

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Snowfield-Brucejack 2010 Diamond Drill Report	TOTAL COST \$16,753,676.45
AUTHOR(S) Kenneth J. Konkin, P.Geo.	SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) # 10-0100270-	0419 YEAR OF WORK 2010
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S 4816372 - 7 December 2010, 4816559 - 8 December	<u>4816367 - 7 December 2010,</u> 2010
PROPERTY NAME Snowfield / Brucejack	
CLAIM NAME(S) (on which work was done) 509216, 509463, 509	9464, 509506
COMMODITIES SOUGHT Gold, Silver, Molybdenum, Coppe	er
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 104B179, 1	04B022, 104B104, 104B118, 104B173, 104B174, 104B193
MINING DIVISION Skeena	NTS 104B/9
LATITUDE <u>56</u> <u>0</u> <u>29</u> , LONGITUDE	,," (at centre of work)
OWNER(S) 1)0777666 BC Ltd.	. 2)
MAILING ADDRESS Suite 1400 - 999 West Hastings Street	
Vancouver, BC, V6C 2W2	
OPERATOR(S) [who paid for the work] 1) Silver Standard Resources Inc.	. 2)
MAILING ADDRESS Suite 1400 - 999 West Hastings Street	
Vancouver, BC, V6C 2W2	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure The area is underlain by Lower-Middle Jurassic Unuk	e, alteration, mineralization, size and attitude): River Formation, Hazelton Group; mafic volcanic
breccia, wackes, sandstone and andesitic lapilli tuffs w	vith varying degrees of sericitic and chloritic alteration.
Snowfield gold-molybdenum-copper mineralization occ	curs in a volcanic breccia in a 1,500m by 1,500m area.
Brucejack zones are epithermal quartz stockworks wi	th gold-silver mineralization.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 28925, 14672, 9568, 8420, 6066, 5958

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
			(incl. support)
GEOLOGICAL (scale, area)			
Bhoto interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			
Soil			
Silt			
Rock			
Other			
DRILLING			
(total metres; number of holes, size)			15.110.479.23
Core 50,942.78m, 122	Holes, NQ2, HQ, PQ		
Non-core			
RELATED TECHNICAL	A 400 a success		1 0 4 0 1 0 7 0 0
Sampling/assaying	34,190 samples		1,643,197.22
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST	16,753,676.45

SNOWFIELD-BRUCEJACK 2010 DIAMOND DRILL REPORT

SKEENA MINING DIVISION BRITISH COLUMBIA, CANADA NTS 104B/9E

Geographic Coordinates: 56°29' North Latitude, 130°12' West Longitude

Tenures: 509216, 509463, 509464 and 509506 Event Numbers: 4816367, 4816372, 4816559

Prepared For:

Silver Standard Resources Inc. (Operator) 0777666 BC Ltd. (Owner) Suite 1400-999 West Hastings Street Vancouver, B.C. V6C 2W2

BC Geological Survey Assessment Report 32074a

Prepared By: **Ken Konkin, P. Geo.**, **Geological Consultant** Submitted: February 28th 2011

Table of Contents

SUMMARY	v
INTRODUCTION	1
Location and Claim Description	4
Accessibility, Climate, Local Resources, Infrastructure and Physiography1	7
History2	3
REGIONAL GEOLOGICAL AND ECONOMIC SETTING	29
REGIONAL STRUCTURE	3
BRUCEJACK-SULPHURETS LOCAL GEOLOGY	4
Brucejack Local Structure	9
Brucejack Mineralization4	0
West Zone4	1
Bridge Zone4	.3
Galena Hill4	4
Shore Zone4	5
SG Zone4	6
Gossan Hill4	7
SNOWFIELD LOCAL GEOLOGY	8
Snowfield Deposit Type and Mineralization5	4
Snowfield Gold Zone5	5
Snowfield North Stockwork Zone5	5
EXPLORATION SUMMARY	8
DIAMOND DRILL PROGRAM AND RESULTS 6	0
SAMPLING METHOD AND APPROACH7	3

ADJACENT PROPERTIES	'4
MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES	'6 '6 '7
STATEMENT OF COST	7
INTERPRETATION AND CONCLUSIONS7	'8
RECOMMENDATIONS	'9
REFERENCES	3
STATEMENT OF QUALIFICATIONS	35

LIST OF FIGURES

FIGURE 1:	Property Location Map	5
FIGURE 2:	Mineral Claims Exploration Work Applied Map	10
FIGURE 3:	Mineral Claims as of 28 Feb. 2011	16
FIGURE 4:	Proposed Access Road Map	18
FIGURE 5:	Regional Geology NW B.C.	30
FIGURE 6:	Geology and Mineralized Showings Brucejack Lake	41

LIST OF TABLES

TABLE 1:	Original Mineral Claims Snowfield-Brucejack Project.	4
TABLE 2:	Mineral Claim Tenures When Assessment Work Applied	6

TABLE 3:	Mineral Claim Tenures 28 February 2011	.11
TABLE 4:	Drill Data Brucejack 2010 Drilling	.62
TABLE 5:	Drill Data Snowfield 2010 Drilling	.64
TABLE 6:	Summary of Drill Results 2010 Brucejack	.65
TABLE 7:	Summary of Drill Results 2010 Snowfield	.72
TABLE 8:	Summary of Costs	.78

LIST OF PHOTOGRAPHS

PHOTO 1:	Snowfield 2010 Camp	19
PHOTO 2:	Brucejack 2010 Camp	20
PHOTO 3:	Snowfield Zone View South	22
PHOTO 4:	Brucejack Lake View East	24
PHOTO 5:	Andesite flow Breccia	49
PHOTO 6:	Porphyritic Latite Crystal Tuff	50
PHOTO 7:	Layered Latite Crystal Tuff	50
PHOTO 8:	Metamorphosed Foliated Crystal and Ash Tuff	51
PHOTO 9:	Massive to Porphyritic Hypabyssal Andesite	52
РНОТО 10	: Sericite Altered Latite Tuff Fragments in Andesite	52
PHOTO 11	: Late Stage Massive to Porphyritic Andesite Dyke	53
РНОТО 12	: North Stockwork Zone	56
РНОТО 13	: Chalcopyrite in North Stockwork Zone	57
РНОТО 14	: Ptygmatic Folded Quartz Veinlets North Stockwork Zone	58

LIST OF APPENDICES

- APPENDIX I: Assay Methods
- APPENDIX II: Assayer Canada Check Assays
- APPENDIX III: CDN Lab Standards Certificates
- APPENDIX IV: ALS Chemex Assay Certificates
- APPENDIX V: Assays
- APPENDIX VI: Diamond Drill Hole Logs and Geological Code Description
- APPENDIX VII: Diamond Drill Hole Sections
- APPENDIX VIII: Statement of Costs
- APPENDIX IX: Exploration and Development Work / Expiry Date Change Event Detail
- APPENDIX X: Core Photos

SUMMARY

The Snowfield-Brucejack Lake Property is located in northwestern British Columbia approximately 65 km north-northwest of Stewart in the Sulphurets Mining District. The Eskay Creek high-grade Au-Ag mine operated by Barrick Gold is situated 20 km northwest of the claim group. Presently, access to the property is by helicopter. Exploration and Development Work assessment was applied to 160 mineral claims covering 63,270 hectares, they are in good standing until 2020 and 2021. Silver Standard Resources Inc. was the operator of the program, subsidiary 0777666 BC Ltd was the owner. The 2010 diamond drill program was designed to infill and expand the known gold-copper resources of the Snowfield Deposit, drill test several gold-silver occurrences near Brucejack Lake and expand the gold-silver mineralization discovered during the 2009 diamond drill program.

The project lies along the eastern edge of the Coast Range Mountains within the Stikine Terrane. The regional geology consists of Upper Triassic and Lower to Middle Jurassic volcanics, volcanoclastics and sediments of the Hazelton Group. These submarine rocks are intruded by intermediate and felsic Mesozoic hypabyssal intrusives and mafic Tertiary dykes and sills. The property geology is dominated by the upper sequence of the Unuk River Formation (Lower Jurassic) that consists of andesite tuffs and flows intercalated with felsic latite crystal and ash tuffs. Gold, copper and molybdenite was discovered on the property in the 1960's but it wasn't until 1980 when the first detailed exploration programs were initiated. The property was subsequently drilled throughout the 1980's and early 1990's. The majority or the work at Brucejack Lake concentrated on the Shore and West Zone. A resource estimate completed by Pincock, Allen and Holt in 2001 estimated the combined Brucejack Lake zones contain 1,135,800 tons averaging 0.371 ounces per ton gold and 15.1 ounces per ton silver in all categories. The Snowfield Zone was first drilled in 1968 but by 1993 only ten diamond drill holes were completed within and near to the Snowfield area. Very little work was done at Snowfield until Silver Standard Resources completed its' first diamond drill program in 2006. By the end of 2009, the combined published resource for the Snowfield and Brucejack Lake deposits were estimated to contain 2.49 billion tons of material containing 41.9 million ounces of gold and 240.2 million ounces of silver in all categories utilizing a 0.5 g/t gold equivalent cutoff.

During the summer of 2010, Silver Standard Resources completed 122 NQ2, HQ and PQ diamond drill holes, totaling 50,942.78 m, on tenures 509216, 509463, 509464 and 509506 at the Snowfield Gold Zone and Brucejack Lake Zones. The drill core was logged and sampled; 34,190 split core samples were shipped to ALS-Chemex in Terrace B.C. for geochemical analysis and gold fire-assays. The program was successful in expanding and infilling the Snowfield resource as well as discovering high-grade bonanza grade gold-silver mineralization hosted within broad low-grade, extensive quartz veinlet narrow-sheeted veins and stockwork at Brucejack Lake. Subsequent to the 2010 program the Snowfield and Brucejack properties were

vi

sold to Pretium Resources Inc. subsidiary 0890693 BC Ltd. In February 2011 Pretium Resources announced new resource estimates for Snowfield and Brucejack:

Category	Tonnes	Gold	Silver	Gold	Silver
	(millions)	(g/t)	(g/t)	('000 oz)	('000 oz)
Measured	11.7	2.25	75.56	846	24,423
Indicated 285.3		0.80	9.57	7,338	87,784
M & I 297.0		0.86	12.17	8,184	116,205
Inferred 542.5		0.72	8.67	12,558	151,220

Brucejack Resource Summary February 2011

Cutoff grade 0.30 grams of gold-equivalent.

Snowfield Resource Summary February 2011

Category	Tonnes	Gold	Silver	Copper	Moly	Rhen	Gold	Silver	Copper	Moly	Rhen
	(millions)	(g/t)	(g/t)	%	(ppm)	(ppm)	('000	('000	(billion	(millions	(million
							oz)	oz)	lbs)	lbs)	oz)
Measured	189.8	0.82	1.69	0.09	97.4	0.57	4,983	10,332	0.38	40.8	3.5
Indicated	1,180.3	0.55	1.73	0.10	83.6	0.50	20,934	65,444	2.60	217.5	19.0
M & I	1,370.1	0.59	1.72	0.10	85.5	0.51	25,917	75,776	2.98	258.3	22.5
Inferred	833.2	0.34	1.90	0.06	69.5	0.43	9,029	50,964	1.10	127.7	11.5

Cutoff grade 0.30 grams of gold-equivalent (Moly = molybdenum, Rhen = rhenium)

Brucejack Lake Zones include: West, Shore, Bridge, Valley of Kings, Waterloo, Gossan, Galena Hill, Hanging Glacier and Golden Marmot Zones. The Electrum Zone has been amalgamated with the Bridge Zone as mineralization appears to be linked.

A follow-up diamond drill program of approximately 125 to 150 diamond drill holes of HQ and NQ2 core totaling 60,000 meters is recommended for 2011. Some minor PQ drilling is also recommended. Additional recommended work for the 2011 field season is prospecting, mapping, surface-sampling and saw-cut channel sampling. The bulk of the recommended work will be continued diamond drilling to further infill and expand the Snowfield deposit to the south and east and to continue drill testing the numerous gold-silver systems at Brucejack Lake. The proposed exploration program is estimated to cost \$18 million dollars and will require approximately five months to complete. The recommendations and conclusions are based upon the results and observations contained within this report.

February 28, 2011

INTRODUCTION

During the summer of 2010, Silver Standard Resources completed two diamond drill programs from camps located at Snowfield and Brucejack Lake. The Snowfield program successfully expanded the disseminated gold-copper-molybdenum mineralization with 17,967 m of drilling. Drilling at Brucejack Lake's exploration program totaled 32,963 m. Approximately 119,040 man-hours of work were logged during the 2010 field program. The results were very encouraging as several new gold-silver zones were discovered at Brucejack Lake and the Snowfield Au-Ag-Cu-Mo resource was significantly increased in all categories. A new resource estimate was completed by P&E Mining Consultants (February 2011), they estimate that the combined Snowfield and Brucejack Lake zones contain 55.8 million ounces of gold in all categories and 394.1 million ounces of silver in all categories, at a cutoff grade of 0.3 grams gold-equivalent per tonne.

The original claims were staked by Granduc Mines after they discovered numerous gold-silver vein systems near Brucejack Lake in 1959. The Brucejack-Snowfield property was initially drilled in the late 1960's but the majority of historical drilling was completed between 1986 and 1993 by Newhawk Gold Mines Ltd. in joint venture with Granduc Mining Corporation. Silver Standard purchased Newhawk Gold Mines in 1999 and has drilled the Snowfield area for the past four summers from 2006 to 2009. Numerous zones near Brucejack Lake were also drilled by Silver Standard in 2009. Both 2009 drill programs were very successful in further defining and extending known bulk-

1

tonnage targets as well as discovering bonanza high-grade Au-Ag mineralization at the Valley of Kings near Brucejack Lake. Based on the success of the 2009 drilling programs, further drilling was recommended for 2010 at Snowfield and Brucejack Lake.

The Snowfield Zone resource estimate (Pretium Resources Inc. News Release 11-09, 23 February 2011) is 25.9 million ounces gold, 75.8 million ounces silver, 2.98 billion pounds copper, 258.3 million pounds molybdenum and 22.5 million ounces rhenium in Measured and Indicated resources with 9.0 million ounces gold, 51.0 million ounces silver, 1.10 billion pounds copper, 127.7 million pounds molybdenum and 11.5 million ounces rhenium Inferred resources; at a 0.3 grams gold-equivalent cutoff.

The Brucejack Zones resource estimate (Pretium Resources Inc. News Release 11-08, 22 February 2011) for nine zones is 8.2 million ounces gold and 116.1 million ounces silver Measured and Indicated resources with 12.6 million ounces gold and 151.2 million ounces silver Inferred resources; at a 0.30 grams gold-equivalent cutoff.

At Snowfield, the mineralized body of quartz stockwork and a silica flooded zone extends for over a km north of the original Snowfield discovery. The Stockwork Zone spans at least 600 m east-west and is over 730 m thick at the deepest point. The mineralization remains partially open to the south and east. Drilling in 2010 increased the extent of the copper-gold enriched area in the southeast portion of the Snowfield. It is recommended that the numerous Brucejack gold-silver targets with significant low-

2

grade bulk tonnage Au-Ag potential and high-grade Au-Ag bonanza grades be targeted for further drilling in 2011.

This assessment report is based upon the results obtained from the drilling and surface mapping program as well as a review of geological reports, maps and documents as described in the sections entitled History and References, however, the author cannot verify the standards and sampling procedures carried-out in exploration programs previous to 2006. The author did however personally plan, supervise and conduct the trench sampling and drilling programs from 2006 to 2010. The conclusions and recommendations found in this report are largely based upon results obtained during the 2010 exploration program. The geologists and field assistants conducted the field work in a very efficient and professional manner. The work described in this report is considered to be of high-quality.

Location and Claim Description

The property area is located 65 km north-northwest of Stewart British Columbia along the eastern limit of the Coast Mountain Range and is centered at coordinates 56°29' north latitude and 130°12' west longitude (Figure 1). The claims lie within the Sulphurets District on NTS map sheet 104/B, 20 km southeast of Barrick's Eskay Creek deposit. In 1999, Silver Standard Resources purchased Newhawk Gold Mines Ltd., the property owner at that time. The original property consisted of seven claims totaling 4466.7 hectares (Table I).

Tenure	Туре	Hectares	Мар	Expiry Date	Status	Owner
Number						
500216	Mineral	1267 425	104B	2021/Jap/31	Good	0777666
509210	WIIIIlerai	1207.425	1040	2021/341/31	Guu	B.C. LTD.
500223	Mineral	128 623	104B	2021/Jan/31	Good	0777666
509225	Willielai	420.023	1040	2021/341/31	3000	B.C. LTD.
500307	Mineral	375 147	104B	2021/Jan/31	Good	0777666
509597	Willielai	575.147	104D	2021/041/01	0000	B.C. LTD.
509400	Mineral	178 632	104B	2021 Jan/31	Good	0777666
303400	Mineral	170.032	1040	2021301/01	0000	B.C. LTD.
500463	Mineral	182 571	104B	2021/Jan/31	Good	0777666
509405	Willielai	402.071	1040	2021/341/31	3000	B.C. LTD.
500464	Minoral	1111 526	104P	2021/Jap/21	Good	0777666
509404	WIIIIlerai	1144.520	1040	2021/341/31	Guu	B.C. LTD.
500506	Mineral	580 778	104P	2021/Jan/31	Good	0777666
209200	winteral	JU9.110	1040	2021/Jd1//31	Guu	B.C. LTD.

Table I: Original Mineral Claims Snowfield-Brucejack Project

Figure 1: Location Map

Additional acquisitions and staking has increased the property since 2008. Table 2 lists the mineral claim tenures that assessment credits were applied to while Figure 2 shows the tenures that assessment credits were applied to.

Table 2: Mineral Claim Tenures Assessment Work Applied

Tenure	Claim	Mineral Claim Owner	Мар	Issue	Good To	Area (ha)
Number	Name	At Assessment	Number	Date	Date	
		Work Filing				
592320	BOWSER 1	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	429.5278
592321	BOWSER 2	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	429.3846
592322		0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	429.2431
592324	BOWSER 4	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	429.1018
592325	BOWSER 5	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.9603
592326	BOWSER 6	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.8189
592327	BOWSER 7	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.6771
592328	BOWSER 8	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.5577
592329	BOWSER 9	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.4168
592330	BOWSER 10	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.2762
592331	BOWSER 11	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	445.98
592332	BOWSER 12	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.3458
592333	BOWSER 13	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	446.4559
592334	BOWSER 14	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	447.2651
592335	BOWSER 15	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	446.3521
592336	BOWSER 16	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	446.3558
592337	BOWSER 17	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.583
592338	BOWSER 18	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	446.4954
592339	BOWSER 19	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	428.4731
592341	BOWSER 19	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	446.7647
592342	BOWSER 20	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	429.2256
592343	BOWSER 21	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	447.4478
592344	BOWSER 22	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	447.7652
592345	BOWSER 23	0686985 BC Ltd	104A	2008/oct/01	2020/dec/15	376.5821
592439	A1	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	446.9029
592440	A2	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	446.3235
592441	A3	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	446.3527
592442	A4	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	446.2163
592443	A5	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	446.2019
592444	A6	0686985 BC Ltd	104A	2008/oct/02	2020/dec/15	178.4666

593511	B1	0686985 BC Ltd	104A	2008/oct/28	2020/dec/15	429.7263
593512	B2	0686985 BC Ltd	104A	2008/oct/28	2020/dec/15	429.7856
593513		0686985 BC Ltd	104A	2008/oct/28	2020/dec/15	447.712
593514		0686985 BC Ltd	104A	2008/oct/28	2020/dec/15	179.076
593515		0686985 BC Ltd	104A	2008/oct/28	2020/dec/15	71.611
594640	BOWSER 24	0686985 BC Ltd	104A	2008/nov/20	2020/dec/15	142.7989
594641	BOWSER 25	0686985 BC Ltd	104A	2008/nov/20	2020/dec/15	142.9176
594650		0686985 BC Ltd	104A	2008/nov/21	2020/dec/15	107.4081
608123	KNIPPLE	0686985 BC Ltd	104A	2009/jul/17	2020/dec/15	358.0662
685664	WHATHAPPENED	0686985 BC Ltd	104B	2009/dec/15	2020/dec/15	429.5086
685666	WHATHAPPENED2	0686985 BC Ltd	104B	2009/dec/15	2020/dec/15	35.7826
509216		0777666 BC Ltd	104B	2005/mar/18	2021/jan/31	1267.425
509223		0777666 BC Ltd	104B	2005/mar/18	2021/jan/31	428.623
509397		0777666 BC Ltd	104B	2005/mar/22	2021/jan/31	375.147
509400		0777666 BC Ltd	104B	2005/mar/22	2021/jan/31	178.632
509463		0777666 BC Ltd	104B	2005/mar/23	2021/jan/31	482.571
509464		0777666 BC Ltd	104B	2005/mar/23	2021/jan/31	1144.526
509506		0777666 BC Ltd	104B	2005/mar/23	2021/jan/31	589.778
553594	FREEZE 1	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.4264
553595	FREEZE 2	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.426
553598	FREEZE 3	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.4255
553599	FREEZE 4	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	429.5045
553601		0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.1852
553602		0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.1836
553603	FREEZE 7	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	447.1816
553604	FREEZE 8	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	429.2217
553605	FREEZE 9	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	357.5722
553607	FREEZE 10	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.9392
553609	FREEZE 11	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.9369
553610	FREEZE 12	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.9391
553612	FREEZE 13	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.8994
553613	FREEZE 14	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.6947
553614	FREEZE 15	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.6918
553615	FREEZE 16	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.6611
553616	FREEZE 17	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.654
553617	FREEZE 18	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.6493
553619	FREEZE 19	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.5916
553621	FREEZE 20	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.6179
553623	FREEZE 21	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	446.4106
553624	FREEZE 22	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.575
553625	FREEZE 22	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.514
553626	FREEZE 23	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.3881
553628	FREEZE 24	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.4356
553629	FREEZE 25	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.3738

553630	FREEZE 26	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.3909
553631	FREEZE 27	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	428.3242
553632	FREEZE 28	0777666 BC Ltd	104A	2007/mar/05	2021/jan/31	392.6073
553704	MELT 1	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	428.1858
553707	MELT 2	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	428.1826
553708	MELT 3	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	446.0081
553711	MELT 4	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	445.7883
553713	MELT 5	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	427.9709
553716	MELT 6	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	427.9716
553718	MELT 7	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.9791
553719	MELT 8	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	427.9726
553720	MELT 9	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.9767
553721	MELT 10	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.9783
553722	MELT 11	0777666 BC Ltd	104B	2007/mar/06	2021/jan/31	445.528
553723	MELT 12	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.9746
553724	MELT 13	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.3251
553725	MELT 14	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.9747
553726	MELT 15	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.9706
553727	MELT 16	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	428.1063
553728	MELT 17	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.9293
553729	MELT 18	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.9279
553730	MELT 19	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.9266
553731	MELT 20	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.757
553732	MELT 21	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.5298
553733	MELT 22	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.6742
553734	MELT 23	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.7113
553735	MELT 24	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	427.7501
553736	MELT 25	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.603
553737	MELT 26	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	249.4603
553738	MELT 27	0777666 BC Ltd	104A	2007/mar/06	2021/jan/31	445.4029
608125	1	0777666 BC Ltd	104A	2009/jul/17	2020/dec/15	17.895
588361	JO-16	R. Kirkham	104A	2008/jul/16	2020/dec/15	447.7938
588362	JO-17	R. Kirkham	104A	2008/jul/16	2020/dec/15	412.0636
588364	VENUS-1	R. Kirkham	104A	2008/jul/16	2020/dec/15	447.3831
588365	JO-18	R. Kirkham	104A	2008/jul/16	2020/dec/15	447.3955
593446		R. Kirkham	104A	2008/oct/26	2020/dec/15	17.9316
593447	JO 1	R. Kirkham	104A	2008/oct/27	2020/dec/15	430.155
593449	JO 2	R. Kirkham	104A	2008/oct/27	2020/dec/15	447.895
593450	JO 3	R. Kirkham	104A	2008/oct/27	2020/dec/15	448.2607
593452	JO 1A	R. Kirkham	104A	2008/oct/27	2020/dec/15	17.9259
593455	JO 19	R. Kirkham	104A	2008/oct/27	2020/dec/15	376.4286
593501	JO-20	R. Kirkham	104A	2008/oct/28	2020/dec/15	447.7849
593505	JO-21	R. Kirkham	104A	2008/oct/28	2020/dec/15	448.0254
593507	JO-22	R. Kirkham	104A	2008/oct/28	2020/dec/15	447.896

593508	JO-23	R. Kirkham	104A	2008/oct/28	2020/dec/15	448.1529
593509	JO-24	R. Kirkham	104A	2008/oct/28	2020/dec/15	286.8121
593510	JO-25	R. Kirkham	104A	2008/oct/28	2020/dec/15	447.5908
594138		R. Kirkham	104A	2008/nov/11	2020/dec/15	215.1985
594139		R. Kirkham	104A	2008/nov/11	2020/dec/15	125.5322
594140		R. Kirkham	104A	2008/nov/11	2020/dec/15	143.4682
598759	JO-26	R. Kirkham	104A	2009/feb/05	2020/dec/15	447.8164
598760	JO-27	R. Kirkham	104A	2009/feb/05	2020/dec/15	447.8919
598761	JO-28	R. Kirkham	104A	2009/feb/05	2020/dec/15	71.6536
598764	JO-29	R. Kirkham	104A	2009/feb/05	2020/dec/15	447.0738
598765	JO-30	R. Kirkham	104A	2009/feb/05	2020/dec/15	142.9886
598766	VENUS-2	R. Kirkham	104A	2009/feb/05	2020/dec/15	447.1307
598771	JO-31	R. Kirkham	104A	2009/feb/05	2020/dec/15	232.8145
604733	ZORAN 1	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	446.1295
604734	ZORAN 2	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	410.8676
604735	ZORAN 3	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	410.3631
604737	ZORAN 4	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	357.6116
604741	MARIJANA 1	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	429.0866
604742	MARIJANA 2	Silver Standard Resources Inc.	104A	2009/may/20	2020/dec/15	411.1215
604743	MARIJANA 3	Silver Standard Resources Inc.	104B	2009/may/20	2020/dec/15	428.9454
604744	MARIJANA 4	Silver Standard Resources Inc.	104B	2009/may/20	2020/dec/15	446.7038
604784	ZORAN 5	Silver Standard Resources Inc.	104A	2009/may/21	2020/dec/15	268.118
604785	ZORAN 6	Silver Standard Resources Inc.	104A	2009/may/21	2020/dec/15	89.4636
604787	ZORAN 7	Silver Standard Resources Inc.	104B	2009/may/21	2020/dec/15	429.2699
637223	CASTLE 1	Silver Standard Resources Inc.	104A	2009/sep/19	2021/jan/31	446.6494
637243	CASTLE 2	Silver Standard Resources Inc.	104A	2009/sep/19	2021/jan/31	446.4151
637244	CASTLE 3	Silver Standard Resources Inc.	104A	2009/sep/19	2021/jan/31	446.2254
637263	CASTLE 4	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	428.6416
637264		Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	446.2683
637283	CASTLE 6	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	410.7792
637286	CASTLE 7	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	446.571
637287	CASTLE 8	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	428.4405
637288	CASTLE 9	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	357.0278
637289	CASTLE 10	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	447.0176
637303	CASTLE 11	Silver Standard Resources Inc.	104B	2009/sep/19	2021/jan/31	125.1242
637304	CASTLE 12	Silver Standard Resources Inc.	104A	2009/sep/19	2021/jan/31	268.1372
392438	TC 13	St. Andrews Goldfields Ltd.	104B	2002/mar/21	2021/jan/31	500
392439	TC 14	St. Andrews Goldfields Ltd.	104B	2002/mar/21	2021/jan/31	500
566735	ST ANDREW 1	St. Andrews Goldfields Ltd.	104B	2007/sep/26	2021/jan/31	160.6031
566739	ST ANDREW 2	St. Andrews Goldfields Ltd.	104B	2007/sep/26	2021/jan/31	249.777
566751	ST ANDREW 3	St. Andrews Goldfields Ltd.	104B	2007/sep/26	2021/jan/31	17.8468
566752	ST ANDREW 4	St. Andrews Goldfields Ltd.	104B	2007/sep/26	2021/jan/31	17.8373
					Tota⊢ha:	63,270.6020

9

The Snowfield work was carried out on mineral claim tenure 509216 and the Brucejack work was carried out on mineral claim tenures 509463, 509464 and 509506. This assessment report reports work applied for assessment purposes in event numbers: 4816367, 4816372 and 4816559.

Subsequent to Silver Standard's 2010 exploration program additional claims were purchased by Silver Standard, extending ownership of claims east, 44 km, to Highway 37. The current (February 28, 2011) claim block includes 191 claims that total 78,747.3 hectares, listed in Table 3 and shown in Figure 3 map.

Tenure	Claim	Мар	Issue	Good To	Area (ha)
Number	Name	Number	Date	Date	
509216		104B	2005/mar/18	2021/jan/31	1267.425
509223		104B	2005/mar/18	2021/jan/31	428.623
509397		104B	2005/mar/22	2021/jan/31	375.147
509400		104B	2005/mar/22	2021/jan/31	178.632
509463		104B	2005/mar/23	2021/jan/31	482.571
509464		104B	2005/mar/23	2021/jan/31	1144.526
509506		104B	2005/mar/23	2021/jan/31	589.778
553594	FREEZE 1	104A	2007/mar/05	2021/jan/31	447.4264
553595	FREEZE 2	104A	2007/mar/05	2021/jan/31	447.426
553598	FREEZE 3	104A	2007/mar/05	2021/jan/31	447.4255
553599	FREEZE 4	104A	2007/mar/05	2021/jan/31	429.5045
553601		104A	2007/mar/05	2021/jan/31	447.1852
553602		104A	2007/mar/05	2021/jan/31	447.1836
553603	FREEZE 7	104A	2007/mar/05	2021/jan/31	447.1816
553604	FREEZE 8	104A	2007/mar/05	2021/jan/31	429.2217
553605	FREEZE 9	104A	2007/mar/05	2021/jan/31	357.5722
553607	FREEZE 10	104A	2007/mar/05	2021/jan/31	446.9392
553609	FREEZE 11	104A	2007/mar/05	2021/jan/31	446.9369

Table 3: Mineral Claim Tenures 28 February 2011

553610	FREEZE 12	104A	2007/mar/05	2021/jan/31	428.9391
553612	FREEZE 13	104A	2007/mar/05	2021/jan/31	428.8994
553613	FREEZE 14	104A	2007/mar/05	2021/jan/31	446.6947
553614	FREEZE 15	104A	2007/mar/05	2021/jan/31	446.6918
553615	FREEZE 16	104A	2007/mar/05	2021/jan/31	428.6611
553616	FREEZE 17	104A	2007/mar/05	2021/jan/31	446.654
553617	FREEZE 18	104A	2007/mar/05	2021/jan/31	428.6493
553619	FREEZE 19	104A	2007/mar/05	2021/jan/31	446.5916
553621	FREEZE 20	104A	2007/mar/05	2021/jan/31	428.6179
553623	FREEZE 21	104A	2007/mar/05	2021/jan/31	446.4106
553624	FREEZE 22	104A	2007/mar/05	2021/jan/31	428.575
553625	FREEZE 22	104A	2007/mar/05	2021/jan/31	428.514
553626	FREEZE 23	104A	2007/mar/05	2021/jan/31	428.3881
553628	FREEZE 24	104A	2007/mar/05	2021/jan/31	428.4356
553629	FREEZE 25	104A	2007/mar/05	2021/jan/31	428.3738
553630	FREEZE 26	104A	2007/mar/05	2021/jan/31	428.3909
553631	FREEZE 27	104A	2007/mar/05	2021/jan/31	428.3242
553632	FREEZE 28	104A	2007/mar/05	2021/jan/31	392.6073
553704	MELT 1	104A	2007/mar/06	2021/jan/31	428.1858
553707	MELT 2	104B	2007/mar/06	2021/jan/31	428.1826
553708	MELT 3	104B	2007/mar/06	2021/jan/31	446.0081
553711	MELT 4	104B	2007/mar/06	2021/jan/31	445.7883
553713	MELT 5	104B	2007/mar/06	2021/jan/31	427.9709
553716	MELT 6	104B	2007/mar/06	2021/jan/31	427.9716
553718	MELT 7	104A	2007/mar/06	2021/jan/31	445.9791
553719	MELT 8	104B	2007/mar/06	2021/jan/31	427.9726
553720	MELT 9	104A	2007/mar/06	2021/jan/31	427.9767
553721	MELT 10	104A	2007/mar/06	2021/jan/31	445.9783
553722	MELT 11	104B	2007/mar/06	2021/jan/31	445.528
553723	MELT 12	104A	2007/mar/06	2021/jan/31	445.9746
553724	MELT 13	104A	2007/mar/06	2021/jan/31	445.3251
553725	MELT 14	104A	2007/mar/06	2021/jan/31	445.9747
553726	MELT 15	104A	2007/mar/06	2021/jan/31	445.9706
553727	MELT 16	104A	2007/mar/06	2021/jan/31	428.1063
553728	MELT 17	104A	2007/mar/06	2021/jan/31	427.9293
553729	MELT 18	104A	2007/mar/06	2021/jan/31	427.9279
553730	MELT 19	104A	2007/mar/06	2021/jan/31	427.9266
553731	MELT 20	104A	2007/mar/06	2021/jan/31	445.757
553732	MELT 21	104A	2007/mar/06	2021/jan/31	445.5298
553733	MELT 22	104A	2007/mar/06	2021/jan/31	445.6742
553734	MELT 23	104A	2007/mar/06	2021/jan/31	427.7113
553735	MELT 24	104A	2007/mar/06	2021/jan/31	427.7501
553736	MELT 25	104A	2007/mar/06	2021/jan/31	445.603
553737	MELT 26	104A	2007/mar/06	2021/jan/31	249.4603

553738	MELT 27	104A	2007/mar/06	2021/jan/31	445.4029
569182	BRUCEJACK GOLDFIELD 86	104B	2007/nov/02	2011/jul/31	874.782
569185	BRUCEJACK GOLDFIELD 95	104B	2007/nov/02	2011/jul/31	875.196
	BRUCEJACK GOLDFIELD				
569195	123	104B	2007/nov/02	2011/jul/31	1215.674
	GOLDFIELD 10 NEWSTAKE				
570464	2	104B	2007/nov/22	2011/may/15	893.6421
588361	JO-16	104A	2008/jul/16	2020/dec/15	447.7938
588362	JO-17	104A	2008/jul/16	2020/dec/15	412.0636
588364	VENUS-1	104A	2008/jul/16	2020/dec/15	447.3831
588365	JO-18	104A	2008/jul/16	2020/dec/15	447.3955
592320	BOWSER 1	104A	2008/oct/01	2020/dec/15	429.5278
592321	BOWSER 2	104A	2008/oct/01	2020/dec/15	429.3846
592322		104A	2008/oct/01	2020/dec/15	429.2431
592324	BOWSER 4	104A	2008/oct/01	2020/dec/15	429.1018
592325	BOWSER 5	104A	2008/oct/01	2020/dec/15	428.9603
592326	BOWSER 6	104A	2008/oct/01	2020/dec/15	428.8189
592327	BOWSER 7	104A	2008/oct/01	2020/dec/15	428.6771
592328	BOWSER 8	104A	2008/oct/01	2020/dec/15	428.5577
592329	BOWSER 9	104A	2008/oct/01	2020/dec/15	428.4168
592330	BOWSER 10	104A	2008/oct/01	2020/dec/15	428.2762
592331	BOWSER 11	104A	2008/oct/01	2020/dec/15	445.98
592332	BOWSER 12	104A	2008/oct/01	2020/dec/15	428.3458
592333	BOWSER 13	104A	2008/oct/01	2020/dec/15	446.4559
592334	BOWSER 14	104A	2008/oct/01	2020/dec/15	447.2651
592335	BOWSER 15	104A	2008/oct/01	2020/dec/15	446.3521
592336	BOWSER 16	104A	2008/oct/01	2020/dec/15	446.3558
592337	BOWSER 17	104A	2008/oct/01	2020/dec/15	428.583
592338	BOWSER 18	104A	2008/oct/01	2020/dec/15	446.4954
592339	BOWSER 19	104A	2008/oct/01	2020/dec/15	428.4731
592341	BOWSER 19	104A	2008/oct/01	2020/dec/15	446.7647
592342	BOWSER 20	104A	2008/oct/01	2020/dec/15	429.2256
592343	BOWSER 21	104A	2008/oct/01	2020/dec/15	447.4478
592344	BOWSER 22	104A	2008/oct/01	2020/dec/15	447.7652
592345	BOWSER 23	104A	2008/oct/01	2020/dec/15	376.5821
592439	A1	104A	2008/oct/02	2020/dec/15	446.9029
592440	A2	104A	2008/oct/02	2020/dec/15	446.3235
592441	A3	104A	2008/oct/02	2020/dec/15	446.3527
592442	A4	104A	2008/oct/02	2020/dec/15	446.2163
592443	A5	104A	2008/oct/02	2020/dec/15	446.2019
592444	A6	104A	2008/oct/02	2020/dec/15	178.4666
593446		104A	2008/oct/26	2020/dec/15	17.9316
593447	JO 1	104A	2008/oct/27	2020/dec/15	430.155
593449	JO 2	104A	2008/oct/27	2020/dec/15	447.895

593450	JO 3	104A	2008/oct/27	2020/dec/15	448.2607
593452	JO 1A	104A	2008/oct/27	2020/dec/15	17.9259
593455	JO 19	104A	2008/oct/27	2020/dec/15	376.4286
593501	JO-20	104A	2008/oct/28	2020/dec/15	447.7849
593505	JO-21	104A	2008/oct/28	2020/dec/15	448.0254
593507	JO-22	104A	2008/oct/28	2020/dec/15	447.896
593508	JO-23	104A	2008/oct/28	2020/dec/15	448.1529
593509	JO-24	104A	2008/oct/28	2020/dec/15	286.8121
593510	JO-25	104A	2008/oct/28	2020/dec/15	447.5908
593511	B1	104A	2008/oct/28	2020/dec/15	429.7263
593512	B2	104A	2008/oct/28	2020/dec/15	429.7856
593513		104A	2008/oct/28	2020/dec/15	447.712
593514		104A	2008/oct/28	2020/dec/15	179.076
593515		104A	2008/oct/28	2020/dec/15	71.611
594138		104A	2008/nov/11	2020/dec/15	215.1985
594139		104A	2008/nov/11	2020/dec/15	125.5322
594140		104A	2008/nov/11	2020/dec/15	143.4682
594640	BOWSER 24	104A	2008/nov/20	2020/dec/15	142.7989
594641	BOWSER 25	104A	2008/nov/20	2020/dec/15	142.9176
594650		104A	2008/nov/21	2020/dec/15	107.4081
598759	JO-26	104A	2009/feb/05	2020/dec/15	447.8164
598760	JO-27	104A	2009/feb/05	2020/dec/15	447.8919
598761	JO-28	104A	2009/feb/05	2020/dec/15	71.6536
598764	JO-29	104A	2009/feb/05	2020/dec/15	447.0738
598765	JO-30	104A	2009/feb/05	2020/dec/15	142.9886
598766	VENUS-2	104A	2009/feb/05	2020/dec/15	447.1307
598771	JO-31	104A	2009/feb/05	2020/dec/15	232.8145
604733	ZORAN 1	104A	2009/may/20	2020/dec/15	446.1295
604734	ZORAN 2	104A	2009/may/20	2020/dec/15	410.8676
604735	ZORAN 3	104A	2009/may/20	2020/dec/15	410.3631
604737	ZORAN 4	104A	2009/may/20	2020/dec/15	357.6116
604738	PATRIK 1	104B	2009/may/20	2011/dec/31	429.4632
604739	PATRIK 2	104B	2009/may/20	2011/dec/31	375.9609
604740	PATRIK 3	104B	2009/may/20	2011/dec/31	322.1308
604741	MARIJANA 1	104A	2009/may/20	2020/dec/15	429.0866
604742	MARIJANA 2	104A	2009/may/20	2020/dec/15	411.1215
604743	MARIJANA 3	104B	2009/may/20	2020/dec/15	428.9454
604744	MARIJANA 4	104B	2009/may/20	2020/dec/15	446.7038
604784	ZORAN 5	104A	2009/may/21	2020/dec/15	268.118
604785	ZORAN 6	104A	2009/may/21	2020/dec/15	89.4636
604787	ZORAN 7	104B	2009/may/21	2020/dec/15	429.2699
608123	KNIPPLE	104A	2009/jul/17	2020/dec/15	358.0662
608125	1	104A	2009/jul/17	2020/dec/15	17.895
637223	CASTLE 1	104A	2009/sep/19	2021/jan/31	446.6494

637243	CASTLE 2	104A	2009/sep/19	2021/jan/31	446.4151
637244	CASTLE 3	104A	2009/sep/19	2021/jan/31	446.2254
637263	CASTLE 4	104B	2009/sep/19	2021/jan/31	428.6416
637264		104B	2009/sep/19	2021/jan/31	446.2683
637283	CASTLE 6	104B	2009/sep/19	2021/jan/31	410.7792
637286	CASTLE 7	104B	2009/sep/19	2021/jan/31	446.571
637287	CASTLE 8	104B	2009/sep/19	2021/jan/31	428.4405
637288	CASTLE 9	104B	2009/sep/19	2021/jan/31	357.0278
637289	CASTLE 10	104B	2009/sep/19	2021/jan/31	447.0176
637303	CASTLE 11	104B	2009/sep/19	2021/jan/31	125.1242
637304	CASTLE 12	104A	2009/sep/19	2021/jan/31	268.1372
685664	WHATHAPPENED	104B	2009/dec/15	2020/dec/15	429.5086
685666	WHATHAPPENED2	104B	2009/dec/15	2020/dec/15	35.7826
835571	ZZ1	104A	2010/oct/11	2011/oct/11	410.4214
835572	ZZ2	104A	2010/oct/11	2011/oct/11	446.0387
835573	ZZ3	104A	2010/oct/11	2011/oct/11	446.0485
835574	ZZ4	104A	2010/oct/11	2011/oct/11	445.8996
835576	ZZ5	104A	2010/oct/11	2011/oct/11	249.7178
835640	ZZ6	104A	2010/oct/12	2011/oct/12	375.1591
835642	ZZ7	104A	2010/oct/12	2011/oct/12	375.0618
835644	ZZ8	104A	2010/oct/12	2011/oct/12	375.1031
835647	ZZ9	104A	2010/oct/12	2011/oct/12	428.7919
835649	ZZ10	104A	2010/oct/12	2011/oct/12	446.6245
835651	ZZ11	104A	2010/oct/12	2011/oct/12	357.3712
835652	ZZ13	104A	2010/oct/12	2011/oct/12	214.427
835786	ICE	104A	2010/oct/13	2011/oct/13	411.2684
835787	SNOW	104A	2010/oct/13	2011/oct/13	447.0274
835788	WIND	104A	2010/oct/13	2011/oct/13	303.716
835789	FIRE	104A	2010/oct/13	2011/oct/13	160.6684
835790	HAIL	104A	2010/oct/13	2011/oct/13	393.2918
843858	MARY	104A	2011/jan/21	2012/jan/21	446.4919
843861	EMMETT	104A	2011/jan/21	2012/jan/21	446.7192
843862	KAITLIN	104A	2011/jan/21	2012/jan/21	446.7542
843863	ALYSSA	104A	2011/jan/21	2012/jan/21	446.9126
843864	ADAM	104A	2011/jan/21	2012/jan/21	428.9109
843865	TYRELL	104A	2011/jan/21	2012/jan/21	447.1535
843866	DOG	104A	2011/jan/21	2012/jan/21	446.8747
843868	CAT	104A	2011/jan/21	2012/jan/21	447.3074
843869	MALTESE	104A	2011/jan/21	2012/jan/21	428.9727
843870	VALLEY	104A	2011/jan/21	2012/jan/21	429.2691
843871	DEWDNEY	104A	2011/jan/21	2012/jan/21	393.7415
843872	RAINBOW	104A	2011/jan/21	2012/jan/21	446.9456
843873	POT OF GOLD	104A	2011/jan/21	2012/jan/21	393.2292
				Tota⊢ha:	78,747.3059

Accessibility, Climate, Local Resources, Infrastructure and Physiography

The most direct access to the property is via Stewart or Bell II by helicopter. The trip takes approximately 30 minutes from Stewart and slightly less from Bell II but Stewart has an established helicopter base. Heavy equipment, fuel and camp provisions were driven from Stewart along a gravel road in good condition that leads beyond the abandoned Granduc mill site to the Tide Flats airstrip, the one-way trip takes approximately one hour. All equipment and supplies were then flown to the camps by helicopter from Tide Flats airstrip. The helicopter trip to the project takes approximately 15 minutes from this staging site, which is a secured site by means of a locked gate at the bridge crossing just before the airstrip. During the late 1980's a summer road was built along upper Bowser River valley from a barge landing near the west end of Bowser Lake. The road extended to Brucejack Lake by travelling on Knipple Glacier. Access from Highway 37 was by logging roads to the east end of Bowser Lake and then by barge along Bowser Lake. An all-weather road route has been proposed from Highway 37, extending up Wildfire creek, then down Scott Creek valley to joining the old road along upper Bowser River, just west of Bowser Lake (Figure 4.) This proposed route is in the permitting stage.

Figure 4: Proposed Access Road

During the late 1980's and early 1990's, several exploration roads were pushed north from Brucejack Lake camp to the southern edge of Hanging Glacier, terminating less than three km from the Snowfield Zone. Roads were also constructed to access the Mammoth Zone two km south of Brucejack Lake. In 1999 the original Brucejack Camp and equipment including the landing-craft/barge were removed during reclamation of the property. All that remained at Brucejack Lake is drill core from the previous diamond drill programs and the Bowser River road which since become over-grown with tag alder.

February 28, 2011

The lower Snowfield 2008 camp site was moved back to the original 2006 Snowfield camp site in 2010. The majority of the drilling for the 2010 campaign at Snowfield was proposed at the upper elevations of the southern portion of the Snowfield deposit. A 45-man campsite was constructed at this location (Photo 1) and the 2010 core is stored at this camp site next to the core shack. The lower 2008 campsite was cleaned-up and all that remains is the helicopter pad and some stacked drill core from the 2008 and 2009 drill programs. The 2006 and 2007 core is stored at the upper Snowfield Gold Zone. During July and August of 2010, several key holes from Snowfield and Brucejack camps were transported to a locked warehouse in Stewart.

Photo 1: The 2010 Snowfield 45-man camp in early June.

The Brucejack Lake camp was constructed in June 2009 to for a 40-man, three drill camp and was expanded to a 50-man, 5 drill camp during May 2010 (Photo 2). Camps were each serviced by a dedicated 407 Bell helicopter contracted from Vancouver Island Helicopters. Radius Drilling from Prince George supplied all four diamond drills at Snowfield and two drills for Brucejack Lake. Three additional drills for Brucejack were supplied by Matrix Drilling from Kimberly/Kamloops bringing the drill total for Brucejack to five drills.

Photo 2: The Brucejack camp was built for a 50-man tent-frame camp for five drills. The wood framed and trussed kitchen and dry were clad with metal roofing.

An alternate staging site is located approximately 25 km north of the claim near Barrick's Eskay Creek gold-silver deposit. Although this staging site is slightly closer to the project site, the Tide Lake staging site is preferred due to the proximity to Stewart logistical support.

The summer months of June to late September are optimum for the field exploration season. Winter months commonly produce heavy snowfalls while summer months are generally mild but can be quite wet. The local vegetation is confined to the lower valley slopes and floors. Sparse fir, spruce and alder occur at the valley bottom while scrub alpine spruce and juniper occur along the steep valley walls with alpine grass, moss and heather. The Snowfield gold zone ranges in elevation from approximately 1050 to 1650 m in elevation. Above tree line moss grows along drainages as glacial moraine and polished, striated outcrop dominates the landscape. Below 1200 m, heather covers most of the stockwork area with rare dwarf spruce and juniper (Photo 3).

Photo 3: View due south along a section line with four drill platforms. The green heather covers the heart of the Snowfield Stockwork Zone. The original Snowfields Gold Zone discovery is located at the gossanous hummocky hill-top.

The Snowfield deposit lies between the Mitchell Glacier to the north and the Hanging Glacier to the south. The southern limit of the gold zone is covered by a small snow field that has receded very rapidly over the past few years. The property elevation ranges from 1000 m along the Mitchell Glacier to 1960 m along the ridgeline between the Mitchell and Hanging Glaciers known as Josephine Ridge. Although the Stewart area is well-known for steep topography, the gossanous Snowfield area is not that steep. The area is best characterized by hummocky, moderate topography.

The Brucejack Lake area has several gossanous targets that occur along the northsouth trending Brucejack Lake Fault. The camp was situated several hundred m south of Brucejack Lake along a set of hummocky moraine piles. The topography is also characterized as moderately hummocky with some steep hills directly south and southeast of camp. The camp's water supply is drawn from a glacial run-off stream located at Galena Hill south of camp as well as a back-up source from a small tarn located 50 m east of camp.

Several roads cut across the Brucejack Lake area, are in good condition and are commonly used for access with ATV's and quads. These were constructed during drill programs in the late 1980's and early 1990's by Newhawk Gold Mines Ltd.

History

The original Sulphurets claim group was staked by Granduc Mines in 1959. Previous to that, the earliest documented work consisted of Keystone drilling for placer gold in Sulphurets Creek in or around 1933. This was followed by discovery of several small copper and gold-silver occurrences in the Sulphurets-Mitchell Creek and Brucejack Lake area between 1935 and 1959.

Photo 4: View to the east along Brucejack Lake.

The first formal exploration programs were conducted by Granduc Mines between 1960 and 1980. Reconnaissance prospecting, mapping and rock sampling was completed on a regional scale over the entire Sulphurets area. This resulted in the discovery of several copper-molybdenum and copper-gold porphyry targets as well as gold-silver vein targets.

In 1968, Granduc Mines drilled two diamond drill holes over the Quartz Stockwork Zone totaling 711.12 m. Results showed the system contained extensive anomalous gold values of less than 0.015 ounces per ton but carried no significant base metal values.

The property was subsequently optioned by Esso Minerals in 1980 where detailed mapping, trenching and rock geochemical sampling led to the discovery of the Snowfield, Quartz Stockwork and Moly Zones. Esso continued their exploration efforts in 1981 developing the Snowfield Zone which then held the potential to host at least 20 million tons grading greater than 0.05 ounces per ton gold. Regional mapping and sampling continued along the Sulphurets-Mitchell Ridge in 1982.

During 1983, 24 trenches totaled 192 m and resulted in outlining a 240x120 meter area of mineralization with an average gold grade of 0.088 ounces per ton. Also in that year, the Josephine Zone gold-silver veins were discovered. For various reasons, Esso dropped the Sulphurets option in 1985.

In 1985, Newhawk Gold Mines (60%) entered into a joint-venture agreement with Granduc (40%) and Newhawk became the new operator. They completed five diamond drill holes totaling 740m, which all bottomed in mineralization. The Snowfield Zone then appeared to have a tabular shallow south-dipping body averaging 70 m in thickness. The target was estimated to have a potential of 7.75 million tons grading 0.083 ounces per ton gold. Preliminary metallurgical testing was also carried out on the drill core. Continued prospecting continued on the property during 1988.

25
Comprehensive and systematic historical exploration programs conducted on the Brucejack property by Newhawk Gold Mines and its various joint venture partners resulted in more than twenty mineralized zones and occurrences being discovered. The most important of these gold +/- silver prospects were designated as the West, Shore, Galena Hill, Gossan Hill and SG zones. During the 1980's, the West Zone received the most attention, being extensively drilled from surface and underground once a 1,500 meter long decline was completed to the 1150-meter elevation level, approximately 250 m below surface. A resource estimate done by mineral industry consultants Watts, Griffis and McOuat in 1989 estimated that the West Zone contained proven and probable reserves of 715.400 short tons with an average gold grade of 0.431 oz Au/ton and a silver grade of 19.7 oz Ag/ton (using a cut-off grade of 0.2 oz Au/ton and a minimum true width of 5 feet). As well at Snowfield in 1989, under a joint-venture with Corona Corporation, a rock sampling program over a property-wide grid was completed that led to the discovery of the Coffeepot Zone; a small gold-silver bearing guartz vein system. Rock sampling and trenching further delineated gold mineralization at the Snowfield Zone.

Two drill holes totaling 350 m were completed by Newhawk-International Corona Corp. in 1991, as well as, rock chip sampling along the eastern edge of the exposed zone. A funded Doctoral thesis by Jake Margolis was published in 1993. Diamond drilling continued in 1993 as Newhawk-International Corona Corp (Homestake)

completed 1,164 m of drilling with three deep holes south of the known mineralization of the Snowfield Zone and also drill tested the Josephine Vein system with three more drill holes totaling 295 m. Other than a summary report completed in 1995, no work was completed on the Snowfield project until 2006. Silver Standard Resources acquired Newhawk Gold Mines and 100% of its holdings in late September of 1999. Newhawk Gold Mines sold the claims to 0777666 B.C. Ltd, another subsidiary of Silver Standard Resources Inc.

During the summer of 2006, Silver Standard Resources conducted a diamond drill program in order to test the economic potential of the low-grade disseminated gold occurrence at Snowfield. After completing 27 drill holes totaling approximately 6,000 m, an inferred resource summary was completed for the Snowfield Gold zone. Utilizing a 0.5 g/t gold cut-off; 64 million tonnes of material averaged 1.47 g/t gold or just over 3.0 million ounces of gold.

Subsequent diamond drilling in 2007 tested the east-west lateral limits of the Snowfield Gold Zone, Mitchell Zone and Coffee Pot Zone. Two diamond drill rigs cut 30 diamond drill holes tallying 8,667 m of NQ2 core. This program had limited success only advancing the deposit size by a slight margin but one hole, MZ-01, did intersect what was at that time believed to be the eastern extension to the Mitchell Zone of the adjacent Seabridge deposit located 500 m west of MZ-01. This hole intersected 258.77 m of 0.71 g/t Au with 0.14% Cu including 31.14 m of 1.38 g/t Au and 0.31% Cu at the bottom of the

hole. The hole ended in a strong quartz stockwork mineralization unlike the mineralization seen in the main Snowfield Gold Zone. The 2008 program was designed to expand on the newly discovered Au-Cu North Stockwork zone.

During 2008, four diamond drills were flown in to test the lateral boundaries and depth limits of the mineralization of MZ-01. It was soon realized that the mineralization in MZ-01 did not connect to the Mitchell Zone as an eastern extension of the Seabridge deposit but rather the mineralization was increasing to the south towards the Snowfield Gold Zone. Drilling focused on connecting the newly discovered Au-Cu Stockwork zone to the original Snowfield Gold Zone. A total of 30 drill holes were completed for approximately 16,920 m of HQ, NQ-2, BTW and BQ core. The 2008 drill program was largely successful in outlining and expanding the central region of the gold mineralization within the North Stockwork Au-Cu Zone. It was drilled at roughly 200m centers. A new resource was completed based on this drilling. Utilizing a 0.5 g/t gold equivalent cut-off, it was estimated that approximately 876 million tons containing 18.6 million ounces of gold, 45.7 million ounces of silver and 0.12% copper in all categories.

Based on the huge success of the 2008 drill program, a much larger diamond drilling program was recommended for the Snowfield Zone and several zones near Brucejack Lake for 2009. A total of seven diamond drills cut 42,000 m of HQ and NQ2 core at Snowfield and Brucejack Lake. Four drills completed in-fill drilling at Snowfield to 110m centers. Drilling also expanded the deposit in all directions and at depth. At Brucejack

Lake, three diamond drills tested the economic potential of Galena Hill, Electrum, Mammoth, SG, Gossan Hill and Bridge Zones. Results from both drill programs were very encouraging as significant low-grade gold-silver mineralization was discovered to extend at depth at SG, Gossan Hill, Galena Hill and the newly discovered Bridge Zone. Some spectacular bonanza gold-silver grades were returned at Galena Hill and a new zone, named Valley of the Kings, with an intercept assaying 16.95 kilograms Au/tonne and 8.69 kilograms Ag/tonne over 1.5 m (photo of coarse electrum on front cover). The 2009 drilling significantly expanded the Snowfield deposit to 22 million ounces of measured and indicated gold as well as 11 million ounces of inferred gold. Results were equally impressive from the Brucejack drilling as 8.9 million ounces of gold resource was outlined in all categories. Clearly, further drilling was recommended for 2010. The data and results contained in this assessment report complete with the interpretation, conclusions and recommendations are based on the data obtained from the 2010 drill program.

REGIONAL GEOLOGICAL AND ECONOMIC SETTING

The regional geology of the Sulphurets District lies within the Stikinia Terrane. The area is located within the western limit of the Intermontane Belt and is underlain by Lower to Middle Jurassic volcanics, volcanoclastics and sedimentary rocks of the Hazelton Group and Upper Triassic to Lower Jurassic volcanoclastics and epiclastic sediments of the Stuhini Group. This marine island arc geological setting is located

approximately 25 km east of the Cretaceous to Early Tertiary Coastal Plutonic complex (Figure 5).

Figure 5: Regional Geology, NW British Columbia. The sedimentary successions of Stuhini and Bowser Lake groups together with the volcano-sedimentary rocks of the Hazelton Group belong to the Stikinia litho-tectonic terrane.

The Brucejack property lies within the Iskut River mineral district, a particularly well-mineralized part of the Canadian Cordillera. The approximately 6,000 km² region is host to several metallic deposits of various genetic classifications, including porphyry copper-gold (Kerr, Mitchell, Snowfield), shear zone-controlled precious metal veins (West Zone at Brucejack Lake), epithermal precious metal veins (Silbak-Premier), intrusion-related Au-Ag (-Cu) veins (Snip, Johnny Mountain) and submarine exhalative massive sulphide-sulphosalt copper and precious metal deposits (Granduc, Eskay Creek). The now-closed Eskay Creek high-grade Au-Ag mine is located about 20 km northwest of the Brucejack property and the recently discovered Mitchell and Snowfield

Au-Cu deposits, with a combined gold resource exceeding 45 million ounces, are located just a few km to the north of Brucejack Lake and west of the Snowfield Zone.

The basal units of the area consist of shallow marine mudstones, sandstones with minor limestone overlying polymictic conglomerates and volcanoclastic sediments with minor andesite flows and pyroclastics of the Upper Triassic- Lower Jurassic Stuhini Group. An angular unconformity exists between the Stuhini Group and overlying Hazelton Group rocks. This group consists of Lower Jurassic to Middle Jurassic Hazelton sedimentary and volcanic rocks from five formations and these are from oldest to youngest: Jack, Unuk River, Betty Creek, Mount Dilworth and Salmon River Formations. The Jack Formation forms the basal units comprised of marine medium to coarse-grained sandstones. Overlying the Jack Formation is the Unuk River Formation which is predominately an andesitic sequence with a total thickness of at least 2000 m (Britton and Alldrick, 1988; Alldrick, 1989; Anderson and Thorkelson, 1990). The Betty Creek Formation overlies the Unuk River formation and it is believed to be 700-1200 m thick in the Sulphurets area (Britton and Alldrick, 1988; Alldrick, 1989; Anderson and Thorkelson, 1990). These rocks are described as reddish maroon and green dacitic tuffs and clastics with marine sedimentary rocks. The hematitic units are believed to have been caused by sub-aerial conditions (Margolis, 1993). The Mount Dilworth formation is rhyolite to rhyodacite in composition and overlies the Betty Creek formation. This distinctive white volcanic includes welded tuffs, felsic flows, tuffs and pyroclastic breccias that combine for a total thickness of 75-150 m (Margolis, 1993). The top of the Hazelton

Group is marked by the Salmon River formation which includes siltstones and sandstones.

Intrusive rocks of intermediate and felsic Mesozoic plutons and mafic Tertiary dykes and sills intrude the Hazelton Group. According to Anderson and Bevier (1990) the intrusive events correlate to the various volcanic and depositional episodes and therefore, the intrusives are believed to be syn-volcanic in nature. The early Jurassic suite is represented by Texas Creek calc-alkaline granodiorite located near Stewart. This intrusive along with a series of cross-cutting K-spar rich crystalline dykes and flows is referred to as the "Premier porphyry" (Margolis, 1993) and as the "Two Feldspar Porphyry". The vast Cretaceous Coastal Plutonic complex is located 25 km west of the property and minor Tertiary diabase and lamprophyre dykes and sills complete the regional intrusive events.

The northern portion of the Sulphurets area hosts several porphyry-style Cu±Au±Mo deposits (Snowfield, Kerr, Mitchell and Sulphurets deposits). The Brucejack Lake area contains a number of silver-gold, shear-vein and breccia-vein hosted deposits (West Zone, Shore Zone, and Gossan Hill) with "mesothermal" characteristics. In addition, the southern portion of the property hosts several zones of breccia vein with possible epithermal affinities, typified by cockade, crustiform quartz and carbonate, locally exhibiting replacement of bladed carbonate by quartz (e.g. periphery of West Zone, and the Electrum, Galena Hill and Bridge Zones).

REGIONAL STRUCTURE

The Stikinia terrane extends from the Alaska-Yukon border southwards to the Chilcotin region in the southern part of the province. Stikinia is composed of volcanosedimentary rocks of an oceanic island arc setting that evolved in the eastern Pacific of the northern hemisphere from Carboniferous to Early Jurassic time (320-190 Ma). Through Mesozoic plate tectonics, the arc was transported northeastward and eventually was accreted to the Paleozoic basement of the ancestral North American continent sometime during the Middle Jurassic. Arc-related magmatic activity in the terrane then continued from the Middle Jurassic into the Tertiary. During the Late Jurassic and Cretaceous periods, a broad sedimentary basin formed east of the property where a thick sequence of epiclastic marine sediments accumulated. Regional compressional tectonism resulted in the formation of broad folds with arcuate, north to northwesttrending axial traces. The Brucejack property lies on the eastern limb of one of these major folds, the McTagg Anticlinorium. Thrust faults cut the flanks of the regional folds resulting in large-scale stratigraphic repetition and inversion. The Sulphurets Thrust Fault has been mapped immediately northwest of the Silver Standard's Snowfield property which adjoins the northern boundary of the Brucejack property. This thrust fault dips gently to the west and is interpreted to be southeast-verging. Thrust faulting probably overlapped in time with the regional folding and together these structures are products of the accretionary tectonism that occurred from Late Triassic to at least the Late Jurassic. The lithologies found in the area display evidence of both ductile and

brittle deformation. The oldest rocks of the Stuhini Group are well exposed along the steep bluffs west of Brucejack Creek. Here the rocks are strongly folded with north-trending axial traces and moderate dips to the east-northeast.

Britton and Alldrick (1988) and Henderson et al. (1992) have described the regional structural geology; in brief, the Hazelton Group lithologies display fold styles ranging from gently warped (e.g. a mapped synform to the south and east of Brucejack Lake, Alldrick and Britton, 1988) to tight disharmonic folds in the Salmon River Formation and Bowser Lake Group. Northerly striking, steep normal faults are recognized (e.g. Britton and Alldrick, 1988), although certain prominent northerly striking lineaments, such as the Brucejack lineament (Kirkham, 1963, 1991), immediately west of the West zone, display evidence for little motion (< 100 m, right lateral), at least in the Brucejack Lake area; also, Kirkham (1991) indicates that elsewhere along this lineament, hydrothermal alteration zones are truncated. The previously mentioned west-dipping thrust faults are common in the region and are important in the northern and western parts of the Snowfield and Sulphurets property in regard to interpretation of mineralized zones but have not been recognized to have an impact to the mineralization near Brucejack Lake.

BRUCEJACK-SULPHURETS LOCAL GEOLOGY

Published descriptions of the regional geology of the Sulphurets Creek-Brucejack Lake area have been presented by the Geological Survey of Canada (Henderson et al.,

1992; Kirkham, 1991; Anderson, 1989), geologists working for the British Columbia government (Britton and Alldrick, 1988; Alldrick et al., 1987; Grove, 1986) and by the Mineral Deposits Research Unit at the University of British Columbia (Lewis et al., 2001; Lewis, 2001). This body of work shows that the Brucejack property is underlain by Upper Triassic volcaniclastic and epiclastic sedimentary rocks of the Stuhini Group and Lower to Middle Jurassic volcanic, volcaniclastic and sedimentary rocks of the Hazelton Group.

Since the property lies within the eastern limb of a regional anticlinorium, the stratigraphic sequences recognized on the property overall become younger to the east. The oldest rocks, found at lower elevations immediately northeast of the Sulphurets glacier, consist of heterolithic volcaniclastic conglomerate which is conformably overlain by a sequence of interbedded mudstone, sandstone and thin limestone units of the Stuhini Group. An angular unconformity marks the contact between the Stuhini Group marine sedimentary rocks and medium- to coarse-grained sandstones of the Jack Formation which is the basal formation of the Hazelton Group and is dated at about 196 Ma. Open folding and possible thrust faulting has also placed a wedge of Jack Formation sandstones and conglomerates at the western end of Brucejack Lake where these rocks are well exposed on a peninsula known as Windy Point. Using the revised Hazelton Group stratigraphy presented in MDRU's Special Publication Number 1 (Lewis et al., 2001), the Jack Formation clastic sedimentary rocks are overlain by a 10-50 m thick unit of mudstone/argillite and cherty argillite that belongs to the Unuk River

member. This argillaceous unit is exposed along the southwest side of the West Zone deposit of shear-hosted. Au-Ag guartz veins and stockworks and has been traced southwards through the western part of the Galena Hill Au-Ag prospect. Overlying the argillite unit is a greater than 500 meter-thick package of fine-grained to hornblendephyric and/or plagioclase-porphyritic andesitic flows, flow breccias and intermediate tuffaceous rocks intercalated with volcaniclastic conglomerates, sandstones and siltstones. These rocks form the bulk of the Unuk River member on the property and outcrop extensively within a northwest-trending belt that passes beneath Brucejack Lake. The andesites of the Unuk River member are among the most important host rocks to Au- and Ag-bearing quartz veins discovered on the property and have been affected by widespread hydrothermal alteration, mainly represented by the mineral assemblage guartz-sericite-pyrite which is very evident at the Gossan Hill, Galena Hill and Electrum-Bridge Zone mineralized zones. U-Pb isotope geochronology and biochronology done by MDRU geoscientists obtained age-dates for the Unuk River volcanics in the range of 196-194 Ma. Further up in the Hazelton Group stratigraphy is a thick sequence of andesitic to dacitic pyroclastic rocks (tuff-breccia, lapilli tuff, crystallithic tuffs, and minor ash tuff) and dacite flows with thin argillite interbeds that are well exposed on the mountainside north of Brucejack Lake. Based on MDRU's studies and mapping, this intermediate volcanic package has been assigned to the Brucejack Lake member of the Betty Creek Formation. (Prior to MDRU's project in the Iskut River region, these rocks were mapped as Betty Creek Formation). A possible vent area for the dacitic tuffs and flows is a flow-dome complex identified just south of the east end of

Brucejack Lake (Macdonald, 2001). Here, well developed sub-vertical flow-banding can be observed along with megacrystic flow-banded dacite, autobrecciated dacite and clastsupported blocky breccia with a hematitic mudstone matrix. Two U-Pb age dates have been obtained from flow-banded dacite that show the flow-dome was emplaced about 185.7 Ma. Several other U-Pb age dates obtained during the MDRU lskut River project for rocks assigned to the Brucejack Lake member indicate that the episode of intermediate volcanism recorded by the Hazelton Group spanned 8-10 million years. In the field, andesites of the Brucejack Lake member can often be distinguished from older andesites of the Unuk River member by their maroon colour which is the result of hematitic oxidation of chlorite in the younger andesites – hematite alteration is rarely developed in the Unuk River andesites. Supracrustal rock units younger than Bruceiack Lake member have not been reported from the Brucejack property, although they could exist at the top of the mountain on the north side of Brucejack Lake, known as Mount John Walker. The youngest member of the Betty Creek Formation is the Treaty Creek member, but this sequence of mixed sedimentary strata including sandstone, conglomerate, turbiditic siltstone and limestone is not preserved in the area of Brucejack Lake as it is to the north in the area of Treaty Creek and at the Eskay Creek mine. Also apparently missing on the Brucejack property is the Salmon River Formation which directly overlies the Treaty Creek member of the Betty Creek Formation. This is noteworthy because the volcanogenic or exhalative, high-grade Au-Ag sulphidesulphosalt deposits at Eskay Creek are associated with or hosted by rhyolite flows and carbonaceous mudstones that characterize the Mount Dilworth and Salmon River

Formations respectively. However at the northern limit of the Electrum Zone, it appears that a very siliceous, whitish-cream, pale to medium-grey rhyolite breccia-pebble dyke trends crudely northwest along the gulley located between the Electrum Zone and Galena Hill. This area has been named the Valley of the Kings due to the intersection of spectacular coarse-grained electrum in narrow quartz veins and veinlet stockwork. This rhyolite dyke also displays laminated or flow-banded features as well as breccia-pebble dyke features.

Several high-level, synvolcanic to post volcanic hypabyssal intrusive bodies are mapped throughout the property. The youngest is probably the dacitic flow-dome complex located southeast of Brucejack Lake and as well as the Walker Porphyry, a plagioclase feldspar dacite porphyry located at the summit of Mt. John Walker just north of Brucejack Lake (Figure 6). These may be equivalents to the Lower Jurassic Betty Creek extrusive units. There are several other types of older andesitic hypabyssal intrusives that may be related to the Unuk River andesites... The first appears to be a hornblende- and plagioclase-phyric to hornblende-porphyritic hypabyssal andesite that form small plugs in the southwestern portion of the claim group. Surface dimensions of these are roughly 700 m east-west by 700-1000 m north-south. A second type of hypabyssal porphyry forms an elongate body of about 700 m in length, aligned north-south, that was emplaced along the western margin of one of the 'Sulphurets' plugs. This intrusion is best described as potassium feldspar-plagioclase <u>+</u>hornblende porphyry and may

be an equivalent to the Upper Unuk. Based on contact relationships it would appear that this porphyry is younger than the Sulphurets-type hornblende porphyry. Other than the rhyolite dykes previously described, the only other dykes observed on the property are described as medium to dark green, fine-grained andesite to basaltic andesite. These are generally less than two m in the thickness and appear to be post mineral in age.

Brucejack Local Structure

The epiclastic rock units overlying the Jack Formation are less intensely folded, with an open syncline being the dominant fold that affects these rocks. A second syncline defined by units of the Jack Formation lies further to the east, with its NNW-SSE axial trace passing through the West Zone Au-Ag deposit. Hazelton Group lithologies, those belonging to the Unuk River and Brucejack Lake Members which predominate in the eastern half of the property basically form a homoclinal rock package that dips steeply to moderately east-northeast. Penetrative fabrics are commonly developed in most lithologies. Rocks that appear to have experienced hydrothermal alteration prior to folding are generally the most intensely foliated. Shearing also appears to have occurred along structures that developed at relatively low angles to stratigraphic layering, an example being the 140°-trending shear zone that hosts the mineralized quartz veins and stockworks of the West Zone deposit. Post-dating the folds and the development of penetrative fabrics are numerous brittle-ductile faults with different strike orientations and variable displacements. These structures can be readily

observed as lineaments in aerial photographs of the property. One of the most prominent of these late structures is the northerly trending Brucejack Fault which bisects the main hypabyssal bodies and continues for km to the north crossing the entire Brucejack-Sulphurets area and Snowfield properties. Mapping of contact displacements suggests that right-lateral movement of about 150 m has occurred along this major structure; an unknown but probably minor amount of vertical displacement has likely also occurred. Other well-defined lineaments/faults tend to strike northwest or, as seen on the southern slope of Mount John Walker, have northeasterly alignments.

Brucejack Mineralization

During the 2010 exploration campaigns, Silver Standard Resources focused its' diamond drilling program at Galena Hill and on the newly discovered gold zone from the 2009 drilling at the Bridge Zone, located in the southern part of the property. Other targets tested by the two campaigns include the previously drilled Gossan Hill, SG and Shore zones as well as two areas of hydrothermal alteration and sporadic gold mineralization situated west and north of the Bridge Zone (Mammoth and Electrum prospects). The amount of sulphides present in each of the Brucejack Lake hydrothermal systems is relatively low. Pyrite is the most common sulphide present and this commonly occurs and fine to coarse-grained disseminations of up to 2-3% but generally occurs as 1-2% concentrations. Other sulphides occasionally observed in

order of decreasing abundance is sphalerite (reddish-brown to yellow), galena, chalcopyrite pyrargyrite, acanthite, electrum, native gold and native silver. These minerals are found in trace amounts.

Figure 6: Geology and Mineralized Showings and Au-Ag Deposits of Brucejack Lake.

West Zone:

The West Zone gold-silver deposit is hosted by a northwesterly trending band of lower Jurassic (Unuk River member, Hazelton Group) andesitic and lesser sedimentary rocks, 400 to 500 m wide, that passes between two hypabyssal intrusive bodies of hornblendeplagioclase porphyry. These rocks are steeply inclined to the northeast and display

varying degrees of brittle-ductile deformation and moderate to intense hydrothermal alteration, particularly where the precious metal deposit has been outlined. Based on the extensive drilling and underground sampling done by Newhawk Gold Mines, the deposit is seen to comprise at least 10 guartz veins and guartz stockwork shoots, the longest of which has a strike length of 250 m and a maximum thickness of about 6 m. Most mineralized shoots have vertical extents that are greater than their strike lengths. Geometries of the main veins suggest they represent central and obligue shear veins which developed in response to transpressional strain and resulting sinistral, mainly ductile deformation (Roach and Macdonald, 1991). Crack-seal features shown by most of the veins are evidence of brittle deformation overlapping with some crystallization of gangue minerals. Thus, at the West zone it appears that ductile shearing generated the dilatant structures that served as conduits for the hydrothermal fluids which deposited silica and precious metals, but hydrostatic overpressures within the conduits intermittently caused brittle failure along these structures. In terms of hydrothermal alteration, the West Zone is marked by a central silicified zone that passes outwards to a zone of sericite \pm guartz \pm carbonate and then an outer zone of chlorite \pm sericite \pm carbonate. The combined width of these alteration zones across the central part of the deposit is 100 to 150 m. Gold in the West Zone occurs principally as traces of electrum and in quartz veins is associated with, in decreasing order of abundance; generally 1-2% pyrite is associated with trace amounts of sphalerite, chalcopyrite and galena. Besides being found with gold in electrum, silver occurs in tetrahedrite, pyrargyrite, polybasite and rarely stephanite and acanthtite. Gangue mineralogy of the veins is dominated by

quartz, with accessory K-feldspar, albite, sericite, and minor carbonate and barite. Silver Standard Resources has done relatively little work at the West Zone.

Bridge Zone:

The Bridge Zone is located about 1,500 m north of the southern property boundary and is centered on a 3-hectare nunatak outcrop surrounded by ice of the eastern arm of the Sulphurets glacier. Geologists working for NGM and the Geological Survey of Canada had previously mapped and sampled this outcrop, recognizing that it displayed strong sericite-pyrite alteration and was transected by a number of discontinuous mineralized quartz veins. Based on the encouraging gold assays obtained from historical rock-chip sampling plus values obtained from the 2009 channel saw-cut rock geochemical program. Silver Standard tested the Bridge Zone in 2009 with drill hole SU-10. Assay results for this drill hole showed that it intersected a broad zone of low-grade gold mineralization of possible economic significance. The mineralized intercept in SU-10, extending from surface, was reported as being 483 m long, averaging 0.70 grams Au/tonne. This hole was re-entered and extended for an extra 118 m and still ended in mineralization. The last 118 m averaged 0.99 g/t Au. The discovery of potentially bulkmineable gold at the Bridge Zone prompted Silver Standard to drill twelve diamond boreholes in 2009 and an additional 21 holes in 2010 to probe for the limits of this mineralization. These drill holes determined that the bulk of the gold mineralization is hosted by an andesitic hornblende-plagioclase porphyry of the Upper Unuk River Formation andesite sequence that in general is moderately sericite-chlorite altered, with

disseminated and stringer pyrite making up a few percent of the rock by volume. The iron sulphide is commonly seen replacing hornblende phenocrysts. Quartz ± chlorite ± sericite veins, 20-200 cm in thickness, were intermittently intersected by the drill holes, and these commonly contain minor to trace amounts of pyrite, sphalerite, galena, molybdenite and unknown dark grey, silver-bearing sulfosalt(s). Gold appears to be associated with the pyrite which also tends to contain arsenic in its mineral structure where gold is present. Core samples that yielded gold contents greater than 3 ppm Au typically contain quartz veins with trace to minor amounts of electrum and native gold.

Galena Hill:

The prospect area known as Galena Hill is situated between the West Zone and Bridge Zone gold deposits on a prominent hill marked by widespread iron oxide staining of altered meta-andesites. The Galena Hill zone had been previously tested with 27 boreholes belonging to a number of different drilling campaigns, with half of the holes being less than 100 m in length. Assays from these holes, together with detailed geological mapping and channel rock-sampling, indicate that at Galena Hill there is a system of mainly east-west trending quartz veins and quartz stockworks which define an envelope of hydrothermal alteration and mineralization that is at least 400 m long and 200 m wide. In 2009, rather than target the larger quartz veins which locally contain high-grade gold + silver mineralization on surface, Silver Standard focused on testing for the potential of a low-grade, bulk-mineable deposit. This was done with eight relatively long (>400 m) drill-holes. The majority of these boreholes passed through amygdaloidal

and massive andesite flows, volcaniclastic deposits rich in lapilli-sized andesitic clasts and thin units of carbonaceous and cherty mudstones. A few holes intersected bodies of highly siliceous rock that were interpreted by some of the project geologists to be rhyolitic dikes and by others to be zones of pervasive and intense silicification. One drillhole, SU-005, yielded a 50 meter-long quartz vein intercept enriched in gold and silver along its margins, though it is likely that this intercept is at a low angle to the dip of the vein. As in the West Zone, gold mineralization at Galena Hill is preferentially associated with quartz veins, although the sericite-altered, andesitic host rocks are typically mineralized with disseminated pyrite and have geochemically anomalous gold contents, generally in the 100-500 ppb Au range. In some veins, trace to minor amounts of native gold and electrum are accompanied by minor to occasionally substantial amounts of sphalerite, chalcopyrite and galena. The highest grade obtained in 2009 intersected spectacularly rich gold mineralization. Drill hole SU-012 gave impressive assays of 16.95 kilograms Au/tonne and 8.69 kilograms Ag/tonne over an intercept length of 1.5 m. This new zone appears to lie in a low-gully between Galena Hill and Electrum Zone. This small NW trending lineage is now known as The Valley of Kings.

Shore Zone:

A small gold-silver resource was identified by Newhawk along the northeastern shore of the peninsula that extends into the west end of Brucejack Lake. Referred to as the Shore Zone, it is a zone of quartz veining hosted by foliated, sericite-altered arkosic sandstones, conglomerate and andesite to the east. The zone has a known strike length

of roughly 500 m and a maximum width of 50 m. The NW-SE trend of the zone is coincident with a pronounced structural lineament, likely a shear fault, that extends from the Brucejack Fault southeastwards beneath Brucejack Lake. Several discrete quartz veins and quartz stockworks have been traced along the zone, with historical drilling being concentrated on the southern end of the zone. The veins occur as 'stacked', en echelon, sigmoidal lenses up to 100 m in length and 1.5 m wide, though they are typically 20-40 m long. Predominantly composed of quartz with minor carbonate and barite, the veins contain podiform sulphide mineralization consisting of varying amounts of pyrite, tetrahedrite, sphalerite, galena and arsenopyrite. Electrum has been observed in trace amounts. Silver is present in some of the highest concentrations observed on the Brucejack property.

SG Zone:

The SG Zone is located in the north-central part of the Brucejack-Sulphurets property and is represented by an area of iron oxide-stained, sericite-altered rocks that occur adjacent to the northerly striking Brucejack Fault. Channel rock sampling done by Silver Standard and previous workers tested a restricted zone of quartz stockwork veining close to the major fault as well as an east-striking, 150 m long and 20-80 cm wide quartz vein that extends westwards from the quartz stockwork. In addition, seven historic and five SSR diamond drill-holes have tested for gold mineralization in this area. The SSR boreholes passed through a sequence of mainly clastic andesitic rocks, likely re-worked tuffs and lapilli tuffs that are intercalated with quartzo-feldspathic sandstones and minor

siltstone units. These drill holes contained surprisingly very little quartz veining; instead, the mineralized lapilli tuff hosts minor quartz-carbonate stockwork veinlets and trace amounts of fine, acicular arsenopyrite in addition to 1-3% disseminated pyrite. Geochemical data reveal that there is a close relationship between gold and arsenic in this zone. Based on the limited amount of drilling done at the SG Zone it appears that the gold-bearing hydrothermal fluids passed preferentially through coarser grained volcaniclastic rock probably because it was more permeable / porous than finer grained lithologies in the sequence.

Gossan Hill:

The mineralized zone known as Gossan Hill, located immediately north of entrance to Brucejack Creek, is a circular area, about 300 m in diameter, of intense quartz-sericitepyrite alteration developed in Jurassic andesites of the Unuk River member of the Betty Creek formation. This visually impressive alteration zone is host to at least eleven quartz vein and quartz stockwork structures most of which trend east-west and dip steeply to the north. Individual structures are up to 250 m long and 20 m wide. Historical work done at Gossan Hill consisted of rock-chip sampling, hand trenching and diamond drilling, with a few +400-meter holes passing through the central part of the prospect area. Precious metal mineralization at Gossan Hill is sporadic but generally best developed in the larger quartz lenses, particularly where these contain minor aggregates of pyrite, tetrahedrite, sphalerite, and galena. Electrum is rarely observed, while silver also occurs in tetrahedrite, pyrargyrite and polybasite. Silver Standard only

drilled two diamond boreholes at Gossan Hill in 2009, with the objective of finding a broad zone of low-grade gold mineralization that may enclose or exist between a few of the more discrete structures tested by the historical surface sampling and drilling.

SNOWFIELD LOCAL GEOLOGY

The property is predominately underlain by andesitic to felsic tuffs and flows of lower Jurassic Unuk River Formation of the Hazelton Group. Petrographic and whole rock geochemistry confirms the rock types to be predominately altered andesites equivalent to a lower greenschist facies which include strong sericitic altered latite crystal tuffs and flows. These rocks form the host units for gold mineralization at Snowfield. An obvious weak to moderate phyllitic to schistose tectonic fabric trends east to northeast and dips 48-84° to the north-northwest. Principle alteration minerals include: chlorite, sericite, quartz and pyrite. Intensity of pervasive alteration varies from weakly foliated propylitic rocks to well foliated sericite schists. The marine volcanic back-arc sequence includes fine-grained massive andesite that contains autothonous (homolithic) breccia flows, lithic and lapilli tuffs (photo 5).

Photo 5: Andesite flow breccia (V4fbx) with homolithic fragments up to 15cm. The left photo is taken from the western edge of the main Snowfields zone and the right photo is taken from ice level of the southern edge of Mitchell Glacier.

Dark green to pale grey-green Unuk River andesite tuffs are well exposed throughout the mineralized area of the main Snowfield Zone and Mitchell Glacier. This unit is moderately foliated with a fine-grained andesite matrix that contains lenses of homolithic fragmental lapilli tuffs and andesitic homolithic flow breccia is several m thick. Lithic and breccia fragments are commonly less than 10cm and are sub-angular.

Besides the Unuk River andesites, lenses of foliated sericite altered felsic ash, lithic and crystal tuffs are common throughout the Snowfields property area. The felsic tuffs are classified as latites (Payne, 2008). The latite crystal tuffs are medium-grained, well compacted rocks that commonly exhibit moderate to strong sericitic alteration. When fractured, this unit has a very gritty texture and various phases can also be porphyritic with 3-5% 3-4mm sub-rounded plagioclase crystals (photo 6).

Photo 6: Porphyritic latite crystal tuff with 3-5% 3-4mm sub-rounded plagioclase crystals, note the dark, flattened and foliated 3 cm elongated lithic fragment (right)

Photo 7: These latite crystal tuffs exhibit stratified and layered textures as well.

Occasionally associated with these latite crystal tuffs are minor fine-grained latite

ash-crystal tuffs that have a finely laminated texture (Photo 8).

Photo 8: Metamorphosed latite crystal tuff (lower unit) exhibits strong foliated parallel to a contact with felsic ash tuff (upper unit) with strong sericite alteration.

Porphyritic hypabyssal andesites appear to raft and en-gulf the well foliated sericiteschistose latite tuff as large wedges intruded and carried by the Unuk River equivalent hypabyssal porphyritic andesite. These andesites exhibit weak only weak propyllitic alteration, unlike the intensely foliated and sericite altered latite series (Photo 9).

Photo 9: Massive to porphyritic hypabyssal andesite at the base of the drilled sequence with weak propyllitic alteration and weak fine quartz-calcite veinlets

Lenses and fragments of altered latite tuff occur within the porphyritic hypabyssal andesites (Photo 10). Small golf ball-sized fragments to large 'roof-pendant' like lenses are observed throughout the Brucejack Lake and Snowfields area.

Photo 10: Limonite stained, foliated sericite altered latite tuff fragments in an andesite porphyry.

The drill-hole plan map and Snowfield sections showing all the drill-hole results and geology is located in the appendix of this report. The entire sequence appears to be cut by co-magmatic dykes and sills that are of a basaltic andesite composition (Margolis, 1993). The basaltic andesite dykes and sills are narrow, commonly less than a metre in width and are occasionally magnetic but range in width up to approximately two m wide. These are weakly deformed massive, fine-grained dykes that exhibit weak propyllitic alteration and appear to be post North Stockwork mineralization as they are very clean and void of quartz stockwork mineralization (Photo 11).

Photo 11: Late stage massive to porphyritic andesite dyke cutting the North Stockwork Au-Cu mineralization. The dyke is clearly post mineral.

However, Margolis describes the same basaltic andesite dykes with reference to the Snowfield Gold Zone and refers to the dykes as pre-mineral in age to the main Gold Zone:

"Three types of intrusives exist in the property area. Two are of pre-mineral ages and include mafic dykes-sills (basaltic andesite as previously described) and diorite that occurs on the east side of Brucejack fault on the downthrust block. The third is a synvolcanic stock and granitoids which includes quartz-syenite and monzonite which are apparently related to the mineralization (Margolis, 1993)."

Snowfield Deposit Type and Mineralization

The Snowfield Gold Zone and its' newly discovered northern extension, Snowfield North Stockwork Zone, is a low-grade, bulk tonnage, porphyry-type gold-copper target. The main 1-3 g/t body of gold mineralization of the Snowfield Gold Zone appears to have an elongate east-west bowl or keel shape 450 m long and 350 m wide and the overall system appears to be plunging moderately to the north-northwest. The NNW extension to this zone was discovered to trend consistently for approximately a km to the north. This newly discovered North Stockwork Zone carries lower gold grades (ranging from 0.5 to 1.38 g/t Au) but the volume of the mineralization is much greater. This silicified guartz stockwork spans at least 600 m east-west and to a depth to at least 660m at it deepest point. Mineralization remains open on all sides and at depth. The target is consistently layered showing higher gold grades at or near the surface then descending to weaker gold grades towards the bottom of the system. However, a positive copper correlation appears to exist between gold values within the North Stockwork system as gold grades between 0.5 to 1.0 g/t seem to correlate well with copper values ranging between 0.15 to 0.20%

Snowfield Gold Zone

Gold mineralization of the main Snowfield Gold Zone occurs as microscopic grains (<30 microns) that are in contact or close to trace amounts of galena and sphalerite (Margolis, 1993). Grains of electrum are encased within fine-grained pervasively disseminated 1-4% pyrite associated with late stage weak hydrothermal flooding of andesite tuffs and within quartz-pyrite veinlets. Other than galena and sphalerite, associated minerals within the gold phase include tetrahedrite-tennantite, barite, acanthite, minor Mn-rich calcite and rare chalcopyrite. Although trace elements of sphalerite and galena are associated within the gold zone, they are more abundant deeper in the sequence. Minute clusters of pyrite rutile+barite (approximately75 microns) are also a unique feature of the Snowfield Gold Zone.

Snowfield North Stockwork Zone

The gold mineralization of the North Stockwork zone is much different than that of the main Snowfield Gold Zone. An intense 30-50% white quartz stockwork has brecciated the pre-silicified host volcanic units. Often the host has been completely replaced by silica flooding then brecciated by the later stage stockwork event. Trace to less than 1% chalcopyrite is common throughout the stockwork zone but the principle sulphide is a fine-grained anahedral 3-5% disseminated pyrite with 2-3% veinlet pyrite in a milky white to pale grey quartz stockwork host (Photos 12 and 13).

Photo 12: North Stockwork Zone with 30-50% brecciated quartz stockwork in silica flooded replaced volcanic host. This zone averages 1.19 g/t Au and 0.27% Cu over 116.50 m and is part of the larger zone that averages 0.95 g/t Au and 0.20%Cu over 424.84 m in hole 013-MZ. Strong pyrite veinlet and disseminated mineralization is common within the North Stockwork Zone.

A positive correlation exists between gold and copper values in the North Stockwork Zone. The opposite is true of the main Snowfield Gold zone. The copper values increase with depth at the main Snowfield Gold Zone as the gold values decrease. Further studies are recommended to better understand the mineralizing events and associated alteration between the main Snowfield Gold Zone and the North Stockwork Gold Zone.

Photo 13: Abundant chalcopyrite within the North Stockwork Au-Cu Zone. Chalcopyrite usually occurs trace to <1% concentrations of fine-grained to coarse grained disseminated grains and clots within white-grey quartz stockwork

Hydrothermal alteration includes quartz-sericite-pyrite with various amounts of chlorite and calcite. Also associate to the main gold zone is spessartine garnet. These dark reddish-brown garnets are \leq 4mm and appear to have been crystallized during the gold phase. The garnets are probably hydrothermal in origin as they are well fractured and exhibit deformational features consistent with that of the tectonic event which caused the deformation and schistocity of the host units (Margolis, 1993). The quartz veinlets and stockwork within the North Stockwork Zone exhibit strong ptygmatic folds that are a direct result of strong post mineral tectonic deformation (photo 14).

Photo 14: Note the discrete ptygmatic folding and deformation of the quartz veinlets and associated extension fractures that segment the individual veinlets.

EXPLORATION SUMMARY

During the first week of May 2010 crews were flown in from Stewart by helicopter to begin digging out the Brucejack Lake and Snowfields camps. The Snowfield camp was expanded to a capacity of approximately 45 people and the Brucejack Lake camp was expanded to handle a 50-man camp capacity. Four drills were flown into Snowfield camp and five drills were flown into Brucejack camp during late may and early June. Helicopter support was provided by Vancouver Island Helicopters from Sidney B.C. Two Bell 407's were used for the entire summer, one for each camp and Bell 205 was stationed at Brucejack camp but was shared between both camps during the summer. Radius

Drilling out of Prince George supplied all four drills at Snowfield that consisted of one modified B-20 PQ rig and two B-20 HQ, NQ-2 and NQ-3 rigs as well as one Hydracore 2000 rig that cut HQ and NQ2 core. Radius also sub-contracted Western Drilling with two A-5 HQ rigs for the Brucejack project. The other three HQ rigs were all A-5 rigs supplied by Matrix Drilling.

Thick rubber-walled bladders called "Rollagons" were used to transport conditioned Jet-A fuel to the camp and drills so that all helicopters and machinery with diesel engines could run on the same fuel. This made logistics with fuel control much more manageable. In addition, two double-walled 1,000 gallon enviro-tanks were also flown into each camp with the Bell 205 for added fuel storage. However, the rollagons proved to be environmentally friendly and efficient way to manage fuel. This virtually eliminated the use of 45 gallon drums for fueling and significantly cut-down on fuel leaks that are common with the use of drums. The added advantage of using the 1000 gallon envirotanks was that all fuel flown in with rollagons was filtered for any water and contaminates. All core samples and surface rock samples were flown to the Tide Lake staging site then we trucked the samples to the ALS-Chemex lab in Terrace.

The goal of the 2010 exploration program was to in-fill the Snowfield 200 meterspaced drill pattern to 110 meter-spacing and to expand the limits of the mineralization to the west, south and east. This enabled Silver Standard to up-grade the resource estimate from the inferred category to the measured and indicated category. At

Brucejack Lake, several targets were selected as a first-pass priority based largely from success of the 2009 program. These included the Galena Hill, SG, Gossan, Electrum, Bridge, and Valley of Kings Zone. We also targeted previously drilled targets that were well defined by Newhawk Gold Mines. These were the footwall zone of the West Zone and the northern extension to the Shore Zone.

Near the end of the program, a two-man survey team from McElhanney Consulting of Smithers accurately surveyed all drill-hole collars from both projects. These new diamond drill-hole collars were incorporated with detailed topographic map and surveys from the 2008 and 2009 drill programs. This work was completed within five days in late September utilizing a Total Station survey instrument and a Real-Time GPS unit. Both camps were de-mobilized by September 28th, 2010. The Snowfield camp has only tentframes left standing along with a few small storage shacks. At Brucejack camp the kitchen, dry and core shack were roofed and cladded as well as several other small storage sheds. The rest of the structures are tent frames that were left standing.

DIAMOND DRILL PROGRAM AND RESULTS

During the 2010 exploration program, 47 holes were drilled at Snowfield for 17,979.78 m HQ and NQ core and 75 drill holes were drilled at Bruckjack Lake for 32,963.16 m of HQ and PQ core. A total of 116 drill platforms were constructed to complete the drilling. All drill platforms were dismantled and the sites were cleaned up of

any debris and excess rod grease. At Snowfield the drill program was designed to test the lateral boundaries and depth limits of the mineralization as well as tighten the drill hole spacing to within 100 to 110 m center-spacing in order to increase the degree of confidence of the resource estimate. The previous drill program produced excellent drill indicated and inferred results from a 200 meter-spaced drill array. At Brucejack we drilltested numerous new targets and expanded drilling on several previously drilled targets. The program drill tested Galena Hill, Electrum, Bridge, Mammoth, SG and Gossan Hill Zones. All relative maps and sections are included in the appendices of this report.

A total of 34,190 core samples were analyzed by a 30 gram gold fire assay and 32 element ICP analyses. These samples were flown to Tide Lake staging area on a daily basis with the Bell 205 helicopter. From staging, the samples were trucked through Stewart to Terrace to ALS-Chemex Labs. The results are posted in the master assay data base included in the appendix of this report. All drill holes were surveyed with a Down-Hole Reflex E-Z Shot. The test intervals were taken at the end of every hole and at approximate 50-100 metre intervals. Details of the down-hole surveys are located in the appendix of this report as well.

The drill program was largely successful in better defining the gold-copper mineralization within the Snowfield Zone. The following tables summarize drill hole data (UTM Zone 9 NAD 1927 Canada) and results from the 2010 diamond drill program.
Hole_ID	Orig_East	Orig_North	Orig_Elevation	Azimuth	Dip	EOH_Length
SU-						
010ext*	426771.52	6256937.43	1626.683	358	-50	118.17
SU-38	426591.0	6257080.0	1555.12	357	-50	520.29
SU-039	426891.59	6258919.51	1435.46	177	-50	614.47
SU-040	426411.86	6257555.52	1518.02	30	-50	687.93
SU-041	426675.66	6258792.82	1398.46	177	-50	553.2
SU-042	426776.39	6258922.41	1453.8	177	-50	582.93
SU-043	426549.32	6258904.58	1388.66	230	-50	528.88
SU-044	426133.78	6256662.87	1468.8	8	-50	380.18
SU-045	426891.04	6258967.16	1429.75	72	-50	656.23
SU-046	426112.47	6257753.23	1545.87	358	-50	532.49
SU-047	426729.37	6258865.96	1440.85	180	-50	473.96
SU-048	426152.5	6259956.92	1528.99	188	-58	555.5
SU-049	426465.1	6258985	1381.25	180	-50	602.13
SU-050	426232.19	6258375.78	1468.72	178	-50	576.07
SU-051	426332.74	6259756.97	1519.22	188	-50	431.29
SU-052	426728.04	6258975.73	1451.25	180	-50	492.86
SU-053	426995	6258022.85	1497.03	180	-50	318.82
SU-054	426877.5	6258010.33	1545.44	180	-50	349.61
SU-055	426546.52	6257431.13	1528.41	0	-50	684.89
SU-056	426765.26	6258046.29	1527.13	180	-50	395
SU-057	426795.97	6257444.48	1607.98	0	-50	629.41
SU-058	426553.25	6257218.26	1532.46	0	-50	583.69
SU-059	426880.24	6258093.65	1510.02	180	-50	306.32
SU-060	426645.32	6257922.45	1548.34	0	-50	509.02
SU-061	426950.69	6258149.61	1460.95	180	-50	300.23
SU-062	426828.23	6257984.1	1549.05	180	-50	218.54
SU-063	426525.32	6258700.74	1379.81	180	-50	553.65
SU-064	427041.37	6256961.56	1677.8	0	-50	318.78
SU-065	426951.49	6258019.93	1502.92	180	-50	190.5
SU-066	426467.15	6258883.8	1353.28	180	-50	608.08
SU-067	426467.34	6258785.5	1359.08	180	-50	599.85
SU-068	426624	6259002.67	1443.85	180	-50	637.95
SU-069	426869.04	6256836.96	1648.28	0	-50	644.95
SU-070	426766.59	6256759.88	1632.26	0	-50	109.42
SU-071	426522.69	6258963.74	1395.97	180	-50	601.95
SU-072	426875.96	6258148.03	1466.56	180	-50	300.22
SU-073	426749.55	6259181.29	1446.88	180	-50	608.08

Table 4: Drill Data Brucejack 2010 Drilling

SU-074	426655.17	6259211.12	1445	180	-50	589.18
SU-075	426579.3	6256958.07	1562.68	0	-50	639.16
SU-076	426990.8	6258095.97	1463.26	180	-50	299.31
SU-077	426720.73	6258133.42	1507.16	177	-65	550.16
SU-078	426773.58	6256854.31	1625.21	0	-60	724.81
SU-079	426851.41	6257343.41	1605.12	0	-50	569.04
SU-080	426770.95	6256934.65	1625.19	355	-50	135.5
SU-081	426968.54	6256877.94	1668.43	0	-60	696.6
SU-082	426631.74	6257847.31	1541.57	250	-60	518.46
SU-083	426972.82	6257300.52	1623.38	0	-70	603.19
SU-084	426526.71	6257732.44	1555.51	0	-50	215
SU-085	427045.03	6256773.38	1682.59	0	-65	758.45
SU-086	426526.69	6257731.92	1555.55	0	-65	356
SU-087	426972.98	6257181.14	1639.08	0	-70	343.2
SU-088	426694.41	6258727.03	1389.77	0	-75	300.84
SU-089	426675.65	6256875.21	1601.5	0	-50	638.25
SU-090	427138.1	6256873.76	1693.72	0	-70	650.13
SU-091	426576.36	6257722.97	1558.83	0	-55	302
SU-092	426884.7	6256646.83	1660.38	0	-70	633.06
SU-093	426576.37	6257722.29	1558.96	0	-70	268
SU-094	426774.5	6256676.83	1638.66	0	-70	536.74
SU-095	427175.58	6256657.27	1697.29	0	-75	551.08
SU-096	426628.22	6257887.4	1541.51	180	-45	249.02
SU-097	426628.24	6257888.21	1541.52	180	-65	328.27
SU-098	426783.61	6258590.1	1377.64	230	-50	509.63
SU-099	427171.8	6258960.34	1377.41	25	-55	352.6
SU-100	426966.88	6258313.18	1413.14	230	-50	605.34
SU-101	427172	6258960.74	1377.48	25	-45	245.97
SU-102	426676.12	6257889.13	1547.27	180	-45	285.6
SU-103	426784.07	6258590.49	1377.72	230	-65	512.67
SU-104	427042.78	6259116.64	1378.46	40	-45	252.3
SU-105	427042.33	6259116.15	1378.56	40	-55	252
SU-106	426473.43	6257763.75	1546.337	0	-50	346.56
SU-107	427081.79	6259051.42	1383.12	40	-45	276.45
SU-108	427084.6	6258072.94	1444.24	180	-50	297.48
SU-109	427081.66	6259051.28	1382.98	40	-55	276.45
SU-110	426976.03	6259195.72	1384.21	40	-45	157.58
SU-010	extend to	608.08m		Total	m	32963.16

Table 5:	: Drill D	ata Snow	vfield 2	2010	Drilling
----------	-----------	----------	----------	------	----------

DataSet	Hole_ID	Orig_East	Orig_North	Elevation	Az.	Dip	EOH m
Snowfields	MZ-075	424187.66	6264396.28	1405.77	177	-50	556.86
Snowfields	MZ-076	424319.34	6263816.21	1567.65	177	-50	590.39
Snowfields	MZ-077	424347.92	6264249.17	1476.49	177	-50	600.45
Snowfields	MZ-078	423954.68	6263845.78	1555.3	177	-50	614.78
Snowfields	MZ-079	424657.59	6263679.25	1697.39	177	-50	599.54
Snowfields	MZ-080	424680.85	6263484.41	1765.52	177	-50	420.01
Snowfields	MZ-081	424989.47	6263361.51	1871.28	177	-50	388.92
Snowfields	MZ-082	424881.73	6263518.74	1806.74	175	-50	428.85
Snowfields	MZ-083	424552.69	6263854.93	1589.05	175	-50	395.63
Snowfields	MZ-084	425321.14	6264792.2	1368.56	177	-55	611.73
Snowfields	MZ-085	425127.56	6264203.17	1591.97	175	-50	413.91
Snowfields	MZ-086	425012.79	6264423.41	1535.79	175	-55	550.77
Snowfields	MZ-087	425057.64	6264304.84	1568.19	175	-50	431.3
Snowfields	MZ-088	424895.02	6264206.19	1570.29	175	-50	419.11
Snowfields	MZ-089	424795.54	6264690.09	1381.31	179	-59	249.5
Snowfields	MZ-090	425337.05	6264412.89	1438.41	175	-50	602.58
Snowfields	MZ-091	424517.35	6264512.01	1351.04	250	-63	450.2
Snowfields	MZ-092	425323.61	6264799.01	1374.23	90	-60	500.79
Snowfields	MZ-093	424919.97	6264791.92	1336.55	177	-52	249.5
Snowfields	MZ-094	425327.05	6264193.76	1493.82	175	-50	406.29
Snowfields	MZ-095	424590.65	6265019.87	1180.75	255	-87	400.2
Snowfields	MZ-096	425001.87	6263916.79	1657.31	190	-70	400.51
Snowfields	MZ-097	425179.67	6264282.04	1565.65	175	-50	41.15
Snowfields	MZ-097B	425179.67	6264282.04	1565.65	177	-50	453.23
Snowfields	MZ-098	424823.81	6264893.56	1280.56	177	-53	280.5
Snowfields	MZ-099	425016.67	6263999.24	1642.33	177	-87	201
Snowfields	MZ-100	425106.78	6264503.4	1505.6	175	-50	604.11
Snowfields	MZ-101	425389.35	6263745.34	1659.51	270	-50	390.75
Snowfields	MZ-102	424867.32	6264050.73	1604.87	177	-87	201
Snowfields	MZ-103	424929.24	6263727.42	1711.64	90	-50	350.52
Snowfields	MZ-104	425209.744	6264606.361	1410.481	175	-50	604.11
Snowfields	MZ-105	425612.363	6263872.18	1624.171	177	-50	358.14
Snowfields	MZ-106	425533.042	6264189.791	1481.437	175	-50	256.95
Snowfields	MZ-107	424558.559	6263997.229	1531.055	177	-85	250.55

Snowfields	MZ-108	425051.903	6263681.912	1706.023	175	-85	300.84
Snowfields	MZ-109	424873.129	6263515.151	1806.547	175	-85	199.95
Snowfields	MZ-110	424843.893	6263382.436	1835.271	175	-85	71.93
Snowfields	MZ-110B	424843.893	6263382.436	1835.271	175	-85	239.57
Snowfields	MZ-111	425249.24	6264487.242	1414.13	175	-50	482.5
Snowfields	MZ-112	425431.918	6264302.169	1453.445	175	-50	343.2
Snowfields	MZ-113	424816.076	6263607.303	1753.08	175	-85	215.41
Snowfields	MZ-114	425048.444	6263581.351	1749.077	175	-85	301.14
Snowfields	MZ-115	425211.575	6263509.923	1769.893	175	-90	310.28
Snowfields	MZ-116	425524.795	6263988.059	1537.209	177	-50	306.62
Snowfields	MZ-117	425439.104	6264088.473	1499.502	177	-50	306.32
Snowfields	MZ-118	425427.979	6264006.048	1533.006	177	-50	306.93
Snowfields	MZ-119	425541.468	6263909.578	1563.758	177	-50	321.1
					Total	m	17979.62

Table 6: Summary of Drill Results- Brucejack 2010

Hole #	From	То	Interval	Ave Au	Ave Ag	Zone	Comments
SU-038	114.11	489.63	375.52	0.54	3.70	Bridge Zone	
SU-039	5.00	17.00	12.00	4.30	12.29	West Zone	1 sample cut to 31.1 g/t Au
	165.00	186.58	21.58	0.58	83.86		
	447.50	490.53	43.03	0.71	21.88		
SU-040	223.50	269.50	46.00	2.16	11.30	Galena Hill	
	346.00	369.50	23.50	1.42	5.22		*1 sample cut to 31.1 g/t Au
Incl	348.63	349.13	0.50	430	174		uncut
	464.45	488.62	24.17	1.40	20.28		*1 sample cut to 31.1 g/t Au
Incl	464.45	465.03	0.58	536	175		uncut
	522.50	572.00	49.50	0.67	1.60		
	647.50	687.93	40.43	2.84	32.75	EOH	*1 sample cut to 31.1 g/t Au
Incl	648.81	650.45	1.64	5850	720		uncut

SU-041	307.00	553.20	246.20	0.77	8.75	West Zone	EOH
SU-042	0.70	32.00	31.30	0.78	44.27	West Zone	
	169.50	208.00	38.50	0.55	28.85		
	473.73	520.00	46.27	0.91	40.30		
SU-043	71.50	95.50	24.00	0.63	4.88	West Zone	
SU-044	55.50	69.50	14.00	0.57	2.20	Jewel Zone	
SU-045	521.77	540.00	18.23	4.35	51.23	Shore Zone	1 sample cut to 31.1 g/t Au
Incl	530.00	532.67	2.67	25.76	39.97		Uncut
	594.50	656.23	61.73	1.69	42.12	EOH	1 sample cut to 1,000 g/t Ag
Incl	594.50	619.28	24.78	3.61	97.83		
SU-046	204.00	248.50	44.50	0.68	1.90	Waterloo	
SU-047	75.00	109.00	34.00	0.65	7.16	West Zone	
	197.50	221.50	24.00	2.07	39.66		1 sample cut to 31.1 g/t Au
	403.76	448.50	44.74	3.26	67.25		1 sample cut to 31.1 g/t Au
Incl	403.76	416.23	12.47	10.88	220.34		Uncut
SU-048	144.50	195.50	51.00	0.62	7.46	SG Zone	
	290.50	412.00	121.50	0.87	3.02		
	548.00	555.50	7.50	1.38	11.66	EOH	
SU-049	79.50	126.00	46.50	0.66	3.62	West Zone	
	550.00	590.50	40.50	1.04	2.81		
SU-050	152.00	166.50	14.50	1.35	2.19	Regional	
SU-051	10.50	79.98	69.48	0.67	3.03	SG	
	311.00	330.00	19.00	0.69	1.05		
SU-052	2.06	58.00	55.94	0.45	10.43	West Zone	
	194.49	428.31	233.82	2.26	12.54		5 samples cut to 31.1 g/t Au
Incl	263.00	300.50	37.50	11.78	18.47		Uncut
Or	276.50	281.71	5.21	56.64	55.50		Uncut
Incl	391.50	423.00	31.50	5.96	30.90		Uncut
SU-053	21.50	45.50	24.00	2.39	49.11	Galena Hill	*1 sample cut to 31.1 g/t Au

Incl	21.50	23.00	1.50	1,025	751	***	Uncut
	83.50	152.50	69.00	0.53	6.55		
SU-054	9.14	72.50	63.36	2.25	38.04	Galena Hill	*1 sample cut to 31.1 g/t Au
	53.60	55.19	1.59	2,490	1,135	***	Uncut
	124.88	133.50	8.62	6.01	43.56		* 1sample cut to 31.1 g/t Au
	280.50	310.00	29.50	0.58	5.90		
	336.50	349.50	13.00	1.78	14.15	EOH	
SU-055	57.50	96.50	39.00	1.61	3.60	Bridge Zone	*1 sample cut to 31.1 g/t Au
	331.50	367.00	35.50	0.80	4.33		
	575.00	611.00	36.00	1.20	3.04		
SU-056	16.70	44.00	27.30	0.75	1.68	Galena Hill	
	245.50	270.50	25.00	0.59	4.54		
	289.50	327.80	38.30	0.71	4.77		
	364.70	370.33	5.63	1.63	12.55	EOH	
SU-057	233.13	279.50	46.37	1.02	74.03	Bridge Zone	
	442.00	524.50	82.50	2.00	9.50		
Incl	459.50	471.37	11.87	7.42	11.48		
SU-058	0.11	162.00	161.89	2.09	7.97	Bridge Zone	2 samples cut to 31.1 g/t Au
Incl	88.50	96.00	7.50	20.89	28.90		Uncut
SU-059	26.50	111.50	85.00	1.37	15.53	Galena Hill	
SU-060	48.00	62.71	14.71	0.74	6.84	Bridge Zone	
	180.90	250.00	69.10	0.74	13.16		
SU-061	0.00	81.00	81.00	0.65	41.66	Galena Hill	
	96.02	180.00	83.98	1.02	4.90		
SU-062	14.00	143.00	129.00	1.48	14.53	Galena Hill	
	210.00	218.54	8.54	1.49	14.57	EOH	
SU-063	4.20	28.50	24.30	0.72	9.25	West Zone	
	143.00	166.50	23.50	0.92	34.02		
	319.00	487.49	168.49	0.80	4.81		
SU-064	170.2	318.8	148.6	0.72	7.50	Bridge Zone	EOH

	290.29	318.78	28.49	1.07	9.76		EOH
SU-065	65.50	121.00	55.50	1.46	10.59	Galena Hill	
	156.50	175.77	19.27	0.91	6.66		
SU-066	26.89	64.55	37.66	0.88	1.49	West Zone	
	358.34	444.00	85.66	1.16	5.39		
SU-067	114.00	177.55	63.55	0.76	4.45	West Zone	
	250.00	324.42	74.42	2.17	16.56		
SU-068	107.00	125.50	18.50	2.41	8.80	West Zone	1 sample cut to 31.1 pm Au
Incl	117.7	118.2	0.50	518.00	244.00		Uncut
	213.50	232.36	18.86	0.91	8.27		
	387.50	516.50	129.00	0.89	10.11		
SU-069	108.50	351.61	243.11	0.85	8.79	Bridge Zone	
	377.00	554.00	177.00	1.07	10.40		
	600.94	644.95	44.01	0.79	8.82		EOH
SU-070	77.50	109.42	31.92	0.88	5.45	Bridge Zone	EOH
Hole #	From	То	Interval	Ave Au	Ave Ag	Zone	Comments
SU-071	5.68	48.74	43.06	0.51	2.28	West Zone	
	519.50	523.93	4.43	6.73	5.69		
SU-072	140.70	157.00	16.30	0.65	7.64	Galena Hill	
SU-073	57.00	116.50	59.50	2.45	13.17	West Zone	3 samples cut to 31.1 g/t Au
Incl	102.50	112.00	9.50	57.63	40.85		Uncut
	208.66	240.50	31.84	0.84	22.89		
SU-074	9.00	51.00	42.00	0.76	7.50	West Zone	
	115.00	155.00	40.00	1.08	13.68		
	207.00	220.50	13.50	4.85	13.49		*1 sample cut to 31.1 g/t Au
	269.50	286.50	17.00	1.31	5.84		
SU-075	20.70	123.00	102.30	0.71	2.38	Bridge Zone	
	194.00	240.50	46.50	0.55	3.71		
	355.00	510.00	155.00	1.15	3.55		*1 sample cut to 31.1 g/t Au

SU-076	4.50	31.50	27.00	1.05	18.87	Galena Hill	
	84.50	189.50	105.00	2.27	20.78		*1 sample cut to 31.1 g/t Au
	125.50	145.50	20.00	8.21	66.15		Uncut
SU-077	304.50	351.00	46.50	1.18	8.90	Galena Hill	
SU-078	118.50	203.50	85.00	0.57	3.78	Bridge Zone	
	229.00	527.50	298.50	0.73	7.12		
SU-079	46.50	75.50	29.00	0.59	17.06	Bridge Zone	
	332.50	382.50	50.00	1.31	53.06		
SU-080			PQ met			Bridge Zone	Metallurgical hole
							Extended hole from last
SU-10	489.81	608.08	118.27	0.99	7.57	Bridge Zone	year
	7.00	608.08	601.08	0.76	7.91	EOH	New ave. grade for SU-10
<u></u>	74.00		070 50	0.64	40.00		
50-081	/1.00	444.50	3/3.50	0.64	12.80	Bridge Zone	
	485.00	666.50	181.50	0.53	8.54		
	227.00	222.00	12.00	2.42	4.70		
50-082	227.00	239.00	12.00	2.13	4.78	Galena Hill	Geotechnical Hole
<u> </u>	420 50	476.00	45.50	0.66	2.50		
50-083	430.50	476.00	45.50	0.66	2.56	Bridge Zone	
CU 004	42.00	64.00	21.00	0.50	F 01	Colore Hill	
50-084	43.00	64.00	21.00	0.58	5.81	Galena Hill	
	92.00	155.50	03.50	1.01	12.61		
	198.08	198.52	0.44	5,480	2,140		
S11 095	19 00	116 50	67.60	0.80	7 10	Pridgo Zopo	
30-005	132.00	262 50	130 50	0.83	0.20	Bridge Zone	
	5/1 80	664 50	122.61	0.55	1/ 00		
	541.05	004.30	122.01	0.55	14.55		
511-086	82 50	122.00	39 50	1 38	7.09	Galena Hill	
30 000	190 50	226 50	36.00	2 01	17 74	Guicila I III	
	238 50	260.80	22,30	1.33	7.05		
	200.00	200.00	22.50	1.00	,.05		
SU-087	175.50	343.20	167.70	1.09	4,04	Bridge Zone	ЕОН
	1,0.00	0.0.20		2.00		2.1000 20110	
SU-088	144.00	288.50	144.50	0.95	7.73	West Zone	

SU-089	99.50	161.50	62.00	1.17	2.96	Bridge Zone	
	188.56	229.00	40.44	0.84	2.45		
	304.00	638.25	334.25	1.02	4.76		EOH
SU-090	69.00	160.00	91.00	0.83	6.82	Bridge Zone	
	241.00	353.00	112.00	0.91	22.66		
	371.00	408.50	37.50	0.56	5.20		
SU-091	43.00	102.98	59.98	1.64	11.02	Galena Hill	*1 sample cut to 31.1 g/t Au
SU-092	135.76	154.00	18.24	0.72	3.73	Bridge Zone	
	230.00	275.00	45.00	0.72	7.07		
SU-093	73.10	88.05	14.95	0.52	27.61	Galena Hill	
	105.80	146.10	40.30	1.26	6.50		*1 sample cut to 31.1 g/t Au
	164.00	191.00	27.00	1.17	10.44		
	205.79	232.43	26.64	1.32	6.66		
SU-094	191.50	240.00	48.50	0.61	4.77	Bridge Zone	
	269.00	270.50	1.50	34.70	18.60		
	298.50	324.00	25.50	0.84	12.45		
SU-095	316.50	387.00	70.50	0.67	21.76	Bridge Zone	
	387.00	410.50	23.50	0.76	25.01		
SU-096	138.00	164.00	26.00	0.57	18.41	Galena Hill	
	226.00	249.02	23.02	0.87	10.30		EOH
SU-097	125.41	199.50	74.09	0.49	4.75	Galena Hill	
	219.50	266.12	46.62	1.30	8.77		
	289.71	325.00	35.29	1.83	6.18		EOH
SU-098						West Zone	metallurgical hole to 275m
	275.00	339.00	64.00	0.75	5.79		
	359.00	488.50	129.50	1.40	16.60		2 samples cut to 31.1 g/t Au
Incl	427.00	430.00	3.00	876.75	597.55		Uncut
SU-099	91.50	112.00	20.50	1.52	45.76	Shore Zone	
	158.50	193.50	35.00	0.73	22.80		
	212.00	240.50	28.50	0.65	10.14		

SU-100	69.50	89.00	19.50	0.49	1.74	West Zone	
	398.10	427.71	29.61	1.56	7.03		
	561.00	605.34	44.34	0.85	3.02		EOH
Incl	582.00	605.34	23.34	1.05	3.50		
SU-101	135.04	142.50	7.46	3.58	177.68	Shore Zone	
	190.00	205.00	15.00	0.57	11.95		
	221.65	229.50	7.85	0.86	46.71		
SU-102	133.00	208.50	75.50	0.64	6.88	Galena Hill	
	231.00	277.50	46.50	0.59	6.53		
SU-103							metallurgical hole
SU-104	38.70	79.50	40.80	0.63	7.80	Shore Zone	
	94.50	117.00	22.50	0.70	10.83		
SU-105	87.50	137.00	49.50	0.71	3.06	Shore Zone	
	198.50	212.00	13.50	2.65	63.34		
SU-106	83.00	155.47	72.47	1.37	15.00	Galena Hill	
	192.50	241.12	48.62	1.06	25.75		*1 sample cut to 31.1 g/t Au
Incl	240.43	241.12	0.69	1,710	1,080		Uncut
	269.58	294.00	24.42	0.77	7.31		
SU-107	103.00	125.93	22.93	0.70	24.31	Shore Zone	
	147.50	174.12	26.62	1.25	23.56		
SU-108	116.00	137.00	21.00	0.56	7.18	Galena Hill	
SU-109	54.00	66.00	12.00	0.89	7.43	Shore Zone	
	173.74	200.80	27.06	0.92	20.87		
SU-110	15.00	58.00	43.00	1.34	35.05	Shore Zone	

Table 7: Summary of Drill Results- Snowfield 2010

Hole #	From (m)	To (m)	Interval (m)	Ave Au (gpt)	Ave Cu (%)	Comments
MZ-75	106.5	139.0	32.5	0.87	0.14	Coffee Pot Zone
MZ-76						Condemnation NSV
MZ-77	23.6	50.7	27.1	0.64	0.07	Coffee Pot Zone
MZ-78						Condemnation NSV
MZ-79						Condemnation NSV
MZ-80	324.0	337.9	13.9	0.53	0.03	Condemnation
MZ-81	2.1	70.5	68.4	0.48	0.01	Southern Step Out
	200.7	226.2	25.5	0.52	0.01	
N47 00	22.5	107 F	05.0	0.70	0.02	Couthour Ctor Out
IVIZ-82	32.5	127.5	95.0	0.78	0.03	Southern Step Out
	282.0	298.1	16.1	0.57	0.02	
M7-83						Condemnation NSV
1012-05						Condemnation NSV
M7-84						Condemnation NSV+G73
MZ-85	2.9	334.8	331.9	0.55	0.04	Eastern Step Out
MZ-86	20.0	69.5	49.5	0.47	0.09	Geotechnical Hole
	92.5	107.5	15.0	0.58	0.10	
	402.0	437.9	35.9	0.68	0.07	
MZ-87	26.5	94.0	67.5	0.72	0.04	Eastern Step Out
	118.9	213.5	94.6	0.71	0.08	
MZ-88	14.4	251.5	237.1	0.67	0.06	Western Step Out
incl	26.0	69.5	43.5	0.98	0.07	

MZ-89						Metallurgical Hole - no assays
MZ-90	85.0	370.0	285.0	0.46	0.28	Eastern Step Out
incl	241.0	272.5	31.5	0.67	0.77	
MZ-104	153.0	222.0	69.0	0.48	0.27	Eastern Step Out
MZ-105	1.5	114.0	112.5	0.35	0.30	Eastern Step Out
incl	22.5	57.0	34.5	0.66	0.46	
MZ-111	26.5	135.5	109.0	0.72	0.50	Eastern Step Out
incl	82.0	129.5	47.5	1.09	0.91	
	171.5	248.0	76.5	0.18	0.15	
MZ-116	2.4	85.0	82.6	1.45	0.44	Eastern Step Out
	170.5	306.6	136.1	0.17	0.19	EOH
MZ-117	1.4	145.5	144.1	0.41	0.16	Eastern Step Out
	206.0	240.5	34.5	0.44	0.13	
MZ-118	2.5	34.0	31.5	0.22	0.12	Eastern Step Out
	94.0	113.5	19.5	0.29	0.15	
	137.5	172.0	34.5	0.49	0.09	
MZ-119	19.0	45.5	26.5	0.13	0.12	Eastern Step Out
	70.0	156.0	86.0	0.05	0.15	
	197.0	284.0	87.0	0.33	0.18	

SAMPLING METHOD and APPROACH

The drill core was photographed and geological and geo-technical logs were completed before the core was split for sampling purposes. The entire holes were sampled at regular 1.5 metre intervals unless recovery or geological issues were apparent. During the program a strict QA/QC program was employed. Several laboratory standards were purchased from CDN Laboratories and utilized in conjunction with blank samples. Furthermore, duplicate ¼ samples were taken at regular intervals to test and ensure that the highest labs standards were maintained. In total 3,984 blanks and standards were used and 2,006 duplicates were cut and shipped within the 34,190 core samples collected. These samples were tagged, bagged and flown to the Granduc staging site where the samples were trucked to Stewart. Samples were then trucked to ALS-Chemex prep-lab in Terrace on a daily basis with our own carrier under our custody. All 2010 rejects and pulps are stored in a warehouse in Terrace. The remaining split core is stored in core boxes stacked in piles near the core shack at both camps. Several type-sections of key holes were flown and stored in Silver Standard's secure and locked warehouse in Stewart for easy all-season access.

ADJACENT PROPERTIES

The adjacent western property is held by Seabridge Gold Inc. and it includes the Kerr-Mitchell-Sulphurets gold-copper porphyry deposits. The latest published mineral resource for indicated and inferred resources are quoted at 34 million ounces of gold and 8.19 million pounds of copper utilizing a 0.50 g/t gold equivalent cut-off in all categories from three zones. The Mitchell Zone is adjacent to the northwest Snowfield property boundary (press release October 23, 2008, Seabridge Gold):

74

Zone	Tonnes	Au g/t	Cu%	Au ounces	Cu pounds
Mitchell	734,163,000	0.69	0.18	16,287,000	2,913,000
Kerr	203,272,000	0.25	0.45	1,651,000	2,037,000
Sulphurets	74,655,000	0.75	0.24	1,798,000	388,000
Total	1,015,090,000	0.61	0.24	19,736,000	5,338,000

Indicated Mineral Resources

Inferred Mineral Resources

Zone	Tonnes	Au g/t	Cu%	Au ounces	Cu pounds
Mitchell	667,421,000	0.62	0.15	13,304,000	2,206,000
Kerr	51,387,000	0.21	0.45	352,000	506,000
Sulphurets	33,636,000	0.62	0.20	675,000	147,000
Total	752,444,000	0.59	0.18	14,331,000	2,859,000

A press release dated November 20th 2008; Seabridge confirmed that their down dip extension to the Mitchell Zone continues to 810 m in a 'pipe-like' breccia quartz stockwork. They report an average grade of 0.56 g/t Au and 0.34% Cu over 805.3 m including copper enrichment averaging 1.22% over 106 m at 200-306 m (with 0.21 g/t Au) and gold enrichment averaging 1.08g/t Au over 155 m at 345-500 m (with 0.30% Cu). These values and type of reported mineralization is very similar to the values encountered in chalcopyrite enriched pyrite-silica zone in the eastern step-out holes at Snowfields (MZ-90, 104, 105, 111 and 116).

MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

The following tabulated resource estimates were completed following the 2010 drill hole program. In addition to the up-graded gold-silver resources, significant gains were made with the copper, molybdenum and rhenium resources for Snowfield. The two following tables are the resource estimates released by Pretium Resources Inc. who purchased the Snowfield and Brucejack properties subsequent to the 2010 program. The resource estimate was completed by P&E Mining Consultants Inc. and released by Pretium Resources in News Releases 11-8 and 11-9 dated February 22, 2011 and February 23, 2011, respectively.

BRUCEJACK RESOURCE ESTIMATE

Category	Tonnes	Gold	Silver	Gold	Silver
	(millions)	<u>(g/t)</u>	<u>(g/t)</u>	<u>('000 oz)</u>	<u>('000 oz)</u>
Measured	<u>11.7</u>	2.25	75.56	<u>846</u>	24,423
Indicated	<u>285.3</u>	0.80	<u>9.57</u>	7,338	<u>87,784</u>
<u>M & I</u>	<u>297.0</u>	0.86	<u>12.17</u>	<u>8,184</u>	<u>116,205</u>
Inferred	<u>542.5</u>	0.72	8.67	12,558	151,220

Cutoff grade 0.30 grams of gold-equivalent.

SNOWFIELD RESOURCE ESTIMATE

Category	Tonnes	Gold	<u>Silver</u>	Copper	Moly	Rhen	Gold	Silver	Copper	Moly	Rhen
	(millions)	<u>(g/t)</u>	<u>(g/t)</u>	<u>%</u>	<u>(ppm)</u>	<u>(ppm)</u>	<u>('000</u>	<u>('000</u>	(billion	(millions	(million
							oz)	oz)	lbs)	lbs)	<u>oz)</u>
Measured	<u>189.8</u>	0.82	1.69	0.09	<u>97.4</u>	0.57	4,983	10,332	0.38	40.8	3.5
Indicated	<u>1,180.3</u>	0.55	<u>1.73</u>	<u>0.10</u>	83.6	0.50	20,934	<u>65,444</u>	2.60	217.5	<u>19.0</u>
M & I	<u>1,370.1</u>	<u>0.59</u>	<u>1.72</u>	<u>0.10</u>	85.5	<u>0.51</u>	25,917	75,776	2.98	258.3	22.5
Inferred	833.2	0.34	1.90	0.06	69.5	0.43	9,029	50,964	<u>1.10</u>	127.7	<u>11.5</u>

Cutoff grade 0.30 grams of gold-equivalent (Moly = molybdenum, Rhen = rhenium)

STATEMENT OF COSTS

To the author's knowledge, there are no known environmental, permitting, legal, title, taxation, access rights, water rights, land-use rights, socio-economic or political issues that may adversely affect any exploration or potential production from the Snowfield project. The 2010 exploration program cost a total of approximately \$21 million but only diamond drill results are reported herein, \$16,753,676.45 (Cdn). The following table summarizes the categories of expenditures completed on Tenures: 509216, 509463, 509464 and 509506. The costs are applied to Exploration and Development Work / Expiry Date Change Events 4816367, 4816372 and 4816559. A complete cost breakdown is located in Appendix VIII.

Table 8: Summary of Costs

ITEM	COST (Canadian Dollars)
Aircraft	\$4,884,118.04
Assaying	\$1,643,197.22
Drilling	\$6,327,372.12
Equipment Rental, Maintenance	\$114,498.88
Freight and Shipping, Courier	\$41,983.79
Geology Consulting	\$502,170.35
Labour and Expediting	\$1,907,493.03
Living Costs, Camp, Groceries	\$341,411.99
Safety Equipment and Services	\$38,691.00
Camp Supplies, Tools, Core Boxes	\$886,255.36
Surveying	\$7,444.26
Truck Rental plus fuel	\$59,040.41
TOTAL	\$16,753,676.45

INTERPRETATION AND CONCLUSIONS

The 2010 diamond drill program extended the known mineralization of the Snowfield Deposit to the Southeast. The mineralization appears to be open in this direction appears to weaken to the southwest as the drilling in this area revealed only weakly anomalous gold and copper values. The eastern step-out holes at Snowfield encountered much higher concentrations of copper mineralization in MZ-90, 104, 105, 111 and 116. This appears to be an independent body of mineralization of chalcopyrite with abundant pyrite in a siliceous matrix. At Brucejack Lake, several gold-silver enriched quartz vein and stringer-stockwork systems were intercepted during the 2010 dill program as a follow-up to the bonanza grades obtained during the 2009 drill hole program. Several multi-kilogram per tonne gold and silver intercepts were produced from wide-spaced 50 to 200m wide drill spacing. These systems appear to be structurally controlled along east-west and northwest trending tectonic features. Drilling at Bridge Zone greatly advanced the southern extension of that system. Low-grade gold mineralization remains open to the south, east and at depth at the Bridge Zone. The three-dimensional block model resulting from the 2011 resource up-date will be essential in selecting the targets for the 2011 drill hole program.

RECOMMENDATIONS

The economic potential is considered to be excellent for the Snowfield Zones' eastern extension. At least four to five diamond drill holes are recommended for the 2011 field season in order to expand gold-copper resource of this part of the Snowfield project. Continued drilling at Snowfield is contingent to the success of these four or five drill holes at the eastern step-out targets. The North Stockwork and Snowfield Gold Zones contains a geological target of over 2.5 billion tonnes of low-grade bulk tonnage mineralization. Field evidence and data from previous exploration suggests the possibility of discovering the potential continuation of the low-grade Au-Cu mineralization north of Hanging Glacier, possibly beneath Josephine Ridge. Reconnaissance drilling at Hanging Glacier and Josephine Ridge may also be recommended contingent to favorable results from preliminary mapping and sampling of these zones in the early part of the 2011 summer.

At Brucejack, continued tight-spaced drilling is recommended at Valley of the Kings and Galena Hill in order to better define the bonanza multi-ounce per tonne vein stockwork intercepts. Numerous drill holes on 20-25 meter sections are recommended for Galena Hill and Valley of Kings. Wherever visible electrum is encountered, in-fill holes between the section lines will be required to obtain holes spacing of 10-12 m in order to gain a higher degree of confidence and better understand the character of the high-grade mineralization. Further definition drilling is required to outline and trace the mineralization at the Footwall Zone of the West Zone. One of the best intercepts encountered 876.75 g/t Au and 597.55 g/t Ag over 3.0 m near the end of SU-98 which cut through and well beyond the West Zone. This is possibly a blind parallel zone to the West Zone. Other impressive intercepts were SU-53 and 54 at Galena Hill. Intercepts cut 1.0 to 2.4 kg/t Au with sub 1.0 kg/t Ag values over 1.50m and 1.59m intercepts, respectively. However, the best value obtained from the 2010 drill program was from the Valley of Kings in SU-40. This deep intercept yielded 5,850 g/t Au and 720 g/t Ag over 1.64 m at approximately 650 m deep.

Besides the high-grade Au-Ag targets, continued drilling on the low-grade bulk tonnage targets are also recommended. The Bridge Zone will require further drilling as

80

the deposit is open to the east south and at depth. At least two deep drill holes are recommended to further extend the depth potential of the Bridge Zone system. Several drill holes that ended in mineralization at over 700 meter drill depths. Two 1,000-meter deep drill holes are recommended to test the deepest part of the Bridge Zone.

Drilling several other high-grade intercepts encountered during the 2010 program is also recommended for 2011 such as the Waterloo Zone which may be a western fault-offset to the Valley of Kings. In addition to follow-up drilling, reconnaissance drilling is recommended at the Golden Marmot zone. This is a large gossan located adjacent to the Brucejack Lake Fault and represents a large bulk-tonnage low-grade Au-Ag <u>+</u>Cu target. Several wide-spaced 500-600 meter deep drill holes are recommended for this zone.

In total, 60,000 m of diamond drilling is recommended for 2011 that includes eight diamond drill rigs with the support of two Bell 407 helicopters and one Bell 205 helicopter. It is recommended that up to 150 holes be drilled with mostly HQ and to a lesser extent, NQ-2 and PQ. The majority of the proposed drilling is in the Brucejack Lake area and only one camp at Brucejack Lake is proposed. Any potential follow-up drilling at Snowfield can be supported from the Brucejack camp with one Bell 407 helicopter. The estimated cost of the proposed diamond drill-hole program is approximately \$18.0 million (Cdn) and will require approximately five months to complete the program. The current 50-man Brucejack camp will need to be doubled in size to

81

accommodate the crews for the eight drills, geological, technical and support personnel; an estimated 100-120 people. Several on-going environmental and preliminary assessment studies will be taking place during the drill hole program.

The start-up crew is recommended to fly into the camp in early May to make the necessary camp modifications to host the personnel necessary for the completion of the program. The drilling is estimated to begin by early June 2011. During the months of March and April, I recommend that geologists import all the historical 1:500 geological maps of the various Brucejack Zones into one property-wide geology map. The lithological nomenclature used from the historical mapping and drilling needs to be harmonized. A review of all drill sections and maps is essential to correctly correlate the historical detailed surface maps to all the sections, thereby creating an up-dated geological legend. Review of all thin section work is recommended for this and further thin section work may be required to further define the various rock unit names.

REFERENCES

- Alldrick, D. J., 1989, Volcanic Centers in the Stewart Complex: British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1989-1.
- Alldrick, D.J., and Britton, J.M., 1988, Geology and Mineral Deposits of the Sulpurets Area: British Columbia Ministry of Energy, Mines and Petroleum Resources Open Map File 1988-4.
- Anderson, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada.
- Anderson, R.G., and Bevier, M. L., 1990, A note on Mesozoic and Tertiary K-Ar geochronometry of pluton sites, Iskut River map area, northwestern British Columbia: Geological Survey of Canada, Paper 90-1E.
- Anderson, R. G., and Thorkelson, D.J., 1990, Mesozoic statigraphy and setting for some mineral deposits in Iskut River map area, northwestern British Columbia:
 Geological Survey of Canada, Paper 90-1F
- Budinski, David, R., P. Geo., 1995, Summary Report on the Snowfield Project Suphurets Property, Skeena Mining Division, Orcan Consultants.
- Konkin, K.J., P. Geo., 2006, Technical Report on the Snowfields Project, Skeena Mining Division, Northwest British Columbia, Silver Standard Resources Inc.
- Margolis, Jacob, Ph.D., 1993, Geology and Intrusion Related Copper-Gold Mineralization, Sulphurets, British Columbia, University of Oregeon.
- Lewis, Peter; Mineral Deposits Research Unit, University of British Columbia, 1995 Legend and Map Sheets 104B/8, 104/B9 and 104B/10.

McPhearson, M.D., P. Geo., 1993, 1993 Summary Report on the Suphuretes Property, Snowfield Property, Skeena Mining Division, Newhawk Gold Mines Ltd.

- Pretium Resources Inc. 2010: News Release 11-08, February 22, 2011 Brucejack Bulk-Tonnage Resource Increased By 134% Brucejack High-Grade Resource Outlined.
- Pretium Resources Inc. 2010: News Release 11-09, February 23, 2011 Snowfield Resources Increase.

Roach, S. and MacDonald, A. J. (1992): Silver-Gold Mineralization, West Zone,
Brucejack Lake, Northwestern British Columbia (104B/8E); in Geological
Fieldwork 1991, British Columbia Ministry of Energy, Mines and Petroleum
Resources,

- Tindall, M., 1992, Report on the 1991 Sulphside Exploration Program, Sulphurets Property, Skeena Mining Division, British Columbia, International Corona Corp.
- Visagie, Dave and Roach, Steve, 1992, 1991 Evaluation Snowfield Project, Skeena Mining Division, Newhawk Gold Mines Ltd.

STATEMENT OF QUALIFACTIONS

I, **KENNETH J. KONKIN**, P. Geo., resident at 1630 Amelia Lane on Bowen Island, in the Province of British Columbia, hereby certify that:

- 1) I received a Bachelor of Science degree in Geology from the University of British Columbia in 1984.
- 2) I am registered as a Professional Geoscientist (P.Geo.) with the Association of Professional Engineers and Geoscientists of B.C. (License #20452).
- Since 1984, I have been involved with numerous mineral exploration programs throughout Canada, the United States of America, Mexico, South America and Russia.
- 4) This report is based on a review of reports, documents, maps, other technical data, and on my field work carried out during 2010.
- 5) I hold no direct or indirect interest in the property, or in any securities of Silver Standard Resources Inc. or in any associated companies, nor do I expect to receive any.
- 6) I am a "qualified person" for the purposes of Nation Instrument 43-101
- 7) I am responsible for preparing the technical report, its' conclusions and recommendations, which are based on my professional assessment of the exploration data generated by Silver Standard Resources Inc, and is accurate to the best of my knowledge.
- 8) I am not aware of any material fact or material change related to this report that is not reflected in this technical report.
- 9) I am an independent geological consultant with no promised or implied affiliation with Silver Standard Resources.

10) I have had no prior involvement with the Snowfields Property before I visited it on June 17, 2006. I was responsible for conducting and supervising the 2006 to 2010 drill programs. The geological interpretations, conclusions and recommendations in this report are based largely on the data collected from the 2010 exploration program.

Dated at Vancouver, 28th of February 2011

K.J. Konkin, P. Geo.

APPENDIX I: Assay Methods

Fire Assay Procedure – Ag-GRA21, Ag-GRA22, Au-GRA21 and Au-GRA22

Precious Metals Gravimetric Analysis Methods

Sample Decomposition:	Fire Assay Fusion (FA-FUSAG1,
	FA-FUSAG2, FA-FUSGV1 and FA-
	FUSGV2)
Analytical Method:	Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold. Silver, if requested, is then determined by the difference in weights.

Method Code	Element	Symbol	Units	Sample Weight (g)	Detection Limit	Upper Limit
----------------	---------	--------	-------	-------------------------	--------------------	----------------

Revision 03.01 17-Aug-05 Page 1 of 1

Ag-GRA21	Silver	Ag	ppm	30	5	10,000
Ag-GRA22	Silver	Ag	ppm	50	5	10,000
Au-GRA21	Gold	Au	ppm	30	0.05	1000
Au-GRA22	Gold	Au	ppm	50	0.05	1000

Fire Assay Procedure – Au-AA23 & Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition:	Fire Assay Fusion (FA-FUS01 & FA-			
	FUS02)			
Analytical Method:	Atomic Absorption Spectroscopy (AAS)			

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

Revision 04.00 17-Aug-05 Page 1 of 1

Method Code	Element	Symbol	Units	Sample Weight (g)	Lower Limit	Upper Limit	Default Overlimit Method
Au-AA23	Gold	Au	ppm	30	0.005	10.0	Au- GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au- GRA22

Geochemical Procedure – ME-ICP61

Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition:	HNO ₃ -HClO ₄ -HF-HCl digestion, HCl Leach			
	(GEO-4ACID)			
Analytical Method:	Inductively Coupled Plasma - Atomic			
	Emission Spectroscopy (ICP - AES)			

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Results are corrected for spectral interelement interferences.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term *"near-total"* is used, depending on the sample matrix, not all elements are quantitatively extracted.

Element Symbol Units	Lower Limit	Upper Limit	Default Overlimit Method
----------------------	----------------	----------------	--------------------------------

Revision 03.01 01-May-07 Page 1 of 5

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.5	100	Ag-OG62
Aluminum	AI	%	0.01	50	
Arsenic	As	ppm	5	10000	
Barium	Ва	ppm	10	10000	
Beryllium	Ве	ppm	0.5	1000	
Bismuth	Bi	ppm	2	10000	
Calcium	Са	%	0.01	50	
Cadmium	Cd	ppm	0.5	500	
Cobalt	Со	ppm	1	10000	Co-OG62
Chromium	Cr	ppm	1	10000	
Copper	Cu	ppm	1	10000	Cu-OG62
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10000	
Potassium	К	%	0.01	10	

Revision 03.01 01-May-07 Page 2 of 5

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Lanthanum	La	ppm	10	10000	
Magnesium	Mg	%	0.01	50	
Manganese	Mn	ppm	5	100000	
Molybdenum	Мо	ppm	1	10000	Mo-OG62
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10000	Ni-OG62
Phosphorus	Р	ppm	10	10000	
Lead	Pb	ppm	2	10000	Pb-OG62
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	5	10000	
Scandium	Sc	ppm	1	10000	
Strontium	Sr	ppm	1	10000	
Thorium	Th	ppm	20	10000	
Titanium	Ti	%	0.01	10	

Revision 03.01 01-May-07 Page 3 of 5

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Thallium	TI	ppm	10	10000	
Uranium	U	ppm	10	10000	
Vanadium	V	ppm	1	10000	
Tungsten	W	ppm	10	10000	
Zinc	Zn	ppm	2	10000	Zn-OG62

Elements listed below are available upon request

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Lithium	Li	ppm	10	10000	
Niobium	Nb	ppm	5	2000	
Rubidium	Rb	ppm	10	10000	
Selenium	Se	ppm	10	1000	
Tin	Sn	ppm	10	10000	
Tantalum	Та	ppm	10	10000	
Tellurium	Те	ppm	10	10000	
Yttrium	Y	ppm	10	10000	
Zirconium	Zr	ppm	5	500	

Revision 03.01 01-May-07 Page 5 of 5

Assay Procedure – ME-OG62

Ore Grade Elements by Four Acid Digestion Using Conventional ICP-AES Analysis

Sample Decomposition: Analytical Method: HNO₃-HClO₄-HF-HCl Digestion (ASY-4A01) Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)*

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample is digested with nitric, perchloric, hydrofluoric, and hydrochloric acids, and then evaporated to incipient dryness. Hydrochloric acid and de-ionized water is added for further digestion, and the sample is heated for an additional allotted time. The sample is cooled to room temperature and transferred to a volumetric flask (100 mL). The resulting solution is diluted to volume with de-ionized water, homogenized and the solution is analyzed by inductively coupled plasma - atomic emission spectroscopy or by atomic absorption spectrometry.

> Revision 03.04 22-Jan-09 Page 1 of 3

ALS Chemex

*NOTE: ICP-AES is the default finish technique for ME-OG62. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted. The certificate will clearly reflect which instrument finish was used.

Element	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	1	1500
Arsenic	As	%	0.01	30
Bismuth	Bi	%	0.01	30
Cadmium	Cd	%	0.0001	10
Cobalt	Со	%	0.001	20
Chromium	Cr	%	0.002	30
Copper	Cu	%	0.001	40
Iron	Fe	%	0.01	100
Manganese	Mn	%	0.01	50
Molybdenum	Мо	%	0.001	10
Nickel	Ni	%	0.001	30

Revision 03.04 22-Jan-09 Page 2 of 3

ALS Chemex

Element	Symbol	Units	Lower Limit	Upper Limit
Lead	Pb	%	0.001	20
Zinc	Zn	%	0.001	30

APPENDIX II: Assayer Canada Check Assays

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA1

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	
Name	g/tonne	
TR10054500-G0569068	0.19	
TR10054500-G0569116	0.61	
TR10054500-G0569091	0.60	
TR10054500-G0569139	0.39	
TR10054500-G0569104	1.26	
TR10054500-G0569057	0,73	
TR10054500-G0569143	0.54	
TR10054500-G0569183	0.98	
TR10054500-G0569145	1.06	
TR10054500-G0569056	1.50	
TR10054500-G0569142	1.83	
TR10059984-H112493	0.27	
TR10059984-G0569198	0.46	
TR10059984-G0569151	0.59	
TR10059984-G0569171	0.99	
TR10059987-G0570647	0.73	
TR10059987-G0570659	0.80	
TR10059987-G0570683	1.30	
TR10059988-G0569236	0.83	
SAMPLE 10	0.87	
TR10059988-G0569241	7.31	
TR10059989-G0569285	0.46	
*DUP TR10054500-G0569068	0.19	
*DUP TR10054500-G0569056	1.31	
*DUP SAMPLE 10	0.86	
*0211	2.19	
*BLANK	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA2

Aug-19-10

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb ø/		
Name	g/tonne	g/tonne	70		
TR10059989-G0569271	0.51				
TR10070820-E639535	0.19				
TR10070820-G0569298	0.23				
TR10070820-G0569289	0.72				
TR10070820-G0569316	0.98			 	
TR10070820-E639567	1.50				
TR10070821-G0569421	0.17				
TR10070821-G0569411	0.31				
TR10070821-E639639	0.50				
TR10070821-G0569409	0.56			 	
TR10070822-E640623	0.29				
TR10070822-G0569353	0.54				
TR10070822-G0569351	0.64				
TR10070822-G0569354	0.66				
TR10070822-G0569315	0.85			 	
TR10070822-G0569373	0.99				
TR10070822-G0569389	1.03				
SAMPLE 11	10.89	258.9	2.66		
TR10070822-G0569361	1.21				
TR10070822-G0569381	2.46			 	
TR10070823-G0569453	0.17				
TR10070823-E640604	0.21				
*DUP TR10059989-G0569271	0.57				
*DUP TR10070821-G0569409	0.58				
*DUP TR10070822-G0569381	2.50			 	
*0211	2,22				
*ME-3		271.3	2,79		
*BLANK	<0.01	<0.1	<0.01		

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA3

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

Tel: (604) 327-3436

Fax: (604) 327-3423

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

Aug-19-10

they be

V5X 4R6

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	
Name	g/tonne	
TR10070823-E640601	0.33	······································
TR10070823-G0569454	0.30	
TR10070823-G0570841	0.40	
TR10070823-E640598	0.45	
TR10070823-E639676	1.23	
TR10070823-E639717	1.32	
TR10070823-E639708	1.55	
TR10070823-E639723	10.24	
TR10070823-E639716	21.87	
TR10070824-E640748	N.E.	
TR10070824-E639789	0.55	
TR10070826-E640023	0.30	
TR10070826-E640022	0.44	
TR10070826-E640763	0.63	
TR10070826-E640013	0.64	
SAMPLE12	0.90	
TR10070826-E640004	0.65	
TR10070826-E640014	1.61	
TR10070827-E639868	0.43	
TR10070827-E640814	0.56	
TR10070827-E640821	0.76	
TR10070827-E640827	0.89	
*DUP TR10070823-E640601	0.34	
*DUP TR10070824-E640748	N.E.	
*DUP TR10070827-E640814	0.55	
*OX G60	1.08	
*BLANK	<0.01	

Certified by____

Quality Assaying for over 35 Years

Assay Certificate

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

0V-1162-PA4

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
TR10070827-E640783	0.99			
TR10070827-E640834	1.13			
TR10070827-E640833	1.08			
TR10070827-E640793	1.37			
TR10070827-G0570874	0.22			
TR10070827-E640109	0.65			
TR10070827-E639896	0.71			
TR10070827-E639892	1.42			
TR10073191-E639849	0.25			
TR10073191-E640876	0.74			
TR10073191-E640879	0.72			· · · · · · · · · · · · · · · · · · ·
TR10073192-E640871	1.22			
TR10073192-E640889	0.43			
SAMPLE 13	10.65	267.7	2.74	
TR10073192-E640887	0.54			
TR10073192-G0570896	0.54			
TR10073192-E639976	0.76			
TR10073192-E639942	0.94			
TR10073192-E639941	1.35			
TR10073192-E639952	1.51			
TR10073192-G0570891	6.07			
TR10073193-G0570928	0.16			
*DUP TR10070827-E640783	1.54			
*DUP TR10073191-E640876	0.76			
*DUP TR10073192-E639952	1.61			
*0211	2.15			
*ME-3		271.3	2.79	
*BLANK	<0.01	<0.1	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA5

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	
Name	g/tonne	g/tonne	
TR10073193-E640894	0,29		
TR10073193-E640872	0.30		
TR10073193-E640893	0.53		
TR10073193-E640914	0.82		
TR10073193-E640168	1.24	215.1	
TR10073193-E640904	2.51		
TR10073193-E640159	2.64		
TR10073195-E653579	0.64		
TR10073195-E653544	0.80		
TR10073195-E653563	1.06		
TR10073195-E653581	0.88		
Sample14	0.82		
TR10073195-E653553	0.70		
TR10073195-E653576	1.16		
TR100/3199-E640243	0.24		
TR10073199-E640231	0.37		
TR10073199-E640249	1.05		
TR10073199-E653507	1.04		
TR10074243-E641102	0.21		
TR10074243-E641096	0.41		
TR10074243-E641064	0.51		
TR10074243-E641061	0.64		
*DUP TR10073193-E640894	0.29		
*DUP TRI0073195-E653563	0.91		
*DUP TRIUU/4243-E641096	0.38		
*0211	2.25		
*ME-3		271.3	
*BLANK	<0.01	<0.1	

Certified by__

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA6

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
TR10074243-G0570984 TR10074244-E641133 TR10074245-E640396 TR10074245-E640393 TR10074246-E641248	0.69 0.17 1.01 4.12 0.58			
TR10074246-E641243 TR10074248-E640411 TR10074248-E640453 TR10074248-E640471 Sample15	0.68 1.39 1.07 1.81 10.13	279.0	2.67	
TR10074249-E647559 TR10074249-E647592 TR10074249-E647556 TR10076120-E647685 TR10076120-E647678	0.20 0.24 0.40 0.29 0.56			
TR10076120-E654171 TR10076120-E647612 TR10076127-E640426 TR10077092-E647723 TR10077093-E654201	0.73 6.31 0.71 0.25 0.18	1212	·	
TR10077093-E656581 TR10077094-E656502 *DUP TR10074243-G0570984 *DUP TR10077093-E654201 *0211	0.47 0.24 0.76 0.13 2.12			
*ME-3 *BLANK	<0.01	271.3 <0.1	2.79 <0.01	

_....

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

0V-1162-PA7

.

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

At

Attn:	Zoran Luk	tic		
We here	<i>by certify</i> the f	following assay	of 22 pulp	samples
submitte	ed Jul-29-10			

Sample Name	Au g/tonne
TR10077094-E656017 TR10077094-E641382	0.39 0.64
TR10077094-E656564	0.70
TR10077094-E656007 TR10077094-E656567	0.95 1.41
TR10077095-E656555	0.41
TR10077095-E641391 Sample16	6.68 0.79
TR10077096-E656662	73.00
TR10077097-E654324	0.58
TR10077097-E654331	1.04
TR10077098-E654351	0.52
TR10077098-E654345	0.52
TR10077098-E656131	0.61
TR10077098-E656137	0.70
TR10079191-E654384	0.19
TR10079191-E656682	0.19
TR100/9191-E656671	0.58
TR10079191-E656676 TR10079193-E655585	0.61 0.24
*DUP TR10077094-E656017	0.42
*DUP TR10077097-E654324	0.69
*0311 	0.59
*BLANK	<0.01

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

0V-1162-PA8

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We hereby certify the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
TR10079193-E655513	0.30			
TR10079193-E655583	0.63			
TR10079193-E655563	0,88			
TR10079195-E656172	0.15			
TR10079195-E647914	0.18			
Sample17	9.93	245.2	2.70	
TR10079195-E647905	2.37			
TR10079199-E647983	0.21			
TR10079199-E647965	0.35			
TR10079199-E647982	0.53			
TR10079199-E656235	0.86			
TR10079199-E656269	0.86			
TR10079199-E656232	0.81			
TR10079351-E656294	0.49			
TR10079351-E656285	0.55			
TR10079351-E656302	0.95			
TR10079351-E656272	1.25			
TR10079351-E656305	2.49			
TR10079353-E656811	0.36			
TR10079354-E656723	0.34			
TR10079354-E647934	0.49			
TR10079354-E647931	0.64			
*DUP TR10079193-E655513	0.38			
*DUP TR10079199-E647982	0.54			
*DUP TR10079354-E656723	0.45			
*0211	2.13			
*ME-3		271.3	2.79	
*BLANK	<0.01	<0.1	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA9

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample Name	Au g/tonne	
TR10079354-E656736	0.74	
TR10079354-E656722	1.13	
TRI00/9354-E64/93/	26.28	
Sample18	0.80	
TR10079358-E655798	0.10	
TR100/9359-E656852	0.99	
TRIUU/9359-E050051	1.30	
TR10079359-E656321	2 34	
TR10079359-E656838	3.84	
TR10080550 - F656414	0 45	······································
TR10080550-E656443	0.40	
TR10080550-E656861	0.81	
TR10080550-E656428	1.03	
TR10080550-E656441	3.68	
TR10080851-E660513	0.20	
TR10080851-E655944	0.56	
TR10080851-E655941	0.67	
TR10080851-E660521	0.63	
TR10080851-E660536	0.81	
TR10080852-E656879	0.68	
TR10080852-E654729	0.78	
*DUP TR10079354-E656736	0.71	
*DUP TKIUU/9359-E656838 *DUP TRIOO80851_E660536	3.50	
-DOF IKT0000001-F0000000	0.75	
*0211 *DIANK	2.17	
° DLANK	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA10

Aug-19-10

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

We *hereby certify* the following assay of 23 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
TR10080852-E654725	2.99			
Sample19	10.63	240.4	2.73	
TR10080852-E654724	3.11			
TR10080853-E648005	0.64			
TR10080853-E654747	0.84			
TR10080853-E648014	4.62			
TR10080855-E648087	0.26			
TR10080855-E648085	0.26			
TR10080855-E648107	0.27			
TR10080855-E648075	0.56			
TR10080856-E655969	0.24			
TR10080856-E648037	0.32			
TR10080856-E654754	0.63			
TR10080856-E655975	1.10			
TR10080856-E660558	1.58			
TR10080856~E655968	16.74			
TR10080857-E656939	0.33			
TR10080857-E656919	0.46			
TR10080857-E656916	0.47			
TR10080857-E656881	0.57			
TR10081782-E658021	0.16			
Sample20	0.92			
TR10081783-E648092	<0.01			
*DUP TR10080852-E654725	3.42			
*DUP TR10080855-E648075	0.43			
*DUP TR10080857-E656881	0.82			
*0211	2.14			
*ME-3		271.3	2.79	
*BLANK	<0.01	<0.1	<0.01	

Certified by__

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA11

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
TR10081783-E660628	0.32			
TR10081783-E660631	0.29			
TR10081783-E648123	0.33			
TR10081783-E648117	0.36			
TR10081783-E660629	0.51			
TR10081784-E648177	0.28	• •		
TR10081784-E654852	0.34			
TR10081784-E648136	0.47			
TR10081784-E648162	1.50			
TR10081784-E654824	2.40			
TR10083780-E656953	0.15			
TR10083780-E648156	0.25			
TR10083781-E660672	0.21			
TR10083781-E658094	2.20			
TR10083782-E660676	0.22			
TR10083782-E656994	0.20			
TR10083782-E660691	0.27			
TR10083782-E656989	0.30			
Sample21	10.00	246.3	2.75	
TR10083782-E657008	0.59			
TR10083783-E657027	0.30			
TR10083783-E660716	0.34			
*DUP TR10081783-E660628	0.32			
*DUP TR10081784-E654824	2.37			
*DUP TR10083782-E657008	0.60			
*0211	2.08			
*ME-3		271.3	2.79	
*BLANK	<0.01	<0.1	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

.

0V-1162-PA12

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

m

1001WH 20	
We <i>hereby certify</i> the	following assay of 22 pulp samples
submitted Jul-29-10	

Sample Name	Au g/tonne	
	grionite	· · · · · · · · · · · · · · · · · · ·
TRIUU83783-E658123	0.65	
IKIUU83783-E6581U2	0.53	
TRIUU83783-E660705	0.59	
TRIUU83783-E657024	0.60	
<u>IR10083783-E658115</u>	0.53	
TR10083783-E660738	0.68	
TR10083788-E657099	0.42	
TR10083788-E657083	0.49	
TR10083788-E657101	0.59	
TR10083789-E657116	0.64	
TR10083789-E657136	1.23	
TR10083789-E657154	2.05	
TR10083789-E657125	142.4	
TR10083831-E658258	0.58	
TR10083831-E658237	1.34	
TR10083832-E658174	0.27	
Sample22	0.91	
TR10083835-E660799	0.23	
TR10083835-E660773	0.67	
TR10083836-E655038	0.26	
TR10083836-E658271	0.30	
TR10083836-E658276	0.59	
*DUP TR10083783-E658123	0.66	
*DUP TR10083789-E657116	0.58	
*DUP TR10083836-E655038	0.24	
*0211	2.08	
*BLANK	<0.01	

Certified by___

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA13

Aug-19-10

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb		
Name	g/tonne	g/tonne	%		
TR10083836-E658228	1.14			·· · · ·	
TR10083836-E658281	1.47				
TR10083838-E648379	0.54				
TR10083838-E648375	0.77				
TR10083838-E657187	0.81				
TR10083838-E657162	0.75				
TR10083838-E657181	0.89				
TR10083838-E657196	0.79				
TR10083838-E648394	1.18				
TR10083838-E657168	3.36				
TR10085180-E658322	0.76				
TR10085180-E648411	0.83				
TR10085184-E648451	0.57				
TR10085184-E657513	1.22	_			
Sample23	9.77	240.2	2.76		
TR10085184-E657511	0.82				
TR10085184-E657232	1.28				
TR10085184-E657233	3.48				
TR10085184-E6484/2	13.83				
TR10085185-E658409	0.51				
TR10085185-E658378	0.42				
TR10085186-E658442	0.21				
*DUP TR10083836-E658228	1.14				
*DUP TRI0083838-E657168	4.42				
*DOP IRI0085185-E658409	0.50				
*0211	2.11	0.7.1 0			
▲図E-3 ★DI DNK	<i>(</i> 0, 01	271.3	2.79		
° DLANK	<0.01	<0.1	<0.01		

Certified by__

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA14

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	
Name	g/tonne	
TR10085186-E655148	0.24	
TR10085186-E655153	0.32	
TR10085186-E655125	0.30	
TR10085186-E655113	0.64	
TR10085187-E655225	0.17	
TR10085187-E658505	0.26	
TR10085187-E658501	0.56	
TR10085187-E658504	0.71	
TR10085187-E657227	1.37	
TR10085187-E657224	36.84	
TR10086290-E657539	0.60	
TR10086290-E657525	0.94	
Sample24	0.89	
TR10086290-E657528	65.00	
TR10086290-E657579	39.50	
TR10086293-E655255	0.29	
TR10086293-E658512	0.39	
TR10086293-E658518	0.63	
TR10086294-E657243	0.79	
TR10086295-E657625	0.28	
TR10086295-E658562	0.43	
TR10086295-E657609	0.55	
*DUP TR10085186-E655148	0.28	
*DUP TR10085187-E657224	36.99	
*DUP_TRIUU86295-E657625	0.30	
*0211	2.09	
*BLANK	<0.01	

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA15

Company:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

We hereby certify the	following	assay	of 23	pulp	samples
submitted Jul-29-10					

Sample	Au	Ag	Pb		
Name	g/tonne	g/tonne	%		
TR10086295-E657598 TR10086295-E658557 TR10086295-E658548 TR10086295-E657614 TR10086296-E648677	0.77 0.86 0.91 0.65 0.17				
TR10086296-E658584 TR10086296-E655308 TR10086296-E655304 TR10086296-E648658 TR10086296-E648662	0.35 0.37 0.40 1.27 1.82				
SAMPLE25 TR10086296-E648627 TR10086296-E655299 TR10086297-E658593 TR10086297-E655358	10.00 4.74 10.60 0.51 0.51	244.4	2.74		
TR10086297-E655333 TR10087098-E657634 TR10087099-E657687 TR10087099-E655411 TR10088560-E657764	3.53 1.13 0.55 0.52 0.28				
TR10088562-E648783 TR10088562-E655482 TR10088562-E655483 *DUP TR10086295-E657598 *DUP TR10086296-E648662	0.17 1.08 1.84 0.58 1.88				
*DUP TR10088562-E648783 *0211 *ME-3 *BLANK	0.16 2.20 <0.01	271.3 <0.1	2.79 <0.01		

YA, Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA16

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au
Name	g/tonne
TR10088563-E648733	0.16
TR10088563-E648757	0.17
TR10088563-E648754	0.47
TR10088563-E648752	0.52
TR10088566-E648771	1.56
TR10088569-E644036	0.85
TR10088569-E644033	1.45
Sample26	0.81
TR10089520-E657792	0.13
TR10089520-E657822	0.15
TR10089520-E657814	0.43
TR10089520-E657827	1.48
TR10089522-E648816	0.48
TR10089522-E644013	0.66
TRI0089522-E644009	0.69
TR10089522-E648829	0.83
TR10089522-E644008	0.87
TR10089522-E655496	3.18
TRI0089522-6648824	1.73
TRI0089522-E648817	1.09
TR10089522-E648845	2.20
TRIU089522-E644028	2.93
*DUP IKIUU88563-E648/33 *DUD TP10090520 F657822	U.1/
*DUP IKIUU09520-E05/822 *DUP TR10089522-E649917	U.14 1 70
+0011	2.05
~ UZII *RIANK	2.25
DUNIN	NO.01

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA17

Company:Silver Standard ResourcesProject:BrucejackAttn:Zoran Lukic

Aug-19-10

We *hereby certify* the following assay of 5 pulp samples submitted Jul-29-10

Sample	Au	
Name	g/tonne	
TR10089528-E657961 TR10089528-E657969 TR10089528-E657962 TR10089841-E657902 TR10089841-E657901	0.50 0.44 1.70 0.27 0.57	
*DUP TR10089528-E657961 *OX G60 *BLANK	0.57 1.08 <0.01	

Certified by_

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	pp m	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10054500-G0569068	1	8.73	202	2897	<5	1.33	<1	12	18	10	4.30	51	7.45	14	25	1.15	1234	3	0.64	<10	10	35	2.37	24
TR10054500-G0569116	<1	7.80	423	2502	<5	5.35	<1	9	12	17	3.61	47	4.63	14	24	1.09	1941	4	0.27	<10	9	68	1.69	20
TR10054500-G0569091	<1	8.48	738	3009	<5	2.98	<1	9	12	13	3.59	49	5.43	13	21	0.94	1279	5	0.70	<10	7	33	1.92	26
TR10054500-G0569139	3	5.88	283	1983	6	9.53	<1	7	10	10	2.60	34	4.42	12	14	0.54	3166	5	0.07	<10	8	34	1.89	22
TR10054500-G0569104	<1	8.52	123	2948	11	3.47	1	11	12	14	3.67	45	5.99	14	25	0.89	1343	2	0.18	<10	6	79	1.85	16
TR10054500-G0569057	3	6.25	821	2491	10	2.18	<1	6	17	16	2.79	32	5.58	11	16	0.46	896	4	0.12	<10	6	44	2.10	47
TR10054500-G0569143	5	6.10	351	1424	14	10.79	<1	8	10	12	2.84	42	3.53	10	8	0.76	5738	5	0.04	<10	6	17	1.91	27
TR10054500-G0569183	6	5.29	462	2220	<5	5.07	1	5	13	27	2.52	31	4.45	<10	23	0.56	2683	5	0.05	<10	6	27	1.48	29
TR10054500-G0569145	3	7.50	1150	1884	6	5.84	<1	10	11	20	3.13	43	4.62	13	9	0.68	2009	5	0.09	<10	8	53	2.26	40
TR10054500-G0569056	11	6.02	745	2307	5	4.54	1	8	15	62	3.09	29	4.82	13	13	0.44	1438	4	0.08	<10	6	68	2.54	51
TR10054500-G0569142	8	4.90	17 2 3	678	8	8.39	<1	5	19	27	2.67	30	2.63	<10	10	0.40	3615	5	0.03	<10	8	41	2.41	47
TR10059984-H112493	1	8.44	89	1337	10	3.15	1	16	12	16	4.48	46	5.19	18	16	0.79	1213	5	0.20	<10	8	9	3.55	14
TR10059984-G0569198	2	6.49	254	1968	6	2.81	1	7	17	30	3.48	43	4.28	12	25	1.04	1546	3	0.07	<10	5	50	1.85	39
TR10059984-G0569151	2	6.82	232	1237	7	3.79	1	8	23	13	3.07	37	4.08	11	11	0.70	1591	5	0.17	<10	6	56	2.02	36
TR10059984-G0569171	3	5.86	523	2709	<5	6.30	<1	4	21	14	2.59	33	5.11	10	20	0.67	2463	7	0.36	<10	5	25	1.63	31
TR10059987-G0570647	191	6.42	104	1900	<5	0.50	2	10	19	264	4.21	27	3.26	15	10	0.43	206	7	0.19	<10	4	93	3.67	13 6
TR10059987-G0570659	1	10.55	85	1357	7	0.51	<1	21	15	56	5.48	41	5.38	18	12	0.55	217	4	0.33	<10	11	188	4.50	23
TR10059987-G0570683	2	10.15	40	2436	<5	1.07	<1	13	18	40	4.90	55	4.96	19	21	1.05	508	8	0.22	<10	8	64	4.46	20
TR10059988-G0569236	2	7.90	396	1939	5	6.65	<1	9	11	20	3.20	43	4.08	14	19	0.80	3257	6	0.81	<10	9	60	1.56	16
SAMPLE 10	47	8.12	459	1251	6	0.46	29	11	24	113	6.90	38	3.99	32	21	0.35	1166	7	0.29	<10	12	3526	0.42	71
TR10059988-G0569241	28	6.21	168	2540	7	9.05	<1	6	10	25	2.54	32	4.64	12	16	0.47	3511	6	0.15	<10	7	59	1.45	20
TR10059989-G0569285	3	8.23	171	1842	<5	4.85	<1	11	12	22	3.39	48	4.59	12	11	1.01	1855	6	0.61	<10	7	25	1.15	39
TR10059989-G0569271	1	8.80	226	2095	<5	3.85	<1	11	12	24	3.65	58	4.09	13	22	1.23	1809	11	1.29	<10	9	35	1.12	23
TR10070820-E639535	1	8.74	292	2418	<5	2.88	<1	8	11	17	3.60	46	4.41	13	31	0.88	853	4	1.15	<10	7	24	1.96	26
TR10070820-G0569298	2	8.53	87	3200	<5	3.15	1	9	10	30	3.63	60	5.67	14	22	1.24	1647	6	1.10	<10	9	34	1.17	19
TR10070820-G0569289	3	8.07	137	2098	<5	3.64	3	10	11	16	3.42	53	5.05	15	10	1.12	1440	7	0.16	<10	10	84	1.47	31
TR10070820-G0569316	4	8.80	277	3901	<5	2.97	2	7	11	29	3.74	61	4.84	14	22	1.33	1827	24	0.92	<10	9	59	1.22	19
TR10070820-E639567	4	8.59	1314	1131	<5	3.42	<1	12	11	24	3.71	49	3.26	14	24	1.22	1107	4	1.40	<10	8	7	2.16	35
TR10070821-G0569421	2	9.11	107	1651	<5	4.38	<1	11	11	42	3.49	35	4.64	14	7	0.76	1252	52	0.14	<10	6	28	2.31	43
TR10070821-G0569411	<1	8.79	100	2309	<5	3.64	<1	10	12	14	3.80	52	4.50	14	20	1.11	1192	8	0.52	<10	7	35	1.90	12

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES	Report
---------	--------

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
TR10054500-G0569068	11	<10	182	<5	17	0.30	113	<10	9	102	49	
TR10054500-G0569116	10	<10	197	<5	17	0.25	97	12	13	127	35	
TR10054500-G0569091	10	<10	230	5	19	0.27	103	<10	10	75	43	
TR10054500-G0569139	7	<10	231	<5	11	0.19	72	<10	16	80	27	
TR10054500-G0569104	11	<10	214	<5	20	0.29	103	11	14	137	30	
TR10054500-G0569057	8	<10	153	<5	20	0.20	78	11	10	90	30	
TR10054500-G0569143	7	<10	244	<5	13	0.19	73	17	10	83	28	
TR10054500-G0569183	6	<10	170	<5	16	0.17	59	14	10	96	21	
TR10054500-G0569145	9	<10	265	<5	20	0.22	91	21	12	136	35	
TR10054500-G0569056	7	<10	151	<5	18	0.19	73	<10	16	154	26	
TR10054500-G0569142	6	<10	126	5	19	0.13	61	11	10	94	22	
TR10059984-H112493	15	<10	219	<5	29	0.29	123	<10	10	78	52	
TR10059984-G0569198	8	<10	105	7	23	0.18	93	<10	13	156	24	
TR10059984-G0569151	8	<10	154	8	23	0.18	85	<10	8	203	31	
TR10059984-G0569171	6	<10	318	<5	23	0.16	72	<10	10	60	30	
TR10059987-G0570647	13	<10	41	<5	20	0.22	115	<10	8	88	47	
TR10059987-G0570659	21	10	46	<5	31	0.35	197	<10	14	40	46	
TR10059987-G0570683	15	<10	62	<5	24	0.22	162	<10	10	81	39	
TR10059988-G0569236	9	<10	193	<5	13	0.20	93	<10	14	158	27	
SAMPLE 10	13	21	349	<5	30	0.33	162	· 53	22	3422	81	
TR10059988-G0569241	7	<10	205	<5	13	0.19	75	<10	12	135	31	
TR10059989-G0569285	10	<10	387	<5	24	0.25	98	15	9	126	38	
TR10059989-G0569271	10	<10	256	<5	21	0.24	103	17	9	196	28	
TR10070820-E639535	10	<10	228	<5	<10	0.17	103	<10	10	79	48	
TR10070820-G0569298	10	<10	319	<5	29	0.26	97	10	11	165	26	
TR10070820-G0569289	10	<10	282	<5	19	0.23	96	<10	10	308	31	
TR10070820-G0569316	10	<10	251	<5	27	0.25	104	<10	11	263	27	
TR10070820-E639567	10	<10	179	<5	25	0.25	9 9	16	12	31	51	
TR10070821-G0569421	11	<10	160	<5	31	0.25	105	<10	9	113	45	
TR10070821-G0569411	10	<10	179	<5	30	0.24	100	<10	10	116	38	

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Μα	Mn	Mo	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10070821-E639639	1	9.06	148	4078	<5	1.06	<1	6	11	16	3.72	45	5.26	12	17	0.96	707	4	1.12	<10	6	22	2.15	25
TR10070821-G0569409	1	9.52	216	1915	<5	4.14	<1	12	11	4	3.93	54	4.78	14	17	1.03	1204	9	0.17	<10	11	79	2.07	19
TR10070822-E640623	7	7.30	187	1156	< 5	0.85	6	18	29	52	6.53	31	4.57	16	12	0.43	323	10	0.15	<10	14	132	5.82	28
TR10070822-G0569353	2	8.93	98	1779	<5	3.25	3	13	12	41	4.06	48	4.69	14	12	1.20	2279	12	0.41	<10	7	92	1.09	28
TR10070822-G0569351	1	8.55	246	3247	<5	3.88	4	7	14	26	3.63	49	4.84	13	17	1.16	2281	10	0.77	<10	9	100	1.27	22
TR10070822-G0569354	3	8.28	118	1190	8	4.04	3	12	20	20	3.68	56	4.11	13	9	1.18	2746	14	0.44	<10	9	89	1.06	30
TR10070822-G0569315	Э	8.18	233	3243	5	2.92	4	7	13	27	3.37	61	4.72	14	22	1.18	1603	20	0.87	<10	5	80	1.17	19
TR10070822-G0569373	33	7.49	146	2468	<5	2.48	2	8	11	88	3.25	42	4.91	13	16	0.64	1080	14	0.12	<10	9	124	1.58	28
TR10070822-G0569389	7	7.65	383	1311	<5	3.98	16	8	12	28	4.25	41	3.80	11	16	0.74	1443	9	0.05	<10	6	236	2,92	25
SAMPLE 11	>200	4.93	685	1318	<5	1.03	57	16	40	1888	8.23	41	2.06	<10	27	0.67	3940	1217	1.17	<10	33 ;	×10000	2.90	1386
TR10070822-G0569361	3	8.27	418	2107	<5	2.11	2	9	12	22	3.73	39	4.74	12	10	0.73	1108	15	0.12	<10	9	218	2.37	30
TR10070822-G0569381	22	6.77	484	2231	<5	2.51	1	7	13	38	3.42	22	4.88	22	12	0.51	954	10	0.11	<10	4	55	2.61	50
TR10070823-G0569453	2	8.30	83	1443	<5	2.94	1	9	11	11	3.64	44	4.38	12	11	0.91	870	11	0.09	<10	6	62	2,18	21
TR10070823-E640604	6	5.82	134	1501	<5	0.63	6	9	19	17	3.90	27	4.01	19	16	0.35	232	5	0.10	<10	9	108	3,47	26
TR10070823-E640601	3	9.92	176	1103	<5	0.88	2	18	13	49	5.71	46	7.15	17	6	0.54	369	5	0.28	<10	8	82	5.29	28
TR10070823-G0569454	2	7.92	139	1275	6	3.87	1	7	10	7	3.22	48	4.20	14	<1	0.71	1076	14	0.09	<10	7	47	2.12	26
TR10070823-G0570841	79	8.53	63	1825	<5	2.77	1	9	9	31	3.84	32	3.86	14	<1	0.51	711	12	0.67	<10	5	106	3.12	29
TR10070823-E640598	4	8.30	57	1377	<5	1.38	4	19	21	46	6.16	44	5.56	17	8	0.52	558	2	0.24	<10	10	90	5.71	24
TR10070823-E639676	3	8.60	369	1565	<5	3.82	1	7	15	33	4.67	41	3.40	15	9	0,74	1018	6	1.65	<10	13	17	2.86	28
TR10070823-E639717	14	5.97	467	878	<5	6.25	8	16	44	210	3.58	39	2.96	14	6	0.61	2399	8	0.11	<10	47	63	3.52	38
TR10070823-E639708	5	8.58	494	1153	7	4.03	3	17	64	193	4.81	56	3.96	15	29	1.47	2109	5	0.38	<10	47	63	3.91	38
TR10070823-E639723	44	6.20	494	1094	<5	1.26	4	12	57	395	3.91	35	3.31	13	<1	0.46	407	2	0.17	<10	56	68	3.70	81
TR10070823-E639716	107	2.87	584	416	11	4.86	3	4	21	210	2.66	19	1.55	12	<1	0.21	1699	4	0.04	<10	17	84	2.32	161
TR10070824-E640748	1	6.70	177	725	<5	4.18	<1	3	17	23	2.30	39	2.43	<10	12	0.71	1494	4	1.62	<10	8	57	1.07	17
TR10070824-E639789	21	6.51	84	604	5	0.94	2	20	19	34	4.98	25	5.18	17	<1	0.39	285	4	0.28	<10	9	35	4.67	28
TR10070826-E640023	11	7.54	105	1476	<5	0.26	2	11	24	29	5.25	36	5.09	13	3	0.53	307	4	0.21	<10	9	31	3.94	29
TR10070826-E640022	125	5.64	81	1367	< 5	0.19	3	13	18	70	4.01	26	4.22	11	1	0.39	213	5	0.17	<10	5	209	3.68	93
TR10070826-E640763	3	8.36	236	2156	<5	3.90	2	12	11	38	4.20	58	6.78	14	2	1.10	2104	6	0.32	<10	2	18	1.96	29
TR10070826-E640013	24	3.28	188	746	<5	0.12	6	2	23	22	2.25	17	2.32	<10	<1	0.22	196	<2	0.05	<10	4	108	1.90	35
SAMPLE12	42	8.16	447	1173	<5	0.42	28	10	21	109	6.67	38	4.15	32	11	0.40	1128	7	0.21	<10	12	3289	0.42	71

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

A

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Te	Ti	v	w	Y	Zn	Zr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
TR10070821-E639639	8	<10	121	<5	27	0.25	84	<10	9	86	72
TR10070821-G0569409	11	<10	151	< 5	14	0.24	116	<10	12	135	46
TR10070822-E640623	17	11	107	11	20	0.32	182	<10	11	351	50
TR10070822-G0569353	11	<10	333	<5	12	0.27	108	16	9	463	41
TR10070822-G0569351	10	<10	226	7	16	0.21	97	16	12	464	39
TR10070822-G0569354	10	<10	285	<5	22	0.24	96	17	12	415	40
TR10070822-G0569315	10	<10	225	<5	31	0.23	98	<10	14	354	21
TR10070822-G0569373	9	<10	127	<5	32	0.22	94	<10	9	283	33
TR10070822-G0569389	10	<10	87	<5	32	0.17	93	22	9	1248	31
SAMPLE 11	7	<10	223	<5	50	0.16	301	165	8	9333	60
TR10070822-G0569361	10	<10	86	7	29	0.21	101	<10	9	278	35
TR10070822-G0569381	8	<10	88	14	27	0.20	81	13	12	171	30
TR10070823-G0569453	9	<10	60	<5	32	0.20	101	10	11	137	40
TR10070823-E640604	11	<10	76	<5	24	0.17	102	<10	9	438	47
TR10070823-E640601	17	<10	137	<5	49	0.36	183	<10	21	127	54
TR10070823-G0569454	9	<10	76	<5	41	0.19	91	11	12	126	35
TR10070823-G0570841	8	<10	117	<5	38	0.27	104	<10	9	226	44
TR10070823-E640598	21	<10	134	22	46	0.38	218	<10	19	139	67
TR10070823-E639676	7	<10	218	7	42	0.21	69	15	10	84	62
TR10070823-E639717	12	<10	220	<5	42	0.18	106	30	10	663	27
TR10070823-E639708	15	<10	150	<5	50	0.25	140	<10	10	227	49
TR10070823-E639723	11	<10	44	<5	43	0.21	100	<10	13	230	36
TR10070823-E639716	6	<10	120	<5	32	0.08	54	14	7	234	11
TR10070824-E640748	5	<10	331	<5	26	0.13	61	<10	8	77	20
TR10070824-E639789	17	<10	164	15	37	0.30	189	<10	8	32	47
TR10070826-E640023	14	<10	53	<5	52	0.25	100	14	7	86	55
TR10070826-E640022	10	<10	46	10	48	0.17	73	<10	7	157	40
TR10070826-E640763	11	<10	369	<5	52	0.31	140	<10	12	96	45
TR10070826-E640013	6	<10	26	<5	34	0.10	51	13	3	591	23
SAMPLE12	13	21	339	20	45	0.35	156	75	22	3755	75

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10070826-E640004	29	8.17	407	1272	<5	0.39	5	13	19	104	5.43	33	6.18	15	1	0.49	413	5	0.18	<10	9	292	4.94	72
TR10070826-E640014	19	4.70	313	752	5	2.78	1	6	13	31	2.20	19	2.88	<10	1	0.35	1398	З	0.06	<10	4	93	1.89	45
TR10070827-E639868	1	7.70	366	963	<5	5.07	з	28	80	133	5.61	92	2.61	16	49	2.80	1631	6	0.13	<10	138	36	2.89	17
TR10070827-E640814	Э	8.03	79	2617	<5	3.08	9	17	31	89	4.34	51	6.38	15	<1	1.35	2380	16	0.16	<10	28	43	1.56	18
TR10070827-E640821	5	7.88	191	2225	<5	2.60	2	15	29	62	4.35	46	6.78	14	8	1.00	2182	11	0.12	<10	24	89	2.87	24
TR10070827-E640827	3	7.32	152	2259	<5	1.26	2	11	32	54	3.70	46	7.93	13	7	0.88	2348	15	0.17	<10	22	61	1.60	17
TR10070827-E640783	4	7.99	204	2411	<5	1.77	2	12	27	75	4.05	43	7.16	14	15	0.97	1717	38	0.14	<10	17	100	2,26	21
TR10070827-E640834	5	6.98	242	2427	<5	1.44	2	7	28	46	3.79	31	7.66	13	18	0.78	2278	14	0.15	<10	13	65	1.99	15
TR10070827-E640833	4	7.33	225	2773	<5	0.75	1	6	20	41	3.46	31	8.29	13	17	0.71	1684	12	0.19	<10	12	69	1.84	10
TR10070827-E640793	11	7.10	287	2454	6	0.98	39	9	29	146	3.50	39	7.85	13	9	0.63	1112	34	0.22	<10	17	51	2.24	27
TR10070827-G0570874	13	0.99	42	233	<5	0.20	2	11	34	34	Э.09	9	0.52	<10	5	0. 0 5	135	2	<0.01	<10	9	12	2.26	15
TR10070827-E640109	5	10.86	178	837	<5	0.79	3	24	22	67	7.74	43	6.67	22	12	0.54	450	2	0.27	<10	14	93	6.71	26
TR10070827-E639896	5	7.66	377	1265	<5	4.66	1	19	44	338	3.87	55	3.20	14	35	1.21	1765	4	0.07	<10	57	100	2.30	19
TR10070827-E639892	1	8.19	483	1199	<5	5.08	1	16	73	44	4.73	63	3.23	10	34	1.40	1624	4	0.12	<10	45	18	3.00	21
TR10073191-E639849	2	7.60	69	1163	<5	2.14	<1	5	23	8	1.96	33	3.26	<10	6	0.45	49 0	4	1.07	<10	12	29	1.51	18
TR10073191-E640876	2	6.66	177	860	7	1.11	<1	10	18	13	2.71	29	3.67	12	10	0.40	398	2	0.11	<10	14	31	1.87	21
TR10073191-E640879	5	7.65	176	1266	6	2.94	<1	9	21	32	2.96	39	4.79	14	10	0.59	1178	5	0.19	<10	7	54	1.95	27
TR10073192-E640871	8	7.13	320	1805	<5	0.82	1	9	28	44	3.42	27	6.74	13	10	0.42	566	7	0.21	<10	11	123	2.80	25
TR10073192-E640889	2	8.46	121	2229	<5	1.81	<1	12	30	81	3.69	50	5.87	15	26	1.07	1329	7	0.46	<10	22	47	1.50	24
SAMPLE 13	>200	4.72	665	1328	16	0.98	54	15	40	1794	8.17	33	1.94	<10	25	0.64	3758	1150	1.12	<10	30 >	10000	2.72	1321
TR10073192-E640887	4	7.38	179	1942	5	1.97	1	13	28	86	4.02	43	5.06	14	23	0.94	1268	8	0.08	<10	16	61	2.05	23
TR10073192-G0570896	19	1.10	345	307	<5	0.09	6	24	33	64	7.89	11	0.56	10	4	0.07	94	6	<0.01	<10	44	49	7.06	28
TR10073192-E639976	2	8.03	707	1009	14	3.17	<1	11	36	126	3.69	50	3.70	13	29	1.11	1620	<2	0.11	<10	19	27	2.36	21
TR10073192-E639942	2	8.09	454	1159	<5	0.42	<1	8	32	21	2.82	48	4.23	<10	13	0.65	264	<2	0.31	<10	13	52	1.83	21
TR10073192-E639941	2	7.87	387	1033	<5	0.55	<1	7	28	32	2.53	39	3.87	<10	19	0.63	312	2	0.56	<10	14	38	1.63	21
TR10073192-E639952	1	7.17	2827	873	14	4.07	<1	6	23	8	2.41	37	3.43	10	13	0.61	1718	5	0.39	<10	12	23	1.86	48
TR10073192-G0570891	6	0.29	<10	77	<5	0.21	<1	<1	20	13	0.69	<1	0.17	20	6	0.02	153	<2	<0.01	<10	3	З	0.09	11
TR10073193-G0570928	7	7.15	244	279	<5	0.92	5	16	24	73	9.53	41	4.18	13	6	0.58	811	<2	0.13	<10	25	26	8.63	26
TR10073193-E640894	2	7.56	121	1639	<5	2.00	1	8	36	23	2.57	36	4.83	<10	22	0.75	1213	40	0.59	<10	13	34	1.51	13
TR10073193-E640872	4	7.22	154	2293	<5	3.38	1	8	16	29	2.76	34	5.41	12	21	0.63	1256	2	0.16	<10	9	106	1.87	10

Signed: _

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc	Sn	Sr	Та	Te	Ti ⊮	V	W	Y	Zn	Zr
Number	Phil	ppm	phu	ppm	ppm	70	phu	ppin	ppm	hhu	ppm
TR10070826-E640004	15	<10	140	<5	38	0.20	151	<10	8	428	40
TR10070826-E640014	9	<10	248	<5	25	0.17	70	<10	5	181	27
TR10070827-E639868	17	<10	179	<5	27	0.22	186	<10	14	176	60
TR10070827-E640814	14	<10	307	<5	15	0.26	110	27	12	1018	42
TR10070827-E640821	12	<10	293	<5	17	0.24	109	19	11	283	41
TR10070827-E640827	10	<10	275	<5	15	0.19	105	14	9	320	39
TR10070827-E640783	12	<10	191	<5	18	0.20	140	<10	10	284	43
TR10070827-E640834	9	<10	249	<5	23	0.18	98	<10	10	200	36
TR10070827-E640833	9	<10	207	15	23	0.18	101	<10	9	231	43
TR10070827-E640793	10	<10	209	<5	24	0.19	108	74	8	4193	41
TR10070827-G0570874	2	<10	12	16	21	0.13	13	<10	3	22	26
TR10070827-E640109	26	11	79	<5	41	0.24	249	<10	14	273	68
TR10070827-E639896	13	<10	205	<5	20	0.16	125	<10	9	179	24
TR10070827-E639892	15	<10	218	<5	30	0.20	176	<10	6	53	31
TR10073191-E639849	6	<10	176	<5	13	0.10	61	<10	4	10	21
TR10073191-E640876	9	<10	113	<5	15	0.13	97	10	7	27	35
TR10073191-E640879	10	<10	253	< 5	22	0.19	114	<10	10	120	40
TR10073192-E640871	11	<10	163	<5	21	0.20	94	15	7	264	45
TR10073192-E640889	12	<10	129	<5	28	0.19	114	<10	11	124	39
SAMPLE 13	6	<10	202	<5	51	0.16	289	171	8	8913	59
TR10073192-E640887	12	<10	109	<5	34	0.21	119	<10	11	105	37
TR10073192-G0570896	3	13	11	22	53	0.13	23	<10	5	27	37
TR10073192-E639976	10	<10	107	10	34	0.20	118	10	8	37	34
TR10073192-E639942	8	<10	43	< 5	29	0.18	99	<10	з	79	35
TR10073192-E639941	7	<10	58	<5	26	0.12	88	<10	4	63	40
TR10073192-E639952	7	<10	184	<5	31	0.13	78	<10	7	16	23
TR10073192-G0570891	<1	<10	11	6	16	0.01	3	12	2	1	3
TR10073193-G0570928	11	10	72	32	62	0.21	103	10	6	23	28
TR10073193-E640894	6	<10	103	<5	<10	0.15	81	<10	5	115	19
TR10073193-E640872	10	<10	166	<5	11	0.21	112	<10	10	141	32

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Ma	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10073193-E640893	3	8.77	127	2118	<5	2.25	<1	13	34	64	3.56	46	5.59	13	24	1.09	1577	43	0.39	<10	28	31	1.79	13
TR10073193-E640914	6	7.79	190	880	<5	2.99	2	23	38	72	4.09	57	4.68	19	26	1.61	1861	12	0.11	<10	67	36	1.93	13
TR10073193-E640168	>200	5.04	97	1574	<5	0.35	4	8	30	95	3.51	16	4.34	<10	18	0.21	166	57	0.14	<10	8	454	2.96	100
TR10073193-E640904	79	5.32	261	1189	5	9.04	· 1	7	22	74	2.39	26	4.46	<10	19	0.41	3336	18	0.05	<10	13	56	2.02	17
TR10073193-E640159	86	7.96	173	1761	<5	0.60	3	21	29	103	5.24	29	6.97	22	19	0.34	222	15	0.25	14	14	101	4.67	79
TR10073195-E653579	4	6.31	350	1265	< 5	5.70	2	16	35	169	3.21	32	3.47	11	19	0.65	1591	<2	0.11	<10	32	13	2.93	14
TR10073195-E653544	4	7.03	754	1080	<5	5.47	2	26	40	202	5.97	62	3.25	18	25	1.47	1683	<2	0.08	<10	50	14	4.66	18
TR10073195-E653563	5	6.39	442	1091	<5	5.60	1	15	29	76	3.32	42	3.08	11	18	0.79	1789	<2	0.56	< 10	23	13	2.75	18
TR10073195-E653581	5	4.99	395	893	<5	9.02	1	11	34	77	3.07	34	2.75	10	18	0.72	2497	2	0.04	<10	39	19	2.58	13
SAMPLE14	39	8.05	475	1265	<5	0.46	27	12	24	107	6.84	41	3.96	31	20	0.37	1108	2	0.24	23	10	3161	0.38	64
TR10073195-E653553	3	6.62	296	1205	<5	4.60	<1	11	29	34	2,77	32	3.44	<10	16	0.66	1814	<2	0.18	<10	16	15	2.04	12
TR10073195-E653576	3	6.77	493	1157	<5	4.71	<1	15	53	90	3.79	38	3.56	12	16	0.83	1589	<2	0.13	<10	20	12	3.13	11
TR10073199-E640243	1	8.36	46	1549	<5	2.08	<1	12	12	15	4.19	41	3.59	17	16	0.73	1111	2	0.15	<10	5	117	2.23	11
TR10073199-E640231	5	4.39	138	839	<5	12.91	1	7	10	6	2.86	21	2.17	18	13	0.45	5316	<2	0.03	<10	4	42	2.18	9
TR10073199-E640249	3	9.33	57	1879	<5	1.20	1	19	14	78	4.93	52	3.83	20	15	0.93	1179	7	0.12	<10	8	86	2.51	15
TR10073199-E653507	8	7.51	401	885	<5	7.12	1	19	33	104	4.73	56	3.40	15	18	1.30	2488	<2	0.07	<10	22	12	3.55	25
TR10074243-E641102	1	8.51	87	1755	<5	4.12	1	12	12	24	3.72	57	3.74	11	19	1.30	1476	<2	0.14	<10	8	4	1.44	9
TR10074243-E641096	<1	9.17	374	1792	<5	4.83	<1	14	13	18	3.90	58	3.91	13	17	1.54	1557	<2	0.14	<10	8	3	0.70	12
TR10074243-E641064	6	5.81	545	1336	<5	2.94	1	11	30	48	3.62	30	3.36	12	12	0.57	1082	<2	0.06	<10	20	16	3.06	20
TR10074243-E641061	3	7.88	515	1240	<5	4.34	1	15	55	75	3.96	53	3.30	12	15	1.30	1996	<2	1.47	<10	22	10	2.54	19
TR10074243-G0570984	12	4.34	209	1621	<5	3.32	1	4	26	18	2.69	20	2.71	<10	10	0.31	1127	6	0.04	<10	11	46	2.29	19
TR10074244-E641133	<1	10.15	43	1792	<5	3.73	1	18	12	116	5,53	76	3.67	<10	52	2.12	1674	<2	0.43	<10	9	9	0.53	13
TR10074245-E640396	49	1.03	28	162	<5	0.11	1	3	17	26	1.50	5	0.53	22	8	0.06	106	15	0.02	<10	4	13	0.68	17
TR10074245-E640393	143	3.23	30	670	<5	0.61	Э	4	14	30	2.21	13	1.65	<10	11	0.20	175	22	0.05	<10	2	189	1.50	27
TR10074246-E641248	1	7.73	410	1757	<5	2.09	3	14	17	116	4.17	42	3.68	<10	20	0.86	711	2	0.10	<10	7	183	2.64	15
TR10074246-E641243	1	8.99	184	1949	<5	4.17	í	15	19	72	4.85	57	3.82	<10	30	1.38	1168	2	0.28	<10	11	26	2.65	15
TR10074248-E640411	12	5.82	109	1549	<5	0.23	1	8	20	49	3.21	24	3.52	11	13	0.23	122	13	0.11	<10	8	1816	2.60	23
TR10074248-E640453	13	8.39	86	2651	<5	1.65	<1	9	18	25	3.25	33	5.93	<10	15	0.51	51.9	5	0.15	<10	14	11	2.84	18
TR10074248-E640471	2	7.29	113	2301	<5	2.99	2	4	29	18	5.16	37	4.51	<10	17	0.64	934	6	0.08	<10	11	32	4.50	13
SAMPLE15	>200	4.71	645	2091	<5	0.99	53	13	35	1831	7.59	18	1.91	<10	23	0.63	3498	1176	1.08	<10	28 >	10000	2.50	1345

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10073193-E640893	12	<10	121	<5	13	0.22	115	<10	9	116	42
TR10073193-E640914	15	<10	103	<5	18	0.33	120	<10	15	193	32
TR10073193-E640168	9	<10	60	<5	11	0.16	75	<10	7	447	38
TR10073193-E640904	7	<10	255	< 5	<10	0.17	75	<10	6	113	22
TR10073193-E640159	18	<10	122	<5	19	0.34	169	11	12	307	71
TR10073195-E653579	11	<10	142	<5	15	0.24	110	<10	11	182	32
TR10073195-E653544	14	<10	150	6	18	0.24	147	<10	11	24	37
TR10073195-E653563	10	<10	148	<5	16	0.24	98	<10	10	66	30
TR10073195-E653581	8	<10	196	<5	11	0.19	70	<10	13	74	34
SAMPLE14	15	26	302	<5	23	0.44	163	70	22	3435	81
TR10073195-E653553	7	<10	118	<5	12	0.20	89	<10	6	21	20
TR10073195-E653576	10	<10	105	<5	14	0.24	109	<10	12	167	35
TR10073199-E640243	13	<10	40	<5	12	0.24	120	<10	9	78	55
TR10073199-E640231	8	<10	171	<5	10	0.15	57	<10	16	47	27
TR10073199-E640249	16	<10	30	<5	16	0.26	150	<10	12	108	71
TR10073199-E653507	1 2	<10	214	7	19	0.24	113	<10	10	33	26
TR10074243-E641102	12	<10	119	<5	14	0.24	132	<10	9	83	44
TR10074243-E641096	13	<10	134	<5	17	0.28	141	<10	12	72	56
TR10074243-E641064	10	<10	168	5	13	0.18	89	<10	7	15	31
TR10074243-E641061	10	<10	189	<5	15	0.24	117	10	10	25	44
TR10074243-G0570984	6	<10	197	<5	<10	0.11	59	<10	10	30	19
TR10074244-E641133	30	<10	108	<5	17	0.26	283	<10	9	98	33
TR10074245-E640396	2	<10	10	<5	<10	0.05	17	<10	3	8	20
TR10074245-E640393	4	<10	28	<5	<10	0.11	49	<10	5	365	21
TR10074246-E641248	25	<10	74	<5	11	0.19	246	12	7	463	23
TR10074246-E641243	25	<10	126	<5	14	0.23	241	<10	8	71	23
TR10074248-E640411	9	<10	39	<5	11	0.16	92	<10	10	74	29
TR10074248-E640453	10	<10	134	<5	10	0.22	117	<10	8	46	52
TR10074248-E640471	7	<10	213	<5	10	0.16	83	<10	6	30	22
SAMPLE15	7	11	202	<5	23	0.16	271	152	8	8665	57

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	К	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10074249-E647559	6	8 87	203	1420	<5	0.48	,	15	13	74	4 96	40	5 3 3	17	14	0.60	294	2	0.49	<10		FO	4 75	10
TR10074249-E647592	12	8.73	289	2552	<5	0.30	<1	12	13	27	2.80	34	4.80	14	14	0.00	110	-2	0.40	<10	5	14	9.23	73
TR10074249-E647556		9.03	220	2252	<5	2.39	1	14	10	83	4.67	50	4 47	11	17	0.40	1316	<2	1 04	<10	6	17	3 76	11
TR10076120-E647685	1	8.44	149	1378	<5	4.16	1	20	40	109	4.06	56	3 10	17	32	1 54	1845	<2	1 17	<10	23	15	1 17	13
TR10076120-E647678	3	8.45	282	1167	<5	1.49	<1	14	56	78	3.23	43	3.76	12	19	0.89	912	<2	0.82	<10	31	11	1.58	22
																0.00			0.02	-10	51		1,00	
TR10076120-E654171	6	5.57	293	1440	<5	10.37	<1	6	8	1	2.36	25	3.02	<10	5	0.34	2820	4	0.06	<10	3	19	2.23	17
TR10076120-E647612	>200	10.61	212	1386	<5	3.06	<1	9	18	929	2.52	32	4.90	10	11	0.54	1146	7	0.14	<10	8	179	2.27	919
TR10076127-E640426	18	8.83	120	3361	<5	0.67	<1	10	16	35	3.83	43	7.26	16	22	0.80	486	5	0.18	<10	12	32	2.98	13
TR10077092-E647723	7	7.40	147	1726	<5	2.07	<1	12	28	61	3.34	45	3.58	12	54	1.14	1244	<2	0.48	<10	20	15	1.22	16
TR10077093-E654201	<1	8.45	138	2004	<5	3.85	1	13	13	15	3.72	50	3.70	13	23	1.13	1055	2	0.89	<10	9	12	1.37	14
TR10077093-E656581	11	8.14	199	1374	<5	1.26	4	24	17	144	5.45	40	7.18	20	16	0.76	690	<2	0.16	12	11	58	4.35	17
TR10077094-E656502	10	8.08	236	1861	<5	0.26	1	17	21	41	6.10	37	6.21	16	9	0.51	734	<2	0.20	14	9	37	3.35	25
TR10077094-E656017	6	8.41	220	1628	<5	2.84	1	20	18	56	4.67	47	5.23	21	25	0.88	1368	<2	1.25	<10	11	2	3.73	13
TR10077094-E641382	<1	6.08	571	1387	<5	3.35	`1	15	15	29	3.99	46	2.01	11	32	1.09	704	<2	0.78	<10	10	15	1.23	11
TR10077094-E656564	· 3	8.80	146	3306	<5	1.77	1	23	17	57	5.09	49	7.03	24	39	1.08	774	<2	0.25	<10	13	27	3.62	12
TR10077094-E656007	1	9.06	630	2638	<5	5.11	1	11	10	12	4.41	41	4.62	11	13	0.62	1558	<2	0.12	13	6	26	3.53	19
TR10077094-E656567	1	8.58	55	2566	<5	1.89	2	19	20	61	5.44	49	6.15	22	34	0.81	853	<2	0.37	11	10	44	4.22	10
TR10077095-E656555	6	9.19	104	1780	<5	1.04	2	27	21	72	5.73	51	5. 9 8	22	28	0.80	417	<2	0.20	12	12	27	4.74	13
TR10077095-E641391	4	8.54	2380	2172	<5	4.02	1	16	14	89	5.29	62	2.41	<10	59	1.63	1022	<2	1.21	<10	11	26	1.39	29
SAMPLE16	35	8.06	474	1229	<5	0.44	27	11	22	107	6.65	41	3.90	33	26	0.35	1142	2	0.16	22	11	3093	0.38	63
TR10077096-E656662	91	5.01	58	1329	<5	1.85	3	8	12	138	2.64	21	2.56	11	19	0.28	771	3	0.06	<10	4	81	2.43	102
TR10077097-E654324	4	7.90	684	3066	< 5	4.70	1	9	12	57	3.24	40	5.25	14	25	0.97	2133	2	0.12	<10	11	23	1.93	23
TR10077097-E654331	2	8.53	715	4137	<5	3.05	<1	5	10	21	3.24	40	6.35	12	24	0.83	1036	<2	0.16	<10	7	11	1.95	25
TR10077098-E656134	4	5.66	1058	3476	<5	0.69	1	3	22	27	3.53	26	2.78	13	12	0.29	372	3	0.07	<10	10	33	2.70	22
TR10077098-E654351	1	7.56	263	3619	<5	4.32	1	5	11	13	3.09	40	4.77	12	29	0.98	1560	<2	0.50	<10	8	11	1.30	10
TR10077098-E654345	2	7.73	743	3574	<5	6.04	<1	5	11	17	2.98	35	5.49	13	28	0.86	2615	z	0.24	<10	8	9	1.53	18
TR10077098-E656131	7	9.89	3163	1969	<5	0.24	1	9	27	41	5.50	42	4.68	19	14	0.44	171	3	0.21	15	12	104	4.63	39
TR10077098-E656137	3	4.66	1398	2785	<5	0.23	1	3	15	14	2.63	20	2.28	<10	8	0.25	182	4	0.06	<10	6	51	1.89	17
TR10077098-E656139	6	4.78	523	2860	< 5	0.18	1	4	16	25	2.63	22	2.31	<10	8	0.23		4	0.06	<10	6	47	1.98	24
TR10079191-E654384	2	7.35	301	1791	<5	7.31	<1	7	9	z	2.99	33	3.54	12	14	0.61	1771	<2	0.06	<10	6	6	2.24	11
																			0.00		Ũ	-		

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
TR10074249-E647559	15	<10	80	<5	21	0.38	146	<10	10	44	54
TR10074249-E647592	11	<10	50	<5	12	0.22	138	<10	8	25	46
TR10074249-E647556	16	<10	249	<5	19	0.37	155	<10	13	78	44
TR10076120-E647685	13	<10	279	<5	20	0.31	141	10	10	90	39
TR10076120-E647678	11	<10	108	<5	13	0.25	138	<10	8	58	43
TR10076120-E654171	6	<10	198	<5	11	0.16	65	<10	11	43	42
TR10076120-E647612	6	<10	127	<5	10	0.16	199	<10	10	135	31
TR10076127-E640426	12	<10	165	<5	16	0.27	135	<10	11	26	49
TR10077092-E647723	10	<10	130	<5	13	0.23	98	<10	6	93	24
TR10077093-E654201	11	<10	166	<5	18	0.30	112	<10	13	57	49
TR10077093-E656581	21	<10	191	<5	24	0.38	210	10	11	234	70
TR10077094-E656502	19	12	70	<5	24	0.35	189	<10	10	57	83
TR10077094-E656017	18	<10	193	<5	22	0.31	190	<10	12	45	74
TR10077094-E641382	17	<10	215	<5	20	0.28	167	<10	7	57	33
TR10077094-E656564	20	<10	206	<5	21	0.37	201	<10	18	63	83
TR10077094-E656007	18	<10	111	<5	14	0.24	187	<10	11	57	43
TR10077094-E656567	20	<10	201	<5	18	0.31	206	<10	15	69	61
TR10077095-E656555	20	<10	94	<5	19	0.35	216	<10	16	49	82
TR10077095-E641391	30	<10	313	<5	12	0.21	284	<10	9	92	28
SAMPLE16	14	26	299	9	24	0.39	159	60	22	3417	74
TR10077096-E656662	8	<10	77	<5	11	0.17	94	<10	10	184	40
TR10077097-E654324	10	<10	147	< 5	13	0.24	95	<10	13	133	45
TR10077097-E654331	9	<10	148	<5	12	0.25	86	<10	11	83	46
TR10077098-E656134	9	<10	62	<5	<10	0.14	96	<10	6	87	39
TR10077098-E654351	8	<10	191	<5	11	0.22	78	<10	11	98	44
TR10077098-E654345	8	<10	212	<5	12	0.22	84	10	13	60	4 4
TR10077098-E656131	14	10	37	<5	14	0.25	161	10	7	216	47
TR10077098-E656137	7	<10	24	<5	<10	0.13	78	<10	4	122	24
TR10077098-E656139	6	<10	26	<5	<10	0.13	77	<10	4	132	25
TR10079191-E654384	8	<10	149	<5	11	0.19	84	<10	13	43	64

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10079191-E656682	10	7.77	79	1736	<5	1.37	1	13	10	15	3.69	32	4.23	17	15	0.47	393	3	0.11	11	5	32	3.28	14
TR10079191-E656671	22	7.69	81	1959	<5	0.41	1	11	14	24	4,12	32	4.80	17	16	0.42	221	11	0.12	12	5	97	3.69	23
TR10079191-E656676	31	5.82	119	1655	<5	0.33	3	10	18	41	3.39	23	3.61	11	15	0.32	178	3	0.09	<10	4	102	2 98	27
TR10079193-E655585	6	7.53	267	1331	<5	4.38	2	15	41	61	3.80	44	3.72	14	21	0.83	1374	8	0.12	<10	24	47	3.13	32
TR10079193-E655513	1	7.78	116	939	<5	4.86	<1	15	44	54	3.50	53	3.17	12	34	1.32	1955	<2	0.54	<10	19	<2	1.76	9
TR10079193-E655583	2	10.16	190	1641	<5	2.78	<1	19	42	153	3.59	70	4.32	17	35	1 98	1787	٦	0.54	<10	24	12	0.98	70
TR10079193-E655563	<1	8.81	317	1066	<5	1.47	<1	14	32	46	2.96	56	3.17	11	29	1.51	1187	<2	1 38	<10	21	~2	0.30	11
TR10079195-E656172	<1	10.77	135	2965	<5	0.43	<1	2	16	24	4.50	43	4.62	31	5	0.10	167	<2	0.21	20	4	22	3 03	11
TR10079195-E647914	4	6.70	91	1156	<5	5.25	<1	12	24	23	2.92	39	3.74	12	16	0.72	1914	3	0.05	<10	19	<2	2.55	13
SAMPLE17	>200	4.58	619	1915	<5	0.95	50	14	35	1830	7.38	25	1.85	<10	26	0.60	3453	1125	1.06	<10	31 :	>10000	2.46	1264
TR10079195-E647905	185	6.59	157	2040	<5	4.07	34	9	35	197	3.66	41	4 00	<10	20	0.78	1716	4	0.14	<10	16	1000	2.26	22
TR10079199-E647983	4	6.37	64	2997	<5	0.39	<1	4	32	15	2.67	22	3.86	<10	7	0.70	175	-	0.14	<10	10	1000	3.20	2/
TR10079199-E647965	13	5.60	125	2244	<5	4.89	2	3	19	37	2.28	20	3.44	10	ģ	0.27	1612	11	0.30	<10	12	104	2.14	י רר
TR10079199-E647982	8	5.78	139	970	<5	1.91	z	11	34	31	3.47	21	3.43	<10	6	0.34	616	22	0.50	<10	13	47	3.04	17
TR10079199-E656235	2	8.88	632	1355	<5	2.60	2	14	22	31	4.03	35	4.16	13	10	0.47	924	<2	0.08	<10	14	106	3.33	23
TR10079199-E656269	2	7.95	508	1396	< 5	4.43	1	11	23	50	3 10	47	4 07	12	12	0.96	1740		0.05	~10	15	-2	1.62	
TR10079199-E656232	2	6.85	499	1286	<5	1.07	<1	17	30	31	3.10	72	3 30	11	7	0.00	504	~2	0.05	<10	15	<2	1.62	18
TR10079351-E656294	2	7.90	2722	1405	<5	3.07	<1	12	20	56	3 34	38	4 1 2	13	10	0.44	1343	~2	0.09	<10	14	14	2.69	18
TR10079351-E656285	2	6.88	1278	1115	<5	5.03	1	10	40	42	3.39	42	3 50	10	18	0.04	2775	~2	0.10	<10	17	14	1 00	40
TR10079351-E656302	5	6.45	449	1543	<5	0.47	3	13	34	33	3.33	29	3.51	12	7	0.38	169	<2	0.24	<10	22	127	2.59	23
TR10079351-E656272	4	7.34	460	1621	<5	1 95	1	11	31	53	3 66	30	3 73	11	0	0.52	644		0.07	.10			2.00	~~
TR10079351-E656305	6	5.62	1597	1256	<5	1 00	A	10	28	47	2.65	22	2.75	10	ہ د	0.33	746	<2	0.07	<10	- 18	< 2	2.90	22
TR10079353-E656811	58	6.28	173	1207	<5	10 58	5	11	14	171	2.03	23	2.54	10	7	0.34	240	~2	0.17	<10	22	286	2.00	39
TR10079354-E656723	84	2.54	87	656	<5	0.39	18	5	23	67	2 10	12	1 31	<10	5	0.34	000014	12	0.07	-10	5	80	3.29	91
TR10079354-E647934	11	6,39	115	3667	<5	3.13	1	7	26	52	2.68	31	3.59	10	11	0.50	1137	<2	0.03	<10 <10	17	5515 17	2.31	13
					_																			
TR10079354-2647931	14	4.68	96	1332	5	7.71	2	7	22	11	2.57	22	2.80	11	7	0.32	3310	8	0.20	<10	14	74	2.31	13
TR10079354-E656736	11	7.54	96	807	<5	1.70	1	14	19	39	4.28	35	3.82	14	17	0.55	975	7	0.25	11	6	93	3.94	18
TR10070354-E050722	125	2.66	76	554	<5	0.27	37	4	26	80	2.03	15	1.42	<10	7	0.15	174	8	0.07	<10	5	1056	1.51	71
IK100/9354-264/937	56	1.64	76	443	<5	2.89	<1	1	28	77	1.43	11	1.06	<10	10	0.15	1070	<2	0.04	<10	5	36	0.60	14
Sample18	44	8.61	496	1357	<5	0.47	27	13	27	115	7.00	44	4.22	34	23	0.38	1217	4	0.35	24	10	3370	0.39	68

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc	Sn	Sr	Ta	Те	Ti %	V	W	Y	Zn	Zr
Number	ppin	ppm	ppm	ppm	ppm	70	ppm	ppm	PPIN	ppm	Phu
TR10079191-E656682	13	<10	93	<5	18	0.28	117	<10	11	77	61
TR10079191-E656671	13	<10	86	<5	14	0.26	125	<10	8	75	60
TR10079191-E656676	10	<10	56	<5	13	0.20	93	<10	6	226	43
TR10079193-E655585	13	<10	196	<5	14	0.25	170	10	13	160	48
TR10079193-E655513	11	<10	222	<5	15	0.29	120	<10	9	81	39
TR10079193-E655583	16	<10	128	<5	17	0.33	164	<10	12	67	49
TR10079193-E655563	11	<10	124	<5	10	0.25	107	<10	6	39	33
TR10079195-E656172	16	<10	107	<5	21	0.36	229	14	2	7	54
TR10079195-E647914	9	<10	139	<5	14	0.20	99	<10	8	34	31
SAMPLE17	7	10	204	<5	23	0.16	271	159	8	8225	55
TR10079195-E647905	9	<10	151	<5	15	0.22	111	77	7	4044	25
TR10079199-E647983	6	<10	151	<5	<10	0.17	75	<10	3	27	21
TR10079199-E647965	6	<10	188	<5	<10	0.14	59	<10	10	214	19
TR10079199-E647982	9	<10	366	<5	10	0.16	71	11	8	142	18
TR10079199-E656235	14	<10	274	<5	11	0.22	152	<10	10	209	43
	•										
TR10079199-E656269	12	<10	205	<5	11	0.21	126	<10	11	73	40
TR10079199-E656232	10	<10	51	<5	<10	0.19	113	<10	8	75	41
TR10079351-E656294	12	<10	148	<5	12	0.23	128	<10	9	103	45
TR10079351-E656285	10	<10	191	<5	<10	0.19	108	<10	9	89	33
TR10079351-E656302	10	<10	45	<5	11	0.21	124	10	8	339	43
TR10079351-E656272	11	<10	88	<5	<10	0.20	114	<10	8	81	38
TR10079351-E656305	8	<10	64	<5	11	0.16	94	19	8	842	35
TR10079353-E656811	11	<10	152	<5	12	0.24	84	<10	12	250	41
TR10079354-E656723	4	<10	18	<5	<10	0.09	45	25	4	1729	20
TR10079354-E647934	9	<10	123	<5	<10	0.19	91	<10	9	134	35
TR10079354-E647931	7	<10	254	<5	<10	0.15	71	<10	11	252	18
TR10079354-E656736	13	<10	41	<5	16	0.27	132	<10	8	103	60
TR10079354-E656722	5	<10	14	8	<10	0.08	49	65	3	3721	21
TR10079354-E647937	2	<10	97	< 5	<10	0.05	19	13	3	40	6
Sample18	15	27	330	<5	27	0.45	176	63	24	3709	95

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Са	Cd	Co	Сг	Cu	Fe	Ga	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10079358-E655798	<1	10.09	180	1075	<5	2.37	<1	18	20	79	6.35	75	5.07	<10	36	1.87	1214	<2	0.70	11	11	38	4.35	12
TR10079359-E656852	13	6.87	244	1898	<5	1.15	26	9	32	85	3.21	21	7.89	13	8	0.27	654	10	0.32	<10	10	105	2.60	15
TR10079359-E656851	7	7.50	279	1637	<5	1.16	<1	10	29	52	3.49	36	8.26	15	15	0.55	897	22	0.32	<10	11	118	2,53	15
TR10079359-E656839	54	6.09	231	1728	<5	0.38	1	12	31	152	3.24	13	6.74	11	8	0.11	143	10	0.36	11	9	86	2.64	51
TR10079359-E656321	6	7.99	3090	1222	<5	4.46	<1	20	83	26	3.99	39	4.14	<10	17	0.70	1036	11	0.20	<10	65	40	2.72	67
TR10079359-E656838	69	4.52	214	1700	<5	0.28	12	8	29	121	2.72	15	4.7 4	<10	6	0.10	105	12	0.20	<10	6	167	2.29	63
TR10080550-E656414	1	7.91	216	1085	<5	5.49	<1	13	46	55	3.59	46	3.58	13	23	1.02	1560	з	0.25	<10	21	13	1.94	14
TR10080550-E656443	3	7.10	306	844	<5	7.46	<1	13	65	50	2.87	45	3.19	12	26	1.19	3151	<2	0.21	<10	41	7	1.51	14
TR10080550-E656861	7	8.06	291	1512	< 5	1.65	<1	11	22	61	3.04	28	8.11	16	8	0.33	705	9	0.35	10	10	94	2.42	15
TR10080550-E656428	3	7.49	276	1113	5	6.67	<1	11	43	84	3.49	47	3.50	14	30	0.92	2132	<2	0.21	<10	17	12	2.22	15
TR10080550-E656441	7	7.86	862	996	<5	3.88	<1	14	39	62	3.43	39	3.76	12	14	0.73	1178	2	0.22	<10	15	17	2.52	25
TR10080851-E660513	2	9.26	218	1216	<5	0.46	<1	18	15	19	4,34	33	4.00	18	7	0.34	202	<2	0.41	15	5	15	3.44	16
TR10080851-E655944	4	7.40	591	1715	<5	6.19	2	9	49	25	2.84	32	4.78	<10	9	0.43	3048	<2	0.16	<10	18	81	2.64	14
TR10080851-E655941	4	6.84	522	1548	<5	5.08	1	9	45	16	3.58	30	4.64	<10	9	0.48	1871	2	0.12	<10	15	41	3.34	11
TR10080851-E660521	1	8.17	406	920	<5	0.49	<1	19	1 6	15	5.51	32	3.65	15	5	0.27	167	2	0.32	17	6	16	4.59	18
TR10080851-E660536	2	9.06	2518	1135	<5	0.61	<1	18	13	24	3.92	37	4.10	19	8	0.46	235	<2	0.33	13	6	9	2.75	56
TR10080852-E656879	2	8.82	131	2435	< 5	1.58	<1	9	17	53	2.89	45	5.80	16	11	0.85	1229	<2	0.21	<10	10	65	1.24	11
TR10080852-E654729	1	9.15	1225	1538	<5	3.90	<1	13	14	1	4.01	55	3.57	12	23	1.32	1196	<2	1.38	<10	7	12	1.73	21
TR10080852-E654725	4	8.88	1058	2399	<5	3.33	<1	12	18	36	3.90	55	3.91	11	24	1.30	1278	<2	1.80	<10	8	11	1.57	21
Sample19	>200	5.08	730	1067	<5	1.08	59	18	47	1958	8.36	24	2.06	<10	27	0.68	3966	1299	1.24	<10	33 >	10000	2.65	1468
TR10080852-E654724	. 3	7.31	2419	2696	<5	3.15	<1	8	16	45	3.44	44	3.84	10	19	1.00	1093	<2	1.04	<10	6	28	1.41	35
TR10080853-E648005	22	4.00	98	2560	<5	0.97	3	4	36	98	2.86	21	2.51	<10	4	0.25	303	4	0.44	<10	14	389	2.19	25
TR10080853-E654747	3	7.17	590	3537	<5	8.25	<1	6	13	13	3.34	37	4.79	10	14	0.74	4074	<2	0.28	<10	7	18	1.96	13
TR10080853-E648014	24	1.99	73	2085	<5	0.91	4	1	32	256	2.10	11	1.64	<10	3	0.12	297	5	0.07	<10	19	1076	1.51	42
TR10080855-E648087	2	7.59	126	1438	<5	0.38	1	13	17	9	4.33	34	3.66	13	6	0.46	207	<2	0.17	11	6	31	3.32	12
TR10080855-E648085	2	7.15	249	1431	<5	0.32	<1	14	21	29	3.79	32	3.65	16	5	0.44	167	2	0.18	11	5	17	2.76	11
TR10080855-E648107	3	6.88	204	2787	<5	0.44	<1	7	13	26	3.44	31	3.64	15	5	0.42	173	<2	0.20	<10	4	16	2.32	11
TR10080855-E648075	2	8.93	422	1599	<5	2.38	<1	17	15	63	4.23	37	4.07	16	11	0.58	765	<2	0.23	12	7	20	2.81	15
TR10080856-E655969	1	9.71	396	1494	<5	3.31	<1	16	17	32	4.52	48	5.35	11	23	1.34	1054	<2	0.59	<10	8	21	2.90	17
TR10080856-E648037	3	7.03	141	2191	<5	1.71	<1	15	36	38	3.13	41	4.36	10	10	0.65	570	<2	0.23	<10	26	32	2.56	15

Signed: _

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10079358-E655798	27	<10	80	<5	21	0.29	275	<10	14	104	38
TR10079359-E656852	9	<10	176	<5	12	0.20	93	53	9	2611	38
TR10079359-E656851	11	<10	200	<5	17	0.25	125	10	11	249	48
TR10079359-E656839	9	<10	133	<5	14	0.22	69	<10	8	221	55
TR10079359-E656321	16	<10	203	<5	13	0.23	128	<10	10	82	33
TR10079359-E656838	7	<10	86	5	<10	0.14	56	35	4	1727	36
TR10080550-E656414	12	<10	268	<5	13	0.23	124	<10	10	79	49
TR10080550-E656443	12	<10	344	<5	13	0.22	152	<10	12	62	50
TR10080550-E656861	11	<10	200	<5	12	0.24	116	<10	10	231	48
TR10080550-E656428	11	<10	354	<5	13	0.24	119	<10	12	99	48
TR10080550-E656441	12	<10	186	<5	14	0.22	129	10	8	72	41
TR10080851-E660513	17	<10	31	<5	17	0.34	137	<10	13	84	76
TR10080851-E655944	8	<10	173	<5	11	0.22	97	12	9	463	34
TR10080851-E655941	8	<10	192	<5	14	0.21	94	<10	9	115	33
TR10080851-E660521	15	<10	30	5	20	0.31	139	<10	12	81	67
TR10080851-E660536	15	<10	43	< 5	17	0.31	228	<10	14	76	80
TR10080852-E656879	12	<10	166	< 5	<10	0.22	135	<10	10	215	51
TR10080852-E654729	13	<10	179	< 5	18	0.27	132	<10	15	73	74
TR10080852-E654725	13	<10	231	<5	14	0.27	126	<10	14	68	60
Sample19	7	12	200	<5	28	0.18	299	181	8	8796	65
TR10080852-E654724	10	<10	205	<5	14	0.23	101	<10	11	60	53
TR10080853-E648005	6	<10	101	<5	14	0.14	57	16	4	601	27
TR10080853-E654747	10	<10	321	<5	13	0.23	101	12	11	37	52
TR10080853-E648014	3	<10	406	<5	<10	0.07	21	15	2	690	7
TR10080855-E648087	13	<10	19	<5	14	0.24	124	<10	8	149	62
TR10080855-E648085	13	<10	20	<5	13	0.27	121	<10	9	62	65
TR10080855-E648107	12	<10	64	<5	13	0.24	106	<10	8	58	61
TR10080855-E648075	17	<10	76	<5	19	0.32	145	<10	10	77	62
TR10080856-E655969	14	<10	162	<5	18	0.31	143	<10	13	52	65
TR10080856-E648037	11	<10	127	<5	15	0.24	105	<10	6	173	40

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Сг	Cu	Fe	Ga	к	La	Li	Ma	Mn	Мо	Na	Nb	Ni	Ph	S	Sh
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10080856-E654754	1	9.11	196	2078	<5	5.32	<1	13	15	4	4.12	55	4.02	12	9	1.38	1389	<2	1.08	<10	7	8	1.11	17
TR10080856-E655975	<1	9.02	335	3466	<5	3.80	<1	11	18	48	4.36	60	5.06	12	25	1.44	1195	<2	0.98	<10	9	13	2.08	11
TR10080856-E660558	4	4.57	1580	1076	<5	4.67	<1	8	19	11	2.86	20	2.00	21	32	0.20	944	2	0.06	<10	4	19	2.17	79
TR10080856-E655968	5	8.66	442	1507	<5	3.18	<1	14	19	78	3.79	41	4.75	10	11	0.70	777	2	0.22	<10	8	33	3.30	14
TR10080857-E656939	9	8.12	523	672	<5	0.44	1	28	23	66	7.11	43	6.19	16	10	0.54	148	11	0.23	17	13	22	6.33	24
TR10080857-E656919	8	8.38	505	574	<5	0.54	1	51	27	92	7.31	47	7.06	21	9	0.53	186	8	0.26	17	20	27	6.73	23
TR10080857-E656916	18	7.70	333	493	<5	0.42	2	25	30	115	6.32	36	7.44	16	6	0.40	130	5	0.20	15	13	40	5.59	31
TR10080857-E656881	2	7.79	116	1546	<5	1.60	1	9	16	31	3.07	42	4.56	12	12	0.81	1212	5	0.09	<10	8	85	1.12	11
TR10081782-E658021	4	7.80	123	1842	<5	0.52	<1	12	15	27	3.72	34	4.10	18	6	0.48	246	<2	0.37	10	5	9	2.63	16
Sample20	45	8.36	499	1346	<5	0.46	28	13	25	113	7.00	44	4.01	34	19	0.37	1197	3	0.28	23	10	3357	0.40	67
TR10081783-E648092	<1	9.48	187	1585	<5	3.20	<1	15	14	21	4.43	41	4.34	19	16	0.72	1153	<2	0.24	12	4	8	2. 2 4	16
TR10081783-E660628	5	9.06	769	1167	<5	1.50	<1	16	16	55	5.00	42	4.65	10	4	0.60	621	<2	0.27	11	7	7	3.93	30
TR10081783-E660631	12	5.24	364	1528	<5	0.26	<1	10	31	38	3.24	26	2.66	<10	3	0.28	11.0	3	0.16	<10	6	13	2.61	34
TR10081783-E648123	6	7.34	169	2079	<5	0.25	<1	10	16	12	4.18	35	3.63	15	7	0.47	148	<2	0.26	11	5	38	3.28	14
TR10081783-E648117	5	6.63	150	1648	<5	0.44	<1	12	14	13	3.40	28	3.32	15	5	0.39	161	<2	0.45	<10	5	22	2.64	13
TR10081783-E660629	5	4.92	991	2230	<5	1.17	<1	6	24	17	3.21	21	2.39	<10	3	0.29	299	2	0.11	<10	7	14	2.45	19
TR10081784-E648177	Э	7.92	352	1669	<5	0.48	<1	12	13	24	3.96	33	3,69	18	4	0.47	213	2	0.19	11	6	10	3.10	16
TR10081784-E654852	29	9.14	141	2684	<5	4.54	<1	12	14	32	4.01	55	2.86	12	19	1.32	1452	<2	2.20	<10	8	435	0.86	16
TR10081784-E648136	6	7.72	158	1651	<5	0.25	<1	14	14	20	3.79	33	3.85	14	4	0.47	113	<2	0.18	10	6	39	2.96	15
TR10081784-E648162	11	6.37	359	1313	<5	0.23	41	13	19	176	3.74	27	3.07	17	3	0.39	131	<2	0.15	<10	8	1326	2.97	28
TR10081784-E654824	1	8.78	262	3014	<5	3.22	<1	11	15	4	3.93	51	3.50	11	19	1.29	1105	<2	2.02	<10	7	14	1.02	13
TR10083780-E656953	2	7.57	297	932	<5	1.19	<1	9	17	6	2.58	29	3.86	18	9	0.42	485	<2	0.20	<10	7	17	1.89	23
TR10083780-E648156	1	8.34	181	1609	<5	3.44	<1	12	13	7	3.80	43	3.78	18	15	0.81	1258	<2	0.16	<10	5	9	2.01	13
TR10083781-E660672	13	10.10	538	1184	<5	0.43	<1	21	20	42	5.04	42	4.91	17	18	0.61	176	5	0.33	14	8	39	4.48	32
TR10083781-E658094	12	9.52	793	1760	<5	1.12	2	19	29	142	5.60	46	4.35	22	128	0.80	1024	<2	0.71	12	10	402	2.19	25
TR10083782-E660676	7	7.77	406	1106	<5	0.32	<1	12	17	15	4.23	33	3.77	16	3	0.47	138	75	0.18	11	6	22	3.68	18
TR10083782-E656994	9	7.76	287	1361	<5	1.36	<1	18	23	22	3.70	32	5.27	15	8	0.43	531	<2	0.28	10	9	23	3.19	24
TR10083782-E660691	6	9.93	211	2553	<5	0.72	<1	15	13	54	3.58	40	4.83	14	4	0.61	267	2	0.32	11	8	10	2.86	26
TR10083782-E656989	67	8.53	343	2221	<5	1.18	<1	9	17	119	3.58	38	6.94	16	7	0.40	377	<2	0.39	11	6	20	3.08	118
Sample21	>200	5.08	695	1056	<5	1.02	56	17	41	1993	7.98	23	2.03	<10	24	0.68	3818	1240	1.21	<10	31 >	10000	2.66	1404

Signed: _

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

Assayers Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
NGHIDEI	Pbu	Ррпп	Pbur	Ppm	Ppm	70	ррш	ррт	ppm	ррт	ppm
TR10080856-E654754	13	<10	207	<5	17	0.28	137	12	13	70	77
TR10080856-E655975	13	<10	198	<5	16	0.30	134	<10	14	46	61
TR10080856-E660558	8	<10	91	5	10	0.14	82	12	19	50	32
TR10080856-E655968	13	<10	113	<5	15	0.27	130	<10	11	31	57
TR10080857-E656939	21	12	111	6	31	0.40	222	<10	9	42	80
TR10080857-E656919	23	13	116	<5	30	0.42	227	<10	9	109	84
TR10080857-E656916	20	10	117	<5	25	0.35	203	<10	8	72	63
TR10080857-E656881	10	<10	138	<5	<10	0.18	114	<10	8	197	37
TR10081782-E658021	14	<10	49	<5	16	0.27	124	<10	11	85	69
Sample20	15	27	308	5	28	0.43	172	70	24	3403	89
TR10081783-E648092	16	<10	88	<5	19	0.33	145	<10	12	81	77
TR10081783-E660628	18	<10	50	<5	15	0.23	187	11	10	61	50
TR10081783-E660631	12	<10	18	<5	10	0.14	152	<10	5	44	35
TR10081783-E648123	13	<10	27	<5	16	0.25	116	<10	7	154	63
TR10081783-E648117	11	<10	52	<5	13	0.25	104	<10	9	123	62
TR10081783-E660629	11	<10	40	<5	<10	0.13	97	12	6	63	28
TR10081784-E648177	13	<10	30	<5	13	0.24	124	<10	10	30	75
TR10081784-E654852	13	<10	356	<5	13	0.29	135	13	14	218	52
TR10081784-E648136	13	<10	16	<5	10	0.25	128	<10	9	121	64
TR10081784-E648162	. 11	<10	20	<5	14	0.22	106	76	8	4007	55
TR10081784-E654824	12	<10	274	<5	13	0.27	127	<10	12	78	59
TR10083780-E656953	9	<10	57	<5	<10	0.18	101	<10	8	40	39
TR10083780-E648156	14	<10	121	<5	16	0.25	126	<10	12	75	67
TR10083781-E660672	21	<10	38	<5	20	0.35	210	13	13	266	88
TR10083781-E658094	25	<10	95	5	25	0.41	227	10	13	592	77
TR10083782-E660676	14	<10	31	<5	15	0.24	127	<10	8	65	56
TR10083782-E656994	11	<10	97	<5	12	0.22	128	<10	9	124	47
TR10083782-E660691	17	<10	55	<5	16	0.36	173	12	13	74	74
TR10083782-E656989	11	<10	133	<5	11	0.23	113	11	9	57	52
Sample21	7	11	194	<5	28	0.18	293	174	8	8846	65

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR Date

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

: Aug-19-10

Sample type : PULP

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10083782-E657008	3	10.04	444	1425	<5	2.25	<1	10	14	28	3,86	37	4.97	20	5	0.36	708	3	2.45	13	5	10	3.21	15
TR10083783-E657027	22	4.98	145	1328	<5	2.93	2	13	32	93	3.34	22	3.51	14	7	0.29	906	10	0.07	<10	8	47	3.05	57
TR10083783-E660716	<1	10.66	496	1765	<5	2.15	<1	13	17	13	5.03	46	5.02	13	11	0.86	1158	<2	0.27	11	9	9	3.38	16
TR10083783-E658123	3	9.27	216	1386	<5	2.69	<1	17	26	91	3.67	41	4.57	23	25	0.61	809	<2	0.30	11	6	33	2.55	14
TR10083783-E658102	2	8.35	208	1070	<5	4.82	<1	27	19	166	5.97	52	2.18	23	30	0.99	2544	<2	2.25	13	10	71	1.58	14
TR10083783-E660705	<1	10.93	960	1747	<5	0.95	<1	19	23	129	6.93	69	5.02	15	19	0.98	657	<2	0.27	16	8	6	4.39	24
TR10083783-E657024	11	3.37	92	539	< 5	0.39	<1	10	27	78	2,24	19	2.27	<10	6	0.19	205	3	0.09	<10	5	19	1.60	36
TR10083783-E658115	3	9.31	191	1536	<5	3.97	7	27	21	134	6.47	52	3.64	25	180	0.93	2071	<2	0.42	14	14	455	1.74	17
TR10083783-E660738	1	6.28	971	1048	<5	2.86	1	11	20	15	4.14	31	3.01	<10	з	0.39	921	<2	0.13	<10	8	16	3.40	19
TR10083788-E657099	1	8.98	149	1105	<5	1.11	2	32	26	82	7.49	65	6.71	22	22	1.37	1148	2	0.89	12	15	33	5.39	15
TR10083788-E657083	<1	8.78	49	1096	<5	3.81	2	34	21	77	6.12	63	4.33	23	36	1.60	1648	<2	2.41	10	13	16	3.82	12
TR10083788-E657101	2	9.04	26 9	1169	<5	0.80	2	30	26	103	7.77	63	5.23	23	36	1.41	1115	<2	1.79	13	13	31	5.17	17
TR10083789-E657116	6	7.93	404	1432	<5	0.74	1	23	29	86	6.62	51	7,41	18	22	0.95	840	7	0.50	11	10	48	4.78	20
TR10083789-E657136	10	7.66	904	995	<5	0.81	1	22	31	79	7.05	57	7.64	20	21	1.36	1176	22	0.28	12	11	41	4.28	23
TR10083789-E657154	9	4.88	850	1197	<5	0.32	1	15	34	64	5.12	18	5.19	<10	5	0.14	117	19	0.18	11	14	68	4.28	34
TR10083789-E657125	129	7.76	635	1079	<5	1.05	1	26	33	90	8.01	60	6.77	25	6	1.41	1298	<2	0.43	13	13	49	5.07	30
TR10083831-E658258	2	10.69	332	2870	<5	1.14	<1	7	21	25	2.31	35	4.93	15	4	0.45	417	<2	0.43	<10	9	65	1.82	17
TR10083831-E658237	32	10.70	352	2958	<5	1.39	<1	6	17	17	3.62	35	4.33	16	16	0.55	673	<2	0.50	10	5	71	2.08	19
TR10083832-E658174	5	8.20	357	865	<5	2.38	7	19	27	30	5.95	36	3.82	26	8	0.53	627	<2	0.26	14	11	146	5.48	16
Sample22	40	8.43	490	1302	<5	0.47	27	13	25	110	7.10	45	4.05	32	18	0.38	1210	4	0.34	23	10	2931	0.40	68
TR10083835-E660799	<1	10.46	379	991	<5	0.27	<1	4	17	9	5.99	35	4.47	20	1	0.21	71	<2	0.45	21	3	18	5.20	12
TR10083835-E660773	<1	10.35	168	2442	<5	3.76	<1	15	11	54	5.37	60	4.06	14	37	1.41	1916	<2	0.24	12	8	7	1.16	13
TR10083836-E655038	6	5.77	720	1760	<5	11.25	<1	8	11	9	2.37	30	2.82	<10	8	0.57	3752	<2	0.09	<10	6	10	1.83	16
TR10083836-E658271	4	6.74	472	1084	<5	0.98	<1	11	31	38	2.63	30	3.01	10	2	0.43	587	3	0.24	<10	13	12	1.84	38
TR10083836-E658276	Э	9.09	417	1400	5	1.52	<1	16	31	79	3.51	47	3.99	16	5	0.76	2076	<2	0.27	<10	24	21	2.58	15
TR10083836-E658228	5	9.43	573	2704	<5	2.48	<1	6	20	50	3.98	36	3.77	19	18	0.60	889	<2	0.27	<10	7	16	2.86	18
TR10083836-E658281	15	6.15	513	900	<5	3.58	1	10	46	44	4.04	32	2.78	15	12	0.38	2665	3	0.09	<10	21	23	3.36	24
TR10083838-E648379	1	9.59	892	2014	<5	0.91	<1	12	20	24	3.28	37	5.48	13	14	0.63	458	<2	0.36	<10	5	9	1.73	21
TR10083838-E648375	2	9.47	467	2611	<5	1.39	<1	10	20	17	3.77	48	4.96	15	26	0.97	793	2	1.03	<10	6	7	1.54	20
TR10083838-E657187	1	10.56	234	1960	<5	0.95	3	18	25	67	6.81	58	6.13	21	31	1.02	1426	2	0.15	12	9	244	1.83	17

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES	Report
---------	--------

Multi-Acid Digestion

Sample Number	Sc	Sn	Sr	Ta ppm	Te	Ti %	V	W	Y	Zn	Zr
	FF		PP	PP	PP	,,,	PP	PPIII	PPIN	PPIII	PPIII
TR10083782-E657008	13	<10	219	<5	12	0.24	148	<10	8	78	55
TR10083783-E657027	12	<10	197	<5	14	0.22	117	<10	8	176	39
TR10083783-E660716	18	<10	91	<5	17	0.31	171	12	12	79	64
TR10083783-E658123	19	<10	132	<5	19	0.37	206	<10	11	149	56
TR10083783-E658102	23	<10	398	<5	26	0.39	225	<10	17	93	78
TR10083783-F660705	79	11	16	~5	20	0.41	500	22	7	00	65
TR10083783-E657024	7	<10	38	~5	<10	0.41	300	<10	,	35	30
TR10083783-E658115	25	<10	285	9	30	0.14	248	21	18	761	82
TR10083783-E660738	14	<10	105	<5	15	0.22	125	<10	10	144	39
TR10083788-E657099	25	11	163	<5	32	0.46	260	<10	12	124	88
TR10083788-E657083	23	<10	422	8	27	0.41	234	16	13	90	68
TR10083788-E657101	24	13	114	6	30	0.43	268	<10	10	129	89
TR10083789-E657116	18	12	159	7	27	0.36	199	10	11	132	73
TR10083789-E657136	13	11	245	6	25	0.38	168	<10	9	160	73
TR10083789-E657154	8	<10	98	<5	16	0.22	86	<10	5	30	35
TR10083789-E657125	19	12	175	7	26	0.35	212	<10	9	104	68
TR10083831-E658258	15	<10	156	<5	13	0.28	198	<10	7	149	51
TR10083831-E658237	14	<10	218	<5	14	0.23	149	12	11	299	43
TR10083832-E658174	17	<10	171	<5	23	0.31	187	21	8	756	61
Sample22	15	27	313	6	28	0.45	167	68	23	3466	90
TR10083835-E660799	15	13	64	<5	22	0.33	180	<10	6	12	64
TR10083835-E660773	22	<10	151	<5	20	0.30	236	<10	13	90	55
TR10083836-E655038	8	<10	221	<5	15	0.19	84	<10	11	18	41
TR10083836-E658271	10	<10	58	<5	12	0.23	91	<10	7	23	44
TR10083836-E658276	15	<10	79	<5	18	0.30	103	<10	13	241	58
TR10083836-E658228	12	<10	229	<5	<10	0.11	128	<10	8	134	34
TR10083836-E658281	10	<10	125	<5	12	0.11	102	<10	12	25	23
TR10083838-E648379	10	<10	62	<5	14	0.25	110	<10		83	57
TR10083838-E648375	10	<10	117	<5	13	0.23	110	<10	9	88	57
TR10083838-E657187	20	10	57	<5	28	0.39	232	<10	14	334	60

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR Date

: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10083838-E657162	14	4.93	327	2731	<5	0.58	4	9	34	85	3.57	21	5.46	12	7	0.33	358	15	0.12	<10	9	47	2.45	17
TR10083838-E657181	34	6.96	167	1454	<5	1.68	1	8	20	36	2.47	29	4.23	10	13	0.48	421	9	0.08	<10	5	112	1.51	14
TR10083838-E657196	2	6.95	131	2649	<5	4.75	1	8	20	64	2.79	32	5.64	14	12	0.59	1414	5	0.30	<10	5	15	1.26	12
TR10083838-E648394	5	9.41	624	3318	<5	0.71	1	9	25	23	3.77	48	6.29	14	13	1.16	1639	<2	0.17	<10	7	88	2.26	26
TR10083838-E657168	9	6.97	494	939	<5	0.73	4	22	26	110	5.63	38	6.13	16	11	0.76	522	8	0.16	10	9	46	4.11	25
TR10085180-E658322	<1	9.33	489	2035	<5	3.37	1	22	27	16	5.55	51	3.12	22	27	0.85	1352	<2	1.72	12	11	10	2.04	14
TR10085180-E648411	3	9.65	358	3184	<5	1.68	<1	10	25	16	3.96	50	5.28	14	18	1.26	1393	<2	1.32	<10	7	36	1.52	23
TR10085184-E648451	2	9.09	341	2829	<5	2.28	<1	10	20	27	3.85	53	5.02	13	15	1.17	1902	2	0.71	<10	7	39	2.20	17
TR10085184-E657513	1	8.87	248	3395	<5	3.04	<1	8	21	28	3.39	47	5.50	14	31	1.19	1497	2	0.86	<10	7	33	1.93	13
Sample23	>200	4.97	757	2156	<5	1.07	62	16	50	1873	8,08	19	1.93	<10	25	0.70	3831	1160	1.09	<10	32 :	10000	2.70	1505
TR10085184-E657511	7	4.81	339	2263	<5	7.59	<1	2	25	30	2.06	18	4.24	<10	12	0.30	3160	z	0.07	<10	5	45	1.50	23
TR10085184-E657232	15	7.70	390	1598	<5	1.14	2	13	19	48	3.78	29	4.03	12	6	0.42	288	8	0.19	<10	7	93	3.26	30
TR10085184-E657233	193	7.11	347	1296	<5	2.82	19	16	36	184	4.33	19	3.38	25	4	0.19	473	18	0.16	10	13	994	4.15	141
TR10085184-E648472	16	8.92	348	3082	<5	4.54	1	9	20	18	3.56	48	3.99	13	27	1.23	1613	2	1.89	<10	6	21	1.44	16
TR10085185-E658409	1	8.02	212	1846	<5	6.89	1	9	17	40	4.07	39	2.93	12	30	0.86	2098	<2	1.66	<10	5	24	1.32	12
TR10085185-E658378	1	9.12	167	4100	<5	5.94	<1	7	16	39	4.08	50	3.75	13	28	1.09	2242	<2	1.99	<10	6	9	1.37	12
TR10085186-E658442	20	7.17	293	1174	<5	2.99	79	17	28	76 0	6.15	35	3.55	<10	7	0.44	915	4	0.12	12	9	1581	5.33	34
TR10085186-E655148	37	7.44	254	1438	<5	0.34	5	8	22	580	3.62	29	3.59	10	12	0.48	253	8	0.19	<10	6	303	2.92	89
TR10085186-E655153	1	9.69	129	2781	<5	0.71	1	11	21	26	3.99	45	5.01	14	8	0.99	1105	4	0.46	<10	6	65	1.41	17
TR10085186-E655125	6	6.12	236	1882	<5	0.18	1	6	20	16	2.04	23	3,52	15	14	0.31	150	3	0.19	<10	5	76	1.40	22
TR10085186-E655113	65	3.89	381	1306	<5	0.06	4	3	27	37	2.91	20	2.19	12	14	0.25	139	8	0.08	<10	4	111	2.11	54
TR10085187~E655225	3	7.14	157	911	<5	0.95	2	16	58	104	4.28	49	3.26	15	7	1.16	908	2	0.08	<10	39	84	2.47	20
TR10085187-E658505	<1	9.61	448	2817	<5	0.69	<1	8	24	71	4.22	46	3.73	14	24	0.83	837	<2	0.79	<10	8	11	2.30	15
TR10085187-E658501	2	9.91	668	2854	5	3.40	<1	7	24	29	4.09	48	3.97	23	28	0.84	2021	<2	0.27	<10	8	105	2.51	20
TR10085187-E658504	1	9.30	833	1300	<5	1.67	<1	10	23	104	4.51	42	3.97	16	17	0.64	956	<2	0.25	10	5	16	3.39	17
TR10085187-E657227	7	7.64	304	2080	<5	1.79	2	13	27	74	3.11	26	5.49	12	7	0.38	440	9	0.16	<10	8	61	2.48	15
TR10085187-E657224	106	7.96	379	2453	<5	0.49	3	15	31	200	3.73	29	5.79	11	7	0.36	193	10	0.20	<10	11	163	3.11	149
TR10086290-E657539	2	8.06	191	2934	<5	1.45	<1	8	24	20	3.48	43	5.56	15	16	1.00	1086	<2	0.41	<10	7	41	1.54	15
TR10086290-E657525	7	2.99	192	984	5	10.09	<1	3	23	16	1.85	13	2.35	12	17	0.19	3048	2	0.05	<10	3	33	1.36	16
Sample24	44	8.57	509	1345	<5	0.48	28	12	35	116	7.10	42	4.18	32	23	0.38	1210	5	0.29	22	11	3534	0.42	73

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES	Repo	rt
---------	------	----

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Те	Ti	v	w	Y	Zn	Zr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
								••	••	••	••
TR10083838-E657162	8	<10	173	<5	<10	0.11	78	<10	5	311	22
TR10083838-E657181	11	<10	100	<5	10	0.17	122	<10	5	86	25
TR10083838-E657196	10	<10	276	<5	12	0.22	98	13	10	111	43
TR10083838-E648394	11	<10	107	<5	14	0.23	108	<10	8	183	55
TR10083838-E657168	17	<10	135	<5	19	0.27	183	11	8	304	48
TR10085180-E658322	21	<10	360	<5	25	0.36	198	<10	14	77	66
TR10085180-E648411	11	<10	238	<5	18	0.29	110	<10	9	157	54
TR10085184-E648451	10	<10	170	<5	13	0.22	105	<10	9	192	51
TR10085184-E657513	10	<10	197	<5	11	0.23	107	<10	10	59	32
Sample23	7	11	212	<5	27	0.15	289	173	8	9916	52
TR10085184-E657511	5	<10	151	<5	<10	0.10	54	<10	12	43	15
TR10085184-E657232	12	<10	69	<5	<10	0.18	126	11	8	259	33
TR10085184-E657233	9	<10	162	<5	14	0.17	79	49	8	2606	41
TR10085184-E648472	10	<10	377	<5	13	0.25	99	<10	13	113	42
TR10085185-E658409	17	<10	721	<5	12	0.14	195	<10	11	96	25
TR10085185-E658378	18	<10	466	<5	13	0.16	192	11	12	73	36
TR10085186-E658442	16	<10	180	<5	16	0.17	135	103		6418	26
TR10085186-E655148	8	<10	47	< 5	<10	0.14	86	13	6	510	39
TR10085186-E655153	11	<10	88	< 5	16	0.27	116	<10	7	195	55
TR10085186-E655125	7	<10	42	<5	<10	0.13	64	<10	6	193	35
TR10085186-E655113	4	<10	24	<5	<10	0.09	51	14	4	509	23
TR10085187-E655225	12	<10	37	7	14	0.17	115	<10	10	145	30
TR10085187-E658505	13	<10	138	<5	13	0.20	144	<10	7	87	47
TR10085187-E658501	13	<10	283	<5	14	0.17	134	11	11	345	45
TR10085187-E658504	12	<10	174	<5	12	0.18	141	<10	8	108	38
TR10085187-E657227	13	<10	127	<5	14	0.27	135	10	9	189	41
TR10085187-E657224	12	<10	84	<5	18	0.30	137	19	- 8	317	48
TR10086290-E657539	9	<10	158	<5	14	0.24	94	<10	7	90	39
TR10086290-E657525	6	<10	181	<5	<10	0.08	55	<10	25	33	12
Sample24	14	27	324	9	28	0.40	172	68	23	3638	86

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention: Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga	K %	La	Li	Mg %	Mn	Mo	Na %	Nb	Ni	Pb	S %	Sb
Turno or	PPIII	/0	ppm	ppin	PPIII	70	PPIII	PPIII	ppin	ppin	70	ppm	70	phin	ppm	70	ppin	ppm	70	ppm	ppm	ppm	/0	phin
TR10086290-E657528	40	5.05	302	2288	<5	6.69	<1	4	25	27	2.27	19	4.22	11	16	0.30	2044	3	0.07	<10	5	33	1.72	26
TR10086290-E657579	15	8.13	296	3363	<5	3.19	2	6	25	24	3.85	42	6.18	12	28	0.92	1946	3	0.21	<10	7	175	2.30	20
TR10086293-E655255	13	7.96	303	985	<5	0.91	1	16	55	99	4.69	66	3.22	14	34	1.75	2000	2	0.13	<10	41	98	2.73	34
TR10086293-E658512	2	10.19	571	3140	<5	2.91	<1	6	23	32	3.59	42	4.20	19	22	0.70	1379	2	0.49	<10	5	22	2.48	23
TR10086293-E658518	19	9.86	804	2536	<5	0.74	<1	2	27	287	4.08	36	4.18	17	11	0.31	269	2	0.35	10	5	87	3.32	50
TR10086294-E657243	3	9.10	167	12 71	<5	3.00	1	21	34	56	5.52	58	3.97	25	24	1.25	1762	25	0.15	<10	12	53	3.41	12
TR10086295-E657625	3	7.07	209	2355	<5	3.75	1	6	20	2	2.93	29	4.70	11	12	0.45	1219	2	0.11	<10	4	65	2.42	25
TR10086295-E658562	4	10.95	533	4086	<5	0.79	2	6	25	39	2.64	30	4,63	18	12	0.37	386	<2	0.39	<10	8	116	2.06	21
TR10086295-E657609	12	7.48	359	2548	<5	3.43	4	8	23	9	3.28	29	5.33	<10	9	0.38	1279	з	0.16	<10	7	180	2.82	16
TR10086295-E657598	11	3.80	255	1632	5	9.58	2	3	28	26	1.79	15	2.82	<10	9	0.22	3245	2	0.04	<10	4	93	1.69	25
TR10086295-E658557	4	8.90	783	2414	<5	0.59	13	11	26	49	4.01	33	3.78	19	7	0.25	218	2	0.29	10	8	121	3.17	28
TR10086295-E658548	4	9.29	1541	2547	<5	0.82	<1	21	25	60	3.89	32	4.06	17	6	0.38	337	<2	0.31	<10	12	97	3.07	38
TR10086295-E657614	8	7.26	238	1278	5	3.57	2	10	20	24	3.27	29	4.36	11	15	0.56	1243	3	0.14	<10	7	62	2.67	23
TR10086296-E648677	6	8.30	157	921	<5	3.58	1	19	57	79	4.57	61	3.64	17	39	1.53	1955	<2	0.15	<10	39	139	3.03	21
TR10086296-E658584	<1	14.03	272	1163	7	0.51	<1	32	92	147	0.98	55	5.84	19	8	0.27	176	9	0.72	<10	42	<2	0.72	14
TR10086296-E655308	8	5.70	274	872	5	2.01	5	11	49	68	3.73	29	2.53	<10	12	0.48	1214	13	0.10	<10	26	265	2.70	20
TR10086296-E655304	14	9.04	316	1298	6	4.20	73	14	57	141	4.22	29	4.16	10	10	0.48	3436	38	0.17	<10	43	3187	3.99	26
TR10086296-E648658	74	3.22	97	605	7	11.39	2	4	25	78	1.91	13	1.71	<10	8	0.23	3759	2	0.04	<10	4	98	1.85	89
TR10086296-E648662	9	5.07	305	936	6	8.33	1	7	35	23	2.86	22	2.62	12	9	0.37	3189	4	0.06	<10	13	25	2.63	34
SAMPLE25	>200	4.88	714	2582	9	1.02	58	14	52	1814	7.80	20	1.96	<10	26	0.65	3681	1134	1.11	<10	32 >	10000	2.47	1421
TR10086296-E648627	21	1.95	104	273	7	8.71	7	2	41	71	1.62	9	1.07	<10	9	0 15	3027	5	0.03	<10	7	274	1 41	36
TR10086296-E655299	25	5.00	362	1028	<5	0.38	2	11	52	126	2.74	22	2.41	<10	13	0.33	375	7	0.15	<10	21	194	1 84	40
TR10086297-E658593	<1	11.71	486	1482	<5	0.34	<1	17	69	37	2.05	36	4.80	12	7	0.21	127	<2	0.63	<10	20	149	1 72	74
TR10086297-E655358	1	8.83	869	1841	<5	4,71	2	12	21	25	5.01	44	3.48	12	19	0.92	1193	3	0.21	<10	8	50	3.83	19
TR10086297-E655333	4	6.91	418	1701	<5	4.17	3	14	27	48	4.44	33	3.02	11	15	0.67	1147	3	0.10	<10	9	53	3.45	16
TR10087098-E657634	16	6.96	292	3235	7	4.71	4	6	22	25	2.64	26	5.51	12	16	0.39	1430	<2	0.12	<10	6	114	1.74	16
TR10087099-E657687	3	4.51	148	1981	5	2.27	<1	3	27	7	2.14	17	3.79	<10	10	0.27	776	2	0.10	<10	7	23	1.42	16
TR10087099-E655411	3	7.28	465	2871	6	11.65	2	12	21	56	5.30	43	2.87	12	29	0.95	2563	2	0.16	<10	8	20	4.00	15
TR10088560-E657764	<1	8.94	350	3164	5	3.35	<1	9	22	12	3.90	50	4.03	14	23	1.20	1480	2	2.21	<10	6	34	1.58	15
TR10088562-E648783	<1	8.05	172	1451	7	2.48	<1	8	48	17	2.45	34	3.95	10	13	0.67	703	<2	0.31	<10	13	18	1.53	13

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc	Sn	Sr	Ta	Te	Ti %	V	W	Y	Zn	Zr
Number	ppin	ppin	ppin	ppin	ppm	70	ррш	ppin	ppin	phill	ppm
TR10086290-E657528	6	<10	129	<5	10	0.16	63	<10	17	45	19
TR10086290-E657579	9	<10	154	<5	13	0.20	94	13	13	298	30
TR10086293-E655255	12	<10	41	< 5	15	0.19	120	<10	9	123	37
TR10086293-E658512	13	<10	290	<5	10	0.17	135	<10	11	110	46
TR10086293-E658518	10	<10	254	<5	13	0.15	145	<10	5	126	39
TR10086294-F657243	70	<10	57	< 5	19	0.26	203	<10	12	171	72
TR10086295-E657625	-0	<10	118	<5	11	0.17	84	<10	11	86	38
TR10086295-E658562	17	<10	221	< 5	<10	0.16	115	<10	6	139	51
TR10086295-E657609	9	<10	118	<5	13	0.20	90	17	7	589	30
TR10086295-E657598	4	<10	193	<5	<10	0.09	46	<10	7	234	18
TR10086295-E658557	12	<10	148	< 5	13	0.17	146	22	5	1026	42
TR10086295-E658548	12	<10	166	<5	12	0.20	134	15	9	315	43
TR10086295-E657614	9	<10	107	<5	12	0.19	87	14	7	260	36
TR10086296-E648677	13	<10	86	< 5	12	0.19	116	<10	13	77	29
TR10086296-E658584	31	<10	771	<5	13	0.28	459	13	4	34	68
TR10086296-E655308	9	<10	72	<5	10	0.11	79	13	5	598	23
TR10086296-E655304	15	11	165	< 5	12	0.16	141	125	8	7192	48
TR10086296-E648658	4	<10	211	5	<10	0.06	40	14	11	316	14
TR10086296-E648662	8	<10	157	<5	11	0.11	78	<10	13	71	21
SAMPLE25	7	11	204	< 5	26	0.16	279	169	8	9210	58
TR10086296-E648627	2	<10	149	5	<10	0.04	74	17	15	861	5
TR10086296-E655299	- 8	<10	31	<5	<10	0.04	73	< 10	6	303	30
TR10086297-E658593	18	<10	588	<5	<10	0.19	278	14	3	332	47
TR10086297-E655358	18	<10	208	<5	14	0.16	184	<10	7	106	31
TR10086297-E655333	15	<10	217	<5	15	0.19	148	<10	8	181	36
TR10087098-E657634	8	<10	151	<5	13	0.20	79	24	11	591	37
TR10087099-E657687	5	<10	92	<5	<10	0.11	47	<10	6	47	22
TR10087099-E655411	22	<10	628	<5	15	0.15	222	<10	13	90	23
TR10088560-E657764	10	<10	375	<5	11	0.27	103	<10	12	122	45
TR10088562-E648783	8	<10	105	<5	<10	0.15	89	<10	7	21	31

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	κ	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Pb	S	Sb
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10088562-E655482	4	10.70	633	2996	<5	0.55	<1	3	27	49	5.09	37	4.38	13	10	0.38	399	<2	0.45	12	6	77	3.73	23
TR10088562-E655483	4	10.91	952	2415	<5	0.40	<1	3	26	35	5.16	37	4.57	19	9	0.34	226	<2	0.49	12	5	77	4.05	24
TR10088563-E648733	<1	7.87	171	1101	<5	2.88	3	8	43	14	2.77	51	3.08	<10	16	0.93	1014	3	1.07	<10	12	38	1.38	17
TR10088563-E648757	1	9.25	239	1486	<5	3.44	1	13	53	70	3.17	69	4.07	11	30	1.43	1114	2	0.16	<10	23	53	1.30	21
TR10088563-E648754	2	8.48	352	1365	<5	3.25	1	16	52	107	4.24	61	3.88	16	27	1.34	1179	2	0.15	<10	20	26	2.51	24
TR10088563-E648752	1	5.71	127	909	<5	2.22	1	9	41	11	2.99	29	2.75	<10	9	0.44	618	2	0.08	11	15	28	2.28	18
TR10088566-E648771	6	6.33	277	997	<5	4.86	1	5	38	23	2.17	27	3.23	10	7	0.43	1371	2	0.11	13	11	33	1.71	24
TR10088569-E644036	2	8.79	593	1255	<5	2.97	2	16	60	18	5.61	61	3.74	10	24	0.87	3229	2	0.15	<10	20	27	3.65	25
TR10088569-E644033	3	7.78	1018	1052	<5	1.45	5	15	59	19	8.98	64	3.14	11	29	0.99	4685	24	0.14	<10	32	49	5.97	29
Sample26	40	8.45	526	1340	<5	0.48	34	13	30	102	7.30	43	4.13	33	22	0.38	1286	5	0.21	<10	11	3638	0.45	86
TR10089520-E657792	2	8.06	221	2603	<5	6.18	5	9	20	23	3.57	43	4.79	15	14	0.71	1739	4	0.44	11	6	123	2.31	25
TR10089520~E657822	1	9.19	128	3095	<5	3.80	3	11	42	16	4.51	73	5.35	13	30	1.46	2024	5	0.22	<10	10	175	2.79	29
TR10089520-E657814	1	9.71	165	2288	<5	2.94	1	11	21	2	4.01	70	4.29	15	27	1.44	1466	3	1.33	<10	6	83	2.11	23
TR10089520-E657827	11	1.35	69	419	<5	4.86	2	1	29	16	1.28	7	0.85	<10	6	0.09	1572	2	0.03	17	3	386	0.75	24
TR10089522-E648816	2	5.55	120	745	<5	6.93	<1	14	63	101	2.83	50	2.35	10	22	1.04	1,702	2	0.34	<10	58	7	2.02	21
TR10089522-E644013	4	7.84	495	1213	<5	0.92	1	10	31	25	3.56	36	3.48	15	10	0.50	738	2	0.18	10	15	54	2.66	22
TR10089522-E644009	11	6.79	466	1498	<5	0.95	2	10	40	60	4.23	33	3.02	11	8	0.44	495	3	0.17	<10	17	44	3.25	26
TR10089522-E648829	1	9.53	458	1386	<5	2.84	1	16	65	91	3.95	83	3.68	15	47	2.00	1141	2	0.15	<10	29	15	1.64	24
TR10089522-E644008	32	0.85	116	180	<5	1.75	2	1	45	95	1.23	6	0.39	<10	7	0.08	685	3	0.03	16	3	52	0.58	43
TR10089522-E655496	24	9.42	576	573	<5	0.49	2	6	23	58	5.50	38	4.01	16	6	0.34	197	4	0.29	<10	4	55	4.61	58
TR10089522-E648824	2	9.05	1063	1241	<5	2.87	1	19	60	55	4.03	77	3.76	12	39	1.71	1023	2	0.15	<10	22	21	2.08	29
TR10089522-E648817	2	6.04	121	795	<5	5.75	1	24	75	61	3.69	66	2.51	14	30	1.50	1203	3	0.16	<10	89	<2	2.38	24
TR10089522-E648845	4	8.24	1692	1178	<5	2.37	2	19	60	112	5.78	78	3.58	17	37	1.69	1131	2	0.19	<10	27	30	3.78	36
TR10089522-E644028	4	7.88	890	1136	< 5	2.67	2	16	34	28	4.92	45	3.42	10	11	0.55	3758	8	0.13	<10	25	56	4.10	29
TR10089528-E657961	2	6.71	133	2905	<5	5.38	1	5	21	1	3.39	47	4.21	11	16	0.78	1651	2	0.22	13	4	13	2.47	18
TR10089528-E657969	1	7.86	72	3255	6	3.97	1	6	27	6	3.47	56	4.37	13	22	0.99	1432	4	0.94	12	9	28	2.19	17
TR10089528-E657962	9	4.90	105	1899	<5	7.58	2	З	21	6	2.27	33	3.00	10	12	0.50	1900	3	0.15	16	З	88	1.68	17
TR10089841-E657902	1	8.57	270	2401	5	2.90	1	9	21	16	3.43	49	4.71	12	17	0.82	1191	2	0.29	12	5	62	2.13	22
TR10089841-E657901	3	8.03	238	2828	7	3.83	1	7	21	12	3.35	54	4.68	11	20	0.90	1622	2	0.34	12	4	38	1.85	20

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10Sample type: PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Te	Ti	v	W	Y	Zn	Zr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
TR10088562-E655482	11	<10	125	<5	11	0.19	127	<10	4	291	42
TR10088562-E655483	10	<10	120	<5	<10	0.20	135	10	5	200	43
TR10088563-E648733	7	<10	178	<5	28	0.15	92	<10	6	103	28
TR10088563-E648757	11	<10	149	<5	38	0.22	111	<10	9	41	48
TR10088563-E648754	10	<10	139	<5	46	0.21	114	<10	7	29	29
TR10088563-E648752	7	<10	85	<5	31	0.14	74	<10	5	45	20
TR10088566-E648771	5	<10	127	<5	22	0.11	68	<10	11	119	17
TR10088569-E644036	14	<10	168	<5	56	0.25	163	<10	8	82	25
TR10088569-E644033	14	12	103	16	84	0.23	163	<10	9	107	30
Sample26	14	29	334	11	81	0.41	165	61	22	3894	80
TR10089520-E657792	10	<10	233	<5	45	0.25	95	15	18	643	37
TR10089520-E657822	12	<10	150	<5	55	0.29	119	11	16	259	37
TR10089520-E657814	11	<10	172	<5	50	0.25	111	13	15	133	40
TR10089520-E657827	2	<10	96	<5	16	0.03	14	<10	10	388	6
TR10089522-E648816	10	<10	202	<5	41	0.17	94	<10	12	15	26
TR10089522-E644013	13	<10	72	<5	41	0.18	70	<10	9	180	27
TR10089522-E644009	12	<10	63	<5	43	0.18	76	<10	9	155	30
TR10089522-E648829	14	<10	86	<5	49	0.27	142	<10	11	54	27
TR10089522-E644008	1	<10	67	<5	<10	0.02	10	<10	6	212	3
TR10089522-E655496	11	<10	146	<5	57	0.18	179	<10	5	185	28
TR10089522-E648824	14	<10	85	<5	50	0.25	138	<10	11	71	33
TR10089522-E648817	12	<10	146	<5	44	0.21	110	<10	14	15	35
TR10089522-E648845	13	<10	74	<5	60	0.22	127	<10	8	41	26
TR10089522-E644028	11	<10	142	<5	52	0.17	120	<10	9	85	29
TR10089528-E657961	8	<10	175	<5	39	0.18	78	<10	15	70	38
TR10089528-E657969	9	<10	191	<5	46	0.22	88	<10	14	103	43
TR10089528-E657962	5	<10	270	<5	28	0.12	56	<10	13	226	28
TR10089841-E657902	10	<10	107	<5	42	0.21	97	<10	9	132	53
TR10089841-E657901	9	<10	139	<5	47	0.21	92	<10	9	71	46

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed: _

Assayers Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR

Date : Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	К %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	Pb ppm	S %	Sb ppm
																				•••		•••		
Duplicates:																								
TR10054500-G0569068	1	8.86	181	3289	6	1.23	<1	9	14	14	3.92	47	7.32	14	27	1.02	1146	4	0.61	<10	10	29	2.25	26
TR10054500-G0569056	11	6.04	796	2 29 9	<5	4.46	1	6	17	66	3.07	30	4.79	13	13	0.43	1383	4	0.06	<10	8	79	2.64	55
SAMPLE 10	42	8.34	483	1266	<5	0.46	30	11	24	117	7.05	33	4.14	33	22	0.36	1193	6	0.29	<10	10	3615	0.46	74
TR10059989-G0569271	2	8.64	223	2034	<5	3.83	1	10	10	22	3.82	52	4.24	13	23	1.21	1807	9	1.34	<10	8	37	1.08	24
TR10070821-G0569409	1	8.93	191	1642	<5	3.52	1	9	11	5	3.58	53	4.68	14	18	0.91	1073	8	0.13	<10	8	70	1.90	24
TR10070822-G0569381	21	6.60	489	2460	<5	2.52	2	5	15	36	3,51	32	4.96	22	12	0.50	956	5	0.10	<10	6	51	2.67	49
TR10070823-E640601	3	10.10	197	1020	<5	0.98	2	22	14	49	6.13	38	6.99	18	6	0.57	356	5	0.26	<10	11	90	5.51	27
TR10070824-E640748	1	7.04	214	840	7	4.76	<1	6	20	22	2.46	42	2,39	10	10	0.78	1603	6	1.56	<10	14	67	1.23	18
TR10070827-E640814	3	7.82	. 77	2535	<5	2.94	8	16	31	86	4.23	59	6.36	15	<1	1.27	2324	16	0.17	<10	28	40	1.47	17
TR10070827-E640783	4	7.75	172	1986	<5	1.60	z	9	27	65	3.67	52	7.07	13	16	0.90	1612	33	0.15	<10	13	79	1.91	23
TR10073191-E640876	2	6.81	158	849	<5	1.12	<1	10	17	15	2.73	29	3.81	12	11	0.40	424	2	0.18	<10	13	33	1.83	17
TR10073192-E639952	2	7.65	2873	884	6	4.27	<1	7	41	8	2.55	41	3.61	10	15	0.66	1856	3	0.49	<10	14	25	1.82	46
TR10073193-E640894	2	7.64	114	1590	<5	1.89	1	7	23	22	2.43	32	4.69	<10	19	0.70	1140	38	0.54	<10	14	29	1.42	11
TR10073195-E653563	5	6.27	471	1158	<5	5.43	1	14	32	77	3.27	32	3.06	12	16	0.75	1761	<2	0.55	<10	21	14	2.93	18
TR10074243-E641096	<1	8.35	350	1617	<5	4.61	<1	12	12	18	3.68	51	3.59	11	16	1.43	1435	~7	0 13	<10	7	4	0.64	10
TR10074243-G0570984	12	4.29	207	1760	<5	3.15	1	4	18	18	2.60	22	2.67	<10	4	0.30	926	6	0.10	<10	ģ	52	7 79	21
SAMPLE15	>200	4.73	648	1844	<5	0.94	51	14	34	1834	7.34	17	1.91	<10	20	0.62	3409	1176	1 07	<10	29.5	10000	2 41	1288
TR10077093-E654201	<1	8.81	142	2020	<5	3.79	1	13	13	22	3.70	47	3.75	14	22	1.14	1064	3	0.90	<10	10	19	1 75	10
TR10077094-E656017	6	8.66	224	1711	<5	2.95	1	21	17	59	4.79	46	5.33	22	22	0.92	1361	<2	1.26	10	8	10	3.92	13
TR10077097-E654324	4	7.69	694	3000	<5	4.47	1	8	13	54	3.11	42	5 26	14	23	0.91	2061	~7	0 17	<10	10	22	1 96	77
TR10079191-E656671	23	7.81	88	2039	<5	0.41	1	11	13	26	4.11	35	4.87	18	16	0.31	228	12	0.12	12	5	102	3 70	10
TR10079193-E655513	1	7.79	111	934	< 5	4.78	1	15	35	53	3.46	53	3.18	17	31	1.28	1879	<2	0.53	<10	19	~2	1.84	10
TR10079199-E647982	8	5.55	129	1059	<5	1.78	2	9	29	29	3.25	21	3.31	<10	5	0.20	574	21	0.86	<10	16	35	2 75	15
TR10079354-E656723	81	2.40	79	643	<5	0.36	16	4	26	66	1,97	13	1.24	<10	4	0.12	174	9	0.03	<10	5	5181	1.42	62
TR10079354-E656736	10	7.97	92	1438	<5	1.77	1	12	20	36	4.33	37	3.66	14	14	0.59	978	9	0.23	11	7	91	3 93	15
TR10079359-E656838	75	4.48	211	1886	<5	0.28	12	7	31	121	2,85	10	4.94	<10	6	0.11	107	12	0.22	<10	, 7	173	2.36	65
TR10080851-E660536	2	8.08	2278	1063	<5	0.56	<1	16	12	21	3.67	37	3.90	17	7	0.42	221	<2	0.33	13	5	9	2.60	52
TR10080852-E654725	3	8.75	1064	2628	< 5	3.32	<1	11	16	33	3.94	53	3.78	11	20	1.29	1254	<2	1.68	<10	9	6	1.63	19
TR10080855-E648075	1	8.65	400	1393	<5	2.39	<1	16	14	58	4,29	36	4.06	17	11	0.57	746	<2	0.20	11	5	19	2.72	17

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1162PR : Aug-19-10 Date Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES	Report
---------	--------

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Te	Ti	v	W	Y	Zn	Ζr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Duplicates:											
TR10054500-G0569068	11	<10	175	<5	27	0.29	108	<10	10	89	46
TR10054500-G0569056	7	<10	152	<5	23	0.17	74	<10	17	150	24
SAMPLE 10	13	26	360	6	43	0.35	166	59	23	3464	84
TR10059989-G0569271	10	<10	247	16	31	0.26	101	13	9	187	31
TR10070821-G0569409	11	<10	129	9	33	0.21	104	<10	11	135	38
TR10070822-G0569381	8	<10	86	<5	36	0.19	80	15	13	153	29
TR10070823-E640601	17	<10	150	<5	32	0.37	199	<10	22	151	53
TR10070824-E640748	5	<10	369	<5	<10	0.12	69	<10	9	79	21
TR10070827-E640814	13	<10	296	<5	22	0.27	107	11	12	957	47
TR10070827-E640783	11	<10	173	7	36	0.18	118	18	9	255	39
TR10073191-E640876	10	<10	112	<5	30	0.15	98	<10	8	27	40
TR10073192-E639952	7	<10	195	<5	26	0.13	79	11	6	20	24
TR10073193-E640894	6	<10	99	<5	<10	0.14	77	<10	5	104	16
TR10073195-E653563	10	<10	143	<5	13	0.19	103	<10	10	59	24
TR10074243-E641096	12	<10	124	<5	15	0.25	126	10	12	65 ⁻	56
TR10074243-G0570984	6	<10	198	5	<10	0.11	61	<10	11	28	21
SAMPLE15	6	<10	204	<5	23	0.16	267	151	8	8410	57
TR10077093-E654201	12	<10	168	<5	18	0.31	113	<10	13	66	52
TR10077094-E656017	19	<10	198	<5	21	0.34	200	<10	13	52	89
TR10077097-E654324	9	<10	148	<5	10	0.23	93	<10	13	120	44
TR10079191-E656671	14	<10	88	<5	16	0.27	130	<10	9	70	64
TR10079193-E655513	11	<10	217	<5	14	0.30	120	<10	10	72	46
TR10079199-E647982	9	<10	349	<5	12	0.16	67	<10	7	131	19
TR10079354-E656723	4	<10	17	5	<10	0.09	43	33	4	1614	20
TR10079354-E656736	13	<10	42	<5	17	0.26	126	<10	8	112	62
TR10079359-E656838	7	<10	90	<5	11	0.15	57	30	4	1767	39
TR10080851-E660536	14	<10	40	<5	13	0.30	214	<10	12	63	68
TR10080852-E654725	13	<10	222	<5	15	0.27	126	<10	14	65	63
TR10080855-E648075	16	<10	77	< 5	16	0.29	148	<10	9	72	58

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag	AI %	As	Ba	Bi	Ca %	Cd ppm	Co	Cr	Cu	Fe %	Ga	K %	La	Li	Mg %	Mn	Mo	Na %	Nb	Ni	Pb	S %	Sb
	PP···	70	PP	PP	PP	75	PP	ppm	PP	PPIII	70	Ppm	70	PPIII	Ppm	70	PPIII	PPIII	70	ppm	ppin	PPIII	70	ppin
TR10080857-E656881	2	8.16	126	1605	<5	1.67	1	10	19	32	3.19	43	4.82	12	13	0.84	1299	5	0.19	<10	8	96	1.18	17
TR10081783-E660628	5	9.05	785	1033	<5	1.46	<1	16	21	54	4.77	41	4.42	11	2	0.58	590	<2	0.22	12	8	8	3.85	33
TR10081784-E654824	1	9.15	262	3049	<5	3.28	<1	11	15	4	4.08	51	3.65	11	19	1.31	1146	<2	2.01	<10	8	15	1.06	14
TR10083782-E657008	2	9.91	486	1464	<5	2.28	<1	11	16	26	3.92	33	4.94	21	4	0.36	731	<2	2.44	14	7	11	3.37	20
TR10083783-E658123	5	9.02	189	1930	5	2.53	<1	14	18	82	3.44	39	4.29	23	22	0.56	727	2	0.24	10	8	25	2.30	16
TR10083789-E657116	6	7.93	380	828	<5	0.71	1	22	27	85	6.36	45	7.34	17	22	0.93	815	6	0.47	11	11	47	4.60	23
TR10083836-E655038	7	6.20	800	1932	7	12.10	<1	8	13	10	2.58	33	3.02	10	9	0.63	4113	<2	0.10	<10	7	8	2.02	20
TR10083836-E658228	5	9.93	633	3041	<5	2.68	<1	7	26	54	4.27	43	3.98	23	21	0.65	954	<2	0.30	<10	8	23	3.27	22
TR10083838-E657168	9	7.21	538	1017	<5	0.78	4	22	27	116	5.98	43	6.32	16	12	0.77	552	9	0.17	10	10	50	4.40	27
TR10085185-E658409	1	8.22	226	1925	<5	7.19	1	10	18	41	4.37	42	3.14	13	31	0.87	2256	<2	1.77	<10	6	27	1.41	12
TR10085186-E655148	35	7.43	252	1452	<5	0.34	5	9	25	571	3.64	31	3.57	11	12	0.48	251	5	0.18	<10	7	257	2.93	86
TR10085187-E657224	116	8.55	416	2625	<5	0.53	4	14	33	219	4.06	28	6.35	11	9	0.39	197	10	0.23	10	8	186	3.31	166
TR10086295-E657625	3	7.12	217	2297	<5	3.93	1	6	21	3	3.04	32	4.78	11	12	0.46	1235	<2	0.11	<10	6	67	2.52	27
TR10086295-E657598	12	3.86	258	1634	11	9.61	1	2	25	27	1.80	16	2.93	<10	9	0.22	3308	6	0.04	<10	5	106	1.65	26
TR10086296-E648662	8	4.85	298	901	6	7.96	1	7	35	24	2.78	21	2.52	11	9	0.36	3059	3	0.06	<10	12	24	2.39	33
TR10088560-E657764	<1	9.20	353	3155	5	3.23	1	9	25	13	3.79	53	4.08	14	25	1.19	1475	2	2.24	<10	7	38	1.56	15
TR10088563-E648733	<1	7.95	166	1110	<5	2.88	3	8	35	14	2.79	47	3.13	<10	16	0.94	1027	3	1.07	<10	13	38	1.42	18
TR10089520-E657822	2	9.13	125	2618	<5	3.74	3	10	39	18	4.42	69	5.26	13	29	1.44	1921	З	0.25	<10	8	158	2.61	26
TR10089522-E648817	2	6.13	120	813	<5	5.58	1	23	74	62	3.58	64	2.52	15	31	1.49	1179	3	0.17	<10	90	<2	2.41	21
TR10089528~E657961	2	7.01	136	2901	<5	5.46	1	5	24	<1	3.17	48	4.12	11	16	0.80	1592	2	0.30	14	4	15	2.45	16
Standards:																								
Blank	<1	< 0.01	<10	<10	<5	< 0.01	<1	<1	3	1	< 0.01	1	< 0.01	<10	1	< 0.01	<5	<2	0.01	<10	<7	<7	<0.01	<5
CH-4	2	8.13	<10	469	<5	1.80	2	28	75	1970	5.03	60	1.86	16	13	1.40	434	3	3.24	<10	53	21	0.61	7

Signed: ____

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1162PRDate: Aug-19-10

Sample type : PULP

Silver Standard Resources

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Sc	Sn	Sr	Та	Те	Ti	v	w	Y	Zn	Zr
Number	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	pp m	ppm	ppm
TR10080857-E656881	11	<10	146	<5	13	0.20	119	<10	9	205	38
TR10081783-E660628	18	<10	52	<5	14	0.24	183	<10	12	63	51
TR10081784-E654824	13	<10	294	<5	16	0.28	129	<10	13	74	60
TR10083782-E657008	13	<10	214	<5	14	0.25	154	<10	8	65	58
TR10083783-E658123	19	<10	126	<5	21	0.37	185	<10	14	141	87
TR10083789-E657116	18	<10	153	11	27	0.33	194	<10	11	130	66
TR10083836-E655038	9	<10	244	<5	16	0.21	92	<10	11	16	44
TR10083836-E658228	12	<10	239	<5	13	0.16	144	<10	9	157	39
TR10083838-E657168	17	12	140	6	20	0.30	192	<10	8	311	50
TR10085185-E658409	17	<10	754	<5	15	0.20	205	<10	12	98	34
TR10085186-E655148	8	<10	47	<5	10	0.20	87	10	6	513	44
TR10085187-E657224	13	<10	89	<5	19	0.30	146	19	9	360	48
TR10086295-E657625	8	<10	120	<5	11	0.18	83	<10	11	91	38
TR10086295-E657598	4	<10	195	<5	<10	0.10	46	<10	7	240	18
TR10086296-E648662	7	<10	149	<5	<10	0.12	74	<10	12	85	22
TR10088560-E657764	11	<10	380	<5	14	0.27	103	<10	12	127	46
TR10088563-E648733	7	<10	178	<5	27	0.16	92	<10	5	107	23
TR10089520-E657822	12	<10	143	<5	51	0.26	113	<10	16	256	36
TR10089522-E648817	13	<10	147	<5	48	0.20	114	<10	14	16	30
TR10089528-E657961	8	<10	170	<5	40	0.20	77	<10	15	79	79
Standards:											
Blank	<1	<10	<1	<5	<10	< 0.01	<1	<10	<1	1	<1
CH-4	13	<10	195	<5	18	0.28	98	10	10	191	127

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA1

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Cu	РЬ	Zn	
Name	g/tonne	g/tonne	%	%	%	
TR10054503-E663677	0.09					· - · ·
TR10054503-E663691	0.17					
TR10054503-E663649	0.33					
TR10054503-E663654	0.43					
TR10054504-E663725	0.17					
TR10073198~E663525	0.05				•••• • • • • • • • •	· · · · · · · · · · · · · · · · ·
TR10073198-E663542	0.77					
TR10073198-E663572	1.31					
TR10073198-E663574	3,90					
TR10074240-E663616	0.49					
TR10074240-E663575	0.37					
TR10074240-E663596	0.53					
TR10076122-E666068	0.05					
TR10076124-E663941	0.01					
TR10076124-E663935	0.01					
TR10076125-E668501	0.27					·····
TR10076125-E668528	0.45					
TR10076125-E668515	0.55					
TR10076125-E668517	0.79					
CDN-ME-4 Sample 1	2.61	383.6	1.72	3.92	1.02	
TR10076125-E668519	0.96					
TR10076129-E666334	0.01					
*DUP TR10054503-E663677	0.08					
*DUP TR10074240-E663616	0.37					
*DUP CDN-ME-4 Sample 1	2.59					
*0211	2.22					
*ME-3		270.2	0.185	2.76	0.89	
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01	

Au 30g F.A. AA finish.Ag,Cu,Pb,Zn 4 Acid Digest AA finish.

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA2

Assayers Canada 8282 Sherbrooke St.

Tel: (604) 327-3436

Fax: (604) 327-3423

Vancouver, B.C. V5X 4R6

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au
Name	g/tonne
TR10076129-E666348	0.14
TR10076129-E668562	0.67
TR10077090-E668652	1.27
TR10077091-E664128	<0.01
TR10077091-E668697	0.20
TR10077091-E664083	0.26
TR10077190-E663977	0.01
TR10079197-E668769	0.17
TR10079197-E664231	0.18
TR10079197-E664204	0.17
TR10079197-E664212	2.06
TR10079350-E664296	1.65
TR10079355-E666592	0.19
TR10079355-E666551	0.28
TR10079355-E66663	0.31
TR10079355-E666658	0.29
TR10079355-E666652	0.45
CDN-ME-12 Sample 2	0.34
TR10079356-E666712	0.22
TR10079357-E666733	0.21
TR10089359-E666781	0.20
TR10089359-E666788	0.29
*DUP TR10076129-E666348	0.18
*DUP TR10079197-E664204	0.23
*DUP_TR10079357-E666733	0.20
*0211	2.26
*BLANK	<0.01

Au 30g F.A. AA finish

Aug-18-10

.

Certified by___

<u>n/</u>

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA3

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Cu	Pb	Zn		
Name	g/tonne	g/tonne	%	%	%		
TR10081780-E664487 TR10081780-E664438	0.18 0.34		· ·				
TR10081780-E664473 TR10081780-E664472	0.71 0.45						
TR10081/80-E664491	0.51						-
TR10081780-E668941 TR10081780-E664496 TR10081781-E664549	0.07 0.51 0.25						
TR10081781-E664553 TR10081781-E664527	0.27 0.40						
TR10081781-E664532 TR10081785-E664623 TR10081784-E664688 TR10081784-E669042 TR10081784-E664665	0.63 1.29 0.21 0.24 0.28					-	
CDN-ME-4 Sample 3 TR10081784-E664672 TR10081784-E669051 TR10081784-E664712 TR10081784-E664692	2.88 0.39 0.52 0.56 0.74	381.1	1.69	3.95	1.05		
TR10081785-E664656 TR10081785-E669012 *DUP TR10081780-E664487 *DUP TR10081781-E664527 *DUP TR10081784-E664692	0.31 0.44 0.23 0.42 0.70						
*0211 *ME-3	2.14	270.2	0.185	2.76	0.89		
*RTANK	<0.01	<0.1	<0.001	<0.01	<0.01		

Au 30g F.A. AA finish.Ag,Cu,Pb,Zn 4 Acid Digest AA finish.

Certified by_

. _ _ _ _

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA4

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

sh-

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample Name	Au g/tonne			
TR10081785-E669001 TR10081785-E664662	0.51 0.80	 		
TR10081785-E668983 TR10083833-E664759	1.13 0.31			
TR10083833-E666965	0.34 0.41	 		
TR10083833-E669096 TR10083833-E669104 TR10083833-E660005	0.45 0.51			
TR10083833-E669095 TR10083833-E666964	0.53	 		
TR10083834-E669122 TR10083834-E669134 TR10083834-E669148	0.26			
CDN-ME-12 Sample 4 TR10083834-E666989	0.36 0.57			
TR10083834-E666995 TR10083834-E667001	0.72 0.77	 		
TR10083834-E669142 TR10083834-E669144 TR10083837-E667041	0.85 0.91 0.32			
TR10083837-E667056 TR10083837-E667024 *DUB_TB10081785-E669001	0.35 0.52	 	· ···· · · ··· ·	
*DUP TR10083833-E666964 *DUP TR10083837-E667041	0.50 0.30			
*0211 *BLANK	2.29 <0.01	 		

Au 30g F.A. AA finish

Certified by__

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA5

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Cu	Pb	Zn	
Name	g/tonne	g/tonne	%	%	%	
TR10083837-E667011	0.58				•	
TR10083837-E667027	0.61					
TR10083837~E667033	0.93					
TR10083837-E667029	1.21					
TR10083837-E667017	1.22					
TR10083837-E667007	1.34					
TR10085182-E669183	0.25					
TR10085182-E669189	0.45					
TR10085182-E669182	0.50					
TR10085182-E667084	0.71					
TR10085183-E667116	0.29					· · · ·
CDN-ME-4 Sample 5	2.55	383.0	1.72	3.97	1.03	
TR10085183-E667113	0.33				+	
TR10085183-E667098	0.44					
TR10085183-E667134	0.47					
TR10085183-E667115	0.48					······································
TR10085183-E667093	0.62					
TR10085183-E667118	0.75					
TR10085188-E667142	0.20					
TR10085188-E664855	0.26					
TR10085188-E667127	0.30					······
TR10085188-E667148	0.39					
*DUP TR10083837-E667011	0.57					
*DUP TR10085182-E667084	0.69					
*DUP TR10085188-E664855	0.26					
*0211	2.26					
*ME-3		270.2	0.185	2.76	0.89	
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01	

Au 30g F.A. AA finish.Ag,Cu,Pb,Zn 4 Acid Digest AA finish.

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

0V-1182-PA6

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

M-

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au
Name	g/tonne
TR10085188-E667139	0.40
TR10085188-E667145	0.71
TR10085188-E667147	0.79
TR10086299-E665023	0.36
TR10086299-E667231	0.36
TR10086299-E667248	0.40
TR10086299-E667203	0.41
TR10086299-E667208	0.48
TR10086299-E667204	0.60
CDN-ME-12 Sample 6	0.37
TR10087091-E667271	0.30
TR10087091-E665138	0.46
TR10087091-E665147	0.42
TR10087091-E667273	0.45
TR10087091-E665143	0.47
TR10087091-E665131	0.51
TR10087091-E665124	0.53
TR10087091-E667269	0.56
TR10087091-E665135	0.58
TR10087091-E665139	0.70
TR10087094-E665165	0.48
TR10087094-E665159	0.61
*DUP TR10085188-E667139	0.58
*DUP CDN-ME-12 Sample 6	0.39
*DUP_TR10087091-E665139	0.89
*0211	2.28
*BLANK	<0.01

Au 30g F.A. AA finish

Certified by_

Quality Assaying for over 35 Years

Assay Certificate

0V-1182-PA7

- - - -

Aug-	18 -	10
· • • • • • •	τŲ	10

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Jul-29-10

Sample	Au	Ag	Cu	Pb	Zn	
Name	g/tonne	g/tonne	%	%	%	
TR10087094-E665173 TR10087094-E665152 TR10087094-E665176 TR10087095-E665191 TR10087095-E665192	0.64 0.51 0.86 0.62 0.68					
TR10087095-E665187 TR10087095-E665188 CDN-ME-4 Sample 7 TR10087096-E665237 TR10087096-E665278	0.63 0.70 2.46 0.40 0.37	385.0	1.72	3.91	1.02	
TR10087096-E665281 TR10087096-E665303 TR10087096-E665231 TR10087096-E665307 TR10087096-E665258	0.44 0.46 0.47 0.47 0.46					
TR10087096-E665272 TR10087096-E665298 TR10087096-E665225 TR10087096-E665239 TR10087096-E665239 TR10087096-E665223	0.49 0.55 0.61 0.67 0.59					
TR10087096-E665228 TR10087096-E665282 *DUP TR10087094-E665173 *DUP TR10087096-E665278 *DUP TR10087096-E665223	0.68 0.69 0.70 0.37 0.61	· · · · · · · · ·	uu			
*0211 *ME-3 *BLANK	2.07 <0.01	270.2 <0.1	0.185 <0.001	2.76 <0.01	0.89 <0.01	

Au 30g F.A. AA finish.Ag,Cu,Pb,Zn 4 Acid Digest AA finish.

Certified by_

Quality Assaying for over 35 Years

··· · -- ·

Assay Certificate

. _ . . .

~

0V-1182-PA8

Company:	Silver Standard Resources
Project:	Snowfields
Attn:	Zoran Lukic

Aug-18-10

We *hereby certify* the following assay of 13 pulp samples submitted Jul-29-10

Sample	Au
Traine	g/tonne
TR10087096-E665245	0.67
TR10087096-E665262	0.97
TR10087096-E665244	0.91
TR10087096-E665252	1.02
TR10087097-E665311	0.45
CDN-ME-12 Sample8	0.36
TR10087097-E665334	0.43
TR10087097-E665333	0.49
TR10087097-E665332	0.50
TR10087097-E665317	0.60
TR10087097-E665341	0.74
TR10087097-E665319	0.78
TR10087097-E665356	0.87
*DUP TR10087096-E665245	0.66
*DUP TR10087097-E665317	0.57
*0211	2.15
*BLANK	<0.01

Au 30g F.A. AA finish

Certified by_

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe	Ga	K %	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Pb	S	Sb
	ppm	70	PPIII	PPIII	PPIII	70	ppin	ppm	ppin	PPIII	70	ppm	70	Phu	ррш	70	ppm	ppm	70	ppm	ppm	ppm	%	ppm
TR10054503-E663677	<1	8.53	23	739	5	2.35	2	20	18	155	4.79	20	1.84	12	13	1.74	1598	5	2,89	<10	5	30	2.55	7
TR10054503-E663691	1	9.42	30	819	12	1.14	1	22	19	912	4.96	26	3.02	11	21	2.21	1505	3	1.33	<10	8	20	3.39	5
TR10054503-E663649	2	8.21	57	176	5	0.21	3	13	16	107	5.75	9	3.84	<10	4	0.30	106	4	0.28	<10	8	92	5.00	15
TR10054503-E663654	1	8.08	24	304	8	0.03	7	12	60	440	5.62	12	3.72	<10	4	0.45	145	13	0.24	<10	19	91	4.88	5
TR10054504-E663725	<1	9.28	<10	446	5	0.89	2	17	16	202	5.22	20	3.40	14	13	1.51	501	5	1.49	<10	9	43	4.20	6
TR10073198-E663525	<1	8.06	21	2011	12	2.10	<1	17	45	96	3.15	16	4.44	16	30	0.98	741	42	3.99	<10	21	53	2.49	7
TR10073198-E663542	5	8.25	54	1777	18	3.77	3	26	49	252	5.63	23	4.05	19	14	1.77	1608	12	2,76	<10	29	41	3.14	7
TR10073198-E663572	42	7.04	601	63	34	0.52	15	8	12	4370	13.25	15	7.12	10	5	0.50	472	5	0.20	<10	3	114	>10.00	61
TR10073198-E663574	73	6.39	931	57	29	0.24	18	8	11	5209	14.27	15	5.24	<10	4	0.38	369	5	0.24	<10	7	160	>10.00	124
TR10074240-E663616	<1	9.28	21	1634	5	0.47	<1	18	59	26	4.35	23	3.77	11	14	1.78	1162	2	2.26	<10	31	70	1.51	8
TR10074240-E663575	6	8.23	108	251	14	1.77	13	16	15	463	5 94	17	7 84	19	٥	0.86	3701	-7	0.60	10	F	220	6.24	-
TR10074240-E663596	7	7.13	88	855	6	0.20	16	10	74	762	4 33	11	5.07	<10	7	0.60	3731	~2	1.00	<10	12	320	2.31	10
TR10076122-E666068	<1	7.42	36	901	6	0.02	1	9	51	21	3.91	9	3 39	<10	5	0.00	59	2	0.36	<10	17	204	3.52	10
TR10076124-E663941	<1	8.33	23	4722	9	5.04	1	8	23	<1	4 51	21	3 55	17	14	1 60	2414	, ,	1 50	<10	1/	/3	0.00	< 5 ~
TR10076124-E663935	<1	7.97	33	3076	11	5.51	2	13	26	53	5.08	21	2.95	12	14	1.65	2764	3	7.46	<10	6	~2	0.22	7
							-				0.000		2.50			1.05	2701	5	2,40	<10	v	4	0.51	
TR10076125-E668501	7	8.53	145	577	12	<0.01	2	15	16	519	4.27	14	4.87	13	11	0.81	298	3	0.27	<10	6	97	3 62	40
TR10076125-E668528	2	7.83	61	1195	6	0.23	2	13	20	410	3.55	12	7.15	13	14	0.86	516	2	1.35	<10	6	58	2 46	7
TR10076125-E668515	1	8.11	77	373	6	0.29	4	14	18	265	4.77	11	8.61	14	9	0.53	310	5	0.82	<10	7	46	4.13	, 7
TR10076125-E668517	3	7.94	141	360	6	0.21	4	19	16	386	5.07	9	9.04	10	7	0.39	285	6	0.68	<10	6	52	4.55	, 9
CDN-ME-4 Sample 1	>200	3.30	2837	555	27	1.09	76	23	56 >	10000	9.20	15	0.77	<10	9	0.69	5225	53	1.02	<10	35 >	10000	3.15	600
TR10076125-E668519	Э	8.57	65	624	10	0.23	1	22	18	1054	3.51	13	7.85	11	14	0.79	495	4	1.56	10	6	82	2.77	8
TR10076129-E666334	<1	7.36	31	1895	16	4.76	7	40	51	11	8.26	31	0.55	<10	35	3.61	1872	6	1.62	<10	8	11	0.42	12
TR10076129-E666348	<1	9.11	16	1096	<5	2.16	2	19	20	103	5.40	16	3.81	14	14	1.64	546	5	1,36	<10	7	11	4,34	24
TR10076129-E668562	6	8.19	61	268	<5	0.27	4	15	15	1811	5.99	15	5.43	16	17	1.16	502	8	0,81	<10	9	45	4.39	20
TR10077090-E668652	<1	8.24	16	1189	<5	0.43	4	22	35	205	5.80	26	2.63	16	32	3.17	692	6	0.27	<10	83	30	4.15	13
TR10077091-E664128	<1	8.55	46	1565	<5	3.62	3	18	85	15	5.19	17	2.23	11	18	1.51	1238	z	2.04	<10	36	13	0.82	30
TR10077091-E668697	2	7.98	21	1999	<5	2.59	6	13	43	295	4.78	18	2.79	13	18	1.92	1325	12	1.08	<10	28	96	3.55	21
TR10077091-E664083	2	9.13	82	6035	<5	2.01	3	8	29	20	5.55	21	3.39	14	14	1.71	5346	2	0.67	<10	20	117	1.21	27
TR10077190-E663977	<1	8.77	22	5777	<5	5.02	1	5	21	3	4.36	15	3.29	14	10	1.39	1993	<2	2.14	<10	7	2	0.22	26
TR10079197-E668769	<1	8.50	27	1764	<5	0.94	1	16	54	332	3.98	22	3.40	<10	23	2.70	529	35	1.05	<10	23	15	2.44	21
																					-			

Signed: _

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10Sample type: PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10054503-E663677	17	<10	374	<5	43	0.26	181	<10	7	117	33
TR10054503-E663691	19	10	365	<5	45	0.23	201	<10	6	158	40
TR10054503-E663649	13	16	404	<5	55	0.17	160	<10	5	25	38
TR10054503-E663654	8	16	235	<5	45	0.09	147	<10	4	225	29
TR10054504-E663725	18	12	92	<5	46	0.15	180	<10	8	76	34
TR10073198-E663525	13	<10	254	<5	44	0.35	136	<10	13	75	35
TR10073198-E663542	16	10	393	<5	68	0.32	179	20	11	115	28
TR10073198-E663572	10	31	153	17	129	0.12	131	14	8	183	52
TR10073198-E663574	11	36	125	32	162	0.10	125	10	7	220	47
TR10074240-E663616	15	13	167	<5	53	0.36	158	12	. 11	183	31
TR10074240-E663575	13	12	220	<5	59	0.25	205	20	11	861	36
TR10074240-E663596	6	<10	167	6	46	0.16	80	29	4	1591	19
TR10076122-E666068	8	15	41	<5	33	0.06	111	<10	3	11	29
TR10076124-E663941	21	<10	353	6	45	0.26	233	<10	11	155	42
TR10076124-E663935	26	<10	371	<5	51	0.25	282	12	12	155	32
TR10076125-E668501	16	15	156	<5	31	0.16	194	<10	3	85	38
TR10076125-E668528	16	11	296	<5	38	0.21	186	<10	6	91	29
TR10076125-E668515	16	14	296	<5	47	0.20	206	<10	5	94	34
TR10076125-E668517	15	15	255	5	47	0.19	178	<10	5	65	32
CDN-ME-4 Sample 1	6	22	120	<5	94	0.13	49	182	8 >	10000	30
TR10076125-E668519	17	11	215	<5	36	0.26	199	<10	6	97	30
TR10076129-E666334	37	19	1009	9	122	0.76	319	<10	25	152	44
TR10076129-E666348	18	14	126	<5	55	0.28	191	15	14	37	28
TR10076129-E668562	17	15	204	<5	61	0.21	198	31	6	63	32
TR10077090-E668652	14	16	35	5	52	0.07	128	15	7	115	42
TR10077091-E664128	18	12	332	<5	59	0.36	196	<10	8	76	30
TR10077091-E668697	12	<10	102	7	54	0.08	113	11	6	212	25
TR10077091-E664083	17	13	326	<5	59	0.29	191	29	12	414	28
TR10077190-E663977	18	<10	417	<5	53	0.23	211	19	11	138	39
TR10079197-E668769	12	12	92	<5	45	0.17	140	12	6	128	33

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	К %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	Pb ppm	S %	Sb ppm
TR10079197-E664231	2	9.14	27	246	<5	1.62	10	17	20	389	5.23	19	4.20	11	11	1.74	2015	٦	0.50	<10	7	178	3 4 2	75
TR10079197-E664204	4	8.99	151	2093	<5	0.16	5	24	114	211	6.49	29	3.67	13	21	2.96	2788	4	0.12	<10	70	170	5.70	23
TR10079197-E664212	5	9.82	227	682	<5	0.26	27	23	21	193	5.97	12	4.69	17		0.50	254	י ג	0.12	<10	17	432	5.29	66
TR10079350-E664296	5	7.96	24	869	<5	2.55	3	15	20	275	5.18	16	3.87	12	10	1 36	1154		1.61	<10	12	-135	2.04	00
TR10079355-E666592	<1	6.66	17	3087	<5	1.14	2	9	60	377	4.24	10	2.56	12	7	0.69	335	52	1 77	<10	, 71	27	3.31	24
															•	0.05	000	52	1.,,	-10	~ 1	27	5.57	15
TR10079355-E666551	<1	7.08	17	2882	<5	1.41	3	8	79	382	4.32	13	2.86	10	13	1.02	589	83	1.05	<10	33	33	3 10	16
TR10079355-E66663	<1	9.04	13	865	<5	1.29	<1	22	50	310	3,49	19	2.54	17	23	1.85	473	29	3 28	<10	27	0	1 75	21
TR10079355-E666658	<1	8.39	20	578	<5	1.42	<1	27	42	368	3.48	15	1.80	18	22	1.50	440	67	4 31	<10	28	20	1.75	21
TR10079355-E666652	<1	8.53	48	1259	<5	3.11	<1	20	37	342	3.78	15	4.31	21	13	1.13	849	49	0.69	<10	26	18	3.02	20
CDN-ME-12 Sample 2	56	7.61	125	762	<5	0.65	29	22	61	4157	5.15	14	4.78	14	12	0.93	577	193	1.47	<10	30	2361	213	24 03
																						2501	2.1.2	
TR10079356-E666712	<1	8.71	31	1725	<5	3.28	1	17	46	268	3.96	17	3.99	<10	17	1.45	596	75	0.82	<10	28	29	2.82	21
TR10079357-E666733	<1	9.24	17	2319	<5	2.55	<1	11	53	193	3.23	13	4.59	16	11	1.04	439	41	0.71	<10	26	10	2.47	17
TR10089359-E666781	<1	7.23	16	1412	<5	4.86	<1	10	49	283	3.19	10	2.20	<10	10	0.79	899	487	2.75	<10	17	11	2 53	18
TR10089359-E666788	<1	7.91	20	1401	<5	3.15	2	20	100	261	4.63	21	3.19	22	30	2.35	823	40	0.92	<10	68	7	2.55	24
TR10081780-E664487	<1	6.68	16	2076	<5	0.47	1	8	41	193	3.62	10	3.56	<10	7	0.49	235	63	0.45	<10	14	22	3.11	5
																							3.11	5
TR10081780-E664438	<1	7.70	17	1634	<5	0.24	4	17	52	296	4.04	20	3.34	19	31	2.16	754	68	0.58	<10	25	43	2.35	< 5
TR10081780-E664473	<1	7.81	<10	1058	<5	1.38	<1	15	58	236	3.38	16	2.50	14	20	1.44	546	62	2.36	<10	20	13	2.04	<5
TR10081780-E664472	<1	7.49	11	1632	6	1.25	2	13	44	260	4,47	18	3.33	16	22	1.60	519	60	0.95	<10	22	20	3.04	<5
TR10081780-E664491	<1	7.97	17	1517	5	1.20	6	15	34	367	5.11	13	3.43	16	11	0.95	424	109	1.76	<10	21	26	4.16	5
TR10081780-E668941	<1	8.00	13	1101	5	1.28	3	17	14	155	5.33	15	3.51	13	16	1.20	500	5	2.45	<10	7	11	4.77	6
																								Ũ
TR10081780-E664496	1	7.09	16	2451	5	1.68	1	5	19	236	3.24	10	3.64	13	6	0.55	475	54	0.64	<10	9	30	2.91	< 5
TR10081781-E664549	<1	7.58	16	1543	<5	1.32	1	10	38	218	3.96	11	3.93	11	10	0.75	350	88	0.61	<10	19	27	3 31	5
TR10081781-E664553	<1	6.85	17	1345	<5	1.73	1	9	42	199	3.43	12	3.09	10	13	0.87	481	42	1.15	<10	30	21	2 71	< 5
TR10081781-E664527	<1	8.00	<10	1725	<5	1.82	1	20	93	304	4.17	20	2.87	15	36	2.01	704	29	1.68	<10	68	13	213	6
TR10081781-E664532	<1	8.18	10	2467	<5	1.02	2	17	115	251	4.56	19	3.46	11	29	1.80	582	42	1.02	<10	111	10	2.48	< 5
TR10081785-E664623	<1	7.55	48	2194	<5	2.69	2	13	40	745	3.82	13	3.88	14	17	1.05	561	73	0.61	<10	30	11	3.11	5
TR10081784-E664688	<1	7.92	29	1972	<5	2.35	<1	10	49	123	2.68	18	3.41	13	34	1.60	552	37	1.12	<10	35	3	1.48	<5
TR10081784-E669042	<1	7.78	16	2601	<5	1.03	1	12	35	48	3.92	16	2.02	13	33	1.45	472	5	3.23	<10	12	- 24	2.72	5
TR10081784-E664665	<1	6.12	77	1439	<5	2.49	<1	9	51	135	2.50	13	3.29	<10	18	1.08	658	104	0.19	<10	27	3	2.19	5
CDN-ME-4 Sample 3	>200	3.18	2706	548	13	1.03	73	22	53 >	10000	8.92	13	0.78	<10	9	0.65	5175	58	1.02	<10	34 >	10000	3.11	677

Page 3 of 14

Signed: _

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10079197-E664231	19	12	208	<5	58	0.28	192	41	14	697	33
TR10079197-E664204	18	19	43	5	85	0.35	174	18	5	225	42
TR10079197-E664212	13	18	81	<5	76	0.34	191	29	8	1220	58
TR10079350-E664296	17	<10	301	<5	68	0.25	171	33	11	80	27
TR10079355-E666592	7	<10	238	9	52	0.07	77	<10	5	42	15
TR10079355-E666551	10	<10	166	< 5	45	0.08	100	21	5	83	17
TR10079355-E66663	14	<10	218	<5	40	0.23	139	12	15	45	33
TR10079355-E666658	15	<10	257	<5	43	0.25	128	15	18	63	31
TR10079355-E666652	17	<10	99	<5	39	0.15	153	15	13	35	27
CDN-ME-12 Sample 2	12	212	226	13	62	0.23	159	63	12	2949	37
TR10079356-E666712	15	<10	125	<5	51	0.15	117	12	16	57	19
TR10079357-E666733	14	<10	110	< 5	35	0.14	133	11	16	38	28
TR10089359-E666781	8	<10	339	< 5	39	0.09	80	<10	10	55	15
TR10089359-E666788	13	<10	159	<5	60	0.25	128	32	16	45	24
TR10081780-E664487	6	<10	83	<5	30	0.04	78	<10	3	21	24
TR10081780-E664438	11	13	30	<5	34	0.14	119	<10	7	109	34
TR10081780-E664473	12	<10	111	<5	39	0.14	123	<10	7	124	34
TR10081780-E664472	11	<10	74	<5	44	0.09	134	<10	6	131	30
TR10081780-E664491	12	<10	88	<5	48	0.08	131	11	7	108	35
TR10081780-E668941	16	10	211	5	59	0.17	171	<10	12	24	30
TR10081780-E664496	5	<10	145	<5	28	0.04	70	<10	5	58	27
TR10081781-E664549	8	<10	58	<5	38	0.05	96	<10	4	37	29
TR10081781-E664553	7	<10	88	<5	34	0.05	84	<10	5	61	22
TR10081781-E664527	15	<10	80	<5	37	0.12	155	<10	9	85	36
TR10081781-E664532	15	10	99	<5	42	0.09	143	<10	8	88	28
TR10081785-E664623	11	<10	82	<5	38	0.07	128	<10	10	43	25
TR10081784-E664688	13	<10	171	< 5	35	0.15	115	<10	10	37	32
TR10081784-E669042	16	<10	240	<5	39	0.13	181	<10	8	59	37
TR10081784-E664665	9	<10	105	<5	24	0.07	104	<10	7	27	18
CDN-ME-4 Sample 3	6	21	118	<5	97	0.13	50	169	8 >	10000	35

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	la	fi	Ma	Mn	Mo	Na	Nb	Ni	Dh	c	Sh
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10081784-E664672	<1	7.44	120	1685	<5	1.64	<1	12	42	194	2.82	13	3.8 6	13	18	1.06	606	58	0.21	<10	20	40	2.26	6
TR10081784-E669051	<1	8.61	50	3354	< 5	1.27	26	11	26	112	4,41	18	3.25	14	36	1.56	537	16	1.83	<10	9	92	3.08	5
TR10081784-E664712	<1	7.51	67	1782	5	2.52	<1	14	35	122	3.39	11	3.65	13	11	0.65	616	73	0.86	<10	27	13	3.07	6
TR10081784-E664692	<1	7.86	38	1771	< 5	2.77	2	17	28	293	4.15	18	3.65	14	34	1.61	722	92	0.76	<10	28	6	2 67	~5
TR10081785-E664656	<1	6.37	68	1323	<5	2.28	3	13	45	108	4.59	12	3.58	15	13	0.80	638	43	0.21	<10	21	11	4.48	5
TR10081785-E669012	<1	7.27	24	5007	<5	2.17	1	5	35	115	3.68	15	3.03	15	32	1.38	554	10	1.64	<10	11	18	2 21	5
TR10081785-E669001	<1	8.91	50	4863	8	2.13	1	7	34	116	4.15	19	3.46	12	32	1.82	795	4	1.12	<10	11	7	1.60	< 5
TR10081785-E664662	<1	8.84	283	1732	9	2.17	1	16	60	335	3.99	20	4.00	16	26	1.87	647	34	0.16	<10	72	10	3 11	~5
TR10081785-E668983	<1	9.81	134	4119	7	0.02	<1	<1	27	44	3.75	14	4.88	11	13	0.98	176	21	0.27	<10	16	34	0.64	~5
TR10083833-E664759	<1	9.14	10	1265	11	1.15	<1	19	49	161	3.98	20	3.05	17	28	1.80	402	9	2,41	<10	28	<2	1.74	<5
TR10083833-E664753	<1	8.93	19	1062	8	1.86	2	17	91	146	3.96	18	2.96	13	32	1.80	521	26	2.13	<10	50	29	2.30	<5
TR10083833-E666965	1	8.30	167	2218	11	2.33	<1	12	41	466	2.42	11	4.22	15	7	0.73	680	159	0.57	<10	24	60	1.99	< 5
TR10083833-E669096	1	8.02	62	2401	9	1.72	<1	6	23	62	3.21	11	3.75	12	15	0.84	515	6	0.21	<10	22	30	2.70	<5
TR10083833-E669104	<1	9.15	68	2250	7	1.55	1	10	30	87	3.80	18	3.60	17	35	1.55	738	5	0.75	<10	42	A	2.44	<5
TR10083833-E669095	<1	9.29	83	2612	5	3.93	2	15	48	161	4.36	19	3.98	11	34	1.59	1027	5	0,28	<10	50	21	3.58	<5
TR10083833-E666964	1	6.22	131	1677	6	1.92	2	12	29	336	2.53	8	3.30	13	5	0.54	672	272	0.22	<10	31	46	2.08	<5
TR10083834-E669122	<1	8.03	30	1755	8	1.30	<1	9	56	46	3.31	10	3.60	12	16	0.54	468	10	0.46	<10	20	22	2.81	<5
TR10083834-E669134	<1	8.73	45	1956	10	0.76	1	5	42	83	3.81	10	3.99	15	9	0.50	296	20	0.28	<10	13	22	3.24	<5
TR10083834-E669148	<1	8.74	72	2321	7	2.54	1	14	46	106	3.62	15	3.89	21	25	1.02	1007	5	0.23	<10	45	12	2.81	<5
CDN-ME-12 Sample 4	54	7.59	120	621	6	0.62	27	21	60	4157	5.00	13	4.63	13	12	0.92	561	197	1.41	<10	32	2247	2.09	<5
TR10083834-E666989	1	6.27	31	1115	7	0.89	1	5	36	267	1.93	6	1.67	<10	4	0.29	302	42	3.04	<10	8	47	1.38	<5
TR10083834-E666995	1	6.71	18	1670	6	0.76	6	7	39	213	2.48	6	1.74	<10	4	0.29	238	70	3.22	<10	11	43	1.90	< 5
TR10083834-E667001	1	7.43	32	1864	10	1.56	2	7	29	254	2.24	8	2.58	<10	4	0.43	321	50	2,35	<10	9	33	1.85	<5
TR10083834-E669142	<1	8.80	47	2129	7	1.71	6	16	37	73	5.47	15	3.96	15	23	0.94	760	3	0.31	<10	20	61	4.13	<5
TR10083834-E669144	<1	7.69	84	1605	8	3.12	6	14	59	65	6.07	12	3.33	11	20	0.84	1259	5	0.23	<10	27	37	4.97	<5
TR10083837-E667041	<1	7.54	16	2838	<5	1.09	<1	3	34	114	2.21	10	2.78	<10	7	0.66	310	123	2.10	<10	9	33	1.54	<5
TR10083837-E667056	<1	7.86	19	906	8	1.14	<1	12	38	277	3.03	14	1.90	12	15	1.06	447	129	3,44	<10	19	24	1.71	<5
TR10083837-E667024	<1	8.28	21	881	9	1.87	<1	19	45	202	3.78	24	3.31	19	54	3.00	591	94	0.62	<10	43	10	1.00	<5
TR10083837-E667011	<1	6. 9 6	22	2368	<5	2.48	Z	12	61	220	4.07	16	2.47	12	28	1.83	823	107	1.28	<10	25	19	1.65	<5
TR10083837-E667027	1	5.32	30	517	<5	4.09	2	17	43	340	3.47	15	1.99	14	37	1.81	711	288	0.64	<10	45	18	1.81	<5

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Page 5 of 14

Signed;

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10Sample type: PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10081784-E664672	11	<10	62	<5	30	0.10	118	<10	7	41	28
TR10081784-E669051	20	<10	131	<5	47	0.09	212	<10	7	245	33
TR10081784-E664712	10	<10	97	<5	42	0.07	98	<10	7	23	26
TR10081784-E664692	13	<10	93	<5	50	0.14	82	<10	12	42	45
TR10081785-E664656	10	<10	131	<5	48	0.07	107	<10	8	25	24
TR10081785-E669012	13	<10	227	<5	44	0.12	143	<10	10	50	31
TR10081785-E669001	21	<10	185	<5	35	0.11	153	<10	8	124	27
TR10081785-E664662	17	<10	64	<5	42	0.13	204	<10	9	45	27
TR10081785-E668983	20	13	89	<5	33	0.09	211	<10	4	106	42
TR10083833-E664759	15	10	121	<5	44	0.22	130	<10	12	43	35
TR10083833-E664753	13	<10	120	<5	45	0.19	120	14	8	62	26
TR10083833-E666965	12	<10	149	<5	22	0.07	124	<10	14	136	32
TR10083833-E669096	12	<10	87	< 5	18	0.05	112	<10	6	63	38
TR10083833-E669104	14	<10	63	<5	29	0.08	158	<10	6	124	41
TR10083833-E669095	24	<10	138	7	33	0.12	243	<10	9	111	27
TR10083833-E666964	8	<10	98	<5	23	0.05	88	<10	7	145	20
TR10083834-E669122	10	<10	58	<5	18	0.07	194	<10	4	52	35
TR10083834-E669134	11	<10	57	<5	29	0.06	152	<10	2	36	28
TR10083834-E669148	13	<10	65	< 5	36	0.09	134	<10	9	90	55
CDN-ME-12 Sample 4	12	212	22 6	<5	60	0.22	155	66	11	2846	35
TR10083834-E666989	5	<10	167	<5	22	0.05	50	<10	6	108	20
TR10083834-E666995	4	<10	197	<5	23	0.05	64	<10	3	419	23
TR10083834-E667001	6	<10	219	<5	20	0.06	82	<10	4	202	25
TR10083834-E669142	14	13	59	<5	44	0.09	166	14	6	211	26
TR10083834-E669144	16	10	65	<5	69	0.09	210	14	6	186	18
TR10083837-E667041	5	<10	225	<5	26	0.06	57	<10	4	102	21
TR10083837-E667056	9	<10	264	<5	37	0.12	98	<10	7	102	32
TR10083837-E667024	13	<10	58	<5	60	0.32	97	<10	14	123	47
TR10083837-E667011	12	<10	195	<5	44	0.25	146	<10	8	129	21
TR10083837-E667027	10	<10	138	<5	37	0.15	83	<10	15	71	27

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Ма	Mn	Мо	Na	Nb	NI	Dh	e	Сh
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10083837-E667033	<1	7.08	29	856	<5	1.52	<1	17	89	189	3.46	19	2.84	13	41	2.11	527	43	0.98	<10	49	,	1.43	5
TR10083837-E667029	<1	7.82	18	490	<5	1.27	1	23	47	199	4.08	24	1.90	24	63	3.12	562	65	2.40	<10	44	<7	1.03	5
TR10083837-E667017	<1	7.17	17	755	<5	1.92	<1	15	71	388	3.35	17	2.71	15	34	1.97	609	172	1.09	<10	43	~2	1 14	5
TR10083837-E667007	<1	6.84	67	1714	<5	1.57	<1	6	31	148	1.46	8	2.98	10	5	0.51	363	127	1.43	<10	10	27	1 16	5
TR10085182-E669183	<1	7.65	44	1825	< 5	1.14	<1	9	51	54	2.78	12	3.53	11	22	0.90	521	2	0,20	<10	28	6	2.40	11
TR10085182-E669189	1	7.77	114	1695	<5	1.58	1	9	45	235	2.65	13	3.63	18	28	1.10	827	2	0.21	<10	30	12	2 16	70
TR10085182-E669182	1	7.47	82	1811	<5	0.68	2	15	37	117	3.88	12	3.53	14	21	0.82	363	4	0.22	<10	30	-	3 50	10
TR10085182-E667084	<1	6.90	35	1091	<5	2.62	<1	16	112	216	2.87	16	2.99	<10	25	1.52	846	141	0.40	<10	54	~2	1 31	15
TR10085183-E667116	<1	6.42	13	1408	<5	0.85	<1	7	43	229	1.97	9	3.16	<10	8	0.62	240	67	0.63	~10	17	22	1.51	<5
CDN-ME-4 Sample 5	>200	3.04	2363	469	<5	0.91	61	19	46 :	>10000	8.15	11	0.68	<10	8	0.60	4543	53	0.93	<10	30 :	>10000	2.72	595
TR10085183-E667113	<1	5.91	75	1622	<5	1.68	<1	5	34	223	1.43	8	2,41	<10	14	0.51	361	77	1 44	c 10	17	77	1 16	E
TR10085183-E667098	<1	5.85	80	1193	<5	1.24	<1	6	30	355	1.61	9	3.21	<10	7	0.54	343	97	0 14	<10	10	14	1 22	-
TR10085183-E667134	<1	6.01	10	1736	<5	0.71	<1	8	45	227	1.78	10	2,25	10	12	0.74	216	238	1.60	~10	16	17	1.27	, , c
TR10085183-E667115	<1	6.74	<10	966	<5	0.90	<1	11	54	310	1.97	12	2.59	<10	14	0.92	304	78	1.59	<10	10	10	1 33	~5
TR10085183-E667093	<1	7.45	14	1109	<5	2.19	<1	9	43	255	1.92	11	2.87	11	13	0.84	428	59	1.62	<10	16	8	1.60	<5
TR10085183-E667118	<1	7.39	27	1105	<5	0.85	<1	13	50	273	2.48	11	3.69	16	13	0.84	239	382	0.72	~10	75	£	1 94	F
TR10085188-E667142	<1	5.91	12	721	<5	0.54	5	6	34	90	1.52	7	1.31	<10	8	0.41	206	46	3 27	<10		47	1.04	E
TR10085188-E664855	1	7.00	23	1527	<5	0.25	3	18	44	533	4.64	14	2.55	12	20	1.31	280	0 ⊿ -1	1.61	<10	7 77	42	2.40	< 5 - F
TR10085188-E667127	<1	6.50	25	1467	<5	1.10	<1	13	35	192	2.49	8	3.20	12	 R	0.59	276	151	0.67	<10	14	17	1.90	< 5 E
TR10085188-E667148	<1	7.53	<10	908	<5	1.10	1	17	100	148	3.56	16	1.98	13	21	1.39	444	40	2.68	<10	14 46	12	1.59	< 5 5
TR10085188-E667139	<1	6.75	27	627	<5	0.59	<1	11	59	197	2.21	12	1.62	<10	13	0.91	271	118	2.88	<10	21	11	1 79	~5
TR10085188-E667145	<1	7.60	12	1275	<5	1.11	<1	11	48	125	2.65	14	2,94	12	19	1.26	323	67	1.67	<10	25	6	1 32	~5
TR10085188-E667147	<1	8.11	<10	995	<5	1.27	1	17	62	170	3.68	19	2.03	19	24	1.68	490	153	2.67	<10	25	6	1.10	~ 3
TR10086299-E665023	<1	5.10	43	1882	<5	11.00	5	28	44	22	6.33	27	2.09	13	17	1 99	2576	16	0.24	<10	10	7	1.13	2
TR10086299-E667231	<1	8.09	36	1859	<5	2.07	1	19	53	132	4.20	22	3.68	10	36	2.29	538	23	0.37	<10	43	2	2.45 1.46	8
TR10086299-E667248	<1	8.24	<10	1311	<5	1.49	.<1	17	54	186	3.30	18	2.51	15	19	1 4 7	380	73	7 70	<10	22		1 10	-
TR10086299-E667203	<1	6.62	14	1336	<5	1.05	3	10	32	105	3.09	12	2.42	<10	13	0.72	215	75	1.67	<10	5∠ 14	4	1.12	5
TR10086299-E667208	<1	9.38	20	1287	<5	1.23	2	19	91	210	5.23	28	2.74	41	45	3.13	630	75 21	1 74	<10	14	29	2.21	с т
TR10086299-E667204	<1	7.43	10	930	<5	1.15	<1	12	74	243	2.48	14	2.06	14	20	1 16	759	12	2 4 2	<10	75/	2 6	1.10	-5
CDN-ME-12 Sample 6	48	7.37	117	561	<5	0.57	24	20	54	3883	4.83	13	4.41	13	10	0.87	542	175	1.27	<10	22 31	2053	1.15	< 5 25

Signed:

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

Assayers	Canada
----------	--------

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10Sample type: PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
TR10083837-E667033	11	11	78	5	41	0.26	108	<10	9	76	27
TR10083837-E667029	15	12	113	<5	52	0.27	150	<10	14	98	37
TR10083837-E667017	11	<10	79	<5	45	0.24	105	<10	8	94	22
TR10083837-E667007	7	<10	176	<5	11	0.06	85	<10	5	191	24
TR10085182-E669183	11	<10	70	<5	16	0.06	107	12	6	73	37
TR10085187-F660190	10	~10	52	~5	43	0.07			•		
TR10085187-F660187	12	10	57	< 5 ~E	20	0.07	111	<10	8	151	43
T010085187-5667084	12	-10	100	< 5	20	0.07	96	<10	/	85	50
TR10085183-E667116		<10	105	~5	24	0.18	140	<10	8	74	25
CDN-ME-4 Sample 5	6	10	110	~5	74	0.00	/3	<10	4	34	16
contric r bumple s	U	15	110	 1 	/4	0.12	43	105	/:	>10000	37
TR10085183-E667113	6	<10	185	<5	10	0.05	64	<10	5	57	15
TR10085183-E667098	4	<10	81	<5	15	0.05	56	<10	4	38	14
TR10085183-E667134	6	<10	141	<5	14	0.06	70	<10	5	31	18
TR10085183-E667115	8	<10	99	<5	17	0.09	80	<10	5	41	22
TR10085183-E667093	9	<10	231	5	11	0.10	90	12	7	50	36
		_									
TR10085183-E667118	10	<10	62	<5	23	0.13	101	<10	8	26	47
TR10085188-E667142	5	<10	199	<5	11	0.06	49	<10	3	327	17
TR10085188-E664855	10	14	55	10	52	0.15	110	<10	6	66	39
TR10085188-E667127	7	<10	93	<5	20	0.06	89	<10	7	30	22
TR10085188-E667148	13	<10	157	<5	39	0.22	134	<10	10	48	22
TR10085188-E667139	7	<10	176	<5	22	0.09	77	12	4	74	19
TR10085188-E667145	11	<10	123	<5	30	0.14	98	<10	9	45	42
TR10085188-E667147	13	<10	148	<5	45	0.22	130	<10	16	46	34
TR10086299-E665023	24	<10	400	15	101	0.58	199	15	32	107	44
TR10086299-E667231	14	<10	90	<5	57	0.26	123	<10	17	52	52
TR10086299-E667248	15	<10	236	~5	47	0.26	121	-10	17	20	40
TR10086299-E667203	8	<10	120	~5	47 25	0.20	121	10	13	39	49
TR10086799-E667708	17	17	01	< 3 ~ E	22	0.09	90	10	5	69	27
TR10086299-E667204		<10	164	~5	202	0.21	157	12	21	118	55
CDN-ME-12 Sample 6	11	771	209	~5	20	0.13	103	<10	9	49	25
con mente pampie o	11	441	209	< 3	20	0.23	140	67	11	2739	44

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1182PR

Date : Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ва	Bi	Са	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Ma	Mn	Mo	Na	Nh	Ni	РЬ	s	Sh
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10087091-E667271	<1	8.36	10	1522	<5	1.32	1	17	49	104	4.00	20	3.61	14	26	1.82	363	38	1,33	<10	29	<2	1.52	5
TR10087091-E665138	1	7.98	24	4184	<5	3.35	8	5	31	285	4.76	19	2.38	11	34	1.49	4277	45	0,99	<10	15	13	0.82	5
TR10087091-E665147	<1	8.56	15	2632	<5	2.84	3	13	31	303	4.19	19	3.16	12	27	1.38	3051	76	0.55	<10	12	25	1.78	6
TR10087091-E667273	<1	8.47	18	1658	< 5	1.67	<1	12	49	161	2.21	15	4.46	21	15	1.12	339	12	0.78	<10	24	<2	0.96	5
TR10087091-E665143	1	7.90	19	3810	<5	3.71	6	8	32	256	4.43	19	2.18	<10	33	1.50	3586	51	1.69	<10	13	30	1.62	5
TR10087091-E665131	1	7.43	21	6045	<5	4,44	5	3	31	274	4.31	18	1.43	11	31	1.36	4164	40	2.55	<10	17	35	0.96	<5
TR10087091-E665124	1	7.63	17	4246	<5	2.27	5	6	31	317	4.23	19	1.45	10	37	1.64	3769	80	2,50	<10	14	27	0.73	<5
TR10087091-E667269	<1	8.38	41	1246	<5	2.04	2	18	48	110	4.98	23	3.30	10	31	2.31	672	131	1.31	<10	41	<2	1.58	7
TR10087091-E665135	1	7.56	18	2312	<5	0.44	4	8	31	299	4.11	14	2.25	<10	20	1.01	1977	57	1.81	<10	9	37	0.81	5
TR10087091-E665139	<1	7.91	19	1579	<5	1.48	5	14	33	399	4.89	19	1.88	12	41	1.72	2550	73	1.89	<10	13	20	0.88	5
TR10087094-E665165	1	6.16	31	1375	<5	0.83	4	9	19	343	2.90	10	2.57	11	7	0.69	1321	66	0.20	<10	12	40	1.98	5
TR10087094-E665159	<1	7.40	28	4489	6	< 0.01	6	3	32	278	9.10	31	2.87	10	19	1.14	812	127	0,17	<10	<2	67	0.70	<5
TR10087094-E665173	1	8.33	21	1565	<5	3.39	14	15	40	325	3.67	21	2.85	15	32	1.69	2960	110	0.27	<10	23	21	1.43	5
TR10087094-E665152	1	7.77	19	3304	< 5	2.46	11	7	28	349	3.79	17	2.83	10	29	1.36	2457	185	0.39	<10	16	62	1.67	5
TR10087094-E665176	2	7.27	30	1486	<5	1.63	3	17	25	499	3.99	17	2.45	10	27	1.45	1925	93	0.31	<10	21	25	1.90	5
TR10087095-E665191	1	6.23	27	1099	<5	0.36	1	9	27	636	3.15	9	2.76	<10	6	0.43	323	192	0.35	<10	17	33	2.33	5
TR10087095-E665192	<1	8.25	36	1324	<5	0.34	1	14	44	556	3.73	15	3.35	11	20	1.07	484	101	0.44	<10	21	7	1.93	6
TR10087095-E665187	1	8.28	24	1303	<5	1.19	6	17	56	453	4.54	18	3.05	10	31	1.38	1248	99	0,40	<10	24	17	2.19	5
TR10087095-E665188	1	8.02	48	1345	< 5	1.48	24	16	51	479	3.84	13	3.15	11	16	0.80	1202	70	0,33	<10	25	25	2.44	5
CDN-ME-4 Sample 7	>200	3.64	2951	558	<5	1.17	78	23	79 :	>10000	10.42	15	0.75	<10	8	0.74	5358	65	0.99	<10	93 >	10000	3.22	705
TR10087096-E665237	1	8.29	21	5360	<5	2.79	7	8	57	241	4.32	20	2.81	<10	32	1.97	2712	75	0.27	<10	103	83	1.64	6
TR10087096-E665278	<1	9.15	72	2334	<5	0.32	1	13	72	343	4.60	15	3.92	13	13	0.93	457	39	0.40	<10	17	44	3.32	6
TR10087096-E665281	1	7.63	48	3035	<5	0.75	З	11	49	305	3.87	11	3.49	11	8	0.57	588	90	0.34	<10	22	30	3.03	6
TR10087096-E665303	<1	7.28	60	1420	<5	0.47	4	7	21	283	5.01	11	3.35	12	6	0.52	342	145	0.37	<10	11	19	3.91	5
TR10087096-E665231	1	8.49	29	7827	<5	3.68	4	3	40	283	3.78	23	2.81	11	40	2.17	3551	53	0.25	<10	16	30	1.40	6
TR10087096-E665307	1	6.58	27	1924	<5	1.61	2	10	24	353	3.55	12	2.85	13	15	0.90	888	92	0.22	<10	36	23	2.32	<5
TR10087096-E665258	1	7.04	28	2409	<5	0.30	2	5	17	399	4.18	12	2.98	16	16	0.92	712	138	0.31	<10	7	29	2.39	5
TR10087096-E665272	<1	8.12	20	3478	< 5	3.21	4	10	31	324	4.22	22	2.84	13	38	2.10	2528	43	0.35	<10	11	23	1.64	6
TR10087096-E665298	<1	7.52	52	2261	<5	0.89	1	9	24	264	4.03	14	3.31	14	16	1.01	825	62	0.32	<10	11	10	2.56	6
TR10087096-E665225	1	7.14	30	2690	<5	1.08	3	9	19	338	3.69	13	2.82	15	18	0.94	1191	179	0.31	<10	12	30	2.36	6

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

 Report No
 : 0V1182PR

 Date
 : Aug-18-10

Sample type : PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	n2 mag	Sr ppm	Ta ppm	Te ppm	Ti %	V maa	W	Y	Zn	Zr
				• •	••		1.1	4- (P	FF····	PP	Pp
TR10087091-E667271	13	10	142	<5	46	0.28	118	<10	16	29	51
TR10087091-E665138	21	<10	208	6	51	0.21	197	31	7	870	17
TR10087091-E665147	23	10	106	<5	45	0.23	221	<10	7	494	23
TR10087091-E667273	12	<10	147	<5	25	0.20	113	<10	12	33	46
TR10087091-E665143	21	10	301	<5	45	0.19	215	16	6	660	17
TR10087091-E665131	19	<10	404	< 5	47	0.17	194	15	6	624	17
TR10087091-E665124	19	<10	308	< 5	47	0.17	191	26	5	648	18
TR10087091-E667269	12	10	187	17	54	0.21	119	<10	11	39	30
TR10087091-E665135	20	12	86	<5	37	0.20	198	15	5	495	22
TR10087091-E665139	22	13	108	<5	51	0.20	212	19	7	700	19
TR10087094-E665165	9	<10	29	<5	30	0.13	51	17	5	396	35
TR10087094-E665159	20	<10	82	42	23	0.22	225	<10	4	479	32
TR10087094-E665173	13	<10	82	<5	50	0.31	92	18	8	706	25
TR10087094-E665152	19	<10	138	6	44	0.18	181	18	6	765	25
TR10087094-E665176	11	11	72	<5	58	0.28	83	19	5	474	31
TR10087095-E665191	7	<10	32	<5	35	0.08	69	12	3	108	26
TR10087095-E665192	11	11	37	<5	44	0.21	122	16	6	300	42
TR10087095-E665187	13	14	48	<5	62	0.30	137	16	7	569	42
TR10087095-E665188	12	<10	52	<5	45	0.21	115	16	7	654	29
CDN-ME-4 Sample 7	6	22	117	<5	106	0.14	49	207	8 >	10000	37
TR10087096-E665237	20	<10	363	<5	47	0.17	207	26	6	833	25
TR10087096-E665278	12	14	47	<5	48	0.17	148	<10	6	222	47
TR10087096-E665281	9	<10	118	<5	51	0.13	102	15	5	318	32
TR10087096-E665303	11	14	45	<5	57	0.08	74	<10	5	115	35
TR10087096-E665231	21	<10	561	<5	48	0.16	204	17	8	656	24
TR10087096-E665307	10	<10	49	9	45	0.09	43	<10	9	137	32
TR10087096-E665258	10	11	55	10	47	0.10	60	13	5	200	47
TR10087096-E665272	19	<10	181	<5	57	0.20	192	16	8	458	31
TR10087096-E665298	12	11	59	<5	52	0.22	85	<10	8	234	51
TR10087096-E665225	12	<10	75	5	58	0.22	61	14	6	312	46

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	к	La	Li	Ma	Mn	Mo	Na	Nb	Ni	Ph	s	Sh
Number	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
TR10087096-E665239	<1	7.47	15	3779	<5	2.66	1	7	35	316	3.17	18	2.66	<10	29	1.57	2595	211	0.26	10	11	25	0.96	<5
TR10087096-E665223	<1	8.18	28	1603	<5	2.10	1	19	49	359	3.94	21	2.90	16	37	1.88	1724	54	0.31	<10	26	20	1.75	6
TR10087096-E665228	1	8.31	28	4113	<5	1.53	5	7	43	400	3.77	16	3.17	10	22	1.19	1690	121	0.31	<10	53	45	2 30	5
TR10087096-E665282	1	7.47	66	2079	<5	1.02	3	13	56	421	4.11	11	3.47	12	11	0.69	858	151	0.30	<10	29	50	3 16	6
TR10087096-E665245	1	9.10	21	5369	8	3.30	2	4	33	398	4.59	100	3.03	13	45	2.35	2744	63	0.30	<10	9	25	1.60	17
TR10087096-E665262	1	7.96	25	2662	5	3.64	3	14	34	782	4.79	84	2.78	13	32	1.82	2605	129	0,24	<10	6	27	2.29	19
TR10087096-E665244	1	8.67	23	4807	5	4.22	3	5	35	316	4.56	99	2.89	15	47	2.36	3351	85	0.37	<10	9	34	1 56	18
TR10087096-E665252	2	8.91	17	2125	<5	1.63	1	9	21	312	4.06	75	3.13	13	30	1.71	1696	75	0.32	<10	5	9	1 21	14
TR10087097-E665311	<1	7.62	17	2786	7	4.18	2	8	38	277	4.55	84	2.48	19	36	2.06	1412	464	0.35	<10	7	12	2.70	15
CDN-ME-12 Sample8	55	7.94	108	632	5	0.78	25	21	60	4560	5.22	53	4.92	15	10	0.93	560	180	1.51	<10	18	2291	2.09	85
TR10087097-E665334	<1	10.89	43	2039	11	0.47	1	19	84	307	4.85	101	4 05	12	38	2 5 7	045	50	0.35	~10	50		- 10	- 4
TR10087097-E665333	<1	10.39	38	1506	7	0.44	2	24	87	403	5.71	103	3.81	13	30	2.37	1056	104	0.35	<10	24	13	2.18	24
TR10087097-E665332	<1	9.91	62	1543	7	0.88	1	23	112	385	4.74	56	4.30	16	15	1 08	535	144	0.31	<10	117	ע סר	2.00	22
TR10087097-E665317	<1	9.83	23	1961	<5	2.33	1	21	52	389	5.10	96	3.39	20	40	7.58	1678	144	0.40	<10	117	28	3.42	23
TR10087097-E665341	<1	9.62	39	1958	<5	1.50	1	19	136	466	4.84	87	3.69	17	30	2.15	1150	139	0.34	<10 <10	40	9 14	2.43 2.87	20 20
TR10087097-E665319	<1	9.27	22	1434	5	2.51	3	24	59	424	5.23	96	3.25	18	38	2.42	1593	112	0.46	<10	21	14	2 58	17
TR10087097-E665356	1	9.43	54	2037	<5	0.71	2	17	56	466	4.59	65	4.04	13	17	1.40	562	40	0.31	<10	19	25	3.18	13
Duplicates:																								
TR10054503-E663677	<1	8.06	23	870	12	2.34	2	20	18	176	4.75	19	1.95	12	13	1.64	1665	4	2.97	<10	7	33	2.80	6
TR10074240-E663616	<1	8.70	25	1592	12	0.43	<1	17	72	27	4.09	19	3.68	11	13	1.66	1139	2	2.16	<10	29	-~ 78	1 44	o o
CDN-ME-4 Sample 1	>200	3.34	2876	555	29	1.13	77	23	54 >	10000	9.50	15	0.78	<10	9	0.69	5345	56	1.03	<10	33 >	10000	3.23	703
TR10076129-E666348	<1	8.73	18	1196	<5	2.14	3	20	18	97	5.38	16	3.68	13	13	1.60	564	4	1.27	<10	7	14	4.25	22
TR10079197-E664204	З	8.82	140	2027	<5	0.15	5	23	112	186	6.16	27	3.59	13	21	2.85	2657	2	0.15	<10	77	110	E 09	70
TR10079357-E666733	<1	9.15	16	2257	<5	2.52	<1	10	57	187	3.20	14	4.44	16	11	1.03	431	32	0.15	<10	77	110	3.00	70
TR10081780-E664487	<1	6.52	18	2094	<5	0.46	1	8	46	190	3.55	8	3.69	<10	7	0.47	738	64	0.05	<10	17	12	2.42	10
TR10081781-E664527	<1	8.19	13	1760	<5	1.82	1	20	88	304	4.20	22	2.98	15	37	2 03	717	30	1 70	<10	17 60	24	3.25	< 5
TR10081784-E664692	<1	7.50	37	1667	7	2.63	1	15	34	277	3.93	17	3.43	13	31	1.52	681	88	0.73	<10	26	5	2.20	-5
TR10081785-E669001	<1	8.82	51	4831	12	2.19	1	8	46	109	4.21	18	3.53	13	32	1.81	791	6	1.16	<10	12	8	1.72	<5
TR10083833-E666964	1	6.23	135	1699	< 5	1.93	2	12	40	342	2.56	9	3.34	13	5	0.54	672	263	0.22	<10	41	47	2.10	<5
TR10083837-E667041	<1	7.30	18	2595	6	0.98	<1	3	37	127	2.03	8	2.82	<10	7	0.61	292	106	2.14	<10	15	30	1.41	<5

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Page 11 of 14

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

	As	say	ers	Canada	
1 1	1	C .	* *		

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10Sample type: PULP

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc	Sn Dom	Sr	Ta	Te	Ti %	V	W	Y	Zn	Zr
	P.P	P.P.O.	PP.O	PP	P.P.I.	70	PP	P.P.	ppin	ppm	ppm
TR10087096-E665239	19	<10	200	<5	41	0.20	187	16	6	442	23
TR10087096-E665223	12	<10	61	8	50	0.29	130	10	8	364	34
TR10087096-E665228	15	<10	287	7.	50	0.18	111	11	6	513	32
TR10087096-E665282	9	10	48	<5	44	0.13	97	<10	5	222	29
TR10087096-E665245	16	<10	345	5	61	0.26	139	16	8	640	47
TR10087096-E665262	19	<10	112	10	55	0.18	186	<10	7	292	23
TR10087096-E665244	17	<10	274	<5	58	0.24	153	15	10	529	53
TR10087096-E665252	14	<10	62	<5	54	0.22	60	<10	8	261	67
TR10087097-E665311	10	<10	328	<5	57	0.19	94	<10	8	176	32
CDN-ME-12 Sample8	12	176	236	<5	54	0.22	160	58	12	2459	34
TR10087097-E665334	15	10	69	<5	59	0.29	138	10	8	400	42
TR10087097-E665333	16	11	44	<5	56	0.21	156	13	6	359	40
TR10087097-E665332	15	<10	47	<5	48	0.18	134	<10	8	174	38
TR10087097-E665317	19	<10	94	<5	54	0.24	157	<10	13	242	24
TR10087097-E665341	17	<10	63	5	47	0.19	171	<10	10	256	32
TR10087097-E665319	15	<10	73	<5	51	0.18	125	<10	12	195	27
TR10087097-E665356	12	<10	31	<5	43	0.15	116	<10	7	199	42
Duplicates:											
TR10054503-E663677	17	<10	396	<5	54	0.23	186	<10	8	116	30
TR10074240-E663616	15	11	166	< 5	52	0.32	154	<10	11	179	31
CDN-ME-4 Sample 1	6	21	122	<5	101	0.14	49	195	8 :	>10000	37
TR10076129-E666348	18	14	122	<5	60	0.26	178	20	13	41	26
TR10079197-E664204	17	19	43	<5	79	0.35	171	15	5	217	48
TR10079357-E666733	14	<10	109	<5	33	0.12	129	20	15	35	21
TR10081780-E664487	6	<10	86	<5	36	0.04	79	<10	3	17	22
TR10081781-E664527	15	<10	83	<5	46	0.14	159	<10	10	89	41
TR10081784-E664692	12	<10	89	<5	46	0.11	77	<10	11	43	43
TR10081785-E669001	21	10	186	<5	45	0.14	170	<10	9	117	32
TR10083833-E666964	8	<10	100	<5	23	0.04	88	<10	8	142	21
TR10083837-E667041	5	<10	231	<5	25	0.06	54	<10	4	93	21

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V1182PR

Date : Aug-18-10

Sample type : PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	К %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	Pb ppm	S %	Sb ppm
TR10083837-E667011	<1	6.79	15	2345	<5	2.37	2	12	60	221	3.95	17	2.54	13	29	1.75	809	101	1.30	<10	23	21	1.70	6
TR10085182-E667084	<1	6.90	35	1101	<5	2.63	<1	17	119	220	2.89	16	3.07	10	26	1.52	828	170	0.39	<10	58	7	1.28	5
TR10085188-E664855	1	6.88	17	1524	<5	0.26	3	17	54	537	4.68	15	2.50	12	19	1.31	286	44	1.54	<10	26	53	3.45	5
TR10085188-E667139	<1	6.82	29	648	<5	0.60	<1	11	41	210	2.22	12	1.60	<10	13	0.91	264	133	2.81	<10	19	13	1.35	<5
CDN-ME-12 Sample 6	46	6.96	113	570	<5	0.55	24	20	55	3823	4.62	12	4.31	12	10	0.83	530	176	1.25	<10	31	2088	1.92	27
TR10087091-E665139	<1	8.13	23	1570	<5	1.52	5	15	34	398	5.02	19	1.90	12	40	1.75	2594	77	1.87	<10	15	21	0.90	6
TR10087094-E665173	1	8.11	21	1586	< 5	3.31	15	17	66	333	3.61	20	2.83	15	31	1.63	3017	115	0.29	<10	18	24	1.45	6
TR10087096-E665278	<1	8.74	63	2570	<5	0.28	1	14	84	331	4.30	14	3.82	13	13	0.87	450	36	0.34	<10	18	38	3.16	6
TR10087096-E665223	<1	8.35	25	1625	<5	2.13	1	18	51	350	4.00	19	2.88	16	36	1.90	1734	59	0.30	<10	29	21	1.79	6
TR10087096-E665245	1	9.86	21	6052	8	3.67	З	5	41	391	5.03	106	3.28	13	48	2.65	3020	72	0.32	<10	11	30	1.71	22
TR10087097-E665317	<1	10.04	22	2036	9	2.46	1	22	63	398	5.25	100	3.52	20	41	2.68	1738	49	0.38	<10	23	7	2.53	19
Standards:																								
Blank	<1	<0.01	<10	<10	<5	<0.01	<1	<1	3	2	<0.01	<1	<0.01	<10	<1	<0.01	<5	<2	0.01	<10	<2	<2	0.01	<5
СН-4	3	7.77	<10	507	<5	1.85	4	30	138	1913	5.48	17	1.88	16	12	1.43	487	5	3.16	<10	59	24	0.66	26

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 0V1182PRDate: Aug-18-10Sample type: PULP

Silver Standard Resources

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Sc ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	
TR10083837-E667011	12	<10	196	<5	48	0.24	145	<10	8	118	21	
TR10085182-E667084	12	<10	185	<5	34	0.19	141	<10	8	81	22	
TR10085188-E664855	9	12	54	11	54	0.14	109	<10	5	77	40	
TR10085188-E667139	7	<10	173	<5	16	0.08	79	<10	4	82	19	
CDN-ME-12 Sample 6	11	203	205	<5	51	0.21	144	71	11	2644	36	
TR10087091-E665139	22	14	108	<5	45	0.20	210	24	7	738	19	
TR10087094-E665173	13	<10	81	<5	52	0.28	92	18	8	690	28	
TR10087096-E665278	12	13	45	<5	40	0.12	141	<10	6	201	41	
TR10087096-E665223	12	10	61	<5	54	0.24	131	13	8	374	26	
TR10087096-E665245	18	<10	373	<5	55	0.24	153	16	9	674	42	
TR10087097-E665317	19	<10	96	<5	59	0.29	163	10	14	260	24	
Standards:												
Blank	<1	<10	<1	<5	<10	< 0.01	<1	<10	<1	<1	1	
CH-4	12	10	204	8	74	0.31	95	13	9	224	133	

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1723-PA1

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au a/tonne	Ag g/tonne	Cu %	Pb %	
	grome	ground			
E607801	0.22				
E607761	0.41				
E607785	0.52				
E669775	0.64				
E667532	0.17				
E667415	0.17				
E667413	0.18				
E667531	0.24				
E667471	0.33				
E667449	0.41				
E667571	0.48				
E667563	0.55				
E667487	0.63				
E667479	0.86				
E667441	1.25				
E667384	0.43				
E667371	0.47				
E667408	0.64				
E667402	0.63				
Sample1	2.61	377.8	1.73	3.97	
E669839	0.15				
E667588	0.22				
*DUP E607801	0,26				
*DUP E667449	0.47				
*DUP Samplel	2.68				
*SG40	0.98				
*ME-4		394.1	1.84	4.20	
*BLANK	<0.01	<0.1	<0.001	<0.01	

Au by 30g FA, AA finish. Ag, Cu, Pb by 4acid digist, AA finish.

Certified by___

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1723-PA2

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	
Name	g/tonne	
E665505	0.41	
E665479	0.78	
E665502	0.93	
E669803	1.01	
E669816	1.11	· · · · · · · · · · · · · · · · · · ·
E665485	1.29	
E665519	0.19	
E665522	0.23	
E669862	0.43	
E669856	0.54	
E665562	0.64	
E665538	0.65	
E665539	0.74	
E665544	1.03	
E669869	2.17	
E665588	0.35	
E665653	0.54	
Sample2	0.34	
E667765	0.19	
E667731	0.23	
E667676	0.42	
E667708	0.42	
*DUP E665505	0.41	
*DUP E669856	0.55	
*DUP E667731	0.25	
*SG40	1.02	
*BLANK	<0.01	

Au by 30g FA, AA finish.

M

CERTIFICATE OF ANALYSIS

0V-1723-PA3

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	Ag	Cu	Pb		
Name	g/tonne	g/tonne	%	%	 	
E667647	0.42					
E667722	0.45					
E667623	0.58					
E667656	0.55					
E667638	0.62				 ···· ···	
E669959	0.70					
E669948	0.78					
E669933	0.86					
E669979	0.89					
E669932	1.03				 	
E669963	0.98					
E670081	0.24					
E665748	0.43					
E665754	0.50					
E665751	0.75				 	
Sample3	2.20	374.5	1.74	3,96		
E665756	0.76					
E670024	0.26					
E670021	0.25					
E670016	0.27				 	
E670008	0.38					
E665745	0.68					
*DUP E667647	0.49					
*DUP E669932	1.04					
*DUP E670016	0.33				 	
*SG40	0.96					
*ME-4		394.1	1.84	4.20		
*BLANK	<0.01	<0.1	<0.001	<0.01		

Au by 30g FA, AA finish. Ag, Cu, Pb by 4acid digist, AA finish.

A A

Certified by_____

CERTIFICATE OF ANALYSIS

0V-1723-PA4

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Au				
g/tonne				· · <u></u> · · · · · · · · · · · ·
0.05				
0.38				
0.37				
0.50				
0.74		· ····		
0.18				
0.18				
0.18				
0.39				
0.44				
0.08				
0.23				
0.32				
0.36				
0.84				·
0.84				
0.93				
0.01				
0.18				
0.16				
0.27				
0.32				
0.05				
0.48				
0.20	<u> </u>			
0.98				
<0.01				
	Au $g/tonne$ 0.050.380.370.500.740.180.180.180.390.440.080.230.320.360.840.930.010.180.160.270.320.050.480.200.98<0.01	Au $g/tonne$ 0.05 0.38 0.37 0.50 0.74 0.18 0.18 0.18 0.18 0.39 0.44 0.08 0.23 0.36 0.32 0.36 0.93 0.01 0.18 0.23 0.32 0.36 0.44 0.084 0.93 0.01 0.18 0.27 0.32 0.05 0.48 0.20 0.98 <0.01	Au $g/tonne$ 0.05 0.38 0.37 0.50 0.74 0.18 0.18 0.39 0.44 0.08 0.23 0.36 0.84 0.93 0.01 0.18 0.32 0.36 0.84 0.93 0.01 0.18 0.93 0.01 0.93 0.01 0.98 <0.01	Au $g/tonne 0.05 0.38 0.37 0.50 0.74 0.18 0.18 0.18 0.18 0.39 0.44 0.08 0.23 0.36 0.84 0.93 0.01 0.18 0.27 0.32 0.05 0.48 0.20 $

Au by 30g FA, AA finish.

A Certified by___

CERTIFICATE OF ANALYSIS

0V-1723-PA5

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	Ag	Cu	Pb	Zn	
Name	g/tonne	g/tonne	%	%	%	
E667868	0.32					
E667855	0.32					
E607527	0.73					
E667957	0.22					
E667974	0.26				-	
E667959	0.25					
E607635	0.31					
E607574	0.34					
E607593	0.48					
E607595	0.47					·····
E668064	0.18		1 70	2 01	1 01	
Sample5	2.71	375.0	1.72	3.91	1.01	
E668099	0.23					
E668116	0.18					
F607671	0 15					
E607698	0.42					
E607707	1.25					
E607918	0.16					
E607913	0.18					
E607919	0.16					
E607876	0.49					
*DUP E667868	0.32					
*DUP E607595	0.52					
*DUP_E607913	0.20					
*SG40	0.97				0 00	
*ME-3		204 1	1 0 4	4 20	0.88	
* MK = 4 * DI ANK	Z0 01	394.L	1.04 20 001	4.2U 20 01	<0.01	
" DLANK	<0.01	<u.1< td=""><td><u.uui< td=""><td>NO.01</td><td><0.01</td><td></td></u.uui<></td></u.1<>	<u.uui< td=""><td>NO.01</td><td><0.01</td><td></td></u.uui<>	NO.01	<0.01	

Au by 30g FA, AA finish. Ag, Cu, Pb, Zn by 4acid digist, AA finish.

Certified by_____

CERTIFICATE OF ANALYSIS

0V-1723-PA6

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au		
Name	g/tonne		
E668176	0.66		
E670514	0.73		
E668178	0.99		
E608073	0.25		
E607979	0.24		
E608062	0.26		
E668132	0.57		
E668144	0.66		
E668133	0.72		
Sample6	0.30		······································
E668139	0.94		
E608087	0.71		
E670519	0.67		
E670518	0.73		
E607583	0.83		<u></u>
E668259	0.94		
E670525	0.96		
E607581	1.20		
E668257	1.28		
E670552	1.51		
E670635	0.26		
E670642	0.79		
*DUP E668176	0.71		
*DUP Sample6	0.37		
*DUP E670552	1.80	<u> </u>	· ·····
*SG40	0.89		
*BLANK	<0.01		

Au by 30g FA, AA finish.

AN

Certified by_

CERTIFICATE OF ANALYSIS

0V-1723-PA7

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample Name	Au g/tonne	Ag ø/tonne	Cu %	Pb %		
E670596 E670599	0.72	B,				
E668273	0.88					
E670602	1.12					
E608095	1.39					
E670672	0.27					
E670665	0.27			<u> </u>		
Sample7	2.78	383.2	1./1	3.89		
E608137	0.53					
E608163	0.52					
E608155	0.57					
E608178	0.76					
E668332	0.88					
E670654	0.96					
E668315	1.03	····			· · · · · · · · · · · · · · · · · ·	······································
E668327	1.42					
E608183	1.51					
E668325	2.36					
E608292	0.14					
E670705	0.13					
E608279	0.18					
E608288	0.54					\$
*DUP E670596	0.79					
*DUP E608163	0.63					
*DUP E670705	0.18					
*OXF65	0.72					
*ME-4		394.1	1.84	4.20		
*BLANK	<0.01	<0.1	<0.001	<0.01		

Au by 30g FA, AA finish.Ag, Cu, Pb by 4acid digist, AA finish.

Certified by_____

CERTIFICATE OF ANALYSIS

0V-1723-PA8

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	
Name	g/tonne	
E608225	0.16	
E608213	0.18	
E670794	0.14	
E670795	0.13	
E608429	0.33	
Sample8	0.31	
E608425	0.36	
E608427	0.59	
E670771	0.57	
E670736	0.20	
E608364	0.39	
E608372	0.47	·*
E608373	0.78	
E608383	1.25	
E670912	0.19	
E670921	0.21	
E670953	0.32	
E670938	0.30	
E670971	0.34	
E670944	0.42	
E670961	0.54	
E608502	0.25	
*DUP E608225	0.18	
*DUP E670736	0.23	
*DUP E670944	0.43	
*SG40	0.94	
*BLANK	<0.01	

Au by 30g FA, AA finish.

Certified by_

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1723-PA9

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	Ag	Cu	Pb		
Name	g/tonne	g/tonne	<u>%</u>	%	<u>.</u>	• •
E608479	0.29					
E608495	0.30					
E608521	0.37		1 50	2 02		
Sample9	2.73	374.4	1.72	3.92		
E608471	0.90				······································	
E608482	0.51					
E608528	0.69					
E608465	0.34					
E608642	0.22					
E608548	0.82					
E608556	0.93					
E608471	0.44					
E608614	0.87					
E608557	1.02					
E609272	0.27		·· ·			
E609229	0.32					
E609296	0.35					
E609277	0.38					
E609281	0.46					
E609208	0.46				· · · · · · · · · · · · · · · · ·	
E609211	0.82					
E609172	0.23					
*DUP E608479	0.30					
*DUP E608548	0.78					
*DUP E609208	0.49					• ••
*SG40	0.96			1 00		
*ME-4		394.1	1.84	4.20		
*BLANK	<0.01	<0.1	<0.001	<0.01		

Au by 30g FA, AA finish. Ag, Cu, Pb by 4acid digist, AA finish.

An Certified by___

CERTIFICATE OF ANALYSIS

0V-1723-PA10

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	Ag	Cu	Pb	
Name	g/tonne	g/tonne	%	%	· · · · · · · · · · · · · · · · · · ·
E609156	0.25				
Sample10	0.34				
E609344	0.24				
E609356	0.26				
E670973	0.20				<u> </u>
E613503	0.35				
E613502	0.37				
E608727	0.25				
E608769	0.25				
E608703	0.52				
E608738	0.54				
E608755	0.60				
E608721	0.59				
E608751	0.65				
E608743	0.64				
E608754	0.64				
E608841	0.20				
E608877	0.28				
E608821	0.37				
E608822	0.38				
E608864	0.29				
Sample11	2.50	363.5	1.68	3.89	
*DUP E609156	0.25				
*DUP E608703	0.53				
*DUP E608822	0.41				
*SG40	0.96				
*ME-4		394.1	1.84	4.20	
*BLANK	<0.01	<0.1	<0.001	<0.01	

Au by 30g FA, AA finish.Ag, Cu, Pb by 4acid digist, AA finish.

M Certified by_____

CERTIFICATE OF ANALYSIS

0V-1723-PA11

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au	
Name	g/tonne	
E608807	0.59	
E313657	0.61	
E613647	0.68	
E613627	0.83	
E613669	0.76	
E613619	0.76	
E613749	0.53	
E613748	0.55	
E613705	0.52	
E613734	0.60	
E613701	0.61	
E613702	0.63	
E613736	0.86	
E613828	0.23	
E613817	0.16	
E613792	0.32	
E613763	0.45	
E609039	0.15	
E608945	0.16	
Sample12	0.33	······································
E609037	0.16	
E609013	0.18	
*DUP E608807	0.61	
*DUP E613734	0.60	
*DUP Sample12	0.34	
*SG40	0.94	
*BLANK	<0.01	

Au by 30g FA, AA finish.

Ar

Certified by_

CERTIFICATE OF ANALYSIS

0V-1723-PA12

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-01-10

Sample	Au -/torres	Ag	Cu	Pb %	
Name	g/tonne	g/tonne		·····	·····
E609153	0.50				
E609065	0.77				
E613929	0.25				
E613928	0.14				
E613914	0.47			· · · · · · · · · · · · · · · · · · ·	
E613898	0.78				
E613921	1.15				
E609669	0.13				
E609655	0.23				
E609638	0.29				·····
E609703	0.41				
E609707	1.23				
E609576	<0.01				
E609933	0.23				
E609954	0.35				
E609898	0.36				
E609902	0.50				
Sample13	2.20	366.1	1.67	3.84	
E609907	0.56				
E609909	0.67				
E609977	0.17				
E610091	0.46				
*DUP E609153	0.47				
*DUP E609638	0.30				
*DUP E609909	0.68				
*SG40	0.97				
*ME-4		394.1	1.84	4.20	
*BLANK	<0.01	<0.1	<0.001	<0.01	

Au by 30g FA, AA finish. Ag, Cu, Pb by 4acid digist, AA finish.

Certified by___

CERTIFICATE OF ANALYSIS

0V-1723-PA13

Nov-15-10

Company:	Silver Standard Resources
Project:	Snowfield
Attn:	Zoran Lukic

We *hereby certify* the following assay of 9 pulp samples submitted Oct-01-10

Sample	Au	
Name	g/tonne	
E610085	0.46	
E610035	0.50	
E610074	1.41	
E609802	0.57	
E609799	0.69	
E609824	0.72	
E610136	0.26	
E610103	0.53	
E610176	0.80	
*DUP E610085	0.49	
*SG40	0.94	
*BLANK	<0.01	

.....

Au by 30g FA, AA finish.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	l As Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo N	la Nt) Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm '	% ррп	ı ppm	ppm	%	ppm	ppm	ppm	ppm (ppm	ppm	%	ppm	ppm p	opm	ppm	ppm
E607801	1	10.21	99 565	<5	0.51	<1	14	13	319	4.96	28	4.27	<10	6	0.35	208	13 0.6	6 <10	1 5	30	4.60	29	15	<10	68	<5	<10	0.07	168	<10	8	643	47
E607761	1	7.08	13 1050	<5	0.47	<1	17	15	209	7.16	29	3.33	<10	44	1.91	805	20 0.9	6 <10	1 4	22	3.60	<5	12	<10	52	<5	<10	0.09	171	<10	6	117	43
£607785	1	6.95	15 734	<5	0.45	<1	20	9	223	7.16	24	3.63	<10	19	0.80	229	19 0.6	6 <10	1 4	10	4.64	<5	11	<10	83	<5	<10	0.07	164	<10	8	128	40
E669775	1	5.34	<10 2018	<5	0.11	<1	9	42	549	4.48	18	3.12	<10	5	0.33	148	78 0.5	6 <10	13	32	2.60	<5	9	<10	41	<5	<10	0.06	91	<10	2	154	31
E667532	1	4.98	<10 1350	<5	0.22	<1	7	17	1387	4.48	15	2.70	<10	2	0.35	142	84 0.2	4 <10	6	38	2.81	<5	4	<10	26	<5	<10	0.03	48	<10	2	154	14
E667415	2	5.22	37 2027	<5	0.05	<1	4	21	361	4.67	14	2.44	<10	3	0.12	57	80 0.3	4 <10	6	27	2.69	29	9	<10	91	<5	<10	0.04	119	<10	1	20	23
E667413	3	4.13	<10 1493	<5	0.04	<1	4	20	637	3.34	10	2.01	<10	<1	0.11	60	96 0.2	0 <10	4	21	2.05	<5	4	<10	59	<5	<10	0.03	57	<10	1	16	11
E667531	2	4.86	<10 1203	<5	0.31	<1	8	15	1338	4.87	14	2.34	<10	3	0.41	184	65 0.2	4 <10	5	34	3.03	<5	4	<10	24	<5	<10	0.02	45	<10	2	133	16
E667471	3	5.29	<10 727	<5	0.10	<1	10	16	873	5.22	15	2.97	<10	2	0.27	63	109 0.3	7 <10	12	61	3.62	<5	7	<10	40	<5	<10	0.04	76	<10	2	58	27
E667449	2	7.37	<10 884	<5	0.14	<1	10	38	838	5.92	22	3.66	<10	8	0.60	124	112 0.4	9 <10	27	38	3.79	<5	11	<10	58	<5	<10	0.04	137	<10	2	154	33
E667571	2	5.81	12 1343	<5	0.21	<1	6	59	789	5.08	20	2.74	<10	10	0.76	552	45 0.1	8 <10	19	70	2.49	<5	8	<10	14	<5	<10	0.05	89	<10	з	176	14
E667563	2	5.94	21 864	<5	0.25	<1	9	39	591	8.39	24	1.99	<10	28	1.62	2041	35 0.2	1 <10	20	20	2.18	6	10	<10	11	<5	<10	0.15	98	<10	3	227	20
E667487	3	6.83	10 720	<5	0.14	6	10	53	775	5.61	17	3.59	<10	2	0.26	134	77 0.5	2 <10	24	26	3,75	<5	9	<10	28	<5	<10	0.06	114	<10	3	2302	30
E667479	3	5.89	16 715	<5	0.17	<1	16	43	751	5.49	17	3.92	<10	3	0.19	102	86 0.5	4 <10	30	31	3.76	6	6	<10	30	<5	<10	0.11	143	<10	5	1269	36
E667441	4	5.49	142 816	<5	0.18	9	20	52	954	6.46	13	2.26	<10	5	0.14	54	83 0.4	5 <10	42	35	4.68	94	11	<10	51	<5	<10	0.17	174	<10	10	2266	43
E667384	2	4.08	16 616	<5	0.16	<1	12	14	1012	6.08	9	1.55	<10	3	0.14	140	70 0.2	8 <10	3	61	4.12	10	12	<10	326	<5	<10	0.04	116	<10	1	696	25
E667371	2	6.09	16 608	<5	0.20	<1	8	13	1082	5.96	15	2.65	<10	2	0.26	69	87 0.4	1 <10	<2	44	3.92	16	11	<10	679	<5	<10	0.05	93	<10	2	121	33
E667408	1	6.47	22 740	<5	0.12	<1	10	14	805	6.09	12	2.96	<10	1	0.14	64	75 0.4	6 <10	2	21	4.01	19	11	<10	150	<5	<10	0.08	132	<10	3	182	32
E667402	3	4.74	32 498	<5	0.25	<1	10	12	1005	5.74	10	1.70	<10	2	0.17	85	74 0.3	0 <10	<2	40	3.84	14	9	<10	262	<5	<10	0.04	91	<10	2	273	26
Sample1	>200	2.92	1989 489	19	1.39	55	18	48	>10000	11.20	13	0.67	<10	6	0.86	4562	45 0.8	2 <10	27	>10000	2.84	1599	6	<10	116	<5	<10	0.13	43	<10	8	9308	24
E669839	1	4.96	57 1290	<5	0.24	<1	6	18	344	3.96	14	2.34	<10	1	0.25	94	141 0.3	3 <10	5	38	2.53	9	4	<10	42	<5	<10	0.03	46	<10	1	129	21
E667588	2	4.02	29 957	<5	0.14	<1	6	17	1058	4.31	15	2.01	<10	3	0.53	183	43 0.2	0 <10	4	36	2.71	9	3	<10	14	<5	<10	0.03	37	<10	1	80	16
E665505	2	7.32	12 721	<5	0.08	<1	11	31	567	4.14	18	3.53	<10	2	0.21	58	101 0.5	3 <10	14	54	3.55	<5	11	<10	31	<5	<10	0.05	95	<10	4	255	29
E665479	3	7.50	<10 2642	<5	0.04	<1	3	25	113	2.61	20	3.50	<10	2	0.20	58	68 0.4	9 <10	4	23	1.73	<5	10	<10	54	<5	<10	0.05	105	<10	3	50	34
E665502	2	7.33	<10 1089	<5	0.16	<1	11	35	595	3.56	20	3.43	<10	3	0.27	128	74 0.3	9 <10	19	63	2.97	<5	13	<10	29	<5	<10	0.07	111	<10	6	307	22
E669803	2	6.83	10 1128	<5	0.05	<1	12	35	928	5.25	23	2.00	<10	16	0.41	365	128 0.3	8 <10	16	28	3.10	<5	12	<10	48	<5	<10	0.07	104	<10	3	364	27
E669816	4	8.03	22 2101	<5	0.82	<1	9	28	616	5.62	31	2.57	<10	33	1.40	1731	83 0.4	7 <10	5	86	2.02	9	22	<10	56	<5	<10	0.16	217	<10	6	876	31
E665485	2	7.12	19 1420	<5	0.04	<1	8	35	587	3. 79	19	3.06	<10	2	0.20	74	90 0.4	8 <10	12	48	2.91	<5	11	<10	36	<5	<10	0.07	99	<10	16	494	31
E665519	2	6.08	65 1816	<5	0.18	<1	5	21	461	2.64	16	2.49	<10	2	0.20	64	42 0.4	1 <10	5	77	2.33	11	4	<10	47	<5	<10	0.04	44	<10	2	116	23
E665522	1	6.72	12 1546	<5	0.28	<1	4	25	603	2.70	17	2.74	<10	1	0.24	65	35 0.4	0 <10	6	57	2.33	<5	5	<10	33	<5	<10	0.03	54	<10	3	149	22

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	A %	As Ba	Bi	Ca %	Cd nom	Co	Cr	Cu	Fe %	Ga	K %	La	Li	Mg %	Mn	Mo N	a Nb	Ni	Pb	S %	Sb	Sc	Şn nom	Sr	Та	Te	Ti %	V	W	Y	Zn	Zr
	FF			FF		F	PP····	PPIII	ppin		PPIII	70	PPIII	PPIII	70	ppm	ppin ,	o ppin	ppm	ppin	70	Phili P	- nu	ppin	Phin I	ppm	ppin	70	ppin	hhiii t	pm	ppm	phin
E669862	1	7.09	<10 1384	<5	0.21	<1	9	27	772	3.40	22	2.65	<10	9	0.63	274	95 0.3	8 <10	10	39	2.43	<5	7	<10	26	<5	<10	0.04	73	<10	3	286	23
E669856	2	6.90	12 1092	<5	0.19	12	10	22	634	3.88	25	2.77	<10	4	0.33	152	87 0.4	0 <10	13	163	3.38	5	8	<10	36	<5	<10	0.04	98	<10	3	1114	24
E665562	2	5.09	25 943	<5	0.27	<1	11	18	650	3.86	15	2,02	<10	2	0.27	195	55 0.2	9 <10	9	55	3.34	<5	5	<10	20	<5	<10	0.03	45	<10	3	258	20
E665538	2	8.31	19 1330	<5	0.72	1	10	36	525	3.52	29	3.31	11	11	0.63	799	54 0.4	5 <10	16	35	2.55	6	12	<10	37	<5	<10	0.22	125	<10	5	1009	41
E665539	3	7.82	18 1321	<5	0.65	5	13	35	490	4.30	31	2.66	15	24	1.25	1298	51 0.4	0 <10	19	50	2.33	6	12	<10	43	<5	<10	0.23	128	<10	6	997	35
E665544	2	7.47	2 0 1035	<5	0.33	<1	14	36	554	4.93	26	2.89	12	10	0.65	509	36 0.4	1 <10	19	26	3.62	5	12	<10	26	<5	<10	0.14	105	<10	5	253	33
E669869	2	8.93	118 246	<5	0.43	<1	22	29	1028	5.48	28	3.46	<10	5	0.55	246	92 0.5	0 <10	40	58	5.07	14	18	<10	42	<5	<10	0.08	150	<10	9	443	50
E665588	2	6.05	135 1210	<5	0.28	<1	8	27	744	3.71	20	2.25	<10	2	0.38	150	70 0.2	5 <10	15	272	3.39	15	7	<10	24	<5	<10	0.04	79	<10	3	933	22
E665653	1	7.95	34 1443	<5	1.26	<1	12	40	563	4.32	30	2.87	13	15	1.03	826	72 0.3	0 <10	15	55	2.87	5	11	<10	45	<5	<10	0.11	126	<10	7	25 7	27
Sample2	51	7.32	99 583	<5	0.73	16	17	44	4148	4.80	28	4.01	14	10	0.80	512	160 1.4) <10	24	1944	2.08	73	11	163	225	<5	<10	0.20	151	<10	12	2575	34
E667765	2	8.19	<10 4291	<5	2.75	<1	10	11	945	4.03	24	3.70	12	8	0.78	975	41 2.3	9 <10	2	20	1.29	5	15	<10	334	<5	<10	0.19	160	<10	8	77	19
E667731	2	5.42	17 1891	<5	0.36	<1	10	37	637	4.00	24	2.41	11	8	0.85	287	31 0.1	9 <10	13	28	2.43	8	6	<10	55	<5	<10	0.13	72	<10	7	85	19
E667676	2	6.21	37 970	<5	0.18	<1	9	36	388	3.00	13	2. 2 1	10	1	0.20	67	40 0.3	3 <10	11	54	2.65	8	6	<10	28	<5	<10	0.05	72	<10	4	15	20
E667708	1	5.67	13 1318	<5	2.07	<1	10	34	970	3.55	25	2.42	14	10	1.09	780	31 0.1	8 <10	12	12	2.33	5	8	<10	93	<5	<10	0.12	70	<10	8	46	11
E667647	2	5.56	30 945	<5	0.20	<1	10	28	673	3.30	20	1.61	<10	3	0.40	250	27 0.1	7 <10	10	36	2.59	6	6	<10	19	<5	<10	0.06	63	<10	3	97	15
E667722	2	6.31	<10 1016	<5	0.59	<1	11	30	910	3.90	30	2.17	18	10	1.34	506	45 0.5	0 <10	14	18	1.90	5	10	<10	318	<5	<10	0.17	98	<10	13	67	22
E667623	2	7.98	14 738	<5	0.53	<1	12	38	774	3.71	27	2.43	17	5	0.62	559	39 0.2	7 <10	17	40	2.95	<5	13	<10	23	<5	<10	0.08	103	<10	8	121	22
E667656	2	6.98	10 1164	<5	0.54	<1	14	37	695	3.83	28	1.98	12	8	0.85	619	27 0.2	1 <10	15	42	2.81	5	9	<10	29	<5	<10	0.07	85	<10	4	77	21
E667638	2	7.38	27 1063	<5	0.22	<1	15	43	653	4.76	31	1.88	13	12	0.93	622	40 0.2	3 <10	20	14	2.84	5	11	<10	14	<5	<10	0.18	103	<10	4	279	28
E669959	<1	7.0 7	<10 1111	<5	2.52	<1	12	30	328	4.02	32	1.41	11	27	1.70	1858	67 0.3	0 <10	18	30	1,74	6	12	<10	91	<5	<10	0.15	102	<10	10	310	22
E669948	2	8.37	72 855	<5	0.73	<1	10	16	296	3.97	28	2.14	12	9	0.72	696	84 0.3	3 <10	<2	46	3.21	7	15	<10	60	<5	<10	0.13	147	<10	7	278	38
E669933	1	7.52	50 1856	<5	2.04	3	9	19	281	3.65	31	1.50	15	20	1.46	1835	72 0.5	4 <10	4	33	2.25	9	12	<10	154	<5	<10	0.14	99	<10	8	570	27
E669979	1	6.95	18 1010	<5	2.00	<1	13	41	433	3.98	28	1.55	14	17	1.06	1190	57 0.1	5 <10	17	31	2.18	<5	11	<10	67	<5	<10	0.13	110	<10	10	194	19
E669932	1	7.47	12 2313	<5	2.73	21	9	18	310	3.37	31	1.35	12	30	1.86	2204	101 0.5	9 <10	5	20	1.18	<5	14	<10	212	<5	<10	0.14	125	<10	9	722	24
E669963	<1	7.34	13 1279	<5	2.54	<1	11	31	360	3.08	31	1.59	13	18	1.30	168 1	55 0.4	0 <10	18	17	1.69	<5	11	<10	105	<5	<10	0.11	99	<10	8	198	18
E670081	2	7.96	37 1664	<5	1.71	<1	13	13	1021	4.10	29	2.80	11	9	1.19	847	73 0.3	1 <10	2	9	1.85	10	15	<10	131	<5	<10	0.18	160	<10	11	88	22
E665748	1	7.84	<10 1157	<5	1.23	<1	12	37	723	3.76	31	2.00	15	11	1.12	982	18 0.1	9 <10	24	7	1.43	7	13	<10	40	<5	<10	0.21	107	<10	7	213	24
E665754	1	7.71	24 1205	<5	0.56	<1	14	40	1053	3.49	27	2.24	18	4	0.62	340	30 0.19	9 <10	20	15	2.74	<5	12	<10	27	<5	<10	0.08	101	<10	7	56	°22
E665751	2	7.57	<10 1266	<5	1.76	<1	16	35	1222	4.02	29	1.98	22	8	0.94	920	53 0.1	0 <10	25	24	2.32	7	12	<10	51	<5	<10	0.12	108	<10	11	112	14
Sample3	>200	3.38	2085 491	16	1.00	58	20	38 :	>10000	7.52	16	0.44	<10	2	0.55	4375	46 0.6	5 <10	27	>10000	2.80	1410	6	<10	111	<5	<10	0.10	39	<10	8	9293	26

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

H)

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sп	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	pp m	%	ppm ppm	ррт	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	opm	% F	pm	ppm %	ppm	ppm	ppm	%	ppm (opm	ppm	ppm j	opm p	opm	%	ppm	ppm þ	pm	ppm (ppm
E665756	2	7.62	<10 1024	< 5	1.30	<1	14	36	1214	3.85	26	2.12	13	5	0.78	752	52 0.13	<10	18	43	2.71	<5	9	<10	51	<5	<10	0.09	84	<10	7	109	14
E670024	2	3.66	23 4108	<5	1.08	<1	4	22	932	1.94	17	0.72	<10	3	0.53	420	62 0.64	<10	6	14	1.07	6	4	<10	164	<5	<10	0.08	51	<10	5	58	7
E670021	1	7.14	12 1796	<5	1.30	<1	11	38	766	3.31	27	2.04	11	7	0.95	610	74 0.40	<10	14	28	2.42	5	10	<10	83	<5	<10	0.12	95	<10	7	103	18
E670016	1	7.69	22 1718	< 5	1.31	<1	10	28	437	3.91	32	1.97	19	13	1.75 1	059	51 0.10	<10	22	16	1.65	7	13	<10	50	<5	<10	0.20	104	<10	9	281	20
E670008	1	8.01	20 1593	<5	1.16	<1	6	11	485	2.21	27	2.30	13	4	0.80	676	41 0.14	<10	2	26	1.80	<5	6	<10	50	<5	<10	0.08	81	<10	6	67	18
E665745	2	7.30	35 959	<5	1.44	1	16	40	709	4.04	30	1.93	16	8	0.98 1	069	45 0.12	<10	22	37	2.74	7	12	<10	47	<5	<10	0.17	101	<10	7	372	19
E665838	2	9.11	334 436	8	0.64	3	11	14	783	4.93	26	3.88	<10	9	0.76	510	4 0,40	<10	3	113	4.46	97	16	<10	199	9	<10	0.14	180	<10	6	257	55
E667793	2	8.65	10 366	7	0.22	2	14	17	966	5.91	27	3.94	12	13	1.13	220	127 0.39	<10	з	40	4.40	6	17	<10	38	9	<10	0.08	181	<10	5	82	38
E670115	2	8.03	17 2275	6	1.54	2	10	14	1826	3.69	24	4.30	12	16	1.41	604	136 2.35	<10	5	12	1.68	7	17	<10	226	7	<10	0.24	176	<10	13	82	27
E667785	2	8.88	<10 491	6	0.18	3	13	16	658	5.03	26	4.26	12	9	0.82	151	118 0.40	<10	4	35	3.56	5	19	<10	35	10	<10	0.08	194	<10	4	76	40
E665774	2	6.72	17 1373	6	0.73	2	9	130	717	4.10	23	3.31	<10	10	1.01	636	34 0.24	<10	50	22	2.29	5	10	<10	71	8	<10	0.18	130	<10	5	142	24
E665919	1	9.15	128 1421	7	2.08	2	15	42	1842	5.72	29	2.95	16	41	1.48 1	438	5 2.10	<10	17	26	2.82	9	12	<10	263	10	<10	0.28	165	<10	7	348	42
E665918	1	9.50	83 1229	6	3.11	2	14	35	1842	6.33	32	3.26	11	46	1.71 1	871	5 1.78	<10	14	44	3.00	7	12	<10	361	11	<10	0.28	176	<10	9	437	41
E665913	1	8.12	33 2025	5	4.76	2	9	11	2056	4.93	26	2.52	17	48	1.68 2	2308	3 1.46	<10	3	16	1.34	8	10	<10	1149	11	<10	0.19	139	<10	12	296	41
E665959	2	8.41	391 424	7	0.24	3	18	26	2495	6.22	14	3.18	<10	5	0.15	59	14 0.69	<10	19	41	5.93	26	5	<10	109	10	<10	0 .08	98	<10	4	103	63
E667804	2	9.19	14 813	6	0.28	3	18	19	1075	5.14	28	4.09	14	16	1.51	376	242 0.40	<10	5	40	3.35	6	19	<10	40	9	<10	0.12	200	<10	5	145	38
E665994	2	7.82	158 171	10	0.36	3	18	17	2868	6.90	26	3.49	<10	5	0.34	70	5 0.52	<10	12	88	6.12	17	9	<10	138	10	<10	0.03	114	<10	4	35	38
E665873	2	6.08	999 601	8	0.22	З	8	19	2692	4.16	21	2.85	<10	3	0.32	253	5 0.30	<10	6	50	3.87	292	4	<10	151	6	<10	0.04	66	<10	z	258	29
E665987	5	6.00	3206 205	15	0.22	З	26	20	9941	9.05	27	2.73	<10	4	0.28	83	12 0.36	<10	10	89	8.69	101	7	<10	30	13	<10	0.04	87	<10	5	142	24
Sample4	54	7.33	125 669	8	0.78	28	18	46	4626	5.17	26	4.70	16	13	0.99	585	196 1.47	<10	30	2423	2.31	87	11	181	264	9	<10	0.23	165	<10	13	2851	36
E665894	1	7.57	27 2933	7	3.78	2	10	14	4041	5.81	28	2.87	15	37	1.83 2	2624	4 0.12	<10	6	39	1.16	7	10	<10	1068	11	<10	0.20	150	<10	6	408	28
E665898	2	7.72	27 5170	8	5.37	2	8	10	4279	5.58	28	2.81	14	40	1.69 2	2314	6 0.15	<10	3	34	1.10	6	10	<10	1862	11	<10	0.20	148	<10	8	30 5	29
E665965	4	7.04	2302 161	25	0.31	2	15	14	5680	8.79	2 7	2.63	<10	14	0.18	84	4 0.55	<10	6	557	8.20	29 9	6	<10	147	12	15	0.07	122	<10	5	77	33
E670192	<1	8.60	55 267	10	3.78	3	7	10	23	4.83	29	1.85	<10	24	1.31 1	314	3 0.74	<10	2	66	6.09	11	8	<10	477	9	<10	0.09	79	<10	7	115	40
E667905	1	9.21	11 748	5	1.29	3	14	18	484	5.60	30	4.36	17	19	2.04	667	40 0.45	<10	4	35	3.14	10	19	<10	73	9	<10	0.20	209	<10	9	86	31
E667874	1	7.62	<10 439	9	1.54	2	15	15	386	5.52	24	3.46	15	15	1.36	812	71 0.23	<10	4	47	4.14	5	16	<10	83	9	<10	0.11	168	<10	9	57	23
E667848	2	8.79	14 469	9	0.94	8	16	19	823	5.50	28	3.81	14	19	1.94	825	89 0.33	<10	4	112	3.72	7	18	<10	56	10	<10	0.11	186	<10	8	547	28
E667882	2	8.85	1 5 450	9	1.07	3	14	16	977	5.84	28	3.98	15	20	1.87	828	137 0.35	<10	4	55	3.99	<5	18	<10	49	10	<10	0.10	197	<10	7	125	30
E667868	1	8.52	<10 956	<5	1.45	3	16	19	675	4.70	24	3.55	14	27	2.21	705	126 0.23	<10	3	36	2.23	6	18	<10	330	10	<10	0.18	187	<10	8	102	27
E667855	1	8.66	<10 1022	5	1.08	2	17	19	710	5.01	26	3 <i>.</i> 67	14	28	2.34	915	178 0.28	<10	4	27	2.52	6	19	<10	105	11	<10	0.18	2 0 0	<10	8	126	30

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Ac

Signed: ___

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As B	Ba Bi	i (Ca (Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	Y	Zn	Źr
Number	ppm	%	ppm ppi	m ppm		% pp	m p	pm p	pm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	% p	opm p	ppm	ppm	%	ppm	opm	ppm	ppm p	pm	ppm	%	ppm	ppm j	opm	ppm	ppm
E607527	1	7.33	51 40)7 10	5.	55	2	11	17	2176	4.71	22	3.24	15	15	0.92	1825	2.0	.24	<10	<2	34	3.51	9	10	<10	454	10	< 10	0.25	136	<10	q	80	22
E667957	<1	7.53	<10 180)8 <5	1.	07	2	11	16	432	4.30	22	3.41	12	17	1.58	631	15 2	.06	<10	3	16	2.53	7	17	<10	174	8	<10	0.20	188	<10	9	70	27
E667974	1	7.67	17 97	73 7	2.	40	2	13	14	498	4.25	22	2.98	13	14	1.49	984	82 1	.98	<10	4	17	2.50	10	16	<10	203	10	<10	0.19	167	<10	10	87	21
E667959	1	8.31	10 53	32 8	1.	08	2	16	16	355	5.19	23	3.56	13	15	1.48	595	81 1	.60	<10	3	25	3.62	6	17	<10	135	10	<10	0.16	185	<10	9	60	28
E607635	1	7.89	12 93	37 8	1.	52	2	6	16	351	4.36	25	2.00	11	22	1.56	750	73	,54	<10	5	27	3.05	5	10	<10	151	10	<10	0.13	159	<10	11	112	23
E607574	. 1	8.05	<10 72	27 7	0.	38	2	8	26	627	4.89	26	3.32	<10	20	1.03	389	36 0	.77	<10	15	39	4.25	<5	11	<10	78	9	<10	0 .07	146	<10	6	128	41
E607593	1	7.42	<10 65	54 11	0.	76	2	17	12	671	5.20	27	3.70	<10	14	0.74	418	31 0	.56	<10	8	39	4.97	<5	13	<10	64	10	<10	0.08	177	<10	5	52	38
E607595	<1	8.12	<10 97	76 7	1.	78	3	9	15	465	4.31	26	3.49	17	27	1.28	1025	29 0	.57	<10	4	28	3.24	5	13	<10	98	9	<10	0.13	184	<10	9	139	45
E668064	1	7.44	<10 96	55 5	0.	92	2	12	16	296	4.08	22	2.76	12	13	1.63	605	22 2	.59	<10	3	32	2.56	5	15	<10	217	9	<10	0.17	171	11	7	61	28
Sample5	>200	3.43	2444 46	53 24	1.	22 (68	21	51	>10000	8.62	15	0.79	<10	9	0.72	5025	52 1	.09	<10	32	>10000	3.00	1502	6	<10	122	15	<10	0.14	62	<10	8 3	10000	29
E668017	2	6.29	17 49	3 7	0.	66	2	17	18	542	5.37	23	3.61	10	15	1.67	611	24 i	.41	<10	4	51	3.82	8	15	<10	137	9	<10	0.15	190	<10	6	84	25
E668099	1	6.27	19 211	.2 <5	0.	73	2	14	14	440	4.07	24	2.98	12	15	1.80	426	106 2	.60	<10	3	23	1.96	14	14	<10	148	7	<10	0.21	196	<10	7	79	29
E668116	1	8.38	<10 180)7 5	2.	57	2	13	15	610	4.51	23	2,77	15	17	2.65	1215	41 2	.66	<10	з	13	2.07	9	18	<10	469	10	<10	0.21	183	<10	13	69	21
E607671	<1	9.03	<10 126	53 6	1.	11	2	7	16	254	3.23	21	2.75	17	10	0.80	335	32	.59	<10	5	30	2.76	6	7	<10	158	8	<10	0.08	109	<10	10	52	30
E607698	1	8.80	10 122	23 9	0.	92	2	10	43	976	4.16	31	2.95	18	27	2.02	506	31	.29	<10	20	9	3.22	8	14	<10	123	9	<10	0.13	143	<10	11	90	28
E607707	<1	7.99	26 68	35 7	2.	42	1	7	13	256	3.31	21	3.12	18	15	0.91	595	90	.65	<10	3	18	2.73	8	8	<10	159	8	<10	0.06	114	<10	14	41	20
E607918	1	8.31	10 92	29 7	0.	19	2	11	30	372	4.47	23	3.55	10	13	0.73	231	46 0	.48	<10	22	5	3.58	5	11	<10	35	8	<10	0.05	119	<10	5	134	37
E607913	1	8.61	50 103	31 <5	0.	35	2	43	46	20	6.37	26	2.25	<10	58	2.39	865	30	.35	<10	8	65	1.95	11	41	<10	54	12	<10	0.65	388	83	11	538	33
E607919	1	8.48	11 40	00 10	Ο.	26	2	19	34	373	4.97	25	3.91	10	7	0.45	105	62 0	.53	<10	26	9	4.67	5	13	<10	32	9	<10	0.06	122	<10	6	50	46
E607876	1	9.32	23 39	94 10	0.	53	4	14	12	983	5.33	26	4.14	<10	6	0.34	124	40 0	.62	<10	4	9	5.01	7	14	<10	51	10	<10	0.11	185	<10	10	353	54
E668176	2	7.59	17 93	39 10	0.	34	3	12	16	1301	5.34	23	2.90	<10	19	0.78	914	47 0	.46	<10	2	31	4.06	<5	12	<10	22	11	<10	0.10	126	<10	8	254	24
E670514	1	8.30	58 63	35 <5	2.	11	6	8	12	82	2.51	23	3.38	17	19	0.85	1350	336 0	.94	<10	2	68	2.59	52	17	<10	143	8	<10	0.15	157	<10	9	259	48
E668178	3	8.87	12 73	37 7	0.	31	3	12	18	1632	5.33	26	3.41	<10	19	0.74	1182	105 0	.48	<10	2	30	3.37	5	13	<10	28	11	<10	0.09	136	<10	7	2 56	36
E608073	1	7.48	10 137	74 6	1.	10	2	9	56	304	3.18	22	3.59	<10	10	0.98	480	62 0	.58	<10	28	21	2.83	5	8	<10	65	7	<10	0.08	106	<10	6	37	28
E607979	1	9.59	<10 195	57 9	0.	37	2	14	38	286	2.91	30	3.98	18	25	1.49	454	125 0	.46	<10	28	32	1.96	<5	15	<10	44	8	<10	0.09	146	<10	8	107	47
E608062	1	8.25	12 118	34 6	о.	29	2	10	43	482	3.74	26	4.09	12	14	1.32	281	94 0	.33	<10	17	13	3.54	6	8	<10	37	8	<10	0.10	111	<10	6	49	34
E668132	2	9.10	20 114	17 5	0.	25	6	11	21	963	4.64	27	2.93	12	20	0.82	615	87 0	.56	<10	2	67	3.26	<5	15	<10	32	8	<10	0.13	145	<10	7	743	49
E668144	3	8.21	20 37	76 7	0.	22	12	9	18	1336	4.89	24	3.30	<10	10	0.46	261	79 0	.50	<10	2	31	4.61	5	12	<10	55	8	<10	0.13	122	<10	7	528	37
E668133	3	9.47	27 37	73 9	0.	16	8	10	17	1040	4.24	27	3.73	10	7	0.33	166	75 0	.63	<10	2	86	4.18	6	15	<10	37	9	<10	0.14	152	<10	7	501	51
Sample6	52	7.38	122 66	54 8	0.	76 3	28	18	46	4329	4.11	24	4.77	17	13	0.95	581	214 i	.54	<10	30	2528	2.21	87	12	190	264	8	<10	0.24	166	<10	13	2560	37

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Þ

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As Ba	Bi	Ca	Cd	Со	Cr	Cu	۴e	Ga	к	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm į	ppm	ppm	ppm	%	ppm	%	ppm (opm	% p	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm	ppm	%	ppm	ppm	opm	ppm (ppm
E668139	3	7.96	18 397	<5	0.22	7	10	18	1622	4.42	23	2.95	<10	13	0.55	307	69 0.53	<10	2	93	3.93	<5	12	<10	33	9	<10	0.11	112	<10	6	558	34
E608087	2	7.60	23 519	9	0.24	4	9	25	580	4.20	22	3.49	<10	7	0.41	157	136 0.43	<10	14	59	4.30	<5	12	<10	28	8	<10	0.10	148	<10	6	264	39
E670519	1	8.28	46 574	9	1.69	12	10	14	108	4.77	24	2.59	15	31	1.25 1	1970	28 2.64	<10	<2	52	4.51	60	13	<10	136	9	<10	0.24	136	<10	11	780	39
E670518	2	8.15	48 417	5	1.18	14	12	14	59	3.44	23	3.07	13	18	0.78 1	1031	178 1.57	<10	<2	105	3.67	37	17	<10	182	8	<10	0.18	141	<10	11	782	51
E607583	1	7.71	71 1255	8	1.54	3	11	14	106	4.07	23	3.25	13	33	1.78 1	1965	60 0.14	<10	2	22	2.08	20	16	<10	129	10	<10	0.19	193	<10	10	428	29
E668259	3	2.93	35 499	7	0.82	3	9	21	3326	4.35	12	1.37	<10	4	0.50 1	1327	20 0.06	<10	3	131	4.19	11	4	<10	25	7	<10	0.03	64	<10	3	83	4
E670525	2	8.27	64 479	6	1.67	12	9	14	186	4.76	25	2.22	17	45	1.64 2	2631	33 2.16	<10	<2	64	3.63	88	12	<10	217	11	<10	0.21	124	<10	12	853	32
E607581	1	8.48	78 986	6	0.65	4	13	16	233	4.15	25	3.65	19	31	1.63 1	1561	80 0.33	<10	З	66	2.15	18	21	<10	178	9	<10	0.24	246	<10	11	367	50
E668257	2	8.26	14 1712	8	0.42	3	9	19	2793	4.34	25	3.21	<10	28	1.42	842	38 0.30	<10	2	48	1.73	5	12	<10	21	8	<10	0.11	114	<10	6	170	25
E670552	1	9.61	206 639	10	1.23	5	15	20	160	4.77	30	4.52	16	38	2.04 2	2901	16 0.31	<10	4	54	3.52	76	21	<10	47	10	<10	0.24	255	<10	11	560	45
E670635	1	6.17	40 979	<5	0.92	2	9	33	856	2.86	18	3.10	<10	9	0.68	492	60 0,22	<10	13	25	2.83	6	6	<10	52	6	<10	0.08	80	<10	5	67	16
E670642	1	7.25	21 1210	6	1.93	2	11	45	1024	3.30	24	3.56	14	15	1.30	876	48 0.23	<10	18	11	2.88	6	10	<10	49	8	<10	0.18	102	<10	8	77	24
E670596	1	8.88	160 1277	9	1.68	3	11	15	142	4.70	23	3.80	12	36	2.04 1	1869	19 0.55	<10	3	19	2.32	22	19	<10	49	8	<10	0.23	236	<10	10	334	55
E670599	1	8.93	59 1793	6	1.83	2	10	18	176	4.23	25	4.02	15	32	1.87 1	1714	29 0.24	<10	2	18	2.29	6	17	<10	84	9	<10	0.18	205	<10	9	255	51
E668273	2	8.14	33 2306	<5	0.68	3	9	17	2323	4.07	24	3.70	15	20	1.21	709	47 0.31	<10	2	59	2.22	11	13	<10	45	7	<10	0.12	125	<10	9	250	38
E670602	1	9.31	29 2350	6	1.46	2	11	18	264	4.13	26	3.52	17	40	2.42 1	1622	157 1.06	<10	3	23	1.90	7	17	<10	119	8	<10	0.18	213	<10	9	225	51
E608095	1	7.59	39 500	7	0.20	3	13	45	572	5.17	22	3.40	<10	7	0.53	135	86 0.35	<10	30	16	4.97	7	14	<10	24	9	<10	0.10	149	<10	7	183	41
E670672	1	7.00	50 1581	7	0.75	2	10	44	780	4.26	22	2.90	19	15	1.20	356	39 1.61	<10	18	41	3.40	10	9	<10	141	6	<10	0.17	94	<10	10	66	33
E670665	1	5.83	17 1331	7	1.14	2	7	30	929	3.09	16	3.20	<10	7	0.65	412	30 0.15	<10	10	44	2.53	7	5	<10	124	6	<10	0.06	60	<10	5	49	15
Sample7	>200	3.52	2560 560	29	1.22	69	21	45	>10000	8.83	13	0.79	<10	9	0.72 5	5001	57 1.11	<10	34 >	>10000	3.07	1929	7	<10	127	13	<10	0.14	63	<10	9	9526	40
E608137	2	7.76	21 630	8	0.18	3	13	54	780	5.24	21	3.45	<10	6	0.42	69	244 0.41	<10	51	82	4.66	6	13	<10	36	8	<10	0.06	126	<10	7	73	43
E608163	1	7.76	14 515	7	0.24	3	16	36	635	4.66	23	3.49	<10	7	0.52	105	97 0.39	<10	19	35	4.46	6	15	<10	32	8	<10	0.07	177	<10	6	141	29
E608155	2	6.82	80 817	5	0.05	2	11	30	734	4.01	20	3.12	<10	6	0.31	65	182 0.33	<10	15	34	3.31	14	9	<10	25	6	<10	0.07	88	<10	4	77	34
E608178	1	7.80	22 1041	10	1.41	2	16	92	434	4.13	23	3.00	14	29	1.39 1	1213	165 0.32	<10	63	36	2.84	<5	14	<10	46	7	<10	0.19	123	<10	8	316	44
E668332	2	1.56	<10 805	7	0.15	1	4	18	2870	4.24	7	0.70	<10	4	0.14	242	13 0.05	<10	2	36	3.47	<5	2	<10	16	5	<10	0.02	44	<10	2	54	3
E670654	2	6.49	16 821	7	0.49	2	13	34	1891	4.01	19	3.48	11	5	0.62	192	39 0.19	<10	19	36	3.58	7	9	<10	45	6	<10	0.10	93	<10	7	66	21
E668315	3	6.12	20 576	11	0.31	4	8	16	5001	4.95	19	2.98	<10	5	0.36	253	34 0.23	<10	3	72	4.48	17	8	<10	28	7	<10	0.07	94	<10	4	166	18
E668327	2	9.06	13 2175	7	0.34	4	8	27	3193	5.21	29	3.62	<10	40	1.80	758	46 0.34	<10	4	22	2.53	5	14	<10	43	8	<10	0.15	146	<10	7	637	41
E608183	2	8.86	14 1101	7	1.05	5	17	45	639	5.20	26	4.05	16	9	0.66	939	121 0.37	<10	48	162	4.80	7	15	<10	36	9	<10	0.10	150	<10	9	197	39
E668325	2	3.41	10 862	5	0.21	_ 2	9	27	3639	5.57	13	1.54	<10	7	0.39	533	10 0.11	<10	6	34	4.49	<5	4	<10	15	7	<10	0.04	68	<10	2	94	8

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

47 Signed:

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm (ppm	%	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	opm	ppm	%	ppm	ppm (opm	ppm (ppm
E608292	1	8.02	<10 1262	<5	0.21	6	7	36	413	3.34	21	3.56	<10	12	0.95	416	51 0.34	<10	12	58	2.10	5	8	<10	23	6	<10	0.06	89	<10	3	231	29
E670705	<1	8.16	<10 3185	10	4.33	2	12	30	536	3.65	24	5.76	18	12	1.15	1555	47 1.73	<10	28	12	0.92	9	15	<10	402	8	<10	0.33	162	<10	21	73	32
E608279	2	6.95	11 1233	<5	0.14	3	7	26	428	3.91	19	3.05	<10	12	0.73	347	50 0.35	<10	10	109	3.28	5	5	<10	19	6	<10	0.05	65	<10	3	155	27
E608288	2	8.39	12 1534	5	0.27	З	15	62	491	4.29	24	3.39	13	28	1.57	713	71 0.35	<10	35	66	2.53	7	14	<10	25	9	<10	0.15	144	<10	10	205	51
E608225	1	6.33	65 1078	5	0.22	З	7	20	512	3.30	17	2.87	<10	5	0.33	101	118 0.33	<10	11	95	2.79	17	6	<10	22	5	<10	0.03	72	<10	3	208	22
E608213	1	6.50	66 563	6	0.15	4	11	20	633	4.52	19	2.90	<10	6	0.52	130	97 0.29	<10	18	102	4.17	19	7	<10	30	7	<10	0.04	86	<10	3	209	25
E670794	1	6.79	13 1818	5	1.75	2	10	12	794	3.50	18	3.61	<10	11	1.08	639	49 2.13	<10	3	9	1.67	7	13	<10	267	6	<10	0.20	148	<10	10	61	17
E670795	1	6.63	26 874	6	4.06	1	10	10	469	3.68	18	3.60	11	11	0.98	1031	17 1.84	<10	2	7	1.74	6	14	<10	426	6	<10	0.21	157	<10	11	64	16
E608429	1	7.19	12 1707	5	1.10	2	8	29	416	2.63	20	3.71	<10	8	0.86	580	26 0.19	<10	17	17	1.44	6	11	<10	30	5	<10	0.22	115	<10	6	90	23
Sample8	45	6.32	94 527	7	0.66	22	15	39	3829	4.38	18	4.07	13	11	0.80	473	163 1.29	<10	24	2029	1.80	71	10	153	205	6	<10	0.20	135	<10	11	2332	32
E608425	1	5.31	16 1184	5	0.53	2	8	75	530	2.99	13	2.74	<10	4	0.43	304	29 0.26	<10	32	44	2.22	5	9	<10	19	<5	<10	0.09	93	<10	4	64	19
E608427	2	5.81	19 1374	<5	1.06	2	9	75	743	3.40	16	2.95	<10	7	0.72	605	65 0.16	<10	37	24	2.42	6	9	<10	28	5	<10	0.13	94	<10	5	113	17
E670771	2	5.29	<10 1432	8	1.71	1	10	11	1781	3.13	14	3.78	11	9	0.82	529	79 1.13	<10	2	12	1.43	5	11	<10	204	6	<10	0.16	111	<10	10	38	12
E670736	2	6.13	84 369	<5	3.11	1	12	14	650	4.00	19	4.35	<10	15	1.10	1023	36 0.40	<10	3	11	2.34	15	13	<10	285	7	<10	0.18	145	<10	11	67	11
E608364	2	6.20	29 1050	5	1.04	3	14	36	493	4.11	18	3.02	11	7	0.58	523	75 0.27	<10	16	30	3.03	5	8	<10	27	6	<10	0.09	84	<10	5	88	22
E608372	1	7.49	37 804	5	0.83	2	17	44	496	4.71	22	3.45	12	14	1.32	610	92 0.31	<10	24	45	3.18	6	10	<10	43	8	<10	0.17	107	<10	6	121	30
E608373	1	7.69	13 1221	8	1.15	2	11	36	482	4.60	24	3.05	17	29	2.43	1235	67 0.26	<10	21	19	1.94	<5	11	<10	35	7	<10	0.22	121	<10	8	165	26
E608383	4	7.45	46 390	6	1.05	2	19	42	648	5.90	24	3.37	14	14	1.29	700	54 0.27	<10	28	27	3.98	6	12	<10	71	8	<10	0.19	120	<10	9	154	26
E670912	2	6.03	65 1512	6	0.52	3	6	25	192	3.19	13	3.02	<10	6	0.49	219	59 0.23	<10	11	46	2.50	18	6	<10	68	<5	<10	0.04	59	<10	4	101	19
E670921	1	6.79	74 2669	<5	4.79	2	38	16	24	7.01	22	2.52	12	35	1.80	1901	5 0.20	<10	5	25	1.72	13	32	<10	93	9	<10	0.68	307	69	23	399	33
E670953	2	4.87	177 372	5	0.32	2	10	21	826	4.20	14	2.50	<10	4	0.36	145	57 0.19	<10	11	22	3.36	17	6	<10	53	5	<10	0.07	79	<10	3	76	16
E670938	2	6.10	37 1378	8	2.00	2	8	28	526	3.22	17	3.15	10	9	0.59	626	55 0.12	<10	14	20	2.38	8	7	<10	49	6	<10	0.10	85	<10	6	68	13
E670971	1	7.05	21 529	5	0.85	2	12	36	843	3.91	20	3.84	13	7	0.68	268	26 0.22	<10	16	27	3.22	6	9	<10	85	6	<10	0.14	102	<10	9	41	25
E670944	2	4.99	28 541	5	2.92	. 1	8	52	465	2.93	15	2.42	<10	12	0.77	905	39 0.07	<10	30	16	1.74	8	7	<10	853	5	<10	0.13	84	<10	7	101	10
E670961	2	7.09	11 442	9	1.61	2	15	36	768	4.64	19	3.73	11	8	0.68	567	64 0.17	<10	17	27	3.47	5	11	<10	38	7	<10	0.15	113	<10	7	55	17
E608502	2	5.49	10 425	<5	0.06	3	11	13	1036	3.91	14	2.01	<10	5	0.15	103	146 0.32	<10	2	69	3.24	<5	11	<10	109	5	<10	0.04	98	<10	3	151	22
E608479	2	4.17	105 433	5	0.04	2	11	13	1079	3.93	11	1.68	<10	5	0.09	59	83 0.19	<10	2	58	3.62	23	7	<10	235	5	<10	0.02	77	<10	1	67	13
E608495	3	4.04	111 700	5	0.08	3	10	14	1252	3.88	11	1.55	<10	4	0.10	68	101 0.19	<10	2	116	3.51	11	8	<10	156	5	<10	0.02	77	<10	2	124	12
E608521	2	5.28	16 333	<5	0.09	3	12	13	971	5.06	13	1.96	<10	7	0.09	68	93 0.27	<10	4	85	4.11	<5	12	<10	113	6	<10	0.05	118	<10	2	153	19
Sample9	>200	3.23	2286 496	25	1.13	63	20	40	>10000	8.90	11	0.74	<10	9	0.65	4761	51 1.00	<10	31 :	>10000	2.95	1688	6	<10	112	12	<10	0.13	56	<10	8	9760	34

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed: _

b

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention: Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As Ba	Bi	Са	Cd	Со	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm f	opm	%	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm	ppm	%	ppm	րթո բ	pm	ppm j	ppm
E608471	2	8.43	14 443	6	0.14	5	16	16	794	5.17	20	3.38	<10	6	0.24	96	107 0.57	<10	5	78	4,77	<5	15	<10	55	7	<10	0.08	187	<10	11	660	38
E608482	3	5.45	110 313	5	0.12	4	18	13	1375	5.22	13	2.01	<10	4	0.14	62	96 0.25	<10	3	141	4.89	23	13	<10	279	7	<10	0.04	118	<10	3	188	17
E608528	2	7.46	<10 311	7	0.07	3	13	14	879	5.42	19	3.10	<10	6	0.27	57	112 0.39	<10	6	47	4.85	<5	12	<10	64	8	<10	0.06	136	<10	4	106	32
E608465	2	6.22	50 424	7	0.10	7	13	14	971	5.26	15	2.43	<10	5	0.15	84	120 0.31	<10	4	138	4.87	14	12	<10	337	6	<10	0.04	121	<10	3	423	22
E608642	1	6.17	<10 1224	5	0.13	3	7	21	901	3.47	14	2.72	<10	5	0. 46	153	69 0.24	<10	10	33	2,74	<5	4	<10	33	6	<10	0.03	50	<10	3	192	16
E608548	2	7.93	70 530	9	0.12	6	14	16	1143	5,71	18	3.03	<10	7	0.32	74	113 0.49	<10	6	38	5.00	24	15	<10	99	8	<10	0.06	166	<10	20	602	35
E608556	1	8.12	<10 761	7	0.06	3	14	19	759	4.62	19	3.19	<10	6	0.30	78	103 0.50	<10	6	55	3.92	<5	16	<10	52	7	<10	0.10	166	<10	28	349	37
E608471	2	5.72	23 342	5	0.03	4	15	13	1217	5.07	15	2.25	<10	6	0.16	65	143 0.31	<10	3	100	4,52	6	11	<10	186	6	<10	0.05	109	<10	3	219	22
E608614	2	7.06	10 1106	5	0.33	7	12	23	1032	4.40	19	3.14	<10	11	0.59	365	78 0.26	<10	20	61	3.38	<5	11	<10	20	6	<10	0.07	101	<10	5	591	30
E608557	2	6.81	12 626	9	0.05	3	13	17	973	5.39	16	2.55	<10	6	0.31	90	141 0.31	<10	5	62	4.68	<5	12	<10	52	7	<10	0.09	135	<10	12	343	25
E609272	1	6.52	168 433	9	1.36	2	12	39	543	4.44	16	2.88	<10	14	0.82	590	48 0.35	<10	13	35	3.94	22	6	<10	231	7	<10	0.03	71	<10	3	65	22
E609229	2	7.91	13 1305	6	0.69	2	10	36	666	3.16	22	3.40	<10	17	1.08	1367	90 0.40	<10	21	66	2.36	5	12	<10	103	6	<10	0.06	108	<10	5	95	35
E609296	1	5.88	21 1126	<5	0.43	2	10	22	771	3.72	15	2.90	10	7	0.45	218	138 0.27	<10	20	33	3.09	5	5	<10	20	5	<10	0.03	58	<10	3	47	21
E609277	1	6.76	<10 1269	<5	2.46	2	12	35	612	4.10	19	2.89	11	23	1.16	983	70 0.30	<10	19	28	2.90	5	9	<10	65	6	<10	0.09	87	<10	6	68	31
E609281	2	6.51	22 964	10	0.40	3	12	25	796	5.01	17	3.08	10	7	0.46	183	73 0.35	<10	17	39	4.24	5	7	<10	24	7	<10	0.05	84	<10	5	63	28
E609208	1	7.41	<10 714	6	0.22	2	13	29	584	5.48	17	3.31	<10	10	0.53	215	86 0.43	<10	15	14	4.31	5	10	<10	22	7	<10	0.05	102	<10	4	109	32
E609211	2	8.12	<10 1177	5	0.25	3	13	36	720	6.84	22	2.94	<10	37	1.48	991	116 0.47	<10	19	11	3.57	<5	10	<10	23	8	<10	0.06	98	<10	5	198	40
E609172	2	8.54	696 370	8	0.12	4	12	25	2048	5.20	22	3.57	<10	6	0.36	55	14 0.57	<10	22	11	4.62	10	10	<10	335	7	<10	0.07	133	<10	10	175	39
E609156	1	8.28	643 905	6	0.14	4	13	12	1400	3.90	21	3.18	<10	6	0.32	46	8 0.56	<10	8	64	3.62	8	14	<10	100	6	<10	0.10	161	<10	16	205	44
Sample10	50	6.99	113 574	5	0.73	26	18	47	4068	4.71	20	4.49	14	12	0.81	545	191 1.41	<10	29	2178	2.06	83	11	199	228	8	<10	0.23	146	<10	12	2568	48
E609344	1	7.74	<10 1148	6	1.38	3	10	13	610	5.10	20	3.23	13	11	1.01	445	21 1.40	<10	2	15	3.38	5	10	<10	360	7	<10	0.16	133	<10	9	35	32
E609356	1	7.56	20 1048	8	1.68	2	15	14	781	5.19	21	3.83	16	13	1.09	581	52 0.61	<10	2	22	3.95	7	11	<10	118	7	<10	0.14	142	<10	11	40	35
E670973	1	6.94	19 2089	8	2.75	4	12	36	515	3.98	19	3.74	11	7	0.65	708	42 0.18	<10	20	30	3.14	8	11	<10	213	7	<10	0.24	107	<10	13	161	27
E613503	2	5.87	14 1169	7	1.24	2	11	41	888	3.86	17	2.60	12	13	0.78	431	41 1.61	<10	15	22	2.86	6	8	<10	209	6	<10	0.14	94	<10	6	41	21
E613502	2	6.90	11 876	5	1.66	2	13	34	752	4.47	18	2.12	14	16	0.96	538	29 2.84	<10	17	17	2.71	5	10	<10	274	7	<10	0.21	109	<10	7	73	23
E608727	1	6.01	11 1350	6	0.16	2	10	30	830	4.17	16	2.87	<10	7	0.55	364	49 0.25	<10	12	50	2.85	<5	7	<10	22	6	<10	0.05	71	<10	3	87	21
E608769	1	4.92	51 829	<5	0.12	4	6	21	880	3.48	12	2.37	<10	12	0.35	142	22 0.19	<10	18	41	2,70	6	3	<10	82	5	<10	0.03	41	<10	2	206	15
E608703	1	7.30	<10 639	5	0.73	2	9	34	708	4.26	21	2.61	11	37	1.92	1621	47 0.26	<10	22	33	1.57	5	11	<10	20	7	<10	0.17	101	<10	6	310	31
E608738	1	7.35	17 1134	<5	0.18	2	12	32	684	4.82	22	2.86	10	27	1.38	1065	54 0.26	<10	17	16	1.56	<5	11	<10	13	7	<10	0.20	108	<10	4	245	32
E608755	1	6.18	48 719	7	0.12	2	10	25	581	5.02	17	2.82	<10	10	0.64	370	29 0.22	<10	12	28	3.66	<5	5	<10	36	8	<10	0.04	60	<10	3	152	17

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo Na	, Nb	Ni	Pb	S	Şþ	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
NUTIDE	ppm	70	hhui hhui	hhuu	70	phu	ppm	ррпп	ppm	70	ppm	%	ppm	ppm	70	ppm	ppm %	o ppm	ppm	ppm	%	ppm	opm	ppm	ppm p	pm	ppm	%	ppm	ppm	ppm	ppm	ppm
E608721	2	7.13	11 1275	<5	0.19	2	13	38	972	4.85	20	3.07	12	18	1.12	699	41 0.29	<10	17	38	2,97	5	8	<10	14	7	<10	0.07	82	<10	4	180	25
E608751	2	7.43	23 1588	<5	0.21	3	12	46	60 0	5.56	21	3.12	17	21	1.10	821	55 0.32	<10	18	13	2.67	6	11	<10	22	8	<10	0.13	112	<10	5	240	31
E608743	3	7.42	43 538	8	0.30	13	15	32	940	5.16	20	3.71	14	4	0.35	157	43 0.32	2 <10	20	75	4.06	8	12	<10	28	7	<10	0.10	95	<10	5	856	22
E608754	1	6.91	43 870	10	0.13	4	8	30	579	5.29	19	3.15	<10	10	0.64	393	58 0.33	<10	13	18	3.78	5	6	<10	17	8	<10	0.06	72	<10	з	307	30
E608841	2	5.56	48 1060	7	0.19	3	7	28	603	3.81	13	2.83	<10	5	0.44	139	70 0.22	<10	13	133	3.19	10	5	<10	13	5	<10	0.05	53	<10	3	155	17
E608877	1	7.41	15 1395	6	0.21	2	10	45	749	4.56	21	3.84	13	12	0.97	264	78 0.29	<10	18	37	3.15	5	10	<10	17	6	<10	0.14	111	<10	8	46	39
E608821	3	5.75	74 489	7	0.25	3	14	34	1378	4.92	17	2.89	10	9	0.58	185	78 0.21	<10	22	39	4.38	12	8	<10	90	6	<10	0.05	82	<10	5	86	19
E608822	2	6.31	37 390	5	0.26	5	17	43	879	5.12	17	3.16	11	10	0.63	168	40 0.27	<10	38	42	4.15	8	10	<10	20	7	<10	0.06	100	<10	5	198	24
E608864	1	6.60	<10 1063	8	2.62	2	14	44	605	4.18	19	2.71	10	20	1. 5 0	980	22 0.89	<10	25	27	2.88	<5	9	<10	82	6	<10	0.13	85	<10	6	52	28
Sample11	>200	3.26	2467 502	26	1.18	66	21	41	>10000	9.11	11	0.75	<10	9	0.67	4812	52 1.04	<10	32	>10000	2.98	1704	6	<10	113	13	<10	0.14	58	<10	8	9735	38
E608807	1	7.69	22 1550	7	0.38	3	14	34	657	5.30	22	3.27	20	20	1.14	731	56 0.34	<10	21	13	2.09	8	15	<10	16	8	<10	0.25	151	<10	9	266	41
E313657	1	7.68	<10 1734	<5	1.51	2	11	26	210	4.97	21	2.92	10	39	2.16	1012	149 0.51	<10	12	13	1.32	7	21	<10	53	8	<10	0.23	207	<10	8	244	50
E613647	<1	7.60	11 2278	6	1.24	3	9	19	254	3.23	20	2.01	26	35	1.84	895	459 1.92	<10	11	12	0.74	5	12	<10	105	6	<10	0.23	121	<10	17	242	39
E613627	1	8.03	23 1932	7	0.38	2	11	23	191	3.67	22	2.97	<10	34	2.15	748	58 0.89	<10	6	34	1.38	7	17	<10	52	7	<10	0.14	182	<10	6	185	37
E613669	1	7.30	16 1597	7	3.39	2	12	60	396	4.84	23	2.42	16	44	2.46	1698	53 0.72	<10	35	9	0.81	8	15	<10	169	8	<10	0.34	139	<10	15	176	41
E613619	2	7.62	44 4242	<5	0.68	4	5	22	249	3.42	20	2.55	<10	34	2.06	1100	94 1.17	<10	6	71	1.31	21	15	<10	398	7	<10	0.13	165	<10	6	193	35
E613749	1	8.24	11 1100	<5	0.86	2	13	45	648	4.40	24	3.80	17	21	1.53	586	84 0.28	3 <10	22	17	1.39	8	14	<10	30	7	<10	0.25	136	<10	ล้	96	41
E613748	1	7.01	11 1166	7	1.63	2	12	33	632	3.94	21	3.35	14	16	1.26	709	51 0.17	<10	19	17	1.76	7	10	<10	53	7	<10	0.21	118	<10	8	89	34
E613705	3	7.15	111 976	6	2.29	3	16	42	885	4.90	20	3.42	14	10	1.36	1205	49 0.16	<10	27	19	2.69	121	12	<10	62	8	<10	0.18	109	<10	10	114	34
E613734	1	7.08	19 1520	6	1.94	2	12	33	563	4.64	21	3.28	18	18	1.25	848	77 0.16	<10	20	12	1.70	8	12	<10	54	7	<10	0.27	129	<10	8	127	27
E613701	2	7.46	80 1688	5	1.36	3	11	68	512	3.96	19	3.61	<10	12	1.06	750	73 0.24	<10	49	24	2.40	15	11	<10	45	7	<10	0.18	104	<10	9	197	32
E613702	2	6.15	139 1149	8	1.31	5	10	43	656	3.96	17	3.01	<10	8	0.75	720	55 0.21	<10	28	34	2.58	115	8	<10	38	5	<10	0.12	86	<10	7	250	24
E613736	1	7.37	16 996	6	1.82	2	11	35	587	3.86	22	2.57	14	27	1.81	700	38 1.67	<10	20	20	1.42	8	12	<10	123	7	<10	0.18	117	<10	7	105	31
E613828	1	7.09	21 1099	6	3.98	2	9	18	1580	3.70	18	1.54	12	20	1.36	1622	2 3.15	i <10	5	9	1.55	7	13	<10	319	8	<10	0.16	132	<10	6	177	33
E613817	1	6.63	14 1097	<5	0.81	3	12	52	604	3.80	17	2.14	11	20	1.11	355	32 2.33	<10	18	28	2.62	7	9	<10	165	6	<10	0.14	113	<10	7	96	23
E613792	1	5. 79	67 1834	7	1.06	2	6	38	815	2.83	17	3.18	<10	5	0.50	434	46 0.10	<10	14	28	2.39	13	5	<10	74	6	<10	0.06	71	<10	4	66	14
E613763	<1	6.92	12 1248	5	2.22	1	12	37	509	4.01	21	3.34	13	19	1.31	889	69 0.08	<10	18	7	1.98	8	12	<10	92	8	<10	0.21	119	<10	8	94	20
E609039	1	8.66	40 367	10	0.40	2	12	12	460	5.16	23	3.36	<10	8	0.38	158	7 0.50	<10	2	33	4.18	6	12	<10	58	8	<10	0.09	167	<10	6	79	50
E608945	2	8.08	336 336	12	0.24	4	14	11	702	5.38	21	3.07	<10	6	0.27	50	50 0.46	i <10	2	65	4.50	13	11	<10	473	7	<10	0.05	140	<10	6	138	45
Sample12	54	7.33	122 618	9	0.74	27	18	58	4178	4.92	21	4.59	14	12	0.83	532	205 1.45	<10	33	2278	1.96	87	12	198	228	7	<10	0.22	163	<10	12	2566	42

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

AL

Signed: _____

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm	ppm (ppm	ppm	%	opm	%	ppm	ppm	%	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm p	pm	%	ppm	ppm p	opm	ppm (ppm
5400007		0.67	27 476	10	0.47	-			760	c				~~					_														
E609037	1	9.07	3/ 4/0	10	0.47	Z	13	11	270	5.88	20	2.74	<10	29	1.37	301	4 0.47	<10	2	36	4.06	8	14	<10	100	9	<10	0.09	179	<10	6	308	50
E6001E2	1	9.00	220 104	0	0.30	2	10	11	373	4.0.3	29	3.03	-10	10	0.30	20	24 0.54	<10	2	38	3.85	10	15	<10	102	· · ·	<10	0.08	187	<10	16	295	5/
E609133	1	0.07	ZZ9 194	11	0.21	2	14		304 3174	1.13	17	2.03	<10	10	0.27	04	5 0.45	<10	0	1/1	6.13	6	10	<10	82	9	<10	0.05	122	<10	5	76	34
E612030	1	0.07	37 2050	11	0.52	ר ר	14	7 76	22/1	4 1 7	21	3.38	10	10	0.55	2100	19 0.51	<10	2	18	5.07	5	12	<10	115	9	<10	0.07	155	<10	5	118	4/
2013323	1	1.57	37 2039	9	5.50	2	11	20	2196	4.12	20	1.50	13	19	1.41	2106	3 3.37	<10	o	24	1.85	8	15	<10	503	9	<10	0.16	152	<10		216	20
E613928	<1	7.81	16 1337	<5	1.58	2	13	39	470	4.37	23	3.29	15	28	1.88	652	24 1.86	<10	23	25	2.42	8	13	<10	202	8	<10	0.24	158	<10	15	96	36
E613914	3	5.88	223 318	10	0.18	2	9	30	3562	4.58	19	3.06	<10	6	0.41	108	7 0.19	<10	13	76	3.65	60	8	<10	153	7	<10	0.08	82	<10	5	69	30
E613898	3	7.43	203 597	8	3.77	2	17	17	4725	7.40	19	4.10	11	11	1.24	2527	3 0.54	<10	3	30	4.15	11	13	<10	309	12	<10	0.19	168	<10	5	169	24
E613921	4	6.19	82 435	11	3.41	3	16	32	2320	4.78	18	3.57	15	6	0.96	1496	2 0.06	<10	13	237	3.41	9	7	<10	591	9	<10	0.09	92	<10	6	182	21
E609669	1	6.85	109 1377	6	0.63	2	10	42	334	3.28	16	2.86	<10	8	0.69	497	46 0.30	<10	37	29	2.29	13	9	<10	41	6	<10	0.03	89	<10	4	97	28
E609655	1	7.72	<10 1051	8	0.22	4	12	29	308	4.01	18	3.71	<10	6	0.55	95	178 0.33	<10	24	42	2.93	5	11	<10	28	7	<10	0.06	119	<10	5	111	37
E609638	1	7.82	13 1636	5	1.95	2	16	36	536	3.91	21	3.05	15	27	1.77	612	119 0.35	<10	25	7	2.06	7	13	<10	80	9	<10	0.16	114	<10	9	119	35
E609703	1	8.10	10 2196	6	0.87	2	8	14	427	3.55	21	3.36	14	17	1.38	1661	117 0.40	<10	3	32	2.39	6	7	<10	57	7	<10	0.07	103	<10	7	96	55
E609707	1	7.96	41 766	<5	0.30	2	12	45	888	4.65	25	3.52	18	9	0.72	331	60 0.41	<10	26	13	3.53	5	11	<10	27	8	<10	0.08	200	<10	6	69	31
E609576	<1	8.71	27 683	9	1.15	4	8	13	23	3.95	22	2.45	<10	10	0.16	201	3 1.00	<10	2	112	3.70	21	7	<10	303	7	<10	0.23	110	<10	9	77	63
E609933	1	6.07	347 1685	7	0.39	3	7	27	815	3.25	16	3.23	<10	5	0.51	179	26 0.21	<10	13	21	2,54	26	5	<10	121	5	<10	0.05	65	<10	3	113	21
E609954	1	7.96	10 1421	5	1.93	2	16	41	524	4.53	22	3.52	13	29	2.05	618	99 0.17	<10	31	11	1.77	8	15	<10	60	9	<10	0.23	143	<10	10	86	27
E609898	1	8.38	49 1779	<5	1.82	2	9	17	605	3.56	22	4.33	12	6	0.67	545	85 0.21	<10	5	25	2.68	11	7	<10	158	7	<10	0.10	109	<10	6	51	31
E609902	1	7.05	<10 1521	6	4.26	5	14	38	511	4.58	23	2.89	14	23	1.54	1203	62 0.34	<10	23	14	2.73	8	12	<10	544	9	<10	0.24	116	<10	7	252	22
Sample13	>200	3.36	2586 542	25	1.20	69	20	44 >	>10000	9.42	11	0.77	<10	9	0.71	4938	57 1.04	<10	33 ;	>10000	2.84	1600	6	<10	119	13	10	0.14	61	<10	9	9989	37
		4		_		_																			_		_						
2609907	1	7.36	17 991		3.70	2	13	35	490	4.35	23	3.05	13	27	1.82	1282	116 0.17	<10	23	30	1.70	9	12	<10	95	7	<10	0.27	109	<10	9	206	19
E609909	1	6.82	<10 858	9	2.46	2	14	36	461	4.21	20	2.24	16	28	1.81	843	/4 1.21	<10	23	21	1.79	9	11	<10	120	7	<10	0.24	102	<10	9	114	28
E609977	1	5.84	20 1211	6	2.03	2	8	38	494	3.21	16	3.25	<10	10	0.70	430	41 0.80	<10	18	23	2.48	7	6	<10	103	6	<10	0.08	76	<10	7	34	20
E610091	1	5.51	38 966	<5	2.89	4	10	21	336	2.22	13	3.17	<10	6	0.56	574	368 0.06	<10	13	52	1.53	8	6	<10	109	6	<10	0.07	68	<10	6	120	16
E010085	1	11.15	21 9/1	< 5	2.44	<1	12	39	368	3.42	24	5.81	<10	26	0.81	478	83 1.22	<10	15	30	2.37	6	8	<10	100	<5	<10	0.13	82	<10		60	31
E610035	1	14 38	<10 1558	<5	3 51	<1	13	61	321	6 10	31	8.05	13	59	7 48	791	44 2 53	<10	23	69	2.06	5	16	~10	140	~5	~10	0.26	151	<10	R	200	43
E610074	1	14.17	17 1014	<5	7.08	<1	10	39	388	10.57	28	7.64	19	113	4.87	884	147 4.00	<10	31	37	2.27	13	15	<10	172	<5	<10	0.66	150	<10	15	147	56
E609802	2	10.39	29 961	<5	9.00	<1	2	66	675	11.93	22	7.27	<10	116	5.72	1271	113 0.53	<10	35	26	1.72	13	7	<10	66	<5	<10	0.62	97	<10	4	164	21
E609799	2	10.21	35 1031	<5	7.74	<1	<1	71	719	15.32	19	8.38	<10	123	6.28	1105	48 0.68	<10	26	29	1.73	21	10	<10	50	<5	<10	0.85	116	<10	5	205	22
E609824	1	10.91	20 1356	<5	11.94	<1	<1	49	542	15.48	25 :	>10.00	16	177	10.13	1372	97 1.21	17	49	23	1.09	37	14	<10	84	<5	<10	1.80	129	<10	7	226	43
	-			-		-							-5							~-2	2100	57	÷ (- + 0	· · ·		-+0	1.00			•		

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

An Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1723PR

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As Ba	Bi	Ca	Cđ	Co	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo Na	a Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	v	W	Y	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm	ppm	ppm	ppm	%	opm	%	ppm	ppm	%	ppm	ppm %	6 ppm	ppm	ppm	%	ppm (opm	ppm	ppm	ppm	ppm	%	ppm	ppm	pm	ppm p	ppm
E610136	1	6.61	25 1158	<5	6.76	<1	2	29	259	7.57	16	6.00	<10	66	3.02	346	329 8.17	7 <10	8	33	1.23	10	4	<10	201	<5	<10	0.28	53	<10	5	54	21
E610103	1	6.23	36 1770	<5	8.49	<1	2	38	330	11.68	21	9.54	10	111	6.24	652	127 1.18	3 <10	18	20	2.20	16	8	<10	151	<5	<10	0.52	94	<10	8	92	29
E610176	1	5.92	101 1363	<5	4.50	<1	5	55	498	12,82	21	>10.00	18	83	3.98	564	50 1.55	5 <10	28	16	3.57	22	13	<10	51	<5	<10	0.79	125	11	12	59	49
Duplicates:																																	
E607801	1	9.21	99 565	<5	0.51	<1	14	13	319	4.96	28	4.27	<10	6	0.35	168	13 0.66	5 <10	5	27	4.60	29	15	<10	68	<5	<10	0.07	168	<10	8	643	47
E667449	2	7.62	<10 799	<5	0.16	<1	10	44	872	6.58	24	3.47	<10	7	0.68	127	101 0.47	7 <10	28	38	4.14	<5	11	<10	60	<5	<10	0.04	141	<10	2	165	36
Sample1	>200	2.89	2137 495	21	1.54	60	19	47	>10000	12.80	13	0.71	<10	6	0.92	4909	45 0.83	3 <10	27	>10000	3.14	1425	6	<10	103	<5	<10	0.15	46	<10	8	9956	27
E665505	2	6.83	10 722	<5	0.07	<1	10	31	542	3.60	18	3.88	<10	<1	0.19	54	107 0.50) <10	14	61	3.40	<5	11	<10	33	<5	<10	0.04	89	<10	5	244	21
E669856	2	6.65	12 930	<5	0.17	13	10	23	603	3.55	23	2.50	<10	2	0.31	136	95 0.39	9 <10	12	140	3.26	<5	8	<10	37	<5	<10	0.03	94	<10	3	1056	19
E667731	2	5.43	19 1624	<5	0.34	<1	10	39	649	3.71	24	2.29	11	7	0.85	304	31 0.17	7 <10	14	34	2.44	5	8	<10	54	<5	<10	0.12	70	<10	6	92	17
E667647	2	5.60	31 961	<5	0.19	<1	10	31	733	3.25	20	1.39	<10	2	0.41	277	29 0.16	5 <10	10	38	2.65	5	6	<10	20	<5	<10	0.06	63	<10	3	104	16
E669932	1	7.25	11 2430	<5	2.59	21	9	19	320	3.19	33	1.20	12	25	1.80	2183	101 0.52	2 <10	5	19	1.16	<5	14	<10	216	<5	<10	0.13	128	<10	9	752	23
E670016	1	7.56	19 1707	<5	1.27	<1	10	28	422	3.84	34	1.89	18	12	1.76	1050	49 0.13	l <10	21	15	1.56	6	13	<10	50	<5	<10	0.19	100	<10	8	272	21
E665838	1	9.51	342 473	7	0.68	3	12	14	862	5.31	29	4.09	<10	9	0.86	620	5 0.4:	L <10	3	110	4.84	98	16	<10	213	9	<10	0.12	191	<10	7	283	50
E667804	2	9.46	13 820	11	0.31	3	20	20	1215	5.75	30	4.30	16	17	1.75	415	288 0.42	2 <10	6	47	3.77	8	20	<10	44	9	<10	0.12	218	<10	6	168	35
E667874	1	8.02	14 487	7	1.77	3	16	17	410	6.28	24	3.71	18	16	1.55	941	78 0.3:	l <10	4	52	4.57	7	16	<10	93	9	<10	0.13	174	<10	10	63	28
E667868	1	8.27	<10 910	8	1.43	3	15	17	666	4.62	24	3.42	13	26	2.13	682	129 0.2	5 <10	4	36	2.14	6	17	<10	319	9	<10	0.18	179	<10	7	98	28
E607595	1	9.24	12 906	8	1.89	3	9	18	453	4.43	25	3.47	18	26	1.30	1067	30 0.59	€ <10	4	29	3.23	6	13	<10	100	8	<10	0.12	177	<10	9	143	47
E607913	1	8.76	58 1034	<5	0.36	2	47	46	25	6.78	27	2.27	<10	58	2.56	909	3 0.33	3 <10	9	77	2.07	14	41	<10	56	12	<10	0.69	400	88	11	598	32
E668176	3	8.04	19 868	6	0.36	3	12	19	1422	5.69	24	3.09	<10	20	0.85	998	44 0.43	3 <10	2	38	4.20	5	12	<10	25	10	<10	0.10	128	<10	8	292	31
Sample6	55	7.74	123 705	6	0.81	29	19	50	4615	4.43	25	4.96	18	13	1.03	614	213 1.60) <10	31	2609	2.38	86	12	188	274	8	<10	0.25	175	<10	14	2793	39
E670552	1	9.92	223 738	9	1.28	6	15	20	177	5.01	31	4.61	17	39	2.16	2997	15 0.32	2 <10	4	65	3,72	81	21	<10	50	10	<10	0.25	265	<10	11	600	47
E670596	2	9.60	178 1539	11	1.72	3	12	17	158	4.78	27	4.00	15	40	2.24	1974	20 0.50	5 <10	3	24	2.65	24	22	<10	56	9	<10	0.24	270	<10	12	359	62
E608163	1	7.80	11 463	7	0.25	3	16	36	662	4.77	22	3.52	<10	7	0.54	101	108 0.40) <10	19	27	4.39	<5	14	<10	31	9	<10	0.08	169	<10	6	144	29
E670705	<1	8.30	<10 3277	6	4.30	2	12	30	539	3.74	24	5.88	18	13	1.19	1533	53 1.73	7 <10	29	8	0.92	8	16	<10	390	8	<10	0.34	168	<10	21	71	36
E608225	1	6.26	62 893	7	0.20	4	7	20	464	3.29	16	2.86	<10	4	0.32	98	116 0,3	5 <10	11	96	2.81	17	6	<10	22	5	<10	0.03	73	<10	3	203	24
E670736	2	6.47	99 342	11	3.39	2	15	20	734	4.35	20	4.60	10	15	1.20	1143	40 0.4	5 <10	З	12	2.67	16	13	<10	310	8	<10	0.17	156	<10	11	81	13
E670944	2	5.14	31 612	9	2.99	1	8	63	501	3.11	16	2.50	<10	12	0.82	1053	44 0.12	2 <10	31	8	1.83	8	7	<10	865	5	<10	0.11	89	<10	7	100	12
E608479	2	4.48	114 422	6	0.04	2	11	16	1162	4.24	12	1.78	<10	5	0.10	65	94 0.19	9 <10	2	63	3.91	23	8	<10	273	5	<10	0.03	84	<10	1	75	14
E608548	2	7.65	66 459	7	0.11	6	12	16	1058	5.10	18	2.86	<10	7	0.31	68	108 0.49	9 <10	5	36	4.62	23	15	<10	99	7	<10	0.07	164	<10	17	620	37

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

A

Signed:

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

Report No : 0V1723PR

T: (604) 327-3436 F: (604) 327-3423

Signed:

Date : Nov-15-10

Sample type : PULP

Silver Standard Resources

Project : Snowfield

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	К	La	Li	Mg	Mn	Mo N	a Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	v	W	Y	Zn	Zr
Number	ppm	%	ppm	ppm p	opm	%	ppm p	pm p	mqc	ppm	%	ppm	%	ppm t	opm	%	ppm	ppm %	6 ppm	ppm	ppm	%	opm p	pm	ppm	ppm (opm p	pm	%	ppm ł	ppm ¢	pm	ppm (ppm
E609208	1	7.69	11	661	6	0.22	3	14	26	580	5.37	19	3,37	<10	11	0.52	218	82 0.43	2 <10	15	11	4.61	5	11	<10	24	8	<10	0.05	111	<10	4	109	31
E609156	2	7.91	599	922	7	0.15	4	11	13	1314	3.81	19	3.06	<10	6	0.31	45	9 0.5	5 <10	8	66	3.35	9	13	<10	96	6	<10	0.10	147	<10	16	200	44
E608703	1	7.26	<10	640	5	0.76	2	9	32	684	4.31	21	2.64	12	38	2.03	1659	50 0.2	7 <10	22	42	1.51	6	11	<10	20	7	<10	0.19	102	<10	6	309	31
E608822	2	6.08	35	388	7	0.25	4	16	48	869	4.93	17	2.99	10	9	0.60	168	35 0,2	5 <10	35	40	4,14	9	10	<10	20	7	<10	0.07	99	<10	6	176	23
E608807	2	8.17	28	1504	6	0.42	3	18	44	740	6.04	24	3.53	22	21	1.31	838	53 0.2	8 <10	25	18	2.41	10	15	<10	18	8	<10	0.23	166	<10	9	252	38
E613734	1	7.41	21	1505	6	2.09	z	12	44	548	4.71	21	3.44	17	18	1.27	858	78 0.1	0 <10	25	9	1.67	11	12	<10	53	8	<10	0.28	129	<10	9	126	26
Sample12	51	7.36	120	586	5	0.75	26	17	53	4141	5.04	19	4.63	14	12	0.86	539	204 1.4	2 <10	29	2202	1.88	89	11	209	227	8	<10	0.22	154	<10	12	2470	45
E609153	1	6.93	247	196	10	0.19	3	13	11	512	7.57	19	2.64	<10	10	0.28	69	8 0.4	1 <10	6	183	6.54	7	10	<10	83	11	<10	0.06	132	<10	7	78	37
E609638	1	7.79	15	1548	8	2.03	2	17	33	534	4.05	21	3.10	15	28	1.89	581	114 0.3	5 <10	30	8	2.01	7	12	<10	76	8	<10	0.18	i10	<10	8	127	31
E609909	1	6.86	11	870	7	2,48	2	14	34	470	4.41	20	2.23	16	29	1.92	886	79 1.1	9 <10	26	15	1.89	7	11	<10	120	7	<10	0.26	105	<10	10	129	30
E610085	1	11.15	20	888	<5	2.81	<1	9	36	342	3.42	20	5.81	<10	26	0.81	439	75 1.2	2 <10	14	24	2,15	9	7	<10	9 6	<5	<10	0.21	78	<10	6	52	28
Standards:																																		
Blank	<1	0.01	<10	<10	<5	<0.01	<1	1	10	1	0.01	<1	<0.01	<10	<1	<0.01	<5	<2 0.0	1 <10	<2	<2	<0.01	<5	<1	<10	<1	<5	<10	<0.01	<1	<10	<1	2	<1
CH-4	2	7.09	14	434	6	1.71	2	23	79	1956	4.95	21	1.77	14	13	1.24	437	3 3.0	5 <10	52	18	0.58	<5	11	<10	194	8	<10	0.28	87	<10	9	201	122

CERTIFICATE OF ANALYSIS

0V-1759-PA1

Nov-25-10

Company:	Silver Standard
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-06-10

Sample	Au	Ag	Cu	Pb	Zn	
Name	g/tonne	g/tonne	%	%	%	
CS E610317	0.25					
CS_E610284	0.31					
CS_E610362	0.43					
CS_E610351	0.50					
CS_E610337	1.04					·
CS E610438	0.10					
CS_E610437	0.24					
CS_E610401	0.41					
CS_E610479	0.45					
CS_E610455	0.48					
CS E610491	0.54					
CS ⁻ E610383	0.58					
CS ⁻ E610492	0.59					
CS_E610499	0.84					
CS_E610501	1.05					
CS E610549	0.03					
CS_E610596	0.06					
CS_E610519	0.27					
CS_E610515	1.46		2.17			
Sample 1	2.35	384.2	1.87	3.96	1.07	
CS E610517	1.98		1.88			· · · · · · · · · · · · · · · · · · ·
CS_E610809	<0.01					
*DŪP CS_E610317	0.29					
*DUP CSE610455	0.50					
*DUP Sample 1	2.53					
*OXF65	0.80					
*ME-3		259.9		2.72	0.87	
*ME-4			1.82			
*BLANK	<0.01	<0.1	<0.001	<0.01	<0,01	

Certified by_

CERTIFICATE OF ANALYSIS

0V-1759-PA2

Nov-25-10

Company:	Silver Standard
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-06-10

.

Sample	Au		
Name	g/tonne		
CS E610828	0.03		
CS_E610795	0.24		
CS ⁻ E610672	0.01		
CS ⁻ E610654	0.22		
CS_E610653	0.42		
CS E610643	0.55		······································
CS ⁻ E610651	0.65		
CS ⁻ E611113	0.20		
CS ⁻ E611083	0.30		
CS_E611084	0.39		
CS E611076	0.43	· · · · · · · · · · · · · · · ·	······································
CS ⁻ E611193	0.46		
CS E611176	0.45		
CS E611089	0.56		
CS_E611137	0.50		
CS E611117	0.51		
CS_E611185	0.64		
Sample 2	0.36		
CS_E611942	1.39		
CS_E611944	1.71		
CS E611945	2.73	······································	
CS ⁻ E612122	0.16		
*DUP CS E610828	0.01		
*DUP CS E611084	0.36		
*DUP CSE611944	1.75		
*OXF65	0.81	· · · · · · · · · · · · · · · · · · ·	
*BLANK	<0.01		

Au 30g F.A. AA finish

CERTIFICATE OF ANALYSIS

0V-1759-PA3

Nov-25-10

Company:	Silver Standard
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-06-10

Sample	Au	Ag	Cu	Pb	Zn	
Name	g/tonne	g/tonne	%	%	%	
CS E611271	0.59					
CS_E611252	0.63					
CS_E611265	0.77					
CS_E611231	1.00					
CS_E611247	<0.01					1
CS E611359	0.37					
CS ⁻ E611353	0.39					
CS ⁻ E611375	0.34					
CS_E611428	0.40					
CS_E611352	0.42					
CS E611371	0.50					
CS ^{E611377}	0.62					
CS ^{E611438}	0.69					
CS_E611278	0.26					
CS_E611314	0.35					
Sample 3	2.98	376.8	1.72	3.95	1.05	
CS Ē611331	0.34					
CS_E611348	0,40					
CS_E611297	0.42					
CS_E611322	0.43					
CS E611292	0.46					
CS_E611307	0.44					
*DŪP CS E611271	0.63					-
*DUP CS E611352	0.46					
*DUP CS_E611322	0.45					
*OXF65	0.81					
*ME-3		259.9		2.72	0.87	
*ME-4			1.76			
*BLANK	<0.01	<0.01	<0.001	<0.01	<0.01	

Au 30g F.A. AA finish

An

Certified by_____

CERTIFICATE OF ANALYSIS

0V-1759-PA4

Nov-25-10

Company:	Silver Standard
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Oct-06-10

Sample	Au	
Name	g/tonne	
CS E611285	0.48	······································
CS ⁻ E611337	0.60	
CS ⁻ E611304	0.64	
CS ⁻ E611299	0.76	
CS_E611598	0.47	
CS E611616	0.53	•••••••••••••••••••••••••••••••••••••••
CS ⁻ E611596	0.59	
CS_E611579	0.71	
CS ⁻ E611612	0.72	
CS_E611589	0.81	
CS E611743	0.16	
CS ⁻ E611742	0.16	
CS ⁻ E611623	0.19	
Sample 4	0.33	
CS_E611735	0.26	
CS E611647	0.37	
CS ⁻ E611634	0.46	
CS_E612094	0.20	
CS_E611212	0.50	
CS_E612214	0.26	
CS E612188	0.25	
CS ⁻ E612163	0.38	
*DUP CS E611285	0.47	
*DUP CS_E611589	0.83	
*DUP_CS_E612214	0.25	
*0XF65	0.81	
*BLANK	<0.01	

Au 30g F.A. AA finish

.....

. . .

.....

CERTIFICATE OF ANALYSIS

0V-1759-PA5

Nov-25-10

Company:	Silver Standard
Project:	Snowfields
Attn:	Zoran Lukic

We *hereby certify* the following assay of 6 pulp samples submitted Oct-06-10

Sample	Au	
Name	g/tonne	
CS E612307	0.34	· · · · · · · · · · · · · · · · · · ·
CS ⁻ E612285	0.31	
CS_E612281	0.34	
CS ⁻ E612221	0.74	·
CS_E612327	0.46	•
CS E612324	0.49	· · · · · · · · · · · · · · · · · · ·
*DUP CS E612307	0.32	
*OXF65 —	0.80	
*BLANK	<0.01	
		· ··

M

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1759PR

Date : Nov-25-10

Sample type : PULP

Silver Standard

Project : Snowfields

Attention : Zoran Lukic

.

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga l ppm %	K La 6 ppm	i Li i ppm	Mg %	Mn ppm	Mo ppm	Na % p	Nb ppm p	Ni opm	Pb ppm	S %	Sb ppm p	Sc opm	Sn ppm	Sr ppm p	Ta ppm p	Te pm	Ti %	V ppm	W ppm (Y pm	Zn ppm j	Zr ppm
CS_E610317	<1	9.21	<10	880	6	1.99	3	14	73	205	3.41	21 2.5	3 13	53	2.91	729	163 2	2.37	<10	47	21	1.37	<5	15	<10	106	9.	<10	0.18	167	<10	q	94	47
CS_E610284	<1	7.74	48	309	5	1.73	3	12	24	116	3.27	19 3.7	B 13	7	1.03	673	18 0	.18	<10	9	31	2.61	16	12	<10	229	<u> </u>	<10	0.06	63	<10	6	69	35
CS_E610362	<1	7.97	14	896	<5	0.89	4	8	33	149	2.41	18 3.0	7 10	7	0.75	278	606 1	.97	<10	12	38	1.93	< 5		<10	349	7	<10	0.06	98	<10	6	54	37
CS_E610351	<1	7.33	104	1591	<5	1.08	4	6	33	281	2.65	16 3.6	7 <10	10	0.77	279	343 0	.54	<10	14	34	2.00	16	8	<10	120	7	<10	0.05	83	<10	5	63	78
CS_E610337	<1	6 .98	20	663	<5	1.40	3	10	39	347	2.95	15 3.6	6 <10	11	0.73	374	446 0	.31	<10	18	33	2.16	<5	8	<10	123	7	<10	0.05	84	<10	5	45	21
CS_E610438	<1	9.03	48	101	16	0.38	5	15	8	352	5.85	21 3.6	9 <10	6	0.27	66	17 0).51	<10	<2	88	4.78	<5	11	<10	86	8	<10	0.08	141	<10	12	129	58
CS_E610437	<1	10.01	31	97	18	0.67	7	14	9	241	5.85	20 4.0	2 <10	11	0.36	52	24 0	.55	<10	<2	138	5.03	<5	12	<10	108	8	<10	0.07	146	<10	15	399	59
CS_E610401	<1	7.94	<10	1443	5	1.62	3	9	40	219	2.91	19 2.5	2 13	16	1.07	413	29 2	.75	<10	17	19	1.72	<5	10	<10	250	7	<10	0.12	117	<10	9	38	31
CS_E610479	<1	8.96	16	90	17	0.75	4	17	11	2119	6.61	19 3.3	4 <10	15	0.96	748	18 0	.35	<10	<2	33	5.54	<5	21	<10	397	11 -	<10	0.09	216	<10	6	114	43
CS_E610455	<1	9.85	<10	166	13	0.76	5	23	15	1539	6.36	20 3.0	5 <10	30	1.27	105 9	40	.48	<10	<2	42	3.84	<5	13	<10	87	9 ·	<10	0.11	160	<10	8	254	53
CS_E610491	1	7.15	1581	81	31	0.35	5	16	13	4558	7.09	11 2.9	2 <10	5	0.27	84	26 0	.33	<10	з	99	6.08	58	7	<10	402	10 ·	<10	0.03	101	<10	4	195	26
CS_E610383	<1	8.35	<10	1247	6	1.30	5	17	93	258	3.63	20 3.3	215	22	1.46	469	304 1	.60	<10	51	24	2.25	<5	16	<10	97	9.	<10	0.13	151	<10	8	94	30
CS_E610492	1	6.42	1084	56	40	0.21	5	16	11	6972	8.77	14 2.64	4 <10	5	0.23	94	60	.30	<10	2	80	7.47	44	8	<10	357	9	11	0.04	101	<10	3	206	21
CS_E610499	2	5.69	465	58	19	0.47	5	16	13	7397	9.15	16 2.4	5 <10	4	0.23	503	<2 0	.23	<10	<2	4	7.90	17	11	<10	226	10	<10	0. 05	106	<10	4	191	16
CS_E610501	2	7.92	599	49	24	0.29	7	17	12	7288	11.11	20 3.43	3 <10	3	0.19	142	<2 0	.38	<10	<2	3	9.58	28	15	<10	151	10 ·	<10	0.05	136	<10	4	201	26
CSE610549	<1	9.61	221	88	13	0.34	8	24	8	564	6.09	21 3.6	L <10	9	0.64	52	49 0	.59	<10	<2	183	5 4 1	6	12	<10	230	7	~10	0.06	136	<10	5	305	52
CS_E610596	<1	7.41	455	85	16	0.19	4	18	16	1118	6.43	18 3.0	5 <10	6	0.37	49	13 0	.47	<10	13	96	5.81	q	8	<10	1621	7	<10	0.00	100	~10	4	11	30
CS_E610519	1	7.96	<10	70	20	0.56	5	17	9	3757	7.82	21 3.3	<10	6	0.38	271	7 0	.40	<10	<2	85	6 72	<5	11	<10	227	11	~10	0.06	113	<10	7	102	50
CS_E610515	7	3.42	189	53	26	0.17	4	16	14 >	10000	11.32	12 1.3	7 <10	8	0.16	345	<2.0	.17	<10	<2	14	9 32	31	7	~10	103	<u> </u>	77	0.00	47	<10	3	103	12
Sample 1	>200	3.60	2664	576	44	1.17	69	24	55 >	10000	10. 02	8 0.8	<10	9	0.75	5763	58 1	.13	<10	35 >	10000	3.17	1972	7	<10	128	11 •	<10	0.14	32	<10	9 >	10000	31
CS_E610517	6	3.66	27	54	26	0.30	5	20	32 >	10000	11.89	13 1.5	3 <10	5	0.20	263	14 0	.18	<10	<2	2	9.88	<5	4	<10	33	10	13	0.05	61	<10	3	316	12
CS_E610809	<1	8.85	92	169	7	2.93	4	11	16	46	5.07	19 2.7	3 <10	14	0.97	1203	20	.53	<10	<2	35	4.49	18	10	<10	329	9.	<10	0.27	110	<10	6	204	51
CS_E610828	1	10.46	84	12 9	10	0.23	5	15	17	205	5.35	22 4.02	2 <10	6	0.25	59	<2 0	.60	<10	2	81	4.71	87	25	<10	2 63	10	<10	0.11	223	37	4	52	38
CS_E610795	<1	8.42	<10	494	10	1.01	4	11	14	427	5.02	18 4.1	714	8	0.74	298	214 0	.30	<10	<2	24	3.33	<5	11	<10	35	9.	<10	0.10	139	<10	12	24	39
CS_E610672	<1	7.03	<10	418	16	4.96	4	30	17	1	9.79	17 0.6	3 <10	91	3. 5 0	2757	<2 0	.17	<10	<2	<2	0.23	9	33	<10	91	7 -	<10	0.84	315	<10	22	162	30
CS_E610654	<1	9.45	<10	434	10	0.22	4	22	28	539	5.65	20 4.23	8 <10	5	0.35	112	96 0	.55	<10	Z 9	20	4.27	<5	15	<10	35	10 •	<10	0.06	138	<10	6	14	42
CS_E610653	<1	8.31	<10	198	11	0.27	4	21	21	508	6.53	18 3.6	5 <10	6	0.34	134	100 0	.50	<10	22	14	5.55	<5	13	<10	59	9.	<10	0.07	142	<10	6	18	42
CS_E610643	1	9.96	<10	311	10	0.31	5	14	12	676	4.74	23 3.62	2 <10	5	0.19	146	39 0	.83	<10	< 2	41	3.94	<5	14	<10	96	10	<10	0.13	174	<10	9	73	60
CS_E610651	<1	9.98	<10	321	13	0.32	5	20	10	735	6.09	21 3.94	<10	8	0.32	155	66 0	.80	<10	<2	18	4.68	<5	14	<10	80	10 -	<10	0.07	171	<10	8	93	60
CS_E611113	1	6.81	53	508	9	0.64	3	11	21	277	3.99	13 3.60) <10	6	0.79	364	64 0	.21	<10	12	44	3.07	113	6	<10	71	6 -	<10	0.04	66	<10	3	78	21

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1759PR

Date : Nov-25-10

Sample type : PULP

Silver Standard

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	AI	As	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	Ga K	La	Li	Mg N	1n N	lo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm pp	pm p	pm	% p	opm l	ppm	ppm	ppm	%	opm %	ppm	ppm	% рр	m pp	m %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm	ppm	%	ppm p	opm p	pm	ppm p	pm
CS_E611083	<1	8.53	<10 10	087	7	1.23	4	10	80	265	3.84	21 3.62	21	30	2.07 74	42 2 6	57 0.26	<10	47	31	1.78	<5	18	<10	37	8	<10	0.18	159	<10	7	121	28
CS_E611084	1	7.68	<10 8	880	7	2.28	4	14	70	371	4.65	17 2.84	11	34	2.21 10:	14 9	97 0.82	<10	38	50	2.70	<5	11	<10	74	8	<10	0.17	118	<10	6	213	25
CS_E611076	1	7.52	<10 7	' 02	9	1,12	4	15	197	329	5.11	18 2.50	12	43	2.75 86	58 24	6 0.79	<10	76	52	2.67	<5	19	<10	37	9	<10	0.18	165	<10	6	203	30
CS_E611193	<1	6.79	<10 7	755	5	3.80	2	7	71	257	3.09	18 1.82	12	21	1.41 56	56 S	91 1.91	<10	35	22	2.93	<5	9	<10	469	9	<10	0.13	94	<10	8	81	15
CS_E611176	<1	7.12	24 14	18	7	3.45	4	12	160	325	3.58	20 3.22	11	19	1.38 92	21 13	33 0.18	<10	44	21	2.54	<5	18	<10	119	10	<10	0.19	224	<10	11	106	24
CS_E611089	<1	8.49	15 7	/83	12	0.78	5	12	63	590	4.79	20 4.07	12	14	1.28 49	99 7	73 0.25	<10	53	43	3.56	<5	12	<10	37	13	<10	0.06	122	<10	5	148	27
CS_E611137	1	6.60	23 9	975	7	1.04	3	11	71	416	3.68	17 3.32	<10	26	1.03 43	19 29	98 0.43	<10	23	29	2.68	6	8	<10	116	8	<10	0.09	83	<10	4	95	20
CS_E611117	1	7.07	19 5	66	10	2.52	6	14	40	551	5.17	17 3.74	16	17	1.29 76	55 24	15 0.12	<10	38	76	4.05	6	12	<10	1 00	9	<10	0.09	123	<10	9	275	21
CS_E611185	<1	7.20	<10 11	10	6	3.37	3	15	75	334	3.18	17 2.31	11	21	1.28 49	91 6	57 1.81	<10	36	20	2.63	<5	12	<10	388	8	<10	0.13	113	<10	9	82	21
Sample 2	58	7.98	114 6	572	11	0.70	30	21	58	4968	5.60	20 5.02	15	13	0.97 62	27 22	21 1.58	<10	30	2201	2.41	85	12	197	26 8	11	<10	0.23	164	<10	13	3373	4 0
CS_E611942	3	7.65	712 3	828	15	1.44	5	15	14	7170	7.67	16 3.79	10	7	0.64 13	78	3 0.23	<10	<2	25	6.23	270	9	<10	47	11	<10	0.24	126	<10	5	263	39
CS_E611944	3	7.50	103 3	863	18	4.00	5	21	13	7783	8.21	18 3.52	<10	22	0.99 217	71	4 0.30	<10	<2	<2	4.80	<5	9	<10	228	11	<10	0.22	120	<10	6	180	42
CS_E611945	2	7.36	93 7	'00	17	3.96	4	17	19	6926	8.56	19 3.11	<10	36	1.56 27:	16	3 0.33	<10	<2	<2	4.16	<5	10	<10	249	13	<10	0.20	120	<10	5	199	34
CS_E612122	1	8.69	<10 30)18	6	1.66	4	3	17	1653	4.34	19 3.90	17	24	1.69 7	38 <	2 1.55	<10	7	24	0.90	<5	13	<10	1003	10	<10	0.24	157	<10	20	260	44
CS_E611271	1	8.10	58 10	973	<5	1.11	5	6	41	378	2.53	20 4.08	<10	14	0.75 32	78 5	55 0.29	<10	18	46	1.73	9	8	<10	39	9	<10	0.06	94	<10	5	85	26
CS_E611252	<1	8.07	80 23	373	9	2.39	4	14	68	291	4.87	21 1.88	11	33	2.52 112	20 13	32 2.54	<10	73	9	1.33	47	13	<10	259	10	<10	0.27	119	<10	12	156	25
CS_E611265	1	7.90	<10 7	759	8	0.05	4	7	35	324	2,75	20 2.01	<10	11	0.82 26	54 4	46 3.22	<10	17	44	1.55	<5	7	<10	129	9	<10	0.09	114	<10	5	76	25
CS_E611231	<1	8.40	<10 8	362	9	1.70	3	14	43	539	4.25	22 2.23	15	19	1.47 40	51 7	79 2.94	<10	24	8	2.28	<5	13	<10	174	8	<10	0.23	130	<10	15	29	23
CS_E611247	<1	8.91	<10 5	586	5	1.65	4	13	31	390	3.03	25 1. 89	15	33	2.17 7	54 7	78 3.52	<10	24	41	0.56	<5	12	<10	202	11	<10	0.30	107	<10	14	154	24
CS_E611359	<1	7.24	<10 5	506	12	0.77	3	15	35	333	5.53	19 2.96	11	14	0.88 32	21 2	29 1.61	<10	18	11	4.16	<5	9	<10	141	7	<10	0.11	95	<10	8	59	31
CS_E611353	<1	7.48	<10 14	458	8	3.03	3	9	49	362	4.23	21 3.35	16	22	1.62 104	40 9	93 0.81	<10	17	8	2.23	<5	13	<10	146	6	<10	0.25	131	<10	16	131	29
CS_E611375	<1	8.32	<10 15	549	5	2.09	3	9	31	339	3.44	20 4.11	15	19	1.42 73	35 8	39 0.25	<10	20	18	1.64	<5	12	<10	73	8	<10	0.24	115	<10	20	129	35
CS_E611428	<1	7.64	<10 3	811	11	2.36	3	22	169	468	5.68	20 3.43	11	18	1.45 7:	11 13	34 0.82	<10	111	7	3.83	<5	14	<10	155	7	<10	0.27	142	<10	15	55	32
CS_E611352	<1	8.18	<10 5	581	8	1.51	3	14	39	394	4.33	21 4.04	16	21	1.60 69	94 12	22 0.33	<10	20	17	2.43	<5	12	<10	113	11	<10	0.24	116	<10	14	155	27
CS_E611371	1	8.95	20 11	110	9	0.98	3	17	45	395	4.57	25 4.14	15	31	2.06 73	30 11	l0 0.2 0	<10	31	16	2.09	<5	16	<10	54	11	<10	0.32	141	<10	19	204	33
CS_E611377	1	7.05	18 7	746	10	2.98	2	19	45	481	5.36	19 3.46	14	15	1.15 90	53 16	50 0.18	<10	29	3	3.14	<5	11	<10	61	7	<10	0.27	105	<10	17	147	23
CS_E611438	<1	7.64	39 6	559	7	4.24	3	12	42	334	3.72	23 4.06	<10	9	0.82 133	24 18	31 0.19	<10	20	3	2.78	6	11	<10	149	9	<10	0.22	125	<10	17	20	21
CS_E611278	<1	7.11	<10 9	987	<5	1.40	3	4	30	175	2.37	17 2.37	<10	9	0,74 4	55 19	91 2.07	<10	10	29	1.23	<5	7	<10	119	7	<10	0.05	74	<10	5	64	22
CS_E611314	1	6.93	34 16	560	7	1.29	3	5	31	475	2.84	18 3.39	<10	7	0.62 50	06 5	53 0.21	<10	7	49	2.14	<5	6	<10	176	8	<10	0.06	65	<10	4	77	22
Sample 3	>200	3.58	2459 5	542	44	1.09	63	23	54 >	10000	9.49	12 0.85	<10	10	0.72 54:	15 5	55 1.13	<10	32 >	>10000	3.08	1733	6	<10	125	10	<10	0.14	30	<10	9>	10000	31

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Page 2 of 4

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1759PR

Date : Nov-25-10

Sample type : PULP

Silver Standard

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As B	a Bi	Ca	Cd	Co	Сг	Cu	Fe	Ga K	La	Li	Mg I	Mn I	Mo Na	a Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	v	W	Y	Zn	7r
Number	ppm	%	ppm ppr	n ppm	%	ppm	ppm	ppm	ppm	% I	ppm %	ppm	ppm	% pr	om pp	om %	5 ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	ppm	ppm	%	ppm	ppm	ppm	ppm p	ppm
CS_E611331	1	8.49	<10 69	46	2.07	5	6	14	331	3.03	22 4.43	13	6	0.70 5	24	85 0.22	2 < 10	2	54	2.24	~5	7	c 10	112	я	<10	0.10	06	~10	10	137	20
CS_E611348	1	7.61	31 46	3 12	1.05	3	18	31	553	5.18	21 3.83	13	19	1.24 5	40	91 0.20	1 < 10	18	40	3 54	~5	15	<10	228	10	~10	0.10	146	<10	10	127	- JU - 10
CS_E611297	<1	7.22	34 123	36	1.73	3	4	31	403	2.37	19 3.55	<10	11	0.88 6	546 1	25 0.19) <10	ло В	38	1 52	5	5	<10 <10	63	10	<10	0.10	60	~10	3	132	22
CS_E611322	1	8.25	<10 47	66	2.32	3	8	17	493	3.20	22 3.97	13	12	0.98 7	··· -	62 0.32	<10	3	24	2.16	-5	7	<10	118	10	<10	0.00	00	~10	- T	152	20
CS_E611292	1	7.22	<10 125	95	1.46	4	8	35	507	2.38	18 3.17	<10	7	0.62 4	19	85 1.06	<10	11	33	1.60	<5	6	<10	75	7	<10	0.04	61	<10	5	76	29
CS_E611307	1	6.59	16 131	1 7	4.10	7	8	101	328	3.45	19 2.95	11	28	1.11 15	i02 1	02 0.21	< 10	43	41	2.27	<5	10	<10	155	8	<10	0.14	99	<10	10	197	22
CS_E611285	<1	8.12	15 148	19	1.57	3	7	39	321	4.60	19 3.90	<10	13	0.96 4	86	78 0.31	<10	20	36	2.63	<5	9	<10	46	7	<10	0.07	104	<10	6	126	26
CS_E611337	1	7.40	16 251	98	2.52	3	11	51	375	4.32	22 3.48	15	27	1.70 9	38 1	60 0.38	<10	23	30	2.66	6	11	<10	175	11	<10	0.23	100	<10	17	143	21
CS_E611304	1	8.28	65 148	1 11	1.34	3	11	63	434	4.77	21 4.06	17	15	1.02 5	67 1	17 0.18	<10	36	36	3.55	8	11	<10	77	11	<10	0.12	134	<10	7	102	33
CS_E611299	1	6.88	76 123	37	1.74	2	5	28	303	3.24	18 3.27	<10	14	0.99 6	92 1	34 0.09	<10	19	22	2.15	<5	6	<10	74	8	<10	0.10	71	<10	6	90	17
CS_E611598	<1	8.47	<10 187	3 [°] 9	4.07	4	13	34	174	3.88	23 3.46	16	25	1.26 15	36	15 0.93	<10	23	34	2.54	< 5	12	<10	119	10	<10	0.13	107	<10	12	183	29
CS_E611616	<1	9.44	<10 1774	4 10	1.53	3	14	33	167	4.10	26 3.81	17	50	2.33 10	83	31 0.49	<10	21	25	1.55	<5	12	<10	67	11	<10	0.21	99	<10	11	195	39
CS_E611596	<1	9.35	<10 148	78	2.10	3	13	33	154	3.97	23 2.92	13	38	1.71 10	91	18 2.11	<10	31	32	1.85	<5	14	<10	118	10	<10	0.19	123	<10	12	220	41
CS_E611579	<1	9.47	44 152	L 8	2.97	4	21	88	293	4.42	25 3.62	20	32	2.05 10	57	14 0.93	<10	42	16	1.96	7	18	<10	238	10	<10	0.26	156	<10	16	162	50
CS_E611612	<1	9.54	<10 165	4 12	1,60	3	23	65	244	5.75	25 3.59	16	68	3.23 15	07 3	13 0.17	<10	54	31	2.32	<5	17	<10	55	12	<10	0.27	157	<10	11	296	43
CS_E611589	<1	9.83	<10 172	1 15	2.86	4	15	65	386	7.03	24 4.56	12	21	1.92 16	20	27 0.37	<10	19	18	3.96	13	19	<10	63	11	<10	0.18	238	<10	12	363	42
CS_E611743	<1	8.71	<10 1534	19	1.71	3	14	40	268	4.09	24 3.61	16	23	1.42 5	60 1	46 1.76	<10	19	22	2.95	<5	12	<10	228	10	<10	0.21	102	<10	17	37	32
CS_E611742	<1	8.25	<10 983	76	1.47	3	9	26	379	3.16	22 2.61	14	20	1.28 5	29	36 2.96	<10	15	17	2.01	<5	10	<10	291	10	<10	0.19	96	<10	15	34	28
CS_E611623	<1	7.22	16 165	37	0.28	4	6	34	348	3.27	19 3.69	10	8	0.47 1	22 1	01 0.26	<10	12	47	2.34	<5	5	<10	38	7	<10	0.06	63	<10	4	27	27
Sample 4	54	7.52	105 62	1 10	0.66	29	20	55	4568	5.28	19 4.78	14	12	0.91 5	68 1	98 1.51	<10	30	2303	2.10	80	11	184	249	10	<10	0.24	149	<10	12	3125	40
CS_E611735	<1	7.48	<10 103	2 9	2.21	3	11	31	334	3.45	19 2.20	12	18	1.20 6	69 1	11 2.77	<10	16	15	2.10	6	8	<10	266	9	<10	0.19	88	<10	12	24	22
CS_E611647	<1	8.98	10 203	58	1.74	3	13	31	320	4.28	25 4,47	15	20	1.26 5	86 1	22 0.2 7	<10	26	14	2.51	<5	16	<10	84	9	<10	0.24	138	<10	12	79	32
CS_E611634	<1	6.63	<10 156	79	2.10	2	12	86	525	4.52	18 3.24	<10	12	0.74 6	i04 3	22 0.11	<10	50	4	2.95	<5	9	<10	75	9	<10	0.11	107	<10	6	49	18
CS_E612094	2	8.13	14 2272	2 11	2.01	5	8	30	2426	4.00	25 3.73	16	10	0.90 13	10	5 1.71	<10	15	83	2.34	<5	9	<10	415	10	<10	0.14	i 13	<10	8	322	24
CS_E611212	<1	8.49	<10 368	37	1.28	3	15	38	570	4.03	25 1.41	11	38	2.18 5	02 2	80 3.48	<10	24	15	1.46	<5	14	<10	157	11	<10	0.28	147	<10	21	52	21
CS_E612214	<1	9.90	94 27	5 17	0.33	4	23	10	1573	6.56	23 4.55	<10	4	0.38	86	19 0.41	<10	5	27	5.95	<5	13	<10	29	13	<10	0.07	162	<10	8	22	67
CS_E612188	<1	10.22	377 370) 17	0.09	5	14	41	1781	7.44	25 4.68	<10	7	0.53 1	01	4 0.44	<10	17	19	6.40	16	10	<10	31	13	<10	0.09	120	<10	6	134	45
CS_E612163	1	7.42	1052 265	5 21	0.17	4	23	9	3104	7.00	19 3.36	<10	6	0.38	43	47 0.39	<10	11	63	6.46	18	10	<10	59	8	<10	0.04	79	<10	8	120	54
CS_E612307	<1	10.06	11 390) 12	0.45	4	12	13	698	5.66	22 4.07	18	16	1.08 4	72	2 0.44	<10	4	15	4.01	<5	9	<10	44	11	<10	0.08	127	<10	7	103	38
CS_E612285	1	10.43	21 1799	9 12	0.45	4	6	14	1360	4.47	24 4.11	13	21	1.10 6	15	5 0.52	<10	2	28	2.69	<5	8	<10	37	11	<10	0.0 9	117	<10	6	69	40

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed:

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

Report No : 0V1759PR

T: (604) 327-3436 F: (604) 327-3423

Date : Nov-25-10

Sample type : PULP

Silver Standard

Project : Snowfields

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Bi ppm	Ca %	Cd opm	Co ppm	Cr ppm	Cu ppm	Fe % (Ga K opm %	La ppm p	Li opm	Mg %	Mn ppm	Mo Na ppm %	Nb ppm	Ni ppm	i Pb ppm	s %	Sb ppm j	Sc opm	Sп ppm	Sr ppm p	Ta ppm	Te ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
CS_E612281	<1	9.73	13	1280	11	0.52	4	12	15	853	5.07	22 3 87	19	20	1 72	708	24 0 47	<10	٦	13	7 10	~5	10	<10	RA	٥	<10	0.07	137	<10	7	04	47
CS_E612221	<1	9.85	20	323	21	0.31	Ś	71	10	1717	7.89	74 4 53	<10	6	0.34	180	15 0 54	<10	,	10	5.13	~5	10	<10	74	10	<10	0.07	146	<10	, E	94	47
CS_E612327	1	9.68	11	681	14	1 04	Å	15	14	1043	6.05	24 4 06	~10	14	1.06	700	10 0 41	~10	2	12	4 74	~5	10	<10	24	10	<10	0.07	140	<10	ر ہ	177	20
CS_E612324	1	10.24	15	881	14	0.35	4	14	18	1628	7.32	22 3.98	19	25	1.25	549	3 0.49	<10	4	4	4.34	<5	10	<10	42	11	<10	0.08	126	<10	8	173	33 42
Duplicates:																																	
CS_E610317	<1	8.85	<10	902	<5	2.09	3	15	73	208	3,30	21 2.44	13	48	2.75	737	170 2.30	<10	50	31	1.42	<5	15	<10	104	10	<10	0.21	169	<10	9	105	47
CS_E610455	1	9.57	<10	190	13	0.79	5	23	14	1504	6.60	19 2.99	<10	29	1.29	1073	4 0.49	<10	<2	49	4.01	<5	13	<10	88	10	<10	0.14	164	<10	8	272	58
Sample 1	> 200	3.89	2506	560	47	1.27	70	22	46 :	>10000	10.23	10 0.88	<10	11	0.77	5694	56 1.25	<10	34	>10000	3.29	2052	7	<10	134	7	12	0.15	35	<10	9 :	>10000	34
CS_E610828	1	10.32	86	• 154	8	0.25	5	16	18	183	5.95	19 3.99	<10	7	0.27	60	<2 0.64	<10	2	83	4.62	85	24	<10	272	9	<10	0.12	220	42	4	57	42
CS_E611084	1	7.39	<10	823	8	2.44	3	14	67	360	4.75	16 2.70	11	32	2.21	1042	106 0.70	<10	39	47	2.72	<5	11	<10	71	9	<10	0.17	115	<10	6	219	18
CS_E611944	2	7.13	102	331	17	4.13	3	21	14	7619	9.02	16 3.32	<10	21	0.98	2152	3 0.29	<10	<2	<2	4.85	<5	9	<10	219	11	<10	0.23	119	<10	6	173	34
CS_E611271	1	8.31	60	1113	7	1.07	6	6	45	391	2,46	21 4.18	<10	15	0.75	392	63 0.31	<10	18	47	1.80	11	8	<10	40	9	<10	0.06	97	<10	5	91	28
CS_E611352	<1	8.33	<10	611	9	1.55	3	13	39	391	4.47	22 4.13	16	21	1.64	699	114 0.35	<10	19	12	2.41	<5	11	<10	113	9	<10	0.25	114	<10	14	147	29
CS_E611322	1	8.41	<10	495	6	2.23	3	5	14	466	3.20	22 4.03	13	13	1.00	705	61 0.38	<10	2	22	2.05	<5	6	<10	109	9	<10	0.10	90	<10	8	133	29
CS_E611285	<1	7.97	14	1448	9	1.48	з	7	42	317	4,37	20 3.78	<10	13	0.93	468	80 0.24	<10	17	34	2.58	<5	9	<10	44	9	<10	0.07	101	<10	6	115	21
CS_E611589	<1	8.38	<10	1510	12	2.53	4	14	51	340	6.17	21 3.86	10	18	1.66	1392	27 0.27	<10	18	19	3.50	7	17	<10	54	11	<10	0.10	207	<10	9	316	24
CS_E612214	<1	10.03	88	313	16	0.32	4	22	8	1589	6.63	23 4.59	<10	4	0.38	84	18 0.36	<10	3	21	5.69	<5	12	<10	29	12	<10	0.05	158	<10	8	13	56
CS_E612307	<1	9.82	<10	320	13	0.47	4	11	13	666	5.76	22 3 .99	18	16	1.08	481	<2 0.46	<10	3	12	4.16	<5	10	<10	44	9	<10	0.10	128	<10	8	93	43
Standards:																																	
Blank	<1	<0.01	<10	<10	<5	<0.01	<1	<1	3	1	<0.01	<1 0.01	<10	<1	< 0.01	<5	<2 0.02	<10	<2	<2	<0.01	<5	<1	<10	<1	<5	<10	< 0.01	<1	<10	<1	<1	<1
CH-4	2	8.03	<10	465	11	1.66	4	24	78	2106	5.26	20 1.92	15	14	1.41	457	2 3.44	<10	50	13	0.58	<5	12	<10	204	8	<10	0.30	82	<10	10	196	133

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

.

.

Signed:

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1760-PA1

At

Company:	Silver Standard	Nov-22-10
Project:	Brucejack	
Attn:	Zoran Lukic	

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	
Name	g/tonne	
CS E661973	0.19	
CS ⁻ E649459	0.46	
CS E645529	0.43	
CS_E645516	0.46	
CS_E645548	0.47	
CS E645564	0.51	······································
CS_E645302	0.02	
CS_E645342	0.78	
CS_E645312	1.14	
CS_E661901	0.20	
CS_E645449	0.20	· ····································
CS_E645481	0.26	
CS_E645461	0.41	
CS_E645464	0.65	
CS_E645427	0.74	
CS_E661904	0.75	
CS_E645429	0.91	
CS_E645451	1.18	
CS_E645412	0.51	
Sample 10	0.79	
CS_E645405	0.49	
CS_E645408	0.86	
*DUP CS_E661973	0.20	
*DUP CS_E661901	0.18	
*DUP Sample 10	0.81	
*SG40	0.94	
*BLANK	<0.01	

Au 30g F.A. AA finish

CERTIFICATE OF ANALYSIS

0V-1760-PA2

Nov-22-10

Company:	Silver Standard
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	Ag	Pb		
Name	g/tonne	g/tonne	%		
CS E651583	0.46			 	
CS_E651612	0.19				
CS_E651591	0.29				
CS_E651592	0.37				
CS_E645623	0.55				
CS E645594	0.68			 	
CS_E641508	0.05				
CS_E641549	0.07				
CS_E641563	0.56				
CS_E645851	0.29				
CS_E645854	0.57			 	
CS_E651819	0.67				
CS_E641716	1.09				
CS_E641715	20.51				
CS_E651907	0.10				
CS_E641758	0.02				
CS_E645931	1.12				
Sample 11	9.68	261.5	2.73		
CS_E645658	0.32				
CS_E645711	0.87				
CS_E645656	0.79				
CS_E641616	0.04				
*DUP CS_E651583	0.46				
*DUP CS_E645851	0.27				
*DUP_CS_E645/11	0.85			 	
*SG40	0.95				
*ME-3		274.1	2.74		
*BLANK	<0.01				

Certified by____

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1760-PA3

Company:	Silver Standard	Nov-22-10
Project:	Brucejack	
Attn:	Zoran Lukic	

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample Name	Au g/tonne	
CS E651731	0.40	
CS ⁻ E645764	0.59	
CS ⁻ E645781	0.61	
CS_E645739	0.61	
CS_E651804	0.16	
CS E651809	0.25	
CS_E651795	0.29	
CS ⁻ E651776	0.49	
CS_E641624	0.01	
CS_E645792	0.43	
CS E645962	0.21	
CS ⁻ E645982	0.25	
CS ⁻ E645989	0.29	
CS ⁻ E645969	0.34	
CS_E645948	0.49	
Sample 12	0.81	
CS_E645945	0.54	
CS_E643375	0.63	
CS_E645955	0.71	
CS_E645995	0.83	
CS_E643368	0.94	
CS_E645937	1.60	
*DUP CS_E651731	0.41	
*DUP CS E645792	0.43	
*DUP CS_E645995	0.86	
*SG40	0.99	
*BLANK	<0.01	

he -Certified by____

CERTIFICATE OF ANALYSIS

0V-1760-PA4

Company:	Silver Standard	Nov-22-10
Project:	Brucejack	
Attn:	Zoran Lukic	

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	Ag	Pb		
Name	g/tonne	g/tonne	%		
CS E643458	0.33			 	
CS ⁻ E643379	0.54				
CS_E643402	0.53				
CS_E643435	0.83				
CS_E643418	0.89				
CS E643422	1.04			 	 ··· ··· · · ·
CS_E643431	2.48				
CS_E652044	0.14				
CS_E652033	0.15				
CS_E641884	0.27				
CS_E643536	0.25			 	 ······
CS_E641916	0.32				
CS_E643564	0.31				
Sample 13	9.00	257.0	2.74		
CS_E643549	0.32				
CS_E641921	0.82			 	 · ·····
CS_E652159	0.63				
CS_E642005	0.51				
CS_E642002	1.18				
CS_E641961	1.63				
CS_E641963	1.36			 	
CS_E643469	0.36				
*DUP CS_E643458	0.34				
*DUP CS_E641884	0.28				
*DUP CS_E641961	1.77				
*SG40	0.96			 	
*ME-3		274.1	2.74		
*BLANK	<0.01				

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1760-PA5

Nov-22-10

Company:	Silver Standard
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample Name	Au			
Ivanie	g/tonne		 	
CS_E643479	0.48			
CS_E643518	1.67			
CS_E643517	1.59			
CS_E646547	0.18			
<u>CS_E643707</u>	0.51			
CS E646544	0.55		 	
CS_E643701	0.58			
CS_E646542	0.63			
CS_E652177	1.04			
CS_E652181	1.25			
CS E643663	0.33	=	 	
Sample 14	0.90			
CS E643674	0.57			
CS_E643693	0.63			
CS_E642032	0.96			
CS E642087	0.25		 	
CS_E642081	0.37			
CS_E652125	0.59			
CS_E652147	0.73			
CS_E652251	0.27			
CS E646574	1.53		 	
CS_E646585	1.59			
*DUP CS E643479	0.50			
*DUP CS_E652181	1.09			
*DUP CS_E652251	0.27			
*SG40	1.01		 	
*BLANK	<0.01			

CERTIFICATE OF ANALYSIS

0V-1760-PA6

Nov-22-10

Company:	Silver Standard
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	Ag	Pb		
Name	g/tonne	g/tonne	%		
CS E643785	0.39				
CS ⁻ E643753	0.48				
CS ⁻ E643798	0.49				
CS_E652279	0.58				
CS_E643759	0.62				
CS E652287	0.88			· · · · · · · · · · · · · · · · · · ·	
CS_E643762	0.75				
CS_E646627	0.19				
CS_E642075	0.20				
Sample 15	9.40	259.7	2.79		
CS E646645	0.24				
CS_E642078	0.35				
CS_E642061	0.56				
CS_E642068	2.51				
CS_E652216	0.45				
CS_E652227	0.84			·····	
CS_E652211	11.98				
CS_E643804	0.33				
CS_E652475	0.58				
CS_E652461	0.77				
CS_E646734	0.35				
CS_E643923	0.44				
*DUP CS_E643785	0.30				
*DUP Sample 15	9.68				
*DUP_CS_E652461	0.82				
*ME-3	0.95	274.1	2.74	· · · · · · · · · · · · · · · · · · ·	
*BLANK	<0.01	<0.1	<0.01		

Au 30g F.A. AA finish

Certified by_____

M

CERTIFICATE OF ANALYSIS

0V-1760-PA7

Company:	Silver Standard	Nov-22-10
Project:	Brucejack	
Attn:	Zoran Lukic	

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	
Name	g/tonne	
CS E643924	0.86	······································
CS ⁻ E652354	0.47	
CS ⁻ E652335	0.35	
CS_E652343	0.38	
CS_E652298	0.54	
CS_E652316	0.77	
CS_E646622	1.14	
Sample 16	0.78	
CS_E642324	0.55	
CS_E642327	0.57	
CS_E642336	0.73	
CS_E646795	0.68	
CS_E642323	0.88	
CS_E642348	1.10	
CS_E642213	0.31	,
CS_E646722	0.72	
CS_E642216	0.87	
CS_E642251	1.65	
CS_E642187	0.30	
CS_E652438	0.41	
CS_E652382	0.77	
CS_E642184	0.95	
*DUP CS_E643924	0.83	
*DUP CS_E642327	0.61	
*DUP_CS_E652438	0.38	
*SG40	1.01	
*BLANK	<0.01	

Au 30g F.A. AA finish

.

Certified by____

CERTIFICATE OF ANALYSIS

0V-1760-PA8

Nov-22-10

Company:	Silver Standard
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	Ag	Pb	
Name	g/tonne	g/tonne	%	
CS E663012	0.33	· · · · · · · ·		
CS ⁻ E663001	0.43			
CS ⁻ E642312	0.67			
CS_E643927	0.85			
CS_E642292	0.25			
Sample 17	9.74	252.9	2.76	
CS E663089	0.34			
CS_E652544	0.35			
CS_E652539	0.46			
CS_E663178	0.23			
CS_E663179	0.25			 ······································
CS_E663169	0.24			
CS_E652607	0.11			
CS_E652623	0.51			
CS_E652633	0.67			
CS_E646197	0.63			
CS_E646239	0.53			
CS_E646228	0.51			
CS_E652679	0,62			
CS_E652664	0.60			
CS_E646219	1.13			
CS_E646799	1.49			
*DUP CS_E663012	0.34			
*DUP CS_E663178	0.23			
-DOP CS E652664	0.57			 · · · · · · · · · · · · · · · · · · ·
*SG40	0.98	0 - 4 -		
	-0.01	274.1	2.74	
^ BLANK	<0.01	<0.1	<0.01	

Au 30g F.A. AA finish

Certified by____

~

_

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1760-PA9

Nov-22-10

M

Company:	Silver Standard
Project:	Brucejack
Attn:	Zoran Lukic

We *hereby certify* the following assay of 22 pulp samples submitted Dec-10-10

Sample	Au	
Name	g/tonne	
CS E646155	1.54	
CS_E652591	0.24	
CS_E652603	0.50	
Sample 18	0.79	
CS_E646178	0.85	
CS_E646819	9.96	
CS_E663309	0.19	
CS_E652699	0.22	
CS_E652697	3.08	
CS_E646935	0.99	
CS_E646877	0.27	
CS_E652693	0.49	
CS_E646241	0.56	
CS_E646911	4.83	
CS_E663277	0.29	
CS_E646268	0.29	
CS_E646914	0.31	
CS_E646258	0.67	
CS_E646296	0.43	
<u>CS_E646317</u>	1.05	
CS_E646303	3.09	
CS_E646963	0.57	
*DUP CS_E646155	1.82	
*DUP_CS_E646935	0.95	
*DUP_CS_E646317	1.01	
*SG40	0.98	
*BLANK	<0.01	

Au 30g F.A. AA finish

Certified by______

CERTIFICATE OF ANALYSIS

0V-1760-PA10

Nov-22-10

Silver Standard
Brucejack
Zoran Lukic

We *hereby certify* the following assay of 9 pulp samples submitted Dec-10-10

Sample Name	Au g/tonne	Ag g/tonne	Pb %		
CS E646354	0.39	Bronne	70	<u>.</u>	
Sample 19	10.02	251.6	2.80		
CS E646349	0.52				
CS ⁻ E646356	0.59				
CS_E646364	1.10				
CS E646335	1.35	· · · · · · · · · · · · · · · · · · ·			
CS E647177	0.69				
CS_E647341	0.15				
CS_E647342	0.23				
*DUP CS_E646354	0.42				
*SG40	0.96				
*ME-3		274.1	2.74		
*BLANK	<0.01	<0.001	<0.01		

Au 30g F.A. AA finish

...

Certified by____

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ba B	i Ca	a Cd	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo N	a Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Тe	Ti	v	W	Y	Zn	Zr
Number	ppm	%	ppm pp	om ppm	n %	5 ppm	ppm	ppm	ppm	%	ppm	%	ppm j	ppm	%	ppm	ppm '	% ppm	ppm	ppm	%	ppm	ppm p	opm	ppm p	pm p	opm	%	ppm	ppm į	opm i	opm p	pm
CS E661973	3	8.44	1505 28	55 <9	0.36	5 11	6	7	48	2 81	29	4 02	15	2	<u> </u>	215	<2 0 5	1 ~ 10	5	357	2.30	22	11	<10	774	17	<10	כב ח	122	<10	15	560	53
CS E649459	3	8.72	194 23	62 5	0.94	5	11	10	121	5.00	34	3.20	<10	5	0.52	435	31 0 3	4 ~ 10	5	56	4 55	- 50	10	<10	107	12	<10	0.22	116	<10	13	209	32
CS_E645529	10	6.54	150 24	06 7	0.29	5	7	11	138	4.18	29	3.72	11	2	0.30	186	50 0 1	5 <10	י ד	113	4.09	66	10	<10	105	14	<10	0.24	101	<10	0	417	20
CS E645516	6	7.71	147 25	85 <5	0.74		6	7	145	3.93	31	4.32	16	5	0.63	359	19 0 2	1 210	7	87	3.84	75	10	<10	71	12	<10	0.22	100	<10	12	105	20
CS_E645548	22	9.26	189 25	06 <9	0.43	8	8	10	126	5.04	37	5.33	16	6	0.71	276	14 0.2	2 <10	3	37	5.05	52	11	<10	75	18	<10	0.20	133	<10	12	132	35
_						-	•			510	2.	0100	10	v	0.71	2/0	11 0.1	- 10	5	5/	5.05	52		10	,,,	10	~10	0.20	123	~10	12	000	30
CS_E645564	7	6.46	147 25	83 6	0.76	5 10	8	13	159	3.88	28	4.68	12	2	0.41	353	14 0.1	7 <10	4	106	3.95	27	8	<10	153	13	<10	0.22	103	<10	8	775	32
CS_E645302	1	8.14	105 16	24 7	4.12	! 1	14	30	84	4.58	37	3.31	16	7	1.53	1823	<2 1.2	5 <10	38	9	0.24	19	12	<10	472	15	<10	0.32	130	<10	13	93	45
CS_E645342	9	6.86	341 32	83 5	1.07	' 1	4	11	19	3.40	30	4.50	15	1	0.83	569	<2 0.3	8 <10	3	17	1.94	26	8	<10	176	13	<10	0.25	94	<10	10	44	38
CS_E645312	27	8.24	4 25 8 28	09 <5	1.51	. 1	4	10	43	3.70	35	4.34	22	1	0.47	660	2 0.3	0 <10	6	21	2.16	133	10	<10	145	14	<10	0.26	118	<10	15	63	57
CS_E661901	10	9.66	274 34	43 <5	0.40) 5	1	13	192	4.20	41	4.69	20	<1	0.55	296	<2 0.3	0 <10	6	121	4.16	19	12	<10	139	15	<10	0.33	66	<10	9	328	134
CS_E645449	3	8.47	214 45	74 7	0.88	3 2	6	9	117	3.73	34	5.68	18	3	1.04	588	18 0.1	9 <10	4	16	2.91	11	11	<10	139	14	<10	0.32	122	<10	9	89	33
CS_E645481	6	7.81	136 43	83 7	0.63	; 7	5	11	105	3.75	31	4.18	16	4	0.61	254	13 0.1	9 <10	6	41	3.43	32	10	<10	83	12	<10	0.28	115	<10	9	567	31
CS_E645461	5	7.70	107 30	28 <5	0.63	8 2	7	15	82	4.15	33	4.17	13	1	0.69	326	38 0.1	7 <10	6	22	3.38	23	10	<10	46	15	<10	0.28	115	<10	7	104	31
CS_E645464	3	7.56	79 35	91 (1.21	. 5	6	8	102	3.97	31	3.99	13	<1	0.59	515	94 0.1	8 <10	3	18	3.70	20	10	<10	75	14	<10	0.27	114	<10	7	417	32
CS_E645427	15	7.97	247 14	89 <5	0.14	5	9	11	117	4.48	36	4.05	15	<1	0.56	179	30 0.1	3 <10	5	153	4.43	106	16	<10	40	17	<10	0.25	129	<10	15	469	39
		-																															
CS_E661904	6	9.03	689 32	.91 (1.64	3	5	10	72	3.82	37	4.28	25	<1	0.48	672	<2 0.2	7 <10	3	44	3.77	16	13	<10	224	15	<10	0.26	139	<10	16	106	51
CS_E645429	3	7.71	166 33	88 7	0.62	2 3	5	9	125	4.08	32	4.86	16	<1	0.68	417	151 0.1	3 <10	3	37	3.33	30	10	<10	125	14	<10	0.28	112	10	10	254	33
CS_E645451	3	7.78	87 25	83 6	0.61	. 2	9	12	45	4.44	33	4.79	17	2	0.95	402	15 0.1	2 <10	3	27	4.01	13	11	<10	90	16	<10	0.29	121	<10	12	68	32
CS_E645412	7	8.78	259 11	83 5	0.20	2	16	15	96	4,57	30	4.28	18	<1	0.12	60	91 0.1	4 <10	6	23	4.78	51	10	<10	36	17	<10	0.26	147	<10	5	17	32
Sample 10	45	8.11	531 14	80 <5	0.44	34	5	23	117	6.88	45	4.08	43	12	0.40	1327	3 0.1	8 <10	6	3872	0.50	71	14	15	424	22	<10	0.45	180	<10	27 3	3782	82
CS_E645405	5	8.04	350 28	40 <5	1.53	2	11	13	31	4.51	34	5.08	15	<1	0.92	1009	10 0.2	0 <10	4	49	2.88	17	9	<10	191	16	<10	0.28	106	<10	11	275	39
CS_E645408	68	2.50	431 8	54 5	0.43	4	4	25	302	2.18	11	1.48	<10	<1	0.14	233	2 0.0	4 <10	3	773	1.16	120	З	<10	44	7	<10	0.08	31	<10	5	434	13
CS_E651583	26	9.14	185 5	52 17	0.61	6	8	82	78	7.84	26	3.79	<10	8	0.48	470	38 0.2	7 <10	23	95	7.15	68	16	<10	71	12	<10	0.22	98	<10	6	148	90
CS_E651612	1	10.22	114 11	08 9	0.46	5	13	9	29	5.09	22	3.88	11	8	0.53	402	6 0.3	5 <10	5	60	4.25	11	14	<10	109	11	<10	0.34	137	<10	9	457	65
CS_E651591	2	9.58	170 24	15 10	0.45	57	10	19	32	5.44	22	3.92	11	5	0.35	205	8 0.2	9 <10	10	46	4.33	22	13	<10	71	8	<10	0.25	131	<10	10	325	68
CS E651592	2	13.37	164 35	69 11	0.37	, 9	10	12	38	4.24	30	5.29	<10	6	0.38	195	13 0 4	4 < 10	4	59	3 66	29	17	<10	108	11	~10	0 32	170	<10	5	130	88
CSE645623	5	8.43	95 20	84 11	0.48	6	8	8	146	4.27	18	5.31	11	9	0.55	356	17 0.1	3 <10	2	19	3.30	48	10	<10	101	7	<10	0.31	108	<10	6	405	38
CS_E645594	8	7.27	418 24	91 10	0,27	4	7	12	117	4.25	16	4.45	12	11	0.46	328	41 0 1	1 <10	2	20	3.21	30	12	<10	106	, 6	<10	0.31	116	<10	7	180	37
CS_E641508	3	9.17	223 18	35 8	3.29	· 7	9	27	52	4.08	22	3.68	12	41	1.38	1712	<2 0 1	7 <10	11	49	2.14	11	14	<10	246	8	<10	0.30	146	<10	12	419	66
CS_E641549	2	8.53	66 12	34 10	4.27	5	9	60	21	4.36	21	4.11	10	25	0.76	1284	<2 0.1	5 <10	25	40	3.48	ģ	12	<10	265	7	<10	0.50	149	<10	32	127	40
			-			_	-						10	_0					~-2	10	0.70	,	**	~10	205		~10	0.20	742	~10	U		.0

A .2 gm sample is digested with HNO3/HClO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

Report No : 0V1760PR

T: (604) 327-3436 F: (604) 327-3423

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	к	La	Li	Mg Mr	n Mo Na	ı Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	YZ	Zn	Zr
Number	ppm	%	ppm ppm	ppm	%	ppm l	opm p	opm p	opm	%	ppm	%	ppm p	opm	% ррп	۶ ppm	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm p	opm	%	ppm	bbų t	opm pp	m pp	Sm
CS_E641563	11	5.35	170 779	8	8.21	43	8	60	395	4.00	13	2.52	10	19	0.67 2697	2 0.07	<10	32	943	3.21	14	8	<10	243	5	<10	0.14	69	<10	14 45	83	27
CS_E645851	1	8.40	147 1712	11	3.16	4	8	9	159	4.72	19	3.76	13	5	0.61 733	3 15 0.15	<10	2	23	3.99	<5	10	<10	92	7	<10	0.30	101	<10	11 19	96	31
CS_E645854	3	8.41	160 1555	10	1.81	4	8	21	171	4.58	18	3.83	10	4	0.50 457	7 52 0.16	<10	9	26	3.70	5	10	<10	60	8	<10	0.29	101	<10	7 10	00	30
CS_E651819	1	9.69	130 2304	12	3.07	9	8	8	48	5.19	22	3.70	16	32	1.22 1223	3 73 0.33	<10	2	40	3.84	7	12	<10	153	9	<10	0.35	123	<10	14 5	31	42
CS_E641716	1	9.29	762 2003	8	3.14	. 5	8	6	24	4.23	23	4.15	15	30	1,14 1099	<2 0.43	<10	3	31	2.26	15	11	<10	197	9	<10	0.32	105	<10	15 2	25	90
CS_E641715	19	7.51	364 2600	8	5.51	5	5	8	27	3.99	19	3.51	13	28	0.80 1680) <2 0.23	<10	2	133	2.78	12	8	<10	285	7	<10	0.25	80	<10	15 4	75	72
CS_E651907	1	8.84	117 2199	8	4.56	4	7	7	17	4.22	20	3.13	14	25	1.25 1921	<2 1.13	<10	3	19	1,90	5	11	<10	21 1	9	<10	0.33	109	<10	18 1	08	45
CS_E641758	· 1	9.54	107 3257	10	3.82	4	4	4	14	4.24	23	4.36	16	22	0.96 1454	<2 1.59	<10	<2	31	2.11	5	8	<10	218	9	<10	0.31	74	<10	19 24	47	92
CS_E645931	8	6.42	631 3707	8	0.50	5	4	17	30	3.71	13	4.98	11	7	0.41 408	31 0.09	<10	6	46	2.73	47	7	<10	77	6	<10	0.22	73	<10	93	26	39
Sample 11	>200	4.96	780 3536	31	1.10	64	16	43 1	927	8.40	16	2.01	10	26	0.68 4258	3 1294 1.13	<10	32	>10000	2.85	1534	7	<10	224	8	<10	0.19	317	<10	9 840	00	67
CS_E645658	4	8.58	785 2401	8	3.64	10	8	10	138	4.40	20	4.48	12	9	0.77 2119	40 0.09	<10	3	52	3.51	15	11	<10	171	8	<10	0.29	111	<10	11 6	71	28
CS_E645711	17	7.71	246 1422	12	1.90	7	8	7	242	6.24	16	4.18	42	10	0.73 977	22 0.08	<10	2	53	4.92	34	9	<10	131	7	<10	0.25	93	<10	11 5	80	25
CS_E645656	95	7.72	203 20 9 2	8	0.50	9	8	12	162	4.10	18	3.98	12	12	0.61 370	28 0.11	<10	3	64	3.24	75	10	<10	47	7	<10	0.25	103	<10	8 5	75	31
CS_E641616	5	8.43	13 731	9	5.50	3	15	33	75	3.92	19	3.11	17	26	1.19 2220) <2 1.52	<10	21	16	3.36	12	12	<10	244	8	<10	0.26	109	<10	15	37	56
CS_E651731	1	9.55	213 1025	8	0.58	3	18	9	21	5.52	24	3.43	14	24	1.07 546	5 29 0.50	<10	5	68	4.49	22	12	<10	103	10	<10	0.24	130	<10	8 1	64	56
CS_E645764	25	7.49	211 1918	5	1.46	11	10	9	279	4.30	18	3.71	12	8	0.73 660	59 0.20	<10	3	66	3.24	34	10	<10	55	8	<10	0.32	109	<10	89	33	35
CS_E645781	5	8.93	195 2082	5	1.20	11	12	9	346	5.07	24	3.90	15	19	1.44 1234	93 0.27	<10	4	67	3.62	113	12	<10	41	9	<10	0.29	127	<10	69	19	38
CSE645739	5	7.32	163 1758	5	4.87	5	8	8	209	3.72	19	3.27	16	17	1.13 2223	l 31 0.20	<10	3	72	2.86	14	9	<10	104	7	<10	0.20	94	<10	94	12	29
CS_E651804	<1	8.85	99 2327	9	1.56	2	10	9	17	4.33	24	3.10	16	31	1.26 936	5 6 0.72	<10	4	26	2.73	13	12	<10	143	9	<10	0.26	124	<10	12 1	17	48
CS_E651809	<1	8.89	142 2156	6	1.28	2	9	7	18	4,48	22	3.13	15	34	1.34 902	2 19 0.53	<10	3	19	3.00	9	11	<10	131	8	<10	0.29	115	<10	11 1	45	48
CS_E651795	3	8.50	149 2027	7	1.34	2	9	9	18	4.09	21	3.12	12	24	0.93 876	5 12 0.50	<10	3	24	2.83	12	11	<10	120	8	<10	0.27	110	<10	91	09	46
CS_E651776	1	10.58	222 1185	6	0.88	3	15	10	28	4.62	22	3.69	23	24	0.75 404	1 73 0.49	<10	4	28	4.21	18	12	<10	113	9	<10	0.24	145	<10	13 2	90	51
CS_E641624	2	7.74	11 629	9	5.44	2	15	42	67	4.44	24	2.86	14	29	1.32 1727	7 <2 1.39	<10	19	7	4.00	9	11	<10	285	8	<10	0.21	121	<10	14	23	42
CS_E645792	5	8.46	316 1292	6	0.66	4	14	9	331	5.54	23	3.51	15	17	1.31 893	l 86 0.23	<10	3	36	4.82	152	12	<10	35	9	<10	0.21	143	<10	72	40	38
CS_E645962	3	8.35	208 3432	<5	0.59	3	8	11	24	3.94	23	5.58	14	8	1.14 1820	0 6 0.23	<10	4	50	1.94	19	10	<10	79	7	<10	0.25	110	<10	10 3	38	56
CS_E645982	2	8.18	261 2236	<5	0.57	4	9	9	28	3.88	22	4.84	14	7	0.77 580	0 7 0.24	<10	4	48	2.77	17	10	<10	48	7	<10	0.25	113	<10	83	98	57
CS_E645989	1	8.89	118 2404	5	1.94	3	8	11	23	3.72	21	4.69	14	7	0.95 1369	21 0.49	<10	4	42	1.34	12	9	<10	122	7	<10	0.26	101	<10	93	04	45
CS_E645969	6	7.86	866 2128	6	0.75	4	9	13	24	4.79	19	4.80	14	8	0.84 104:	L 6 0.18	<10	3	131	3,36	47	9	<10	73	7	<10	0.23	97	<10	10 4	62	48
CS_E645948	7	8.31	408 2561	<5	0.86	5	8	9	29	4.49	21	5.78	15	8	0.96 1199	9 4 0.26	<10	3	98	2.58	35	10	<10	111	8	<10	0.27	105	<10	94	04	53
Sample 12	48	8.38	568 1332	<5	0.48	32	8	22	116	7.04	25	4.19	33	21	0.34 127	4 0.31	<10	6	3506	0.45	78	14	18	342	10	<10	0.44	169	<10	24 36	37	97

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As I	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Те	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm pp	om p	om	% p	pm p	pbu b	ipm	ppm	% r	pm	%	ppm p	pm	% p	pm	opm %	ppm p	opm	ppm	%	opm p	pm	ppm	ppm p	pm p	opm	%	ppm	ppm p	pm p	pm p	pm
C\$_E645945	5	5.73	269 26	93	<5	0.64	4	6	16	30	2.73	16	3.77	<10	9	0.52	534	3 0.17	<10	4	107	1.98	32	7	<10	76	5	<10	0.18	75	<10	5	284	38
CS_E643375	3	9.31	437 36	23	<5	1.26	4	9	11	51	3.68	23	5.56	15	10	0.70	912	37 0.29	<10	8	57	1.23	17	12	<10	101	7	<10	0.34	120	<10	9	455	58
CS_E645955	13	7.17	481 19	61	< 5	0.38	4	8	11	33	3.82	18	5.02	11	7	0.47	424	3 0.22	<10	4	78	2.97	54	8	<10	66	7	<10	0.22	89	<10	7	429	46
CS_E645995	2	8.77	179 29	18	<5	1.00	3	9	8	37	3.53	21	5.10	14	8	0.63	734	67 0.20	<10	4	35	1.55	17	10	<10	72	7	<10	0.30	106	12	7	237	52
CS_E643368	3	8.07	446 22	48	<5	0.52	3	9	9	55	3.27	20	4.18	13	9	0.49	338	78 0.17	<10	3	43	2.18	19	9	<10	33	6	<10	0.28	99	<10	9	367	47
CS_E645937	7	6.52	764 32	85	<5	0.32	4	6	15	34	3.38	16	4.77	10	8	0.49	404	3 0.19	<10	3	65	2.43	41	7	<10	68	6	<10	0.19	80	<10	6	325	38
CS_E643458	11	8.32	180 34	15	10	1.32	4	4	10	184	4.30	19	4.61	14	8	0.75	739	52 0.08	<10	2	183	2.98	25	10	<10	112	8	<10	0.27	101	<10	11	148	26
CS_E643379	2	9.30	126 35	11	7	1.71	4	6	12	31	3.90	20	5.21	14	8	0.88 1	1055	48 0.11	<10	3	25	2.02	12	11	<10	154	9	<10	0.32	111	14	10	137	53
CS_E643402	12	5.91	172 14	94	7	2.64	4	5	21	38	3.30	13	3.24	<10	9	0.58 1	1327	69 0.05	<10	2	32	2.44	14	7	<10	113	5	<10	0.20	67	<10	9	253	34
CS_E643435	3	8.70	151 34	26	9	0.49	9	6	8	76	4.48	19	5.67	13	23	1.28 1	1732	38 0.08	<10	3	47	1.98	9	10	<10	89	9	<10	0.31	104	<10	12	701	46
CS_E643418	13	6.31	510 24	18	8	4.65	12	4	11	148	3.10	14	4.19	13	8	0.60 1	1546	27 0.06	<10	2	168	2.29	42	7	<10	164	6	<10	0.21	72	<10	17 1	326	38
CS_E643422	11	7.95	135 20	6 6	<5	2.26	6	6	10	122	3.44	18	4.73	10	9	0.65 1	1003	108 0.07	<10	3	61	2.44	45	9	<10	191	8	<10	0.26	95	<10	11	324	48
CS_E643431	15	5.78	607 16	68	12	0.33	3	5	10	68	5.51	15	3.49	<10	10	0.52	446	220 0.05	<10	2	31	4.16	34	7	<10	44	7	<10	0.21	69	<10	10	144	37
CS_E652044	1	9.75	131 8	106	11	0.39	6	14	8	74	5.25	22	3.64	10	16	0.88	244	9 0.22	<10	4	47	4.45	32	12	<10	49	10	<10	0.28	115	<10	8	183	44
CS_E652033	<1	10.08	146 18	81	12	0.4 3	6	12	9	36	5.39	23	3.50	13	22	1.13	327	8 0.21	<10	3	45	4.44	11	12	<10	52	10	<10	0.31	119	<10	10	160	46
CS_E641884	4	7.86	151 7	94	11	0.57	13	12	10	19	5.16	17	6.51	20	11	0.36	268	8 0.13	<10	2	59	4.20	8	13	<10	148	8	<10	0.30	125	<10	9	791	67
CS_E643536	12	7.70	129 26	501	7	1.27	4	5	13	196	3.10	16	3.95	12	7	0.55	433	176 0.09	<10	3	17	2.37	48	9	<10	68	6	<10	0.26	94	<10	11	87	24
CS_E641916	4	4.47	148 16	576	<5	0.43	3	3	16	19	2.36	7	4.07	11	9	0.19	268	6 0.11	<10	<2	25	1.90	10	7	<10	73	<5	<10	0.15	64	<10	4	93	37
CS_E643564	4	8.46	100 26	666	10	0.39	3	8	15	213	4.52	20	4.07	11	5	0.68	238	564 0.12	<10	3	16	3.46	17	10	<10	30	8	<10	0.24	98	<10	8	47	28
Sample 13	>200	5.12	767 12	246	33	1.02	64	19	43	1896	7.93	19	2.07	<10	27	0.68 4	4071	1253 1.16	<10	31 >	10000	3.04	1570	6	<10	219	9	<10	0.18	306	14	91	8178	63
CS_E643549	7	7.74	93 8	345	8	0.36	3	9	11	207	3.88	18	3.90	13	5	0.62	215	51 0.08	<10	4	29	3.19	70	9	<10	91	8	<10	0.25	94	<10	8	78	26
CS_E641921	4	7.88	334 29	990	7	0.74	3	9	17	36	3.98	16	6.84	12	13	0.41	528	3 0.12	<10	5	25	3.13	12	14	<10	160	9	<10	0.36	143	<10	6	32	77
CS_E652159	3	9.38	162 22	259	12	0.60	5	9	9	26	5.18	22	3.97	15	13	0.87	749	21 0.16	<10	3	34	3.84	11	12	<10	45	10	<10	0.32	118	<10	7	157	48
CS_E642005	2	8.02	170 24	61	7	4.57	3	10	47	67	3.85	19	7.26	14	27	1.42	2298	2 0.15	<10	21	20	1.24	8	12	<10	379	8	<10	0.32	123	<10	15	86	65
CS_E642002	3	6.70	250 24	134	5	2.83	2	6	36	76	3.19	13	6.54	10	16	0.82	1254	2 0.11	<10	15	15	1.50	9	9	<10	196	6	<10	0.26	97	<10	16	47	49
CS_E641961	13	8.75	618 5	598	14	1.41	6	23	22	109	7.18	20	7.70	20	8	1.00	1022	10 0.24	<10	10	32	4.85	29	20	<10	271	8	<10	0.47	240	<10	11	208	81
CS_E641963	9	7.87	825 4	129	11	1.27	5	18	19	75	6.13	16	6.93	17	8	0.70	802	4 0.18	<10	8	26	4.33	16	17	<10	243	8	<10	0.37	193	<10	10	160	63
CS_E643469	13	7.19	211 14	189	11	0.42	4	11	11	222	4.59	17	3.75	<10	9	0.52	243	180 0.07	<10	4	17	3.45	35	8	<10	77	7	<10	0.26	87	<10	6	95	22
CS_E643479	31	5.08	401 5	581	8	0.21	3	7	16	151	4.03	10	2.55	<10	9	0.40	142	98 0.05	<10	5	15	3.03	117	6	<10	130	7	<10	0.16	62	<10	5	173	15
CS_E643518	18	7.37	161 19	921	7	0.26	3	6	11	153	3.71	15	3.73	11	8	0.58	160	31 0.08	<10	3	29	2.80	60	9	<10	79	10	<10	0.23	95	<10	6	117	21

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Page 3 of 8

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6 T: (604) 327-3436 F: (604) 327-3423 Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Aq	AI	As	Ва	Bi	Са	Cd	Со	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm	ppm p	pm	% p	opm p	opm p	pm	ppm	%	opm	%	ppm p	pm	%	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm∣	ppm	%	ppm	ppm p	pm p	opm p	/pm
																																_		
CS_E643517	14	5.80	80	2544	7	0.22	3	4	18	73	3.09	12	2.93	10	10	0.48	145	26 0.07	<10	2	25	2.26	36	7	<10	61	7	<10	0.17	69	<10	5	142	16
CS_E646547	6	7.78	253	1887	12	0.47	15	7	10	28	4.91	16	3.74	14	7	0.35	290	2 0.10	<10	5	83	3.79	15	10	<10	67	11	<10	0.20	108	<10	10	685	43
CS_E643707	16	6.77	114	1333	8	0.56	4	10	9	251	4.45	13	3.22	12	7	0.57	314	68 0.09	<10	3	22	3.38	64	7	<10	22	9	<10	0.20	80	<10	5	282	19
CS_E646544	5	8.81	806	2136	8	0.52	13	9	12	54	4.15	17	4.27	17	5	0.37	294	<2 0.11	<10	5	91	3.06	20	12	<10	80	11	<10	0.26	133	<10	13	800	49
CS_E643701	34	8.37	72	1705	10	0.24	5	13	10	140	4,75	17	3.83	13	8	0.58	165	374 0.13	<10	3	32	3.53	47	10	<10	21	11	<10	0.27	103	<10	5	333	26
00 5646540	_	0.70		4445		2.41	0		14	6.2	4.01	10	4 20	1 5	c	0.20	050	2 0 11	<10	10	66	2 75	20	10	~10	152	11	<10	0.26	121	<10	16	542	4 [.] 5
CS_E646542	6	8.79	555	1143	10	2.41	9	0	14	52	4.91	10	4.20	15	20	1 22	1455	2 0.11	<10	10	20	3.73	20	10	<10	110	11	<10	0.20	117	<10	20	312	42
CS_E652177	1	8.96	/9	1917	8	3.45	2	9		87	4.17	17	3.61	15	20	1.32	1400	42 0.14	<10	4	22	2.39	5	12	<10	176	10	<10	0.34	101	<10	0	116	32
CS_E652181	1	8.37	408	1578	9	4.21	د	8	6	4/	4.15	15	3.22	17	24	1.42	1620	43 0.13	<10	2	19	1.84	< 5	11	<10	120	10	<10	0.31	101	<10		110	32
CS_E643663	4	8.48	<10	333	10	3.17	د	10	8	267	4.35	16	3.82	11	13	0.87	1224	50 0.12	<10	2	19	3.3/	< 2	10	<10	262		<10	0.20	153	<10	0 74 3	120	23
Sample 14	36	8.77	516	1293	15	0.48	30	6	20	118	7.54	22	4.27	33	22	0.36	1231	3 0.15	<10	5	1188	0.40	70	15	16	362	10	<10	0.45	153	<10	24 3	635	85
CS_E643674	6	8.67	65	313	9	2.26	5	10	9	158	4.27	17	3.95	11	8	0.68	946	58 0.14	<10	3	21	3.31	21	10	<10	60	10	<10	0.27	97	<10	7	265	24
CS_E643693	16	7.15	42	203	9	1.05	20	7	10	96	3.45	13	3.20	<10	5	0.40	441	71 0.12	<10	6	233	2.74	11	7	<10	63	8	<10	0.19	78	<10	4 2	2597	17
CS_E642032	3	7.04	792	1030	9	1.55	2	12	41	37	5.54	12	7.17	10	17	0.65	934	21 0.10	<10	19	23	3.68	26	8	<10	157	9	<10	0.22	93	<10	9	67	35
CS_E642087	1	9.54	356	857	9	1.01	4	10	14	49	5.06	17	4.04	11	10	0.58	787	15 0.16	<10	5	26	3.77	33	12	<10	47	11	<10	0.35	119	<10	7	260	50
CS_E642081	1	9.39	403	902	11	0.35	4	17	15	83	5.69	25	4.03	<10	6	0.40	298	18 0.18	<10	7	27	4.58	43	13	<10	41	12	<10	0.34	129	<10	5	142	49
CS_E652125	З	9.34	387	1796	10	0.36	3	10	11	51	4.59	17	4.11	18	8	0.45	481	41 0.15	<10	З	33	3.37	23	11	<10	35	11	<10	0.25	118	<10	5	175	49
CS_E652147	7	13.15	318	411	16	0.49	5	18	13	101	7.19	25	5.69	22	11	0.83	738	94 0.21	<10	8	47	5.32	34	17	<10	46	14	<10	0.36	157	<10	8	230	60
CS_E652251	5	8.93	206	1720	9	0.34	5	8	8	75	4.55	17	4.84	12	9	0.75	436	2 0.07	<10	2	124	2.96	31	10	<10	20	9	<10	0.26	101	<10	11	337	50
CS_E646574	4	8.74	781	846	12	0.42	10	18	34	69	5.68	17	4.11	11	9	0.38	646	2 0.12	<10	22	30	3.88	16	11	<10	85	8	<10	0.23	113	<10	6	453	33
CS_E646585	8	7.52	1060	901	12	0.90	2	13	21	79	5.52	15	3.53	14	17	0.35	568	<2 0.09	<10	21	18	3.84	21	11	<10	116	7	<10	0.21	112	<10	10	58	42
	_						-				c 02		4 77	-10		0.20	100	26.046	- 10	0	16	6 10	47		-10	20		-10	0.17		~10		224	22
CS_E643785	5	9.44	/6	158	18	0.39	5	23	10	104	6.93	19	4.37	<10	4	0.39	190	17 0 10	< 10	7	16	0.10	43	~ ~	<10	29	12	<10	0.17	00	<10	5	224 900	22
CS_E643753	12	7.16	80	1260	12	0.44		8	12	135	4.48	18	3.35	11	8	0.50	3/3	17 0.10	<10	3	16	3.33	70		<10	27		<10	0.22	111	< 10	ر د	609	22
CS_E643798	5	10.43	60	1030	11	0.27	4	13	11	161	4.86	22	4.78	<10	4	0.34	109	46 0.16	<10	4	14	4.08	10	11	<10	29	12	<10	0.24	111	<10	4	760	24 70
CS_E652279	3	8.35	522	1412	11	0.36	5	11	9	13	5,78	18	4.37	13	/	0.76	485	10 0.06	<10	4	26	3.92	18	10	<10	17	9	<10	0.25	90	<10	9	200	30
CS_E643759	13	7.66	72	759	15	0.68	4	13	9	134	6.49	16	3.56	12	6	0.56	443	161 0.10	<10	2	12	5.30	93	10	<10	28	9	<10	0.25	92	<10	/	45	20
CS_E652287	3	9.08	348	1567	13	0.28	7	13	9	45	6.43	20	4.28	14	19	1.28	1370	33 0.06	<10	4	27	3.27	23	11	<10	15	11	<10	0.30	106	<10	12	566	56
CS_E643762	4	8.95	53	841	14	0.42	4	12	13	119	5.98	2 2	4.07	14	10	0.94	469	71 0.12	<10	4	14	4.93	73	11	<10	26	10	<10	0.32	104	<10	5	56	25
CS_E646627	9	8.58	317	2584	9	1.59	8	7	12	90	4.28	22	4.06	21	6	0.35	464	<2 0.14	<10	5	224	3.53	29	12	<10	201	10	<10	0.23	128	<10	17	409	50
CS_E642075	1	9.28	133	3094	9	2.40	5	7	8	22	4.25	21	5.19	15	26	1.29	1707	2 1.02	<10	5	19	0.93	9	11	<10	258	12	<10	0.33	112	<10	15	155	47
Sample 15	>200	5.03	778	397	31	1.13	62	15	42	1940	8.60	17	2.06	<10	26	0.70	4335	1313 1.14	<10	33	7860	2.85	1582	7	<10	229	9	<10	0.19	319	<10	9 9	9335	66

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	Al	As Ba	a Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	К	La	Li	Mg	Mn	Mo Na	Nb	Ni	Pb	s	Sb	Sc	Sn	Sr	Та	Те	Ti	v	w	Y	Zn	Zr
Number	ppm	%	ppm ppm	n ppm	%	ppm	ppm	ppm	ррт	%	ppm	%	ppm	ppm	% p	opm	ppm %	ppm	ppm	ppm	%	ppm	ppm	ррт	ppm p	pm	ppm	%	ppm	ppm j	ppm	ppm p	pm
CS_E646645	3	9.13	507 1544	10	0.47	5	12	12	44	4.09	24	4.43	16	6	0.36	234	3 0.13	<10	6	41	3.27	16	12	<10	105	10	<10	0.25	141	<10	12	251	51
CS_E642078	1	8.77	160 3007	' 7	2.52	5	7	7	21	4.17	19	5.19	15	25	1.19 1	1529	2 0.81	<10	4	21	1.24	13	11	<10	192	11	<10	0.32	105	<10	15	199	47
CS_E642061	2	8.80	191 2793	9	0.85	4	7	10	20	4.23	20	5.01	13	22	1.24 1	1384	<2 0.99	<10	4	25	1.03	11	11	<10	107	11	<10	0.32	107	<10	10	141	48
CS_E642068	3	9.00	268 3475	8	1.58	5	7	11	30	4.46	20	5.93	14	25	1.27 1	1693	27 0.66	<10	6	25	1.55	14	11	<10	152	10	<10	0.33	108	<10	15	215	51
CS_E652216	2	9.82	255 2349	10	1.18	5	12	8	97	4.46	21	4.26	13	21	1.07 1	125	7 0.15	<10	3	24	3.16	27	12	<10	65	12	<10	0.26	129	<10	10	373	38
CS_E652227	2	8.73	124 2703	10	3.91	8	8	9	123	4,47	20	3.69	14	24	1.17 2	2612	52 0.13	<10	4	15	1.97	7	11	<10	139	10	<10	0.31	113	<10	9	476	27
CS_E652211	6	8.72	271 1534	12	1.58	4	13	11	101	5.54	17	3.65	27	37	1,15 1	332	16 0.11	<10	3	28	3.70	16	12	<10	72	10	<10	0.23	114	<10	17	327	30
CS_E643804	1	9.94	96 1117	13	0.28	6	17	- 7	43	5.26	21	4.53	10	7	0.40	155	98 0.16	<10	4	18	4.56	18	11	<10	34	11	<10	0.16	108	<10	6	430	24
CS_E652475	11	10.12	210 1150	14	0.43	8	22	8	148	5.88	21	4.56	14	13	0.54	244	58 0.15	<10	7	20	4.83	101	10	<10	35	12	<10	0.20	130	<10	6	507	25
CS_E652461	13	10.60	101 270	14	0.29	6	11	10	217	5.78	28	4.71	15	4	0.42	129	86 0.17	<10	4	17	5.04	116	13	<10	29	13	<10	0.28	131	<10	5	214	29
CS_E646734	3	9.63	869 1703	8	0.48	з	14	38	76	4.10	21	4.61	26	6	0.55	417	<2 0.09	<10	25	13	3.15	38	13	<10	61	11	<10	0.24	128	<10	12	5	52
CS_E643923	4	7.91	395 3022	8	0.81	5	3	7	14	3.88	17	5.38	14	9	0.73	640	<2 0.39	<10	3	111	2.47	32	10	<10	119	9	<10	0.28	97	<10	7	250	44
CS_E643924	7	7.54	464 1934	10	0.55	5	7	10	27	3.54	17	5.78	12	7	0.48	302	3 0.25	<10	3	150	2.39	42	9	<10	83	5	<10	0.25	87	<10	6	173	47
CS_E652354	3	12.32	91 1388	11	0.07	6	14	7	25	2.70	26	4.72	17	3	0.04	27	25 0.50	<10	3	60	2.55	12	8	<10	42	8	<10	0.14	207	<10	3	6	74
CS_E652335	7	9.31	127 905	12	0.06	9	12	9	34	5.46	24	4.12	<10	2	0.15	77	59 0.35	<10	3	63	4.66	25	15	<10	21	5	<10	0.27	122	<10	6	403	55
CS_E652343	14	9.12	82 1162	. 5	0.09	5	10	6	43	2.49	17	3.90	<10	8	0.07	40	81 0.37	<10	3	167	2.05	34	6	<10	22	<5	<10	0.19	104	<10	2	11	48
CS_E652298	2	9.16	115 1938	13	0.66	6	9	6	25	5.70	24	4.04	14	27	1.52 2	2880	8 0.26	<10	2	51	2.27	10	10	<10	28	5	<10	0.28	103	<10	9	29 9	57
CS_E652316	7	8.35	312 1525	12	0.64	6	8	11	30	5.89	22	3.78	12	14	1.13 1	215	13 0.21	<10	2	83	3.80	32	10	<10	26	<5	<10	0.22	92	<10	10	298	49
CS_E646622	27	8.32	360 1528	11	1.06	10	7	9	57	4.32	21	3.92	16	7	0.36	285	<2 0.30	<10	3	427	3.42	41	10	<10	305	<5	<10	0.19	112	<10	13	599	49
Sample 16	55	8.50	512 1365	16	0.45	34	6	17	113	6.85	24	4.12	33	20	0.35 1	243	3 0.29	<10	5	3512	0.42	63	13	16	312	5	<10	0.38	154	<10	23	3453	84
CS_E642324	2	8.42	144 3292	5	4.35	5	6	5	52	3.64	21	5.26	13	26	1.12 1	885	40 0.35	<10	3	71	1.42	7	10	<10	167	7	<10	0.26	9 9	<10	15	205	32
CS_E642327	2	7.96	399 3330	7	4.16	5	5	5	38	3.64	19	5.05	12	25	1.14 1	914	27 0.44	<10	2	65	1.52	7	9	<10	190	<5	<10	0.25	93	<10	11	173	40
CS_E642336	3	8.43	266 2396	5	3.47	5	7	9	40	3.94	20	3.39	13	21	1.14 1	.840	30 1.91	<10	3	65	1.36	5	10	<10	228	[.] 6	<10	0.27	98	<10	11	238	34
CS_E646795	5	7.29	569 1294	8	1.99	4	11	51	83	4.19	20	3.53	11	18	0.82	776	<2 0.25	<10	41	38	3.15	13	10	<10	100	<5	<10	0.20	100	<10	6	9	37
CS_E642323	2	7.71	337 3341	5	5.19	4	5	6	35	3.20	19	5.03	12	21	0.76 1	925	22 0.20	<10	2	69	1.26	11	9	<10	149	6	<10	0.23	89	<10	16	168	27
CS_E642348	4	7.47	261 1674	8	3.29	6	7	6	82	3.73	19	3.88	13	9	0.98 1	954	85 0.34	<10	3	63	1.78	15	9	<10	130	6	<10	0.21	87	<10	10	322	31
CS_E642213	2	8.77	64 2956	6	3.72	4	7	5	31	3.90	21	4.19	15	19	1.21 1	698	13 1.45	<10	З	56	1.04	<5	11	<10	292	6	<10	0.30	105	<10	15	129	39
CS_E646722	8	7.25	595 1228	10	0.53	7	17	44	84	4.90	19	3.48	13	8	0.47	539	<2 0.17	<10	34	66	3.97	49	13	<10	54	5	<10	0.19	123	<10	17	119	34
CS_E642216	1	8.45	210 2977	7	3.92	5	6	6	45	3.96	21	3.98	14	19	1.26 1	.774	138 1.29	<10	3	62	0.90	<5	10	<10	274	7	<10	0.29	102	<10	16	199	34
CS_E642251	5	7. 9 8	1771 2477	8	2.74	5	8	5	35	4.22	20	4.28	11	9	0.93 1	153	267 0.18	<10	3	348	2.34	22	10	<10	110	6	<10	0.29	99	<10	10	228	40

Signed: ____

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	As Ba	Bi ppm	Ca %	Cd ppm p	Co ppm p	Cr opm	Cu ppm	Fe %i	Ga ppm	к %	La ppm r	Li pm	Mg %r	Mn	Mo N ppm %	a Nb 6 ppm	Ni Ni	Pb ppm	S %	Sb ppm i	Sc	Sn ppm	Sr pom p	Ta	Te ppm	Ti %	V maa	W a maa	Y omo	Zn om o	Zr
			., .,				• •						F F ··· 1					· • • •	· F F · · ·	FEW		PP 1		FF	F F · · · F	F	F F · · ·		FFW	F F F	P P		F
CS_E642187	<1	8.85	19 2455	7	3.89	5	7	6	27	4.11	21	2.95	14	19	1.19 1	487	20 2.5	6 <10) 3	61	0.50	< 5	11	<10	506	7	<10	0.31	107	<10	17	204	39
CS_E652438	45	7,74	145 1338	7	0.43	5	5	9	213	4.38	20	3.44	24	8	0.55	193	133 0.2	8 <10) 4	56	3.57	106	12	<10	26	<5	<10	0.25	108	<10	9	65	36
CS_E652382	21	6,50	285 837	11	0.10	5	9	7	101	3.47	18	2.77	<10	4	0.11	61	20 0.2	7 <10) 2	52	2.95	83	7	<10	17	<5	<10	0.15	71	<10	2	14	33
CS_E642184	1	8.89	82 2842	7	3.67	5	5	6	24	3.84	21	3.77	14	19	1.14 1	456	10 2.0	4 <10) 2	65	0.66	< 5	10	<10	431	6	<10	0.27	100	<10	17	173	30
CS_E663012	4	6.98	274 2810	<5	1.50	6	6	5	25	3.90	38	4.91	12	19	1.17 1	406	<2 0.2	1 <10) 4	220	2.21	23	9	<10	89	16	<10	0.30	105	<10	12	445	32
CS_E663001	10	2.99	111 1284	<5	0.56	1	2	16	17	2.10	16	2.01	<10	9	0.31	366	<2 0.0	4 <10) 2	25	1,14	31	3	<10	55	8	<10	0.11	41	<10	5	77	19
CS_E642312	3	6.41	508 2851	< 5	5.09	1	4	5	24	3.14	32	4.72	12	21	1.00 2	2140	36 0.1	4 <10) 2	20	1.24	22	8	<10	217	14	<10	0.25	86	<10	14	195	32
CS_E643927	4	6.97	636 3004	<5	1.28	3	5	8	22	3.63	36	5.33	16	13	0.77	618	<2 0.1	8 <10) 3	137	2.51	35	10	<10	150	15	<10	0.35	113	<10	9	222	44
CS_E642292	2	7.96	55 2356	<5	3.70	2	6	4	64	3.80	40	3.60	17	25	1.41 1	494	21 1.4	1 <10) 3	17	1.05	6	10	<10	321	15	<10	0.34	113	<10	19	195	39
Sample 17	>200	4.50	730 5228	14	0.99	63	14	29 3	2356	7.31	33	1.86	<10	25	0.78 3	3940	1339 1.0	5 <10) 28	>10000	3.12	1299	6	<10	317	27	<10	0.20	315	48	11 8	942	70
CS_E663089	7	6.33	104 1627	<5	2.00	1	7	7	93	5.59	42	4.57	11	13	0.74	609	6 0.2	5 <10) 2	43	5,68	14	9	<10	139	21	<10	0.28	110	<10	10	48	18
CS_E652544	2	9.52	61 1749	< 5	0.25	4	14	8	162	5.33	45	3.89	11	5	0.53	100	4 0.2	7 <10) 5	51	5.76	84	12	<10	85	22	<10	0.30	129	<10	10	195	38
CS_E652539	5	9.29	72 1839	<5	0.40	4	21	8	182	5.88	44	3.54	13	7	0.64	121	24 0.2	6 <10	8 (55	6.16	106	12	<10	79	24	<10	0.23	123	<10	7	208	32
CS_E663178	23	6.04	117 2139	6	2.56	2	6	8	178	3.25	32	4.06	<10	11	0.65	989	41 0.0	9 <10) 3	9	3.04	42	8	<10	133	13	<10	0.24	91	<10	9	77	14
CS_E663179	17	5.95	105 2005	<5	1.17	1	5	10	233	3.24	30	4.07	12	11	0.59	533	14 0.0	9 <10) 3	16	3.09	30	8	<10	76	14	<10	0.24	87	<10	9	50	15
CS_E663169	7	7.28	95 3938	<5	2.41	1	5	9	407	3.49	38	4.52	14	8	1.08	727	26 0.7	8 <10) З	7	2.53	13	10	<10	29 7	15	<10	0.32	108	<10	11	46	18
CS_E652607	12	8.99	119 2294	<5	0.38	16	9	10	209	4.58	42	3.42	12	12	0.61	184	193 0.2	2 <10) 4	45	5.49	117	12	<10	72	21	<10	0.35	137	<10	15 1	180	33
CS_E652623	4	8.79	118 2269	< 5	0.35	4	7	9	97	4.70	41	3.51	<10	6	0.60	150	52 0.2	0 <10) 3	29	5.62	49	11	<10	55	21	<10	0.31	131	<10	10	261	32
CS_E652633	5	8.08	90 2251	6	0.38	29	9	11	193	4.88	44	3.33	15	8	0.58	243	186 0.1	8 <10) 3	45	6.12	96	12	<10	48	21	<10	0.37	133	11	11 2	567	35
CS_E646197	6	7.12	110 3336	<5	4.39	4	8	5	189	3,51	38	3.51	15	19	1.24 2	2677	64 1.4	2 <10) 2	44	1.40	8	9	<10	472	16	<10	0.30	103	<10	18	509	43
CS_E646239	1	8.23	25 3578	<5	2.86	7	6	6	110	3.72	44	3.73	19	20	1.46 2	2050	114 2.0	4 <10) 3	26	0.83	7	11	<10	579	18	<10	0.34	122	<10	21	928	43
CS_E646228	3	7.50	103 3261	<5	2.85	5	4	5	127	3.27	34	4.43	17	16	1.35 1	1771	18 1.2	6 <10) 3	30	1.07	12	9	<10	323	14	<10	0.33	101	<10	14	548	31
CS_E652679	2	9.32	93 2087	<5	0.30	9	10	8	196	4.34	40	3.84	16	9	0.42	119	99 0.2	8 <10) 4	69	4.62	61	10	<10	102	18	<10	0.30	124	<10	9	625	37
CS_E652664	2	8.56	113 2138	< 5	0. 29	5	8	9	193	4.73	39	3.52	16	5	0.28	93	74 0.2	5 <10) 3	51	5.23	53	11	<10	81	18	<10	0.34	124	<10	9	380	31
CS_E646219	2	8.11	251 2922	< 5	3.41	2	4	5	146	3.28	36	3.84	22	20	1.45 1	647	104 1.4	8 <10) 3	24	0.95	10	9	<10	443	14	<10	0.34	104	<10	19	251	41
CS_E646799	7	6.45	474 1187	6	4.22	1	11	62	66	3.81	34	3.15	14	15	0.79 1	1039	<2 0.0	8 <10	65	22	3.74	18	11	<10	350	14	<10	0.28	109	<10	12	62	57
CS_E646155	4	8.41	142 2496	7	2.85	7	7	6	63	4.07	22	3.99	14	23	1.20 1	1855	55 1.4	8 <10) 3	53	1.05	10	10	<10	183	<5	<10	0.29	99	<10	9	305	44
CS_E652591	4	8.11	55 1276	11	0.58	16	10	12	179	4.74	20	3.28	<10	7	0.52	318	31 0.4	3 <10) 4	64	3.70	104	10	<10	36	<5	<10	0.17	97	<10	41	162	34
CS_E652603	9	9.35	83 1215	12	0.34	21	10	9	164	5.08	23	3.72	10	7	0.48	133	39 0.5	4 <10) 2	93	4.25	97	10	<10	45	<5	<10	0.21	107	<10	51	305	42
Sample 18	58	8.40	471 1316	16	0.45	32	6	18	118	6.79	28	4.13	33	21	0.35 1	210	3 0.3	7 <10) 6	3336	0.41	66	13	15	314	<5	<10	0.39	151	<10	23 3	420	94

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Page 6 of 8

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1760PR

Date : Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Ag	A	As	Ba	Bi	Са	Cd	Со	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Mo Na	Nb	Ni	Рb	s	Sb	Sc	Sn	Sr	Та	Те	Ti	v	W	Y	Zn	Zr
Number	ppm	%	ppm p	opm p	opm	% I	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	% p	opm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm j	ppm	ppm	%	ppm	ppm	opm	ppm	ppm
CS_E646178	4	7.71	126 2	2619	9	5.27	6	6	9	73	3.86	18	4.07	12	15	1.07 2	2385	45 1.23	<10	3	63	1.12	12	9	<10	386	<5	<10	0.25	87	<10	9	297	32
CS_E646819	9	9.50	311 2	2227	10	1.17	8	11	31	145	3.83	26	4.53	14	30	1.30 1	349	<2 0.37	<10	22	225	2.11	11	12	<10	106	<5	<10	0.24	108	<10	7	194	49
CS_E663309	16	7,12	60 2	2460	10	3.67	4	12	11	198	5.15	18	4.42	<10	12	0.56	908	40 0.26	<10	4	37	4.16	37	8	<10	133	<5	<10	0.20	80	<10	7	45	22
CS_E652699	5	10.67	52 1	1894	15	0.40	8	14	16	125	6.14	24	4.22	15	11	0.44	176	15 0.62	<10	7	55	5.04	68	11	<10	72	<5	<10	0.20	104	<10	5	129	53
CS_E652697	4	10.72	41 2	2027	13	0.38	13	12	10	96	5.35	26	4.28	10	7	0.48	150	21 0.64	<10	4	55	4.50	60	13	<10	68	<5	<10	0.24	120	<10	6	647	64
CS_E646935	10	6.97	474 2	2246	9	2.27	4	8	29	56	4.60	18	3.36	13	13	0.45	919	<2 0.22	<10	16	103	3.70	25	11	<10	96	<5	<10	0.19	111	<10	10	46	46
CS_E646877	4	9.43	253 1	1747	11	6.44	10	11	11	64	4.53	25	3.98	14	45	1.44 2	2550	<2 0.29	<10	6	100	2.42	11	15	<10	350	5	<10	0.22	164	<10	12	144	67
CS_E652693	4	10.45	100 1	1805	13	0.23	8	17	9	73	6.08	24	4.29	10	10	0.46	183	34 0.57	<10	5	66	5.13	44	11	<10	59	<5	<10	0.24	111	<10	4	139	54
CS_E646241	3	9.18	35 3	3024	10	4.19	7	7	47	111	4.33	21	4.85	14	22	1.29 2	2332	44 2.04	<10	[.] 40	60	1.18	7	11	<10	339	5	<10	0.31	105	<10	17	401	44
CS_E646911	12	6.88	276 1	368	6	3.51	3	8	21	43	3.12	16	3.36	13	9	0.37	990	2 0.22	<10	14	58	2.63	16	9	<10	119	<5	<10	0.17	102	<10	10	24	38
CS_E663277	6	7.79	32 2	2219	9	3.72	4	7	10	311	4.15	17	4.60	10	18	1.09 1	032	25 1.03	<10	2	27	2.54	10	9	<10	216	<5	<10	0.21	90	<10	7	32	22
CS_E646268	11	5.34	109 1	1694	7	6.61	5	4	8	50	3.03	14	3.34	10	11	0.54 2	2533	29 0.12	<10	2	51	2.25	14	6	<10	149	<5	<10	0.15	60	<10	10	239	23
CS_E646914	3	7.19	530 1	474	14	4.21	4	11	32	53	6.40	19	3.41	10	17	0.59 1	508	<2 0.24	<10	14	81	4.87	17	10	<10	166	<5	<10	0.22	107	<10	9	34	50
CS_E646258	4	8.37	199 2	2526	10	6.01	5	7	10	80	4.25	22	4.98	15	15	0.87 2	2094	52 0.38	<10	3	107	3.07	10	10	<10	205	5	<10	0.27	95	<10	17	171	42
CS_E646296	7	4.49	114	905	5	12.68	2	5	18	48	2.40	12	2.54	10	7	0.46 3	8407	31 0.06	<10	9	49	1.94	13	6	<10	386	<5	<10	0.13	95	<10	13	64	20
CS_E646317	7	8.36	75	996	12	5.45	5	17	37	152	4.83	25	3.52	19	33	1.78 2	2186	44 1.64	<10	26	93	2.95	8	13	<10	204	7	<10	0.32	133	<10	12	146	37
CS_E646303	10	7.01	160 1	103 6	11	2.80	6	13	36	125	4.53	19	3.77	12	10	1.34 1	187	140 0.72	<10	21	146	2.35	63	10	<10	431	<5	<10	0.27	104	<10	8	213	37
CS_E646963	35	0.12	<10	24	<5 :	>25.00	<1	<1	5	223	0.34	2	0.07	<10	3	0.03 5	5585	<2 0.02	<10	<2	69	0.84	42	<1	<10	716	<5	<10	<0.01	<1	<10	5	43	<1
CS_E646354	5	7.86	170 2	286	7	5.72	4	9	9	50	4.01	20	3.90	13	20	1.18 Z	2755	24 0.90	<10	4	23	1.14	13	11	<10	235	9	<10	0.32	112	<10	13	239	41
Sample 19	>200	4.37	744	660	17	0.93	53	18	34	1665	7.01	14	1.78	<10	24	0.59 3	8485	1255 1.04	<10	26	>10000	2.31	1483	6	<10	191	10	<10	0.16	271	<10	7	7726	60
CS_E646349	2	7.83	104 2	2943	6	3.06	3	10	8	34	3.87	20	4.53	12	17	1.16 1	16 9 4	61 0.81	<10	4	47	1.24	14	11	<10	240	7	<10	0.30	112	<10	9	210	43
CS_E646356	1	8.00	83 2	2065	8	3.82	З	11	7	48	4.07	21	3.36	13	21	1.24 1	1557	25 1.38	<10	4	17	0.75	9	11	<10	270	9	<10	0.30	121	<10	14	146	47
CS_E646364	2	6.74	139 2	2635	9	6.85	2	9	6	31	3.25	17	3.74	11	15	0.91 2	2126	27 0.82	<10	3	28	1.24	12	9	<10	328	8	<10	0.24	100	<10	9	93	38
CS_E646335	6	7.57	111 1	1630	8	3.15	2	17	32	127	3.85	23	4.38	15	12	1.35 1	1259	77 0.91	<10	29	87	1.74	30	14	<10	283	8	<10	0.33	116	<10	11	140	39
CS_E647177	18	6.22	1136 1	1901	5	0.51	10	8	17	43	3.80	17	3.14	<10	7	0.28	314	<2 0.21	<10	6	120	2.90	50	9	<10	81	7	<10	0.20	110	<10	6	574	50
CS_E647341	3	5.67	179 1	144	7	0.63	2	8	37	15	3.01	14	2.75	<10	18	0.27	275	8 0.20	<10	22	38	2.55	12	10	<10	143	6	<10	0.13	82	<10	8	82	35
CS_E647342	2	2.59	145	511	< 5	1.26	2	4	24	6	1.79	6	1.31	<10	15	0.18	356	5 0.06	<10	9	35	1.04	9	3	<10	93	<5	<10	0.07	33	<10	3	184	12
Duplicates:																																		
CS_E661973	4	8.56	1479 2	2874	< 5	0.35	11	7	11	55	2.88	31	4.03	17	1	0.33	210	<2 0.51	<10	7	372	2.27	34	11	<10	289	12	<10	0.23	135	<10	16	580	54
CS_E661901	9	9.69	260 3	3715	< 5	0.39	5	1	12	185	4.24	39	4.59	16	<1	0.52	258	<2 0.27	<10	4	110	3.88	19	12	<10	120	15	<10	0.32	65	<10	10	313	152

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed: _

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No: 0V1760PRDate: Nov-22-10

Sample type : PULP

Silver Standard

Project : Brucejack

Attention : Zoran Lukic

ICP-AES Report

Multi-Acid Digestion

Sample	Aa	A	As	Ва	Bi	Са	Cđ	Co	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn	Mo Na	Nb	Ni	Рb	S	Sb	Sc	Sn	Sr	Та	Te	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	% p	opm p	opm (ppm	ppm	%	opm	%	ppm p	opm	%	ppm	ppm %	ppm	ppm	ppm	%	ppm p	pm	ppm	ppm p	pm	ppm	%	ppm	ppm p	opm (opm p	ppm
Sample 10	40	7.98	521	1408	<5	0.43	32	6	19	112	6.70	43	3.97	35	10	0.38	1273	2 0.19	<10	6	3684	0.47	68	14	15	375	23	<10	0.41	175	<10	25 3	3525	82
CS_E651583	25	9.38	161	532	16	0.56	6	7	79	75	7.35	26	3.89	<10	9	0.47	436	35 0.25	<10	20	78	6.42	65	15	<10	71	8	<10	0.21	91	<10	5	145	66
CS_E645851	2	8.83	144	1630	9	3.13	4	8	12	164	4.66	20	4.02	13	4	0.63	741	17 0.16	<10	5	22	3.90	<5	10	<10	92	8	<10	0.27	1 0 0	<10	10	186	25
CS_E645711	18	7.94	232	1413	13	1.83	7	8	7	245	6.10	16	4.29	42	11	0.73	963	21 0.07	<10	<2	47	4.80	33	9	<10	134	7	<10	0.25	93	<10	12	543	25
CS_E651731	1	9.09	222	952	<5	0.59	4	19	10	23	5.63	25	3.43	15	24	1.06	573	31 0.47	<10	5	73	4.73	24	12	<10	109	10	<10	0.26	137	<10	9	168	58
CS_E645792	5	9.51	337	1593	8	0.76	4	14	12	393	6.72	26	4.11	18	18	1.45	1025	73 0.28	<10	5	41	5.57	169	13	<10	40	10	<10	0.29	163	<10	8	269	48
CS_E645995	2	8.54	180	2847	<5	1.02	3	8	8	37	3.69	20	5.15	13	8	0.66	715	68 0.20	<10	4	36	1.51	17	10	<10	71	8	<10	0.30	101	12	7	250	50
CS_E643458	12	8.51	190	3777	6	1.38	4	4	7	192	4.40	19	4.72	14	9	0.77	753	56 0.08	<10	3	193	2.94	27	11	<10	117	9	<10	0.31	105	<10	12	158	31
CS_E641884	4	7.82	163	878	11	0.60	13	13	10	20	5.39	17	6.45	21	12	0.37	278	10 0.14	<10	3	63	4.36	8	14	<10	152	8	<10	0.31	129	<10	10	855	71
CS_E641961	13	8.60	617	546	14	1.38	6	23	19	104	7.21	19	7.56	20	8	0. 9 9	988	11 0.25	<10	9	31	4.71	30	19	<10	270	8	<10	0.45	231	<10	11	211	79
CS E643479	31	5.32	343	629	10	0.20	3	6	10	146	3.81	11	2.66	<10	9	0.39	132	97 0.06	<10	<2	13	2.71	106	6	<10	128	5	<10	0.15	58	<10	5	156	14
CS E652181	1	8.97	381	1538	9	4.03	3	7	6	52	4.28	18	3.40	17	26	1.45	1583	42 0.13	<10	2	18	1.86	<5	11	<10	128	8	<10	0.28	102	<10	9	104	29
CS_E652251	5	9.02	202	1420	9	0.33	5	8	7	78	4,39	20	4.87	12	10	0.75	435	3 0.06	<10	2	120	2.89	31	10	<10	19	10	<10	0.26	101	<10	10	330	48
CS_E643785	5	9.92	76	157	18	0.41	5	24	9	107	7.22	18	4.55	<10	4	0.40	201	38 0.13	<10	8	18	6.26	42	9	<10	29	12	<10	0.19	91	<10	6	221	21
Sample 15	>200	4.95	799	376	30	1.07	63	21	40	1918	8.24	18	2.30	<10	26	0.69	4252	1303 1.13	<10	32	7733	2.80	1593	7	<10	225	10	<10	0.18	320	<10	9	9156	66
•																																		
CS_E652461	14	10.78	110	270	14	0.31	6	13	12	229	6.05	26	4.81	14	4	0.42	139	93 0.15	<10	4	24	5.44	127	14	<10	29	16	<10	0.32	139	<10	5	239	31
CS_E643924	8	7.68	466	1824	6	0.55	5	7	7	27	3.51	17	5.91	13	6	0.48	284	2 0,22	<10	2	151	2.56	41	9	<10	86	5	<10	0.24	87	<10	6	166	43
CS_E642327	2	7.73	384	3246	7	4.04	5	5	6	37	3.56	19	4.91	12	25	1.10	1888	26 0.39	<10	з	61	1.49	7	9	<10	188	5	<10	0.22	91	<10	11	159	35
CSE652438	45	7.89	148	1363	9	0.41	5	5	11	212	4.60	20	3.50	23	8	0.57	200	140 0.28	<10	4	57	3.54	106	11	<10	25	<5	<10	0.19	106	<10	8	69	30
CS_E663012	3	7.77	250	3118	<5	1.51	6	6	11	27	3.64	39	4.88	19	19	1.19	1467	2 0.21	<10	4	223	2.25	20	9	<10	70	15	<10	0.29	106	<10	17	456	36
CS_E663178	22	6.24	105	2037	<5	2.58	1	5	7	177	3.23	30	4.18	10	12	0.65	925	38 0.09	<10	3	7	2.75	36	8	<10	135	12	<10	0.25	88	<10	10	74	18
CS_E652664	1	8.90	108	2232	< 5	0.27	5	6	8	195	4.76	38	3.54	19	5	0.29	90	76 0.23	<10	3	50	5.04	50	10	<10	80	19	<10	0.37	120	<10	10	365	38
CS_E646155	4	8.78	147	2551	8	2. 9 5	7	7	7	63	4.13	20	4.01	14	23	1.23	1885	60 1.45	<10	3	56	1.06	11	10	<10	191	5	<10	0.29	102	<10	10	309	43
CS_E646935	10	6.86	451	2194	8	2.22	4	8	26	54	4.49	17	3.32	13	12	0.44	896	<2 0.18	<10	16	99	3.62	24	10	<10	94	<5	<10	0.17	109	<10	9	46	43
CS_E646317	7	8.35	76	999	14	5.5 9	5	17	32	150	5.02	24	3.51	19	33	1,80	2192	44 1.63	<10	25	91	2.93	7	13	<10	204	6	<10	0.34	133	<10	12	148	38
CS_E646354	6	7.32	170	2234	7	5.35	3	9	8	49	3.81	18	3.73	13	18	1.13	2668	26 0.86	<10	3	21	1.13	13	10	<10	229	9	<10	0.31	107	<10	13	238	42
Standards:																																		
Blank	<1	<0.01	<10	<10	<5	<0.01	<1	<1	1	<1	< 0.01	1	<0.01	<10	<1	< 0.01	<5	<2 0.01	<10	< 2	< 2	<0.01	< 5	<1	<10	<1	<5	<10	<0.01	<1	<10	<1	1	1
CH-4	2	8.60	<10	491	12	1.84	3	24	104	2184	5.63	19	2.05	16	15	1.46	483	3 3.54	<10	52	16	0.56	<5	13	<10	219	8	<10	0.31	87	<10	11	200	138

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 25 ml.

Signed: ____

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 35 Years

Assay Certificate

0V-1162-PA10

Сотрапу:	Silver Standard Resources
Project:	Brucejack
Attn:	Zoran Lukic

Aug-19-10

/AK

We *hereby certify* the following assay of 23 pulp samples submitted Jul-29-10

Sample	Au	Ag	Pb	Au-rerun	
Name	g/tonne	g/tonne	%	g/tonne	
TR10080852-E654725	2.99				=
Sample19	10.63	240.4	2.73		
TR10080852-E654724	3.11				
TR10080853-E648005	0.64				
TR10080853-E654747	0.84				
TR10080853-E648014	4.62				
TR10080855-E648087	0.26				
TR10080855-E648085	0.26				
TR10080855-E648107	0.27				
TR10080855-E648075	0.56				
TR10080856-E655969	0.24				
TR10080856-E648037	0.32				
TR10080856-E654754	0.63				
TR10080856-E655975	1.10				
TR10080856-E660558	1.58				
TR10080856-E655968	16.74				
TR10080857-E656939	0.33				
TR10080857-E656919	0.46				
TR10080857-E656916	0.47				
TR10080857-E656881	0.57				
TR10081782-E658021	0.16				
Sample20	0.92				
TR10081783-E648092	<0.01			0.19	
*DUP TR10080852-E654725	3.42				
*DUP TR10080855-E648075	0.43				
*DUP TR10080857-E656881	0.82				
*0211	2.14				
*ME-3		271.3	2.79		
*CDN GS-2B				2.03	
*BLANK	<0.01	<0.1	<0.01	<0.01	

Au F.A. AA finish; Ag, Pb 4acid digest AA finish.

Certified by_

APPENDIX III: CDN Lab Standards Certificates

CDN Resource Laboratories Ltd.

#2, 20148 – 102nd Ave, Langley, B.C., Canada, V1M 4B4, 604-882-8422, Fax: 604-882-8466 (www.cdnlabs.com)

REFERENCE MATERIAL: CDN-ME-4

Recommended values and the "Between Lab" Two Standard Deviations

Gold2.61 g/t Au \pm 0.30 g/t AuSilver402 g/t Ag \pm 25 g/t Ag(FA / Grav)Silver414 g/t Ag \pm 17 g/t Ag(Digestion, ICP)Copper1.83 % Cu \pm 0.08% CuLead4.25 % Pb \pm 0.24 % PbZinc1.10 % Zn \pm 0.06 % Zn

PREPARED BY:CDN Resource Laboratories Ltd.CERTIFIED BY:Duncan Sanderson, B.Sc., Licensed Assayer of British ColumbiaINDEPENDENT GEOCHEMIST:Dr. Barry Smee., Ph.D., P. Geo.DATE OF CERTIFICATION:August 20, 2009

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone mixer. Splits were taken and sent to thirteen laboratories for round robin assaying.

ORIGIN OF REFERENCE MATERIAL:

This standard is made primarily from ore supplied by US Silver from the Coeur d' Alene mining district in northern Idaho. The mineralization occurs as veins hosted by weakly metamorphosed, siliceous sediments. Ag-Cu ore occurs as tetrahedrite, and variable amounts of pyrite and chalcopyrite. Minor Pb is associated with Ag-Cu veins. Other portions of the mineralized areas include Pb-Ag veins primarily consisting of galena and quartz. The standard was made by mixing 300 kg of US Silver ore with 110 kg of higher grade Au, Cu, Zn ore and 200 kg of a blank granitic material.

	Percent		Percent
SiO2	56.5	MgO	1.5
Al2O3	7.6	K2O	1.1
Fe2O3	17.5	TiO2	0.3
CaO	2.2	LOI	7.3
Na2O	1.6	S	3.7

Approximate chemical composition is as follows:

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ± 2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Assay Procedures:

Au: Fire assay pre-concentration, AA or ICP finish (30g sub-sample).
Ag,: Fire assay pre-concentration, gravimetric finish (30g sub-sample).
Ag, Cu, Pb, Zn: 4-acid digestion, AA or ICP finish.

Results from round-robin assaying:

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13
	Au g/t												
ME-4-1	2.67	2.23	2.50	2.67	2.65	2.56	2.64	3.10	2,73	2.62	2.88	2.33	2.71
ME-4-2	2.74	2.63	2.52	2.52	2.46	2.68	2.70	2.98	2.40	2.89	2.95	2.92	2.72
ME-4-3	2.64	2.52	2.70	2.55	2.57	2.59	2.78	2.45	2.33	2.79	2.50	2.37	2.69
ME-4-4	2.70	2.34	2.43	2.68	2.29	2.60	2.71	2.45	2.78	2.86	2.50	2.43	2.70
ME-4-5	2.57	2.64	2.61	2.52	2.24	2.71	2.75	2.44	2.37	2.83	2.61	2.59	2.72
ME-4-6	2.65	2.56	2.76	2.45	2.43	2.62	2.78	2.50	2.76	2.88	2.71	2.40	2.72
ME-4-7	2.77	2.53	2.42	2.40	2.53	2.73	2.83	2.45	2.28	3.13	2.61	2.66	2.70
ME-4-8	2.47	2.43	2.66	2.60	2.44	2.78	2.85	2.61	2.87	2.66	2.43	2.47	2.70
ME-4-9	2.45	2.57	2.51	2.73	2.53	2.82	2.85	2.49	2.57	2.83	2.71	2.21	2.71
ME-4-10	2.59	2.21	2.47	2.55	2.47	2.55	2.72	2.94	2.56	2.59	2.43	2.59	2.70
Mean	2.63	2 47	2.56	2 57	2 46	2 66	2 76	2 64	2 57	2 81	2.63	2 50	2 70
Std Devn	0 1063	0 1571	0 1175	0 1041	0.1232	0.0942	0.0706	0.2600	0.2125	0 1579	0 1802	0 2011	0.0101
% RSD	4 05	6.37	4 60	4 06	5.01	3 54	2.56	9.85	8 28	5.62	6.84	8.05	0.37
701100	1.00	0.07	1.00	1.00	0.01	0.01	2.00	0.00	0.20	0.02	0.01	0.00	0.07
(FA / Grav.)	Ag g/t												
ME-4-1	399	406	420.2	421	393	400	421.9	398	387	394	394		
ME-4-2	404	400	420.7	414	396	406	428.0	398	383	393	373		
ME-4-3	393	402	417.6	408	398	401	414.1	398	384	395	387		
ME-4-4	407	399	416.9	415	403	401	414.7	399	389	392	380		
ME-4-5	389	394	413.2	418	398	408	427.1	393	387	393	381		
ME-4-6	404	403	414.4	413	395	376	420.8	415	384	392	380		
ME-4-7	404	412	412.5	407	403	390	426.9	416	375	393	373		
ME-4-8	406	406	413.0	412	394	393	423.1	416	373	395	379		
ME-4-9	398	409	420.1	414	397	401	411.2	416	376	395	390		
ME-4-10	399	401	411.1	411	400	395	426.5	404	381	391	390		
Mean	400.3	403.2	416.0	413.3	397.7	397.1	421.4	405.3	381.9	393.3	382.7		
Std. Devn.	5.851	5.224	3.583	4.218	3.466	9,243	6.128	9.370	5.527	1.418	7.243		
% RSD	1.46	1.30	0.86	1.02	0.87	2.33	1.45	2.31	1.45	0.36	1.89		
Digestion / ICP	Ag g/t												
ME-4-1		405	410.5	410	424	423	424.6		388		435	384	418
ME-4-2		405	412.0	399	414	421	429.7		407		420	384	422
ME-4-3		422	420.2	397	398	420	426.2		396		419	380	418
ME-4-4		415	410.0	400	411	418	421.9		406		421	368	420
ME-4-5		391	414.7	398	410	419	425		411		410	366	413
ME-4-6		403	418.7	409	411	422	421.6		394		412	392	415
ME-4-7		410	411.6	400	414	424	424.5		403		421	374	421
ME-4-8		406	409.1	402	410	422	426.5		412		425	384	417
ME-4-9		410	412.8	407	413	417	429.7		399		414	376	418
ME-4-10		408	407.4	403	422	428	420.9		406		422	382	420
Mean		407.5	412.7	402.5	412.7	421.4	425.1		402.2		419.9	379.0	418.2
Std. Devn.		8.073	4.098	4.649	7.103	3.204	3.095		7.772		7.125	8.014	2.741
% RSD		1.98	0.99	1.15	1.72	0.76	0.73		1.93		1.70	2.11	0.66

NOTE: Labs 12, 13 were unable to provide FA/ Grav. data for Ag. Labs 1, 8, 10 were unable to provide Digestion / ICP data for Ag. Ag data (Digestion / ICP) from Lab. 12 was excluded for failing the "t" test.

Results from round-robin assaying:

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13
	% Cu												
ME-4-1	1.88	1.86	1.72	1.86	1.87	1.83	1.81	1.87	1.77	1.84	1.77	1.87	1.71
ME-4-2	1.82	1.85	1.76	1.86	1.86	1.84	1.83	1.75	1.80	1.81	1.78	1.86	1.72
ME-4-3	1.81	1.84	1.76	1.86	1.87	1.85	1.84	1.76	1.78	1.83	1.77	1.83	1.72
ME-4-4	1.88	1.80	1.74	1.86	1.83	1.86	1.83	1.85	1.82	1.81	1.76	1.82	1.72
ME-4-5	1.90	1.84	1.78	1.85	1.83	1.90	1.85	1.81	1.82	1.81	1.77	1.85	1.72
ME-4-6	1.86	1.85	1.76	1.88	1.85	1.87	1.84	1.79	1.76	1.85	1.77	1.91	1.73
ME-4-7	1.87	1.86	1.78	1.86	1.80	1.91	1.84	1.84	1.77	1.86	1.78	1.87	1.71
ME-4-8	1.88	1.85	1.73	1.86	1.82	1.86	1.86	1.85	1.81	1.83	1.77	1.92	1.73
ME-4-9	1.93	1.87	1.73	1.86	1.85	1.85	1.79	1.88	1.78	1.84	1.77	1.83	1.72
ME-4-10	1.88	1.83	1.76	1.87	1.87	1.82	1.81	1.82	1.79	1.82	1.78	1.83	1.73
Mean	1.87	1.84	1.75	1.86	1.85	1.86	1.83	1.82	1.79	1.83	1.77	1.86	1.72
Std. Devn.	0.0361	0.0215	0.0210	0.0079	0.0242	0.0285	0.0204	0.0444	0.0216	0.0176	0.0072	0.0345	0.0056
% RSD	1.93	1.17	1.20	0.42	1.31	1.53	1.12	2.44	1.21	0.96	0.41	1.85	0.32
	% Pb												
ME-4-1	4.54	4.23	4.12	4.19	4.41	4.28	4.23	4.15	4.00	4.28	4.30	4.41	4.29
ME-4-2	4.51	4.23	4.12	4.15	4.29	4.21	4.14	3.97	4.07	4.26	4.32	4.41	4.27
ME-4-3	4.43	4.18	4.06	4.15	4.28	4.31	4.41	4.03	3.95	4.31	4.32	4.44	4.21
ME-4-4	4.56	4.11	4.04	4.12	4.50	4.28	4.25	4.17	4.10	4.31	4.29	4.40	4.28
ME-4-5	4.57	4.20	4.14	4.09	4.42	4.31	4.34	4.09	4.05	4.27	4.32	4.43	4.27
ME-4-6	4.47	4.21	4.12	4.10	4.66	4.21	4.21	4.05	3.95	4.30	4.36	4.46	4.23
ME-4-7	4.47	4.23	4.04	4.08	4.63	4.33	4.34	4.15	4.03	4.36	4.31	4.46	4.19
ME-4-8	4.44	4.20	4.15	4.20	4.54	4.23	4.39	4.17	4.18	4.29	4.31	4.43	4.23
ME-4-9	4.49	4.24	4.15	4.24	4.58	4.30	4.42	4.23	3.99	4.31	4.32	4.42	4.28
ME-4-10	4.39	4.21	4.10	4.16	4.76	4.31	4.31	4.11	4.06	4.30	4.31	4.41	4.23
Mean	4.49	4.20	4.10	4.15	4.51	4.28	4.30	4.11	4.04	4.30	4.32	4.43	4.25
Std. Devn.	0.0587	0.0378	0.0427	0.0518	0.158	0.0445	0.0933	0.078	0.0707	0.0277	0.018	0.0211	0.0339
% RSD	1.31	0.90	1.04	1.25	3.51	1.04	2.17	1.90	1.75	0.64	0.42	0.48	0.80
	% Zn												
ME-4-1	1.15	1.10	1.05	1.09	1.15	1.08	1.05	1.10	1.04	1.07	1.12	1.15	1.15
ME-4-2	1.13	1.10	1.12	1.07	1.14	1.07	1.05	1.05	1.07	1.08	1.11	1.12	1.19
ME-4-3	1.13	1.08	1.08	1.05	1.13	1.08	1.07	1.06	1.05	1.08	1.12	1.12	1.19
ME-4-4	1.15	1.06	1.11	1.06	1.13	1.08	1.08	1.10	1.09	1.08	1.11	1.12	1.19
ME-4-5	1.16	1.08	1.09	1.10	1.13	1.09	1.05	1.07	1.09	1.08	1.12	1.12	1.14
ME-4-6	1.14	1.10	1.10	1.06	1.14	1.07	1.05	1.06	1.05	1.09	1.11	1.14	1.18
ME-4-7	1.16	1.10	1.06	1.09	1.12	1.09	1.05	1.09	1.07	1.10	1.13	1.14	1.16
ME-4-8	1.15	1.08	1.10	1.07	1.12	1.08	1.06	1.09	1.09	1.08	1.11	1.14	1.13
ME-4-9	1.18	1.10	1.09	1.05	1.12	1.08	1.06	1.10	1.05	1.07	1.11	1.12	1.13
ME-4-10	1.15	1.08	1.07	1.08	1.16	1.10	1.04	1.08	1.07	1.08	1.11	1.11	1.19
Mean	1.15	1.09	1.09	1.07	1.13	1.08	1.06	1.08	1.07	1.08	1.11	1.13	1.16
Std. Devn.	0.0149	0.0122	0.0221	0.0177	0.0135	0.0092	0.0103	0.0189	0.0189	0.0088	0.0076	0.0132	0.026
% RSD	1.30	1.12	2.04	1.65	1.19	0.85	0.97	1.75	1.77	0.81	0.68	1.17	2.24

NOTE: Cu data from Lab. 13 was excluded for failing the "t" test. Pb data from Lab. 5 was excluded for failing the "t" test.

Participating Laboratories:

(not in same order as listed in table of results)

Acme Analytical Laboratories Ltd., Vancouver Actlabs-Ancaster, Ontario, Canada Actlabs-Thunder Bay, Ontario, Canada ALS Chemex Laboratories, North Vancouver Alaska Assay Laboratories, Alaska, USA Assayers Canada Ltd., Vancouver Eco Tech, B.C., Canada Genalysis Laboratory, Australia Labtium Laboratory, Finland SGS Toronto, Ontario, Canada Skyline Laboratories, Arizona, USA TSL Laboratories Ltd., Saskatoon Ultra Trace Analytical Laboratories, Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. or Barry Smee accept no liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Durican Sanderson

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.

CDN Resource Laboratories Ltd.

#2, 20148 – 102nd Ave, Langley, B.C., Canada, V1M 4B4, 604-882-8422, Fax: 604-882-8466 (www.cdnlabs.com)

REFERENCE MATERIAL: CDN-ME-12

Recommended values and the "Between Lab" Two Standard Deviations

Gold	0.348 g/t	±	0.040 g/t
Silver	52.5 g/t	±	4.3 g/t
Copper	0.428 %	±	0.020 %
Lead	0.222 %	±	0.014 %
Zinc	0.275 %	±	0.018 %

PREPARED BY:CDN Resource Laboratories Ltd.CERTIFIED BY:Duncan Sanderson, B.Sc., Licensed Assayer of British ColumbiaINDEPENDENT GEOCHEMIST:Dr. Barry Smee., Ph.D., P. Geo.DATE OF CERTIFICATION:June 14, 2010

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone mixer. Splits were taken and sent to 14 laboratories for round robin assaying.

ORIGIN OF REFERENCE MATERIAL:

This standard is made from a mixture of ores as well as a small amount of Cu, Pb and Zn concentrates..

Approximate chemical composition (from whole rock analysis) is as follows:

	Percent		Percent
SiO2	65.8	MgO	1.3
Al2O3	13.0	K2O	4.8
Fe2O3	6.7	TiO2	0.5
CaO	0.9	LOI	4.0
Na2O	1.5	S	2.3
С	0.2		

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Assay Procedures:

Au: Fire assay pre-concentration, AA or ICP finish (30g sub-sample). Ag, Cu, Pb, Zn: 4-acid digestion, AA or ICP finish.

<u>REFERENCE MATERIAL</u> CDN-ME-12

Results from round-robin assaying:

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14
	Au g/t													
CDN-ME-12-1	0.356	0.320	0.353	0.343	0.34	0.33	0.304	0.357	0.377	0.342	0.330	0.31	0.34	0.39
CDN-ME-12-2	0.352	0.348	0.334	0.330	0.35	0.34	0.309	0.332	0.371	0.326	0.350	0.37	0.33	0.38
CDN-ME-12-3	0.355	0.350	0.342	0.384	0.33	0.38	0.299	0.349	0.358	0.336	0.315	0.32	0.31	0.38
CDN-ME-12-4	0.302	0.316	0.379	0.320	0.36	0.34	0.313	0.353	0.364	0.331	0.355	0.34	0.34	0.38
CDN-ME-12-5	0.352	0.332	0.387	0.313	0.37	0.34	0.310	0.340	0.379	0.336	0.315	0.33	0.33	0.37
CDN-ME-12-6	0.339	0.324	0.384	0.377	0.34	0.41	0.324	0.345	0.360	0.340	0.345	0.34	0.34	0.38
CDN-ME-12-7	0.346	0.368	0.361	0.386	0.30	0.38	0.314	0.332	0.347	0.334	0.355	0.34	0.35	0.39
CDN-ME-12-8	0.312	0.324	0.354	0.321	0.32	0.34	0.299	0.356	0.360	0.327	0.370	0.33	0.34	0.36
CDN-ME-12-9	0.350	0.357	0.374	0.301	0.36	0.35	0.286	0.336	0.355	0.316	0.350	0.38	0.34	0.37
CDN-ME-12-10	0.310	0.353	0.340	0.348	0.39	0.36	0.284	0.343	0.348	0.328	0.340	0.34	0.32	0.36
Mean	0.337	0.339	0.361	0.342	0.346	0.357	0.304	0.344	0.362	0.332	0.343	0.341	0.334	0.377
Std. Devn.	0.0210	0.0181	0.0193	0.0308	0.0259	0.0254	0.0125	0.0094	0.0110	0.0077	0.0178	0.0204	0.0132	0.0113
% RSD	6.22	5.34	5.34	9.01	7.49	7.12	4.12	2.72	3.04	2.32	5.21	5.99	3.97	2.99
	Ag g/t													
CDN-ME-12-1	53	50.8	50.4	50.7	50	53.2	55.9	52	51	46	55	49	53.8	54.7
CDN-ME-12-2	57	48.8	47.9	52.0	50	54.0	57.3	52	54	48	55	53	52.5	56.5
CDN-ME-12-3	52	50.9	50.2	51.8	51	54.1	55.3	51	55	41	55	54	52.6	52.7
CDN-ME-12-4	53	47.1	51.1	52.0	52	53.6	57.3	53	53	43	50	50	53.7	54.7
CDN-ME-12-5	53	49.5	49.7	50.5	50	52.9	56.8	55	52	44	50	51	54.7	53.4
CDN-ME-12-6	54	51.2	49.5	51.5	50	54.3	55.5	54	52	44	50	49	54.5	52.0
CDN-ME-12-7	52	49.8	50.4	49.6	50	54.9	57.8	55	52	43	55	51	52.8	54.5
CDN-ME-12-8	54	52.8	47.6	51.1	50	53.9	58.4	53	54	43	55	52	53.0	55.5
CDN-ME-12-9	52	49.4	48.1	49.6	50	54.6	55.8	51	55	45	55	49	52.7	52.1
CDN-ME-12-10	55	50.8	47.4	50.0	49	54.1	55.9	54	54	43	55	51	53.3	54.2
Mean	53.5	50.1	49.2	50.9	50.2	54.0	56.6	53.0	53.2	44.0	53.5	50.9	53.4	54.0
Std. Devn.	1.5811	1.5545	1.3549	0.9438	0.7888	0.6041	1.0656	1.4907	1.3984	1.9437	2.4152	1.7178	0.7925	1.4658
% RSD	2.96	3.10	2.75	1.85	1.57	1.12	1.88	2.81	2.63	4.42	4.51	3.38	1.49	2.71

NOTE: Au data from Lab. 7 was excluded for failing the "t" test. Ag data from Lab. 10 was excluded for failing the "t" test.

Results from round-robin assaying:

	Cu %
	Cu /0
	0 422
CDN ME 12 2 0.421 0.410 0.426 0.20 0.411 0.427 0.444 0.420 0.426 0.420 0.425 0.425 0.426	0.422
CDN-IME-12-2 0.431 0.410 0.420 0.39 0.411 0.437 0.444 0.429 0.420 0.429 0.421 0.425 0.430	0.422
CDN-IME-12-3 0.421 0.433 0.422 0.39 0.406 0.443 0.436 0.420 0.433 0.419 0.423 0.435 0.432	0.419
CDN-IME-12-4 0.420 0.417 0.416 0.39 0.406 0.437 0.439 0.430 0.436 0.416 0.426 0.419 0.434	0.423
CDN-IME-12-5 0.427 0.417 0.420 0.39 0.406 0.437 0.446 0.433 0.427 0.442 0.441 0.420 0.437	0.419
CDN-IME-12-6 0.423 0.435 0.416 0.39 0.395 0.441 0.450 0.437 0.426 0.416 0.435 0.425 0.450	0.420
CDN-IME-12-7 0.437 0.431 0.423 0.39 0.395 0.444 0.447 0.437 0.433 0.418 0.438 0.422 0.425	0.423
CDN-IME-12-8 0.430 0.435 0.418 0.39 0.409 0.440 0.449 0.423 0.426 0.423 0.424 0.425 0.427	0.420
CDN-IME-12-9 0.435 0.429 0.416 0.40 0.413 0.428 0.447 0.423 0.429 0.421 0.443 0.421 0.432	0.421
CDN-ME-12-10 0.453 0.429 0.414 0.39 0.409 0.438 0.444 0.423 0.429 0.410 0.431 0.423 0.435	0.420
Mean 0.429 0.425 0.419 0.391 0.406 0.439 0.444 0.430 0.430 0.422 0.432 0.424 0.432	0.421
Std. Devn. 0.0112 0.0090 0.0038 0.0032 0.0061 0.0044 0.0051 0.0058 0.0037 0.0087 0.0075 0.0043 0.0039 (0.0015
% RSD 2.60 2.12 0.90 0.81 1.52 0.99 1.16 1.36 0.87 2.07 1.74 1.01 0.90	0.36
Pb % Pb % <th< td=""><td>Pb %</td></th<>	Pb %
CDN-ME-12-1 0.22 0.205 0.23 0.20 0.220 0.224 0.225 0.224 0.227 0.183 0.220 0.232 0.231	0.218
CDN-ME-12-2 0.23 0.202 0.23 0.20 0.222 0.220 0.234 0.223 0.226 0.190 0.220 0.226 0.234	0.220
CDN-ME-12-3 0.23 0.208 0.23 0.20 0.222 0.223 0.228 0.221 0.228 0.188 0.222 0.232 0.227	0.217
CDN-ME-12-4 0.23 0.203 0.22 0.20 0.221 0.217 0.230 0.229 0.223 0.179 0.222 0.226 0.230	0.218
CDN-ME-12-5 0.23 0.207 0.22 0.20 0.221 0.218 0.233 0.229 0.224 0.195 0.218 0.225 0.231	0.215
CDN-ME-12-6 0.23 0.215 0.22 0.21 0.217 0.212 0.231 0.225 0.221 0.180 0.218 0.230 0.238	0.219
CDN-ME-12-7 0.23 0.211 0.22 0.21 0.215 0.221 0.226 0.228 0.224 0.176 0.222 0.227 0.233	0.219
CDN-ME-12-8 0.23 0.212 0.23 0.21 0.218 0.215 0.233 0.221 0.221 0.179 0.216 0.228 0.232	0.220
CDN-ME-12-9 0.23 0.209 0.22 0.20 0.227 0.214 0.230 0.229 0.218 0.176 0.216 0.229 0.230	0.216
CDN-ME-12-10 0.24 0.211 0.22 0.21 0.220 0.218 0.232 0.225 0.223 0.175 0.218 0.227 0.228	0.216
Mean 0.230 0.208 0.224 0.204 0.220 0.218 0.230 0.225 0.224 0.182 0.219 0.228 0.231	0.218
Std Devra 0.0047 0.0041 0.0052 0.0052 0.0033 0.0039 0.0030 0.0032 0.0030 0.0068 0.0023 0.0025 0.0031 (0.210
% RSD 2.05 1.00 2.31 2.53 1.48 1.78 1.32 1.42 1.35 3.72 1.07 1.00 1.35	0.0010
70 NOD 2.03 1.33 2.31 2.33 1.40 1.70 1.32 1.42 1.33 3.72 1.07 1.03 1.33	0.00
Zn % Zn % <th< td=""><td>Zn %</td></th<>	Zn %
CDN-ME-12-1 0.27 0.256 0.31 0.28 0.273 0.267 0.260 0.279 0.270 0.222 0.281 0.274 0.292	0.268
CDN-ME-12-2 0.29 0.253 0.30 0.27 0.276 0.279 0.272 0.280 0.272 0.226 0.276 0.270 0.298	0.267
CDN-ME-12-3 0.28 0.265 0.30 0.27 0.277 0.270 0.264 0.278 0.271 0.225 0.280 0.273 0.294	0.266
CDN-ME-12-4 0.28 0.255 0.30 0.28 0.277 0.268 0.265 0.284 0.267 0.215 0.276 0.265 0.296	0.267
CDN-ME-12-5 0.28 0.259 0.30 0.27 0.278 0.272 0.272 0.284 0.268 0.234 0.276 0.268 0.295	0.264
CDN-ME-12-6 0.28 0.268 0.30 0.28 0.276 0.271 0.269 0.281 0.265 0.216 0.276 0.275 0.300	0.268
CDN-ME-12-7 0.29 0.266 0.29 0.28 0.270 0.271 0.264 0.283 0.270 0.216 0.279 0.266 0.298	0.267
CDN-ME-12-8 0.28 0.265 0.30 0.28 0.267 0.277 0.268 0.278 0.267 0.218 0.278 0.269 0.294	0.265
CDN-ME-12-9 0.29 0.263 0.31 0.28 0.273 0.274 0.268 0.282 0.267 0.214 0.286 0.273 0.292	0.269
CDN-ME-12-10 0.29 0.266 0.31 0.28 0.264 0.278 0.268 0.281 0.270 0.214 0.278 0.270 0.291	0.263
Mean 0.283 0.262 0.302 0.277 0.273 0.273 0.267 0.281 0.269 0.220 0.279 0.270 0.295	0 266
Std. Devn. 0.0067 0.0054 0.0063 0.0048 0.0047 0.0042 0.0038 0.0023 0.0022 0.0066 0.0032 0.0034 0.0030 (0.0019
% RSD 2.38 2.06 2.09 1.74 1.73 1.53 1.41 0.80 0.82 3.01 1.14 1.26 1.01	0.71

NOTE: Cu data from Lab. 4 was excluded for failing the "t" test. Pb data from Lab. 10 was excluded for failing the "t" test. Zn data from Lab. 10 was excluded for failing the "t" test.

Participating Laboratories:

(not in same order as listed in table of results)

Acme Analytical Laboratories Ltd., Vancouver Actlabs-Ancaster, Ontario, Canada Actlabs-Thunder Bay, Ontario, Canada Alaska Assay Laboratory, Alaska, USA Alex Stewart Assayers, Mendoza, Argentina ALS Chemex Laboratories, North Vancouver Assayers Canada Ltd., Vancouver Eco Tech Laboratories Ltd., Kamloops, B.C., Canada Genalysis Laboratory, Australia IPL, Richmond, B.C. Canada Labtium Laboratory, Finland Omac Laboratories Ltd., Ireland TSL Laboratories Ltd., Saskatoon Ultra Trace Analytical Laboratories, Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. or Barry Smee accept no liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Durican Sanderson

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.

CDN Resource Laboratories Ltd.

#2, 20148 – 102nd Avenue, Langley, B.C., Canada, V1M 4B4, 604-882-8422, Fax: 604-882-8466 (www.cdnlabs.com)

REFERENCE MATERIAL: CDN-CM-6

Recommended values and the

"Between Lab" Two Standard Deviations	Gold:	1.43 ± 0.09 g/t	(RSD of 3.28%)
	Copper:	0.737 ± 0.039 %	(RSD of 2.65%)
	Molybdenum:	0.083 ± 0.008 %	(RSD of 4.80%)
Provisional values:	Silver:	3.3 ± 0.7 g/t	(RSD of 10%)
	Rhenium:	0.85 ± 0.16 ppm	(RSD of 9.65%)

Standards with an RSD of near or less than 5 % are certified, RSD's of between 5 % and 15 % are Provisional, and RSD's over 15 % are Indicated. Provisional and Indicated values cannot be used to monitor accuracy with a high degree of certainty

PREPARED BY:CDN Resource Laboratories Ltd.CERTIFIED BY:Duncan Sanderson, B.Sc., Licensed Assayer of British ColumbiaINDEPENDENT GEOCHEMIST:Dr. Barry Smee., Ph.D., P. Geo.DATE OF CERTIFICATION:October 19, 2009

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone blender. Splits were taken and sent to 14 laboratories for round robin assaying.

ORIGIN OF REFERENCE MATERIAL:

Standard CDN-CM-6 was prepared using ore supplied by Pacific Sentinel from their Casino property in Yukon, Canada. It is a copper-gold porphyry deposit. The standard was prepared using 750 kg of this ore, 30kg of a blank granitic material and 20 kg of a Au-Cu-Mo concentrate.

	Percent		Percent
SiO2	56.1	MgO	2.2
A12O3	14.8	K2O	3.7
Fe2O3	8.2	TiO2	0.6
CaO	4.3	LOI	5.5
Na2O	1.9	S	1.0

Approximate chemical composition is as follows:

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ± 2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Results from round-robin assaying are displayed on the following page.

Assay Procedures:

Au: Fire assay pre-concentration, AA or ICP finish (30g sub-sample). Cu, Mo, Ag, Re: 4-acid digestion, AA or ICP finish.

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14
SAMPLE	Au g/t													
CM6-1	1.42	1.38	1.41	1.37	1.48	1.52	1.07	1.49	1.53	1.37	1.40	1.41	1.44	1.44
CM6-2	1.46	1.40	1.53	1.43	1.43	1.50	0.97	1.37	1.44	1.39	1.45	1.48	1.42	1.40
CM6-3	1.45	1.38	1.43	1.42	1.40	1.61	1.14	1.38	1.55	1.35	1.41	1.37	1.47	1.37
CM6-4	1.46	1.39	1.44	1.35	1.45	1.41	0.99	1.41	1.39	1.48	1.44	1.40	1.48	1.44
CM6-5	1.45	1.40	1.52	1.42	1.44	1.49	1.03	1.36	1.48	1.44	1.46	1.42	1.39	1.41
CM6-6	1.44	1.33	1.44	1.33	1.34	1.45	1.25	1.45	1.45	1.42	1.37	1.34	1.46	1.46
CM6-7	1.53	1.47	1.47	1.37	1.49	1.37	1.15	1.48	1.52	1.43	1.40	1.39	1.49	1.47
CM6-8	1.46	1.31	1.46	1.44	1.42	1.45	1.25	1.43	1.47	1.34	1.37	1.36	1.45	1.43
CM6-9	1.43	1.38	1.53	1.40	1.44	1.43	1.23	1.54	1.56	1.41	1.46	1.42	1.41	1.47
CM6-10	1.43	1.46	1.49	1.39	1.42	1.39	1.26	1.36	1.49	1.42	1.49	1.39	1.45	1.38
Mean	1.45	1.39	1.47	1.39	1.43	1.46	1.13	1.43	1.49	1.41	1.43	1.40	1.45	1.42
Std. Dev'n	0.0317	0.0492	0.0437	0.0366	0.0420	0.0708	0.1113	0.0622	0.0533	0.0430	0.0409	0.0388	0.0317	0.0351
%RSD	2.19	3.54	2.97	2.63	2.94	4.85	9.83	4.36	3.58	3.06	2.87	2.78	2.19	2.46
	Cu %													
CM6-1	0.773	0.720	0.736	0.760	0.732	0.675	0.75	0.764	0.734	0.695	0.748	0.709	0.727	0.760
CM6-2	0.745	0.721	0.729	0.762	0.715	0.666	0.75	0.763	0.739	0.700	0.742	0.722	0.750	0.789
CM6-3	0.765	0.709	0.725	0.767	0.724	0.719	0.74	0.758	0.735	0.692	0.740	0.737	0.731	0.772
CM6-4	0.747	0.701	0.735	0.767	0.732	0.726	0.75	0.772	0.729	0.695	0.743	0.729	0.738	0.788
CM6-5	0.765	0.710	0.734	0.775	0.744	0.725	0.74	0.764	0.746	0.688	0.754	0.720	0.706	0.791
CM6-6	0.746	0.712	0.733	0.765	0.736	0.721	0.76	0.764	0.738	0.688	0.752	0.739	0.722	0.738
CM6-7	0.736	0.708	0.737	0.752	0.728	0.720	0.75	0.762	0.732	0.700	0.744	0.726	0.743	0.727
CM6-8	0.744	0.719	0.739	0.748	0.738	0.718	0.75	0.773	0.727	0.689	0.751	0.743	0.726	0.739
CM6-9	0.748	0.714	0.733	0.753	0.747	0.724	0.76	0.765	0.740	0.696	0.756	0.700	0.711	0.727
CM6-10	0.736	0.713	0.742	0.759	0.743	0.726	0.75	0.762	0.742	0.698	0.758	0.784	0.725	0.750
Mean	0.751	0.713	0.734	0.761	0.734	0.712	0.750	0.765	0.736	0.694	0.749	0.731	0.728	0.758
Std. Dev'n	0.0127	0.0062	0.0048	0.0082	0.0099	0.0222	0.0067	0.0045	0.0059	0.0047	0.006	0.0229	0.0135	0.0256
%RSD	1.70	0.87	0.66	1.08	1.34	3.11	0.89	0.59	0.80	0.67	0.84	3.14	1.86	3.38
	Mo %													
CM6-1	0.079	0.079	0.080	0.084	0.081	0.088	0.085	0.089	0.081	0.079	0.082	0.089	0.085	0.082
CM6-2	0.079	0.081	0.079	0.088	0.079	0.081	0.082	0.090	0.084	0.077	0.083	0.089	0.084	0.076
CM6-3	0.081	0.076	0.081	0.087	0.081	0.087	0.084	0.090	0.082	0.078	0.081	0.088	0.084	0.080
CM6-4	0.078	0.076	0.080	0.086	0.081	0.087	0.084	0.090	0.083	0.081	0.078	0.090	0.086	0.080
CM6-5	0.084	0.077	0.081	0.087	0.080	0.088	0.083	0.088	0.083	0.080	0.082	0.092	0.086	0.075
CM6-6	0.080	0.077	0.081	0.091	0.079	0.085	0.083	0.089	0.083	0.078	0.080	0.090	0.085	0.083
CM6-7	0.080	0.079	0.081	0.084	0.081	0.087	0.084	0.087	0.083	0.080	0.080	0.088	0.085	0.083
CM6-8	0.079	0.075	0.081	0.083	0.082	0.085	0.083	0.089	0.085	0.082	0.078	0.089	0.084	0.080
CM6-9	0.081	0.076	0.082	0.083	0.080	0.087	0.084	0.088	0.083	0.079	0.081	0.090	0.084	0.078
CM6-10	0.081	0.077	0.081	0.079	0.080	0.086	0.082	0.088	0.083	0.081	0.081	0.091	0.085	0.068
Mean	0.080	0.077	0.081	0.085	0.080	0.086	0.083	0.089	0.083	0.079	0.081	0.090	0.085	0.079
Std. Dev'n	0.0016	0.0018	0.0008	0.0033	0.0010	0.0021	0.0010	0.0009	0.0011	0.0015	0.002	0.001	0.001	0.005
%RSD	1.98	2.37	1.01	3.90	1.20	2.41	1.16	1.01	1.27	1.86	2.04	1.41	0.93	5.83

Note: "Au" data from laboratory 7 was excluded from the calculations for failing the t test.

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14
	Ag g/t													
CM6-1	3.4	2.9	1.92	3.7	4	3.3	3.1	3.2	1.5	3	3.0	3	3.1	3.4
CM6-2	3.3	2.0	1.85	3.8	4	3.1	3.4	3.0	1.3	3	3.0	< 3	3.1	3.4
CM6-3	3.6	2.4	1.17	3.7	4	3.2	3.1	3.1	1.5	3	3.0	< 3	3.4	3.7
CM6-4	3.4	2.6	3.29	3.8	3	3.2	3.4	3.1	1.7	3	3.0	< 3	3.3	3.6
CM6-5	3.6	2.3	2.92	3.8	4	3.2	2.9	3.4	1.4	3	3.5	3	3.0	3.4
CM6-6	3.5	2.1	2.37	3.7	3	3.3	3.1	3.4	1.4	3	3.0	< 3	3.0	3.7
CM6-7	3.4	2.6	2.63	3.7	4	3.2	3.1	3.2	1.4	3	3.0	< 3	3.1	3.6
CM6-8	3.8	2.9	2.17	3.8	3	3.2	3.0	3.3	1.4	3	3.0	< 3	3.0	3.7
CM6-9	3.5	2.2	1.97	3.8	4	3.1	3.2	3.1	1.5	3	3.0	< 3	3.2	3.5
CM6-10	3.3	2.2	2.46	3.8	3	3.0	3.3	3.1	1.5	3	3.5	< 3	3.1	3.0
Mean	3.5	2.4	2.3	3.8	3.6	3.2	3.2	3.2	1.5	3.0	3.1		3.1	3.5
Std. Dev'n	0.1549	0.3190	0.6007	0.0516	0.5164	0.0919	0.1647	0.1448	0.1075	0.0000	0.211		0.134	0.216
%RSD	4.45	13.18	26.40	1.37	14.34	2.89	5.21	4.53	7.36	0.00	6.80		4.27	6.17
	Re g/t													
CM6-1	0.937	0.741			0.869	0.96	0.725	0.780	0.869	0.90	0.9	1.02		0.85
CM6-2	0.951	0.751			0.906	0.92	0.739	0.732	0.876	0.86	0.9	1.03		0.87
CM6-3	0.958	0.711			0.841	0.93	0.752	0.705	0.883	0.89	0.9	1.03		0.76
CM6-4	0.963	0.742			0.892	0.94	0.762	0.729	0.874	0.89	0.8	1.07		0.82
CM6-5	0.933	0.716			0.867	0.94	0.734	0.765	0.908	0.86	0.9	1.09		0.81
CM6-6	0.958	0.719			0.886	0.91	0.755	0.790	0.885	0.85	0.9	1.08		0.83
CM6-7	0.944	0.741			0.939	0.91	0.709	0.688	0.877	0.85	0.9	1.07		0.82
CM6-8	0.964	0.728			0.917	0.96	0.710	0.821	0.871	0.95	0.9	1.00		0.81
CM6-9	0.916	0.751			0.937	0.90	0.691	0.764	0.876	0.85	0.9	1.04		0.80
CM6-10	1.045	0.713			1.004	0.89	0.676	0.871	0.892	0.90	0.9	1.00		0.80
Mean	0.957	0.731			0.906	0.926	0.725	0.764	0.881	0.880	0.890	1.043		0.817
Std. Dev'n	0.0345	0.0157			0.0465	0.0241	0.0285	0.0549	0.0117	0.0323	0.032	0.033		0.030
%RSD	3.60	2.15			5.14	2.61	3.93	7.18	1.33	3.67	3.55	3.16		3.65

"Ag" data from laboratories 3 & 9 were excluded from the calculations for failing the t test. "Ag" data from laboratory 12 was not used. "Re" data from laboratory 12 was excluded from the calculations for failing the t test. Note:

Some laboratories were unable to provide rhenium analysis.

Participating Laboratories:

(not in same order as listed in table of results)

Acme Analytical Laboratories Ltd., Vancouver, B.C. Activation Laboratories Ltd., Ancaster, Ontario Activation Laboratories Ltd., Thunder Bay, Ontario Assayers Canada Ltd., Vancouver, B.C. ALS Chemex Laboratories, North Vancouver, B.C. EcoTech, Kamloops, B.C. SGS-Toronto, Ontario Genalysis Laboratory Services Pty. Ltd., Australia Inspectorate America Assay Labs, USA Labtium, Finland OMAC Laboratories Ltd., Ireland Skyline Assayers & Laboratories, Tucson, USA TSL Laboratories, Saskatoon Ultra Trace Analytical Laboratories, Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. or Barry Smee accept no liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duran Sanderson

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.