BC Geological Survey Assessment Report 32050

Romios Gold Resources Inc

2010 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE DIRK PROPERTY

Located in the Newmont Lake Area Liard Mining District NTS 104B 14E BCGS 104B 085 56°51' North Latitude 131°31' West Longitude

Prepared for: ROMIOS GOLD RESOURCES 25 Adelaide St East, Suite 1010 Toronto, Ontario M5C 3A1

> Prepared by: Paola Chadwick Scott Close

Octoberber 30, 2010

SOW Numbers: 4802691

SUMMARY

The Dirk Property consists of 29 contiguous map-selection claims covering 11,125.32 hectares in northwestern British Columbia, approximately 100km south-southeast of Telegraph Creek within the Liard Mining District. Access to the property is from a seasonal base at Kilometer 2 of the Eskay mine road and from the Bob Quinn Airstrip on Highway 37, approximately 45 kilometers to the east. The claims are wholly owned by Romios Gold Resources Inc.

Work was first completed on the property by Newmont Mining Corporation of Canada in 1972, on claims staked to cover copper mineralization discovered in 1971. Over the 1972 field season, Newmont Mining completed 1:9600 scale mapping, geochemical rock sampling, and drilled three "A" size core drillholes on the property. Airborne magnetics were flown over the full extent of the property, and 3 ground magnetic surveys were run over prospective zones within the claims.

Over the 2009 season, Romios Gold completed geological mapping and geochemical rock sampling, and expanded the claim block to the present size based of favourable geology and high-grade mineralization at surface.

The Dirk claims cover a nunatuk of rocky outcrops situated between sizeable glaciers and permanent snowfields. Staking in fall of 2009 extended the Dirk claims to the north and east; the Dirk claims are now contiguous with the Newmont Lake claims also held by Romios Gold Resources.

Over the 2010 season, mapping, prospecting and geochemical rock sampling were completed over the Dirk, Ridge and Telena showings. In total, 62 grab and chip samples of bornite and chalcopyrite bearing copper-gold mineralization were collected.

Table of Contents

1.0 INTRODUCTION	1
2.0 LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0 CLAIM STATUS	4
4.0 HISTORICAL WORK	6
5.0 GEOLOGY AND MINERALIZATION	6
5.1 REGIONAL GEOLOGY	6
5.2 PROPERTY GEOLOGY	7
6.0 2010 EXPLORATION PROGRAM	11
6.1 2010 GEOCHEMICAL ROCK SAMPLING	12
6.2 2010 GEOLOGICAL MAPPING	23
6.2.1 DIRK ZONE	25
6.2.2 TELENA ZONE	
6.2.3 RIDGE ZONE	
6.3 HISTORIC GEOPHYSICS	
7.0 CONCLUSIONS AND RECOMMENDATIONS	
8.0 EXPENDITURES	
9.0 BILBLIOGRAPHY	

LIST OF FIGURES

- Figure 1 Location Map of the Dirk Property
- Figure 2 Tenure Map Showing Claim Location with Tenure Number
- Figure 3 Location Map of Showings
- Figure 4A Dirk Regional Geology
- Figure 4B Geology of the Dirk Claims
- Figure 5 2010 Rock Sampling Sample Location Regional Samples
- Figure 6 2010 Rock Sampling Copper Geochemistry Regional Sampling
- Figure 7 2010 Rock Sampling Gold Geochemistry Regional Sampling
- Figure 8 2010 Rock Sampling Sample Location Ridge Showing
- Figure 9 2010 Rock Sampling Copper Geochemistry Ridge Showing
- Figure 10 2010 Rock Sampling Gold Geochemistry Ridge Showing
- Figure 11 2010 Rock Sample Locations Telena Showing
- Figure 12 2010 Rock Sampling Copper Geochemistry, Telena Showing
- Figure 13 2010 Rock Sampling Gold Geochemistry Telena Showing
- Figure 14 Dirk Property Geology overlain with Airborne Magnetics Survey Results

LIST OF TABLES

- Table 1Claim Status and Tenure
- Table 22010 Geochemical Rock Sample Assay Results
- Table 32010 Dirk Property Expenditures

LIST OF APPENDICES

- Appendix A Geochemical Rock Sample Assay Results
- Appendix B Certificates of Assay
- Appendix C Petrography Results

1.0 INTRODUCTION

The Dirk claims held by Romios Gold Resources are situated in Northwestern British Columbia, between Barrick's past producing Eskay Creek Mine to the southeast and Novagold/Teck's proposed Galore Creek Mine to the northwest. This report describes the work completed by Romios on the Dirk claims over the 2010 summer exploration field season.

The Dirk claims consist of 29 contiguous claim blocks totalling 11,125.32 hectares wholly owned by Romios Gold Resources.

Over the 2010 season, Romios completed the following exploration efforts on the property:

- 1:5000 scale mapping over the main mineralized zones; and
- Geochemical rock sampling, totalling 62 grab and chip samples over the Dirk and Telena showings.

All work was completed out of the all-season Espaw camp - part of the Galore Creek Mining Corporation operations - located on Sphaler Creek within Novagold's Galore Creek claim block.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Dirk property is located in north-western British Columbia (Figure 1), approximately 100 km south-southeast of Telegraph Creek, and centered on latitude 56°51'00" and longitude 131°31'00" in NTS map sheet number 104B085.

The property is about 46 kilometres west-southwest of the Bob Quinn airstrip, which is located along the west side of highway 37(Figure 2). Access to the property is via helicopter from the Bob Quinn airstrip. Bob Quinn is about 5 hours drive north of Terrace and about 6 hours north of Smithers, BC. The Forrest Kerr airstrip at the northern end of the Newmont Lake graben is unmaintained and is in unknown condition.

Road access to this property is possible from the Stewart-Cassiar highway along a route following More Creek to the Forrest Kerr drainage – a distance of approximately 60 kilometers.

Topography on the property is rugged, with elevations on the claims ranging from 2060m at the peaks in the southwest of the property to 1390m at the edge of the glacier. Vegetation is very sparse, with lichens and low lying heather present on lower

slopes in the northern region of the property. Rocky outcrops, talus cover and permanent snow and ice cover the majority of the property.

The Dirk claims can be worked from late June through until October, with best outcrop exposure occurring in mid to late August.

Figure 1: Location Map of the Dirk Property

3.0 CLAIM STATUS

The Dirk claim block consists of 29 contiguous claim blocks totalling 11125.32 ha contiguous on its eastern boundary with the Newmont Lake property on, a large claim block of wholly owned and optioned properties held by Romios Gold Resources.

Tenure Number	Owner	Tenure Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
510300	146096 (100%)	Mineral	104B	2005/apr/06	2011/oct/31	GOOD	424.356
510301	146096 (100%)	Mineral	104B	2005/apr/06	2011/oct/31	GOOD	336.043
510302	146096 (100%)	Mineral	104B	2005/apr/06	2011/oct/31	GOOD	442.282
662923	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	423.8769
662924	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	424.7352
662944	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	423.8818
662947	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	424.8962
662953	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	442.0072
662955	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	423.7666
662957	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	424.885
662958	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	247.4436
662960	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	425.0752
662961	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	424.6144
662965	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	441.7201
662966	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	425.0707
662968	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	441.6073
662969	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	371.5988
662970	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	53.1197
662972	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	53.126
662974	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	442.0215
662976	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	425.2368
662978	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	441.814
662979	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	425.2339
662980	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	317.7647
662981	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	425.0236
662983	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	441.7867
663003	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	424.6787
663023	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	442.5254
663024	146096 (100%)	Mineral	104B	2009/oct/31	2011/oct/31	GOOD	265.1253

Table 1: Claim Status and Tenure

Romios Gold Resources

4.0 HISTORICAL WORK

The Dirk claims were first staked by Newmont Mining Corporation in 1972 to cover copper mineralization discovered in 1971. Prior to 2009, sole exploration efforts on the property were completed in 1972 and consisted of 1:9600 scale mapping over the entire Dirk claims, airborne and ground geophysics, and 3 "A" size drillcore holes over the main Dirk showing. Airborne Magnetics was flown in approximately 800" (243.8m) spaced lines oriented north-south. Ground Magnetics were completed over magnetic anomalies identified in the airborne magnetic results. The Dirk and Ridge grids were completed over known areas of outcropping mineralization; the Icecap grid was completed over a permanent snowfield northeast of the Dirk Grid where a small, clearly defined magnetic high was seen in airborne results.

Coarse geophysical maps are given in the 1972 assessment report, yet no assay results from surface or drillcore sampling are included in the report. Drillcore was described as being stored at their base camp at the Forrest Kerr airstrip, yet efforts to locate the core were unsuccessful; due to the short length of the drillholes and the small size of the drillcore, the amount of core would be limited to just a couple of boxes which may have been flown out by fixed wing aircraft. Drillcore from the Ken zone drilled the same year was also not located.

In 2009 season, Romios initiated exploration efforts on the claims in the form of geological mapping and geochemical rock sampling over the Dirk and Telena showings; in total 32 rock samples were taken from the property. This was the first known exploration work on the property since 1972.

5.0 GEOLOGY AND MINERALIZATION

5.1 REGIONAL GEOLOGY

The regional setting of the Romios claim group is provided by Bulletin 104 (Logan et al., 2000), which describes mostly Stikine Terrain rocks (Stikinia) at the boundary between the Intermontane and Coast Belts (Figure 4a). Stikinia is the largest and westernmost allochthonous terrain of the Intermontane Superterrane. It has a unique pre-Jurassic geological history, paleontological and paleomagnetic signatures.

It is unclear if Stikinia originated far from the margin of ancestral North America (Gabrielse and Yorath, 1991) and later amalgamated with the Cache Creek, Quesnel and Slide Mountain terranes prior to accretion to the North American craton. Alternatively, Stikinia may have originated adjacent to the ancestral North America

margin (McClelland, 1992; Mihalynuk et al., 1994). In either case, there is no timestratigraphic or lithologic continuity beyond the boundaries of the Stikine Terrane.

Stikinia near the Romios claims consists of well-stratified middle Paleozoic to Mesozoic sedimentary rocks, volcanic, and comagmatic plutonic rocks probably formed in an island arc setting. Lithologically the Stikine Terrane is divided into the Paleozoic Stikine assemblage, the Late Triassic Stuhini Group, and the Early Jurassic Hazelton Group. These time and lithostratigraphic units are overlain by Middle Jurassic to early Tertiary successor-basin sediments (Bowser Lake and Sustut Groups), late Cretaceous to Tertiary continental volcanic rocks (Sloko Group), and Late Tertiary to Recent bimodal shield volcanism (Edziza and Spectrum ranges) (Gabrielse and Yorath, 1991).

The predominately calcalkaline Jurassic to Paleocene aged Coast Plutonic Complex intrudes the western boundary of the Stikine Terrane. Cooling ages and uplift history are complex varying from mid-Cretaceous and older on the west side of the belt, and mainly Late Cretaceous and Tertiary on the east side. The Romios claim group is located on the east of the complex where voluminous postorogenic Tertiary bodies (Eocene Sloko Group continental volcanic rocks) obscure the western margin of Stikinia. These rocks are known from centres north and northwest of the Romios claim group (Logan et al 2000).

Late Triassic to Early Jurassic intrusive rocks of the Copper Mountain Plutonic Suite (Woodsworth et al., 1991) characteristically comprises small alkaline bodies varying from monzodiorite to monzonite to syenite. The intrusions are lithologically complex with multiple intrusive phases. They are metalogenically important, being related to both copper and gold mineralization in both Stikinia and Quesnellia.

U-Pb ages are similar (circa 200 to 210 Ma) for intrusions associated with porphyry Cu-Au deposits in both Stikinia and Quesnellia terranes. Multiple alkaline intrusions and associated ultramafic phases are also present at Galore Creek (Barr, 1966 cited in Yarrow 1991; Allen et al., 1976; Enns et al., 1995). U-Pb dates of 205.1 ±2.3 (zircon) and 200.1±2.2 (titanite) for the potassium feldspar megacrystic syenite porphyry at Galore Creek, and a U-Pb date of 210+/-1(zircon, titanite) for a pseudoleuciteorthoclase syenite (Mortensen et al., 1995) brackets the Cu-Au mineralization formation.

5.2 PROPERTY GEOLOGY

The Dirk claims are underlain by faulted slivers of early Permian carbonate, late Carboniferous conglomerate, and Devonian to Early Carboniferous volcanic rocks.

The limestone of early Permian age structurally overlies older rocks consisting mainly of quartzite and phyllitic quartzite. Volcaniclastic rocks, tuffs, and shales are also found locally within this older sequence of rocks.

The quartzite is a well indurated, brownish weathering rock which has undergone some degree of recrystallization and metamorphism. It varies in composition from an orthoquartzite to a lithic quartzite containing a significant proportion of other sedimentary rock fragments.

The Permian limestone is locally separated into two units by intercalations of tuff, argillite, and chert. The lower limestone unit is a grey, thinly bedded calcarenite with abundant crinoid fragments. Corals, brachiopods, and bryozoa are also part of the faunal assemblage found within the limestone. Bands of shaley argillite are common within this limestone unit which is predominately less than 35 meters thick. The upper Permian limestone unit is well developed elsewhere in the Stikine area and attains a maximum observed thickness of 600 meters. This upper limestone unit is a massive gray or dark grey calcarenite. Crinoids, corals, brachiopods and bryozoa also comprise the major part of the faunal assemblage in the upper limestone unit. In certain areas, such as on the Dirk mineral occurrence, the limestone has been completely recrystallized and only sparse fossil remains are found.

The Permian limestone is either unconformably overlapped by or faulted against sediments of late Paleozoic or early Mesozoic age. The overlying rocks include a Devonian to Early Carboniferous volcanic sequence, noted locally to contain pillowed andesite flows, and a Late Carboniferous, well indurated, massive conglomeratic sequence composed of mainly volcanic peddles with a matrix of volcaniclastic cement. Pebbles in the conglomerate are mainly andesitic in composition, highly variable in size, and locally contains blocks of crinoidal limestone. The conglomerates are overlain by, interbedded with, or faulted against fine sediments, shales, cherts, and argillites. In the southwest region of the property, conglomerates exposed as an arête are overlain by thinly bedded sediments.

Figure 3: Location Map of Showings

Figure 4A: Dirk Regional Geology (adapted from BCGS, 2005)

Romios Gold Resources

Figure 4B: Geology of the Dirk Claims (Adapted from Costin, 1973)

6.0 2010 EXPLORATION PROGRAM

Over the 2010 Season, Romios completed exploration on the Dirk Property as part of a larger exploration program on Romios's Galore Creek area properties. Work was completed out of the Galore Creek Mining Corporation's all season Espaw camp on Novagold's Galore Creek claims to the north. Exploration works consists of geological mapping and geochemical rock sampling over the Dirk, Ridge, and Telena showings. In

total, 62 rock samples were taken from bornite and chalcopyrite bearing copper-gold mineralization on the claims.

6.1 2010 GEOCHEMICAL ROCK SAMPLING

Below is a tabulated list of samples taken on the property. All locations are given in UTM NAD 83 Zone 9 coordinates.

				Sample			
Assay	Easting	Northing	Area	Туре	Au (g/t)	Cu (%)	Zn (ppm)
H138460	375647	6303712	Telena	1m Chip	0.016	0.021	35
H138461	375646	6303712	Telena	1m Chip	0.033	0.087	31
H138462	375645	6303712	Telena	1m Chip	0.007	0.041	19
H138463	375644	6303712	Telena	1m Chip	0.01	0.022	32
H138464	375643	6303711	Telena	1m Chip	0.014	0.059	48
H138465	375642	6303711	Telena	1m Chip	0.013	0.035	20
H138466	375641	6303711	Telena	1m Chip	0.019	0.026	32
H138467	375640	6303711	Telena	1m Chip	0.077	0.194	84
H138468	375641	6303710	Telena	1m Chip	0.041	0.056	38
H138469	375640	6303710	Telena	1m Chip	0.016	0.043	45
H138470	375639	6303710	Telena	1m Chip	0.012	0.033	18
H138471	375638	6303709	Telena	1m Chip	0.032	0.059	63
H138472	375637	6303709	Telena	1m Chip	0.012	0.011	35
H138473	375636	6303709	Telena	1m Chip	0.069	0.111	59
H138474	375635	6303708	Telena	1m Chip	0.066	0.118	60
H138475	375634	6303708	Telena	1m Chip	0.022	0.060	74
H138476	375633	6303708	Telena	1m Chip	0.065	0.167	50
H138477	375632	6303707	Telena	1m Chip	1.41	3.570	24
H138478	375631	6303707	Telena	1m Chip	0.055	0.170	52
H138479	375630	6303707	Telena	1m Chip	0.071	0.189	52
H138480	375628	6303706	Telena	1m Chip	0.155	0.624	52
H138481	375627	6303706	Telena	1m Chip	0.06	0.095	44
H138482	375627	6303705	Telena	1m Chip	0.062	0.025	25
H138483	375626	6303704	Telena	1m Chip	0.051	0.108	24
H138484	375625	6303704	Telena	1m Chip	0.117	0.306	67
H138485	375624	6303703	Telena	1m Chip	0.456	0.933	143
H138486	375624	6303702	Telena	1m Chip	0.296	0.850	112
H138487	375623	6303701	Telena	1m Chip	0.937	1.960	63
H138488	375622	6303700	Telena	1m Chip	1.265	1.080	54
H138489	375621	6303699	Telena	1m Chip	0.228	0.239	95

Table 2: 2010 Geochemical Rock Sample Assay Results

A		Northing	A 110 0	Sample	A (~ /4)	C ₁₁ (0/)	7
Assay	Easting	Northing	Area	Туре	Au (g/t)		Zn (ppm)
H138490	375621	6303699	Telena	1m Chip	0.1	0.352	67
H138491	375620	6303698	Telena	1m Chip	0.811	0.657	55
H138492	375619	6303698	Telena	1m Chip	1.24	1.000	60
H138493	375618	6303697	Telena	1m Chip	0.212	0.261	84
H138494	375617	6303696	Telena	1m Chip	0.023	0.125	92
H138495	375616	6303696	Telena	1m Chip	0.102	0.521	204
H138496	375615	6303696	Telena	1m Chip	0.118	0.145	49
H138497	375614	6303695	Telena	1m Chip	0.487	0.322	58
H138498	375613	6303695	Telena	1m Chip	0.072	0.424	45
H138499	375612	6303694	Telena	1m Chip	0.23	0.121	57
H138500	375611	6303694	Telena	1m Chip	0.381	0.110	23
E597501	376117	6305510	Dirk	Grab	<detection< td=""><td>0.003</td><td>95</td></detection<>	0.003	95
E597502	376091	6305471	Dirk	Grab	0.006	0.021	81
E597503	376106	6305437	Dirk	Grab	<detection< td=""><td>0.006</td><td>54</td></detection<>	0.006	54
E597504	376130	6305415	Dirk	Grab	0.01	0.018	65
E597505	376128	6305381	Dirk	Grab	0.013	0.009	20
E597506	376200	6305309	Dirk	Grab	0.005	0.005	496
E597507	376207	6305286	Dirk	Grab	0.016	0.042	897
E597508	376194	6305244	Dirk	Grab	0.007	0.005	67
E597509	376175	6305142	Dirk	Grab	0.006	0.075	85
E597510	376287	6305076	Dirk	Grab	<detection< td=""><td>0.004</td><td>142</td></detection<>	0.004	142
E597511	376285	6305008	Dirk	Grab	<detection< td=""><td>0.017</td><td>31</td></detection<>	0.017	31
E597512	376324	6304874	Dirk	Grab	<detection< td=""><td>0.000</td><td>6</td></detection<>	0.000	6
E597513	376252	6305108	Dirk	Grab	0.005	0.002	146
E593002	375080	6303250	Ridge	Grab	0.188	2.470	7160
E593003	375080	6303250	Ridge	Grab	0.494	1.825	5910
E593004	375080	6303250	Ridge	Grab	0.28	3.490	8170
E593005	375083	6303246	Ridge	Grab	0.078	0.694	5310
E593006	375083	6303246	Ridge	Grab	0.109	2.160	7010
E593007	375083	6303246	Ridge	Grab	0.075	0.436	2400
E593008	375087	6303322	Ridge	Grab	0.384	1.830	1.21%
E593009	375087	6303318	Ridge	Grab	0.069	2.260	7970

The following maps (Figure 5 to Figure 13) show assay results for geochemical rock sampling completed over the 2010 season on the Dirk Property.

Figure 5: 2010 Rock Sampling Sample Location – Regional Samples

Figure 6: 2010 Rock Sampling Copper Geochemistry - Regional Sampling

Figure 7: 2010 Rock Sampling Gold Geochemistry – Regional Sampling

Figure 8: 2010 Rock Sampling Sample Location – Ridge Showing

Figure 9: 2010 Rock Sampling Copper Geochemistry – Ridge Showing

Figure 10: 2010 Rock Sampling Gold Geochemistry – Ridge Showing

Figure 11: 2010 Rock Sample Locations - Telena Showing

Figure 12: 2010 Rock Sampling Copper Geochemistry, Telena Showing

Figure 13: 2010 Rock Sampling Gold Geochemistry - Telena Showing

6.2 2010 GEOLOGICAL MAPPING

Mapping over the 2010 season focussed on evaluating styles of mineralization, alteration distribution and assemblages, and possible petrogenesis of mineralization. The following descriptions and interpretations are based on mapping completed over the 2009-2010 seasons.

A suite of potassic, silica undersaturated, hypabyssal intrusions spatially associated with, and directly related to, high grade copper-gold mineralization was identified on the Dirk property. Intruding the Permian to Carboniferous volcanic and sedimentary strata, the swarm of crosscutting syenitic dykes are presumed to be Late Triassic in age due to textural and compositional similarities to Late Triassic intrusive phases seen on the nearby Newmont Lake property, and to regionally identified intrusive suites associated with Galore Creek style mineralization. The dykes are commonly potassium feldspar porphyritic to megacrystic, biotite phyric, or pseudoleucite and bear pink intrusions usually less than 5 meters in width. Megacrystic and porphyritic kspar dykes are often trachytic, and are seen to be cut by biotite-phyric dykes locally. Pseudoleucite-bearing porphyritic syenitic dykes are seen proximal to highest grade zones, and appear to be closely related to mineralization. Distal to mineralized zones, diversity in intrusive decreases markedly, and most through-going, laterally traceable dykes are intensely hematized, dark red-purple, sparsely kspr-megacrystic northeast trending syenites.

The dyke swarm trends northeast, but the strike of individual dykes can be highly variable where intrusive activity is strongest, particularly at the Dirk showing. The intrusive system is traceable over approximately 3 kilometers along strike and approximately 1 kilometer in width where snow and ice cover allow outcrop to be exposed.

Plates 1 and 2 (Intrusive Breccia): Angular to subrounded irregular clasts of equigranular, trachyitic, porphyritic and megacrystic syenitic hypabyssal intrusive units in a finer-grained altered groundmass. Lesser carbonate clasts are consistently seen extensively altered to hydrous skarn assemblages by biotite - diopside replacement (Lower right corner of Plate 2).

6.2.1 DIRK ZONE

Mineralization at the Dirk claims occurs as high grade bornite and chalcopyrite mineralization with very low pyrite. Mineralization is associated with a northeast trending swarm of potassium feldspar megacrystic to porphyritic and often trachytic dykes, crowded pseudo-leucite bearing dykes, and biotite phyric pink syenitic dykes.

Above the main Dirk showing sits a large intrusive breccias which cuts -- and contains abundant fragments of – the kspar porphyry and megacrystic dykes, and is cut by the later biotite bearing syenite dykes. Alteration within and haloing the breccias is intense, and a pervasive "baked" texture is dominant across the entire area, likely indicating widespread, high temperature alteration. The breccia is strongly hematized, and contains angular to subrounded clasts dominantly of intrusive origin up to 1m in diameter. Clasts of kspar megacrystic, trachyitic, and porphyritic dykes dominate and are usually larger in size, but smaller pink and grey aphanitic clasts are still present. Carbonate clasts are seen replaced by a hydrous skarn chlorite-actinolite-mica assemblage in dark green clasts; texture destruction and replacement makes original textures indiscernible. Alteration rinds on the intrusive clasts are also common. The breccia is dominantly clast-supported, with a very fine grained matrix, containing altered and broken feldspar crystals visible within the groundmass. The broken feldspar crystal indicate a orthomagmatic origin to the breccia, but petrography is recommended for determination of hydrothermal versus milled rock flour of the groundmass. Working interpretations suggest the groundmass to be altered rock flour, which represents strong milling and transport during emplacement of the breccia body. Within 10-15m of the outer extents of the breccia's surface expression, the matrix is replaced by a finegrained epidote and diposide cement with minor mica content. Endoskarn epidotediposide assemblages within intrusive adjacent to the limestone rafts is also seen. Nearing the center of the breccias, groundmass percentage increases, clast size decreases, and approximately 5% euhedral biotite is seen in the intrusive matrix. Oxidized pyrite and specularite (after biotite?) is also seen in the breccia groundmass near the contacts.

Southeast and adjacent to the breccia is a megacrystic stock with potassium-feldspar megacrysts to 3cm in a very fine-grained groundmass, indicative of rapid depressurization and release of volatiles prior to cooling. The relationship between the stock and the breccia is not known, but the stock is offset by a north-east trending structure which trends directly into the breccia body.

Plate 3: Late biotite-phyric syenite dyke crosscuts intrusive breccia. Plate 4: Early, trachytic, megacrystic syenite dyke - megacrysts of potassium-feldspars to 3cm.

The main Dirk showing – that which was drilled in 1972 by Newmont – consists of bornite, covellite, and trace chalcopyrite mineralization in irregular, discontinuous, resistively weathered veins. The veins are seen cutting large, silicified limestone rafts within the syenite intrusive complex east of the intrusive breccia and as less obvious, fine veinlets of bornite within dusty white altered limestone. A skarn assemblage of euhedral epidote- garnet replacement within the limestone also contains copper mineralization seen as disseminated to coarse and clotty chalcopyrite +/- bornite. At the contact with the limestone rafts, advanced argillic alteration can be seen as feldspars become white and dusty, and vuggy textures indicate strong leaching of primary minerals.

Plate 5: Dirk showing - bornite-malachite copper mineralization in altered limestone raft. Plate 6: Argillically altered megacrystic syenite adjacent to mineralized limestone rafts.

6.2.2 TELENA ZONE

A second mineralized zone is seen to the southwest of the main Dirk showing, approximately 1.5 km along strike across a small snowfield. The "Telena" showing is again seen within a syenite intrusive suite of cross-cutting dykes, with small zones and float trains of intrusive breccias noted. Limestone rafts are intensely altered and mineralized within the zone, and copper mineralization in country rocks is seen as fine, stockworking veinlets of chalcopyrite and fine disseminations within the kspar megacrystic dykes. Alteration is seen as massive to domainal kspar and epidote veinlets associated with chalcopyrite veinlets. In limestone rafts, locally thick hematite and manganese oxide coatings on weathered surface is associated with pods of clotty and veining chalcopyrite with silica and carbonate alteration showing replacement and infill textures. The Telena showing shows greater size and depth potential than the main Dirk showing as mineralization is visible within the syenite intrusive units and is not limited to the extent of the limestone rafts.

Chip sampling completed in 2010 over the Telena zone returned **0.23 g/t gold and 0.37% copper over 41 meters** of 1 meter chip samples collected across the veincontrolled mineralized zone within the syenite.

Plate 7: Telena Zone: showing potassic alteration, malachite staining and fine bornite stringers.

6.2.3 RIDGE ZONE

A third showing was examined for the first time in 2010; the Ridge showing is located approximately 700m southeast of the Telena Zone, exposed along an rounded ridge between two icefields. Like the Dirk and Telena zones, the Ridge showing hosts high grade copper-gold mineralization associated with a system of cross-cutting kspar and lesser pseudoleucite bearing megacrystic to porphyritic syenite dykes. Megacrysts of orthoclase within the dykes are larger than any other location on the property, with well zoned crystals reaching lengths of 15cm.

Plate 8: Pseudoleucite-Potassium Feldspar Porphyry Dyke.

A monzonite stock outcrops along the extent of the ridge, and is cut by the syenite dyke swarm. The monzonite is altered and locally partially or completely replaced by a garnet-carbonate-biotite +/- epidote-albite skarn assemblage. Where original textures are visible, the monzonite is seen to be medium grained and equigranular, with seritized and albitized feldspars, biotite-epidote altered hornblendes, and minor quartz. The monzonite pre-dates the syenites and may represent earlier intrusive activity prior to a transition from a silca-saturated to silica-undersaturated system.

Plates 9 and 10: Pocky weathering of Miarolitic Cavities in Syenite Intrusive (Plate 9) and Zoned Orthoclase in Kspar-megacrystic Syenitic Dyke (Plate 10).

A skarn assemblage dominates alteration in the area, with variable epidote-garnet (andradite) +/- diopside-biotite-chalcopyrite replacement endoskarn and exoskarn. The aerial extent of the skarn assemblages is much greater than the zone of high grade mineralization, but chalcopyrite content in the exoskarns consistently increases with proximity to the heart of the system. Highest grade mineralization is seen at the contact between the kspar-megacrystic syenite dykes and a large limestone raft of fossiliferous, massive to thick bedded Permian limestone. The raft is well exposed in a cliff face south of the showing, indicating a thickness of at least 80m. Bedding within the limestone raft dips moderately 45-55 degrees south-southwest.

Mineralization is seen in both the limestone and intrusive, but highest grade is within partially silicified limestone immediately adjacent to the intrusives as disseminated to clotty chalcopyrite to 15%. The carbonate host and lack of associated pyrite buffers the oxidation of the copper and little malachite staining is seen, but mineralized limestone consistently weathers a rusty orange, while unmineralized limestone is a light grey.

Pods and zones of epidote-garnet+/-diopside cemented breccia with clasts of angular to subangular syenite up to 20cm are seen. The largest breccia body measures approximately 30m across and is well mineralized, but many small bodies occur proximal and within well mineralized zones.

Plate 11: Skarn-cemented Breccia with Syenite Intrusive Clasts

Miarolitic cavities are commonly seen within many of the syenite dykes, often with epidote-garnet or diopside infilling the cavities, which may reach 5cm in width, but are commonly 1-3cm across. Many of the dykes have moderately to intensely altered groundmasses with a complete replacement of the groundmass to a carbonate-epidote+/-garnet assemblage is seen in several dykes. Weathering of the infilling minerals causes a unique, pocked and vuggy pattern to these outcropping intrusive.

Plate 12: Miarolitic Cavities in Syenite Dyke infilled with Epidote-Garnet Skarn Assemblages

Grab sampling in 2010 of high grade zones at the Ridge showing returned grades of up to **0.50 g/t gold, 1.83% copper with 0.59% zinc** and **0.28 g/t gold, 3.49% copper with 0.82% zinc**. Zinc grades were consistently high in hand samples taken from the Ridge showing, with all 8 samples assaying between 0.24% and 1.21% zinc.

6.3 HISTORIC GEOPHYSICS

Digitizing of historic geology maps and of airborne geophysics flown in 1972 reveals a close correlation between mineralized zones and associated intrusive activity with the magnetic highs reported from the survey results. Across the glacier on the Newmont Lake claims to the east, the copper-gold skarn mineralization at the Ken-Glacier-Mom's Peak zones also aligns with increased a magnetic response. In comparison between the two anomalies, however, the system at Dirk appears markedly larger than that at the Ken zone, and shows continuity below snow and ice cover between showings.

Figure 14: Dirk Property Geology (adapted from Costin, 1973) overlain with Airborne Magnetics Survey Results (AR # 4510)

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Dirk claims show strong evidence for a large mineralizing intrusive system. Dykes swarms and intrusive breccias outcrop over an approximately 3km by 1km area, alteration is strong and widespread within the immediate and haloing areas of the intrusive activity, and mineralization associated with the intrusive is consistently high grade in both copper and gold. Follow-up work on the claims is warranted, and future work programs should include the following exploration efforts:

- Comprehensive geochemical classification and geochronology on all intrusive stocks and dykes seen on the property for dating and differentiation of the igneous evolution of the system;
- Drilling of the lower grade, pervasive mineralization at the Telena Zone, of high grade copper-gold-zinc polymetallic mineralization at the Ridge Zone and high grade gold-copper mineralization at the Dirk showing;
- Flying an Airborne Geophysical Survey over the extent of the claims, including both Electromagnetics and Radiometrics;
- Follow-up ground geophysical work if/where warranted by airborne geophysical survey results. Deep penetrating Magneto-tellurics for delineation of deep-seated structure and continuation of system to depth is recommended; and
- Property-wide mapping of entire claim block, with focus on small and large scale structural controls.

8.0 EXPENDITURES

Below is a tabulated summary of 2010 exploration expenditures by Romios Gold Resources Inc on the Dirk Claims.

Table 3: 2010 E	Dirk Property	Expenditures
-----------------	---------------	--------------

EXPENDITURES	COST													
ASSAYING	ALS Chemex					\$3,038.00								
	62 samples ser	nt for 41 elem	ent ICP-MS and	fire assay gold										
HELICOPTER	\$10,379.80													
	\$8,222.50													
	\$2,157.30													
CAMP COSTS	_					\$4,819.75								
GCMC Espaw Camp	\$4,287.50													
Deakin Supplies	Sample bags, M	Mapping supp	lies, Safety gea	r for field personnel		\$532.25								
	<u> </u>													
PERSONNEL						\$13,675.00								
Name	Position	Day Rate	Field Days	Office Days	Total									
Paola Chadwick	Geologist	\$525.00	5	6 - Reports, Data Compilation	11	\$5,775.00								
Heather Wilson	Geologist	\$350.00	3		3	\$1,050.00								
Arden Braden	Sampler	\$350.00	2		2	\$700.00								
Tyler Gigleberger	Sampler	\$300.00	2		2	\$600.00								
Kirsten Rasmussen	3	\$1,350.00												
Scott CloseGeologist\$525.0032 - Exploration Planning 3 - Digitizing historic data8														
TOTAL 2010 EXPE	NDITURES					\$31,912.55								

9.0 BILBLIOGRAPHY

Costin, C.P., 1973. Report on the Geological, Geophysical and Physical Work, Dirk Claim Group for Newmont Mining Corporation of Canada Limited. Ministry of Energy and Mines Assessment Report # 04150.

Gabrielse, H. and Yorath, C.J., 1992. Geology of the Cordilleran Orogen in Canada. Geological Survey of Canada, Geology of Canada DNAG No. 4, 843pp.

Logan, J.M., J.R. Drobe, and W.C. McLelland, 2000: Geology of the Forrest Kerr – Mess Creek Area, North Western British Columbia, Bulletin 104: BC Ministry of Energy and Mines, October,

McClelland, W.C., 1992. Permian and older rocks of the southwestern Iskut River map area, northwestern British Columbia. In: Current Research, Part A: Geological Survey of Canada, Paper 92-1A, pp. 303-307.

Mihalynuk, M.G., Nelson, J., and Diakow, L.J., 1994, Cache Creek terrane entrapment: oroclinal paradox within the Canadian Cordillera: Tectonics, v. 13, p. 575–595.

Mortensen, J.K., Ghosh, D.K., and Ferri, F. (1995). U-Pb Geochronology of Intrusive Rocks Associated with Cu-Au Porphyry Deposits in the Canadian Cordillera; in Porphyry, Deposits of the Northwestern Cordillera of North America, ed. T. Schroeter, Canadian Institute of Mining and Metallurgy, Special Volume 46, pp 142-160.

Woodsworth, G.J., Anderson, R.G., and Armstrong, R.L., 1992, Plutonic regimes, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran Orogen, Canada (The Geology of North America, v. G–2): Boulder, Col., Geological Society of America, p. 493–631.

Yarrow, E.W., 1991, Report on Airborne, Induced Polarization and Diamond Drill Surveys, Galore Creek Group I. II, III Claims Laird Mining Division, British Columbia, for Kennecott Canada Inc., (British Columbia Geological Branch Assessment Report 21,900)

STATEMENT OF QUALIFICATION

- I, Paola Chadwick hereby certify that:
 - 1) I am an independent consulting geologist residing in Squamish, British Columbia
 - 2) I am a consulting geologist for Romios Gold Resources Inc with offices at 25 Adelaide Street East, Suite 1010, Toronto, Ontario, Canada and have been working on their properties in Northwestern British Columbia since May 2007.
 - 3) I have been continuously active in the mineral exploration sector since 2004.
 - 4) I am a graduate of the University of British Columbia, with a Bachelors of Science Degree in Earth and Ocean Sciences.
 - 5) I am the author of the Assessment Report entitled "2010 Geological and Geochemical Report on the Dirk Property" dated October 30th, 2010.
 - 6) That this report is based on publically available reports and my actual exploration work on the property, and I was actively involved in the planning and execution of exploration work on the property during the summer of 2010.
 - 7) I hereby authorize Romios to use this report for their internal, corporate use.

Paola Chadwick, B.Sc

February 15th, 2011

STATEMENT OF QUALIFICATION

I, Garth David Kirkham, do hereby certify that:

- I am a consulting geoscientist with an office at 6331 Palace Place, Burnaby, British Columbia, V5E-1Z6.
- This Statement of Qualifications applies to the 2010 Assessment Filing for the Dirk Property.
- I am a graduate of the University of Alberta in 1983 with a B.Sc..
- 4) I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of Alberta, the Association of Professional Engineers and Geoscientists of BC, and the Northwest Territories and Nunavut Association of Engineers and Geoscientists. I have continuously practiced my profession performing field studies, resource and reserve estimates, and computer modelling and project management since 1988, both as an employee of a geostatistical modelling and mine planning software and consulting company and as an independent consultant. I am a member of the Canadian Institute of Mining (CIM) and Geological Association of Canada (GAC).
- This report is based on exploration work on the Dirk Property performed in the summer of 2010. I was involved in the planning and execution of this program as a Director of Romios Gold Resources.
- 6) I hereby authorize Romios to use this report for their internal, corporate use.

Garth Kirkham, B.Sc., P.Geo., P.Geoph.

D. KIRKHAM #30043 February 16th, 2011 BRITISH OLUMBL SCIEN

APPENDIX A GEOCHEMICAL ROCK SAMPLE ASSAY RESULTS

Assay	Easting	Northing	Area	Sample Type	Au (ppm)	Ag (ppm)	AI (%)	As (ppm)	B (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (%)	Ga (ppm)	Hg (ppm)	K (%)
H138460	375647	6303712	Telena	1m Chip	0.016	0.4	0.79	8	<detection< th=""><th>680</th><th>1.1</th><th><detection< th=""><th>5.31</th><th><detection< th=""><th>4</th><th>3</th><th>209</th><th>6.24</th><th><detection< th=""><th><detection< th=""><th>0.45</th></detection<></th></detection<></th></detection<></th></detection<></th></detection<>	680	1.1	<detection< th=""><th>5.31</th><th><detection< th=""><th>4</th><th>3</th><th>209</th><th>6.24</th><th><detection< th=""><th><detection< th=""><th>0.45</th></detection<></th></detection<></th></detection<></th></detection<>	5.31	<detection< th=""><th>4</th><th>3</th><th>209</th><th>6.24</th><th><detection< th=""><th><detection< th=""><th>0.45</th></detection<></th></detection<></th></detection<>	4	3	209	6.24	<detection< th=""><th><detection< th=""><th>0.45</th></detection<></th></detection<>	<detection< th=""><th>0.45</th></detection<>	0.45
H138461	375646	6303712	Telena	1m Chip	0.033	0.3	0.54	9	<detection< td=""><td>1700</td><td>0.8</td><td><detection< td=""><td>9.8</td><td><detection< td=""><td>7</td><td>3</td><td>873</td><td>5.47</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	1700	0.8	<detection< td=""><td>9.8</td><td><detection< td=""><td>7</td><td>3</td><td>873</td><td>5.47</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<>	9.8	<detection< td=""><td>7</td><td>3</td><td>873</td><td>5.47</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<>	7	3	873	5.47	<detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<>	<detection< td=""><td>0.29</td></detection<>	0.29
H138462	375645	6303712	Telena	1m Chip	0.007	0.6	0.45	11	10	1610	0.7	<detection< td=""><td>9.5</td><td><detection< td=""><td>4</td><td>2</td><td>405</td><td>5.73</td><td><detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<></td></detection<></td></detection<>	9.5	<detection< td=""><td>4</td><td>2</td><td>405</td><td>5.73</td><td><detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<></td></detection<>	4	2	405	5.73	<detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<>	<detection< td=""><td>0.27</td></detection<>	0.27
H138463	375644	6303712	Telena	1m Chip	0.01	0.7	0.47	11	<detection< td=""><td>280</td><td>0.9</td><td><detection< td=""><td>15.2</td><td><detection< td=""><td>3</td><td>1</td><td>219</td><td>6.28</td><td><detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	280	0.9	<detection< td=""><td>15.2</td><td><detection< td=""><td>3</td><td>1</td><td>219</td><td>6.28</td><td><detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<></td></detection<></td></detection<>	15.2	<detection< td=""><td>3</td><td>1</td><td>219</td><td>6.28</td><td><detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<></td></detection<>	3	1	219	6.28	<detection< td=""><td><detection< td=""><td>0.27</td></detection<></td></detection<>	<detection< td=""><td>0.27</td></detection<>	0.27
H138464	375643	6303711	Telena	1m Chip	0.014	0.6	0.48	7	<detection< td=""><td>790</td><td>0.8</td><td><detection< td=""><td>9.4</td><td><detection< td=""><td>9</td><td>2</td><td>586</td><td>4.57</td><td><detection< td=""><td><detection< td=""><td>0.28</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	790	0.8	<detection< td=""><td>9.4</td><td><detection< td=""><td>9</td><td>2</td><td>586</td><td>4.57</td><td><detection< td=""><td><detection< td=""><td>0.28</td></detection<></td></detection<></td></detection<></td></detection<>	9.4	<detection< td=""><td>9</td><td>2</td><td>586</td><td>4.57</td><td><detection< td=""><td><detection< td=""><td>0.28</td></detection<></td></detection<></td></detection<>	9	2	586	4.57	<detection< td=""><td><detection< td=""><td>0.28</td></detection<></td></detection<>	<detection< td=""><td>0.28</td></detection<>	0.28
H138465	375642	6303711	Telena	1m Chip	0.013	0.3	0.47	6	<detection< td=""><td>970</td><td>0.5</td><td><detection< td=""><td>8.5</td><td><detection< td=""><td>6</td><td>2</td><td>350</td><td>3.19</td><td><detection< td=""><td><detection< td=""><td>0.25</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	970	0.5	<detection< td=""><td>8.5</td><td><detection< td=""><td>6</td><td>2</td><td>350</td><td>3.19</td><td><detection< td=""><td><detection< td=""><td>0.25</td></detection<></td></detection<></td></detection<></td></detection<>	8.5	<detection< td=""><td>6</td><td>2</td><td>350</td><td>3.19</td><td><detection< td=""><td><detection< td=""><td>0.25</td></detection<></td></detection<></td></detection<>	6	2	350	3.19	<detection< td=""><td><detection< td=""><td>0.25</td></detection<></td></detection<>	<detection< td=""><td>0.25</td></detection<>	0.25
H138466	375641	6303711	Telena	1m Chip	0.019	<detection< td=""><td>0.47</td><td>6</td><td><detection< td=""><td>730</td><td>0.7</td><td><detection< td=""><td>13.2</td><td><detection< td=""><td>5</td><td>2</td><td>262</td><td>3.73</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	0.47	6	<detection< td=""><td>730</td><td>0.7</td><td><detection< td=""><td>13.2</td><td><detection< td=""><td>5</td><td>2</td><td>262</td><td>3.73</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	730	0.7	<detection< td=""><td>13.2</td><td><detection< td=""><td>5</td><td>2</td><td>262</td><td>3.73</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<>	13.2	<detection< td=""><td>5</td><td>2</td><td>262</td><td>3.73</td><td><detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<>	5	2	262	3.73	<detection< td=""><td><detection< td=""><td>0.29</td></detection<></td></detection<>	<detection< td=""><td>0.29</td></detection<>	0.29
H138467	375640	6303711	Telena	1m Chip	0.077	1.2	0.85	8	<detection< td=""><td>740</td><td>1</td><td><detection< td=""><td>8</td><td><detection< td=""><td>13</td><td>4</td><td>1940</td><td>4.31</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	740	1	<detection< td=""><td>8</td><td><detection< td=""><td>13</td><td>4</td><td>1940</td><td>4.31</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<></td></detection<>	8	<detection< td=""><td>13</td><td>4</td><td>1940</td><td>4.31</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<>	13	4	1940	4.31	<detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<>	<detection< td=""><td>0.33</td></detection<>	0.33
H138468	375641	6303710	Telena	1m Chip	0.041	0.3	0.52	6	<detection< td=""><td>520</td><td>0.7</td><td><detection< td=""><td>8.1</td><td><detection< td=""><td>7</td><td>2</td><td>556</td><td>4.82</td><td><detection< td=""><td><detection< td=""><td>0.32</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	520	0.7	<detection< td=""><td>8.1</td><td><detection< td=""><td>7</td><td>2</td><td>556</td><td>4.82</td><td><detection< td=""><td><detection< td=""><td>0.32</td></detection<></td></detection<></td></detection<></td></detection<>	8.1	<detection< td=""><td>7</td><td>2</td><td>556</td><td>4.82</td><td><detection< td=""><td><detection< td=""><td>0.32</td></detection<></td></detection<></td></detection<>	7	2	556	4.82	<detection< td=""><td><detection< td=""><td>0.32</td></detection<></td></detection<>	<detection< td=""><td>0.32</td></detection<>	0.32
H138469	375640	6303710	Telena	1m Chip	0.016	0.3	1.14		<detection< td=""><td>650</td><td>0.7</td><td><detection< td=""><td>8.3</td><td><detection< td=""><td>10</td><td>/ F</td><td>434</td><td>4.38</td><td><detection< td=""><td><detection< td=""><td>0.6</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	650	0.7	<detection< td=""><td>8.3</td><td><detection< td=""><td>10</td><td>/ F</td><td>434</td><td>4.38</td><td><detection< td=""><td><detection< td=""><td>0.6</td></detection<></td></detection<></td></detection<></td></detection<>	8.3	<detection< td=""><td>10</td><td>/ F</td><td>434</td><td>4.38</td><td><detection< td=""><td><detection< td=""><td>0.6</td></detection<></td></detection<></td></detection<>	10	/ F	434	4.38	<detection< td=""><td><detection< td=""><td>0.6</td></detection<></td></detection<>	<detection< td=""><td>0.6</td></detection<>	0.6
H138470	375638	6303709	Telena	1m Chip 1m Chip	0.012	0.6	1 15	Q		430	0.7	<detection< td=""><td>4.82</td><td></td><td>8</td><td>5</td><td>503</td><td>5.84</td><td></td><td></td><td>0.3</td></detection<>	4.82		8	5	503	5.84			0.3
H138472	375637	6303709	Telena	1m Chip	0.032	<detection< td=""><td>1.15</td><td>33</td><td><detection< td=""><td>320</td><td>1.5</td><td><detection< td=""><td>93</td><td><detection< td=""><td>3</td><td>4</td><td>110</td><td>12 15</td><td><detection< td=""><td><detection< td=""><td>0.30</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	1.15	33	<detection< td=""><td>320</td><td>1.5</td><td><detection< td=""><td>93</td><td><detection< td=""><td>3</td><td>4</td><td>110</td><td>12 15</td><td><detection< td=""><td><detection< td=""><td>0.30</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	320	1.5	<detection< td=""><td>93</td><td><detection< td=""><td>3</td><td>4</td><td>110</td><td>12 15</td><td><detection< td=""><td><detection< td=""><td>0.30</td></detection<></td></detection<></td></detection<></td></detection<>	93	<detection< td=""><td>3</td><td>4</td><td>110</td><td>12 15</td><td><detection< td=""><td><detection< td=""><td>0.30</td></detection<></td></detection<></td></detection<>	3	4	110	12 15	<detection< td=""><td><detection< td=""><td>0.30</td></detection<></td></detection<>	<detection< td=""><td>0.30</td></detection<>	0.30
H138473	375636	6303709	Telena	1m Chip	0.069	0.7	0.96	19	<detection< td=""><td>360</td><td>1.0</td><td><detection< td=""><td>5.58</td><td><detection< td=""><td>12</td><td>4</td><td>1110</td><td>8,11</td><td><detection< td=""><td><detection< td=""><td>0.31</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	360	1.0	<detection< td=""><td>5.58</td><td><detection< td=""><td>12</td><td>4</td><td>1110</td><td>8,11</td><td><detection< td=""><td><detection< td=""><td>0.31</td></detection<></td></detection<></td></detection<></td></detection<>	5.58	<detection< td=""><td>12</td><td>4</td><td>1110</td><td>8,11</td><td><detection< td=""><td><detection< td=""><td>0.31</td></detection<></td></detection<></td></detection<>	12	4	1110	8,11	<detection< td=""><td><detection< td=""><td>0.31</td></detection<></td></detection<>	<detection< td=""><td>0.31</td></detection<>	0.31
H138474	375635	6303708	Telena	1m Chip	0.066	0.8	0.92	12	<detection< td=""><td>430</td><td>0.9</td><td><detection< td=""><td>5.86</td><td><detection< td=""><td>8</td><td>5</td><td>1180</td><td>3.88</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	430	0.9	<detection< td=""><td>5.86</td><td><detection< td=""><td>8</td><td>5</td><td>1180</td><td>3.88</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<></td></detection<>	5.86	<detection< td=""><td>8</td><td>5</td><td>1180</td><td>3.88</td><td><detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<></td></detection<>	8	5	1180	3.88	<detection< td=""><td><detection< td=""><td>0.33</td></detection<></td></detection<>	<detection< td=""><td>0.33</td></detection<>	0.33
H138475	375634	6303708	Telena	1m Chip	0.022	0.2	1.47	13	<detection< td=""><td>180</td><td>1.2</td><td><detection< td=""><td>8.4</td><td><detection< td=""><td>10</td><td>4</td><td>603</td><td>5.34</td><td><detection< td=""><td>1</td><td>0.31</td></detection<></td></detection<></td></detection<></td></detection<>	180	1.2	<detection< td=""><td>8.4</td><td><detection< td=""><td>10</td><td>4</td><td>603</td><td>5.34</td><td><detection< td=""><td>1</td><td>0.31</td></detection<></td></detection<></td></detection<>	8.4	<detection< td=""><td>10</td><td>4</td><td>603</td><td>5.34</td><td><detection< td=""><td>1</td><td>0.31</td></detection<></td></detection<>	10	4	603	5.34	<detection< td=""><td>1</td><td>0.31</td></detection<>	1	0.31
H138476	375633	6303708	Telena	1m Chip	0.065	0.7	1.16	25	10	1490	1.2	<detection< td=""><td>7.9</td><td><detection< td=""><td>5</td><td>6</td><td>1670</td><td>7.47</td><td><detection< td=""><td>1</td><td>0.56</td></detection<></td></detection<></td></detection<>	7.9	<detection< td=""><td>5</td><td>6</td><td>1670</td><td>7.47</td><td><detection< td=""><td>1</td><td>0.56</td></detection<></td></detection<>	5	6	1670	7.47	<detection< td=""><td>1</td><td>0.56</td></detection<>	1	0.56
H138477	375632	6303707	Telena	1m Chip	1.41	3.7	0.8	198	10	260	1	25	6.37	<detection< td=""><td>55</td><td>4</td><td>35700</td><td>12.3</td><td><detection< td=""><td>1</td><td>0.39</td></detection<></td></detection<>	55	4	35700	12.3	<detection< td=""><td>1</td><td>0.39</td></detection<>	1	0.39
H138478	375631	6303707	Telena	1m Chip	0.055	0.6	1.08	13	<detection< td=""><td>1280</td><td>1.1</td><td><detection< td=""><td>6.7</td><td><detection< td=""><td>6</td><td>6</td><td>1700</td><td>4.48</td><td><detection< td=""><td><detection< td=""><td>0.48</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	1280	1.1	<detection< td=""><td>6.7</td><td><detection< td=""><td>6</td><td>6</td><td>1700</td><td>4.48</td><td><detection< td=""><td><detection< td=""><td>0.48</td></detection<></td></detection<></td></detection<></td></detection<>	6.7	<detection< td=""><td>6</td><td>6</td><td>1700</td><td>4.48</td><td><detection< td=""><td><detection< td=""><td>0.48</td></detection<></td></detection<></td></detection<>	6	6	1700	4.48	<detection< td=""><td><detection< td=""><td>0.48</td></detection<></td></detection<>	<detection< td=""><td>0.48</td></detection<>	0.48
H138479	375630	6303707	Telena	1m Chip	0.071	1.4	0.91	25	<detection< td=""><td>310</td><td>1.1</td><td><detection< td=""><td>4.99</td><td>0.7</td><td>12</td><td>7</td><td>1890</td><td>3.29</td><td><detection< td=""><td>1</td><td>0.41</td></detection<></td></detection<></td></detection<>	310	1.1	<detection< td=""><td>4.99</td><td>0.7</td><td>12</td><td>7</td><td>1890</td><td>3.29</td><td><detection< td=""><td>1</td><td>0.41</td></detection<></td></detection<>	4.99	0.7	12	7	1890	3.29	<detection< td=""><td>1</td><td>0.41</td></detection<>	1	0.41
H138480	375628	6303706	Telena	1m Chip	0.155	3.1	1.29	35	<detection< td=""><td>260</td><td>0.9</td><td>6</td><td>6.96</td><td>0.6</td><td>13</td><td>9</td><td>6240</td><td>4.88</td><td><detection< td=""><td>1</td><td>0.44</td></detection<></td></detection<>	260	0.9	6	6.96	0.6	13	9	6240	4.88	<detection< td=""><td>1</td><td>0.44</td></detection<>	1	0.44
H138481	375627	6303706	Telena	1m Chip	0.06	0.4	0.93	18	<detection< td=""><td>160</td><td>1</td><td><detection< td=""><td>6.89</td><td><detection< td=""><td>8</td><td>19</td><td>954</td><td>4.15</td><td><detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	160	1	<detection< td=""><td>6.89</td><td><detection< td=""><td>8</td><td>19</td><td>954</td><td>4.15</td><td><detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<></td></detection<></td></detection<>	6.89	<detection< td=""><td>8</td><td>19</td><td>954</td><td>4.15</td><td><detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<></td></detection<>	8	19	954	4.15	<detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<>	<detection< td=""><td>0.36</td></detection<>	0.36
H138482	375627	6303705	Telena	1m Chip	0.062	3.1	0.82	22	<detection< td=""><td>70</td><td>0.5</td><td><detection< td=""><td>3.93</td><td><detection< td=""><td>4</td><td>4</td><td>250</td><td>3.8</td><td><detection< td=""><td>2</td><td>0.37</td></detection<></td></detection<></td></detection<></td></detection<>	70	0.5	<detection< td=""><td>3.93</td><td><detection< td=""><td>4</td><td>4</td><td>250</td><td>3.8</td><td><detection< td=""><td>2</td><td>0.37</td></detection<></td></detection<></td></detection<>	3.93	<detection< td=""><td>4</td><td>4</td><td>250</td><td>3.8</td><td><detection< td=""><td>2</td><td>0.37</td></detection<></td></detection<>	4	4	250	3.8	<detection< td=""><td>2</td><td>0.37</td></detection<>	2	0.37
H138483	375626	6303704	Telena	1m Chip	0.051	0.3	0.65	11	<detection< td=""><td>220</td><td>0.9</td><td><detection< td=""><td>6.6</td><td><detection< td=""><td>5</td><td>3</td><td>1080</td><td>2.82</td><td><detection< td=""><td><detection< td=""><td>0.3</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	220	0.9	<detection< td=""><td>6.6</td><td><detection< td=""><td>5</td><td>3</td><td>1080</td><td>2.82</td><td><detection< td=""><td><detection< td=""><td>0.3</td></detection<></td></detection<></td></detection<></td></detection<>	6.6	<detection< td=""><td>5</td><td>3</td><td>1080</td><td>2.82</td><td><detection< td=""><td><detection< td=""><td>0.3</td></detection<></td></detection<></td></detection<>	5	3	1080	2.82	<detection< td=""><td><detection< td=""><td>0.3</td></detection<></td></detection<>	<detection< td=""><td>0.3</td></detection<>	0.3
H138484	375625	6303704	Telena	1m Chip	0.117	1.7	0.88	22	<detection< td=""><td>140</td><td>0.7</td><td>3</td><td>6.9</td><td>0.6</td><td>11</td><td>5</td><td>3060</td><td>3.76</td><td><detection< td=""><td>1</td><td>0.3</td></detection<></td></detection<>	140	0.7	3	6.9	0.6	11	5	3060	3.76	<detection< td=""><td>1</td><td>0.3</td></detection<>	1	0.3
H138485	375624	6303703	Telena	1m Chip	0.456	4.3	1.85	15	<detection< td=""><td>280</td><td>0.9</td><td>12</td><td>7.6</td><td>0.7</td><td>20</td><td>5</td><td>9330</td><td>5.79</td><td>10</td><td>1</td><td>0.17</td></detection<>	280	0.9	12	7.6	0.7	20	5	9330	5.79	10	1	0.17
H138486	375624	6303702	Telena	1m Chip	0.296	4.2	1.52	26	<detection< td=""><td>840</td><td>1.2</td><td>/</td><td>8.2</td><td>3.9</td><td>22</td><td>5</td><td>8500</td><td>5.45</td><td>10</td><td>2</td><td>0.28</td></detection<>	840	1.2	/	8.2	3.9	22	5	8500	5.45	10	2	0.28
H138487	375623	6303701	Telena	1m Chip	0.937	13.4	1.61	31	<detection< td=""><td>130</td><td>1.3</td><td>13</td><td>7.4</td><td>0.5</td><td>22</td><td>3</td><td>19600</td><td>6.17</td><td>10</td><td>3</td><td>0.22</td></detection<>	130	1.3	13	7.4	0.5	22	3	19600	6.17	10	3	0.22
H138488	375622	6303700	Telena	1m Chip	1.265	13.2	1.89	29	<detection< td=""><td>430</td><td>0.7</td><td>41</td><td>10.4</td><td>0.5</td><td>11</td><td>4</td><td>10800</td><td>6.91</td><td>10</td><td>4</td><td>0.16</td></detection<>	430	0.7	41	10.4	0.5	11	4	10800	6.91	10	4	0.16
H138469	375621	6303699	Telena	1m Chip	0.228	4.4	1.38	6		620	1.3	<detection< td=""><td>6.21</td><td>0.0</td><td>9 12</td><td>7</td><td>2590</td><td>4.10</td><td>10</td><td></td><td>0.21</td></detection<>	6.21	0.0	9 12	7	2590	4.10	10		0.21
H138491	375620	6303698	Telena	1m Chip	0.811	11.8	1.55	28	<detection< td=""><td>580</td><td>1.5</td><td>21</td><td>9.7</td><td>0.5</td><td>8</td><td>, 3</td><td>6570</td><td>5.70</td><td><detection< td=""><td>2</td><td>0.41</td></detection<></td></detection<>	580	1.5	21	9.7	0.5	8	, 3	6570	5.70	<detection< td=""><td>2</td><td>0.41</td></detection<>	2	0.41
H138492	375619	6303698	Telena	1m Chip	1.24	25.5	2.07	18	<detection< td=""><td>140</td><td>0.7</td><td>21</td><td>9.1</td><td>0.5</td><td>11</td><td>5</td><td>10000</td><td>4.76</td><td>10</td><td>2</td><td>0.13</td></detection<>	140	0.7	21	9.1	0.5	11	5	10000	4.76	10	2	0.13
H138493	375618	6303697	Telena	1m Chip	0.212	4.4	1.48	9	<detection< td=""><td>160</td><td>1.1</td><td>3</td><td>8.1</td><td>0.5</td><td>9</td><td>6</td><td>2610</td><td>3.52</td><td><detection< td=""><td>1</td><td>0.23</td></detection<></td></detection<>	160	1.1	3	8.1	0.5	9	6	2610	3.52	<detection< td=""><td>1</td><td>0.23</td></detection<>	1	0.23
H138494	375617	6303676	Telena	1m Chip	0.023	1.2	1.25	8	<detection< td=""><td>300</td><td>1.3</td><td><detection< td=""><td>5.58</td><td><detection< td=""><td>13</td><td>6</td><td>1250</td><td>2.68</td><td>10</td><td><detection< td=""><td>0.31</td></detection<></td></detection<></td></detection<></td></detection<>	300	1.3	<detection< td=""><td>5.58</td><td><detection< td=""><td>13</td><td>6</td><td>1250</td><td>2.68</td><td>10</td><td><detection< td=""><td>0.31</td></detection<></td></detection<></td></detection<>	5.58	<detection< td=""><td>13</td><td>6</td><td>1250</td><td>2.68</td><td>10</td><td><detection< td=""><td>0.31</td></detection<></td></detection<>	13	6	1250	2.68	10	<detection< td=""><td>0.31</td></detection<>	0.31
H138495	375616	6303696	Telena	1m Chip	0.102	6.5	1.42	21	<detection< td=""><td>320</td><td>1.5</td><td>2</td><td>6.8</td><td>2.7</td><td>12</td><td>5</td><td>5210</td><td>3.87</td><td>10</td><td>2</td><td>0.3</td></detection<>	320	1.5	2	6.8	2.7	12	5	5210	3.87	10	2	0.3
H138496	375615	6303696	Telena	1m Chip	0.118	2.8	1.12	13	<detection< td=""><td>200</td><td>1.5</td><td>3</td><td>8.1</td><td>0.6</td><td>7</td><td>4</td><td>1450</td><td>3.04</td><td><detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<></td></detection<>	200	1.5	3	8.1	0.6	7	4	1450	3.04	<detection< td=""><td><detection< td=""><td>0.36</td></detection<></td></detection<>	<detection< td=""><td>0.36</td></detection<>	0.36
H138497	375614	6303695	Telena	1m Chip	0.487	7.7	1.16	17	<detection< td=""><td>200</td><td>1.3</td><td>10</td><td>9.7</td><td>0.6</td><td>5</td><td>3</td><td>3220</td><td>3.4</td><td><detection< td=""><td>1</td><td>0.27</td></detection<></td></detection<>	200	1.3	10	9.7	0.6	5	3	3220	3.4	<detection< td=""><td>1</td><td>0.27</td></detection<>	1	0.27
H138498	375613	6303695	Telena	1m Chip	0.072	2.3	0.86	8	<detection< td=""><td>260</td><td>1.4</td><td><detection< td=""><td>5.14</td><td>0.6</td><td>9</td><td>3</td><td>4240</td><td>2.57</td><td><detection< td=""><td><detection< td=""><td>0.44</td></detection<></td></detection<></td></detection<></td></detection<>	260	1.4	<detection< td=""><td>5.14</td><td>0.6</td><td>9</td><td>3</td><td>4240</td><td>2.57</td><td><detection< td=""><td><detection< td=""><td>0.44</td></detection<></td></detection<></td></detection<>	5.14	0.6	9	3	4240	2.57	<detection< td=""><td><detection< td=""><td>0.44</td></detection<></td></detection<>	<detection< td=""><td>0.44</td></detection<>	0.44
H138499	375612	6303694	Telena	1m Chip	0.23	1.8	0.96	13	<detection< td=""><td>180</td><td>1.8</td><td>3</td><td>7.4</td><td>0.7</td><td>6</td><td>3</td><td>1210</td><td>3.45</td><td><detection< td=""><td><detection< td=""><td>0.41</td></detection<></td></detection<></td></detection<>	180	1.8	3	7.4	0.7	6	3	1210	3.45	<detection< td=""><td><detection< td=""><td>0.41</td></detection<></td></detection<>	<detection< td=""><td>0.41</td></detection<>	0.41
H138500	375611	6303694	Telena	1m Chip	0.381	2.1	0.82	18	10	170	1.9	5	11.6	<detection< td=""><td>3</td><td>2</td><td>1100</td><td>4.04</td><td><detection< td=""><td>1</td><td>0.42</td></detection<></td></detection<>	3	2	1100	4.04	<detection< td=""><td>1</td><td>0.42</td></detection<>	1	0.42
E597501	376117	6305510	Dirk	Grab	<detection< td=""><td>0.3</td><td>2.55</td><td>32</td><td><detection< td=""><td>10</td><td><detection< td=""><td><detection< td=""><td>1.39</td><td><detection< td=""><td>21</td><td>13</td><td>32</td><td>5.11</td><td>10</td><td>1</td><td>0.04</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	0.3	2.55	32	<detection< td=""><td>10</td><td><detection< td=""><td><detection< td=""><td>1.39</td><td><detection< td=""><td>21</td><td>13</td><td>32</td><td>5.11</td><td>10</td><td>1</td><td>0.04</td></detection<></td></detection<></td></detection<></td></detection<>	10	<detection< td=""><td><detection< td=""><td>1.39</td><td><detection< td=""><td>21</td><td>13</td><td>32</td><td>5.11</td><td>10</td><td>1</td><td>0.04</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>1.39</td><td><detection< td=""><td>21</td><td>13</td><td>32</td><td>5.11</td><td>10</td><td>1</td><td>0.04</td></detection<></td></detection<>	1.39	<detection< td=""><td>21</td><td>13</td><td>32</td><td>5.11</td><td>10</td><td>1</td><td>0.04</td></detection<>	21	13	32	5.11	10	1	0.04
E597502	376106	03U54/1	Dirk	Grab	U.UU6	 <uetection< li=""> <detection< li=""> </detection<></uetection<>	2.52	8 16	<uetection< td=""><td>6U 20</td><td><uetection< td=""><td> cdetection </td><td>1.38</td><td> <uetection< li=""> </uetection<></td><td>12</td><td>8 10</td><td>209</td><td>4.58</td><td>10</td><td>1</td><td>0.17</td></uetection<></td></uetection<>	6U 20	<uetection< td=""><td> cdetection </td><td>1.38</td><td> <uetection< li=""> </uetection<></td><td>12</td><td>8 10</td><td>209</td><td>4.58</td><td>10</td><td>1</td><td>0.17</td></uetection<>	 cdetection 	1.38	 <uetection< li=""> </uetection<>	12	8 10	209	4.58	10	1	0.17
E597505	276120	6205415	Dirk	Grab			1.62	10	10	50	0.5	<detection< td=""><td>5.57</td><td><detection< td=""><td>21</td><td>23 59</td><td>176</td><td>6.22</td><td>10</td><td>1</td><td>0.15</td></detection<></td></detection<>	5.57	<detection< td=""><td>21</td><td>23 59</td><td>176</td><td>6.22</td><td>10</td><td>1</td><td>0.15</td></detection<>	21	23 59	176	6.22	10	1	0.15
E597505	376128	6305381	Dirk	Grab	0.013	<detection< td=""><td>1.43</td><td>10</td><td><detection< td=""><td>140</td><td>0.5</td><td><detection< td=""><td>0.24</td><td></td><td>15</td><td>13</td><td>85</td><td>4.64</td><td>10</td><td>- - detection</td><td>0.21</td></detection<></td></detection<></td></detection<>	1.43	10	<detection< td=""><td>140</td><td>0.5</td><td><detection< td=""><td>0.24</td><td></td><td>15</td><td>13</td><td>85</td><td>4.64</td><td>10</td><td>- - detection</td><td>0.21</td></detection<></td></detection<>	140	0.5	<detection< td=""><td>0.24</td><td></td><td>15</td><td>13</td><td>85</td><td>4.64</td><td>10</td><td>- - detection</td><td>0.21</td></detection<>	0.24		15	13	85	4.64	10	- - detection	0.21
E597506	376200	6305309	Dirk	Grab	0.005	0.4	1.14	9	<detection< td=""><td>380</td><td>1.4</td><td><detection< td=""><td>8.9</td><td>4.7</td><td>9</td><td>10</td><td>52</td><td>2.62</td><td><detection< td=""><td><detection< td=""><td>0.24</td></detection<></td></detection<></td></detection<></td></detection<>	380	1.4	<detection< td=""><td>8.9</td><td>4.7</td><td>9</td><td>10</td><td>52</td><td>2.62</td><td><detection< td=""><td><detection< td=""><td>0.24</td></detection<></td></detection<></td></detection<>	8.9	4.7	9	10	52	2.62	<detection< td=""><td><detection< td=""><td>0.24</td></detection<></td></detection<>	<detection< td=""><td>0.24</td></detection<>	0.24
E597507	376207	6305286	Dirk	Grab	0.016	0.3	1.54	6	<detection< td=""><td>430</td><td>1.5</td><td><detection< td=""><td>4.29</td><td>9.1</td><td>16</td><td>44</td><td>419</td><td>3.33</td><td>10</td><td>1</td><td>0.23</td></detection<></td></detection<>	430	1.5	<detection< td=""><td>4.29</td><td>9.1</td><td>16</td><td>44</td><td>419</td><td>3.33</td><td>10</td><td>1</td><td>0.23</td></detection<>	4.29	9.1	16	44	419	3.33	10	1	0.23
E597508	376194	6305244	Dirk	Grab	0.007	<detection< td=""><td>0.69</td><td>7</td><td><detection< td=""><td>250</td><td>0.7</td><td><detection< td=""><td>5.66</td><td><detection< td=""><td>12</td><td>33</td><td>45</td><td>3.68</td><td><detection< td=""><td><detection< td=""><td>0.19</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	0.69	7	<detection< td=""><td>250</td><td>0.7</td><td><detection< td=""><td>5.66</td><td><detection< td=""><td>12</td><td>33</td><td>45</td><td>3.68</td><td><detection< td=""><td><detection< td=""><td>0.19</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	250	0.7	<detection< td=""><td>5.66</td><td><detection< td=""><td>12</td><td>33</td><td>45</td><td>3.68</td><td><detection< td=""><td><detection< td=""><td>0.19</td></detection<></td></detection<></td></detection<></td></detection<>	5.66	<detection< td=""><td>12</td><td>33</td><td>45</td><td>3.68</td><td><detection< td=""><td><detection< td=""><td>0.19</td></detection<></td></detection<></td></detection<>	12	33	45	3.68	<detection< td=""><td><detection< td=""><td>0.19</td></detection<></td></detection<>	<detection< td=""><td>0.19</td></detection<>	0.19
E597509	376175	6305142	Dirk	Grab	0.006	0.3	1.24	8	<detection< td=""><td>340</td><td>0.8</td><td><detection< td=""><td>6.28</td><td><detection< td=""><td>24</td><td>94</td><td>752</td><td>4.63</td><td>10</td><td><detection< td=""><td>0.37</td></detection<></td></detection<></td></detection<></td></detection<>	340	0.8	<detection< td=""><td>6.28</td><td><detection< td=""><td>24</td><td>94</td><td>752</td><td>4.63</td><td>10</td><td><detection< td=""><td>0.37</td></detection<></td></detection<></td></detection<>	6.28	<detection< td=""><td>24</td><td>94</td><td>752</td><td>4.63</td><td>10</td><td><detection< td=""><td>0.37</td></detection<></td></detection<>	24	94	752	4.63	10	<detection< td=""><td>0.37</td></detection<>	0.37
E597510	376287	6305076	Dirk	Grab	<detection< td=""><td><detection< td=""><td>2.35</td><td>11</td><td><detection< td=""><td>670</td><td>1.2</td><td><detection< td=""><td>10.8</td><td><detection< td=""><td>28</td><td>171</td><td>41</td><td>5.77</td><td>10</td><td>1</td><td>0.66</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	<detection< td=""><td>2.35</td><td>11</td><td><detection< td=""><td>670</td><td>1.2</td><td><detection< td=""><td>10.8</td><td><detection< td=""><td>28</td><td>171</td><td>41</td><td>5.77</td><td>10</td><td>1</td><td>0.66</td></detection<></td></detection<></td></detection<></td></detection<>	2.35	11	<detection< td=""><td>670</td><td>1.2</td><td><detection< td=""><td>10.8</td><td><detection< td=""><td>28</td><td>171</td><td>41</td><td>5.77</td><td>10</td><td>1</td><td>0.66</td></detection<></td></detection<></td></detection<>	670	1.2	<detection< td=""><td>10.8</td><td><detection< td=""><td>28</td><td>171</td><td>41</td><td>5.77</td><td>10</td><td>1</td><td>0.66</td></detection<></td></detection<>	10.8	<detection< td=""><td>28</td><td>171</td><td>41</td><td>5.77</td><td>10</td><td>1</td><td>0.66</td></detection<>	28	171	41	5.77	10	1	0.66
E597511	376285	6305008	Dirk	Grab	<detection< td=""><td><detection< td=""><td>1</td><td>5</td><td><detection< td=""><td>550</td><td>1</td><td><detection< td=""><td>4.99</td><td><detection< td=""><td>14</td><td>24</td><td>168</td><td>3.94</td><td>10</td><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	<detection< td=""><td>1</td><td>5</td><td><detection< td=""><td>550</td><td>1</td><td><detection< td=""><td>4.99</td><td><detection< td=""><td>14</td><td>24</td><td>168</td><td>3.94</td><td>10</td><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	1	5	<detection< td=""><td>550</td><td>1</td><td><detection< td=""><td>4.99</td><td><detection< td=""><td>14</td><td>24</td><td>168</td><td>3.94</td><td>10</td><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<></td></detection<>	550	1	<detection< td=""><td>4.99</td><td><detection< td=""><td>14</td><td>24</td><td>168</td><td>3.94</td><td>10</td><td><detection< td=""><td>0.29</td></detection<></td></detection<></td></detection<>	4.99	<detection< td=""><td>14</td><td>24</td><td>168</td><td>3.94</td><td>10</td><td><detection< td=""><td>0.29</td></detection<></td></detection<>	14	24	168	3.94	10	<detection< td=""><td>0.29</td></detection<>	0.29
E597512	376324	6304874	Dirk	Grab	<detection< td=""><td><detection< td=""><td>0.78</td><td>73</td><td>40</td><td>70</td><td>1.7</td><td><detection< td=""><td>14.5</td><td><detection< td=""><td><detection< td=""><td>20</td><td>4</td><td>19.1</td><td><detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	<detection< td=""><td>0.78</td><td>73</td><td>40</td><td>70</td><td>1.7</td><td><detection< td=""><td>14.5</td><td><detection< td=""><td><detection< td=""><td>20</td><td>4</td><td>19.1</td><td><detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	0.78	73	40	70	1.7	<detection< td=""><td>14.5</td><td><detection< td=""><td><detection< td=""><td>20</td><td>4</td><td>19.1</td><td><detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<></td></detection<></td></detection<></td></detection<>	14.5	<detection< td=""><td><detection< td=""><td>20</td><td>4</td><td>19.1</td><td><detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<></td></detection<></td></detection<>	<detection< td=""><td>20</td><td>4</td><td>19.1</td><td><detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<></td></detection<>	20	4	19.1	<detection< td=""><td><detection< td=""><td>0.15</td></detection<></td></detection<>	<detection< td=""><td>0.15</td></detection<>	0.15
E597513	376252	6305108	Dirk	Grab	0.005	0.3	1.12	10	<detection< td=""><td>390</td><td>1.2</td><td>2</td><td>8.2</td><td><detection< td=""><td>18</td><td>74</td><td>17</td><td>5.02</td><td>10</td><td><detection< td=""><td>0.25</td></detection<></td></detection<></td></detection<>	390	1.2	2	8.2	<detection< td=""><td>18</td><td>74</td><td>17</td><td>5.02</td><td>10</td><td><detection< td=""><td>0.25</td></detection<></td></detection<>	18	74	17	5.02	10	<detection< td=""><td>0.25</td></detection<>	0.25
E593002	375080	6303250	Ridge	Grab	0.188	8.1	1.11	100	<detection< td=""><td>160</td><td>3.8</td><td><detection< td=""><td>11</td><td>98.6</td><td>148</td><td>26</td><td>24700</td><td>3.31</td><td><detection< td=""><td>1</td><td>0.88</td></detection<></td></detection<></td></detection<>	160	3.8	<detection< td=""><td>11</td><td>98.6</td><td>148</td><td>26</td><td>24700</td><td>3.31</td><td><detection< td=""><td>1</td><td>0.88</td></detection<></td></detection<>	11	98.6	148	26	24700	3.31	<detection< td=""><td>1</td><td>0.88</td></detection<>	1	0.88
E593003	375080	6303250	Ridge	Grab	0.494	6.7	0.44	51	<detection< td=""><td>120</td><td>3.7</td><td>6</td><td>12.9</td><td>65.3</td><td>121</td><td>9</td><td>18250</td><td>2.5</td><td><detection< td=""><td><detection< td=""><td>0.12</td></detection<></td></detection<></td></detection<>	120	3.7	6	12.9	65.3	121	9	18250	2.5	<detection< td=""><td><detection< td=""><td>0.12</td></detection<></td></detection<>	<detection< td=""><td>0.12</td></detection<>	0.12
E593004	375080	6303250	Ridge	Grab	0.28	13	0.4	117	<detection< td=""><td>120</td><td>2.8</td><td><detection< td=""><td>9.9</td><td>101.5</td><td>154</td><td>9</td><td>34900</td><td>3.76</td><td><detection< td=""><td>1</td><td>0.09</td></detection<></td></detection<></td></detection<>	120	2.8	<detection< td=""><td>9.9</td><td>101.5</td><td>154</td><td>9</td><td>34900</td><td>3.76</td><td><detection< td=""><td>1</td><td>0.09</td></detection<></td></detection<>	9.9	101.5	154	9	34900	3.76	<detection< td=""><td>1</td><td>0.09</td></detection<>	1	0.09
E593005	375083	6303246	Ridge	Grab	0.078	4.5	0.19	25	<a stre<="" strength="" td="" text=""><td>150</td><td>2.8</td><td><detection< td=""><td>12.4</td><td>53.4</td><td>58</td><td>/</td><td>6940</td><td>1.22</td><td><a etection<="" td=""><td><a etection<="" td=""><td>0.05</td></td></td></detection<></td>	150	2.8	<detection< td=""><td>12.4</td><td>53.4</td><td>58</td><td>/</td><td>6940</td><td>1.22</td><td><a etection<="" td=""><td><a etection<="" td=""><td>0.05</td></td></td></detection<>	12.4	53.4	58	/	6940	1.22	<a etection<="" td=""><td><a etection<="" td=""><td>0.05</td></td>	<a etection<="" td=""><td>0.05</td>	0.05
E593006	375083	6303246	Ridge	Grab	0.109	10.7	0.15	113	<detection< td=""><td>80</td><td>1.6</td><td>13</td><td>5.07</td><td>//.6</td><td>126</td><td>b 2</td><td>21600</td><td>2.33</td><td><a etection<="" td=""><td><a td="" traction<=""><td>0.07</td></td></td></detection<>	80	1.6	13	5.07	//.6	126	b 2	21600	2.33	<a etection<="" td=""><td><a td="" traction<=""><td>0.07</td></td>	<a td="" traction<=""><td>0.07</td>	0.07
E393007	375083	6303240	Ridge	Grah	0.075	0.8	0.11	09 45		120	1.5		دد.ס 11 6	11.3	δ2 132	۲ 16	430U 18200	2.50			0.01
E593000	375087	6202218	Ridgo	Grah	0.364	12.5	0.02	4J 59	<detection< td=""><td>110</td><td>3.4 2.1</td><td>v <detection< td=""><td>9.8</td><td>202</td><td>132</td><td>16</td><td>22600</td><td>3.54</td><td>cdetection</td><td>4</td><td>0.21</td></detection<></td></detection<>	110	3.4 2.1	v <detection< td=""><td>9.8</td><td>202</td><td>132</td><td>16</td><td>22600</td><td>3.54</td><td>cdetection</td><td>4</td><td>0.21</td></detection<>	9.8	202	132	16	22600	3.54	cdetection	4	0.21
2333003	313007	0000010	indge	Giab	0.009	14./	0.35	55	SUCLEUTION	110	2.1	SUCIECTION	J.0	00.3	100	10	22000	5.00	SUCLECTION	1	0.10

2010 Geochemical Rock Sampling - Dirk Property

Assay	La (ppm)	Mg (%)	Mn (ppm)	Mo (ppm)	Na (%)	Ni (ppm)	P (ppm)	Pb (ppm)	S (%)	Sb (ppm)	Sc (ppm)	Sr (ppm)	Th (ppm)	Ti (%)	TI (ppm)	U (ppm)	V (ppm)	W (ppm)	Zn (ppm)
H138460	40	0.11	1645	64	0.03	1	1210	17	0.07	<detection< td=""><td>9</td><td>323</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>131</td><td><detection< td=""><td>35</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	9	323	<detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>131</td><td><detection< td=""><td>35</td></detection<></td></detection<></td></detection<></td></detection0<>	0.03	<detection< td=""><td><detection< td=""><td>131</td><td><detection< td=""><td>35</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>131</td><td><detection< td=""><td>35</td></detection<></td></detection<>	131	<detection< td=""><td>35</td></detection<>	35
H138461	20	0.2	2110	107	0.02	2	880	15	0.26	<detection< td=""><td>6</td><td>449</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>174</td><td><detection< td=""><td>31</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	6	449	<detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>174</td><td><detection< td=""><td>31</td></detection<></td></detection<></td></detection<></td></detection0<>	0.03	<detection< td=""><td><detection< td=""><td>174</td><td><detection< td=""><td>31</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>174</td><td><detection< td=""><td>31</td></detection<></td></detection<>	174	<detection< td=""><td>31</td></detection<>	31
H138462	50	0.08	2550	36	0.02	<detection< td=""><td>1080</td><td>19</td><td>0.11</td><td><detection< td=""><td>6</td><td>427</td><td><detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>148</td><td><detection< td=""><td>19</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	1080	19	0.11	<detection< td=""><td>6</td><td>427</td><td><detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>148</td><td><detection< td=""><td>19</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	6	427	<detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>148</td><td><detection< td=""><td>19</td></detection<></td></detection<></td></detection<></td></detection0<>	0.05	<detection< td=""><td><detection< td=""><td>148</td><td><detection< td=""><td>19</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>148</td><td><detection< td=""><td>19</td></detection<></td></detection<>	148	<detection< td=""><td>19</td></detection<>	19
H138463	60	0.1	3850	81	0.01	1	880	33	0.09	5	6	453	<detection0< td=""><td>0.06</td><td><detection< td=""><td><detection< td=""><td>156</td><td><detection< td=""><td>32</td></detection<></td></detection<></td></detection<></td></detection0<>	0.06	<detection< td=""><td><detection< td=""><td>156</td><td><detection< td=""><td>32</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>156</td><td><detection< td=""><td>32</td></detection<></td></detection<>	156	<detection< td=""><td>32</td></detection<>	32
H138464	40	0.1	2140	44	0.02	3	1230	25	0.12	<detection< td=""><td>7</td><td>766</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>126</td><td><detection< td=""><td>48</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	766	<detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>126</td><td><detection< td=""><td>48</td></detection<></td></detection<></td></detection<></td></detection0<>	0.03	<detection< td=""><td><detection< td=""><td>126</td><td><detection< td=""><td>48</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>126</td><td><detection< td=""><td>48</td></detection<></td></detection<>	126	<detection< td=""><td>48</td></detection<>	48
H138465	30	0.07	1530	17	0.02	2	1200	26	0.11	<detection< td=""><td>7</td><td>440</td><td><detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>96</td><td><detection< td=""><td>20</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	440	<detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>96</td><td><detection< td=""><td>20</td></detection<></td></detection<></td></detection<></td></detection0<>	0.02	<detection< td=""><td><detection< td=""><td>96</td><td><detection< td=""><td>20</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>96</td><td><detection< td=""><td>20</td></detection<></td></detection<>	96	<detection< td=""><td>20</td></detection<>	20
H138466	40	0.15	2070	55	0.02	2	1040	41	0.13	<detection< td=""><td>7</td><td>604</td><td><detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>94</td><td><detection< td=""><td>32</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	604	<detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>94</td><td><detection< td=""><td>32</td></detection<></td></detection<></td></detection<></td></detection0<>	0.02	<detection< td=""><td><detection< td=""><td>94</td><td><detection< td=""><td>32</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>94</td><td><detection< td=""><td>32</td></detection<></td></detection<>	94	<detection< td=""><td>32</td></detection<>	32
H138467	20	0.56	2200	21	0.02	5	1290	23	0.43	3	8	414	<detection0< td=""><td>0.04</td><td><detection< td=""><td><detection< td=""><td>155</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<></td></detection0<>	0.04	<detection< td=""><td><detection< td=""><td>155</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>155</td><td><detection< td=""><td>84</td></detection<></td></detection<>	155	<detection< td=""><td>84</td></detection<>	84
H138468	30	0.37	1865	27	0.02	4	1170	24	0.38	<detection< td=""><td>8</td><td>543</td><td><detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>109</td><td><detection< td=""><td>38</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	8	543	<detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>109</td><td><detection< td=""><td>38</td></detection<></td></detection<></td></detection<></td></detection0<>	0.02	<detection< td=""><td><detection< td=""><td>109</td><td><detection< td=""><td>38</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>109</td><td><detection< td=""><td>38</td></detection<></td></detection<>	109	<detection< td=""><td>38</td></detection<>	38
H138469	20	0.85	1880	27	0.03	5	1020	15	0.07	<detection< td=""><td>11</td><td>410</td><td><detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>152</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	11	410	<detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>152</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<></td></detection0<>	0.1	<detection< td=""><td><detection< td=""><td>152</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>152</td><td><detection< td=""><td>45</td></detection<></td></detection<>	152	<detection< td=""><td>45</td></detection<>	45
H138470	30	0.05	1190	8	0.03	2	800	12	0.03	2	4	285	<detection0< td=""><td>0.01</td><td><detection< td=""><td><detection< td=""><td>57</td><td><detection< td=""><td>18</td></detection<></td></detection<></td></detection<></td></detection0<>	0.01	<detection< td=""><td><detection< td=""><td>57</td><td><detection< td=""><td>18</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>57</td><td><detection< td=""><td>18</td></detection<></td></detection<>	57	<detection< td=""><td>18</td></detection<>	18
H138471	30	0.54	2340	19	0.02	4	1230	30	0.08	<detection< td=""><td>8</td><td>304</td><td><detection0< td=""><td>0.08</td><td><detection< td=""><td><detection< td=""><td>214</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	8	304	<detection0< td=""><td>0.08</td><td><detection< td=""><td><detection< td=""><td>214</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<></td></detection0<>	0.08	<detection< td=""><td><detection< td=""><td>214</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>214</td><td><detection< td=""><td>63</td></detection<></td></detection<>	214	<detection< td=""><td>63</td></detection<>	63
H138472	40	0.48	2500	23	0.02	2	1070	27	0.16	13	10	315	<detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>273</td><td>10</td><td>35</td></detection<></td></detection<></td></detection0<>	0.15	<detection< td=""><td><detection< td=""><td>273</td><td>10</td><td>35</td></detection<></td></detection<>	<detection< td=""><td>273</td><td>10</td><td>35</td></detection<>	273	10	35
H138473	30	0.51	1585	9	0.02	9	1300	22	0.6	8	9	270	<detection0< td=""><td>0.08</td><td><detection< td=""><td><detection< td=""><td>246</td><td><detection< td=""><td>59</td></detection<></td></detection<></td></detection<></td></detection0<>	0.08	<detection< td=""><td><detection< td=""><td>246</td><td><detection< td=""><td>59</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>246</td><td><detection< td=""><td>59</td></detection<></td></detection<>	246	<detection< td=""><td>59</td></detection<>	59
H138474	30	0.5	1915	10	0.02	6	1420	15	0.1	<detection< td=""><td>7</td><td>299</td><td><detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>184</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	299	<detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>184</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<></td></detection0<>	0.05	<detection< td=""><td><detection< td=""><td>184</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>184</td><td><detection< td=""><td>60</td></detection<></td></detection<>	184	<detection< td=""><td>60</td></detection<>	60
H138475	30	0.89	2280	6	0.02	6	1210	14	0.06	<detection< td=""><td>8</td><td>267</td><td><detection0< td=""><td>0.08</td><td><detection< td=""><td><detection< td=""><td>158</td><td><detection< td=""><td>74</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	8	267	<detection0< td=""><td>0.08</td><td><detection< td=""><td><detection< td=""><td>158</td><td><detection< td=""><td>74</td></detection<></td></detection<></td></detection<></td></detection0<>	0.08	<detection< td=""><td><detection< td=""><td>158</td><td><detection< td=""><td>74</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>158</td><td><detection< td=""><td>74</td></detection<></td></detection<>	158	<detection< td=""><td>74</td></detection<>	74
H138476	40	0.56	2200	11	0.02	4	2290	20	0.14	6	8	325	<detection0< td=""><td>0.11</td><td><detection< td=""><td><detection< td=""><td>400</td><td><detection< td=""><td>50</td></detection<></td></detection<></td></detection<></td></detection0<>	0.11	<detection< td=""><td><detection< td=""><td>400</td><td><detection< td=""><td>50</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>400</td><td><detection< td=""><td>50</td></detection<></td></detection<>	400	<detection< td=""><td>50</td></detection<>	50
H138477	80	0.28	1855	59	0.02	38	4590	30	0.48	9	6	349	<detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>565</td><td>10</td><td>24</td></detection<></td></detection<></td></detection0<>	0.07	<detection< td=""><td><detection< td=""><td>565</td><td>10</td><td>24</td></detection<></td></detection<>	<detection< td=""><td>565</td><td>10</td><td>24</td></detection<>	565	10	24
H138478	40	0.48	2030	49	0.02	4	1390	14	0.14	<detection< td=""><td>8</td><td>458</td><td><detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>186</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	8	458	<detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>186</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<>	0.07	<detection< td=""><td><detection< td=""><td>186</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>186</td><td><detection< td=""><td>52</td></detection<></td></detection<>	186	<detection< td=""><td>52</td></detection<>	52
H138479	30	0.32	1580	11	0.02	8	800	15	0.45	<detection< td=""><td>9</td><td>217</td><td><detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>116</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	9	217	<detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>116</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<>	0.07	<detection< td=""><td><detection< td=""><td>116</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>116</td><td><detection< td=""><td>52</td></detection<></td></detection<>	116	<detection< td=""><td>52</td></detection<>	52
H138480	40	0.5	2130	40	0.02	8	1120	29	0.3	<detection< td=""><td>8</td><td>172</td><td><detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>175</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	8	172	<detection0< td=""><td>0.07</td><td><detection< td=""><td><detection< td=""><td>175</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<></td></detection0<>	0.07	<detection< td=""><td><detection< td=""><td>175</td><td><detection< td=""><td>52</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>175</td><td><detection< td=""><td>52</td></detection<></td></detection<>	175	<detection< td=""><td>52</td></detection<>	52
H138481	30	0.31	1670	20	0.03	8	800	17	0.19	6	9	200	<detection0< td=""><td>0.05</td><td><detection< td=""><td><detection< td=""><td>169</td><td><detection< td=""><td>44</td></detection<></td></detection<></td></detection<></td></detection0<>	0.05	<detection< td=""><td><detection< td=""><td>169</td><td><detection< td=""><td>44</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>169</td><td><detection< td=""><td>44</td></detection<></td></detection<>	169	<detection< td=""><td>44</td></detection<>	44
H138482	10	0.17	856	43	0.05	13	220	46	1.59	3	6	87	<detection0< td=""><td>0.02</td><td><detection< td=""><td><detection< td=""><td>79</td><td><detection< td=""><td>25</td></detection<></td></detection<></td></detection<></td></detection0<>	0.02	<detection< td=""><td><detection< td=""><td>79</td><td><detection< td=""><td>25</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>79</td><td><detection< td=""><td>25</td></detection<></td></detection<>	79	<detection< td=""><td>25</td></detection<>	25
H138483	10	0.15	1355	8	0.02	2	900	8	0.15	<detection< td=""><td>5</td><td>223</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>100</td><td><detection< td=""><td>24</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	223	<detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>100</td><td><detection< td=""><td>24</td></detection<></td></detection<></td></detection<></td></detection0<>	0.03	<detection< td=""><td><detection< td=""><td>100</td><td><detection< td=""><td>24</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>100</td><td><detection< td=""><td>24</td></detection<></td></detection<>	100	<detection< td=""><td>24</td></detection<>	24
H138484	20	0.3	1635	34	0.05	10	630	26	0.58	3	6	208	<detection0< td=""><td>0.06</td><td><detection< td=""><td><detection< td=""><td>157</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<></td></detection0<>	0.06	<detection< td=""><td><detection< td=""><td>157</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>157</td><td><detection< td=""><td>67</td></detection<></td></detection<>	157	<detection< td=""><td>67</td></detection<>	67
H138485	20	0.93	2150	1	0.03	8	2240	4	0.3	<detection< td=""><td>5</td><td>236</td><td><detection0< td=""><td>0.2</td><td><detection< td=""><td><detection< td=""><td>507</td><td><detection< td=""><td>143</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	236	<detection0< td=""><td>0.2</td><td><detection< td=""><td><detection< td=""><td>507</td><td><detection< td=""><td>143</td></detection<></td></detection<></td></detection<></td></detection0<>	0.2	<detection< td=""><td><detection< td=""><td>507</td><td><detection< td=""><td>143</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>507</td><td><detection< td=""><td>143</td></detection<></td></detection<>	507	<detection< td=""><td>143</td></detection<>	143
H138486	30	0.69	2090	2	0.04	9	2660	6	0.24	<detection< td=""><td>5</td><td>305</td><td><detection0< td=""><td>0.14</td><td><detection< td=""><td><detection< td=""><td>393</td><td><detection< td=""><td>112</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	305	<detection0< td=""><td>0.14</td><td><detection< td=""><td><detection< td=""><td>393</td><td><detection< td=""><td>112</td></detection<></td></detection<></td></detection<></td></detection0<>	0.14	<detection< td=""><td><detection< td=""><td>393</td><td><detection< td=""><td>112</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>393</td><td><detection< td=""><td>112</td></detection<></td></detection<>	393	<detection< td=""><td>112</td></detection<>	112
H138487	40	0.46	1665	1	0.02	13	4020	14	0.12	<detection< td=""><td>4</td><td>189</td><td><detection0< td=""><td>0.16</td><td><detection< td=""><td><detection< td=""><td>650</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	4	189	<detection0< td=""><td>0.16</td><td><detection< td=""><td><detection< td=""><td>650</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<></td></detection0<>	0.16	<detection< td=""><td><detection< td=""><td>650</td><td><detection< td=""><td>63</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>650</td><td><detection< td=""><td>63</td></detection<></td></detection<>	650	<detection< td=""><td>63</td></detection<>	63
H138488	30	0.43	2330	<detection< td=""><td>0.03</td><td>6</td><td>3330</td><td>7</td><td>0.25</td><td><detection< td=""><td>4</td><td>177</td><td><detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>683</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.03	6	3330	7	0.25	<detection< td=""><td>4</td><td>177</td><td><detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>683</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	4	177	<detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>683</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<>	0.13	<detection< td=""><td><detection< td=""><td>683</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>683</td><td><detection< td=""><td>54</td></detection<></td></detection<>	683	<detection< td=""><td>54</td></detection<>	54
H138489	10	0.69	1850	<detection< td=""><td>0.03</td><td>7</td><td>1190</td><td>4</td><td>0.06</td><td><detection< td=""><td>5</td><td>241</td><td><detection0< td=""><td>0.14</td><td><detection< td=""><td><detection< td=""><td>340</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.03	7	1190	4	0.06	<detection< td=""><td>5</td><td>241</td><td><detection0< td=""><td>0.14</td><td><detection< td=""><td><detection< td=""><td>340</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	241	<detection0< td=""><td>0.14</td><td><detection< td=""><td><detection< td=""><td>340</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<>	0.14	<detection< td=""><td><detection< td=""><td>340</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>340</td><td><detection< td=""><td>95</td></detection<></td></detection<>	340	<detection< td=""><td>95</td></detection<>	95
H138490	10	0.76	1395	<detection< td=""><td>0.04</td><td>5</td><td>1530</td><td>6</td><td>0.19</td><td><detection< td=""><td>7</td><td>312</td><td><detection0< td=""><td>0.12</td><td><detection< td=""><td><detection< td=""><td>244</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.04	5	1530	6	0.19	<detection< td=""><td>7</td><td>312</td><td><detection0< td=""><td>0.12</td><td><detection< td=""><td><detection< td=""><td>244</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	312	<detection0< td=""><td>0.12</td><td><detection< td=""><td><detection< td=""><td>244</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<></td></detection0<>	0.12	<detection< td=""><td><detection< td=""><td>244</td><td><detection< td=""><td>67</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>244</td><td><detection< td=""><td>67</td></detection<></td></detection<>	244	<detection< td=""><td>67</td></detection<>	67
H138491	40	0.4	2130	<detection< td=""><td>0.03</td><td>7</td><td>2960</td><td>16</td><td>0.14</td><td>6</td><td>4</td><td>308</td><td><detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>501</td><td><detection< td=""><td>55</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	0.03	7	2960	16	0.14	6	4	308	<detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>501</td><td><detection< td=""><td>55</td></detection<></td></detection<></td></detection<></td></detection0<>	0.1	<detection< td=""><td><detection< td=""><td>501</td><td><detection< td=""><td>55</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>501</td><td><detection< td=""><td>55</td></detection<></td></detection<>	501	<detection< td=""><td>55</td></detection<>	55
H138492	20	0.39	1980	<detection< td=""><td>0.03</td><td>9</td><td>2190</td><td>11</td><td>0.07</td><td><detection< td=""><td>4</td><td>171</td><td><detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>531</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.03	9	2190	11	0.07	<detection< td=""><td>4</td><td>171</td><td><detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>531</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	4	171	<detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>531</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<></td></detection0<>	0.15	<detection< td=""><td><detection< td=""><td>531</td><td><detection< td=""><td>60</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>531</td><td><detection< td=""><td>60</td></detection<></td></detection<>	531	<detection< td=""><td>60</td></detection<>	60
H138493	10	0.48	1885	<detection< td=""><td>0.03</td><td>6</td><td>1240</td><td>6</td><td>0.03</td><td><detection< td=""><td>5</td><td>204</td><td><detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>271</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.03	6	1240	6	0.03	<detection< td=""><td>5</td><td>204</td><td><detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>271</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	204	<detection0< td=""><td>0.13</td><td><detection< td=""><td><detection< td=""><td>271</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<></td></detection0<>	0.13	<detection< td=""><td><detection< td=""><td>271</td><td><detection< td=""><td>84</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>271</td><td><detection< td=""><td>84</td></detection<></td></detection<>	271	<detection< td=""><td>84</td></detection<>	84
H138494	10	0.61	1315	2	0.03	5	920	12	0.1	<detection< td=""><td>7</td><td>332</td><td><detection0< td=""><td>0.16</td><td><detection< td=""><td><detection< td=""><td>139</td><td><detection< td=""><td>92</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	7	332	<detection0< td=""><td>0.16</td><td><detection< td=""><td><detection< td=""><td>139</td><td><detection< td=""><td>92</td></detection<></td></detection<></td></detection<></td></detection0<>	0.16	<detection< td=""><td><detection< td=""><td>139</td><td><detection< td=""><td>92</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>139</td><td><detection< td=""><td>92</td></detection<></td></detection<>	139	<detection< td=""><td>92</td></detection<>	92
H138495	30	0.39	1595	4	0.03	8	1940	15	0.23	<detection< td=""><td>6</td><td>298</td><td><detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>230</td><td><detection< td=""><td>204</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	6	298	<detection0< td=""><td>0.15</td><td><detection< td=""><td><detection< td=""><td>230</td><td><detection< td=""><td>204</td></detection<></td></detection<></td></detection<></td></detection0<>	0.15	<detection< td=""><td><detection< td=""><td>230</td><td><detection< td=""><td>204</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>230</td><td><detection< td=""><td>204</td></detection<></td></detection<>	230	<detection< td=""><td>204</td></detection<>	204
H138496	20	0.26	1765	<detection< td=""><td>0.02</td><td>5</td><td>1140</td><td>21</td><td>0.04</td><td>5</td><td>6</td><td>289</td><td><detection0< td=""><td>0.12</td><td><detection< td=""><td><detection< td=""><td>157</td><td><detection< td=""><td>49</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	0.02	5	1140	21	0.04	5	6	289	<detection0< td=""><td>0.12</td><td><detection< td=""><td><detection< td=""><td>157</td><td><detection< td=""><td>49</td></detection<></td></detection<></td></detection<></td></detection0<>	0.12	<detection< td=""><td><detection< td=""><td>157</td><td><detection< td=""><td>49</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>157</td><td><detection< td=""><td>49</td></detection<></td></detection<>	157	<detection< td=""><td>49</td></detection<>	49
H138497	20	0.21	1800	<detection< td=""><td>0.02</td><td>3</td><td>1370</td><td>29</td><td>0.2</td><td>4</td><td>5</td><td>284</td><td><detection0< td=""><td>0.11</td><td><detection< td=""><td><detection< td=""><td>233</td><td><detection< td=""><td>58</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	0.02	3	1370	29	0.2	4	5	284	<detection0< td=""><td>0.11</td><td><detection< td=""><td><detection< td=""><td>233</td><td><detection< td=""><td>58</td></detection<></td></detection<></td></detection<></td></detection0<>	0.11	<detection< td=""><td><detection< td=""><td>233</td><td><detection< td=""><td>58</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>233</td><td><detection< td=""><td>58</td></detection<></td></detection<>	233	<detection< td=""><td>58</td></detection<>	58
H138498	10	0.33	1125	4	0.02	4	1020	15	0.32	<detection< td=""><td>5</td><td>312</td><td><detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>110</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	5	312	<detection0< td=""><td>0.1</td><td><detection< td=""><td><detection< td=""><td>110</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<></td></detection0<>	0.1	<detection< td=""><td><detection< td=""><td>110</td><td><detection< td=""><td>45</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>110</td><td><detection< td=""><td>45</td></detection<></td></detection<>	110	<detection< td=""><td>45</td></detection<>	45
H138499	20	0.37	1770	<detection< td=""><td>0.01</td><td>2</td><td>1120</td><td>17</td><td>0.04</td><td>5</td><td>5</td><td>302</td><td><detection0< td=""><td>0.11</td><td><detection< td=""><td><detection< td=""><td>133</td><td><detection< td=""><td>57</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	0.01	2	1120	17	0.04	5	5	302	<detection0< td=""><td>0.11</td><td><detection< td=""><td><detection< td=""><td>133</td><td><detection< td=""><td>57</td></detection<></td></detection<></td></detection<></td></detection0<>	0.11	<detection< td=""><td><detection< td=""><td>133</td><td><detection< td=""><td>57</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>133</td><td><detection< td=""><td>57</td></detection<></td></detection<>	133	<detection< td=""><td>57</td></detection<>	57
H138500	20	0.25	2390	<detection< td=""><td>0.01</td><td>1</td><td>980</td><td>20</td><td>0.06</td><td>5</td><td>4</td><td>349</td><td><detection0< td=""><td>0.06</td><td><detection< td=""><td><detection< td=""><td>143</td><td><detection< td=""><td>23</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	0.01	1	980	20	0.06	5	4	349	<detection0< td=""><td>0.06</td><td><detection< td=""><td><detection< td=""><td>143</td><td><detection< td=""><td>23</td></detection<></td></detection<></td></detection<></td></detection0<>	0.06	<detection< td=""><td><detection< td=""><td>143</td><td><detection< td=""><td>23</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>143</td><td><detection< td=""><td>23</td></detection<></td></detection<>	143	<detection< td=""><td>23</td></detection<>	23
E597501	10	2.14	761	<detection< td=""><td>0.1</td><td>11</td><td>1240</td><td>5</td><td>0.2</td><td><detection< td=""><td>14</td><td>37</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>167</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.1	11	1240	5	0.2	<detection< td=""><td>14</td><td>37</td><td><detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>167</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	14	37	<detection0< td=""><td>0.03</td><td><detection< td=""><td><detection< td=""><td>167</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<></td></detection0<>	0.03	<detection< td=""><td><detection< td=""><td>167</td><td><detection< td=""><td>95</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>167</td><td><detection< td=""><td>95</td></detection<></td></detection<>	167	<detection< td=""><td>95</td></detection<>	95
E597502	10	2.21	979	<a a="" href="mailto:</td><td>0.08</td><td>5</td><td>1000</td><td><aetection</td><td>0.33</td><td><a href=" mailto:<="">	13	48	<aetection0< td=""><td>0.05</td><td><a a="" of="" td="" tex<="" text=""><td><a td="" traction<=""><td>143</td><td><a td="" traction<=""><td>81</td></td></td></td></aetection0<>	0.05	<a a="" of="" td="" tex<="" text=""><td><a td="" traction<=""><td>143</td><td><a td="" traction<=""><td>81</td></td></td>	<a td="" traction<=""><td>143</td><td><a td="" traction<=""><td>81</td></td>	143	<a td="" traction<=""><td>81</td>	81						
E597503	<detection< td=""><td>2.55</td><td>848</td><td><detection< td=""><td>0.08</td><td>10</td><td>890</td><td>5</td><td>0.04</td><td><detection< td=""><td>12</td><td>37</td><td><detection0< td=""><td>0.24</td><td><detection< td=""><td><detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<></td></detection<>	2.55	848	<detection< td=""><td>0.08</td><td>10</td><td>890</td><td>5</td><td>0.04</td><td><detection< td=""><td>12</td><td>37</td><td><detection0< td=""><td>0.24</td><td><detection< td=""><td><detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<></td></detection<>	0.08	10	890	5	0.04	<detection< td=""><td>12</td><td>37</td><td><detection0< td=""><td>0.24</td><td><detection< td=""><td><detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<></td></detection<>	12	37	<detection0< td=""><td>0.24</td><td><detection< td=""><td><detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<></td></detection0<>	0.24	<detection< td=""><td><detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<></td></detection<>	<detection< td=""><td>221</td><td><detection< td=""><td>54</td></detection<></td></detection<>	221	<detection< td=""><td>54</td></detection<>	54
E597504	10	1.58	766	<aetection< td=""><td>0.04</td><td>16</td><td>2750</td><td><aetection< td=""><td>0.3</td><td><a a="" href="mailto:</td><td>27</td><td>128</td><td><aetection0</td><td>0.24</td><td><a traction</td><td><a traction</td><td>2//</td><td><a href=" mailto:<=""></td><td>65</td></aetection<></td></aetection<>	0.04	16	2750	<aetection< td=""><td>0.3</td><td><a a="" href="mailto:</td><td>27</td><td>128</td><td><aetection0</td><td>0.24</td><td><a traction</td><td><a traction</td><td>2//</td><td><a href=" mailto:<=""></td><td>65</td></aetection<>	0.3	<a a="" href="mailto:</td><td>27</td><td>128</td><td><aetection0</td><td>0.24</td><td><a traction</td><td><a traction</td><td>2//</td><td><a href=" mailto:<="">	65								
E597505	10	0.74	296	4	0.05	5	950	5	0.48	 cuetection 	5	34	 <uetection0< li=""> </uetection0<>	0.12	 <uetection< li=""> </uetection<>	<uetection< td=""><td>128</td><td> <uetection< li=""> </uetection<></td><td>20</td></uetection<>	128	 <uetection< li=""> </uetection<>	20
E59/500	20	0.03	2020		0.02	0	1040	20	0.29	3	5	323	<uerection0< td=""><td>0.09</td><td> detection </td><td><uelection< td=""><td>70</td><td><uelection< td=""><td>490</td></uelection<></td></uelection<></td></uerection0<>	0.09	 detection 	<uelection< td=""><td>70</td><td><uelection< td=""><td>490</td></uelection<></td></uelection<>	70	<uelection< td=""><td>490</td></uelection<>	490
E39/50/	10	1.00	1400		0.04	19	1000	29 6	0.25	۲ دdotaction	15	167		0.10	 vuelection 		124		69/ 67
	10	0.44	1490		0.03	12	2270	6	0.16	 <uelection< li=""> <dotoction< li=""> </dotoction<></uelection<>	15	104	<uerection()< td=""><td>0.02</td><td> detection </td><td></td><td>102</td><td><uerection< td=""><td>0/</td></uerection<></td></uerection()<>	0.02	 detection 		102	<uerection< td=""><td>0/</td></uerection<>	0/
E59/509	20	1.47	1520		0.02	20	3410	4	0.05	<uelection< td=""><td>24</td><td>255</td><td><uerection0< td=""><td>0.05</td><td></td><td></td><td>192</td><td></td><td>ŏ5</td></uerection0<></td></uelection<>	24	255	<uerection0< td=""><td>0.05</td><td></td><td></td><td>192</td><td></td><td>ŏ5</td></uerection0<>	0.05			192		ŏ5
E597510	20	3.14	2/10	 vetection 	0.03	3/	4970	5	0.13	 vetection 	32	450	<uetectionu< td=""><td>0.13</td><td> vetection </td><td><uetection< td=""><td>214</td><td> detection </td><td>2142</td></uetection<></td></uetectionu<>	0.13	 vetection 	<uetection< td=""><td>214</td><td> detection </td><td>2142</td></uetection<>	214	 detection 	2142
E59/511 E507512	10	1.03	420	16	0.00		1/50		0.00	 <detection< li=""> </detection<>	10	193	 <uelection0< li=""> </uelection0<>	0.05	 <uelection< li=""> </uelection<>	< detection	109		51 C
E59/512 EE07E12	10	0.0	2400	10	U.UI	10	200	166	0.02	 <uelection< li=""> </uelection<>	د ۲۸	722	<detection0< td=""><td>0.07</td><td> vuerection </td><td> <uelection< li=""> </uelection<></td><td>تر د مر</td><td>2U</td><td>0 1<i>16</i></td></detection0<>	0.07	 vuerection 	 <uelection< li=""> </uelection<>	تر د مر	2U	0 1 <i>16</i>
E23/313	20	1.5 2.72	2950			19	1500	200	1 00		<u>۲</u> 4	536 720	 velection 	0.00	 velection 	cdetection	242	20	7160
E593002	20	5.23 1.70	2000	1	0.03	19	1300	20	1.99	0	2 2	238	 <detection< li=""> </detection<>	0.1	 <uelection< li=""> </uelection<>	 <uelection< li=""> </uelection<>	12	30	7 10U 5010
E393003	20	1.79	2900	1 2	0.04	1/	95U 1110	52 15	2.1/	4	3	301 226	cdetection	0.04	 vuelection 	cdetection	12	20	0170
E393004	20	1.20	2240	<u>ک</u> 1	0.03	20	1110	15	2.30	 velection 	4	230	<pre><detection< pre=""></detection<></pre>	0.04	 velection 	< detection	10	30 20	61/U 5210
E593005	20	1.23	2060		0.03	3 10	1220	40	2.02	 <detection< li=""> </detection<>	1	51/ 105	 <detection< li=""> </detection<>	0.03	 detection 	< detection	0	20	7010
E593000	10	1.39	2000	vuerection	0.03	ے 10	1230	10	2.51	1	L cdotoction	147	 <detection< li=""> </detection<>	0.02		 <uelection< li=""> </uelection<>	4 د	30	7010
E393007	10	0.02	2410	2 1	0.02	10	300	3/ 0	0.07	12		144 E 4 2	 velection 	0.01	 vuelection 	 velection 	20	10	2400
E232008	20	4.43 1 E 0	3020	1 2	0.02	10	1100	ð o	2.30	4	4 E	542	 velection 	U.UZ	 velection 	 velection 	20	20	7070
E293009	20	4.58	4000	2	0.02	10	1220	3	2.05	aetection	5	6/8	aetection	caetection	<aetection< td=""><td>detection</td><td>14</td><td>30</td><td>/9/0</td></aetection<>	detection	14	30	/9/0

APPENDIX B CERTIFICATES OF ASSAY

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 1 Finalized Date: 19- AUG- 2010 Account: ROGORE

CERTIFICATE TR10108920

Project: DIRK

P.O. No.:

This report is for 53 GRAB samples submitted to our lab in Terrace, BC, Canada on 7-AUG-2010.

The following have access to data associated with this certificate:

PAOLA CI	HADWICK

SCOTT CLOSE

TOM DRIVAS

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21 LOG- 22 CRU- QC CRU- 31 SPL- 21 PIII - 31	Received Sample Weight Sample login - Rcd w/o BarCode Crushing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% < 75 um

ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT ALS CODE ME- OG46 Ore Grade Elements - AquaRegia ICP- AES Au- AA24 Au 50g FA AA finish AAS ME- ICP41 35 Element Aqua Regia ICP- AES ICP- AES Cu- OG46 Ore Grade Cu - Aqua Regia VARIABLE

To: ROMIOS GOLD RESOURCES INC. ATTN: PAOLA CHADWICK 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

(ALS)

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Project: DIRK

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

Minora	IC						Project: DIKK									
	13								C	ERTIFI	CATE O	F ANA	LYSIS	TR10	08920)
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01	ME- ICP41 Ga ppm 10
H1 38460 H1 38461 H1 38462 H1 38463 H1 38464		0.18 0.86 0.65 0.74 1.00	0.4 0.3 0.6 0.7 0.6	0.79 0.54 0.45 0.47 0.48	8 9 11 11 7	<10 <10 10 <10 <10	680 1700 1610 280 790	1.1 0.8 0.7 0.9 0.8	<2 <2 <2 <2 <2 <2	5.31 9.8 9.5 15.2 9.4	<0.5 <0.5 <0.5 <0.5 <0.5	4 7 4 3 9	3 3 2 1 2	209 873 405 219 586	6.24 5.47 5.73 6.28 4.57	<10 <10 <10 <10 <10
H1 38465 H1 38466 H1 38467 H1 38468 H1 38469		0.57 1.53 0.97 2.02 1.56	0.3 <0.2 1.2 0.3 0.3	0.47 0.47 0.85 0.52 1.14	6 6 8 6 11	<10 <10 <10 <10 <10	970 730 740 520 650	0.5 0.7 1.0 0.7 0.7	<2 <2 <2 <2 <2 <2	8.5 13.2 8.0 8.1 8.3	<0.5 <0.5 <0.5 <0.5 <0.5	6 5 13 7 10	2 2 4 2 7	350 262 1940 556 434	3.19 3.73 4.31 4.82 4.38	<10 <10 <10 <10 <10
H1 38470 H1 38471 H1 38472 H1 38473 H1 38474		1.12 1.12 0.93 1.80 0.96	0.6 0.6 <0.2 0.7 0.8	0.48 1.15 1.14 0.96 0.92	<2 9 33 19 12	<10 <10 <10 <10 <10	370 430 320 360 430	0.7 1.3 1.6 1.1 0.9	<2 <2 <2 <2 <2 <2 <2	4.82 7.4 9.3 5.58 5.86	<0.5 <0.5 <0.5 <0.5 <0.5	3 8 3 12 8	5 5 4 4 5	331 593 110 1110 1180	2.16 5.84 12.15 8.11 3.88	<10 <10 <10 <10 <10
H1 38475 H1 38476 H1 38477 H1 38478 H1 38479		0.80 1.82 1.11 0.70 0.91	0.2 0.7 3.7 0.6 1.4	1.47 1.16 0.80 1.08 0.91	13 25 198 13 25	<10 10 10 <10 <10	180 1490 260 1280 310	1.2 1.2 1.0 1.1 1.1	<2 <2 25 <2 <2 <2	8.4 7.9 6.37 6.7 4.99	<0.5 <0.5 <0.5 <0.5 0.7	10 5 55 6 12	4 6 4 6 7	603 1670 >10000 1700 1890	5.34 7.47 12.30 4.48 3.29	<10 <10 <10 <10 <10
H1 38480 H1 38481 H1 38482 H1 38483 H1 38483 H1 38484		1.54 0.81 1.32 0.72 0.77	3.1 0.4 3.1 0.3 1.7	1.29 0.93 0.82 0.65 0.88	35 18 22 11 22	<10 <10 <10 <10 <10	260 160 70 220 140	0.9 1.0 0.5 0.9 0.7	6 <2 <2 <2 3	6.96 6.89 3.93 6.6 6.9	0.6 <0.5 <0.5 <0.5 0.6	13 8 4 5 11	9 19 4 3 5	6240 954 250 1080 3060	4.88 4.15 3.80 2.82 3.76	<10 <10 <10 <10 <10
H1 38485 H1 38486 H1 38487 H1 38488 H1 38489		3.25 0.76 0.57 0.47 1.12	4.3 4.2 13.4 13.2 4.4	1.85 1.52 1.61 1.89 1.58	15 26 31 29 11	<10 <10 <10 <10 <10	280 840 130 430 170	0.9 1.2 1.3 0.7 0.8	12 7 13 41 2	7.6 8.2 7.4 10.4 6.7	0.7 3.9 0.5 0.5 0.6	20 22 22 11 9	5 5 3 4 6	9330 8500 >10000 >10000 2390	5.79 5.45 6.17 6.91 4.18	10 10 10 10 10
H1 38490 H1 38491 H1 38492 H1 38493 H1 38494		0.93 0.48 1.69 0.98 1.36	2.1 11.8 25.5 4.4 1.2	1.38 1.45 2.07 1.48 1.25	6 28 18 9 8	<10 <10 <10 <10 <10 <10	620 580 140 160 300	1.3 1.8 0.7 1.1 1.3	<2 21 21 3 <2	6.21 9.7 9.1 8.1 5.58	0.9 0.6 0.5 0.5 <0.5	12 8 11 9 13	7 3 5 6 6	3520 6570 >10000 2610 1250	3.78 5.70 4.76 3.52 2.68	10 <10 10 <10 10
H1 38495 H1 38496 H1 38497 H1 38498 H1 38499		0.75 0.84 1.43 0.76 0.75	6.5 2.8 7.7 2.3 1.8	1.42 1.12 1.16 0.86 0.96	21 13 17 8 13	<10 <10 <10 <10 <10	320 200 200 260 180	1.5 1.5 1.3 1.4 1.8	2 3 10 <2 3	6.8 8.1 9.7 5.14 7.4	2.7 0.6 0.6 0.6 0.7	12 7 5 9 6	5 4 3 3 3	5210 1450 3220 4240 1210	3.87 3.04 3.40 2.57 3.45	10 <10 <10 <10 <10

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Project: DIRK

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

							C	ERTIFI	CATE O	LYSIS	5 TR10108920						
Sample Description	Method Analyte Units LOR	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1	ME- ICP41 Th ppm 20	
H138460		<1	0.45	40	0.11	1645	64	0.03	1	1210	17	0.07	<2	9	323	<20	-
H138461		<1	0.29	20	0.20	2110	107	0.02	2	880	15	0.26	<2	6	449	<20	
H138462		<1	0.27	50	0.08	2550	36	0.02	<1	1080	19	0.11	<2	6	427	<20	
H138463		<1	0.27	60	0.10	3850	81	0.01	1	880	33	0.09	5	6	453	<20	
H138464		<1	0.28	40	0.10	2140	44	0.02	3	1230	25	0.12	<2	7	766	<20	
H138465		<1	0.25	30	0.07	1530	17	0.02	2	1200	26	0.11	<2	7	440	<20	
H138466		<1	0.29	40	0.15	2070	55	0.02	2	1040	41	0.13	<2	7	604	<20	
H138467		<1	0.33	20	0.56	2200	21	0.02	5	1290	23	0.43	3	8	414	<20	
H138468		<1	0.32	30	0.37	1865	27	0.02	4	1170	24	0.38	<2	8	543	<20	
H138469		<1	0.60	20	0.85	1880	27	0.03	5	1020	15	0.07	<2	11	410	<20	
H138470		<1	0.30	30	0.05	1190	8	0.03	2	800	12	0.03	2	4	285	<20	
H138471		<1	0.38	30	0.54	2340	19	0.02	4	1230	30	0.08	<2	8	304	<20	
H138472		<1	0.49	40	0.48	2500	23	0.02	2	1070	27	0.16	13	10	315	<20	
H138473		<1	0.31	30	0.51	1585	9	0.02	9	1300	22	0.60	8	9	270	<20	
H1 38474		<1	0.33	30	0.50	1915	10	0.02	6	1420	15	0.10	<2	7	299	<20	
H1 38475		1	0.31	30	0.89	2280	6	0.02	6	1210	14	0.06	<2	8	267	<20	1
H138476		1	0.56	40	0.56	2200	11	0.02	4	2290	20	0.14	6	8	325	<20	
H138477		1	0.39	80	0.28	1855	59	0.02	38	4590	30	0.48	9	6	349	<20	
H138478		<1	0.48	40	0.48	2030	49	0.02	4	1390	14	0.14	<2	8	458	<20	
H138479		1	0.41	30	0.32	1580	11	0.02	8	800	15	0.45	<2	9	217	<20	
H1 38480		1	0.44	40	0.50	2130	40	0.02	8	1120	29	0.30	<2	8	172	<20	
H138481		<1	0.36	30	0.31	1670	20	0.03	8	800	17	0.19	6	9	200	<20	
H138482		2	0.37	10	0.17	856	43	0.05	13	220	46	1.59	3	6	87	<20	
H138483		<1	0.30	10	0.15	1355	8	0.02	2	900	8	0.15	<2	5	223	<20	
H1 38484		1	0.30	20	0.30	1635	34	0.05	10	630	26	0.58	3	6	208	<20	
H1 38485		1	0.17	20	0.93	2150	1	0.03	8	2240	4	0.30	<2	5	236	<20	
H1 38486		2	0.28	30	0.69	2090	2	0.04	9	2660	6	0.24	<2	5	305	<20	
H138487		3	0.22	40	0.46	1665	1	0.02	13	4020	14	0.12	<2	4	189	<20	
H1 38488		4	0.16	30	0.43	2330	<1	0.03	6	3330	7	0.25	<2	4	177	<20	
H1 38489		1	0.21	10	0.69	1850	<1	0.03	7	1190	4	0.06	<2	5	241	<20	
H1 38490		<1	0.41	10	0.76	1395	<1	0.04	5	1530	6	0.19	<2	7	312	<20	
H138491		2	0.36	40	0.40	2130	<1	0.03	7	2960	16	0.14	6	4	308	<20	
H1 38492		2	0.13	20	0.39	1980	<1	0.03	9	2190	11	0.07	<2	4	171	<20	
H138493		1	0.23	10	0.48	1885	<1	0.03	6	1240	6	0.03	<2	5	204	<20	
H138494		<1	0.31	10	0.61	1315	2	0.03	5	920	12	0.10	<2	7	332	<20	
H138495		2	0.30	30	0.39	1595	4	0.03	8	1940	15	0.23	<2	6	298	<20	
H138496		<1	0.36	20	0.26	1765	<1	0.02	5	1140	21	0.04	5	6	289	<20	
H138497		1	0.27	20	0.21	1800	<1	0.02	3	1370	29	0.20	4	5	284	<20	
H1 38498		<1	0.44	10	0.33	1125	4	0.02	4	1020	15	0.32	<2	5	312	<20	
H138499		<1	0.41	20	0.37	1770	<1	0.01	2	1120	17	0.04	5	5	302	<20	

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

Project: DIRK

Sample Description	Method Analyte Units LOR	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Cu- OG46 Cu % 0.001	Au- AA24 Au ppm 0.005	
H1 38460 H1 38461 H1 38462 H1 38463 H1 38464		0.03 0.03 0.05 0.06 0.03	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	131 174 148 156 126	<10 <10 <10 <10 <10	35 31 19 32 48		0.016 0.033 0.007 0.010 0.014	
H1 38465 H1 38466 H1 38467 H1 38468 H1 38469		0.02 0.02 0.04 0.02 0.10	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	96 94 155 109 152	<10 <10 <10 <10 <10	20 32 84 38 45		0.013 0.019 0.077 0.041 0.016	
H1 38470 H1 38471 H1 38472 H1 38473 H1 38474		0.01 0.08 0.15 0.08 0.05	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	57 214 273 246 184	<10 <10 10 <10 <10	18 63 35 59 60		0.012 0.032 0.012 0.069 0.066	
H1 38475 H1 38476 H1 38477 H1 38478 H1 38479		0.08 0.11 0.07 0.07 0.07	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	158 400 565 186 116	<10 <10 10 <10 <10	74 50 24 52 52	3.57	0.022 0.065 1.410 0.055 0.071	
H1 38480 H1 38481 H1 38482 H1 38483 H1 38484		0.07 0.05 0.02 0.03 0.06	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	175 169 79 100 157	<10 <10 <10 <10 <10	52 44 25 24 67		0.155 0.060 0.062 0.051 0.117	
H1 38485 H1 38486 H1 38487 H1 38488 H1 38489		0.20 0.14 0.16 0.13 0.14	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	507 393 650 683 340	<10 <10 <10 <10 <10	143 112 63 54 95	1.960 1.080	0.456 0.296 0.937 1.265 0.228	
H1 38490 H1 38491 H1 38492 H1 38493 H1 38494		0.12 0.10 0.15 0.13 0.16	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	244 501 531 271 139	<10 <10 <10 <10 <10	67 55 60 84 92	1.000	0.100 0.811 1.240 0.212 0.023	
H1 38495 H1 38496 H1 38497 H1 38498 H1 38499		0.15 0.12 0.11 0.10 0.11	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	230 157 233 110 133	<10 <10 <10 <10 <10	204 49 58 45 57		0.102 0.118 0.487 0.072 0.230	

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

Project: DIRK

Sample Description	Method	WEI- 21	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41
	Analyte	Recvd Wt.	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOR	0.02	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
H138500 E597501 E597502 E597503 E597504		0.61 1.13 2.93 1.94 1.79	2.1 0.3 <0.2 <0.2 <0.2	0.82 2.55 2.52 3.54 1.63	18 32 8 16 10	10 <10 <10 10 <10	170 10 60 30 50	1.9 <0.5 <0.5 0.5 1.1	5 <2 <2 <2 <2 <2	11.6 1.39 1.38 2.42 5.57	<0.5 <0.5 <0.5 <0.5 <0.5	3 21 12 11 21	2 13 8 23 58	1100 32 209 56 176	4.04 5.11 4.58 5.39 6.23	<10 10 10 10 10
E597505 E597506 E597507 E597508 E597509		1.43 2.19 1.39 1.50 1.49	<0.2 0.4 0.3 <0.2 0.3	1.43 1.14 1.54 0.69 1.24	12 9 6 7 8	<10 <10 <10 <10 <10	140 380 430 250 340	0.5 1.4 1.5 0.7 0.8	<2 <2 <2 <2 <2 <2	0.24 8.9 4.29 5.66 6.28	<0.5 4.7 9.1 <0.5 <0.5	15 9 16 12 24	13 10 44 33 94	85 52 419 45 752	4.64 2.62 3.33 3.68 4.63	10 <10 10 <10 10
E597510		2.65	<0.2	2.35	11	<10	670	1.2	<2	10.8	<0.5	28	171	41	5.77	10
E597511		2.24	<0.2	1.00	5	<10	550	1.0	<2	4.99	<0.5	14	24	168	3.94	10
E597512		2.12	<0.2	0.78	73	40	70	1.7	<2	14.5	<0.5	<1	20	4	19.1	<10

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

Project: DIRK

Sample Description	Method	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41
	Analyte	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th
	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1	20
H1 38500 E597501 E597502 E597503 E597504		1 1 1 1	0.42 0.04 0.17 0.15 0.20	20 10 10 <10 10	0.25 2.14 2.21 2.55 1.58	2390 761 979 848 766	<1 <1 <1 <1 <1	0.01 0.10 0.08 0.08 0.04	1 11 5 10 16	980 1240 1000 890 2750	20 5 <2 5 <2	0.06 0.20 0.33 0.04 0.30	5 <2 <2 <2 <2 <2	4 14 13 12 27	349 37 48 37 128	<20 <20 <20 <20 <20
E597505		<1	0.21	10	0.74	296	4	0.05	5	950	5	0.48	<2	5	34	<20
E597506		<1	0.24	20	0.63	2020	1	0.02	6	1040	188	0.29	3	5	323	<20
E597507		1	0.23	10	1.66	1640	<1	0.04	19	1600	29	0.25	2	13	185	<20
E597508		<1	0.19	10	0.44	1490	<1	0.03	12	2270	6	0.16	<2	15	164	<20
E597509		<1	0.37	20	1.47	1520	<1	0.02	26	3410	4	0.05	<2	24	255	<20
E597510		1	0.66	20	3.14	2710	<1	0.03	37	4970	5	0.13	<2	32	450	<20
E597511		<1	0.29	10	1.03	420	<1	0.06	12	1750	<2	0.06	<2	10	193	<20
E597512		<1	0.15	10	0.60	2460	16	0.01	<1	260	6	0.02	<2	5	195	<20

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 19- AUG- 2010 Account: ROGORE

Project: DIRK

Sample Description	Method Analyte Units LOR	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Cu- OG46 Cu % 0.001	Au- AA24 Au ppm 0.005	
H1 38500 E597501 E597502 E597503 E597504		0.06 0.03 0.05 0.24 0.24	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	143 167 143 221 277	<10 <10 <10 <10 <10	23 95 81 54 65		0.381 <0.005 0.006 <0.005 0.010	
E597505 E597506 E597507 E597508 E597509		0.12 0.09 0.16 0.02 0.05	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	128 70 148 124 192	<10 <10 <10 <10 <10	20 496 897 67 85		0.013 0.005 0.016 0.007 0.006	
E597510 E597511 E597512		0.19 0.05 0.07	<10 <10 <10	<10 <10 <10	214 159 57	<10 <10 20	142 31 6		<0.005 <0.005 <0.005	

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 1 Finalized Date: 28- SEP- 2010 Account: ROGORE

CERTIFICATE TR10128296

Project: DIRK/TREK

P.O. No.: SSF- 39

This report is for 15 GRAB samples submitted to our lab in Terrace, BC, Canada on 9- SEP- 2010.

The following have access to data associated with this certificate:

PAOLA	CHA	DWICk

SCOTT CLOSE

TOM DRIVAS

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI- 21	Received Sample Weight							
LOG- 22	Sample login - Rcd w/o BarCode							
CRU- 31	Fine crushing - 70% < 2mm							
SPL- 21	Split sample - riffle splitter							
PUL- 31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- AA23	Au 30g FA- AA finish	AAS
ME- ICP41	35 Element Aqua Regia ICP- AES	ICP- AES
Cu- OG46	Ore Grade Cu - Aqua Regia	VARIABLE

To: ROMIOS GOLD RESOURCES INC. ATTN: PAOLA CHADWICK 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Project: DIRK/TREK

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 28- SEP- 2010 Account: ROGORE

milerals							CERTIFICATE OF ANALYSIS					TR10128296				
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME- ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
593001 593002 593003 593004 593005		0.24 1.08 1.35 1.61 2.10	<0.005 0.188 0.494 0.280 0.078	<0.2 8.1 6.7 13.0 4.5	2.29 1.11 0.44 0.40 0.19	<2 100 51 117 25	<10 <10 <10 <10 <10	40 160 120 120 150	<0.5 3.8 3.7 2.8 2.8	<2 <2 6 <2 <2	0.18 11.0 12.9 9.9 12.4	<0.5 98.6 65.3 101.5 53.4	11 148 121 154 58	3 26 9 9 7	23 >10000 >10000 >10000 6940	4.07 3.31 2.50 3.76 1.22
593006 593007 593008 593009 593986		4.76 2.01 1.80 1.15 1.61	0.109 0.075 0.384 0.069 <0.005	10.7 0.8 12.5 14.7 0.4	0.15 0.11 0.62 0.39 3.47	113 69 45 59 <2	<10 <10 <10 <10 <10	80 70 120 110 <10	1.6 1.5 3.4 2.1 <0.5	13 <2 6 <2 <2	5.07 6.53 11.6 9.8 1.13	77.6 11.3 108.0 88.9 <0.5	126 82 132 133 15	6 2 16 16 16	>10000 4360 >10000 >10000 949	2.33 1.56 3.54 3.66 6.94
593987 593988 593989 593990 593991		0.28 2.20 0.67 0.80 0.43	<0.005 <0.005 <0.005 <0.005 <0.005	<0.2 1.4 <0.2 <0.2 <0.2	3.12 2.88 2.28 1.47 3.23	<2 2 6 <2 5	<10 10 <10 <10 <10	10 10 10 10 130	<0.5 0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	1.50 3.06 0.97 0.87 0.95	<0.5 1.1 <0.5 <0.5 <0.5	24 22 47 56 33	18 13 33 70 70	215 783 456 396 196	6.14 4.05 5.51 4.41 5.95

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Project: DIRK/TREK

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 28- SEP- 2010 Account: ROGORE

indici d									C	ERTIFIC	CATE C	F ANA	LYSIS	TR101	<u>128296</u>	į
Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1
593001 593002 593003 593004 593005		<10 <10 <10 <10 <10	1 <1 <1 <1	0.05 0.88 0.12 0.09 0.05	<10 20 20 20 20	1.94 3.23 1.79 1.26 1.23	853 3040 2900 2240 3540	<1 1 1 2 1	0.01 0.03 0.04 0.03 0.03	<1 19 17 28 3	90 1500 950 1110 880	2 28 52 15 45	<0.01 1.99 2.17 2.56 1.02	2 6 4 <2 <2	1 5 3 4 1	8 238 301 236 317
593006 593007 593008 593009 593986		<10 <10 <10 <10 10	<1 <1 4 7 <1	0.07 0.01 0.21 0.18 0.02	10 10 20 20 <10	1.39 0.62 4.43 4.58 2.54	2060 2410 3620 4000 1150	<1 2 1 2 <1	0.03 0.02 0.02 0.02 0.02 0.07	10 6 18 16 7	1230 360 1180 1590 1030	18 37 8 3 7	2.51 0.07 2.36 2.05 0.42	<2 15 4 <2 <2	1 <1 4 5 6	195 144 542 678 96
593987 593988 593989 593990 593990 593991		10 10 10 10 10	<1 <1 <1 <1 <1	0.05 0.08 0.15 0.26 1.84	<10 <10 <10 <10 <10	2.06 1.47 2.24 1.34 2.58	1205 919 344 207 445	<1 <1 2 61 2	0.07 0.12 0.05 0.07 0.11	7 12 21 133 23	1130 1660 1400 1680 1260	10 3 6 <2 4	1.11 0.21 1.93 1.90 1.11	<2 <2 <2 <2 <2 <2	11 6 3 2 4	26 66 26 23 29

To: ROMIOS GOLD RESOURCES INC. 25 ADELAIDE STREET EAST, SUITE 1010 TORONTO ON M5C 3A1

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 28- SEP- 2010 Account: ROGORE

Project: DIRK/TREK

Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Cu- OG46 Cu % 0.001	Zn- OG46 Zn % 0.001			
593001 593002 593003 593004 593005		<20 <20 <20 <20 <20	0.02 0.10 0.04 0.04 0.03	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	31 25 12 10 6	<10 30 10 30 20	126 7160 5910 8170 5310	2.47 1.825 3.49				
593006 593007 593008 593009 593986		<20 <20 <20 <20 <20	0.02 0.01 0.02 <0.01 0.26	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	4 6 20 14 145	30 10 50 30 <10	7010 2400 >10000 7970 126	2.16 1.830 2.26	1.210			
593987 593988 593989 593990 593991		<20 <20 <20 <20 <20	0.30 0.26 0.36 0.21 0.42	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	287 159 134 77 183	<10 <10 <10 <10 <10	97 148 42 23 46					

APPENDIX C PETROGRAPHY RESULTS

SAMPLES:

Field Sample	G0806103	Dirk Showing: Carbonate Rafts in Syenite Porphyry
Field Sample	H 138902	Telena Showing: Chalcopyrite veinlets, disseminations in Syenite Porphyry

1138902	AD38	<i>Lithology</i> Skarn	Assemblage skam	AI: 23

Host rock: syenite to monzonite, depending upon original plagioclase amount (now completely replaced by clay-white mica).

Hand Specime

Medium-grained brown and white porphyritic rock with feldspar phenocrysts <4 mm, non-magnetic, cut by chalcopyrit rich veinlets.

0/	Mode Minera	logy	Texture 1 Texture 2	porphyritic		Structure Strength	2	
70 0	0	budrothormold	<i>a</i> . <i>a</i> .	madium are	and (+ 0.25 -			
2	Quartz,	nyorotnerman	Grain Size	⁹ medium gra	inea (>0.25<	2mm) Groundi	nass	
2	Plagioclase	plutonic	Ksp Stain	moderate	e Kspar in gro	oundmass and p	henocrysts	
13	Kspar	plutonic	<i>Modal M</i> Kspar forms	<i>ineralogy</i> (s subhedral pri	Comments smatic grain	s < 4 mm wide.	Plagioclase(?) origir	nally formed
	Pyroxene		anhedral gra	ains <1 mm th	at are now n	early completely	replaced by clay+/-i	llite.
	Glass							
13	Kspar	plutonic						
	Biotite							
7	White Mica	hydrothermal1				Veins		
15		hydrothormal1	N	lineral 1	Mineral	2 Miner	al 3 Envelo	pe
15	Clay	nyurutnerman	Vein 1 g	arnet				
7	Carbonate	hydrothermal1	Vein 2					
	Epidote		Vein 3					
7	Chlorite	hydrothermal1	garnet-qua	artz-white mica	a-chalcopyrit	e veins		
12	Opaques	hydrothermal1						
	Fe-oxyhydrox							
	Sphene							
0	Malachite	hydrothermal1		S	econdary	y Mineralog	y	
0	azurite	hydrothermal1	1	Mineral In	tensitv F	Iow	How 2	AI
35	garnet	hydrothermal1		Wt Mic stron	ng p	oseudomorph	vein associated	4
0				Carb. wea	k a	disseminated	vein associated	2

Opaque Mineralogy

%	Opaque	How
0	Magnetite	
2	Hematite	pseudomorph
0	Pyrite	
	Bornite	
10	Chalcopyrite	vein associated (h
	Covellite	
	Chalcocite	
	Sphalerite	

<10% disseminated and vein chalcopyrite. <2% pseudomorphic hematite along mafic grain cleavage planes.

<i>Mineral Intensity</i> <i>Wt Mic</i> strong	<i>How</i> pseudomorph	<i>How 2</i> vein associated	AI 4
Carb. weak	disseminated	vein associated	2
Clay very strong	pseudomorph		5
Epidote			
Chlorite very strong	pseudomorph		3
Biotite			
Kspar			
Albite			
Quartz moderate	vein associated		4
Jarosite			
garnet	pervasive	vein hosted	5

Alteration Comments

Very strong pervasive texture destructive garnet. Very strong chlorite-opaques-garnet completely replace all primary mafics. Very strong pseudomorphic clay+/-illite nearly completely replace all anhedral plagioclase(?) grains. Moderate quartz associated witl garnet in veins. Trace malachite and azurite.

H138902

H138902_001 FOV (mm): 5 Crossed polars Subhedral kspar phenocrysts and abundant small isometric grains.

H138902_003 FOV (mm): 0.5 Crossed polars Chlorite, opaques and garnet completely replace a mafic grain.

H138902_005 FOV (mm): 2.2 Crossed polars Coarse-grained white mica associated with garnets.

H138902_002 FOV (mm): 5 Plane polarized light Same, under uncrossed polars. The small brownish grains are garnets.

H138902_004 FOV (mm): 2.2 Crossed polars Fine-grained white mica and clay completely replace anhedral feldspars(?).

H138902_006 FOV (mm): 2.2 Reflected light. Chalcopyrite in garnet-quartz-chlorite vein.

AI: 20

Hand Specime Beige, medium-grained equigranular(?) rock with dark bands < 0.7 cm wide, very weakly magnetic.

Mode Mineralogy	Texture 1 annealed Structure			
% Occurence	Texture 2 Strength			
5 Quartz hydrothermal1	Grain Size medium grained (>0.25<2mm) Groundmass			
3 Plagioclase hydrothermal1	Ksp Stain Weak Kspar in groundmass			
5 Kspar hydrothermal1	Modal Mineralogy Comments			
5 <i>Pyroxene</i> hydrothermal1	No primary minerals remain.			
5 <i>Kspar</i> hydrothermal1 <i>Biotite</i>				
3 <i>White Mica</i> hydrothermal1	Veins			
Clay 15 Carbonate hydrothermal1 Epidote	Vein 1 Vein 2 Vein 3			
Chlorite 5 Opaques Fe-oxyhydrox Sphene				
44 garnet hydrothermal1	Secondary Mineralogy			
15 Actinolite	Min and Interactor Harry Harry 2 Al			
0	Mineral Intensity How How 2 AI Wt Mic very weak pervasive 1			
0				
	Carb. Very strong pervasive 5			
Opaque Mineralogy				
% Opaque How	Epidote			
⁰ Magnetite	Chlorite			
Hematite	Biotite			
0 Pyrite	<i>Kspar</i> weak pervasive 1			
3 <i>Bornite</i> anhedral	Albite			
⁰ Chalcopyrite	Quartz weak coarse of 3			
2 <i>Covellite</i> anhedral				
Chalcocite	Jarosite			
Sphalerite	garnet 5			
	Alteration Comments			
3% bornite, 2% covellite and trace				
3% bornite, 2% covellite and trace chalcopyrite.	Very strong pervasive garnet-actinolite-carbonate and lesser hydrothermal quartz- feldspars-jadeite(?)-opaques. Local supergene chrysocolla associated with covellit			

G0806103_001 FOV (mm): 5 Crossed polars Abundant isotropic equant grains (garnet) and carbonate.

G0806103_003 FOV (mm): 2.2 Crossed polars Euhedral quartz, carbonate and actinolite associated with opaques.

G0806103_005 FOV (mm): 2.2 Crossed polars Fine-grained chrysocolla associated with opaques (covellite).

G0806103_002 FOV (mm): 5 Plane polarized light Same, under plane polarized light: garnet and calcite have similarly high relief.

G0806103_004 FOV (mm): 2.2 Crossed polars Same, under reflected light: the opaque minerals are pinkish bornite and bluish covellite

G0806103_006 FOV (mm): 2.2 Crossed polars Jadeite(?) grey birregringence and typical pyroxene cleavages.