2010 Geochemical/Geological Report For The Jake Property, Kamloops M.D., B.C.

Title Page

	The Page	
Property Name	Jake	BC Geological Survey Assessment Report 32044
Mining Division	Kamloops	
Location	NAD 83 Latitude 51 38 44, UTM 10 692037, 5725272	Longitude 120 13 27
NTS Map Sheet	092P09E BCGS 092P069	
Claim Owner	M. A. Kaufman, FMC 11375	53
Operator	M. A. Kaufman	
Author of report	M. A. Kaufman	
Report Year	2010	
Claims worked on	518760, 519188, 520106, 52	21756
General Work Categories	Geological, Geochemical	
Work Done	Geological; follow up of prev geochemical anomalies by en nearby outcrops. Soils samp detected geophysical anomal soils samples assayed. Revie drill site selection based on II geochemical results. Compila IP anomalies and pertinent ge	viously detected silt xamining and sampling ling over previously lies. 26 rock samples and 25 ew of past IP surveys, and P surveys and soils ation of new map integrating eochemical data.

Pertinent related Assessment Reports 27915, 28808, 29711, 30941, 31092 released reports

Table Of Contents

Pp. 1 - 2 : Introduction

Main Report:

Pp. 1 – 2: Summary/Discussion of pre 2010 Exploration Results

Pp. 3– 5: Description of 2010 Work

P. 6 M. A. Kaufman Statement of Qualifications

Appendix 1: Scott Geophysics 2010 Technical Report re Drill Sites

Appendix 2: Assay Chart giving 2010Assays and Lithologic Descriptions

Appendix 3: Expenditures re 2009 Work

Appendix 4: Assay certificates

Plans And Sections

2010 Compilation Map, including claims and topography 2010 Rock Sample Location Map outside of core area

Jake Introduction -1-

Introduction

The Jake Mineral Claim Group encompasses an area of approximately10,389 hectares. The property is located 13 kilometres west of the Village of Clearwater, and is easily accessible via the major logging road, Route 2, and a network of subsidiary roads. The main claim area, which occupies part of the northern Nehalliston Plateau within the Mann Creek drainage system, is generally characterized by moderate topography, and has recently been extensively logged because of pine beetle infestation.

The known prospective area is covered by transported glacial overburden generally from a few to + five metres thick and is thus almost totally devoid of surface outcrop. The area is believed to be underlain by Pennsylvanian-Permian Fennel Volcanics, predominantly basaltic, but with some more felsic units. In places there is thought to be a thin layer of Pleistocene volcanics. Significant mineralization remained unknown until 2005 when I encountered a heavy sulfide gossan which had been recently exposed along a steep bank by logging road construction. Samples from this showing were highly anomalous in gold (up to 27 g/t) along with bismuth and copper. Subsequent prospecting over a larger area encountered anomalous mineralized float in other areas up to more than one kilometre away from the Jake discovery. The most notable known geological feature of the area is the northwesterly trending Lemieux Creek fault, which passes through the property approximately one kilometre west of the Jake showing. This fault is considered to be a major terrain bounding structure separating the Upper Paleozoic Fennel Formation (Slide Mountain Terrain) to the east from Nicola Group formations (Quesnel Terrain) on its west side.

Shortly after the discovery the original claims were optioned by Rimfire Minerals Corp., which then staked a large area around the original holding. During 2006 Rimfire conducted a VLF EM /Mag survey over the showing and immediate surrounding area and, did some excavator trenching along the showing. This was followed by extensive silt sampling and limited float and soils sampling over the whole large area staked. During 2007, Rimfire joined by Island Arc Exploration conducted limited IP surveys, excavator trenching across the discovery showing and across a few portions of IP anomalies, and 1,083 metres of core drilling in seven holes which tested the discovery showing and some anomalous IP areas. As the drilling intersected

Jake Introduction -2-

significant mineralization/alteration, and IP appeared to be effective, during 2008 the joint venture expanded the IP coverage with an additional 21 line kilometres of survey. This survey found many more anomalous areas, some of them extensive and strong. The joint venture intended to follow up in 2009 by drilling seven additional selected sites, but by late 2008 economic conditions forced Island Arc to leave the project. This left Rimfire with insufficient funding to carry on, and a subsequent merger of Rimfire with Geoinformatics has caused Rimfire to restructure. Rimfire in 2009 returned my original claims and a large perimeter area to me. During 2009 I hired Scott Geophysics to extend the previous IP work where it appeared that chargeability anomalies might still be open. The new geophysical work was successful in expanding some of the previously detected anomalies, and discovering additional anomalies in prospective areas. Further sampling detected small amounts of highly anomalous gold in float over one of these extensive IP anomalies.

The 2010 work involved follow up geology in areas distant from the central part of the Jake Property, where Rimfire had detected stream silt anomalies during its 2006 work, and limited soils sampling over selected IP anomalies detected during 2008 and 2009 surveys. Scott Geophysics was hired to restudy IP anomalies which I have selected as drill targets, and has written a report, attached herein, giving exact coordinates for these new recommended drill holes.

Jake -1-

Summary of Pre-2010 Exploration Results

A very detailed summary of all previous work on the Jake Property can be found in my 2009 assessment report, along with a complete report, including detailed maps, covering the 2009 IP survey. For this reason, I am not repeating a detailed summary of past work in this report.

Excellent detailed geological, geochemical and geophysical reports covering The Rimfire/Island Arc work from 2006 through 2008 prepared by Rimfire geologist Michael Roberts, PhD are available for download from the B. C. Ministry of MInes and Petroleum Resources assessment Aris Files.

Summary Geology

Only two small outcrops are known within the approximate five by + two kilometres known prospective area of the Jake Claim Group. Several modes of alteration/mineralization have thus been found on the Jake Property, all in volcanic formations, and determined by either bedrock encountered in trenches or core holes, or by float samples. These include narrow shear zones containing high sulfide with high grade gold values found in trenches and core, wider alteration zones containing variable amounts of sericite-clay-carbonate-silica-biotite-chlorite-epidote with associated elevated sulfides in core, minor float containing quartz with free gold and bismuthinite, and float containing disseminated sulfides with anomalous gold. The dominant sulfides found thus far are pyrrhotite, pyrite and chalcopyrite with lesser bismuthinite, and arsenopyrite.

The Jake discovery showing has been revealed by trenching and drilling to be a NNW striking, steep southwest dipping mineralized shear zone approximately 2 metres wide at surface consisting of a chloritic envelope which encloses massive sulfides, mainly pyrrhotite, associated with quartz veining. A 1.8 metre channel sample across the structure exposed by a trench assayed 9.05 ppm Au along with significant Cu and Bi, including one .6 metre sample assaying 19.3 ppm Au. Hole 4 drilled under the trench encountered the downdip extension of this shear zone approximately 35 vertical metres below the trench sample. It assayed 11.34 ppm Au over 1.5 metres, including .6 metre grading 27.8 ppm Au. Hole 5, drilled from the

Jake -2-

same site as 4 but at a steeper angle cut a very narrow zone of similar mineralization at about 47 vertical metres below the trench level, and another hole, no. 6, drilled in the dip direction of the structure, about 15 metres north of 4 and 5, intersected another similar narrow mineralized zone at depth. Aside from the above cited intercepts, considerable alteration was noted, but only occasional weakly anomalous gold values were noted. In practical terms, the Jake shear zone, over the 20 metre strike length drilled, appears to be a narrow shoot within an ongoing structure, with good enough grade, but a little narrow to allow economic underground mining. The structure is open and untested along strike and at depth, and the shoot itself may be open both to the NW and SE.

Mineralized zones somewhat similar to the Jake Showing were encountered approximately 300 metres NNW of it in Trench 4, and 500 metres to the NNW of it in drill hole 7. The trench showings are narrow fissures found 15 metres apart. A grab sample of one of these assayed 12.5 ppm Au. An intersection at 43 metres depth in hole 7, which averaged 1.0 ppm Au over 2.5 metres, including .2 metre of 9.49 ppm Au., appears similar to the Jake Showing. Deeper in Hole 7 are sporadic altered sections containing anomalous gold. The 2007 drilling was based on filtered interpretation of the limited 2007 IP survey. On reviewing the 2008 survey inverted interpretation, it is evident that some of the 2007 holes might have missed important targets.

Drill holes 2, 3, 7 and 8 were all designed to test areas of moderate to strong IP response generally associated with high resistivities. Other than the above mentioned intercepts in hole 7, holes 2, 3 and 8 cut sporadic anomalous gold and copper, the highest gold being .693 ppm over one metre in hole 3. In regard to the IP response, generally logs of these holes indicate noticeable but low amounts of disseminated sulfides, with more altered zones containing relatively high sulfides in veinlets and disseminations. Within these altered zones there is sporadic weakly to moderately anomalous gold and/or copper, but considerable areas are devoid of significantly anomalous values.

Jake -3-

Description of 2010 Work

The 2010 work consisted of reevaluation of all previous geophysical work by myself and Scott Geophysics Ltd. in order to delineate further drill targets. In doing this, it was noted that two of the 2007 drill holes, numbers 2 and 7. were not well located considering the inverted interpretation. Hole 2 was collared too far to the east to intersect a strong chargeability anomaly located at depth beneath the mineralized fissure which assayed 12.5 ppm Au, and hole 7 was collared south of another strong chargeability response.

In conjunction with this drill hole selection process, limited soils sampling was conducted over portions of some of the IP anomalies. A new compilation map was then prepared showing the soils geochemical sampling in relation to IP anomalies. As well, geological follow up was conducted in areas where Rimfire had detected silt geochemical anomalies in areas distant from the Jake Showing area.

Comments on Soils Geochemical Sampling

Ordinary soils sampling has proven to be nearly impossible within the area of interest. The soil consists of boulder clay containing an abundance of small stones, which tend to collapse into any hole. Therefore it is impossible, given reasonable time constraints, to dig sufficiently deep to get a meaningful sample. Moreover, most of the area has recently been clear cut making biogeochemical work impossible. However, sampling in places appears to be moderately effective along logging roads, where road construction has churned deeply enough into the soil to bring deeper material closer to surface. As a result, soil sampling has been largely restricted to a few areas where logging roads intersect or follow IP anomalies.

Results of the 2010 Soils Sampling

The attached 1:5000 scale map indicates a definite soils gold anomaly associated with an IP chargeability anomaly designated as the Km 14 anomaly, located in the northwest part of the 2010 mapped area (samples WP 322 trough 328). Also, a gold, arsenic bismuth anomaly based on 2006 sampling is associated with a deep chargeability anomaly located in the

central portion of the 2010 map area a few hundred metres northeast of the 2007 area drilled by Rimfire to test the Jake showing area (samples 39212, 39213 and 1023). An earlier soils sample taken here by myself during 2005 also assayed anomalous gold. Both the Km 14 area and the latter area areas have been selected for drill testing.

Two samples taken over a high chargeability anomaly approximately 300 metres east of the last mentioned locality(25000,692500 and 25000, 692545) contained 75 percentile anomalous gold, but I have deemed the samples too shallow and too weak to be meaningful. I have not done any soils testing over a large, strong chargeability anomaly, designated Road 131 Anomaly, located in the southeast portion of the surveyed area, as I believe that the overburden is deep in this area. But the size and strength of this anomaly makes it a definite drill target. I propose to get some geochemical information when we have an excavator to dig a mud pit for drilling at this locality.

Background soils metals values: Previous work by Rimfire has determined the following metals values indicating above background metals values.

75 percentile: Au 5 ppb, Cu 75 ppm, Bi .33 ppm, As 15.9 ppm 90 percentile Au 13 ppb, Cu 105 ppm, Bi .62 ppm, As 30 ppm.

It is believed that these results are skewed upwards, as almost all soils have been taken around known mineralized localities.

Rock Sampling

Several rock float samples were taken near the Km 14 anomaly, most of them returning moderately anomalous gold values and elevated copper.

Several bedrock and float samples were taken in as close proximity as was reasonably accessible to various stream silt gold anomalous samples taken during Rimfire's 2006 sampling campaign. One of these samples, MK 10-18, is of possible interest in that it assayed above background copper. It appears to be a narrow, granular intrusive dike or sill cutting argillite. All of the 2010 samples are listed and described on the accompanying chart. None

Jake-5-

of the samples taken contained any anomalous Au values. Possibly, in some cases, if one got closer to the silt anomalies, better values might be encountered. Of possible interest is that most of the silt gold anomalies occur in Nicola argillite terrain, and there is development of quartz veining in most areas observed. As well, some of the 2009 samples from this terrain contained above background gold values.

Proposed Drilling Based Upon 2010 Studies

Based on the 2010 studies, a number of sites have been selected for drilling. It is hoped to drill at least three of sites during 2011.

Note re IP/Geochem Compilation Map

The IP work was done in three separate surveys, a limited survey done by Rimfire in 2007, a far more extensive survey by Rimfire done in 2008, and a limited survey done by myself during 2009 to follow up some open anomalies detected in previous surveys. The 2009 survey, which incorporated wider electrode spreads than the previous work (100 metre slice) was only run on three lines in the northern portion of the surveyed area extending westward from Rimfire's 2008 work, and one line south of Rimfire's southernmost line. It is probable that the deep anomalies detected in the northern area extend further to the north and south from the surveyed area.

M. A. Kaufman, Geologist P. Eng. Jan. 20, 2011

Jake -6-

Statement of Qualifications M. A. Kaufman

I, M. A. Kaufman hereby state that I have worked as a mining geologist and mining engineer for 54 years.

I received an A, B, degree in geology from Dartmouth College in 1955, and an M. S. degree in geology and mining engineering from the University of Minnesota in 1957.

I am currently registered as a Professional Engineer/Geologist in the province of British Columbia.

From the period 1955 - 1965 I worked for the major companies Kennecott Copper Corp., Giant Yellowknife Gold Mines (Falconbridge), Kerr-McGee, and Hunting Survey Corp., Ltd. I then worked independently as a consultant and contractor, mainly for major companies. From 1969 through 1988, I was a principal of the consulting and contracting firm of Knox, Kaufman, Inc. From 1989 to present I have worked as an independent consultant and prospector.

M. A. Kaufman

GEOPHYSICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

JAKE PROPERTY, CLEARWATER AREA, B.C.

on behalf of

M. A. Kaufman PO Box 14336 Spokane Valley, WA 99214, USA

Surveys performed: 2006 to 2009

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

September 8, 2010

TABLE OF CONTENTS

		page
1	Introduction	1
2	Survey coverage and procedures	1
3.	Personnel	1
4.	Instrumentation	1
5.	Recommendations	

Statement of Qualifications

rear of report

Referenced Maps

Chargeability/Resistivity Pseudosections – 2007 survey (a=25m)	
Lines 89600N, 89700N, 89800N, 89900N, 90000N	(1:2500 scale)
Lines 90050N, 90100N, 90200N, 90300N, 90400N, 90500N	(1:2500 scale)
Chargeability/Resistivity Pseudosections – 2008 survey (a=25m)	
Lines 24300N, 24400N, 24500N, 24600N, 24700N, 24800N	(1:2500 scale)
Lines 24900N, 25000N, 25100N, 25200N, 25300N, 25400N	(1:2500 scale)
Lines 25500N, 25600N, 25700N, 25800N, 26000N	(1:2500 scale)
Lines 26200N, 26400N, 22660N	(1:2500 scale)
Chargeability/Resistivity Pseudosections – 2009 survey (a=50m)	
Lines 24100N, 25200N, 25400N, 25600N	(1:5000 scale)
Inverted Chargeability Sections with Topography	
2007 survey: Lines 89500N-90500N	(1:2500 scale)
2008 survey: Lines 24300N-25200N	(1:2500 scale)
2008 survey: Lines 25300N-26600N	(1:2500 scale)
2009 survey: Lines 24100N, 25200N-25600N	(1:5000 scale)
Inverted Resistivity Sections with Topography	
2007 survey: Lines 89500N-90500N	(1:2500 scale)
2008 survey: Lines 24300N-25200N	(1:2500 scale)
2008 survey: Lines 25300N-26600N	(1:2500 scale)
2009 survey: Lines 24100N, 25200N-25600N	(1:5000 scale)
Inverted Depth Plots (GPS derived UTM Coordinates)	
Chargeability – 20m depth (below surface)	(1:5000 scale)
Chargeability – 50m depth (below surface)	(1:5000 scale)
Chargeability – 100m depth (below surface)	(1:5000 scale)
Resistivity – 20m depth (below surface)	(1:5000 scale)
Resistivity – 50m depth (below surface)	(1:5000 scale)
Resistivity – 100m depth (below surface)	(1:5000 scale)
Magnetometer Survey Contour Plan	(1:5000 scale)

1. INTRODUCTION

Induced polarization (IP), magnetometer (mag), and VLF-EM surveys were performed at the Jake Property, Clearwater Area, B.C. The Jake Property is owned by Mr. M. A. Kaufman. The surveys were performed by Scott Geophysics Ltd. in 2009 directly on behalf of Mr. Kaufman, and in 2006 to 2008 on behalf of Rimfire Minerals Corporation.

This report describes the instrumentation and procedures and makes some recommendations for specific drill sites to test chargeability (IP) highs detected.

2. SURVEY COVERAGE, PROCEDURES, AND PRESENTATION

The surveys performed on the Jake Property consisted of:
2006: 34 km mag and VLF survey
2007: 7 km pole dipole IP survey @ a=25m and n=1-5
2008: 23 km pole dipole IP survey @ a=25m and n=1-5 plus 9 km mag survey
2009: 5 km pole dipole IP survey @ a=50m and n=1-5 plus 5 km mag survey

GPS readings were taken on all these surveys and the UTM coordinates on the accompanying plan maps were derived from those readings. Note that the grid coordinates were defined differently for the various years and hence UTM coordinates are given in this report for referencing proposed drill sites.

The chargeability and resistivity results have been inverted using RES2DINV. For this report, the pseudosections, the inverted plans and sections, and the magnetometer contour plan map are referenced. Those maps, the data, and other maps accompany the Logistical Reports for each individual survey.

3. PERSONNEL

Brad Scott was the crew chief on all these surveys on behalf of Scott Geophysics Ltd.

4. INSTRUMENTATION

In various years a Scintrex IPR12 receiver, GDD Rx8 receiver, Scintrex TSQ3 transmitter, and GDD TxII transmitter were used for the IP surveys. In all cases readings were taken in the time domain using a 2 second on/2 second off alternating square wave and the chargeability values plotted on the various pseudosections, maps, and the accompanying inverted maps and sections, are for the interval 690 to 1050 msecs after shutoff.

All mag surveys were performed with Scintrex ENVI field and base station magnetometers. All surveys were levelled to a common base.

5. RECOMMENDATIONS

Subject to a geological review, the following locations are recommended for consideration for diamond drill testing of chargeability highs. No particular priority is implied by the order of these sites nor is it implied that all sites should be drilled.

<u>site 1A</u> 2007 L-90100N/60125E-60250E 15 mV/V broad IP high set up at 60125E - UTM 692282E/5724995N - drill E @ - 50

<u>site 1B</u> 2007 L-90200N/60050E-60175E 15 mV/V broad IP high set up at 60125E - UTM 692275E/5725111N – vertical hole

<u>site 2</u> 2008 L-25000N/92400E 23 mV/V IP high set up at 92350E - UTM 692495E/5724994N – drill E @ - 50

site 3A

2007 L-90200N/59900E 15 mV/V IP high coincident with weak mag high – on strike to Jake vein set up at 59850E – UTM 692007E/5725083N – drill E @ - 50

site 3B

2007 L-90400N/59900E-60000E coincident IP and mag high, within same SSE trend as site 1 and Jake SE zone set up at 59875E - UTM 692068E/5725296N, drill E @ - 50

site 3C

2008 L-25100N/92350E-92450E within same SSE trend as site 2 set up at 92325E - UTM 692471E/5725100N, vertical hole; also E @ - 50

<u>site 4</u>

2008 L-25800N/91150E-91225E 30 mV/V IP high – within broad SSE trending IP high/weak mag high trending from approx. L-26000N/91050E to L-25200N/91700E. set up at 91150E – UTM 691333E/5725847N, drill E @ -50

<u>site 5</u>

2008 L-25600N/91300E-91475E Within same broad SSE trending IP high/weak mag high as site 4. set up at 91275E (UTM 691452E/5725599N) – drill E @ - 50, and set up at 91425E (UTM 691605E/5725599N) – drill E @ -50

<u>site 6</u>

2008 L-25500N/91475E

Within same broad SSE trending IP high/weak mag high as site 4. set up at 91425E (UTM 691586E/5725497N) – drill E @ - 50

<u>site 7</u>

2008 L-25400N/91515E Within same broad SSE trending IP high

Within same broad SSE trending IP high/weak mag high as site 4. set up at 91475E (UTM 691604E/5725397N) – drill E @ - 50

<u>site 8</u>

2008 L-24400N/92900E 30 mV/V IP high within a broad area of high IP (92625E-92850E) set up at 92825E (UTM 692971E/5724402N) – drill E @ - 50

<u>site 9</u>

2009 L-25200N/91600E-91700E 20mV/V IP high within broad area of high IP (91500E-91850E) set up at 91600E (UTM 691570E/5725208N) – drill E @ - 50

<u>site 10</u>

2009 L-25200N/91250E 20 mV/V IP high set up at 91175E (UTM 691162E/5725198N) – drill E @ - 50

<u>site 11</u> 2009 L-24100N/92700E 20mV/V IP high set up at 91650E (UTM 692629E/5724101N) – drill E @ - 50

Respectfully submitted,

can

Alan Scott, P.Geo.

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I hereby certify the following statements regarding my qualifications and involvement in the program of work conducted at the Jake Property, Clearwater Area, B.C., and as presented in this report of September 8, 2010.

The work was performed by individuals qualified for its performance.

I have no material interest in the property under consideration in this report.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970 and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

carry

Alan Scott, P.Geo.

	A	В	С	D	E	F	G	Н	I	J	К	L
1	Jake 2010 As	say Data										
2	Ĩ											
3	Rock											
4	Sample No.	Location NAD 83	Au ppb	Cu ppm	Bi ppm	As ppm	Ag ppm			oc denotes ou	tcrop; all oth	er samples are float
5	MK 10-1	691480E,5725600N	15	152	<5	25	<.2			siliceous gree	n volcanic Fe/	Ox stained
6	MK 10-2	691463E,5725636N	65	178	<5	15	<.2			siliceous gray	volcanic w/ d	lissem gray metallic
7	MK 10-3	692401E,5724903N	5	58	<5	5	<.2			gray volcanic	Fe/Ox stained	d with dissem pyrrhotite
8	MK 10-4	692392E,5724856N	<5	14	<5	5	<.2			gossan carbo	nate breccia	· -
9	MK 10-5	692465E,5724598N	5	90	<5	<5	<.2			volcanic cut b	y qtz and car	bonate veinlets, Fe/Ox and dissem pyrrhotite
10	MK 10-6	692263E,5725096N	5	32	<5	<5	<.2			coarse volcan	oc breccia, Mi	nor Fe/Ox and Mn/Ox
11	MK 10-7	691462E,5725685N	45	124	<5	<5	<.2			green volcani	c w/Fe/Ox sta	in w/ dissem pyrrhotite
12	MK 10-8	691742E,5725694N	<5	42	<5	<5	<.2			light green vo	lcanic breccia	? W/qtz veinlets and Fe/Ox stain
13	MK 10-9	689213E,5726297N	5	72	<5	<5	<.2			oc: argillite cu	t by qtz veinle	ets w/ Fe/Ox stain and pyrite
14	MK 10-11	695773E,5724569N	<5	50	<5	<5	0.7			oc:dark gray	volcanic, mino	or qtz and carbonate. Minor dissem sulfide
15	MK 10-12	695714E,5725070N	<5	106	<5	<5	0.2			oc:light gray	volcanic w/dis	sem pyrite?
16	MK 10-13	687806E,5727491N	<5	12	<5	<5	<.2			oc:gray argili	te w/qtz veins	i de la companya de l
17	MK 10-14	687826E,5727680N	<5	36	<5	5	0.2			gray argillite	w/qtz veins ar	nd dissem sulfides
18	MK 10-15	689403E,5726736N	<5	28	<5	<5	<.2			gray argillite	w/vuggy qtz r	neins
19	MK 10-16	689793E,5726501N	<5	80	<5	<5	0.3			gray green si	licified intrusiv	/e? w/ Fe/Ox and dissem sulfides
20	MK 10-17	688912E,5726773N	<5	24	<5	<5	0.2			oc:gray argill	ite cut by qtz	veinlets
21	MK 10-18	688545E,5726943N	<5	172	<5	<5	0.4			oc: siliceous g	ray/green rub	bly textured intrusive cutting argillite
22	I									abundant fe/0	Ox and sulfide	S
23	MK 10-19	691000E,5726019N	<5	118	<5	<5	0.2			small piece of	volcanic float	t w.abundant Fe/Ox and sulfides
24	MK 10-20	691565E,5725472N	<5	52	<5	<5	<.2			light gray, gra	anular volcani	c? W/ dissem sulfides
25	MK10-21	691724E,5725241N	<5	124	<5	<5	<.2			small pieces of	of float; dk gre	een amphipolite w/ Fe/Ox and dissem sulfides
26	MK 10-22	691755E,5727658N	5	120	<5	10	<.2			small piece of	f silicified gray	volcanic float w/dissem sulfides
27	MK 10-23	691526E,5727679N	<5	66	<5	<5	<.2			silicified volca	inic breccia sii	milar to sample 22
28	MK 10-24	691445E,5727592N	5	38	<5	<5	<.2			silicified volca	inic breccia sii	milar to sample 23
29	MK 10-25	692500E,5722339N	<5	32	<5	<5	0.5			gray argillite	w/vuggy qtz v	veinlets
30	MK 10-26	684598E,5729889N	5	62	<5	<5	0.3			oc:Fe/Ox stai	ned black arg	illite
31	MK 10-27	691680E,5725935N	<5	68	<5	15	0.2			small pieces of	of float; silicifie	ed volcanic w/dissem sulfides
32												
33												
34	Soil									All soils samp	les boulder cl	ay from <.5 to one metre depth
35	WP 305	691462E,5725685N	<5	6.4	0.12	1.8	0.1					
36	WP 306	691493E,5725702N	<5	12.5	0.2	2.6	0.1					
37		691497E,5725597N	5	22	0.22	3.1	0.2					
38	WP 307	692898E,5725206N	<5	65	0.14	10.8	<.1					
39		692545E,5725000N	5	5.3	0.06	2.3	0.2					
40		692500E,5725007N	5	16	0.1	2.3	0.1					
41	WP 310	691569E,5725472N	10	36	0.5	5.4	0.1					
42	WP 311	691624E,5725391N	<5	19	0.14	2.7	0.1					
43	A, WP 322	691748E,5725211N	20	34	<5	5	<.2					
44	B, WP 323	691605E,5725287N	30	54	<5	5	<.2					
45	WP 324	691560E,5725325N	13	55	0.86	7.6	<.1					
46	WP 325	691534E,5725363N	28	92	2.36	7.8	0.1					
47	WP 326	691515E,5725416N	6	29	0.84	3.6	0.1					
48	WP 327	691501E,5725453N	10	34	0.96	5.7	0.1					
49	WP 328	691464E,5725500N	18	41	1.26	5.8	0.1					
50	WP 329	691419E,5725529N	3	53	0.2	4.4	0.2					
51	WP 330	691375E,5725548N	2	75	0.18	4.2	0.1			1		

	А	В	С	D	E	F	G	Н	I	J	К	L
52	WP 331	691336E,5725582N	2	59	0.24	10.6	0.1					
53	WP 332	691303E,5725620N	2	42	0.42	5	<.1					
54	WP 333	691272E,5725651N	1	34	0.2	4.7	<.1					
55	WP 334	691244E,5725696N	2	29	0.16	4.1	0.1					
56	WP 335	691214E,5725735N	1	50	0.2	9.7	0.1					
57	WP 336	691183E,5725775N	1	26	0.18	4.6	<.1					
58	WP 337	691149E,5725828N	4	46	0.3	7.1	<.1					
59	WP 338	691084E,5726013N	1	78	0.24	10.4	0.1					
60												
61												
62	Soil	90 percntile										
63		Au ppb	Cu ppm	Bi ppm	As ppm							
64		13	105	0.62	30							
65												
66		75 percentile										
67		5	75	0.33	15.9							

Jake 2010 Assessment Report Expenses	5	Date	meals	Hotel
		26-May Nelson-Kam	\$12.14	
Contractors			\$7.95	
18-Jun Eco Tech	\$283.05 Jake assays		\$1.40	
03-Aug Eco Tech	\$472.49 Jake assays	27 Kam-Clear	\$4.06	
30-Aug Eco Tech	\$525.00 Jake assays		\$15.10	
10-Sep Scott Geophysics	\$500.00 Drill site study		\$2.22	
18-Oct Eco Tech	\$166.25 assays		\$11.35	\$109.25
09-Nov Wayne Reich	\$344.00 drafting	28 Clear	\$6.21	
14-Dec Wayne Reich	\$352.00 drafting		\$17.56	
03-Feb Wayne Reich	\$152.00 drafting			
Sub T	\$2,794.79			
M. A. Kaufman			\$7.33	
Time		29 Clear	\$6.60	
18-May review geophysics			\$7.22	
design 2010 program	\$700.00	30 Clear-Kam	\$6.60	
21 -23 "	\$700.00		\$22.48	\$305.10
26 travel	\$350.00	31 Kam-Spok	\$4.10	\$109.25
27 geology/sampling	\$700.00	13-Jul Spok-Clearw	\$7.43	
28 sampling	\$300.00	·	\$16.40	
29 sampling	\$300.00	14 Clearwater	\$5.36	
30 sampling/geology	\$700.00		\$9.07	
31 travel	\$350.00		\$12.45	
July 7-10 review old geochem	\$700.00		\$12.60	
13 travel	\$350.00	15 Clearwater	\$9.44	
14 geology/follow up	\$700.00		\$5.36	
15 geology/follow up	\$700.00		\$16.40	
16 travel	\$350.00	16 Clearw-Nelson	\$3.40	\$311.97
09-Aug travel	\$350.00	08-Aug Spok	\$29.48	
10 sampling	\$300.00	9 Spok-Clearw	\$8.77	
11 sampling	\$300.00	·	\$12.35	
12 geology/travel	\$350.00		\$7.71	
13 assav prep/travel	\$350.00	10 Clearwater	\$7.04	
Aug 21-23 data review.			\$17.49	
drill site selection	\$700.00		\$5.72	
23-Sep travel	\$350.00	11	\$5.36	
24 geology, survey drill			\$1.89	
sites	\$700.00	12 Clearw-Kamloops	\$6.04	
25 "	\$700.00		\$23.49	\$302.40
26 geology/travel	\$350.00	13 Kam-Spok	\$4.60	

Oct. 12-15	data comp	\$700.00
Jan 17-20	assess rept prep	\$700.00

Sub T

\$12,750.00

		\$2.34	\$112.09	
21-Sep	Spok	\$38.61		
22	Spok-Nelson	\$11.59		
		\$29.64	\$78.83	
23	Nelson- Clearw	\$9.04		
24	Clearwater	\$14.04		
		\$13.53		
		\$11.18		
25-Sep	Clearwater	\$8.60		
		\$8.25		
		\$6.15		
26	Clearw-Kamloops	\$7.04	\$302.40	
27	Kamloops-Spok	\$14.00	\$102.68	
		\$26.14		
Totals		\$560.32	\$1,733.97	
Grand total			\$2,294.29	
Sub T				
of all			\$20,893.48	
			\$3,822.28	PAC acct
			\$24,715.76	Total

Vehicle Expenses

Date	Destination	Miles
26-May	Nels-Castlg-Kam	324
27	Kam-Jake-Clearw	103
28	Clearw-Jake	30
29	Clearw-Jake	26
30	Clearw-Jake	125
31	Kamloops-Spok	361
13-Jul	Spok-Clearwater	432
14	Clear-Jake	43
15	Clear-Jake	37
16	Clear-Jake-Nelson	376
09-Aug	Spok-Clearwater	431
10	Clear-Jake	26
11	Clear-Jake	31
12	Clear-Jake-Kamloops	136
13	Kamloops-Spok	360
23-Sep	Nelson-Clearwater	364
24	Clearwater-Jake	50
25	11	65
26	Clearw-Jake-Kamloops	131
27	Kamloops-Spokane	367
Total miles		3818
Total Kilometres		6108.8
per km	\$0.50	\$3,054.40

VY Co Image: Constraint of the second s			CERTIFIC	ATE OF AN	ALYSIS AK 20	10- 0294		
DV Co 8-Jun-10 Spokane Valley, WA 8-Jun-10 99214 USA 9214 USA Spokane Valley, WA 9214 USA 9214 USA 9214 USA Sample received: 9 9 Sample Type: Rock 9 Project: Jake 9 Submitted by: M A Kaufman 9 1 MK-10-1 15 2 MK-10-2 65 3 MK-10-3 5 4 MK-10-3 5 5 MK-10-5 5 6 MK-10-6 5 7 MK-10-7 45 8 MK-10-8 <5 9 MK-10-7 45 9 MK-10-7 45 1 MK-10-7 45 1 MK-10-7 45 9 MK-10-7 45 9 MK-10-7 45 1 MK-10-7 45 1 MK-10-7 45 1 MK-10-7 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
DV Co 8-Jun-10 PO Box 14336 8-Jun-10 Spokane Valley, WA 99214 USA 99214 USA 99214 USA Sample sreceived: 9 9 Sample Type: Rock 9 Project: Jake 9 Submitted by: M A Kaufman 9 1 MK-10-1 1 MK-10-2 65 9 3 MK-10-3 5 5 6 MK-10-4 5 5 6 MK-10-5 7 MK-10-7 45 9 MK-10-8 45 9 MK-10-7 45 9 MK-10-7 45 1 MK-10-7 45 9 7 45 9 MK-10-7 45 9 1 MK-10-7 45 9 1 10 1 10 1 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
PO Box 14336 0 0 0 0 Spokane Valley, WA 0 0 0 0 0 99214 USA 0 </td <td>DV Co</td> <td></td> <td></td> <td></td> <td></td> <td>8-Jun-10</td> <td></td> <td></td>	DV Co					8-Jun-10		
Spokane Valley, WA Image: Constraint of the system of the sy	PO Box	14336						
9214 USA	Spokane	e Valley, WA						
No. of samples received: 9 Sample Type: Rock Project: Jake Submitted by: M A Kaufman Image: Im	99214 U	SA						
No. of samples received: 9 Au Au Submitted by: MA Kaufman Au Au Au ET #. Tag # (ppb) Au Au Au ET #. Tag # (ppb) Au	002110							
No. of samples received: 9								
Sample Type: Rock Image: Constraint of the second sec	No. of sa	mples receivea	1:9					
Project: Jake Au Image: Constraint of the second secon	Sample T	, ype: Rock						
Submitted by: M A Kaufman Au Image: Constraint of the second sec	Project:	Jake						
ET #. Tag # Au Au Au ET #. Tag # (ppb)	Submittee	d by: M A Kaufi	man					
ET #. Tag # (ppb) 1 MK-10-1 15 2 MK-10-2 65 3 MK-10-3 5 4 MK-10-3 5 5 MK-10-3 5								
ET #. Tag # (ppb) 1 MK-10-1 15				Au				
1 MK-10-1 15	ET #.	Tag #		(ppb)				
2 MK-10-2 65	1	MK-10-1		15				
3 MK-10-3 5	2	MK-10-2		65				
4 MK-10-4 <	3	MK-10-3		5				
5 MK-10-5 5	4	MK-10-4		<5				
6 MK-10-6 5	5	MK-10-5		5				
7 MK-10-7 45 1 1 8 MK-10-8 <5	6	MK-10-6		5				
8 MK-10-8 <	/	MK-10-7		45				
g J	0	MK 10.0		<0				
QC DATA: Image: Constraint of the second	9	10-9		5				
Action Action Action Action Action 1 MK-10-1 15 Action Action Action 2 MK-10-2 60 Action Action Action Action 7 MK-10-7 455 Action A								
1 MK-10-1 15 Image: constraint of the second	Repeat:							
2 MK-10-2 60 Image: Constraint of the second	1	MK-10-1		15				
7 MK-10-7 45 Image: Constraint of the second	2	MK-10-2		60				
Resplit: Image: Constraint of the second	7	MK-10-7		45				
Resplit: Image: Constraint of the second secon								
1 MK-10-1 20 Image: Standard: Standard: Image: St	Resplit:							
Standard: 610 610 610 OXE74 610 610 610 610 FA Geochem/AA Finish 610 610 610 610 FA Geochem/AA Finish 610 610 610 610 MM/nw 610 610 610 610 610 MM/nw 610 610 610 610 610 610 MM/nw 610 610 610 610 610 610 610 MM/nw 610 610 610 610 610 610 610 610 610 FA Geochem/AA Finish 610 610 610 610 610 610 610 610 610 FA Geochem/AA Finish 610	1	MK-10-1		20				
Standard: 610 610 610 OXE74 610 610 610 610 Access of the second								
OXE74 610 Image: Constraint of the second seco	Standard	l:						
Image: Sector of the sector	OXE74			610				
FA Geochem/AA Finish Image: Constraint of the second s								
FA Geochem/AA Finish Image: Constraint of the second s								
FA Geochem/AA Finish Image: Constraint of the second sec		am/AA Finiak						
Image: Second	FA Geoc	hem/AA Finisr	1					
ECO TECH LABORATORY LTD. NM/nw B.C. Certified Assayer XLS/10 Image: Context of the second se								
NM/nw B.C. Certified Assayer								
NM/nw B.C. Certified Assayer XLS/10 Image: Constraint of the second sec						Norman Mor	teith	
XLS/10	NM/nw					B C Certified	dAssaver	
	XLS/10							

	9-Jun-10																																
Stewar	t Group																									1							
ECO TI	ECH LABORA	TORY	LTD.									ICP CE	ERTIFI	CATE		NAI	LYSI	S AK	2010-	0294	4							DV	Co				
10041 [Dallas Drive																											PO	Box 1	4330	5		
KAMIC	OOPS B.C.																											Spc	kane	Vall	ev. V	NA	
V2C 6T	A															\square											-	992	14 115	λ	<u>.</u> ,.		-
V20 01	4																<u> </u>				-					!	<u> </u>	332	14 03	~		+	-
<u>vv vv vv.St</u>	ewangroupgiou		<u>I</u>													$ \rightarrow$	<u> </u>							───┤		!	<u> </u> '	\vdash				<u> </u>	
																⊢ −+	<u> </u>				-			┼───┤		!	<u> </u> '						
Dhanai	250 572 5700															⊢ −−	<u> </u>										<u> </u>	\vdash				<u> </u>	
Phone:	250-573-5700															$ \rightarrow $	<u> </u>								'		<u> </u> '	\vdash				<u> </u>	
гах :	250-573-4557															 	<u> </u>								<u> </u>	!	<u> </u>					i va di O	-
																$ \rightarrow$	<u> </u>									!	<u> </u> '	INO.	or sam	ipies	<u>rece</u>	ivea: 9	
																⊢ −−+	⊢							┝───┤		!	<u> </u> '	Sam	ipie iy	pe: r	KOCK		
																⊢ – –	⊢							┝───┤		!	<u> </u>	Proj	ect: J	аке			
14-1		4				ļ											<u> </u>				-				'	[!]	<u> </u> '	Sub	mittea	by: N	<u>// A K</u>	autmar	1
values	in ppm unles	s othe	rwise	rep	ortea	1										⊢ →	⊢								'		<u> </u>					<u> </u>	_
																\vdash	⊢										<u> </u> '					<u> </u>	_
=. "	- "				_	_		• • • •	~ .	~	•		= ~ ~		1404	.	.				N 0/						-			_			-
Et #.	lag #	Ag	Al%	AS	ва	Ве	BI	Ca%	Ca	Co	Cr	Cu	Fe%	Hg	K%	Lа		Mg%	Min		Na%	NI	P	PD	RD	5%	50	SC	<u> </u>	Sn	<u></u> Sr		<u>, U</u>
1	MK-10-1	<0.2	1.99	25	46	<1	<5	0.58	<1	22	48	152	5.75	<5	0.07	2	10	1.33	360	1	0.07	8	680	6	<50	0.20	<5	10	<10	<5	20	0.19	/ <5
2	MK-10-2	<0.2	1.40	15	38	<1	<5	0.74	<1	29	60	178	4.08	<5	0.07	<2	8	0.83	260	<1	0.08	19	420	6	<50	0.84	<5	5	<10	<5	14	0.25	, <5
3	MK-10-3	<0.2	2.04	5	62	<1	<5	0.57	<1	37	64	58	4.97	<5	0.96	<2	6	1.17	380	2	0.09	19	520	6	<50	1.51	<5	6	<10	<5	14	0.28	; <5
4	MK-10-4	<0.2	1.92	5	8	<1	<5	5.99	<1	12	90	14	3.39	<5	<0.01	<2	8	2.40	800	<1	0.03	11	180	6	<50	<0.01	<5	11	<10	<5	34	0.01	<5
5	MK-10-5	<0.2	2.44	<5	82	<1	<5	2.74	<1	33	56	90	4.54	<5	0.25	<2	10	1.60	630	2	0.04	19	430	6	<50	0.90	<5	4	<10	<5	42	0.19	/ <5
																	\vdash								!							<u> </u>	
6	MK-10-6	<0.2	2.40	<5	48	<1	<5	0.72	<1	27	144	32	3.42	<5	0.07	<2	8	1.70	625	<1	0.04	34	380	6	<50	<0.01	<5	3	<10	<5	8	0.32	. <5
7	MK-10-7	<0.2	1.56	<5	18	<1	<5	0.88	<1	21	26	124	4.87	<5	0.07	2	10	0.93	340	<1	0.06	4	760	6	<50	0.84	<5	5	<10	<5	10	0.34	· <5
8	MK-10-8	<0.2	1.78	<5	48	<1	<5	0.52	<1	33	70	42	4.98	<5	0.13	<2	6	1.17	610	1	0.05	17	410	6	<50	0.87	<5	3	<10	<5	8	0.23	5> 6
9	MK-10-9	<0.2	1.65	<5	12	<1	<5	0.45	<1	9	178	72	2.96	<5	0.02	4	18	0.59	450	2	0.07	14	280	18	<50	<0.01	<5	4	<10	<5	38	<0.01	<5
																											<u> </u>						
QC DA	<u>TA:</u>																L										<u> </u>						_
Repeat	:																\vdash									'							
1	MK-10-1	<0.2	2.01	25	46	<1	<5	0.54	<1	21	48	154	5.59	<5	0.07	2	10	1.34	345	1	0.07	7	670	6	<50	0.20	<5	10	<10	<5	20	0.18	5> 6
																										ļ'							
Resplit	<u>:</u>																										<u> </u>						
1	MK-10-1	<0.2	1.95	25	46	<1	<5	0.56	<1	22	46	154	5.64	<5	0.07	2	10	1.27	340	1	0.07	7	670	6	<50	0.20	<5	10	<10	<5	18	0.19	/ <5
																										'							
Standa	rd:																								<u> </u>	ļ'							
Pb129a	1	11.7	0.86	5	60	<1	<5	0.49	58	6	12	1428	1.62	<5	0.10	4	<2	0.69	375	2	0.03	5	430	6233	<50	0.80	15	<1	<10	<5	28	0.04	- <5
																									<u> </u>	ļ'							
ICP: Ac	qua Regia Dig	est / IC	P- AE	ES F	inish																					'							
Ag : Ac	ua Regia Dige	est / A	A Fini	sh.																					<u> </u>	/							
NM/nw																																	
df/1_2948	S																																
XLS/10																					ECO	TECH	LABC	RATOR		·							
																					Norm	an Mo	nteith										
																					B.C.	Certifie	d Assa	aver									

160	<u>W</u>	10	Zn
88	<5	8	18
140	<5	5	34
120	<5	15	30
90	<5	4	42
74	<5	4	46
162	<5	14	22
76 22	<5 <5	10	32 44
156	5	10	30
	-		
156	5	10	28
18	5	2	9904
	_		

	A	В	C	D	E	F	G	Н
1			CERT	FICAT	E OF A	NALYSIS	AK 2010	- 0295
2								
3								
4	DV Co							17-Jun-10
5	PO Box	14336						
6	Spokane	e Valley, WA						
7	99214 U	SA						
8								
9								
10	No. of sai	mples received: 8						
11	Sample T	ype:Soil						
12	Project:	Jake						
13	Submittee	by: M.A. Kaufman						
14								
15					Au			
16	<u>ET #.</u>	Tag #			(ppb)			
17	1	MK 27000-91325			<5			
18	2	MK 692898-5725206			<5			
19	3	MK-691624-5725391			<5			
20	4	MK-692500-5725000			5			
21	5	MK-691497-5725597			5			
22	6	MK-25000-692545			5			
23	7	MK-691569-5725472			10			
24	8	MK-27000-91350			<5			
25								
26	QC DATA	• <u>•</u> 						
27	Repeat:							
28	3	MK-691624-5725391			<5			
29	Ctondoro	 -						
30	Standard				620			
22					020			
32								
3/								
35	FA Geocl	οm/ΔΔ Finish						
36								
37								
38	<u> </u>							
39	1							
40								
41							ECO TECH	LABORATOR
42	NM/kk						Norman Mor	nteith
43	XLS/10						B.C. Certifie	d Assayer

	I
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	KY LID.
42	
43	

		D	<u> </u>		-	-	<u> </u>				14					D	<u> </u>			-		14	1 147	V	V V
	A	В	C C	D	E	F	G	н	I	J	ĸ	L	IVI	N	0	Р	Q	R	5		U	V	VV	X	Υ
1		18-Jun-10																							
2	Stewart C	roup																							
2	ECO TEC																	010-0	205						
	10044 De																		235						
4	10041 Da	lias Drive																							
5	KAMLOO	PS, B.C.																							
6	V2C 6T4																								
7																									
8																									
a																									
10	Bhono: 25	0 573 5700																							
10	Filone. 20																								
11	Fax : 25	0-573-4557																							
12																									
13																									
14																									
15																									
16																									
17	Values in	ppm unless otherwise r	reporte	d																					
18				1																					
10	-		۸a	A1	٨٩	Ba	Bi	Ca	СЧ	60	Cr	Cu	Fo	Ga	На	ĸ	12	Ma	Mn	Mo	Na	Ni	D	Dh	e
20	E4 #	Tog #	nnm	0/	A5	nnm	nnm	0/	nnm	00	- Ci	nnm	0/	Ga	ny	0/	La	1VI Y	nnm	1010	1Na 0/	nnm	F	FU nnm	0/
	Ξι#.	Tay #	ppin	70	ppm	ppm	ppm	70	ppm	ppm	ppm	ppin	70	ppm	hhn	70	ppm	70	ppm	ppm	70	ppm	ppin	ppm	70
21	1	MK 27000-91325	0.1	1.59	2.6	86.0	0.20	0.25	0.11	10.6	23.0	12.5	2.05	5.4	30	0.05	5.0	0.42	540	0.44	0.046	18.6	774	5.76	<0.02
_22	2	MK 692898-5725206	<0.1	2.12	10.8	82.5	0.14	0.64	0.13	17.5	101.0	65.3	3.57	5.3	15	0.09	9.5	1.31	547	0.22	0.048	50.5	462	7.35	<0.02
23	3	MK-691624-5725391	0.1	1.62	2.7	92.0	0.14	0.32	0.06	8.9	32.0	19.0	2.04	4.4	10	0.07	11.5	0.59	253	0.37	0.053	21.9	528	4.77	<0.02
24	4	MK-692500-5725000	0.1	1.05	2.3	37.0	0.10	0.11	0.09	4.5	16.5	7.2	1.62	4.8	20	0.03	5.5	0.17	131	0.30	0.041	10.9	590	5.50	< 0.02
25	5	MK-691497-5725597	0.2	2.13	3.1	102.5	0.22	0.25	0.11	13.4	28.0	21.9	2.41	5.6	20	0.06	9.0	0.52	232	0.47	0.052	24.3	877	5.09	< 0.02
26								0						0.0				0.0-							
27	6	MK 25000 602545	0.2	0.72	22	70.5	0.06	0.14	0.10	12	12.0	5.2	1 1 2	10	20	0.02	5.5	0.12	506	0.28	0.044	60	050	7 96	~0.02
21	- 0	MK 604560 5725472	0.2	0.72	Z.3	111.0	0.00	0.14	0.19	4.2	20 5	0.0 26 F	2.27	4.0	20	0.03	5.5	1.00	420	0.20	0.044	0.9	535	1.00	<0.02
20	/	IVIN-091509-5725472	0.1	2.22	5.4	<u> </u>	0.50	0.42	0.07	10.7	30.5	30.5	3.37	0.3	10	0.08	0.0	1.06	430	0.01	0.050	25.4	517	4.76	<0.02
29	8	MK-27000-91350	0.1	0.99	1.8	58.0	0.12	0.15	0.11	5.8	10.5	6.4	1.86	6.1	25	0.04	3.0	0.19	365	0.37	0.043	1.1	898	6.58	< 0.02
30																									
31	QC DATA	• •																							
32	Repeat:																								
33	1	MK 27000-91325	0.1	1.66	2.8	89.5	0.18	0.27	0.11	11.4	24.0	13.2	2.11	5.7	30	0.06	5.5	0.45	553	0.42	0.048	19.5	805	6.15	<0.02
34																									
35	Standard	-																							
36	Till-3		1.5	1.06	79.0	35.5	0.18	0.51	0.09	10.1	63.0	21.1	1.95	39	105	0.08	14.0	0.62	322	0.60	0.060	31.7	432	16.58	<0.02
37			1.0	1.00	10.0	00.0	0.10	0.01	0.00	10.1	00.0	2	1.00	0.0	100	0.00	1 1.0	0.02	022	0.00	0.000	01.1	102	10.00	40.02
20		nia Digost/ICBMS Finish																							
30	Aqua Neg	Jia Digestrice in 5 Fillish																							
39																									
40																									
41																									
42																									
43																									
44																									
45	NM/nw																								
46	df/msr295S																								
47	XI S/10																								
1 48																									

	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK
1												
2												
3						DV Co						
4						PO Bo	x 14336	3				
5						Snoka	ne Vall	ν WΔ				
<u> </u>						00214		-y, WA				
						99214	034					
10												
11												
$\frac{11}{12}$						No of a	amplas	racaivad.	8			
12						Somple	Tuno S	oil	0			
11						Broice	rype.o	011				
14						Submit	tod by: A	1 A Kaufr	non			
16						Submit		I.A. Nauli				
17												
18												
10	Sh	80	So	Sr	То	Th	ті	ті	- 11	v	w	Zn
$\frac{13}{20}$	nnm	nnm	nnm	nnm	nnm	nnm	%	nnm	nnm	nnm	nnm	nnm
20	0.10	1.6	20 1	10.0		22	0 1 4 2	0.12	0.4	52	0.7	62.4
$\frac{21}{22}$	0.10	1.0	<0.1	24.5	0.04	2.2	0.143	0.12	0.4	00	0.7	51 F
22	0.20	10.2	0.3	21.5	0.04	3.1	0.197	0.14	0.7	90 50	0.5	26.5
23	0.10	2.4	10.2	14.5 E 0	<0.02	4.0	0.137	0.06	0.0	52	0.0	30.5
24	0.06	1.2	<0.1	5.0	<0.02	2.3	0.112	0.06	0.4	44 54	0.5	31.Z
20	0.14	2.4	0.2	14.5	0.02	3.0	0.144	0.10	0.0	54	0.5	09.9
20	0.06	1.0	-0.1	6.5	-0.02	16	0.002	0.04	0.2	20	0.2	40.0
28	0.00	3.6	<0.1 0.2	16.0	<0.02	2.1	0.002	0.04	0.3	88	0.3	49.0 52.5
20	0.22	1.2	0_1	5.5	<0.02	0.8	0.224	0.12	0.3	56	0.4	12.5
30	0.00	1.2	< 0.1	5.5	<u> <0.02</u>	0.0	0.152	0.04	0.2	50	0.5	42.7
31												
32												
33	0.08	19	01	10.5	<0.02	2.0	0 149	0.10	0.3	54	0.3	66.3
34	0.00		0.1		10.02	2.0	0.140	0.10	0.0		0.0	00.0
35				1								
36	0.54	3.1	0.3	15.0	0.02	2.1	0.064	0.06	1.0	36	0.3	39.8
37	0.01	0.1	0.0		0.02		0.007	0.00			0.0	00.0
38												
39												
40												
41												
42												
43												
44												
45												
46	ECO T	ECH L	ABOR	ATORY	LTD.							
47	Norma	an Mon	teith									
40	BCC	ertified	Assav	rer								

	A	В	C	D	E	F	G	Н	I
1			CERTI	FICAT	E OF AN	ALYSIS	AK 2010-	- 0451	
2									
3									
4	DV Co							28-Jul-10	
5	PO Box '	14336							
6	Spokane	e Valley, WA							
7	99214 U	SA							
8									
9									
10	No. of sar	nples received	1: 11						
11	Sample T	ype: Rock							
12	Project:	Jake	6						
13	Submitted	i by: M.A. Kau	iman						
14					A.,				
16	ET #.	Taq #			(dqq)				
17	1	MK-10-11			<5				
18	2	MK-10-12			<5				
19	3	MK-10-13			<5				
20	4	MK-10-14			<5				
21	5	MK-10-15			<5				
22	6	MK-10-16			<5				
23	7	MK-10-17			<5				
24	8	MK-10-18			<5				
25	9	MK-10-19			<5				
26	10	MK-10-20			<5				
27	11	MK-10-21			<5				
28									
29	QC DATA	<u>.</u>							
30	Repeat:								
31	1	MK-10-11			<5				
32	Deenlite								
34		MK-10-11			-5				
35		10111-10-11							
36	Standard	 •							
37	OXF74	•			610				
38					010				
39									
40	FA Geoch	nem/AA Finisl	่า						
41									
42									
43									
44							ECO TECH	LABORATOR	RY LTD.
45	NM/nw						Norman Mor	nteith	
46	XLS/10						B.C. Certifie	d Assayer	

	A	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE
1		27-Jul-10																													
2	Stew	art Group																													
3	ECO	TECH LABO	ORATO	DRY L	ΓD.				1	CP C	CERT	IFICA	TE OF	ANAL	YSIS	AK 20	10- 0	451						DV C	o						
4	1004	1 Dallas Driv	е																					PO B	ox 143	36					
5	KAM	LOOPS, B.C	;.																					Spok	ane Va	alley, V	VA				
6	V2C	6T4																						9921	4 USA						
7	www.	stewartgroup	globa	l.com																											
8																															
9																															
10	Phon	e: 250-573-5	700																												
11	Fax	: 250-573-4	557																												
12																								No. of	f sample	es rece	ived:	11			
13																								Samp	le Type	: Rock					
14																								Proje	ct: Jak	e					
15																								Subm	itted by	: M.A. I	Kaufr	nan			
16	Value	es in ppm ui	nless	otherv	vise I	repor	ted																								
17																															
18	E t #	Tag #	٨٩	A 10/	٨c	Pa	Pa	Di	C-9/	60	60	Cr	<u></u>	E0%	Цa	K 0/	1.0		Ma ^{9/}	Mn	Mo	No%	Ni	В	Dh	C 0/	Sh	50		Sn	
20	1	MK 10 11	Ay 0.7	AI/0	A5		De	DI 45	2.20		21	162	50	7 E /0	ny 15	0.05	La	0	2.20			0.06	62	420	FD 15	3/0	30	30	-10	311	10
20		MK 10 12	0.7	3.31	<5	44	<1	<5 ~5	2.28	<1	25	162	106	3.44	C>	0.05	<2	8	2.30	090 675	2	0.00	03 72	430	10	0.02	<5	3	<10	<5	-10
21	2	MK-10-12	-0.2	2.00	<5	22	<1	<5	3.52	<1	35	224	100	4.70	<5	0.04	<u> </u>	14	2.04	1505	5	0.04	15	340	60	0.99	<5	3	<10	<5	346
22		MK-10-14	0.2	1.46	5	68	~1	<5	0.66	~1	18	78	36	4 97	<5	0.03	8	14	1.04	465	ך א	0.02	40	2160	18	0.01	<5	4	<10	<5	40
24	5	MK-10-15	<0.2	0.38	-5	6	~1	<5	0.00	~1	4	298	28	1.07	<5	<0.10	-2	4	0.12	210	6	0.04	13	160	10 3	0.00	<5	-1	<10	<5	18
25		WIIX-10-13	<0.2	0.50	~5	0		~5	0.24		-	230	20	1.07	~5	<0.01	~2	-	0.12	210	- 0	0.02	15	100	5	0.02	~5	~ 1	<10	~5	
26	6	MK-10-16	03	2.02	-5	172	-1	~5	1 4 2	-1	24	138	80	2.46	-5	0.62	-2	12	1 15	295	1	0 27	47	710	15	0.82	~5	4	~10	-5	36
27	7	MK-10-17	0.0	2.02	<5	22	~1	<5	0.90	~1	<u>2</u> 4 9	230	24	3 19	<5	0.02	10	28	0.96	715	5	0.27	27	360	21	0.02	<5	4	<10	<5	116
28	8	MK-10-18	0.2	1 26	<5	70	<1	<5	1 01	<1	25	106	172	4 17	<5	0.00	<2	10	0.82	300	1	0.11	27	610	9	1 11	<5	4	<10	<5	12
29	9	MK-10-19	0.2	3.33	<5	132	<1	<5	2.61	<1	42	142	118	3.91	<5	0.99	<2	18	1.32	465	2	0.44	71	530	15	1.19	<5	3	<10	<5	52
30	10	MK-10-20	<0.2	1.26	<5	24	<1	<5	0.75	<1	28	120	52	2.38	<5	0.03	<2	6	0.97	390	1	0.06	35	330	6	0.39	<5	2	<10	<5	8
31				-				-					-												-						
32	11	MK-10-21	<0.2	1.74	<5	16	<1	<5	0.73	<1	34	56	124	4.10	<5	0.02	2	10	1.23	475	2	0.06	11	750	9	0.77	<5	3	<10	<5	6
33																															
34		ATA:																													
35	Repe	at:																													
36	1	MK-10-11	0.5	3.56	<5	46	<1	<5	2.32	<1	33	172	50	3.57	<5	0.06	<2	8	2.40	610	2	0.07	65	450	15	0.02	<5	4	<10	<5	12
37	10	MK-10-20	<0.2	1.29	<5	26	<1	<5	0.80	<1	29	120	52	2.39	<5	0.03	<2	6	0.99	390	1	0.06	35	330	6	0.39	<5	2	<10	<5	8
38																															
39	Resp	lit:		0.15							~ .	1.5.5							0.07					100	4 -	0.05	_				
40	1	MK-10-11	0.7	3.46	<5	42	<1	<5	2.42	<1	31	162	44	3.34	<5	0.05	<2	8	2.26	580	2	0.06	61	430	15	0.02	<5	4	<10	<5	12
41	0.0	-la web																													
42	Stan	dard:	44 7	0.07	-	00	- 4		0.50		~	40	4 4 7 0	4 57	<i>. . .</i>	0.44	4	0	0.00	075		0.00		400	0040	0.00				-	
43	19012	ઝત	11.7	υ.87	5	ŏ2	<1	<5	0.53	02	Ю	12	14/8	1.57	<5	0.11	4	<2	0.69	315	2	0.03	5	430	0Z1U	0.89	20	<1	<10	<5	
44			Digos			S Ein	ich																								
40		Aqua Regia	Diges	t/ΔΛ	- AE	s rin	1311.																								
40	<u> </u>		Diges	.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																									
48	NM/n	w																										ECC) TFC		
49	df/1 6	 101S																										Norr	nan M	lonte	eith
50	XLS/	10																										B.C.	Certi	fied A	Assav

	AF	AG	AH	AI	AJ	AK
1						
2						
3						
4						
5						
6						
7						
- /						
9						
10						
10						
12						
13						
14						
15						
16						
17						
18						
19	Ti%	U	V	W	Y	Zn
20	0.20	<5	100	<5	7	50
21	0.25	<5	92	<5	6	140
22	<0.01	<5	12	<5	10	34
23	0.05	<5	80	<5	8	80
24	<0.01	<5	12	<5	3	6
25						
26	0.18	<5	92	<5	6	32
27	<0.01	<5	38	<5	6	60
28	0.27	<5	90	<5	9	18
29	0.24	<5	120	<5	8	34
30	0.24	<5	62	<5	4	30
31						
32	0.26	<5	166	<5	14	42
33		-		-		
34						
35						
36	0.26	<5	112	<5	8	50
37	0.26	<5	64	<5	4	30
38	0.20		57	.0		
39						
40	0.26	25	108	~5	R	48
<u></u>	0.20	~3	100	~5	0	-+0
42		\vdash				
42	0.02	-5	19	5	2	<u>\10000</u>
43	0.03	<0	10	5		>10000
44						
40						
40						
4/	ATODY		<u> </u>			
48	AIORY		ט.			
49						
50	jer					

		CERT	FICAT	E OF AN	ALYSIS	AK 2010-	- 0452
							00.1.1.40
	1 4000						28-Jul-10
POBOX	14336						
Spokane	e valley, wa						
99214 U	SA						
No of oor	nnlag raggiyar	1. 0					
NU. UI Sal	inples received	1. 2					
Project	12ko						
Submitter	hv: MA Kai	ıfman					
Gubinitiou							
				Au			
ET #.	Taq #			(dqq)			
1	MK-10-A			20			
2	MK-10-B			30			
QC DATA	•						
Standard	:						
OXE74				610			
		-					
FA Geoch	nem/AA Finisl	h					
						ECO TECH	
NIM/mw						Norman Mar	
XI S/10						BC Cortific	d Assavor
AL3/10			1			D.C. Certille	unssayei

	27-Jul-10																														
Stew	art Group																														
ECO	TECH LAB	ORATO	ORY L	TD.					ICP C	ERTIF	ICATI	E OF	ANAL	YSIS	SAK	2010	- 04	52					DV C	0			\square				
1004	1 Dallas Driv	/e																					PO B	lox 14	4336						
KAM	ILOOPS, B.C) .																					Spok	ane	Valley	, WA					
V2C	6T4																						9921	4 US	A		\square				
www.	.stewartgrou	pgloba	l.com																								\square				
Phon	ne: 250-573-8	5700																													
Fax	: 250-573-4	1557																													
																							No. o	f sam	ples rea	<u>ceived:</u>	2				
																							Samp	ole Ty	be: Sol	<u>// /</u>	\square		I		
																							Proje	ct: Ja	ake		ப				
Value			- 44			ut a al																	Subm	litted	by: M./	<u>4. Kaui</u>	ma	n			
vaiu	es in ppm u	niess	otnerv	vise	repor	rtea																					\vdash				
																											\vdash				
Ft #	Tag #	Δa	۵۱%	Δς	Ba	Re	Bi	Ca%	Cd	Co	Cr	Сп	Fe%	На	K%	la	li	Ma%	Mn	Mo	Na%	Ni	P	Ph	S%	Sh	Sc	Se	Sn	Sr	Ti%
1			1 /0	5	68	1	-5	0.35	<u> </u>	22	24	34	2 0/	-5	0.05	6		0.82	380			17	530	0	<0.01	-5	2	<10	-5	18	0 11
2	MK-10-A	<0.2	1.49	5	76	~1	<5	0.33		22	24	54	2.94	<5	0.03	8	10	0.02	425		0.02	21	580	9 9	<0.01	<5		<10	<5	26	0.11
<u> </u>		\U.2	1.75		10		~0	0.40		20		- 07	0.00	~0	0.00		10	0.00	720	-	0.02	21	000	5	<0.01	~5	┝┯┥	10		20	0.12
	DATA:																														
Repe	eat:																														
1	MK-10-A	<0.2	1.49	5	70	<1	<5	0.35	<1	21	24	36	2.92	<5	0.06	6	8	0.82	390	<1	0.02	17	530	9	<0.01	<5	3	<10	<5	20	0.11
Stan	dard:																														
Till-3		1.5	1.09	80	38	<1	<5	0.56	1	13	66	22	2.04	<5	0.07	14	16	0.56	305	<1	0.03	32	470	24	0.04	<5	3	<10	<5	18	0.04
																										ļ!					
ICP:	Aqua Regia	Diges	st / ICF	- AE	S Fin	nish.																				ļ!	\square				
Ag:	Aqua Regia	Diges	st / AA	Fini	sh.																					ļ!	\square				
N 10 4 /10																										ļ'	\vdash				
	1W																									<u> </u>	\vdash				
	5/5 (10																				ECO T	ECH			דו עםר		┝─┤				
AL3/																					Norma		ntoith			<u>.</u>	┝─┤				
																<u> </u>					BC C	ortific	n Ase	aver			\vdash				
																											. /				

D 5 5	V 84	W	Y 7 7	Z n 32
	34	<u></u>	'	40
<5	86	<5	7	32

24-Aug-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

DV Co PO Box 14336 Spokane Valley, WA 99214 USA

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 15 Sample Type: Soil **Project: Jake** Submitted by: M.A. Kaufman

Values in ppm unless otherwise reported

		Au	Ag	Ai	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	S	Sb	Sc	Se	Sr	Те	Th	Ti	Π	U	v	w	Zn
<u>Et #.</u>	Tag #	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppb	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
1	MKWP324	13	<0.1	1.93	7.6	90.5	0.86	0.45	0.11	20.4	41.0	55.3	3.30	5.5	10	0.10	8.0	1.04	465	0.59	0.039	25.1	556	2.60	<0.02	0.28	4.4	0.4	22.0	0.04	2.8	0.161	0.22	0.4	78	0.9	42.8
2	MKWP325	28	0.1	1.98	7.8	76.0	2.36	0.63	0.0 9	31.7	30.0	92.0	3.83	5.0	15	0.07	6.0	0.96	518	0.91	0.058	22.0	444	2.32	0.04	0.32	5.2	0.5	34.5	0.04	2.4	0.157	0.14	0.8	74	0.8	40.6
3	MKWP326	6	0.1	1.38	3.6	69.0	0.84	0.35	0.10	11.0	29.0	21.2	2.14	4.1	10	0.07	7.5	0.63	262	0.63	0.046	19.5	516	4.09	<0.02	0.20	2.6	0.3	17.0	0.04	2.6	0.126	0.10	0.5	48	0.7	41.6
4	MKWP327	10	0.1	1.27	5.7	74.5	0.96	0.52	0.12	13.8	32.0	33.9	2.47	3.9	15	0.10	8.0	0.84	366	0.79	0.054	20.7	459	3.45	0.02	0.36	3.6	0.4	20.0	0.02	2.7	0.144	0.18	0.6	58	0.9	35.9
5	MKWP328	18	0.1	1.33	5.8	77.0	1.26	0.56	0.13	16.1	37.0	40.8	2.56	4.0	10	0.10	7.0	0.95	426	0.69	0.054	22.8	467	4.86	0.02	0.32	3.7	0.4	24.0	<0.02	2.0	0.145	0.16	0.5	60	0.7	36.8
e	MKMB200	2	0.0	1 00		100.0	0.00	0.27	0.10	10.0	40.0	50.0	0.45	47	16	0.12	75	A 94	205	0.55	0.040	06 7	E 40	0.07	.0.00	0.04	0.5	0.0	00 F	.0.00		0 10 1	0.40	0.5	- 4	0.5	40.0
7	MKMD220	0	0.2	2.00	4.4	120.0	0.20	0.57	0.10	12.0	40.0 62 E	75.0	2.40	4.7 E O	5	0.13	7.5 6.0	1.02	440	0.55	0.042	20.7	240	4.97	<0.02	0.24	2.5	0.2	22.5	<0.02	3.2	0.134	0.12	0.5	54	0.5	42.8
0	MKWE330	2	0.1	1 04	4.2	124.0	0.10	0.02	0.00	10.0	00.0 40 E	70.Z	2.90	5.0	45	0.24	0.0	1.20	449 500	0.40	0.040	20.0	593	1.71	<0.02	0.22	3.7	0.3	32.0	<0.02	2.0	0.207	0.14	0.3	76	0.4	40.6
0	MKMD222	2	20.1	1.04	5.0	92.0	0.24	0.05	0.12	17.1	40.0	09.0 40.0	2.99	5.1	10	0.20	0.5	1.17	200	0.03	0.050	25.0	023 425	4.73	0.02	0.28	4.2	0.4	31.0	<0.02	2.7	0.180	0.10	0.6	/6	0.5	46.5
10	MKWP332	4	<0.1	1.49	5.0	72.0	0.42	0.51	0.09	13.0	39.0	42.3	2.01	4.1	10	0.13	9.0	0.07	210	0.54	0.046	21.0	435	2.95	0.02	0.26	3.5	0.3	22.0	<0.02	3.1	0.155	0.12	0.6	60	0.5	36.4
10	1011/00-000	1	<0.1	1.55	4.7	73.0	0.20	0.45	0.11	13.5	21.5	34.1	2.20	3.7	10	0.11	0.5	0.74	310	0.44	0.040	19.0	399	2.25	<0.02	0.20	2.5	0.2	19.0	<0.02	2.0	0.131	0.10	0.5	52	0.5	35.9
11	MKWP334	2	0.1	1.13	4.1	71.5	0.16	0.40	0.11	11.3	26.5	28.8	2.08	3.2	10	0.12	7.5	0.73	314	0.47	0.045	16.4	419	2.64	<0.02	0.20	2.5	0.2	17.0	<0.02	2.4	0.116	0.08	0.8	50	0.4	31.9
12	MKWP335	1	0.1	1.74	9.7	105.0	0.20	0.53	0.10	14.6	38.0	50.4	2.86	4.7	20	0.15	7.5	0.95	376	0.86	0.047	24.3	324	3.61	0.02	0.34	4.0	0.4	21.5	<0.02	2.8	0.176	0.20	0.7	78	0.4	42.7
13	MKWP336	1	<0.1	1.23	4.6	78.5	0.18	0.44	0.12	11.0	30.0	26.1	2.19	3.6	10	0.12	8.5	0.75	345	0.51	0.046	18.2	434	3.38	<0.02	0.22	2.8	0.2	20.0	< 0.02	2.8	0.125	0.10	0.7	52	0.4	34.3
14	MKWP337	4	<0.1	1.71	7.1	123.5	0.30	0.53	0.08	14.0	40.0	45.8	2.79	4.2	5	0.13	6.5	0.98	371	0.35	0.045	21.2	342	1.86	<0.02	0.24	4.1	0.2	37.5	< 0.02	2.1	0.155	0.12	0.3	70	0.3	35.0
15	MKWP338	1	0.1	2.89	10.4	266.0	0.24	0.92	0.15	28.8	97.5	77.9	4.28	7.1	20	0.27	7.5	1.75	794	0.31	0.068	37.3	404	2.53	< 0.02	0.22	9.1	0.3	68.0	< 0.02	3.4	0.170	0.22	0.9	108	0.3	49.6
<u>QC D</u>	ATA:																																				
нере		40		4 00		~~ ~	0.04	0.45	0.40		40.0	50 Q			4.0		• •		450																		
1	MKWP324	16	<0.1	1.89	7.4	89.0	0.84	0.45	0.10	20.0	40.0	53.8	3.24	5.4	10	0.10	8.0	1.01	456	0.57	0.039	24.5	532	2.45	<0.02	0.30	4.1	0.4	21.5	0.02	2.8	0.165	0.20	0.4	78	0.5	42.3
10	MKWP333	2	0.1	1.29	4.5	72.5	0.18	0.44	0.12	13.2	27.0	33.6	2.22	3.6	10	0.11	6.5	0.73	306	0.45	0.044	18.9	382	2.94	<0.02	0.18	2.5	0.2	19.0	<0.02	2.1	0.133	0.10	0.5	52	0.3	35.5
Stand	dard:																																				
OXE7	<u>′4</u>	628	<0.1	1.56	1.0	67.5	0.02	0.70	0.03	20.3	53.5	25.8	3.15	5.8	5	0.41	13.0	1.49	475	1.75	0.703	72.3	1096	6.69	0.02	0.04	1.1	0.2	166.5	<0.02	2.0	0.421	0.04	0.6	52	0.3	41.6

Aqua Regia Digest/ICPMS Finish

NM/nw df/msr585AuS XLS/10 Am

ECO TECHLABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2010-0586

DV Co PO Box 14336 Spokane Valley, WA 99214 USA

No. of samples received: 3 Sample Type: Rock **Project: Jake** Submitted by: M.A. Kaufman

ET #.	Tag #	Au (ppb)	
1	MK-10-22	5	
2	MK-10-23	<5	
3	MK-10-24	5	
<u>QC DATA:</u> <i>Repeat:</i> 1	MK-10-22	<5	
Standard: OXE74		610	

FA Geochem/AA Finish

NM/nw XLS/10 ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

26-Aug-10

26-Aug-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

ICP CERTIFICATE OF ANALYSIS AK 2010-0586

DV Co PO Box 14 Spokane \ 99214 US/

Phone: 250-573-5700 Fax : 250-573-4557

No. of sam Sample Typ **Project: J** Submitted k

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al%	As	Ва	Be	Bi	Ca%	Cd	Со	Cr	Cu	Fe%	Hg	K%	La	Li	Mg%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc	Se	Sn	Sr	Ti%	U
1	MK-10-22	<0.2	2.85	10	4	<1	<5	0.59	<1	41	184	120	4.60	<5	0.02	<2	10	2.25	685	<1	0.07	66	760	12	0.46	<5	3	<10	<5	4	0.26	<5
2	MK-10-23	<0.2	3.08	<5	16	<1	<5	0.88	<1	33	148	66	4.37	<5	0.02	<2	12	2.24	830	<1	0.04	39	350	12	0.12	<5	4	<10	<5	12	0.34	<5
3	MK-10-24	<0.2	3.26	<5	14	<1	<5	1.08	<1	32	80	38	3.84	<5	0.11	<2	6	2.01	785	<1	0.09	24	420	12	0.07	<5	4	<10	<5	14	0.32	<5
<u>QC D</u>	ATA:																															
кере 1	at: MK-10-22	<0.2	3.04	10	4	<1	<5	0.61	<1	45	190	126	4.74	<5	0.02	<2	10	2.27	700	<1	0.07	70	780	12	0.47	<5	4	<10	<5	4	0.27	<5
Stand Pb12	lard: Əa	11.5	0.82	<5	62	<1	<5	0.48	57	6	12	1464	1.51	<5	0.11	4	<2	0.68	360	2	0.03	5	430	6201	0.81	15	<1	<10	<5	30	0.04	<5
ICP:	Aqua Regia D	Digest	/ ICP-	AES	Fini	ish.																										

NM/nw df/2_4401S

XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer 4336 **Valley, WA** A

oles received: 3 oe: Rock **ake** oy: M.A. Kaufman

V	W	Υ	Zn
150	<5	9	62
82	<5	4	62
112	<5	6	56
454	Ē	10	<u></u>
154	<5	10	66

20 <5 3 >10000

		CERTIFICA	FE OF AN	ALYSIS	AK 2010	- 0807	
						12 Oct 10	
DV CO	1/226					13-001-10	
Spokan	Valley WA						
99214 I I	SA						
002140							
No. of sa	mples received	1:5					
Sample 7	ype: Rock						
Project:	Gus/Jake						
			A 11				
FT #	Tag #		(ppb)				
1	Gus A		10				
2	Gus R		35				
3	MK-10-25		<5				
4	MK-10-26		5				
5	MK-10-27		<5				
QC DATA	<u>\:</u>						
Repeat:			10				
	Gus A		10				
Resplit:							
1	Gus A		20				
Standard	l:						
OXF65			815				
FA Geoc	hom/A A Finisl	h					
					ECO TECH	RY LTD.	
NM/nw					Norman Mo	nteith	
XLS/10					B.C. Certifie	a Assayer	

	12-Oct-10																																
Stewa	rt Group																																
ECO T	ECH LABO	RATOF	RY LTD						ICP	CER	TIFIC	ATE O	F ANA	LYS	IS AK	201	10-0	807					DV C	o									
10041	Dallas Drive																						PO B	ox 143	36								
KAML	OOPS, B.C.																						Spokane Valley			WA							
V2C 6	T4																						9921	4 USA									
www.s	tewartaroupo	alobal.	com																								+						
-		1																															
Phone	: 250-573-57	00																															
Fax	: 250-573-45	57																															
																							No. o	f sample	es rece	ived:	5						
																							Samp	Sample Type: Rock			mple Type: Rock						
																							Proje	ct: Gu	s/Jake								
																										<u> </u>	!	<u> </u>					
Values	s in ppm un	less of	herwis	e rep	orted																						<u> </u>	<u> </u>					
																										<u> </u>	<u> </u>	<u> </u>					
	- "				_	_		• • • •		-		•	= ~		160/						N 0/		<u> </u>		0 01								
Et #.	Tag #	Ag	AI%	AS	ва	ве	BI	Ca%	Ca	Co	Cr	Cu	Fe%	нg	K%	La	LI	Mg%	Mn	IVIO	Na%	NI	P	PD	5%	50	SC	Se	Sn	Sr			
1	Gus A	20.9	0.22	15	222	<1	<5	>10	5	2	18	70	0.44	<5	0.04	2	2	>10	370	1	0.01	18	1160	582	0.12	35	<u>, <1</u>	<10	<5	68			
2	Gus B	>30	0.13	25	24	<1	<5	>10	18	1	12	186	0.50	<5	0.02	2	<2	>10	795	5	< 0.01	7	770	1167	0.17	110	1 < 1	<10	<5	84			
3	MK-10-25	0.5	0.24	<5	108	<1	<5	>10	2	4	60	32	0.67	<5	0.03	4	2	0.54	170	2	0.01	10	430	12	0.06	<5	2	<10	<5	454			
4	MK-10-26	0.3	0.83	<5	524	<1	<5	2.26	<1	10	56	62	1.80	<5	0.17	4	14	0.92	1040	<1	0.03	22	340	12	0.04	<5	4	<10	<5	126			
5	MK-10-27	0.2	1.70	15	44	<1	<5	0.81	<1	36	52	68	4.11	<5	0.38	<2	6	1.28	450	1	0.07	18	640	9	1.31	<5	3	<10	<5	6			
	ЛТА.																										+	<u> </u>					
Bonor	<u>11A:</u>																										+!	<u> </u>					
		20.6	0.23	15	226	_1	~5	<u>\</u> 10	5	2	18	72	0.43	~5	0.04	2	2	\10	365	1	0.01	10	1100	585	0.12	40		~10	~5	68			
	Ous A	20.0	0.23	10	220		~5	210	5	~	10	12	0.43	~5	0.04	2	2	210	505	1	0.01	13	1130	303	0.12				~5	00			
Resnl	it.																																
1	Gus A	21.4	0.21	15	216	<1	<5	>10	5	2	16	80	0.41	<5	0.03	2	2	>10	400	1	0.01	13	1080	606	0.14	50) <1	<10	<5	68			
	0.0071		0						-						0.00						0.01						+						
Stand	ard:																										+						
Pb129	a	11.4	0.81	5	68	<1	<5	0.46	62	5	10	1470	1.57	<5	0.11	4	<2	0.70	335	2	0.03	5	410	6170	0.82	15	i <1	<10	<5	28			
ICP: A	qua Regia D	Digest	/ ICP- A	AES F	inish.																												
NM/nw	v																									<u> </u>							
df/2_786	6S																										\perp	<u> </u>					
XLS/1	0																				ECO TE		ABOR	ATOR	LTD.		+	<u> </u>					
							<u> </u>														Norman	n Mon	teith			<u> </u>	+	<u> </u>					
																					∣B.C. Ce	ertified	Assay	/er		I	1 '	1					

Ti%	U	V	W	Y	Zn
<0.01	<5	20	<5	3	392
<0.01	<5	14	<5	3	860
0.08	<5	20	<5	7	62
<0.01	<5	22	<5	5	76
0.39	<5	94	<5	4	64
<0.01	<5	18	<5	3	388
<0.01	<5	18	<5	3	376
0.04	<5	18	<5	2	>10000

