		
36045		2,88	0.025		
36046		2.50	0.017		
36047		2.48	0.021		
36048		1.32	0.009		
56049		1,24	0.005		
36050		2.56	0.004		
36051		1.10	0.009		
36052		2.52	0.013		
36033		2.64	0.004		
56034		3.04	0.004		
36055		2.34	0.008		
36056		1.42	0.006		
36057		2,36	0.006		
36038		2.20	0.003		
30039		2.46	0.024		
36060		2.78	0.003		
36063		2.34	0.005		
36062		2.76	0.003		
36064		2.40	0.007		
50004		2.42	0.000		
36065		3.16	0.004		
30066		2,82	0.005		
30007		2.48	0.003		
36069		2.52	0.003		
50003		1.20	0.007		
36070		2.36	0.007		
36071		2.64	0.003		
300/2		2.98	0.005		
26074		1.52	0,008		
30074		1.52	0.000		
36075		2.30	0.004		
36076		1.88	0.005		
36077		2.02	0.003		
36070		2.74	0.003		
30079		3.72	0.009		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 4 - A Total # Pages: 6 (A) Finalized Date: 30- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	Au- GRA2 I Au ppm 0.05			
36080		1.14	0.005				
36081		3.56	0.004				
36082		3.74	0.003				
36083		4.44	0.006				
36084		4,14	0.003		 		
36085		2,20	0.290				
36086		2,62	0.023				
36087		6.32	0,006				
36088		5.44	0.003				
30089	·	4.78	0.004			 	
36090		1,48	1.020				
36091		2.34	0.118				
36092		2.76	0.257				
36093		2.84	0.006				
50094		1.46	0.357		 	 	
36095		2.98	0.009				
36096		5.42	0.013				
36097		5.12	0.145				
36098		1.38	0.037				
36099		4.10	0.006			 	
36100		1,36	1.145				
36101		4.82	0.011				
36102		5,06	0.006				
36103		1.38	0,265				
36104		2.78	0.041		 	 	
36105		2.52	0.004				
36106		1.64	0.003				
36107		3.06	0.370				
36108		5.74	0.021				
30109		3.20	0.060				
36110		3.46	0.070				
36111		1.46	0.868				
36112		5.50	0.009				
30113		3.00	0.174				
50314		1.72	0,500		 		
36115		4.62	0.038				
36116		1.58	0.064				
36117		4.18	0.011				
36118		5.68	0.014				
30119		5,60	0,174			 	

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 5 - A Total # Pages: 6 (A) Finalized Date: 30- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Aa- ICP21 Au ppm 0.003	Au- GRA21 Au ppm 0.05	
36120 36121 36122 36123 36123 36124		1.30 1.50 4.30 2.68 1.18	0.049 0.136 0.382 0.011 0.015		
36125 36126 36127 36128 36129		1.04 2.62 1.46 1.16 1.62	0.009 0.198 0.004 0.012 0.155		
36130 36131 36132 36133 36134		1.68 1.98 2.38 2.60 2.52	0.010 0.325 0.824 0.189 0.768		
36135 36136 36137 36138 36139		1.26 1.50 1.56 1.50 1.20	0.564 0.097 0.012 0.201 0.455		
36140 36141 36142 36143 36344		1.16 1.48 1.00 1.44 1.32	0.006 0.265 0.026 0.014 0.254		
36145 36146 36147 36148 36149		2.44 2.58 1.70 1.00 2.54	0.061 0.314 0.017 0.038 0.023		
36150 36151 36152 36153 36154	<u> </u>	1.76 1.30 1.22 1.46 1.72	0.184 0.221 0.015 0.008 0.005		
36155 36156 36157 36158 36159	******	1.18 1.50 2.76 1.24 3.54	0.009 0.019 0.018 0.048 0.137		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 6 - A Total # Pages: 6 (A) Finalized Date: 30- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Aa- ICP21 Au ppm 0.001	Au- GRA21 Au ppm 0.05	
36160 36161		2.80 2.36	0,291	·	
36162		1.22	>10.0	19.35	
36163		4.52	0,058		
36164		3.80	0.018		
36165		2.16	0.162		
36166		2.80	0.012		
36167		1.44	0.125		
36168		1.16	0.167		
36169		1.14	0,013		
36170		4.24	0.129		
36171		3.80	0.007		
36172		5.70	0.106		
36173		1.66	0.330		
36175		1.52	0.425		
36176		1.72	1,230		
36177		2.94	0.033		
36178		3,48	0.009		
36179		3.50	0.024		
36180		3.20	0.037		
36181		2.06	0.014		
36182		3.08	0.082		
36183		2.28	0.199		
36184		2.82	0.123		
36185		2.16	0.191		
36186		2.46	0.659		
30187		1.34	0.014		
36189		4 18	0.003		
26100		1.70	0.013		
36191		1.75	0.015		
36192		1.24	0.016		
36193		1.46	0.113		
36194		1.42	0.039		
36195		1.40	0.066		
36196		1.92	3.57		
36197		2.92	0.173		
36198		1.60	0.172		
36199		1.48	0,021		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 1 Finalized Date: 27- SEP- 2010 Account: ESOURA

CERTIFICATE VA10128121

_	Project: Monashee								
	P.O. No.:								
	This report is for 117 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 20- SEP- 2010.								
	The following have access to data associated with this certificate:								

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI- 21	Received Sample Weight							
CRU- QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
LOG- 22	Sample login - Rcd w/o BarCode							
CRU- 31	Fine crushing - 70% <2mm							
SPL- 21	Split sample - riffle splitter							
PUL- 31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au~ ICP21	Au 30g FA ICP- AES Finish	ICP- AES

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 2 - A Total # Pages: 4 (A) Finalized Date: 27- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP2 1 Au ppm 0.001	
36200 36201 36202 36203 36204		2.44 2.02 1.36 1.22 1.42	0.008 0.008 0.006 0.009 0.010	
36205 36205 36207 36207 36208 36208		1.14 2.34 1.24 1.38 1.48	0.002 0.012 0.162 0.003 0.187	
36210 36211 36212 36213 36213 36214		1.34 1.48 1.20 1.58 1.74	0.510 0.193 0.026 0.153 0.078	
36215 36216 36217 36218 36219		2.74 2.30 2.48 1.34 2.52	0.231 0.159 0.002 1.535 0.591	
36220 36221 36222 36223 36223 36224		1.98 1.14 1.94 1.36 2.30	0.019 0.062 0.006 0.319 0.280	
36225 36226 36227 36228 36229		1.50 2.58 2.42 4.24 4.34	0.026 0.682 0.663 5.05 0.340	
36230 36231 36232 36233 36233 36234		2.56 2.08 3.06 1.70 1.40	0.245 3.55 0.261 0.008 0.019	
36235 36236 36237 36238 36239		1.16 1.54 1.60 1.42 1.52	0.023 0.011 0.007 0.002 0.006	

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 3 - A Total # Pages: 4 (A) Finalized Date: 27- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.003	
36240 36241 36242		1.42 1.50 1.32	0.013 0.011 0.009	
36243 36244		1.28 1.14	0.006 0.028	
36245 36246 36247 36248 36249	******	1.62 1.30 1.22 1.52 1.62	0.035 0.011 0.005 0.004 0.007	
36250 36251 36252 36253 36254		1.32 1.36 1.42 0.84 1.14	0.010 0.007 0.016 0.009 0.038	
36255 36256 36257 36258 36259		1.40 1.42 1.46 1.50 1.06	0.009 0.015 0.005 0.016 0.004	
36260 36261 36262 36263 36263 36264		1.20 1.28 4.68 3.66 2.66	0.004 0.004 0.074 0.008 0.007	
36265 36266 36267 36268 36269		3.10 1.62 1.60 1.48 2.02	0.008 0.004 0.068 0.006 0.009	
36270 36271 36272 36273 36274		2.10 1.52 1.66 1.06 1.48	0.007 0.122 0.004 1.890 0.018	
36275 36276 36277 36278 36279		1.56 1.50 2.62 1.56 1.50	0.012 0.146 0.210 0.016 0.003	

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 4 - A Total # Pages: 4 (A) Finalized Date: 27- SEP- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP2 I Au ppm 0.001	
36280 36281 36282 36283 36284		1.56 1.14 1.72 1.84 1.42	0.003 0.006 0.029 0.020 0.051	
36285 36286 36287 36287 36288 36289		1.40 1.60 2.44 3.08 1.38	0.158 0.016 0.068 0.015 0.023	
36290 36291 36292 36293 36293 36294		1.58 1.28 2.46 1.06 1.46	0.008 0.006 0.099 0.006 <0.001	
36295 36296 36297 36298 36298 36299		1.74 1.24 2.64 2.04 1.44	0.001 0.002 0.003 0.009 0.003	
36300 36301 36302 36303 36304		2.56 2.62 1.56 3.46 1.20	0.075 0.574 0.003 0.006 0.035	
36305 36306 36307 36308 36309		1.32 1.82 1.60 1.26 1.56	0.110 0.006 0.301 0.402 0.013	
36310 36311 36312 36313 36314		1,96 1.80 1.92 1.30 0.98	0,005 0.009 0.007 0.002 0.017	
36315 36316		0.82 1.46	0,007 0.013	

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Ag- 0G62

ME- OG62

Page: 1 Finalized Date: 25- OCT- 2010 Account: ESOURA

VARIABLE

ICP-AES

CERTIFICATE VA10151301

Project: Monashee

P.O. No.:

This report is for 199 Rock samples submitted to our lab in Vancouver, BC, Canada on 14- OCT- 2010.

The following have access to data associated with this certificate:

GARRETT AINSWORTH

	SAMPLE PREPARATION	l
ALS CODE	DESCRIPTION	
FND- 02	Find Sample for Addn Analysis	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- ICP61	33 element four acid ICP- AES	ICP- AES

Ore Grade Ag - Four Acid

Ore Grade Elements - Four Acid

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-1CP61 Ag ppm 0.5	ME- 1CP63 Al % 0.01	ME-ICP61 As ppm S	ME-ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 Bí ppm 2	ME-1CP61 Ca % 0.03	ME-ICP6 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME- ICP63 Cr ppm 1	ME- ICP63 Cu ppm 1	ME- ICP61 Fe % 0.03	ME- ICP63 Ga ppm 10	ME-1CP63 K % 0.01	ME- ICP61 La ppm 10
36001		1.7	6.20	11	520	0.5	<2	13,7	0.6	13	141	34	3.00	10	0.76	20
36002		1.0	5.71	20	700	0.6	<2	13.5	0.5	10	91	36	3.02	10	0,96	20
36003		4.3	7.04	188	730	0.6	<2	11.15	0.9	14	98	96	3.93	10	1.28	20
36004		1.7	5.87	11	770	0.7	<2	12.80	<0.5	10	120	40	3.41	10	1.11	20
36005		20.8	6.27	485	1680	0,8	<2	4.12	1.6	10	30	181	3.06	10	4.92	30
36006		2.0	6.21	42	1130	0.8	<2	10.65	<0.5	11	99	61	3.37	10	1.53	20
36007		1.4	6.02	72	790	0.7	<2	11.60	0.6	12	109	37	3.11	10	1.40	20
36008		48.0	5.39	99	910	0.6	<2	12,40	0,6	10	99	78	2.67	10	1.43	20
36009		0.7	6.87	6	1130	0.8	<2	8.96	<0.5	13	116	67	3.38	10	1.75	20
36010		4.6	6.04	46	940	U.7	<2	9,30	1.6	11	302	52	3.13	10	1.79	20
36011		4.3	6.36	508	930	0.7	<2	9.50	1.6	14	121	53	3.65	10	1.70	20
36012		2.2	6.40	78	1110	0.7	<2	9.26	<0.5	12	101	47	3.69	10	1.50	20
36013		1.5	6.02	8	860	0.6	<2	11.00	<0.5	12	86	58	3.15	10	1.42	20
36014		1.9	5.70	80	680	0.5	<2	14.7	<0.5	11	117	40	2.70	10	1.02	20
36015		7.6	6.22	47	1030	0.6	<2	8.65	<0.5	13	97	46	3,18	10	7.43	20
36016		1.3	6.15	1080	1190	0.8	<2	8.86	0.6	11	86	41	2.85	10	1.88	20
36017		2.4	7.18	2490	1460	1.2	<2	6,96	<0.5	14	40	74	3.57	10	3.69	30
36018		3.4	5.90	>10000	720	1.1	<2	6.21	<0.5	15	34	23	5.53	10	2.28	30
36019		1.2	7,30	622	720	1.2	<2	6.26	<0.5	21	46	37	6.75	20	2.15	30
36020		1.3	4.97	58	510	1.0	<2	10.70	<0.5	14	30	56	5,43	10	1.36	30
36021		1.8	7.11	5250	640	1.2	<2	8.67	0.6	19	49	40	5.62	20	1.72	30
36022		2.5	7.37	542	680	1.3	<2	6,04	<0.5	20	40	47	7.09	20	2,18	30
36023		4.1	8.08	995	610	1.3	<2	6.66	1.4	22	38	39	7,18	20	1.78	30
36024		3.4	7,88	1005	940	1.4	<2	5.55	<0.5	23	37	47	7.28	20	2,74	30
36025		4.3	7.07	553	820	1.4	<2	5.87	3.0	23	38	32	7.25	20	2.47	30
36026		3.3	7.00	4960	570	1.3	<2	6.45	0.5	23	37	25	7.82	20	2.42	30
36027		10.0	6.60	564	1000	0.9	<2	9.20	1.2	15	84	54	4.76	10	1.75	30
36028		1.8	6.67	1040	960	1.1	<2	9.84	<0.5	14	84	43	4.66	10	2.00	10
36029		8.5	7.06	3100	580	1.5	2	5.78	0.9	17	38	45	6.26	10	2.57	20
36030		0.0	1.82	541	1090	1.6	2	5.20	×0.5	19		50	6.76	10	3.24	20
36031		5.B	5.68	5550	490	1.2	2	4,89	0.8	12	32	35	5.09	10	2.19	20
36032		0.7	6.93	296	930	1.1	<2	8.24	<0.5	14	103	46	4.97	10	1.99	20
36033		0.8	7.6B	1290	1290	1.0	<2	9.08	<0.5	15	127	52	4.32	10	1.88	10
30034		0.5	7.35	13	1070	0.7	<2	9.93	<0.5	10	106	49	3.90	10	1.50	10
30035		U.5	7.08	33	960	1.0	<2	9.29	×U.5	13	rU'i	49	4.12	۶U	1.01	10
36036		<0.5	6.01	23	770	0.8	<2	9,38	<0.5	12	111	48	3.92	10	0.99	10
36037		1.9	5.32	889	940	0.7	<2	10.85	0.5	11	132	93	4.17	<10	1.33	10
36038		0.8	5.88	50	1020	0,7	<2	11.20	<0.5	8	89	52	3.11	10	7,53	10
36039		1.2	1.02 6 75	24	1180	3.1	<2	7,62	<0.5	10	/5 60	66 57	3.0/	10	∠.3∠ 2.40	20 20
50040		1.0	0.70	221	1200	ŧ.U	~~	0.40	∿ 0,3	10	03	57	3.7 1	10	2.73	20

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - B Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP61 Mg % 0.01	ME-ICP61 Mn ppm S	ME- ICP61 Mo ppm]	ME- ICP61 Na % 0.01	ME·ICP61 Ní ppm }	ME-ICP61 p ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.03	ME- ICP61 Sb ppm S	ME- ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME- ICP61 Ti % 0.01	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10
36001		1.58	674	2	2.26	61	710	<2	0,46	<5	14	1280	<20	0.33	<10	<10
36002		1.55	545	8	1.35	54	710	4	0.38	5	14	1290	<20	0.31	<10	10
36003		1.84	812	5	2.25	55	890	816	1.23	852	15	1300	<20	0.40	<10	<10
36004		1.60	864	33	1.37	59	770	<2	0.45	<5	14	1100	<20	0.32	<10	<10
36005		0.87	364	2	1.27	16	760	2010	1.35	1895	11	897	<20	0.22	<10	<10
36006		1.76	547	30	1.44	59	960	8	0.70	15	16	1110	<20	0,35	<10	10
36007		1.75	649	20	1,43	64	710	<2	0.46	7	15	1020	<20	0.33	<10	<10
36008		1.66	647	28	1.24	52	770	33	0,37	35	13	1140	<20	0.29	<10	<10
36009		1.92	452	17	1.72	70	850	<2	0.70	<5	17	1060	<20	0.39	<10	<10
36010		1.61	658	18	1.35	64	820	7	0.83	20	16	1010	<20	0.35	<10	<10
36011		1.47	527	8	1.31	66	760	35	1.35	26	16	911	<20	0.36	<10	<10
36012		1.96	479	2	1.61	62	850	2	0.92	6	17	1210	<20	0.38	<10	<10
36013		1.84	489	4	1.43	55	720	<2	0.59	<5	15	1410	<20	0.31	<10	<10
36014		1.86	633	2	1.58	62	660	<2	0.42	5	13	1620	<20	0.30	<10	<10
36015		2.63	512	6	1.51	67	730	<2	0.42	7	15	1130	<20	0.35	<10	<10
36016		1.90	618	6	1.47	52	710	3	0,71	7	14	1030	<20	0.31	<10	10
36017		1.22	786	4	1.75	19	1710	10	1.70	7	19	902	<20	0.33	<10	10
36018		1,26	1085	2	1.32	9	2280	18	2.54	30	26	612	<20	0,38	<10	<10
36019		2.59	1150	1	1,40	12	3340	3	0.88	9	38	677	<20	0.57	<10	<10
36020		4.50	1235	4	0.68	14	1790	6	0.90	6	19	752	<20	0.32	<10	<10
36021		1.70	1065	1	1.48	20	2910	6	2.14	21	30	807	<20	0.50	<10	<10
36022		2.64	1195	1	1.56	7	2880	217	1,20	214	31	819	<20	0.51	<10	<10
36023		2.83	1240	1	1.69	10	3130	490	0.66	486	33	1040	<20	0.54	<10	<10
36024		2.90	1175	1	1.82	10	3080	180	1.12	179	35	905	<20	0.56	<10	<10
36025		2.86	1320		1.54	(3120	904	1,03	912	36	799	<20	0,55	<10	<10
36026		2.04	1200	1	1.28	11	2930	14	3.57	19	33	615	<20	0.48	<10	<10
36027		2.81	834	3	1.21	49	1850	1130	0.93	1140	27	1030	<20	0.44	<10	<10
36028		2.55	1345	<1	1.70	64	1/40	20	1.55	18	26	937	<20	0.44	<10	<10
36029		2.34	1055	<1	1.95	10	2580	/3/	1,91	683	29	706	<20	0.42	<10	<10
36030		2.02	1070	<	1.91	6	29.30	18	2.38	13	32	896	<20	U.47	<10	<10
36031		1.24	857	<1	1.41	6	1950	626	3.39	597	21	680	<20	0.30	<10	<10
36032		2.55	957	4	1.77	50	1/20	11	1,09	13	23	991	<20	0.41	<10	<10
36033		2.11	754	6	1.84	78	850	37	1.53	29	19	1120	<20	0.42	<10	10
30034		1.92	632	4	1.78	76	840	1	1.22	5	19	1120	<20	0.43	<10	10
30035		2.48	886	31	1.72	(4	3270		1,05	b	19	1065	<20	0.38	<10	<10
36036		2.18	626	5	1.38	91	910	5	0.65	25	16	924	<20	0.35	<10	<10
36037		2.03	547	30	1.25	109	710	133	1.66	40	14	979	<20	0.30	<10	<10
36038	·	1.85	474	18	1.34	73	720	6	0.33	87	14	1145	<20	0.31	<10	<10
36039		1.68	462	21	1.90	47	1130	6	1.17	38	15	961	<20	0.31	<10	10
36040		3.71	598	4	1.75	57	1080	1	1.28	54	16	952	<20	0.32	<10	<10

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - C Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP6 i V ppm 1	ME- ICP63 W ppm 10	ME-1CP61 Zn ppm 2	Ag- OG62 Ag ppm 1	
36001 36002 36003 36004		116 132 144 205	<10 <10 <10 <10	115 110 104 118	·	
36005 36006 36007 36008 36009		129 211 155 145 194	<10 <10 <10 <10 <10	36 110 101 100 93		
36010 36011 36012 36013		203 168 165 146	<10 <10 <10 <10 <10	111 117 125 98		
36014 36015 36016 36017 36018		110 146 143 168 214	<10 <10 <10 10 10	96 104 95 50 58		
36019 36020 36021 36022		329 189 250 287	<10 <10 10 <10	109 110 80 108		
36023 36024 36025 36026 36027		304 299 300 281 252	<10 <10 <10 10 <10	156 107 108 82 106		
36027 36028 36029 36030		202 265 244 266 184	10 10 <10 <10 10	74 88 87 44		
36032 36033 36034 36035		209 173 189 183	<10 <10 <10 <10	92 76 83 99		
36036 36037 36038 36039 36040		158 143 154 158 156	<10 <10 <10 <10 <10 <10	120 95 118 76 84		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 3 - A Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method	ME-ICP61	ME- ICP61	ME- ICP6}	ME-ICP61	ME- ICP61	ME- ICP61	ME- ICP6 }	ME-ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	K	La
	Units	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm
	LOR	0.5	0.01	5	10	0.5	2	0.0 }	0.5	1	1	1	0.01	10	0.01	10
36041		0.8	6,21	72	1190	0.9	<2	9.25	<0.5	11	101	65	3.64	10	1,83	10
36042		0.5	5.95	21	1250	0.8	<2	10.25	<0.5	11	127	56	3.43	10	1,38	10
36043		0.6	6.05	8	1060	0.8	<2	9.26	<0.5	13	136	57	3.73	10	1,33	10
36044		0.7	5.74	42	1680	0.6	<2	10.10	<0.5	12	185	45	3.07	10	1.06	10
36045		1.1	5.18	114	1120	0.7	<2	8.14	1.1	10	136	38	3.09	10	1.56	10
36046		0.9	5.91	37	1200	0,8	<2	9.16	0.7	12	171	57	3.47	10	1.65	10
36047		1.0	6.34	82	760	0,7	<2	9.26	0.6	11	176	46	3.66	10	1.75	10
36048 36049		0.6 0.8	5.60 5.48 7.24	27 8	1400 1020	0.7 0.5	<2 <2	9.73 11.75	<0.5 0.5	10 10	141 155	46 38	3.21 2.96	10 10	1.78 1.00	10 10
36050		0.5	6.69	47	790	0.7	<2	5.95	0.5	15	112	47	3.53	10	0.76	10
36052		0.9	5.84	13	1250	0.7	<2	8.83	0.5	12	183	44	3.45	10	1.39	10
36053		0.5	6.57	18	1160	0.5	<2	9.26	<0.5	15	350	32	3.53	10	0.95	10
36054		<0.5	6.58	12	1090	0.6	<2	9,64	<0.5	14	244	27	3.29	10	0.87	10
36055		0.6 0.5	5.93	14	1150	0.6	<2	9.07	<0.5	11	169 135	31	3.12	10	1.11	10
36057 36058		0.6	5.94 6.56	8 <5	1070 1010	0.7 0.8	<2 <2	9.92 5.90	0.5 0.7	10 13	138 132	46 54	3.16 3.77	10 10 10	1.29 1.25	10 10 10
36059		0.8	6.99	<5	1160	0.8	<2	5.38	0.7	12	129	49	4.28	10	1.29	10
36060		<0.5	6.83	8	1500	0.7	<2	6,08	<0.5	14	280	35	3.75	10	1.18	10
36061		0.7	5.66	<5	1290	0.7	<2	8.86	0.7	10	123	54	3.30	10	1.39	10
36062		0.6	5.60	5	1190	0.7	<2	9.20	0.7	10	120	42	3.07	10	1.36	10
36063 36064 36065		0.6 <0.5 <0.5	5.87 4.86 5.72	<5 11 <5	1110 820 1200	0.6 0.6 0.7	<2 <2 <2	11.10 10.75 9.40	0,6 1.1	14 12 11	215 120 166	45 40 44	3.37 2.73 3.11	10 10 10	1.20 0.99 1.37	10 10 10
36066		<0.5	5.64	7	1220	0.1 D.8 0.7	<2	6.66	1.2	12	126	46	3.22	10	1.49	10
36068 36069		<0.5 <0.5 <0.5	5.85 4.74	5	1230 1220 750	0.7 0.6	<2 <2 <2	8.36 9.09	0.6 0.9	13 13 10	181 121	46 49	3.17 3.03	10 10 10	1.37	10 10 10
36070		<0.5 <0.5	5.24 6.03	<5 <5	1190 1260	0.6	<2	9.66	1.0	12	143 119	40	2.99	10 10	1.07	10 10
36072		<0.5	6,04	<5	1270	0.8	3	7.06	1.0	13	138	50	3.49	10	1.49	10
36073		<0.5	5,54	<5	1090	0.7	<2	9.97	1.1	12	123	49	3.11	10	1.16	10
36074		<0.5	5.84	<5	1180	0.7	2	7.67	1.0	12	165	46	3.38	10	1.38	10
36075		<0.5	5.10	<5	1140	0.6	<2	9.41	0.8	13	177	46	3.07	10	1.25	10
36076		<0.5	5,83	<5	1090	0.6	<2	7.98	1,0	12	129	44	3,40	10	1.32	10
36077		<0.5	5,67	<5	1080	0.7	<2	7.80	1.2	12	137	47	3.38	10	1.40	10
36078		<0.5	5,14	8	880	0.5	<2	11.75	0,7	11	182	34	2.71	10	0.99	10
36079		<0.5	8.69	22	1640	1.2	<2	9.25	0.5	14	61	54	4.75	20	2.31	10
36080		<0.5	6.91	71	1240	1.1	<2	4.30	<0.5	16	30	95	5.18	20	3.37	10

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 3 - B Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP61 Mg % 0.01	ME-ICP61 Mn ppm S	ME- ICP61 Mo ppm }	ME- ICP63 Na % 0.01	ME- ICP61 Ni ppm }	ME- ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME- ICP61 S % 0.01	ME- ICP61 Sb ppm S	ME- ICP61 Sc ppm 1	MÉ- ICP6) Sr ppm 1	ME-ICP6} Th ppm 20	ME- ICP6 } Ti % 0,0 }	ME- ICP63 T1 ppm 10	ME- ICP61 U ppm 10
36041		1,95	499	7	1.58	79	880	2	0,85	44	16	991	<20	0,34	<10	<10
36042		2.16	473	1	1.41	99	800	5	1.01	<5	15	980	<20	0.32	<10	<10
36043		2.43	434	1	1.47	120	840	2	1.26	<5	17	960	<20	0.34	<10	<10
36044		2.30	523	1	1.72	108	690	7	0.81	<5	14	1140	<20	0.30	<10	10
36045		1.32	392	<1	0.87	90	640	5	1.00	22	14	559	<20	0.27	<10	<10
36046		2.10	418	<1	0.85	109	760	7	1.27	10	15	765	<20	0.33	<10	<10
36047		1.80	489	<1	0.70	98	700	5	1.47	40	15	655	<20	0.32	<10	<10
36048		2.36	448	<1	0.88	91	720	6	0.80	<5	15	736	<20	0.33	<10	<10
36049		2.03	614	<1	1.69	83	600	4	0.99	5	12	1095	<20	0.27	<10	<10
36050		3.03	614	< 1	Z.6Z	135		5	0.42	<5	16	853	<20	0,38	<10	10
36051		2.56	360	<1	2.47	75	690	3	1.07	<5	18	553	<20	0.33	<10	10
36052	Ì	2.42	434	1	1.36	120	750	6	1.05	<5	15	791	<20	0.31	<10	10
36053		2.89	773	<1	2.15	167	690	3	0.46	<5	15	840	<20	0.34	<10	10
36054		2.93	625	<1	2.38	133	660	4	0.36	<5	15	783	<20	0.34	<10	10
50055		1.30	555	~ 1	1,96	04	670	4	U.00	~ 5		671	<20	0.29	~10	10
36056		2.02	480	<1	1.96	77	690	4	0.63	<5	15	863	<20	0.31	<10	10
36057		2.01	511	<1	1.67	76	/10	4	0.61	<5	14	765	<20	0.32	<10	<10
36058		2.39	343	7 - 1	1,89	86	720	9	0.83	<5	16	597	<20	0.36	<10	10
36059		2.64	3/2	<1	2,03	110	880	6	1.05	<0	19	569	<20	0.37	<10	10
50000		5.57	515	~	2,14	143	720	4	0.45	N 0	10		<20	0.35	~10	10
36061		2.07	447	<1	1.30	86	750	7	1.03	<5	15	755	<20	0.31	<10	<10
36062		2.60	401	1	1.05	106	710	4	0.70	<5	14	825	<20	0.30	<10	<10
36063		2.63	566	1	1.63	144	830	5	0.94	<5	14	962	<20	0.30	<10	10
36064		2.01	368	2	1.27	93	630	8	0.78	<5	12	868	<20	0.27	<10	10
30005		2.40	429	۲	1,42	104	790	4	0,60	<>	50	/0/	~20	0.32	~10	10
36066		2.69	332	2	0.92	91	720	5	0.79	<5	15	632	<20	0.32	<10	10
36067		2.63	407	3	1.27	116	780	5	0.76	<5	14	884	<20	0.28	<10	10
30008		2.36	390	2	1.01	107	730	3	0.95	<5 40	15	842 760	<20	0.32	<10	10
36070		2.00	419	2	1.55	94	690	10	0.94	;∠ <5	13	928	<20	0.20	<10	10
36071		2 50	388	1	1 60		720	8	0.81	<5	16	902	<20	0.33	<10	10
36072		2.63	397	2	1.68	98	810	5	0.82	<5	17	809	<20	0.35	<10	10
36073		2.48	410	2	1.66	89	780	6	1.05	<5	14	906	<20	0.29	<10	10
36074		3.02	400	2	1.26	121	760	7	0.84	<5	15	773	<20	0.32	<10	10
36075		2.55	415	2	1.14	117	680	6	0.88	<5	13	825	<20	0,27	<10	10
36076		2.50	473	2	1.63	109	770	4	0.70	<5	15	710	<20	0.32	<10	10
36077		2.47	413	2	1.39	96	760	3	0.94	<5	15	706	<20	0.32	<10	10
36078		1.93	542	1	1.81	101	650	2	0.73	<5	13	972	<20	0.28	<10	10
36079		2.41	780	4	2.08	41	1460	5	0.80	<5	24	1425	<20	0.50	<10	10
36080		1,71	718	4	1.63	10	1690	6	1,93	7	19	937	<20	0.35	<10	10

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 3 - C Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-ICP61 V ppm }	ME- ICP61 W ppm 10	ME- ICP61 Zn ppm 2	Ag- OG62 Ag ppm I	
36041		164	<10	100		
36042		152	<10	113		
36043		168	<10	119		
36044		124	<10	88		
36045		143	<10	147		
36046		157	<10	136		
36047		142	10	128		
36048		138	<10	109		
36049		100	<10	78		
36050		122	<10	95		
36051		148	<10	123		
36052		149	<10	115		
36053		131	<10	94		
36054		127	<10	86		
36055		120	<10	90		
36056		130	<10	109		
36057		139	<10	108		
36058		170	<10	153		
36059		173	<10	138		
36060		148	<10	103		
36061		151	<10	115		
36062		146	<10	115		
36063		131	<10	108		
36064		129	<10	108		
36065		153	<10	118		
36066		156	<10	155		
36067		139	<10	108		
36068		139	<10	102		
36069		129	<10	132		
36070		135	<10	131		
36071		148	<10	141		
36072		160	<10	132		
36073		136	<10	140		
36074		158	<10	127		
36075		133	<10	110		
36076		147	<10	118		
36077		157	<10	168		
36078		113	<10	99		
36079		204	<10	131		
36080		168	<10	68		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 4 - A Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME- ICP61 As ppm 5	ME-ICP6} Ba ppm 10	ME- 1СРб1 Ве ррті 0.5	ME- ICP61 Bi ppm 2	ME-1CP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME-1CP61 Cr ppm 1	ME- ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME- ICP61 K % 0.01	ME-ICP61 La ppm 30
36081 36082		<0.5 <0.5	7.90 8.14	19 12	1270 1870	1.2 1.2	<2 <2	5.16 6.21	<0.5 <0.5	17 13	39 32	63 42	5.42 4.96	20 20	3.60 3.79	10 20
36083		<0.5	6.71	14	940	1.1	<2	10.80	0.6	16	111	98	5.37	20	1.26	10
36084		<0.5	7.24	10	1250	0.9	<2	10,60	0.8	13	84	56	4,34	20	1.40	10
36085		5.8	6.12	5710	810	0.9	<2	7.03	<0.5	13	35	45	5.54	10	2.09	10
36086		<0.5	8.05	101	1450	1.2	<2	5.66	0.5	19	35	55	5.81	20	3.27	20
36087		<0.5	7.59	9	720	1.0	<2	5.37	<0.5	24	211	19	5.22	20	1,39	20
36088		<0.5	7.58	9	680	1.0	<2	5.57	<0.5	24	229	21	5.52	20	1.34	30
36089		<0,5 1.4	7.50	ះរ 2810	970 870	1.4	<2	5.63	<0.5	∠ i 17	41	38	5.83	20	3,02	20
36090		<0.6	7.14	2010	710	1.4	~2	5.09	<0.5	20	40	49	0.02 C 45	20	2.01	20
36097		<0.5	6.53	1520	710	1.4	<2	5.08	<0.5 0.9	20	44	40	6.45	20	2.05	20
36093		<0.5	7.36	5	1050	1.4	<2	5.22	<0.5	20	42	53	6.42	20	2.95	20
36094		1.1	6.69	3540	1140	1.3	<2	6.22	0.6	17	34	48	5.37	20	3.35	10
36095		<0.5	7.63	16	1140	1.4	<2	5.41	<0.5	23	40	68	6.85	20	3.08	20
36096		<0.5	7.27	80	960	1.4	<2	5.18	<0.5	21	37	55	6.25	20	2.76	20
36097		<0.5	7.29	601	1040	1.4	<2	5.33	<0.5	18	39	58	5.89	20	2.92	20
36098		<0.5	7.61	510	1050	1.6	<2	5.10	<0.5	18	34	52	5.91	20	3.18	20
36099		<0.5	7.57	25	1130	1.5	<2	4.71	<0.5	18	33	57	5.81	20	3.30	20
36100		2.7	7.53	4340	1130	1.5	<2	5.49	1,0	14	39	4/	5.17	20	3.51	30
36101		<0.5	7.58	49	1010	1.5	<2	7.86	<0.5	15	81	45	5.31	20	2.64	30
36102		10	6.78	1340	880	1.6	<2	5.72	<0.5	19	48	37	6.96	20	2.92	30
36104		<0.5	7.66	88	1130	1.4	<2	5.21	<0.5	14	44	38	5.29	20	3 35	30
36105		<0.5	7,70	31	680	1,0	<2	5.47	<0.5	25	242	22	5,51	20	1.29	30
36106		<0.5	7.91	8	1090	1.6	<2	4.49	<0.5	19	86	35	5.87	20	2,80	30
36107		<0.5	7.89	1340	980	1.8	<2	5.30	<0.5	15	34	43	5.93	20	2.99	30
36108		<0.5	7.46	138	1050	1.7	<2	4.85	<0.5	16	42	61	5.61	20	3.03	30
36109		<0.5	8.20	456	1200	1.8	<2	4.95	<0.5	14	38	72	5.52	20	3.59	30
36110		<0.5	7.96	112	1210	1.8	<2	4.71	<0.5	14	36	88	5.60	20	3.62	30
36111		1.9	7.38	1750	960	1.7	<2	4.89	0.8	13	33	81	5.11	20	2.99	30
36112		<0.5	7.92	18	1200	1.9	<2	4,38	<0.5	12	36	87	4.98	20	3.73	30
36113		<0.5	7.79	546	1160	2.0	<2	4.41	<0.5	12	29	61	4.72	20	3,59	30
30114		2.5	5.14	1750	820 1450	0.7	<2	818	3.9	14	144	20 60	3,04	20	1 49	20
C110C		4.1	0.40	210	1430	0,0	~~	0.10	1.4		144		0.02		1 55	20
36116		2.8	6.18 6.20	953	1210	0.8	<2	8.02	2.0	13	126	60 68	3,59 3,78	20	1.55	20
3011/		<0.5	0.39 6.26	15	1500	0.0	<2	0.74 10.45	0.0	10	130	54	3.70	10	1.00	20
36310		0.0	5.45	1800	1350	0.7	<2	11.65	22	<u>، د</u> 10	132	44	3.12	10	1,19	20
36120		<0.5	5.69	839	920	0.7	<2	7.99	0.6	11	158	51	3.35	10	1.31	20
1																

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 4 - B Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151301

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP61 Mg % 0.01	ME- ICP61 Mn ppm S	ME- ICP63 Mo ppm 1	ME- ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.03	ME- ICP6 } Sb ppm S	ME- ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME-ICP63 Th ppm 20	ME- ICP6 } Ti % 0.01	МЕ- IСР61 Tl ppm 10	ME- ICP61 U ppm 10
36083		2.13	869	1	1.87	8	2090	6	1.66	<5	23	1085	<20	0.41	<10	10
26002		2.23	7075	3	1.79	9 5 P	2150	6	1,05	< <u>-</u>	24	1210	<20	0.43	<10	10
36084		2.32	706	4	1.47	52	1050	4	2.03	11	19	1395	<20	0.37	<10	10
36085		1.61	978	2	1.68	18	1570	93	3.36	60	19	815	<20	0.32	<10	10
36086		2.51	1110	2	1.78	10	2500	7	1.16	7	27	1005	<20	0.45	<10	10
3008/		4.00	1050	1	2.02	44	1580	8	0.20	<5	22	1015	<20	0.53	<10	10
26080		4.10	1070	2	1.07	40	1590	5	0.20	<5	23	1200	<20	0.55	<10	10
36090		2.39	1085	2	1.64	7	2320	12	1.23	13	28	764	<20	0.49	<10	10
26001		2.01		~	4.74	-7	2020	7	1.07				<20	0.45	-10	10
36091		2.91	1170	2	1.74	5	2650	20	1.07	<5 7	33	673	<20	0.45	<10	10
36093		2.70	1015	<1	1.65	5	2780	5	1.30	<5	34	834	<20	0.41	<10	10
36094		1.65	972	1	1.54	5	2410	8	2.54	19	28	716	<20	0.39	<10	10
36095		2.99	980	1	1.79	5	2960	7	1.59	<5	35	898	<20	0.48	<10	10
36096		2.81	945	1	1.70	7	2820	6	1.53	<5	33	881	<20	0,45	<10	10
36097		2.24	876	2	1.62	5	2670	6	1.60	7	31	832	<20	0.43	<10	10
36098		2.51	988	1	1,75	5	2670	20	1.30	6	30	888	<20	0.42	<10	10
36099		2.50	897	<1	1.81	5	2560	6	1,29	<5	29	873	<20	0.41	<10	10
36100		2.11	994	<1	1.73	7	2420	27	2.06	26	26	784	<20	0.38	<10	<10
36101		2.53	1190	<1	1.66	40	2120	9	0.94	5	24	1060	<20	0.35	<10	<10
36102		2.93	1345	<1	1,81	8	3100	12	0,70	<5	34	864	<20	0,51	<10	<10
36103		2.15	3340	<1	1.43		2480	22	1.25	16	28	722	<20	0.40	<10	<10
36104		2.37	952	<1	1.72	8 52	2480	13 Q	1.25	<5	26	945 1320	<20	0.41	<10	<10
36306		7.00	980	~1	2.04	12	2320	8	0.10	<5	25	1020	<20	0.47	<10	<10
36107		2.09	1075	<1	1.86	7	2520	11	1.20	7	26	850	<20	0.41	<10	<10
36108		2.08	915	<1	1.82	11	2300	9	1.56	<5	25	851	<20	0.39	<10	<10
36109		2.02	885	<1	1.90	8	2360	10	1,74	<5	25	933	<20	0.38	<10	<10
36110		2.01	889	<1	1,91	8	2310	11	1.67	<5	23	946	<20	0.38	<10	<10
36111		1.77	814	<1	1.86	8	2050	17	1,79	12	22	779	<20	0.35	<10	<10
36112		1.82	788	<1	1.97	6	2060	11	1.39	<5	20	900	<20	0.35	<10	<10
36113		1.65	900	<1	1.97	6	1910	13	1.05	<5	19	806	<20	0.33	<10	<10
36114		2.02	762	1	0,94	126	780	16	0.45	64	12	1100	<20	0.27	<10	<10
36115		2,62	454	4	1.64	109	780	766	0.90	43	16	919	<20	0.36	<10	<10
36116		2.36	463	1	1.41	102	820	9	1.06	11	16	836	<20	0.35	<10	<10
36117		2.48	436	2	1.79	115	830	8	1.04	<5	17	971	<20	0.37	10	<10
36118		2.33	500	3	1.89	117	850	16	0.68	<5	16	3170	<20	0.36	<10	<10
36119		2.15	595	1	1.48	99	730	21	0.73	65 94	13	769	<20	0.30	<10	<10
36120		2.25	451	<1	1.64	114	730	ø	1.25	0.1	(4	100	~20	0.52	~ 10	~10

To: ESO URANIUM CORP. 408 - 1199 WE5T PENDER 5T. VANCOUVER BC V6E 2R1

Page: 4 - C Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-ICP61 V ppm }	ME-ICP61 W ppm 10	ME- ICP61 Zri ppm 2	Ag- OG62 Ag ppm I	
36081		206	<10	84		
36082		207	<10	82		
36083		155	<10	99		
36084		195	<10	158		
36085		176	10	56		
36086		242	<10	101		
36087		179	<10	87		
36088		180	<10	89		
36089		292	<10	120		
36090		233	<10	91		
36091		256	<10	117		
36092		251	<10	134		
36093		273	<10	96		
36094		238	10	44		
36095		279	<10	91		
36096		272	<10	88		
36097		254	<10	88		
36098		248	<10	97		
36099		237	<10	85		
36100		222	<10	74		
36101		208	<10	92		
36102		313	<10	125		
36103		239	<10	87		
36104		242	<10	82		
50105		100	<10	90		
36106		231	<10	94		
36107		243	<10	104		
36108		216	<10	80		
36109		210	<10	02 80		
		215	<10			
36111		193	<10	79		
36112		194	<10	72		
36113		176	<10	80		
26114		164	<10	126		
30113				.20		
36116		177	<10	145		
3011/		181	<10	142		
20110		134	<10	140		
36120		156	<10	115		
50120			~ 1 V			

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 5 - A Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151301

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-1CP61 Ag ppm 0.5	ME- ICP61 Al % 0,01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-1CP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME- (CP61 Co ppm }	ME- ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-ICP61 Ga ppm 30	ME- ICP61 K % 0.01	ME- ICP61 La ppm 10
36121		0.5	3.92	251	1280	0.5	<2	15.0	<0.5	8	88	51	2.35	10	1.03	20
36122		8.2	5.37	555	760	0.7	<2	9,64	1.4	12	133	61	4.12	10	1.72	20
36123		<0.5	5.53	37	1060	0.7	2	10.50	0.8	13	206	44	3.22	10	1.36	20
36124		<0.5	5.57	28	1110	0.7	<2	9.72	1.6	13	153	66	3.25	10	2.05	20
36125		<0.5	5.29	35	950	0.6	<2	10.00	0.8	10	136	43	2.91	10	0.95	20
36126		2.5	6.17	1700	910	0.8	<2	9.05	0,6	12	91	65	4.54	20	1.50	20
36127		<0,5	8,23	20	1730	1.3	<2	6.90	<0.5	11	50	27	4.97	20	3,13	30
36128		<0.5	7.08	41	780	1.1	<2	10.20	1.3	11	85	31	4.00	20	0.91	20
36129		<0.5	7.98	1290	1190	1.4	2	5.83	0.5	18	37	62	6.52	20	2.98	30
36130		<0.5	7.91	11	1270	1.3	<2	6,78	<0.5	19	68	81	6.80	20	2,22	20
36131		0.6	7.63	1710	1200	1.2	<2	6.64	<0.5	17	46	57	6.23	20	2.65	30
36132		3.0	6.65	3210	880	1.3	<2	6.23	0.7	22	49	43	6.64	20	2.75	30
36133		<0.5	7.34	583	1030	1.5	<2	5.51	0.5	18	49	63	6.67	20	2.86	30
36134		1.1	7.36	1750	1070	1.4	<2	5,42	0.6	20	37	57	6.57	20	3.01	30
36135		<0.5	5.99	3670	430	1.2	<2	9.05	<0.5	18	33	53	5.47	20	2.08	20
36136		<0.5	7.11	601	990	1.4	<2	6.09	<0.5	21	42	69	7.30	20	2.94	20
36137		<0.5	7.26	26	1210	1.4	<2	5.73	<0.5	21	41	51	6.98	20	3.14	20
36138		<0.5	7.01	1410	1010	1,6	<2	5.86	<0.5	19	41	38	7.03	20	2.91	20
36139		<0.5	5.82	7650	860	1.2	<2	6.09	<0.5	17	37	27	6,27	20	2,64	20
36140		<0.5	5.64	13	730	1.0	<2	8.58	<0.5	14	175	38	4.99	10	1.79	20
36141		1.6	7.03	3460	950	1.4	<2	5.94	0.5	17	36	51	6.78	20	2.89	20
36142		<0.5	7.82	479	1190	1,8	<2	5.46	<0.5	16	30	46	5,90	20	3,46	30
36143		<0.5	7.75	48	1150	1.8	<2	5.31	<0.5	14	27	39	6.11	20	3.44	20
36144		<0.5	7,57	1470	1350	1.7	<2	5.35	0.8	14	23	49	5.24	20	3.81	20
36145		<0.5	7.65	416	1090	1,9	<2	5.00	<0.5	14	29	28	5,53	20	3.40	20
36146		0.8	7.29	2860	980	1.6	<2	5.68	0.7	14	39	27	5,36	10	3.07	20
36147		<0.5	7.00	29	1470	1.3	<2	8.58	<0.5	13	93	72	5.06	20	2.43	20
36148		<0.5	5,99	406	1340	0.8	<2	8.79	0.6	15	174	56	3,71	20	1.63	10
36149		<0.5	5.58	141	920	0.8	<2	8.97	0.8	13	153	51	3.45	10	1.56	10
36150		8.5	5.65	2370	340	0.9	<2	8.37	4.0	11	162	57	4.26	10	2.11	20
36151		0.5	5.36	688	1350	0.8	<2	10.35	0.6	11	120	46	3.60	10	1.81	10
36152		<0.5	5.93	44	1540	0.8	<2	8.48	0.6	13	147	59	3.66	10	1.77	20
36153		<0.5	3.94	331	280	0.6	<2	12.50	0.5	6	86	32	2.44	10	0.32	10
36154		<0.5	5.43	19	1200	0.7	<2	12.55	0.5	10	113	43	3,60	10	1.45	10
36155		<0.5	5.25	19	1160	0.6	<2	10.70	1.0	11	124	51	3.30	10	1.39	10
36156		<0.5	5.21	68	770	0.7	<2	14,0	1.0	10	117	48	3.29	10	1.38	10
36157		<0.5	6.46	130	1070	0.9	<2	11.60	2.8	13	96	65	4.29	10	1.51	10
36158		4.6	6.60	499	1210	0.9	<2	8.96	1.0	12	112	57	3.79	10	1.90	10
36159		0.9	7.50	794	1600	1.2	<2	5.79	<0.5	12	95	49	4.59	20	3.36	20
36160		1.5	7.04	2500	1450	1.2	<2	4.88	0.8	7	25	31	3.20	10	3,68	20

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 5 - B Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151301

Project: Monashee

Sample Description	Method	ME- ICP63	ME- ICP61	ME-ICP6}	ME- ICP61	ME-1CP61	ME-ICP61	ME-ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- 1CP61	ME-1CP61	ME- ICP61	ME-ICP61
	Analyte	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th	Ti	T1	U
	Units	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.01	5	1	0.01	1	TO	2	0.01	S	3	3	20	0.01	30	10
36121 36122 36133		1.45 1.37	637 461	<1 <1	1.03 0.70	69 105	530 730	9 522	0.88 3.04	<5 167	9 13	1190 672	<20 <20	0.19 0.28	<10 <10	10 <10
36123 36124 36125		1.20 2.00	381 449	1 <1	0.90 0.38 1.55	137 113 89	730 740 650	10 7	0.90 1.37 0.94	10 23 <5	14 15 12	689 472 836	<20 <20 <20	0.30 0.33 0.28	<10 <10 <10	<10 <10 <10
36126 36127 36128		1,72 2,19 1,78	712 1165 729	<1 <1 <1	1.08 1.75 1.54	56 15 54	830 2230 880	17 8 11	1.97 0.83 0.52	30 <5 11	15 25 16	861 1230 1230	<20 <20 <20	0.35 0.40	<10 <10 <10	<10 <10 <10
36129 36130		2.33 2.33	1115 1035	<1 1	1.95 2.09	10 33	2670 2030	9 8	1.68 1.69	<5 12	27 26	1010 1210	<20 <20 <20	0.44 0.48	<10 <10 <10	<10 <10 <10
36131		2.19	1130	<1	1.75	21	2160	31	2.46	23	25	960	<20	0.44	<10	<10
36132		2.38	1245	<1	1.35	9	2860	23	2.00	20	35	653	<20	0.49	10	<10
36133		2.93	1115	4	1.62	B	2850	10	1.66	<5	34	737	<20	0.48	<10	<10
36134 36135		2.45 1.57	984 1215	<1 <1	1.59 0.78	7 8	2730 2550	13 13	2.21 1.86	9 19	32 29	756 776	<20 <20	0.46 0.41	10 <10	<10 <10 <10
36136		3.22	1035	<1	1.77	13	3130	8	1.61	<5	36	811	<20	0.50	<10	<10
36137		3.00	987	<1	1.79	6	3070	3	1,77	<5	35	799	<20	0.50	<10	<10
36138		3.00	1265	<1	1.58	8	2960	7	1.06	<5	35	730	<20	0.47	<10	<10
36139		2.15	1090	<1	1.30	7	2540	8	1.88	20	30	653	<20	0.41	<10	<10
36140		3.18	1020	2	1.25	114	1170	6	0.97	128	22	833	<20	0.38	<10	<10
36141		2.58	1020	2	1.79	6	2770	87	2.19	30	31	809	<20	0.44	<10	<10
36142		2.31	898	17	1,94	6	2450	97	1.30	9	27	873	<20	0.41	<10	<10
36143		2.27	1045	<1	1 97	4	2550	5	1.13	<5	26	903	<20	0.41	<10	<10
36144		1.97	940	<1	1.75	3	2330	13	1.70	7	24	867	<20	0,39	<10	<10
36145		2.02	1025	<1	2.27	8	2100	12	1.25	<5	22	813	<20	0.37	<10	<10
36146		1.90	1120	<1	1.98	14	2090	48	1.29	22	23	763	<20	0.37	<10	<10
36147		2.52	720	5	1.76	79	1510	7	1.07	18	21	1010	<20	0.42	<10	<10
36148		2.55	457	2	1.91	148	790	4	0.87	<5	16	776	<20	0.35	<10	<10
36149 36150		2.07 0.87	458 639	1	0.99 1.23	113 116	730 860	2 25	1.04 3.17	14 37	15 16	572 506	<20 <20	0.32 0.26	<10 <10	<10 <10
36151		3.48	586	2	1.10	95	690	110	0.90	5	14	876	<20	0.27	<10	<10
36152		2.57	405	1	1.19	103	820	50	0.91	<5	16	791	<20	0.35	<10	<10
36153		3.04	511	<1	1.57	59	610	7	0.54	<5	9	910	<20	0.20	<10	<10
36154		4.35	612	1	1.07	105	750	7	0.67	<5	14	990	<20	0.33	<10	<10
36155		2.22	470	1	1.06	94	690	6	1.20	16	14	795	<20	0.30	<10	<10
36156		1.84	632	1	0.47	98	740	15	1.23	49	15	929	<20	0,30	<10	<10
36157		2.10	589	7	1.41	76	990	105	0.78	21	18	1350	<20	0,42	<10	<10
36158		1.96	611	27	2.02	74	910	28	1.12	52	18	904	<20	0.40	<10	<10
36159		1.81	818	3	2.14	35	1300	9	1.37	12	19	910	<20	0.34	<10	<10
36160		1.25	784	6	2.14	10	1040	11	1.12	16	13	831	<20	0.24	<10	<10

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 5 - C Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-1CP61 V ppm 1	ME-ICP61 W ppm 30	ME-1CP61 Zn ppm 2	Ag- OG62 Ag ppm 1	
36121		83	<10	70		
36122		143	<10	109		
36123		142	<10	120		
36124		166	<10	166		
36125		123	<10	109		
36126		150	<10	74		
36127		226	<10	83		
36128		171	<10	204		
36129		250	<10	109		
36130		247	<10	105		
36131		229	<10	85		
36132		295	<10	98		
36133		283	<10	126		
36134		272	<10	102		
36135		264	<10	83		
36136		310	<10	106		
36137		309	<10	93		
36138		298	<10	109		
36139		255	<10	80		
36140		226	<10	95		
36141	·····	259	<10	93		
36142		236	<10	82		
36143		236	<10	94		
36144		215	<10	81		
36145		200	<10	100		
36146		207	10	94		
36147		208	<10	118		
36148		172	<10	129		
36149		159	50	136		
36150		179	<10	135		
36151		145	<10	109		
36152		165	<10	110		
36153		93	<10	84		
36154		155	<10	116		
36155		137	<10	117		
36156		149	10	124		
36157		199	<10	247		
36158		194	<10	92		
36159		171	<10	84		
36160		113	<10	44		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0223 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 6 - A Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

									C	ERTIFIC	CATE O	F ANAI	LYSIS	VA101	51301	
Sample Description	Method Analyte Units LOR	ME-1CP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME- ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP6 I Bi ppm 2	ME-ICP61 Ca % 0.01	ME-tCP61 Cd ppm 0.5	ME- 1CP61 Co ppm 1	ME- 1CP61 Cr ppm 1	ME-1CP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-1CP61 Ga ppm 30	ME- ICP61 K % 0.01	ME-ICP61 La ppm }0
36161 36162		5.5 >100	6.71	>10000 >10000	390 100	1.2 0.6	4 70	4.24	3.4 86.3	9 7	18 23	37	5.07	10 <10	3,46	20 10
36163		4.5	6.98	322	1010	1.0	<2	7.66	20.1	11	104	48	3.28	10	195	20
36164	1	<0.5	6.79	109	1200	0.8	<2	12.00	<0.5	10	116	38	3.59	10	1.37	10
36165		0.5	6.80	1310	1070	0.9	<2	7.13	1.0	13	84	81	5.27	20	1.79	10
36166		<0.5	6.58	135	770	0.7	2	12.80	<0.5	10	109	29	3.05	10	1.05	10
36167		0.8	6.99	1850	960	1.3	<2	7.76	1.2	16	56	52	5.44	20	2.59	20
36168		1.2	6.83	4090	1040	1.2	<2	7.88	1.8	15	87	46	5.04	10	2,57	20
36169		<0.5 <0.5	7.95 7.26	14 806	1210 880	1.9 1.3	<2 <2	5.46 10.90	<0.5 <0.5	6 11	36 67	49 46	3.71 4.55	20 20	1.90 1.50	10 20
36171		<0.5	7.64	15	970	1.7	<2	5.70	<0.5	19	42	47	6.98	20	2.86	20
36172		4.1	6.45	1525	1070	0.8	<2	11.20	2.5	9	100	47	379	10	1.61	10
36173	-	>100	6.42	682	1140	1.0	3	8.66	13.1	9	89	236	3.48	10	2.82	10
36174	1	>100	7.51	3660	730	1.5	<2	5.83	10.8	14	40	167	5.37	20	3.14	10
36175		6.1	6.04	7710	810	1.3	<2	10.65	7.6	9	45	23	3.85	10	1.85	10
36176		39.6	4.85	>10000	150	1.2	6	7.45	3.0	4	41	52	11.85	10	1,87	<10
36177		3,0	5.10	123	900	0.8	<2	11.60	1.5	13	91	119	4,11	10	1,29	10
36178		0.5	6,71	24	1140	1.0	<2	9,91	1.0	8	67	38	3.37	10	2,15	10
36179		0.5	6,59	130	1090	0.9	<2	10,50	0,6	11	100	40	3.91	20	1.72	10
36180		0.6	7.36	170	1230	0.9	<2	7.04	0.7	11	. 97	53	4.41	20	1.91	10
36181		<0.5	8.07	11	1320	1.9	<2	5.52	<0.5	6	30	54	3.76	20	3.55	10
36182		1.5	7.79	242	1420	1.5	<2	6.09	0.5	10	43	60	4.81	20	3,05	10
36183		0,8	7.97	543	1160	1.8	<2	5.29	0,6	12	30	79	4.64	20	2.72	10
36184		1.4 0.7	7.79	5430 3220	1090	1.8	<2	5.28	0.8	11	100	68 46	4,41	20	2,51	10
26196		0.7	6.03	>10000	750	1 1		10.50	0.0	12	141		2.40	20	1.26	10
36187		<0.5	6.68	881	1250	0.8	~	8.42	0.5	14	141	/9	3.41	10	1.20	10
36188	1	0.5	6 94	26	1200	1.0	<2	6.11	0.7	12	91	58	4 14	10	1.33	10
36189		0.5	7.78	66	1500	1.5	<2	5 13	0.5	12	38	104	4 59	20	3 87	10
36190		<0.5	6.52	134	1040	1.0	<2	8.43	0.6	11	103	56	4.28	20	1.22	10
36191		<0.5	5.97	528	1210	0.8	<2	9.09	0.7	10	85	60	3,65	10	1,58	10
36192		0.5	6.29	412	1100	0.6	<2	9.86	0.8	13	75	51	3.88	20	1.41	10
36193		<0.5	6.50	629	1200	1.0	<2	7.24	<0.5	10	145	39	3.49	10	1.72	10
36194		0.5	7.36	816	1480	0.8	<2	6.26	0.5	14	172	36	3,69	20	1.53	10
36195		<0.5	5.58	678	1080	0.7	<2	5.84	0.5	10	104	37	3,17	10	1.34	10
36196		25.3	5.97	7980	560	0.8	5	5.32	4.7	9	128	48	4.84	10	1.96	10
36197		6.7	6.79	713	900	1.0	<2	6.17	20.4	11	171	45	3.51	20	2.50	10
36198		60.0	6.10	379	800	0.8	<2	7.83	13.5	11	157	119	3.29	10	2.02	10
36199		<0.5	6.24	26	1040	0.7	<2	8.24	0.6	14	369	55	3.51	10	1.04	<10

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 6 - B Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

	Method Analyte	ME- ICP61 Mg	ME- ICP63 MD	ME- ICP63 Mo	ME- ICP6 } Na	ME- ICP61 Ni	ME- ICP6 I P	МЕ- ICP61 РЪ	ME- ICP63 S	ME- ICP6 Sb	ME- ICP63 Sc	ME- ICP6 } Sr	ME-1CP61 Th	ME-1CP61 Ti	ME- ICP6 I TI	ME- 1CP61 U
Sample Description	Units LOR	% 0.01	ppm S	ppm 1	% 0.01	ppm 1	p¢m 10	ppm 2	% 0.01	ppm 5	ppm 1	ppm 1	ррт 20	% 0.01	քք ու 10	ppm 10
36161		0.96	921	6	1,97	9	1040	87	3.11	48	13	592	<20	0.20	<10	<10
36162		0.39	675	4	1.45	17	460	2270	>10.0	844	6	309	<20	0.09	<10	<10
36163		1,77	565	5	2.04	62	860	84	0.99	32	15	875	<20	0.35	<10	<10
36164		2.10	641	2	1.86	68	910	8	0.65	<5	16	1270	<20	0.38	<10	<10
36165		2.73	731	4	2.18	58	1270	14	1.57	<5	22	810	<20	0.43	<10	<10
36166		1,78	886	1	1.66	57	710	5	0,57	8	14	1140	<20	0.34	<10	<10
36367		2.34	1060	1	1.95	32	2060	13	1.09	8	25	8/3	<20	0.42	<10	<10
30108		1,91	1235	3	1.93	27	2210	30	1.38	12	24	980	<20	0.25	<10	<10
36170		1.39	034	5	3.07	19	810	1	1.37	<5	13	1120	<20	0.36	<10	<10
30170		2,00	334		2,04	44	1190	4	1.62	8	18	3310	<20	0.34	<10	<10
36171		3.15	1230	1	1.97	8	2880	4	0.54	<5	34	849	<20	0.54	<10	<10
36172		1.99	781	3	1.03	58	980	42	1.14	18	15	1220	<20	0.34	<10	<10
26174		1.20	1330	5	1.03	36	1290	2500	1.31	285	18	812	<20	0.35	<10	<10
26175		1,45	1000	2	1.06	11	2150	927	2.60	197	25	653	<20	0.37	<10	<10
20175		0.70	1090	2	0.57	32	1170	124	2.24	60	12	779	<20	0.24	<10	<10
36176		0.79	938	2	0.26	24	940	1465	>10.0	250	12	552	<20	0.23	<10	<10
36177		1,59	663	14	0.12	67	1260	/3	2,31	26	15	3120	<20	0.31	<10	<10
26170		2.02	202	2	1.38	45	1040	9	0.97	<5	14	3290	<20	0.33	<10	<10
36180		1.35	532	3	1.49	61	890	0	1.24	10	15	1010	<20	0.37	10	<10
30100		1.74	552		1.02	01	030		(.40	0	10	1010	<20	0.39	< 10	<10
36181		1.38	542	2	2.41	16	1730	4	1,67	<5	15	1120	<20	0.36	<10	<10
26192		1.37	639	-1	2.13	42	1440	14	2.35	б < F	15	1140	<20	0.34	<10	<10
26184		1.47	333	- 1	2.39	13	1070	10	2.25	<5	10	3120	<20	0.35	<10	<10
36185		1.27	605	, 7	2.00	41	1310	10	2.50	19	13	1060	<20	0.33	< 10	<10
30185		0.00	700		2.30	40	040		1.57	23	17	1000	-20	0.35	<10	<10
30180		0.96	706	2	2.75	81	840	13	1.55	37	16	957	<20	0.35	<10	10
30107		2.29	308	2	1.04	70	910	2	1.20	6	16	1100	<20	0.37	<30	<10
30100		1.05	441	3	1.07	20	1620	3	2.02	-5	10	1020	<20	0.37	<10	<10
36190		1.79	551	4	1.45	72	940	5	2.25	6	17	876	<20	0.34	<10	<10
36191		1.86	429	4	1.00	63	810	3	1 22	<5	15	850	<20	0.34	<10	<10
36192		2.51	623	6	1.06	58	830	9	0.92	21	18	1010	<20	0.35	<10	<10
36193		2.01	467	2	1.33	78	740	6	1.08	5	15	708	<20	0.35	10	<10
36194		2,33	517	2	2.41	104	780	6	1.63	16	17	795	<20	0.40	10	<10
36195		2.13	396	1	1,55	77	770	6	1,06	5	15	725	<20	0.32	<10	<10
36196		1.40	784	2	1.21	84	770	1565	3,50	757	15	449	<20	0.32	10	<10
36197		1.48	796	3	1.06	83	780	112	2.06	49	15	455	<20	0.33	<10	<10
36198		1.31	782	3	0.96	98	760	89	2.03	78	15	492	<20	0.32	<10	<10
36199		2.70	533	5	1.65	169	700	11	1.15	<5	14	1020	<20	0.34	<10	<10

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 6 - C Total # Pages: 6 (A - C) Finalized Date: 25- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME-ICP6} V ppm 1	ME-1CP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-OG62 Ag ppm 1	
36161 36162 36163 36164 36165		109 41 139 149 214	<10 <10 <10 <10 <10	63 985 324 106 100	287	
36166 36167 36168 36169 36170		114 244 196 106 170	<10 <10 <10 <10 <10 <10	106 101 96 40 66		
36171 36172 36173 36174 36175		298 159 181 209 109	<10 10 20 10 10	111 127 207 133 152	143 112	
36176 36177 36178 36179 36180		130 220 156 168 184	<10 <10 <10 <10 <10	49 179 103 81 80		
36181 36182 36183 36184 36185		172 159 177 168 200	<10 <10 <10 <10 <10	36 37 40 45 47		
36186 36187 36188 36189 36190		184 169 173 182 195	20 <10 <10 <10 <10	51 101 71 38 84		
36191 36192 36193 36194 36195		167 187 140 157 160	<10 <10 <10 <10 <10	128 105 77 81 101		
36196 36197 36198 36199	****	154 146 156 115	<10 <10 <10 <10	98 290 200 117		

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 1 Finalized Date: 23- OCT- 2010 Account: ESOURA

Project: Monashee		
P.O. No.:		
This report is for 117 Drill Co Canada on 14- OCT- 2010.	re s a mples submitted to our la	b in Vancouver, BC,
The following have access GARRETT AINSWORTH	to data associated with this	certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	

FND- 02 Find Sample for Addn Analysis

ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT				
ME- 1CP6 1	33 element four acid ICP- AES	ICP- AES				

To: ESO URANIUM CORP. ATTN: GARRETT AINSWORTH 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 23- OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151300

Sample Description	Method Analyte Units LOR	ME-ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME- ICP61 Ва ррт 10	ME- ICP61 Be ppm 0.5	MÊ- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME- (CP6) Cr ppm 1	ME- ICP61 Cu ppm 1	ME- ICP63 Fe % 0.01	ME-ICP61 Ga ppm 10	ME- ICP61 K % 0.01	ME-ICP61 La ppm 10
36200 36201 36202 36203 36204		1.5 2.4 1.3 1.1 1.4	6.25 11.15 5.66 5.40 5.80	25 31 12 17 13	1130 2100 1040 1220 1330	0.6 1.3 0.5 0.8 0.7	<2 <2 <2 <2 <2 <2	10.10 17.3 11.60 6.74 9.83	<0.5 1.0 <0.5 0.9 0.9	13 25 13 12 13	193 325 179 132 129	40 103 30 51 44	3.15 6.11 2.80 3.22 3.43	10 20 10 10 10	1.34 2.65 1.22 1.50 1.43	20 30 20 30 20
36205 36206 36207 36208 36209		1.3 3.5 3.5 1,4 0,9	5.98 6.49 6.45 7.52 6.87	155 1685 1635 33 483	670 760 760 940 1070	0,6 1,0 1.0 1.4 1,6	<2 <2 2 <2 <2 <2 <2	11.40 8.94 8.86 8.10 4.13	0,6 0,8 0.8 0.7 16,2	11 11 11 13 9	105 83 83 84 41	22 45 44 35 40	2.56 3.02 3.01 3.89 3.04	10 10 10 10 10	0.90 1.73 1.73 2.27 2.82	20 30 30 30 30 30
36210 36211 36212 36213 36214		2.2 1,4 0.9 1.4 1.5	7.59 7.77 7.19 7.50 7.93	2590 899 1510 2540 403	1090 1250 890 910 970	1.1 1.6 1.6 1.3 1.8	<2 <2 <2 <2 <2 <2 <2	5.52 5.50 5.38 5.75 4.38	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	15 16 10 15 12	127 41 34 30 23	49 57 25 34 45	4.11 5.38 3.70 5.09 5.81	20 20 20 20 20 20	2.45 3.06 2.50 2.50 3.22	20 30 30 30 30 30
36215 36216 36217 36218 36219		1.9 1.7 1.2 2.2 2.0	7,53 6,59 7,53 7,03 7,31	1225 666 13 5940 1655	1120 830 920 820 930	1.5 1.2 1.4 1.4 1.3	<2 <2 <2 <2 <2 <2 <2	5.19 6.66 5.39 6.61 6.38	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	15 20 21 22 22 22	46 35 39 39 39 37	38 52 28 30 38	5,56 6,80 6,74 7,47 7,05	20 20 20 20 20 20	2,63 1,73 2,77 1,94 2,36	30 30 30 30 30 30
36220 36221 36222 36223 36223 36224		1.2 1.7 1.2 1.9 4.9	7.91 7.59 7.46 7.03 6.80	62 433 46 3160 1575	830 780 750 720 710	1.5 1.5 1.4 1.5 1.2	<2 <2 <2 <2 <2 <2 <2	5.99 5.77 5.80 7.55 6.45	<0.5 <0.5 <0.5 0.7 11.5	22 21 22 22 26	39 35 39 38 39	40 41 38 40 46	7.46 6.95 7.20 6.46 8.41	20 20 20 20 20 20	2.46 2.43 2.42 2.19 2.13	30 30 30 30 30 30
36225 36226 36227 36228 36229		1.5 7.9 3.1 11.2 2.0	7.49 6.59 6.98 5.60 7.68	22 4450 6750 >10000 476	920 610 600 430 1320	1.3 1.2 1.3 1.1 1.6	<2 <2 <2 3 <2	5.98 5.90 5.81 3.71 5.67	0.5 1.2 0.9 6.9 1.6	23 22 17 12 19	39 32 28 40 49	63 51 44 34 52	6.99 6.37 5.95 7.52 6.25	20 10 20 10 20	2.48 2.75 3.42 2.22 2.67	30 30 30 20 30
36230 36231 36232 36233 36233 36234		2.1 5.9 2.2 1.5 1.8	7.79 5.57 6.93 6.22 6.42	917 6760 1015 22 33	1200 470 1030 1080 1040	1.6 1.1 1.3 0.8 0.9	<2 <2 <2 <2 <2 <2	4.77 6.92 5.96 9.09 4.81	0.5 1.8 7.1 1.2 1.3	19 15 13 12 15	36 29 71 126 139	64 29 37 48 62	6.30 4.46 4.20 3.56 4.19	20 10 10 10 10	3.09 2.09 2.29 1.37 1.52	30 30 30 20 30
36235 36236 36237 36238 36239		1.5 0.6 1.3 1.8 1.1	6.63 6.64 5.74 5.44 4.93	14 205 7 10 10	1580 1330 980 830 740	0.9 0.8 0.7 <0.5 0.6	<2 <2 <2 <2 <2 <2	6.10 5.82 10.90 14.5 11.85	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	14 14 13 12 10	117 160 182 128 121	65 73 64 33 37	3,92 3.86 3.45 2.95 2.72	10 10 10 10 10	1,85 1,66 1,54 1,05 1,06	30 20 20 20 20 20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - 8 Total # Pages: 4 (A - C) Finalized Date: 23- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP61 Mg % 0.01	ME- ICP61 Mn ppm S	ME-ICP61 Mo ppm 1	ME- ICP61 Na % 0.01	ME- ICP61 Ni ppm J	ME- ICP61 P ppm 30	ME-ICP61 Pb ppm 2	ME- ICP61 S % 0,03	ME- ICP61 Sb ppm S	ME- ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME- ICP6፣ Th ppm 20	ME- ICP61 Ti % 0.01	ME- ICP61 TI ppm 30	ME- ICP61 U ppm 10
36200 36201		2.51 4.32	504 865	3 4	1.69 2.99	111 193	600 1370	<2 6	0.82 1.84	<5 5	14 27	1030 1790	<20 <20	0.31 0.56	<10 <10	<10 10
36202		2.16	519	2	1.81	107	640	<2	0.87	<5	13	948	<20	0.25	<10	<10
36203		2.40	309	2	1.13	92	710	3	1.07	<5	14	639	<20	0.30	<10	<10
36204		2.53	428	2	1.37	114	850	2	0.94	<5	16	931	<20	0.33	<10	<10
36205		1.54	522	1	1.60	53	850	<2	0.35	11	13	923	<20	0.31	<10	10
36206		1.45	429	4	2,38	42	670	12	1.10	13	13	942	<20	0.25	<10	10
36207		3,45	437	3	2.34	44	710	12	1.06	11	13	933	<20	0,25	<10	10
36208		2.02	465	3	2.17	39	840	4	0.74	<5	19	691	<20	0.35	<10	<10
30203		0.44	-00		2.04		040	~~	0.34		10	001	-20	0.20	-10	40
36210		2.14	505	17	2.60	13	930	2	1.74	6	19	886	<20	0.40	<10	10
36211		2.03	930	3	2.10	10	2270	~2	1,01	<->	∠4 15	943	<20	0.41	<10	10
36212		1.33	1070	2	2.47	10	2050	-2	1 17	<5	22	926	<20	0.27	<10	<10
36213		1.55	874	1	2.22	é	1850	5	2.86	15	19	1050	<20	0.35	<10	10
36215		2 18	1080	2	2.08	17	2010	8	1 31	c 5	24	954	<20	0.39	<10	10
36216		2.10	1295	2	1.87	10	3010	4	1.95	5	32	744	<20	0.46	<10	<10
36217		2.83	1210	2	2.08	11	3020	3	1.10	<5	34	826	<20	0.49	<10	<10
36218		3.01	1345	2	1.76	7	3230	6	2.54	15	36	931	<20	0.50	<10	<10
36219		2.59	1220	1	1.68	8	3060	6	2.19	8	33	885	<20	0.48	<10	<10
36220		3.07	1345	1	1.81	11	3240	<2	1.21	<5	34	978	<20	0.52	<10	<10
36221		2,82	1235	1	1.82	7	2970	<2	1.46	<5	33	914	<20	0.49	<10	<10
36222		3.07	1280	1	1.59	9	3210	4	1.15	<5	35	840	<20	0.52	<10	<10
36223		2.10	1290	1	1.65	9	3080	9	2.57	12	34	710	<20	0.46	<10	<10
36224		2.81	1245	1	1.29	9	3590	218	2.76	14	39	703	<20	0.61	<10	<10
36225		2.69	1115	1	1.51	10	3110	4	1,51	<5	33	799	<20	0.51	<10	<10
36226		2.52	1460	1	1.49	9	2660	52	3.04	76	31	589	<20	0.44	<10	<10
36227		2.51	1780	1	0.97	9	2690	23	3.53	24	29	477	<20	0.45	<10	<10
36228		1.23	897	2	1.32	18	1400	280	6.02	112	18	387	<20	0.26	<10	10
36229		2.43	1150	Z	1.69	16	2620	12	1.91		29	840	₹20	0.47	< 10	×10
36230		2.32	970	2	1.79	9	2760	6	2,17	19	29	815	<20	0.45	<10	<10
36231		0.71	1070	1	1.55	9	2090	52	3.13	35	22	542	<20	0.34	<10	<10
36232		1.77	745	3	1.58	47	1200	48	1.39	12	1/	668	<20	0.31	<10	<10
36233		2.24	453	3	1.58	96	830	<2 2	1,31	<5	16	912	<20	0.32	<10	∿i0 10
56234		2.98	329	2	1.60	328	800	2	1.67	<u></u>	50	30 i	~20	0,00	~ 10	10
36235		2.75	389	3	1.48	97	830	<2	1.42	<5	17	664	<20	0.35	<10	10
36236		2.69	391	4	1.78	107	750	2	1.34	<5	17	63Z	<20	0.36	<10	iv ح10
36237		2.30	4/6	11	3.19	107	700	3	1.29	<0 <5	15	1020	~20	0.30	<10	<10
36238		2.11	/ 66	3	1.29	87	640	~2	1.52	<5	12	1020	<20	0.25	<10	10
30239		1.07	400	3	1.21	07	040	~2	1.20	~0	12	,020	120	0,20	-10	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 23- OCT- 2010 Account: ESOURA

Project: Monashee

35:00 106 40 89 36:01 246 01 36:02 95 <10 78 36:03 153 <10 124 36:04 103 <10 124 36:05 106 <10 78 36:06 111 <10 81 36:07 112 80 36:08 158 <10 84 36:09 116 40 39 36:00 116 44 39 36:10 205 <10 64 36:11 104 64 36:12 109 10 85 36:13 109 10 20 36:14 163 <10 94 36:15 205 <10 86 36:18 204 10 90 36:21 276 <10 104 36:221 276 10 104 </th <th>Sample Description</th> <th>Method Analyte Units LOR</th> <th>ME-ICP61 V ppm }</th> <th>ME-ICP61 W ppm 10</th> <th>ME-ICP61 Zn ppm 2</th> <th></th>	Sample Description	Method Analyte Units LOR	ME-ICP61 V ppm }	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
36201 246	36200		106	<10	89	
36202 96 <10 78 36203 153 <10	36201		246	<10	201	
36203 153 <10 136 36204 163 <10	36202		95	<10	78	
36204 163 ct0 124 36205 106 ct0 76 36206 111 ct0 81 36208 158 ct0 84 36209 115 ct0 369 36209 115 ct0 369 36210 205 ct0 64 36211 212 ct0 67 36212 130 ct0 56 36213 199 10 85 36214 163 ct0 74 36215 268 10 102 36216 269 10 102 36218 304 10 90 36221 276 ct0 14 36222 287 ct0 91 36223 276 10 14 36224 339 ct0 115 36225 279 ct0 14 36226 272 10	36203		153	<10	136	
36205 106 +10 78 36206 111 +10 81 36207 112 +10 80 36208 158 +10 84 36209 115 +10 84 36209 115 +10 84 36211 212 +10 64 36213 169 10 85 36214 163 +10 85 36215 226 +10 86 36216 229 10 102 36217 229 +10 90 36220 286 +10 90 36221 286 +10 90 36222 297 +10 92 36223 276 10 104 36224 39 +10 318 36225 279 +10 104 36226 279 +10 104 36227 286 +10 14 36228 279 +10 104 <	36204		163	<10	124	
36206 111 <10	36205		106	<10	78	
36207112 <10 90 36208 158 <10 84 36209 115 <10 359 36211 212 <10 67 36212 130 <10 55 36213 19910 85 36214 163 <10 74 36215 265 10 102 36216 268 10 102 36217 287 <10 88 36218 304 10 99 36220 296 <10 104 36222 297 <10 104 36223 276 10 104 36224 339 <10 318 36224 339 <10 318 36225 279 <10 104 36226 272 10 52 36227 261 10 34 36228 279 <10 104 36229 248 <10 142 36229 248 <10 115 36231 183 10 44 36233 157 <10 128 36234 194 10 159 36235 166 <101 36236 156 <10 36235 166 <101 36236 156 <10 36237 166 <101 36238 102 363623910010236238102	36206		111	<10	81	
36208 158 <10 84 36210 205 <10 64 36211 212 <10 67 36212 130 <10 56 36213 199 10 85 36214 163 <10 74 36215 225 <10 88 36216 289 10 102 36217 297 <10 83 36218 304 10 90 36219 220 <10 92 36222 277 <10 92 36223 276 104 36224 338 <10 36225 279 <10 36224 338 <10 36225 279 <10 36224 388 <10 36225 279 <10 36224 388 <10 36225 279 <10 36224 388 <10 36225 279 <10 36226 272 10 36227 261 10 36228 104 36229 248 <10 36231 157 <10 36233 157 <10 36234 166 <10 36235 166 <10 36234 164 36235 166 <10 36235 166 <10 36236 150 36237 134 36238 100 <td>36207</td> <td></td> <td>112</td> <td><10</td> <td>80</td> <td></td>	36207		112	<10	80	
36209115<10 359 36211 205<10	36208		158	<10	84	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36209		115	<10	359	
36211 212 <10 67 36212 100 410 56 36213 199 10 85 36214 163 <10 86 36215 205 <10 86 36216 289 10 002 36217 287 <10 90 36218 206 <10 90 36219 280 <10 90 36220 226 <10 90 36222 287 <10 104 36224 339 <10 104 36225 277 10 104 36224 339 <10 316 36225 277 <10 104 36226 272 100 115 36227 287 <10 104 36228 277 100 34 36229 248 <10 115 36230 225 <10 142 36231 183 10 44 36232 166 <10 36233 157 <10 36234 194 100 36235 166 <10 36236 150 $<103623714410036238166<10362391009636239100105362391001053623910010536239100105$	36210		205	<10	64	
36212130 <10 56 36213 1991085 36214 163 <10 74 36215 226 <10 89 36216 28910102 36217 287 <10 93 36218 3041090 36219 280 <10 90 36220 296 <10 104 36221 274 <10 92 36222 297 <10 14 36223 27610115 36224 339 <10 318 36226 2721052 36227 26110 36227 284 <10 36226 27210 36227 26110 36228 14410 36227 249 <10 36228 14410 36230 255 <10 36231 18310 36233 157 <10 36234 196 <10 36235 196 <10 36236 196 <10 36237 134 <10 36238 196 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 100 <10 36239 <td< td=""><td>36211</td><td></td><td>212</td><td><10</td><td>67</td><td></td></td<>	36211		212	<10	67	
36213 199 10 85 36214 163 <10	36212		130	<10	56	
36214 163 <10 74 36215 205 <10 88 36216 268 10 102 36217 287 <10 93 36218 304 10 90 36220 296 <10 99 36221 274 <10 92 36222 297 <10 104 36221 277 <10 104 36224 339 <10 318 36225 277 <10 104 36226 272 10 52 36225 272 10 104 36226 272 10 52 36227 261 10 34 36228 144 10 142 36230 255 <10 81 36231 183 10 44 36232 144 10 159 36231 183 10 44 36232 144 10 159 36231 183 10 44 36232 144 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 97 36238 100 <10 99	36213		199	10	85	
36215 205 <10	36214		163	<10	74	
36216 269 10 102 36217 287 <10 93 36218 304 10 90 36210 286 <10 99 36220 296 <10 104 36221 274 <10 92 36222 297 <10 104 36223 276 10 115 36224 339 <10 318 36275 272 10 52 36276 272 10 52 36276 272 10 52 36227 261 10 36228 144 10 36229 248 <10 36230 255 <10 36231 183 10 44 10 36233 166 <10 36234 194 <10 36235 166 <10 36237 134 <10 36238 100 <10 36239 100 <10 36239 100 <10	36215		205	<10	88	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	36216		269	10	102	
36218 304 10 90 36220 296 <10 104 36221 274 <10 92 36222 297 <10 104 36223 276 10 115 36224 339 <10 318 36225 279 <10 104 36226 272 10 52 36276 272 10 52 36226 272 10 54 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36234 194 <10 191 36235 166 <10 101 36236 150 <10 96 36237 134 <10 97 36238 100 <10 99	36217		287	<10	93	
36219 280 <10 99 36220 296 <10 104 36221 274 <10 92 36222 297 <10 104 36223 276 10 115 36224 339 <10 318 36225 279 <10 104 36226 272 10 52 36227 261 10 34 36228 1144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36234 194 <10 191 36236 150 <10 96 36237 134 <10 97 36238 100 <10 99	36218		304	10	90	
36220 296 <10 104 36221 274 <10 92 36222 297 <10 104 36223 276 10 115 36226 272 10 52 36226 272 10 52 36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36234 194 10 191 36236 150 <10 96 36237 134 <10 97 36236 150 <10 96 36237 134 <10 97 36238 100 <10 99	36219		280	<10	99	
36221 274 <10 92 36222 297 <10 104 36224 339 <10 115 36224 339 <10 116 36225 279 <10 104 36226 272 10 52 36226 272 10 52 36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36234 194 10 159 36234 194 101 159 36236 150 <10 96 36236 150 101 136 36236 150 <10 97 36238 102 <10 136 36239 100	36220		296	<10	104	
36222 297 <10 104 36223 376 10 115 36224 339 <10 318 36225 279 <10 104 36226 272 10 52 36277 226 10 34 36228 144 10 142 36229 248 <10 115 36231 183 10 44 36232 149 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 96 36237 134 <10 97 36238 100 <10 99	36221		274	<10	92	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36222		297	<10	104	
36224 339 <10 318 36225 279 <10 104 36226 272 10 52 36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 96 36237 134 <10 97 36238 102 <10 136 36239 100 <10 99	36223		276	10	115	
36225 279 <10 104 36226 272 10 52 36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 97 36237 134 <10 97 36238 102 <10 136 36239 100 <10 99	36224		339	<10	318	
36226 272 10 52 36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 96 36237 134 <10 97 36238 102 <10 136 36239 100 <10 99	36225		279	<10	104	
36227 261 10 34 36228 144 10 142 36229 248 <10 115 36230 255 <10 81 36231 183 10 44 36232 149 10 159 36233 157 <10 128 36234 194 <10 191 36235 166 <10 101 36236 150 <10 96 36237 134 <10 97 36238 102 <10 136 36239 100 <10 99	36226		272	10	52	
3622814410142 36229 248<10	36227		261	10	34	
36229 248 <10 115 36230 255 <10	36228		144	10	142	
36230 255 <10	36229		248	<10	115	
36231 183 10 44 36232 149 10 159 36233 157 <10	36230		255	<10	81	
36232 149 10 159 36233 157 <10	36231		183	10	44	
36233 157 <10	36232		149	10	159	
36234 194 <10 191 36235 166 <10	36233		157	<10	128	
36235 166 <10 101 36236 150 <10	36234		194	<10	191	
36236 150 <10 96 36237 134 <10	36235		166	<10	101	
36237 134 <10 97 36238 102 <10	36236		150	<10	96	
36238 102 <10 136 36239 100 <10	36237		134	<10	97	
36239 100 <10 99	36238		102	<10	136	
	36239		100	<10	99	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 23-OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151300

Sample Description	Method Analyte Units LOR	ME- ICP61 Ag ppm 0.5	ME- 1CP6 } Al % 0.01	ME- ICP6 } As ppm 5	ME- ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 8i ppm 2	ME- 1CP6 1 Ca % 0.01	ME-1CP61 Cd ppm 0.5	ME-ICP61 Co ppm 3	ME- ICP6 T Cr ppm }	ME- ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-1CP61 Ga ppm 10	ME- ICP61 K % 0.01	ME- ICP61 La ppm 10
36240 36241		1.8 1.4	5.32 6.30	40 15	1030 1160	0.6 0.8	<2 <2	10.60 5.53	<0.5 <0.5	11 14	87 122	65 60	2.93 3.68	10 10	1.33 1.55	20 30
36242		1.7	4.97	17	950	0.7	<2	10,65	5.2	11	111	44	3.04	10	1.16	20
36243		0.6	5.84	23	1280	0.7	<2	7.34	3.6	13	128	50	3.27	10	1.53	20
36244		1.6	6.15	17	1400	0.9	<2	8.86	0,7	12	105	59	3.78	10	1.62	30
36245		2.2	6.56	11	1440	0.9	<2	8.03	0.8	13	90	58	4.20	10	1.69	20
36246		2.1	6.07	32	1390	0.8	<2	11.25	1.2	12	83	49	3,55	10	1,42	20
30247		3.4	2.60	37	200	<0.5	<2	24.4 18 0	U,S <0.5	, F	32	23	1.76	10	0.60	20
36249		0.9	6.63	15	1380	0.9	<2	6,83	~0.5 0,6	15	82	72	4.12	20	1.39	20
36250		1,8	5.36	136	1120	0.7	<2	11.25	1.0	13	77	54	3.28	10	1.08	20
36251		1.6	5,40	7	1170	0.8	<2	10.35	0.6	10	60	53	3.40	10	1.23	30
36252		1.9	4.91	69	1120	0.6	<2	13.60	0.5	10	65	35	2.66	10	0.89	20
36253		1.7	5.14	20	1070	0.7	<2	10.90	0.9	12	79	50	2.91	10	1.16	20
36254		1.6	5.06	15	1020	0.6	<2	11.65	0.7	12	76	4B	3.29	10	1.28	20
36255		1.3	6.34	9	1180	0.8	<2	8,73	0.8	11	72	43	3.40	10	1.57	20
36256		1.6	5.66	18	1120	0.7	<2	9.64	0.6	10	68	44	3.33	10	1.48	20
36257		1,4	7,39	12	1440	0.6	<2	10.05	<0.5	16	27	54	4.38	10	1.72	20
36236		1.0	5,22	7	990	0.7	<2	10.05	0.7	12	92 114	37	3.04	30 10	1.10	20
26260		1.0	4.20	19	570	0.0	~~	14 45	0.5		67	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 32	10	1.10	20
36261		11	7 97	30	720	12	<2	6.09	<0.5		51	20	8.37	20	2 37	40
36262		1.2	6.07	141	670	0.9	<2	7.98	<0.5	31	75	120	10.65	20	2.02	40
36263		1.0	6.17	<5	520	0.9	<2	8.62	<0.5	35	72	181	11.15	20	1.50	40
36264		1.3	6,63	6	630	1.0	<2	8.16	<0.5	31	62	163	10.95	20	1.69	40
36265	******	1.0	6,41	10	480	1.0	<2	11.50	<0.5	22	69	57	7.74	10	0.91	30
36266		1.4	8.68	<5	910	1.1	<2	7.21	<0.5	27	44	71	7.43	20	2.26	30
36267		1.5	8.00	492	800	1.1	<2	7.38	0.9	28	31	103	7.94	20	1,95	30
36268		0.9	6.85 6.08	7	870	0.9	<2	8.28	<0.5	34	91	98 106	10.10	20	2.14	30
30209		1,1	7.07	· ·	300	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.00	-0.5				0.34	20	2.00	30
36270		1.3	7.27	<0 892	890 750	0.9	<2	7.09	<0.5	30	50	96	9.31	20	2,29	30
36271		0.5	7.24		1150	1.0	3	8.05	~0.5 ∩ 8	30	59	58	10.40	20	2.57	30
36273		1.7	7.05	>10000	550	1.0	2	5,59	0,9	35	25	264	9,08	10	1.41	20
36274		<0.5	9.00	20	1030	1,1	3	7.30	<0.5	25	31	114	9.20	20	2,18	20
36275		1.0	8.43	4310	820	1.1	4	7,57	<0,5	21	31	67	7,28	20	2.44	20
36276		0.9	5.53	732	430	0.7	2	11.65	<0.5	14	17	88	6.52	10	1.11	10
36277		0.8	7.24	174	650	0.9	3	9.67	<0.5	20	27	139	8.08	20	1.92	20
36278		<0.5	8.11	22	1660	8.0	2	7.10	0.5	31	54	107	9.61 7.34	20	2.53	20
36279		0.5	8.32	17	1810	1.0	ు	8.07	U.6	25	85	90	1.31	20	2.10	20

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 23- OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151300

Sample Description	Method Analyte Units LOR	ME-1CP61 Mg % 0.01	ME- (CP6) Mn pptt) S	ME-ICP61 Mo ppm 1	ME-1CP61 Na % 0.03	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.01	ME- ICP61 Sb ppm S	ME-ICP61 Sc ppm 1	ME- ICP61 Sr ppm }	ME-ICP61 Th ppm 20	ME- ICP61 Tí % 0.01	ME-ICP61 T1 ppm 10	ME-ICP61 U ppm 30
36240 36241 36242		1.74 2.38 2.15	473 304 496	2 2 3	1,53 1,45 1,07	73 98 83	720 860 770	3 2 6	1.12 1.35 0.88	<5 <5 12	14 18 13	945 789 895	<20 <20 <20	0.29 0.36 0.27	<10 <10 <10	10 10 10
36243 36244		2.18 1.71	371 375	1 3	1.19 1.05	82 55	730 1200	<2 2	0.85 1.09	<5 6	17 18	710 1240	<20 <20	0.35 0.40	<10 <10	<10 <10
36245 36246 36247		1.69 1.64 0.83	374 493 289	3 3 1	1.40 1.37 1.03	51 50 20	960 1020 660	<2 2 <2	1.10 0.77 0.59	<5 7 <5	19 17 8	1110 1500 3290	<20 <20 <20	0.43 0.38 0.14	<10 <10 <10	10 <10 <10
36248 36249 26350		8.22 1.34	273 318	5 3	0.11 1.36	16 53	440 950	<2 3	0.41 1.33	<5 7	6 20	1430 1030	<20 <20	0.09 0.42	<10 <10	<10 <10
36250 36251 36252 36253		1.56 1.40 1.52	346 331 372	3 2 2	0.93 1.48 1.22	39 34 53	730 830 840	2 2 4	0.97 0.59 0.78	9 <5 <5	15 14 15	1310 1580 1360	<20 <20 <20 <20	0.34 0.32 0.31 0.33	<10 <10 <10 <10	<10 <10 <10 10
36254 36255		1.39 1.40	410 334	2	0.87	49	900 770	<2	0.82	<5 <5	15 17	1300	<20	0.33	<10	<10
36256 36257 36258		1,53 2.41 1.52	610 385	2 3 2	1.15 1.13	42 22 47	650 710	3 2 <2	0.69 0.63	<5 <5 <5	19 14	1180 1150	<20 <20 <20	0.33 0.32 0.31	<10 <10 <10	<10 <10 <10
36259 36260 36261		0.83 2.93	461 531 1225	2 1 13	0.70 1.50	57 36 9	580 5500	<2 <2 <2	0.65		15 12 33	1010 1070 847	<20 <20 <20	0.34	<10 <10 <10	<10 <10 <10
36262 36263 36264		4.14 3.89 4.01	1650 1610 1640	3 4 9	0.91 0.89 1.03	13 13 11	5920 7840 6270	<2 <2 <2	1.57 1.79 1.52	<5 <5 <5	46 43 46	557 684 779	<20 <20 <20	0.76 0.80 0.80	<10 <10 <10	<10 <10 <10
36265 36266		3.66 2.86	1910 1240	5 19	0.84	21 8	4280 3510	<2 <2	0.61	5 <5	40 33	1100 1250	<20 <20	0.36	<10 <10	<10 <10
36267 36268 36269		2.47 4.54 3.93	1315 1795 1555	11 1 2	1.58 1.01 1.04	8 18 11	3200 4390 5100	13 <2 <2	1.68 1.15 1.32	5 <5 <5	30 51 50	1060 791 844	<20 <20 <20	0.54 0.73 0.72	<10 <10 <10	<10 <10 <10
36270 36271		3.95 3.46	1540 1390 2030	1 2	1.21 1.31	10 18	3910 3400	<2 7 7	0.95	<5 <5 <5	46 35 48	852 783	<20 <20 <20	0.67 0.44 0.77	<10 <10 <10	<10 <10 <10
36272 36273 36274		2.23 3.09	1110 1375	2 52	1.43 1.53 1.61	4	2680 4360	13 6	2,40 1.40	<5 14 <5	40 25 35	771 1160	<20 <20 <20	0,43 0,65	<10 <10 <10	<10 <10 <10
36275 36276 36277		1.67 1.68 1.89	1050 1990 1685	6 1 <1	1.67 1,94 1.35	5 3 4	3640 2670 3610	13 6 6 7	1.53 3.79 2.96	7 16 5	34 23 35	939 1200 1020 1120	<20 <20 <20	0.56 0.38 0.50	<10 <10 <10	<10 <10 <10 <10
36278 36279		3.94 3.64	1530 1655	<1 <1	1,35 1.60	12 28	3950 3150	6	0.52	<5 <5	40 36	1440	<20 <20	0.62	<10	<10

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 23- OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME- ICP61 V ppm J	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
36240		134	<10 <10	95	
36241		192	<10	129	
36243		162	<10	205	
36244		189	<10	179	
36245		186	<10	158	
36246		188	<10	164	
36247		78	<10	57	
36248		6∠ 198	<10 <10	39 136	
36250		167	<10	140	
36251		138	<10	138	
36252		126	<10	105	
36253		152	<10	139	
36254		139	<10	117	
36255		151	<10	135	
36256		136	<10	121	
36258		172	<10	121	
36259		142	<10	105	
36260		107	<10	86	
36261		359	<10	108	
36262		541	<10	139	
36263		611	<10	133	
36264		561	<10	142	
36265		301	<10	111	
30200		324	<10	106	
36268		200 450	<10	142	
36269		435	<10	128	
36270		381	<10	132	
36271		329	<10	113	
36272		442	<10	156	
36273		248	<10	155	
36274		333	<10	121	
36275		318	10	105	
36276		213	10	20	
302//		326	<10	48	
36279		257	<10	134	
20273		231	\$10		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 23-OCT- 2010 Account: ESOURA

									C	ERTIFIC	CATE O	F ANA	YSIS	VA101	51300	
ample Description	Method Analyte Units LOR	ME- ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME- ICP61 As ppm S	ME-ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	M£- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.03	ME- ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	M£- ICP61 Ст ррт 1	ME-ICP61 Cu ppm 1	ME- ICP63 Fe % 0.01	ME-ICP61 Ga ppm 10	ME- ICP61 K % 0.03	ME- ICP61 La ppm 10
36280 36281 36282 36283 36284 36284		<0.5 <0.5 0.6 0.8 0.6	8.09 8.01 8.14 7.93 6.71	8 9 32 25 477	1580 1380 1000 720 680	0.9 0.9 1.0 1.2 1.0	5 2 <2 2 6	7,85 8.06 8.76 8.71 10.20	0.7 <0.5 <0.5 0.5 <0.5	26 25 23 26 27	50 52 42 61 78	65 89 110 90 77	8.99 8.57 7.43 7.69 7.44	20 20 20 20 20 20	2.30 2.08 1.93 1.62 2.12	20 20 20 20 20 20
36285 36286 36287 36288 36289		0.5 <0.5 0.5 0.5 0.8	5.85 7.32 7.16 6.81 7.14	1905 18 463 481 60	540 930 810 1050 1310	1.0 1.1 1.2 1.0 1.1	6 4 3 <2 <2	8.82 8.01 6.15 8.54 7.54	<0.5 <0.5 0.7 0.6 <0.5	39 34 27 33 41	75 76 75 87 83	120 69 79 69 129	9.45 9.47 8.30 9.16 8.97	10 20 20 20 20	1,55 1,88 2,69 1,94 2,55	20 20 20 20 20
36290 36291 36292 36293 36293 36294		0.8 0.5 0.7 0.8 0.7	7.16 7.35 6.94 9.61 8.90	40 13 2990 24 <5	1450 1100 1170 540 1700	0.9 1.0 1.1 1.2 0.9	<2 2 2 <2 <2 <2	6.38 7.61 6.24 10.85 7,55	<0.5 <0.5 0.5 <0.5 <0.5	27 26 24 21 30	81 68 53 14 44	128 69 70 58 97	8.49 8.55 7.55 6.89 8.91	20 20 20 20 20 20	2.38 2.12 2.31 1.13 2.56	20 20 20 10 20
36295 36296 36297 36298 36298 36299		<0.5 0.7 0.9 0.6 0.6	8.67 6.72 8.34 9.48 7.77	7 175 <5 9 8	1250 1200 1320 1670 1400	0.9 0.9 0.8 1.1 0.7	<2 <2 5 4 2	7.21 5.37 6.72 4.26 7.41	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	25 18 36 19 30	38 47 21 30 21	61 44 128 92 117	9.06 7.19 10.45 8.41 9.09	20 20 20 20 20 20	2.23 2.40 2.92 2.59 2.80	20 20 20 20 20 20
36300 36301 36302 36303 36304		0.6 0.8 0.5 0.7 <0.5	7.01 7.04 6.91 7.63 5.82	2200 1625 14 24 6810	990 280 200 210 270	1.0 1.1 1.0 1.1 0.9	3 3 5 2 <2	7,69 10.80 12.95 11.40 11.00	<0.5 0.9 1.3 <0.5 <0.5	29 24 19 24 31	39 50 51 70 86	118 112 69 135 121	9.79 8.30 6.77 7.76 8.62	20 20 20 20 20 10	2.06 0.93 0.43 0.57 0.61	20 20 20 20 20 20
36305 36306 36307 36308 36309		0.8 0.6 0.6 1.0 0.6	3.53 4.21 6.36 6.70 7.37	2340 18 74 >10000 63	140 40 530 300 550	0.6 0.8 0.8 0.8 1.1	4 2 3 <2 <2	8.72 14.1 9.82 10.40 6.88	<0.5 1.0 <0.5 <0.5 <0.5	13 23 28 27 27	52 141 61 30 39	54 121 45 79 52	4.44 8.18 9.29 7.68 9.27	10 10 20 20 20	0.47 0.08 1.52 0.92 1.88	10 20 20 30 30
36310 36311 36312 36313 36314		1.2 1,4 1.2 1.2 1.3	7.10 8.06 8.06 8.75 1.08	19 172 15 12 20	620 730 730 610 240	1.0 1.2 1.1 1.1 <0.5	<2 <2 <2 <2 <2 <2 <2	6.92 7.57 6.44 7.75 1.62	<0.5 <0.5 <0.5 <0.5 0.5 0.5	28 25 24 26 5	46 42 46 44 26	56 33 51 43 17	9,51 9.19 8.06 8.62 1.40	20 20 20 20 <10	1.89 1.82 1.99 1.84 0.29	30 30 20 30 10
36315 36316		<0.5 1.6	1.04 0.97	11 6	300 370	<0.5 <0.5	<2 <2	1.05 0.24	2.0 5.5	3 4	24 30	13 14	13.10 1.03	<10 <10	0.15 0.35	10 10

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 23-OCT- 2010 Account: ESOURA

CERTIFICATE OF ANALYSIS VA10151300

Sample Description	Method Analyte Units LOR	ME-JCP61 Mg % 0.01	ME-ICP61 Mn ppm S	ME- ICP61 Mo ppm }	ME- 1CP61 Na % 0.01	ME- ICP61 Ni ppm 3	ME-ICP61 P ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.03	ME- ICP61 Sb ppm S	ME-3CP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME- ICP61 Ti % 0.03	ME-ICP61 Tf ppm T0	MÉ-ICP61 U ppm 10
36280 36281		3.73 3.85	1745 1670	<1 <1	1.70 1.55	8 9	3800 3540	7 8	0.28 0.97	<5 <5	41 40	1350 1300	<20 <20	0.65 0.60	<10 <10	<10 <10
36282 36283 36284		2.14 2.98 2.59	1480 1470 1765	<1 <1	1.58 1.15 0.93	9 17 17	2800 2760 2870	4 5 10	1.72 0.92 1.62	<5 <5 7	32 36 37	1320 876 896	<20 <20 <20	0.46 0.52 0.46	<10 <10 <10	<10 <10 <10
36285 36286 36287		3.41 4.46 3.97	1785 1780 1370	<1 <1	1.15	17 15	3350 4370 3700	9 7 10	3.41 0.61	<5 <5	44 47	719 850	<20 <20	0.51 0.67	<10 <10	<10 <10 <10
36287 36288 36289		4.79 3.61	1735 1550	<1 <1	0.97 1,05	21 15	3750 3440	6 10	0.59 2.08	~5 <5 <5	43 43 41	783 901	<20 <20 <20	0.63 0.56	<10 <10 <10	<10 <10 <10
36290 36291 36292		3.84 3.95 3.08	1395 1625 1245	<1 <1 1	1.27 1,30 1.28	14 11 9	3640 3820 3530	5 6 18	1.64 0.80 1.14	<5 <5	40 43 41	826 899 831	<20 <20 <20	0.55 0.60	<10 <10 <10	<10 <10 <10
36293 36294		2.05 3.76	1420 1565	1 <1	1.69 1.59	5 7	1720 4510	6 7	0.53 0.70	6 <5	22 39	1600 1480	<20 <20 <20	0.46 0.66	<10 <10 <10	<10 <10 <10
36295 36296 36297		3.52 2.93 3.91	1615 1180 1565	<1 2 2	1.64 1.38 1.59	5 6 3	3830 3070 4680	5 7 6	0.69 0.62	<5 <5	42 35 52	1190 821 1080	<20 <20	0.69 0,52	<10 <10	<10 <10
36298 36299		3.32 3.78	1135 1440	1 3	2.19 1.24	2 4	3880 4940	6 9	1.00 1.20	<5 <5 <5	32 53	965 989	<20 <20 <20	0.66 0.75	<10 <10 <10	<10 <10 <10
36300 36301 26302		3.26 3,37 2.95	1515 1690 1405	1 <1 1	1.16 0.97	14 20 29	4470 4050 2470	6 5 3	1.76 1.30	6 <5	47 38 28	870 1030	<20 <20	0.61 0,38	<10 <10 <10	<10 <10
36302 36303 36304		3.26 3.52	1595 1590	<1 2	1,16 1,09	41 55	3040 3130	6 7	1.46 2.33	<5 8	20 34 37	1340 762	<20 <20 <20	0.30 0.48	<10 <10 <10	<10 <10 <10
36305 36306 36307		1.68 3.84	1085 1570 1710	2 5	0.80 0.31	31 111	1370 2490	3 7 7	0.88	<5 <5	17 34	519 991 777	<20 <20 <20	0.28	<10 <10 <10	<10 <10 <10
36307 36308 36309		2.90 3.79	1470 1380	2 <1	2.09 1.48	15 11	4070 4350	10 2	1.50 0.69	11 <5	44 52	801 723	<20 <20 <20	0.63 0.77	<10 <10 <10	<10 <10 <10
36310 36311		3.93 3.67 2.40	1460 1430	<1	1.37 1.58	12 9	4340 4240 3240	<2 <2	0.86 0.39	5 <5	54 50	769 1030	<20 <20	0.80 0.79	<10 <10	<10 <10
36312 36313 36314		3.19 3.49 0.18	1355 241	<1 1	1.43 1.51 0.28	13 11 25	4010 160	<2 <2 16	0.78 0.55 0.04	<5 <5	56 44 4	1120 172	<20 <20 <20	0.72 0.04	<10 <10 <10	<10 <10 <10
36315 36316		0,11 0.08	833 95	6 1	0.31 0.08	90 13	130 200	<2 <2	0.05 0.02	5 <5	4 3	149 38	<20 <20	0.02 0.04	<10 <10	<10 <10

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ESO URANIUM CORP. 408 - 1199 WEST PENDER ST. VANCOUVER BC V6E 2R1

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 23-OCT- 2010 Account: ESOURA

Project: Monashee

Sample Description	Method Analyte Units LOR	ME~ ICP61 V ppm }	ME-ICP61 W ppm 10	ME-ICP6} Zn ppm 2	
36280 36281 36282 36283		383 357 296 316	<10 <10 10 <10	140 102 86 115	
36284		320	20	65	
36285 36286 36287 36288 36288		336 423 364 368 363	<10 <10 <10 <10 <10	89 140 167 153 103	
36290 36291 36292 36293 36293 36294		367 405 347 238 377	<10 10 <10 <10 <10 <10	103 142 143 75 130	
36295 36296 36297 36298 36299		374 321 435 369 414	<10 <10 <10 <10 <10	125 103 143 108 132	
36300 36301 36302 36303 36304		374 313 258 286 319	<10 <10 <10 <10 <10 <10	121 124 146 92 99	
36305 36306 36307 36308 36309		179 374 435 365 436	10 <10 <10 20 <10	77 267 98 110 134	
36310 36311 36312 36313 36314		454 442 373 418 31	<10 <10 <10 <10 <10 <10	131 137 119 121 39	
36315 36316		18 24	<10 <10	109 235	