Verification Rock/Soil Geochemical Survey on the Knight Inlet Property

BC Geological Survey Assessment Report 32099

Vancouver Mining Division British Columbia NTS 092K14 o – on 9 W s UTM Zone 10, NAD 83 5635430N 339280E

For

Owner & Operator: St. Elias Mines

By

James Thom, M.Sc

December 15, 2010

Knight Inlet 2010 Assessment Report

Contents

3.0	Summary4
4.0	Property Description and Location6
4.1	Property Description and Location6
5.0	Accessibility, Infrastructure, Climate and Physiography7
5.1	Accessibility and Infrastructure7
5.2	Climate and Physiography7
6.0	History of Exploration
6.1	Exploration carried out by Placer Dome Inc. (ARIS: 20421, 21774)8
6.2	Exploration carried out by Tiberon Minerals (ARIS: 25216)9
7.0	Geological Setting
8.0	Exploration
8.1	Summary of exploration work carried out in 201011
8.2	Till Geochemical Results
8.3	Rock Geochemical Results13
8.4	Mineralization
9.0 Kni	ght Inlet Property Photos15
10.0 C	onclusions and Recommendations18
11.0 St	atement of Qualifications
12.0 St	atement of Costs

Appendix 1

Fig. 1: Project Location Map (1:250,000)

Fig. 2: Claim Map Showing Mineral Tenure Numbers and Minfile Occurences

Fig. 3: Compilation Map Showing Historic Geochem Locations and Boundaries

Fig. 4a: Regional Geology

Fig. 4b: Local Geology

Fig. 5: Geocheistry Map Showing 2010 Till Samples by Au

Appendix 2 Till Locations

Appendix 3 Rock Locations and Descriptions

Appendix 4 Historical Compilation

Appendix 5 Laboratory Certificates

3.0 Summary

The Knight Inlet property is prospective for epithermal vein hosted Au-Ag mineralization and Cu-Mo porphyry mineralization. The property consists of 11 contiguous claim blocks that covers known Au-Ag-Cu-Mo vein, disseminated, massive and stockwork mineralization identified in the BC Ministry of Mines (BCMEM) Minfile database as the APLLE Prospect (Minfile No. 092K158). The claims are located in the Loughborough Exploration District approximately 90 kilometers north of the Campbell River.

The Knight Inlet Property is located in the Vancouver Mining Division, in the Comox-Strathcona District, of southwestern British Columbia, Canada. The property lies in the upper reaches of the Apple River, between Knight and Bute inlets. Present access is by helicopter from Campbell River.

Polymetallic mineralization was first noted, in the area now covered by the Knight Inlet Property, by the British Columbia Geological Survey in 1988 during a stream sediment sampling program. The results were released as British Columbia Regional Geochemical Survey (RGS) 22 in June, 1989. Follow up stream sediment sampling by Placer Dome verified the BCGS assays. During the follow up stream sediment sampling by Placer Dome mineralized float was discovered in a creek draining into the Apple River near the sampling site of RGS sample. Results from the follow up stream sediment sampling and the mineralized float led to the staking of the Apple Property by Placer Dome. Placer Dome spent two field seasons on the Apple Property and collected 140 rocks. Samples returned Au, Ag, Mo and Cu assays up to 14 ppm, 340 ppm, 0.92% and 2.8%, respectively. Epithermal vein hosted Au-Ag mineralization and Cu-Mo porphyry mineralization was identified on the property and four zones (Grizzle Creek, Waterfall, Glacier and Valley) of were outlined by Placer Dome. Placer Dome allowed their claims to lapse. In 1996, Tiberon Minerals acquired the ground covering the Grizzly Creek Zone and carried out a verification program that returned Au, Ag, Mo and Cu assays up to 36.4 ppm, 360.5 ppm, 0.0212% and 1.97%, respectively. Tiberon Minerals allowed their claims to lapse.

The 2010 exploration program carried out by St. Elias Mines consisted of a geological review of Loughborough Exploration District, a GIS compilation of all historic technical data within and adjoining the Knight Inlet Property and a preliminary verification rock geochemical sampling and till sampling program from October 13th to October 16th 2010. A total of 61 till samples and 4 rock samples were collected during the 2010 exploration program.

The results of the 2010 exploration program successfully verified the known mineral showing referred to as the "Grizzly C k showing. Values up to 7058 ppb Au, 898.1 ppm Ag and 0.024% Mo were observed on the property. Re and Te, not analyzed for in previous exploration programs, values up to 1450 ppb and 518.9 ppm, respectively, were also recorded on the property.

Based on the encouraging results from the 2010 preliminary verification program a complete survey of the known mineralized zones should be carried out in the 2011 season. Also, a detailed follow up to the discovery of the Grizzly North zone, which returned a molybdenum sample of

2378.8 ppm (0.24% Mo), will be a priority of the 2011 season. The program will include property scale mapping and sampling along with detailed mineralized zone sampling.

4.0 **Property Description and Location**

4.1 **Property Description and Location**

The Knight Inlet Property is located in the Vancouver Mining Division, in the Comox-Strathcona District, of southwestern British Columbia, Canada. The property lies in the upper reaches of the Apple River, between Knight and Bute inlets. The mineral claims comprising the Knight Inlet property are centered roughly at NAD 83 UTM Zone 10, 5635430N. 339280E. (

N.Latitude; 9 W. Longitude), and situated on N.T.S. map sheet 092K (1:250,000),092K/14 (1:50,000) and 92K.084 (1:20,000). The property consists of eleven (11) contiguous MTO Cell Claims covering approximately 4,877.22 hectares. The Knight Inlet Property is 100% owned St Elias Mining Ltd. Figures 1, 2, 3 illustrate project location and infrastructure at three scales.

St. Elias Mines holds a 100% interest in 11 contiguous mineral tenures (4877.22 hectares) that cover a square shaped package of ground located approximately 90 kilometers north of Campbell River in southwest BC. All of the claims which comprise the Knight Inlet Property were staked pursuant to the BC Ministry of Energy and Mines MTO system (Mineral Titles Online System). The earliest expiry date of the claim package based on the acceptance of this report is **October 15**, 2011.

The mineral cell title claim statistics are summarized in Table 1; note that this claim information is not a legal title opinion but is a compilation of claims data based on the author's review of the government of the British Columbia Mineral Rights inquiry website (BC Mineral Titles December 02, 2010). The mineral claims do not have to be legally surveyed; since they are BC Government established mineral cell title claim.

Tenure Number	Tenure Name	Owner	Tenure Type	Old Good To Date	New Good To Date*	Area (ha)
674283	GRIZZLY CREEK GOLD	St. Elias Mines	Mineral	2011/jul/15		81.63
674286	GCG	St. Elias Mines	Mineral	2011/jul/15		489.74
678963	ALPHA	St. Elias Mines	Mineral	2011/jul/15		489.89
678964	BRAVO	St. Elias Mines	Mineral	2011/jul/15		285.58
678965	CHARLIE	St. Elias Mines	Mineral	2011/jul/15		510.14
678966	DELTA	St. Elias Mines	Mineral	2011/jul/15		510.11
678983	DELTA	St. Elias Mines	Mineral	2011/jul/15		510.03
678984	ECHO	St. Elias Mines	Mineral	2011/jul/15		510.15
679003	GULF	St. Elias Mines	Mineral	2010/dec/04		489.69
679004	FOXTROT	St. Elias Mines	Mineral	2011/jul/15		510.33
679005	GULF	St. Elias Mines	Mineral	2011/jul/15		489.93
					Total Area	8221.513

 Table 1. Mineral Tenures for the Knight Inlet Property

*Upon the acceptance of this report

5.0 Accessibility, Infrastructure, Climate and Physiography

5.1 Accessibility and Infrastructure

The Knight Inlet property lies in the upper reaches of the Apple River, between Knight and Bute inlets, approximately 90 kilometers north of the Campbell River. Present access is by helicopter from Campbell River.

Campbell River is one of the administrative and logistical centres of the region and offers many basic services such as food stores, fuel and lumber supplies. Helicopter services and small aircraft are also available. Driving time to Campbell River from Vancouver is approximately 2 hours with an additional 2 hour ferry from Horseshoe Bay to Nanaimo.

Stafford Lake Logging Ltd. is currently operating in the area and has a camp located at the Fraser Bay, approximately 20 km from the property.

5.2 Climate and Physiography

The Knight Inlet property extends northwest from Apple River and covers ground rising from 400 metres to about 2,100 metres above sea-level. The property encompasses two cirques, which contain streams that flow easterly into upper portion of Apple River. Steep slopes and cliffs prevail throughout the area; only major valley bottoms are flat and thickly vegetated. Small glaciers and snowfields are common in the upland areas in the western portion of the property.

6.0 History of Exploration

Polymetallic mineralization was first noted, in the area now covered by the Knight Inlet Property, by the British Columbia Geological Survey in 1988 during a stream sediment sampling program. The results were released as British Columbia Regional Geochemical Survey (RGS) 22 in June, 1989. Follow up stream sediment sampling by Placer Dome verified the BCGS assays. During the follow up stream sediment sampling by Placer Dome mineralized float was discovered in a creek draining into the Apple River near the sampling site of RGS sample. Results from the follow up stream sediment sampling and the mineralized float led to the staking of the Apple Property by Placer Dome. Placer Dome spent two field seasons on the Apple Property and collected 140 rocks. Samples returned Au, Ag, Mo and Cu assays up to 14 ppm, 340 ppm, 0.92% and 2.8%, respectively. Epithermal vein hosted Au-Ag mineralization and Cu-Mo porphyry mineralization was identified on the property and four zones (Grizzle Creek, Waterfall, Glacier and Valley) of were outlined by Placer Dome. Placer Dome allowed their claims to lapse. In 1996, Tiberon Minerals acquired the ground covering the Grizzly Creek Zone and carried out a verification program that returned Au, Ag, Mo and Cu assays up to 36.4 ppm, 360.5 ppm, 0.0212% and 1.97%, respectively.

6.1 Exploration carried out by Placer Dome Inc. (ARIS: 20421, 21774)

During 1989, Placer Dome conducted field work consisting of reconnaissance prospecting and rock sampling on the Apple Property. Placer Dome found mineralization to generally occur in or adjacent to quartz veins. Three m n 1z zon s w n f n Pl c Dom s f s y of exploration and are known as: Grizzly Creek, Glacier Zone and Valley Zone. Two veins of significant extant were found in the Grizzly Creek zone and given special attention. The two veins were named: Grizzly Vein and Down the Hill Vein. 84 samples came from the Grizzly Creek Zone: 56 from the Grizzly Vein; 9 from the Down the Hill Vein; and 19 from other localities on Grizzly Creek. 6 samples were collected from the Glacier Zone. 3 samples were collected from the Valley Zone.

Gold assays ranged from trace to 14 ppm. The most significant gold mineralization was found in float of vuggy pyrite-bearing quartz veins that occur in a debris fan at the confluence of Grizzly Creek and Apple River. Vuggy pyrite-bearing veins on the Apple Property are considered to be a late stage epithermal mineralizing event by Placer Dome. This style of mineralization was considered economically significant by Placer Dome. The source to the float was not discovered by Placer Dome in 1989 and was considered a high priority field objective for the following year.

Molybdenum assays ranged from trace to 0.92%. The top two molybdenum samples: 0.92% Mo and 510 ppm Mo came from the Grizzly Creek Zone and Valley Zone, respectively. Both samples were from vuggy pyrite, molybdenite and chalcopyrite bearing vein and are considered by Placer Dome to be part of a middle stage porphyry-style mineralizing event.

During 1990, Placer Dome conducted follow up work to their 1989 program with focus on exploration for the source of gold-silver bearing epithermal quartz vein float in the Grizzly Creek Zone and to evaluate the Glacier and Valley Zones for copper-molybdenum porphyry mineralization. During the course of the 1990 exploration season new mineralization was

discovered to the southwest of the Valley Zone. This mineralized area was named the Waterfall Zone. The Waterfall Zone is not currently on ground covered by the Knight Inlet Property. Forty-seven rock samples and seventy-four soil samples were collected from areas of interest. **Samples returned similar grades as from the year before.**

No further work was recorded on the Apple Property by Placer Dome and the claims were allowed to lapse.

Pl c Dom s Apple Property claim outline with respect to the Knight Inlet Property is shown in Figure 3. Placer Domes maps have been georeferenced and sample locations have been plotted and the identified mineralized zones are shown in Figure 3. Associated geochemistry and UTM coordinates for these samples was compiled and can be found in Appendix 3 and 4. A summary of work done by Placer Dome on ground currently covered by the Knight Inlet Property is provided in Table 2.

Owner/Property	Geochemistry	Geophysics	Trenching	Drilling	Reference
Placer Dome	93 rocks				Sketchley, D.A.
APPLE					(1990)
					ARIS: 20421
Placer Dome	47 rocks				Rebic, Z. &
APPLE	74 soils				Sketchley, D.A.
					(1991)
					ARIS: 21774

 Table 2. Summary of Work Carried out by Silver Standards

6.2 Exploration carried out by Tiberon Minerals (ARIS: 25216)

During 1996, Tiberon Minerals staked the Grizzly Property which covered part of the ground previously held by Placer Dome. Tiberon Minerals exploration program focused on the Grizzly Creek Zone and an area to the northwest of the Grizzly Creek Zone. Tiberon collected 36 rock samples and submitted them for gold fire assay and a 32 element ICP analysis. Gold values ranged from trace to 36.4 ppm Au.

Tiberon Minerals Grizzly Property claim outline with respect to the Knight Inlet Property is shown in Figure 3. Tiberon Minerals maps have been georeferenced and sample locations have been plotted and the identified mineralized zones are shown in Figure 3. Associated geochemistry and UTM coordinates for these samples was compiled and can be found in Appendix 5. A summary of work done by Tiberon Minerals on ground currently covered by the Knight Inlet Property is provided in Table 3.

Owner/Property	Geochemistry	Geophysics	Trenching	Drilling	Reference
Tiberon Minerals	36 rocks				ARIS: 25216
GRIZZLY					

Table 3. Summary of Work Carried out by Nuspar Resources

7.0 Geological Setting

The area covered by and surrounding the Knight Inlet Property is underlain by the Coast Plutonic Complex, which comprises granodiorite, diorite, gneiss, migmatite, amphibolite and schist (Roddick, 1977). The metamorphic rocks generally occur as small fault-bounded pendants. Feldspar porphyry dykes are locally abundant. Prior to the 1989 work conducted by Placer Dome Inc., no known mineral occurrences existed on or adjacent to the property. The regional geology of the area is presented in Figure 4a.

Limited geological mapping was conducted on the property during 1990 by Placer Dome (Figure 4b). The following observations were made by Placer Dome:

Mapped areas are underlain dominantly by rocks of Coast Plutonic Complex. These rocks in mapped areas of the property compositionally vary from granodiorite to diorite and are generally medium-grained and equigranular. In some areas, granodiorite and diorite are foliated and occur together with migmatite, gneiss, schist and amphibolite. An intrusive breccia, 40 m in diameter, is exposed in the Waterfall Zone. The clasts make up 65% to 85% of the breccia, are angular and range up to 1 m. They comprise 95% medium-grained granodiorite to diorite, and 5% aphanitic to fine grained intermediate rocks. A variety of feldspar porphyritic dykes, and felsic to intermediate dykes, mafic dykes and pegmatitic dykes are locally abundant in the mapped areas of the property.

8.0 Exploration

8.1 Summary of exploration work carried out in 2010

The 2010 exploration program carried out by St. Elias Mines consisted of a geological review of Loughborough Exploration District, a GIS compilation of all historic technical data within and adjoining the Knight Inlet Property and a preliminary verification rock geochemical sampling and till sampling program from October 13th to October 16th 2010. The verification program was designed to evaluate the known mineral showings referred to by Placer Dome as "Grizzly Creek , "Glacier Zone and "Valley Zone . However due to snow accumulation on the Property only part of the Grizzly Creek Zone was inspected. A total of 61 till samples and 4 rock samples were collected during the 2010 verification program. The location of each till and rock sample station was noted, in UTM coordinates (NAD83 zone 10), with the aid of a hand-held GPS (Garmin 60CSx) and are shown in Figures 3 and 4, they are also listed in Appendix 2 and 3.

The till grid covered an area of 100 m x 80 m with a station spacing of 10m.

All samples collected during the 2010 exploration program were submitted to SGS (formerly Assayers Canada), of Vancouver, for analysis. Rock samples were crushed, split, and ring pulverized (250g, > 95% -150 mesh). 30 grams of the -150 mesh (<106 μ m) sieved fraction of the rock sample was fire assayed with an atomic absorption finish for gold and 0.5 grams of the sample was digested with 5 mL 3:1 HCl/HNO3 at 950C for 2 hours and diluted to 25 mL with a 50-element ICP-MS finish. Till samples were dried and sieved to -80 mesh. 15 grams of the -80 mesh (<180 μ m) sieved fraction of the till sample was fire assayed with an atomic absorption finish for gold. The elements analyzed for each rock sample and their detection and upper limits are listed in Table 4.

Element	DL								
	UL								
Ag	0.1 ppm	Со	0.1 ppm	K	0.01	Pb	0.1 ppm	Те	0.1 ppm
	200 ppm		10000 ppm		10		10000 ppm		1000 ppm
Al	0.01%	Cr	1 ppm	La	1 ppm	Rb	0.1 ppm	Th	0.1 ppm
	25%		10000 ppm		10000 ppm		1000 ppm		1000 ppm
As	0.5 ppm	Cs	0.1 ppm	Li	0.1 ppm	Re	5 ppm	Ti	0.005
	10000 ppm		1000 ppm		10000 ppm		1000 ppm		10
Au	0.05 ppm	Cu	0.1 ppm	Mg	0.01	S	0.05	Tl	0.1 ppm
	25 ppm		10000 ppm		25		10		1000 ppm
Ba	1 ppm	Fe	0.01	Mn	1 ppm	Sb	0.1 ppm	U	0.1 ppm
	10000 ppm		50		10000 ppm		10000 ppm		1000 ppm
Be	1 ppm	Ga	1 ppm	Mo	0.1 ppm	Sc	0.1 ppm	V	2 ppm
	10000 ppm		1000 ppm		10000 ppm		10000 ppm		10000 ppm
Bi	0.1 ppm	Ge	0.1 ppm	Na	0.01	Se	0.5 ppm	W	0.1 ppm
	10000 ppm		1000 ppm		10		1000 ppm		10000 ppm
Ca	0.01	Hf	0.1 ppm	Nb	0.1 ppm	Sn	0.1 ppm	Y	0.1 ppm
	25		1000 ppm		1000 ppm		1000 ppm		10000 ppm
Cd	0.1 ppm	Hg	0.005 ppm	Ni	0.1 ppm	Sr	1 ppm	Zn	1 ppm
	2000 ppm		100 ppm		1000 ppm		10000 ppm		10000 ppm
Ce	1 ppm	In	0.01 ppm	Р	0.001	Та	0.1 ppm	Zr	0.1 ppm
	1000 ppm		1000 ppm		5		1000 ppm		10000 ppm

Table 4. Detection Limits and Upper Limits of 50-element ICP-MS

SGS employs standard QA and QC protocols on all sample analyses including inserting one blank, reference standard and duplicate analysis in every twenty samples analyzed. Based on the fact that the sampling program was designed to verify and follow up previous exploration work

Knight Inlet 2010 Assessment Report

completed by Placer Dome in 1989 and 1990 no additional QA and QC procedures were implemented as part of the program. Sample Certificates from the 2010 exploration program are included in Appendix 6.

In the authors opinion the sample security employed by the field personnel involved in the sample collection and the sample preparation and analytical procedures employed by SGS are adequate for the exploration program carried out by St. Elias Mines on the Knight Inlet Property.

8.2 Till Geochemical Results

The 2010 till program resulted in the collection of 61 till samples. Statistical values of Au for the 2010 soil are presented in Table 5. Background concentrations as well as weak and strong anomaly concentration cutoffs were established using box plots created from the 2010 data. Defining Q1 and Q3 to be the first and third quartile and IQR to be the interquartile range (Q3 – Q1), the background concentration cutoff is defined as: Background < Q3 + 1.5*IQR); A strong anomaly is defined as: Strong anomaly > Q3 + (3*IQR). A weak anomaly is defined as greater than the background but less than a strong anomaly.

	Au
	(ppb)
Background	22
S. Anomaly	36
Average	14
Max	80
Min	2
50th	10
percentile	
70th	14
percentile	
80th	18
percentile	
90th	24
percentile	
95th	36
percentile	

Table 5. Till Geochemical Summary Statistics: Grizzle Creek Zone

The results from the detailed till geochemical survey (Figure 5) indicate that till geochemical surveys can be used to vector towards mineralized areas. Figure 5 appears to indicate that gold mineralization was transported from the south and east. This observation is consistent with the location of sample JT06 and on strike projections of this vein.

8.3 Rock Geochemical Results

The 2010 outcrop verification/prospecting program culminated in the collection of 4 rock samples. Samples were collected from a quartz vein and other mineralized bodies. For this program composite chip samples were collected from within mineralized areas believed to correspond to the areas sampled by Placer Dome in the 1990.

Results for Au, Ag, As, Cu, Mo, Re, Te, Pb and Zn from the 2010 rock samples are presented in Table 6.

	Au	Ag	As	Cu	Mo	Re	Te	Pb	Zn
	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
JT03	3	0.3	2.2	31.6	2378.8	1450	0.3	1.3	32
JT04	2	0.4	2.8	61.5	26.4	<5	0.1	2.2	19
JT05	45	1	31.2	69.7	9.3	15	0.2	39.7	27
JT06	7058	898.1	5.3	135.8	12.7	<5	518.9	11000	143

Table 9. Geo	ochemical Summa	rv Statistics: Nor	th Slope Pol	vmetallic Shear Zone
14010 /. 000				including Shear Bone

8.4 Mineralization

Placer Dome identified three zones of mineralization on ground now covered by the Knight Inlet Property. These zones of mineralization have been grouped together by the BC Ministry of Mines (BCMEM) Minfile database as the APLLE Prospect (Minfile No. 092K158). Within these zones Placer Dome identified three types of mineralization that generally occurs in and/or adjacent to white quartz veins. The quartz veins are classified into three types based on mineralogy, texture, type of occurrence and geochemical signature. These types are:

- 1. Pyrite, chalcopyrite and molybdenite-bearing;
- 2. Pyrite-bearing; and
- 3. Pyrite and chalcopyrite-bearing veins.

The results of the verification program are described below in the context of each type of mineralization as described by Placer Dome.

Pyrite, Chalcopyrite and Molybdenite-bearing Veins

Pyrite, chalcopyrite, and molybdenite-bearing veins occur as narrow veins that are composed of white vuggy quartz, which characteristically contains coarse blebs of pyrite with lesser chalcopyrite. Minor fine-grained molybdenite is present along the margins of veins. Narrow envelopes of sericite and clay alteration locally surround the veins. Fine-grained disseminated pyrite is present locally in the altered wall rock adjacent to the veins. These veins trend north-northeasterly and east-southeasterly, and generally have steep to moderate dips. They occur in

"Gl c Zon n "V ll y Zon (F 3), and are representative of porphyry-style mineralization.

Pyrite Bearing Veins

Pyrite bearing veins are composed of white to clear vuggy quartz that commonly contains pyrite as disseminations, ribbons and masses. Minor sphalerite is present, whereas chalcopyrite is rare. The veins occur singly or as stockworks, and are characterized by multiple stages of injection and brecciation. Individual veins are up to 50 cm wide. Wall rock is clay-sericite-altered and contains disseminated pyrite. This vein type occurs in the "Grizzly Creek" zone (Figure 3). The rock sample JT06 was taken from a sulphide (galena and pyrite) bearing quartz vein hosted in granodiorite in the Grizzly Creek Zone. The vein was 15cm wide and was sampled over 1 m wide. Photo 1 shows the area where JT06 was taken.

Pyrite and Chalcopyrite-bearing Veins

Pyrite and chalcopyrite \pm galena \pm sphalerite \pm molybdenite bearing vuggy white quartz veins occur singly or as stockworks in diorite to granodiorite in the "Waterfall Zone (F). Pyrite and chalcopyrite with lesser galena and sphalerite occur as blebs and masses in the veins, whereas molybdenite occurs as disseminations within the host rock along the margins of the veins. Narrow envelopes of clay altered host rock occur adjacent to the veins.

The rock sample JT03 was taken from a rotten granodioritic porphyry dyke hosted in a gossanous meta-sedimentary rock in a new mineralized area referred to as the Grizzly North Zone. Molybdenite mineralization was in a stock work of veins.

The rock samples JT04 and JT05 were taken from the gossanous meta-sedimentary rock. The gossanous meta-sedimentary rock occurs as fault-bounded pendant within granodiorite batholith. It is approximately 200 to 300m wide and strikes northwest from the headwater of the Grizzly Creek. Photos 2 and 3 show the gossanous nature of the meta-sedimentary rock.

9.0 Knight Inlet Property Photos

Photo 1. Head Waters to the Grizzly Creek.

Photo 2. Looking northwest from the head waters of the Grizzly Creek.

Photo 3. Typical gossanous meta-sedimentary rock in the Grizzly North Zone

10.0 Conclusions and Recommendations

Preliminary verification sampling at the Grizzly Creek showing confirmed the gold, silver, lead mineralization reported by Placer Dome and Tiberon Minerals in the 199 s. Also a new zone (Grizzly North) of Mo and Re mineralization previously unrecognized was discovered during the property visit. Systematic GPS surveying of mineralization and historical compilation work suggest that the Knight Inlet Property is host to epithermal and porphyry mineralization which may be part of a more extensive continuous mineralized zone.

Based on the encouraging results from the 2010 preliminary verification program a complete survey of the known mineralized zones should be carried out in 2011 season. A detailed follow up to the discovery of the Grizzly North zone, which returned a molybdenum sample of 2378.8 ppm (0.24% Mo), should be a priority of the 2011 season. The program should include property scale mapping and sampling along with detailed mineralized zone sampling.

11.0 Statement of Qualifications

I James G.M. Thom certify that:

- I am an independent consulting geologist residing at 118B west 14th ave, Vancouver BC, V5Y 1W9 and can be contacted at thomjgm@gmail.com
- 2. I obtained a B.Sc. in Earth and Ocean Sciences at the University of Victoria [2002] and graduated with a M.Sc. in Geology from the University of Toronto [2003].
- 3. I have worked in the mineral exploration industry since 1999
- 4. I supervised the 2010 exploration program described in this report

12.0 Statement of Costs

Personnel:		
Project Geologist James Thom, M.Sc.	4days @ \$400.00 +HST	1792.00
Senior prospector/Geographer Gerard Gallissant, BA	4 days @ \$2250.00	900.00
Field Costs:		
Field Communications	Motorola 2 way field radios	60.00
Food + Field Supplies	Rock and soil sample bags, rice bags, survey flagging, pickets, topofil thread etc.	404.46
Hotels		157.52
Transportation:		
Ferry		147.00
Bus		170.64
Helicopter		5012.00
Fuel		400.00
Analytical:		
Soil Samples & Rock Sampes	SGS - Assayers Canada	1018.16
Office & Engineering:		
Assessment Report Writing		1,344.00
GIS/Drafting/Cartography	(including field base map and all final maps detailing geological mapping, sample locations and results, location of old workings and compilation of results from previous work on property)	896.00
Total cost of the Phase I expl	11,979.99	

APPENDIX 1 -FIGURES-

APPENDIX 2 -TILL LOCATIONS-

Sample	East_NAD83_Z10	North_NAD83_Z10	Elev_GPS	Au_ppb
GG01	339268	5635613	1443	18
GG02	339263	5635624	1443	8
GG03	339268	5635637	1444	10
GG04	339270	5635643	1446	10
GG05	339269	5635653	1448	8
GG06	339268	5635661	1450	80
GG07	339265	5635673	1453	20
GG08	339264	5635685	1456	10
GG09	339268	5635693	1459	14
GG10	339254	5635690	1459	54
GG11	339253	5635679	1458	18
GG12	339255	5635668	1455	14
GG13	339256	5635658	1451	12
GG14	339255	5635649	1448	14
GG15	339257	5635640	1448	36
GG16	339253	5635630	1447	10
GG17	339251	5635619	1446	22
GG18	339281	5635609	1445	22
GG19	339283	5635617	1446	14
GG20	339285	5635627	1447	24
GG21	339285	5635639	1448	16
GG22	339287	5635646	1451	12
GG23	339289	5635656	1454	21
GG24	339282	5635664	1456	5
GG25	339280	5635674	1457	5
GG26	339275	5635685	1460	9
GG27	339277	5635694	1463	7
GG28	339285	5635686	1461	16
GG29	339288	5635673	1458	12
GG30	339291	5635666	1456	4
GG31	339294	5635658	1454	7
GG32	339296	5635646	1452	3
GG33	339296	5635636	1450	15
GG34	339293	5635621	1449	10
GG36	339293	5635617	1446	32
GG37	339287	5635607	1445	5
GG38	339300	5635605	1441	8
GG39	339305	5635609	1441	13
GG40	339306	5635620	1442	20
GG41	339306	5635628	1446	6
GG42	339308	5635633	1448	9
GG43	339307	5635644	1449	7
GG44	339306	5635654	1450	7
GG45	339304	5635662	1452	7
GG46	339298	5635672	1454	10
GG47	339297	5635680	1455	10

Sample	East_NAD83_Z10	North_NAD83_Z10	Elev_GPS	Au_ppb
GG48	339303	5635679	1457	10
GG49	339304	5635672	1455	12
GG50	339309	5635663	1452	6
GG51	339312	5635653	1452	4
GG52	339318	5635639	1452	6
GG53	339324	5635630	1452	2
GG54	339325	5635630	1454	6
GG55	339320	5635626	1452	6
GG56	339310	5635617	1450	4
GG57	339315	5635611	1449	30
GG58	339313	5635600	1447	16
GG59	339320	5635599	1449	6
GG60	339327	5635590	1448	8
GG61	339325	5635579	1447	44
GG62	339316	5635580	1448	4

APPENDIX 3 -ROCK LOCATIONS & DESCRIPTIONS-

Sample	East_NAD83_Z10	North_NAD83_Z10	Elev_GPS	Rock Type	Width/sample Type
JT03	339115	5636020	1668	Granodiorite	grab
JT04	339117	5636061	1682	Gossans Metasedimatary	grab
JT05	339103	5636113	1703	Gossans Metasedimatary	grab
JT06	339274	5635429	1469	Quartz Vein	chip .15m

APPENDIX 4 -HISTORICAL COMPILATION-

Placer Dome: Rock Samples (ARIS: 20421)

Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
34737	341117.571	5634462.22	8	750	12	2
34738	341143.463	5634428.95	20	230	22	5
34739	341129.263	5634494.22	16	490	198	7
34740	341127.994	5634451.07	37	2170	72	2
34741	341160.218	5634449.98	64	1050	33	2
34742	341107.783	5634494.95	150	14100	56	6
34743	341077.743	5634387.98	33	6630	144	5
34744	341142.985	5634412.77	75	6750	32	2
34745	341106.505	5634451.8	105	12800	55	4
34746	341154.685	5634444.77	52	1250	570	5
34747	341156.12	5634493.31	1.1	90	12	4
34748	341122.939	5634462.04	4.4	270	37	7
34749	341152.772	5634380.04	12	1070	32	10
34750	341175.688	5634427.85	14	1700	15	3
34951	340325.673	5634408.08	7	20	820	9200
34952	339821.712	5634819.28	100	75	13500	28
34953	339801.18	5634852.38	14	70	53	25
34954	339827.401	5634829.89	2.2	10	71	1
34987	339806.556	5634852.2	4.6	10	61	8
34988	339839.259	5634867.28	12	5	143	20
34989	339838.302	5634834.92	6	40	84	5
34990	337605.789	5634241.13	0.8	5	136	14
34991	337627.278	5634240.4	0.2	5	20	180
34992	337549.099	5634324.03	0.3	5	223	240
34993	337549.899	5634351.01	0.2	50	29	6
34994	337909.22	5634139.06	0.4	5	134	56
34995	337690.656	5632333.3	0.7	5	333	180
34996	337685.733	5632301.52	0.2	5	42	510
34997	337717.29	5632292.45	0.3	5	34	28
34998	339821.712	5634819.28	31	180	108	5
34999	339821.712	5634819.28	0.8	5	51	4
35000	339821.712	5634819.28	4	25	32	3
59002	340849.828	5634498.29	26	950	33	6
59003	340853.918	5634454.96	1.4	55	23	2
59004	340455.685	5634441.47	330	1500	340	10
59005	340470.371	5634392.38	34	220	16	2
59006	340266.006	5634572.07	105	730	430	10
59007	340259.838	5634545.29	15	475	31	3
59008	340259.038	5634518.32	25	460	52	16
59009	340232.19	5634519.22	40	1225	70	2
59010	340233.46	5634562.38	21	75	65	11
59011	340265.206	5634545.1	8	470	60	2
59012	340248.137	5634513.29	131	4500	35	4
59013	340222.245	5634546.56	62	570	58	6
59014	340270.582	5634544.92	19	450	53	7

Placer Dome: Rock Samples (ARIS: 20421)

Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
59015	339816.022	5634808.69	17	200	36	16
59016	339832.134	5634808.14	23	225	31	4
59026	339773.853	5634837.1	7	100	33	76
59027	339827.401	5634829.89	8	70	38	135
59028	339828.836	5634878.43	4.8	125	36	56
59029	339822.503	5634846.26	4.1	10	41	32
59030	339848.882	5634829.16	6	35	48	50
59031	339810.489	5634803.47	16	60	72	19
59032	339790.6	5634858.14	9	5	165	25
59033	339827.88	5634846.07	8	35	320	22
59034	339858.826	5634801.83	15	20	1000	15
59035	339783.641	5634804.38	17	55	60	34
59036	339817.292	5634851.83	280	1450	48	108
59037	339837.189	5634797.17	12	20	39	6
59038	339795.177	5634830.98	7	5	55	63
59039	339843.514	5634829.34	114	145	55	192
59040	339818.092	5634878.8	21	130	85	50
59041	339811.132	5634825.04	16	120	30	25
59042	339848.568	5634818.37	17	70	174	185
59043	339822.347	5634840.86	37	195	38	145
59044	339789.009	5634804.2	12	830	32	18
59045	339816.822	5634835.65	14	150	41	50
59046	339812.402	5634868.19	23	75	120	200
59047	339838.146	5634829.53	40	90	60	152
59048	337448.335	5634370.65	4.7	80	19	22
59049	339842.557	5634796.99	12	55	36	85
59050	339816.822	5634835.65	26	125	71	201

Placer Dome: Soil Geochemistry (ARIS: 21774)

East_NAD83_Z10	North_NAD83_Z10	East	North	Ag_ppm	As_ppm	Au_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
337742	5632501	3370	3720	1	1	5	229	58	6	1	79
337780	5632516	3370	3760	0.5	1	2.5	213	15	12	1	83
337833	5632535	3370	3800	0.8	3	2.5	262	10	8	1	70
337868	5632551	3370	3840	0.8	1	2.5	30	6	8	1	20
337902	5632564	3370	3880	0.3	1	2.5	44	2	5	1	29
337967	5632593	3370	3960	0.3	1	5	202	11	8	1	60
338005	5632609	3370	4000	0.3	1	2.5	160	16	17	1	57
338044	5632625	3370	4040	0.3	1	5	94	9	8	1	61
338083	5632639	3370	4080	0.5	1	5	115	6	7	1	70
338129	5632661	3370	4120	0.3	1	2.5	38	2	6	1	48
338165	5632672	3370	4160	0.3	1	2.5	62	6	7	1	63
338208	5632687	3370	4200	1.2	1	2.5	264	50	5	1	78
338248	5632707	3370	4240	1.1	1	2.5	65	32	4	1	42
338282	5632716	3370	4280	0.1	1	2.5	5	1	6	1	19
338326	5632733	3370	4320	0.2	1	2.5	32	23	10	1	56
338358	5632743	3370	4360	0.1	1	2.5	30	5	5	1	35
338394	5632764	3370	4400	1.1	1	2.5	190	108	9	1	85
338436	5632783	3370	4440	0.1	1	2.5	80	20	7	1	63
338476	5632799	3370	4480	0.1	1	2.5	31	3	6	1	109
338510	5632810	3370	4520	0.1	1	2.5	17	13	9	1	28
338542	5632823	3370	4560	0.1	1	2.5	18	8	10	1	46
338588	5632839	3370	4600	2.5	1	2.5	37	14	10	1	60
337706	5632523	3400	3680	2.2	1	2.5	1000	64	7	1	128
337672	5632545	3440	3640	0.7	1	2.5	186	34	7	1	77
337643	5632558	3460	3600	0.8	1	2.5	111	15	7	1	77
337606	5632575	3500	3560	0.1	1	2.5	168	10	3	1	112
337576	5632599	3530	3520	0.5	1	2.5	72	22	6	1	80
337538	5632622	3560	3480	0.6	1	2.5	68	25	12	1	75
337503	5632650	3600	3440	0.4	1	2.5	101	50	18	1	80
337464	5632671	3630	3400	0.4	1	2.5	77	8	13	1	107
337487	5634189	5000	3960	0.1	1	2.5	115	21	5	1	37
337533	5634205	5000	4000	0.5	1	2.5	260	20	4	1	55

Placer Dome: Soil Geochemistry (ARIS: 21774)

East_NAD83_Z10	North_NAD83_Z10	East	North	Ag_ppm	As_ppm	Au_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
337571	5634222	5000	4040	1.3	1	2.5	420	47	3	1	53
337603	5634236	5000	4080	1.4	1	2.5	375	40	5	1	62
337640	5634244	5000	4120	0.7	1	15	366	17	11	1	36
337672	5634262	5000	4160	0.5	1	2.5	338	23	4	1	41
337716	5634276	5000	4200	1	2	2.5	610	22	3	1	46
337751	5634288	5000	4240	0.5	1	2.5	357	26	1	1	49
337786	5634300	5000	4280	0.6	1	5	218	19	1	1	49
337820	5634315	5000	4320	0.5	1	2.5	169	15	2	1	47
337863	5634330	5000	4360	0.6	1	2.5	144	11	1	1	62
337898	5634340	5000	4400	0.3	1	2.5	146	14	1	1	54
337944	5634350	5000	4440	0.4	1	10	150	19	1	1	68
337978	5634365	5000	4480	0.5	1	2.5	134	15	1	1	70
338016	5634376	5000	4520	0.4	1	15	113	15	1	1	69
338057	5634394	5000	4560	0.5	1	5	75	9	2	1	59
338089	5634413	5000	4600	0.4	1	2.5	84	13	3	1	65
338130	5634421	5000	4640	0.4	1	2.5	81	13	3	1	64
338167	5634441	5000	4680	0.3	1	2.5	64	11	1	1	69
338194	5634449	5000	4720	0.6	1	2.5	77	11	3	1	73
338244	5634466	5000	4760	0.7	1	2.5	104	11	2	1	85
338282	5634481	5000	4800	0.7	1	2.5	65	12	1	1	77
338321	5634490	5000	4840	0.5	1	2.5	49	10	1	1	72
338359	5634503	5000	4880	1.1	1	50	57	12	5	1	69
338397	5634514	5000	4920	0.8	1	2.5	64	6	2	1	77
338443	5634529	5000	4960	0.5	1	2.5	53	8	2	1	74
338481	5634544	5000	5000	2.4	1	2.5	104	13	5	1	68
338065	5633378	216	0	0.7	1	2.5	72	21	6	1	55
338049	5633362	216	40	0.5	1	35	74	16	1	1	52
338028	5633340	216	80	0.4	1	10	121	20	1	1	50
338006	5633303	216	120	0.3	1	2.5	68	13	1	1	34
337977	5633264	216	160	0.4	1	5	57	15	4	1	49
337952	5633227	216	200	0.5	1	15	109	25	1	1	68
337928	5633189	216	240	0.1	1	20	40	10	3	1	36

Placer Dome: Soil Geochemistry (ARIS: 21774)

East_NAD83_Z10	North_NAD83_Z10	East	North	Ag_ppm	As_ppm	Au_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
337902	5633153	216	280	0.8	1	2.5	51	12	2	1	49
337869	5633115	216	320	0.4	1	10	80	8	4	1	56
337840	5633072	216	360	0.2	3	5	43	8	4	1	57
337819	5633044	216	400	0.6	1	10	70	12	5	1	62
337686	5633057	216	440	0.5	1	15	64	11	6	1	55
337651	5633039	216	480	1.1	1	20	112	13	7	1	92
337669	5632997	216	520	0.5	1	2.5	66	10	6	1	59
337684	5632962	216	560	0.3	1	2.5	75	11	3	1	61
337695	5632920	216	600	0.2	1	2.5	17	16	2	1	12
337714	5632879	216	640	0.1	1	2.5	28	13	5	1	41

Placer Dome: Rock Sample (ARIS: 21774)

Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Ag_ppm	As_ppm	Au_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
5314	339990	5635102	21	21	210	34	5	63	1	55
5315	339992	5635059	0.2	1	5	2	7	8	1	11
5316	340008	5635354	90	49	900	880	9	1620	1	6200
5317	339396	5635569	4.3	17	25	19	44	284	1	82
5318	339386	5635580	25	174	110	96	10	320	3	190
5319	339409	5635569	5.2	11	40	15	18	88	1	29
5320	338457	5634924	0.3	1	2.5	39	16	8	1	55
5321	338309	5634926	1	7	10	28	0.5	3	1	28
5322	338305	5634932	78	17	3615	1060	5	5	1	2600
5323	338161	5634835	1.3	1	40	39	70	1	1	122
5324	338116	5634812	2.3	1	15	510	4	2	1	58
5325	338010	5634750	0.4	1	2.5	37	60	1	1	41
5327	340679	5634681	13	630	750	17	3	21	6	22
5328	340657	5634381	340	200	1940	500	18	355	81	221
5329	340600	5634387	70	1550	8700	65	4	165	13	236
5330	340076	5634496	2.6	10	90	175	6	2	2	10
5331	340060	5634494	0.9	5	15	185	6	1	1	11
5332	340967	5634270	16	170	130	56	6	31	2	69
5333	340922	5634279	9	290	700	44	5	34	1	29
5334	340802	5634279	0.3	1	2.5	14	5	2	1	20
5335	337159	5633762	1.1	2	40	1060	130	3	1	26
5336	337157	5633719	0.7	1	2.5	262	23	3	1	59
5337	337306	5633623	0.6	1	2.5	225	1	2	1	152
5338	337342	5633910	1.2	1	2.5	540	100	5	1	150
5339	337082	5634489	0.2	1	2.5	126	90	2	1	23
5340	336995	5634529	0.3	1	2.5	56	390	1	1	13
5341	337000	5634509	0.2	1	2.5	101	21	1	1	60
5356	337532	5634540	2.3	1	25	690	22	2	1	34
5357	337524	5634526	1	1	15	960	16	1	1	45
5358	337259	5633063	0.3	1	2.5	147	140	2	1	33
5359	337195	5633021	0.1	1	2.5	70	190	2	1	21
5360	337136	5632794	2.9	1	2.5	1040	110	2	1	40

Placer Dome: Rock Sample (ARIS: 21774)

Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Ag_ppm	As_ppm	Au_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
5361	337127	5632789	0.4	1	2.5	75	13	2	1	27
5362	337257	5632572	2.8	1	2.5	28	700	75	1	64
5363	336685	5632453	0.2	1	2.5	43	13	3	1	74
5364	336693	5632404	0.2	1	2.5	78	17	3	1	86
5365	336782	5632428	0.3	1	2.5	115	17	3	1	65
5366	336791	5632418	28	2	355	4000	59	6	1	139
5367	336803	5632414	90	6	1045	12000	30	33	3	212
5368	336902	5632442	7	3	25	339	19	41	6	5800
5369	336911	5632449	93	96	700	28000	11	3400	20	11200
5370	336926	5632447	30	21	185	333	22	34	14	117
5371	336919	5632451	1.5	3	2.5	201	10	25	1	210
5372	336938	5632437	16	48	35	287	52	30	102	4700
5373	338882	5631241	0.4	3	2.5	19	7	4	1	45
5374	337123	5633754	0.5	1	2.5	158	11	4	2	44
5375	337125	5633771	0.1	6	2.5	32	80	1	1	9

Tiberon Minerals: Grizzly Property Rock Sample (ARIS: 25216)

Sample_ID	Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Au_ppb	Mo_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Ag_ppm
1	. 1201	338975	5636259	5	1	22	23	59	59
2	1202	338986	5636083	5	2	17	4	46	46
3	1203	339151	5635888	5	4	361	3	56	56
4	1204	339333	5635430	5	1	12	5	14	14
5	1205	339260	5635531	5	3	15	5	23	23
6	5 1206	339485	5635207	5	1	53	11	31	0.3
7	' 1207	339507	5635097	5	1	23	3	128	128
8	1208	339570	5634997	3990	38	1075	1428	4132	4132
9	1209	339707	5634896	30	3	25	9	81	81
10	1101	339024	5636220	5	2	2	4	6	0.3
11	. 1102	339157	5636106	5	1	113	3	377	0.3
12	1103	339251	5636041	5	2	232	5	29	0.3
13	1104	339393	5636013	50	3	167	171	21	6
14	1108	339485	5635351	36400	212	319	86	49	5
15	1109	339530	5635363	45	139	455	19024	4165	240.3
16	5 1110	339532	5635140	60	5	64	25	14	3.2
17	' 1111	339563	5635027	1860	24	103	419	463	170.6
18	. 1112	339589	5635038	30	3	825	13	262	4.6
19	1114	339641	5635082	300	110	126	86	240	15.9
20	2100	338961	5636213	10	8	77	59	81	0.4
21	. 2105	339323	5635912	10	6	185	11	191	0.3
22	2106	339578	5635533	5	9	38	15	34	0.3
24	2907	339578	5635464	310	4	55	55	34	4.9
23	2113	339614	5635050	240	70	60	12	47	13.6
25	2001	338958	5636326	5	1	313	7	32	1
26	2002	338985	5636181	5	1	22	3	78	0.3
27	2003	339166	5636179	5	1	107	3	35	0.3
28	2004	339095	5636072	5	2	130	10	45	0.3
29	2005	339481	5635391	10	6	29	29	53	1.4
30	2006	339378	5635467	5	1	30	5	53	0.3
31	2007	339273	5635432	270	19	33	115	13	43.1
32	2008	339508	5635246	1200	8	133	101	104	61.5

Tiberon Minerals: Grizzly Property Rock Sample (ARIS: 25216)

Sample_ID	Sample_ID	East_NAD83_Z10	North_NAD83_Z10	Au_ppb	Mo_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Ag_ppm
33	2009	339581	5635218	140	170	20	662	124	4.7
34	2010	339635	5635165	5	2	196	5	99	1.3
35	2011	339663	5635124	5	10	44	3	247	0.3
36	2012	339697	5635072	5	1	46	3	134	0.3

APPENDIX 5 -LABORATORY CERTIFICATES-

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1803-RG1

Nov-24-10

Company:	St. Elias Mines Ltd.
Project:	
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 4 rock samples submitted Oct-18-10

Sample Au Name ppb	Au-Check pph	Ag ø/tonne	Pb %	Re pph
	PP~	Bronne	70	PP~
JT03 3				1450
JT04 2				
JT05 45				
JT06 7058	7200	898.1	1.10	
*DUP JT03				1530
*CM-6				752
*OXF65 735				
*AC0501		233.5		
*ME-3			2.83	
*BLANK <1		<0.1	<0.01	<5

Au 30g F.A. AA finish

K

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No: 0V1803RXDate: Nov-24-10

Sample type : ROCK

St. Elias Mines

Project :

.

.

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample Number	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cs ppm	Cu ppm	Fe %	Ga ppm	Ge ppm	Hf ppm	Hg ppm	In ppm
JT03	< 0.05	0.3	0.56	2.2	222	<1	0.1	0.07	<0.1	3	1.3	134	0.4	31.6	1.39	3	<0.1	< 0.1	0.009	0.01
JT04	< 0.05	0.4	0.51	2.8	130	<1	< 0.1	0.02	<0.1	2	1.4	126	0,2	61.5	3.59	З	< 0.1	< 0.1	0.007	< 0.01
JT05	< 0.05	1.0	0.17	31.2	71	<1	<0.1	0.18	0.1	5	6.8	167	< 0.1	69.7	2.88	1	< 0.1	< 0.1	0.006	0.01
JT06	4.44	>200.0	0.12	5.3	32	<1	63.3	0.03	6.9	1	2.1	151	<0.1	135.8	2.34	<1	<0.1	<0.1	0.035	0.01
Duplicates:																				
*DUP JT03	< 0.05	0.5	0.51	1.9	195	<1	0.1	0.06	<0.1	3	1.2	123	0.4	28.4	1.31	2	<0.1	<0.1	0.007	0.01
Standards:																				
BLANK	<0.05	0.1	< 0.01	<0.5	<1	<1	<0.1	< 0.01	< 0.1	<1	0.3	<1	<0.1	<0.1	< 0.01	<1	<0.1	< 0.1	< 0.005	< 0.01
CH-4	0.36	2.1	1.66	10.9	233	<1	0.5	0.50	1.0	24	19.7	89	2.1	1981.8	4.53	8	<0.1	0.2	<0.005	0.09

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 90 min and diluted to 25 ml.

Signed:

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No: 0V1803RXDate: Nov-24-10

Sample type : ROCK

St. Elias Mines

Project :

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample Number	K %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Pb ppm	Rb ppm	Re ppb	S %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm
JT03	0.26	2	1.8	0.33	146	2378.8	0.06	0.8	4.6	0.018	1.3	10.5	>1000	0.19	<0.1	1.6	1.4	0.2	11	<0.1
JT04	0.15	2	1.2	0.21	101	26.4	0.04	0.2	3.3	0.009	2.2	5.1	<5	0.06	<0.1	0.9	<0.5	0.1	6	< 0.1
JT05	0.01	3	0.6	0.18	118	9.3	0.01	<0.1	36.5	0.093	39.7	0.4	15	0.49	0.1	2.4	1.5	0.1	6	< 0.1
JT06	0.05	<1	0.3	0. 06	45	12.7	0.01	<0.1	5.3	0.012 >	10000.0	1.1	<5	1.86	1.2	0.2	12.9	0.1	4	<0.1
Duplicates:																				
*DUP JT03	0.24	2	1.6	0.30	136	2169.9	0.05	0.7	4.0	0.017	1.5	9.5	>1000	0.20	<0.1	1.4	1.3	0.2	10	<0.1
Standards:																				
BLANK	< 0.01	<1	< 0.1	< 0.01	<1	0.1	<0.01	<0.1	<0.1	<0.001	<0.1	< 0.1	<5	< 0.05	< 0.1	<0.1	<û.5	<0.1	<1	<0.1
CH-4	1.39	11	11.8	0.91	293	2.9	0.04	<0.1	42.5	0.052	12.0	59.6	<5	0.60	0.5	6.0	0.6	0.5	7	<0.1

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 90 min and diluted to 25 ml.

.

Signed:

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No: 0V1803RXDate: Nov-24-10

Sample type : ROCK

St. Elias Mines

Project :

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample Number	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
JT03	0.3	1.4	0.095	0.1	0.4	30	0.3	1.0	32	0.3
JT04	0.1	2.2	0.038	< 0.1	0.9	33	0.1	0.2	19	1.4
JT05	0.2	0.5	0.018	< 0.1	0.4	50	0.1	1.8	27	0.5
JT06	518.9	0.1	0.007	<0.1	0.1	3	0.7	0.4	143	0.2
Duplicates:										
*DUP 1T03	0.7	1.2	0.088	0.1	0.3	28	0.3	0. 9	29	0.2
Standards:										
BLANK	<0.1	< 0.1	<0.005	<0.1	<0.1	<2	0.1	< 0.1	<1	0.1
CH-4	0.4	1.8	0.163	0.4	0.2	71	2.1	4.1	224	6.4

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 90 min and diluted to 25 ml.

Signed:

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1803-SG1

Nov-24-10

Company:	St. Elias Mines
Project:	
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-18-10

Sample	Au	
Name	թթե	
GG01	18	
GG02	8	
GG03	10	
GG04	10	
GG05	8	
GG06	80	
GG07	20	
GG08	10	
GG09	14	
GG10	54	
GG11	18	
GG12	14	
GG13	12	
GG14	14	
GG15	36	
GG16	10	
GG17	22	
GG18	22	
GG19	14	
GG20	24	
GG21	16	· · · · · · · · · · · · · · · · · · ·
GG22	12	
*OXF65	760	
*BLANK	<2	

Au 15g F.A. AA finish

Ľ,

SGS Canada Inc. 8282 Sherbrooke Street Vancouver, British Columbia V5X 4R6 T: (604) 327-3436 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1803-SG2

Nov-24-10

Company:	St. Elias Mines
Project:	
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-18-10

Sample	Au	
Name	ppb	
GG23	21	······································
GG24	5	
GG25	5	
GG26	9	
GG27	7	
GG28	16	
GG29	12	
GG30	4	
GG31	7	
GG32	3	
GG33	15	
GG34	10	
GG36	32	
GG37	5	
GG38	8	
GG39	13	
GG40	20	
GG41	6	
GG42	9	
GG43	7	
GG44	7	
GG45	7	
*OXF65	806	
*BLANK	<2	

Au 15g F.A. AA finish

Certified by_

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1803-SG3

Nov-24-10

Company:	St. Elias Mines
Project:	
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 17 soil samples submitted Oct-18-10

Sample	Au		
Name	ppb		
GG46	10	 	···-
GG47	10		
GG48	10		
GG49	12		
GG50	6		
GG51	4	 	
GG52	6		
GG53	2		
GG54	6		
GG55	6		
GG56	4	 	
GG57	30		
GG58	16		
GG59	6		
GG60	8		
GG61	44	 	
GG62	4		
*OXF65	763		
*BLANK	<2		
	·····	 ·····	

Au 15g F.A. AA finish

Certified by____