ASSESSMENT REPORT ON DRILLING

RED CLIFF EAST PROPERTY

Located 24 kilometers northeast of Stewart, British Columbia in Skeena Mining Division NTS 104A/4W

BC Geological Survey Assessment Report 32019

56° 06'30" N LATITUDE 129° 53'10" W LONGITUDE

Event Number: 4825324

On Behalf of Nanika Resources Ltd Vancouver, BC

Report Alojzy Walus, M.Sc., P. Geo. E-mail: alexwalus@hotmail.com by

January 20, 2011

TABLE OF CONTENTS

	page
INTRODUCTION	2
Property Location and Access	2
Physiography, Topography and Climate	2
Property Ownership	2
Work history	6
GEOLOGY	6
Regional geology	6
Property Geology	7
Alteration and Mineralization	8
2010 ROCK SAMPLING	8
2010 DRILLING	9
Introduction Results	9
CONCLUSIONS	12
RECOMMENDATIONS	12
REFERENCES	13
CERTIFICATE OF AUTHOR'S QUALIFICATIONS	14
MINERAL CLAIMS EXPLORATION STATEMENT	15
STATEMENT OF EXPENDITURES	16

LIST OF FIGURES AND TABLES

Figure 1	Location Map	4
Figure 2	Claim Map	5
Figure 3	Drillholes and Rock Samples Location Map	11
Table 1	Samples Coordinates and Description	8

LIST OF APPENDICES

Appendix I	Drillogs with Gold and Silver Results
Appendix II	Drillholes Cross Sections
Appendix III	Copies of Certificates of Analyses
INTRODUCTION	<u>[</u>

Property Location and Access

The property is situated in the lower part of the American Creek Valley extending 3 kilometres up the creek from its confluence with Bear River. The claim area is centered on 56° 06'30''N latitude and 129° 53'10'' W longitude on NTS sheet 104 A/4. A map with marked location of the claims printed from ARIS database is presented on figure 1.

Access to the property is via Highway 37A from Stewart to the American Creek access road constructed by other exploration companies which bisects the middle of the property providing excellent access to the lower portions of the claims. Helicopter must be utilized to access higher areas of the property. A helicopter can be chartered a year round from Prism Helicopter base in Stewart.

Physiography, Topography and Climate

In general terms the property is typified by the precipitous slopes of the eastern Coast Mountains. Relief ranges from 150 m in the American Creek Valley to over 500 m near the western edge of the claim with a good portion of the property accessible on foot. Water supply is plentiful as many glacial run-off streams drain into American Creek and Bear River.

Vegetation varies from mature stands of western hemlock blue spruce and Douglas fir at the lower elevations to alder higher on the slopes. On the steeper slopes where avalanches are a frequent occurrence only a combination of slide alder, mountain ash, huckleberry, stinging nettle and devil's club can exist.

The area receives heavy snowfall between the months of October and March with rainfall in the other months. Average precipitation is in the order of 250 centimeters of rainfall and 20 meters of snow. Due to the large snowfall, the surface exploration in the Stewart area is restricted to summer and early fall with the maximum rock exposure occurring in late August to October. However, the area of the confluence of American Creek and Bear River receives much less snow compare to surrounding areas.

Property Ownership

The Read Cliff East property consists of ten mineral claims totaling 315.17 hectares located 24 kilometres northeast of Stewart, BC. Relevant claim information is summarized below:

409603	Mineral	JOE DOG 5	2016/dec/20	25
409604	Mineral	JOE DOG 6	2016/dec/20	25
409605	Mineral	JOE DOG 7	2016/dec/20	25
409606	Mineral	JOE DOG 8	2016/dec/20	25
409607	Mineral	JOE DOG 9	2016/dec/20	25
409608	Mineral	JOE DOG 10	2016/dec/20	25
409609	Mineral	JOE DOG 11	2016/dec/20	25
409610	Mineral	JOE DOG 12	2016/dec/20	25
409611	Mineral	JOE DOG 13	2016/dec/20	25
607959	Mineral		2016/dec/20	90.17
				Total 315.17

The claims are presently 100 % owned by Nanika Resources of Vancouver, BC. A claim map is shown on figure 2, printed from ARIS database.

Work History

There was not much work done on these claims before 2009. The only reported work on the Joe Dog mineral claims 5 to 13 was initiated in 2005 by the former claim owner Jim Marx. The work included a seismic refraction survey conducted by Geophysicist Mike Powers along the 455 metres of cut line. The survey was to determine the depth of the bedrock and to estimate the potential volume of the gravel deposited along American Creek.

In 2009, Nanika Resources conducted a geochemical program during which a total of 22 rock, 4 silt and 155 soil samples were collected. Of the 22 rock samples collected during this program, 10 samples returned significant metal values with up to 170 ppb for gold, 126.3 g/t for silver, 1.18 % for copper, 0.73 % for zinc and 0.27 % for lead. Four silt samples returned 314, 135, 344 and 98 ppb gold with silver values ranging from 0.2 to 2.0 ppm. Soil samples from a 250 meter long section of the soil contour line showed silver values ranging from 3.2 to 11.9 ppm along with significant values in copper, lead and zinc.

GEOLOGY

Regional Geology

The Red Cliff East property lies along the eastern edge of the Coast Crystalline Complex within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age. Portions of the Stewart area are underlain by Triassic age Stuhini Group (Greig, C.F, 1994). The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark gray, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse-grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and minor coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of trough filling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows. Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark gray to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark gray, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone. Alldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are located in the Mitchell Glacier and Knipple Glacier areas.

The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite. Some are likely related to the late phase offshoots of the Coast plutonism, other is synvolcanic and Tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-over thrusts on strikes parallel to the major fold axis, cross-axis steep angled faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds.

Property Geology

The property area is underlain by volcanic and volcaniclastic rocks belonging to the Unuk River Formation of Lower Jurassic age. On the east side of American Creek, black argillites and/or tuffs are highly sheared and locally silicified. Rocks are exposed along an old logging road. Strike of the rocks appears to be north south with a steep dip to the west. On the west side of American Creek, the rocks are weakly sericite altered, green andesite tuffs with up to 5 % fine grained pyrite. Rocks are exposed along an exploration road extending up American Creek.

Although up to four periods of folding and five episodes of faulting have been identified in the Stewart Area, the overall structure of the property appears relatively simple. Faulting has played the major role with a series of north– south trending normal faults in the American Creek Valley. Perpendicular to these is a series of east – west trending faults in the vicinity of the property. The major structural feature of the property area is a north south anticline along the American Creek Valley. In general the bedding strikes are northerly subparallel to the valley sides. American Creek is located along a major north south fault zone.

Alteration and Mineralization

The most promising alteration-mineralization was found in several float samples collected during the 2009 exploration program in the southeast corner of claim 409603. The samples feature green-black chloritic alteration with the accompanying pyrite and up to 2% chalcopyrite, similar to alteration-mineralization present in Decade's Montrose zone. The samples assayed up to 170 ppb gold, 126.3 ppm silver and up to 1.2 % copper. Further north, a small semiangular float of strongly silicified rock with 20-30% pyrite and minor galena collected in the eastern part of 607959 claim assayed 80 ppb gold, 82.7 g/t silver, 0.27% lead and 0.73% zinc.

The northwest corner of the claim number 409609 features at least 200 metres long zone of silica-chlorite+/-sericite+/-carbonate+/-pyrite alteration. Nine samples collected from the zone did not record any anomalous values.

2010 ROCK SAMPLING

During the 2010 exploration program 6 grab and 7 float samples were collected from the property. They did not record anomalous precious or base metal values, except grab sample RCE-4 which shows anomalous silver (5.8 ppm) and copper (1010 ppm). Table 1 below shows samples coordinates and description. Location of the samples is marked on figure 3.

Sample #	Easting	Northing	Sample type	Sample Description
RCE-1	443993	6220000	Float	Angular boulder 50x30 cm of andesitic rock in most part replaced by
				quartz, chlorite and minor malachite.
RCE-2	444000	6219984	Grab	Andesite cut by slightly limonitic vuggy quartz veins 0.5 to 1,5 cm
				wide.
RCE-3	443911	6219918	Float	Angular, fist size boulder of silicified andesite with 5-10% very fine
				grained pyrite.
RCE-4	443976	6219907	Grab	Completely chlorite altered rock with some malachite on surface,
				also minor quartz replacement.
RCE-5	443987	6219815	Float	Big angular boulder of massive, completely quartz-sericite-pyrite

 Table 1
 Samples Coordinates and Description

				altered rock. Pyrite content 5-10%.
RCE-6	443934	6219875	Float	Composite sample of 4 small float pieces of slightly limonitic quartz.
RCE-7	443914	6219916	Float	Composite sample of several small pieces of milky quartz
RCE8	443914	6219916	Float	Composite sample of several small pieces chipped off from large
				boulder imbedded in creek bed composed of green-black chlorite and
				minor specularite or galena (?)
RCE-9	444272	6219592	Grab	2-3 cm wide quartz-chlorite-epidote vein with minor wad and
				rhodohrosite. Orientation 120/75E
RCE-10	444221	6219678	Grab	Irregular vuggy quartz-carbonate-chlorite veining.
RCE-11	443993	6220000	Float	Boulder with 3 cm wide quartz lesser chlorite vein with minor
				specularite.

2010 DRILLING

Introduction

The 2010 drilling program on Red Cliff East property consisted of 8 diamond drill holes totaling 1004 metres of NQ core. One hole could not reach bedrock and was terminated in overburden at 32.61metres. Information about each hole azimuth, dip and GPS coordinates is includes in drill logs (see appendix I). All drilling was done from 5 pads which locations are shown on figure 3. Drilling was done by Titan Drilling of Smithers, BC using a modified Longyear-38 drill. No camp was constructed on the property. Drillers stayed in Stewart and were driving every day to the job site. The entire core from the drilling was logged on the property. The boxes with the marked intervals for sampling have been transported to Stewart for splitting. After splitting, the entire remaining core was securely stored on the property.

A total of 51 core samples were collected from the holes. Eight samples collected from the hole RCE10-1 were analyzed for gold, silver and 31 elements ICP, the remaining 43 core samples were assayed just for gold and silver. All core and rock samples were analyzed by Actlabs of Ancaster, Ontario.

Results

Holes RCE10-1, 6, 7 and 8 tested a quartz-chlorite+/-sericite+/-carbonate+/-pyrite alteration zone. The zone is marked on the surface as a prominent ridge 50-70 metres wide and at least 200 metres long. The holes intersected broad intervals of weakly to very strongly silicified andesitic rocks with 3 to 10 percent quartz-carbonate veins. Sulphides were represented by trace to 5% medium to coarse grained pyrite often accompanied by black-green chlorite. Locally trace to minor chalcopyrite, galena and sphalerite were also noted. Core samples collected from these holes were not anomalous in gold or silver.

Hole RCE10-2 was drilled to test section of the 2009 soil line which returned anomalous values in silver, copper, lead and zinc. The hole intersected some carbonate lesser chlorite and epidote veining. In a few spots trace to minor pyrite, chalcopyrite and sphalerite were seen. Six core samples collected from the hole did not recorded anomalous gold or silver values.

Holes RCE10-3 and 4 tested a wide fracture/fault zone which showed weak copper mineralization. The holes encountered only weak carbonate+/-chlorite+/-epidote veining and minor amounts of pyrite. Core samples collected from these two holes did not returned anomalous gold or silver values.

Figure 3 Drillholes and Rock Samples Location Map

CONCLUSIONS

The results from the core and rock samples obtained during the 2010 exploration program did not returned any anomalous precious metal values. One of the rock samples yielded anomalous silver (5.8 ppm) and copper (1010 ppm) values.

RECOMMENDATIONS

The recommended work on the Red Cliff East property includes the following:

- 1) More prospecting and soil sampling above a portion of the 2009 soil line which showed the most anomalous results.
- 2) An attempt should be made to explain the source of highly anomalous gold in the 2009 silt samples collected from creeks draining the western portion of the property.

The cost of the recommended work is estimated at 20,000 dollars.

REFERENCES

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 4. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 5. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 6. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 7. MARX, J. (2005): Assessment Report on Joe Dog 5-13 Mineral Claims.
- 8. MINFILE
- 9. MOUNTAIN BOY PRESS RELEASES (2007-2009)
- 10. SMITHERINGALE, W. G., (1976); Report on 1976 Exploration Program and Exploration Potential of the Bear Pass property and Rufus Creek-Bear River Pass Area, B.C.E.M.P.R. Assessment Report 6382.
- 11. Walus, Alex; (2009); Assessment Report

CERTIFICATE OF AUTHOR'S QUALIFICATIONS

I, Alojzy Aleksander Walus, of 8546-164 Street, Surrey, in the Province of British Columbia, do hereby certify that:

- 1. I am a graduate of the University of Wroclaw, Poland and hold M.Sc. Degree in Geology.
- 2. I am a consulting geologist working on behalf of Nanika Resources.
- 3. I have worked in British Columbia from 1988 to 2010 as a geologist with several exploration companies.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. This report is based on my work completed on the Red Cliff East Property in the period from October 9 to 27, 2010.
- 6. I authorize Nanika Resources to use information in this report or portions of it in any brochures, promotional material or company reports.

"Alojzy A. Walus"

DATED AT VANCOUVER, B.C., January 20, 2011

Alojzy A. Walus, P.Geo.

STATEMENT OF EXPENDITURES - EVENT # 4825324

	1
Geologist (26 days @ \$500/ a day)	13000.00
Car Rental plus gas	2145.57
Accommodation/food	1942.64
Drilling	89575.05
Excavator(road construction)	17397.00
Assays	2431.00
Field supplies	397.41
Travel (air fares plus hotels)	2334.17
Report	1000.00
TOTAL	130222.84

APPENDIX I

DRILLOGS WITH GOLD AND SILVER RESULTS

DDH:	RCE10-	1	Total depth: 96.62m Core size: NQ	Logge	ed by: /	A. Walus	S					
Azimuth	n: 65°		Start: October 11, 2010	Eastin	ng:	444650	}		Northin	g:	6219	085
Inclinatio	on: 55°		Completion: October 13, 2010	Elevat	tion:							
Interva	l (m)	Rock type	Rock description - alteration, mineralization,		Sample	interval	(m)			Assay	1	
From	To		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)			
0.00	9.14	Casing							l		_	
9.14	38.25	Andesite	Strong chlorite alteration.									
9.14	14.32		Locally weak silicification, 3-10% quartz veins and									1
			replacements.									
												11
14.32	33.83		Quartz veins, stockwork, replacements and quartz									
			cemented breccia. Quartz content ranges from 10 to									1
i			100%. In many places weak to strong silicification.									
/			Trace to 5% pyrite which forms diseminations, blebs								()	
			and steaks. In a few place trace galena and trace to									
			minor chalcopyrite.									
15.85	16.76		Interval almost completely(>90%) replaced by quartz.	101	15.85	16.76	0.91	<5	<0.2			
			Dense network of fractures filled with limonite.									
20.42	21.24		Weakly to moderately silicified andesite with 10-15%	102	20.42	21.24	0.82	<5	<0.2			
			quartz veins and replacements, minor pyrite. Trace									
			galena and chalcop. in the last 10 cm of the interval.									
												1
23.93	24.84		Interval with 70-80% of quartz veins and replace-	103	23.93	24.84	0.91	<5	<0.2			[]
			ments, 1-2% pyrite. In a few places there are									
			concentrations of clay minerals.						l			
									1			
29.41	31.70		Interval partly replaced by felsite					<u></u>				
						0			1			
36.58	37.49		In places weak silicification, 3-5% quartz-carbo-	104	36.58	37.49	0.91	7	0.4			
			nate veinlets. Pyrite 3-5%, minor chalcopyrite.									
			The latter is associated with green-black chlorite									1
37.49	38.25		Interval with 3-5% quartz lesser carbonate veins	105	37.49	38.25	0.76	6	0.2			
			and replacements. Disseminated pyrite 3-5%									
			accompanied by greenish-black chlorite.									
38.25	42.37	Fracture/fault	Very badly broken core to rock chips, 3-5% quartz-	106	38.25	40.54	2.29	5	<0.2			
		Zone	carbonate veins and replacements, minor pyrite.									

	RCE10-1			1								
Int	erval	Rock type	Rock description - alteration, mineralization,		Sample i	interval ((m)	Assav				
From	To	ricon type	structure	Sample	From	То	Width	Au(a/t)	Aa(a/t)	I	í –	<u> </u>
TTOM	10		ondotaro						- 3(3-7		-	
42.37	96.62	Andesite	Strong chlorite alteration. Locally minor pyrite. In a									
			few places shearing/foliation ranging from 45 to 65°									
			to c/a. The rock contains 1-5% guartz-carbonate				-					
			veinlets and replacements. Trace to 2% pyrite									
			accompanied by greenish-black chlorite.									
			1									
77.11	78.03		Andesite with 1-2% pyrite accompanied by green-	107	77.11	78.03	0.92	12	1			
			black chlorite.									
82.91	84.12		Weakly to moderately silicified andesite with 1-2%	108	82.91	84.12	1.21	7	0.3			
			disseminated pyrite accompanied by greenish-black									
			chlorite.	-								
				_	-							<u> </u>
			96.62m EOH							-		
				_								<u> </u>
												-
										-		
				_			<u> </u>					<u> </u>
												<u> </u>
				_	2	<u> </u>						
											-	-
<u> </u>				-							-	
				-	-						-	-
				-							-	<u> </u>
												<u> </u>
				-								
												1

DDH: RCE10-2			Total depth: 197.20m Core size: NQ	Logged by: A. Walus								
Azimut	th: 250°		Start: October 13, 2010	Easting	j:	444424			North	ing:	6219	392
Inclinat	ion: 45°		Completion: October 15, 2010	Elevati	on:							
Interv	al (m)	Rock type	Rock description - alteration, mineralization,	S	ample in	terval (n	n)			Assay	/	
From	To		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)		
0.00	6.09	Casing										
6.09	115.21	Andesite	Andesite to andesite lapill-tuff. Strong sericite-									
			chlorite alteration. The rock contains 1 to 5%									
			carbonate lesser quartz, epidote and chlorite veinlets									
			Sporadically minor rodohrosite was also noted.		· · · · · · · · · · · · · · · · · · ·							
				100		05.00	0.04			-		
16.76	30.02		Carbonate-epidote-quartz veinlets and stockwork	109	24.69	25.60	0.91	<0.03	<3			
			5 to 40%.							<u> </u>		
00.44	00.50		Questa ablasita usin 7.9 am wide @ 45° to a/a							<u> </u>		
28.44	28.52									<u> </u>		
99.70	99.76		Carb epidote chlorite vein 2-3 cm wide @ 40 to c/a									-
00.70	00.70		Carbepidote-chionte veni 2-3 cm wide @ 40 to c/a.		_					1		
94 75	93.85		3-5 cm wide guartz-epidote vein with minor pyrite	110	94.75	94.85	0.10	< 0.03	<3			
0 1.1 0	00.00		and trace galena(?).									
115.21	132.59	Feldspbiotite	The rock consists of 5-10% feldspar and 5-10%									
		dacite(?)	chloritizied biotite phenocrysts set in aphanitic									
			groundmass. Moderate sericitization.									
132.59	197.20	Andesite	Andesite to andesite lapill-tuff. Strong sericite-									
			chlorite alteration. The rock contains 1 to 10%									
			carbonate-epidote+/-chlorite veins and replaceme-									
			nts. Veins have variable attitude to c/a. Localy	Ĩ								
			weak silicification in the upper part of the interval.									
148.44	148.54		10 cm long section of the core containing 5 cm wide	111	148.44	148.5	0.10	< 0.03	<3			
			carbonate-epidote vein @ 90° to c/a, minor pyrite.							<u> </u>		<u> </u>
											_	
157.58	159.41		The interval contains a few 2-5 mm wide carbo-	112	157.58	159.41	1.83	<0.03	<3	-	-	
			nate-sphalerite veinlets. In a few spots trace to							<u> </u>	-	<u> </u>
			minor pyrite and chalcopyrite was noted.									-
				1.10	100.10	107.00	0.01	.0.00				
166.42	167.03		Interval in 70-80% replaced by carbonate and	113	166.42	167.03	0.61	< 0.03	<3	+		<u> </u>
			epidote, trace chalcopyrite.								-	

DH:	RCE10-2											
Ir	nterval	Rock type	Rock description - alteration, mineralization,	S	ample int	erval (m)			Assay		_
From	То		structure	Sample	From	To	Width	Au(g/t)	Ag(g/t)			
0.07	400.44		The interval contains accord from monte of plutonia									_
3.37	166.11		The interval contains several fragments of plutonic									
				-								_
68.95	169.77		Section of the core with 20-25% carbonate and	114	168.95	169.77	0.82	< 0.03	<3			
			epidote. Trace sphalerite and chalcopyrite.									
				_								_
75.87	176.78		Interval with 30-40% carbonate-epidote replacement	_								_
_											-	_
			197.20m EOH									-
-												
									-			
_				_								-
_												_
												_
				-			-					-
	-											
				_								_
					-							_
												-
												_
												_
												0
				_								
				_								
				-			-					<u></u>
											-	
				-								-
						-						-
				-							-	-

DDH: RCE10-3		}	Total depth: 133.20m Core size: NQ		Logged by:		A. Walus					
Azimut	h: 70°		Start: October 15, 2010	Easting	Easting:				Northi	ng:	6219	853
Inclinat	ion: 60°		Completion: October 16, 2010	Elevati	on:						1	
Interv	al (m)	Rock type	Rock description - alteration, mineralization,	S	ample in	terval (m)				Assay	
From	To		texture	Sample	From	To	Width	Au(g/t)	Ag(g/t)		T	
0.00	3.05	Overburden										
3.05	133.20	Andesite	Green to reddish andesite epiclastics. Strong									
		epiclastics	sericite-chlorite alteration. The rock contains 1 to									
			10% carbonate+/-quartz+/-chlorite+/-epidote veins									
			and replacements. Veins have variable attitude to									
			c/a.									
7.92	8.35		Strong shearing @ 45 to 60° to c/a, 10-15% quartz-	115	7.92	8.35	0.43	< 0.03	<3			
			ankerite replacement.									
26.52	40.23	Fracture/fault	Badly broken core to rock chips.									
		Zone										
37.18	37.49		Interval with 10-15% epidote-carbonate veinlets and	116	37.18	37.49	0.31	< 0.03	<3			
			replacements.									
											-	
63.09	64.77		Section of the core with 5-10% carbonate-epidote	117	63.09	64.77	1.68					
			veinlets.								<u> </u>	
											-	
67.97	68.43		Interval with 10-15% epidote-carbonate replacement	118	67.97	68.43	0.46	< 0.03	<3			
	-		Also some green-black chlorite, minor pyrite.				_		_	<u> </u>		
02.60	00.75		Foult rock obing and foult gougo									
02.00	02.75		Fault - Tock Chips and fault gouge.								+	
87.48	88 39		Quartz-chlorite vein with minor pyrite	119	87 48	88.39	0.91	<0.03	<3		+	
07.40	00.00			110	07.40	00.00	0.01	-0.00		<u> </u>	-	
96.47	96.71		Interval with a few quartz-chlorite veinlets @ 30° to	120	96.47	96.71	0.24	< 0.03	<3			
			c/a. Minor pyrite.								1	
95.4	100.58		Several inclusions of plutonic rocks up to 4 cm									
			across.									
105.52	105.76		15 cm wide quartz-axinite(?)-epidote vein @ 25° to	121	105.52	105.76	0.24	< 0.03	<3			
			c/a.									
125.58	128.01		15 cm wide quartz-axinite(?)-epidote vein @ 25° to									
			c/a.									

DDH:	RCE10-3											
In	terval	Rock type	Rock description - alteration, mineralization,	S	ample inte	erval (m)					Assay	i i
From	То		structure	Sample	From	То	Width	Au(g/t)	Ag(g/t)	i		
127.77	128.02		Weakly silicified andesite with 1 cm wide quartz	122	127.77	128.02	0.25	< 0.03	<3			
			vein @ 0° to c/a.				ì					
			133.20m EOH									
							· · · · ·					
								1				
					-							
				_								
				-								
				_								
				_								
				_								
	· · · · · · · · · · · · · · · · · · ·											
				_								
				_								
				-								
				_								
							-					
				_		1.00	-					
								1				
								-				
				_						l		

DDH: RCE10-4			Total depth: 142.34m Core size: NQ	Logged	by: /	A. Walu	s					
Azimuth	: 250°		Start: October 16, 2010	Easting	:	443950)		Northing	j :	62198	53
Inclinatio	on: 45°		Completion: October 17, 2010	Elevatio	on:							
Interva	l (m)	Rock type	Rock description - alteration, mineralization,	Sa	ample int	terval (r	n)			9	Assay	,
From	To		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)			j
0.00	3.05	Overburden										
								-				
3.05	142.34	Andesite	Green to reddish andesite epiclastics. Strong								_	
		epiclastics	sericite-chlorite alteration. The rock contains 1 to									
			5% small, discontinuous carbonate veinlets @									
			variable attitude to c/a.									
								· · · · · · · · · · · · · · · · · · ·				
28.35	28.80	Fault	Very badly broken core and fault gouge									
										_		
												8
			142.34m EOH									
		Ĵ.										
					1							

DDH: RCE10-5 Azimuth: 70°			Total depth: 32.61m Core size: NQ	Logged	by: /	A. Walu	s					
Azimu	th: 70°		Start: October 17, 2010	Easting	:	444561			Northin	g:	6219	164
Inclina	tion: 55°		Completion: October 17, 2010	Elevatio	n:							
Inter	val (m)	Rock type	Rock description - alteration, mineralization,	Sa	mple in	nterval	(m)			Assay	S	
From	То		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)			
0.00	32.61	Overburden										
								6				
											/	
			32.61m EOH									
			The hole did not reach the bedrock.									
								[]				
											í	
								_				
							1					

DDH:	RCE10-6		Total depth: 124.05m Core size: NQ	Logged	by:	A. Walu	s					
Azimut	h: 70°		Start: October 17, 2010	Easting	j :	444571			Northin	ig:	6219	164
Inclinati	on: 55°		Completion: October 18, 2010	Elevation	on:							
Interv	al (m)	Rock type	Rock description - alteration, mineralization,	S	ample ir	nterval (m)			Assa	у	
From	То		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)			
0.00	27.74	Overburden						-				
27.74	42.67	Andesite	Moderate to complete silicification Quartz veins and									
21.14	42.07	volcanics	replacements from 5 to 100%. Veins attitude are									
8		Voicanics	mostly from 40 to 70° to c/a. Trace to 5% pyrite often									
-			accompanied by black chlorite									
	1					-						
27.74	28 50		Weakly silicified black mudstone with 30-40%									
21.14	20.00		carbonate veining									
30.39	31.15		Strong silicification, 20-30% guartz veins and	123	30.39	31.15	0.76	< 0.03	<3			
			replacements, 3-5% pyrite.									
35.26	35.66		Completely silicified interval with minor pyrite.	124	35.26	35.66	0.40	<0.03	<3			
42.67		Andesite	Strong chloritization, in many places weak to strong									
		volcanics	silicification, 2-10% quartz-carbonate veins and				-			-		
			replacements. Quartz is white to gray, transclu-							_		
			scent. Veins attitude is mostly between 40 and 70°				-					
			to c/a. Trace to 10% pyrite often accompanied by	-							-	
			black chlorite.							_		——
57.00	57.00		Interval with 20, 40% quarty corbonate voins and	125	57.36	57.82	0.46	<0.03	<3			
57.30	57.82		Interval with 30-40% qualtz-carbonate veins and	125	57.50	51.02	0.40	~0.05	-0		-	
			2.2% purite miner chalespurite									
50 /3	60.03		15-20% quartz-carbonate veins mostly @ 45° to c/a	126	59 43	60.03	0.60	<0.03	<3			
59.45	00.03		Pyrite content 2-3% accompanied by black chlorite	120	00.40	00.00	0.00	-0.00				
		-	Pyrice content 2-070 accompanied by black chloride.						-			
63.00	63.58		Interval with 20-25% irregular guartz-carbonate	127	63.00	63.58	0.58	< 0.03	<3			
			veinlets at variable attitude to c/a. Pyrite 3-5%									
			accompanied by black chlorite.		S							
73.45	74.22		Weakly silicified andesite with 2-3% pyrite accompa-	128	73.45	74.22	0.77	< 0.03	<3			
			nied by black chlorite. At 73.94m there is a 3-4cm									
			wide vein of massive pyrite @ 65° to c/a.									

JUH:	IRCE10-6					2					
In	terval	Rock type	Rock description - alteration, mineralization,	Sa	ample int	erval (m)			Assay	
From	То		structure	Sample	From	То	Width	Au(g/t)	Ag(g/t)		+
73.97	74.22		60-70% quartz replacement.								+
83.51	84.43		Strong silicification, 15-20% quartz veins and replacements, 1-2% pyrite.	129	83.51	84.43	0.92	<0.03	<3		
93.12	99.52		Very strong silicification and K-feldspar (?) alteration Trace to 3% pyrite and 10-20% quartz-carbonate veining. At 98.91m minor chalcopyrite.								
93.76	94.79		2-3% pyrite	130	93.76	94.79	1.03	<0.03	<3		+
94.79	95.86	Fault	Very badly broken core to rock chips.								+
98.24	99.67		5-7% pyrite, minor chalcopyrite.	131	98.24	99.67	1.43	<0.03	<3		+
107.29	108.00		Locally patches of K-feldspar (?) alteration								+
109.58	109.73		Interval with 7-10% pyrite accompanied by black chlorite.	132	109.58	109.73	0.15	<0.03	<3		
122.99	124.05		Interval with 5-7% pyrite accompanied by black chlorite.	133	122.99	124.05	1.06	<0.03	<3		+
			124.05m EOH								+
											_
											+
											_
											+

DDH:	RCE10-7		Total depth: 133.20m Core size: NQ	Logge	d by:	A. Walu	S					
Azimut	h: 70°		Start: October 18, 2010	Easting	g:	444591			Northing	g:	6219	195
Inclinati	ion: 55°		Completion: October 19, 2010	Elevati	on:							1
Interva	al (m)	Rock type	Rock description - alteration, mineralization,	S	ample in	nterval (m)			1	Assay	
From	Ťo		texture	Sample	From	То	Width	Au(g/t)	Ag(g/t)			
0.00	15.24	Overburden										
15.24	29.26	Andesite	V. strong silicification and possibly also K-feldspar?	134	21.49	21.95	0.46	< 0.03	<3			
		volcanics ?	alteration. Trace to minor pyrite, 3-5% quartz-									
			carbonate veinlets.									
												1
18.90	18.93		Fault - fault gouge									
											$ \rightarrow $	
26.21	26.73	Fault(?)	Very badly broken core to rock chips.									
											$ \rightarrow $	
29.26	133.20	Andesite	Strong chloritization. In many places weak to mode-								$ \rightarrow $	
		volcanics	rate silicification, 2-10% quartz-carbonate veins									
			showing variable attitude to c/a. Quartz is white								+	
			to gray-semitranslucent. Trace to 10% of fine to								+	
			coarse grained pyrite often accompanied by black								+	
			chlorite. Pyrite occurs as disseminated grains,								+	
			small patches, streaks and veinlets up to 1 cm wide.								+	
20.26	20.97		Proceipted rock compared by 15 20% of guartz <1%	125	20.26	20.87	0.61	<0.03	-3		+	-
29.20	29.07		nyrite some black chlorite	100	20.20	20.07	0.01	-0.00	~		+	
			pyrite, some black chlorite.								+	-
36.88	37.12		Weakly brecciated interval with 15-20% quartz	138	38,40	39.92	1.52	< 0.03	<3		+	
00.00	01.12		lesser carbonate irregular veining with 1% pyrite									
			and trace chalcopyrite.									
38.40	39.92	Fault	Badly broken core to rock chips, in a few places									
			fault gouge.									
45.72	46.24		Section of the core with 3-5% pyrite accompanied by									
			black chlorite. Some quartz-carbonate veining	136	45.72	46.24	0.52	<0.03	<3			
			mostly @ 70-80° to c/a.									
50.60	50.90		The rock contains 5-10% carbonate-quartz veinlets	137	50.6	50.9	0.30	< 0.03	<3	-		
			healing fractures in crackle breccia, 2-3% pyrite with									
			accompanying black chlorite, weak silicification.									
	· · · · · · · · · · · · · · · · · · ·											

DDH:	RCE10-7										
li	nterval	Rock type	Rock description - alteration, mineralization,	S	ample in	terval ((m)			Assay	,
From	То		structure	Sample	From	То	Width	Au(g/t)	Ag(g/t)		
63.00	64.31		Interval with 10-15% medium to coarse grained	1364	63.09	64.31	1.22	<0.03	<3		-
00.00	04.01		nyrite accompanied by black chlorite and some	100/1	00.00	04.01	1.66	-0.00			
			epidote.								
70.00	70.55		2 EV purite eccemponied by block oblegite pe	120	70.00	72 55	1.00	<0.02			
12.33	73.55		3-5% pyrite accompanied by black chlorite, no	139	12.33	73.55	1.22	<0.03	~ 3		
			silicification, 1-2% quartz-carbonate veining.	-							
73.55	73.56		Fault @ 80° to c/a, fault gouge.								
82.6	87.32		Very strongly silicified interval. The rock is strongly								
			fractured to brecciated with carbonate filling open								
			spaces. Carbonate content varies from 15 to 35%.								
			Trace pyrite.								
	00.15		Description of the interval and the	140	00.00	00.45	0.05	-0.00			
82.90	83.15		General description as above. The interval contains	140	82.90	83.15	0.25	<0.03	<3		-
			pyrite steak 5 cm long and 3-5 mm wide.								
86.11	86.16		Fault - small rock chips and gouge								-
00.11	00.10		Taux - smail took onips and godge.								
86.56	86.61		Fault - small rock chips and gouge.								
87.17	87.19		Fault - small rock chips and gouge.								
91 29	92.66		The interval contains, a few quartz-enidote-pyrite and	141	91 29	92.66	1.37	<0.03	<3		<u> </u>
01.20	52.00		pyrite veinlets 2-8 mm wide @ variable attitude to c/a	1	01.20	02.00	1.07	0.00			
			Also 2-3% medium grained pyrite and significant					-			
			amount of black chlorite. Locally weak silicification.								
05.40	05 70										
95.40	95.70		3-5% epidote-pyrite replacements.								
96.47	96.62		10-15% epidote-pyrite replacements.								
00.00	00.05										
99.82	99.85		1.0-1.5 cm wide quartz-pynte-epidote vein @ 45 to			-		-			
	1										
103.63	103.65		1-2 cm wide quartz-epidote-pyrite vein @ 70° to c/a.								

DDH:	RCE10-7											
In	terval	Rock type	Rock description - alteration, mineralization,	S	ample in	nterval (m)			Ass	say	_
From	То		structure	Sample	From	To	Width	Au(g/t)	Ag(g/t)		Ť	_
114.54	115.52		Moderately silicified interval with 2-3% pyrite forming	142	114.54	115.52	0.98	< 0.03	<3			
			patches and streaks. Pyrite is accompanied by									
į			black chlorite and lesser epidote. Lower contact of									
			the zone is sharp @ 45° to c/a.			()						
119.79	121.00		Weak to moderate silicification, 2-3% quartz-carb.	143	119.79	121.00	1.21	< 0.03	<3			
			veining, 2-3% fine to medium grained pyrite									
			accompanied by black chlorite and epidote.									
												-
132.28	132.4		Fault @ 30° to c/a.									
			133.20 m EOH									
												_
			,									
												-
												_
(
												_
												_

DDH: RCE10-8			Total depth: 169.77m Core size: NQ	Logged	by: /	A. Walus	5				
Azimut	h: 70°		Start: October 19, 2010	Easting:		444591			Northing	: 62'	9195
Inclinati	on: 70°		Completion: October 20, 2010	Elevatio	n:						
Interva	al (m)	Rock type	Rock description - alteration, mineralization,	Sa	mple inte	erval (m)			Ass	ay .
From	Ťo		texture	Sample	From	To	Width	Au(g/t)	Ag(g/t)		1
0.00	18.29	Overburden									
18.29	44.50	Andesite	Very strongly silicified rock, 2-5% quartz-carbonate								
		volcanics	veinlets and replacements. Veinlets have variable				1				
			attitude to c/a. Quartz is white to gray-semitranslu-								
			cent. Trace to 1% fine grained pyrite.				<u></u>				
											_
18.29	18.90		K-feldspar alteration (?)								
											_
25.90	26.52		Same general description, minor pyrite, trace galena	144	25.90	26.52	0.62	< 0.03	<3		_
11.50											_
44.50	148.44	Andesite	Strong chloritization. In many places weak to mode-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
		volcanics	rate silicification, 2-5% quartz-carbonate veinlets								
			mostly @ 30° to 60° to c/a. Quartz is white to								_
			gray, semitranslucent. I race to 5% fine to coarse								-
			grained pyrite often accompanied by black chlorite.								
			Pyrite occurs as disseminated grains, small							\rightarrow	+
			patches, streaks and veinlets up to 0.5 cm wide.							-+	+
00.40	00.04		Interval with 2 50/ medium to exerce arrived purite	145	60.40	62.04	0.70	<0.02	-2	-+	-
62.48	63.24		Interval with 3-5% medium to coarse grained pyrite	145	02.40	03.24	0.76	<0.03	<3		
			accompanied by black chlorite. No silicification.								
77.07	70.40		Sama an about	146	77 07	70 10	0.01	<0.02	-2		-
11.21	70.10		Same as above.	140	11.21	70.10	0.91	<0.03	~>	-+	+
90.77	00.00		Quartz chlorita voin 5 cm wide @ 30° to c/a								+
80.77	00.09		Quartz-chionte veni 5 cm wide @ 50 to c/a.								
113 38	113.03		Zone with 7-10% coarse grained pyrite accompanied	147	113.38	113 93	0.55	<0.03	<3		-
110.00	110.00		by black chlorite. There is also 5-10% quartz as	147	110.00	110.00	0.00	-0.00			+ +
-			veinlets and replacements. Upper contact is @ 45°				-				1
			to c/a. Lower contact is along a small fault (<1 cm								
			wide) @ 30° to c/a								-
											-
114 91	169 77		Sporadically small amounts of enidote as veinlets					-			+
14.01	100.11		and small natches								+
	-	1.									
											+
		2				-					

DDH:	RCE10-8						_					
In	terval	Rock type	Rock description - alteration, mineralization,	Sa	mple inte	erval (m)			A	ssay	
From	То		structure	Sample	From	То	Width	Au(g/t)	Ag(g/t)			
122.53	123.44		Several pyrite-epidote-quartz-carbonate veinlets 0.2	148	122.53	123.44	0.91	<0.03	<3			
			to 1.0 cm wide. Attitudes range from 45 to 60° to c/a.									
			No silicification.								_	
126.05	127 10		Interval with 1 cm wide pyrite-quartz yein @ 45° to c/a	149	126.95	127 10	0.15	<0.03	<3			
120.00	127.10		Purite is medium to coarse grained	140	120.00	121.10	0.10	-0.00				
								-				
150.88	151.55	Fault	Very badly broken core and fault gouge.									
148.44	169.77	Andesite	Strong chloritization, sporadically weak silicification									
		volcanics	2-5% carbonate lesser epidote and quartz veinlets									
			and replacements. Veinlets show variable attitude									
			to c/a. Trace to 5% pyrite accompanied by black									
			chlorite.									
							1.00					
156.67	157.95		Mineralized zone with 7-10% medium to coarse	150	156.67	157.95	1.28	< 0.03	<3		-	
			grained pyrite accompanied by black chlorite.									
			Both contacts of the zone are sharp. The contacts									
			and shearing are @ 45° to c/a.									
160.93	161.23		Interval with 0.5-1.0 cm wide epidote-carbonate-	151	160.93	161.23	0.30	< 0.03	<3		-	
	10.100		pyrite yein @ 0-10° to c/a.									
			//									
			169.77m EOH									
										-	-	
											_	

APPENDIX II

DRILLHOLES CROSS SECTIONS

Cross section Hole RCE10-1 RCE10-1 Looking North Scole 1:500 0 10 20m 14.32 Zone with quartz veins, stockwork, replacements and quartz content ranges from 10 to 100%. There to 5% pyrite 33.83 galena and sphelente. Andesite 96.62 m EOH

26.52 m Frecture/feult zone RCEADERSTE epidestic. Andesite epidestic. 40.23m Andesite RCENOT epiclestic (142.34m EOH Dip -45° 133.20m EDH Dip-60° Cross section Holes RCE 10-3 and 4 Looking North Scale 1:1000 0 10 20 30 40 50m

P.CE. D. C. D. Covertour Zone of moderate to complete silicification with quartz veins and replacements. Trace to 5% pyrite. 7.74m 142.67 + Andesite volcanic 124.05 m EOH Dip-55° Cross section Holes RCE10-5 and 6 Looking North Scale 1:1000 0 10 20 30 40m

Dierburden Very strong silicification 45.24m OV 1823 Very strong Silicification Andesite volcenics, often weak to moderate silicification, 2-10% quartz-carbonate veins. Trace to 10% pyrite. 44.5 -> Andesite volcanics, often week to moderate silicification, 2-5% quartz-carbonate veins. Trace to 5% pyrite. 133.20m EOH Dip - 55° RCE10-8 Cross section 169.77 m EOH Dip -55° Holes RCE 10-7 and 8 Looking North Scale 1:1000 9 10 20 30 40m

APPENDIX III

ASSAY CERTIFICATES

Quality Analysis ...

Innovative Technologies

Date Submitted:14-Oct-10Invoice No.:A10-7128Invoice Date:22-Oct-10Your Reference:

Nanika Resources 725-625 Howe Street Vancouver B.C. V6C2T5

ATTN: James Jacuta

CERTIFICATE OF ANALYSIS

8 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A10-7128

Code 1A2-Tbay Au - Fire Assay AA Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers. If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

	Activation Laboratories											d.	Rep	ort:	A10-7	128								
Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppb	ppm	- ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%						
Detection Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Analysis Method	FA-AA	AR-ICP	AR-ICF																					
101	< 5	< 0.2	< 0.5	2	401	1	2	12	47	0.20	4	< 10	1030	< 0.5	< 2	2.70	2	19	1.09	< 10	< 1	0.02	< 10	0.56
102	< 5	< 0.2	3.4	86	323	< 1	< 1	49	355	0.98	4	< 10	56	< 0.5	< 2	1.62	4	12	1.60	< 10	< 1	0.05	< 10	1.04
103	< 5	< 0.2	< 0.5	8	229	< 1	< 1	3	25	0.49	2	< 10	46	< 0.5	< 2	3.82	3	27	0.86	< 10	< 1	0.05	< 10	0.42
104	7	0.4	0.7	393	717	< 1	9	3	53	2.03	5	< 10	62	< 0.5	< 2	3.84	22	19	5.32	< 10	< 1	0.07	< 10	2.50
105	6	0.2	0.5	143	556	< 1	10	4	41	1.68	10	< 10	53	< 0.5	< 2	2.59	21	21	5.15	< 10	< 1	0.06	< 10	1.95
106	5	< 0.2	< 0.5	7	366	< 1	< 1	< 2	34	1.20	< 2	< 10	39	< 0.5	< 2	3.23	5	10	1.82	< 10	< 1	0.06	< 10	1.36
107	12	1.0	1.4	211	785	25	6	15	161	1.85	14	< 10	38	< 0.5	< 2	2.52	42	17	7.18	10	< 1	0.08	< 10	2.74
108	7	0.3	0.5	74	424	18	1	5	35	1.24	17	< 10	41	< 0.5	3	2.29	17	9	3.74	< 10	< 1	0.06	12	1.40

Quality Analysis ...

Innovative Technologies

Date Submitted:	23-Oct-10
Invoice No.:	A10-7491
Invoice Date:	02-Nov-10
Your Reference:	

Nanika Resources 725-625 Howe Street Vancouver B.C. V6C2T5

ATTN: James Jacuta

CERTIFICATE OF ANALYSIS

4 Rock samples were submitted for analysis.

The following analytical package was requested:

Code 1A3-Ag Au, Ag-Fire Assay Gravimetric

REPORT A10-7491

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Emmanuel Eseme , Ph.D.

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Report: A10-7491

Analyte Symbol	Au	Ag	
Unit Symbol	g/tonne	g/tonne	
Detection Limit	0.03	3	
Analysis Method	FA-GRA	FA-GRA	
136A	< 0.03	< 3	
147	< 0.03	< 3	
141	< 0.03	< 3	
150	< 0.03	< 3	

Quality Analysis ...

Date Submitted:	22-Oct-10
Invoice No.:	A10-7492
Invoice Date:	05-Nov-10
Your Reference:	

Nanika Resources 725-625 Howe Street Vancouver B.C. V6C2T5

ATTN: James Jacuta

CERTIFICATE OF ANALYSIS

40 Rock samples were submitted for analysis.

The following analytical package was requested:

Code 1A3-Ag Au, Ag-Fire Assay Gravimetric

REPORT A10-7492

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Emmanuel Eseme, Ph.D.

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

			Activation Laboratories Ltd.	Report:	A10-7492		
Analyte Symbol	Au	Ag					
Init Symbol	g/tonne	g/tonne	34				
Detection Limit	0.03	3					
Analysis Method	FA-GRA	FA-GRA				 	
09	< 0.03	< 3					
110	< 0.03	< 3					
11	< 0.03	< 3					
12	< 0.03	< 3					
13	< 0.03	< 3					
14	< 0.03	< 3					
15	< 0.03	< 3					
16	< 0.03	< 3					
17	< 0.03	< 3					
18	< 0.03	< 3					
19	< 0.03	< 3					
20	< 0.03	< 3					
21	< 0.03	< 3					
22	< 0.03	< 3					
23	< 0.03	< 3					
24	< 0.03	< 3					
25	< 0.03	< 3					
26	< 0.03	< 3					
27	< 0.03	< 3					
28	< 0.03	< 3					
29	< 0.03	< 3					
30	< 0.03	< 3					
31	< 0.03	< 3					
32	< 0.03	< 3					
33	< 0.03	< 3					
34	< 0.03	< 3					
35	< 0.03	< 3					
36	< 0.03	< 3					
37	< 0.03	< 3					
38	< 0.03	< 3					
39	< 0.03	< 3					
40	< 0.03	< 3					
42	< 0.03	< 3					
13	< 0.03	< 3					
14	< 0.03	< 3					
45	< 0.03	< 3					
6	< 0.03	< 3					
48	< 0.03	< 3					
49	< 0.03	< 3					
151	< 0.03	< 3					

440 7400

Quality Analysis ...

Innovative Technologies

Date Submitted:12-Oct-10Invoice No.:A10-6939Invoice Date:27-Oct-10Your Reference:

Nanika Resources 725-625 Howe Street. Vancouver B.C. V6C2T6 Canada

ATTN: Alex Walus

CERTIFICATE OF ANALYSIS

11 Rock samples were submitted for analysis.

The following analytical packages were requested:

Code 1A2-Tbay Au - Fire Assay AA Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A10-6939

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers. If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation	Laboratories	Ltd.

Report: A10-6939

Analyte Symbol	Au	Aa	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Halt Sumbal	neb	0000	000	000	0000	0000	0000	0005		44	000	0000	nnm	000	0000	9/2	000	ppm	4/0	nom	nom	*/	nom	%
Unit Symbol	ppo	ppin	ppin	ppin	ppm	ppin	ppin	ppin	ppin	0.01	ppin	10	40	o c	ppin	0.01	pp.m	ppm.	0.01	10	ppin	0.01	10	0.01
Detection Limit	5	0.2	0.5	1	5	1	3	2	2	0.01	2	10	10	0.5	2	0.01	1	3	0.01	10	1	0.01	10	0.01
Analysis Method	FA-AA	AR-ICP																						
RCE-1	< 5	< 0.2	< 0.5	69	1450	< 1	14	3	166	2.69	< 2	< 10	307	< 0.5	< 2	0.50	29	26	5.54	< 10	< 1	0.03	< 10	2.30
RCE-2	< 5	< 0.2	< 0.5	4	333	< 1	2	10	67	1.18	< 2	< 10	145	< 0.5	< 2	0.22	4	23	1.91	< 10	< 1	0.19	20	0.70
RCE-3	< 5	0.2	0.6	9	381	1	2	55	98	0.99	106	< 10	86	< 0.5	< 2	0.47	4	9	2.31	< 10	1	0.31	18	0.30
RCE-4	25	5.8	0.7	1010	2540	< 1	7	8	144	3.17	< 2	18	351	< 0.5	< 2	4.03	23	7	5.33	< 10	< 1	0.45	< 10	1.80
RCE-5	< 5	0.3	< 0.5	13	356	23	1	28	33	1.81	128	13	12	0.7	< 2	0.96	11	4	3.85	< 10	< 1	0.95	13	0.31
RCE-6	< 5	< 0.2	< 0.5	9	236	2	1	14	45	0.84	12	< 10	157	< 0.5	< 2	0.10	6	6	2.90	< 10	< 1	0.28	12	0.23
RCE-7	< 5	< 0.2	< 0.5	2	47	< 1	1	2	9	0.18	< 2	< 10	60	< 0.5	< 2	0.02	< 1	17	0.45	< 10	< 1	0.05	< 10	0.02
RCE-8	< 5	< 0.2	< 0.5	< 1	1360	< 1	7	5	213	1.91	5	< 10	2030	< 0.5	< 2	0.15	25	17	3.45	< 10	< 1	0.20	< 10	2.35
RCE-9	< 5	< 0.2	1.1	20	1220	< 1	4	12	146	1.37	2	22	116	0.6	< 2	0.35	8	15	2.73	< 10	< 1	0.14	< 10	0.88
RCE-10	< 5	< 0.2	< 0.5	13	880	< 1	2	< 2	75	0.90	< 2	< 10	154	< 0.5	< 2	1.65	5	16	2.11	< 10	< 1	0.19	14	0.57
RCE-11	< 5	< 0.2	< 0.5	3	473	< 1	3	< 2	108	0.92	< 2	< 10	59	< 0.5	< 2	0.03	7	20	2.30	< 10	< 1	0.10	< 10	0.69