ASSESSMENT REPORT

TASEKO MINERAL PROPERTY TASEKO LAKES, BC, CANADA

CLAIM TENURES:

208502, 208503, 208505, 208506, 208507, 208567, 208580, 208581, 208582, 208583, 208584, 208585, 208586, 208587, 208588, 208589, 208590, 208591, 208601, 209791, 209156, 560973, and 758528

CLINTON MINING DIVISION MAP SHEET: NTS 0920.03 LATITUDE N 51° 06', LONGITUDE W 123° 24'

BC Geological Survey Assessment Report 32064

RECORDED OWNER: OPERATOR: AUTHOR: DATE: GREAT QUEST METALS LTD. GRANITE CREEK GOLD LTD. DR. MATHIAS W. WESTPHAL, P.GEO. FEBTUARY 25, 2011

1	TA	BLE OF CONTENTS	
1	TAB	LE OF CONTENTS	1
2	SUM	IMARY	3
3	INT	RODUCTION	6
	3.1	TERMS OF REFERENCE	6
	3.2	EXPLORATION PROGRAM 2010	6
	3.3	SITE VISIT	6
4	REL	IANCE ON OTHER EXPERTS	7
5	PRO	PERTY DESCRIPTION AND LOCATION	7
	5.1	LOCATION	7
	5.2	CLAIMS	7
6	ACC	ESSIBILITY, CLIMATE, PHYSIOGRAPHY, LOCAL RESO	URCES
A	ND INF	RASTRUCTURE	
	6.1	Accessibility	
	6.2	PHYSIOGRAPHY, VEGETATION AND CLIMATE	
_	6.3	LOCAL RESOURCES AND INFRASTRUCTURE	
7	HIS		
8	GEC	DLOGICAL SETTING	
	8.1	REGIONAL GEOLOGY	
	8.2	PROPERTY GEOLOGY	
	8.2.1	Structure	14
•	8.2.2 DED	Geochronology	14
9 1/		US11-1ΥΓΕΣ Έρατιονι ανίς μιτρατιζά τιονι	
1		ALTERATION	20 20
	10.1	ALTERATION	20 22
1	10.2 1 FYD	MINERALIZATION	22 22
1.		HISTOPICAL GEOLOCICAL WORK	
	11.1 11.2	Prodedty Fyamination - Δ edtembed 2010	23 26
	11.2	GEOCHEMICAL SOIL SAMPLING SURVEY 2010 LISING THE	
	TECHNO	DLOGY FROM SGS LAKEFIELD	26
	113	1 Introduction to the MMI TM Technology from SGS Lakefield	20 26
	11.3	2 Results from the MMI TM Soil Sampling Survey 2010	29
1	2 INTI	ERPRETATION AND CONCLUSIONS	
1	3 REC	OMMENDATIONS	
14	4 STA	TEMENT OF COSTS	
1	5 REF	ERENCESS	
1	6 CER	TIFICATE OF AUTHOR	35

LIST OF TABLES

Table 1.	Taseko property claim status	8
Table 2.	Taseko historical drilling	23
Table 3.	2010 Granite Creek expenditures	31

LIST OF FIGURES

Figure 1. Taseko property location map	.10
Figure 2. Taseko property claim map	.11
Figure 3. Property geology map	15
Figure 4.a Historic drill hole locations – Empress zone	.16
Figure 4.b Historic drill hole locations – Central zone	.17
Figure 4.c Historic drill hole locations – Buzzer zone	.18
Figure 5 Vertical Cross Section N-S through the Empress Deposit looking East	.19
Figure 6 Soil geochemical anomaly map – Data from 1998	.25

APPENDIX I Soil Sampling Maps

APPENDIX II Analytical Certificate

Summary

The Taseko property (the "Property") is a 2,781.2 hectare mineral tenure located approximately 200 kilometers north of Vancouver, British Columbia. The registered owner of the Property is Great Quest Metals Ltd. (the "Property Owner"). The Property is located in prospective ground, based upon metal content and alteration, with partially defined copper-silver-gold and copper-molybdenum-silver-gold porphyry deposits. Exploration programs in the past have identified numerous exploration targets, including copper and gold soil anomalies.

The Property has four known showings: Empress [MINFILE 092O 033], Rowbottom [MINFILE 092O 029], Mohawk [MINFILE 092O 001], and Buzzer [MINFILE 092O 038].

The Empress prospect is considered to be an LO4 calc-alkaline porphyry $Cu \pm Mo \pm Au$ classic-type deposit as defined by the BC Geological Survey's Mineral Deposit Profiles. This has been the primary deposit being targeted on the Property so far. Several mineralized zones are hosted by volcano-sedimentary strata from the Taylor-Creek Group and is underlain by a barren quartz-monzonite-granodiorite of the Coast Plutonic Complex (CPC).

The Rowbottom, Mohawk, and Buzzer prospects are also considered as a LO4 calcalkaline porphyry $Cu \pm Mo \pm Au$ classic-type deposit as defined by the BC Geological Survey's Mineral Deposit Profiles. In all three showings the porphyry coppermolybdenum-silver-gold mineralization is hosted by a biotite granodiorite, which is cogenetic to the above mentioned intrusive of the CPC at the Empress (Madeisky, 1994).

In addition, results from the recently flown ZTEM geophysical survey and the presence of adjacent MMITM soil geochemical anomalies suggests the potential to expand the known Empress and Buzzer Zones mineralization and discover additional mineralized zones mainly between them on the Taseko property including copper, molybdenum, gold and silver.

Between 1909 and 1920, many large bog-iron deposits were discovered in the Taseko Lakes area (Crossland, 1920). The Taylor Windfall vein and conglomerate gold deposit north of the property was discovered 1920. The Buzzer, Rowbottom, Spokane (west of the property), and Mohawk followed 1928, and the Empress 1935. The whole area was explored intermittently by a number of operators until 2010. Programs carried out on the Property during this period included geological mapping, soil sampling, geophysics, and drilling lead to the discovery of Buzzer-West, East, and Granite Creek anomalies.

The Property was acquired by the Property Owners in 1989 from Westley Mines Ltd. and Alpine Exploration Corporation, affiliated companies. Many alteration zones within the Property were identified by drilling (Lambert/MacNeill,1988-2008), soil sampling (Osbourne, 1998), and an EM survey (Windels, 1991). Westpine Metals Ltd. changed the name to Great Metal Quest Ltd. in 1998. In 1990 the Odin tenure has been acquired by

staking, 2007 the Mohawk tenure has been acquired from Speebo Inc, and in 2010 the GQ Fraction tenure has been acquired by staking.

In August 24th 2010, Granite Creek Gold Ltd. ("Granite Creek") acquired the right to earn a 51% interest in the Property.

A two day helicopter supported prospecting and rock sampling property examination was carried out in September 17 and 18, 2010. A 10-day soil sampling program based on the previous prospecting and sampling examination has been accomplished in October 2010. Soil sampling has been performed in order to send the samples for MMITM determination in Lakefield, ON. Ranex Exploration Ltd. has been contracted to complete the work and the assessment report.

The region is underlain by Middle Jurassic to Upper Cretaceous marine and non-marine coarse clastic sediments and interfingering volcanic rocks that collected in a successor basin called the Tyaughton-Methow Trough (McLaren & Rouse, 1989). During the Late Cretaceous uplift of the area, a number of significant northwest-trending strike-slip and compressional faults occurred. Intrusive rocks of the Coast Plutonic Complex of Jurassic to Eocene age were emplaced in the south portions of the region and underlie most of the area of the Taseko claim group.

The main intrusive rock type on the southern portions of the property is a medium to coarse-grained quartz-granodiorite. Mapping in 1991 showed that there are two varieties of the CPC, a barren quartz-monzonite-granodiorite (Phase 1) and a mineralized biotite granodiorite (Phase 2) (Allen, 1991). The mineralization shows a porphyry copper-molybdenum-silver-gold style. The molybdenum is unique to this unit on the property.

The northern portion of the property is part of the Taylor Creek Group and covered by tilt. However, mapping (Tipper, 1978; Glover et al, 1986; Glover and Schiarizza, 1987; McLaren and Rouse, 1989; Allen, 1991) indicates a series of rhyolitic to andesitic tuffs. Drilling results east and west of the Empress indicate that the altered volcanoclastic-sedimentary unit is sitting on a shelf of granitic rock extending for more than 10 km in an east-west direction. Since the protolyth in this zone on the property is hard to identify due to the intense alteration overprint, Lambert/MacNeill (1988, 1989, 1991, 2008) distinguished four units defined by the type of alteration.

- Two units show intense silification, one with and one without magnetite-hematite, both resulting in a dense quarzite. The magnetite-bearing quarzite is mineralized with copper-silver-gold. The other quartzite shows some lead-zinc (vein-) mineralization. Geochemical data indicate a possible sedimentary origin, sandstone with volcanoclastic glass and lithic fragments (Madeisky, 1994, 1998; Osboune 1998; Schau, 2006). Other explanations state an intense leaching process of a tuff prior to silification (Osbourne, 1999; Lambert, 1988, 1989, 1991, 2007), which bears the problem of explaining a selective, unit related loss of Aluminum. The latter is a stable element in almost all alteration environments and is, therefore, used besides Zircon in the Pearce Ratio Element Analysis (Madeisky, 1994). - The two other units show a quartz-andalusite-pyrohyllite mineralogy after alteration. In addition, one of the units carries corundum. Geochemical data indicate a >80% loss of alkalies, but no significant loss of Aluminum. Accessory minerals including fluorite, apatite, and possibly dumortierite (Osbourne and Allen, 1998) indicate fluorine bearing strong acidic fluids and related argillic alteration, which lead to the breakdown of feldspars to various Al/Si/OH components, and releasing the alkalies allowing the fluid to wash them out of the system. The Al/Si/OH components will react, dependant of temperature, to form diaspore, kaolinite, pyrophyllite, andalusite, and, in absence of quartz, corundum. The corundum-bearing unit appears to be andesitic (more mafic in composition) with some remnants of feldspar, whereas the other unit appears to be rhyolitic with no feldspar remnant after alteration. Both units are hosting copper-silvergold mineralization zones.

In 1996 a study on the evaluation of the gem quality of sapphires (blue corundum) has been accomplished. The result was that the crystals present in the samples did not meet the required criteria to be gem quality sapphires (Lambert, 1996; Schimandl and Hancock, 1996; Osbourne, 1999).

A two-stage, contingent exploration program is recommended to properly define the presently known deposits and to assess newly defined targets on the Property. The purpose of the Phase I exploration program is to confirm and extend the known mineralization at the Empress and the Buzzer zones while extending the soil anomalies of the East, Granite Creek, and Buzzer-West Zones towards the Mohawk over the Central Zone. An outline of the proposed work follows:

- All historic drilling data should be re-examined due to the recent changes in commodity prices and related cut-off grades.
- Expand the MMITM soil geochemical grid over the Central Zone towards the Mohawk and the Empress to fully define the anomalies.
- Complete a 1,200 meter diamond drilling program of three to four holes to further define the Buzzer West and the Central Zone, as outlined by the historic and recent soil sampling programs.

Subject to successful results from Phase I, a second drill program should be initiated to further delineate the total extent of the subsurface mineral potential of the Central Zone. Utilizing the results of the Phase I drilling and geochemical MMI[™] sampling, the Phase II drilling will be designed to determine the central zone's limits. Holes should be drilled at 90° over a grid-style pattern with 100 meters centers, so that a block model mineral resource estimate can properly define the deposit. A total of 6,000 meters of drilling is suggested for the Phase II program.

2 Introduction

2.1 Terms of Reference

This report was commissioned by Granite Creek Gold Ltd. ("Granite Creek") to summarize the geology and mineralization on the Taseko property copper-molybdenum porphyry property in the Clinton Mining Division, British Columbia and to describe the 2010 exploration program carried out by Granite Creek. In preparing this report, the author has reviewed the geological, geophysical, geochemical and drilling reports, maps and miscellaneous papers listed in the References section at the conclusion of this report. Information used in the preparation of this report includes a number of publically available reports filed for assessment credit with the B.C. Ministry of Forests, Mines and Land. He has also reviewed private reports prepared for the Property Owner by independent contractors that describe the results of recent airborne geophysical survey. The purpose of this technical review is to determine if the Taseko property is a Property of Merit and to make recommendations for an ongoing exploration program.

2.2 Exploration Program 2010

Mathias Westphal, P.Geo., accompanied by Bethany Jacobson and Ian Gregory from Ranex Exploration Ltd. of Smithers, B.C., did geological fieldwork on September 17 and 18, 2010, which was supported by contract helicopter from CC Helicopters Ltd., Lillooet, B.C. This work included rock sampling and flagging eleven lines for the 10 day MMITM soil sampling program in October. Due to bad weather conditions, the planed field days on September 16 and 19, 2010, had to be canceled.

The soil sampling program has been conducted from October 15 to 24, 2010. The crew was Archie, Herb, and Cameron Hillbach, Trinity Brackenbery, Leo Johnny, Tom and Howard Inkster, Adrian Simms, and Ron Pierre working in total 76 man-days. 4km of trail was rehabilitated for Quad access from the camp site at Granite Creek to the Buzzer Zone. Due to unstable weather conditions is was decided to access the Property by Quad from the North end of the Taseko Lakes, rather than utilizing the Helicopter from Lillooet, BC. However, helicopters were used to bring in additional camp building material, supplies, and groceries on October 15 and 16, 2010.

2.3 Site Visit

The author, Mathias Westphal, P.Geo., visited the property for two full days on September 17 and 18, 2010, accompanied by Bethany Jacobson and Ian Gregory from Ranex Exploration Ltd. of Smithers, B.C. The fieldwork was supported by contract helicopter from CC Helicopters Ltd., Lillooet, B.C.

The purpose of this work was to examine critical outcrop areas in the vicinity of the Empress and Buzzer-West Zones, and to determine the starting points and direction of eleven lines for an upcoming geochemical MMITM soil survey in November 2010.

3 Reliance on Other Experts

The author has compiled this report with all due care and reviewed all available reports, listed at the end of this report under References. It is believed that the information contained within this report is accurate and reliable. Experienced exploration personnel have undertaken all previous work programs on the property, and qualified professionals wrote the referenced reports cited.

4 **Property Description and Location**

4.1 Location

The Taseko property is located 150 kilometers southwest of Williams Lake, British Columbia and 200 kilometers north of Vancouver as shown in Figure 1.

The Taseko property lies within the First Nation claims of the Esketemc National Government. Exploration permits must be obtained from the British Columbia Ministry of Forests, Mines and Land prior to carrying out further mechanized exploration on the property.

The property is in the Clinton Mining Division, within map sheet 092O.003. The coordinates of the center of the claim block are approximately 471,995mE and 5,661,516mN (UTM NAD83) or 51° 06' N latitude and 123° 24' W longitude.

4.2 Claims

The Taseko property is comprised of twenty-one Legacy Claims (unconverted Mineral Titles Online (MTO) mineral claims) and two MTO claim blocks, which total 2,781.2 hectares. The claims are owned Great Quest Metals Ltd. The claim statistics are listed in Table 1 and located in Figure 2.

Tenure Number	Claim Name	Issue Date	Good to Date	Area in Hectares
208502	New Gold 3	Sept. 12, 1988	Nov. 1, 2014	300.00
208503	New Gold 2	Aug. 30, 1988	Nov. 1, 2014	250.00
208505	New Buzz	Sept. 26, 1988	Nov. 1, 2014	375.00
208506	New Gold 1	Sept. 24, 1988	Nov. 1, 2014	150.00
208507	New Gold 4	Sept. 24, 1988	Nov. 1, 2014	200.00
208567	Mars 1	Oct. 21, 1988	Nov. 1, 2014	25.00
208580	Mars 2	Oct. 21, 1988	Nov. 1, 2014	25.00
208581	Mars 3	Oct. 21, 1988	Nov. 1, 2014	25.00
208582	Mars 4	Oct. 21, 1988	Nov. 1, 2014	25.00
208583	Mars 5	Oct. 21, 1988	Nov. 1, 2014	25.00
208584	Mars 6	Oct. 21, 1988	Nov. 1, 2014	25.00
208585	Mars 7	Oct. 21, 1988	Nov. 1, 2014	25.00
208586	Mars 8	Oct. 21, 1988	Nov. 1, 2014	25.00
208587	Mars 9	Oct. 21, 1988	Nov. 1, 2014	25.00
208588	Mars 10	Oct. 21, 1988	Nov. 1, 2014	25.00
208589	Mars 11	Oct. 21, 1988	Nov. 1, 2014	25.00
208590	Mars 19	Oct. 21, 1988	Nov. 1, 2014	25.00
208591	Mars 20	Oct. 21, 1988	Nov. 1, 2014	25.00
208601	Syn	Nov. 4, 1988	Nov. 1, 2014	200.00
208791	Row	Aug. 14, 1988	Nov. 1, 2014	400.00
209156	Odin	July 13, 1990	Nov. 1, 2014	500.00
560973	Mohawk	June 20, 2007	Nov. 20, 2014	40.60
758528	GQ Fraction	Apr. 26, 2010	Apr. 26, 2014	40.60

Table 1. Taseko property claims.

5 Accessibility, Climate, Physiography, Local Resources and Infrastructure

5.1 Accessibility

Road access to the property is obtained by traveling 80 kilometers west of Williams Lake on paved provincial highway 20 to Hanceville. A 170 kilometer gravel four-wheel drive road leads southwest from Hanceville past the east side of Taseko Lakes. At the southend of the lakes the road parallels the Taseko River to the east to the Granite Creek road and from there onto the property (Figure 1). The Ministry of Forests, Mines, and Land has blocked the access, approximately 7 km south of the Taseko Lake Lodge, due to a washout and a related fatal accident in 2007. The Property Owner, along with other resource property owners in the area like HighPointe Exploration Inc., intend to lobby government to allow reopening of this important (Beece Creek) resource access road, which was originally built by mining and mineral exploration companies.

Helicopter service is the only access for now and is available from Pemberton (approx. 60 min), Lillooet (approx. 40 min) or Gold Bridge (approx. 15 min). The Property can

also be accessed using a helicopter service at King Ranch on Tatla Lake (130km NW of the Property, approx.55 min).

Figure 1

LOCATION

5.2 *Physiography, Vegetation and Climate*

The property is situated in the alpine regions of the coast mountain ranges and exhibits typical U-shaped valleys and ragged ridgelines. The elevation ranges from 1450 meters on Taseko River to 2,350 meters at the highest peaks on the south side of the property. Because of the effects of glaciations, the relief is steep to rugged on the ridges and flat in the Taseko River and Granite Creek valley floors.

Vegetation consists of Lodgepole Pine, Engelmann Spruce and Whitebark Pine in the Granite Creek valley with sub alpine fir, Common Juniper, Soapberry, Kinnikinnick, Lichen and various grasses at higher elevations (Valentine, 1983).

The climate is cold in winter and hot in the summer with limited precipitation and frequently high wind conditions. Work season is mid June to late September. The Atmospheric Environment Service climate stations in the area (Dog Creek) record a mean annual temperature of 4.0°C, a mean annual total precipitation of 39 cm and a mean snowfall of 180 cm (Valentine et al, 1987).

5.3 Local Resources and Infrastructure

A network of drill roads provides access to the slope of the Empress, and the upper and central part of the property, and along the Granite Creek.

The area is relatively isolated with little infrastructure at present. The nearest settlement is a series of hunting and fishing lodges on and near Taseko Lake. The Taseko Lake Lodge owned by Taseko Lake Outfitters (www.tasekolake.com) provides the closest accommodation for the Tasco project. At the south-end of Taseko Lake a 4x4 road parallels the Taseko River to the east to the Granite Creek road and from there onto the property, but Ministry of Forests, Mines, and Land blocked the access approximately 7 km south of the Taseko Lake Lodge, due to a washout. As a result, helicopter support is required for now.

6 History

The Property covers four known Cu+/-Mo+/-Ag/+/-Au showings: Empress [MINFILE 092O 033], Rowbottom [MINFILE 092O 029], Mohawk [MINFILE 092O 001], and Buzzer [MINFILE 092O 038].

Between 1909 and 1920, many large bog-iron deposits were discovered in the Taseko Lakes area (Crossland, 1920). The Taylor Windfall vein and conglomerate gold deposit north of the property was discovered in 1920. The Buzzer, Rowbottom, Spokane (west of the property), and Mohawk followed in 1928, and the Empress 1935. The whole area was explored intermittently by a number of operators until 2010. Programs carried out on the Property during this period included geological mapping, soil sampling, geophysics, and

drilling lead to the discovery of Buzzer-West, East, and Granite Creek anomalies. For the historic drill hole locations see Figure 4.

The Property was acquired by the Property Owners in 1989 from Westley Mines Ltd. and Alpine Exploration Corporation, affiliated companies. Several additional mineralized alteration zones within the Property were identified by drilling (1988-2008), mapping (1991), soil sampling (1998) and an EM survey (1991). Westpine Metals Ltd. changed the name to Great Metal Quest Ltd. in 1998. In 1990 the Odin tenure has been acquired by staking, 2007 the Mohawk tenure has been acquired from Speebo Inc, and in 2010 the GQ Fraction tenure has been acquired by staking.

In August 24th 2010, Granite Creek Gold Ltd. ("Granite Creek") acquired the right to earn a 51% interest in the Property.

In summary, these historical programs have identified the porphyry copper-molybdenum Empress deposit by drilling, and the partially defined Granite Creek and East Zones by drilling and soil sampling. These anomalies are hosted by a highly altered volcanoclastic/sedimentary unit. The partially defined Buzzer and Buzzer West Zones are hosted in intrusives of the CPC. The Rowbottom shear zone related mineralization within granodiorte is partially defined by drilling, and the Mohawk copper-gold breccias within biotite-granodiorite has been examined in the 1930's by putting a shaft down with some adits. No further work has been done since a fatal accident happened in 1935. The recent exploration program included a soil sampling program using the MMITM technique, which has shown the potential to discover a significant copper deposit at the Central Zone within mineralized volcanoclastc-sedimentary units and granodiorite.

7 Geological Setting

7.1 Regional Geology

The region is underlain by Middle Jurassic (~160 Ma) to Upper Cretaceous (~110 Ma) marine and non-marine coarse clastic sediments and interfingering volcanic rocks that collected in a successor basin called the Tyaughton-Methow Trough (McLaren & Rouse, 1989). During the Late Cretaceous (~70 Ma) uplift of the area, a number of significant northwest-trending strike-slip and compressional faults occurred. Intrusive rocks of the Coast Plutonic Complex ("CPC") of Jurassic to Eocene age were emplaced in the south and southwest portions of the region (see Figure 3).

The Taseko property is located within the CPC and its contact with the Late Cretaceous volcanoclasic/sedimentary units of the Tyaughton-Methow Trough at Taseko River. The intrusive complex consists of quartz diorite to granodiorite, which have been subsequently crosscut by a series of quartz-rich felsic porphyritic stocks and dykes. The Tyaughton-Methow Trough units closest to the property are part of the Upper Cretaceous Powell Creek Formation and the Lower Cretaceous Taylor Creek Group (McLaren & Rouse, 1989). The Powell Creek Formation consists of intermediate to felsic pyroclastics and flows with minor laminations of argillites, quartz-rich siltstones and sandstones. The

Taylor Creek Group is characterized by rhyolitic to basaltic tuffs and flows and interlaminated argillites and sandstones. These lithologic sequences represent a volcanic island arc environment (McLaren & Rouse, 1989).

7.2 Property Geology

The main intrusive rock type on the southern portions of the property is a medium to coarse-grained quartz-granodiorite. Mapping in 1991 showed that there are two co-genetic varieties of the CPC, a barren quartz-monzonite-granodiorite (Phase 1) and a mineralized biotite granodiorite (Phase 2) (Allen, 1991). The mineralization shows a porphyry copper-molybdenum-silver-gold style. The molybdenum is unique to this unit on the property.

The northern portion of the property is part of the Taylor Creek Group and covered by tilt. However, mapping (Tipper, 1978; Glover et al, 1986; Glover and Schiarizza, 1987; McLaren and Rouse, 1989; Allen, 1991) indicates a series of rhyolitic to andesitic tuffs. Drilling results east and west of the Empress indicate that the altered volcanoclastic-sedimentary unit is sitting on a shelf of granitic rock extending for more than 10 km in an east-west direction.

During the 2010 property visit, it was observed that a magnetite impregnation can be observed in the underlying Phase 1 quartz-monzonite as veins up to 3mm wide from grab samples from a trench on the Empress. Grab samples of granodiorite of the Buzzer Zone show malachite on fracture surfaces with disseminated chalcopyrite.

A series of dikes is associated with the granodiorites (Allen, 1991).

7.2.1 Structure

The major structure in the area is the Tchaikazan Fault (see Figure 3). It trends to the northwest and typically separates Lower and Upper Cretaceous rocks in the Tyaughton-Methow Trough. This fault has been mapped to have a dextral transcurrent movement of more than 30 kilometers (McLaren & Rouse, 1989), but has not being identified on the property due to tilt overburden. Other major faults that are parallel to the Tchaikazan Fault and within the Tyaughton-Methow Trough sediment package are the Chita Creek Fault and the Yalakom Fault.

7.2.2 Geochronology

Argon age dating from McMillan (1976) from biotite in granodiorite gave 86.2+/-2.5 Ma, from sericite from the altered Mohawk gave 84.9+/-2.5 Ma, and biotite from a postmineral dike gave 84.7+/-2.5 Ma. Argon-argon plateau age determination from Panteleyev on sericte and alunite from McLure Creek, N-W of the property, gave 85.9+/-1 Ma and 85.3.3+/-1 Ma, respectively (Osbourne and Allen, 1998). This data is well within the error range and a slightly older age for the intrusive than the alteration zone of approximately 1 Ma, which is in accordance with standard cooling rates for batholiths with associated convecting porphyry systems. A system this size without water involved and, therefore, only based on conduction will take 4-5 Ma to cool (Westphal et al., 2003).

8 Deposit Types

Mineralized showings within the CPC include disseminated porphyry-type (i.e. Empress [MINFILE 0920 033], Rowbottom [MINFILE 0920 029], Mohawk [MINFILE 0920 001], Buzzer [MINFILE 0920 038], and Copper Zone [MINFILE 0920 025]), vein and fracture controlled (i.e. Spokane [MINFILE 0920 004], Massena [MINFILE 0920 067] and Top [MINFILE 0920 037]) and intrusive breccia-type (i.e. Mohawk [MINFILE 0920 001]) deposits.

To the north of the CPC and within the volcanics several copper and gold deposits (i.e. the Taylor-Windfall [MINFILE 092O 028] vein deposit and Empress [MINFILE 092O 033]) porphyry deposit have been discovered.

The major metals in these CPC deposits are copper, molybdenum and gold with minor silver. In the Tyaughton-Methow Trough, the major metals are copper and gold with minor zinc and lead mineralization (McLaren & Rouse, 1989).

The Property has four known showings: Empress [MINFILE 092O 033], Rowbottom [MINFILE 092O 029], Mohawk [MINFILE 092O 001], and Buzzer [MINFILE 092O 038].

The Empress prospect is considered to be an LO4 calc-alkaline porphyry $Cu \pm Mo \pm Au$ classic-type deposit as defined by the BC Geological Survey's Mineral Deposit Profiles. This has been the primary deposit being targeted on the Property so far.

The Rowbottom, Mohawk, and Buzzer prospects are also considered as a LO4 calcalkaline porphyry $Cu \pm Mo \pm Au$ classic-type deposit as defined by the BC Geological Survey's Mineral Deposit Profiles.

9 Alteration and Mineralization

9.1 Alteration

The protolyths of the volcanoclastic-sedimentary units of the Taylor Creek Group on the property are hard to identify due to the intense alteration overprint, Lambert/MacNeill (1988-2008) distinguished four units defined by the type of alteration.

Silification

Two units show silification, one with and one without magnetite-hematite, both resulting in a dense quartzite indicating lower greenshist facies conditions. The abbreviations established are QR for Quartz-Rock and QM for Quartz-Magnetite. The magnetitebearing quarzite is mineralized with copper-silver-gold. The other quartzite shows some lead-zinc (vein-) mineralization. Geochemical data indicate a possible sedimentary origin, sandstone with volcanoclastic glass and lithic fragments (Madeisky, 1994, 1998; Schau, 2006). Other explanations state an intense leaching process of a tuff prior to silification (e.g. Osbourne, 1999; Lambert, 1991), which bears the problem of explaining a selective, unit related loss of Aluminum with sharp contrasts to the other units. Aluminum is a stable element in almost all alteration environments.

Argillic Alteration and Sericitization

The two other units show a quartz-andalusite-pyrophyllite mineralogy after intense argillic alteration. In addition, one of the units carries corundum. The abbreviations established are QAS for Quartz-Andalusite-Sericite/Pyrophyllite and PQAS Plagioclase-Quartz--Andalusite-Sericite/Pyrophyllite for the corundum bearing unit. X-ray defraction determination showed, that the initially identified sheet silicate sericite turned out to be pyrophyllite. Geochemical data indicate a >80% loss of alkalies, but no significant loss of Aluminum (Madeisky, 1994; 1998). Accessory minerals including fluorite (CaF), apatite $(Ca_{5}[(F,Cl,OH)|(PO_{4})_{3}])$, and possibly dumortierite $(Al_{7}(BO_{3})(SO_{4})O_{3}])$ (Osbourne and Allen, 1998) indicate (chlorine)-fluorine-boron bearing strong acidic fluids and related argillic alteration, which lead to the breakdown of feldspars to various Al/Si/OH components, and releasing the alkalies allowing the fluid to flush them out of the system. The Al/Si/OH components will react, depending of temperature, to form diaspore (AlO(OH)), kaolinite (Al₂Si₂O₅(OH)₄), pyrophyllite (Al₂Si₄O₁₀(OH)₂), and alusite (Al₂SiO₅), and, in absence of quartz (SiO₂), corundum (Al₂O₃). The corundum-bearing unit appears to be andesitic (more mafic, i.e. less SiO₂) in composition with some remnants of feldspar, whereas the other unit appears to be rhyolitic with no feldspar remnant after alteration. Both units are hosting copper-silver-gold mineralization zones.

The de-watering and quartz-bearing reactions are after Spear (1993):

- kaolinite + quartz \Leftrightarrow pyrophyllite and H₂O at 300° C
- pyrophyllite \Leftrightarrow alumosilicate (andalusite) + quartz + H₂O at 350° C

The de-watering and quartz absent reactions are after Spear (1993):

- pyrophyllite + diaspore \Leftrightarrow alumosilicate (and alusite) and H₂O at 350° C
- diaspore \Leftrightarrow corundum + H₂O at 425° C

The low temperature corundum generation requires potassium poor (quartz free) systems, as muscovite/sericite ($(KAl_3Si_3O_{10}(OH)_2)$ breaks down to corundum, K-spar (KAlSi_3O_8) and water at 650° C (Spear, 1993), which seems to be unrealistic high for this deposit.

In 1996 a study on the evaluation of the gem quality of sapphires (blue corundum) has been accomplished. The result was that the crystals present in the samples did not meet the required criteria to be gem quality sapphires (Lambert, 1996; Simandl and Hancock, 1996; Osbourne, 1999). The crystals were patchy and not evenly blue colored, and show cracks filled with diaspore and/or pyrophyllite, which indicates an injection of water +/-silica fluid causing retrograde reactions (see above equations from right to left).

Propylitic Alteration

Chlorite-epidote (propyllitic) alteration is evident in the two granodiorites (Phase 1 and 2) south of the Empress Zone. Chlorite reaction rims form around the mafic phenocrysts. Chlorite, epidote and calcite veins are abundant. Allen (1991) reported propyllitic

alteration also from the western part of the property (Rowbottom) within undifferentiated intrusives.

9.2 Mineralization

The mineralization within the Empress, as described in drill core logs, shows three zones of copper-gold mineralization, the Lower North within QM, Upper North within PQAS and QAS, and 76 within QM/PQAS (see crossection Figure 5). Pyrite, chalcopyrite and magnetite are the most abundant metallic minerals, and are present as disseminations throughout the altered rocks, with minor amounts in fractures and as veinlets. Molybdenite and pyrrhotite are present in small amounts. In 1991 drilling, two potential new zones were discovered: the East zone and the Granite Creek zone. The Granite Creek zone is located 250m north, and the East is located 1000m east of the Empress within the same units as in the Empress.

Buzzer and Buzzer West show chalcopyrite disseminated throughout and occurs on fracture surfaces within the medium-grained biotite granodiorite. Pyrite is the primary sulphide mineral and Molybdenite occurs as irregular pods and in localized quartz veinlets within the biotite granodiorite. During the recent field examination, the author noted malachite staining and disseminated chalcopyrite on samples from trenches in the Buzzer West.

The Mohawk breccias zone is about 25m wide and hosted within biotite granodiorite. Chalcopyrite is the dominant sulphide, associated with pyrite, molybdenite, galena, and sphalerite. Gold and lesser silver are reported. Fluorine-apatite and tourmaline indicate a fluorine-boron bearing fluid during formation (minfile 0920 001).

The mineralization at the Rowbottom showing occurs in two shear zones, each 5 to 6 meters wide and 100m apart, hosted in propylitic and sericitic altered biotite granodiorite. The mineralization comprises of disseminated pyrite, chalcopyrite, molybdenite, and locally pyrrhotite (minflie 092O 029).

10 Exploration

The Taseko property has been explored periodically for at least nine decades. Most of these exploration programs have been limited to early stage mineral exploration, with the exception of the Empress. In March 1991 a "preliminary pre-feasibility" study of the Empress deposit has been conducted (James Askew Associates Inc., 1991; Peatfield, 1991) based on the results of the drilling programs over time.

The following is a summary of the historical exploration results from previous operators as well as Granite Creek's 2010 exploration program. The majority of the historical work has focused on the Empress Zone porphyry occurrence, with some surface work on the adjacent eastern and central zone towards and including the Buzzer Zone. The remainder of the Property has received relatively little attention, with the exception of the recent airborne geophysical surveys. Further exploration is required to properly define the Central Zone including Breccia Zone, Granite Creek, East, and Buzzer West and evaluate the possible connection to the Mohawk and Rowbottom showings. There are several targets within the Property that together show potential for a larger deposit and, therefore, it is the author's opinion that the Taseko Property is a Property of Merit.

10.1 Historical Geological Work

Between 1909 and 1920, many large bog-iron deposits were discovered in the Taseko Lakes area (Crossland, 1920). The Taylor Windfall vein and conglomerate gold deposit north of the property was discovered in 1920. The Buzzer, Rowbottom, Spokane (west of the property), and Mohawk followed in 1928, and the Empress 1935. The whole area was explored intermittently by a number of operators until 2010. Programs carried out on the Property during this period included geological mapping, soil sampling, geophysics, and drilling lead to the discovery of Buzzer-West, East, and Granite Creek anomalies.

Historical mapping (Tipper, 1978; Glover et al, 1986, Glover and Schiarizza, 1987, McLaren and Rouse, 1989; Allen, 1991) indicates a series of rhyolitic to andesitic tuffs. The northern portion of the property is part of the Taylor Creek Group and covered by tilt. The main intrusive rock type on the southern portions of the property is a medium to coarse-grained quartz-granodiorite. Mapping in 1991 showed that there are two co-genetic varieties of the CPC, a barren quartz-monzonite-granodiorite (Phase 1) and a mineralized biotite granodiorite (Phase 2) (Allen, 1991).

The major structure in the area is the Tchaikazan Fault, which has been mapped to have a dextral transcurrent movement of more than 30 kilometers (McLaren & Rouse, 1989), but has not being identified on the property due to tilt overburden.

Geophysical surveys have been performed on different portions of the property in 1969, 1970, 1991, and 1995, but all reports are internal and unpublished (e.g. Windels, 1991).

Geochemical soil sampling surveys have been only reported by Osbourne, 1998. This survey was done utilizing the grids from 1969 and 1970 from Sumitomo in order to verify the unpublished findings with good results. In addition, gold has been assayed as well, and the Breccia Zone showed the best results. This could be verified by the recent program (see next paragraph).

Drilling has been conducted since the 1960's (Lambert, 1991). For the historic drill hole programs see Table 2, and for locations see Figure 4.

Hole #'s	Company	Year
DDH 1-5	Phelps Dodge	1964-65
A 4-7	Scurry Rainbow	1969
X 1-4, 8		
S 1-64	Sumitomo	1970
76 1-8	Quintana	1976

Table 2.	Taseko	historical	drill	holes
----------	--------	------------	-------	-------

Q 1-39		
88 1-7	Alpine-Westley	1988
89 1-16	Westpine	1989
90 17-35	Westpine-ASARCO	1990
91 36-55	Westpine-ASARCO	1991
07 58-63	Great Quest Metals	2007
08 64-73	Great Quest Metals	2008

Some additional mineralized alteration zones within the Property (e.g. Breccia Zone, Central Zone, and some smaller ones) were identified by drilling (1988-2008), mapping (1991), soil sampling (1998) and an EM survey (1991). However, drilling in 2007/08 could not verify the predictions and recommendations of the EM survey from Windels, 1991 (Osbourne, pers. com.).

Underground exploration has been performed at the Mohawk 1932-1935 by putting a shaft and adits to investigate the Breccia mineralization. After a fatal accident in 1935, no further work has been reported.

10.2 Property Examination - September 2010

A two day property examination, carried out on behalf of Granite Creek under the direction of the author, included prospecting and flagging lines for a MMITM soil sampling survey in October 2010. The fieldwork was supported by contract helicopter from CC Helicopters Ltd., Lillooet, B.C. A thunderstorm with heavy rain made it impossible to visit the property on September 16 and 19, 2010.

The purpose of this work was to examine critical outcrop/trenching areas in the vicinity of the Empress and the Buzzer West, and flag lines for an upcoming soil sampling program.

The examination of trenches on the Empress showed that the quartz diorite which underlies the highly altered volcano/sedimentary unit shows impregnation and massive veins of magnetite similar to the overlying magnetite-quartzite. Also, the so called quartz rock appears to be a quartzite.

Trenches at the Buzzer West showed biotite-granodiorite bedrock with malachite weathered chalcopyrite pods and veins.

Eleven lines for soil sampling in October were flagged (see Appendix1)

10.3 Geochemical Soil Sampling Survey 2010 using the MMI[™] Technology from SGS Lakefield

10.3.1 Introduction to the MMITM Technology from SGS Lakefield

<u>MMITM Theory</u>

Mobile Metal Ions is a term used to describe ions which have moved in the weathering zone and that are only weakly or loosely adsorbed by surface soil particles. It has now been proven in a CAMIRO study using Pb isotopes that these Mobile Metal Ions are transported from deeply-buried ore bodies to the surface. Scientists from around the world have been studying this phenomenon for many years.

Convection, electrochemistry, diffusion, capillary rise and seismic pumping are some of the theories which have been put forward. However, research and case studies over known ore-bodies have shown that mobile metal ions accumulate in surface soils above mineralization, indicating that the metals are derived from oxidation of the mineralization source. Capillary rise is thought to be a very important process in the near surface environment (above the water table) which is responsible for maintenance of anomalies. The diagram below demonstrates a hypothetical model by which mobile ions are released from ore bodies through a convective mechanism, migrate vertically and accumulate in surface soils.

As the ions reach the surface, they attach themselves weakly (adsorb) to the soil particles. These are the ions that are measured by the MMITM technique to find mineralization at depths. The weakly attached ions are at very low concentrations. Because the ions have recently arrived to the surface they provide a precise 'signal' directly above the ore bodies.

When the mobile metal ions have arrived at the surface they have a limited lifetime as 'mobile' ions. At the surface the ions are subject to weathering and are bound up by soil forming processes (i.e. they become part of the soil). The diagram below demonstrates this process. Note that bound ions are subject to lateral movement away from the mineralization. The mobile ions, however, do not move away from the source (mineralization) because they have a limited lifetime before they are converted to a bound form.

By only measuring the mobile metal ions in the surface soils, MMITM geochemistry will produce very sharp responses (anomalies) directly over the source of mobile ions, as seen below. This source is ore-bodies at depth, which emit metal ions, which make up that ore-body. For example a Cu, Pb, Zn base metal deposit will emit (release) Cu, Pb and Zn ions.

Sampling For MMITM

Normal Environments

- In normal soil environments samples should be collected 10 to 25 cm below the surface at a consistent depth.
- The initial step in taking an MMI soil sample requires the 10 cm surface soil layer to be scraped away eliminating loose organic matter, debris, and any possible contamination.
- The sample is then taken between 10 and 25 cm depth. The sample should be a "composite" taken over this 15 cm interval.
- Using a plastic scoop or shovel take a cross section of the material between the 10 to 25 cm depth and put into clean, properly labeled plastic bags. Collect approx. 250 to 350 grams of material.

Equipment

- A 30-cm diameter plastic garden sieve or kitchen colander with minus 5-mm apertures, available from hardware stores and super markets, is ideal for sample collection. This is used only to remove large pebbles or roots.
- Plastic collection dish with similar diameter and a kitchen floor brush used for cleaning the sieve and dish between samples;
- A bare steel (no paint) garden spade;
- Plastic snap seal bags; do not use calico or brown paper.
- Proper labeling of all samples is critical. Do not use water soluble markers or paper inside wet bags.

(Please visit the web site at <u>www.sgs.com/geochem</u> for further details)

10.3.2 Results from the MMITM Soil Sampling Survey 2010

Eleven lines were flagged by the author in September in order to conduct a MMITM soil sampling program in October on the north-eastern part of the property. Mainly baselines (E-W) and lines (N-S) cut for previous programs in 1970/1998 have been utilized in order to double check the previous findings using a different technology and assaying for more elements than copper, molybdenum, and gold.

Sample spacing was 50m, and line spacing was 100m in the northern Central Zone including the Breccia Zone (Osbourne, 1998) (4 lines) and Buzzer West (2 lines), and 50m in the Buzzer Zone (3 lines).

The northern baseline was sampled from the East Zone east to the Taseko River for 1.75 km. The southern baseline was sampled for 1.6 km west of the southern tip of the Buzzer Zone.

No samples were taken in the Central Zone.

All element values are plotted in ppb: Cu, Mo, Au, Ag, Ba, Pb, Zn, Ni, and Co. All elements, especially Au and Ag values, need more work to evaluate the results, but it seems that the response values in anomalies for Au are up to 60 times higher than the background, and for Ag it seems to be up to 10 times higher than background. Cu shows <100 times of background levels in anomalies, and Mo shows <15 times. Ba, Pb, and Zn were chosen due to up to 100 times for Zn and <15 for Ba and <10 for Pb. All three of them normally tend to appear together. Ni and Co seem to be odd in a granodiorite regime, but they show <10 times higher than background levels in anomalies, possibly due to some mafic dikes. See figures and whole data set in the Appendix

- Copper values are high in the Buzzer Zone, northwest of the Central Zone, and confirm the East Zone.
- Molybdenum is patchy in the southern Buzzer Zone with high values, but also north and northwest of the Central Zone, still patchy.
- Gold appears in the southern Buzzer, whereas silver occurs in both parts of the Buzzer. Gold and silver show some values in the central Zone and are anomalious in the East together with copper. Gold has a strong signal in the Breccia Zone north of the Central Zone.
- Barium is absent in the northern Buzzer Zone but prominent in all other sampled regions, especially northwest of the Central Zone. Some response is shown in the Breccia Zone.
- Lead is, in contrast to barium, prominent in the northern Buzzer and shows some anomalies north of Buzzer West and northwest of the Central Zone.
- Zinc partially follows lead and/or barium in the Buzzer Zone and the barium on the baseline towards the Central Zone, and the lead north of the Buzzer West Zone. Some response is shown in the Breccia Zone.

- Nickel is prominent in the northern Buzzer, north of the Breccia Zone, and patchy in others parts.
- Cobalt is prominent in the Buzzer, in and north of the Breccia Zone, and patchy in the East.

11 Interpretation and Conclusions

The historical exploration programs and reports on the Taseko property have generated one main porphyry copper-molybdenum target area, the Empress Zone, and three peripheral anomalies or targets, the Buzzer, Rowbottom, and the Mohawk Showings. Further exploration is required to properly define these mineral showings. The completed 2010 exploration program met its original objectives to examine critical outcrop areas in the vicinity of the Empress and the Buzzer Zone and to relate these surface exposures to the results from the previous recent soil geochemical surveys. In addition, the MMITM results from 2010 confirm and enhance the previous soil sampling results. The combination of geological mapping, soil geochemical sampling and historical drilling on the Property has defined a mineralized porphyry copper-molybdenum system at the Empress Zone. The soil sampling should be extended over the Central Zone to the southwest towards the Mohawk in order to get more information on this area. In addition, preliminary soil sampling indicates a potential for a larger polymetallic porphyry deposit in the Central Zone including the Breccia Zone hosted in a volcanoclastic/sedimentary unit in the northern part and a biotite granodiorite in the southern part. Drill testing is required to establish its economic potential. Therefore, it is the author's opinion that the Taseko Property is a Property of Merit.

12 Recommendations

A two-stage, contingent exploration program is recommended to properly define the presently known deposits and to assess newly defined targets on the Property. The purpose of the Phase I exploration program is to confirm and extend the known mineralization at the Empress and the Buzzer zones while extending the soil anomalies of the East, Granite Creek, and Buzzer-West Zones towards the Mohawk over the Central Zone. An outline of the proposed work follows:

- All historic drilling data should be re-examined due to the recent changes in commodity prices and related cut-off grades.
- Expand the MMITM soil geochemical grid over the Central Zone towards the Mohawk and the Empress to fully define the anomalies.
- Complete a 1,200 meter diamond drilling program of three to four holes to further define the Buzzer West and the Central Zone, as outlined by the historic and recent soil sampling programs.

Subject to successful results from Phase I, a second drill program should be initiated to further delineate the total extent of the subsurface mineral potential of the Central Zone. Utilizing the results of the Phase I drilling and geochemical MMITM sampling, the Phase II drilling will be designed to determine the central zone's limits. Holes should be drilled

at 90° over a grid-style pattern with 100 meters centers, so that a block model mineral resource estimate can properly define the deposit. A total of 6,000 meters of drilling is suggested for the Phase II program.

13 Statement of Costs

The total cost of the 2010 field program including site visit, MMI^{TM} soil sampling program (172 samples) with related expenditures is \$115,656.25. See Table 3 for the breakdown of costs.

			Rate CDN	Total CDN
Date 2010	Description	Days	\$	\$
Sep 15-19	Labor Geologist Mathias Westphal	5	550	2,750.00
• • • • •	Labor Geo Assistant Bethany	_		
Sep 15-19	Jacobson	5	350	1,750.00
Sep 15-19	Labor Geo Assistant Ian Gregory	5	350	1,750.00
Oct 15-24	Labor Geo Assistant Archie Hillbach	10	350	3,500.00
Oct 15-24	Labor Geo Assistant Herb Hillbach Labor Geo Assistant Cameron	10	350	3,500.00
Oct 15-24	Hillbach	10	350	3,500.00
Oct 15-24	Brackenbery	10	350	3,500,00
Oct 15-24	Labor Geo Assistant Leo Johnny	10	350	3,500.00
Oct 15-21	Labor Geo Assistant Tom Inkster	7	350	2,450.00
Oct 20-24	Labor Geo Assistant Howard Inkster	5	350	1,750.00
Oct 20-24	Labor Geo Assistant Adrian Simms	5	350	1,750.00
Oct 15-23	Labor Geo Assistant Ron Pierre	9	350	3,150.00
Sep 15-19	Expediting	2.5	63	157.50
Oct 15-24	Expediting	10	63	630.00
Sep 15-19	Camp, Food and Accommodation	15	95	1,425.00
Oct 15-24	Camp, Food and Accommodation	76	95	7,220.00
Sep 15-19	Truck Rental	10	250	2.500.00
Oct 15-24	Truck Rental	30	250	7,500.00
Oct 15-24	Quad Rental	64	100	6,400.00
Oct 15-24	Trailers	64	70	4,480.00
Sep 17	CC Helicopters Ltd Lillooet BC			3 624 45
Sep 18	CC Helicopters I td. Lillooet, BC			3,624,45
Oct_{15}	CC Helicopters I td. Lillooet, BC			5 701 80
Oct 16	CC Helicopters Ltd. Lillooet, BC			2 175 10
001_10				2,170.10

Table 3. 2010 Granite Creek Expenditures

Con 10 11 00			
Sep 13-14, 20- 21 Sep 13-14, 20-	Travel Labor costs		5,000.00
21 21	Mileage		5,427.41
Sep 13-14, 20- 21	Meal and accomodation		570.00
	172 MMI™ soil assays Plotting data on maps 32 hrs	42.90 ea. 50	7,378.80 1,600.00
	Report Writing		5,000.00
		Sub-Total	103,264.51
	HST @ 12%	Тах	12,391.74
		Total	115,656.25

14 Referencess

- Allen, D.G., 1991, Geological and Geochemical Report on the Taseko Alteration Zone. Internal report for ASARCO Exploration Company of Canada and Westpine Metals Ltd.
- Crossland, F.J., 1920, Taseko Valley Iron-0re Deposits; in: BC Minister of Mines Annual Report, 1920, p. 175-181.
- Glover, J.K., Schiarizza, P., Unhoefer, P., and Garver, J., 1986, Geology of the Warner Pass Area, NTS 92O/3, BCGS Open File Map 1987/3.
- Glover, J.K., and Schiarizza, P., 1987, Geology and Mineral Potential of the Warner Pass Map Sheet, in: Geological Fieldwork 1986, BC MEMPR Paper, 1987-1, p. 157-169.
- James Askew Associates Inc., 1991, ASARCO Incorporated, Taseko Project British Columbia, Canada, pre-feasibility study. Unpublished company report, ASARCO Inc.
- Lambert, E., 1988, Report on the 1988 Exploration Program of the Tesako Property; Alpine Exploration Corp., Assessment Report #18,921.
- Lambert, E., 1989a, Geology, Geochemistry and Mineralization of the Taseko Property; Prospectus Report for Westpine Metals Ltd.

- Lambert, E., 1989b, Geochemical and Diamond Drilling Program of the Taseko Property; Westpine Metals Ltd., Assessment Report #19,350.
- Lambert, E., 1991a, Diamond Drilling Program of the Taseko Property; Westpine Metals Ltd., Assessment Report #20,889.
- Lambert, E., 1991b, 1991 Diamond Drilling Program of the Taseko Property; Westpine Metals Ltd., BC Ministry of Energy, Mines and Mineral Resources, Assessment Report #21,985.
- Lambert, E., 1996, Report on the 1996 Corundum Exploration Program of the Taseko Property; Westpine Metals Ltd., Assessment Report #24,753.
- MacNeill, E., 2008, 2007 Diamond Drilling Program on the Tesako Property; Great Quest Metals Ltd., Assessment Report #30,169.
- McLaren, G. P. and Rouse J. N., 1989, Geology and Mineral Occurrences in the Vicinity of Taseko Lakes (920/3 6), BCMEMPR Geological Fieldwork 1988, Paper 1989-1.
- Madeisky, H.D., 1994, Lithogeochemical Data Analysis, Taseko Porphyry Copper-Gold Project, Central B.C., internal company report, Westpine Metals Ltd.
- Madeisky, H.D., 1998, Lithogeochemical Data Analysis, Taseko Porphyry Copper-Gold Project, Central B.C., internal company report, Westpine Metals Ltd.
- McMillan, W.J., 1976, Granite Creek Porphyry, 92O/3W; BC MEMPR, Geological Fieldwork 1976, p. 67-84.
- Osbourne, W.W., and Allen, D.G., 1998, The Tesako Copper-Gold-Molybdenum Deposits, Central British Columbia, in: Canadian Institute of Mining, Special Volume 46, p. 441-450.
- Osbourne, W.W., 1998, Report on the 1998 Exploration Program of the Taseko Property, Assessment Report 25,759.
- Osbourne, W.W., 1999, Report on the Evaluation of the Gem Quality of Sapphires on the Tesako Property, 1999.
- Peatfield, G.R., 1991, Mineral inventory calculation for the Lower North Zone, Taseko Property. Unpublished company report, Westpine Metals Ltd.
- Schau, M., 2006, Review, Summary and Recommended Work on Taseko Property, October 1999, for Galore Resources Inc., Technical Report November 13, 2006.
- Simandl, G. and Hancock, K.D., 1996, The Empress Cu-Au-Mo Deposit Gemstone and Industrial Minerals Potential; BCGS report.

- Spear, F.S., 1993, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, Mineralogical Society of America, Monograph, Book Crafters Inc, Chelsea, Michigan, USA, 1993, p. 292.
- Tipper, H.W., 1978, Taseko Lakes (92O) Map Area; Geological Survey of Canada, Open File Map 534.
- Uchida, K., Nakashima, K., Shibuya, A, Robert, I., Aoki, K., 1970, Geological Survey, Taseko Property; 1 in = 1000 ft. Map for Sumitomo Metal Mining Canada Ltd.
- Valentine, K. W. G., Watt, W. and Bedwany, A. I., 1987, Soils of the Taseko Lakes area, British Columbia, Report No. 36, British Columbia Soil Survey, Agriculture Canada.
- Visser, S., 1995, Induced Polarization Survey, Geophysical Report on the Taseko Property, internal company report for Westpine Metals Ltd.
- Westphal, M., Schumacher, J.C., and Boschert, S., 2003. High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway. Journal of Petrology, 44, 1145-1162.
- Windels, C.O., 1991, Dighem IV Interpretation, for ASARCO Inc. and Westpine Metals Inc., internal companies report.

www.sgs.com/geochem

CERTIFICATE of Author

Dr. Mathias Westphal, P.Geo. White North West Consulting 3712 1st Avenue, Smithers, B.C., Canada Po Box 2575 V0J 2N0 phone: (250) 469 – 9024 e-mail: mathiasw@xplornet.com

I, Dr. Mathias W. Westphal, P.Geo., do hereby certify that:

- I graduated with a Masters of Science degree in Mineralogy from Albert-Ludwigs-University at Freiburg, Germany in 1994. In addition, I have obtained a Masters of Arts degree in Geography from Albert-Ludwigs-University at Freiburg, Germany in 1992. Since 1998 I hold a Ph.D. in Mineralogy from Albert-Ludwigs-University at Freiburg, Germany.
- 2. I am a member of the:
 - APEGBC Association of Professional Engineers and Geoscientists
 - DMG German Mineralogical Society (Deutsche Mineralogische Gersellschaft).
- 3. I have worked as a Mineralogist/Geologist for a total of 16 years since my Masters of Science graduation from university.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of my education, affiliation with professional associations (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I am the author of this assessment report titled "Assessment Report, Taseko Mineral Property" and dated February 25, 2011 (the "Report").
- 6. I visited the Taseko property for two full days from September 17 to 18, 2010.
- 7. I have compiled data on the Taseko property in 2010 and completed an Assessment Report on the Taseko property for Granite Creek Gold Inc., dated February 25, 2011.
- I am not aware of any material fact or material change with respect to the subject matter of the Assessment Report that is not reflected in the Assessment Report, of which the omission to disclose would make the Assessment Report misleading.
- 9. I am independent of the owner of the property.
- 10. I consent to the filing of the Assessment Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Assessment Report.

Dr. M. W. WESTPHAL

33133 BRITISH COLUMBIA

Dated at 25th Day of February, 2011.

Dr. Mathias W. Westphal, P.Geo.
APPENDIX I

MMITM soil maps – East and Buzzer Zones

Ploted elements : Cu,Mo,Au,Ag,Ba,Pb,Zn,Ni and Co

APPENDIX II

Assay Certificates:

Certificate of Analysis

Work Order: TO112896

To: COD SGS Minerals

C/O #50-655 West Kent Avenue N. VANCOUVER BC V6P 6T7 Date: Dec 16, 2010

P.O. No.	:	Ranex Exploration
Project No.	:	-
No. Of Samples	:	109
Date Submitted	:	Nov 18, 2010
Report Comprises	:	Pages 1 to 19
		(Inclusive of Cover Sheet)

Distribution of unused material: Discard after 90 days:

L.N.R.

n.a.

Certified By : ________ Gavin McGill

Operations Manager

SGS Minerals Services (Toronto) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

I.S.

Report Footer:

Listed not receivedNot applicable

Insufficient Sample
 No result

*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Certificate of Analysis

Work Order: TO112897

Date: Dec 16, 2010

To: Account Payable COD SGS Minerals C/O #50-655 West Kent Avenue N. VANCOUVER BC V6P 6T7

:	Ranex Exploration
:	-
:	63
:	Nov 18, 2010
:	Pages 1 to 13
	(Inclusive of Cover Sheet)
	:

Distribution of unused material: Discard after 90 days:

L.N.R.

n.a.

Certified By Gavin McGill

Gavin McGill Operations Manager

SGS Minerals Services (Toronto) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

I.S.

Report Footer:

Listed not receivedNot applicable

Insufficient Sample
 No result

*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Element	Ag	Al	As	Au	Ba	Bi	Ca	Cd	Ce	Со
Method	1	MINI-M5	MIMI-M5	MIMI-M5	MIMI-M5	1 IVIIVII-IVI5	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5
Det.LIM.	nob	nom	nnb	o. i	npb	npb	nad	nnb	ppb	nnh
1 5000 050 S	8	79	30	0.0	5680	۲۹۵ ۲۱	200	5	50	30
1 5000 100 S	22	225	<10	0.3	730	<1	100	23	265	75
15000 150 S	22	135	<10	<0.2	2280		240	12	184	07
15000 200 \$	7	234	<10	<0.1	2200	1	100	12	166	31
1 5000 250 5	7	100	>10	-0.1	2010		170	3	100	10
L5000 250 S	25	190	20	0.3	2550	<1	110	4	190	19
L 5000 300 S	1	240	< 10	0.2	3000	<1	110	9	133	31
L5000 350 S	19	100	20	0.4	0300	<1	100	3 5	107	10
L3000 400 S	24	207	10	0.1	2450		30	5	07	
LS4900 000 S	9	173	20	0.3	3450	[>	150	4	108	11
LS4900 050 S	31	11	<10	0.7	5840	<	310	32	177	140
LS4900 100 S	12	11	<10	2.1	6660	<1	310	8	82	36
LS4900 150 S	20	197	<10	0.3	1170	<1	50	1	79	31
LS4900 200 S	25	14	<10	1.6	5890	<1	320	10	41	26
LS4900 300 S	38	80	20	1.2	6060	<1	270	12	232	45
LS4900 350 S	23	99	10	0.8	10800	<1	300	26	217	25
LS4900 400 S	35	150	10	0.2	7490	<1	240	23	415	57
L5300 150 S	57	108	30	5.1	4200	1	30	2	1040	181
L5300 200 S	38	247	20	1.7	1630	2	20	11	71	72
L5300 250 S	20	213	70	2.0	5810	3	100	4	204	22
L5300 300 S	18	278	<10	0.4	400	<1	30	4	119	39
L5300 350 S	16	189	20	2.0	1200	<1	40	3	278	19
L5300 400 S	15	130	10	0.8	1560	<1	60	4	296	23
L5300 450 S	56	242	10	0.6	620	<1	50	8	173	20
L5300 500 S	15	203	20	0.5	1220	<1	20	8	364	22
L5300 550 S	28	38	<10	0.4	5360	<1	230	6	38	26
Baseline 5700	2	62	<10	0.5	680	<1	490	14	38	76
Baseline 5750	3	31	<10	<0.1	80	<1	470	3	12	68
Baseline 5800	21	236	<10	0.1	840	<1	70	10	65	76
Baseline 5850	6	25	<10	0.3	2620	<1	470	7	15	29
Baseline 5900	8	>300	20	0.1	840	1	20	4	69	80
Baseline 5950	7	21	<10	0.4	840	<1	330	13	61	40
Baseline 6000	20	65	<10	0.8	1020	<1	400	10	56	241
Baseline 6050	19	134	110	0.6	1250	8	80	18	512	452
Baseline 13	11	248	20	0.3	1930	1	70	6	149	119
Baseline 14	11	206	20	1.1	2400	1	70	5	311	31
Baseline 15	9	140	70	0.6	9420	<1	160	12	342	41
Baseline 16	6	61	30	1.3	6400	<1	220	6	332	40
Baseline 17	15	148	50	0.9	6570	1	170	7	588	96
Baseline 18	11	252	10	0.2	2130	<1	130	17	336	465
Baseline 19	16	144	<10	0.2	1960	<1	220	8	55	29
Baseline 20	8	180	10	0.4	940	<1	50	2	283	17
Baseline 21	22	194	10	0.3	2470	1	160	5	93	26
Baseline 22	11	197	30	0.3	2450	2	120	7	91	55

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 2 of 13

Element	Ag	Al	As	Au	Ва	Bi	Ca	Cd	Ce	Co
Method	MMI-M5									
Det.Lim.	1	1	10	0.1	10	1	10	1	5	5
Units	ppb	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb	ppb
L5000 050 N	20	147	<10	0.5	1130	<1	80	4	210	14
L5000 100 N	5	261	20	1.1	4100	5	70	3	41	113
L5000 150 N	38	150	50	9.1	950	<1	20	<1	180	12
L5000 200 N	78	278	10	1.3	1040	8	<10	3	118	122
L5000 250 N	28	187	60	0.8	3180	3	130	29	409	648
L5000 300 N	18	116	40	0.8	2140	2	160	12	205	541
L5000 350 N	3	86	30	0.5	1530	1	160	15	57	335
L5000 400 N	17	132	50	0.6	1820	3	90	17	166	1000
Baseline 01	10	164	50	0.4	2260	1	140	4	164	58
Baseline 02	59	95	<10	0.7	3920	<1	220	18	51	32
Baseline 03	4	262	40	0.3	2470	2	60	8	98	29
Baseline 04	24	238	<10	0.2	490	<1	20	5	164	28
Baseline 05	13	150	40	0.2	5610	3	160	10	169	41
Baseline 06	31	171	20	0.6	2370	1	50	2	339	23
Baseline 07	18	97	<10	0.2	1930	<1	300	27	63	78
Baseline 08	12	177	<10	0.3	1260	<1	100	8	109	27
Baseline 09	13	217	20	0.4	630	<1	20	3	134	16
Baseline 10	16	160	<10	0.6	830	<1	50	2	146	28
Baseline 11	33	43	<10	0.9	3150	<1	390	24	45	29
Baseline 12	19	55	<10	0.2	2120	<1	340	39	43	163
*Rep LS4900 050 S	28	71	<10	0.7	5340	<1	340	33	113	177
*Rep Baseline 5700	6	65	<10	0.5	660	<1	530	20	34	53
*Rep Baseline 6050	20	150	100	0.7	1420	7	80	16	542	491
*Rep Baseline 20	8	178	10	0.4	950	<1	50	2	276	17
*Rep Baseline 04	24	241	<10	0.4	520	<1	20	5	166	27
*Std MMISRM16	19	48	10	23.4	80	<1	220	4	24	62
*Std AMIS0169	9	72	10	0.6	1080	<1	40	2	918	139
*BIK BLANK	<1	<1	<10	<0.1	<10	<1	<10	<1	<5	<5
*BIK BLANK	<1	<1	<10	<0.1	<10	<1	<10	<1	<5	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 3 of 13

Element	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Hg
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	100	0.5 nnh	10 nnh	l nnh	0.5 ppb	0.5 ppb	l nnm	l nnh	l nnh	l nnh
	ppb	php C C	000	ppp	ppp	php 4.4	ppin 77	40	ppp 47	hhn
L5000 050 S	<100	5.5	830	14	7.1	4.4	11	10	17	<
L5000 100 S	<100	16.9	3680	88	45.1	20.3	69	17	95	<1
L5000 150 S	<100	10.1	1010	56	28.1	15.0	88	1/	68	<1
L5000 200 S	<100	8.5	540	20	8.5	5.8	119	39	24	<1
L5000 250 S	<100	41.7	990	25	12.1	7.2	75	21	31	<1
L5000 300 S	<100	7.4	430	19	7.5	4.9	109	35	21	<1
L5000 350 S	<100	43.4	900	21	10.1	6.1	81	24	27	<1
L5000 400 S	<100	22.5	790	12	6.1	3.0	109	27	12	<1
LS4900 000 S	<100	102	1120	18	8.6	3.4	112	14	18	<1
LS4900 050 S	<100	81.8	6530	66	37.4	14.0	41	6	78	<1
LS4900 100 S	<100	86.6	3960	11	5.4	3.0	16	2	14	<1
LS4900 150 S	<100	28.3	1010	14	7.0	3.1	48	12	14	<1
LS4900 200 S	<100	48.9	6090	32	16.1	8.7	13	2	47	<1
LS4900 300 S	100	102	14500	157	103	32.4	53	10	179	6
LS4900 350 S	<100	96.0	26700	154	79.1	45.3	33	8	197	<1
LS4900 400 S	<100	73.8	5720	108	48.5	32.3	30	12	151	<1
L5300 150 S	<100	308	38200	47	20.3	17.7	52	14	63	<1
L5300 200 S	<100	225	16300	16	8.4	3.1	102	13	14	<1
L5300 250 S	<100	256	3560	22	9.4	5.8	141	23	27	<1
L5300 300 S	<100	268	1600	16	7.2	3.6	76	21	18	<1
L5300 350 S	<100	109	1950	25	11.2	6.3	51	16	30	<1
L5300 400 S	<100	70.2	1160	34	16.1	9.9	66	16	47	<1
L5300 450 S	<100	101	2040	18	7.7	4.4	63	14	21	<1
L5300 500 S	<100	56.9	1480	28	11.5	7.3	63	15	38	<1
L5300 550 S	<100	128	1020	22	10.5	6.1	38	8	33	<1
Baseline 5700	<100	7.2	9160	18	10.8	5.3	66	2	20	<1
Baseline 5750	<100	5.9	1860	1	0.7	<0.5	17	1	2	<1
Baseline 5800	<100	48.0	650	10	4.8	2.5	104	24	10	<1
Baseline 5850	<100	11.7	650	2	0.7	0.7	14	2	2	<1
Baseline 5900	<100	59.0	1640	9	4.9	2.3	166	22	9	<1
Baseline 5950	<100	12.4	1820	17	13.0	3.5	31	3	16	<1
Baseline 6000	<100	21.8	6750	15	7.7	4.6	50	2	20	<1
Baseline 6050	<100	48.6	6970	100	48.6	28.5	118	9	118	<1
Baseline 13	<100	64.2	1600	22	11.0	4.2	134	27	21	<1
Baseline 14	100	43.6	1680	46	21.2	9.3	104	19	55	<1
Baseline 15	<100	110	1500	31	13.5	7.9	74	10	34	<1
Baseline 16	<100	64.1	2140	43	20.0	12.1	35	6	54	<1
Baseline 17	<100	79.4	3160	53	23.3	13.9	82	12	61	<1
Baseline 18	<100	13.3	3640	152	71.2	30.2	89	10	147	<1
Baseline 19	<100	122	1350	22	12.3	5.1	87	14	24	<1
Baseline 20	<100	120	850	34	14.6	9.8	79	16	46	<1
Baseline 21	<100	38.0	930	17	8.4	4.4	141	25	17	<1
Baseline 22	<100	6.4	990	12	5.8	3.8	167	36	13	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 4 of 13

		-								
Element	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Hg
Method	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5	MIMI-M5	IVIIVII-IVI5	IVIIVII-IVI5
Det.Lim.	100	0.5 nnh	10	l nnh	0.5	0.5	1	l nnh	1	l nnh
Units	ppp	hbp	ppp	ddd	ppp	ppp	ррп	add	ppp	hbn
L5000 050 N	<100	51.2	980	35	16.2	9.3	54	15	41	<1
L5000 100 N	<100	2.0	730	3	1.5	1.2	127	22	3	<1
L5000 150 N	<100	35.5	8670	48	20.2	16.6	73	11	67	1
L5000 200 N	<100	66.3	8690	16	7.5	4.1	139	22	16	<1
L5000 250 N	<100	25.1	4050	103	51.7	26.0	146	9	117	<1
L5000 300 N	<100	29.7	3400	42	21.4	10.3	124	7	45	<1
L5000 350 N	<100	20.3	7160	20	12.1	4.2	293	2	17	<1
L5000 400 N	<100	42.5	12100	57	32.1	11.9	241	5	51	<1
Baseline 01	300	89.2	2480	35	17.4	9.1	186	21	50	<1
Baseline 02	<100	153	16000	91	49.2	15.6	48	2	97	<1
Baseline 03	200	506	1730	11	5.1	3.2	241	61	12	<1
Baseline 04	<100	156	1210	18	8.7	4.5	77	25	20	<1
Baseline 05	<100	57.7	1860	47	23.3	12.5	150	17	61	<1
Baseline 06	<100	87.2	3130	40	17.0	9.9	66	13	50	<1
Baseline 07	<100	143	7750	52	29.5	9.3	32	4	59	<1
Baseline 08	<100	113	1300	15	6.5	3.8	69	14	16	<1
Baseline 09	<100	66.8	780	14	5.6	3.6	80	26	16	<1
Baseline 10	<100	61.8	1070	17	8.0	4.9	41	17	21	<1
Baseline 11	<100	26.6	11400	30	17.3	6.5	17	2	37	<1
Baseline 12	<100	15.6	5560	12	7.4	2.7	24	3	14	<1
*Rep LS4900 050 S	<100	72.5	8150	42	26.0	8.9	56	6	47	<1
*Rep Baseline 5700	<100	6.2	7670	24	13.4	6.9	33	2	27	<1
*Rep Baseline 6050	<100	49.7	6830	110	55.9	31.9	131	11	129	<1
*Rep Baseline 20	<100	115	840	33	14.3	9.9	78	15	45	<1
*Rep Baseline 04	<100	156	1170	17	7.9	4.5	77	25	19	<1
*Std MMISRM16	<100	11.2	660	3	1.1	1.3	2	1	5	17
*Std AMIS0169	100	7.5	4330	31	13.8	11.9	56	19	44	<1
*BIk BLANK	<100	<0.5	<10	<1	<0.5	<0.5	<1	<1	<1	<1
*BIk BLANK	<100	<0.5	<10	<1	<0.5	<0.5	<1	<1	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 5 of 13

Element	In	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	0.5	0.1	nnh	c nnh	nnm	nnh	5 nnh	0.0 nnh	l nnh	C nnh
Units	рр р	24.0	рр Б	рро - Г	ppin	220	40	4.0	ррр ст	рр р
L5000 050 S	<0.5	14.0	44	C> ۲	23	330	19	1.0	/ 3	40
L5000 100 S	<0.5	11.8	147	C>	0	100	/	1.7	335	81
L5000 150 S	<0.5	31.2	148	<5	24	2/10	6	4.4	280	66
L5000 200 S	<0.5	19.2	101	<5	1	220	13	9.0	127	35
L5000 250 S	<0.5	21.9	101	<5	11	150	19	2.7	155	31
L5000 300 S	<0.5	19.7	81	<5	10	230	11	6.4	105	32
L5000 350 S	<0.5	20.6	86	<5	10	140	22	3.2	123	29
L5000 400 S	<0.5	18.9	41	<5	4	3080	17	3.2	53	85
LS4900 000 S	<0.5	52.4	53	<5	24	1740	37	3.0	72	61
LS4900 050 S	<0.5	6.4	149	24	30	26400	28	<0.5	312	437
LS4900 100 S	<0.5	10.7	21	161	45	1340	8	<0.5	53	67
LS4900 150 S	<0.5	12.4	31	<5	2	360	24	0.7	57	57
LS4900 200 S	<0.5	10.8	72	54	45	1970	5	<0.5	175	67
LS4900 300 S	<0.5	14.9	282	<5	15	13700	56	1.5	619	369
LS4900 350 S	<0.5	15.8	411	<5	33	910	13	0.7	786	95
LS4900 400 S	<0.5	14.9	311	<5	24	2360	18	1.2	651	51
L5300 150 S	0.5	8.4	559	<5	2	4030	427	1.2	541	35
L5300 200 S	0.9	15.0	36	<5	5	550	53	1.7	51	90
L5300 250 S	<0.5	37.1	129	<5	9	700	102	3.6	137	39
L5300 300 S	<0.5	11.5	59	<5	2	1020	30	2.0	76	69
L5300 350 S	<0.5	10.1	127	<5	2	990	27	1.5	178	24
L5300 400 S	<0.5	8.4	153	<5	3	60	29	1.8	270	33
L5300 450 S	<0.5	7.2	82	<5	1	150	32	1.6	109	35
L5300 500 S	<0.5	8.0	164	<5	2	130	24	1.7	225	26
L5300 550 S	<0.5	13.9	82	<5	52	760	44	1.3	161	17
Baseline 5700	<0.5	9.7	23	45	10	7760	122	0.8	59	186
Baseline 5750	<0.5	5.9	3	13	4	7720	96	0.7	6	128
Baseline 5800	<0.5	13.0	30	<5	4	5280	34	2.6	42	60
Baseline 5850	<0.5	8.7	4	<5	5	370	12	<0.5	8	33
Baseline 5900	<0.5	15.9	31	<5	3	1910	26	4.0	38	68
Baseline 5950	<0.5	10.5	16	9	24	35500	38	<0.5	38	335
Baseline 6000	<0.5	8.3	24	<5	12	10800	26	<0.5	63	103
Baseline 6050	<0.5	11.4	175	<5	4	8340	76	0.9	411	571
Baseline 13	<0.5	29.0	80	<5	7	6000	23	5.4	98	68
Baseline 14	<0.5	18.6	151	<5	6	360	33	1.7	242	39
Baseline 15	< 0.5	20.6	151	<5	23	6280	18	1.3	185	51
Baseline 16	<0.5	21.4	131	<5	36	4590	21	<0.5	252	93
Baseline 17	< 0.5	17.8	245	<5	27	6260	20	1.4	315	83
Baseline 18	<0.5	21.0	146	<5	33	3000	11	0.8	439	93
Baseline 19	<0.5	21.1	38	<5	40	910	15	1 7	77	43
Baseline 20	<0.5	7.8	125	<5	.0	390	26	1.8	231	22
Baseline 21	<0.5	24.4	53	<5	17	300	48	2.9	81	53
Baseline 22	<0.5	17.6	52	<5	12	680	61	3.9	65	57
					. 4	000		0.0	50	51

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 6 of 13

		-								
Element	In	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni
Method	MIMI-M5	MIMI-M5	MINI-M5	MIMI-M5	IVIIVII-IVI5	MIMI-M5	IVIIVII-IVI5	MIMI-MI5	IVIIVII-IVI5	IVIIVII-IVI5
Det.Lim.	0.5	0.1	1 DDD	c	1	10	C	0.0 nnh	1	C nnh
Units	ppp	ррп	ppp	ddd	ррп	ppp	ppp	ppp	ppp	hbn
L5000 050 N	<0.5	19.2	99	<5	5	460	22	1.4	187	21
L5000 100 N	<0.5	22.3	23	<5	11	2420	21	3.3	18	76
L5000 150 N	<0.5	9.2	65	<5	2	370	57	0.9	248	11
L5000 200 N	<0.5	16.5	57	<5	2	1690	19	3.0	73	93
L5000 250 N	<0.5	17.2	172	<5	27	7940	29	1.2	388	218
L5000 300 N	<0.5	56.2	69	<5	36	45700	45	0.6	151	127
L5000 350 N	<0.5	13.5	18	<5	23	7840	46	<0.5	48	272
L5000 400 N	<0.5	25.5	60	<5	11	28600	45	<0.5	137	671
Baseline 01	<0.5	9.7	138	<5	15	900	131	2.7	250	33
Baseline 02	<0.5	8.3	147	<5	44	7840	21	<0.5	305	27
Baseline 03	<0.5	13.3	55	7	5	1130	143	5.6	64	45
Baseline 04	<0.5	10.6	77	<5	1	540	32	2.3	104	54
Baseline 05	<0.5	16.1	107	5	19	1000	80	2.3	245	46
Baseline 06	<0.5	7.5	149	<5	3	300	29	1.4	247	28
Baseline 07	<0.5	21.0	76	13	38	5210	11	1.0	175	75
Baseline 08	<0.5	16.0	48	<5	8	1160	48	1.7	71	35
Baseline 09	<0.5	6.9	57	<5	<1	500	30	2.6	80	26
Baseline 10	<0.5	10.3	63	<5	2	1210	31	1.0	113	38
Baseline 11	<0.5	12.7	34	71	69	8570	17	<0.5	104	423
Baseline 12	<0.5	4.5	18	70	55	18900	74	<0.5	46	355
*Rep LS4900 050 S	<0.5	7.1	99	23	39	31800	34	<0.5	208	492
*Rep Baseline 5700	<0.5	8.4	23	48	11	5520	66	<0.5	62	179
*Rep Baseline 6050	<0.5	12.1	195	<5	4	8510	74	1.0	458	607
*Rep Baseline 20	<0.5	7.2	125	<5	6	320	28	1.7	229	21
*Rep Baseline 04	<0.5	10.2	79	<5	1	450	34	2.3	100	54
*Std MMISRM16	<0.5	35.9	6	<5	37	150	43	<0.5	20	274
*Std AMIS0169	<0.5	44.8	491	<5	38	4500	<5	3.1	423	512
*BIK BLANK	<0.5	<0.1	<1	<5	<1	10	<5	<0.5	<1	<5
*BIK BLANK	<0.5	<0.1	<1	<5	<1	<10	<5	<0.5	<1	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 7 of 13

Element	Р	Pb	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	0.1	10 nnh	l nnh	l nnh	nnh	C han	l nnh	C nnh	1 nnh	l nnh
	ppm	400	php	php 42	ppp	400	pho	hhn	40	hhn
L5000 050 S	2.0	180	< 1	15	<1	190	< 1 1 >	11	18	<1
L5000 100 S	1.4	410	<1	00	<1	138	<1	40	88	<1
L5000 150 S	2.8	290	<1	59	<1	208	<1	22	69	<1
L5000 200 S	8.5	230	<1	31	<1	264	<1	20	27	2
L5000 250 S	2.8	200	<1	35	<1	413	<1	18	34	<1
L5000 300 S	6.4	210	<1	25	<1	335	<1	17	22	1
L5000 350 S	3.1	190	<1	29	<1	407	<1	19	29	<1
L5000 400 S	3.3	260	<1	13	<1	337	<1	26	12	<1
LS4900 000 S	3.3	150	<1	16	<1	725	<1	34	18	<1
LS4900 050 S	0.5	90	<1	66	<1	93	3	55	80	<1
LS4900 100 S	0.5	40	<1	10	<1	143	<1	6	14	<1
LS4900 150 S	1.1	330	<1	12	<1	248	<1	27	15	<1
LS4900 200 S	0.3	30	<1	32	<1	168	<1	22	46	<1
LS4900 300 S	1.0	50	<1	119	<1	274	2	163	160	<1
LS4900 350 S	0.6	150	<1	163	<1	233	2	52	197	<1
LS4900 400 S	1.6	340	<1	136	<1	250	<1	31	162	<1
L5300 150 S	2.2	210	<1	150	<1	156	1	67	90	<1
L5300 200 S	0.9	890	<1	11	<1	228	<1	32	13	<1
L5300 250 S	4.1	230	<1	34	<1	510	7	29	30	<1
L5300 300 S	3.4	230	<1	18	<1	231	<1	22	18	<1
L5300 350 S	3.5	200	<1	41	<1	234	<1	29	36	<1
L5300 400 S	0.6	190	<1	59	<1	122	<1	37	55	<1
L5300 450 S	2.1	250	<1	26	<1	246	<1	30	25	<1
L5300 500 S	1.6	340	<1	53	<1	235	<1	36	46	<1
L5300 550 S	0.8	50	<1	33	<1	209	<1	10	36	<1
Baseline 5700	0.3	50	<1	11	<1	73	<1	20	17	<1
Baseline 5750	0.6	30	<1	1	<1	24	<1	<5	1	<1
Baseline 5800	5.9	240	<1	9	<1	241	<1	18	10	<1
Baseline 5850	0.3	<10	<1	2	<1	77	<1	<5	2	<1
Baseline 5900	14.2	250	<1	9	<1	226	<1	23	9	<1
Baseline 5950	0.4	<10	<1	7	<1	37	<1	18	12	<1
Baseline 6000	0.4	50	<1	12	<1	153	<1	14	12	<1
Baseline 6050	2.1	360	<1	83	<1	188	6	83	110	<1
Baseline 13	86	250	<1	23	<1	/81	<1	28	23	<1
Baseline 14	1.0	240	-1	53	-1	302	-1	11	50	-1
Papaline 15	1.5	240	<1	12	<1	620	2	41	29	~1
Daseline 15	4.0	120	<1	+J 50	-1	0.09	-1	40	50	~1
Daseline 10	2.2	130	<1	55	<1	243	< <u> </u>	49	03	<1
	3.3	290	<) 	/ 3	<1	325	2	89	11	[>
	2.1	530	<1	81	<1	280	<1	75	127	<1
	1.6	310	<1	16	<1	245	<1	25	22	<1
Baseline 20	3.6	130	<1	50	<1	177	<1	31	51	<1
Baseline 21	2.6	180	<1	18	<1	309	<1	26	19	<1
Baseline 22	32	180	<1	15	<1	152	<1	18	15	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 8 of 13

Element	P	Pb	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
Method	MMI-M5									
Det.Lim.	0.1	10	1	1	1	5	1	5	1	1
Units	ppm	ppb								
L5000 050 N	0.9	160	<1	39	<1	356	<1	36	44	<1
L5000 100 N	3.2	200	<1	5	<1	120	<1	14	4	<1
L5000 150 N	2.4	60	<1	44	<1	173	1	50	71	<1
L5000 200 N	3.4	260	<1	17	<1	216	<1	31	17	<1
L5000 250 N	2.4	450	<1	79	<1	250	3	98	108	<1
L5000 300 N	1.7	100	<1	30	<1	321	3	72	41	<1
L5000 350 N	0.7	60	<1	9	<1	179	3	50	15	<1
L5000 400 N	2.0	140	<1	27	<1	248	4	83	42	<1
Baseline 01	2.3	110	<1	53	<1	167	2	36	55	1
Baseline 02	0.2	110	<1	62	<1	143	<1	91	89	<1
Baseline 03	7.6	310	<1	15	<1	260	1	25	14	2
Baseline 04	2.7	240	<1	23	<1	164	<1	30	23	<1
Baseline 05	1.9	220	<1	48	<1	253	2	36	60	<1
Baseline 06	1.2	230	<1	55	<1	118	1	41	56	<1
Baseline 07	0.4	190	<1	34	<1	246	<1	25	49	<1
Baseline 08	1.3	190	<1	16	<1	268	1	24	18	<1
Baseline 09	3.9	170	<1	19	<1	185	<1	22	18	<1
Baseline 10	1.6	70	<1	25	<1	203	<1	26	24	<1
Baseline 11	0.5	20	<1	18	<1	73	<1	35	33	<1
Baseline 12	0.3	20	<1	9	<1	61	2	10	14	<1
*Rep LS4900 050 S	0.4	70	<1	44	<1	81	4	60	51	<1
*Rep Baseline 5700	0.2	50	<1	11	<1	60	<1	15	22	<1
*Rep Baseline 6050	2.2	310	<1	91	<1	190	5	93	121	<1
*Rep Baseline 20	3.5	130	<1	49	<1	166	<1	30	51	<1
*Rep Baseline 04	2.8	230	<1	23	<1	163	<1	29	22	<1
*Std MMISRM16	0.2	130	25	4	<1	308	<1	11	6	<1
*Std AMIS0169	2.6	130	<1	114	<1	257	<1	67	70	1
*BIk BLANK	<0.1	<10	<1	<1	<1	<5	<1	<5	<1	<1
*BIK BLANK	<0.1	<10	<1	<1	<1	<5	<1	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 9 of 13

Element	Sr	Та	Tb	Те	Th	Ti	TI	U	W	Y
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	10 ppb	nnh	nnh	nnh	0.5 nnh	3 nnh	0.5 nnh	nnh	nnh	C nnh
	2280	рро ~1	د مطط	<10	15.6	550	<0.5	10	pp0	02
L5000 050 S	2360	<1	15	<10	10.0	559 766	<0.5	19	<1	93
L5000 100 S	670	۱> ۱۵	10	<10	30.0	007	<0.5	55		014
L5000 150 S	2090	< 	10	<10	24.8	969	<0.5	48	< 1	399
L5000 200 S	750	>	4	<10	24.5	3180	<0.5	18	<1	120
L5000 250 S	1190	[>	5	<10	34.7	1390	<0.5	16	1	149
L5000 300 S	890	<1	3	<10	21.0	2490	<0.5	15	<1	109
L5000 350 S	1180	<1	4	<10	38.0	1690	<0.5	15	1	120
L5000 400 S	110	<1	2	<10	41.0	1540	<0.5	11	1	65
LS4900 000 S	1340	<1	3	<10	42.7	1490	0.8	16	1	96
LS4900 050 S	2480	<1	12	<10	37.6	63	1.1	1930	<1	538
LS4900 100 S	3460	<1	2	<10	26.5	86	<0.5	126	<1	82
LS4900 150 S	190	<1	2	<10	27.0	333	<0.5	19	<1	71
LS4900 200 S	4080	<1	6	<10	39.0	109	<0.5	283	<1	226
LS4900 300 S	1300	<1	26	<10	169	918	1.1	1130	2	1760
LS4900 350 S	1300	<1	28	<10	82.6	282	<0.5	333	<1	1040
LS4900 400 S	1220	<1	22	<10	62.7	691	<0.5	102	1	646
L5300 150 S	200	<1	10	<10	140	762	0.9	125	7	232
L5300 200 S	250	<1	2	<10	40.7	801	<0.5	48	1	94
L5300 250 S	640	<1	4	<10	75.1	2000	0.8	31	7	120
L5300 300 S	150	<1	3	<10	31.4	821	0.6	19	<1	85
L5300 350 S	170	<1	5	<10	61.7	903	0.6	18	3	135
L5300 400 S	320	<1	7	<10	39.9	1200	<0.5	22	2	215
L5300 450 S	120	<1	3	<10	55.2	836	0.6	18	1	89
L5300 500 S	170	<1	6	<10	59.0	887	<0.5	20	3	140
L5300 550 S	1810	<1	5	<10	24.6	886	<0.5	99	1	136
Baseline 5700	9200	<1	3	<10	3.5	24	<0.5	399	<1	139
Baseline 5750	3480	<1	<1	<10	1.5	48	<0.5	57	<1	10
Baseline 5800	400	<1	2	<10	19.5	1300	<0.5	9	1	53
Baseline 5850	2630	<1	<1	<10	3.8	56	<0.5	4	<1	7
Baseline 5900	260	<1	2	<10	22.6	1300	<0.5	9	2	47
Baseline 5950	7140	<1	2	<10	5.7	14	0.5	494	<1	280
Baseline 6000	7670	<1	3	<10	7.8	28	<0.5	125	<1	92
Baseline 6050	460	<1	18	<10	69.1	727	1.6	189	13	589
Baseline 13	430	<1	4	<10	34.0	1710	0.5	25	1	136
Baseline 14	450	<1	9	<10	62.6	803	0.9	42	1	243
Baseline 15	1590	<1	6	<10	134	579	0.8	114	1	176
Baseline 16	1610	<1	8	<10	90.8	195	0.7	124	<1	236
Baseline 17	1660	<1	10	<10	156	691	1.1	158	2	262
Baseline 18	3410	<1	25	<10	77.8	298	0.5	199	<1	937
Baseline 19	4520	<1	4	<10	16.2	841	<0.5	42	<1	145
Baseline 20	300	<1	7	<10	21.2	967	0.5	10	1	177
Baseline 21	1130	<1	3	<10	37.6	1870	<0.5	17	2	92
Baseline 22	890	<1	2	<10	25.8	2360	<0.5	12	2	72

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 10 of 13

Element	Sr	Та	Tb	Те	Th	Ti	TI	U	W	Y
Method	MMI-M5									
Det.Lim.	10	1	1	10	0.5	3	0.5	1	1	5
Units	ppb									
L5000 050 N	390	<1	6	<10	24.7	777	<0.5	16	<1	196
L5000 100 N	630	<1	<1	<10	15.4	1660	<0.5	3	2	17
L5000 150 N	180	<1	10	<10	20.1	704	0.8	17	<1	277
L5000 200 N	110	<1	3	<10	26.3	1300	<0.5	14	1	77
L5000 250 N	1470	<1	18	<10	63.9	864	1.2	269	6	626
L5000 300 N	1260	<1	7	<10	34.1	476	1.3	148	5	222
L5000 350 N	1860	<1	3	<10	14.9	150	1.0	95	2	136
L5000 400 N	780	<1	9	<10	62.6	313	2.3	235	4	354
Baseline 01	530	<1	7	<10	76.9	1660	0.6	105	5	214
Baseline 02	1320	<1	15	<10	32.0	19	0.7	1620	<1	670
Baseline 03	270	<1	2	<10	50.3	3400	<0.5	20	5	60
Baseline 04	70	<1	3	<10	34.5	878	<0.5	15	<1	94
Baseline 05	1250	<1	9	<10	29.6	1600	0.5	151	2	285
Baseline 06	420	<1	8	<10	66.9	872	0.6	66	1	202
Baseline 07	1700	<1	9	<10	28.9	261	<0.5	421	<1	377
Baseline 08	500	<1	3	<10	33.7	851	0.6	17	1	67
Baseline 09	100	<1	3	<10	29.4	1270	<0.5	12	2	58
Baseline 10	170	<1	3	<10	37.0	587	0.5	24	1	92
Baseline 11	3970	<1	5	<10	15.8	13	0.9	595	<1	263
Baseline 12	2840	<1	2	<10	14.6	36	0.7	4700	<1	93
*Rep LS4900 050 S	2940	<1	7	<10	26.2	32	1.0	2200	<1	380
*Rep Baseline 5700	9930	<1	4	<10	2.2	15	<0.5	461	<1	185
*Rep Baseline 6050	440	<1	20	<10	72.1	820	1.7	203	13	656
*Rep Baseline 20	310	<1	7	<10	21.1	931	0.5	10	1	175
*Rep Baseline 04	80	<1	3	<10	33.2	871	0.5	14	<1	89
*Std MMISRM16	530	<1	<1	<10	24.7	13	<0.5	45	<1	13
*Std AMIS0169	100	<1	7	<10	79.0	491	1.3	24	1	142
*BIK BLANK	<10	<1	<1	<10	0.9	5	<0.5	<1	<1	<5
*BIK BLANK	<10	<1	<1	<10	<0.5	6	<0.5	<1	<1	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 11 of 13

		-	
Element	Yb	Zn	Zr
Method	1	20	IVIIVII-IVI5 5
Det.Lim.	nnh	nnh	nnh
1 5000 050 S	6	80	⁴ ⁴
15000 100 S	31	100	37
15000 150 S	20	260	43
15000 200 S	6	80	71
1 5000 250 S	9	40	47
15000 300 S	5	70	57
15000 350 S	8	40	52
L5000 300 S	5	100	60
1 \$4900,000 \$	7	110	61
L \$4900 000 \$	33	60	20
L \$4900 100 \$	33	100	6
1 \$4900 150 \$		70	42
1 \$4900 200 \$	12	<20	42
L \$4900 200 \$	00	< <u>20</u>	9
L \$4900 300 S	61	140	10
L \$4900 550 \$	01	190	10
L54900 400 S	33	110	10
15300 150 5	15	00	59
15300 200 5	7	110	40
15300 250 5	7	50	71
15300 300 5	5	10	50
15300 350 5	0	40	50
15300 400 5	11	30	30
15300 430 5	0	30	60
15300 500 5	8	20	10
L5500 550 5	0	20	10
Baseline 5700	9	20	12
Daseline 5750	<	<20	< <u>-</u>
Baseline 5800	4	500	58
Baseline 5850	<1	00	<5 407
Baseline 5900	4	290	107
Baseline 5950	11	<20	17
Baseline 6000	0	1520	< <u>-</u>
Baseline 0000	30	1530	107
Baseline 13	8	330	107
Baseline 14	15	40	57
Baseline 15	11	270	52
Baseline 16	17	70	24
Baseline 17	18	160	58
	45	290	37
	9	90	32
	10	50	53
Baseline 21	7	50	57
Baseline 22	5	100	44

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms</u> and <u>conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 12 of 13

Element Method Det.Lim.	Yb MMI-M5 1	Zn MMI-M5 20	Zr MMI-M5 5
Units	ppb	ppb	ppb
L5000 050 N	11	40	52
L5000 100 N	1	320	29
L5000 150 N	13	30	69
L5000 200 N	6	250	66
L5000 250 N	38	1090	48
L5000 300 N	17	210	33
L5000 350 N	10	120	13
L5000 400 N	26	470	28
Baseline 01	14	50	43
Baseline 02	36	<20	8
Baseline 03	4	120	45
Baseline 04	6	80	98
Baseline 05	16	90	38
Baseline 06	12	50	67
Baseline 07	23	120	27
Baseline 08	5	70	71
Baseline 09	4	90	68
Baseline 10	6	60	43
Baseline 11	15	<20	11
Baseline 12	6	<20	7
*Rep LS4900 050 S	23	50	15
*Rep Baseline 5700	11	30	8
*Rep Baseline 6050	43	1660	37
*Rep Baseline 20	10	50	55
*Rep Baseline 04	6	80	102
*Std MMISRM16	<1	250	15
*Std AMIS0169	11	260	57
*BIk BLANK	<1	<20	<5
*BIk BLANK	<1	<20	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 13 of 13

Element	Ag	Al	As	Au	Ва	Bi	Са	Cd	Се	Co
Method	1/1/1/10	111111111111	10		10	111111111111111111111111111111111111111	10	111111111111111111111111111111111111111	1011011-1015	IVIIVII-IVI5
Det.Lim.	nnh	nnm	nnh	nnh	nnh	nnh	nnm	nnh	nnh	nnh
1 5150 050 N	۵۹۹ ۵	233	20	0.6	2080	۲ ۲ ۳ 1	70	2	205	۶۴۶» 70
1 5150 100 N	16	200	50	3.0	2300	<1	30	1	336	34
L 5150 150 N	21	223	20	0.6	500	<1	20	1	152	120
L5150 200 N	1	247	120	0.0	1760	2	110	4	152	120
L 5150 250 N	20	163	30	0.0	2100		150	22	246	1200
L5150 200 N	25	208	70	0.0	1560	2	00	16	240	304
L5150 300 N	16	107	60	0.5	1220	5	30	112	227	470
L5150 350 N	14	265	30	0.0	1220	1	40	10	232	470
15150 100 \$	22	200	20	0.1	2000	1	40	10	126	F1
L5150 100 S	33	200	20	0.2	2000	-1	40	7	71	16
L5150 150 S	31	249	20	10.2	1390	12	70	1	/1	40
L5150 200 S	6	212	<10	<0.1	2500	<1	200	48	44	101
L5150 250 S	6	97	<10	0.4	3340	[`>	140	34	62	420
L5150 300 S	25	145	30	0.4	1900	[>	160	20	544	167
L5150 350 S	36	203	10	0.2	1590	[`>	60	3	95	22
L5150 400 S	6	110	<10	<0.1	1860	<1	200	9	231	26
Baseline L5400	24	1//	30	1.6	960	2	80	3	117	39
Baseline L5450	17	292	40	1.3	950	2	10	<1	300	70
Baseline L5500	13	162	<10	0.4	510	<1	60	3	216	38
Baseline L5550	6	231	10	<0.1	750	1	70	3	90	34
Baseline L5600	7	266	<10	<0.1	580	<1	20	7	75	91
Baseline L5650	5	158	10	0.2	1480	1	170	8	1/1	38
L4900 050 N	/	124	30	1.1	5840	<1	110	1	106	37
L4900 100 N	/	193	<10	0.4	2540	<1	120	35	146	182
L4900 150 N	27	162	20	5.2	3820	1	60	2	304	/8
L4900 200 N	36	115	<10	15.5	6130	2	160	2	198	40
L4900 250 N	48	147	20	1.5	1410	<1	50	4	128	37
Baseline 4400	38	/5	<10	8.6	11600	<1	250	31	351	209
Baseline 4450	12	139	10	0.5	4790	1	70	8	36	34
Baseline 4500	28	182	150	2.8	5570	43	50	8	203	967
Baseline 4550	20	234	50	1.1	2290	11	30	2	159	51
Baseline 4600	32	279	40	1.2	1690	4	40	4	140	53
Baseline 4650	17	202	<10	0.3	670	<1	30	3	106	40
Baseline 4700	13	104	20	0.5	4420	5	230	18	152	162
Baseline 4750	9	101	<10	0.5	6980	<1	220	29	85	225
Baseline 4800	12	269	160	0.3	1850	2	20	4	125	48
Baseline 4850	11	193	620	1.1	2700	2	80	4	173	36
L4900 050 S	5	276	10	<0.1	1370	1	30	7	59	40
L4900 100 S	12	250	20	0.3	1840	1	<10	6	129	69
L4900 150 S	14	100	<10	0.3	6740	<1	250	9	280	27
L4900 200 S	12	257	30	0.3	1930	1	40	8	110	67
L4900 250 S	17	236	20	0.3	1580	1	60	4	103	42
L4900 300 S	5	210	20	0.1	1470	<1	50	4	128	50
L4900 350 S	4	192	20	0.3	3660	1	70	5	164	43

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 2 of 19

Element	Ag	AI	As	Au	Ва	Bi	Са	Cd	Се	Со
Method	111111111111111111111111111111111111111	11111111111	10	0.1	10	CIVI-IIVIIVI 1	10	1011011-1015	1011011-1015	IVIIVII-IVI5
Det.Lim.	nnh	nom	nnh	nnh	nnh	nnh	nnm	nnh	nnh	nnh
14900 400 S	21	105	30	0.3	3020	2 2	60	×۹۹ ۸	180	»۹۶ 81
1 4800 050 S	7	246	<10	<0.0	2570	ے د1	80	ب 8	65	62
L4800 100 S	10	145	60	-0.1 0.8	5260	2	100	1	165	58
14800 150 S	5	252	30	0.0 <0.1	3260	3	40		87	68
14800 200 S	16	155	30	-0.1	7630	-1	70	6	466	24
L4800 250 S	7	216	20	0.2	4500	1	60	3	400	24
1 4800 200 S	1	162	10	0.4	4090	1	110	3	55	23
L4000 300 S	4	20	-10	0.1	2220	-1	270	4	50	27
L4800 350 S	10	32	<10	0.3	0900	<1	270	1	00	40
L4800 050 N	4	73	<10	0.1	2200	<1	230	18	114	110
L4800 100 N	14	225	<10	0.2	630	<1	20	5	123	47
L4800 150 N	6	248	20	<0.1	1530	2	20	9	78	52
L4800 200 N	103	168	20	4.5	3400	2	40	2	408	37
L4800 250 N	25	105	20	11.2	1490	<1	30	1	400	1/
Baseline 4900	9	213	50	0.3	3040	1	100	5	123	55
Baseline 4950	9	135	30	0.3	2540	<1	200	8	88	49
Baseline 5000	12	89	<10	0.4	3730	<1	300	17	144	106
Baseline 5050	7	82	<10	0.1	3260	<1	270	29	259	58
Baseline 5100	5	256	30	0.2	1510	1	30	8	86	42
Baseline 5150	10	202	10	0.6	4760	<1	100	3	73	50
Baseline 5200	16	98	<10	0.5	2600	<1	100	34	32	93
Baseline 5250	7	181	30	0.7	1210	<1	30	3	154	36
Baseline 5300	3	46	20	2.9	3070	2	160	2	99	180
Baseline 5350	39	168	<10	1.4	3760	<1	130	3	148	27
L5200 000 S	24	131	80	0.8	1980	7	60	15	556	406
L5200 050 S	33	124	50	1.0	870	3	60	19	377	214
L5200 100 S	18	201	80	0.4	670	5	60	34	200	240
L5200 150 S	18	73	<10	0.2	1460	<1	190	45	91	116
L5200 200 S	13	198	<10	<0.1	1090	1	80	7	75	30
L5200 250 S	<1	33	<10	<0.1	950	<1	160	9	59	133
L5200 300 S	15	96	20	1.5	7040	1	60	5	568	156
L5200 350 S	34	164	20	0.5	1300	<1	30	3	341	26
L5200 400 S	6	101	<10	0.1	3210	<1	130	9	62	51
L5200 450 S	15	160	<10	0.1	2130	<1	140	11	92	52
L5200 500 S	27	109	<10	0.2	1100	<1	190	8	177	41
L5200 550 S	41	238	30	0.4	1560	2	70	7	117	24
L5200 600 S	25	94	<10	0.1	3600	<1	250	23	128	63
LU48 050 N	5	195	20	0.4	3930	2	70	5	142	118
LU48 000 S	11	195	<10	<0.1	2080	<1	110	15	236	104
LU48 050 S	15	156	<10	<0.1	2150	<1	100	4	105	54
LU48 100 S	14	173	20	0.1	1870	1	120	13	143	67
LU48 150 S	20	33	<10	0.2	3130	<1	300	11	31	59
LU48 200 S	7	51	10	0.2	6230	<1	230	17	221	37
LU48 250 S	33	54	<10	0.9	6570	<1	310	14	225	39

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 3 of 19

Element	Ag	Al	As	Au	Ba	Bi	Ca	Cd	Ce	Со
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	nnh	nnm	nnh	0.1	10 nnh	nnh	nnm	nnh	c daa	C nnh
	php	ррп	440	php	0700	pho	220	php	рро 70	
LU48 300 S	20	40	<10	0.6	9760	<1	330	35	/8	33
LU5250 000 S	40	164	130	0.8	/30	3	80	20	295	296
LU5250 050 S	49	114	40	0.9	850	2	60	12	312	86
LU5250 100 S	28	148	10	0.8	1710	1	20	2	403	19
LU5250 150 S	21	194	<10	0.5	1640	<1	60	11	221	57
LU5250 200 S	8	57	20	2.4	9980	4	110	1	267	23
LU5250 250 S	14	45	20	0.9	6920	<1	100	10	386	282
LU5250 300 S	12	87	10	0.6	4410	<1	90	10	154	60
LU5250 350 S	23	246	20	0.6	1680	1	60	6	43	27
LU5250 400 S	14	136	<10	2.4	560	<1	20	5	189	19
LU49 050 N	9	208	<10	0.5	740	<1	60	4	270	30
LU49 100 N	14	172	10	0.4	1460	<1	80	3	154	23
LU49 150 N	24	165	10	0.3	2670	<1	70	10	163	27
LU49 000 S	9	196	10	0.2	830	1	30	4	112	26
LU49 050 S	10	163	10	0.3	2320	<1	50	7	58	14
LU49 100 S	12	150	<10	0.5	720	<1	60	9	184	17
LU49 150 S	11	38	10	0.6	9310	<1	180	4	85	17
LU49 250 S	21	92	<10	0.2	1900	<1	220	28	60	24
LU48 200 N	16	216	10	<0.1	1360	1	20	12	74	72
LU48 250 N	7	48	<10	0.4	9420	<1	330	46	86	72
LU5300 000 S	26	154	100	0.7	1200	4	100	22	282	320
LU5300 050 S	20	142	80	0.5	3630	<1	100	27	789	214
LU5300 100 S	9	223	10	0.1	1010	1	20	6	106	49
*Rep L5150 050 N	9	231	20	0.5	3020	1	70	2	212	70
*Rep Baseline L5600	7	271	<10	<0.1	610	<1	20	7	83	92
*Rep Baseline 4450	13	134	20	0.6	5440	1	80	8	33	38
*Rep L4800 300 S	5	169	10	<0.1	2020	1	100	5	54	30
*Rep Baseline 5100	5	251	30	0.1	1400	1	30	8	80	43
*Rep L5200 150 S	18	74	<10	0.2	1510	<1	200	49	100	171
*Rep LU5250 100 S	26	155	10	0.5	1830	1	20	2	381	19
*Rep LU5250 300 S	12	85	<10	0.7	4300	<1	90	10	145	61
*Rep LU5300 100 S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std MMISRM16	17	42	<10	21.0	80	<1	190	4	22	53
*Std AMIS0169	8	60	<10	0.6	1170	<1	30	2	849	111
*Std MMISRM18	23	23	<10	7.9	210	<1	150	77	28	65
*BIk BLANK	<1	<1	<10	<0.1	<10	<1	<10	<1	<5	<5
*BIK BLANK	<1	<1	<10	<0.1	<10	<1	<10	<1	<5	<5
*BIK BLANK	<1	<1	<10	<0.1	20	<1	<10	<1	<5	<5
				3.1	=•				Ű	•

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 4 of 19

Element	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Hg
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	100	0.5 nnh	10	nnh	0.5	0.5 nnh	nnm	l nnh	1 pph	l nnh
	ppb	444	4020	odd	10.0	ppp o 7	400	php 40	ppp	hhn
L5150 050 N	100	14.1	1630	22	10.8	0.7	182	19	25	<1
L5150 100 N	<100	33.1	3750	41	18.7	12.5	/4	14	52	<
L5150 150 N	<100	27.3	8830	21	10.0	5.0	101	18	21	[`>
L5150 200 N	<100	16.1	2790	27	15.7	7.8	379	6	30	<1
L5150 250 N	<100	32.3	2280	56	27.9	15.6	42	6	68	<1
L5150 300 N	<100	39.0	1350	25	10.1	7.2	121	12	26	1
L5150 350 N	<100	40.2	10600	100	58.0	21.0	157	6	90	<1
L5150 050 S	<100	13.7	430	9	4.6	2.7	171	42	10	<1
L5150 100 S	<100	22.0	410	13	6.4	3.7	114	25	14	<1
L5150 150 S	<100	9.3	360	11	5.5	2.8	95	35	11	<1
L5150 200 S	<100	1.4	550	18	11.7	3.4	123	23	16	<1
L5150 250 S	<100	22.0	11600	46	31.0	7.4	162	5	40	<1
L5150 300 S	<100	26.5	3200	129	70.0	28.7	86	13	149	<1
L5150 350 S	<100	20.4	280	8	4.1	2.6	103	42	9	<1
L5150 400 S	<100	8.2	1070	47	22.7	12.8	35	12	72	<1
Baseline L5400	<100	31.7	3800	28	15.4	9.7	90	15	34	<1
Baseline L5450	<100	30.4	2330	38	15.9	12.9	185	18	45	<1
Baseline L5500	<100	21.3	1090	41	20.8	11.6	63	12	48	<1
Baseline L5550	<100	27.5	300	11	4.7	3.3	124	20	12	<1
Baseline L5600	<100	12.6	520	8	4.1	2.3	127	28	8	<1
Baseline L5650	<100	32.1	850	42	20.3	15.2	120	18	51	<1
L4900 050 N	<100	19.1	1150	10	4.7	4.0	79	15	13	<1
L4900 100 N	<100	19.7	15400	152	100	26.2	57	6	115	<1
L4900 150 N	<100	17.0	2230	26	10.8	7.5	62	10	32	<1
L4900 200 N	<100	19.2	1230	13	5.6	4.9	64	6	17	<1
L4900 250 N	<100	37.5	1930	16	7.3	4.8	53	13	19	<1
Baseline 4400	<100	51.7	61300	121	74.3	41.8	22	8	153	<1
Baseline 4450	<100	14.1	30400	12	7.7	3.6	318	11	12	<1
Baseline 4500	<100	30.3	6850	12	5.2	4.2	139	17	15	<1
Baseline 4550	<100	16.0	2280	16	7.9	5.1	103	16	19	<1
Baseline 4600	<100	19.4	2090	17	7.6	4.0	107	10	18	<1
Baseline 4650	<100	24.9	1100	19	10.5	3.9	67	11	17	<1
Baseline 4700	<100	13.4	12100	59	33.4	17.1	110	7	70	<1
Baseline 4750	<100	17.2	26700	64	39.4	13.9	145	4	55	<1
Baseline 4800	<100	18.7	1310	16	8.0	4.5	147	24	17	<1
Baseline 4850	<100	17.1	950	13	5.7	4.4	149	24	16	<1
L4900 050 S	<100	3.2	240	6	2.8	1.9	144	35	5	<1
L4900 100 S	<100	25.0	930	16	8.2	4.0	135	21	16	<1
L4900 150 S	<100	36.1	1680	82	38.8	29.9	39	8	110	<1
L4900 200 S	<100	23.0	600	14	7.5	3.3	140	21	15	<1
L4900 250 S	<100	19.1	420	12	5.8	2.9	125	29	13	<1
L4900 300 S	<100	15.2	670	12	5.5	3.1	110	22	13	<1
L4900 350 S	<100	32.1	910	15	6.9	3.3	115	17	17	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 5 of 19

Element	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Hg
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	nnh	0.5 nnh	nnh	nnh	0.5 nnh	0.5 nnh	nnm	nnh	nnh	nnh
	100	13.7	1070	16	7.2	4.0	159	23	19	۲P5 را
14900 050 5	<100	5.7	540	10	7.Z	4.9	106	23	0	<1
L4800 050 S	<100	04.7	1000	9	0.0	2.4	100	31	0	<1
L4800 100 S	<100	21.7	1000	23	11.0	0.7	100	10	20	<1
L4800 150 S	<100	5.2	290	11	0.0	2.7	183	32	10	<]
L4800 200 S	<100	30.3	1540	121	62.8	32.5	96	25	168	[>
L4800 250 S	<100	31.3	340	/	3.4	2.5	151	36	8	<1
L4800 300 S	100	6.6	290	0	2.9	1.7	144	47	6	[>
L4800 350 S	<100	39.3	2180	17	8.5	4.8	19	2	25	<1
L4800 050 N	<100	5.4	1100	49	24.7	17.5	49	9	69	<1
L4800 100 N	<100	18.9	780	10	4.6	3.1	87	24	11	<1
L4800 150 N	<100	15.5	530	9	4.7	3.1	171	27	9	<1
L4800 200 N	<100	23.8	1790	30	13.7	9.5	77	12	39	<1
L4800 250 N	<100	37.0	4420	56	24.2	20.5	36	9	70	<1
Baseline 4900	<100	13.1	670	15	7.6	5.4	105	35	18	<1
Baseline 4950	<100	14.3	1380	21	10.6	5.5	94	11	22	<1
Baseline 5000	<100	10.1	6180	98	54.2	31.8	32	5	125	<1
Baseline 5050	<100	8.7	2650	100	48.7	33.2	47	7	129	<1
Baseline 5100	<100	26.7	690	10	4.8	2.8	133	20	10	<1
Baseline 5150	<100	6.4	460	9	4.4	2.6	97	13	10	<1
Baseline 5200	<100	27.4	10100	130	88.0	14.3	109	2	81	<1
Baseline 5250	<100	24.7	800	20	9.8	5.2	74	13	22	<1
Baseline 5300	<100	10.4	2130	8	4.3	2.5	117	10	9	<1
Baseline 5350	<100	14.6	910	13	5.9	4.3	42	5	16	<1
L5200 000 S	<100	59.6	6240	104	52.3	29.7	129	10	121	1
L5200 050 S	<100	50.9	5630	158	91.7	37.3	85	6	171	<1
L5200 100 S	<100	46.4	3340	48	23.7	11.3	147	10	50	<1
L5200 150 S	<100	196	17100	56	32.1	12.6	61	4	69	<1
L5200 200 S	<100	37.7	600	10	4.9	2.5	106	29	11	<1
L5200 250 S	<100	14.7	2420	9	5.2	2.1	249	9	10	<1
L5200 300 S	<100	133	5770	66	32.3	17.6	43	12	83	<1
L5200 350 S	<100	129	740	36	17.7	8.4	66	17	44	<1
L5200 400 S	<100	66.0	380	8	4.2	2.2	97	23	10	<1
L5200 450 S	<100	46.0	2630	13	6.1	3.5	94	29	16	<1
L5200 500 S	<100	43.9	3160	51	23.4	12.1	41	13	68	<1
L5200 550 S	<100	95.8	1910	20	10.0	5.0	139	50	25	<1
L5200 600 S	<100	40.5	1840	90	43.1	20.4	43	11	128	<1
LU48 050 N	<100	44.0	2140	21	10.5	4.4	147	13	22	<1
LU48 000 S	<100	16.9	1710	47	23.4	10.3	93	20	53	<1
LU48 050 S	<100	9.3	440	11	5.1	3.1	105	23	14	<1
LU48 100 S	<100	25.9	1780	22	9.7	4.8	117	21	26	<1
LU48 150 S	<100	47.1	5820	12	6.8	3.6	25	2	18	<1
LU48 200 S	<100	88.5	1030	60	29.4	14.2	32	6	78	<1
LU48 250 S	<100	10.6	4530	56	30.4	13.5	29	5	71	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 6 of 19

Element	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Hg
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	nnb	0.5 nnh	nnh	nnh	0.5 nnh	0.0 nnh	ı nnm	nnh	nnh	nnh
	<100	20.0	2400	26	14.1	7.4	21	044	20	
	<100	20.9	2490 5170	20	64.0	20.0	21		101	<1
	<100	04.0	5170	119	04.9	20.0	03	1	121	1
LU5250 050 S	<100	37.5	1870	00	27.5	10.0	48	8	67	<1
LU5250 100 S	<100	96.9	1510	33	14.5	9.3	62	15	42	<1
LU5250 150 S	<100	128	5840	63	26.9	13.0	86	11	61	<1
LU5250 200 S	200	214	10800	37	16.5	10.9	35	9	50	<1
LU5250 250 S	<100	91.7	8750	70	37.9	20.3	27	6	94	1
LU5250 300 S	<100	240	3090	47	24.8	11.8	43	7	59	<1
LU5250 350 S	<100	100	380	5	2.7	1.5	116	55	5	<1
LU5250 400 S	<100	251	1680	19	8.6	4.8	38	17	23	<1
LU49 050 N	<100	131	1060	21	8.9	4.9	65	15	25	<1
LU49 100 N	<100	123	1090	16	7.3	4.0	65	14	21	<1
LU49 150 N	<100	73.7	1200	26	13.8	6.3	91	13	30	<1
LU49 000 S	<100	143	500	12	5.0	2.8	73	17	14	<1
LU49 050 S	<100	21.2	300	4	1.8	1.4	91	39	4	<1
LU49 100 S	<100	50.0	970	18	8.4	4.7	54	13	22	<1
LU49 150 S	<100	46.0	1080	16	8.0	4.3	38	6	20	<1
LU49 250 S	<100	28.4	2050	75	38.3	16.4	19	3	91	<1
LU48 200 N	<100	42.1	480	9	4.9	2.2	147	21	9	<1
LU48 250 N	<100	9.7	810	14	7.6	3.8	44	2	15	<1
LU5300 000 S	<100	55.6	5400	85	47.5	20.1	107	6	87	<1
LU5300 050 S	<100	717	39800	133	77.2	27.9	102	15	133	1
LU5300 100 S	<100	337	1090	12	5.7	3.0	98	20	12	<1
*Rep L5150 050 N	100	13.5	1520	23	10.8	6.8	173	19	27	<1
*Rep Baseline L5600	<100	12.6	530	8	4.3	2.4	128	31	8	<1
*Rep Baseline 4450	<100	19.0	31500	12	7.1	3.3	310	10	11	<1
*Rep L4800 300 S	100	6.5	290	5	2.8	1.7	150	44	6	<1
*Rep Baseline 5100	<100	24.4	640	10	5.1	2.7	132	19	10	<1
*Rep L5200 150 S	<100	217	18200	55	31.3	12.5	64	4	67	<1
*Rep LU5250 100 S	<100	97.4	1340	28	12.2	8.0	67	17	37	<1
*Rep LU5250 300 S	<100	243	3080	49	25.8	12.4	42	6	63	<1
*Rep LU5300 100 S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std MMISRM16	<100	11.0	570	3	1.1	1.2	2	<1	5	15
*Std AMIS0169	<100	7.4	3500	29	12.4	11.0	44	16	43	<1
*Std MMISRM18	<100	6.1	690	4	1.6	1.4	2	<1	6	5
*BIk BLANK	<100	<0.5	<10	<1	<0.5	<0.5	<1	<1	<1	<1
*BIk BLANK	<100	<0.5	<10	<1	<0.5	<0.5	<1	<1	<1	<1
*BIk BLANK	<100	<0.5	<10	<1	<0.5	<0.5	<1	<1	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 7 of 19

Element		K	La	Li	Mg	Mn MMI M5	Mo	Nb	Nd	Ni
Method Det Lim	0.5	0 1	1	5	1	10	5	0.5	1011011-1013	5
Det.Lim.	daa	maa	daa	daa	maa	daa	daa	daa	daa	daa
1 5150 050 N	<0.5	11 1	82	<5	9	130	19	2.8	116	63
1 5150 100 N	<0.5	12.2	145	<5	3	1050	29	0.8	240	26
L 5150 150 N	<0.5	20.1	70	<5	3	3190	12	2 1	91	58
1 5150 200 N	<0.5	12.9	49	<5	19	19300	92	0.8	115	85
I 5150 250 N	<0.5	17.0	89	<5	11	3780	21	<0.5	231	130
L5150 300 N	<0.5	43.5	77	<5	14	11100	42	1 4	106	102
L 5150 350 N	<0.5	53.7	79	<5		8490	24	<0.5	219	469
1 5150 050 S	<0.5	27.7	46	<5	11	880	34	6.9	50	88
15150 100 S	<0.5	29.8	61	<5	4	1170	22	3.6	72	60
15150 150 S	<0.5	28.0	41	<5	. 8	1900	20	2.8	50	71
15150 200 S	<0.5	57.5	25	<5	25	6790	14	1 7	51	79
1 5150 250 S	<0.5	15.8	64	<5	27	42000	126	<0.5	134	98
1 5150 300 S	<0.5	8.3	277	-0 <5	12	29500	234	13	596	64
1 5150 350 S	<0.5	23.0	54	<5	5	440	19	4.0	51	33
1 5150 400 S	<0.5	14 7	191	<5	25	450	21	1.0	366	29
Baseline I 5400	<0.5	15.2	65	<5	4	1050	30	1.2	139	41
Baseline L 5450	<0.5	11.5	125	<5	3	390	74	2.0	184	45
Baseline L 5500	<0.5	17.4	88	<5	4	1350	19	0.8	183	44
Baseline L5550	<0.5	14.4	44	<5	7	1580	35	2.7	54	48
Baseline L5600	<0.5	17.2	34	<5	2	830	15	5.0	39	64
Baseline L5650	<0.5	23.0	87	<5	10	1710	43	3.5	172	54
L4900 050 N	<0.5	14.2	67	<5	13	120	45	1.6	73	36
L4900 100 N	<0.5	31.3	99	<5	15	3100	<5	<0.5	278	89
L4900 150 N	<0.5	20.0	150	<5	5	2940	41	1.1	166	37
L4900 200 N	<0.5	47.4	111	<5	36	1160	<5	0.5	107	44
L4900 250 N	<0.5	29.5	56	<5	4	1500	24	0.8	91	38
Baseline 4400	<0.5	14.1	384	<5	29	39000	94	<0.5	712	41
Baseline 4450	<0.5	21.9	37	<5	12	280	15	2.3	52	24
Baseline 4500	0.7	18.7	71	<5	5	14400	187	2.9	78	120
Baseline 4550	0.6	14.7	105	<5	2	1500	31	2.9	109	50
Baseline 4600	<0.5	27.7	77	<5	3	1140	12	1.3	89	98
Baseline 4650	<0.5	20.3	45	<5	3	820	10	0.6	73	54
Baseline 4700	<0.5	17.6	173	<5	20	13000	53	0.7	299	104
Baseline 4750	<0.5	25.0	85	<5	26	14500	12	<0.5	168	36
Baseline 4800	<0.5	15.0	69	<5	2	250	25	2.7	87	52
Baseline 4850	<0.5	14.5	91	<5	6	140	45	3.5	96	45
L4900 050 S	<0.5	14.9	29	<5	4	340	13	8.5	30	45
L4900 100 S	<0.5	19.7	61	<5	2	300	20	3.3	78	62
L4900 150 S	<0.5	21.6	263	<5	16	960	<5	0.6	493	41
L4900 200 S	<0.5	25.7	54	<5	4	860	16	3.3	66	85
L4900 250 S	<0.5	21.6	56	<5	5	730	27	4.5	65	53
L4900 300 S	<0.5	50.7	60	<5	8	2440	22	3.1	73	51
L4900 350 S	<0.5	31.0	77	<5	9	340	44	3.0	93	54

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 8 of 19

Element		K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni
Method	1011011-1015	0.1	1011011-1015	IVIIVII-IVI5	111111111111	10	IVIIVII-IVI5		1011011-1015	IVIIVII-IVI5
Det.LIM.	0.5	nom	npb	nnb	nnad	npb	nnb	0.5 ppb	ppb	nnb
	<0.5	17.2	73	<5	0 0	600	158	5.0	100	61
1 4800 050 S	<0.5	16.0	31	<5	9	310	11	3.0	30	55
L4800 100 S	<0.5	18.8	85	<5	9	1440	63	2.1	142	74
L4800 100 S	<0.5	27.6	37	<5	0	1440	73	5.1	54	/4
14800 200 \$	<0.5	12.1	501	~5	5	520	73	3.1	095	-+3
L4800 200 S	<0.5	10.1	501	<0	5	1610	212	3.0	000	31
L4800 230 S	<0.5	10.4	00	<>	0	0101	213	0.3	53	30
L4800 300 S	<0.5	24.0	20	<0 5	9	220	2/5	1.3	112	34
L4800 350 S	<0.5	13.1	52	c	49	2950	100	<0.5	070	29
L4800 050 N	<0.5	87.0	93	<5	42	2000	1	<0.5	278	41
L4800 100 N	<0.5	12.2	62	<5	2	630	15	3.1	63	48
L4800 150 N	<0.5	19.5	38	<5	5	140	15	5.6	46	59
L4800 200 N	<0.5	9.7	182	<5	4	1220	19	1.0	248	30
L4800 250 N	<0.5	6.8	125	<5	4	620	22	<0.5	375	9
Baseline 4900	<0.5	21.6	70	<5	9	730	35	4.3	93	57
Baseline 4950	<0.5	20.0	47	<5	25	340	20	1.1	88	62
Baseline 5000	<0.5	16.4	153	<5	23	3010	9	<0.5	414	106
Baseline 5050	<0.5	15.2	254	<5	24	3200	5	0.6	540	73
Baseline 5100	<0.5	19.2	43	<5	3	1410	25	3.1	53	43
Baseline 5150	<0.5	27.6	45	<5	15	490	14	2.4	45	50
Baseline 5200	<0.5	8.4	84	<5	21	3680	13	<0.5	206	74
Baseline 5250	<0.5	18.3	80	<5	2	360	30	1.5	113	50
Baseline 5300	<0.5	6.6	30	<5	41	5540	55	1.6	46	56
Baseline 5350	<0.5	9.2	73	<5	22	40	13	<0.5	84	34
L5200 000 S	<0.5	15.4	217	<5	4	11100	70	0.8	460	345
L5200 050 S	<0.5	13.6	102	<5	2	4720	42	<0.5	427	218
L5200 100 S	<0.5	19.3	66	<5	7	5740	33	0.9	170	124
L5200 150 S	<0.5	7.0	129	<5	21	7450	30	<0.5	289	144
L5200 200 S	<0.5	23.1	40	<5	6	930	18	4.4	53	52
L5200 250 S	<0.5	9.8	31	19	24	3890	87	1.1	58	50
L5200 300 S	<0.5	15.2	227	<5	7	3990	82	<0.5	442	31
L5200 350 S	<0.5	15.5	185	<5	3	1670	33	1.2	251	30
L5200 400 S	<0.5	25.6	43	<5	13	4970	19	6.2	54	37
L5200 450 S	<0.5	12.7	62	<5	8	200	20	3.3	84	49
L5200 500 S	<0.5	11.9	171	<5	21	2060	34	1.4	320	29
L5200 550 S	<0.5	15.2	87	<5	5	280	68	4.6	128	36
L5200 600 S	<0.5	21.2	278	<5	29	5020	22	1.5	544	49
LU48 050 N	<0.5	31.4	54	<5	13	1350	25	1.8	86	62
LU48 000 S	<0.5	14.3	142	<5	10	1120	12	2.3	243	47
LU48 050 S	<0.5	17.8	61	<5	14	1610	34	4.6	82	57
LU48 100 S	<0.5	45.9	95	<5	16	4320	42	3.4	132	81
LU48 150 S	<0.5	6.8	42	5	41	7200	10	0.6	88	59
LU48 200 S	<0.5	22.7	208	<5	31	8180	16	0.6	388	66
LU48 250 S	<0.5	23.7	155	<5	40	4100	16	<0.5	300	75

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 9 of 19

Element	In	K	La	Li	Mg	Mn	Mo	Nb	Nd	Ni
Method	1011011-1015	0.1	1/11/11/15	IVIIVII-IVI5	1011011-1015	10	CIVIIVII-IVID	1011011-1015	1011011-1015	IVIIVII-IVI5
Det.Lim.	0.5	npm	nnh	nnh	nnm	nnh	nnh	0.5 nnh	nnh	nnh
	20.5	7 7	60	-5	27	4960	10	<0 5	152	54 54
	<0.5	20.0	09	<5	57	4000	20	<0.5	214	250
	<0.5	29.0	04	< <u>-</u>	4	7300	29	<0.5 0.0	004	200
LU5250 050 S	<0.5	14.2	118	c> ۲	C	2040	41	0.0	281	39
LU5250 100 S	<0.5	4.0	172	<>	<1	210	40	1.2	204	19
LU5250 150 S	<0.5	16.8	155	<5	5	1/40	12	1.2	263	/8
LU5250 200 S	<0.5	3.8	107	<5	11	180	47	0.9	247	22
LU5250 250 S	<0.5	31.4	132	<5	6	12400	147	<0.5	415	91
LU5250 300 S	<0.5	6.5	174	<5	10	4550	13	1.2	301	50
LU5250 350 S	<0.5	11.7	27	<5	7	1050	26	6.6	28	38
LU5250 400 S	<0.5	11.2	88	<5	3	620	22	1.0	122	25
LU49 050 N	<0.5	15.2	117	<5	3	1920	25	1.7	146	39
LU49 100 N	<0.5	16.1	92	<5	5	1650	59	1.1	105	46
LU49 150 N	<0.5	14.3	86	<5	4	470	20	1.1	151	37
LU49 000 S	<0.5	10.9	52	<5	2	1840	21	2.4	63	27
LU49 050 S	<0.5	13.0	34	<5	7	560	32	5.3	27	24
LU49 100 S	<0.5	10.6	85	<5	7	180	21	1.2	122	22
LU49 150 S	<0.5	15.2	49	<5	21	1260	19	0.6	93	28
LU49 250 S	<0.5	8.4	134	6	14	3360	12	<0.5	363	98
LU48 200 N	<0.5	18.0	34	<5	3	460	12	3.3	43	45
LU48 250 N	<0.5	11.3	26	<5	68	8120	5	<0.5	61	110
LU5300 000 S	<0.5	36.5	85	<5	8	8000	26	<0.5	244	287
LU5300 050 S	<0.5	20.9	324	6	7	24700	109	1.0	590	596
LU5300 100 S	<0.5	17.3	54	<5	3	4550	33	3.0	62	52
*Rep L5150 050 N	<0.5	10.2	85	<5	9	130	18	2.9	122	62
*Rep Baseline L5600	<0.5	17.1	36	<5	2	810	15	5.2	41	66
*Rep Baseline 4450	<0.5	19.8	35	<5	14	290	14	2.2	49	25
*Rep L4800 300 S	<0.5	24.1	26	<5	9	310	240	7.0	32	35
*Rep Baseline 5100	<0.5	19.7	41	<5	4	1370	24	3.0	49	41
*Rep L5200 150 S	<0.5	7.1	135	<5	22	12200	33	<0.5	287	151
*Rep LU5250 100 S	<0.5	5.0	166	<5	1	250	42	1.6	227	20
*Rep LU5250 300 S	< 0.5	6.8	178	<5	9	4130	12	1.1	310	51
*Rep LU5300 100 S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std MMISBM16	<0.5	31.4	5	<5	32	120	40	<0.5	19	244
*Std AMIS0169	<0.5	37.9	467	<5	31	3610	<5	2.3	397	413
*Std MMISRM18	<0.5	22.8	8	<5	83	610	26	<0.5	23	458
*BIK BLANK	<0.5	<0.1	<1	<5	<1	<10	<5	<0.5	<1	<5
*BIK BI ANK	<0.5	<0.1	<1	<5	<1	20	<5	<0.0	<1	<5
*BIK BLANK	<0.5	-0.1 <0.1	<1	<5	<1	<10	<5	-0.5 <0.5	د ا ح ا	<5
	-0.5	-0.1	1	~5	1	-10	~5	-0.5	~ 1	-0

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 10 of 19

Element	Р	Pb	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	0.1	nnh	1 nnh	nnh	1 nnh	C nnh	1 nnh	C nnh	nnh	l nnh
	2 ppm	150	рро ~1	044 22	рро ~1	215	ррь ~1	- ppp	20	ррь ~1
L5150 050 N	4.9	100	<1	Z1 50	<1	215	<1	20	20	<1
L5150 100 N	3.3	180	<u>ا></u>	53	>	1/1	< 	35	52	>
L5150 150 N	4.2	230	<1 	21	[`>	1/5	<1	26	21	[>
L5150 200 N	1.9	40	<1	23	<1	186	4	69	31	<1
L5150 250 N	1.5	240	<1	43	<1	193	1	57	63	<1
L5150 300 N	11.4	190	<1	25	<1	316	2	48	27	<1
L5150 350 N	3.3	430	<1	41	<1	316	5	108	74	<1
L5150 050 S	4.5	220	<1	12	<1	400	<1	24	12	<1
L5150 100 S	5.8	290	<1	17	<1	392	<1	22	16	<1
L5150 150 S	3.9	340	<1	12	<1	234	<1	15	11	<1
L5150 200 S	4.1	370	<1	10	<1	31	<1	31	14	<1
L5150 250 S	0.5	20	<1	28	<1	187	<1	87	38	<1
L5150 300 S	1.4	80	<1	128	<1	161	<1	99	155	<1
L5150 350 S	4.4	170	<1	13	<1	453	<1	21	10	<1
L5150 400 S	0.9	80	<1	79	<1	125	<1	21	81	<1
Baseline L5400	6.2	170	<1	28	<1	294	<1	28	37	<1
Baseline L5450	5.7	90	<1	41	<1	140	2	47	47	<1
Baseline L5500	1.8	250	<1	37	<1	188	<1	39	48	<1
Baseline L5550	6.9	220	<1	12	<1	212	<1	17	13	<1
Baseline L5600	11.2	210	<1	9	<1	126	<1	14	9	<1
Baseline L5650	4.2	160	<1	35	<1	226	<1	27	51	<1
L4900 050 N	3.8	170	<1	18	<1	300	<1	11	16	<1
L4900 100 N	0.9	220	<1	54	<1	209	<1	52	93	<1
L4900 150 N	2.3	310	<1	40	<1	409	1	42	36	<1
L4900 200 N	1.7	280	<1	25	<1	308	<1	82	21	<1
L4900 250 N	2.4	60	<1	20	<1	242	<1	22	21	<1
Baseline 4400	0.2	20	<1	154	<1	206	<1	105	163	<1
Baseline 4450	2.1	20	<1	12	<1	160	<1	19	14	<1
Baseline 4500	5.1	450	<1	20	<1	371	2	20	17	<1
Baseline 4550	3.4	270	<1	27	<1	338	1	27	23	<1
Baseline 4600	3.6	360	<1	21	<1	321	<1	17	21	<1
Baseline 4650	1.6	490	<1	16	<1	298	<1	28	18	<1
Baseline 4700	1.0	150	<1	65	<1	189	<1	49	75	<1
Baseline 4750	0.4	110	<1	36	<1	221	<1	55	50	<1
Baseline 4800	4.8	360	<1	21	<1	288	<1	21	19	<1
Baseline 4850	7.1	460	<1	24	<1	418	2	20	20	<1
L4900 050 S	11.2	190	<1	7	<1	121	<1	20	7	1
L4900 100 S	3.9	290	<1	19	<1	460	<1	29	19	<1
L4900 150 S	1.0	250	<1	104	<1	235	<1	16	123	<1
L4900 200 S	6.1	350	<1	16	<1	426	<1	25	16	<1
L4900 250 S	4.0	280	<1	16	<1	464	<1	19	15	<1
L4900 300 S	7.3	340	<1	18	<1	470	<1	21	16	<1
L4900 350 S	2.6	270	<1	23	<1	527	<1	21	20	<1
			· · · · · · · · · · · · · · · · · · ·	_0				!	_0	

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 11 of 19

Element	Р	Pb	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sr
Method	MIMI-M5	MIVII-IVI5	1/11/11/15	MINI-M5	MIMI-M5	IVIIVII-IVI5	IVIIVII-IVI5	MIMI-M5	IVIIVII-IVI5	IVIIVII-IVI5
Det.LIM.	0.1	nnh	nnh	nnh	nnh	nnh	nnh	nnh	nnh	nnh
1 4900 400 S	24	360	<1	23	<1	230	<1	27	23	<1
1 4800 050 S	2.4	250	<1	10	<1	197	<1	14	20 Q	<1
L4800 100 S	2.4	250	<1	31	<1	189	<1	20	33	<1
L4800 150 S	2.1	200	<1	12	<1	186	<1	20	12	<1
1 4800 200 S	2.0	170	<1	199	<1	229	1	64	194	<1
1 4800 250 S	3.5	210	<1	14	<1	366	<1	18	11	<1
1 4800 300 S	17	190	<1	8	<1	261	<1	16	7	2
L4800 350 S	0.2	50	<1	22	<1	201	<1	7	28	<1
L4800 050 N	1.0	230	<1	54	<1	271	<1	14	75	<1
L4800 100 N	4.5	230	<1	16	<1	220	<1	19	14	<1
L4800 150 N	2.3	170	<1	11	<1	238	<1	38	11	<1
L4800 200 N	2.0	280	<1	59	<1	322	<1	27	49	<1
L4800 250 N	1.3	30	<1	75	<1	154	<1	54	86	<1
Baseline 4900	2.7	250	<1	22	<1	370	<1	23	21	1
Baseline 4950	1.5	310	<1	19	<1	277	<1	14	24	<1
Baseline 5000	0.4	140	<1	79	<1	171	<1	27	119	<1
Baseline 5050	0.7	150	<1	113	<1	124	<1	34	140	<1
Baseline 5100	5.9	270	<1	12	<1	284	<1	18	13	<1
Baseline 5150	2.2	260	<1	11	<1	335	<1	11	10	<1
Baseline 5200	0.2	120	<1	41	<1	99	<1	91	66	<1
Baseline 5250	3.0	270	<1	26	<1	309	<1	21	26	<1
Baseline 5300	0.7	70	<1	10	<1	131	<1	8	10	<1
Baseline 5350	1.1	60	<1	20	<1	186	<1	9	18	<1
L5200 000 S	3.2	340	<1	96	<1	192	4	74	125	<1
L5200 050 S	1.7	370	<1	72	<1	182	3	82	142	<1
L5200 100 S	4.9	350	<1	33	<1	262	3	42	51	<1
L5200 150 S	0.3	110	<1	58	<1	189	<1	51	75	<1
L5200 200 S	3.8	250	<1	13	<1	185	<1	20	13	<1
L5200 250 S	1.0	30	<1	13	<1	46	<1	10	12	<1
L5200 300 S	2.4	180	<1	97	<1	260	1	66	100	<1
L5200 350 S	3.9	250	<1	59	<1	337	<1	31	54	<1
L5200 400 S	2.5	190	<1	13	<1	411	<1	11	12	<1
L5200 450 S	1.8	140	<1	20	<1	157	<1	18	18	<1
L5200 500 S	0.9	210	<1	69	<1	188	<1	22	78	<1
L5200 550 S	5.8	290	<1	30	<1	263	<1	21	29	<1
L5200 600 S	1.1	410	<1	115	<1	235	<1	21	136	<1
LU48 050 N	7.7	320	<1	19	<1	491	<1	23	23	<1
LU48 000 S	3.1	290	<1	54	<1	232	<1	19	61	<1
LU48 050 S	8.7	250	<1	19	<1	270	<1	12	17	<1
LU48 100 S	5.2	370	<1	31	<1	543	<1	23	32	<1
LU48 150 S	0.4	30	<1	17	<1	119	<1	<5	21	<1
LU48 200 S	1.3	130	<1	84	<1	272	<1	34	92	<1
LU48 250 S	1.0	140	<1	62	<1	132	<1	30	76	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 12 of 19

			D.I	5	Di	D I	01	0	0	
Element			Pd MMI M5	Pr MMI M5	Pt	Rb MMI M5			Sm MMI M5	Sn MMI M5
Method Det Lim	0.1	10	101101-1013	1011011-1013	1011011-1013	5	1011011-1013	5	1	1011011-1013
Units	ppm	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
LU48 300 S	0.3	70	<1	30	<1	222	<1	8	38	<1
LU5250 000 S	2.1	390	<1	56	<1	266	2	76	107	<1
LU5250 050 S	1.4	300	<1	57	<1	281	3	43	73	<1
LU5250 100 S	1.2	150	<1	61	<1	106	<1	26	53	<1
LU5250 150 S	2.0	260	<1	59	<1	174	<1	68	72	<1
LU5250 200 S	0.6	400	<1	52	<1	127	1	22	61	<1
LU5250 250 S	1.5	90	<1	78	<1	278	1	53	105	<1
LU5250 300 S	2.2	160	<1	66	<1	266	<1	39	72	<1
LU5250 350 S	5.9	170	<1	7	<1	229	<1	12	6	2
LU5250 400 S	2.1	710	<1	29	<1	180	<1	25	27	<1
LU49 050 N	3.8	380	<1	35	<1	326	<1	23	32	<1
LU49 100 N	2.9	310	<1	25	<1	325	<1	17	23	<1
LU49 150 N	1.3	210	<1	33	<1	191	<1	26	36	<1
LU49 000 S	5.2	390	<1	15	<1	308	<1	17	16	<1
LU49 050 S	2.8	130	<1	7	<1	389	<1	11	5	1
LU49 100 S	1.1	240	<1	28	<1	304	<1	21	27	<1
LU49 150 S	0.8	100	<1	19	<1	257	<1	12	23	<1
LU49 250 S	0.2	90	<1	70	<1	123	<1	58	106	<1
LU48 200 N	2.3	190	<1	10	<1	186	<1	20	10	<1
LU48 250 N	0.2	140	<1	12	<1	181	<1	32	17	<1
LU5300 000 S	2.9	380	<1	45	<1	226	2	68	80	<1
LU5300 050 S	3.8	100	<1	135	<1	363	1	203	149	<1
LU5300 100 S	3.8	210	<1	15	<1	176	<1	20	14	<1
*Rep L5150 050 N	4.8	160	<1	28	<1	213	<1	24	28	<1
*Rep Baseline L5600	11.6	210	<1	10	<1	124	<1	15	9	<1
*Rep Baseline 4450	1.9	20	<1	11	<1	175	<1	18	12	<1
*Rep L4800 300 S	1.7	190	<1	8	<1	234	<1	17	7	2
*Rep Baseline 5100	5.8	270	<1	12	<1	275	<1	17	12	<1
*Rep L5200 150 S	0.3	90	<1	60	<1	215	<1	51	74	<1
*Rep LU5250 100 S	1.5	150	<1	54	<1	112	<1	24	46	<1
*Rep LU5250 300 S	2.0	150	<1	68	<1	262	<1	39	74	<1
*Rep LU5300 100 S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std MMISRM16	0.2	130	23	3	<1	284	<1	9	6	<1
*Std AMIS0169	2.0	120	<1	108	<1	230	<1	53	65	<1
*Std MMISRM18	0.4	370	14	4	6	147	<1	<5	6	<1
*Blk BLANK	<0.1	<10	<1	<1	<1	<5	<1	<5	<1	<1
*BIk BLANK	<0.1	<10	<1	<1	<1	<5	<1	<5	<1	<1
*BIk BLANK	<0.1	<10	<1	<1	<1	<5	<1	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 13 of 19

Element	Sr	Та	Tb	Те	Th	Ti	TI	U	W	Y
Method	10		11111111111	10		CIVI-IIVIIVI 2	IVIIVII-IVI5	1011011-1015	1	IVIIVII-IVI5
Det.Lim.	ppb	npb	npb	ppb	o.o	nnb	0.5 ppb	nnb	npb	nnb
1 5150 050 N	570	۶۲۶ ۲۱	۶۴۶ ۸	۶۴۶ د10	46.1	1/10	<0.5	1/	2	110
L 5150 100 N	230	<1	7	<10	23.0	518	-0.0	13	<1	244
L 5150 150 N	180	<1	4	<10	23.3	025	<0.5	11	<1	106
L 5150 200 N	2820	<1		<10	32.6	736	<0.5	88	8	158
L 5150 250 N	930	<1	10	<10	40.9	337	-0.0 0.8	90	4	317
L 5150 200 N	440	<1	5	<10	7 0.3	833	0.0	70		95
L 5150 350 N	310	<1	16	<10	11/	410	1.9	203	0	607
L 5150 050 N	550	<1	2	<10	24.4	2730	<0.5	200		1007
15150 100 S	210	<1	2	<10	27.7	1300	<0.5	11		67
15150 150 S	480	<1	2	<10	27.0	1400	<0.5	0	<1	68
15150 200 8	2510	<1	2	<10	27.0	920	<0.5	3	<1	121
15150 200 3	2010	<1	7	<10	20.9	120	 1.0 	20	<1	255
15150 200 8	1050	<1	24	<10	20.0	604	1.4	257	~ 1	011
15150 300 3	F20	<1	24	<10	22.0	1000	-0.5	307		110
15150 400 S	1050	<1	10	<10	23.0	507	<0.5	53	<1	310
Baseline L 5400	570	<1	5	<10	32.9	527	<0.5	41	1	171
Baseline L5400	100	<1	0	<10	62.2	1490	<0.5 0.5	41	1	171
Baseline L 5450	190	<1	0	<10	14.2	515	-0.5	10	Z	100
Baseline L5500	240	<1	0	<10	14.3	1100	<0.5	0	- 1	233
Baseline L5550	300	<1	2 1	<10	14.4	1240	<0.5	0	-1	10
Baseline L5000	1100	<1	0	<10	21.2	1420	<0.5	16	~1	942
	020	<1	0	<10	21.2	702	<0.5	10		210
L4900 000 N	920	<1	2	<10	22.0	195	<0.5	9	-1	1130
L4900 150 N	2000	<1	5	<10	43.3	652	<0.0	100	<1	100
L4900 200 N	200	<1	3	<10	102	561	0.0	12		60
L4900 250 N	350	<1	3	<10	30.0	763	<0.5	12	2	70
Baseline 4400	4500	<1	22	<10	37.3	16	-0.5	7/0	<1	090
Baseline 4450	1460	<1	22	<10	17.6	813	<0.5	38	-1	77
Baseline 4430	640	<1	2	<10	17.0	1310	-0.J	27	2	56
Baseline 4550	230	<1	2	<10	36.8	936	0.0	27	<1	90
Baseline 4600	350	<1	3	<10	21.7	478	<0.5	15	<1	80
Baseline 4650	160	<1	3	<10	33.0	334	<0.0	23	<1	102
Baseline 4700	1780	<1	11	<10	46.6	271	-0.0	279	<1	423
Baseline 4750	2800	<1	10	<10	36.6	50	<0.5	269	<1	445
Baseline 4800	180	<1	3	<10	30.4	1240	<0.5	14	1	81
Baseline 4850	730	<1	3	<10	24.6	1490	<0.5	11	2	65
1 4900 050 S	190	<1	<1	<10	18.9	3410	<0.5	7	1	27
14900 100 S	110	<1	3	<10	41.3	1590	<0.5	17	2	79
L 4900 150 S	1100	<1	16	<10	35.8	277	-0.0 <0.5	30	<1	510
1 4900 200 S	180	<1	10	<10	46 3	1360	<0.5	12	1	7/
1 4900 250 S	430	ا ج ح 1	2	<10	41 0	2020	<0.5 <0.5	12	2	57
L4900 300 S	180	<1	2	<10	46.1	1460	<0.5	12	2	56
L4000 350 S	550	<1	2	<10	76.7	1550	-0.5 <0.5	17	2	71
L 1000 000 0	550	1	5	-10	10.1	1550	-0.0	10	2	11

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 14 of 19

		1 · · ·								
Element	Sr	Та	Tb	Те	Th	Ti	TI	U	W	Y
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	10 nnh	nnh	nnh	nnh	0.5 nnh	3 nnh	0.5 nnh	l nnh	nnh	C nnh
Units	420	-1	2	<10	07.0	2020	20.5	10	200	20 70
14900 400 3	790	<1	1	<10	07.0	1710	<0.5	40		7 Z 5 1
L4800 050 S	760	<1	5	<10	17.0	1/10	<0.5	10	~1	120
L4800 100 S	570	<1	5	<10	44.2	1100	<0.5	10	2	130
L4800 150 S	570	>	2	<10	41.3	2380	<0.5	9	1	49
L4800 200 S	550	< 	24	<10	82.5	1640	<0.5	443	2	806
L4800 250 S	450	<1	1	<10	33.4	3080	<0.5	14	2	33
L4800 300 S	1040	<1	1	<10	27.9	3920	<0.5	19	1	28
L4800 350 S	3870	<1	3	<10	12.8	87	<0.5	1070	<1	117
L4800 050 N	1740	<1	10	<10	13.8	278	<0.5	24	<1	317
L4800 100 N	150	<1	2	<10	23.1	920	<0.5	9	<1	50
L4800 150 N	520	<1	2	<10	38.0	2160	0.5	12	1	41
L4800 200 N	260	<1	6	<10	41.3	736	1.0	11	2	169
L4800 250 N	300	<1	11	<10	29.1	548	0.8	16	<1	306
Baseline 4900	670	<1	3	<10	28.0	2570	<0.5	12	2	89
Baseline 4950	1410	<1	4	<10	25.3	751	<0.5	20	<1	121
Baseline 5000	2240	<1	18	<10	28.7	50	<0.5	158	<1	700
Baseline 5050	2000	<1	19	<10	40.9	183	<0.5	93	<1	616
Baseline 5100	210	<1	2	<10	44.4	978	<0.5	12	<1	45
Baseline 5150	980	<1	2	<10	22.0	869	<0.5	5	<1	55
Baseline 5200	2370	<1	18	<10	22.9	36	0.7	790	<1	1030
Baseline 5250	170	<1	4	<10	28.9	598	<0.5	18	1	105
Baseline 5300	3310	<1	1	<10	23.2	822	<0.5	30	<1	40
Baseline 5350	2430	<1	2	<10	16.0	257	<0.5	12	<1	64
L5200 000 S	350	<1	19	<10	157	649	1.5	289	18	545
L5200 050 S	420	<1	27	<10	65.7	447	1.5	299	11	981
L5200 100 S	260	<1	8	<10	78.8	737	0.6	138	9	239
L5200 150 S	940	<1	10	<10	38.3	138	0.7	687	1	419
L5200 200 S	370	<1	2	<10	23.8	2020	<0.5	18	1	56
L5200 250 S	1340	<1	2	<10	13.2	461	<0.5	176	<1	65
L5200 300 S	860	<1	13	<10	137	531	1.4	119	7	383
L5200 350 S	160	<1	7	<10	61.9	703	0.6	28	1	212
L5200 400 S	710	<1	2	<10	28.9	2030	<0.5	17	<1	51
L5200 450 S	830	<1	2	<10	29.2	1710	<0.5	32	1	68
L5200 500 S	870	<1	10	<10	87.7	836	<0.5	291	1	311
L5200 550 S	330	<1	4	<10	79.6	2370	<0.5	74	3	117
L5200 600 S	1340	<1	18	<10	39.1	305	<0.5	244	<1	607
LU48 050 N	910	<1	4	<10	63.6	786	0.9	22	1	102
LU48 000 S	980	<1	9	<10	25.0	950	<0.5	45	<1	298
LU48 050 S	580	<1	2	<10	22.2	1750	<0.5	14	1	62
LU48 100 S	550	<1	4	<10	50.9	1640	<0.5	68	2	109
LU48 150 S	1880	<1	2	<10	11.0	44	<0.5	734	<1	94
LU48 200 S	1500	<1	12	<10	67.1	334	<0.5	380	<1	376
LU48 250 S	2010	<1	11	<10	97.8	97	<0.5	560	<1	370

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 15 of 19

Element	Sr	Та	Tb	Те	Th	Ti	TI	U	W	Y
Method	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	nnh	nnh	l nnh	nnh	0.5 nnh	3 nnh	0.5 nnh	l nnh	1 nnh	C nnh
	2000	hhn	- ppp	440	20 F	odd 22	-0 F	045	ppp	040
	1680	<1	6	<10	32.5	21	<0.5	315	<1	210
LU5250 000 S	430	<1	20	<10	65.7	464	0.9	259	8	628
LU5250 050 S	260	<1	11	<10	45.0	367	0.9	144	4	282
LU5250 100 S	180	<1	6	<10	53.2	893	<0.5	24	4	166
LU5250 150 S	280	<1	12	<10	211	666	<0.5	155	<1	231
LU5250 200 S	1080	<1	8	<10	163	690	0.7	443	2	161
LU5250 250 S	2100	<1	14	<10	57.2	268	2.0	176	6	435
LU5250 300 S	600	<1	9	<10	133	563	0.8	170	2	303
LU5250 350 S	420	<1	<1	<10	21.6	3360	<0.5	7	2	29
LU5250 400 S	130	<1	4	<10	33.7	633	0.9	13	2	95
LU49 050 N	170	<1	4	<10	56.4	746	0.8	17	<1	91
LU49 100 N	530	<1	3	<10	52.3	536	<0.5	19	1	81
LU49 150 N	450	<1	5	<10	45.1	792	<0.5	161	1	142
LU49 000 S	110	<1	2	<10	59.3	911	0.9	20	1	48
LU49 050 S	490	<1	<1	<10	30.7	2950	<0.5	18	3	18
LU49 100 S	330	<1	4	<10	38.2	650	0.5	19	<1	86
LU49 150 S	1310	<1	3	<10	36.1	498	<0.5	214	<1	90
LU49 250 S	950	<1	14	<10	45.2	82	0.8	1210	<1	402
LU48 200 N	320	<1	2	<10	21.2	1510	<0.5	13	1	45
LU48 250 N	5160	<1	3	<10	38.8	33	<0.5	148	<1	73
LU5300 000 S	530	<1	15	<10	73.0	423	1.2	234	7	469
LU5300 050 S	370	<1	23	<10	292	427	1.9	259	18	819
LU5300 100 S	110	<1	2	<10	26.6	1090	<0.5	15	1	56
*Rep L5150 050 N	580	<1	4	<10	45.4	1390	<0.5	13	2	123
*Rep Baseline L5600	260	<1	1	<10	14.5	1330	<0.5	8	<1	42
*Rep Baseline 4450	1660	<1	2	<10	16.1	836	<0.5	38	<1	74
*Rep L4800 300 S	970	<1	1	<10	28.3	3690	<0.5	19	1	28
*Rep Baseline 5100	210	<1	2	<10	42.9	948	<0.5	11	<1	44
*Rep L5200 150 S	1000	<1	10	<10	33.9	123	0.8	681	<1	407
*Rep LU5250 100 S	220	<1	6	<10	47.8	1020	<0.5	20	4	144
*Rep LU5250 300 S	590	<1	9	<10	128	536	0.7	174	1	318
*Rep LU5300 100 S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std MMISRM16	490	<1	<1	<10	24.5	12	<0.5	43	<1	11
*Std AMIS0169	90	<1	6	<10	77 1	373	1.3	25	1	123
*Std MMISRM18	1150	<1	<1	<10	22.7	7	<0.5	23	<1	0
*BIK BI ANK	<10	<1	<1	<10	<0.5	<3	<0.5	<1	<1	<5
*BIK BI ANK	<10	<1	<1	<10	<0.5	< 3	<0.5	<1	<1	-0
*BIK BLANK	~10	~1 ~1	-1	<10	-0.5 -0.5	-5	-0.5 -0.5	-1	-1	<5
	~10	21		~10	~0.0	5	~0.0	~1	~1	~0

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms</u> and <u>conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 16 of 19

Element	Yb	Zn	Zr
Method	MMI-M5	MMI-M5	MMI-M5
Det.Lim.	ו dag	20 ppb	b
1 5150 050 N	8	80	50
L 5150 100 N	12	50	83
L 5150 150 N	7	160	00
L 5150 200 N	14	40	39
L 5150 250 N	21	400	32
L 5150 200 N	7	580	60
L 5150 350 N	15	1410	36
1 5150 050 N	43	100	44
15150 100 S	5	130	60
1 5150 150 S	4	100	33
15150 200 S	10	1160	14
1 5150 250 S	27	70	19
15150 300 S	55	30	40
1 5150 350 S	3	60	82
15150 400 S	15	30	37
Baseline I 5400	13	60	69
Baseline L5450	11	60	110
Baseline L5500	15	60	45
Baseline L5550	4	120	77
Baseline L5600	4	100	96
Baseline L5650	15	90	72
L4900 050 N	4	20	23
L4900 100 N	71	80	21
L4900 150 N	7	60	75
L4900 200 N	4	40	58
L4900 250 N	6	60	47
Baseline 4400	66	50	25
Baseline 4450	6	250	29
Baseline 4500	4	870	50
Baseline 4550	6	120	141
Baseline 4600	6	160	50
Baseline 4650	8	80	48
Baseline 4700	26	60	25
Baseline 4750	30	60	15
Baseline 4800	7	80	67
Baseline 4850	4	70	59
L4900 050 S	2	350	62
L4900 100 S	7	80	72
L4900 150 S	27	50	17
L4900 200 S	6	110	67
L4900 250 S	4	40	60
L4900 300 S	4	170	63
L4900 350 S	5	70	78

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms</u> and <u>conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 17 of 19

	1		
Element		∠n	
Method Dat Line	1	20	1011011-1015
Det.LIM.	daa	ppb	daa
1 4900 400 S	6	120	46
1 4800 050 S	4	320	28
1 4800 100 S	10	40	48
1 4800 150 S	5	70	36
1 4800 200 S	50	60	100
1 4800 250 S	3	130	72
1 4800 300 S	3	50	69
1 4800 350 S	7	<20	11
L 4800 050 N	17	210	10
I 4800 100 N	4	150	84
L 4800 150 N	4	220	69
1 4800 200 N	9	50	79
I 4800 250 N	17	30	57
Baseline 4900	6	70	42
Baseline 4950	8	40	16
Baseline 5000	39	60	13
Baseline 5050	35	300	31
Baseline 5100	4	140	70
Baseline 5150	3	60	54
Baseline 5200	64	<20	7
Baseline 5250	8	40	63
Baseline 5300	4	<20	23
Baseline 5350	4	<20	23
L5200 000 S	42	770	37
L5200 050 S	70	230	20
L5200 100 S	17	860	36
L5200 150 S	27	100	29
L5200 200 S	4	210	41
L5200 250 S	5	70	22
L5200 300 S	24	140	22
L5200 350 S	13	90	61
L5200 400 S	4	180	74
L5200 450 S	5	60	65
L5200 500 S	17	30	30
L5200 550 S	8	50	58
L5200 600 S	30	40	18
LU48 050 N	8	80	39
LU48 000 S	17	290	23
LU48 050 S	4	220	42
LU48 100 S	7	140	44
LU48 150 S	6	<20	7
LU48 200 S	24	140	20
LU48 250 S	25	110	19

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms</u> and <u>conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 18 of 19

Member of the SGS Group (Société Générale de Surveillance)

Element	Yb	Zn	Zr
Method Dat Lim	1	20	5
Det.Lim.	dqq	ppb	dqq
1 U48 300 S	11	100	8
LU5250 000 S	51	410	30
LU5250 050 S	21	110	57
LU5250 100 S	11	40	75
LU5250 150 S	21	180	76
LU5250 200 S	12	30	22
LU5250 250 S	28	200	10
LU5250 300 S	21	90	47
LU5250 350 S	2	110	73
LU5250 400 S	6	90	45
LU49 050 N	7	100	64
LU49 100 N	5	40	51
LU49 150 N	11	60	58
LU49 000 S	4	250	84
LU49 050 S	2	180	54
LU49 100 S	7	40	53
LU49 150 S	6	20	11
LU49 250 S	30	<20	23
LU48 200 N	4	380	65
LU48 250 N	7	410	13
LU5300 000 S	38	550	31
LU5300 050 S	73	6400	52
LU5300 100 S	5	570	84
*Rep L5150 050 N	8	70	50
*Rep Baseline L5600	4	100	99
*Rep Baseline 4450	6	250	26
*Rep L4800 300 S	3	50	69
*Rep Baseline 5100	4	140	67
*Rep L5200 150 S	26	80	27
*Rep LU5250 100 S	9	40	79
*Rep LU5250 300 S	22	80	46
*Rep LU5300 100 S	N.A.	N.A.	N.A.
*Std MMISRM16	<1	210	13
*Std AMIS0169	10	200	48
*Std MMISRM18	<1	610	18
*BIk BLANK	<1	<20	<5
*BIk BLANK	<1	<20	<5
*BIK BLANK	<1	<20	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 1885 Leslie Street Toronto t(416) 445-5755 f(416) 445-4152 www.ca.sgs.com

Page 19 of 19